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ABSTRACT 
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CURVED COMPOSITE BEAMS 

By Wei-bo WANG 

This thesis is concerned with the analysis of curved laminates and sandwich beams with a focus 

on delamination and instability. 

An elasticity-theory-based approach is developed for delamination and flexural strength of curved 

layered composite laminates and sandwich beams. The governing equations in this case are 

derived from the results of curved orthotropic beam on an elastic foundation under flexural 

loading. The approach ensures an accurate description of the through-thickness and in-plane 

stresses in curved laminate beams. The solutions for various geometrical configurations are 

provided. The effects of key parameters, such as stacking sequence of the laminate, thickness of 

the skin, the curvature radius etc. are studied. 

The critical load for instability of a curved beam on an elastic foundation, which is correspondent 

to the skin of sandwich beam under pure bending, is derived by beam theory and virtual 

displacement principle. The flexural strength of curved sandwich beam is studied with a view to 

identify delamination and local instability characteristics. 

The delamination buckling in curved composite beam is also investigated in this document. Based 

on linear and non-linear curved beam theory coupled with fracture mechanics concepts, two 

theoretical approaches are developed respectively for linear and nonlinear problems of 

delamination buckling which are concerned in the cases of normal delamination buckling and 

snap buckling of the inner layer. 

KEY WORDS: Layered structures, geometry curvature, elastic foundation, through-thickness stress, 

delamination, instability, delamination buckling 
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Nomenclature 

Letters 

a,b,c coefficients in the expression for stresses in isotropic material 

ai coefficients in Fourier series 

b width of the sample 

d thickness of the delaminated layer (outer layer) 

k elastic stiffness of foundation 

I length of the beam 

m cross-ply stacking ratio which signifying the ratio of the thickness sum of odd 

number plies to that of even number plies. 

n the number of layers in laminate 

n the number of buckling half-waves 

p reaction force of elastic foundation; 

the modulus in elliptic integrals 

Pq known constant reaction force of an elastic foundation 

q distributed pressure 

qo known constant distributed pressure 

t thickness of beam 

ts thickness of the skin of sandwich beam 

tc thickness of the core of sandwich beam 

u displacement component in x direction (or cylinder axis) 

V displacement component in y direction (or 6 direction) 

w displacement component in z direction (or r direction) 

A tension stiffness matrix 

B coupling stiffness matrix 

D flexible stiffness matrix 

Co constant radial displacement 

Ci coefficients in the expression for stresses in anisotropic material 

12 



D the flexural rigidity 

E Young's modulus of elasticity 

E(p,^) Legendre's standard form of second kind elliptic integral 

E{ p) complete elliptic integral of the second kind 

F, Fh, Fy Load and load components in horizontal and vertical direction respectively 

F(p,^) Legendre's standard form of first kind elliptic integral 

K{ p) complete elliptic integral of the first kind 

M general expression for bending moment 

N general expression for axial force 

Ncr critical value of the load for buckling 

Q general expression for shear force 

Mo, Nq known constant bending moment and axial force 

MQ,NQ the bending moment and axial force for global layered beam 

gU) stiffness matrix component of the Mi layer 

R, Rg, Rj radius of midplane of the curved beam 

Ro outer radius of the curved beam 

Ri inner radius of the curved beam 

R* curvature radius of delamination crack 

V potential energy 

Vf volume fraction of fibre in fibre reinforced composites 

a arc angle of curved beam 

P arc angle of delamination crack in curved beam 

' ^ ^ coefficients in the expressions of reaction forces 

// shear modulus of elasticity 

V Poisson's ratio of material 

A anisotropy ratio 

d ratio of inner radius to outer radius of the beam (= R. /R^) 

a, T normal stress and shear stress 

£, Y normal strain and shear strain 
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^ parameter in elliptic integrals 

p density 

{ k) the curvature change of mid-plane of laminate or mid-surface of shell 

K curvature change of the curved beam 

^ location of the maximum through-thickness stress measured from the 

midplane of the beam 

0 Airy stress function 

r surface energy 

coefficients in the expressions of v and p 

Subscripts 

1 in relation to in-plane direction 

2 in relation to through-thickness direction 

1,2,3 in relation to undelaminated and two delaminated parts of global curved beam 

c in relation to core of the sandwich beam 

r in relation to radial or through-thickness direction 

s in relation to tangential direction of curve 

in relation to skin of the sandwich beam 

X in relation to x direction (or longitudinal direction of cylindrical shell) 

L in relation to longitudinal direction of fibre reinforced laminae 

T in relation to transverse direction of fibre reinforced laminae 

6 in relation to circumferential direction 

Superscripts 

0 in relation to mid-plane or mid-surface of the laminated shell 

(1), (2) in relation to the states of a beam respectively before and after its delamination 

buckling 

(I),(II),... in relation to every part in a curved beam whose buckled shape has an 

inflection 

(/) in relation to ith layer in layered composite beam 
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1. Introduction 

Chapter 1 Introduction 

1.1 Background of the work 

Fibre reinforced plastic (FRP) composite materials are finding increased usage in a wide 

variety of structural applications in the aerospace, civil construction, marine and offshore 

industries. A key feature of most such structures is the presence of bonded joints 

connecting two plate panels either butted together in-plane or placed in a tee fashion for 

out-of plane load transfer. In either case straps of laminated plates (or overlaminates) are 

bonded together to the base place to effect the load transfer. The good performance of the 

joints then is decided by correct selection of the adhesive and proper design of the 

overlaminate. There is a large body of literature dealing with specific aspects of adhesion 

and adhesively bonded joints, for example, Kinloch (1997), Thomas et al (1998) and 

Charalambidi et al (1998). One of the objectives of this thesis is the mechanical 

characterisation of such curved composite structure elements as the overlaminate. 

( 1 ) F r a m e / s h e l l 
( 3 ) S t i f f e n e r e n d i n g 
( 5 ) D e c k - e d g e ( t e e ) 

( 2 ) B u l k h e a d / s h e l l 
( 4 ) StifFener i n t e r s e c t i o n 
( 6 ) Dfeck-edge ( k n e e ) 

Figure 1.1 Ship Hull Compartment Showing Typical Tee Connections 
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1. Introduction 

Tee joints, curved sandwich beams and top-hat stiffeners as well as curved layered beams 

are widely used in many applications, for example, ship hulls. A typical tee-joint and 

curved sandwich beam configuration is shown in Figure 1.2. The behaviour of such 

curved structural elements has been studied to a certain extent (Pel & Shenoi, 1996). It 

has been known that the strength of tee joint is a great deal dependent on the nature of 

boundary angles, especially the geometry curvature and thickness as well as its material 

(Shenoi et al, 1992, 1993 and 1998). It is found that increasing the thickness of the 

overlamination, traditionally the criterion used for the design of joints, has a detrimental 

effect on the properties of the joint; on the other hand, the radius of the fillet, which 

traditionally is given little or no consideration by current design methods, is critical to the 

performance of the joint (Hawkins et al, 1993). The effect of geometry curvature on the 

strength of the beam is also always neglected in the traditional design of curved 

composite beam or sandwich beam. Designers with composites generally estimate the 

mechanical behaviour of these curved structure elements with the conventional treatment 

of laminates and the strength criteria for flat beam or laminates. 

However, up to now, most work in this area has focused on experimental and numerical 

analyses, for example, Shenoi & Hawkins (1994 and 1995) besides those which have 

been mentioned in the above. There are few theoretical analyses relating to the strength 

and other mechanical characteristics such as local instability and delamination buckling 

of these curved composite structural elements. 

No. and Material 
Makeup of Plies 

T" 

I Lengths of Overlaminaiion 
J _ 

Rllei Radius 

Type of Resin 

Length of Overlap 

Gap 

Curved composite Beam 

Figure 1.2 A typical tee-joint and curved sandwich beam configuration 
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1. Introduction 

1.2 The aims and objectives 

The aims of thesis are therefore to investigate the flexural behaviour of curved laminates 

and sandwich beams, and predict their strengths by theoretical approaches. 

The key objectives of this thesis are four-fold: 

• To develop a model for characterising flexural behaviour of a curved beam on an 

elastic foundation; 

® To obtain accurate elasticity solutions for stresses, especially through-thickness 

tensile stress in curved laminates and sandwich beams, and investigate the effects of 

some key parameters such as radius of curvature, stacking sequence, and foundation 

modulus (if the beam resting on an elastic foundation) etc.; 

• To find a theoretical solution for buckling/wrinkling of curved composite beams on 

an elastic foundation and, then based on the results, to estimate the bending strength 

of global curved sandwich beam in terms of local instability of the skin; 

• To investigate delamination buckling of a curved layered beam by analytical 

approaches under conditions of opening and closing bending moments respectively. 

1.3 Scope of the work and literature review 

1.3.1 Flexural response of curved beam on an elastic foundation 

In the first stage of our analytical research work, a model for this kind of curved structure 

element such as tee-joint and curved sandwich beam is developed. Overlaminate in a tee 

joint or the skin of curved sandwich beam are considered as curved composite beam, 

meanwhile the fillet in tee joint or core in sandwich beam are considered as elastic 

17 



1. Introduction 

foundation. Thus the first problem under consideration becomes evaluating the flexural 

response of curved composite beam on an elastic foundation. 

There is a wide body of literature on the analysis of beams and plates resting on elastic 

foundations. Sinha (1963) has examined the flexural behaviour of uniformly loaded, 

isotropic plates resting on a Winkler elastic foundation by using Berger's approach 

(1955). Yang (1970) has derived load-deflection curves for uniformly loaded, isotropic 

plates on a Winkler foundation using the finite element method. Ghosh (1977) has 

obtained load versus bending moment and shear force curves for isotropic plate on elastic 

foundation of the Pasternak-type. Chia (1980) gives analytical formulations for the large 

deflection behaviour of uniformly loaded orthotropic plates on a Winkler foundation. In 

all these cases, the plates considered were flat. 

The analysis of curved beam made from isotropic material has also been well 

documented, for example, Hetenyi (1946). The circular isotropic bar resting on elastic 

foundation with different boundary conditions and under different kinds of load is studied 

in detail. However, there are not many publications focusing on curved composite beam 

on an elastic foundation. Therefore, the first part of this thesis document is to extend 

current approaches of elastic foundation analysis and laminate theory to include the 

effects of curvature on structural response. 

