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GROUND VIBRATIONS GENERATED FROM TRAINS 

A semi-analytical mathematical model has been developed for the prediction of 

ground vibrations generated by surface trains. This model incorporates the necessary 

components of the railway system. The vehicles, track and ground are described in a 

sufficiently detailed manner. The vehicles are described as mUltiple rigid body systems and 

only vertical dynamics is considered. The track is modelled as multiple beams supported by 

vertical springs with consistent mass. The ground is represented by horizontal layers on a 

homogeneous half-space or a rigid foundation. The governing equations of the vehicles are 

solved in the frequency domain and those of the track-ground system in the frequency

wavenumber domain. The Fast Fourier Transform technique is used to convert the responses 

of the track and the ground from the frequency-wavenumber domain into the frequency

space and time-space domains. This model uses the moving axle loads and/or the wheel/rail 

combined irregularities as its inputs. Outputs include the dynamic wheel-rail forces, the 

displacements and displacement spectra of the track and the ground. The model has been 

validated using measured data from three sites. These sites present different ground 

conditions (very soft, fairly soft and hard) and different train-traffic operations (high-speed 

passenger trains and low-speed freight trains of two-axle wagons). The effects of various 

parameters on the ground vibration have been investigated using this model, especially the 

layered structure of the ground, the mass of the ballast, the train speed and the frequency of 

excitation. A number of findings have been obtained and the roles are demonstrated of the 

two mechanisms, quasi-static and dynamic, at different frequencies and for train speeds 

below and above the lowest ground wave speed. The validation of the model suggests that it 

can be used as a tool for predicting ground vibration levels of new lines and for investigating 

the nature of vibration observed at particular sites and studying vibration reduction 

measures. 
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Chapter 1 

INTRODUCTION 

This chapter, having emphasized the impact of train-induced ground vibration on 

the environment and hi-tech production, reviews previous work on the study of train

induced ground vibration. Relevant data are collected and the tasks of the current project 

are defined based on the literature review. 

1.1 IMPACT OF GROUND VIBRATION AND ITS SOURCES 

In recent years rail transport systems have increasingly received complaints of 

disturbance and annoyance from people living and working alongside lines and people 

living above underground lines. The disturbance is caused not only by the direct emission 

of noise from the railway, but also by the low-frequency whole-body vibration of the 

buildings and the noise radiated by the vibrating walls and floors, due to the ground 

motion induced by the rail traffic. 

For the perception of whole-body vibration, the important frequency range is 2 to 

80 Hz [ISO 2631-1: 1997], and usually relates to the operation of heavy axle-load trains 

running at low speeds on lines on the ground surface. Vibration in the frequency range 

from 30 Hz to 200 Hz [Grootenhuis 1977] excites the bending resonances of walls and 

floors in buildings which then radiate sound directly into rooms. This structure-borne 

noise (often termed 'groundborne noise') is predominantly associated with trains running 

in tunnels and therefore is a major concern for metropolitan railways (metros) running 

largely in tunnels in heavily built-up areas. Surface-running 'light-rail' vehicles which 

pass very close to buildings can also cause unacceptable levels of this 'rumbling' noise. 

The operation of high-speed trains highlights the problem of ground vibration. 

When a high-speed railway goes through a region with a soft ground, the train speed may 

be close to, or exceed, the lowest wave speed in the ground. In that case a very high level 

of ground vibration may appear and propagate [Krylov 1995]. Such a high level of 

vibration has been observed in Sweden in the operation of the X2000 train [Madshus & 

Kaynia 1998(a)]. Several hi-tech enterprises in the Tainan Science Park in Taiwan are 

planning to move out of the park because of the concerns about the impact of the strong 

vibration from the Taiwan High-Speed Railway on the production of hi-tech products 
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[news on 12/05/2001 on www.zaobao.com.sg].Using typical data from measurements, 

Dowding [2000] presented an investigation on the effects of ground motions from high

speed trains on structures, instruments and humans. 

In some countries, guidelines have been derived for acceptable vibration levels in 

buildings near existing and new railway tracks. For example, in Sweden [Banverket 

BVPO 724.001], for existing tracks, a velocity of I mmls (maximum rms) has been 

chosen as the highest level to which a dwelling should be exposed. In the vicinity of new 

tracks, an even stricter level of 0.4 mmls has been chosen as the trigger for consideration 

of countermeasures. 

The sources from which the ground vibration is produced are the wheel-rail 

interaction forces. When a wheelset runs along rails, it applies a force on the head of each 

rail. This force is termed the wheel-rail contact force or simply the wheel-rail force. A 

wheel-rail force can be decomposed into longitudinal, lateral and vertical components. 

The longitudinal component is small compared with the other two components if the train 

runs on a level straight track at a uniform speed. As shown in Figure 1.1 (a), ~ and 

Pr refer to the vertical forces on the heads of the left rail and the right rail, respectively, 

and Q{ ,Qr refer to the lateral forces. Usually ~ is not equal to Pr , and neither is Q{ to 

Qr. Responses to the force configuration in Figure 1.1 (a) can be viewed as a resultant of 

those to the force configurations in Figures 1.1 (b), (c), (d) and (e). The first three force 

configurations excite the track to vibrate vertically, torsionally and laterally, and 

consequently produce ground vibration and propagation. It is clear that the forces in 

Figure 1.1 (e) have little effect in generating ground vibration due to the bending stiffness 

of the sleepers. 

A vertical force exerted on the rails by the wheels may have three types [Sheng, 

Jones and Petyt 1999 (b)]. The first is a moving axle load (termed quasi-static load). 

When the train speed is much lower than the wave speeds in the ground, a quasi-static 

load will only produce a nearly static deformation of the track and the ground and no 

propagation is expected. However, if the train speed is close to or exceeds the wave 

speeds in the ground, a very high level of ground vibration may appear and propagate. 

The second type is afixed-point dynamic load at the track, which is produced when 

wheels pass and impact a fixed irregularity on the rail such as a rail joint. The vibration 

and propagation properties associated with this component depend on its frequency 
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contents and on the dynamic properties of the track and the ground. The third type is a 

moving dynamic load generated from the acceleration of an unsprung mass on the 

vehicle. This acceleration is produced from the irregularities of the wheels and rails, and 

is a function of vehicles, track, ground and train speed. When the train speed is well 

below the wave speeds in the ground, this component can be treated as a fixed-point 

dynamic load. 

There are a number of factors affecting the vibration level perceived by people in 

buildings. These factors can be grouped into four subsystems: vehicles (train), track, 

ground and buildings. It is well known that the unsprung mass of a vehicle has a great 

effect on the dynamic wheel-rail forces [Zai 1997] and thus on the ground. To attenuate 

vibration and noise produced by railways, a number of types of track, for example 

ballasted tracks with ballast mats and floating slab tracks, have been designed and used in 

practice. The ground vibration level is greatly affected by the ratio of the train speed to 

the lowest wave speed of the ground determined by the soil properties. Buildings may 

amplify or attenuate the ground vibration depending on the dynamic properties of the 

building structures. The interactions between these four subsystems make the problem 

very complicated. The complexity is also addressed by the fact that, for the study of 

ground vibration, various approaches have been devised and used to account for different 

aspects of the problem. A literature review now is carried out in the next section. 
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a) 

b) 

c) 

d) 

e) 

Figure 1.1. Wheel-rail forces. (a) Forces acting on each rail. (b) and (c) Symmetric and 

antisymmetric components of vertical force. (d) and (e) Symmetric and anti symmetric components of lateral 

force. 
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1.2 LITERATURE REVIEW 

There are many researchers who have worked or are working on ground vibration 

from railways. They are interested in different aspects of the problem. A seminar was 

held focussing on ground vibrations induced by high-speed trains in March, 2000 at 

Gothenburg, Sweden. At this seminar, about 50 researchers from different countries 

exchanged their experiences on the topic. At the workshop W AVE 2000 held in 

December, 2000 at Bochum, Germany, a large proportion of the papers were devoted to 

ground vibrations from railway trains [Chouw and Schmid 2000]. One of the important 

issues is to develop a mathematical model and produce the relevant software for 

predicting train-induced ground vibration. A mathematical model can be used for [Petyt 

and Jones 1999]: a) developing the understanding of the physical process involved; 

b) enabling the development of track or ground engineering solutions for reducing 

vibration transmission; c) providing data to be used with empirical predictions of 

vibration for environmental assessment of new lines. Since there are a number of effects 

of vibration covering surface propagation and tunnel vibration in different frequency 

ranges, it is not surprising that a number of different modelling approaches have been 

devised. The modelling approaches can be divided into three categories, i.e. analytical 

wavenumber-frequency domain approach, numerical approach, and empirical approach. 

The wavenumber-frequency domain approach is also referred to as the integral transform 

method (ITM), and the numerical approach usually includes the finite element method 

(FEM) and/or the boundary element method (BEM). Grundmann [1997] has presented a 

general discussion and comparison between ITM, FEM and BEM. A review of the state 

of the art of the mathematical modelling of railway vibration up to 1997 can be found in 

reference [Villot, Jean and Chanut 1997]. 

1.2.1 WAVENUMBER-FREQUENCY DOMAIN APPROACH 

This approach uses a single and a double spatial Fourier transform to transform 

the governing equations of the track and the ground from the physical domain 

(xyz domain, where the x-axis is directed in the railway direction (longitudinal direction), 

the y-axis is directed in the horizontal plane and normal to the railway (lateral direction), 

and the z-axis is directed vertically) into the wavenumber domain ([3, y, z), where 

[3, yare wave numbers in the x- and y-directions, respectively. Having solved the Fourier 
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transformed equations of motion, an inverse Fourier transform is performed to give the 

solution in the physical domain. 

If a harmonic vibration is assumed, and if the ground consists of horizontally 

parallel layers of homogeneous materials (layered ground), then the Fourier transformed 

equations of motion for the ground can be solved analytically in terms of the vertical co

ordinate z. This results in relations between the Fourier transformed displacements and 

stresses at both sides of a layer. Several forms of these relationships are available. One 

relates the displacements and stresses at one side of the layer to the corresponding 

variables at the other side of the layer. This formulation is generally known as Haskell

Thomson technique [Thomson 1950, Haskell 1953] in the fields of soil dynamics, 

earthquake engineering and geophysics. An alternative is to relate the displacements at 

both sides of the layer to the stresses at both sides of the layer, resulting in a direct or 

exact dynamic stiffness matrix [Kausel and Roesset 1981, Wolf 1985]. The two 

aforementioned methods use the analytical solution of the wave equation in a 

displacement formulation. When, alternatively, the exact solution of the wave equation is 

maintained in the horizontal direction, while a polynomial expansion is used in the 

vertical direction, a so-called thin layer formulation is obtained [Lysmer and Waas 1972, 

Waas 1972, Kausel and Peek 1982, Tassoulas and Kausel 1983, Kausel 1986]. This thin 

layer formulation (also called thin layer element method) can avoid computational 

difficulties arising when the thickness of a layer is too big. However as a sacrifice, the 

scale of calculation is increased. 

Rather than use either the exact or discretized dynamic stiffness matrix 

techniques, it has been found [Sheng, Jones and Petyt 1999 (a)] that improved 

computational efficiency can be achieved by using the dynamic flexibility matrix 

approach since all the matrices being manipulated are of order less than or equal to six. 

The details of this method and its extension to account for calculating stresses due to both 

stationary harmonic loads and moving harmonic loads will be presented in Chapter 2 of 

this thesis. 

Since 1991, Jones and Petyt [1991, 1993(a), 1993(b), 1997, and 1998] have 

published a series of papers on vibration propagation from railways. In their work, the 

ground is modelled, first as a homogeneous half-space, and then as a layer on an elastic 

homogeneous half-space or on a rigid foundation, and the thin layer formulation is used. 
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Without including any track structure, the load applied by the track is assumed as a 

harmonic pressure of constant amplitude over a rectangular area on the ground surface. 

The transient response of the ground due to a transient load can be constructed 

from that due to harmonic loads. In addition to this conventional method, some special 

methods have been suggested [Lee and Ma 2000(a), (b)]. 

The method of coupling the railway track with the ground was proposed by Jones 

[Jones 1994, 1996] and was first published in 1999 [Sheng, Jones and Petyt 1999 (a)). In 

references [Jones 1994, 1996], use is made of the CUbic-polynomial shape functions 

rather than the linear approximation across each three-dimensional layer element. In 

reference [Sheng, Jones and Petyt 1999 (a)], the dynamic flexibility matrix approach is 

used to increase calculation efficiency and accuracy. Though only one harmonic load, 

which acts at a fixed point on the rails, is considered, the importance of the layered 

structure of the ground and the structure of the railway track has been revealed. It is 

shown that the layered structure of the ground may produce a number of propagation 

modes, and the presence of a railway track may modify these modes. Example 

calculations show that the overall effect of the presence of the track is to increase the 

amplitude of vibration by a factor of two [Sheng, Jones and Petyt 1999 (a)]. 

The work mentioned above only considered stationary loads. When the train 

speed is close to, or exceeds, the lowest wave speed in the ground, the stationary load 

models are not applicable. Therefore a model to account for moving loads is required. 

Making use of an exact factorisation of the displacement and stress fields in terms of 

generalised transmission and reflection coefficients, Barros and Luco [1994] proposed a 

procedure to calculate the steady state displacements and stresses (termed moving 

Green's functions) within a layered ground generated by a buried or surface harmonic 

load moving with constant speed parallel to the ground surface. In this work, the 

displacements and stresses are formulated in terms of a double integral with respect to 

frequency and wavenumber in the lateral direction. Jones, Le Houedec and Petyt [1998] 

investigated the ground vibration generated by a moving harmonic load acting directly in 

a rectangular area on the ground surface. In this work, the ground is modelled as a 

homogenous half-space and the dynamic stiffness matrix of the half-space has been used. 

Groundmann, Lieb and Trommer [1999] also calculated the response of a layered ground 

to pre-assumed moving traffic loads using the thin layer formulation. In this work, the 
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inhomogeneous property in a layer in the vertical direction is introduced and the inverse 

FFT implemented by the wavelet transform is used to get the response in the spatial 

domain. 

When the train speed is very low, and when the axle spacing is long enough, it 

may be sufficient to consider only a single load on the rails because of the rapid decay of 

the ground vibration of low frequency. However, for high-speed trains, the moving loads 

may excite a propagating mode in the ground, which propagates over a much longer 

distance along the track. In this case, the interference between adjacent axles may have an 

important effect on the ground response. Even for low-speed freight trains, since the axle 

spacing is short, the coupling between adjacent loads may still have a significant effect. 

In both of these cases, multiple moving loads need to be considered. 

Alabi [1992], without implementing any model of railway track, modelled the 

loads applied by the railway track on the ground surface as a uniform moving load of 

infinite length in the moving direction and of finite width in the lateral direction. 

Krylov [1994, 1995] studied ground vibration from the whole set of moving static 

loads of a train on a track structure. In his study, a static deformation pattern of the rails 

under the axle loads is assumed to move at the train speed and thus to produce a dynamic 

force for each sleeper all of which together excite the ground. In this model, the track is 

modelled as a single beam resting on a Winkler foundation and only a single Rayleigh 

wave type has been taken into account in the ground part of the model. However, in his 

later papers, Krylov [1996, 1997, 1998, 1999 and 2000] included some of the effects of a 

layered ground into the same modelling approach by using a frequency-dependent 

Rayleigh wave speed. Since Krylov's model is relatively simple in calculation, it has 

been employed by many researchers [e.g. Lai, Callerio, Faccioli and Martino 2000, 

Degrande and Lombaert 2000]. 

It has been demonstrated by Lai et al [Lai, Callerio, Faccioli and Martino 2000] 

that, at least in some measurement conditions, a model only incorporating quasi-static 

loads would underestimate the ground vibration level, especially for higher excitation 

frequencies. 

Jones and Block [1996] divided the vibration observed at the track during the 

passage of a train into two parts. The first consisted of the time history of the quasi-static 
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deformation pattern due to successive axles as the train passes a fixed point, and the 

second, the response to dynamic loads caused by the acceleration of the masses of the 

train over the combined irregular profile of the wheels and track. For the propagation of 

vibration in the ground, they used a model of wave propagation from a fixed-point 

harmonic load on the track. The effect of the movement of the train was introduced as 

phase delay in the summation of vibration contributions from different sleeper positions 

along the track. The phase delay consisted of two parts: one corresponding to the time 

needed for a wave in the ground to travel from the excitation point to the observation 

point, and for this part the assumptions of a single wave speed in the ground was used; 

the other part corresponding to the time needed for an axle load to move over the 

corresponding distance. 

All the models mentioned so far account for the ground vibration induced by 

surface trains. In these models only the vertical dynamics of the track has been 

considered. In fact, a wheelset may also apply a lateral force to the rails, which will excite 

the track to vibrate laterally (see Figure 1.1 (d)). It is also the case that, due to the track 

twist irregularity, a wheelset may apply a torsion moment on the track that will excite the 

track to twist (see Figure 1.1(c)). The ground vibrations induced by the lateral movement 

and torsion of the track have received almost no attention. It is also remarked that the 

interactions between vehicles and a track/ground system have received little attention. In 

the related field of vehicle dynamics, the track is usually considered as a stiffness at each 

wheel. 

The wavenumber-frequency approach, in addition to being applied to study the 

vibration of a layered ground without any inclusion (tunnel, cutting etc.), has also been 

applied for a layered ground with an inclusion [Luco and Barros 1993] of infinite length. 

This application makes use of the homogeneity of the inclusion in the longitudinal 

direction and has some advantages over other methods [Aubry, Clouteau and Bonnet 

1994]. 

An important issue in which people are interested is the so-called critical speed of 

a moving load. A critical load speed is defined as that at which a load moves when the 

steady state amplitude of an undamped ground becomes infinite. In the presence of 

damping, this load speed will produce the strongest vibration. The phenomenon of 

critical load speed has been observed in Sweden [Madshus and Kaynia 1998]. Dieterman 
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and Metrikine [l997(b)] used a model of a point harmonic load moving along an elastic 

layer (extending to infinite in the lateral direction) resting on a rigid foundation to study 

the existence of critical load speeds in the ballast layer, showing that resonance occurs 

when the load speed is equal to the group speeds of the wave generated in the layer by the 

load. Usually there are several critical speeds for a layered ground. The presence of a 

beam may increase or decrease the critical load speeds [Dieterman and Metrikine 

1997(a)]. 

1.2.2 NUMERICAL APPROACH 

The wavenumber-frequency approach is analytical or semi-analytical and is well 

adapted to infinite boundaries without frequency limitations. However it can only be used 

in case of ground layers with parallel interfaces. If the ground has arbitrary geometry or if 

it has some inclusion, which is not homogeneous in the longitudinal direction, then 

numerical approaches must be employed. Two numerical approaches are used most 

commonly, one is the finite element method (FEM), and the other is the boundary 

element method (BEM). In FEM, structures and part of the ground (an artificial boundary 

must be introduced) are discretised and vibration levels (displacement, velocity or 

acceleration) are calculated at nodes. The artificial boundaries of the ground must 

incorporate the travelling wave propagation of an infinite medium. In other words, one 

must deduce proper boundary conditions, often termed 'transmitting boundary 

conditions', for the artificial boundary in order to ensure that no wave of significant 

amplitude is reflected by this artificial boundary. One type of such conditions was 

developed by Waas [1972] for two-dimensional problems and by Kausel [1974] for 

axially symmetric problems. The difficulty in using FEM is that, for a three-dimensional 

problem (when the movement of trains is considered then a three-dimensional problem 

results) there is a large number of elements involved in the analysis. Whereas infinite 

elements have been developed for two-dimensional problems in elasto-dynamics, they 

have not been developed for three-dimensional problems. 

The BEM is very well suited for dynamics of infinite media. Boundless regions 

are naturally represented. The radiation of waves towards infinity is automatically 

included in a BEM model which is based on an integral representation valid for internal 

and external regions. However, BEM is not optimal for thin structures such as tunnels 

since both faces of a structure have to be discretized, and BEM has numerical problems 
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for thin domains. Therefore for the dynamics of soil-structure interaction, a combination 

of FEM and BEM appears logically in which the finite structure is modelled using FEM 

and the ground is modelled using BEM [Jones, Thompson and Petyt 1999,2000]. 

In the application of BEM to the study of ground vibration, the Green's functions 

playa key role. The Green's functions are defined as displacements (or other quantities) 

of the ground due to a single unit concentrated load. The Green's functions are available 

for a homogenous full-space [Eason, Fulton and Sneddon 1956] and for a layered half

space [Sheng, Jones and Petyt 1999(c)]. Green's functions for a so-called two-and-half

dimensional homogeneous whole-space have also been derived [Tadeu and Kausel 2000]. 

If the Green's functions of a homogenous full-space are employed, then not only the 

interface of the ground and the built structure, but also the ground surface and the 

interfaces of the layers need to be discretised. In other words, only part of the ground 

surface and interfaces is taken into account, thus introducing artificial boundaries. 

However since the Green's functions for a full-space are formulated in a closed form, 

they are therefore easy to use. On the other hand, if the layered half-space Green's 

functions are employed, then for a ground consisting of parallel layers, only the interface 

of the ground and the built structure need to be discretised. However, the Green's 

functions for a layered half-space are expressed in terms of boundless integrals, the 

evaluation of which is time consuming. 

Though the numerical approach can deal with arbitrary geometry such as trenches 

and buried walls, and ground with sloping layers, cuttings and embankments, it has a 

high frequency limitation depending on the order of elements and the computing 

resources used. In addition to that, a fully three-dimensional model is not used in practice 

because of the complexity and excessive computation time. 

Wei & Petyt [1987] used the FEM to analyse the two-dimensional problem of a 

single layer on a rigid foundation. Both cuttings and embankments were introduced on 

the ground surface. The part of the layer containing the load and the geometric 

irregularities was modelled using linear, four noded, plane strain quadrilateral elements. 

Comparison with a dynamic stiffness solution indicated that ten elements per wavelength 

should be used. 

J ones, Wang and Dawn [1995] used the FEM to predict vibration propagation 

from a bored tunnel (modelled as a two-dimensional problem). Finite elements (12 noded 
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quadrilaterals and 10 noded triangles) were used to model the tunnel and the adjacent 

ground, and semi-infinite elements were used to model the wave propagation away from 

this region. 

For the two-dimensional ground vibration problem, Peplow, Jones and Petyt 

[1999] used single-noded boundary elements on each of which the displacement was 

modelled as having a constant value. This approach demands that elements should be 

very much smaller than a wavelength of the wave in the solid and is adequate for low 

frequencies. To account for the high frequencies associated with ground-borne noise, 

J ones, Thompson and Petyt [1999, 2000] used boundary elements with three nodes and 

quadratic shape functions. In this work, the FEM was also used to analyse built 

structures such as bored tunnel linings or cut-and-cover tunnels. 

The numerical approach has been used to investigate the effectiveness of barriers, 

such as trenches, piles, and line-side masses, for ground vibration reduction. Ahmad and 

AI-Hussaini [1991], using a two-dimensional BEM model, and Yang and Hung [1997], 

using a two-dimensional Finite-Infinite-Element model, studied the effectiveness of open 

trenches and in-filled trenches. It was shown that trenches are primarily effective at high 

frequencies, and are most effective in screening against surface waves. Open trenches are 

more effective as barriers than solid barriers (such as in-filled trenches), but the latter are 

more practical because of the difficult stability and ground water problems associated 

with the open trenches. Piles appear to be the least effective type of barrier. 

Takemiya and Fujiwara [1994] and Takemiya, Shiotsu and Yuasa [2000] also 

used a combined FEM and BEM model to investigate the line-side ground vibration 

induced by high-speed trains and the mitigation measure of a wave impedance block 

(WID). A wave impedance block is a block that is made of different material from the 

soil and is inserted into the ground to modify its propagating wave modes. The combined 

FEMIBEM method and its application to traffic-induced ground vibration have attracted 

increasing attention (see [Chouw and Schmid 2000]). 

1.2.3 EMPIRICAL APPROACH 

Empirical methods, i.e. those that predict on the basis of trend analysis from a 

database of measurement data, are used successfully for the prediction of environmental 

vibration. Because of the large number of factors affecting ground vibration, they cannot 
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be used to demonstrate the physical process of vibration excitation and propagation or 

used to study the design of reduction measures. In general, empirical prediction formulae 

can only be used for situations similar to those upon which the empirical formulae are 

extracted. For these reasons, empirical methods are not compatible with the purposes of 

the present work and are not considered further in this thesis. A detail and comprehensive 

summary of empirical prediction methods can be found in reference [Sharif 1997]. 

1.2.4 MODELS OF RAILWAY TRACKS 

Various railway track dynamics models have been developed to study the vertical 

and lateral track dynamics in different frequency ranges [Grassie et al 1982, Thompson 

1993, Knothe et al 1994, Mead 1996, Zai 1997 and Wu and Thompson 1999]. The 

purpose of these models has been to study the vehicle-rail interaction and/or the wheel

rail noise and therefore none of them have taken into account the effect of the ground 

supporting the railway track. Recently, Knothe and Wu [1999] presented a track model 

incorporating the ground. In this model the rail is modelled as an infinite Timoshenko 

beam, the ballast below each sleeper is modelled as a mass block. Under the mass block a 

uniformly distributed pressure is assumed to act over a rectangular surface area of the 

subgrade. The sub grade is modelled as a homogeneous elastic half-space or as a layered 

half-space. The calculations of the receptance of the rails show that, in the low and 

medium frequency range up to 250 Hz great differences are observed between this model 

and the previous models in which the energy propagation into the ground has not been 

considered. 

Van den Broeck and De Roeck [1999] investigated the vertical receptance of a 

track including soil-structure interaction. Their calculations show that for frequencies 

lower than 200 Hz, the loading point position (above a sleeper or at the middle of a span) 

makes negligible difference in the vertical receptance; the rail and the sleeper move 

together with a large deformation of the ballast and the subgrade as a result. These results 

indicate that, for that frequency range, a continuously supported rail model is suitable. 

Man and Kok [2000] also studied the effect of change in ballast stiffness on the response, 

showing that low frequency response is highly dependant on the ballast properties. From 

those observations, an important conclusion can be drawn that, in the low frequency 

range (less than 250 Hz), the dynamic behaviour of the ballast and the subgrade have to 

be modelled correctly. 

- 13 -



In modelling the railway track, the rails are usually modelled as an Euler beam or 

a Timoshenko beam. The latter includes the effects of the shear deformation and 

rotational inertia of the beam. For frequencies below about 500 Hz for a normal steel rail 

section, the difference between these two beam models is negligible [Qu 1992]. 

1.3 PARAMETERS OF VEHICLES, RAILWAY TRACKS AND 

GROUNDS 

To model the ground vibration from trains, a number of parameters describing 

vehicles, tracks and grounds are needed. These parameters, as well as some typical rail 

irregularity data, have been provided by several organisations and are listed in Tables 1.1 

to 1.5. 

l.3.1 PARAMETERS OF VEHICLES 

Table 1.1 lists parameters of four types of vehicle, from passenger coaches to 
freight wagons. 

In addition to these the parameters for an X2000 train have been used in this work 

and these parameters have been provided in confidence. 
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TABLE l.l 

Parameters or vehicles 

Mk3 
Passenger 

Coach I 
Parameters (UK) 

(4 axles) 
Body mass (kg) 21400 
Body pitch inertia (kg_m2) 8.3x105 

Bogie sprung mass (kg) 2707 
Bogie pitch inertia (kg_m2

) 1970 
Secondary vertical stiffness per bogie (N/m) 0.81x106 

Secondary vertical damping per bogie (Ns/m) 74000 
Secondary damper stiffness per bogie (N/m) t 
Primary vertical stiffness per axle (N/m) 0.359xl06 

Primary vertical damping per axle (Ns/m) 8400 
Primary damper stiffness per axle (N/m) t 14xl06 

Bogie centres (m) 2x8 
Bogie wheelbase (m) 2x1.3 
Wheel set mass (kg) 1375 
Wheel diameter (m) 0.914 
Vehicle length (m) 23 

Notes: 

1. 
2. 
3. 
4. 

Provided by Manchester Metropolitan University. 
Provided by AEA Technology Rail. 
From reference [Zai, 1997]. 
From reference [Zai, 1997]. 

HAACoal 
Wagon 

(Loaded)2 
(UK) 

(2 axles) 

42330 
1.7 x 105 

3.3x106 
2.0x105* 

100x106* 

2x2.781 
1925 
0.92 
9.04 

LTF 
Freight 
Wagon' 

(UK) 
(4 axles) 

93640 
4.4lx106 

1880 
1710 

6.2x106 
lxl05 

I.3xl07 

9xl04 

2x4.039 
2xO.875 

1150 
0.84 

C62A 

Freight 
Wagon4 

(China) 
(4 axles) 

77000 
1.2x I 06 

1100 
760 

5.32x106 
7xl04 

2x4.25 
2xO.875 

1200 
0.84 

13 

* The suspension is a leaf spring with friction damping. These parameters have been assumed as 
approximate equivalent values to fit a viscously damped suspension model. 

t. This stiffness is in series with the damper. 

1.3.2 PARAMETERS OF TRACKS 

Tables 1.2 to 1.4 list parameters for track elements from different sources. 

TABLE 1.2 

Parameters for railway tracks 

Reference 
Rail type 
Rail mass (kg/m) 
Vertical bending stiffness of rail (El) (Nm2) 
Pads thickness (mm) 
Pad vertical stiffness (N/m) 
Pad lateral stiffness (N/m) 
Sleeper spacing (m) 
Sleeper type 
Sleeper mass (kg) 
Ballast vertical stiffness (N/m) 
Ballast lateral stiffness (N/m) 

[Thompson 1997] 
DIC 60 

60 

6 
3.5 X 108 

5.0xl07 

0.6 
Monobloc concrete 

324 
7x107 

l.l x 108 
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[Van den Broeck et al 1999] 
DIC 60 

60 
6.46x 106 

2.8x108 

0.6 
Monobloc concrete 

355 
1.77 x 108 



TABLE 1.3 

Static and dynamic stiffness of Pandrol studded J 0 mm railpad 
[Thompson, Van Vliet and Verheij 1998] 

Preload (kN) 20 30 40 60 
Static stiffness (MN/m) 
Dynamic stiffness at 50 Hz (MN/m) 
Dynamic stiffness at 200 Hz (MN/m) 

Dynamic stiffness at 500 Hz (MN/m) 

19 
61 
69 

81 

TABLE 1.4 

25 
82 
92 

110 

37 
130 
140 

170 

95 
300 
330 

390 

Vertical ballast stiffness for a sleeper block with an area of 0.23 m2 

[Fremion, Goudard and Vincent 1996] 

80 
200 
650 
690 

780 

Static load (kN) 
1.2 

50 Hz (MN/m) 200 Hz (MN/m) 500 Hz (MN/m) 

11 
21 

50 130 
120 
125 

210 
240 

420 
480 

Wu and Thompson [1999] have investigated the effects of local preload on the 

foundation stiffness and the vertical dynamics of a railway track. Calculation shows that 

the point receptances of a railway track at low frequency (below the pinned-pinned 

resonance) are governed by the local supports near the wheel load, i.e., the analysis can 

be carried out with a model having uniform foundation stiffness, as long as it is the same 

as the real stiffness under the wheel load. Calculation also shows that the local stiffness 

variation in the rail foundation near the wheel load has no obvious effects on the pinned

pinned resonance. The effect of the local stiffness variation in the track foundation near 

the wheel load on the average wave propagation decay rate is very limited. 

Fenander [1997] presents measurements of the vertical stiffness and loss factor of 

studded rubber railpads, both in a complete track and in a test rig, as functions of 

frequency under different static preloads. For more compact polymer-based railpads, 

track measurements were also performed. The stiffness of the studded railpads was found 

to increase strongly with preload, but weakly with frequency. Table 1.3 also shows this 

feature. The loss factor of the studded railpads was found to be nearly independent of 

preload and to increase only slightly with frequency (0.1-0.2 for a frequency range of 0-

500 Hz). 
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1.3.3 DATA FOR THE VERTICAL PROFILE OF RAILS 

The dynamic excitations at wheel-rail contact points come from rail and wheel 

irregularities. The rail irregularities include dipped joints and corrugation as well as the 

general undulation in the 'track top'. The wheel irregularities can be wheel flats, surface 

irregularities and wheel eccentricity. The variations in the vertical profiles of either 

surface (wheel and rail) introduce a relative displacement input to the vehicle and track 

systems. The process is usually assumed to be linear, so that for a given wavelength.lt, , a 

displacement input is generated at the passing frequency f = c / .It, , where c denotes the 

train speed. For the frequency range of 5 to 80 Hz of interest for perception of ground 

vibration and a train speed range of 36 to 250 krnlh (10 to 70 rnls), the wavelengths of 

important vertical irregularities lie within the range 0.125 to 14 m (or in the wavenumber 

range of 0.07 to 8 cycle/m). Most conventional wheel sets used in main line vehicles have 

rolling radii varying from 0.4 to 0.5 m. For operational train speeds between 10 and 70 

mis, the wheel irregularities produce an excitation with a fundamental frequency 

(f = c / (2nR) ) ranging from 4 to 22 Hz. This frequency range is within the range of 

interest, 5 to 80 Hz, for ground vibration. 

Measurements of wheel and rail irregularities were carried out by, for example 

ORE C116 [1971] and more recently for short wavelengths by, for example Dings and 

Dittrich [1996]. In a wavelength range of 1 to 100 m, ORE C 116 gave the power spectral 

density of rail irregularities, showing that with increasing wavelength, the power density 

increases rapidly. Esveld [Esveld 1989] also gives the power spectral density of rail 

irregularities in different European countries. Dings and Dittrich only gave the roughness 

for wavelengths of 0.08 to 0.2 m. For rail corrugation, Grassie and Kalousek [1993] 

presented a detailed discussion on its characteristics, causes and treatments. It has been 

observed in practice that the wavelength of rail corrugation varies only slightly with the 

running speeds of trains. Therefore, the frequency of excitation at wheel-rail contact 

points increases proportionally with the train speed for a train running on corrugated rails. 

Recent developments on research into rail corrugations and out-of-round wheels can be 

found in the Workshop on Rail Corrugations and Out-of-round Wheels [Knothe and 

Grassie 1999]. 

Figure 1.2 shows examples of the vertical roughness levels expressed in terms of 

one-third octave band wavelength in the wavelength range of 1 to 20 m. These curves are 
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calculated from data measured on several main lines in Britain. For the wavelength range 

of 0.08 to 2 m, a measured roughness spectrum for a continuously welded rail is shown in 

Figure 1.3 [Jones 1996], Figure 1.4 shows roughness spectra for the wavelength range of 

0.01 to 0.63 m. These spectra are from an average of the roughness spectra of rails used 

in several European countries. 

70 

65 

E 
60 

'I' 
0 55 x 
~ 

~ 50 
CIJ 
~ 
CD 45 
> 

.!Q 

~ 40 
CD 
c 

"Th 3 
::l 
o 
a: 

30 

25 

20L--L __ -L __ L-~ __ -L __ ~-J __ -L __ ~~L--L __ -L~ 

1 1.25 1.6 2 2.5 3.15 4 5 6.3 8 10 12.5 16 20 

One-third octave band centre wavelength (m) 

Figure 1.2. Vertical roughness levels (an average over several sites) measured on several lines in 

Britain. *: Good quality ballasted track; +: good quality freight ballasted track; 0: poor quality freight 

ballasted track. Roughness data purchased from Serco Railtest Limited. 
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Figure 1.3. Vertical roughness levels in the wavelength range of 0.08 to 2 m for a continuously 

welded rail [Jones 1996]. 
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Figure 1.5. Vertical roughness levels in the wavelength range of 0.01 to 20 m, synthesized from a 

'good quality track' data shown in Figure 1.2 and those shown in Figures 1.3 and 104. 

It can be seen from Figures 1.2 to 1.4 that some variation is to be expected in the 

irregular profile and that no one measurement method encompasses the whole possible 

range of wavelength relevant to ground vibration excitation (0.125 m to 14 m). Figure 1.5 

shows a spectrum that has been synthesized by combining a 'good quality track' 

spectrum shown in Figure 1.2 and the spectra shown in Figures 1.3 and 1.4. This has 
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been used in the present work as a typical representative roughness spectrum for the 

purpose of example calculations. 

1.3.4 PARAMETERS OF GROUNDS 

For a layered ground, the thickness, Young's modulus, Possion' s ratio, mass 

density and damping of each layer are needed. These parameters vary greatly from site to 

site. The most often cited values of mass density are from 1500 kg/m3 to 2000 kg/m3. 

Representative values ofPossion's ratio can be found from Shamsher Prakash's book 

[Prakash 1981] and are listed as follows: 

Type of soil 
Clay 
Sand 
Rock 

TABLE 1.5 

Representative values of Passion's ratio of soils [Prakash 1981] 
Possion's ratio 
0.4-0.5 
0.3-0.35 
0.15-0.25 

Rather than elastic modulus, the shear wave speed defined by c2 = .JG / P is 

more often used, where G is the shear modulus and p the mass density. The shear wave 

speed may be as low as 50 m1s [Adolfsson, Andreasson, Bengtsson and Zackrisson 1999] 

which is lower than the operational speeds of high-speed trains (e.g. 300 km/h or 83 m1s) 

at some site locations and, as high as 200 m1s or more at others. The thickness of the 

upper layer is important if the wavelength in this layer is greater than the thickness. 

Damping in soils is the most difficult parameter to determine. It is generally 

accepted that the soil damping exhibits a hysteretic nature [Prange 1978] so that a loss 

factor is often used to describe the damping mechanism. For simplicity, for vibrations of 

low amplitude and low frequency, most researchers choose a "constant hysteresis" 

damping model, in which the loss factor is set to be independent of frequency. However, 

this damping model would produce non-causality for impulse excitation [Crandall 1970], 

i.e., the impulse response appears prior to the action of the impulse. The higher the 

damping is, the stronger the non-causal effects would be. More detailed discussion on 

this is given in Appendix 1. For low frequencies, a viscous damping nature has also been 

observed to be consistent with site measurements at some locations [Jones 1994]. Thus it 

may be more reasonable to model the damping for low frequencies as viscous, and for 

other frequencies as hysteretic. The problem still remains open that on one hand, there is 
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not enough knowledge of the dividing point below which the viscous damping model is 

applicable; on the other hand, this combined model does not definitely avoid the non

causality. Fortunately, for a layered ground, ground vibration produced by a moving train 

has a dominating component in a particular frequency range, which is determined by the 

properties of the soil, the train speed and the excitation frequency. If the loss factor in the 

"constant hysteresis" damping model is selected as the same as the actual loss factor at 

this frequency, the response of the model will be sufficiently close to that of the actual 

system. At most frequencies the model will have an inaccurate representation of damping 

but the effect on the dynamic response will not be significant if the damping is light. 

Bearing this in mind, the "constant hysteresis" damping model is used in this thesis, 

although the model allows for an alternative viscous damping characteristic and 

frequency-dependant loss factor. 

l.3.5 PARAMETERS OF GROUNDS AND TRACKS USED IN THIS THESIS 

The parameters listed in Tables 1.6 to 1.9 will be, unless otherwise stated, used in 

this work. The grounds specified by parameters in Tables l.6 and l.7 consist of a single 

layer of 2 m thickness overlying a much stiffer homogeneous half-space. The Rayleigh 

wave speed of the upper layer of the 'stiffer ground' is 112 m1s while that of the 'softer 

ground' is 77 m/s. The ballasted tracks specified by parameters in Tables 1.8 and 1.9 

differ only in the ballast: the former, termed the lighter track, has a lower ballast height 

thus more vertical stiffness and less mass; the latter, called the heavier track, has a higher 

ballast height thus less vertical stiffness and more mass. The 'rail' in these tracks 

represents two rails by a single equivalent beam. 

TABLE 1.6 

Parameters for a stiffer /iround 

Layer Depth Young's Poisson's Density Loss P-wave S-wave Rayleigh wave 
(m) modulus ratio (kg/m3) factor speed speed speed 

(l06Nm-2) (m/s) (m/s) (m/s) 
2.0 60 0.44 1500 0.1 360 117.9 112 

Half space 360 0.49 2000 0.1 1755 245 233 

TABLE 1.7 

Parameters for a softer /iround 

Layer Depth Young's Poisson's Density Loss P-wave S-wave Rayleigh wave 
(m) modulus ratio (kg/m3) factor speed speed speed 

(l06Nm-2) (m/s) (m/s) (m/s) 
2.0 30 0.47 1550 0.1 340 81.1 77 

Half space 360 0.49 2000 0.1 1755 245 233 
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TABLE 1.8 

Parameters for a lighter ballasted track 

Mass of rail beam per unit length of track 120 kg/m 
Bending stiffness of rail beam 1.26 xl 07 Nm2 

Loss factor of the rail 0.01 
Rail pad stiffness 3.5 xl 08 N/m2 

Rail pad loss factor 0.15 
Mass of sleepers per unit length of track 490 kg/m 
Mass of ballast per unit length of track 1200 kg/m 
Ballast stiffness per unit length of track 3.15 Xl 08 N/m2 

Loss factor of ballast 1.0 
Contact width of railway and ground 2.7m 

TABLE 1.9 

Parameters for a heavier ballasted track 

Mass of rail beam per unit length of track 120 kg/m 
Bending stiffness of rail beam l.26 X 107 Nm2 

Loss factor of the rail 0.01 
Rail pad stiffness 3.5 X 108 N/m2 

Rail pad loss factor 0.15 
Mass of sleepers per unit length of track 490 kg/m 
Mass of ballast per unit length of track 3300 kg/m 
Ballast stiffness per unit length of track 1.775 xl 08 N/m2 

Loss factor of ballast 1.0 
Contact width of railway and ground 2.7m 

Railpad stiffnesses vary considerably (by more than an order of magnitude). The 

value used here is a 'medium' stiffness, typical of modern track, corresponding to 

105 MN/m per pad. 

1.4 WORK TO BE CARRIED OUT IN THIS PROJECT 

From the literature review, some points may be summarised as follows: 

(1) Free vibrations have been investigated for a layered ground without any built 

structure by many researchers (resulting in modes and dispersion curves), but there is 

little knowledge of the modification caused by the presence of a railway track to the free 

ground vibrations. This sort of knowledge may be helpful for other aspects of the study of 

ground vibration such as determining the critical train speeds. 

(2) The vibration of a layered ground generated from surface trains has been 

studied mainly for the case of the track vibrating vertically. The wheelsets may apply 

lateral forces and/or torsion moments on the track. Though these lateral forces and 

torsional moments may have relatively small magnitudes compared to the vertical wheel-
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rail forces, due to their different frequency contents from those of the vertical wheel-rail 

forces, they may also have significant contributions to the total response. 

(3) Most of the existing models have only taken into account the quasi-static 

loads. Such models cannot predict the ground vibration level due to the dynamic wheel

rail forces. A relationship is needed between the track quality (wheel-rail combined 

irregularities) and the ground vibration level. 

(4) Tracks should be modelled in such a manner that the dynamic behaviour of the 

ballast and the embankment is implemented in the model. 

(5) The methods of assessing the efficiency of vibration reduction measures are 

based on velocity measurement at one point before and after treatment. This approach 

seems too simple and might give erroneous results [Villot, Jean and Chanut 1997]. A 

more correct efficiency should be estimated from the energy transmitted to the ground or 

from the energy stored somewhere (in a tunnel wall or in a reception structure for 

instance) estimated from spatially averaged velocity. 

The aim of this project is not to solve all of the problems but develop a 

comprehensive model for predicting ground vibrations generated from surface trains. By 

this means the physical mechanisms of ground vibration excitation and transmission 

through the ground are studied in a number of stages and a better understanding of the 

phenomenon is derived. At the end of the project, it is intended that this model can be 

used as a prediction tool for ground vibration, and for studying vibration reduction 

measures and to investigate the nature of vibration observed at particular sites. Thus this 

model should incorporate the necessary components for an accurate prediction of 

vibration from actual railway traffic. To this end, the vehicles, the track and the subsoil (a 

layered ground) are modelled in a sufficiently detailed manner. To enable the 

investigation into the understanding of the physics involved in the problem and provide a 

reference base for numerical models, the wavenumber-frequency domain approach is 

used. The governing equations are solved analytically in the frequency-wavenumber 

domain, and then the inverse Fourier transform technique is used to obtain the actual 

solutions. Thus this model is a semi-analytical model. This model uses the quasi-static 

loads and the wheel-rail combined irregularities as its inputs. Outputs include the 

dynamic wheel-rail forces, the displacements and displacement (velocity and 

acceleration) spectra of the track and the ground surface. The frequency range of interest 
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is up to about 80 Hz. It is not intended to predict ground borne noise which has a higher 

frequency range, nor is it intended in this thesis to study trains in tunnels. The tasks for 

each stage of the development of the model are stated as below. 

In Chapter 2, the solution for steady state displacements and stresses (Green's 

functions) of a layered ground due to stationary or moving unit harmonic loads is derived. 

This work is similar to that of Barros and Luco [1994], but more properties of the 

resulting Green's functions, such as reciprocity relations, are revealed. This makes the 

Green's functions derived here more computationally efficient to use. 

In Chapter 3, a study is carried out for vibration propagation in a layered ground. 

Dispersion curves, cut-on (natural) frequencies, receptances and critical load speeds are 

topics to be discussed. It is expected that the presence of a track will modify these 

features to some extent, thus this study will be helpful in the understanding of dynamics 

of a track-ground system. 

To get an understanding of the track dynamics, in Chapter 4, an investigation is 

carried out for the steady-state responses of a railway track on a Winkler foundation to a 

moving harmonic load. 

In Chapter 5, a model to predict ground vibrations generated by vertical wheel-rail 

forces is developed by adding the track to the ground model of Chapter 2. This model is 

intended to serve two purposes: one is to study ground vibration generated by the quasi

static loads (multiple axle loads) and the other is to provide a step in the development of 

a ground vibration model which comprises vehicles, track and ground. A number of 

results from this model are presented in Chapter 6 in order to investigate the effects of 

various factors on the ground vibration. 

Based on the formulation in Chapter 5, in Chapter 7, the vertical dynamics of 

vehicles are coupled with the track-ground system to produce a whole model 

incorporating vehicles, track and ground. In this chapter, the relationship is derived 

between the combined wheel-rail roughness power spectral density and the ground 

vibration power spectra. 

To validate the model developed in Chapter 7, in Chapter 8, ground vibration 

spectra at three sites are predicted and compared with measured data. These sites 

represent different ground conditions (very soft, fairly soft and hard) and different train-
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traffic operations (high-speed passenger trains and low speed freight trains comprising 

two-axle wagons). From the predictions for the three sites, the roles are demonstrated of 

the quasi-static and dynamic components of vibration at different frequencies and for 

train speeds below and above the lowest ground wave speed. 

Finally, the conclusions drawn from each chapter are summarized in Chapter 9 

and some possible future work is suggested. 

1.5 MAIN CONTRIBUTION OF THIS THESIS 

The main contribution of this PhD thesis is the development of a comprehensive 

mathematical model for the prediction of ground vibrations generated by surface trains. 

This differs from the existing ones in that it couples a moving train of vehicles, a railway 

track and a layered ground and it uses both the moving axle loads (quasi-static loads) and 

the rail/wheel irregularities as its inputs. A relationship is derived between the combined 

wheel-rail roughness power spectral density and the ground vibration power spectra, 

which makes the outputs of the model comparable to measured data. Using this model, 

the roles are demonstrated of the two excitation mechanisms, quasi-static and dynamic, at 

different frequencies and for train speeds below and above the lowest ground wave speed. 

The model has been validated by using the measured data at three sites. Thus this model 

can be used as a prediction tool for ground vibration, for studying vibration reduction 

measures and to investigate the nature of vibration observed at particular sites. 
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Chapter 2 

STEADY STATE DISPLACEMENTS AND STRESSES OF A 

LAYERED GROUND DUE TO STATIONARY OR MOVING 

HARMONIC LOADS! 

2.1 INTRODUCTION 

For many applications, the steady state displacements and stresses of a ground 

subject to stationary (loads acting at a fixed point) or moving (loads moving in a fixed 

direction) harmonic loads are necessary. If the ground consists of a number of horizontal 

parallel layers, these displacements and stresses can be solved in the wavenumber domain 

analytically. In the stationary case, several forms of relationship between Fourier 

transformed loads (or stresses) and Fourier transformed displacements are available 

[Thomson 1950, Haskell 1953, Kausel and Roesset 1981, Wolf 1985, Lysmer and Waas 

1972, Waas 1972, Kausel and Peek 1982, Tassoulas and Kausel 1983, Kausel 1986]. 

In the moving load case, making use of an exact factorisation of the displacement 

and stress fields in terms of generalised transmission and reflection coefficients, Barros 

and Luco [1994] proposed a procedure to obtain the steady state displacements and 

stresses within a layered ground generated by a buried or surface load moving with 

constant speed parallel to the ground surface. The displacements and stresses are 

formulated in terms of a double integral with respect to frequency and wavenumber in the 

lateral direction orthogonal to the direction of motion of the load. 

Rather than use either the exact or discretized dynamic stiffness matrix 

techniques, it has been shown by Sheng, Jones and Petyt [1999 (a)] that improved 

computational efficiency can be achieved by using the dynamic flexibility matrix 

approach (similar to the Haskell-Thomson technique) since all the matrices being 

manipulated are of order less than or equal to 6. The definition of the dynamic flexibility 

matrix in the stationary case is given in Section 2.2. The derivation of the flexibility 

IThe displacement part of this Chapter is due to the work (recorded in the ISVR Technical Memorandum 
No. 837, March 1999) can-ied out when the author was an academic visitor. Improvements and an extension 
to account for the calculation of stresses were made after registration as an MPhillPhD student. 
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matrix for a three-dimensional ground layer is described for a Cartesian co-ordinate 

system in Section 2.3. With some mathematical treatment, and making use of some 

properties of the matrix described in Section 2.4, numerical difficulties that occur in a 

number of previous works are avoided and explicit analytical expressions of the formulae 

are obtained. In Section 2.5, the formulae developed for the stationary case are extended 

to include the case when harmonic loads move uniformly along a direction parallel to the 

ground surface. For both the stationary and moving cases, the steady state displacements 

and stresses are formulated in terms of a double integral with respect to the wavenumbers 

in the longitudinal and lateral directions. This double integral can be transformed into a 

double integral with respect to frequency and wavenumber in the lateral direction as 

given by Barros and Luco [1994]. Some reciprocity relations, which have been observed 

by Barros and Luco [1994] through numerical tests, are then proved. The formulae 

obtained so far are summarised in Section 2.6. 

It is assumed that the ground consists of a number, n, of parallel layers of different 

materials. The nth layer overlies a half-space or a rigid foundation, which is identified as 

'layer' number (n+ 1). For the jth layer the material constants are: elastic modulus, Ej , 

Poisson ratio, Yj, density, Pj, loss factor, 17j and layer thickness, hj. 

2.2 DEFINITION OF THE DYNAMIC FLEXIBILITY MATRIX 

Referring to Figure 2.1, let point P(O, 0) be the origin point on the top side of the 

I p th (1 ::::; lp ::::; n + 1) layer and point B(x, y) on the top side of the IR th (1 ::::; IR ::::; n + 1 ) 

layer. Suppose a unit harmonic load e iOX
, where i = ~ , OJ is angular frequency, acts at 

point P(O, 0) in the x direction. Then the steady state displacement amplitudes of point 

B(x, y) in x, y, Z directions, are denoted by QIl (x, y), Q21 (x, y) and Q31 (x, y), respectively. 

When the unit harmonic load acts at P in the y direction, the amplitudes are denoted by 

Q12(X, y), Q22(X, y), Q32(X, y), and similarly, by Q13(x, y), Q23(X, y) and Q33(X, y) for the 

load acting in the z direction. A matrix, [Q(x, y)], is defined as 
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p 

x 

The top side of the tpth layer 

~--+--------+x' The top side of the tRth layer 

x" 

z z' z" 

Figure 2.1. The co-ordinate system 

[

QIl (x, y) Q12 (x, y) Q13 (x, y)] 

[Q(x,y)]= Q21(X,y) Q22(X,y) Q23(X,y) 

Q31(X,y) Q32(X,y) Q33(X,y) 

(2.1) 

This is called the stationary dynamic flexibility matrix of lR to Ip (meaning that, the unit 

harmonic loads act at the origin point of the top interface of l p th layer and the 

displacements are for the points in the top interface of the lR th layer), or simply, 

stationary dynamic flexibility matrix. In general the Q's are complex, and alternatively are 

called displacement Green's functions. 

Now suppose that, at the topside of the I p th layer, the harmonic load 

distributions, p x (x, y)e iWl ,p/x, y)e iWl 
'Pz (x, y)e iWl 

, act in the x, y, z directions respectively. 

The total steady state displacement amplitudes in x, y, z directions, of point B(x, y) at the 

top side of the lR th layer, denoted by UZRO(x,y), VZRO(x,y), WZRO(x,y) , are given by 

(2.2) 

Equation (2.2) is a convolution integration. Using the Fourier transform pairs 
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to transform equation (2.2) into the domain of the wavenumbers [3 in the x direction and 

Y in the y direction, yields 

j
U1RO ([3, y)I {Px([3,Y)} 
l\o([3,y) =[Q([3,y)] pyC[3,y) = [Q([3,y)]{p([3,y)} 

l1\o ([3, y) Pz ([3, y) 

(2.4) 

where, ul 0 ([3, y) denotes the Fourier transform of ul 0 (x,y) , etc. The matrix [Q([3, y)] is 
R R 

called the Fourier transformed stationary dynamic flexibility matrix of IR to Ip , or more 

simply, the Fourier transformed stationary dynamic flexibility matrix. The derivation of 

an exact expression for this matrix is dealt with below in Section 2.3. 

2.3 DERIVATION OF THE FOURIER TRANSFORMED DYNAMIC 

FLEXIBILITY MATRIX 

2.3.1 ANALYSIS FOR A SINGLE LAYER 

The steady state displacements at the point (x, y, z) (where z E (0, hj) is local to the 

layer) in the jth layer are denoted by u j (x, y, z)e iW1
, v j (x, y, z)e iW1

, w/x, y, z)e iW1 
, where 

u
j 
(x, y,z) etc. are generally complex numbers and their Fourier transforms are denoted 

by uj ([3, y,z), 13/[3, y,z) and Wj ([3, y,z). The stress tensor contains nine components, 

however only three are required to study the interaction of parallel layers. The three 

relevant components of stress in the x, y, z directions in the horizontal plane containing 

the point are denoted by r xzj (x, y, z)e iWl 
, r yzj (x, y, z)e iWl 

, r zzj (x, y, z)e ica 
, and the Fourier 

transformed stress amplitudes by 'i x,/[3,y,z),'iYZj ([3,y,z),'izzj([3,y,z). 

Put 
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{U}jl = (u/{3, y,h), v j({3, y,h), w/{3, y,hj))T 

{rL = (r xlj ({3, y,hj ), rylj ({3, y,hj ), r zzj ({3, y,hj ))T 

{S}. = {{U}j1} 
jI {r} jl 

(2.5a) 

(2.5b) 

where {S}jO is the (Fourier transformed) state vector containing displacements and 

stresses of the top interface of the jth layer, and {SL is the corresponding vector for the 

bottom. It should be noticed that at the top interface of the l p th layer, the stresses are not 

continuous because of the applied loads. In this case the definition in equations (2.5) is 

modified as 

{f}/po = (fxz/p ({3,y,O+),fyz/p ({3,y,O+),fzz/p ({3,y,O+))T } 

{f 1p-I,1 = (fxz.lp-I ({3, y, h/~_I)' fYZ,/p-1 ({3, y, h/~_I)' fzz,/p-I ({3, y, h/~_I ))T 
(2.6) 

The relation between {S}jO and {SL will be derived below. 

Because all displacements are harmonic, Navier's equation for thejth layer can be 

written as 
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(2.7) 

where damping has been defined in terms of a loss factor 11 j by making E j complex. 

Fourier transforming equation (2.7) gives 

- dw. 
fl. = i{3u +iyV. +-d J 

J J J Z 

From equations (2.8) and (2.9) this results in 

where, if the compression and shear wave speeds of the jth layer are denoted by 

respectively, then 
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(2.10) 

(2.11 ) 

(2.12) 



are the compression and shear wavenumbers. 

The general solution to equation (2.10) for 11 j , and then to equation (2.9) for 

'iij , Vj and wj , can be obtained by the characteristic root method of solving ordinary 

differential equations, i.e. ~ j = e±C1j
I
Z are permissible solutions, where ± a jl are the 

characteristic roots. Substituting the solutions to equations (2.9) and (2.10) into the 

Fourier transformed stress-strain relation of the material, i.e. 

'i Xlj = /1 j (if3w j + diij / dz) ) 

'i Yzi = /1 j (i"(Wj + df5 j / dz) 

'i zzi = (Aj~ j + 2/1 jdwj / dz) 

gives 'i xzj etc. All the results may be expressed in matrix forms as 

(2.13) 

(2.14) 

(2.15) 

where, {b} j E C6 are integration constants, and[A]jO,[A]j' are 6x 6 matrices dependent 

on wavenumbers f3 and y , frequency ill and material parameters. When f3 = 0, the 

detailed expressions for [A]jo,[A]j' and other formulae are given in Section 2.6, with 

2 f32 2 /2 2 f32 2 /2 ail = + y - ':> jl ' a j2 = + Y - ':> j2 (2.16) 

It will be shown in Section 2.4 that it is sufficient to know [A] jO' [A]il for the special 

case f3 = O. 

The combination of equations (2.14) and (2.15) to eliminate {b}j links the Fourier 

transformed displacements and the stresses at the bottom of the layer with those at the 

top: 

(2.17) 
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2.3.2 ANALYSIS FOR THE HALF-SPACE 

Putting 

{it} n+I,O = (itn+1 (/3, r,O), V n+1 (/3, r,O), Wn+1 (/3, r,O))T } 

{r} 11+1,0 = (r xz,n+1 (/3, r,O), r YZ ,II+1 (/3, r,O), r zz,n+l (/3, r,O))T 

similar to equation (2.17), it can be shown that 

{it} - [R][S]-I{r} 
11+1,0 11+1,0 

(2.18) 

where [R] and [S] are 3 x 3 matrices, the elements of which are shown in Section 2,6. 

2.3,3 ANALYSIS FOR THE LAYERED GROUND 

The continuity of displacements and the balance of stresses at each interface of 

the layers imply that {S}. = {S}. (j = 1,2,,, ·,n,j:t Ip -1),{S} = {S} + {S}p, 
JI J+I,O lp-I,I IpO 

where {Sr = (O,O,O,PX,py'Pz)T is the applied load. From equation (2.17) yields 

" 
IajJhj _ _ p 

= ej=,p [Atl [A]~~ [At_I,1 [A]~~I,o ... [A]lp I [A]~IO ({ S }lrl,I - {S} ) 

Putting 

[T] = [~~:: ~~~:] = [A]",[A];:[A]"_,,[A];',o···[A],,[A];~ (2.19) 

[F]_[[F]II [F]12]_[A] [A]-I[A] [A]-I ···[A] [A]-I 
- [F]21 [F]22 - nl 110 /1-1,1 n-I,O lpl IpO (2,20) 
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where [nil, [F]II etc. are 3x 3 matrices, results in 

(2.21 ) 

If the (n + l)th layer is a half-space, then {Ii} 10 = {Ii} ,{r} = {r} . From 
n+ , nl n+l,O nl 

equations (2.18) and (2.21) and noticing that {r}IO = 0 , yields 

(2.22) 

If the n+ 1 th layer is a rigid foundation, then {iit+l.O = {iiL = 0, and equation 

(2.21) yields 

(2.23) 

Equations (2.22) and (2.23) give the relationships between the Fourier 

transformed displacement vector on the ground surface and the Fourier transformed load 

vector on the top side of the lp th layer. Notice that if I p = 1, the exponential term in 

equations (2.22) and (2.23) disappear and [F] = [n. If lp = 1 and the ground is just a 

half-space (in this case, n = 0), equation (2.18) yields {liLo = -[R][Sr1 {jJ}, since 

{p} = -{rLo' 

2.3.4 THE FOURIER TRANSFORMED DYNAMIC FLEXIBILITY MATRIX AND 

THE FOURIER TRANSFORMED STRESS MATRIX 

For the responses (displacements and stresses) of the top surface of the IR th layer, 

three cases should be accounted for: 

(1) When IR < lp (i.e., the observer is above the source) 

Equation (2.17) yields 
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Putting 

(2.24) 

where [G] II etc. are 3 x 3 matrices. Equation (2.22) then yields 

(2) When IR > Ip (i.e. the observer is below the source) 

Putting 

[H] = [[H1 II [H]12] - [A] [A]-I ... [A] [A]-I 
[Hb [H]22 - LR-I,I LR-I,O Lpl LpO 

(2.27) 

equation (2.22) yields 

(2.28) 
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(2.29) 

(3) When lR = lp 

where [I] denotes the unit matrix. 

Comparing equations (2.25), (2.28) and (2.30) with (2.4), it is seen that 

/R-/ 

2>,h 
[Q(/3,y)]=eJ=/p J J {[G]II([R][Srl[T]21 -[T]II)-I([R][Srl[Fb -[F]I2)-[H]I2} 

(lR > lp) (2.33) 

By writing 

r
OIl (/3, y) 0 12 (/3, y) 

where [O(/3,y)] = ~2I(/3,Y) 0 22 (/3,Y) 

U31 (/3, y) 032 (/3, y) 

(2.35) 

013 (/3, Y)l 
~ 23 (/3, y) is called the Fourier transformed 

U 33 (/3, y) 

stress matrix of lR to lp, it follows from equations (2.26) (2.29) and (2.31) that 
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Similarly, another Fourier transformed stress matrix of IR to Ip, denoted by 

[V (/3, y)] = (Vkj ) , can be defined, where Vkj stands for the Fourier transforms of stresses 

r xy (k = 1), r xx (k = 2), r yy (k = 3) at the top interface of the IR th layer due to a unit 

harmonic force acting at the original point of the top side of the I p th layer in x (j = 1), 

y (j = 2) and z (j = 3) directions respectively. The calculation of [V (/3, y)] will be 

discussed in Section 2.4. 

It should be noticed that when l p = n + 1 , [F] should be set as a unit matrix; when 

IR = 1, [G] should also be set as a unit matrix. Equations (2.36) and (2.37) show that the 

Fourier transformed stresses on the interface where the loads are applied are not 

continuous. 

2.4 SOME PROPERTIES OF U2(/3, y)], [0(/3, y)] AND [V (/3, y)] 

2.4.1 PROPERTIES OF [Q(/3, y)] 

It is worth noting some properties of [Q(/3, y)] that lead to efficiencies in the 

calculation. From the symmetries (or the anti-symmetries) of the displacements about the 

z-axis, it can be shown that, if putting /3 = p cos ¢, y = p sin ¢ , then 

l 

sin¢ cos¢ 01 lSin¢ 
[Q(/3,Y)]= -cos¢ sin¢ 0 [Q(O,p)] cos¢ 

o 0 1 0 

-cos¢ 0~1 
sin¢ 

o 
(2.39) 

It follows from equation (2.39) that 

(1) Q13 (/3, y), Q31 (/3, y) are odd functions of /3, and even functions of y . 

(2) Q23 (/3, y) ,Q32 (/3, y) are even functions of /3, and odd functions of y . 

(3) QII (/3, y), Q22 (/3, y), Q33 (/3, y) are even functions of /3 and y . 

(4) Q12(/3,y) ,Q21(/3,y) are odd functions of /3 and y. 
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(5) Thus QI3 (O,p) = Q 31 (O,p) = Q I2 (O,p) = Q21 (O,p) == 0, and equation (2.39) becomes 

513 (/3, y) = Q23 (O,p)coscjJ 

Q23 (/3, y) = Q23 (0, p )sin cjJ 

Q33 (/3, y) = Q33 (0, p) 

531 (/3, y) = Q32 (O,p)coscjJ 

Q32 (/3, y) = Q32 (O,p)sincjJ 

QII (/3, y) = QI I (O,p)sin 2 cjJ + Q22 (0,p)cos 2 cjJ 

Q22 (/3, y) = QII (0,p)cos 2 cjJ + Q22 (O,p)sin 2 cjJ 

QI2 (/3, y) = Q21 (/3, y) = (Q22 (O,p) - Q II (O,p))sin cjJcoscjJ 

Formula (2.40) is very useful, because it reduces the calculation of matrix 

(2.40) 

[Q]from a plane to an axis. On the other hand, from equations (2.32) to (2.34) in order to 

calculate [Q] it is first necessary to calculate the matrices [11, [G] and [H], which 

requires calculating the inverse of the matrices [Ala (j = 1,2,"·,n). When /3 = 0, it can 

be seen from Section 2.6 that there are many zero elements in the matrices [Ala, resulting 

in the fact that the inverse of [Ala can easily be expressed analytically. As for the 

calculation of the inverse matrix in equations (2.32) to (2.34), it also can be easily 

expressed analytically because the matrix to be inverted is of order 3. 

(6) If the Fourier transformed dynamic flexibility matrix of l R to l p is denoted by 

[Q(/3, y)], and that of lp to lR by [8(/3, y)], from the Betti reciprocity theorem 

[Dominguez 1993] and the axisymmetry of the problem, it can be shown that 

l ~" Q I2 

Q" J lS" 
821 

-S"J Q21 Q 22 Q23 = 812 822 -8-n 

Q31 Q
32 Q 33 -8 13 -823 833 

(2.41) 

Equation (2.41) is proved as follows. Consider the situation shown in Figure 2.1. When 

the harmonic forces are applied at point P, the dynamic flexibility matrix at point B is 

denoted by [Q(x,y,z)]. When the harmonic forces are applied at point R, the dynamic 

flexibility matrix at point A is denoted by [8(x, y,-z)]. When the forces are applied at 
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point B, the dynamic flexibility matrix at point P is denoted by [P(-x,-y,-z)]. It follows 

from the displacement reciprocity relation that 

[Q(x,y,z )] =[P(-x,-y,-z )f 

It can be seen from Figure 2.1 that 

l
811 (x, y,-z) 812 (x, y,-z) 

[P(-x,-y,-z )] = 821 (x, y,-z) 822 (x, y,-z) 

- 831 (x, y,-z) - 832 (x, y,-z) 

- 813 (x, y,-Z)l 
- 823 (x, y,-z) 

833 (x, y,-z) 

Thus 

l
811 (x, y,-z) 

[Q(x, y, z)] = 821 (x, y,-z) 

- 831 (x, y,-z) 

812 (x, y,-z) 

822 (x, y,-z) 

- 832 (x, y,-z) 

- 813 (x, y,-Z)lT 
- 823 (x, y,-z) 

833 (x, y,-z) 

which, after being Fourier transformed over x and y, gives equation (2.41). 

(2.42) 

(2.43) 

This property can be used to avoid numerical difficulties in the calculation of the 

Fourier transformed dynamic flexibility matrix of IR to Ip, i.e. [0(/3, y)], when IR > Ip. 

Examination of equations (2.32), (2.34) and those in Section 2.6 shows that, when 

IR ~ Ip, no terms involve exponents of which the real parts are larger than zero, as a 

result of which no numerical difficulties are encountered for large layer thickness. 

'R-i 

I,aj1hj 

However, when IR > Ip, due to the term ej~lp in equations (2.33), this formula is 

inappropriate for numerical calculation. In this case, one may calculate the Fourier 

transformed dynamic flexibility matrix of Ip to IR instead, and get the flexibility matrix 

of IR to Ip through equation (2.41). 

If I R = I p , equation (2.41) shows that 

0 12 (/3, y) = 021 (/3, y) 

013 (/3, y) = -031 (/3, y) 

023 (/3, y) = -032 (/3, y) 
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2.4.2 PROPERTJES OF [U ([3, y)] 

The properties (1) to (5) of [Q([3, y)] as well as equation (2.39) still hold when 

[Q([3,y)] is replaced with [U([3,y)]. Hence 

(1) VI3 ([3, y), V 31 ([3, y) are odd functions of [3, and even functions of y . 

(2) V 23 ([3, y), V 32 ([3, y) are even functions of [3, and odd functions of y. 

(3) VII ([3, y), V 22 ([3, y), V33 ([3, y) are even functions of [3 and y. 

(4) VI2([3,y),V21([3,y) are odd functions of [3 and y. 

(5) Therefore 

UI3([3,y) = V23(O,P)cos¢ 

V23([3,y) = V23(O,p)sin¢ 

V,,([3,y) = V33(0,P) 

U31 ([3,y) = V32(0,P)cos¢ 

V32 ([3, y) = V32 (O,p) sin¢ 

VII ([3,y) = V II (0,p)sin 2 ¢+V22 (0,p)cos 2 ¢ 

V22([3,y) = VII (0,p)cos 2 ¢+Vn (0,p)sin 2 ¢ 

VI2 ([3, y) = V21 ([3, y) = (Vn (O,p) - VII (O,p)) sin¢cos¢ 

IR-l 

IUj1hj 

(2.45) 

When IR > Ip, due to the term ej=lp in equations (2.37), this formula is also 

inappropriate for numerical calculation. To overcome this, one may calculate the 

derivative over z of the Fourier transformed dynamic flexibility matrix of IR to Ip, and 

then use the Fourier transformed Hooke's law (see equations (2.49) and (2.50)). 

2.4.3 PROPERTJES OF ['V([3,y)] 

(1) V;I ([3, y), V22 ([3, y), V:,2 ([3, y) are even with [3, and odd with y. 

(2) V23 ([3, y) , V" ([3, y) are even with [3 and y . 
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(3) "9;2 (/3, y) , V21 (/3, y) , V,l (/3, y) are odd with /3, and even with y. 

(4) "9;3(/3,y) is odd with f3 and y. 

(5) By putting /3 = pcos¢,y = psin¢,(:. p = ~ /3 2 +y2,¢ = tan-1 ~), then 

- - - 2 - 2 VII (/3, y) = -VII (O,p) sin ¢cos2¢ - V22 (O,p) sin ¢cos ¢ + V32 (O,p) sin ¢cos ¢ 

"9;2 (/3, y) ="9; I (O,p) cos¢cos2¢ - V22 (0, p) cos¢ sin2 ¢ + V,2 (0, p) cos¢ sin 2 ¢ 

"9;3 (/3, y) = -1 V23 (O,p) sin2¢ +1 V,3 (O,p) sin2¢ 

V21 (/3, y) = VII (O,p) sin ¢sin2¢ + V22 (O,p) cos¢sin2 ¢ + V,2 (O,p) cos¢cos2 ¢ 

V22 (/3, y) = -"9; I (O,p) cos¢ sin 2¢ + V22 (O,p) sin ¢ sin 2 ¢ + V,2 (0, p) sin ¢cos2 ¢ (2.46) 

Vn (/3,Y) = V23 (0,p)sin 2 ¢+ V,3(0,P)cos2 ¢ 
- - - 2 - 2 V31 (/3, y) = -VII (O,p) sin¢ sin2¢ + V22 (O,p)cos¢cos ¢ + V32 (O,p) cos¢sin ¢ 

V,2 (/3, y) ="9; 1(0, p) cos¢ sin2¢ + V22 (O,p) sin¢cos2 ¢ + ~2 (O,p) sin ¢ sin2 ¢ 

V,3 (/3, y) = V23 (0, p) cos 2 ¢ + V,3 (0, p) sin 2 ¢ 

(6) The Fourier transformed stress reciprocity relations 

From Hooke's law 

it follows that 
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(2.49) 

~j = f.1IR (if3Q2i + irQlj) 

~ _ . ~ JQ3i . ~ 
V2i - AIR (1)Q2j + --;JZ) + (AIR + 2f.1IR )lf3QIj (2.50) 

~ ~ JQ," ~ 
V'i = Al (if3QIJ" +~)+(Al +2f.1l )i)Q2 

• R oz R R J 

where, as has been defined in Section 2.3.4, Vkj stands for the Fourier transforms of 

stresses r xy (k = 1), r xx (k = 2), r yy (k = 3) at point B, due to a unit harmonic force acting 

at point P (see Figure 2.1) in xU = 1), yU = 2), zU = 3) directions respectively, and 

AIR' f.1IR are Lame constants of the l R th layer. 

From equations (2.50), (2.41) and (2.40) 

17;1 = f.1IR (if3Q21 +irQll) = f.1IR (if3QI2 +irQll) 

= f.1IR (if38 21 + iy8 11 ) = f.1IR / f.1l p W;I 

17;2 = f.1IR (if3Q22 + irQl2) = f.1IR (if3Q22 + irQ21) 

= f.1IR (if38 22 +iy8 12 ) = f.1IR / f.1l p W;2 

where 

(2.51 ) 

(2.52) 

(2.53) 

are Fourier transforms of stress r xy at point A of the top of the l p th layer due to a unit 

harmonic force acting at point R in directions x and y, respectively. Equations (2.51) and 

(2.52) show a generalised reciprocity relationship for the stress component r xy • For other 

stress components, there is no such reciprocity relationship. 
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2.5 THE FOURIER TRANSFORMED MOVING DYNAMIC 

FLEXIBILITY MATRIX 

2.5.1 THE FOURIER TRANSFORMED MOVING DYNAMIC FLEXIBILITY 

MATRIX OF lR TO lp 

Now suppose that, at the top side of the lp th layer, harmonic load distributions, 

p/x,y)e iD1
, Py(x,y)e iD1

, Pz (x,y)e iDI 
, acting in x, y, z directions respectively, move in the 

x direction at speed c. Then Navier's equation for the ground is 

( 1 ) al1 \7 2 _ a 2U s: ( ) ( ) iDI /l,+11 ax +Il v u-p at2 -u z-zp Px x-ct,y e 

( 1 ) al1 \7 2 _ a 2v s: ( ) ( ) iDI 
/l, + 11 ()y + 11 v v - P at2 - U Z - zp Py x - ct, y e (2.54) 

(A + 11) ~~ + IlV2W = P a~~ - 8(z - zp) Pz (x - ct, y)e iDI 

where zp is the depth of the top side of the lp th layer, and 8(-) is the Dirac- 8 function. 

As shown in equation (2.54), Navier's equation is written for any layer and a global 

vertical coordinate, z, is used. The Fourier transform of equation (2.54) is 

(A + ll)i[311 + Il[~~~ - ([32 + y2 )Ii] = P ~~ - 8(z - Zp )'Px ([3, y)e i
(D-f3

C
)1 

(A + ll)iyl1 + Il[~~ - ([32 + y2 )15] = p a~V - 8(z - Zp fi5 /[3, y)e i
<n-f3

C
)1 

(A + 11) ~~ + Il[~~~ - ([3 2 + y2 )w] = p a~~ - 8(z - Zp )'P z ([3, y)e i
(D-f3

C
)1 

(2.55) 

where Px ([3, Y),PyC[3, Y)'P z ([3, y) are the Fourier transforms of Px (x,y), Py(x,y), Pz (x,y), 

and Ii = Ii([3, y, z,t) is the Fourier transform of u(x, y,Z, t) . Now the steady state solution 

to equation (2.55) may be written as 

11 = -:ie i(D-f3C )1 

Ii = ue i(D-f3c )1 

(2.56) 
v = ve i(D-f3c )1 

w = we i(D-f3c )1 
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Equation (2.56) means that, if u * (x,y,z) is the inverse Fourier transform of u([3, r,z), the 

actual longitudinal displacement of point (x, y, z) in the ground is given by 

* iQt u(x,y,z,t) = u (x - et,y,z)e (2.57) 

Equation (2.56) may also be given another physical interpretation as u([3, y, z, t) is time 

harmonic with the amplitude u([3, y,z) and the frequency OJ = £1 - [3e. This frequency 

may take negative values, indicating that each loss factor, say TJ ' appearing in the 

differential equations of motion of the layered ground, should take the form of TJ sgn( OJ) 

as already shown in equation (2.7). Therefore the steady state displacements (and other 

quantities) consist of an infinite number of spatially harmonic components. Furthermore, 

each spatially harmonic component is time harmonic the frequency and amplitude of 

which are dependent on the wavenumber of this spatially harmonic component. 

Substitution of equation (2.56) into equation (2.55), yields, 

(A + f.1)i[3t.. + f.1[dd2~ - ([32 + y2 )u] = -p(£1 - [3e)2 U - D(z - zp) p x ([3, y) z-
(A + f.1)iyt.. + f.1[~~~ - ([32 + y2)V] = -p(£1 - [3e)2f5 - D(Z - zp) P y ([3, y) 

(A + f.1) ~~ + f.1[~:~ - ([32 + y2)W] = -p(£1 - [3e)2 w- D(z - Zp )Pz ([3, y) 

This equation reduces to equation (2.9) if one substitutes 

OJ = £1- [3e 

(2.58) 

(2.59) 

Therefore, for the top side of the lR th layer, the following relations may be used from 

Section 2.3 

(2.60) 

(2.61) 
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(2.62) 

and from equation (2.56) the time varying Fourier transformed displacements on the top 

side of the IR th layer are obtained by multiplying by the factor e i
(Q-13c)1 • 

The matrix [Q(j3, y)] is called the Fourier transformed moving dynamic flexibility 

matrix of IR to Ip for motion in the x direction (meaning that, the loading point is moving 

along the x-axis on the top side of the I p th layer and the displacements are for the top 

side of the IR th layer), or simply, the Fourier transformed moving dynamic flexibility 

matrix. [0(13, y)] and [V (13, y)] are called the Fourier transformed moving stress 

matrices. The calculation of these matrices is exactly the same as that described in 

Section 2.3 with the substitution ill = Q - j3c . These matrices may be denoted, for 

example, by [Q(j3, y, Q - j3c)] , to emphasise their dependence on ill = Q - j3c . 

2.5.2 SOME PROPERTIES OF [0(13, y,Q - j3c)], [0(13, y,Q - j3c)] AND 

[V (13, y,Q - j3c)] 

If ill = Q - j3c is kept fixed, then all the properties explored in Section 2.4 will 

still hold. Especially, if the Fourier transformed moving dynamic flexibility matrix of 

IRto Ip is denoted by [Q(j3,y,Q-j3c)], and that of Ip to IRby[8(j3,y,Q-j3c)],then 

equation (2.41) yields 

(2.63) 

where the subscripts in the round brackets indicate that each element of the matrices is a 

function of 13, y and Q - j3c . Similarly from equations (2.51) and (2.52) it is found that 

(2.64) 
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(2.65) 

where i!;2 ({3, y,.Q - {3e) is the Fourier transform of T xy (dropping the factor ei
(n- f3c)) at the 

top side of the I R th layer due to a unit harmonic load at the top side of the I p th layer 

which points in the y' direction and whose point of application moves uniformly at speed 

e along the x'axis (see Figure 2.1). ~2({3,y,.Q- {3e)is the Fourier transform ofTxl' at the 

top side of the I p th layer due to a unit harmonic load at the top side of the I R th layer 

which acts in the y direction and moves uniformly at speed e along the x axis. 

If OJ = .Q - {3e is not kept fixed, some properties with respect to {3 disappear due to 

the load motion. However, some observations can be made in the case of .Q = 0 . In this 

case, any unit point moving load component, for instance, Pz = e int = 1 , is a real number, 

thus, taken as an example, the longitudinal steady state displacement due to this load, 

given by (see equation (2.57)) 

must also be a real number. Since 0.13 ({3,y,-{3e) is an even function ofy, u*(x,y,z) can 

be written as 

u * (x, y, z) = 4;2 J [J (Re(QI3) + iIm(iL))(cos {3x + isin {3x)d{3] cos J:Ydy 
o -~ 

= 4;2 J { J [Re(Q13) cos({3x) - Im(QI3) sin {3x + i(Re(Q]3) sin {3x + 
o -~ 

+ Im(Q13 ) cos {3x) ]d{3 } cos J:Ydy 

Since u*(x,y,z) is real, it is required that, for any x, Re(o.I3)sin{3x+ImCo.I3)cOsC{3x) 

must be an odd function of {3. Therefore, the real part of 0.13 C{3, y,-{3e) must be an even 

function of {3, and the imaginary part of 0.13 C{3, y,-{3e) must be an odd function of {3 . 

Similar arguments can be made concerning other displacement components. A 

conclusion drawn from these discussions is that: 
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When n = 0, the real parts of QII (/3, y,-/3c), Q22 (/3, y,-/3c) , Q33 (/3, Y,-/3c) , 

QI3 (/3, Y,-/3c) , and Q31 (/3, Y,-/3c) are even functions of /3, and their imaginary parts are 

odd functions of /3; the real parts of QI2 (/3, y,-/3c), Q21 (/3, Y,-/3c), Q23 (/3, y,-/3c) and 

Q32 (/3, Y,-/3c) are odd functions of /3, and their imaginary parts are even functions of /3. 

2.5.3 RECIPROCITY RELATIONS 

2.5.3.1 DISPLACEMENTS RECIPROCITY RELATIONS 

Suppose at time t = 0, that a lateral (in the y direction) unit harmonic load moving 

in the positive x-direction acts at the point (r, s) on the top side of the Ip th layer, i.e. 

P = 0 p = 8(x - r y - s) p = 0 and p- = 0 p- = e -i({3r+r.-) p- = 0 then the 
x 'y "z' x 'y 'z' 

longitudinal (in x-direction) displacement of point (p, q) on the top side of the IR th layer 

comes from equations (2.56) and (2.60) as follows 

(2.66) 

Now let the source-observer configuration be interchanged, i.e. at time t = 0 a 

longitudinal unit harmonic load moving in the negative x-direction acts at the point (p, q) 

on the top side of the IR th layer, i.e. Px = 8(x - p,y - q),Py = 0, Pz = 0, and 

i\ = e -i({3P+YQ), i\ = 0, i\ = 0, then the lateral displacement of point (r, s) on the top side 

of the Ip th layer comes from equations (2.56) and (2.60) 

V (r s t) = _1_ f= f= g (/3 y n + /3c)e i(D.+{3c)t ei{3(r- p) eiy(.\·-q) df3dy 
!pO " 4n2 _= _= 21 " 

which from equation (2.63), becomes 

which, due to the fact that Q12 (-/3,-y,n + /3c) = QI2 (/3, y,n + /3c) (see Section 2.4.1 

property (4)), can be written as 
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v1pO(r,s,t) = 4~2 f=f)212 (-j),-y,.Q + j)e)ei(D.+{3c)'ei{3(r-P)eiy(.,-q)d{3dy 

= 4~2 f~ f)212 (j), y,.Q - j)e )e i(D.-{3C)t e i{3(p-r) e iy (q-.I') dj)dy 
(2.67) 

It is shown that u1nO(p,q,t) = v1pO(r,s,t) by equations (2.66) and (2.67). Obviously, for 

other source-observer configurations, the same result holds. 

It can be further proved that, the displacement of point A in direction 1 due to a 

unit harmonic load acting in direction 2 and moving at speed e along a line parallel to the 

ground surface and passing through point B (called line B, at t = 0 the load acts at point 

B), is equal to the displacement of point B in direction 2 due to a unit harmonic load of 

the same frequency acting in direction 1 and moving in the opposite direction at speed e 

along line A which passes through point A and is parallel to line B (at t = 0, the load acts 

at point A). 

For the proof of this, without loss of generality, let line A and line B be parallel to 

the x-axis. If direction 1 is specified by a unit vector (m l , m2 ,m3 ) , and direction 2 by 

(n l ,n2 ,n3 ) , then the displacement of point A in direction 1 is given by 

(2.68) 

where, U A' V A ' W A are the displacement components of point A in the X-, y- and z-

directions, [Q] = (Q,,), '=123' and Q is the displacement of point A in direction i (i = x, 
l) I,J ,,- Ij 

y, z) due to a unit harmonic load acting in directionj (j = x, y, z) and moving at speed e 

along line B. Similarly, the displacement of point B in direction 2 is given by 

(2.69) 

where [8] = (8 .. ), '=1 2 :1' and 8" is the displacement of point B in direction i(i = x, y, z) 
l} I,J ,,- IJ 

due to a unit harmonic load acting in directionj(j = x, y, z) and moving at speed -e 
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along line A. As has been proved above that Qij = O)i' thus [Qf = [0], and equations 

(2.68) and (2.69) yield d A = dB. 

2.5.3.2 STRESS RECIPROCITY RELATIONS 

Suppose at time t = 0 that a lateral (in y direction) unit harmonic load moving in 

the positive x-direction acts at the point (r, s) on the top side of the l p th layer, i.e. 

P = 0 P = O(x - r y - s) p = 0 and p- = 0 p- = e-i({3r+),s) p- = 0 then the stress .or 
x 'y "z' x 'y 'z' xy 

of point (p, q) on the top side of the lR th layer is given by 

.or (p q t) = -1-1= 1= iT ([3 Y Q - [3e)e i(Q-f3c)t e i{3(p-r) eiy(q-s) d{3dy 
xylR O " 4n2 _= _= 12 " 

(2.70) 

Again let the source-observer points be interchanged, i.e. at time t = 0 a 

longitudinal unit harmonic load moving in the negative x-direction acts at the point (p, q) 

on the top side of the lR th layer, i.e. Px = 0, Py = O(x - p, y - q), Pz = 0, and 

i\ = 0,15.1' = e -i({3p+)tj) ,15
z 

= 0, then the stress .or x)' of point (r, s) on the top side of l p th 

layer is given by 

.or (r s t) = -1-1= 1= W ([3 Y Q + [3e)e i(Q+f3c)t e i{3(r- p) eiy(.v-p) df3dy 
-,)'lpO " 4n2 _= _= 12 " 

According to equations (2.65), this becomes 

.or (r s t) = flip -1-1= 1= iT ([3 Y Q + [3e)e i(Q+f3c)t e i{3(r- p) eiy(.\·-q) d{3dy 
-,)'lpO " ~ 4n2 _= _= 12 " 

R 

Noticing that V;2 (-[3,-y,Q + [3e) = -Vl2 ([3, y,Q + [3e) , it follows that 

.or (r s t) = - flip. -l-f= f= iT (-[3 -y Q + [3e)e i(Q+I3c)t e i{3(r- p) eiy(s-q) df3dy 
xylpO " ~ 4n2 _= _= 12 " 

R 

Thus 

= - flip -1-f ["V;2 ([3, y, Q - [3e )e i(Q-f3clt ei{3(p-rl eiy(q-sl df3dy -rr;; 4n2 -= -= 
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Barros and Luco [1994, Section 4.3] have observed the above reciprocity relations for a 

special case, i.e. r = p, s = q, through a numerical test but did not give a proof. 