1.3.2 Through-thickness stresses in curved laminates and sandwich 

beams 

One of the key features of a curved (as distinct from a straight) laminated beam is the 

presence of not so insignificant through-thickness tensile stresses. These can significantly 

affect the performance of curved composite beams due to the low values of through-

thickness tensile strength. For example, the delamination is more likely to occur in such 

curved structural elements. Therefore, it is imperative to obtain the stress distribution 

through the thickness more accurately when analysing the behaviour of curved composite 

18 



1. Introduction 

beam. However, the problem of delamination in curved composite beams has mostly 

been investigated experimentally and numerically (Shenoi & Hawkins, 1994 and 1995; 

Smidt, 1993 and 1996) due to the difficulty of taking into account geometry curvature. 

Researchers and designers with composites are familiar with the conventional treatment 

of laminates such as the classical laminated plate theory (CPT) and thin shell theory 

(Reissner, 1961). In these classic treatments of curved shells, the assumption of a state of 

plane stress in the constitutive relations eliminates the possibility of rigorous calculation 

of interlaminar stresses. Moreover, although many high order, refined laminated plate 

theories and some approximate methods are available (Whitney, 1969; Reddy, 1984; 

Bhate, 1995), their application to curved beams is limited (Chang, 1986). Most of these 

theories or methods retain parts of the assumptions of classical plate and thin shell theory, 

and only incorporate the influence of shear deformation etc. on plate deflection in 

composite laminates. So while they can compute transverse shear stresses and give more 

accurate results for the in-plane stresses and displacements, they are unable to deal with 

through-thickness stresses. 

Pagano (1967 and 1969) studied the multi-ply composite laminates using linear elastic 

theory, and provided an exact solution for composite laminates in cylindrical bending. 

However, the composite laminates he considered were all flat and subjected to only 

transverse load condition. Lekhnitskii (1981) gave a general solution to the problem 

"Bending of a Plane Curved Rod by Moments". He studied the curved orthotropic beam 

but did not consider the response of a rod on an elastic foundation. The response of a 

curved beam without a foundation is quite different from that with a foundation. It can 

only sustain load condition such as pure bending or a pair tension/compression forces at 

the ends, and cannot sustain the circumferential force without radial restraints. But it is 

obvious that the interaction generally exists between every two adjacent plies of laminate 

especially in a curved laminate, so the solution of Lekhnitskii cannot be directly 

transformed to analyse the curved layered composite beam. 

Most recent reported work about the curved beams deals with plane strain applications of 

classical laminated plate theories (Wu, 1993; Gibson, 1994 and Chandler, 1993). The 
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1. Introduction 

extension of classical theories to curved beams is based on tight assumptions. For 

example, Wu (1993), Gibson and Chandler (1994 and 1993) adopt the same model which 

keeps the assumption that the stress normal to the cross-section of beam distributes 

linearly. This is acceptable when the longitudinal elastic modulus of composite beam 

does not change through thickness, such as a laminated beam composed of many layers 

oriented in the same direction (or unidirectional composite beam). This assumption is not 

valid, however, for a general layered composite beam, in which the stiffness properties 

vary drastically from layer to layer. Stress components are thus likely to be discontinuous 

in their variation. Therefore the method and results obtained by Wu et al cannot be used 

to analyse a general curved laminated beam. Tolf (1983) analysed homogeneous 

transverse isotropy condition in detail, but in his discrete model, he took the laminate as 

one ply fibre material by one ply matrix material, consequently each ply in laminate is 

considered as homogeneous and isotropic. Lu (1994) provided a solution of 

homogeneous anisotropy, but as with Tolf (1983), his model and solution cannot be used 

to study layered composite curved beam and curved sandwich beam. In the recent past, 

Wisnom (1995, 1996 and 1996) and Kaczmarek et al (1998) has contributed much 

research work on experimental analyses and numerical approaches for interlaminar 

failure and flexural strength of composite laminate. The focus of this work has been 

towards understanding delamination failure in curved laminated beams. 

Interlaminar normal and shear stresses, acting either singly or interactively can lead to 

delamination as reported by Wisnom (1995 and 1996), thus affecting structural integrity. 

It is important to know through-thickness stresses even well below the delamination limit 

value, because these could have an interactive effect on failure under in-plane stress to 

some extent (Wu, 1993). Especially in curved composite structure, the distribution and 

effect of through-thickness stresses should be paid more attention to, because there 

originally exists tension-bending coupling in the mechanical behaviour of composite 

laminate meanwhile the through-thickness tensile stresses is not so insignificant as in flat 

one. Therefore, it is imperative to obtain the stress distribution through the thickness 

more accurately when analysing the behaviour of curved composite beam. 
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1. Introduction 

1.3.3 Buckling/wrinkling of curved composite beam on an elastic 

foundation 

One other feature of the curvature of an overlaminate in a tee joint or the skin of curved 

sandwich beam is the effect it has on the buckling/wrinkling characterisation of the face 

in compression. 

If the compression in the face of such structures exceeds a critical load, this compressed 

face is then subject to a particular kind of instability, which is either column/global 

buckling or local wrinkling (or rippling in which the wavelength of the buckled form is of 

the same order as the thickness of the core). The local instability problem of straight 

sandwich beam can be studied by considering a long strut supported by a continuous 

elastic isotropic medium (Allen, 1969; Hoff and Mautner, 1945). Ordinary buckling 

theory indicates that the lowest critical load is that which corresponds to a buckled form 

in which the half-wavelength is equal to the length of flat beam with both ends simply 

supported. Nevertheless in some suitable circumstances of the bar resting on an elastic 

foundation, short-wavelength instablity may occur at a still lower load. And the problem 

of the buckling of straight bar on an elastic foundation has also been considered in some 

literature, for example, Timoshenko (1936) and Hetenyi (1946). 

However, as far as the curved sandwich beam is concerned, this problem becomes a little 

more complicated. The curved structure has different characteristic of instability from the 

straight one. For example, even under the condition that there is no foundation and both 

ends are pinned, the lowest critical load for curved beam subjected to uniformly 

distributed pressure is that which corresponds to the buckled form with two, not one, 

half-waves (Timoshenko, 1936). This difference just results from the geometry curvature. 

In our research work, the fillet or core material is still considered as elastic foundation 

and the Winkler Hypothesis (Selvadurai, 1979) is assumed. In this thesis document, a 

critical load for buckling/wrinkling of the skin is derived by virtual displacement 

principle under the condition that the global curved sandwich is subject to pure bending. 
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1. Introduction 

1.3.4 Delamination buckling of curved layered composite beam 

Apart from the delamination arising from large through-thickness stress which exceeds 

the interlaminar strength of layered composite beam, another way in which early 

structural failure can be caused is by delamination buckling. Local delamination can be 

considered as a crack in the interlaminar bond. Under buckling of the delaminated layer 

there appears a high interlaminar stress level at crack tip which leads to crack growth. On 

the other hand, delamination growth can also adversely affect the structural instability 

and even lead to catastrophic collapse of overall structure. They are coupled with each 

other. 

In recent years the problem of delamination buckling of composite beam has been studied 

by several researchers, both experimentally and theoretically. Chai et al (1981) used the 

energy release rate criterion based on a fracture mechanics approach to model the process 

using a post-buckling solution for a delaminated beam-column. Wang et al (1985) studied 

the compressive stability of delaminated random short-fibre composites by Rayleigh-Ritz 

method as well as by a finite element analysis. Moshaiov (1991) gave a characteristic 

equation for the buckling involving the length of delamination and its location the beam. 

Chattopadhyay (1996) and Gu (1998) give an exact elasticity solution for buckling of a 

simply supported orthotropic plate and then composite laminates whose behaviour is 

referred to as cylindrical bending. However, most of the work concerns straight laminated 

beams. 

Kachanov (1988) studied two types of delamination buckling in delamination damage of 

fibre/glass tube. And in his research work, he considered the problem of delamination of 

a fibre-glass tube due to residual stresses and the problem of snap delamination buckling 

of a ring under external pressure, which are respectively corresponding to linear and non-

linear problem of delamination buckling. Before this, Bugakov's (1977) experimental 

research work on fibre/glass rings subjected to uniform external pressure also revealed 

some characteristics in the snap buckling of its inner surface layer. 
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1. Introduction 

As mentioned in the beginning, delamination and delamination buckling are more likely 

to occur in curved composite beam due to the geometry curvature. Meanwhile, compared 

to the flat beam, the curved geometry also makes it more difficult to achieve the solution 

to the problem. Up to now, there have still been few analytical research works reported 

considering the delamination buckling in curved composite laminates, although many 

investigations on the problem of delamination buckling in flat composite beam have been 

received to some extent. 

Toward this objective, two problems are considered in the last part of thesis - curved 

composite layered beam subjected to opening and closing bending moments respectively 

(snap buckling occurring in the latter case) - which are corresponding to the linear and 

non-linear problems of delamination buckling of curved composite beam. 

1.4 Layout of thesis 

The through-thickness stress in curved composite laminate or sandwich beam is studied 

in this thesis by an elasticity-theory-based approach. Chapter 2 develops a model for 

characterising linear-static flexural behaviour of a curved beam on an elastic foundation 

by classical beam theory. The supporting reaction force of elastic foundation, bending 

moment and shear force within the beam are obtained from the governing equations. 

These results are then used in Chapter 3 as boundary conditions for an elasticity solution 

for an orthotropic beam on an elastic foundation. Then a general solution for curved 

layered composite beam is achieved in Chapter 4. Chapter 5 studies the instability of 

curved composite beam on an elastic foundation. The critical values of compressed load 

for different kinds of instability—wrinkling/buckling—are obtained by beam theory and 

principle of virtual displacement. The effects of key variables on stress distribution within 

a curved beam are investigated in Chapter 6, and Chapter 7 shows the effects of stacking 

sequence and curvature radius of curved composite laminate on the through-thickness 

stress. Estimation of delamination and local instability damage in curved sandwich beams 

is achieved in Chapter 8 based on the approaches developed in previous chapters. The 
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1. Introduction 

application of the approach is also made to analyse the failure of some tee joint samples 

under a 45° pull-off condition in Chapter 9. Chapter 10 investigates the delamination 

buckling in curved composite layered beam. Both the problem of delamination coupled 

with buckling when curved beam is subjected to opening bending moment and the 

problem of snap buckling of inner layer when curved beam is subjected to closing 

bending moment are considered. The concluding Chapter 11 summaries the achievements 

of the whole research work. Further work aimed at improving the accuracy of the 

approaches and scope of their applications are listed and commented upon. 
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2. Flexural Response of a Curved Beam on an Elastic Foundation 

on an Elastic Foundation 

2.1 Background and aim 

The background of the problem provided in this chapter is the strength of tee joint, 

curved sandwich beam etc. As mentioned in the chapter of introduction, in our research 

work, we adopt a model for these kinds of curved structure element which considers the 

overlaminate or skin as curved beam meanwhile the fillet or core as elastic foundation, as 

shown in Figure 2.1. 