2.6 FORMULAE FOR [A]jo,[A]j~,[A]jl ,[R],[S],[R][Srl 

In this section the various matrices used in the model are given explicitly for the 

special case of f3 = ° . Putting 

I;jl = (j) f Cil' I; j2 = (j) f Cj2 

ajl =~f32 +y2 -1;~l'aj2 =~f32 +y2 -C2 

then 

2.6.1 WHEN f3 = 0, AND (j) 1= ° 
(1) Matrix [A]jo = (a kl ), (k,l = 1,2, .. ·,6;j = 1,2, .. ·,n) 

aSI =-2i/ljajlyfI;JI,a53 =/lj(y2 fa j2 +aj2 ),a54 =-a51 ,a56 =-a53 

a61 = -/l /1; J2 + 2a~2) f I; JI' a63 = - 2i/l j y, a64 = a61' a66 = a63 

other a's are zero. 

(2) Matrix [All (j = 1,2, .. ·,n) 

[AL = [AJ.o[D]. .I J J 

where [Dl is a diagonal matrix with the elements 

(3) Matrices [R] and [S] 
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0 1 0 

[R]= iy 
0 1 

- S;+I,I 

an+I,1 0 
iy 

(;+1,1 a n+I,2 

0 - J.ln+l a n+I,2 0 

[S]= 2iJ.ln+la n+I,IY 0 
J.ln+l (y

2
+a;;+12) 

(;+1,1 an+I ,2 

A 2 a;;+l,l 0 - 2iJ.ln+lY n+1 - J.ln+1 ~ 
n+I,1 

(4) Matrix [R][Sr l 

Putting 

4112 a y2 II (y2+a2 ) a 2 
~ = [ r-"n+1 n+I,1 + r-"n+1 n+I,2 (A _ 211 n+I,1 )]a 

r2 a n+12 n+l r-"n+1 --;vz- n+I,2 
"n+l,1 ' ':>,";"+1,1 

_ J.l~+1 [4 2 (2 2 1'2 )2] - --;vz- a n+I,l a n+I,2 Y - Y - ':> n+I,2 
':>'~+I,I 

then 

[R][Sr l = 

~ 

1 
~ 

- an+I ,2 

o 

o 

o 

2.62 WHEN f3 = 0, AND OJ = 0 

(1) Matrix [A]jo = (a k1 ), (k,l = 1,2,···,6;j = 1,2,oo·,n) 
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a42 = a j2 J.1 j' a45 = -a42 

aSI = iJ.1 j Y / a jl , a53 = J.1 j (y2 / a j2 +aj2 ), a54 = -a51 , a56 = -a 53 

a61 = Aj + 2J.1 j' a63 = -2iJ.1 j y, a64 = a61 ' a66 = a63 

other a's are zero. 

(2) Matrix [A]jl (j = 1, 2, .. , n) 

[ A L = [A'lo [ D] . 
1 J J 

where [D]j is a diagonal matrix with the elements 

and [A']jo = (a~l )(k,l = 1,2,.·· ,6; j = 1,2,.·· ,n) are 6x 6 matrices the elements of which 

are the same as those of [A] jO except for the elements in the first and fourth columns: 

, , i(A.+J.1.)'(h 
a 0 a -- J J J 

II =, 21 - 2 a jl J.1 j 

A.+J.1. 
J J h 
2J.1 j 

1 

(3) Matrices [R] and [S] 

0 1 0 

[R]= 0 0 1 
An+I +3J.1n+l 0 

iy 
2an+I,IJ.1n+l ~ 
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o 
o 

2.6.3 THE INVERSES OF MATRICES [AJjOAND [A'J jo 

All these matrices have the form of 

0 0 0 1 0 

a 2l 0 1 a 2l 0 1 

a 3l 0 a 33 -a3l 0 -a 33 

0 a 42 0 0 -a42 0 

a SI 0 a S3 -aSI 0 -a S3 

a6l 0 a 63 a6l 0 a 63 

the inverse of which is given by 

0 
a63 aS3 0 

a33 
2(a21 a63 -a61 ) 2(aSP31-aSla33) 2(aS3a31-aSla33) 

1 0 0 1 0 
2 2a42 

0 
a6l aSI 0 

a3l 
2(a2Ia63-a61) 2(aS3a31-aSla33) 2( aS3a31-aSI a33 ) 

0 
a63 aS3 0 

a33 
2(a21a63-a61) 2(aS3a31-aSla33) 2(aS3a31-aSla33) 

1 0 0 0 ---
2 2a42 

0 
a6l aSI 0 

a3l 
2(a2Ia63-a61) 2(aS3a31-aSla33) 2(aSP31-aSl a33) 

2.7 SUMMARY 

2(a2Ia63-a61) 

0 

a2l 
2(a2Ia63-a61) 

1 
2(a2Ia63-a61) 

0 

a2l 
2( a2la63 -a6l ) 

In this chapter, an efficient and analytical method is proposed to calculate the 

Fourier transformed displacements and stresses due to stationary harmonic loads, and the 

Fourier transformed steady state displacements and stresses due to harmonic loads 

moving uniformly along a line parallel to the ground surface. This is more efficient than 

previously used calculations of similar type because of the use of symmetry and 

reciprocity relationships. The source and observer may be located on the ground surface 

or at any depth in the ground. These formulae will lead to significant advances in the 

investigation of a variety of radiation, scattering and interaction problems associated with 
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stationary and moving disturbances in a layered ground, such as surface trains and 

underground trains. The reciprocity relations which are well known in the stationary case 

are extended to the moving case. 
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Chapter 3 

A STUDY OF VIBRATION PROPAGATION IN THE 

GROUND MODEL 

3.1 INTRODUCTION 

It is well known that responses of a finite structure to an external load depend 

greatly on the free dynamics of the structure, i.e. its natural frequencies and mode shapes. 

Similarly, vibrations of a ground can also be interpreted by its free vibration 

characteristics, i.e., its dispersion curves and mode shapes of propagating wave modes of 

the ground. Several papers have been found dealing with the calculation of dispersion 

curves and mode shapes for a ground. Fu and Newlands [Fu 1946, Newlands 1952], by 

substituting for the displacements in Navier's elastodynamic equations with potential 

functions, and assuming harmonic waves with no transverse motion, sought a solution for 

the relevant boundary conditions, zero surface stresses, and continuity of stresses and 

displacements at the layer/half-space interface. This gave the dispersion equation as a 

determinant equated to zero. For a given frequency, this equation gives the corresponding 

propagating wave numbers. An alternative method of calculating the dispersion curves is 

due to the work of Witt rick and Williams [1971]. Their method allows the eigenvalue 

solution of the non-linear dynamic stiffness matrix for a layered ground, though, in order 

to achieve a given precision the layers should be divided into many sub-layers. Jones 

[1987] also used this method in his PhD thesis. 

In this chapter, the equation for the dispersion curves is derived using the 

formulae developed in Chapter 2. The approach is straightforward. Attention is paid to 

the cut-on frequencies at which a new propagating mode appears. It is well known that 

for a structure of finite dimensions, there exist discrete natural frequencies. When a 

harmonic force excites the structure at one of these frequencies, the response of the 

structure will be infinite in the absence of damping. For a layered ground, the same 

phenomenon can be expected at the cut-on frequencies. For this reason, these cut-on 

frequencies may be also termed the natural frequencies of the ground. The displacement 

spectrum due to a moving harmonic load and the critical load speed are also discussed in 

this chapter. 
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3.2 DISPERSION CURVES OF A LAYERED GROUND 

An undamped ground can sustain free propagating waves in which each particle 

of the ground vibrates harmonically at a single frequency. The wavenumbers of the free 

propagating waves depend on the frequency of vibration. These free propagating waves 

are termed the propagating modes (or simply the modes) of the ground. The propagating 

modes may be divided into two types: the P-SV modes (waves) and the SH modes 

(waves). For a P-SV mode, particles in the ground have displacement components not 

only in the vertical direction but also in the horizontal propagation direction while for a 

SH mode, the particles vibrate only in a direction parallel to the ground surface but 

perpendicular to the horizontal propagation direction. The P-SV modes and the SH 

modes in the ground can be uncoupled. 

The dispersion curves, which are defined as wavenumbers of propagating modes 

(P-SV and SH modes) in the ground plotted against frequency, are helpful in the 

investigation of the mechanism of ground vibration. There are different methods to 

calculate the dispersion curves [Jones 1987]. The formulae developed in Chapter 2 may 

also be applied to produce the dispersion curves without any numerical difficulties. For a 

ground consisting of a number, n, of layers which overly a half-space (n+ 1 th layer), the 

Fourier transformed displacement vector {ut+I,O and the Fourier transformed stress 

vector {r} 0 on the top interface of the n+ lth layer (i.e. the half-space) have the 
tI+l, 

relationship (see equation (2.18)) 

{r} - [S][R]-I {u} 
11+1,0 - 11+1,0 

(3.1 ) 

When stationary harmonic loads are applied on the ground surface, i.e. I p = 1, 

then from equations (2.19) and (2.20) yields [11 = [F], and equation (2.21) becomes 

(3.2) 

Since {r} = {r} ,{u} = {u} 0' equations (3.1) and (3.2) give 
til 11+1,0 III 11+1, 

(3.3) 
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or, 

(3.4) 

where {U}IO and {r}IO are the Fourier transformed displacement vector and the Fourier 

transformed stress vector on the ground surface, and {p} = -{r}IO is the Fourier 

transformed load vector applied on the ground surface. Putting {p} = ° in equation (3.4) 

results in the so-called free vibration equation of the ground 

(3.5) 

For non-zero solutions to exist, the determinant of the coefficient matrix of equation (3.5) 

must be equal to zero, i.e. 

det([S][RrI[T]II -[Tb) = ° (3.6) 

For a given frequency f, the real values of /3, Y satisfying equation (3.6), give the wave 

numbers of propagating wave modes at that frequency (the waves propagating in the x

and y-directions). Equation (3.6) is termed the dispersion equation of the ground. 

Denoting the matrix [S][Rr I [T]II - [T]2I by [D(/3, Y,w)] and 

[S][Rr I[T]I2 -[Tb by [D'(/3,y,w)] , it can be shown that (see equation (2.39)) 

r 
sin¢ 

[D(/3, Y,w] = - c~s¢ 

cos¢ 

sin¢ 

° 
0] rSin

¢ -cos¢ 01 ° [D(O, p,w)] cos¢ sin ¢ ° 
1 ° ° 1 

r 
sin ¢ cos¢ 0] rSin ¢ 

[D'(/3,y,w] = -cos¢ sin¢ ° [D'(O,p,w)] cos¢ 

o 0 1 ° 
where p = ~ /3 2 + y2 ,cos¢ = /3 / p,sin¢ = y / P ,and 

I d II 

[D(O,p,w)] = l ~ 
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- cos¢ 0°

1

] 

sin¢ 

° 

(3.7) 

(3.8) 

(3.9) 



r
d'll 

[D' (O,p,w)] = ~ 

o 
d'22 

d'32 

o 1 d'23 

d'33 

with dl1 , d22 etc. being complex functions of p and OJ. 

From equations (3.7) and (3.9), the dispersion equation (3.6) gives, 

or 

(3.10) 

(3.11) 

(3.12) 

For a given frequency J, equation (3.11) gives the wave numbers for SH modes and (3.12) 

gives those for P-SV modes. 

3.2.1 THE SH MODES OF A GROUND CONSISTING OF A SINGLE LAYER ON A 

HOMOGENEOUS HALF-SPACE 

For the study of ground vibration induced by traffic, the ground normally is 

modelled as consisting of only one layer of depth hI which rests on a homogeneous half

space. In this case, equation (3.11) can be written explicitly as 

(3.13) 

where, as defined in Chapter 2, PI,P2 are the shear moduli of the materials in the layer 

and in the half-space, respectively, and 

(j = 1,2) (3.14) 

where, C 12 ' c22 are the shear wave speeds in the layer and in the half-space. Without loss 

of generality, the symbol r has been used instead of p. Equation (3.13) is the well-

known equation for Love waves in a ground consisting of a single layer on a 

homogeneous half-space [Zhang 2000]. Love waves are special SH waves which 

propagate along the interface of two solids and decay quickly away from the interface. 

Equation (3.13) can be rewritten as 
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(3.15) 

Assume C22 > C I2 ' i.e., the shear wave speed in the half-space is greater than that in the 

layer. Then when y2 < 0{2 < 0)2
2 

, both a I2 and a 22 are purely imaginary numbers, as 
C22 CI2 

indicated by equation (3.14), and the left-hand side term of equation (3.15) is a real 

number, but the right-hand side term of equation (3.15) is a purely imaginary one (equal 

to i sine ,where e = 2~0)22 _y2 hI)' Thus, when cn > C I2 ' all the real roots of 
1 + cose CI2 

equation (3.13) must satisfyy2 ~ 0{2 . On the other hand, if y2 ~ 0)
2
2 > ~2 , then 

C22 CI2 Ci2 

both a 12 and a 22 are positive numbers, and equation (3.13) does not hold. Thus when 

C22 > C I2 ' all the real roots of equation (3.13) must satisfy ~2 ~ y2 < 0)2
2 

• In other words, 
cn CI2 

when the shear wave speed in the layer is lower than that in the half-space, then for any 

given frequency, the phase speeds of the SH modes are greater than the shear wave speed 

in the layer but lower than or equal to that in the half-space. 

Similarly it can be shown that when the shear wave speed in the layer is greater 

than that in the half-space, then there exist no SH propagating modes in the ground, i.e. 

d
II 

:;to. 

Now for C22 > C I2 ' i.e., the shear wave speed in the half-space is greater than that 

in the layer, put y2 = ~2 in equation (3.13) to solve this equation for 0). Since a 22 = 0, 
Ci2 

equation (3.13) becomes 

which, since cn > CI2 ' a 12 :;t 0 , will be satisfied if and only if 

where k is an integer. This equation gives 

(3.16) 
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which are termed the SH cut-on frequencies since, at these frequencies, the number of 

roots of equation (3.13) changes (see the examples below). The point (Uo , cCVO ) on the 
2n 22 

frequency-wavenumber plane is termed the SH bifurcation point. 

It can be shown that, for C 22 > cJ2 ' at the bifurcation points, the SH dispersion 

curves have the same slope as that of the pure shear wave in the half-space. 

For later use, the partial derivative of d
" 

with respect to y is calculated as 

follows 

Jd -2 Ja -2 Ja 
_1_1 = [II + (-II + 211 h a - 211 h a )e CX'2"'] _1_2 + II (1 + e CX'2

h,)---.ll. Jy t-"I t-"I t-"I 1 12 t-"2 1 22 Jy t-"2 Jy 

At the bifurcation points, a 22 = 0, - 2al2 hl = i2kn , where k = 1,2"", thus 

i.e. 

(3.17) 

JIm(dll ) I W() ={O, Y-7(CVO /C22 t 
Jy (wo'C22) - 00, Y -7 (cvo / C22

)-

(3.18) 

Equations (3.17) and (3.18) show that, at the bifurcation points, although d
" 

IS 

continuous but it is not smooth. 

3.2.2 THE P-SV MODES OF A GROUND CONSISTING OF A SINGLE LAYER ON 

A HOMOGENEOUS HALF-SPACE 

When C22 > cJ2, for the P-SV mode dispersion equation (3.12), there are also cut

on frequencies (also denoted bycvo) and bifurcation points (2
CVO 

, ~O), as seen in Figure 
n 22 

3.1 below. However, it is difficult to derive a formula like equation (3.16) to calculate 

these cut-on frequencies. 
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It is worthwhile pointing out that, if the layer rests on a rigid foundation, then the 

dispersion equation (3.6) becomes 

(3.19) 

from which the dispersion equation for both SH modes and P-SV modes can be derived 

as 

1 + e -2ex
l/'! = 0 (j = 1, 2) (3.20) 

By setting r = 0 in equations (3.19) and (3.20), they can be solved for w as 

(2k -1)n 
Wo = 2~ c lj (k = 1,2,3,,,,) (3.21) 

where.i = 1 gives the P-SV cut-on frequencies, j = 2 the SH cut-on frequencies and k is a 

positive integer. From equations (3.21) and (3.16), it can be seen that equation (3.21) 

cannot be derived from equation (3.16) by letting C22 ~ 00 • In fact, putting cn ~ 00 in 

equation (3.16) results in Wo ~ C l2 k; , which are the shear vibration natural frequencies 

of a layer having free top and bottom surfaces. 

3.2.3 EXAMPLES 

Dispersion curves are calculated for two ground structures. These two grounds 

have the same substratum on which one has a stiffer layer and the other has a softer layer. 

In each case the layer has a thickness of 2 m. The parameters for these two ground 

structures are listed in Tables 1.6 and 1.7, respectively. The loss factor of the ground 

material will not be used here in the calculation of the dispersion curves. 

3.2.3.1 FOR THE STIFFER GROUND 

Figure 3.1 shows the P-SV dispersion curves for the stiffer ground. It can be seen 

that, at about 22 Hz, a second P-SV mode appears and a third and a fourth appear at 

47Hz and 83 Hz. These frequencies are, as defined above, cut-on frequencies of the 

ground. Also shown in the figure are the Rayleigh wave dispersion line of the upper layer 

material and the shear wave dispersion line of the half-space. It can be seen that at high 

frequencies, say higher than 47 Hz, the wave number of the first mode (which has the 

largest wavenumber) is very close to that of the Rayleigh wave of the upper layer. 
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However, at low frequencies, say below 20 Hz, the wavenumber of the first mode is 

much less than that of the Rayleigh wave of the layer but close to that of the shear wave 

of the half-space. 

6 

5 

,-... 
4 .§ 

"0 
c<j 

b 
..... 
<t> 3 ~ 

8 
::I 
r:: 
<t> 

2 :> 
c<j 

~ 

O~------L-------~------~------~------~ 
o 20 40 60 80 100 

Frequency (Hz) 

Figure 3.1. Dispersion curves for the stiffer ground. ---, P-SV dispersion curves; - - -, shear 

wave of the underlying half-space; - . -, Rayleigh wave of the upper layer; 0, cut-on points. 

Figures 3.2 to 3.4 show the function ~(O, Y,m) = d22d33 - d23d32 plotted against 

Y (see equation (3.12)) for mo = 27ifo' where 10= 22 Hz, 47 Hz and 83 Hz, respectively. 

It can be seen that at the bifurcation points (2mO ,~O) (i.e. (22,0.56) for Figure 3.2, n 22 

(47, 1.21) for Figure 3.3, and (83, 2.13) for Figure 3.4), as a function of Y , ~(O, Y,m) is 

continuous but its left derivative and right derivative are different, i.e. 

d~(O,y,mo) I _:j:. d~(O,y,mo) I + 

dy y=Yo dy y=Yo 
(3.22) 

where Yo = ~o . It can also be seen that when y ~ YO' the imaginary part of ~(O, y,m) is 
22 

zero. At other root points such that ~ = 0, ~(O, y,m) is smooth and ~~ :j:. 0 . Inequality 

(3.22) will be used to prove that the ground resonates at the cut-on frequencies. 
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Figure 3.2. L1(O, r,COo) plotted against r for the stiffer ground with fo= 22 Hz. --, real part; 

- - -, imaginary part. 
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Figure 3.3. L1(O, r, COo) plotted against r for the stiffer ground with fa = 47 Hz. --, real part; 

- - -, imaginary part. 
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Figure 3.4. ~(O, y, COo) plotted against y for the stiffer ground with fo = 83 Hz. --, real part; 

- - -, imaginary part. 
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Figure 3.5. Dispersion curves for the stiffer ground. --, SH dispersion curves; - - -, shear wave 

of the half-space; - . -, Rayleigh wave of the upper layer. 

The dispersion curves for the SH modes of the stiffer ground are shown in 

Figure 3.5 which indicates two cut-on frequencies below 100 Hz, i.e., 34 Hz and 68 Hz. 

These two cut-on frequencies may be evaluated by equation (3.l6). It is illustrated in this 
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figure that, at the bifurcation points, the dispersion curves have the same slope as the 

shear wave line in the half-space. 

3.2.3.2 FOR THE SOFTER GROUND 

Figure 3.6 shows the P-SV dispersion curves for the softer ground. It can be seen 

that there are five cut-on frequencies below 100 Hz, i.e. 13 Hz, 27 Hz, 51 Hz, 71 Hz and 

93 Hz. It can be seen that below the first cut-on frequency, the wavenumber of the first 

mode is close to the shear wavenumber of the underlying half-space while above the 

second cut-on frequency, the wavenumber of the first mode approaches the Rayleigh 

wavenumber of the upper layer. 

9~------~-------r------~~------~------~ 

20 40 60 80 100 

Frequency (Hz) 

Figure 3.6. Dispersion curves for the softer ground. --, P-SV dispersion curve; - - -, shear 

wave of the half-space; - . -, Rayleigh wave of the upper layer. 

Figures 3.7 to 3.11 show the diagrams of function ~(O, r,OJ) = d 22d 33 - d 23d 32 

plotted against r for OJ = 27ifo' where fo = 13 Hz, 27 Hz, 51 Hz, 71 Hz and 93 Hz. At 

the bifurcation points (2OJo ,~o), the inequality (3.22) also holds. n 22 
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The dispersion curves for the SH modes of the softer ground are shown in 

Figure 3.12 which indicates four cut-on frequencies below 100 Hz, i.e., 21.5 Hz, 43 Hz, 

64.5 Hz and 86 Hz. These cut-on frequencies can also be evaluated using equation (3.16). 
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Figure 3.12. Dispersion curves for the softer ground. --, SH dispersion curve; - - -, shear wave 
of the half-space; - . -, Rayleigh wave of the upper layer. 
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3.3 MODE SHAPES OF PROPAGATING WAVE MODES 

The non-zero solutions to equation (3.5), i.e. the Fourier transformed ground 

surface displacements of propagating wave modes, can be categorised into two types, i.e., 

the SH modes and P-SV modes. From equation (3.9), for the SH modes, the solutions to 

equation (3.5) with f3 = 0 (i.e., waves with infinite wavelength in the x-direction and 

propagating only in the y-and z-directions) can be chosen as 

(3.23) 

and for the P-SV modes, as 

(3.24) 

Equations (3.23) and (3.24) give the displacements of a propagating mode on the 

ground surface. The displacement vector of a mode within the ground can be readily 

calculated starting from {il}1O by using equation (3.2). For a ground consisting of one 

layer which rests on a homogeneous half-space, the displacements of a mode in the layer 

and in the half-space can be evaluated using the following formulae: 

In the layer 

(3.25) 

where [T]:I is identical to [T]II if hI in [T]II is replaced by z. 

In the half-space 
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wherea2j = ~y2 - ~2 (j = 1,2), C21 and C22 are compression and shear-wave speeds of 
c2j 

the half-space. After expansion of the matrices in the equation above, it becomes 

{

it (Z)} 
v(z) 

w(z) 

(a a _y2)e-a22 (Z-h1) 
21 22 

o 

o 

o 

(3.26) 

where {it L is the displacement vector on the interface of the layer and the half-space. 

3.3.1 FOR SH MODES 

For the SH modes, v(z) = w(z) = 0, and 

(3.27) 

Since the SH wavenumbers always makea 12 purely imaginary and a 22 positive or zero, 

ii(z) varies harmonically with z in the layer and decays exponentially (for a 22 >0) with z 

in the half-space. At the bifurcation points, a 22 = 0, a 12 h1 = -ikn , where k is a positive 

integer, thus 

(3.28) 

i.e., the displacement in the half-space does not vary with depth (a pure shear wave), and 

in the layer, the displacement is symmetric (for even k) or anti-symmetric (for odd k) 

about its middle plane. 
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3.3.2 FOR P-SV MODES 

For the P-SV modes, u(z) = O. At the bifurcation points, a 22 = 0,a 2! > 0, from 

equation (3.26) it follows that in the half-space, when z ~ 00, v ~ 0 but tv ~ a constant, 

i.e., the wave degenerates into a pure vertical shear wave. 

3.3.3 EXAMPLE 

The P-SV mode shapes are calculated for the stiffer ground. Figures 3.13 to 3.16 

show the mode shapes of the first mode at 10Hz (y = 0.28 rad/m) , 23 Hz 

(y = 0.70 rad/m) , 40 Hz (y = 2.08 rad/m) and 60 Hz (y = 3.28 rad/m) (vertical 

component is plotted in solid line while horizontal component in dashed line). The 

calculation shows that the vertical component is a real number while the horizontal 

component is a purely imaginary number. This means that there is a phase difference of 

90 degrees between these two components. In other words, any particle moves along an 

elliptic trajectory. It can be seen from these figures that, at low frequencies, waves are 

developed over a large depth in the ground. However, at high frequencies, waves have the 

form of surface waves which propagate along the ground surface and the layer/half-space 

interface and decay quickly with distance away from the surface and the interface . 
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Figure 3.13. The P-SV mode shape of the first mode at 10 Hz (wavenumber = 0.28 rad/m) for the 

stiffer ground. --, vertical component; - - -, horizontal component; - . -, layer interface. 
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Figure 3.15. The poSY mode shape of the first mode at 40 Hz (wavenumber = 2.08 rad/m) for the 

stiffer ground. ----, vertical component; - - -, horizontal component; - . -, layer interface. 

-72 -



o,-----~----~~--~----~----~----~ 

a 5 
o 

..;:: 

.s 
fr 6 
Cl 

7 

8L-----~----~----~----~----~----~ 
-2 -1 0 2 3 4 

Normalized displacement 

Figure 3.16. The poSY mode shape of the first mode at 60 Hz (wavenumber = 3.28 rad/m) for the 

stiffer ground. --, vertical component; - - -, horizontal component; - . -, layer interface. 

3.4 RESONANCE OF A LAYERED GROUND AT ITS CUT-ON 

FREQUENCIES 

3.4.1 MATHEMATICAL ILLUSTRATION 

For a unit stationary load of frequency m acting vertically on the ground surface, 

the vertical displacement at the loading point on the ground surface is determined by 

(3.29) 

where wlO (/3,y,OJ) = 12"(/3,y,m) (see Section 2.3) refers to the Fourier transformed 

vertical displacements of the ground surface at frequency m. Using a polar co-ordinate 

system /3 = pcos¢, y = psin¢, and noticing the properties of 1233 (/3, y,m) = 12" (O,p,OJ) 

(see Section 2.4), equation (3.29) becomes 

~- -
1 II - 1 I-WIO (0,0) = 4n2 Q" (0, p,m)pdpd¢ = 2n Q" (0, y,m)ydy (3.30) 

o 0 0 
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If neglecting the damping in the ground, then there exists y = y( m) such that 

Q33 (0, y(m), m) = 00 • The function y = y(m) defines the P-SV dispersion curves of the 

ground. Q33 (0, y, m) may be written, according to the Gramer's rule, as 

Q
- (0 ~'(O, y,m) 

33 ,y,m) = ~(O, y,m) 

where ~(O,y,m) = d22 d33 -d23d32 (see equation (3.12)), and when y = y(m), 

(3.31) 

~'(O, y,m) '* O,~(O, y,m) = 0. According to Theorem 2 in Appendix 2, if there exists a 

real isolated root Yo of the equation 

~(O, y,m) = ° (3.32) 

such that 

(3.33) 

then the integral of (3.30) diverges, meaning that the system is resonant at frequency m. 

It has been shown in Section 3.2 that, at the bifurcation points, the inequality (3.33) 

holds. (The corresponding frequencies are the natural frequencies of the ground as 

defined above, and the wavenumbers are the shear wavenumbers of the underlying half

space at these frequencies). Thus, at these frequencies, the ground will be resonant. In the 

presence of damping, the response will have finite peaks at these frequencies. 

Now suppose that a unit stationary harmonic load acts in the y-direction on the 

ground surface. Thus the lateral response of the loading point is determined by 

VIO (0,0) = _l_? J J1510 ([3, y, m )d[3dy 
4n - _=_= 

(3.34) 

where VIO ([3, y,m) = Q22 ([3, y,m) refers to the Fourier transformed lateral displacement 

of the ground surface at frequency m. By letting [3 = p cos ¢ and y = p sin ¢ , and noting 

the relation 
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(see Section 2.4), equation (3.34) becomes 

2Troo 

VIO (0,0) = ~ f f [Q]] (0, y, OJ) cos 2 ¢ + Q22 (0, y, OJ) sin 2 ¢ ]ydyd¢ 
4n 00 

(3.35) 

where Q]] (0, y , OJ) is associated with the SH modes only while Q22 (0, y, OJ) with the P

SV modes. In other words, both the SH modes and the P-SV modes contribute to 

vIO(O,O) . 

3.4.2 EXAMPLES 

As an example, the lateral response of the ground surface to a lateral rectangular 

(2.7 m x 2.7 m) harmonic load at a range of frequencies is calculated. The total magnitude 

of the load is 1 N. The parameters for the softer ground, which are listed in Table 1.7, are 

used in the calculation. Figure 3.17 shows the lateral displacement magnitude at the 

centre of the loading area. It can be seen from this figure that there are five peaks 

corresponding to the P-SV natural frequencies of the ground (13 Hz, 27 Hz, 51 Hz, 71 Hz 

and 93 Hz). The SH natural frequencies (21.5 Hz, 43 Hz, 64.5 Hz and 86 Hz) seem to be 

less important than the P-SV natural frequencies for the lateral response. The lateral 

displacement at the centre of the loading area may be decomposed into two parts. The 

first part is contributed by the wave propagating along the y-axis (corresponding to the 

second integral in equation (3.35)). This wave is a P-SV wave, since displacements on 

the y-axis have two components, one in the y-direction and the other in the z-direction. 

The second part is provided by the wave propagating along the x-axis (related to the first 

integral in equation (3.35)). This wave is a SH wave, since displacements on the x-axis 

are in the y-direction. 
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Figure 3.17. The lateral displacements at the centre of the loading area due to a rectangular 

(2.7 X 2.7 m) harmonic load acting laterally on the softer ground surface. 

The resonance of a ground at some frequencies is due to the layered structure of 

the ground. The resonant behaviour of a layered ground has been verified by 

measurement, see [Auersch 1994, and Jones 1996]. In principle, since it is possible to 

measure the receptance of a ground, the natural frequencies of the ground can be 

determined from the peaks of the receptance curve. However, high damping and 

propagation of the energy away from the measurement point make the identification of 

many of the peaks not always possible. 

3.4.3 COMPARISON BETWEEN A LAYERED GROUND AND A HOMOGENEOUS 

HALF-SPACE 

For a homogeneous half-space, there exists no such resonance phenomenon as in 

a layered ground. Figure 3.18 shows the vertical displacement of the centre of the loading 

area of a vertical rectangular harmonic load (2.7 m x 2.7 m, the total magnitude of the 

load is 1 N), for a range of frequencies. Three grounds are considered in this figure: the 

stiffer layered ground, a homogeneous half-space made of the layer material and one of 

the underlying half-space material. For the stiffer layered ground, the parameters of 

which are tabulated in Table 1.6, a peak at around 25 Hz is clearly seen. A dip at about 77 

Hz is due to the loading dimensions of the square loading patch. The dashed line is for 

the homogeneous half-space made of the layer material. It can be seen for high 
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frequencies (such that the wavelengths are less than the depth of the layer) that the 

responses of these two grounds are close to each other. The response of the half-space of 

the underlying material is quite different. 

Comparison between the stiffer ground and the underlying half-space is also made 

for vertical displacements along the y-axis on the ground surfaces. As shown in 

Figure 3.19, for low frequencies and for points away from the load (such that both the 

distance of the observer and the wavelength are greater than the depth of the layer and the 

dimension of the load), the presence of the layer makes little difference. 

Figure 3.20 shows a comparison between the stiffer ground and the homogeneous 

half-space made of the layer material at 60 Hz. To allow the wave propagation to be seen 

clearly, the real part of the complex displacement amplitude is shown in the figure. It can 

be seen that for high frequencies and for points near the load (such that both the distance 

of the observer and the wavelength are shorter than the depth of the layer and the 

dimension of the load), the layered ground behaves as a homogeneous half-space of the 

layer material. However, away from the loading point, the wave is modified by the 

layered structure of the ground. It can be seen in Figure 3.20 that the wave on the surface 

of the layered ground consists mainly of two components: the first has a wavelength of 

approximately 2 m and corresponds to the first P-SV mode of the stiffer layered ground, 

which is very close to the Rayleigh wave of the layer at the same frequency, as shown in 

Figure 3.1; the second has a wavelength of about 15 m which is much greater than the 

shear wavelength of the underlying half-space (according to Table 1.6, the shear 

wavelength of the underlying half-space at 60 Hz is about 4.1 m), and this component is 

not shown in the dispersion curve diagram in Figure 3.1 (see Section 6.3.1). Close to the 

loading area, the first component is dominant; but far away from the load, the second 

component becomes dominant. 
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Figure 3.18. Vertical displacement at the centre of the loading area for different frequencies. --, 
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the underlying homogeneous half-space of the layered ground. 
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Figure 3.19. Vertical displacement along the y-axis on the ground surface at frequency 10Hz. 
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Figure 3.20. Vertical displacement along the y-axis on the ground surface at frequency 60 Hz. 

-, for the stiffer layered ground; - - -, for the homogeneous half-space of the upper layer material. 

3.5 DISPLACEMENT SPECTRA OF THE GROUND SURFACE DUE TO 

A MOVING HARMONIC LOAD 

For a fixed-point load of finite frequency Q , the propagating modes of the ground 

excited by the load are simply the modes existing at that frequency as indicated by the 

dispersion curves. For a moving load, modes are excited via the velocity of the load 

according to the Doppler effect. From [Sheng, Jones and Petyt 1999 (b), or see 

Chapter 5], the modes that are excited are determined by the intersections of lines 

[3 =I(Q - 27if)l/c (3.36) 

and the dispersion curves, where c is the load speed (here the modulus is used to make 

the line indicate the excitation of both the directions of the wave propagation in the 

ground with respect to the direction of movement of the load). The straight lines 

determined by equation (3.36) are termed the load speed lines. In the absence of 

damping, at the frequencies corresponding to these intersections, the displacement 

spectrum will be infinite. In fact, the spectrum of the vertical displacement of point (x, y) 

on the ground surface at frequency f due to a unit moving harmonic load of frequency Q 

which acts vertically on the ground surface, is given by (see Chapter 5) 

- 1 iflx ( 1 [ - ([3 0) i'Y!'d ) S",(x,y,f) ---;;e 2n _= WI ,r, e r 
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where [3 = (0 - 27Tf) / c. By letting x = 0, y = 0, and noting 

- ([3 2'Tf"f') Q- (/3 2'Tf"f') - Ii (0, p,27Tf) 
WlO ' y, ''1 = 33 ' y, ''1 = Q33 (0, p,27Tf) = ~(o, p,27Tf) 

is an even function of y , where p = ~ [32 + y2 , yields 

S (0 ° f) = _1 r=~' (0, p,27Tf) d 
w " 7rC Jo ~(o, p,27Tf) Y 

Perform the following operations, 

(3.37) 

(3.38) 

(3.39) 

At frequency f, such that [3 = (0 - 27Tf) / c does not equal any of the 

wavenumbers of the propagating modes at that frequency, then if ~(o, p,27Tf) = ° has a 

real root y*, y* must be different from zero (otherwise ~(0,[3,27Tf) = 0, i.e., [3 is the 

wavenumber of a propagating mode). In this case, if (f, p') does not coincide with any 

of the bifurcation points, where p * = ~ [32 + Y *2 , then ~~ I p=p' exists and f=. 0. 

According to equation (3.38), ~~ I y=y' f=. 0. Thus the integral (3.37) converges, implying 

that the amplitude is finite (see Appendix 2). However, if (f, P *) coincides one of the 

bifurcation points, which implies f = fa, where fa is a natural frequency of the ground, 

and 

[3 =l 0 - 27Tf a I / c < 27Tfo 
C22 

(3.40) 

then ~~ I _ '- f=. ~~ I _ '+ , thus the integral (3.37) diverges and the amplitude is infinite. oy y-y oy y-y 

Additionally, when [3 equals one of the wavenumbers of the propagating modes, 

then the equation ~(0,p,27Tf) = ° at least has a rooty =y* = 0, and for this root, 

- 80-



equations (3.38) and (3.39) show that ~~ I y=O = 0, ~;~ I y=O "# 0. Thus the integral in 

equation (3.37) diverges according to Theorem 2 in Appendix 2. 

The discussion above shows that, in the absence of damping in the ground, the 

displacement spectrum Sw (0,0,f) will be infinite at the frequencies corresponding to the 

intersections of the dispersion curves and the load speed lines. When damping is taken 

into account, the spectrum will have peaks at these frequencies, as indicated in 

Figures 3.21 and Figure 3.23. Figure 3.21 shows the amplitude of Sw(O,O,f) due to a unit 

harmonic load of 40 Hz which moves along the x-axis over the stiffer ground surface, 

while Figure 3.23 shows the amplitude of Sw (0,0,f) due to a unit harmonic load of 

30 Hz moving along the x-axis over the softer ground surface. The intersections of the 

dispersion curves and the load speed lines given by equation (3.36) for these two grounds 

are shown in Figures 3.22 and 3.24, respectively. The correspondence between the 

spectrum peaks and the intersections can be clearly seen by comparing Figures 3.21 with 

3.22 and Figures 3.23 with 3.24. Figures 3.21 and 3.23 show that the response to a 

moving harmonic load contains a wide range of frequency components, however, there is 

a dominating component frequency which is different from the load frequency due to the 

Doppler effect. 
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Figure 3.21. Vertical displacement spectrum at y = 0 m due to a unit vertical harmonic load of 

40 Hz which moves along the x-axis at 83.3 mls over the stiffer ground surface. 
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Figure 3.23. Vertical displacement spectrum at y = 0 m due to a unit vertical harmonic load of 

30 Hz which moves along the x-axis at speed 83.3 m1s over the softer ground surface. 
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Figure 3.24. P-SV dispersion curves of the softer ground and load speed lines. --, dispersion 

curves; - - -, load speed lines for a load of 30 Hz moving at 83.3 m1s. 

3.6 CRITICAL LOAD SPEEDS OF THE GROUND 

The response of a ground to a moving harmonic load depends on, amongst other 

things, the load speed. Dieterman and Metrikine [1997(b)] used a model of a point 
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harmonic load moving along an elastic layer resting on a rigid foundation to study the 

existence of critical speeds in the ballast layer. A critical speed is defined as that at 

which, in the absence of material damping, the steady-state amplitude of the layer 

vibration is infinite. It can be shown, by applying Theorem 1 in Appendix 2 that, the 

resonance occurs when the speed of the load is equal to the group velocity of the wave 

generated. Graphically, the resonance takes place when the load speed line is tangential to 

one of the dispersion curves. As has been indicated in Figures 3.1 and 3.6, the dispersion 

curve of the first mode approaches the Rayleigh wave dispersion line of the upper layer. 

Thus for a constant load, the critical load speed is identical to the Rayleigh wave speed in 

the upper layer. In the example results that follow, both the load and displacement act in 

the vertical direction. 

Figure 3.25 shows the maximum amplitude of displacement along the x-axis on 

the softer ground surface and the amplitude of displacement of the loading point on the 

ground surface due to a unit vertical constant point load moving along the x-axis at 

different speeds. The peak in this figure occurs at 77 mis, i.e., equal to the Rayleigh wave 

speed of the upper layer material. 
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Figure 3.25. Maximum amplitude of displacement (--) along the x-axis on the softer ground 

surface and the amplitude of displacement (- - -) of the loading point on the ground surface due to a unit 

vertical constant point load moving along the x-axis at different speeds. 
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Figure 3.26. Maximum amplitude of displacement (--) along the x-axis on the stiffer ground 

surface and the amplitude of displacement (- - -) of the loading point on the ground surface due to a unit 

vertical constant point load moving along the x-axis at different speeds. 

For the stiffer ground, results are presented in Figure 3.26. This figure also 

indicates the critical load speed is equal to the Rayleigh wave speed of the upper material, 

112 rn/s. 

Figures 3.25 and 3.26 also show that, beyond a certain speed, the maximum 

displacement does not occur at the loading point but at some place behind the load. 

3.7 SUMMARY 

This chapter is devoted to the study of vibration propagation in a free ground. The 

ground considered consists of a single layer resting on a homogeneous half-space, and the 

shear wave speed in the layer is lower than that in the underlying half-space. By plotting 

the dispersion curves, it is found that there are cut-on (natural) frequencies at which a 

new propagating wave mode appears. For very low frequencies, the dispersion curve of 

the first model approaches the shear wave of the underlying half-space while for high 

frequencies it approaches the Rayleigh wave of the upper layer. The layered ground will 

be resonant at its cut-on frequencies. For some frequencies, there is a mode the wave 

speed of which is greater than that of the shear wave speed in the underlying half-space. 
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Under the action of a surface harmonic load, this type of wave may propagate for long 

distances over the ground surface and is dominant over other wave modes. This mode has 

a complex wavnumber with a small imaginary part and therefore is not shown in the 

dispersion diagram consisting of only real wavenumbers. For low frequencies and far 

away from a surface harmonic load (such that both the distance of the observer and the 

wavelength are greater than the depth of the layer and the dimensions of the load), the 

responses are mainly determined by the underlying half-space. For high frequencies and 

close to the load (such that both the distance of the observer and the wavelength are 

shorter than the depth of the layer), the layered ground behaves as a homogeneous half

space of the layer material. The displacement spectrum due to a moving harmonic load 

has peaks at the frequencies corresponding to the intersections of the dispersion curves 

and the load speed lines. For a constant load, the critical load speed is identical to the 

Rayleigh wave speed of the upper layer. 
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Chapter 4 

STEADY STATE RESPONSES OF A RAILWAY TRACK 

ON A WINKLER FOUNDATION TO A MOVING 

HARMONIC LOAD 

4.1 INTRODUCTION 

The model of an infinite beam resting on a Winkler foundation, i.e. a continuous 

layer of springs, has been used to investigate the dynamics of a railway track. In 1959, 

Mathews [1958, 1959] presented a study on the steady-state vibrations of a beam on a 

Winkler foundation induced by a uniformly moving harmonic load. In his work, by 

employing the viscous damping model, Mathews sought the solution using an analytical 

approach. The example calculations revealed some dynamic features of the beam under 

the action of a moving load although those calculations were performed only for a 

constant load. 

It was realised that a single beam on a Winkler foundation does not represent a 

railway track properly, due to the mass and elasticity of the sleepers and the 

ballast/embankment of the track. Thus a multiple beam track model has been suggested. 

It has further been recognized that, at middle and low frequencies, a Winkler foundation 

would not represent the ground properly [Knothe and Wu 1999]. However in this 

chapter, an analysis is made for the multiple beam track model on a Winkler foundation 

rather than on a ground in order to explore the dynamic features of a track. It will be 

shown that, under some assumptions, the analytical approach used by Mathews can also 

be used to find solutions for a track including sleepers and ballast/embankment. First in 

Section 4.2, the track is modelled as a multiple beam system, then the differential 

equation of motion of the system is derived and the steady state solutions are sought in 

the wavenumber domain. Then an inverse Fourier transform is performed to convert the 

steady state responses of the track from the wavenumber domain into the spatial domain. 

It is shown in Section 4.3, when the viscous damping model is used, that the inverse 

Fourier transform may be carried out analytically while for the hysteretic damping model 

a numerical approach (e.g. FFT) has to be used. Section 4.3 also presents several 

example calculations using the analytical approach. 
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With the help of the dispersion curves, some features of wave propagation in the 

track are explored. Recalculation is made in Section 4.4 using the FFT for the results 

presented in Section 4.3, showing that a good accuracy may be achieved by the FFT 

method. The comparison between the viscous damping model and the hysteretic damping 

model is given in Section 4.5, indicating that if the viscous damping is equivalent to the 

hysteretic damping at the frequency of the dominating component in the wave, then both 

damping models produce almost the same result. In Section 4.6, receptances are 

computed for both the multiple beam track model and an equivalent beam track model. 

Finally in Section 4.7, some conclusions are summarised. 

4.2 DIFFERENTIAL EQUATION OF MOTION OF A TRACK AND ITS 

SOLUTION 

A diagram is shown in Figure 4.1. The railway track is aligned in the x-direction. 

For the frequency range of interest, the rails and the sleepers are modelled as Euler 

beams. The mass per unit length of track of the rail beam and its bending stiffness are 

denoted by mR and El, respectively. The mass of the sleeper 'beam' per unit length of 

track is ms ' and no bending stiffness is introduced for the beam. The railpads are 

modelled as a continuously distributed complex spring stiffness, denoted by kp, where 

Rail 

Railpad 

Sleeper 

Ballast 

Winkler 
foundation 

ct 

o 

Figure 4.1. Model for a track on a Winkler foundation. 

k p = k ~ (1 + iT] p sgn( co» , where i = ~,k ~ is the stiffness of the rail pad for a unit 

length of track, T] p is its loss factor and co is the frequency. Since constraints in its 

cross-sections are weak, the ballast is modelled as elastic bars which have continuously 

distributed stiffness and mass along the track. The mass and vertical stiffness of the 

ballast per unit length of track are denoted by mB and kB = k~ (l + iT] B sgn(w» . An 
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embankment, if it is present, is modelled in the same way as the ballast. In other words, 

the bending stiffness of the embankment is ignored. A vertical harmonic load Poe i
0.t 

moves along the rail uniformly at speed c. At instant t, the load is at a distance, ct, from 

the origin point. The ground supporting the track is modelled as a Winkler foundation 

with a stiffness kG = k~ (l + iryG sgn(m)). Denoting the vertical displacements of the rail 

beam and the sleeper beam by wR (x,t) and Ws (X,t) , respectively, then the differential 

equations of motion of the track can be written as follows: 

For the rail beam: 

where 8(·) is the Dirac-delta function. 

For the sleeper 'beam': 

(4.2) 

where F 2(x, t) denotes the vertical force between the sleeper beam and the ballast. Since 

the wavelengths of the waves propagating vertically in the ballast layer are much longer 

than its height (using typical values of parameters [Zai 1997], the wave speed in the 

vertical direction in the ballast is evaluated as about 200 mis, and at 100 Hz, the 

wavelength is 2 m), the vertical displacement of the ballast is assumed to vary linearly 

over its height. Thus, 

nIB [2 1] 
612 

(4.3) 

where we (x, t) denotes the displacement of the bottom of the ballast. 

Equations (4.1), (4.2) and (4.3) give the differential equations of motion of the 

track. Now applying the Fourier transform pairs 

f(x) = _1 [j(f3)e i/lt df3 
2n -= 
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to transform equations (4.1) to (4.3) from the space-time domain into the wavenumber 

domain, 

EI/3 4- (/3) ()2 WR (/3,t) k [- (/3 ) - (/3 )]- icn -{3c)t WR ,t +mR 2 + P WR ,t -Ws ,t -Poe 
dt 

(4.5) 

(4.6) 

(4.7) 

where, w(/3, t) denotes the Fourier transform of w(x, t) , and /3 is the wavenumber. For 

equations (4.5) to (4.7), the steady-state solution is sought, i.e., let 

W(/3, t) = w(f3)eicn-f3c)t , F2 (/3, t) = F2 (/3)eicn-f3c)t (4.8) 

Equation (4.8) shows that the Fourier transformed displacements (or displacements in the 

wavenumber domain) w(/3,t) are harmonic, the frequency being 

m=Q-/3c (4.9) 

If the inverse Fourier transform of w(/3) is denoted by W *ex) , then equation 

(4.8) implies that 

( ) * ( ) int W x, t = W x - ct e (4.10) 

Now let r = x - ct , i.e., observation is made within a reference frame that moves 

together with the load. Equation (4.10) shows that, in the moving reference frame, the 

motion of the track is harmonic with the same frequency as that of the load. 

Since w· (r) is a complex function of r, it can be rewritten as w· (r) =Iw * (r)leil/>(r) , 

where ¢(r) denotes the phase angle. Then equation (4.10) becomes 

w(x,t) = w(r+ct,t) =1 w*(r) 1 ei[l/>(r)+nr] (4.11) 

If w(r+ct,t) is denoted by W(r,t), then 
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W(r,t) =1 w* (r) 1 ei[t/I(r)+QI] 

W(r,t) describes a wave motion in the moving reference frame. 

Now inserting equation (4.8) into equations (4.5) to (4.7), yields 

From these equations W R (13) can be found as 

- (13) = fl\ (13) 
wR fl(f3) 

where 

k 1 2 B +(jmBOJ 

kB +kG -~mBOJ2 

(4.12) 

(4.13) 

(4.14) 

(4.15) 

(4.16) 

(4.17) 

(4.18) 

It is noticed that 11(/3) has a higher power of 13 than 11\ (/3). Equations (4.16) and (4.8) 

give the solution for waves in the track in the wavenumber domain 

4.3 WAVES IN A TRACK WITH VISCOUS DAMPING: CALCULATED 

USING AN ANALYTICAL APPROACH 

4.3.1 FORMULAE 

To obtain the steady state response in the spatial domain, the inverse Fourier 

transform of wR (13) has to be performed. If the hysteretic damping model is used, then 

the inverse Fourier transform of wR (13) cannot be obtained analytically. In this case, the 
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FFT technique is often employed. However, if 11(13),11 1 (/3) are polynomials of 13, then 

the inverse Fourier transform of wR (/3) can be carried out analytically, as shown below. 

To do so, the viscous damping model is employed by making all the loss factors 

proportional to OJ = Q - f3e, thus, kp = k~ (1 + i~p (0. - (3e)), kB = k~ (1 +i~B (0.- f3e» , and 

kG = k~ (1 +iSG (0.- f3e», where ~ p, ~B' ~G are termed 'viscous damping constants'. With 

the substitution of these expressions into 11(13),11 1 (13) , it can be found that 11(13) is a 

polynomial of 13 of order 8, and 111 (13) is of order 4. Thus 11(13) can be written as 

8 

11(13) = L P9- j f3
j ( 4.19) 

j=O 

where P j' j = 1,2,··· ,9 , are coefficients of the polynomial 11(13)· 

In general, the eight roots of equation (4.19) are denoted by 

(4.20) 

8 

thus 11(13) = PI II (13 - 13 k) and equation (4.16) may be expressed as the sum of partial 
k=1 

fractions 

where 

8 

Aj =11 1(f3 j )/[PIII(f3 j -f3k)] 
k=l 
kcFj 

(4.21 ) 

(4.22) 

By the definition of the Fourier transform, it can be shown that if bj "* 0, the 

inverse Fourier transform of 13 _ a 1 _ ib. is given by 
} } 

1 1 
= 1 . {ie

iajr 
e -bjr H(r),b j > 0 

F- I 
[ ] = - . e1f3r df3 = 
f3-a. -ib. 2rc f f3-a.-lb. . iaJ' -bjrH( ) b <0 

} } -= } } - le e -r, j 

(4.23) 

where 
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{
l,r 2 0 

H(r) = 
O,r < 0 

(4.24) 

is the Heaviside unit function. Equations (4.21) and (4.23) show there are eight waves 

travelling along the rails. The wave corresponding to f3 j = a j + ibj , is described in the 

moving reference frame by (see equation (4.10)) 

{

.A ia/ -b/ intH( ) b 0 1 ·e e e r,. > 
w~(r,t) = J . J 

J -·A IUjr -bjr int H(- ) b 0 1 je e e r, j < 
(4.25) 

As indicated in equation (4.25), for b j > 0, the wave exists in front of the load 

and propagates forwards (away from the load) if a j < 0 or propagates backwards 

(towards the load) if a j > 0 . For b j < 0 , the relevant wave exists behind the load and 

propagates forwards if a j < 0 or backward if a j > O. The wave speed (phase speed) 

observed in the moving reference frame is 

and the attenuation rate is Ib). 

If observation is made from the ground, then the wave corresponding to 

f3 j = a j + ibj is described by 

from which it can be seen that: 

(4.26) 

(4.27) 

(1) The wave has a frequency I Q - a j C I and propagates forwards if a j < 0 or 

backwards if a j > 0 and Q > a jC. Thus the frequency of the forward-propagating wave 

is higher than that of the load while the frequency of the backward-propagating wave is 

lower. The wave speed observed from the ground is 
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J 1 

{

(Q-a,oc)/a
J
o =Q/a -c,if a > ° 

C; = (Q-ajc)/Ia j I=Q/la; I+c,if a j <0 
(4.28) 

i.e., the wave speed observed from the ground is a resultant of the load speed and the 

wave speed relevant to the moving reference frame. 

(2) For bj > 0, a fixed point in front of the load experiences a harmonic vibration 

with exponentially increasing amplitude (e bjct 
). On the other hand, for bj < 0, a point 

behind the load experiences decaying harmonic vibration. 

If the load is stationary, i.e., if c = 0, then equation (4.19) degenerates into a 

polynomial of {3 of order 4, and the roots of this degenerated polynomial take the form 

of 

{31 = a + ib, {32 = -a - ib, {33 = b - ia, {34 = -b + ia (4.29) 

Equation (4.29) shows that waves ahead of and behind the load are symmetric. 

If the load is constant, i.e., if Q = ° , then the roots of equation (4.19) take the 

form of 

(4.30) 

In the case of zero damping, for a given angular frequency (j), the real roots of 

t::.({3) = ° give the propagating wavenumbers at that frequency. The plots of these 

wavenumbers against frequency f = (j) are the dispersion curves of the track. On the 
2n 

dispersion diagram, (j) = Q - {3c is a straight line and has been termed the load speed 

line. The intersections of the load speed line with the dispersion curves indicate the 

propagating wavenumbers excited by the moving load. 

4.3.2 EXAMPLES 

In this sub-section, the responses of a beam and a track on a Winkler foundation 

are computed by performing the inverse Fourier transforms analytically as described 

above. The track parameters are listed in Table 4.1. 
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TABLE 4.1 
Parameters for a railway track on a Winkler foundation 

Mass of rail beam per unit length of track 120 kg/m 
Bending stiffness of rail beam 1.26 xl 07 Nm2 

Rail pad stiffness 3.5 X 108N/m2 

Rail pad viscous damping constant 0.001 
Mass of sleepers per unit length of track 490 kg/m 
Mass of ballast per unit length of track 1200 kg/m 
Ballast stiffness per unit length of track 3.15 xl 08N/m2 

Viscous damping constant of the ballast 0.001 
Stiffness of the ground as a Winkler foundation 6 x 106N/m2 

Viscous damping constant of the Winkler foundation 0.001 

4.3.2.1 A BEAM ON A WINKLER FOUNDATION 

First, an Euler beam on a Winkler foundation is investigated. This Winkler 

foundation beam is equivalent to the track in the sense of that its mass is made up of all 

the masses of the track components and the stiffness of the Winkler foundation is equal 

to the total vertical stiffness of the track. Thus, the mass per unit length of the beam is 

mR = 1810 kg/m, its bending stiffness EI = 1.26 x 107 Nm 2 
, the vertical stiffness of the 

foundation k~ = 5.79x 106 N/m2
. The viscous damping constant of the foundation 

remains 0.001. For this simple case, equations (4.16) and (4.17) become 

thus /1(/3) is a polynomial of order 4. The dispersion equation is 

(a) 

(b) 

(c) 

Equation (b) has four roots, but none are purely real if ~G * 0 , since the damping 

always makes waves attenuate. Figure 4.2 shows the dispersion curve of this beam. The 

frequency at which the wavenumber is zero is the natural frequency of the beam, which 

is evaluated as 9 Hz. The beam will be resonant at its natural frequency. Below the 

natural frequency, no propagating wave can be excited and all wave solutions are 

evanescent. The upper load speed line in Figure 4.2 for f = 40 Hz intersects the 

dispersion curve at wave numbers 1.3795 rad/m and -2.1176 rad/m, and the lower load 
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speed line for f = 6 Hz, intersects the dispersion curve at wave numbers -0.3258 rad/m 

and -0.9577 rad/m. In both cases, the load speed c = 60 m/s. 

Figure 4.3 shows the waves in the beam produced by a unit load of 40 Hz moving 

at 60 m/s. The four roots of equation (b) are found to be, in radians per metre, 

f31 =-2.1176+0.0055i,f32 = o.3749+1.6772i , 

f3] = 0.3632 - 1.6770i ,f3 4 = 1.3796 - 0.0058i . 

Waves corresponding to the roots having small (in magnitude) imaginary part will be 

dominating, since these waves are propagating and least attenuated. From Figure 4.2 it is 

identified that the propagating waves correspond to f31 and f3 4 . Since the real part of f31 

is negative and its imaginary part is positive, the corresponding wave is located ahead of 

the load and propagates forwards (away from the load). Likewise, since the real part of 

f3 4 is positive and its imaginary part is negative, the corresponding wave is located 

behind the load and propagates backwards (away from the load). The wave behind the 

load has a wavelength of 2n I 1.3795 = 455 m, and the wave speed (in the moving 

reference frame, see equation (4.26)) is 40 x 2n 11.3795 = 182 m/s. The wave ahead of 

the load has a wavelength of 2n I 2.1176 = 2.97 m and its speed is 118.6 m/s. It is also 

shown that the amplitude of the wave behind the load is greater than that of the wave 

ahead of the load at this frequency. 

- 96-



10r-------.-------.-------~------~----~ 

8 

6 

4 ............... 

...... ··~::.::,.__=_-~----~--------1 2 .-........ . 

f< 
........... . 

o -'" '" ..... ........... 
- ...... 

-2 -=.:: .•.• ~ .•.•. ~--~ •. :.:.:,.. •. -. ~-------.J .............. . ........ 
.......... 

-4 . - ................. .. 

-6 
...... 

' .. 
'" 

-8 

'" " . 
................. 

....... 

.-...... 
........... 

'" . .......... .. 

................. 
'" -10~------~------~------~------~------~ 

o 20 40 60 80 1 00 

Frequency (Hz) 

Figure 4.2. Dispersion curve for a beam on a Winkler foundation. The upper load speed line for 

f = 40 Hz, intersects the dispersion curve at wavenumbers 1.3795 rad/m and -2.1176 rad/m, and the 

lower load speed line for f = 6 Hz, has intersections at wavenumbers -0.3258 rad/m and -0.9577 rad/m. 

In both cases, the load speed c = 60 mls. 
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Figure 4.3. Waves in the beam produced by a unit load of 40 Hz moving at 60 mls. Both the wave 

behind and ahead of the load propagate away from the load. The wave behind the load has a wavelength of 

4.55 m. The wave ahead of the load has a wavelength of 2.97 m. 

- 97 -



Figure 4.4 shows the waves in the beam induced by a unit load of 6 Hz moving at 

60 rn/s. The four roots of equation (b) are (in units rad/m) 

f3, = 0.6475 + 0.6413i, f32 = 0.6360-0.6337i, 

f3 3 = -0.9588 + 0.0232;, f3 4 = -0.3247 - 0.0309; . 

Thus the propagating waves correspond to f3 3 and f3 4 • Since the real part of f3 3 is 

negative and its imaginary part is positive, the corresponding wave is located ahead of 

the load and propagates forwards (away from the load). Likewise, since both the real part 

and the imaginary part of f3 4 are negative, the corresponding wave is located behind the 

load and, surprisingly, propagates forwards (towards to the load). The wave behind the 

load has a wavelength of 2n / 0.3247 = 19.34 m and that ahead of the load has a 

wavelength of 2n / 0.9588 = 6.55 m. Again the wave behind the load has greater 

amplitude than that ahead of the load. 

-0.8 

-1~------------------~----------------~ 
-50 o 50 

Distance from the load (m) 

Figure 4.4. Waves in the beam produced by a unit load of 6 Hz moving at 60 mls. Both the waves 

behind and ahead of the load propagate in the load motion direction. The wave behind the load has a 

wavelength of 27r / 0.3247 = 19.34 m. The wave ahead of the load has a wave length of 

27r /0.9588 = 6.55 m 

From Figure 4.2 it can be seen that it is possible, only when the frequency of the 

load is less than the natural frequency of the beam, that both the waves behind and ahead 

the load propagate forward (both have negative wavenumbers on this graph). For higher 

- 98 -



frequency, the two propagating wavenumbers are opposite in sign and thus the relevant 

waves propagate away from the load. If the ground supporting the beam is modelled as 

an elastic half-space rather than a Winkler foundation, the waves behind and ahead of the 

load always propagate away from the load. 

4.3.2.2 A TRACK ON A WINKLER FOUNDATION 

Figure 4.5 shows the dispersion curve of the track specified in Table 4.1. The 

wavenumber is zero at 9 Hz, the natural frequency of the track. The wavenumber goes to 

infinity at 68 Hz, which is the natural frequency of the sleeper-ballast mass on supports 

(rails and foundation). The load speed line corresponds to a load of frequency 40 Hz, 

moving at 100 mls. Within the frequency range, the only propagating wavenumbers is 

1.2056 rad/m. 
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Figure 4.5. Dispersion curve for the track. The load speed line corresponds to a load of frequency 

40 Hz, moving at 100 mls. Within the frequency range, the propagating wavenumber is 1.2056 rad/m. 

Figure 4.6 shows the waves in the rail beam produced by a unit harmonic load of 

40 Hz moving at 100 mls. The eight roots of equation /1(/3) are (in units rad/m) 

/31 =12.5086-9.8005i,/32 =-7.4833-9.8017i, /33 =6.6845-0.9145i, 

/3 4 = -1.9895 - 1.8869i ,/3 5 = -2.2837 + 0.9654i ,/3 6 = 0.7255 - 1.5189i (d) 

/3 7 = 0.6835 + 1.5193i , /38 = 1.2054 - 0.008 Ii 
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The propagating wave corresponds to /38 and is located behind the load and propagates 

backwards (away from the load). The wavelength is 2n / 1.2054 = 5.21 m. 
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Figure 4.6. The waves in the rail beam produced by a unit load of 40 Hz moving at 100 mls. The 

wave behind the load propagates away from the load and has a wavelength of5.21 m. 

Figure 4.7 shows the waves in the rail beam produced by a unit load of 6 Hz 

moving at 100 m1s. The eight roots of equation 11(/3) are (in units rad/m) 

/3, = 10.3740 - 9.8007i, /3 2 = -9.6199 - 9.8009i , /33 = 4.4571- 0.9162i , 

/3 4 = -3.5715 - 0.9654i , /3 5 = -1.5465 + 0.0503i ,f3 6 = 0.8169 + 0.5379i (e) 

/37 =0.7947-0.5342i, /38 =-0.1969-0.0167i 

It can be seen that the propagating waves correspond to /35 and /3 8' and both of them 

propagate forwards. The wave behind the load has a wavelength of 2n / 0.1969 = 32 m, 

and that ahead of the load has a wavelength of 2n / 1.5465 = 4 m. 
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Figure 4.7. The waves in the rail beam produced by a unit load of 6 Hz moving at 100 mls. The 

wave behind the load propagates towards the load and that ahead of the load propagates away from the 

load. The wave behind the load has a wavelength of 32 m, and that ahead the load has a wavelength of 4 m. 

4.4 WAVES IN A TRACK WITH VISCOUS DAMPING: CALCULATED 

USING THE FAST FOURIER TRANSFORM 

If the inverse Fourier transform of wR ([3) cannot be performed analytically, 

either a quadrature or an FFT algorithm has to be employed. The advantage of using the 

FFT is that the displacements of many points can be obtained simultaneously. When 

using the FFT, wR ([3) has to be discretised and truncated. It is important to ensure that 

the propagating wavenumbers are included. To check the accuracy of the FFT, in this 

section, recalculations are made using the FFT for the responses of the track shown in 

Section 4.3.2.2. 

Figure 4.8 shows the FFT-calculated waves in the rail produced by the unit load 

of 40 Hz moving at 100 mls. The spacing of the discrete values of [3 is 2n x 0.0025, and 

2048 samples are used. The propagating wavenumber of the track, indicated in Figure 4.5 

as 1.2056 rad/m, is within this range of [3. According to the principle of the FFT, only 

waves in the range of -200 m < r < 200 m (1/0.0025/2 = 200 m) are available. 

Compared with Figure 4.6, a good approximation is achieved, especially for the wave 

behind the load. However, animation of these waves shows that both the waves behind 

and ahead the load propagate backwards. The erroneously high amplitude of the wave 

- 101 -



ahead of the load is due partly to the effect of 'frequency aliasing' or 'wrap-round'. If 

wR ({3) is treated as a 'time history', then w; (r) is its 'frequency spectrum'. Referring to 

Figure 4.6, there actually is a propagating wave behind the load that is propagating 

backwards. When the FFT is used, the wave out of the 'Nyquist range', in the present 

case which is -200 m < r < 200 m, is brought into this range, as a result, yielding Figure 

4.8 which shows an obvious wave ahead of the load. The part of the wave being aliased 

is shown in Figure 4.9 which is produced using the analytical calculation. 
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Figure 4.8. FFT-calculated waves in the rail produced by a unit load of 40 Hz moving at 100 mls. 

The number of points in the FFT is 2048 and the spacing of f3 is 2n x 0.0025 rad/m. 

A finer discretisation of W R ({3) can mitigate the effect of 'frequency aliasing'. 

Figure 4.10 shows the results when the spacing of f3 is reduced to 2n x 0.00 125. It is 

identical to Figure 4.6. The greater the attenuation rate of the wave is, the less is the 

effect of the 'frequency aliasing'. This is the case when the track rests on a ground due to 

the energy radiation into the ground. 

Figure 4.11 shows the FFT -calculated waves in the rail produced by the 6 Hz load 

moving at 100 mls. The spacing of f3 is 2n x 0.0025 rad/m, and 2048 samples are used. 

Animation of these waves shows that both the waves behind and ahead of the load 

propagate forwards. Comparison of Figures 4.7 and 4.11 indicates that a good accuracy is 

achieved. Because of the higher attenuation rate (as indicated by equations (d) and (e), 
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the attenuation rate for the 6 Hz load is 0.0167 neper/m while that for the 40 Hz load is 

0.0081 neper/m), the effect of 'frequency aliasing' is unnoticeable. 
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Figure 4.9. Analytically calculated waves in the rail produced by a unit load of 40 Hz moving at 

100 mls. The wave in this range will be brought into the range -50 m < r < 50 m when using the FFT. 
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Figure 4.10. FFT -calculated waves in the rail produced by a unit load of 40 Hz load moving at 

100 mls. The number of points in the FFT is 2048 and the sample periodicity is 2n x 0.00125 rad/m. 
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Figure 4.11. FFf -calculated waves in the rail produced by a unit load of 6 Hz load moving at 

100m/s. The number of points in the FFf is 2048 and the sample periodicity is 2n x 0.0025 rad/m. 

4.5 WAVES IN A TRACK WITH HYSTERETIC DAMPING: 

CALCULATED USING THE FAST FOURIER TRANSFORM 

A loss factor is commonly used to describe the damping mechanism of a material 

experiencing harmonic deformation. Normally, loss factors of materials are dependent on 

the frequency of deformation, though for some materials this dependence is negligible. In 

equation (4.10) it is shown that the steady state displacements of the track are non

harmonic due to a moving harmonic load. Thus the materials in the track experience non

harmonic deformations. However, the steady state displacements can be regarded as a 

resultant of components of different wavenumbers shown in equation (4.8), and each 

component is harmonic. The frequency of each component depends on the wavenumber 

of this component and the speed and frequency of the load, i.e., upon OJ = Q - f3c (see 

equation (4.9». This suggests that the hysteretic damping model may be applied by 

making use of frequency-dependant loss factors. However, as noticed in the previous 

sections, there is a component which is dominant over other components. If the loss 

factors are set to be constant and are given values equal to those at the frequency of the 

dominating component, the results are expected to be sufficiently accurate. To show this, 

calculations are made below using the hysteretic damping model. The results are 

compared with those obtained analytically using the viscous damping model. It is 

illustrated that the two damping models give almost the same results. 
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Figure 4.12 shows the FFT -calculated waves in the rail produced by a unit load of 

40 Hz moving at 100 mls. The number of points in the FFT is 2048 and the spacing of 

f3 is 2n x 0.00125 rad/m. The loss factors for the railpad, the ballast and the Winkler 

foundation are chosen as 0.13. This value is obtained by letting T] = ~(O - f3c), where, 

~ = 0.001, 0 = 2n x 40, c = 100 and f3 is the dominating propagating wavenumber 

which, as indicated in Figure 4.5, equals 1.2056 rad/m. It can be seen that the waves in 

Figure 4.12 are almost identical to the waves shown in Figure 4.6. 

Figure 4.13 shows the FFT -calculated waves in the rail produced by a unit load of 

6 Hz moving at 100 mls. The number of pints in the FFT is 2048 and the spacing of f3 

is 2n x 0.0025 rad/m. The loss factors for the railpad, the ballast and the Winkler 

foundation are evaluated by T] = ~ (0 - f3c) as 0.057, where, ~ = 0.001, 0 = 2n x 6, 

c = 100 and f3 is the dominating propagating wavenumber, equal to - 0.1969 rad/m. It 

can be seen that in Figure 4.13 the wave behind the load has a higher accuracy than that 

ahead of the load, compared with Figure 4.7. 

Figure 4.l4 shows waves in the rail produced by a unit constant load moving at 

60 mls. The dashed line is for the track with the viscous damping model, in which each 

damping constant is 0.001. The eight roots of equation (4.l9) are evaluated as (in units 

rad/m) 

-16.6631 -16.3346i, 16.6631 -16.3346i, -6.9579 - 1.5371 i, 6.9579 - 1.5371 i 

-0.6930 + 0.4645i, 0.6930 + 0.4645i, -0.6712 - 0.4643i, 0.6712 - 0.4643i 

from which it is known that the roots having least imaginary part are ± 0.6712 - 0.4643i . 

The solid line, calculated by using FFT, is for the track with the hysteretic damping 

model. The number of points in the FFT is 2048 and the spacing of f3 is 

2n x 0.0025 rad/m. The loss factors for the railpad, the ballast and the Winkler 

foundation are evaluated by T] = ~ (0 - f3c) as 0.04, where, ~ = 0.001, 0 = 0, 

c = 60 mls and f3 = -0.6712 rad/m. It can be seen that two damping models give the 

closely similar results. 
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Figure 4_12_ FFf-calculated waves in the rail with the hysteretic damping model for the 40 Hz 

load moving at 100 mls_ 

0_8 

0.6 

004 

g 0.2 
..... 
s::: 
0) 0 
E 
0) 
u 
,*-0.2 
til 

0-004 

-0.6 

-0.8 

-1~--------------------~--------------------~ 
-50 o 50 

Distance from the load (m) 

Figure 4_13. FFf-calculated waves in the rail with the hysteretic damping model for the 6 Hz load 

moving at 100 mls. 
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Figure 4.14 The waves in the rail produced by a unit constant load moving at 60 mls. ---, 

viscous damping; - . -, hysteretic damping. 

4.6 RECEPTANCES OF A TRACK ON A WINKLER 

FOUNDATION 

For the multiple beam track model and the equivalent beam model used in 

Section 4.3, the displacements of the rails are calculated for a stationary unit harmonic 

load of different frequencies. The displacements are presented in Figure 4.15 for the 

loading point, Figure 4.16 at a distance of 10m and Figure 4.17 at a distance of 20 m. In 

these figures, the solid line is calculated from the multiple beam track model while the 

dashed line is from the equivalent single beam model. It is illustrated that below the 

natural frequency, 9 Hz, two models give almost the same result. However, at 

frequencies much higher than the natural frequency, due to the different properties of 

wave propagation, these two models produce quite different responses. At the natural 

frequency of the sleeper plus ballast on their support (68 Hz), a minimum response is 

predicted from the multiple beam model. 
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Figure 4_15_ Point receptance (response of the loading point on the rail)_ --, from the multiple 

beam track model; - - -, from the equivalent single beam model. 
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Figure 4_16_ Transfer receptance at a point 10m away from the load on the rail. --, from the 

multiple beam track model; - - -, from the equivalent single beam model. 
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Figure 4.17. Transfer receptance at a point 20 m away from the load on the rail. --, from the 

mUltiple beam track model; - - -, from the equivalent single beam model. 

4.7 SUMMARY 

In this chapter, the steady state responses have been studied for a track on a 

Winkler foundation subject to a moving harmonic load. When the viscous damping 

model is used, the waves in the track can be calculated analytically. This has enabled it to 

be shown that the FFT approach is capable of achieving a good accuracy. 

The dispersion diagram has been shown to be useful in interpreting the excitation 

of waves by a moving and possibly oscillating load. The dispersion diagram is also 

helpful to determine the number of points and the spacing in the FFT. A higher damping 

mechanism increases the efficiency of the FFT method. It has been shown that behind the 

load, waves in the track can either propagate away from, or towards the load. 

Comparison has been made between the multiple beam track model and the equivalent 

single beam track model by calculating the receptance of the rail. It is shown that below 

the natural frequency of the track, both the models give the same result. However, at 

frequencies much higher than the natural frequency, the equivalent beam model produces 

a much higher response than the multiple beam model. 
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Chapter 5 

GROUND VIBRATION GENERATED BY VERTICAL 

WHEEL-RAIL FORCES 

PART I: THEORY AND FORMULATION 

5.1 INTRODUCTION 

Having investigated the dynamics of a free layered ground and a track on a 

Winkler foundation, attention is now turned, in this chapter, to a study of the dynamics of 

a ground coupled with a track structure. The aim of this chapter is to extend the model 

developed by Sheng, Jones and Petyt [1999 (b)] for predicting ground vibration generated 

by a single moving harmonic load, so that it accounts for multiple moving forces 

containing many harmonic components. This chapter is intended to serve two purposes: 

one is to study ground vibration generated by the quasi-static loads (multiple axle loads) 

and the other is to form the basis for developing, in Chapter 7, a ground vibration model 

which comprises vehicles, track and ground. In Section 5.2, the differential equations of 

motion of the railway track and the ground are presented, for both the time-space domain 

and the frequency-wavenumber domain. Section 5.3 describes the calculation method for 

the Fourier-transformed response of the ground surface. The formulae for evaluating 

response spectra are derived in Section 5.4. A number of results will be presented in the 

next chapter to investigate the effects of various parameters on the generation and 

propagation of ground vibration. 

5.2 DIFFERENTIAL EQUATIONS OF MOTION OF THE TRACK AND 

GROUND 

Figure 5.1 shows the model of track and ground. The railway is aligned in the x 

direction and has a contact width 2b with the ground. The multiple beam track model 

developed in Chapter 4 is employed to represent the track. The mass per unit length of 

track of the rail beam and its bending stiffness are denoted by mR and El. The sleeper 

'beam' has a mass ms per unit length of track but no bending stiffness. The complex 

stiffness of the railpad is denoted by 
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x 

y 

Figure 5.1. Model for the track/ground system 

k p = k ~ (1 + iT} p sgn( ill)) , where i = H, k ~ is the stiffness of rail pad for a unit length 

of track, T} p is its loss factor and ill is the angular frequency. The mass of the ballast 

layer per unit length of track is denoted by mB and its vertical stiffness by 

k B = k ~ (l + iT} B sgn(ill)) . From right to left, the vertical wheel-rail interaction forces are 

denoted by ~ (t), P2 (t),··· , PM (t) , where M is the number of forces. At time t = 0, the 

corresponding longitudinal coordinates are denoted by a, ,a2 , ... , aM. The forces move 

uniformly along the rail at the train speed c. The vertical displacements of the rail beam 

and the sleeper beam are denoted bywR(x,t) and ws(x,t) , respectively, and the vertical 

displacement of the track centre-line in the plane of contact with the ground (i.e. the x

axis) by we (x, t) . Further, having considered that the ballast distributes the vertical 

wheel-rail forces on the ground surface to some extent, it is assumed that there is only a 

normal contact force in the contact plane which is assumed to be uniformly distributed in 

the y direction from y = -b to y = b and has a strength of F3(x, t) for a unit length of track. 
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The plane Oxy forms the ground surface. As in Chapter 2, the ground consists of a 

number, n, of layers. The nth layer overlies a homogeneous half-space or a rigid 

foundation, which is numbered as the n+ 1 th layer. The jth layer's material constants are: 

elastic modulus, E;, Possion ratio, v j ' density, Pj , loss factor, 1J j , and thickness hi' 

Now, the differential equations of motion of the railway track are as follows (see 

Chapter 4). For the rail beam: 

J 4 WR(X,t) J 2WR(X,t) fs: 
El 4 +mR 2 +kp[wR(x,t)-WS(x,t)] = £.u(x-ct-al)~(t) 

~ ~ ~ 
(5.1 ) 

where 8 (-) is the Dirac-delta function. 

For the sleeper 'beam': 

(5.2) 

For the ballast: 

+kB[ 1 -1]{Ws (X,t)}={F2 (X,t)} 
-1 1 wc(x,t) -F3 (x,t) 

(5.3) 

where F2(x, t) is the longitudinally distributed force between the sleeper 'beam' and the 

ballast. 

As for the ground, its motion is governed by the Navier's equations, which, for 

the jth layer are (see Chapter 2): 

J~j 2 J2U. 
(Aj + 11 j) Jx + 11 /\1 U j = P j ~/ 

J~. 2 J 2Vj 
(Aj+l1j) Jyl +11/\1 Vj =Pj--a;z (j = 1,2,,,, ,n + 1) (5.4) 

J~ j 2 _ J 2W j 
(Aj + 11)J;: + 11 /'\1 Wj - P j;)t2 

where, "\1 2 is the Laplace operator, A j and 11 j are Lame constants of the jth layer, 

determined by 
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A = vjEj (l + i1J j sgn(m)) 

I (l + v )(1- 2v ) 
1 1 

_ E/l+i1Jj sgn(m)) 
fl j - 20+v.) (j=1,2, .. ·,n+1) 

1 

(5.5) 

Uj = ulx, y, z, t), Uj= vix, y, z, t) and Wj= wix, y, z, t) are the longitudinal, lateral and 

vertical displacements, respectively, of point (x, y, z) in the layer; 

dU. dV. dw 
.1. =_1 +_1 +_1 (j = 1,2, ... ,n+ 1) 

1 dX dy dZ 

is the dilatation. 

Now by applying the one-dimensional Fourier transform pairs 

to equations (5.1) to (5.3), and the two-dimensional Fourier transform pairs 

to equation (5.4), gives 

EI[3 4- ([3) d 2W R ([3, t) k [- ([3 ) - ([3 )] - -if3cl 'f P ( )e-ifJa , 
W R ,t + m R 2 + P W R ,t - Ws ,t - e "'-' I t 

~ ~ 

m B [2 1] 
612 

d 2W
S 

([3,t) 

dt 2 

d 2We ([3,t) 

dt 2 

+ kB[ 1 -l]{WS ([3,t)} = {F25j3,t) } 
-1 1 we ([3,t) - F3 ([3,t) 
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(5.9) 

(5.10) 

(5.11) 



Each wheel-rail force PtCt) in equation (S.9) may be expressed in terms of a 

Fourier integral, i.e. 

(S.13) 

where P, (0) is the spectrum of the wheel-rail force Plt) at frequency O. Usually, p, (0) 

is a complex number, and there exists a positive number 0 0 such that when 10/ ~ 0 0 ' 

~(O) is negligible. Now equation (S.9) becomes 

M 

= f= eiC D.-f3clt L p, (O)e-ifJa/ dO 

(S.14) 

1=1 

Equations (S.14), (S.lO), (S.ll) and (S.12) are the Fourier transformed differential 

equations of motion of the track -ground system (or equations of motion of the track

ground system in the wavenumber domain). Having considered the right-hand item in 

equation (S.14) and the damping existing in the track-ground system, it is reasonable to 

consider steady state solutions given by 

w
R

([3,t) = f: w
R

([3)e iCD. -f3cl
t
dO 

ws([3,t) = r ws([3)eiCD.-f3cltdO 

w c ([3,t) = r We ([3)e iC D. -f3cltdO 

F2 ([3, t) = f: F2 (f3)e iC D. -f3clt dO. 

F;,([3,t) = f: F,([3)eiCD.-f3cltdO 

- ([3 ) f= - ([3 ) iCD. -f3cltdfl u j ,y,z,t = ~ u j ,y,z e .::..!. 

- [3 f= - [3 iCD. -f3clt v/ ' y,z,t) = ~ v / ' y,z)e dO 

- [3 ) f= - ([3 ) iCD. -f3cltdfl w( ,y,z,t = Wj ,y,z e .::..!. J _ 

- f= - iCD. -f3clt 
!1/[3,y,z,t)= ~ !1/[3,y,z)e dO 

(S.1S) 

where U
j
([3,y,z) denotes the frequency spectrum of the time-varying Fourier transformed 

displacement Ii. ([3, y, z, t) at frequency 0 - [3c. The existence of steady state motion was 
.1 
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validated by measurements [Madshus and Kaynia 1998(a)]. It will be shown in Section 

5.4 that the inverse (spatial) Fourier transform of the spectrum of the (spatial) Fourier 

transformed displacement gives the spectrum of the actual displacement. The calculation 

method of w R ([3),ii)[3,y,z) etc. will be devised in Section 5.3. 

Ifthe inverse Fourier transforms of ii)[3, y, z), v /[3, y, z) and w/[3, y,z) are 

denoted by u; (x, y, z), v ~ (x, y, z) and w; (x, y, z), respectively, from equation (5.15) the 

actual displacements of the ground are given by 

Uj(x,y,z,t) = r u;(x-ct,y,z)eintdQ 

vj(x,y,z,t)= r v~(x-ct,y,z)eintdQ 
w/x,y,z,t) = f: w;(x-ct,y,z)eintdQ 

(5.16) 

It may be useful to express equation (5.16) alternatively. If u; (x, y, z), v ~ (x, y, z) 

and w; (x, y, z) are due to a single unit harmonic load of frequency Q, then they are 

denoted by u~ (x, y, z) , v~ (x, y, z) and w~ (x, y, z) , to indicate their dependence on Q. 

Equation (5.16) now can be expressed as 

M 0. - on 
uj(x,y,z,t)= r=L[U j (x-a,-ct,y,z)~(Q)]el tdQ 

° 1=1 

M 0. - on 
vj(x,y,z,t) = r=L[V j (x-a, -ct,y,z)~(Q)]el tdQ 

° '=1 
= M 0. - i0.t 

Wj (x, y, z, t) = L= ~[Wj (x - a, - ct, y, z)~ (Q)]e dQ 

Equation (5.17) expresses the actual displacements in terms of an infinite integral. 

However, due to the limited bandwidths of the spectra of the wheel-rail forces, the 

integration limits in equation (5.17) can be truncated. 

(5.17) 

With the substitution of equation (5.15) into equations (5.14), (5.10), (5.11) and 

(5.12) and putting 

M 

P = I. ~ (Q)e- ifJaJ (5.18) 
'=1 

m=Q -[3c (5.19) 
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yields, 

(S.20) 

(S.21 ) 

(S.22) 

d 2- 2 
• - U j 2 2 ill Pj _ 

(Ilo + f.1 jo )l{3t1 jo + f.1 jo [-2- - ({3 + y - --)Ujo] = 0 
] dz f.1 j 

d 2- 2 
• - Vj 2 2 ill Pj _ 

(Il + f.1 jo )ryt1 jo + f.1 j [-?- - ({3 + Y - --)V
j

] = 0 (j = 1,2,···,n + 1) 
] dz - f.1 j 

(S.23) 

- 2 - 2 dt1 j d W j 2 2 ill P j _ 
(Il,o + f.1,o)-d + f.1

j
o[-2--({3 +Y ---)Wj ] = 0 

o 0 z dz f.1 j 

Equations (S.20) to (S.23) may be termed the equations of motion of the track-ground 

system in the frequency-wavenumber domain, where the frequency and wavenumber are 

related to each other through equation (S.19). 

Comparing equations (S.20) to (S.23) with reference [Sheng, Jones and Petyt 

1999(a)], it can be seen that they are the same as the Fourier transformed equations of 

motion of the track-ground system when a stationary harmonic load Pe iOJl acts at the 

head of the rail, where P is given by equation (S.18) as a function of nand {3, and the 

angular frequency ill is determined by equation (S.19). Therefore the approach developed 

to solve these equations in that work, which will be briefly summarised in Section S.3, 

can be applied here. Once uj ({3, Y, z) etc. are calculated, then uj ({3, y, z, t) etc. are given 

by equation (S.lS). 

5.3 DISPLACEMENTS OF THE RAILWAY TRACK AND THE 

GROUND SURFACE 

S.3.1 WHEN THE SPECTRA OF THE WHEEL-RAIL FORCES ARE CONTINUOUS 

Denoting the Fourier transformed distributed forces (the term e iOJl is dropped) on 

the ground surface by j\(/3,y),j\({3'Y)'Pz(/3,y) and putting 
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{~}J~ = ~ilJ (/3, Y'~' vJ (/3, y~O), wJ (/3; y,O)) T} 
{p} - (p x (/3, y), Py (/3, y), Pz (/3, y)) 

then equation (2.60) in Chapter 2 yields 

where 

f

QJJ 
[Q] = [Q(/3,y,Q- /3e)] = ~2J 

Q3J 

(5.24) 

(5.25) 

(5.26) 

as defined in Chapter 2, is termed the Fourier transformed moving dynamic flexibility 

matrix. Its calculation and properties have been discussed in detail in Chapter 2. The 

force vector {p} applied on the ground surface by the track is determined through the 

coupling of the track with the ground. 