Resin 

Gap 
Elastic foundation —Core 

Elastic Foundation 

Curved comoosite beam —Skin 

Curved composite Beam 

Figure 2.1a Tee joint Figure 2.1b Curved sandwich beam 

Figure 2.1 Model sketch for the problem statement 

The aim of this chapter is to develop a model for characterising and investigating the 

mechanical behaviour of a curved composite beam on an elastic foundation under 

flexural loading. The governing differential equation for general curved composite beam 

on an elastic foundation is derived from force-moment equilibrium considerations and 

classical laminate theory. And the flexural behaviour of a circular composite beam on an 

elastic foundation is studied in detail. 
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2. Flexural Response of a Curved Beam on an Elastic Foundation 

2.2 Equilibrium equation and corresponding constitutive 

relation 

Consider a curved beam resting on an elastic foundation. Assuming the intrinsic equation 

of its free shape is 0 = 0(^), where j is measured along the length of the arc and 6 is the 

slope at f , as shown in Figure 2.2a. 

9 = @is) 

Foundation 

G + dG 

M+dM 

Figure 2.2a Beam geometry Figure 2.2b Forces on a small element 

Figure 2.2 Curved beam on an elastic foundation 

Consider next the conditions of equilibrium of the forces on an element of the beam, as 

shown in Figure 2.2b, the following can be obtained: 

In radial direction: 

In tangential direction: 

Moment equilibrium: 

Then there has: 

p • ds-N - dO-q-ds = dQ 

dM = Q-ds 

= — - = - - ^ 

ds ds ds 

(2-1) 

(2-2) 

(2-3) 

(2-4) 
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2. Flexural Response of a Curved Beam on an Elastic Foundation 

Assuming the modulus of elastic foundation is k , and Winkler Hypothesis is taken for 

the elastic foundation here. Hence the reaction forces in the foundation are then normal to 

the axis of the beam and proportional at every point to the radial deflection of the beam w 

at the point, that is to say: 

p = k - w (2-5) 

By substituting equation (2-5) into (2-4) the equilibrium equation of curved beam on an 

elastic foundation can be obtained: 

kw- q - N— = — (2-6) 

In order to obtain the solution to the above differential equation, it is necessary to obtain a 

relation between the moment M and normal displacement w. In the case of laminated 

composite beam, the relationship is obtained from the classical plate constitutive equation 

(see Appendix A): 

N " A B ' 

M j B D K 

(2-7) 

where 

[N] = \ i:M]=. Ms M = . M = -

(2-8) 
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2. Flexural Response of a Curved Beam on an Elastic Foundation 

Apparently, as far as a general composite laminate is concerned, because of the tension-

bending coupling and bending-torsion coupling, a simple expression of M and K, needed 

for solving the differential equation (2-6), cannot be obtained easily. In the following, 

some pertinent cases will be considered. In the derivations, q is assumed to be a 

constant, as is the case for the commonly occurring condition of hydrostatic pressure 

loading. 

2.3 General governing differential equation 

Consider a shell curved about only one axis (e.g. cylindrical shell) here, and assume it is 

very long in this axis—designated as x-axis. The applied forces and boundary conditions 

are both uniform in x-direction, so the deformation is independent of x. And the 

assumption of s^=0 is also taken here. Hence this shell can be analysed as a curved beam 

with unit width. Then from equations (2-7) and (2-8), the following equations can be 

obtained; 

\N-A^^e +B^^K (2-9) 

where for the reason of clarification and unity with the expression in Figure 2.2b, the 

subscripts 5 in all related variables are omitted, and is the in-plane strain in ^-direction 

at mid-surface. Eliminating the term ^ in the first expression in equation (2-9), results in 

the second equation being written as: 

.Af =J^lL/v + ([) (2-l()) 
/In 

According to the theory of curved surfaces and elastic shells, when considering the effect 

of in-plane deformation on the change of curvature of circular beam or cylindrical shell, 
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2. Flexural Response of a Curved Beam on an Elastic Foundation 

the relation between the lateral deflection w and curvature /c is as below (see Appendix 

B): 

K =V- • w (2-11) 

where v is the displacement in ^-direction. 

Substituting expression (2-11) in equation (2-10), the relation between bending moment 

M and lateral deflection w for a general curved beam can be known as 

M 
B, 

•N + D„ 
Ai 

• w 
ds 

(2-12) 

and then substituting equation (2-12) in equation (2-6), the governing differential 

equation for general curved composite beam on an elastic foundation is finally obtained 

as follows; 

d w 

ds'' 
- + 

d w dd d 6 dw 
— r + 4 r — + 
ds ds ds ds 

2 ^ ^ + 2 
ds ds 

4-' r n 2\ 
a 

V AI y 

w 

1 

D, 
Aji ds ds ds^ ds^ ds^ ds ds'' 

(2-13) 

For the case of curved isotropic beam on an elastic foundation, because Bn= 0, the above 

governing differential equation becomes 
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2. Flexural Response of a Curved Beam on an Elastic Foundation 

• + 

ds^ 

1 / 

D 

ds 

d w . dd d 6 dw 

\UA J ds 
+ 4 

ds ds ds 
• + 2 ^ ^ + 2 

ds ds / 

+ 1 
D 

w 

q + N 
ds 

+ : TT + l : + rV 

(2-14) 

y ds^ ds^ ds^ ds ds"^ 

Furthermore, if the shape of this isotropic curved beam is a circular arc, noting there is 

— = — (constant), equation (2-13) then reduces to 
ds R 

d w I d w k 
+ • 

1 

ck' D 
4 w = — 

D 
q + — 

Rj 
(2-15) 

Differentiating equation (2-15) with respect to j and then substituting equations (2-2) and 

(2-3) into it to eliminate N, and also noting s=R0, the following differential equation for 

the case of circular isotropic beam on an elastic foundation is derived again 

6^^ 
+ 2" + 

D 
+ 1 

dw _ R'^ dq 
(2-16) 

Analyses for this problem has been well documented (Hetenyi, 1946). 

2.4 Circular composite beam on an elastic foundation 

Consider the case of long cylindrical shell, which is the most usual case, in this section. 

Similarly to last section, assuming the deformation is independent of x, and = 0. Then 

this cylindrical shell can be considered as a circular composite beam with unit with, and 

assuming the radius of curvature of this circular beam is R . Hence, in equation (2-13) 

^ 1 / , ^ dTe n J , ». e a Tk ^ 
there is — = — (constant) and — - = — ^ = —j- = 0, and also notmg s=Ra. Then the 

dk a dk* 
differential equation (2-13) becomes: 
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2. Flexural Response of a Curved Beam on an Elastic Foundation 

• + • 

a 
Bn 

2 \ W 
R' 

A 
D, 

1 y AI 

R J 

(2-17) 

Differentiating equation (2-17) with respect to 6, and noting from equations (2-2) and (2-

3), there is • ^ = — a n d also substituting equation (2-12) in it, then the following 
ad R ad 

governing differential equation for the problem of circular composite beam on an elastic 

foundation can be achieved. 

• + 2 r + 

D. 
B, 

• + 1 

A, 

dw R' 

D, 
B, 

dq 1 5ii dN ^ 1 5,1 d^N 

A,; 
+ • 

A,, A:" 

•11 J 

(2-18) 

Two conditions will be considered next. 

1) Âo = Constant 

This is a common occurrence in the case of sandwich beams subjected to pure bending, 

where the axial force in the skin is a constant throughout the span. This, if coupled with 

the previous assumption of constant pressure q, leads to the right part of equation (2-18) 

being zero. The equation thus simplifies to be; 

d w ^d w 
+ 2- • + r] 

.2 (fyy 
= 0 (2-19) 

where: V = 
/("A: 

A 5 
Ai 

•+i (2-20) 
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2. Flexural Response of a Curved Beam on an Elastic Foundation 

The general solution of the homogeneous differential equation (2-19) is: 

w = KQ+ (AT, cosha*0 + smha O)cos 6 + (K^ cosh a* 6 + sinhar'^)sin P*6 

(2-21) 

where K. are constants. From this, the reaction force of the elastic foundation can be 

deduced as: 

p = Aq + (A, cosh a 6 + A^ sinh a*6) cos P''6 + (Aj cosh a*6 + A^ sinh a*6) sin fi*d 

(2-22) 

where 
a =.'% - 1 

(2-23) 
^ r = +1 

where A,. = kK., are also constants to be determined from boundary conditions. 

2) = 

This is the case when a curved sandwich beam is subjected to a pair of 

tension/compression forces at two ends. Again, the right hand side of equation (2-18) is 

zero again. Thus, the governing differential equation and solutions for the lateral 

deflection and reaction forces will be the same as (2-19), (2-21) and (2-22) respectively. 

2.5 Circular mid-plane symmetric composite beam 

For a laminate symmetric with respect to the midplane, the case becomes simpler, 

because there is no tension-bending coupling, i.e. B.. - 0. Hence, 
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2. Flexural Response of a Curved Beam on an Elastic Foundation 

M, Dn Dn 

Dn ^22 ^26 (2-%0 

Ae ^ 6 . 