To couple the ground with the track, use is made of the continuity of displacement 

and stress in the contact plane, that is 

W
J 
(x,O,O,t) = We (x,t) 

Pz(x,y,t)= 2b ,y-
{

F3(X't) I I <b 

0, elsewhere 

where 

W
J 
(x,O,O, t) = ~ r~ r~ w

J 
(/3, y,O, t)e i

({3x+rY) d/3dyl y=o 
4n L~L~ 

1 [l~ - i{3x = -2 W J (/3, y,O,t)e df3dy 
4n -~-~ 

(5.27) 

(5.28) 

(5.29) 

Fourier transforming equation (5.29) with respect to x only and taking into account 

equation (5.27) gives 

(5.30) 
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Fourier transforming equation (5.28) with respect to x and y, results in 

The substitution of equation (5.15) into equations (5.30) and (5.31), yields 

We (f3) = 2~ f= WI (f3, y,O)dy 

With the substitution of equation (5.33) into equation (5.25) and noting the 

assumption that in the contact plane there is only normal stress, gives 

and from equation (5.32) this yields 

(5.31) 

(5.32) 

(5.33) 

(5.34) 

Putting if (f3) = 2~ f= Q33 Sit dy and making use of the fact that the integrand is an 

even function of y (see Section 2.5.1), results in 

if(f3) =.1 r= Q sinJb d 
7r Jo 33 Jb r (5.35) 

Thus equation (5.34) may be written as 

(5.36) 

Equation (5.36) formulates the coupling of the track with the ground. It can be 

seen from equation (5.35) that H({3) is independent of the railway track parameters 

except for the width of its contact with the ground surface. When the train speed c is set 

to zero, H(f3) is an even function of f3 because Q33 (f3, y,Q - f3e) = Q33 (f3, y,Q) but not 

- 118 -



otherwise. The physical meaning of H({3) can be shown as follows. Suppose a vertical 

harmonic line-distributed load of frequency Q and of amplitude 

{

_I o(x), 
Pz(x,y)= 2b 

0, 

I yl~b 

elsewhere 

the double Fourier transform of which is 

(5.37) 

(5.38) 

moves along the x-axis over the ground surface at speed c, then the Fourier transformed 

(with respect to x only) steady state vertical displacements of points on the x-axis can be 

formulated as 

(with the term e i
(D.-f3c)1 dropped) which, as defined above, is identical to H(/3). More 

discussion on H({3) will be given in Chapter 6. 

Using equation (5.36) and equations (5.20) to (5.22), wR (/3) and F //3) can be 

found as 

(5.39) 

(5.40) 

where 

(5.41) 

(5.42) 
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(S.43) 

(S.44) 

(S.4S) 

(S.46) 

and P is given by equation (S.18). 

Combining equations (S.33) and (5.26) gives 

- - sin'}h-
U I (/3, y,O) = Q13 ~F, (/3) 

- - sin'}h-
VI (/3, y,O) = Q23 ~F3 (/3) (S.47) 

- - sin'}h-
WI (/3, y,O) = Q33 ~ F., (/3) 

By performing an inverse Fourier transform on equation (5.47) (usually using an FFT 

algorithm) and substituting the results into equation (S.17) gives the actual displacement 

of the ground surface. 

S.3.2 WHEN THE SPECTRA OF THE WHEEL-RAIL FORCES ARE DISCRETE 

If the spectra of the wheel-rail forces are discrete, the calculation of the actual 

ground surface displacements can be summarised as follows. 

( i ) Express P,(t) in the form of (see equation (S.13» 

~ (t) = L 11k (Ok )e
iQkt 

(l = 1,2"", M) 
k 

where k indicates the kth harmonic component of P,(t). For various k, carry out (ii) to (vi). 

M 

(ii) Put P = L ~k (Ok )e- itJaJ
, OJ = Ok - /3e (see equations (S.18) and (S.19». 

1=1 
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(iii) Calculate matrix [Q(/3, y,i2 k - /3c)] (see equation (5.26)). 

(iv) Calculate H(m (see equation (5.35)). 

(v) By substituting equation (5.36) into equations (5.20) to (5.22), calculate 

W R (/3), W s (m, F; (/3), F; (/3) . 

(vi) Calculate ul (/3, Y,O), VI (/3, y,O), WI (/3, y,O) (see equation (5.47)). To emphasise their 

dependence on the kth harmonic component, alternative notations, Ulk (/3, y,O) , 

Vlk (/3, y,O) and Wlk (/3, y,O) , are used hereinafter. 

(vii) Calculate the Fourier transformed displacements of the ground surface (see equation 

(5.15)) 

- (n 0) - ~ - (n 0) i(0.k-{3c)r u l jJ, y, ,t - L..Ulk jJ, y, e 
k 

VI (/3, y,O,t) = LVlk (/3, y,0)e i(0.d 3c)r 
k 

- (n 0) - ~ - (n 0) i(0.k-{3c)r WI jJ, y, ,t - L.. w ik jJ, y, e 
k 

(viii) Calculate the inverse Fourier transforms oful (/3, y,O,t), VI (/3, y,O,t), WI (/3, y,O, t). 

The results are actual longitudinal, lateral and vertical displacements, of the ground 

surface. By denoting the inverse Fourier transforms of Ulk (/3, y,O) , Vlk (/3, y,O) and 

}V1k (/3, y,O) by U~k (x, y), V~k (x, y) and W~k (x, y), then 

UI(x,y,O,t) = LU~k(X-ct,y)ei0.kr 
k 

VI (x, y,O,t) = L V;k (x - ct, y)e i0.kt 

k 

WI (x, y,O,t) = L W;k (x - ct, y)e i0.kt 

k 

5.4 DISPLACEMENT SPECTRA OF THE GROUND SURFACE 

In previous work [Sheng, Jones and Petyt 1999 (b) and Jones, Sheng and Petyt 

2000], results have been produced as displacement response in the moving frame of 

reference due to a single moving load oscillating at a single frequency. These 

visualisations of the surface wave-field are instructive, but, now, calculating for the effects 
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of multiple loads, it is important to derive spectra of vibration response at particular fixed 

positions. By this means, a presentation of results closer to that obtained by measurements 

is achieved. 

5.4.1 WHEN THE SPECTRA OF THE RAIL-WHEEL FORCES ARE CONTINUOUS 

Fourier transforming equation (5.16) with respect to time t, gives the ground 

surface displacement spectra (put j = 1, z = 0). The spectra of 

U I (x, y,O,t), VI (x, y,O,t), WI (x, y,O, t) are denoted by Su (x, y,J),Sv (x,y,J),Sw (x,y,J) , 

respectively, where f is the frequency at which the spectra are evaluated. Thus 

f) - f= ( 0) - i2Tift d - f= (f= • ( 0) -i(21rl-O )Id )dn SlI(x,y, - ~ u1 x,y, ,t e t - ~ ~ u1 x-ct,y, e t .::..!: 

Putting x-ct = ~ , then dt = -1/ c d~ , yields 

Sli (x, y, f) = ~ f: (L~ u~ (~, y,O)e -i(2Tif-O )(x-~)Ic d~)dO 

Putting 

[3 = (0 - 27if) / c, 0 = 27if + [3c, dO = cd[3 (5.48) 

and therefore equation (5.19) becomes 

ill = 0 - [3c = 27if (5.49) 

Then 

. • (~ 0) - 1 [[ - ([3 0) i(f3~+YY)df3d Notmg that U 1 ':>' y, - 4n 2 _= _= u1 ,Y, e Y 

1 f= f= - ([3 0) i{3x i'r)'df3d Sli (x, y, f) = 2n _= _= U1 ,Y, e e' Y (5.50) 

Similarly, 
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(5.51) 

S IV (x, y, f) = 2~ 1~ 1~ w, ({3, y,O)e i/3x e
iyy 

df3dy (5.52) 

and for the rail and sleeper, the vibration spectra are 

(5.53) 

(5.54) 

Equations (5.50) to (5.54) show that, by letting Q = 27if + {3c in equation (5.18) 

and OJ = 27if in equation (5.19), calculating ii, ({3, y,O), v, ({3, y,O) , and wJ{3, y,O) as 

shown in Section 5.3, then the vibration spectra at frequency fare determined by 

performing inverse Fourier transform on ii, ({3, y,O), v, ({3, y,O), and w, ({3, y,O) . 

It is worth pointing out that multiplying the displacement spectra by i27if gives 

the velocity spectra that are more often used in practice. 

5.4.2 WHEN THE SPECTRA OF THE RAll.,-WHEEL FORCES ARE DISCRETE 

If the spectra of the wheel-rail forces are discrete, the calculation of the 

displacement spectra of the ground surface at frequency fmay be summarised as follows. 

(i) Express Plt) in form of (see equation (5.13)) 

~ (t) = L ~k (Q k )e
iQkt (l = 1,2,.··, M) 

k 

where k indicates the kth harmonic component of PI(f). For various k, carry out (ii) to (vi). 

M 

(ii)Put 13k =(Qk -27if)/c,P= L~k(Qk)e-i/3ka"OJk =Qk -{3kc=27if (see 
1=' 

equations (5.18), (5.19) and (5.49)). 

(iii) Calculate matrix [Q({3 k' y,27if)] (see equation (5.26)). 
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(iv) Calculate H(j3 k) (see equation (5.35». 

(v) With the substitution of equation (5.35) into equations (5.20) to (5.22), compute 

WR (j3k)' ws(j3k),F;(j3k),~(j3k)' 

fact that they are due to the kth harmonic component, alternative notations, lilk (13k' y,O) , 

Vlk (13k' y,O) and }V1k (13k' y,O) , are used hereinafter. 

(vii) Calculate the displacement spectra of the ground surface, rail and sleeper 

~ 

S ( f) - 1 "" i!3,x (1 f - (R 0) i}Yd ) 
/I X, Y, - - L..,;e -2 Ulk}Jk' y, e Y 

C k n _~ 

S ( f) - 1 "" i!3,x( 1 f - (R 0) i'n'd ) v X,Y, -- L..,;e -2 V lk }Jk'Y' e Y 
C k n_~ 

S ( f) - 1"" i!3,x( 1 f - (R 0) i'n'd ) 
IV x,y, ---;;fe 2n _~Wlk }Jk'Y' e Y 

S ( f) -I"" i!3,x- (R) 
R X, - - L..,;e WRk}Jk 

C k 

S ( f) - 1 "" i!3,x - (R) s x, - - L..,;e WSk}Jk 
C k 

(see equations (5.50) to (5.54». 

5.4.3 WHEN RAIL-WHEEL FORCES ARE HARMONIC AT A SINGLE 

FREQUENCY 

Assume that all the wheel-rail forces are harmonic at a single frequency Q. 

(5.55) 

When P in equation (5.20) is replaced by a unit force, the corresponding solutions of 

equations (5.20) to (5.22) for wR (j3), wS (j3),F3(j3) are denoted byw~(j3), w~(j3),F3o(j3). 

The spectra of the ground surface and the track can be rewritten, according to equations 

(5.1S), (5.33), (5.47) and (5.55), as follows 
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SII (x, y,f; 0.) = S~ (x, y,f;o.)(L ~e-illJ(Q-27ifl!C) 
I~I 

SV (x, y, j;o.) = S~ (x, y, j; o.)(L ~e-illJ(Q-2njl!C) 
I~I 

. _ ° . M - -illJ(Q-2nj'l!c 
SIV(X,y,f,o.)-SIV(X,y,f,o.)(L~e ) (S.S6) 

I~I 

S R (x, j; 0.) = S~ (x, y, j; o.)(L ~e-illJ(Q-27ifl!C) 
I~I 

M _ , 

S s (x, j; 0.) = S~ (x, y, j; o.)(L~e-IllJ(Q-27ifl!C) 
I~I 

where, new notations have been introduced for the spectra to indicate their dependence 

on the load frequency Q, ~ is the amplitude of the lth wheel-rail force, and 

SO ( j. 0.) = 1 ix(Q-27ifl!c FO (Q-27if)(_I_ ~f Q- (Q-27if 2m) sin rh i1')' d ) 
II X, y" e 3 c 2 13 c ,y, ''d oJ-. e y 

c IT -~ IV 

SO(x j.o.)=leiX(Q-27ifl!CFO(Q-27if)(_I_~f Q- (Q-27if y2m)sinrh ei1')'dy) 
v ' y, , 3 c 2 23 c ' ,''d oJ-. 

C IT _~ IV 

SO (x j. 0.) = 1 eix(Q-27if l!c FO (Q-27if )(_1_ ~f Q (Q-27if y 2m) sin rh ei1')' dy) 
IV ' y" C 3 c 2IT _~ 33 c ' , ''d rh 

S~ (x, j;o.) = lw~ (Q-,2nj)e iX(Q-27if l!c 
c 

SO(x j"o.)=lwo(Q-27if)eiX(Q-27ifl!C 
s " eSc 

(S.S7) 

are spectra due to a single unit harmonic force of frequency Q moving along the rails at 

speed c. 

From equations (S.S6) and (S.S7) it can be seen that, when 27if = Q , since 

Q13 (0, y,27if) == ° (see Section 2.S.1), Su (x, y, f; Q) = 0, i.e. the longitudinal spectrum 

vanishes at the wheel-rail load frequency. It can also be seen that the modulus of each 

spectrum is independent of the value of x. 

The term 

M 

Sp(f) = L~e-illJ(Q-2njl!C (S.S8) 
1=1 

in equation (S.S6) may be identified as the load spectrum which reflects the harmonic 

components of the excitation produced by the passage of the axles of a train. During the 

passage of a train of many similar wagons, the pattern of axles of the wagons may give 

rise to strong harmonic components. However, the spectra vanish at frequencies 

- 125 -



M 

satisfying L ~e-ia/(0.-27r/l!C = O. In principle, this equation shows that certain frequencies 
/=1 

can be eliminated from the excitation of ground vibration by a careful choice of wagon 

axle spacing. However, this is not likely to be a practical proposition in order to treat 

problem frequencies that are dependent on the ground and track properties of a particular 

site. It may, however, offer a choice of speed particular to the vehicle type which reduces 

a certain (narrow) range of excitation frequency. It is noticed that a shift of x-coordinates 

does not change the amplitude of the load spectrum. In fact, let a/ = a; + ao in equation 

(5.58), where, a; are the new co-ordinates of the forces at t = 0, ao is a constant. Then 

M. M 
ISp(f)1 = L~e-iCa/+aolcn-27r/l!c = L~e-ia;cn-21!fl!C le-iaoCn-21!fl!cl 

/=1 /=1 

M . 
_ ~ D -ia/cn-21!fl!c 
- L..J£/e 

/=1 

From equation (5.56), for example, 

Is ( f · Q)I-/so ( f' Q)//~ D -ia/cn-27r/l!c/ wx,Y, , - wX,Y, , t;£/e (5.59) 

This means that when the rail-wheel forces are harmonic at a single frequency, the 

amplitudes of displacement (velocity, acceleration) spectra are independent not only of x 

but also of the absolute positions of the wheel-rail forces. 

5.5 SUMMARY 

In this chapter, a mathematical model, which couples the ground model developed 

in Chapter 2 and the track model in Chapter 4, has been developed for predicting the 

ground vibration generated by vertical wheel-rail. Though the equations for only one 

particular track structure are presented, other types of track structure can be modelled by 

simple modifications of the track equations. Two purposes are intended to be served by 

this model: one is to study ground vibration generated by the quasi-static loads (the 

multiple axle loads) and the other is to develop a ground vibration model which 

comprises vehicles, track and ground. During the passages of a train of many similar 

wagons, the pattern of axles of the train may give rise to, or suppress, some harmonic 

components. These harmonic components are formulated in terms of the dimensions of 
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the wagons as well as the train speed. A number of results from this model will be 

presented in the next chapter. 
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Chapter 6 

GROUND VIBRATION GENERATED BY VERTICAL 

WHEEL-RAIL FORCES 

PART II: RESULTS AND DISCUSSIONS 

6.1 INTRODUCTION 

In Chapter 5, formulae have been developed for calculating ground vibrations 

generated by vertical wheel-rail forces. These formulae and the relevant program can be 

used to calculate displacements, either in the wavenumber domain or in the spatial 

domain, and spectra produced by multiple or single moving (if C 1:- 0) or stationary (if 

C = 0) harmonic (if n 1:- 0) or constant (if n = 0) load(s). To investigate the effects of 

various factors involved in the problem, a number of calculations are carried out in the 

present chapter. The results are presented for two tracks (one is the lighter and the other 

is the heavier) and two grounds (one is the stiffer layered ground and the other is the 

softer layered ground). Parameters of the tracks and the grounds are listed in Tables 1.6 to 

1.9. First in Section 6.2, some properties of H(f3) (see equation (5.35» are discussed. 

Section 6.3 presents the dispersion curves for the grounds and the tracks. The receptances 

of the track-ground systems are presented in Section 6.4, which are compared with those 

when the tracks rest on a rigid foundation. The effect of load speeds on the response of a 

track-ground system is investigated in Section 6.5. The effect of the pattern of the axles 

of a train on the response of a track-ground system is investigated in Section 6.6. Finally 

in Section 6.7, conclusions demonstrated by these calculations are summarised. 

6.2 DISCUSSIONS ON H(f3) 

Equation (5.36) formulates the coupling of a ground and a track, in which H({3) is 

evaluated by the infinite integral 

- 1 r~ - sin)b 
H({3) = n Jo Q33 ({3, y,n - {3c)~dY (6.1) 
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It has been pointed out that if c = 0, H(f3) is an even function of [3 and otherwise not. 

Further, by using similar reasoning to that made in Section 3.4 and Section 3.5 of Chapter 

3, it can be shown that, if the damping in the ground can be neglected, H(f3) will be 

infinite when a propagating wavenumber in the ground coincides with [3 =1 Q - 21ff 1 / c . 

In other words, an unbounded H([3) will appear at the intersections on the dispersion 

diagram of the dispersion curves and the 'load speed lines' defined by [3 =1 Q - 21ff 1 / c. 

When the damping in the ground is considered finite, peaks occur at these values of 

wavenumber. 

Figures 6.1 and 6.2 show H(f3) calculated at Q / 2rc = 30 Hz, for c = 0 and 

c = 50 m/s for the softer ground. The P-SV dispersion curves along with the load speed 

lines are also shown here in Figure 6.3 to indicate the intersections of the dispersion 

curves and the load speed lines. Figure 6.1, for c = 0, shows that the highest peak 

corresponds to the wavenumber of the first mode at frequency 30 Hz ([3 "" 2.4 rad/m). 

When 1[31 is larger than this wavenumber, the imaginary part of H([3) decays quickly and 

the real part of H([3) is positive. In Figure 6.3 two intersections of the load speed line for 

c = 50 mls with the first mode are shown as /11 (:::: 1.1 rad/m) and /12 (:::: 6.8 rad/m). 

Figure 6.2 for c = 50 mis, shows that when [3 ~ [31 or [3 ~ -[32' the imaginary part 

of H([3) also decays quickly and its real part remains positive. Peaks in H([3) occurs at /11 

and -/12' 

- 129 -



X 10-8 

2 

--- -----.-- --.------- -- ... _--- ......... 

-1 

-2 

.... \ 
\ 
\ 
\ 
\ 
I 
I 
I I 
I I 
I I 
I I 
I I 
I I 
I I 

" " " " 
" 
" " 
" 
" " 
" ~ 

, , 
I 
I 
I 
I 
I 

I I 
I I 
I I 
I I 
I I 
I I 

" " 
" 
" " 
" " 
" 
" 
" 
" " 
" / 

~.L-______ L-______ L-______ L-____ ~L-____ ~ ______ ~ 

-15 -10 -5 o 5 10 15 

f3 (radlm) 

Figure 6.1. H (13) calculated for the softer ground with c = 0, .Q / 2rc = 30 Hz. --, real part of 

H(j3) ; - - -, imaginary part of H(f3). When c = 0, H(j3) is an even function of 13. 
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Figure 6.2. H (13) calculated for the softer ground with c = 50 mis, .Q / 2rc = 30 Hz. --, real 

part of H(f3); - - -, imaginary part of H(f3). 
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Figure 6.3. P-SV dispersion curves of the softer ground (---) and load speed lines (- - -). Load 

frequency 30 Hz, load speed 50 mls. 

6.3 DISPERSION CURVES OF THE GROUNDS AND TRACKS 

6.3.1 USING FOURIER TRANSFORMED DISPLACEMENTS TO PRODUCE 

DISPERSION DIAGRAM 

The calculation of the dispersion curves of a free ground (a ground without a track 

structure) has been performed in Chapter 3 by finding the real roots for the dispersion 

equation. However, for a layered ground with a track, this method is not applicable. An 

alternative is to calculate the Fourier transformed displacements generated by a surface 

load for different frequencies and wavenumbers, and then project the displacement peaks 

on the wavenumber-frequency plane. As an example, the amplitudes of the transformed 

vertical displacements are calculated for the stiffer ground surface generated by a unit 

vertical point harmonic load. If the amplitudes are plotted three-dimensionally against 

wave number f3 in the x-direction (the wave numbery in the y-direction has been set to 

zero) and frequency f, then peaks in this plot indicate the propagating wave modes. The 

projection of these peaks on the (f3, f) plane (i.e. the contour plot), as shown in Figure 

6.4, gives the P-SV dispersion curves. Figure 6.4 indicates that, in addition to the 

propagating wave modes shown in Figure 3.1, for some frequencies, an extra mode which 

has higher wave speed than the shear wave speed in the underlying half-space is also 

excited by the surface load (see between 40 and 75 Hz). This extra mode is a so-called 

- 131 -



'leaky mode' [Jones 1987], and has significant effect on the response of the ground 

surface as indicated in Figure 3.20. 

10 20 30 40 50 60 70 80 90 100 
Frequency (Hz) 

Figure 6.4. Contour plot of the amplitudes of the transformed vertical displacements of the stiffer 

ground surface (without track) versus wavenumber in the track direction and frequency. 

10 20 30 40 50 60 70 80 90 100 
Frequency (Hz) 

Figure 6.5. Contour plot of the amplitudes of the transformed vertical displacements of the stiffer 

ground surface with the heavier track versus wavenumber in the track direction and frequency. 
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6.3.2 ALA YERED GROUND WITH A TRACK STRUCTURE 

When a track rests on a ground, the propagation properties of the ground are 

different in different directions. Since the track is modelled as a two-dimensional 

structure in the xz-plane, the propagation property in the y-direction is not affected by the 

presence of the track. However, in the x-direction, the propagation property of the ground 

will be, to some extent, modified by the track. Figure 6.5 shows the contour plot of the 

amplitudes of the Fourier transformed vertical displacements of the surface of the stiffer 

ground with the heavier track. These displacements are produced by a unit stationary 

harmonic load acting at the head of the rails. Comparing Figures 6.5 and 6.4 it can be 

seen that, not only the modes of the free ground, but also other modes are excited. These 

new modes are the propagation modes of the track-ground system. Figure 6.5 also shows 

that the first mode of the track-ground system has a greater wavenumber, therefore lower 

phase velocity, than the first mode of the free ground. 

Putting P = I,m = 27if, Y = 0, then equation (5.47) gives the Fourier transformed 

vertical displacement of the ground surface 

According to equations (5.40) 

Q33 (/3,0,2nj) 

Ii (/3) 

Equation (5.39) for the transformed displacement of the rails becomes 

where, all ,a12 ,a21 ,a22 ,bl ,b2 are given in equations (5.41) to (5.46). 

(6.2) 

(6.3) 

(6.4) 

The wavenumbers of the propagating modes of the track-ground system at 

frequency fmay be identified by the fact that, for no damping, both "H\ (/3,0,0) and wR ([3) 

become infinite. Thus from equations (6.3) and (6.4), the dispersion equation of the track

ground system is given by 
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(6.5) 

If H({3) is set to infinity, equation (6.5) gives the dispersion equation of a free 

track (the lower interface of the track is unrestrained) 

(6.6) 

If H({3) is set to zero, equation (6.5) yields the dispersion equation of a track on a 

rigid foundation (called 'rigid-bed track') 

(6.7) 

Finally, if H({3) is replaced by a constant 11 kG' then equation (6.5) results in the 

dispersion equation of a track on a Winkler foundation of stiffness kG. This situation has 

been discussed in Chapter 4. 

Compared to the rigid-bed track, the presence of a ground adds flexibility, mass 

and radiation damping to the track, as a result, the wave speeds in the track are always 

much lower than the wave speeds in the 'rigid-bed track', especially for low frequencies. 

In the absence of a closed form expression for H(/3) , the analytical formula for 

the dispersion equation of a track on a ground is not obtainable. As an alternative, the 

dispersion curves of the free track, the free ground and the rigid-bed track have been 

produced instead. Figures 6.6 to 6.9 show these dispersion curves. The vertical straight 

lines in these figures indicate the natural frequencies of the sleeper-ballast-on-supports. 

From these figures it can be seen that, for a rigid-bed track, a propagating mode exists 

only at frequencies above the first natural frequency of the track (88 Hz for the lighter 

track and 51 Hz for the heavy track). For a track with either boundary conditions, 

propagating modes cease to exist for frequencies lower than the second natural frequency 

of the track but higher than the natural frequency of the mass of sleeper and ballast 

vibrating on supports (67 Hz for the lighter free track, 41 Hz for the heavy free track and 

92 Hz for the heavier rigid-bed track). 
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Figure 6.6. Dispersion curves of the stiffer ground (---), the free lighter track (- - -) and the 

rigid-bed lighter track (_. -). 
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Figure 6.7. Dispersion curves of the stiffer ground (---), the free heavier track (- - -) and the 

rigid-bed heavier track (- . -). 

- 135 -



9 

8 

7 
~ 

~ 6 
cd ..... 

"--' 5 ..... 
0 

.D 
S 4 ::I 
~ 
0 

~ 3 ~ 

2 A 

1 , , 
I 

I 

0 
0 20 40 60 80 100 

Frequency (Hz) 

Figure 6.8. Dispersion curves of the softer ground (--), the free lighter track (- - -) and the 
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Figure 6.9. Dispersion curves of the softer ground (--), the free heavier track (- - -) and the 

rigid-bed heavier track (_. -). 

If at (fo' f30 ), the dispersion curve of a free track intersects the dispersion curve of 

a free ground, then since if (f30) = 00 , both equations (6.5) and (6.6) hold at this point 
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(point A in Figures 6.6, 6.8 and 6.9). In other words, a propagating wave can propagate in 

both the free track and the free ground at speed 2Jifo / 130 . 

A general analysis is difficult for the existence of propagating modes in a track

ground system (i.e., the existence of real roots of 13 in equation (6.5)). However, for a 

track resting on a homogeneous half-space, some points may be made. 

6.3.3 A HOMOGENEOUS HALF-SPACE WITH A TRACK STRUCTURE 

For a homogeneous half-space, there is only one straight line on its dispersion 

diagram, i.e. the Rayleigh wave line. If the Rayleigh wave line is below the dispersion 

curve of the free track but above the dispersion curve of the rigid-bed track, then for a 

given frequency, equation (6.5) has a real solution for 13 , which is greater than the 

Rayleigh wavenumber but less than the wavenumber of the free track at this frequency. 

This is because, that below the dispersion curve of the free track but above the Rayleigh 

wave line, H(f3) > O,all > 0,a ll a 22 - a l2a 2l < 0, and when 13 increases continuously from 

the Rayleigh wavenumber (at which H(f3) = 00) to the wavenumber of the free track, 

a"k p / H(f3) + (a lla 22 - a'2 a 2') varies from a negative value to a positive one. Thus, 

between the Rayleigh wavenumber and the wavenumber of the free track, there exists at 

least a value of 13 such that allk P / H(f3) + (a ll a 22 - a'2 a2') = 0 . 

On the other hand, for a given frequency, if the Rayleigh wavenumber is greater 

than the wavenumber of the free track (in this case it is definitely greater than the 

wavenumber of the rigid-bed track), then the only possible real solution to equation (6.5) 

is a value of f3 greater than the shear wavenumber but less than the Rayleigh 

wavenumber in the ground. In fact, if 13 is greater than the Rayleigh wavenumber then 

H(f3) > 0, all> 0, a ll a 22 - a l2a 2l > 0; if f3 is less than the shear wavenumber then 

if (13) is not real. For each of these two cases, equation (6.5) does not hold. 

It can therefore be concluded that the phase speed of the lowest order in a track 

resting on a homogeneous half-space does not exceed the shear wave speed in the half

space. A heavy (or less stiff) track may make the wave speed in the track lower than the 

Rayleigh wave speed in the ground. A demonstration is given in Section 6.5. I. 
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6.4 RECEPTANCES OF THE TRACKS AND THE GROUNDS 

6.4.1 RECEPTANCES OF THE GROUND SURFACES 

For the four combinations of the two tracks and the two (layered) grounds, 

Figures 6.10 and 6.11 show the vertical displacements of the ground surface. The 

displacements are due to a unit harmonic load of different frequencies acting on the rails. 

Figure 6.10 is for the displacements of the point just underneath the load while 

Figure 6.11 for a point 10m from the track centre-line. It can be seen from these two 

figures that, resonance also occurs when a track rests on a layered ground. However, the 

resonance frequency is modified by the presence of the track. As indicated in Figure 6.10, 

for the stiffer ground with the lighter track, the resonance frequency is 22 Hz, identical to 

the first cut-on frequency of the ground. However, when the heavier track is present, the 

resonance frequency is reduced to 18 Hz. As to the softer ground, the lighter track 

increases the resonance frequency from its first cut-on frequency, 13 Hz, to 16 Hz. It can 

be concluded that the heavier a track is, the lower is the resonance frequency. 

10.1 0 '--------.J'--------.J_-----'-_----L_----L_-----'--_-----'---_--L-_----'-_~ 

o 10 20 30 40 50 60 70 80 90 100 

Frequency (Hz) 

Figure 6.10. Receptances (response of the ground to a force on the rail) at y = 0 m. --, lighter 

track-stiffer ground system; - - -, heavier track-stiffer ground system; - . - . -, lighter track-softer ground 

system; _ .. -, heavier track-softer ground system. 
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Figure 6.11. Receptances (response of the ground to a force on the rail) at y = 10m. --, lighter 

track-stiffer ground system; - - -, heavier track-stiffer ground system; - . - . -, lighter track-softer ground 

system; -" -, heavier track-softer ground system. 

It is also seen in Figures 6.10 and 6.11 that, at very low frequencies (below 5 Hz), 

a change of the mass of the track does not significantly affect the responses of the ground 

surface. With increasing frequency, the lighter track produces lower responses than the 

heavier track due to the increase in the resonance frequency. However, for frequencies 

higher than the resonance frequencies, the heavier track produces less response than the 

lighter track. 

For different distances from the track, the vertical displacements are shown in 

Figure 6.12 for the stiffer ground with the lighter track and in Figure 6.13 for the softer 

ground with the heavier track. It can be seen that, in the lateral direction, the attenuation 

rate near the track is higher than elsewhere. In Figure 6.12, the first trough is identified at 

40 Hz while in Figure 6.13 it is at 30 Hz. The low responses at these frequencies are due 

to the loading width in the track/ground contact plane, which filters the propagating wave 

of the first mode at a wavelength identical to the loading width. In fact, from 

equation (5.47), when)b = n , the Fourier transformed displacements vanish. Since 

b = 1.35 m, this occurs at y = 2.327 rad/m. In the dispersion diagrams, Figure 6.6 for the 

stiffer ground and Figure 6.8 for the softer ground, it can be identified that the frequency 

corresponding to this wavenumber of the first propagating mode is 40 Hz for the stiffer 

ground and 30 Hz for the softer ground. 
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Figure 6_13_ Transfer receptances from the heavier track to the softer ground surface_ --, y = 
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6.4.2 RECEPT ANCES OF THE TRACKS 

Figures 6.14 and 6.15 show the receptances at the loading point on the rails of the 

tracks. Also shown are results for the tracks resting on a rigid foundation. It is seen that, 

as for the ground surfaces, the tracks also have a peak response around the first cut-on 
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frequency of the supporting layered ground. Only at higher frequencies is the difference 

between a ground and a rigid foundation negligible for the track receptance. 
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Figure 6.14. Receptances of the loading point on the rail of the lighter track. --, the track rests 

on the stiffer ground; - - -, the track rests on the softer ground; _. - . -, the track rests on a rigid 

foundation. 
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Figure 6.15. Receptances of the loading point on the rail of the heavier track. --, the track rests 

on the stiffer ground; - - -, the track rests on the softer ground; _. - . -, the track rests on a rigid 

foundation. 
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6.S EFFECTS OF LOAD SPEEDS ON THE RESPONSES OF TRACK

GROUND SYSTEMS 

In this section, the effects of the speed of a quasi-static load on the responses of 

track-ground systems are investigated. First in Section 6.5.1 the case of a track resting on 

a homogeneous half-space is treated. The situation of a track resting on a layered ground 

is considered in Section 6.5.2. 

6.5.1 WHEN A TRACK RESTS ON A HOMOGENEOUS HALF-SPACE 

Two homogenous half-spaces are considered. One is made of the upper layer 

material of the softer ground and the other made of the upper layer material of the stiffer 

ground (see Tables 1.6 and 1.7). The combinations of the lighter track and the heavier 

track and these two half-spaces give four track-ground systems. Figure 6.16 shows the 

vertical displacements (amplitude) for the softer half-space with the lighter track due to a 

unit constant load moving at different speeds. The solid line indicates the maximum 

displacement along the rail and the dashed line the maximum displacement along the x

axis on the ground surface. The peak occurs at a load speed of 77 mis, equal to the 

Rayleigh wave speed of the half-space. This load speed is termed the peak response load 

speed. 

Figure 6.17 shows the maximum displacements of the softer half-space with the 

heavier track. The peak occurs again at 77 mis, i.e. the Rayleigh wave speed of the half

space. 

For the stiffer homogeneous half-space, results are presented in Figures 6.18 and 

6.19. It can be seen that with the lighter track, the peak response load speed is 110 mis, 

close to the Rayleigh wave speed of the half-space; with the heavier track, the peak 

response load speed is 105 mis, slightly lower than the Rayleigh wave speed. 
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Figure 6.16. Maximum displacements of the softer half-space with the lighter track due to a unit 

constant load moving at different speeds. ---, the maximum displacement along the rail; - - -, the 

maximum displacement along the x-axis on the ground surface. The peak occurs at 77 mis, the Rayleigh 

wave speed. 
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Figure 6.17. Maximum displacements of the softer half-space with the heavier track due to a unit 

constant load moving at different speeds. ---, the maximum displacement along the rail; - - -, the 

maximum displacement along the x-axis on the ground surface. The peak occurs at 77 mis, the Rayleigh 

wave speed. 
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Figure 6.18. Maximum displacements of the stiffer half-space with the lighter track due to a unit 

constant load moving at different speeds. ---, the maximum displacement along the rail; - - -, the 

maximum displacement along the x-axis on the ground surface. The peak occurs at 110 mis, close to the 

Rayleigh wave speed of the ground. 
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Figure 6.19. Maximum displacements of the stiffer half-space with the heavier track due to a unit 

constant load moving at different speeds. ---, the maximum displacement along the rail; - - -, the 

maximum displacement along the x-axis on the ground surface. The peak occurs at 105 mis, lower than the 

Rayleigh wave speed of the ground. 
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The results of the four cases are compared in Figure 6.20. Figure 6.21 shows the 

dispersion curves of the free tracks and the homogeneous half-spaces. From Figures 6.20 

and 6.21 it can concluded that, for a track resting on a homogeneous half-space, if the 

propagating wavenumber in the free track is greater than the Rayleigh wavenumber of the 

half-space at all frequencies, then the peak response load speed is lower than the Rayleigh 

wave speed. However, if the propagating wavenumber in the free track is equal to the 

Rayleigh wavenumber at a particular frequency, then the peak response load speed equals 

the Rayleigh wave speed, and decreasing the mass of the track or increasing its bending 

stiffness further does not increase the peak response load speed. This demonstrates the 

upper limit of the track-ground wave speed indicated above in Section 6.3.3. The same 

points were also observed by Dieterman and Metrikine [1997(a)] when they investigated 

the responses of an Euler-Bernoulli beam resting on a homogeneous half-space to a 

moving constant load. 
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Figure 6.20. Maximum displacements along the x-axis on the ground surfaces. ---, for the stiffer 

homogeneous half-space with the lighter track; - - -, for the stiffer homogeneous half-space with the 

heavier track; - . -, for the softer homogeneous half-space with the lighter track; .... , for the softer 

homogeneous half-space with the heavier track. 
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Figure 6.21. Dispersion curves of the free tracks and the homogeneous half-spaces. --, for the 

free heavier track; - - -, for the free lighter track; - . -, for the softer homogeneous half-space; .... , for the 

stiffer homogeneous half-space. 

6.5.2 WHEN A TRACK RESTS ON A LAYERED GROUND 

When a track rests on a layered ground, since there are several propagating modes 

existing in the system, the effect of the load speed on the response becomes much more 

complicated to analyse. 

Figure 6.22 shows the maximum displacements of different track and layered 

ground combinations (Tables 1.6 to 1.9) due to a unit constant load moving at different 

speeds. For the stiffer ground with the lighter track, the peak response load speed is 

130 mis, greater than the Rayleigh wave speed of the upper layer (112 mls). On Figure 

6.6, a line may be drawn going through the origin point and the first intersection, A, of 

the free-track dispersion curve and the free-ground dispersion curve. This line represents 

the excitation due to a constant load travelling at 130 mis, i.e. the speed at which the peak 

response is shown in Figure 6.22. 

For the heavy track on the stiffer ground, the peak occurs at 110 mis, a little less 

than the Rayleigh wave speed of the upper layer of the ground. From Figure 6.7, the 

dispersion curve of the free track is seen to have no intersection with the first dispersion 

curve of the ground. 
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For the softer ground with the lighter track, the peak response load speed is 

105 mis, much greater than the Rayleigh wave speed of the upper layer (77 m/s). For the 

heavier track resting on the softer ground, the peak load speed is 90 mis, also greater than 

the Rayleigh wave speed. The correspondence observed for the stiffer ground between 

the peak response load speed and the dispersion curves of the track/ground structure is 

also valid for the softer ground, i.e. these speeds correspond to a load speed line through 

the point A in Figures 6.8 and 6.9. 
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Figure 6.22. Maximum displacements along the x-axis on the ground. ---, the lighter track 

resting on the stiffer ground; - - -, the heavier track resting on the stiffer ground; - . -, the lighter track 

resting on the softer ground; .. " the heavier track resting on the softer ground 

The above observations reveal that, when a track rests on a layered ground, the 

peak response load speed may be determined by the first intersection of the free-track 

dispersion curve and the ground dispersion curve of the first mode. Denoting the wave 

number and the frequency at this intersection by /30 and fo ' then the peak response load 

speed for a constant load is determined by c = 2Tifo I /30' If there is no such intersection, 

because the free track wave speed is lower than that of the first mode in the ground, then 

the peak response load speed is lower than the Rayleigh wave speed in the upper layer. 

It can also be seen in Figures 6.20 and 6.22 that, when the load speed is well 

below their peak response load speeds, the heavier track and the lighter track make little 
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difference to the ground responses. However, the peak response of the ground with the 

lighter track is much lower than that of the ground with the heavier track. 

6.6 EFFECTS OF MULTIPLE AXLE LOADS 

This section investigates the effects of multiple axle loads on the responses of 

track-ground systems. The investigations are based on equations (S.17) and (S.S6). From 

equation (S.17), the displacement of the ground surface is given by 

M 0 -
WI (x, y,O, t) = L WI (x - a1 - ct, y,O)~ (6.8) 

1=1 

where, ~ denotes the magnitude of the lth axle load, WI (x, y,O, t) the ground surface 

vertical displacement and w~ (x, y,O) represents the vertical displacement on the ground 

surface generated by a single unit constant force moving at speed c. When the load speed 

is well below the lowest phase speed in the track-ground system, the displacement 

produced by a single force is attenuated quickly (evanescent wave) and is confined near 

to the position of the force. In this case, the maximum displacement produced by the 

multiple axle loads is not so different from that produced by each single axle load. The 

situation may be different when the load speed is high enough to excite one of the 

propagating wave modes of the track-ground system. In this case, if the distances 

between adjacent axles are almost the same and close to the wavelength of that 

propagating mode, then as indicated by equation (6.8), the responses produced by each 

axle load are 'in phase' with each other, and add together to give a higher total response. 

However, whatever the train speed is, during the passage of a train of many 

similar wagons, the pattern of axles of the wagons may give rise to strong harmonic 

components. Equation (S.S6) shows that the spectra produced by multiple forces of a 

single frequency (for the quasi-static loads, the frequency is equal to zero) are equal to 

those produced by a moving unit force of that frequency, times the load spectrum. The 

load spectrum is given by equation (S.S8). The spectra vanish at frequencies 

satisfying f)~ (Q)e -ia[(Q-2Jr,f)! c = 0. In principle, this equation shows that certain 
1=1 

frequencies can be eliminated from the excitation of ground vibration by a careful choice 

of wagon axle spacing. However, this is not likely to be a practical proposition in order to 

treat problem frequencies that are dependent on the ground and track properties of a 
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particular site. It may, however, offer a choice of speed particular to the vehicle type 

which reduces a certain (narrow) range of excitation frequency. 

To represent a train consisting of similar two-axle wagons, ~ = P, l = 1,2,· .. , M , 

a l =0, a2 =-b, a3 =-a, a4 =-a-b, as =-2a, a6 =-2a-b etc., where, a is the 

length of each wagon, and b the distance between two axles within a wagon. Thus 

equation (5.58) becomes 

Sp(f) = IPei21ifa/lc = PI,e-i27if (k- l lalc +PI,e-i27if[(k-lla+bl/c 

1=1 k=1 k=1 

= P(l + e -i21ifbl C) I, e -i27if(k-llal c 

k=1 

(6.9) 

where N denotes the number of the wagons. Equation (6.9) shows that, (1) atf = 0, the 

magnitude of the load spectrum is equal to 2PN; (2) at frequencies f = cI(2b) andf = 

cI(2a) (if N is even) the load spectrum vanishes; (3) at frequency f = cia, the passing 

frequency of each wagon, the magnitude of the load spectrum increases linearly with the 

number of wagons and (4) when a = 2b, i.e. the distance between two adjacent axles 

either within a wagon or in two adjacent wagons is identical, then at the passing 

frequency ofaxles,f = c/b, the load spectrum is 2NP. Through equation (5.56), the 

spectrum of the ground increases linearly with the number of wagons in cases (I), (3) and 

(4). 

In what follows, the vertical velocity spectra are presented for six quasi-static 

loads (M = 6), of three two-axle wagons (N = 3) [Jonsson 2000, Sheng, Jones, Petyt and 

Thompson 2000], which move on the lighter track on the softer ground. The axle spacing 

b within a vehicle is 8.96 m and the length of a wagon, a, is 13.82 m. The magnitude of 

each axle force is set to unity. 