Further, in the case of a special symmetric laminate whose material direction is the same 

as the principal direction, there is no bending-torsion coupling either, so and Djg 

become zero. The above equation then turn to be: 

Dn Dn 0 «".v 
• = Dn D22 0 

0 0 Dee_ 

(2-25) 

In such a case, and still considering a very long cylindrical shell and taking the 

assumption of the deformation independent of x, as in the above section about general 

laminate case, then: 

K : 
M 
D„ 

(2-26) 

d 9 
Substituting expression (2-11) in formula (2-26) and noting — ^ : 

D, -M (2-27) 

Combining equation (2-6) with equation (2-27), and simultaneously making the 

substitution s=R6, the final differential equation can be obtained as: 

d^w ^d^w 2 dw 1 1 dq 
— +2 - + 11 — = (2-28) 
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2. Flexural Response of a Curved Beam on an Elastic Foundation 

wkh: % = 
'11 

Again, noting that ^ is a constant, for a layered beam symmetric about its mid-plane the 

following differential equation is valid: 

^ + 2 ^ : + ' ; ' — = 0 (2-30) 

As can be seen, the form of equation (2-30) is the same as the form of equation (2-19). 

Only the coefficients 77 in (2-30) and rf in (2-19) are different. As a consequence, the 

above equation (2-30) has the same form of solution: 

w = KQ+{K^ cosh aO + Kj sinh ad) cos (36 + {K^ cosh a9 + sinh ad) sin pd 

(2-31) 

where again: (2-32) 

The reaction force of the elastic foundation is: 

p = kw = cosh + A2 sinh afi*) cos PO + {A.^ cosh -t- A4 sinh a(9) sin PO 

(2-33) 

The coefficients A; in the above formula can also be determined from boundary 

conditions. If the curved beam is symmetric with respect to the axis 6 = 0, then in the 

equations (2-31) and (2-33), only even-function parts remain: 
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2. Flexural Response of a Cwved Beam on an Elastic Foundation 

w = KQ-\-K^ cosh aO cos P6 + sinh aO sin PO (2-34) 

p = Ag + A, cosh aO cos PO + A^ sinh ad sin PO (2-35) 

2.6 Distributions of bending moment and shear force 

For a beam symmetric with respect to the axis (9 = 0, and from the geometry of the beam, 

it can be deduced that: 

1 1 
• K — — — 4 ^ W 

+2K^aP - + K^co^haOco% PO 
R 

+ 

+ JiT, )sinh sin + /ITJ (2-36) 

Noting the general form of the relationships in equations (2-20) and (2-23), the following 

relationships can be deduced; 

a - P = - 1 and a P -
1 K 6 

\ Ai 

Combining equations (2-36) and (2-10) and using equation (2-37), the expression for 

bending moment becomes: 

M = : ^ 7 V -
Ai 

D 
2 \ 

+2/^4 cosh a6'cos (2 38) 

- 2aPK^ sinh ad sin Pd\ 

From equation (2-3), and using the relationship for M from equation (2-38), the 

expression for Q becomes: 
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2. Flexural Response of a Curved Beam on an Elastic Foundation 

A, 
D „ - & 

2 ^ 
• ^K^a^ (3 -IK^aP^ )cosh or^sin (56 

+ (2^,0^^ -2Kp)sin\\adCO?.I3d\ 

(2-39) 

Also, from equations (2-2) and (2-39), the following relationship can be derived: 

D, 
B 2 \ 

A, 

V Ai y 

• - 2K^a/3^)cosha0sm PO + + 2K^a^ I3)?,mh aO cos P6\ 

(2-40) 

When N = NQ, i.e. a constant, it can be seen that the above equation is satisfied under 

any value of 6 only when: = 0. Thus, for constant N = NQ, the following 

results will hold true: 

4 ] ^ Ai 
NQ = RRKQ 

P ~ ^^0 

<2 = 0 

(2-41) 

The above conclusion shows that even in a general case where: (a) tension-bending 

coupling occurs as a result of the laminate layer; and (b) the beam is subjected to in-plane 

forces N and bending moments M , the shear force Q still is zero. Consequently, the 

curved beam on elastic foundation can still be considered as the problem in which 

stresses are independent of polar angle. 
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2. Flexural Response of a Curved Beam on an Elastic Foundation 

2.7 The effect of tension-bending coupling in general 

laminate 

By comparing formula (2-29) to formula (2-20), it is obvious that: 

7/ >7? (2-42) 

then, according to formula (2-32) and (2-23): 

or' >or ; yg* > (2-43) 

Therefore, the existence of tension-bending coupling in curved layered composite beam 

results in a bit larger oscillation in the distributions of mechanical variables p, w and M, N 

etc. along the span of curved beam. 

2.8 The solutions by taking into account the thickness of 

laminate 

Figure 2.3 Curved beam with thickness of t on an elastic foundation 
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2. Flexural Response of a Curved Beam on an Elastic Foundation 

Thickness of the laminate can be incorporated into the equations. If the thickness of 

laminate t is taken into account, equilibrium condition in radial direction (2-1) becomes: 

c t //c t 
- 9 ( — -

2 2 
(2-44a) 

Thus equilibrium equation (2-6) changes to be: 

A:(l 4 )w — (1 )q — N — 7-
2 ds 2 ds ds ds 

(2-45a) 

If it is an circular arch with constant curvature radius R, the above two equations (2-44a) 

and (2-45a) turn to be: 

p(!g + = cfg (2-44b) 

(2-45b) 

And also considering the existence of unidistributed pressure acting downwards on the 

inner surface of curved beam , as well as constant , by the similar deduction in 

the above subsections, following equations can be finally obtained: 

A 
A, 

5 

NQ -kiR + -)Kf^ -q^iR--) 

6 = 0 

(2-46) 

These results will be used in the following Chapters as force boundary conditions when 

an accurate general solution of orthotropic beam on an elastic foundation is obtained 

using a stress function approach. 
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3. Estimation of Response Usins Airy Stress Function Apyroach 

Stress Function Approach 

A very long cylindrical shell is still considered here, and also the applied forces and 

boundary conditions are both assumed uniform in cylinder axial direction (x-direction), 

thus the deformation is independent of x. Therefore the present problem can be analysed 

as a generalised plane-strain problem. 

3.1 Airy stress function and compatibility equation 

By introducing the Airy stress function in polar coordinates <I>(r,^), the stresses can be 

written as (Timoshenko, 1934): 

1 90 1 9^0 

(3-1) 

9 1 90 

The above equation automatically satisfies the equilibrium equations. For the problem 

under consideration, the stress components do not depend on 0 and, in addition, = 0 

(i.e. constant in-plane force and hydrostatic load). 

For the cylindrical material anisotropy, a compatibility equation can be obtained as 

(Lekhnitskii, 1981): 

— - + : 5" r + - r = 0 (-3-^) 
dr r dr r dr r dr 
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3. Estimation of Response Using Airy Stress Function Avproach 

£ 
where A = — (3-3) 

E, 

where E, and are the elastic moduli in the in-plane and through-thickness directions 

respectively, and X is known as anisotropy ratio. As can be seen, the stress distribution in 

anisotropic material depends on the elastic constants of material, which is different from 

isotropic material. 

3.2 General solution 

The general solution to the ordinary differential equation (3-2) is: 

0 = C, 4- (3-4) 

from which stress components can be obtained: 

(T, = 2 Q -h (1 + V%)C3. + (1 - V I ) Q -

(yg — 2C2 + (1 + 'jA)^fXC-x • — (1 — i • r ^ 

where C2, C3 and C4 are all constants which need to be determined. 

3.3 Determination of coefficients in solution 

In solving the problem, the coefficients C2, C3 and C4 in the above expressions (3-5) can 

be determined from appropriate boundary conditions. Equations of (2-46) obtained in the 

previous chapter are then considered as the necessary boundary conditions here. From 

equations of (2-46) and the geometry and considering the direction of the forces, also 

according to St. Venant Principle, the following relationships can then be deduced: 
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3. Estimation of Response Usine Airy Stress Function Avvroach 

r = R + — : <7, 
2 

r=R : <7, 
2 

Po = 

t t 
j fO'edr = # o = - t ( # + - ) A : o + g o ( # - - ) 

2 2 

j — ^0 

(3-6) 

Substituting the expressions of stress components (3-5) into the above boundary 

condition (3-6), then an equation group about the coefficients Ca, C3 and C4 can be 

obtained. In this equation group, there are four equations but only three unknown 

variables. However, it can be seen that the third equation is automatically satisfied when 

the first and second equations are both satisfied. This equation group can be solved to 

yield values of coefficients C,, Cj and C3. For simplification of the solution the entity 

S can be introduced: 

A 
& (3-7) 

Here: R. = R-— is the inner radius of curved beam, r = r + L is the outer radius of 
2 " 2 

curved beam. Also introducing A, A^and A^ as: 

A. = 
2 Mo + - 9/?,' (1 + VI)((^'-^ -1 ) 

(VI - i)(i - ) 2 

(3-8) 
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3. Estimation of Response Usine Airy Stress Function Avproach 

and denoting the relationships: 

(3-9) 

The coefficients of the stress formulae can then be obtained as: 

ICj — ~kKQ — (1 + -\/X)A3 — (1 — -x/A )A^ 

C4 — A4 • Rg 
i+V% 

(3-10) 

Substituting them into equations (3-5), the corresponding solution of stresses and 

are: 

a = [- kKg - (1 + V^)A^ - (1 -'\/A)A^]+ (1 + ' 

+ (1-VI)AX—) 

CTg = [- kK^ - (1 + - (1 - '/A)A^]+ (1 + ̂ fX) • VX • ' 

- ( l - V A ) . V I A X ^ ) - ^ - ' 

(3-11) 

3.4 Maximum value of cr. 

The location of the maximum value of , and consequently the most likely location for 

delamination in a laminate, is obtained using: 

da 

dr 
^ = 0 (3-12) 
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3. Estimation of Response Usins Airy Stress Function Avproach 

Using the following notation: 

r = R + ^ ; (3-13) 

And substituting expression (3-11) into equation (3-12), then the solution can be obtained 

as: 

2V% l + 

V ^ / 

(3-14) 

Then / = ^ + f 

which indicates the radial location where the maximum through-thickness stress <7̂  

maybe exists. 