Figure 6.23 shows the vertical velocity spectra of the ground surface at various 

distances produced by the six loads moving at c = 40 m/s. The vertical velocity spectra 

produced by a single unit constant force moving at speed 40 m/s are shown in 

Figure 6.24. The load spectrum of the six axle loads, defined by equation (5.58), is shown 

in Figure 6.25. 
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Figure 6.23. Vertical velocity spectra of points on the ground surface produced by the six loads 

moving at 40 mls. (a) at the track centre-line; (b) at 5 m; (c) at 10 m; (d) at 15 m. 
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Figure 6.24. Vertical displacement spectra of points on the ground surface produced by a single 

unit constant force moving at 40 mls. (a) at the track centre-line; (b) at 5 m; (c) at 10 m; (d) at 15 m. 

- 150 -



6.-------~------~--~--~~------~------~ 

5 

4 

IS p(!)1 
3 

2 

Frequency (Hz) 

Figure 6.25. The 'load spectrum' of the six axle loads moving at 40 m1s 
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Figure 6.26. Vertical velocity spectra of points on the ground surface by the six loads moving at 80 

m/s. (a) at the track centre-line; (b) at 5 m; (c) at 10 m; (d) at 15 m. 
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Figure 6.27. Vertical velocity spectra of points on the ground surface produced by a single unit 

constant load moving at 80 m/s. (a) at the track centre-line; (b) at 5 m; (c) at 10 m; (d) at 15 m. 
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Figure 6.28. The 'load spectrum' of the six axle loads moving 80 m/s. 
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Comparison of Figures 6.23 and 6.25 indicates the harmonic nature of the 

excitation introduced by the multiple axles. 

Figures 6.26 to 6.28 give equivalent results for a train speed of 80 mis, which 

exceeds the Rayleigh wave speed in the upper layer of the ground. Compared with the 

case of low load speed, the responses are higher due to the higher load speed, especially 

for the frequencies 20 to 40 Hz. The harmonic components in this frequency range are 

due to the excitation of the first propagating mode of the ground by the moving loads. 

6.7 SUMMARY 

A number of results are produced using the model presented in Chapter 5 in order 

to investigate the effects of the track structure and the distribution of axles in a train. The 

concepts of free track, 'fixed-bed' track and free ground are defined. From the example 

results presented here some conclusions have been demonstrated, amongst others, 

relating to the peak response load speed which track designers may seek to control using 

a high bending stiffness and low mass per unit length of track/embankment structure. 

(1) For a track on a ground, a harmonic surface load may excite not only the propagating 

modes of the track-ground system but also the modes of the free ground. 

(2) For a track on a layered ground, near the first cut-on frequency of the free ground, 

both the track and the ground have maximum (resonant) responses. The presence of a 

track may increase or decrease the resonance frequency depending on the combination of 

the ground and the track parameters. The existence of a resonance frequency indicates the 

layered structure of the ground. 

(3) At very low frequencies, change of the mass of a track does not significantly affect the 

responses of the ground surface. With increasing frequency, a lighter track produces 

lower responses than a heavier track due to its higher resonance frequency. However, for 

frequencies higher than the resonance frequencies, a heavier track produces less response 

than a lighter track. 

(4) The ground may have a great effect on the track response compared to the response of 

the same track on a rigid foundation, especially for frequencies near the cut-on frequency 

of the ground. For the dynamics of a track at low frequencies (e.g. below 250 Hz), 

consideration of the elasticity and energy radiation of the supporting ground is necessary. 
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(5) For a track on a homogeneous half-space, the peak response load speed of a constant 

load will not be greater than the Rayleigh wave speed in the half-space. In the dispersion 

diagram, if the dispersion curve of the free track is above the Rayleigh wave line of the 

ground, then the peak load speed is lower than the Rayleigh wave speed. If the dispersion 

curve of the free track intersects the Rayleigh wave line, then the peak load speed is equal 

to the Rayleigh wave speed. Further increasing the track bending stiffness, or decreasing 

the track mass, does not increase the peak response load speed. When the load speed is 

well below the peak response load speed, modification to the track mass leads to a small 

reduction of vibration. However, when the load speed approaches the peak response load 

speed, decreasing the track mass has a much greater effect on reducing the level of 

vibration. 

(6) For a track on a layered ground consisting of a single layer on a deep, stiffer 

substratum which is modelled as a homogeneous half-space, the peak response load 

speed may be greater than the Rayleigh wave speed in the upper layer of the ground. The 

peak response load speed may be determined by the first intersection of the free-track 

dispersion curve and the dispersion curve of the first mode of the ground, i.e. it is given 

by 2rifo / f3 0' where f3 0 and fo are the wavenumber and frequency corresponding to this 

intersection. Since for low frequency, the dispersion curve of the first mode of the ground 

is close to the Rayleigh wave line of the underlying half-space, increasing the track 

bending stiffness or decreasing the track mass can increase the peak response load speed 

for the track-ground system so that the peak response load speed is much higher than the 

Rayleigh wave speed in the upper layer. 

(7) During the passage of a train of many similar wagons, the pattern of axles of the 

wagons may give rise to, or suppress, some harmonic components. For example at the 

wagon passing frequency, the spectrum is proportional to the number of the wagons. 

These harmonic components are formulated using the dimensions of the wagons as well 

as the train speed. When the load speed is beyond the phase wave speeds in the ground, 

due to the excitation of the first propagating mode in the ground, vibration at certain 

frequencies is much stronger and less attenuated with distance than vibration in the case 

of low load speed. 
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Chapter 7 

GROUND VIBRATIONS GENERATED BY WHEELIRAIL 

IRREGULARITIES 

7.1 INTRODUCTION 

In Chapter 5, a model has been developed for predicting ground vibrations 

generated by vertical wheel-rail forces. This model assumes that the wheel-rail forces are 

known in advance. Using this model, a number of calculations have been performed in 

Chapter 6, providing some insights into the problem. 

The vertical wheel-rail forces may be calculated using a vehicle dynamics model. 

A number of vehicle dynamics models have been developed [Zai, 1997]. The main aims 

of these models are to analyse ride quality, running safety, hunting motion, curving etc., 

rather than ground vibration. In these models, however, the ground is modelled as either 

a rigid base or a Winkler foundation, and the track is often truncated into a finite length. 

As a result, waves, which actually propagate away along the track and into the ground, 

would be reflected into the 'finite system'. 

Each vertical wheel-rail force consists of two components: a quasi-static 

component, which is equal to the axle load, and a dynamic component. It is demonstrated 

by Lai et al [2000] that, the dynamic component can give rise to high levels of ground 

vibration and may dominate over the quasi-static component. The dynamic excitations at 

wheel-rail contact points come from the irregular vertical profiles of the wheel and rail 

running surfaces. The rail irregularities include dipped joints, corrugations as well as the 

general undulation in the 'track top'. The wheel irregularities can be wheel flats, surface 

irregularities and wheel eccentricity. The variations in the vertical profiles of either 

surface (wheel and rail) introduce a relative displacement input to the system, as shown 

in Section 7.3. The process is usually assumed to be linear, so that for a given wavelength 

A , a displacement input is generated at the passing frequency f = c / A, where c denotes 

the vehicle speed. 

Comprehensive analysis requires realistic models of ground vibration generation 

and propagation. This model should be able to account for the interactions between 

vehicles, track and ground. This chapter is devoted to the development of such a model. 
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In the frequency range of interest, a vehicle is modelled as a multi-body system. 

A rigid body, e.g., the car body in a vehicle, may have six degrees of freedom, 

accounting for three displacements of the centre of mass and three rotations. However, 

since only the motion in the vertical plane (xz plane) is considered, each body has only 

two degrees of freedom, i.e., the vertical displacement of its centre of mass and its pitch 

motion. The suspensions in a vehicle may have non-linear behaviour. To make it possible 

to analyse in the frequency domain, each non-linear suspension is replaced by a 

linearised equivalent. As a result, the differential equation of motion for a vehicle is 

linear and with constant coefficients. It is specified by a mass matrix and a complex 

stiffness matrix. Damping is introduced and included in the stiffness matrix. The mass 

and the stiffness matrices of several types of vehicle are presented in Section 7.6. 

From the first wheel set of the first vehicle to the last wheel set of the last vehicle, 

the vertical wheel-rail forces are denoted by ~ (t), P2 (t), ... , PM (t) , where M is the 

number of the forces. At time t = 0, the longitudinal co-ordinates of these forces are 

denoted by a, ,a2,···, aM. The forces move along the rails uniformly at the train speed c. 

For each wheel-rail force, there are two components: one is a static load, i.e. the axle 

load, and the other is a dynamic load. The responses to the axle loads may be calculated 

using the model developed in Chapter 5. Therefore in this chapter only the dynamic 

wheel-rail forces are considered and still denoted by ~ (t), P2 (t), ... , PM (t) . The vertical 

displacement of the rail is denoted bywR(x,t). 

The plane Oxy is located on the ground surface. For a particle in the jth layer, its 

longitudinal, lateral and vertical displacements are, as in the previous chapters, denoted 

by u j (x, y, z,t), v /x, y, z, t) and Wj (x, y, z, t). Especially, the displacements U j (x, y,O, t), 

V· (x, y,O,t) and w. (x, y,O,t) on the ground surface are denoted alternatively by 
J J 

UIQ(X, y,t), vIQ(x, y,t) and wIQ(x, y,t). 

In Section 7.2, the receptances of the vehicles, track and ground are derived. 

Compatibility of displacements at the wheel-rail contact points couples the vehicles and 

the track-ground system, and yield equations for the wheel-rail contact forces. The detail 

is presented in Section 7.3. Having worked out the wheel-rail contact forces, the ground 

vibration can be evaluated by employing the formulae developed in Chapter 5. In Section 

7.4, a relationship is sought between the displacement power spectrum of the ground 

surface and the power spectral density of the vertical profile of the rails. The Hertzian 
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contact springs between the wheel sets and the rail are introduced in the model and a 

formula for evaluating the stiffness of a Hertzian contact spring is given in Section 7.5. 

Results from the model are presented and discussed in Section 7.7. Conclusions based 

these results are summarised in Section 7.8. 

7.2 RECEPTANCES OF A VEHICLE AND A TRACK-GROUND 

SYSTEM 

7.2.1 RECEPTANCES OF A VEHICLE AT THE WHEELSETS 

The differential equation of motion of a vehicle is given by 

[M v ]{zv (t)} + [Kv ]{zv (t)} = {Fv (t)} = [B]({F(t)} - {P(t)}) (7.1 ) 

where, [MvJ and [Kv] ('V' means vehicle) denote the mass and stiffness matrices of the 

vehicle (not including the Hertzian contact spring), {zv (t)} denotes the (generalised) 

displacement vector, {FCt)} denotes the generalised force vector applied at the wheel sets 

excluding the wheel-rail interaction force vector which is denoted by {P(t)} , and [B] is a 

constant matrix. A minus sign before {P(t)} indicates that the positive wheel-rail forces 

are of compression. The detailed expressions for matrices [Mv] , [Kv] and [B] are derived 

in Section 7.6. 

To derive the receptances of the vehicle at the wheel sets, let {F(t)} = {F(Q)}e inr , 

{PCt)} = {P(Q) }eint ,{zv (t)} = {zv (Q) }e inr , whereQ denotes the angular frequency. 

Then equation (7.1) becomes 

where 

(7.3) 

For the vehicle, the receptance between the jth and the kth wheelsets is denoted 

by(}~ , ('Wmeans wheel set) where, j,k = 1,2,.··, N ,Nbeing the number of the 

wheel sets of the vehicle (for a two-axle wagon, N = 2 and for a four-axle coach, N = 4). 

In other words, () ~ denotes the amplitUde of the displacement of the jth wheelset due to 
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a unit vertical harmonic load acting at the kth wheelset. Thus the complex amplitudes of 

the displacements of the wheel sets produced by the vertical loads acting at the wheel sets 

are given by 

where, 

l 
w cr JJ 

[Lw] = (cr%) j.k=J.2 .... N = ~ 
cr NJ 

... cr
W 1 IN 

... . 

W 
cr NN 

(7.4) 

(7.5) 

denotes the receptance matrix of the vehicle at the wheelsets. This matrix is dependent on 

the vehicle parameters and n and is symmetric. In equation (7.4) 

is the displacement vector of the wheelsets, and 

is the vector of forces exerted on the wheelsets by the rail. 

The displacement vector of the wheel sets forms part of that of the vehicle, 

therefore, it may be written that 

(7.6) 

(7.7) 

(7.8) 

where [A] is a constant matrix and [A] = [B]T (see Section 7.6). Thus equations (7.3) 

and (7.4) give 

(7.9) 

Equation (7.9) gives the receptance matrix at the wheel sets of one vehicle. 

Supposing that N
J 

vehicles are being considered, then the total number of the wheel-rail 

forces M = N
J 
N . For the present model, it is assumed that these vehicles are only 

coupled by the rails, thus the receptance matrix at the wheel sets for the 'train' , denoted 

by [L T ] ('T means train), is given by 
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The elements of matrix [L T ] are denoted by (j~ , where, k, l = 1,2,···, M . 

7.2.2 RECEPTANCES OF A TRACK-GROUND SYSTEM AT WHEELIRAIL 

CONTACT POINTS 

(7.10) 

Suppose a unit vertical harmonic load eint , which is pointing downwards and 

located at x = ° when t = 0, moves at speed c along the rails. The steady state 

displacements of the rails and the ground surface, denoted by wR (x, t), 

UIQ (x, y, t) ,vlQ (x, y,t) and WIQ (x, y,t) , may be expressed as (see equation (5.17)) 

WR(X,t) = w~(x-ct)eint 
ulQ(x,y,t) = u~(x-ct,y)eint 

n int vlQ(x,y,t) = vlQ(x-ct,y)e 

w1o(x,y,t) = w~(x-ct,y)eint 

(7.11 ) 

where the calculation of w~ (r) (r = x - ct) etc., has been described in Chapter 5. Thus, 

the receptance at the jth wheel/rail contact point due to a unit load at the kth wheel/rail 

contact point (both of these two points are moving at speed c) on the rail is determined by 

(7.12) 

where 

lk = a - ak J J 
(7.13) 

is the distance between these two contact points, and when the jth contact point is ahead 

the kth one, ljk > 0. 

The amplitudes of the displacements of the wheel-rail contact points on the rails 

may now be written 

(7.14) 

where, 
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R 
0"11 

R 
0"12 

R 
O"IM 

R R R 

[LRJ = 0"21 0"22 0"2M 
(7.15) 

R 
0" MI 

R 
0" M2 

R 
0" MM 

is the receptance matrix of the track-ground system at the wheel/rail contact points on the 

rail. Notice that when the train speed does not vanish, this matrix is non-symmetric due 

to the motion of the loads. In equation (7.14) 

(7.16) 

represents the displacement vector of the rail at the wheel-rail contact points. 

7.3 COUPLING OF THE VEHICLES AND THE TRACK-GROUND 

SYSTEM 

For a single wavelength, the vertical profile of the rails can be expressed as 

z(x) = A/¥x, where.li., denotes the wavelength and A the amplitude (which may be 

complex). At the instant t, the Ith wheelset arrives at x = a, + ct , thus the displacement 

input at the Ith wheel/rail contact point is 

(7.17) 

.271: 

where, z, (n) = Ae'T
a

, ,n = 2nc/ A.. 

See Figure 7.1, where zw, (n)e iQ1 denotes the displacement of the Ith wheel set. A 

Hertzian contact spring is inserted between the wheel and the rails. The calculation 

formula for the stiffness of the Hertzian contact spring, denoted by kH/' is given in 

Section 7.5. Suppose the wheel set is always in contact with the rails. Then 

zw, (n) = ZR,(n) + z,(n) + ~(n) / kH' (7.18) 
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1 iw,(Q) 

rGi-------- ----- --
Figure 7.1. Coupling of the lth wheel set with the rail 

From equations (7.4) and (7.14) 

M 

ZWI(O) = La~[Fk(O)- Pk(O)] (7.19) 
k=l 

M 

ZRI(O) = La~Pk(O) (7.20) 
k=l 

Inserting these two equations into equation (7.18) yields 

(7.21) 

Equation (7.21) is a set of linear algebraic equations with unknowns Pk (0), 

where k = 1,2"", M . Once {P(O)} has been determined from equation (7.21), the 

displacements of the rails and ground surface are given by 

M 
~ 12 - i12t 

ulO(x,y,t) = L...JulO(x-al -ct,y)~(O)e 
1=1 

M 
~ 12 - i12t 

vlO(x,y,t) = L...JvlO(x-al-ct,y)~(O)e 
1=1 

M 
~ 12 - int wlO(x,y,t) = L...J wlO(x-a l -ct,y)~(O)e 
1=1 
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7.4 RESPONSE POWER SPECTRA OF THE GROUND SURFACE 

Once the wheel-rail forces have been evaluated, the displacement spectra of the 

ground surface can be evaluated using the formulae developed in Section 5.4. In this 

section, formulae are derived for the response power spectra of the ground surface. To do 

so, the longitudinal, lateral and vertical displacement spectra of point (x, y) on the ground 

·2rr . 

surface due to a unit rail irregularity of wavelength A , z(x) = e'Tx = e'/lr , are denoted by 

S,~ (x, y, j;o.), S~ (x, y, j;o.), S\~ (x, y, j; 0.) , respectively (Note: in Section 5.4.3, they are 

used to represent the displacement spectra due to a single unit harmonic load of 

frequency 0. moving at c), wherejis the frequency at which the spectra are evaluated, 0. 

is the excitation angular frequency in the vehicle frame of reference, determined by 

0. = 2nc / A = c 13 (7.23) 

A complete vertical rail profile may be described by 

(7.24) 

where 13k = ki1f3 , i1f3 denotes the spacing of the discrete wavenumbers. With this input, 

the displacement spectra are given by (taking the vertical one as an example) 

(7.25) 

where, according to equation (7.23), o. k = cf3k . Equation (7.25) yields, 

(7.26) 

where, Z j = Z (13 j) and z; denotes the conjugate of Zj . 

Denoting the ensemble average operator by E, and assuming that each harmonic 

component of the rail vertical profile is independent of others, i.e. 

(7.27) 
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then equation (7.26) yields, 

(7.28) 

The assumption made in equation (7.27) is based on the idea that the irregularities of 

different wavelengths are not correlated, i.e. that the irregularity may be treated as a 

random process. 

E[I Sw (x, y, f) 12] gives the vertical displacement power spectrum of point (x, y) 

on the ground surface and is denoted by Pw (x, y, f). Thus from equation (7.28), 

where L is a distance over which the power spectral density (PSD), denoted by Pz ({3), of 

the vertical profile of the rails is estimated, and !1{3L = 2rc . It is known that 

P",(x,y,f) = 2~ II S~(x,y,f;Qk) 12 Pz ({3k)!1{3 
k=-

(7.29) 

Since the vertical profile of the rails, described by z(x), is a real function of x, its 

power spectral density Pz ({3) is an even function of {3 . Thus equation (7.29) can be 

written as 

(7.30) 

It can be shown that S~ (x, y,- f; Qk) = S\~,' (x, y, f;-Qk) which implies that 

P
w 

(x, y, f) is an even function of frequency f However, it should be noticed that, in 

In equation (7.30), the last term should be zero since it corresponds to an 

excitation of zero frequency at which the dynamic wheel-rail forces vanish. 
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Now the power spectrum due to the moving axle loads is added to equation (7.30) 

to give the total power spectrum. If S,~ (x, y, f;O) is now made to refer to the vertical 

displacement spectrum produced by the moving axle loads, then the associated power 

spectrum is 1 S~ (x, y, f;O) 12 . Thus the total power spectrum, also denoted by?,,, (x, y, f), 

is given by 

?'v (x, y, f) = 2~ ~[I S,~ (x, y, f;Qk) 12 + 1 S~ (x, y, f;-Q k) 12 ]P
Z 
(/3k )11/3 

+ 1 S~ (x, y, f;O) 12 

(7.31) 

Equation (7.31) gives the relationship between the displacement power spectrum of the 

ground surface and the power spectral density of the vertical profile of the rails. In 

international standards, the units of the former are m2/(Hz)2, and that of the latter are 

m2/(cyde/m). Since 1 S~ (x, y, f; Qk) 12 is independent of x as well as the position of the 

train (see Section 5.4.3, Chapter 5), the total power spectrum of the ground surface is 

independent of x and also of the train position. 

The velocity power spectrum, P'Y (x, y, f), and the acceleration power spectrum, 

?'v (x, y, f), of the ground surface are given by 

?'Y (x, y, f) = (27if) 2 Pw (x, y, f) (7.32) 

Piv (x, y, f) = (27if) 2 P'Y (x, y, f) = (27if) 4 Pw (x, y, f) (7.33) 

When divided by a chosen period of time, which normally is the time needed for 

a train to pass a fixed point, equations (7.31), (7.32) and (7.33) give the response power 

spectral density of the ground surface. 

7.5 STIFFNESS OF THE HERTZIAN CONTACT SPRING 

The relationship between the vertical wheel-rail interaction force P and the 

compression 8z at the contact point is given by [see e.g. Jenkins, Stephenson et al 1974 

and Zai 1997] 

(7.34) 
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where 8z refers to the compression between the wheel and rail, and G the wheel-rail 

contact constant. For a wheel with a coned tyre, an approximation for G is 

G = 4.57 R-O
]49 x 10-8 (mIN2/3) (7.35) 

whereas for a wheel with a worn tyre 

(7.36) 

where R denotes the rolling radius of the wheel. 

From equation (7.34), 

dP = _3_ (P ) 113 

d (8z) 2G 

The Hertzian contact stiffness for each wheel set is determined by 

(7.37) 

where Po is the static load applied on the rails by the wheel set, equal to the axle load. 

7.6 MASS AND STIFFNESS MATRICES OF VEHICLES 

In this section, the mass and stiffness matrices for several types of vehicle are 

derived. As shown in Figures 7.3 to 7.6, a vehicle consists in general of a car body, two 

bogies and four or two wheelsets. The mass and the pitch inertia of the car body are 

denoted by Me and J c' The vertical displacement and the pitch angle of the car body are 

denoted by Zc (t) and cp c (t) . The mass and the pitch inertia of each bogie are denoted 

by M Band J B • The vertical displacement and the pitch angle of the jth bogie are denoted 

by ZB; (t) andcp Bj (t) . The mass of each wheel set is denoted by M w' and the vertical 

displacement of the lth wheel set is denoted by ZWI (t). For a vertical displacement, the 

positive direction is downwards, while for a pitch angle, the positive direction is 

clockwise. The dynamic stiffness of the primary suspension (between wheel set and 

bogie) per axle is denoted by k] , and that of the secondary suspension (between bogie 

and car body) per bogie is denoted by k2 . For any other notation, its meaning will be 

defined where it appears. For different types of suspension, k] and k2 are different 
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functions of frequency, stiffness and damping of the suspension. When a suspension, for 

example a primary suspension, consists of a spring and a viscous damper which are 

connected in parallel, as shown in Figure 7.2(a), then 

(7.38) 

where, kSI denotes the stiffness of the spring, CS1 the viscous damping coefficient of the 

damper, and Q the angular frequency. If the suspension has a structure shown in Figure 

7 .2(b), in which an extra spring is connected in series with the damper, then 

kl = kSlk~1 +,iQcS1(ksl +k~l) 
kSI +iQcs1 

(a) (b) 

Figure 7.2. Structure of suspensions. 

(7.39) 

(c) 

A symbol, shown in Figure 7.2(c), is used to represent a suspension of any type. The 

hysteretic damping may also be incorporated into the suspension by introducing a 

complex spring stiffness. 

7.6.1 FOR VEHICLE TYPE I 

Vehicle type I, which is shown in Figure 7.3, represents a passenger car which 

has two levels of suspension (primary and secondary). The displacement vector of the 

vehicle is defined as 

Corresponding to this displacement vector, the external force vector is determined as 

{Fv (t)} = (0,0,0,0,0,0, FI (t) - ~ (t), F2 (t) - P2 (t), F., (t) - p., (t), F4 (t) - P4 (t» T 

= [B]( {F(t)} - {P(t)}) 
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'----+l P." (t) 

~ I 
Figure 7.3. Type I: A vehicle system with primary and secondary suspensions. 

where 

[B] = [[O]6X4] 
[I]4 X4 

is the vertical wheel-rail force vector, and 

(7.42) 

(7.43) 

(7.44) 

is a vertical external force vector exerted at the wheel sets (not shown in Figure 7.3). 

The wheelset displacement vector can be written as (see Equation (7.8)) 

{zw (t)} = [A]{zv (t)} (7.45) 

where 

(7.46) 

The mass matrix is given by 

[Mv ] = diag(Mc,lc' M 8' I B' M B,IB' M w, M w, M w, Mw) (7.47) 

and the stiffness matrix by 
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[Kv] = 
2k2 0 -k2 0 - k 2 0 0 0 0 0 

0 2k21~ -k21B 0 k2lB 0 0 0 0 0 

-k2 -k21B k2 +2k, 0 0 0 -k, - k, 0 0 

0 0 0 2k,l~ 0 0 -kJw kJw 0 0 

-k2 k 2lB 0 0 k2 + 2k, 0 0 0 -k, - k, (7.48) 

0 0 0 0 0 2k,l~ 0 0 -kJw kJw 

0 0 -k , -k,lw 0 0 k, 0 0 0 

0 0 - k, k,lw 0 0 0 k, 0 0 

0 0 0 0 - k, -k,lw 0 0 k, 0 

0 0 0 0 - k, k,lw 0 0 0 k, 

7.6.2 FOR VEHICLE TYPE II 

1+---+1 P, (t) 

~ I 
Figure 7.4. Type II: A vehicle system with only secondary suspensions. 

Figure 7.4 (type II) shows a freight vehicle with only one level of suspension 

which is installed between the car body and the bogies. The displacement vector is 

defined as 

(7.49) 

Thus the external force vector is determined as 

{Fv (t)} = [B]( {F(t)} - {P(t)}) (7.50) 

where 
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0 0 0 0 

0 0 0 0 

1 0 0 
[B] = 

lw -lw 0 0 
(7.51) 

0 0 1 1 

0 0 lw -lw 

The wheel set displacement vector is given by 

{Zw (t)} = [A]{zv (t)} (7.52) 

where 

0 0 1 lw 0 0 

0 0 1 -lw 0 0 
= [B]T [A]= 

0 0 0 0 1 lw 
(7.53) 

0 0 0 0 -lw 

The mass matrix is given by 

and the stiffness matrix by 

2k2 0 -k2 0 -k2 0 

0 2k2l~ -k21B 0 k2lB 0 

-k2 -k21B k2 0 0 0 
[Kv] = 

0 0 0 0 0 0 
(7.55) 

-k2 k21B 0 0 k2 0 

0 0 0 0 0 0 
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7.6.3 FOR VEHICLE TYPE III 

Figure 7.5. Type III: A vehicle system with only primary suspensions. 

The third type (type III) shown in Figure 7.5 is also a freight vehicle with only 

one level of suspension which is between the axle boxes and the bogies . The 

displacement vector is defined as 

Thus the external force vector is determined as 

{Fv (t)} = (0,0,0,0, FI (t) - PI (t), F2 (t) - P2 (t), F3 (t) - p., (t), F4 (t) - P4 (t)) T 

= [B]({FCt)} - {Pct)}) 

where 

[B] = [[0]4X4 ] 
[I]4X4 

The wheel set displacement vector can be expressed as 

{zw(t)} = [A]{ zv(t)} 

where 

[A] = [[0]4X4 [IL x4 ] = [Bf 

The mass matrix is given by 

[Mv ] = diag(Me +2M B' I e +2MBI~, I B,JB' M w , M w ' M w , Mw) 
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and the stiffness matrix is given by 

4k, 0 0 0 -k, - k, -k, -k, 

0 4k,l~ 0 0 - k,ls -kJs kJs kJs 
0 0 2kJ~ 0 -kJw k,lw 0 0 

0 0 0 2kJ~ 0 0 -kJw k,lw 
[Kv] = 

-k, -k,ls - kJw 0 k, 0 0 0 
(7.62) 

- k, - kJs kJw 0 0 k, 0 0 

-k, k,ls 0 -k,lw 0 0 k, 0 

-k, k ,ls 0 kJw 0 0 0 k, 

7.6.4. FOR VEHICLE TYPE IV 

~ (t) 

Figure 7.6. Type IV: A two-axle vehicle 

Figure 7.6 (type IV) shows a freight vehicle with two axles. The displacement 

vector is defined as 

(7 .63) 

Thus the external force vector is determined as 

{Fv (t)} =[B]({F(t)}- {P(t)}) (7.64) 

where 

o 0 

o 0 
[B]= 

1 0 
(7.65) 

o 

The wheel set displacement vector is given by 
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{zw (t)} = [A]{zv (t)} (7.66) 

where 

[
0 0 1 0] T 

[A] = 0 0 0 1 = [B] (7.67) 

The mass matrix is given by 

[ M v ] = diag( Me' J c ' M w , M w ) (7.68) 

and the stiffness matrix by 

2k] 0 -k] -k] 

0 2k]l~ -k]lS kJs [Kv ]= 
-k] -k]lS k] 0 

(7.69) 

-k] k]lS 0 k] 

7.7 RESULTS AND DISCUSSION 

7.7.1 RESULTS FOR A ONE-AXLE VEHICLE MODEL 

To make discussion simpler, in this sub-section, a calculation is performed for a 

one-axle vehicle model comprising a suspended mass Me and an unsprung mass M w . 

Each mass only has one degree of freedom in the vertical direction. The parameters for 

this vehicle model are deduced from the parameters of a freight car of type II (C62A in 

Table 1.1) and are listed in Table 7.1. From Table 7.1 the axle load is 205800 N. The 

radius of the wheel is 0.42 m, thus from equations (7.36) and (7.37) the Hertzian contact 

stiffness is evaluated as 2. 7x 1 09 N/m. The natural frequency of the suspended mass on 

the suspension is evaluated as 2~ ~ks] 1M c = 1.87 Hz. 

Suspended mass (kg) 

19250 

TABLE 7.1 

Parameters for the one-axle vehicle model 

Unsprung mass (kg) 

1750 

kS] (N/m) 

2.66x106 

cS ] (Ns/m) 

3.5xl04 

The ballasted tracks specified by Tables 1.8 (the lighter track) and 1.9 (the 

heavier track), and the layered ground specified by Table 1.7 (the softer ground), are used 
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in the calculation. A vertical irregular rail profile with amplitude of 0.1 mm but varying 

wavelengths is introduced as the excitation. 

7.7.1.1 WHEN THE VEHICLE IS RUNNING ON THE LIGHTER TRACK ON THE 

GROUND 

Figure 7.7 shows the magnitude of the dynamic wheel-rail force plotted against 

excitation frequency (speed divided by wavelength) for three travelling speeds, 0, 30 m/s 

(l08 km/h) and 60 mls (216 kmlh). Figures 7.8 and 7.9 show the magnitudes of the 

displacements of the contact points on the wheel and on the rail. 

Atf= 2 Hz, Figures 7.7 and 7.9 indicate a very small peak, while Figure 7.8 

shows a local minimum. This frequency is close to the natural frequency of the 

suspended mass on the suspension. The magnitude of the wheel-rail force increases with 

frequency and achieves a maximum at a particular frequency (around 80 Hz) within the 

frequency range shown. As the travelling speed increases, this frequency decreases and 

the maximum wheel-rail force decreases. Previously, the wheel-rail force was calculated 

without considering the vehicle motion, as indicated here, the effect of the vehicle motion 

is negligible for low frequencies and low vehicle speeds. 

The effect of the layered structure of the ground on the wheel-rail force is not 

noticeable, compared to those on the displacements of the wheel/rail contact points. As 

shown in Figure 7.9, for low vehicle speed, around the first cut-on frequency of the track

ground system (16 Hz), the displacement at the wheel-rail contact point on the rail has a 

peak and this peak is flattened when the vehicle speed increases. This peak is also seen 

on the wheel, Figure 7.8. 

Now in equation (7.21) let M = 1,.PI (Q) = 0, so that 

P'(Q)=- ZI(Q) 
I T R k 

0"11 + 0"11 + 1/ HI 

(7.70) 

where, O"~I denotes the receptance of the rail at the wheel/rail contact point, 0";1 the 

receptance of the vehicle at the wheel set, given by 

T 1-(Q/mo)2 
0"11 = mJ(Q/mo)2[Mw(Q/wo)L(Mc+M w)] 

(7.71) 
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where, (j)o = ~kl / Me denotes the damped natural frequency of the suspended mass on 

the suspension. From equations (7.19) and (7.20), 

(7.72) 

(7.73) 

It can be seen from equations (7.71), (7.72) and (7.73) that, when.Q -7 0, a~ -7 00 , 

2wI -721 , and 2R1 -70. This low frequency feature is illustrated in Figures 7.8 and 7.9. 

At the natural frequency of the suspended mass on the suspension, a~ = 0 (if there is no 

damping), thus, both the wheel-rail force and the displacement of the contact point on the 

rail have a peak while the displacement of the wheel has a local minimum. 

For frequencies much higher than the natural frequency of the suspended mass on 

the suspension, the displacement of the suspended mass is negligible. Thus the 

receptance of the vehicle at a wheel set can be approximated by 

aT = 1 
II k -M .Q2 

I W 

(7.74) 

which implies that, when.Q 2 = kl / M W ' i.e., around the natural frequency of the unsprung 

mass on suspended mass (which is much higher than the natural frequency of the 

suspended mass on the suspension, since the unsprung mass is much smaller), a ~ -7 00 , 

'A -70, 2wI -7 21 , and 2RI -70. The presence of damping in the suspension of the 

vehicle produces a local minimum in the wheel-rail force and a local minimum in the rail 

displacement at this frequency. For the present vehicle parameters, this frequency is 

evaluated as 9.2 Hz. 

When .Q -7 00 , then a ~ -7 0 , a ~ -7 0 , thus the wheel -rail force is bounded, as 

indicated by equation (7.70). 
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Figure 7.7. Magnitude of the wheel-rail force plotted against frequency of excitation. --, for 
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Figure 7.9. Magnitude of the displacement of the wheel/rail contact point on the rail plotted 

against frequency of excitation. --, for vehicle running at 0 mls; - - -, for vehicle running at 30 mls; 

- . -, for vehicle running at 60 mls. 

Figure 7.9 shows that the vehicle speed does not have a significant effect on the 

displacement of the wheel/rail contact point on the rail. However, the vibration 

propagation in the track direction is strongly influenced by the vehicle travelling speed. 

To show this, the magnitudes of the vertical displacement along the x-axis on the ground 

surface for different excitation frequencies are shown in Figures 7.10 to 7.12 for the three 

vehicle speeds. It can be seen that around the natural frequency of the suspended mass on 

the suspension, the ground surface has a peak response. Figure 7.10 shows that when the 

excitation frequency is about 16 Hz, i.e. the first track-modified cut-on frequency of the 

soft layered ground, strong vibration propagation occurs in the track direction. As the 

vehicle speed increases, this vibration propagation is greatly enhanced in the reverse 

direction of the vehicle motion in a wider frequency range consisting of higher 

frequencies, as can be seen in Figures 7.11 and 7.12. 

- 176-



"-,, X 10.6 

S 
'-' 

i:: 6 
<ll 

S 5 <ll 
U 
0::1 

0.. 4 r/J :.a 
"@ 3 
.~ 
t: 

2 <ll 
>-

4-< 
0 
<ll 

"0 
::l 

.".=: 0 
5150 
0::1 

;:;E 

....... 
........ 

....... 
........ 

........ 

..... 

........... 
..... 

. .... 
..... ; ..... . 

.: ........ . 
. . .' ..' ...;........ 

....... . ..... 
..... 

; . . . . . . 
........ 

; .... 

... : ... 
...... 

.;- ....... 

Distance along the track (m) 
-50 0 

. . . . . . . . . . . . 

..... 
. .... 

.... 
.......... 

......... 

. .... 

......... 

40 

Excitation frequency (Hz) 

Figure 7.10. Vertical displacement along x-axis on the ground surface for c = 0 mls . 

....... 

....... 

..... 

......... 

........ 
.... ........... . 

.......... 
...... ...... . 

:. ..... .. 

. . ~ ............ . 

. ...... . 
... ;., 

. . . . . . . . . . . 
. .... ~ . 

. ....... . 

... : ..... 

. ......... . 
~ ....... . 

.... . ' 

~ . . . . . . . . . 

~ . . . . . . . . . . . . . 

-50 0 

. ........ . 

. . . . . . . . . . . . . . 

. ..... 

. ~ . 

. .... 

40 

Excitation frequency (Hz) 

Figure 7.11. Vertical displacement along x-axis on the ground surface for c = 30 mls. 

- 177 -

100 

100 



...... 
...... .... 

....... 
...... . , ... , 

, ... , 

· ........................ . 

. .......... . 

..... . .... 

. ...... . 

. ...... . 

......................... 

.............. 
. ", ............ . 

...... 

...... 

·50 0 

.... 
...... 

. .... 

Excitation frequency (Hz) 

Figure 7.12. Vertical displacement along x-axis on the ground surface for c = 60 mls. 

100 

7.7.1.2 WHEN THE VEHICLE IS RUNNING ON THE HEAVIER TRACK ON THE 

GROUND 

Compared with the lighter track, the heavier track (Table 1.9) has more ballast 

mass and less ballast stiffness. Some results for the heavier track on the ground are 

shown in Figures 7.13 to 7.16, with comparison made with those for the lighter track. 

Figure 7.13 shows the magnitude of the wheel-rail force for the vehicle running at 

60 mls. It can be seen that for excitation frequencies lower than 67 Hz, the heavier track 

produces slightly less wheel-rail force than the lighter track. However, for higher 

excitation frequencies, the heavier track produces much greater wheel-rail force. Figure 

7.14 shows the displacement of the wheel set plotted against excitation frequency and 

indicates that for excitation frequencies higher than 67 Hz, the displacement of the 

wheelset is greater when it runs on the heavier track. Figures 7.15 and 7.16 present the 

maximum displacements along the rail and along the track centre-line on the ground 

surface. Both of these figures indicate that the heavier track produces less vibration for 

frequencies lower than 85 Hz. 
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Figure 7.15. Maximum displacement along the rails plotted against excitation frequency for the 
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7.7.2 RESULTS FOR A MK 3 PASSENGER COACH 

In this sub-section, the vertical velocity levels of the surface of the softer ground 

with different tracks are calculated using equation (7.32) for a single Mk 3 passenger 

coach (vehicle type I) running at different speeds. The parameters for this vehicle are 

listed in Table 1.1. In addition to the lighter track and the heavier track (both are 

ballasted track) used in the last sub-section, calculations are also performed for a slab 

track. The width and the thickness of the slab are 2.5 m and 0.25 m. Other parameters of 

the slab track are listed in Table 7.2. The slab track has almost the same mass as the 

heavier ballasted track. The difference between the heavier track and the slab track is that 

the slab track has nearly ten times the bending stiffness and twice the vertical stiffness of 

the heavier track. For these analyses, the vertical rail-head profile for a nominally 'good' 

track measured on a 200 kmlh mixed traffic main line in England is used in the 

calculation. The power spectral density of this profile is shown in Figure 8.19 in the next 

chapter. 

TABLE 7.2 

Parameters for a slab railway track 

Mass of rail beam per unit length of track 120 kg/m 
Bending stiffness of rail beam 1.26 X 107 Nm2 

Loss factor of the rail 0.01 
Rail pad stiffness 2 X 108 N/m2 

Rail pad loss factor 0.25 
Mass of slab per unit length of track (2.5xO.25x2400)=1500 kg/m 
Bending stiffness of slab 1.11 X 108 Nm2 

Loss factor of slab material 0.03 
Contact width of track and ground 2.7m 

Predictions of the vibration velocity spectra of the ground surface are shown in 

Figures 7.17 to 7.29 for three points on the ground surface and for three vehicle speeds, 

25 mis, 60 mls and 83 mls. The distances from these three points to the track centre-line 

are 5 m, 10m and 20 m. Also shown are the vertical velocity levels due to the quasi

static loads only. Discussion based on these figures is carried out on three aspects. 

7.7.2.1 LEVELS OBSERVED AT DIFFERENT DISTANCES FROM THE TRACK 

Three frequency ranges may be identified in these figures (approximately): 1.6 to 

6 Hz, 6 to 20 Hz and 20 to 80 Hz. These approximate ranges will be referred to as the 

[ow, middle and upper frequency ranges in this discussion. As seen in Figure 7.17 to 

Figure 7.25, the response level is dominated by the quasi-static loads for low frequencies 
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only up to a few Hertz. The lower the vehicle speed or the further the observer from the 

track, the more important is the dynamic component of excitation. For example, as 

shown in Figure 7.18 for a vehicle speed of 60 mis, the quasi-static loads are the 

dominant source for frequencies below 8 Hz at 5 m, 5 Hz at 10 m and 3.2 Hz at 20 m. In 

the low frequency range, which is dominated by the quasi-static loads, the attenuation 

rate with distance from the track is much higher than those in the middle and upper 

frequency ranges. In the middle frequency range, a strong rise in the total response level 

is observed due to the cut-on of the first propagating wave mode in the track-ground 

system. In this frequency range, the vibration has least attenuation rate compared to the 

low and the upper frequency ranges. 
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Figure 7.17. Vertical velocity levels for points at 5 m (--), 10m (- - -) and 20 m (- . -) from 

the track centre-line when a Mk 3 coach runs on the lighter track at 25 m/s. +: total level , 0: level due the 

quasi-static loads. 
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Figure 7.18. Vertical velocity levels for points at 5 m (--), 10 m (- - -) and 20 m (- . -) from 

the track centre-line when a Mk 3 coach runs on the lighter track at 60 mls. +: total level; 0: level due to 

the quasi-static loads. 
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Figure 7.19. Vertical velocity levels for points at 5 m (--), 10 m (- - -) and 20 m (- . -) from 

the track centre-line when a Mk 3 coach runs on the lighter track at 83 mls. +: total level; 0: level due to 

the quasi-static loads. 
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the track centre-line when a Mk 3 coach runs on the heavier track at 25 m/s. +: total level; 0: level due to 

the quasi-static loads. 
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Figure 7.21. Vertical velocity levels for points at 5 m (--), 10 m (- - -) and 20 m (- . -) from 

the track centre-line when a Mk 3 coach runs on the heavier track at 60 m/s. +: total level; 0: level due to 

the quasi-static loads. 
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Figure 7.22. Vertical velocity levels for points at 5 m (--), 10 m (- - -) and 20 m (-' -) from 

the track centre-line when a Mk 3 coach runs on the heavier track at 83 mls. +: total level; 0: level due to 

the quasi-static loads. 
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Figure 7.23. Vertical velocity levels for points at 5 m (--), 10 m (- - -) and 20 m (-' -) from 

the track centre-line when a Mk 3 coach runs on the slab track at 25 mls. +: total level; 0: level due to the 

quasi-static loads. 
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Figure 7.24. Vertical velocity levels for points at 5 m (--), 10 m (- - -) and 20 m (- . -)from 

the track centre-line when a Mk 3 coach runs on the slab track at 60 mls. +: total level; 0: level due to the 

quasi-static loads. 
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Figure 7.25. Vertical velocity levels for points at 5 m (--), 10 m (- - -) and 20 m (- . -) from 

the track centre-line when a Mk 3 coach runs on the slab track at 83 mls. +: total level; 0: level due to the 

quasi-static loads. 