Actually the result directly obtained from equation (3-14) is the location of stationary 

value of as shown by equation (3-12). Sometimes it corresponds to the minimum 

value and sometimes its value ^ exceeds the thickness scale of the considered curved 

beam ( - ^ < ^ < ^ ) . Therefore, the values of through-thickness tension stress at three 

locations should be calculated separately, as cr̂  

11). And then denoting: 

r=Ri ' and a . 
r=r 

by equation (3-

(̂ rmax = Ma%(Cr̂  r=Ri r=^) (3-15) 

which is the value of maximum through-thickness stress 
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3.5 Corresponding results for curved isotropic beam 

Here it should be noted that the above anisotropic solution cannot be extended to the 

isotropic case only taking A = — = l, though convergence to the isotropic solution can be 
El 

achieved by putting A close to 1. As is known, the isotropic material case of A = l 

actually corresponds to a double root of the characteristic equation arising from the 

generalised differential equation (3-2), leading to the logarithmic term in the expression 

of stress components and stress function. In homogeneous isotropic materials, as to the 

problem of plane symmetrical about the axis, the stress distribution can be described as 

(Timoshenko, 1934): 

(ĵ  = - ^ + 6(l + 21n r)+2c 

CTg = — ^ + £'(3 + 21nr) + 2c (3-16) 

If same boundary conditions as in equation (3-6) are assumed, then the constants in the 

expressions (3-16) can be determined as: 

a = (̂ 0 -Po ) -21n -^6 

b = 

2(7;/ - p j 

2c = - P o - ^ - ( l + 21n;?^)6 

(3-17) 
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4. General Solution for Curved Laminates and Sandwich Beams 

Laminates and Sandwich Beams 

4.1 Introduction 

Based on the solutions in Chapter 3, further analysis can be done to obtain a general 

solution for the problem of through-thickness stress in curved composite laminates and 

sandwich beams. A curved layered beam subjected to no-circumferential-dependence 

loads is considered in this chapter, as shown in Figure 4.1. This layered beam is 

composed of arbitrary number of layers among which each layer can be considered as an 

curved orthotropic beam or isotropic beam (e.g. 90° stacking laminae in laminate or core 

material in sandwich beam). Thus the solutions in Chapter 3 can be used here to analyse 

every layer in curved layered beam. 

Figure 4.1 Typical curved composite beam under loads 
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4.2 Extension of solution for curved orthotropic beam to 

layered beam 

Assuming there are n layers in curved composite beam, where every layer has the elastic 

coefficients: 

and 

and where the superscript (/) means this variable is related to the /th layer. The 

boundary conditions to be satisfied in every layer are as follows: 

r-r 
/-I • 

o = a (M) 

r = r,\ <7, = (7, 
f(0 

(') 

f' (7g-dr = N 

J' (7g •r-dr = M 

(4-1) 

(/) 

where cr''' is normal tension stress in the interface between / th layer and (i + l)th layer. 

In addition, following on from equation (2-46), there exist the following relations: 

f(') _ _(') 
d ( ' ) 

(i-i) 

i - l 

Df;) - A? 

4Q' (0 fL2) 

where Cq^'^ is assumed to be the radial displacement of zth layer in the global curved 

composite layered beam. 

In fact, every layer in the curved composite beam can be considered as an orthotropic 

beam or isotropic beam, with the interaction forces between adjacent layers taken as the 

reaction force of a kind of "elastic foundat ion"-and the water pressure -q. This is 

because in a mathematical context, and q, cr^'^and p have the same meaning. 

They are only constants in the formulae, under no-circumferential-dependence condition. 
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4. General Solution for Curved Laminatp.s and Sandwich Beams 

Then we analyse the plies of global laminate one by one. From boundary conditions for 

each ply—equations (4-1) and equations (3-11), the distributions of through-thickness 

stress-o> and in-plane s t r e s s - i n each ply can be expressed in form of functions of 

a 
(/) 

1=1,2,- and C, 
(0 

1=1,2 , e.g. in the ith layer, they are: 

(7, c r y ) - ( i + V ^ ) A ( ; ) - ( i - ](') ^T(0 
4̂ 

= 

n 

fi 

o-y) - ( 1 + - (1 - V ^ ) A , ]+ ( 1 + V ^ ) V ^ A ( ; ) ( - ^ i ) ^ - ' 
f! 

- (1 -

0^3) 

where the denotations of variables are all analogue to those in last section, among which 

and here are: 
( ' ) 

AC) = 
( 1 + 4 ^ ) ( i - ) (i ^ V F ) ( 1 - S'"-""-') 

A/') = 

2 M " ' - < V , ' + cr;'-'V„ 

( ' • ) 

^0) _ 1) 

(4-4) 

where the superscript (/) means this variable is related to the i th layer. 
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4. General Solution for Curved Laminates and Sandwich Beams 

As in the analysis for the curved orthotropic beam in the last chapter, here too the known 

boundary conditions at inner and outer surfaces of the curved layered beam can be 

imposed for the global curved layered beam: 

ov=-9o (4-5) 

Therefore, in the analysis of the whole laminate, there exist unknown variables 

<7 

all. 

( ' ) 
i=i ,2 , -,«-i and Cq^ i=\,2,-,n • The number of these variables is n + ( n - l ) = 2 n - l in 

4.3 The displacement compatibility conditions on the 

interfaces 

Following the above section, the task left is to determine these variables by appropriate 

conditions. The displacement compatibility conditions on the interface can then be used 

to achieve this goal. Because of the plane-strain assumption, the equations of Hooke's 

Law of anisotropic material (see Appendix A) can be expressed. 

£r = 
1 

K 

1̂2 

' K 

-

K 

1 

£re --
1 

•^re £re -- •^re 

where: 

1 - V,3V3, 

y' _ 1̂2 1̂3̂ 32 y __ 
1 - 1̂3̂ 31 

K = 

2̂1 -

1 2̂3̂ 32 

2̂1 2̂3̂ 31 
1-^23^32 

(4-7) 
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4. General Solution for Curved Laminates and Sandwich Beams 

Combining equation (4-3), (4-6) and (4-7) with the relationship between strain 

components and displacement components in polar coordinates: 

du^ 1 du„ 1 9w_ dUn Un 
(4-8) 

By integrating the above equations and noting the relation: = X = the 
£"2 

solution of displacement in /th layer can be finally obtained as: 

M. — 
' 1 y ; / ' 

„/(;) p/(i) 
ry) - (1 + )A/" - (1 - )A/" ]. r + 

R 

RQ 

c 

! + • 
/ \ 

r 

R 

4^ 

r 

R ^ ^ V 

\ 2 , Ez / 
ry) - (1 + V]^)A/" - (1 - V ^ ) A / ' ) ] rg - j" / (0)^/0 

(4-9) 

where the superscript {i) means this variable is related to the / th layer. The arbitrary 

function f ^ ' \ 9 ) in the above equations can be determined by the end displacement 

boundary conditions of individual layer of global curved composite beam. We assume 

that these arbitrary functions/'' '((9) corresponding to every layer are all the same in the 

whole layered beam, provided that there are no delamination or considerable shear slide 

on interfaces in this curved composite beam being considered. 

Known from Chapter 3, also the above anisotropic solution of displacement cannot be 

E, extended to the isotropic case by only taking A; 1. In homogeneous isotropic 

materials, as to the same problem, the displacement distribution in the 7th layer (here it is 
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4. General Solution for Curved Laminates and Sandwich Beams 

assumed that the jth layer can be considered as isotropic case, for example, the core in 

sandwich beam or 90° stacking laminae) is: 

- (1 + + 2(1 - y)6(^Vln r - (1 + + 2(1 - (g) 

- ^(y) 

(4-10) 

Similarly to the anisotropic case, the arbitrary function g'^^\0) in the above expression 

can also be determined by end boundary conditions of this analysed layer. And here we 

still assume that arbitrary functions or f ^ ' \ d ) are all the same, if there is no 

delamination or considerable shear slide occurring on interfaces in the whole layered 

beam. According to equation (4-1), then the constants in the above expressions (4-10) can 

be determined as: 

R: 

2c(^' =(%!" (1 + 2 In/;.) 

(4-11) 

The displacement compatibility conditions on the interfaces can be represented as: 

/ = l ,2,--- ,n-l 

I =1,2, -,M-1 
(4-12) 

(r),Ug^{r) are as expressed in equations (4-9), or equation (4-10), according to that 

this layer is orthotropic beam or isotropic beam under consideration. 
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4. General Solution for Curved Laminates and Sandwich Beams 

4.4 The global force boundary condition 

Apart from these, for the case of curved beam on an elastic foundation under no-

circumferential-dependence condition, as shown in Figure 4.2a, there is the global force 

boundary condition: 

mi 

where = kC "̂̂  

(4-13a) 

And for the case of curved beam subjected to pure bending, as shown in Figure 4.2b 

because there is no axial force N^, another global force boundary condition is provided 

according to the global equilibrium by equation (2-41): 

— B — 

Ai 
Ai -

Bn 
2 \ 

A 11 y {R. + K ) V 

4 C («) 

y 
(4-13b) 

(a) (b) 

Figure 4.2 Curved layered beam under different load condition 

As can be seen, there are; 2 x (n - 1 ) -i-1 = 2n - 1 equations altogether, just the same as 

the number of unknown variables. Thus the problem can be solved. Consequently, the 
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4. General Solution for Curved Laminates and Sandwich Beams 

through-thickness tensile/compressive stress-0 and in-plane tensile/compressive stress-

es in the present curved composite laminate can both be obtained. However, it should be 

noted that this general solution for curved layered composite beam on elastic foundation 

is under no-circumferential-dependence condition. Note also that 2...„ are the 

tensile through thickness stresses between every two adjacent layers - interface tension 

stress, which many researchers and engineers are concerned. 

The application and discussion of the theoretical approach developed in this chapter will 

be shown in chapters 7 and 9. 
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5. Stability of Curved Beam on an Elastic Foundation 

(Z!]bua]pt(er ISlbalbilitip of (Zui yiecl Btsawm om zin 

5.1 Background 

The background of the presented problem is the local instability of skin of curved 

sandwich beam. 

5.2 Problem statement 

Figure.5.1 Curved laminate on an elastic foundation 

Consider a curved beam lying on an elastic foundation which is subjected to compressed 

axial force and bending moment. It also possesses the possibility of instability, analogue 

to the problem of buckling of straight bar on an elastic medium which was first discussed 

by S.Timoshenko (1936). However, the geometry curvature of the beam make the 

problem more complicated. Here the Winkler hypothesis (Selvadurai, 1979) is still 

assumed, which means that the reaction of the elastic foundation, at each cross section of 
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5. Stability of Curved Beam on an Elastic Foundation 

the beam, is proportional to the normal deflection at that cross section and in the normal 

(i.e. radial) direction. 

In the usual case of a curved sandwich beam subjected to pure bending, for example, 

closing bending moment, its inner face is then under compression and buckling or 

wrinkling are possible to occur. In this Chapter, the core is considered as elastic 

foundation and the skin is considered as a curved composite beam lying on elastic 

foundation. In this section, we still denote the radial displacement as w, the coordinates 

are all the same as before. Therefore this problem is just the above problem of instability 

of curved composite beam on an elastic foundation as shown in Figure 5.1. 

5.3 Approach for solution 

5.3.1 General Solution 

Assuming the buckling deflection of curved beam lying on an elastic foundation is based 

on the equilibrium place, then the actual radial deflection of curved beam is: 

w = WQ + Sw (5-1) 

Where WQ is the radial displacement of the static equilibrium state (see Chapter 2) and 

Sw is a small perturbation. In the present problem, because axial force N in the curved 

composite beam (skin of sandwich beam) is constant A%, WQ is also a constant NQ/ k (k 

is the elastic stiffness of foundation), through the whole span of this curved beam. 

Then it is assumed that dw can be expressed by Fourier series according to the simply 

supported boundary condition; 

dw = ^ a . s i n ^ ^ (5-2) 
1=1 ^ 
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5. Stability of Curved Beam on an Elastic Foundation 

In the case of symmetric stacking laminate, there is the following relationship (Chapter 

2): 

M = D • K 

1 d^w w (5.3a) 
K = + • 

where K, M, D are curvature change, bending moment and flexural rigidity of beam 

respectively. According to equations (5-1) and (5-2), the above equation turns to be: 

^ ^0 + 1 — 
( 71^ 

2" 
. 710 

1 -
2" 

1 — — a, sin h 1 -
a I a J 

1 — 
2" 

. nd 
1 -

2" 
1 — a., sm h 1 -

a ^ (Z J 

Uj sm- - - 1 -

a 

. Ind 

(5-3b) 

sm- - + • 

The strain energy change of bending of the beam due to the small perturbation 5w is: 

AX = — i? [ MKdO -
2 Jo 

(5-4a) 

D 2 
where Vq a is the strain energy of bending of the bean at static equilibrium state. 

Substitute equation (5-3b) into the above, and noting: f s i n - ^ ^ s i n ^ ^ ^ J 0 = 0 (i j) and 
^ a a 

Jsin^ J6' = —, the following result can then be obtained: 

M=I 
4 #3 \ or y 

<2„ + • 
2DM/o « 

1 ^ ^ . . 1 
1=1.3 ,5 . ' 

5L 
n 

(5^b) 
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5. Stability of Curved Beam on an Elastic Foundation 

Analogously the deformation energy change of the elastic foundation due to the small 

perturbation dw is: 

2 9 Jo 9 2 0̂ 

= 2 ^ o W Z 
^ 6% ^ 

0=1.3.5" 
H—kccR 

4 

/ - A 
Z"/ 

V 1=1 J 

(5-5) 

Meanwhile, the change of the length of curved beam in circumferential direction is: 

(5-6) 

The relative change of the angle between two end cross sections of curved beam is: 

(5^ = 
1 dw a 

0 

a R 

r 

\̂ n=l,3,5,--- y 
+ 

(5-7) 

s 
V n=l J 

And using the relations (Chapter 2): 

Â o - kRwQ, Mq - ^2° (5-8) 

where Mo is the bending moment of this curved beam at the static equilibrium state, 

which is also a constant in present problem as Nq. 

Then the work done by all external forces during the period of small perturbation is: 
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5. Stability of Curved Beam on an Elastic Foundation 

A r = 

r , , D 

4 a / V n = l J 

^ 2;r Dwg ^ 

Vn=l,3,5,--- y 

(5-9) 

From the principle of virtual displacement (Timoshenko, 1934 and 1936): 

Ay, + Ai^ = A r (5-10) 

Substituting equations (5-4b), (5-5) and (5-9) into it, and also using the relation (5-8) 

again, the following result can finally be obtained; 

Da 

N, 

I 
n=I V or y 

+ kRa 
V '!=1 J 

iL 
Ra ' - w y 

8D a 

kR I n ,,='3,5,. \ or y 
5L + ZE Bof x-i 

fia. ^ 2 
^ n=l,3,5,- ^ 

(5-11) 

In order to determine the critical value of the load it is necessary to find such a 

relation between the coefficient a,,Oj,•••,«„ as to make the above expression a minimum. 

This result can be approached by making all coefficients, except one, equal to zero. 

When n is even, the above expression is simplified as: 

#0=-

Da 

R' 

f 
1-

f \2" ] 

. or J 

2 
<3̂  + 

i L 
Ra i - i j 

D 
1 -

'' riTT^ 2" 2 
D 

1 -
^ or J 

n 
(n=2, 4,6,...) 

(5-12) 

If n is odd, analogously, making all coefficients, equal to zero, except an, then the 

following equation can be obtained from equation (5-12): 

57 



5. Stability of Curved Beam on an Elastic Foundation 

N. 
or 

° n ' ' (n=3,5,7,...) C>13) 

So a„ can be solved out as: 

8Ar» 

n/r 

Nr 1 + 
D 

in=3,5,7,...) (5-14) 

an will become infinite in the above expression (that just leads to the unstable state of the 

being considered curved beam on an elastic foundation) if: 

N, 

D 

D 
{n-3,5,7,...) (5-15) 

As can be seen, the result of odd n case is the same as that of even n. 

Obviously, Nomin is dependent not only on the values a, k, D, R, n but also the relations 

between them. For n being both odd and even the same conclusion is achieved from 

equations (5-12) and (5-15): 

1 . D 
I ' - l 

D 
-^ + kR^ — 2 — - + — r l 

W ' J R^ i ? ' 
{n = 2,3,4,...) 

(5-16) 

The number of half-waves n in which the curved beam subdivides at buckling can now be 

determined from the condition that the above expression should be a minimum. Provided 
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5. Stability of Curved Beam on an Elastic Foundation 

that Nq is continuous function of variable n (and the other variables in the above are all 

constants), the minimum value of Nq then can be achieved, if and only if: 

^ 2 

D 

(or; 

L 
jw;" 

L 
D 

4 

leading to; « = — + (5-17a) 
7t ^ 

However, because n is an integer, not a continuous variables, the real result of n should 

be rounded off to the closest integer from the above value. It should be pointed out that, 

because n = I corresponding to the displacement of curved beam as a rigid body, the 

smallest number of half-waves n in which the beam subdivides at buckling is n = 2. From 

the above, as can be seen, if k is very small or D is very big (which means that the 

foundation is very soft or the flexural rigidity of curved beam is very big), then always n 

= 2, that is the minimum number of half-waves at buckling. On the contrary, if the elastic 

foundation is relatively hard or the curved beam is flexural, then the buckling of this 

curved beam will occur in more than two half-waves. 

Above all, once coefficient k, R, D are all given, the critical buckling load of the curved 

beam on an elastic foundation can then be determined: 

= Mm[A^o(n)] {n=2,3,4,---) (5-18) 

The number of half-waves in which the curved beam is most likely to occur buckling can 

also be determined simultaneously, as is expressed in the above. 

5.3.2 Flexural beam or hard foundation case 

In the following, the condition of relatively small D or relatively large k will be 

considered first. 
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5. Stability of Curved Beam on an Elastic Foundation 

If » 1, then equation (5-17a) turn to be: 

(5.17b) 
n \ D 

When n is very large, there occurs wrinkling or rippling. 

Noting l=Ra, then; 

A = 4 ^ (5-19) 
n 

which is the length of one half-wave. As can be seen, the wrinkling wavelength is 

independent of both arch angle a and the curvature radius R, which is just expected. 

From equations (5-16), (5-17a), and (5-18), we have; 

. 2 D ( — % ' - l ) 
A"" =----^7:) 

If • ^ - > > 1 , then combining equations (5-17b), (5-19) and (5-20), the following 

conclusion is obtained; 

Noting that, the critical value of the compressive force for wrinkling of a flat bar on an 

elastic foundation is (Timoshenko, 1936); 
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5. Stability of Curved Beam on an Elastic Foundation 

(5-2i2) 

If a curved beam made from isotropic material is concerned, there is D = EL It can be 

found that, equation (5-21) is just the same as equation (5-22), which means that the 

critical load value for wrinkling of curved beam on an elastic foundation is nearly 

identical to that for a flat bar case (the result for curved beam is only very little smaller). 

Therefore, under the same condition (and the elastic foundation is hard enough to make 

wrinkling rather than buckling occur), the curved beam on an elastic foundation has 

nearly the same possibility to lose its stability and result in wrinkling as the flat one. 

When R ^ , which means the result for curved beam converges to that 

for straight one. 

The equation (5-21) can also be rewritten as a very brief expression by substituting 

equation (5-19) into equation (5-21): 

However, it should be noted that, this formula is only fit for the case of wrinkling, in 

which the number of buckling half waves must be large enough. 

5.3.3 Stiff beam or soft foundation case 

If the foundation is not very hard or the curved beam is not very flexible, n should be 

given as 2 or more according to equation (5-17a), and then equations (5-16) and (5-18) 

should be used to calculate the critical load for buckling which is the function of arch 

angle a and curvature radius R . The calculation for results becomes more complicated 

than the above case. And the critical value is not similar to that of straight beam case any 

longer. Another extreme case is considered in the following. 
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5. Stability of Curved Beam on an Elastic Foundation 

If the condition is that D is relatively very big or k is relatively very small, which means 

the beam is very stiff or foundation is very soft. Then, according to previous conclusion, 

there is n = 2. From equation (5-16) and Noting l=Ra, the following result is true: 

= • 

1 + 
D 

1 f D ^ 
f - 1 

2 ^ D 4Dr 
— 

f D ^ 
— 2—r _j 

4 L*: j 

1 + - " 
kit 

.Rj 
+ 14" 

kK 

D 

n 

,4\ \4 
(5-24) 

As can be seen, the critical value of buckling load depends on not only the length of beam 

and foundation modulus, but also the curvature radius under this condition. Noting that 

the buckling load for a flat bar on an elastic foundation is (Timoshenko, 1936): 

& = 
kV 

(5-25) 

By comparing the above two equations, it can be found that when j? —> oo, equation (5-

24) converges to equation (5-25) of case that n-1. However, under the condition of big 

D or small k, the critical value of buckling load for a flat bar on an elastic foundation is 

calculated by equation (5-25) in which n = I (Timoshenko, 1936). Therefore, the 

buckling critical force for curved beam on an elastic foundation does not converge to that 

for flat bar case by only let R-^oo. 