7.7.2.2 EFFECT OF TRACK STRUCTURE ON THE RESPONSE LEVEL 

A comparison between the three tracks is presented in Figures 7.26 to 7.28 for the 

three travelling speeds, 25 mis, 60 mls and 83 mls. In these figures only the vertical 
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velocity levels at 10m on the ground surface are shown. Since the heavier ballasted track 

produces less vibration from the dynamic wheel-rail forces (Figure 7.16) but greater 

vibration from the quasi-static loads (Figure 6.22) than the lighter track, the heavier track 

only gives a little reduction in vibration level in the upper frequency range (Figures 7.26 

to 7.28). However, the slab track has a quite different behaviour. Due to its much greater 

bending stiffness, the slab track produces about 20 dB lower vibration level than either of 

the ballasted tracks for frequencies up to 25 Hz. Compared to the ballasted tracks, the 

slab track greatly reduces the vibration level due to the quasi-static loads, since the peak 

response load speed of the ground with the slab track is significantly increased by the 

bending stiffness of the track; therefore it is more effective for low frequencies. For high 

frequencies, it may increase the level due to dynamic wheel-rail forces, as can be seen, 

for frequencies higher than 40 Hz, the response levels for the three tracks are close to 

each other. 
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Figure 7.26. Vertical velocity level at 10 m on the ground surface for vehicle speed 25 mls. --, 

for the lighter track; - - -, for the heavier track; - . -, for the slab track. Thicker lines are for the levels due 

to the quasi-static loads. 
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to the quasi-static loads. 
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Figure 7.28. Vertical velocity level at 10 m on the ground surface for vehicle speed 83 m/s. --, 

for the lighter track; - - -, for the heavier track; - . -, for the slab track. Thicker lines are for the levels due 

to the quasi-static loads. 

7.7.2.3 EFFECT OF VEHICLE SPEED ON RESPONSE LEVEL 

The effect of vehicle travelling speeds on the response level is shown in Figure 

7.29 for a point at 10m on the ground surface with the heavier track. With increasing 
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vehicle speed, the upper limit of frequency at which the quasi-static loads are the 

dominant source is slightly increased, from 3.2 Hz for 25 m1s to 6 Hz for 83 m/s. From 6 

to 16 Hz, a strong rise in the total response level is shown in the figure due to the cut -on 

of the first propagating wave mode in the track-ground system. Since the quasi-static 

loads are the dominating mechanism of excitation for frequencies below the cut-on 

frequency, the vehicle travelling speed has a greater effect on the response level for this 

frequency range. For higher frequencies, though the response level due to the quasi-static 

loads is strongly dependant on the vehicle speed, the dynamic response and, therefore, 

the total response level is far less dependant on this. This is still more the case at further 

distances, see Figures 7.19, 7.22 and 7.25. 
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Figure 7.29. Vertical velocity level at 10 m on the ground surface with the heavier track for 

different vehicle speeds. --, 25 mls; - - -, 60 mls; - . -, 83 mls. Thicker lines are for the levels due to 

the quasi-static loads. 

7.8 SUMMARY 

In this chapter, the vertical dynamics of vehicles running uniformly on a track has 

been coupled with the track-ground model developed in Chapter 5, producing a whole 

model incorporating vehicles, track and ground. A relationship is derived between the 

rail irregularity spectral density and the ground vibration power spectra. This relationship 

makes the prediction from the model comparable to measured data as shown in the next 

chapter, Chapter 8. 
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From this model, the wheel-rail dynamic force and the maximum displacement 

along the track centre-line on the ground surface are calculated for a one-axle vehicle 

model and for the lighter and heavier tracks. It is shown that, for a large range of 

frequencies, the layered structure of the ground and the vehicle speed have little effect on 

the wheel-rail force and the displacements of the wheel/rail contact points. However, the 

wave propagation in the track direction is strongly enhanced by the motion of the vehicle. 

The heavier track may reduce the vibration due to the dynamic wheel-rail force. 

Also produced from this model are vertical velocity levels of the softer ground 

surface for a Mk 3 passenger coach running, respectively, on the lighter ballasted track, 

the heavier ballasted track and a slab track. Three frequency ranges are identified by 

these results: frequencies much below the cut-on frequency of the track-ground system 

(low frequency range), frequencies around the cut-on frequency (middle frequency range) 

and frequencies above this (upper frequency range). Only in the low frequency range is 

the response level dominated by the quasi-static loads. The lower the vehicle speed or the 

further the observer from the track, the more important is the dynamic component of 

excitation. In the low frequency range, the attenuation rate with distance from the track is 

much higher than those in the other two frequency ranges. In the middle frequency range, 

a strong rise in the total response level is observed due to the cut-on of the first 

propagating wave mode in the track-ground system. In this frequency range, the vibration 

has the lowest attenuation rate compared to the low and the upper frequency ranges. 

Since the heavier ballasted track produces less vibration from the dynamic wheel-rail 

forces but greater vibration from the quasi-static loads than the lighter track, the heavier 

track only gives a little reduction in vibration level in the upper frequency range. 

Due to its much greater bending stiffness, the slab track produces about 20 dB 

lower vibration level than either of the ballasted tracks for frequencies up to 25 Hz. 

Compared to the ballasted tracks, the slab track greatly reduces the vibration level due to 

the quasi-static loads, since the peak response load speed of the ground with the slab 

track is significantly increased by the bending stiffness of the track; it is therefore more 

effective for low frequencies. For high frequencies, it may increase the observed 

vibration level due to the increased dynamic wheel-rail forces. 

With increasing vehicle speed, the upper limit of frequency at which the quasi

static loads are the dominant source is slightly increased. Since the quasi-static loads are 

the dominant mechanism of excitation for frequencies below the cut-on frequency, the 

- 190-



vehicle travelling speed has a greater effect on the response level for this frequency 

range. For higher frequencies, though the response level due to the quasi-static loads is 

greatly dependant on the vehicle speed, the total response level is much less sensitive to 

vehicle speed. 

It should be remembered that, at this stage, only a single ground model has been 

examined. Ground conditions and embankments vary over a wide range. This issue is 

addressed in the next chapter. Therefore, the conclusions of the present chapter may not 

be universal in application. 
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Chapter 8 

COMPARISON OF THE VEHICLE-TRACK-GROUND 

MODEL WITH MEASUREMENTS 

8.1 INTRODUCTION 

In Chapter 7, a model for predicting ground vibration and propagation is 

developed. In this model the vertical dynamics of a number of types of vehicles 

travelling at a constant speed on an infinite track are coupled to a semi-analytic model for 

a three dimensional layered ground. A relationship is established between the response 

power spectra of the ground and the power spectral density of the combined wheel/rail 

irregularities. In the present chapter, ground vibrations at three sites are predicted using 

this vehicle-track-ground model and compared with measured data, providing validation 

for the model. The predictions and comparisons for the three sites are performed in 

Sections 8.2, 8.3 and 8.4 respectively. 

8.2 SIMULATIONS AND COMPARISON FOR SITE I: LEDSoARD 

First the model is applied to predict the train-induced vibration for the X2000 

high-speed train. The Swedish National Rail Administration (BANVERKET) 

encountered very large vibrations when its X2000 high-speed trains (Figure 8.1) were 

operated at 200 kmlh at a site called Ledsgard. This site is located on the West Coast line 

south of Gothenburg. BANVERKET carried out an extensive programme of 

measurements with a test train in order to investigate the causes of the high level of 

vibrations. It was observed that when the train speed approached the 'Rayleigh wave' 

velocity of the ground, an extraordinarily strong response occurs [BANVERKET 2000]. 

The soil properties of the site are listed in Table 8.1, the track parameters are in Table 8.2 

and the axle loads and their locations of the test train are in Table 8.3. The values of 

parameters in these three tables have all been taken to be those identified by 

BANVERKET in its measurement programme [BANVERKET 1998]. As indicated in 

Table 8.1, the ground at this site is modelled as two layers on a homogeneous half-space, 

and the second layer, consisting of organic clay, is very soft. 
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TABLE 8.1 
Ground parameters for the Ledsgard site (in Sweden) [BANVERKET 1998] 

Layer Depth Young's Poisson's Density Loss P-wave S-wave Rayleigh wave 
(m) modulus ratio (kg/m3) factor speed speed speed 

(l06Nm-2) (m/s) (m/s) (m/s) 
1 1.6 19.0 0.491 1500 0.15 500 65 62 
2 3.0 3.84 0.498 1250 0.15 500 32 30.5 
Half-space 3l.82 0.498 1470 0.15 1500 85 81 

TABLE 8.2 
Track parameters at the Ledsgard site (in Sweden) [BANVERKET 1998] 

Mass of rail beam per unit length of track 120 kg/m 
Bending stiffness of rail beam 1.26 X 107 Nm2 

Loss factor of the rail 0.01 
Rail pad stiffness per unit length of track 3.5 X 108 N/m2 

Rail pad loss factor 0.15 
Mass of sleepers per unit length of track 490 kg/m 
Mass of ballast per unit length of track 1200 kg/m 
Ballast stiffness per unit length of track 3.15 X 108 N/m2 

Loss factor of ballast 0.2 
Density of the embankment 1800 kg/m3 

Young's Modulus of the embankment 2.95X 108 

Loss factor of the embankment 0.3 
Top width of the embankment 2.7 m 
Height of the embankment 0.9 m 
Contact width of railway and ground 3 m 

TABLE 8.3 
Axle locations and axle loads of the X2000 test train [BANVERKET 1998] 

No. 1 2 3 4 5 6 7 8 9 10 
a· .I 50.00 47.10 35.50 32.60 28.25 25.35 10.60 7.65 3.30 0.40 

(m) 
Pi (kN) 167.50 119.00 143.25 143.25 122.00 122.00 122.00 122.00 125.50 125.50 

No. 11 12 13 14 15 16 17 18 19 20 
a· .I -14.40 -17.30 -21.65 -24.54 -39.35 -42.25 -46.60 -49.50 -56.10 -59.00 

(m) 
PI (kN) 125.50 125.50 122.00 122.00 122.00 122.00 185.75 185.75 183.00 188.50 

In Section 8.2.1 below, the calculated dispersion curves of the ground are 

presented. Mode shapes are plotted in Section 8.2.2 for propagating wave modes of the 

ground at several frequencies. In Section 8.2.3, the predicted displacements of the 

embankment under the action of the test train at two speeds, 70 kmlh and 200 kmlh, are 

compared with measured data. Predicted and measured velocity spectra of the ground 

surface are compared in Section 8.2.4. 
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Figure 8. 1. The X2000 high-speed train 

8.2.1 DISPERSION CURVES OF THE GROUND 

Figure 8.2 shows the P-SV dispersion curves of the ground at Ledsgard for a 

frequency range of 0 to 50 Hz. It can be seen that: (1) the cut-on points are always on the 

shear wave line of the underlying half-space; (2) for higher frequencies, the wave of the 

first mode (i.e. the mode with the highest wavenumber at a given frequency) approaches 

the shear wave of the second layer; (3) the shear wave line of the first layer intersects the 

dispersion curves at their inflection points. 

An enlargement of the dispersion curve diagram for a small range of frequency up 

to 10 Hz is shown in Figure 8.3. A complex characteristic of the ground is revealed by 

this figure. Below 2 Hz, three wave modes are available while between 2 and 3.3 Hz, 

only one wave mode is present. Also shown in this figure is a 'load speed line', 

indicating the excitation of modes by a constant load moving at 200 kmlh (55.6 mls). 
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Figure 8.2. Dispersion curves for the ground at Ledsgard site. --, P-SV modes; - - -, shear 

wave of the underlying half-space; ...... , shear wave of the upper layer; _. -' -, shear wave of the 

second layer. 
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Figure 8.3. P-SV dispersion curves of the ground at Ledsgard site. --, P-SV modes; - --, 

shear wave of the half-space; - . - . -, the load speed line for a speed of 55.6 mls. 

To show which wave is excited by a surface load, the Fourier transformed 

displacements on the ground surface due to a vertical unit point load of different 

frequencies is presented in Figure 8.4. This plot has a speckled appearance because of the 

discrete frequencies of excitation applied in the calculation (1 Hz spacing). This figure 

indicates that only modes with a wave speed higher than the Rayleigh speed in the first 
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layer (62 m1s) but less than the shear wave speed in the underlying half-space are excited 

at the ground surface. Other waves propagate along the interface of the second layer and 

the half-space and decay rapidly with vertical distance away from the interface so that 

they do not contribute significantly to the surface response. Therefore only when a load 

moves at a speed close to the Rayleigh wave speed of the surface layer is the ground 

surface expected to have a strong response. 
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Figure 8.4. Contour plot of the Fourier transformed vertical displacement on the ground surface. 

Also shown are the Rayleigh wave in the first layer (- - -) and shear wave in the half-space (_. _. -). 

8.2.2 MODE SHAPES OF THE GROUND 

The P-SV mode shapes are calculated and shown in Figures 8.5 to 8.8 for the first 

mode at frequencies 1.4 Hz, 1.9 Hz, 3 Hz and 20 Hz. The layer interfaces are also 

indicated by using horizontal dash-dotted lines. The vertical component is a real number 

while the horizontal component is a purely imaginary number. As shown in Figures 8.5 

and 8.6, the mode shapes in the underlying half-space resemble the mode shape of the 

Rayleigh wave in the same half-space, and the ground surface has minimum 

displacement. In Figure 8.8, the first mode at 20 Hz only propagates near the interface of 

the second layer and the half-space. However, as can be seen in Figure 8.7, at 3 Hz, the 

ground has maximum displacement at its surface. 

When a load speed is just over the shear wave speed of the second layer, the load 

speed line would intersect the dispersion curve of the first mode at high frequencies (see 
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Figure 8.2). Because of the mode shapes at high frequencies (Figure 8.8), the ground 

surface response induced by this moving load is not expected to be very large. On the 

other hand, when the load speed is close to the shear wave speed of the first layer, the 

load speed line intersects, or is very close to, the dispersion curve of the first mode at 

about 3 to 8 Hz. In this case, the ground surface response is expected to be very strong. 

Both measurement and simulation show this, as presented in the following sections. 
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Figure 8.5. The first poSY mode shape (frequency = 1.4 Hz, wavenumber = 0.4 rad/m) for the 

ground at Ledsgard site. --, vertical component; - - -, horizontal component. 
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Figure 8.8. The P-SV mode shape of the first mode (frequency = 20 Hz, wavenumber = 

3.74 rad/m) for the ground at Ledsgard site. --, vertical component; - - -, horizontal component. 

8.2.3 DISPLACEMENTS OF THE TRACK GENERATED BY THE QUASI-STATIC 

LOADS 

Simulations are performed for the displacements generated by the X2000 test 

train. Two train speeds, 70 kmlh (19.4 m/s) and 200 kmlh (55.6 mls), are considered. In 
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these predictions, only the quasi-static loads are taken into account. At the track the 

response to the dynamic wheel-rail forces is expected to be small compared to the 

moving axle loads. The magnitudes and locations of the axle loads are shown in Table 

8.3. The instantaneous displacements of the embankment are shown in Figure 8.9 for 

70 km/h and Figure 8.10 for 200 krnlh. The success of the prediction indicates the 

accuracy of the ground and track parameters derived by BANVERKET. For the low 

speed case shown in Figure 8.9, a quasi-static loading state is clearly indicated. However, 

in the high-speed case, a propagating wave mode is excited and a large oscillating 

response appears because of the excitation of this propagating wave mode. As shown in 

Figure 8.3, the load speed line for a load speed equal to 200 krnlh (55.6 rnIs) has an 

intersection with the dispersion curve of the first mode at wavenumber 0.4 rad/m. The 

presence of the mass of the track (including an embankment) will decrease this 

wavenumber to some extent. As a result, a propagating wave of more than 16 m 

wavelength is excited and propagates away from each load in the opposite direction to 

that of the train motion (compare results shown in reference [Sheng, Jones and Petyt 

1999(b)]). Behind the last axle load, a wave 'tail' of this wavelength is clearly visible in 

Figure 8.10. 

_10'-------1----1-----'-------'-------'----'------'-----'---'---" 
-50 -40 -30 -20 -10 o 10 20 30 40 50 

Distance along the track (m) 

Figure 8.9. Predicted (--) and measured (- - -) vertical displacement of the embankment for 

train speed equal to 70 kmlh (19.4 mls). 
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Figure 8.10. Predicted (--) and measured (- - -) vertical displacement of the embankment at 

200 kmlh (55.6 m/s). 

8.2.4 VELOCITY SPECTRA OF THE GROUND SURFACE GENERATED BY THE 

QUASI-STATIC LOADS 

8.2.4.1 FOR TRAIN SPEED 70 kmlh 

The predicted load spectrum, given by equation (5.58), for the X2000 test train at 

70 kmlh is shown in Figure 8.11. Predicted and measured velocity spectra of vibration on 

the track are compared in Figure 8.12. Figures 8.13 and 8.14 present results for two 

positions on the ground surface. One position is 7.5 m and the other 15 m away from the 

track centre-line. The measurements were carried out using seismometers with a natural 

frequency of 2.0 Hz. It can be seen from Figure 8.12 that on the embankment, for 

frequencies higher than 5 Hz and lower than 22 Hz, the prediction reproduces the 

measurement quite well. This indicates that for the response of the track, the quasi-static 

loads are the dominant sources compared with the dynamic loads. However, as shown in 

Figures 8.13 and 8.14, away from the track on the ground surface, the predicted response 

is much lower than the measured one. 
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Figure 8.11. Load spectrum of the multiple quasi-static loads for train speed 70 kmlh (19.4 mI s) 

calculated from equation (5.65) with.Q = O. 
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Figure 8.12. Vertical velocity spectrum of the embankment. --, prediced; - - -, measured. 

Train speed: 70 kmlh (19.4 mls). 
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Figure 8.13. Vertical velocity spectrum for a point 7.5 m away from the track centre line on the 

ground surface. --, predicted; - - -, measured. Train speed: 70 kmIh (19.4 m/s). 
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Figure 8.14. Vertical velocity spectrum for a point 15 m away from the track centre line on the 

ground surface. --, predicted; - - -, measured. Train speed: 70 kmIh (19.4 m/s). 

8.2.4.2 FOR TRAIN SPEED 200 kmlh 

Figures 8.15 to 8.18 show the predicted and measured vertical velocity spectra at 

different points on the ground surface for the test train running at 200 kmlh. It can be 

seen that at low frequencies and for points near the track, for example the point 7.5 m 

away from the track, the predicted responses are quite close to the measured ones. This is 
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quite different from the low speed case shown in Figure 8.13, where the predicted 

response is much lower than that measured. However, at higher frequencies, especially at 

further distances from the track, the simulations underestimate the response. At 

frequencies around 3 to 8 Hz, even for points far from the track, the predicted responses 

are close to those measured. The harmonic components of such frequencies are due to the 

first propagating wave mode excited by the moving quasi-static loads and corresponds to 

the range of frequency at which the load speed line for 200 kmlh (55.6 m/s) intersects, or, 

is very close to the dispersion curve of first mode (Figure 8.3). 
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Figure 8.15. Vertical velocity spectrum for a point 7.5 m away from the track on the ground 

surface. --, predicted; - - -, measured. Train speed: 200 kmlh (55.6 m/s). 
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Figure 8.16. Vertical velocity spectrum for a point 15 m away from the track on the ground 

surface. --, predicted; - - -, measured. Train speed: 200 kmlh (55.6 m/s). 
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Figure 8.17. Vertical velocity spectrum for a point 30 m away from the track on the ground 

surface_ --, predicted; - - -, measured. Train speed: 200 kmlh (55_6 m/s)_ 
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Figure 8.18. Vertical velocity spectrum for a point 45 m away from the track on the ground 

surface. --, predicted; - - -, measured. Train speed: 200 kmlh (55.6 m1s). 

8.2.5 TOTAL VELOCITY SPECTRA GENERATED BY THE QUASI-STATIC AS 

WELL AS DYNAMIC LOADS 

As shown in Section 8.2.4, the dynamic wheel-rail forces contribute a large 

proportion to the ground response. To predict the total response generated by the test 

train, the vehicle parameters for the X2000 train have been provided by BANVERKET 

(in confidence). In the absence of the rail irregularity data specific to this site, the vertical 

rail-top profile used in Section 7.7.2 is also applied here. The power spectral density of 

the profile is shown 8.19, in which the decibel is defined as 10 log 10 (Pz C,B» . The levels of 

the profile expressed in terms of one-third octave band centre wavelengths are shown in 

Figure 1.5. 

The vertical velocity levels of two points, at 7.5 m and 15 m, on the ground 

surface for two train speeds, 70 kmlh and 200 kmlh, are shown in Figures 8.20 to 8.23. 

Although the prediction does not reproduce the measurement precisely, it is clearly 

shown that for train speeds lower than the wave speeds in the ground at this site, the 

dynamic components of the wheel-rail forces are dominant over the quasi-static loads, 

even for very low frequencies. However, for train speeds exceeding the wave speeds in 

the ground, the quasi-static loads are dominant for frequencies up to more than 10Hz. 
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calculated from measured data; - - -, from [Jones 1996]. 
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Figure 8.20. Vertical velocity level for a point 7.S m from the track on the ground surface. 0: 

predicted level due to quasi-static loads; +: total predicted level; *: measured level. Train speed: 70 kmIh 

(19.4 m1s). 
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Figure 8.21. Vertical velocity level for a point 15 m from the track on the ground surface. 0: 

predicted level due to quasi-static loads; +: total predicted level; *: measured level. Train speed: 70 kmIh 

(19.4 mls). 
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Figure 8.22. Vertical velocity level for a point 7.5 m from the track on the ground surface. 0: 

predicted level due to quasi-static loads; +: total predicted level; *: measured level. Train speed: 200 kmlh 

(55.6 mls). 
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Figure 8.23. Vertical velocity level for a point 15 m from the track on the ground surface. 0: 

predicted level due to quasi-static loads; +: total predicted level; *: measured level. Train speed: 200 km/h 

(55.6 m/s). 

8.3 SIMULATIONS AND COMPARISON FOR SITE II: VIA-TEDALDA 

In this section, the model is applied to ground vibrations induced by the ETR500 

high-speed train. A picture of the ETR500 train is shown in Figure 8.24. Predicted 

vibration spectra are compared with the measured data reported in reference [Lai et al 

2000]. In November 1999 a series of vibration measurements were carried out in 

Florence, Italy during the passages of the ETR500 high-speed train. The transducers used 

in the measurements are geophones with a natural frequency of 2.0 Hz. The average 

speed of the train passages during the measurement is about 70 to 80 kmlh. The data 

measured at a site called Via Tedalda are used here for comparison. The parameters of 

the vehicle are provided by Alstom Transport in confidence and those of the soil and the 

track are listed in Tables 8.4 and 8.5. According to Figure 5 in reference [Lai et al 2000], 

the ground is modelled as one layer of 10 m depth which overlies a homogeneous half

space. The shear wave speeds in the layer and in the half-space are 300 mls and 600 mis, 

respectively. In the absence of specific parameters, the track structure, other than the 

embankment, has been assigned parameters typical of a monobloc sleeper, ballasted 

track. As advised by Lai, the embankment is 1.5 m high, and its density has been 

estimated as 1800 kg/m3
. Since the Young's modulus of the embankment is uncertain, 

several values have been tested. It was found that the value (2.0X 107 N/m2) giving the 

closest correspondence with the measurement is that derived from the total vertical 
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stiffness of the track, 50500 kN/m2
, suggested in reference [Lai et al 2000]. In the 

simulations, five ETR500 passenger cars running at 25 mls are coupled with the track

ground system and, again in the absence of specific data, the rail roughness data shown 

in Figure 8.19 is used. 

Figure 8.24. The ETR500 high-speed train. 

The dispersion curves of the ground are shown in Figure 8.25. As indicated in this 

figure, the cut-on frequency of the first propagating wave in the layer is 11.2 Hz. 

Figures 8.26 and 8.27 show the amplitude spectra of the vertical component of 

the acceleration at distances of 13 m and 26.2 m from the track. The measured data are 

available as one-third octave spectra. The comparative predictions have therefore been 

band-averaged and are presented in the same way. 

TABLE 8.4 

Ground e.arameters at the Via Tedalda site (in Italy) [Lai et al 2000] 
Layer Depth Young's Poisson's Density Loss P-wave S-wave Rayleigh wave 

(m) modulus ratio (kg/m3) factor speed speed speed 
(106 Nm'2) (mls) (m/s) (mls) 

10 469.8 0.45 1800 0.1 995 300 284 
Half-space 1879.2 0.45 1800 0.1 1989.97 600 568.55 
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TABLE 8.5 

Track parameters at the Via Tedalda site (in Italy) [Lai et al 2000, but some parameters are assumed] 
Mass of rail beam per unit length of track 120 kg/m 
Bending stiffness of rail beam 1.26x 107 Nm2 

Loss factor of the rail 0.01 
Rail pad stiffness per unit length of track 3.5 Xl 08 N/m2 

Rail pad loss factor 0.15 
Mass of sleepers per unit length of track 490 kg/m 
Mass of ballast per unit length of track 1200 kg/m 
Ballast stiffness per unit length of track 3.15 xl 08 N/m2 

Loss factor of ballast 0.2 
Density of the embankment 1800 kg/m3 

Young's modulus of the embankment 2.0x 107 N/m2 

Loss factor of the embankment 0.05 
Top width of the embankment 2.7m 
Height of the embankment l.5m 
Contact width of railway and ground 4m 
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Figure 8.25. Dispersion curves of P-SV waves in the ground. Cut-on frequency is 11.2 Hz. 
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Figure 8.26. Vertical acceleration levels for a point 13 m from the track at Via Tedalda when five 

ETR 500 passenger cars pass at 25 mls. + : predicted; *: measured [Lai et al 2000]; -: predicted level due 

to quasi-static loads. 
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Figure 8.27 Vertical acceleration levels for a point 26.2 m from the track at Via Tedalda when five 

ETR 500 passenger cars pass at speed c = 2S mls. + : predicted; *: measured [Lai et al 2000]; -: predicted 

level due to quasi-static loads. 

As seen in Figures 8.26 and 8.27, both the prediction and the measurement show 

a strong rise in vibration level corresponding to the cut-on at about 12 Hz. This cut-on is 

due to the layered structure of the ground, as indicated by the dispersion diagram of the 

ground in Figure 8.25. It is also shown that good correspondence is achieved between the 
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predicted response levels and the measured levels for frequencies higher than 5 Hz. 

However for frequencies of 2 to 5 Hz, the predicted levels are much lower than the 

measured ones. It is possible that this is due, in part, to a building near the track (Figure 4 

in reference [Lai et al 2000]). Since the point 26.2 m away from the track is nearer the 

building, its effect may be stronger as shown in Figure 8.27. 

Figures 8.26 and 8.27 also show the predicted response due to the quasi-static 

loads without the dynamic mechanism. Clearly, in this case, the dynamic components of 

the wheel-rail forces dominate the response. 

The effects of the variation in the Young's modulus of the embankment are 

shown in Figures 8.28 and 8.29. Three values are tested: 2.0x107 N/m2, 5.0x107 N/m2 

and 10.0x107 N/m2
. Three frequency ranges are identified in Figures 8.28 and 8.29: 1.6 

to 5 Hz, 5 to 16 Hz and 16 to 80 Hz. It can be seen that as the Young's modulus of the 

embankment is increased, the change in the response levels in the first frequency range is 

negligible. However, in the second frequency range, the response levels decrease with 

increasing stiffness of the embankment while in the third frequency range, they increase. 
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Figure 8.28. Effect of embankment Young's modulus on vertical acceleration levels at 13 m from 

the track at Via Tedalda when five ETR 500 cars run at 25 mls. + : 2.0x107 N/m2
; 0: 5.0x107 N/m2

; 0: 

10.0x107 N/m2 ; *: measured [Lai et al 2000] 
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Figure 8.29. Effect of embankment Young's modulus on vertical acceleration levels at 26.2 m 

from the track at Via Tedalda when five ETR 500 cars run at 25 mls. + : 2.0x107 N/m2
; 0: 5.0x107 N/m2

; 

0: 1O.Ox107 N/m2 
; *: measured [Lai et al 2000]. 

8A SIMULATIONS AND COMPARISON FOR SITE III: BURTON

JOYCE 

In this section, the model is applied to predict the vibration spectra induced by a 

train of two-axle freight wagons (type HAA, Figure 8.30). Again the prediction is 

compared with measured data at a site called Burton Joyce. Information on the 

measurement at Burton Joyce in Nottinghamshire, England, is reported in reference 

[Jones and Block 1996]. The average speed of the train during the measurement is about 

14 mls. The parameters for an HAA wagon are shown in Table 1.1 and those of the soil 

and track are listed in Tables 8.6 to 8.7. According to reference [Jones and Block 1996], 

the ground is modelled as a single layer of 1.8 m depth, which overlies a homogeneous 

half-space. The shear wave speeds in the layer and in the half-space are 81 mls and 216 

mis, respectively. The track is ballasted, with an embankment of 1.3 m thickness. The 

rail roughness data specific to this site are available and shown in Figures 8.31 and 8.32. 

TABLE 8.6 

Ground parameters at the Burton Joyce site (in England) [Jones and Block 1996] 
Layer Depth Young's Poisson's Density Loss P-wave S-wave Rayleigh wave 

(m) modulus ratio (kg/m3) factor speed speed speed 
(l06 Nm·2) (mls) (mls) (mls) 

l.8 29.3 0.47 1520 0.1 341 81 77 
Half-space 286 0.49 2060 0.1 1700 216 206 
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TABLE 8.7 

Track parameters at the Burton Joyce site (in England) [Jones and Block 1996] 
Mass of rail beam per unit length of track (BS 113A rail) 
Bending stiffness of rail beam 
Loss factor of the rail 
Rail pad stiffness per unit length of track 
Rail pad loss factor 
Mass of sleepers per unit length of track 
Mass of ballast per unit length of track 
Ballast stiffness per unit length of track 
Loss factor of ballast 
Density of the embankment 
Young's modulus of the embankment 
Loss factor of the embankment 
Top width of the embankment 
Height of the embankment 
Contact width of railway and ground 

112 kg/m 
9.68X 106 Nm2 

0.01 
3.5Xl08 N/m2 

0.15 
396 kg/m 
760 kg/m 
3.0xl08 N/m2 

0.2 
1800 kg/m3 
1.5 X 107 N/m2 

0.1 
2.7m 
l.3m 
4m 

The P-SV dispersion diagram of the ground is calculated and shown in Figure 

8.33. As indicated, the first cut-on frequency is 15 Hz. The transfer mobility (vertical 

velocity due to vertical load) for the ground itself and from track to ground was measured 

by British Rail Research (now AEAT Rail) and is shown in Figures 8.34 and 8.35. The 

measured responses in Figure 8.34 show the variation due to moving the loading point 

and the measurement point within a small area on the ground surface. Using the 

parameters in Tables 8.6 and 8.7, the transfer mobility is predicted and the results are 

also shown in these two figures. Both the prediction and measurement show a strong rise 

at frequency about 15 Hz. A discrepancy is observed at around 20 Hz between the model 

and the measurements, similar to that observed at the Via Tedalda site (Figures 8.26 and 

8.27), because of the unrealistic sudden change in soil properties at the layer interface. 
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Figure 8.30. The HAA coal freight wagons 
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Figure 8.31. Vertical profile of the rail at Burton Joyce site. 
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Figure 8.32. Spectrum of roughness of the rails at Burton Joyce site. 

4.5,---,---.----,---,----,---,---,----.---,---, 

4 

E 3.5 

~ 
:g 3 
~ 
iil 
.0 2.5 
E 
::: 

'" ~ 2 
::: 

1.5 

0.5 

O~--~---L--~----~--~--~----L---~---L--~ 

o 5 10 15 20 25 30 35 40 45 50 

Frequency (Hz) 

Figure 8.33. Dispersion curves of poSY (--) waves in the ground. Cut-on frequencies are 15 Hz 

and 30 Hz. Also shown is the shear wave of the underlying half-space (- - -). 
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Figure 8.34. Transfer mobility of the ground surface (vertical component) at a distance of 10m 

from the loading point on the ground surface. -- , predicted; - - -, measured. 
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Figure 8.35. Transfer mobility from track to ground surface (vertical component) at a distance of 

10m from the near rail. --, predicted; - - -, measured. 

Figure 8.36 shows the predicted vertical velocity levels at a distance of 10m from 

the track, for different embankment Young's moduli and different track/ground contact 

widths. Also shown in bold lines are the maximum and minimum levels derived from the 

measurements of vibration from HAA wagons reported in reference [Jones and Block 

1996]. Since the ground is relatively soft, the modification to the track parameters has a 

great effect on the response level for frequencies higher than 10Hz. The level of 
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response due to the quasi-static loads is less than 40 dB and therefore not shown in the 

figure. 
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Figure 8.36. Vertical velocity levels at 10 m from the track at site Burton Joyce when five HAA 

wagons run at 14 mls. +: the Young's modulus of the embankment is 1.5x107 N/m2 and the track/ground 

contact width is 4 m; 0: the Young's modulus of the embankment is 1.5x107 N/m2 and the track/ground 

contact width is 5 m; x: the Young's modulus of the embankment is 3.0x 107 N/m2 and the track/ground 

contact width is 4 m; thick line: maximum and minimum measured levels. 

8.5 DISCUSSION 

The prediction of the quasi-statically and dynamically induced vibration 

components has been carried out for three sites. The dynamically induced vibration 

prediction requires the knowledge of the vehicle dynamics and measurements of the 

vertical profile of the track. Site-specific data for the latter was only available to the 

author for the third site. For the first two sites typical data has been used. 

In the case of the first site, Ledsgard, the ground is not only unusually soft, but 

also unusual in that the second layer is softer than the surface layer. The measured 

displacement at the track has been shown to be close to that predicted for the quasi-static 

axle loads of the train both in the case of the train speed below, and above, the speed of 

the wave in the ground/embankment (Figures 8.9 and 9.10). For the lower train speed 

(70 km/h), the dynamically induced vibration dominates the spectrum of vibration on the 

ground surface away from the track (Figures 8.20 and 8.21). However, when the train 

speed exceeds the speed of the ground wave, a high level of vibration is observed in 
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which is predominantly due to the quasi-statically induced vibration. At 7.5 metres from 

the track, this vibration is approximately 25 dB higher than the vibration observed for the 

lower speed. Vibration that is observed at large distances from the track has strongest 

components in the frequency range from about 3 to 8 Hz (e.g. Figure 8.18). This is due to 

a combination of the facts (1) that at 200 kmlh (55.6 m/s) the axle-loads excite the first 

mode of propagation at these frequencies (Figure 8.3) and (2) that the mode shape of the 

first propagating wave changes considerably with frequency. Close to 3 Hz it has its 

maximum at the ground surface. But at frequencies significantly below or above this 

frequency, the displacement is strongest at the second layer interface below the surface 

(Figures 8.5 to 8.8). The predicted level of the dynamically induced vibration appears to 

be too low (see Figures 8.22 and 8.23). However, this prediction is based on vertical 

profile data taken from a good track that may not be appropriate for a track that has been 

subjected to high dynamic displacements. 

The second site, Via Tedalda, comprises a relatively stiff soil and therefore is 

very different from Ledsgard. As a consequence, the measured levels of vibration are 

much lower. The model predicts the rise in the measured vibration level that occurs in the 

frequency range from about 8 to 16 Hz (Figures 8.26 and 8.27). This is due to the cut-on 

of the propagating mode of vibration at 12 Hz (Figure 8.25). Although the train is 

capable of high speed, the measurements at this site are for a train speed that is much 

lower than the first mode of propagation in the ground. For the measurement distances at 

13 m and 26 m from the track, the observed vibration is demonstrated to be due to the 

dynamic generation mechanism. An over-prediction of the dynamically induced vibration 

occurs near to the cut-on frequency of vibration in the layer. This is due to the fact that 

the ground is modelled as a distinct layer with a change of stiffness at exactly 10m 

depth, whereas in practice the transition will be less precise. The stiffness of the 

embankment is not known. Results show that the predicted levels are sensitive to this 

parameter for the frequency range in which propagation takes place in the upper layer 

(and the track). Notwithstanding the uncertainty in the embankment stiffness and the 

vertical track profile data that has been used, the model predicts the vibration level well 

for most of the frequency range, except for 2.5 Hz to 5 Hz (Figures 8.26 and 8.27). No 

satisfactory explanation for the under-prediction in this range has been found. 

At the first two sites, measurements were made for high-speed passenger rolling 

stock. Measurements for two-axle freight wagons were made at the third site, Burton 

Joyce. Here there are fairly soft soil conditions with the speed of the first propagating 
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wave in the ground tending towards 77 m/s at high frequency (i.e. the 'Rayleigh' wave 

speed). As well as the specifically measured vertical profile of the track, measured data 

consisting of transfer mobility measurements for the ground only, and from the track to 

the ground, are available. These have also been used to validate the ground model and 

track/ground model. Additionally, at this site, some indication of the range of 

measurement levels for different trains is available. This variation, in itself, suggests that 

a much closer correspondence with predictions than has been obtained from the model 

would not be significant. In the present analysis no variation between trains has been 

included since wheel irregularity data (and other variation, e.g. loading, vehicle 

condition) has not been available. With some uncertainty in the parameters for the 

embankment and the effective width that should be used for the contact of the track 

structure with the ground, the levels predicted are close to, or within, the band of levels 

of the measurements (Figure 8.36). The predicted level due to the quasi-static loads is 

much lower than this band. Thus in the vibration observed at this site, the dynamic 

component of vibration is, once more, the dominant one. 

The comparisons of measured and predicted vibration at the first site show that 

the model may be used to study the effects of high-speed trains running on very soft 

soils. The comparison at the second site extends the validation to a relatively stiff soil site 

and, despite the discrepancy at the low end of the frequency range of interest, shows that 

the model predicts vibration levels relatively well. Uncertainties in the stiffness of the 

embankment lead to uncertainty in the prediction for frequencies above the cut-on of 

vibration in the soil layer that are of the same order of magnitude as the differences 

between the prediction and measurement. The third site extends the validation to freight 

rolling stock and confirms the role of uncertainties in the parameters. Apart from the case 

of the X2000 train travelling near to the speed of wave propagation in the ground, the 

results presented here show that the dynamic mechanism of vibration generation is the 

most important. For the X2000 train at 200 kmlh at Ledsgard, the excitation of a 

propagating wave by the quasi-static axle loads is confirmed. 

8.6 SUMMARY 

Using the vehicle-track-ground model developed in Chapter 7, ground vibration 

at three sites is predicted and compared with measured data. The comparisons show a 

reasonable correspondence although due to the inherent uncertainty in some parameters, 

the quality of such a comparison is bound to be limited. 
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From the predictions for the three sites, the roles are demonstrated of the two 

components of vibration at different frequencies and for train speeds below and above the 

lowest ground wave speed. It is found that, in most practical cases, the dynamic 

components gives rise to higher levels of vibration than the quasi-static components. It is 

also demonstrated that the response level is sensitive to the track parameters for 

frequencies above the cut-on frequency of the ground. 
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Chapter 9 

CONCLUSIONS AND POSSIBLE FURTHER WORK 

9.1 CONCLUSIONS 

In this thesis, a semi-analytical model has been developed for the prediction of 

ground vibrations generated by surface trains. This model incorporates the necessary 

components of the mechanism and propagation of vibration in railway traffic. The 

vehicles, track and ground are described in a sufficiently detailed manner. The vehicles 

are described as multi-rigid body systems and only the vertical dynamics is considered. 

The track is modelled as multiple beams supported by vertical springs with consistent 

mass. The ground is represented by horizontal layers on a homogeneous half-space or a 

rigid foundation. The governing equations of the vehicles are solved in the frequency 

domain and those of the track-ground system in the frequency-wavenumber domain. The 

FFT technique is used to convert the responses of the track and the ground from the 

frequency-wavenumber domain into the time-space domain. This model uses the moving 

axle loads and/or the wheel/rail combined irregularities as its inputs. Outputs include the 

dynamic wheel-rail forces, the displacements and displacement spectra of the track and 

the ground (on the surface or within the ground). The model has been validated using 

measured data at three sites. These sites present different ground conditions (very soft, 

fairly soft and hard) and different train-traffic operations (high-speed passenger trains 

and freight trains of two-axle wagons). For typical parameters of vehicle, track and 

ground, various aspects involved in the problem of train-induced ground vibration have 

been investigated at each stage of the development of the model. A number of findings 

have been obtained from the investigations and are summarised below. 

In Chapter 1, impacts of ground vibration on the environment and on hi-tech 

manufacturing facility are stressed. The frequency range of interest and sources of 

ground vibration are identified. Different approaches used to model the ground vibration 

problem are reviewed. Parameters for vehicles, railway tracks and grounds are collected. 

Tasks for the present PhD project are defined. 

In Chapter 2, effort is made to formulate the steady state displacements and 

stresses (Green's functions) of a layered ground due to stationary and moving harmonic 

loads. This is similar to work by Barros and Luco [1994]; however, the properties of 
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these Green's functions, such as the reciprocity relations, are explored, and are used to 

improve the computational efficiency of these Green's functions. 

In Chapter 3, a study is carried out for vibration propagation in a layered ground. 

Results are produced for dispersion curves, mode shapes, cut-on (natural) frequencies, 

receptances, displacement spectra due to a moving harmonic load and critical load 

speeds. These results are presented for two idealised sets of ground parameters, namely 

the stiffer layered ground (Table 1.6) and the softer layered ground (Table 1.7). It is 

shown that: (1) a layered ground will be resonant at its cut-on frequencies; (2) for low 

frequencies and an observer far away from a surface harmonic load (such that both the 

distance of the observer and the wavelength are greater than the depth of the layer and 

the dimensions of the load), the responses are mainly determined by the underlying half

space; (3) for high frequencies and an observer close to the load (such that both the 

distance of the observer and the wavelength are shorter than the depth of the layer), the 

layered ground behaves as a homogeneous half-space of the layer material; (4) for some 

frequencies, there is a P-SV mode, the wave speed of which is greater that that of the 

shear wave in the underlying half-space; this type of wave may be excited by a surface 

load and propagate far away over the ground surface and is dominant over other waves; 

(5) the displacement spectrum of the ground due to a moving harmonic load has peaks at 

frequencies corresponding to the intersections of the dispersion curves and the load speed 

line; (6) for a constant load, the critical load speed is identical to the Rayleigh wave 

speed of the upper layer. 