5.3.4 "Unstable length 

Now equation (5-24) is considered again. Assuming that the curvature radius is a 

constant, then critical force value will achieve a minimum if it happens that 
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5. Stability of Curved Beam on an Elastic Foundation 

a -
2n 

4 1 + 
D 

(5-26) 

and then L 
2%R 

4 1 + 
D 

(5-27) 

Here is an interesting phenomenon. It is due to the existence of elastic foundation and the 

geometry curvature, under some conditions there exists an "unstable length"-- kr with 

which the beam has the minimum buckling critical load value. At this time, the shorter 

means the safer which is understandable, but the longer maybe also means the safer to 

some extent. That - we can say — is the characteristic phenomenon for the curved beam 

on an elastic foundation. 
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6. The Effects of Key Parameters on Flexural Behaviour Pattern 

(S: I l b i e I f j l x e d b s o f I ^ z & r a i i n f t i b e i i s o i a 

Flexural Behaviour Pattern 

As an application of the theoretical analyses given in Chapter 2 and 3, the effects of some 

key material- and geometry-related variables on stresses and displacements will be 

examined. In this section, we chiefly investigate the effects of A,S,R,k which is 

respectively anisotropy ratio of the material, ratio of outer radius to inner radius, 

curvature radius of the beam and stiffness of elastic foundation, and also the Poisson's 

ratio 1/(1/12) of the material of beam is studied. 

The model considered here is a curved orthotropic beam lying on an elastic foundation, as 

shown in Figure 6.1: 

Figure 6.1 Curved orthotropic beam on an elastic foundation 

From equations (3-14) and (3-11), the maximum through-thickness stress o and its 

location can then both be determined. Figure 6.2 shows the variation of ^ with respect to 

S , which is the ratio of inner radius to outer radius of a curved beam. indicates the 
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6. The Effects of Key Parameters on Flexural Behaviour Pattern 

location of the maximum normal, through-thickness stress; the distance is measured from 

the midplane axis. The result for the anisotropic beam without foundation is obtained 

from equation (3-14) by setting k to equal zero. Here we take:i?^= 1 (unit), anisotropy 

ratio A, = E^lE^ = 0.25 (which corresponds to typical glass fibre/epoxy composites), and 

assume k! £2= 0.25. As can be seen, when S approaches 1.0, i.e. the thickness of 

curved beam is very small compared to its curvature radius, the point of maximum cr̂  

approaches the midplane. In the curved beam with anisotropy, this point is closer to the 

midplane, and owing to elastic foundation, this deviation become smaller. 

o.ooE+00 

-4.00E-02 

8.00E-02 -

-1.20E-01 

-1.60E-01 

No foundation 

with foundation 

( f / O 

Figure 6.2 Effect of foundation on the location of maximum through thickness stress 

Figure 6.3 shows the variation of and maximum radial stress CĴ  as functions of S . 

The variables are normalised, Wg/f = 0-,, is the base stress. Here, again: 7(^=1 and 

anisotropy ratio = 0.25. It can be seen that if the foundation is very hard, the 

absolute value of maximum become smaller when S becomes bigger. However, if 

foundation is soft, the absolute values of maximum cr̂  first increase, and then steadily 
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decrease. Note that as d approaches 1.0, there is no big difference between the two 

cases-this is to be expected. 

0.5 

O.OOE+00 

-2.00E-02 

-4.002-02 -

-6.00E-02 -

-8.00E-02 

-1.00E-01 

-1.20E-01 

( f / ( ) 

k! E2= 1.0 

t /&=0.2 

Figure 6.3a Effect of S on the location of maximum a^ 

-1.00E+00 

-1.20E+00 

-1.40E+00 

-1.60E+00-

-1.80E+00 
/ ^ r m a x \ 

k/E2=L0 

A:/E2=0.2 

Figure 6.3b Effect of 5 on the value of maximum 

Figure 6.3 Effect of 5 (ratio of inner radius to outer radius) 
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Figure 6.4 Effect of 5 on the location of maximum — very soft foundation 
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Figure 6.5 Effect of 8 on the value of maximum cr̂  — very soft foundation 
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If the foundation is extremely soft, the results shown in Figure 6.4 and Figure 6.5 are 

quite different from the above results shown in Figure 6.3. 

As can be noticed, when elastic foundation is very soft, with k/E^ =0.01, 0.005 (such as 

the foam core of a sandwich), then the value of m a x i m u m cr̂  decreases steeply at first 

and gradually approaches to a constant when 8 becomes bigger and gradually 

approaches to 1.0. There is an abrupt change in the curves of Figure 6.4 showing the 

location of m a x i m u m It can be noted that the point of this abrupt change 

corresponds to the point at which value of normal tension stress nearly equals zero (i.e. 

cr̂  = 0) in Figure 6.5. Therefore, it is understandable that ^ varies very abruptly in the 

small local of this singular point. 

In order to investigate this singular point of ^ and confirm it is not due to numerical 

artefact. Figures 6.6a~6.6f show the distribution of through thickness stress along with 

thickness for those cases where the values of 5 lie in the vicinity of this "singular point". 

In Figures 6a~6f, the anisotropy ratio 2,= 0.25, and k/E2= 0.01. As described in Chapter 

3, ^ from equation (3-14) is actually the location of stationary value of ar. From Figures 

6.6a~6.6f, we can see the trend of changes of location where the stationary value exists. 

In the very small region of Se (0.73,0.74), the location of stationary value of changes 

from very close to inner face to very close to outer face of the curved beam. That is the 

abrupt change of ^ . 

(y/f) 1.00E-01 .OOE-01 
6 .00E-01 

O.OOE+00 
4.00E-01 

2.00E-01 -1.00E-01 

O.OOE+00 
2.00E-01 

2 . 0 0 E 0 1 

-4.00E.01 -3.00E-01 

( f / f ) 

Figure 6.6a 5 =0.70 Figure 6.6b 5 =0.73 
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Figure 6.6 The distribution of <7̂  through the thickness of the beam 

The above results (Figures 6.4 and 6.5) also show that if the foundation is very soft, then 

an "optimal thickness" of the curved beam can be specified which can make delamination 

stress— (7̂  be very small. 
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Figure 6.7a Effect on the location of cr̂  
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Figure 6.7 Effect of the elastic modulus of foundation 
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Figure 6.8 Effect of the anisotropy ratio of beam 

Figure 6.7 and Figure 6.8 show the effect of foundation stiffness k and the effect of 

anisotropy ratio ^ separately. It can be seen that A nearly has no effect on the 

location of maximum <7̂  in the most of the regions, but does have an effect on the value 

of maximum cr^. When X becomes bigger, the absolute value of maximum cr̂  also 
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becomes bigger, and gradually approaches to a constant. If 5 is close to 1.0 (for example 

6 = 0.95 in Figure 6.7), k also has no effect on the location of maximum , and even 

has no effect on the value of maximum . Nevertheless, if S is not close to 1.0, k also 

has effects on the location of maximum , and the value of maximum cr̂  especially in 

the region of small k value, e.g. when the foundation is very soft. 

Figures 6.9, 6.10 and 6.11 show the effect of radius of curvature under different 

conditions. In Figures 6.9 and 6.10, the value of outer radius is taken as %-axis, the 

thickness of beam t equals 0.1; in Figure 6.11, R^/t is taken as %-axis, and t equals 

0.01. 
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As can be seen, the radius of curved beam has big effect on the value of maximum cr^, 

especially when is not very big. The value of maximum <T̂  decreases considerably 
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initially when becomes bigger, although gradually this effect becomes less. For 

example, in Figure 6.11, after the point R^/t - 2Q, the radius of curved beam nearly has 

no effect on the value of maximum . There also exists a "singular point" about the 

location of maximum cj^, which corresponds to the point of being zero. This is in 

conformity with what has been discussed above and is consistent with earlier finite 

element analysis based results (Shenoi & Hawkins, 1995). The location of maximum 

changes very much in the beginning then approaches the midplane of beam with R̂  

becoming bigger. 

In contrast, in Figures 6.9, 6.10 and 6.11, Poisson's Ratio vhas little effect on the present 

delamination research. 
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Curved Composite Beams 

7.1 Introduction 

The effects of material- and geometry-related variables of a single-layer curved 

orthotropic beam and the elastic foundation on stresses and displacements have been 

examined in Chapter 6. In this Chapter, the effects of the stacking sequence of curved 

layered composite beam and the thickness of skin in curved sandwich on stress 

distributions along through-thickness direction are studied and examined based on the 

approach developed in Chapter 4. 

7.2 Effect of laminate stacking sequence on stresses 

The model considered here is a curved layered beam subjected to pure bending, as shown 

in Figure 7.1; 

r, w 

Figure 7.1 Typical curved composite beam under loads 
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In order to investigate the effects of stacking sequence of layered composite beam, an 

individual layer of unidirectional fibrous composite material is considered to possess the 

following properties (corresponding to a general E-glass/epoxy composite): 

£'^=38.6GPa £'j.=8.27GPa G^^=4.14GPa Gyy=2.76GPa 

= 0.26 l/yy = 0.5 

Vy = 0.45 

Where L signifies the direction parallel to the fibres, T the transverse direction, and 

is the Poisson ratio measuring strain in the transverse direction under uniaxial normal 

stress in the L direction. And it is assumed that the material characteristics through 

thickness direction are the same as those in the transverse direction totally. These 

properties are used in appropriate contexts in the equations for calculating stresses and 

displacements (3-3), (4-7) and (4-10). For example, for a UD ply with 0° orientation, then 

El = E l and Eg = for a ply with 90° orientation, = E j and Eg = which means 

isotropic in the y - z plane, thus E=ET. Similar analogies can be given for other 

properties or for other layups. 