It is expected that the presence of a track will modify these features to some 

extent, thus this study will be helpful in the understanding of dynamics of a track-ground 

system. 

To derive an understanding of the track dynamics itself, an investigation is carried 

out in Chapter 4 into the steady state responses of a railway track on a Winkler 

foundation to a moving harmonic load. It is shown that: (1) when the viscous damping 

model is used, the waves in the track can be calculated analytically; (2) the FFT approach 

has been illustrated to be able to achieve a good accuracy and higher damping values 

increases the accuracy of the FFT; (3) behind the load, waves in the track may either 

propagate away from or towards the load; (4) below the natural frequency of the track, 

both the multiple beam track model and the equivalent beam track model give almost the 
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same result, however, at frequencies much higher than the natural frequency, the 

equivalent beam model produces a much higher response than the multiple beam model. 

In Chapter 5, a model to predict ground vibrations generated by vertical wheel

rail forces is developed. This model is intended to serve two purposes: one is to study 

ground vibration generated by moving quasi-static loads (multiple axle loads) and the 

other is to form part of a ground vibration model which comprises vehicles, track and 

ground. A number of results from this model are presented in Chapter 6 in order to 

investigate the effects of the track structure and the distribution of axles in a train. The 

concepts of 'free track', 'fixed-bed track' and 'free ground' are defined. It is shown that: 

(1) for a track on a ground, a harmonic surface load may excite not only the propagating 

modes of the track-ground system but also the modes of the free ground; (2) for a track 

on a layered ground, near the first cut-on frequency of the free ground, both the track and 

the ground have maximum (resonant) responses. The presence of a track may increase or 

decrease the resonance frequency depending on the combination of the ground and the 

track parameters. (3) For very low frequencies, a change in the mass of the track does not 

significantly affect the responses of the ground surface. With increasing frequency, a 

lighter track produces lower responses than a heavier track. However, for frequencies 

higher than the resonance frequencies, a heavier track produces less response than a 

lighter track. (4) A ground may greatly modify the track response from that of the same 

track on a Winkler foundation, especially for frequencies near the cut-on frequency of the 

ground. In this case, consideration of the elasticity and energy radiation of the supporting 

ground is necessary. (5) For a track on a homogeneous half-space, the peak response load 

speed of a constant load will not be greater than the Rayleigh wave speed in the half

space. In the dispersion diagram, if the dispersion curve of the free track is above the 

Rayleigh wave line of the ground, then the peak load speed is lower than the Rayleigh 

wave speed. If the dispersion curve of the free track intersects the Rayleigh wave line, 

then the peak load speed is equal to the Rayleigh wave speed. Further increasing the 

track bending stiffness, or decreasing the track mass, does not increase the peak response 

load speed. When load speed is well below the peak response load speed, such 

modifications to the track mass lead to a small reduction of vibration. However, when the 

load speed approaches the peak response load speed, a decrease in the track mass causes 

a much greater reduction in the level of vibration. (6) For a track on a layered ground 

consisting of a single layer on a deep, stiffer substratum which is modelled as a 

homogeneous half-space, the peak response load speed may be greater than the Rayleigh 
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wave speed in the upper layer of the ground. The peak response load speed may be 

determined by the first intersection of the free-track dispersion curve and the dispersion 

curve of the first mode of the ground, i.e. it is given by 27ifo / f3 0' where f3 0 and fo are 

the wavenumber and frequency corresponding to this intersection. Since for low 

frequency, the dispersion curve of the first mode of the ground is close to the Rayleigh 

wave line of the underlying half-space, increasing the track bending stiffness or 

decreasing the track mass can increase the peak response load speed for the track-ground 

system so that the peak response load speed is much higher than the Rayleigh wave speed 

in the upper layer. (7) During the passage of a train of many similar wagons, the pattern 

of axles of the wagons may give rise to, or suppress, some harmonic components of 

excitation. For example, at the wagon passing frequency, the response spectrum of the 

track-ground system is proportional to the number of the wagons. These harmonic 

components are formulated in terms of the dimensions of the wagons as well as the train 

speed. When the load speed is beyond the phase wave speeds in the ground, due to the 

excitation of the first propagating mode in the ground, vibration at certain frequencies is 

much stronger and less attenuated than those in the case of low load speed. 

In Chapter 7, the vertical dynamics of vehicles running uniformly on a track is 

coupled with the track-ground model developed in Chapter 5, producing a complete 

model incorporating vehicles, track and ground. A relationship is derived between the 

rail irregularity spectral density and the ground vibration power spectra. This relationship 

makes the response predicted from the model comparable to that measured. From this 

vehicle-track-ground model, the wheel-rail dynamic force and the maximum 

displacement along the track centre-line on the ground surface are calculated for a one

axle vehicle model and for the lighter and heavier tracks. It is shown that for a large 

range of frequency, the layered structure of the ground and the vehicle speed have little 

effect on the wheel-rail force and the displacements of the wheel/rail contact points. 

However, the wave propagation in the track direction is strongly enhanced by the motion 

of the vehicle. The heavier track reduces the vibration due to the dynamic wheel-rail 

force compared to the lighter track. Also produced from this model are vertical velocity 

levels of the softer ground surface for a Mk 3 passenger carriage running, in turn, on the 

lighter ballasted track, the heavier ballasted track and a slab track (Table 7.2). Three 

frequency ranges are identified by these results: frequencies below the cut-on frequency 

of the track-ground system, frequencies around the cut-on frequency and frequencies 

above this. Only in the first frequency range is the response level dominated by the quasi-
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static loads. The lower the vehicle speed or the further the observer from the track, the 

more important is the dynamic component of excitation. In the first frequency range, the 

attenuation rate with distance from the track is much higher than those in the other two 

frequency ranges. In the second frequency range, a strong rise with frequency in the total 

response level is observed due to the cut-on of the first propagating wave mode in the 

track-ground system. In this frequency range, the vibration has the smallest attenuation 

rate compared to the first and the third frequency ranges. Since the heavier ballasted track 

produces less vibration from the dynamic wheel-rail forces but greater vibration from the 

quasi-static loads than the lighter track, the heavier track gives only a little reduction in 

vibration level in the third frequency range. However, due to its much higher bending 

stiffness, the slab track produces about 20 dB lower vibration level than both the 

ballasted tracks for frequencies up to 25 Hz. Compared to the ballasted tracks, the slab 

track greatly reduces the vibration level due to the quasi-static loads, since the peak 

response load speed of the ground with the slab track is significantly increased by the 

bending stiffness of the track; therefore it is more effective for low frequencies. For high 

frequencies, it may raise the level due to dynamic wheel-rail forces. With increasing 

vehicle speed, the upper limit of frequency for which the quasi-static loads is the 

dominant source is slightly increased. Since the quasi-static loads are the dominating 

mechanism of excitation for frequencies below the cut-on frequency, the vehicle 

travelling speed has a greater effect on the response level for this frequency range. For 

higher frequencies, though the response level due to the quasi-static loads is greatly 

dependant on the vehicle speed, the total response level does not change so much with 

increasing speed. 

Ground vibration at three sites is predicted and compared with measured data 

using the model developed in Chapter 7. This is presented in Chapter 8. The comparisons 

show a reasonable correspondence although due to the inherent uncertainty in some 

parameters, the quality of such a comparison is bound to be limited. It has been 

demonstrated that the response level is sensitive to the track parameters only for 

frequencies higher than the first cut-on frequency of the ground. From the predictions for 

the three sites, the roles are demonstrated of the two components of vibration at different 

frequencies and for train speeds below and above the lowest ground wave speed. It is 

found that, in most practical cases, the dynamic component gives rise to the higher level 

of vibration. The validation of the model also suggests that this model can be used as a 

tool for predicting the ground vibration levels of new lines as well as for studying 
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vibration reduction measures and to investigate the nature of vibration observed at 

particular sites. 

9.2 POSSIBLE FURTHER WORK 

The frequency-wavenumber domain approach may be used in the following ways, 

further to investigate and improve the models for vibration from trains. 

(1) POWER ANALYSIS. Using the concept of power flow it would be possible to 

study the vibration power distribution between the track and the ground; the 

power in each subsystem may be used as a measure of vibration strength in that 

subsystem. 

(2) INCLUDING THE BENDING STIFFNESS OF THE EMBANKMENT IN THE 

TRACK MODEL. As has been shown, the embankment has great effect on 

ground vibration. So far, only the vertical stiffness and the mass of the 

embankment are included in the model. The bending stiffness of the embankment 

is ignored and no wave propagation can be developed in the embankment in the 

longitudinal direction. A three-dimensional elasto-dynamic analysis may be 

necessary for the embankment and suitable parameters will be required. 

(3) IMPROVING THE COUPLING OF THE TRACK AND THE GROUND. In the 

model, only the normal stress in the track-ground contact plane is considered and 

this is assumed to be distributed uniformly over the contact width. The 

knowledge of the stress distribution in the contact plane and its dependence on the 

frequency of excitation is very limited. An in situ measurement would be useful 

to acquire such knowledge. Improved models of load distribution between the 

ballast and embankment should be also developed. 

(4) THE EFFECT OF DISCRETE SUPPORTS OF THE SLEEPERS. For a low 

speed freight train, the sleeper-passing frequency is a few tens of Hertz, and may 

be close to the cut-on frequency of a layered ground. In that case the discrete 

supports of the sleepers may have a significant effect on the ground vibration 

level. Periodic structure theory [e.g. Mead 1996, Belotserkovskiy 1996] may be 

used to improve the model to account for the discrete supports of the sleepers. 
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(5) THE EFFECT OF THE LATERAL DYNAMICS OF VEHICLES ON GROUND 

VIBRATION. As has been shown that, in many practical cases, the vertical 

dynamic wheel-rail forces are dominant over the quasi-static loads. The vehicles 

also apply lateral and rotational (roll) dynamic forces excited by track 

irregularities on the rails, in addition to the vertical wheel-rail forces. The ground 

vibration due to these lateral and rotational wheel-rail forces may contribute 

significantly to the total vibration. For such an analysis the lateral dynamics of the 

vehicle and track would have to be added to the model. 

(6) INTERACTIONS BETWEEN A BUILDING AND THE GROUND. It would be 

possible to use the wavenumber-frequency domain approach to investigate the 

interaction between the ground and a building represented by a multi-degree-of

freedom system on the ground surface, under the action of a moving train. 

(7) GROUND VIBRATION FROM TUNNEL TRAINS. The wavenumber

frequency approach can be applied to study ground vibrations for a layered 

ground with a tunnel of infinite length, as demonstrated by Luco and Barros 

[1993]. In this application, use should be made of the homogeneity of the tunnel 

in the longitudinal direction. A BEM model can be also developed in the 

wavenumber-frequency domain. 
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Appendix 1 

NON-CAUSALITY IN VIBRATIONS INDUCED BY THE 

ASSUMPTION OF CONSTANT LOSS FACTORS 

Al.I INTRODUCTION 

There are several mathematical damping models used to describe the damping 

mechanism of materials [Bert 1973]. Of those, two are most widely used: the linear 

viscous damping model in which the resistance force applied to a moving particle is 

proportional to the particle's velocity in magnitude and opposite in direction and the 

linear hysteretic damping model specified by a loss factor. By letting a material 

experience harmonic deformation, the loss factor is defined as TJ = 2~V ' where, W 

denotes the energy lost per cycle and V the peak potential energy stored in the material 

during that cycle. Many materials possess a hysteretic damping mechanism rather than a 

viscous damping mechanism. In general, loss factors are dependent on frequency, though 

for some materials, for example rubber, from which railpads are made, and some kinds of 

soils, this dependence is very slight [Fenander 1996]. For simplicity, many researchers 

use constant loss factors for soils in their applications [e.g., Barros and Luco 1994, 

Lefeuve-Mesgouez, Le HouMec and Peplow 2000] (the first reference has been widely 

cited by people working on soil-structure interactions). However, it has been pointed out 

[Crandall, 1970] that the assumption of constant loss factors in a linear vibration system 

will produce non-causal response, i.e., a response that appears before the excitation starts. 

The non-causality comes from three approximations, namely, linearity, constant loss 

factor and property of wave propagation [Aki and Richards 1980, pp. 167-180]. In this 

appendix, to examine the magnitude of the non-causal response, the impulse response 

functions of four systems are examined: a one-degree-of-freedom system, a railway track 

on a Winkler foundation, an elastic medium occupying the entire space and an elastic 

half-space. The second and the last systems are subsystems of the vehicle-track-ground 

system studied in this thesis. 

Al.2 A ONE-DEGREE-OF FREEDOM SYSTEM 

For a one-degree-of-freedom system, its frequency response function is given by 
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H(m) = 1 
k+iox-mm2 (A 1.1) 

for the viscous damping model, where m is the angular frequency, m is the mass, k is the 

stiffness and c the damping coefficient. For the hysteretic damping model it is given by 

H(m) = 1 
k(l+i77 sgn(m) )-mm2 

(A1.2) 

where, 1] is the loss factor and 'sgn' represents the sign function. Equations (A 1.1) and 

(A1.2) are two special cases of the general form 

H(m) = 1 
k(m ) [1+i77(m )]-mm2 

(Al.3) 

where, as functions of frequency m, the stiffness and the loss factor have the property of 

k(-m) = k(m), 77(-m) = -77(m) (AI.4) 

For a linear system, the inverse Fourier transforms of the frequency response 

function give the unit impulse response function h(t) of the system, i.e. 

h(t) = _1 ] 1 eiWt dm 
2n _= k(m)[(l+i77 (m)]-mm2 

(A1.5) 

Having considered equation (AI.4), equation (A1.5) can be written 

h(t) = -.L =f [k(m)-mm 2 ]cosmt+k(co)77(m)sinmt dm 
n 0 [k(m)-mm 2 )2+k2 (m)77 2 (m) 

(A1.6) 

k(m) and 77(m) can be measured by experiment. In general, both k(m) and 

77(m) are dependent on both the amplitude and the frequency of oscillation. However, for 

many materials, k(m),77(m) are nearly independent ofm, i.e., it may be assumed that, 

k(m) = k,77(m) =77. Thus equation (A1.6) becomes 

(A1.7) 

However, as noted in reference [Crandall 1970], equation (A1.7) will produce a non

causal response, i.e., mathematically, h(t)"* 0 for t ~ 0 . To check how large the effect of 
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the non-causality would be, the integral in equation (AI.7) has to be evaluated. From 

equation (Al.7), 

(Al.8) 

where OJ" is the undamped natural frequency of the system, i.e., OJ" =.Jk 1m, and 

A = OJ I OJ" • It is difficult to evaluate this integral if t i= 0 and so for the present purpose, 

it is evaluated only at t = o. It can be shown, from equation (AI.8) that 

h(O) = i [ 1 _ 1 ] 
4.J mk ~I- i1J ~1 + i1J 

(Al.9) 

The unit impulse response function get) for a viscously damped single degree of 

freedom system for t 20, is given by 

(A1.lO) 

and for t ~ 0, g(t) == 0, where, S is the viscous damping ratio. The maximum 

displacement, g max' occurs at t such that g' (t) = 0 . From equation (A 1.1 0) 

- 1 -(C;/~1-C;2)T . T T - (r;-yTI 1'2 I!') I' 1 g max - ~ r;-yT e sm, - arctan "Ij 1 - S ~,~ < , 
-vmk"ljI-t;2 

(Al.Ila) 

g = 1 e-(C;/~I-C;2)T(eT _e-T ) T=1In(t;+~t;2-1) 1'>1 (Al.lIb) 
max ~ r;:z-; , 2 r;:z-; ,~ , 

2-vmk"ljt; -1 t;-"Ijt;--l 

- 1 -I 1'-1 
gmax- ~e ,~-

-vmk 
(A1.IIc) 

For a given system, the non-causality of equation (A1.8) may be measured by 

h(O) I g max' where, g max takes the value given by equation (A 1.11) for t; = 1J I 2 . From 

equations (A 1.9) and (A 1.11) this ratio is independent of the mass and stiffness of the 

system but not its damping. Figure A1.1 shows h(O) I g max varying with loss factor1J . It 
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can be seen, fOfTJ < 0.3, I h(O) / g max k 0.1 . Figures A 1.2 and A 1.3 show g max and h(O) 

plotted against TJ with.J mk = 1. 
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Figure AI.I. h(O) / g max plotted against factor TJ . 
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Figure A1.2. g max plotted against factor TJ . 
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Figure AI.3. h(O) plotted against factor 17 . 

Figures Al.4 to A1.6 show the unit impulse response functions calculated using 

equations (A1.8) and (AI. 10) for a normalised single degree of freedom system with 

m = 1 kg, and k = 1 N/m, and so having a natural frequency (j)1l = 1 . In Figure A 1.4, the 

solid line is calculated from equation (A 1. 10) using the viscous damping model with a 

damping ratio of t; = 0.1 ; while the dashed line is computed from equation (A 1.8) using 

the hysteretic damping model with an equivalent loss factor at the viscous damped 

natural frequency, i.e. 17 = 2t; ~1- t; 2 OJIl = 0.199. For the hysteretic damping model, the 

time response is calculated from the frequency response using an FFf. In this and other 

FFf -calculations, 4096 samples are used with a frequency spacing of 0.00125 Hz, thus 

the time history within the range of - 400 to 400 s is produced. In Figure A 1.5 the solid 

line is for the viscous damping model with a damping ratio of t; = 0.25 while the dashed 

line is for the hysteretic damping model with an equivalent loss factor 0.4841. Figure 

A1.6 accounts for a higher damping with t; = 0.4 and 17 = 2t; ~1- t; 2 (j)1l = 0.7332. 
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Figure AlA. The unit impulse response function of a single-degree-of-freedom system with 

m = 1 kg, k = 1 N/m. --, for the viscous damping model with a damping ratio of 0.1; - - -, for the 

hysteretic damping model with an equivalent loss factor to the viscous damping. 
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Figure Al.5. The unit impulse response function of a single-degree-of-freedom system with 

m = 1 kg, k = 1 N/m. --, for the viscous damping model with a damping ratio of 0.25; - - -, for the 

hysteretic damping model with an equivalent loss factor to the viscous damping. 
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Figure AI.6. The unit impulse response function of a single-degree-of-freedom system with 

m = 1 kg, k = 1 N/m. --, for the viscous damping model with a damping ratio of 0.4; - - -, for the 

hysteretic damping model with an equivalent loss factor to the viscous damping. 
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Figure A1.7. The ratio of the pre-impulse power to the post-impulse power for a single-degree-of

freedom system with m = I kg, k = 1 N/m and different loss factors. 

For a given system, an alternative measure of the non-causality of equation 

(A1.8) is to compare the pre-impulse power ~ and the post-impulse power P2' where, p.. 
o ~ 

and P2 are defined as ~ = fh 2 (t)dt andP2 = Jh 2 (t)dt. In this measurement, the infinite 
o 
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integrations are required to be convergent, and the post-impulse response is assumed to 

be an approximation of the true response. Figure A1.7 shows the ratio of the pre-impulse 

power to the post-impulse power for the normalized single-degree-of-freedom system for 

different loss factors. 

From the above calculations, a point may be made that for low damping, the pre

impulse response is small. For example for loss factor 17 S 0.4 , it is less than 1 % of the 

post-impulse response. In this case the post-impulse response of the hysteretically 

damped system is closely similar to that for the viscously damped system. 

Al.3 A RAILWAY TRACK ON A WINKLER FOUNDATION 

For a structure like a railway track, a damping model not only affects the energy 

loss with time, but also affects the energy loss due to radiation. In Chapter 4, a track is 

modelled as a system of multiple beams supported by the Winkler foundation. It is 

shown that, for a stationary harmonic load applied on the rail beam, the response of the 

rail beam can be obtained analytically (the damping model can be either viscous or 

hysteretic). Thus the frequency response function (FRF) of any point on the rail can be 

computed exactly. The inverse Fourier transform of the FRF gives the unit impulse 

response function of this point. All the parameters of the track listed in Table 4.1 are used 

in this section except for the loss factors of the railpad, ballast and the foundation. 

Figure AI.8 shows the amplitude of the driving point FRF. The loss factors of the 

rail pad, ballast and foundation are set to be 0.1. The peak occurs at about 9 Hz which is 

the natural frequency of the track on the Winkler foundation (see Figure 4.5). Using the 

FFT technique with a length of 8192 and a frequency spacing of 0.025 Hz, the impulse 

response functions are computed for the driving point and for points at 50 m and 100 m 

from the loading point. For the loss factors equal to 0.1, these impulse functions are 

shown in Figures A1.9 to A1.II. If the loss factors are increased to 0.4, the impulse 

response functions of the three points are shown in Figures Al.12 to AI.14. 

Figure AI.15 shows the ratio of the pre-impulse power to the post-impulse power for the 

loading point on the rail for different loss factors. Compared with Figure A l. 7, it can be 

seen that the track presents a similar non-causality to that for a one-degree-of-freedom 

system. This is because the track has a resonance frequency which is dominant over other 

frequencies. 
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Figure AI.8. The amplitude of the driving point FRF for loss factors equal to 0.1. 
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Figure A 1.11. Impulse response function of a point at 100 m from the loading point on the rail, 

loss factors equal to 0.1. 
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Figure Al.I5. The ratio of the pre-impulse power to the post-impulse power at the loading point 

on the rail for different loss factors. 

AlA A WHOLE SPACE OF ELASTIC MEDIUM 

For an infinite elastic medium (i.e. occupying a whole space), the Cartesian 

coordinates are denoted by X], X2 and X3. The axes Xl and X2 form the horizontal plane and 

the axis X3 is in the vertical direction. Material properties of this medium are denoted by 

E for its Young's modulus, v for its Possion ratio, p for its density and TJ for its loss 
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factor. For a unit point harmonic load of radian frequency m applied at the origin in the 

xk -direction, the following formulae give the amplitude of the steady-state displacement 

in the xl-direction of point (xl' X2' x,) [Dominguez, 1993]: 

(A1.12) 

(A 1. 13) 

(A 1. 14) 

(Al.IS, A1.16) 

(Al.17, Al.18) 

.It, - vEC1+irysgn(m» _ E(1+irysgn(m» 
- (1+v)(1-2v) , f1 - 2(1+v) (Al.I9, A1.20) 

The inverse Fourier transform of equation (A 1.12) gives the impulse response 

function of point (Xl' X2' x3) in the xl-direction, i.e., 

h ( . ) - 1 1 =f 1 [ .5: ar ar] iwtd lk Xl ,X2,x"t --2 -4 -2 lfIU lk - X-c--c- e m 
7r trp _= C2 aXI aXk 

(A1.2I) 

In the absence of damping, the impulse response function of point (Xl' X2' X,) in 

thexl-direction, denoted by glk(Xl'X2,x,;t), can be expressed analytically as 

[Dominguez, 1993]: 

(A 1.22) 
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Equation (A 1.22) shows that the disturbance emitted from the origin at t = 0 is felt at 

point (x1 , x 2 , x,) from the arrival of the longitudinal wave (t = r / C1 ) up to the arrival of 

the shear wave (t = r / c2 ), Impulses are received at t = r / c1 and at t = r / c2 ' 

In the presence of damping, the integrals 7 ~ lfIeiOJ1 dw and 7 ~ xei(J)/ dw in 
_= c2 _= c2 

equation (A1.21) are evaluated as follows: 

= = 2 

f _1 lIfei(J)/dw = f _1 {le-iOJr'c2 [1+ (1+5-)5-]_le-iOJr'cl ~(1+-5-)-5-}ei(J)/dw 
c 2 "t" c2 r lWr lwr r 2 lWr lwr 

-= 2 -= 2 c1 

= 1 =f _1 ei(l-rlc2 )0J dw +-.l =f -, _1_ eiCt-r'c2 )OJ dw +_1 =f -, 1_ ei(l-r'c2)OJ dw 
r _= ci r2 _= lC2W r3 _= (lW)2 

-~ 7 -, _1_ ei(l-r'c1)OJ dw _-.l 7 -, 1_ ei(t-r'c1)OJ dw 
r2 _= lC1W r3 _= (1 w)2 

(A1.23) 

If a constant loss factor is used, then the dilatational and the shear wave speeds, 

c1 and c2 ' are complex, and can be expressed in terms of their real and imaginary parts: 

c = {C1R + ic1!, if w > 0; 
1 "f 0 C1R - lCl/ ,1 W < ; 

(A 1.24) 

(A1.25) 

Since 

- 242-



thus 

Denoting 11 c; = a 2 + i/32' for m > 0, where, 

(A1.27) 

then the integration in the first term on the right-hand side of equation (Al.26), 

f ~ei(f-rIC2)(J)dm = 2f{a2 cos[(t- 2c2Rr2 )m]-
_= c2 0 C2R +c2J 

U sing the formulae 

/32 sin[(t- 2c2Rr2 )m]}exp[( 
C2R +C2J 

fe-ax cosbxdx = 2 ab2 , (a> 0) 
o a + 

fe-axsinbxdx= 2bb2' (a>O) 
o a + 

yields 

(A1.28) 

(A1.29) 

(Al.30) 

The integration in the second term on the right-hand side of equation (Al.26), 

Using the formula 

f1 e-ax sinbxdx = arctan g, (a> 0) (Al.32) 
o 

gIves 

(A1.33) 

- 243-



Similarly, 

(A1.34) 

Inserting equations (A1.31), (A1.33) and (A1.34) into equation (A1.26) yields 

Now it is shown that 

=f _1 xe iwt dOJ = =f _1 {le-iwr,c2 [1 + (1 +-5.-) ~CZ] _le-iwrlcl c; [1 + (1 +-5-) ~c, }e iwt dOJ 
C Z C Z r lOJr lOJr r Z lOJr lOJr 

-Z -2 ~ 

=1 =f _1 e i(t-rlc2)wdOJ+2 =f _._1_e i(t-r'cz)wdOJ+2 =f _l_eiU-r'cz)Wdm 
r _= ci rZ _= lCzm r3 _= (i OJ)2 

_1 =f _1 eiU-rlcl)wdOJ_2 =f _._I_ e iU-rlc1)wdOJ_2 =f _.l_ei(t-rlcl)wdOJ 
r _= cl rZ _= lC,OJ r3 _= (lOJ)2 

I.e., 

Denoting 1 / c,z = a, + if3, ' for OJ > 0, where, 

and using equations (A1.31), (A1.33) and (A1.34), yileds 

2 f3z (CiR +cil )2 t-rcZR (CiR +cil ) 
r (rcz1 )2+[(CiR +cil )t-rczRF 

(A1.36) 

(Al.37) 

The substitution of equations (A 1.35) and (A 1.38) into equation (A 1.21) yields the 

impulse response functions for a constant loss factor. 
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The following figures show the vertical (i.e., I = 3) impulse response functions of 

three points for different values of loss factor, due to a vertical (i.e., k = 3) impulse 

applied at the origin. The first point is located in the horizontal plane including the origin 

and is at 10m from the origin, i.e., Xl = 10, x 2 = 0, X3 = 0. The second point is located in 

the same plane but at 50 m, i.e., Xl = 50, x 2 = 0, X3 = ° . For these two points, equation 

(A 1.22) becomes 

(A1.39) 

This shows that, from the arrival of the dilational wave, the displacement increases 

proportionally with time, until the arrival of the shear wave (as an impulse). 

The third point is at 50 m below the origin, i.e., Xl = 0, x 2 = 0, X3 = 50 . For this 

point, equation (A1.22) becomes 

(A 1.40) 

This shows that, also at this point, from the arrival of the dilatational wave (as an 

impulse), the displacement increases proportionally with time, until the arrival of the 

shear wave. 

The shear (S-) and dilatational (P-) wave speeds of the elastic medium are 118 

mls and 360 mis, respectively. For a distance of 50 m, the travel time of these two waves 

are 0.42 sand 0.14 s (ignoring the effect of the damping). Figures A1.16 to A1.27 show 

the calculated pulses arriving at various points either 10 m or 50 m from the origin. The 

vertical dashed line in each figure indicates the arrival time of the P-wave. Physically, 

before the arrival of the P-wave, no vibration would be excited. The constant loss factor 

model does not exactly reproduce this. From Figures A 1.16 to A 1.23 it can be seen that 

the pre-impulse response decays slowly with increasing negative time. Even worse, as 

shown in Figures A1.24 to A1.27, the pre-impulse response increases with increasing 

negative time for the third point. 
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Figure A 1.18. The vertical impulse response function of point (10 m, 0, 0) for loss factor equal 

to 0.4. 
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Figure A 1.19. The vertical impulse response function of point (10m, 0, 0) for loss factor equal 

to 0.8. 
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Figure AI.20. The vertical impulse response function of point (50 m, 0, 0) for loss factor equal 

to 0.1. 
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Figure A1.21. The vertical impulse response function of point (50 m, 0, 0) for loss factor equal 

to 0.2. 
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- 249-



to 0.1. 

to 0.2. 

5 

4 

g 3 

" ., 
8 ., 
u 

'" "§ 2 
is 

·10 
x10 

V 

Time(s) 

Figure A 1.24. The vertical impulse response function of point (0 , 0, 50 m) for loss factor equal 

2.5 

0.5 

·10 
x10 

O~==~==~==~~~--~--~--~~ 
-2 -1.5 -1 -0.5 o 

Time(s) 

0.5 1.5 2 

Figure A1.25. The vertical impulse response function of point (0 , 0, 50 m) for loss factor equal 

- 250-



to 0.4. 

to O.S. 

2 

-2 -1.5 -1 -0.5 

, , 
! 

V 

o 
Time(s) 

0.5 1.5 2 

Figure A 1.26. The vertical impulse response function of point (0 , 0, 50 m) for loss factor equal 

X 10'" 
18 

16 

14 

12 

:§: 10 
C 
" S 

8 " u 

'" ]-
is 6 

4 

2 

0 

-2 -1.5 -1 -0.5 o 0.5 1.5 2 

Time(s) 

Figure A 1.27. The vertical impulse response function of point (0 , 0, 50 m) for loss factor equal 

AI.S AN ELASTIC HALF-SPACE 

Reference [Sheng, Jones and Petyt 1999(a)] has given the formula to calculate the 

steady state response of a ground (an elastic half-space) excited by a point harmonic load. 

Using this formula, the frequency response function of a point on the ground surface can 

be obtained. The inverse Fourier transform of this FRF gives the impulse response 

function of this point. Figures A1.28 to A1.31 show the vertical impulse response 
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function of a point 10m away from the loading point due to a vertical impulse, for the 

loss factor of the soil equal to 0.1,0.2,0.4 and 0.8, respectively. Other material properties 

of the half-space are the same as those of the whole space employed in the last section, 

and the dilatational (P-), shear (S-) and Rayleigh (R-) wave speeds of the soil are, 

respectively, 360 mis, 118 m/s and 112 mls. Figures A1.28 to A1.31 show the response at 

10m on the surface of the half-space for different values of loss factor. The arrival times 

of the P-, S- and R-waves are 0.03 s, 0.08 sand 0.09 s. The vertical dashed line in these 

figures indicates the arrival time of the P-wave. For low loss factor, the arrival of the 

three waves is clearly identified and the response prior to the arrival of the P-wave is 

small. 
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Figure Al.28. The vertical impulse response function of a point at 10m on the ground surface for 

loss factor equal to 0.1. The arrival time of the P-, S- and R-waves would be 0.03 s, 0.08 sand 0.09 s if 

ignoring the damping in the half-space. 
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Figure A 1.29. The vertical impulse response function of a point at 10m on the ground surface for 

loss factor equal to 0.2. 
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Figure A 1.30. The vertical impulse response function of a point at 10 m on the ground surface for 

loss factor equal to 004. 
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Figure A 1.31. The vertical impulse response function of a point at 10m on the ground surface for 

loss factor equal to 0.8. 

AI.6 SUMMARY 

The non-causality in the displacement responses, induced by the assumption of 

constant loss factors, is examined by calculating the impulse response function for four 

vibration systems: a one-degree-of-freedom system, a railway track on a Winkler 

foundation, an elastic medium occupying the entire space and an elastic half-space. It is 

shown that for low loss factor (e.g. less than 0.2), the pre-impulse response is small 

enough to be negligible. Further, if a system has a dominating component of a particular 

frequency, and if the loss factor in the constant hysteretic damping model is selected as 

the same as the actual loss factor at this frequency, the response of the model will be 

sufficiently close to that of the actual system. At most frequencies the model will have an 

incorrect damping but the effect on the dynamic response will not be significant if the 

damping is light. It is found that the non-causality is more serious in a continuous system 

where wave propagation is allowed than in a resonant system where only one frequency 

dominates the response. Nevertheless, the existence of the pre-impulse response does not 

mean that the post-impulse response is significantly in error. However, the accuracy of 

the post-impulse response resulting from the constant loss factor model may only be 

identified by measurement, rather than by mathematical models. On the other hand, an 

impulse is an idealised loading condition which contains every frequency and the 
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strength of each frequency component is the same. For a real load, its frequency range is 

limited. In that frequency range, if the actual loss factor of the material is nearly 

independent of frequency, then the constant loss factor model should give reasonable 

results. 
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Appendix 2 

THEOREMS ON THE DIVERGENCE OF IMPROPER 

INTEGRALS 

The following theorems on the divergence of an integral over an infinite interval 

have been applied in Sections 3.4 and 3.5, Chapter 3, to show the existence of resonance 

of a ground. 

Theorem 1. Consider a double integral 1= I: I: (dxdy / D(x, y)), where D(x, y) is an 

analytical function and (1/ D(x, y)) is integrable to infinity. The integral I diverges if 

there exists only one real isolated root (xo' Yo) of equation D(x, y) = 0 such that 

~ = ~ = o. (An isolated root (xo' Yo) of equation D(x, y) = 0 means that within a 

small enough neighbourhood of (xo, Yo) there is no root of D(x, y) = 0 except 

for (xo, Yo)). 

Proof. The integral can be represented as 

f= J= II dxdy ff dxdy 
1= _= _Jdxdy / D(x, y)) = S D(x, y) + So D(x, y) 

where 

Po is a positive real number. 

The integral If dxdy converges since the integrand has no singular points at 
s D(x, y) 

which ~ = ~ = 0 (see below) in the area Sand lID(x, y) is integrable to infinity. 

Therefore, convergence of I depends on the integral If D~~~) . In the classical sense this 
So 

integral is equal to 
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ff dxdy l' ff dxdy 
D(x,y) = £~ 2 2 '2 D(x,y) 

So £ ::;(X-XO) +(Y-YO)-::;PO 

(A2.1 ) 

As Po is an arbitrary constant, it can be considered as so small that D(x, y) may 

be expanded as a Taylor series around the point (xo' Yo) : 

D(x, y) = D(xo' Yo) + :f.. ~IlD(xo' Yo) 
11=1 n. 

(A2.2) 

where dIlD(xo'yo) is the differential of D(x, y) of order nat (xo,yo). 

In accordance with the theorem conditions, D (xo' Yo) = dD (xo' Yo) = O. 

Moreover, since (xo' Yo) is the real isolated root of D(x, y) = 0, there exists an even 

integer m (m? 2), such that d m D(xo' Yo) ::j: 0 and d i D(xo' Yo) = 0 for 1::; i < m. 

Therefore, by introducing the polar system of co-

ordinates, x - Xo = P cos cp, y - Yo = P sin cp , D(x, y) can be rewritten as 

D(p,cp) = ~ pm J(ep) + o(pln) 
m. 

(A2.3) 

where J(ep)::j: 0, since (xo,Yo) is the isolated zero. For rp varying from 0 to 27r,f(rp) does 

not change its sign otherwise there would be a value of rp such thatJ(rp) = O. 

Substituting equation (A2.3) into equation (A2.I) and taking into account the 

Jacobian p, yields 

ff -dx_dY- = lim rpo r21r m!p dpdep 
So D(x, y) HO Je Jo J(ep)pm 

(A2.4) 

The number o(pm) in equation (A2.3) is dropped, as Po is an arbitrarily small 

value. The integral with respect to ep in equation (A2.4) will result in a finite non-zero 

constant A since J (ep) ::j: 0 and m is a finite number. Then 

{

In Po -Inc, (m = 2) 
If dxdy = lim Aipo dp =AIim 1 1 1 =00 

D(x y) £~o £ plll-l e~O --(-----), (m> 2) 
So ' 2 - m p;,-2 c ln-2 

CA2.S) 

Thus, the integral I diverges. 
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If the isolated root (xo' Yo) is not such that ~ = f = ° , then m = 1. From 

equation (A2.5), the integral ff dxdy converges to a finite value Apo. 
D(x, y) 

s" 

Theorem 2. Consider a single integral 1= foDI (x)dx / D(x) , where D((x), D(x) are real 

or complex functions and (D((x)/ D(x)) is integrable to infinity. The integral I diverges if 

there exists a real isolated root Xo of equation D(x) = ° such that 

Proof. The integral can be represented as 

where Po is a small positive number. The first and the third integrals converge since the 

integrands have no singular points and D( (x)/ D(x) is integrable to infinite. Therefore, 

convergence of I is determined by the second integral. In the classical sense, this integral 

is equal to 

(A2.6) 

where £ < Po is a small positive real number. Expanding D(x) as a Taylor series around 

the point Xo yields 

(A2.7) 

(A2.8) 

In accordance with the theorem conditions, there exist constants A 7:- 0, B 7:- 0, and 

integers m, n ~ 1 such that D(x) can be rewritten as 

(A2.9) 
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(A2.IO) 

dmD( -) d"D( +) 
where A = I, xo , B = ~ xo , and A i= B if m = n. 

m. dx m n! dx" 

Substituting equations (A2.9) and (A2.1 0) into equation (A2.6) and dropping the 

number o((x - xof') in equation (A2.9) and o((x - xo)") in equation (A2.1O) as Po is an 

arbitrarily small value, gives: 

If m = n = 1, 

thus, if A i= B,I --700. 

If m, n>l, 

x,,+Po D
J 
(x)dx . x,,-£ dx Xo+Po 

I = f = DJ (xo) hm( f + f dx ) 
D(x) £--->0 A(x - x )m B(x X)" 

X,,-Po Xo-Po 0 Xo+£ - 0 

-D( ){r [ 1 ( )J-mlxo-£+ 1 ( )J-nlxo+Po ]} 
- J Xo £~ A(1-m) x-xo Xo-P" B(l-n) x-xo Xo+£ 

=D (x )[- 1 + +lim( 1 
J 0 A(1- m)(-pof,-J B(1- n)p~-J HO A(I- m)(_£)m-J 

I 
B(1- n)£"-J )] 

thus, if m i= n , or m = n but A i= B, then I --7 00 . 

If m = I,n > 1, 

From the discussion above, when m = n = an odd number, and A = B i= 0, the 

integral I converges. 
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Appendix 3 

SOME NOTES ON THE FAST FOURIER TRANSFORM 

As has been shown in the preceding chapters, the Fourier transformed 

displacements of a track and a ground, denoted by w(/3) for the track and w(/3, y) for 

the ground, can be obtained in the frequency-wavenumber domain analytically, where 

/3, yare wavenumbers in the x- and y-directions respectively. The actual displacements, 

denoted by w(x) or w(x, y) , may then be obtained by performing inverse Fourier 

transforms on w(/3) or on w(/3, y) , i.e., 

or, 

w(x,y)=~ f fw(/3,y)e i(f3x+n')d{3dy 
4n -=-= 

(A3.1) 

(A3.2) 

To evaluate the integrals (A3.1) and (A3.2) the FFT technique is used. To do this, 

the function w(/3, y) is first sampled at the following points 

(A3.3) 

where, k,l = 1,2,.·· ,2N , and 2N is an integer equal to an integer power of 2. fl/3, fly 

are the intervals of /3 and y. Then equations (A3.1) and (A3.2) are approximated by 

(A3.4) 

(A3.5) 

Let 

xm = (m - N)f:J.x, Yn = (n - N)fly, (m,n = 1,2,·· ·,2N) (A3.6) 

where, 
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fu: = 2n ~ = 2n 
2N~/3' Y 2N~y (A3.7) 

then equations (A3.4) and (A3.5) become 

w(X ) = ~/3 e -i(N-1/2)(m-N)rr I N Lf. -(/3 ) i(k-I)(m-N)rr IN 
III 2 L.,W k e n k=1 

(A3.S) 

~f3~y . 2N 2N . . w( y) = __ e-I(N-1I2)(IIl+n-2N)rrIN ~ ~ -(/3 Y) l(k-I)(m-N)rrIN+I(l-I)(n-N)rrIN 
XIII' n 2 L., L., W k' 1 e 

4n k=I/=1 
(A3.9) 

The so-called FFT algorithm is an efficient technique to calculate 

2N 2N 2N L w(/3 k )ei(k-I)(m-N)rrl Nand L L w(/3 k' YI )e i (k-I)(m-N)rrl N+i(/-I)(n-N)rrl N 

k=1 k=1 1=1 

for m, n = 1,2"" ,2N. A variety of standard subroutines may be found to carry out the 

calculations. A subroutine has been designed to calculate equations (A3.S) and (A3.9) 

(notes: not including the factor ~2/3 in equation (A3.S) and ~4/3~Y in equation (A3.9)) 
n n-

based on an FFT algorithm presented in reference [Press et al 1992]. This subroutine, 

calledfftn(data, nn, ndim, isign), requires as input: (i) a scalar, ndim, giving the number 

of dimensions, e.g., 2; (ii) a vector, nn, giving the length of the array in each dimension, 

e.g., (32,64). Note that these lengths must all be powers of 2 and are the numbers of 

complex values in each direction; (iii) a scalar, isign, equal to ± 1 indicating whether the 

Fourier transform or its inverse is specified; and finally (iv) the array of data, data. The 

program accesses the data array as a one-dimensional array of real numbers, of length 

equal to twice the product of the lengths of all dimensions. Each complex value occupies 

two sequential locations, real part followed by imaginary. Thus, for 2N x 2N complex 

values of W(/3k'YI)' where, k,l = 1,2,···,2N, the array data contains: 

data(1) = Re(wll ), data(2) = Im(wll ), data(3) = Re(wI2 ), data ( 4) = Im(wI2)"'" 

data(4N -1) = Re(w1,2N ),data(4N) = Im(w1,2N) 

data(4N + 1) = Re(w21 ),data(4N + 2) = Im(w21 ), .. ·,data(SN) = Im(w2,2N ), ... , 

data(SN 2 -1) = Re(w2N .2N ),data(SN 2
) = Im(w2N ,2N) 
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When the subroutine is executed, the data in the array data are replaced by the 

outputs in this way: 

data(l) = Re(w, , ),data(2) = Im(wll ),data(3) = Re(w'2),data(4) = Im(w,J,"" 

data(4N -1) = Re(w,,2N ),data(4N) = Im(w,,2N) 

data(4N + 1) = Re(w2I ),data(4N + 2) = Im(w2' ),···,data(8N) = Im(w2,2N ), ... , 

data(8N 2 -1) = Re(w2N ,2N ),data(8N
2
) = Im(w2N,2N) 

It can be seen from equation (A3.3) that the sample points on, e.g., the f3 -axis, are 

symmetric about the origin. 
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