Several separate stacking configurations are considered, namely: 

(1) [0°/0°] and [90790°] - Describing orthortropic and isotropic beam respectively. 

(2) [0°/90°] and [90°/0°] - Two bidirectional (coupled) laminates with the layers 

being of equal thickness. 

(3) [0°/90°/0°] - A symmetric 3-ply laminate with cross-ply stacking ratio m = 1.0 

(4) [0°/90°/0°/90°] and [90°/0°/90°/0°] - Two antisymmetric 4-ply laminates both 

with m = 1.0. 

(5) [0°/90°/0°/90°/0°] - A symmetric 5-ply laminate with the layers being of equal 

thickness. 

In each case, the curved beams have the same curvature radius: = 30 mm, 

= 36 mm , so the thickness of the beam is r = 6 mm. The curved beam is subjected to 

pure bending, the bending moment is M = -1000 N-m. 
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The functions of prime interest in the present case are radial stress cr̂  (the through-

thickness stress of the curved layered composite beam) and circumferential stress (7g (the 

in-plane stress of the curved layered composite beam). Under the no-circumferential-

dependence condition, shear stress equals zero. Based on the approach developed in 

Chapter 4, the solutions for and Gq are calculated and illustrated in Figures 7.3-7.7. 

In each figure, abscissa is the value of stress and ordinate is the normalized thickness 

z = zit. 

The stresses distribution in [070°] layered beam are shov^n in Figure 7.3. The results of 

[90790°] layered beam are very similar to Figure 7.3. This correspond to the result for 

curved orthotropic beam on an elastic foundation (Chapter 6), which showed that 

anisotropy ratio A has no significant effect on the stress distribution in the curved beam. 

The maximum through-thickness stress occurs on the inner side of the midplane of beam, 

very close to the midplane. Its value is 7.60 MPa. 

Figure 7.4 gives the results for [0790°] and [9070°] - two bidirectional (coupled) 

laminate cases. In each case, the layers are of equal thickness. The results show that there 

is a big difference between these two coupled laminates, not only in the distribution of 

through-thickness stress and in-plane stress, but also in their values. The maximum 

absolute values of a^ and Gq in [0790°] case are both more than 10% higher than those 

in [90°/0°] case separately. This difference will become bigger as the ratio 5{= IR^) 

decreases. In a flat layered composite beam, this distinguishing difference does not exist. 

In these two laminates, the maximum through-thickness stresses are both occur in the 0° 

layer. 

A similar result can also be found in the analyses of [0°/9070°], [0°/90°/0°/90°] and 

[90°/0°/90°/0°] laminates. The stresses distribution in these case are showed in Figures 

7.5 and 7.6. Three laminates have the same stacking ratio (m = 1.0). It is reasonable that 

the stress distributions are different among these cases due to their different stacking 
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sequence, but the maximum absolute values of stress in each laminate are quite different. 

The maximum values of through-thickness and in-plane stress are respectively 6.79 MPa 

and 192 MPa in [079070°] laminate, 8.54 MPa and 261 MPa in [079070790°] laminate, 

8.11 MPa and 240 MPa in [907079070°] laminate each. The maximum through-

thickness stresses in three cases all occur in the 90° layer and close to the midplane of 

laminate. 

Figure 7.7 shows the results for symmetric 5-ply stacking case. The value of maximum 

through-thickness stress in [07907079070°] laminate curved beam is close to that in 

[0°/9070°] case, only very a little higher. 

The above results indicate that the stacking sequence of layered composite beam does 

have an effect on stresses. In two-ply (coupled) case, stacking sequence [90°/0°] is 

"better" than [0°/90°]; in 4-ply case, stacking [90°/0°/9070°] is "better" than 

[0°/90°/0°/90°]. Under the condition of the same stacking ratio, apparently the [0°/90°/0°] 

is the "best" stacking sequence among the above stacking cases. It should also be noticed 

that in theory a unidirectional (UD) stacking is not a better one; the maximum value of 

through-thickness stress(7.60 MPa) in the UD case is more than 10% higher than that of 

[0°/90°/0°] case, although its maximum value of in-plane stress is lower(178 MPa). This 

indicates the possibility of identifying an "optimal stacking sequence" for a curved 

layered composite beam. 

7.3 Through-thickness stresses in curved sandwich beams 

In order to investigate the stress distribution in curved sandwich beams, two separate 

geometrical configurations are considered first: 

(1) Thick skin-sandwich panel with ^ 

(2) Thin skin-sandwich panel with t l t = — 
' " 1 0 
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The skin is a unidirectional cylindrical shell with the fibres oriented in the circumferential 

direction. The other geometrical variables of curved sandwich beam are the same as those 

of curved layered composite beam studied in the previous section. The material properties 

of the skin are the same as the above. The elastic constants of the isotropic core material 

of sandwich beam are: 

E= 1.103 GPa y = 0.3 

The curved sandwich beam is also subjected to pure bending, similar to the model in 

above section. The bending moment is also: 

M = -1000 N-m 

Anisotropic beam 

Isotropic beam 

Figure 7.2 Three individual parts in the global sandwich beam 

In our analyses, skins and core are considered as cylindrical anisotropic beam and 

isotropic beam respectively, as shown in Figure 7.2. Also using the approach developed 

in Chapter 4, the radial stress (Through-thickness stress) and circumferential stress in 

both skins and core can then be obtained. Because in our investigated samples, the inner 

skin and outer skin are the same, then there is = 0 in equation (4-13b). Therefore, this 

4(̂ (3) 
global boundary condition involved in solution becomes: ° 

Figure 7.8 shows the results for these two kinds of curved sandwich beam. As can be 

seen, a significant through-thickness stress gradient exists in the skin, but the maximum 
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through-thickness stress occurs in the core. It is sometimes at the interface between core 

and the inner skin, sometimes in the core but near to that interface (as shown in Figure 

7.8a). It can also be noted that the through-thickness stress changes only very slightly in 

the core; it keeps a high level nearly through the whole thickness of the core. This 

explains why in Gibson and Chandler's experiment (1994), delamination sometimes was 

seen to occur between either skin or core, and sometimes between both skins and the 

core. 

From the trends in Figures 7.8a and 7.8b, it is known that in a thin-skin sandwich beam, 

there is a smaller through-thickness stress than that in a thick-skin sandwich beam, but a 

bigger in-plane stress exists also in the thin-skin sandwich beam, which is reasonable. 

In order to investigate the effect of radius of the curved beam on stresses, another 

geometrical configuration of the curved layered composite beam is studied: i?,- = 18 mm, 

Ro = 24 mm. The thickness of the beam is still h = 6 mm. The curved beam is still 

subjected to pure bending, the bending moment is M = -1000 N-m. Here the [0°/9070°] 

stacking sequence is again considered. The results are as follows as shown in Figure 7.5. 

As would be expected, the radius of curved beam has big effect on the stresses, especially 

on the value of through-thickness stress, which is similar to the result for curved 

orthotropic beam (Chapter 6). As can be seen, when the thickness is stable and outer 

radius becomes a third smaller, the maximum of through-thickness stress in beam 

increases by 50%, simultaneously the maximum in-plane stress becomes a little bigger. 

7.4 Summary 

The effect of stacking sequence and radius of curvature of a curved layered composite 

beam on the distribution and value of through-thickness stress is chiefly investigated. 

Curved sandwich beams with thin and thick skin are also studied. The results show that 

the stacking sequences have a significant effect on the delamination and in-plane tensile 
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failure to some extent. The radius of curvature of the beam also has a large effect on the 

through-thickness stress, which is consistent with the results for a single layer curved 

orthotropic beam. The biggest through-thickness stress in a curved sandwich beam 

always occurs at the interface between inner skin and core or in the core but very close to 

that interface. 

- 0 . 4 

- 0 . 2 

0*10 2*10 4*10 6*10 no' 

Figure 7.3a Through Thickness Stress Distribution 

- 1 * 1 0 

- 1 * 1 0 

z/t 

Figure 7.3b In-plane Tension Stress Distribution 

Figure 7.3 Stresses Distribution Along Thickness in Unidirectional Laminate 

80 



7. Throush-Thickness Stresses in Curved Composite Beams 

1*10' 2 * 1 0 0*10 4*10 6 * 1 0 8*10 

- 0 . 3 

[av9a'] 
[9070-] 

- 0 . 0 zJt 

2 * 1 0 6 * 1 0 8 * 1 0 4*10 0*1 o 1 * 1 0 ' 

Figure 7.4a Through-Thickness Stress Distribution 

0 * 1 0 -3*10 2 * 1 0 - 1 * 1 0 1 * 1 0 2*10 3*10 

z/t 0 . 0 -

-3*10 -2*10 - 1 * 1 0 ' 0 * 1 0 1 * 1 0 ° 2 *10° 3*10 

CeiPa) 

Figure 7.4b In-plane Tension Stress Distribution 

Figure 7.4 Stresses Distribution Along Thickness in Cross-Ply Laminate 

81 



7. Throush-Thickness Stresses in Curved Composite Beams 

z/t 

R,~36mm 

R„—24mm 

0 . 0 -

*10° 2.0*10° 4.0*10° 6.0*10° 8.0*10° 1.0*10' 1.2* 

ar(Pa) 

Figure 7.5a Through-Thickness Stress Distribution 

2*10 - 2 * 1 0 1*10 0*10 1*10 

0.4-

0.3-

0.2-

0.1 -

0 .0 -

- 0 . 1 -

-0.2 H 

-0.3-

-0.4-

-0.5-

- 2 * 1 0 - 1 * 1 0 ° 0 * 1 0 ° 1 * 1 0 ° 

-0.5 

- 0 . 4 

0.3 

0.2 

- 0 . 1 

0 . 0 z/t 

-0.1 

- -0 .2 

-0.3 

-0.4 

-0.5 

2*10 

Figure 7.5b In-plane Tension Stress Distribution 

Figure 7.5 Stresses Distribution Along Thickness in Symmetric 3-ply Laminate 

82 



7. Throush-Thickness Stresses in Curved Composite Beams 

z/if 

0 * 1 0 ° 1 * 1 0 2 * 1 0 4*10 6 * 1 0 8 - 1 0 

- 0 . 3 

[90'/0'/90V0'] - 0 . 1 

0 . 0 -

0 * 1 0 2 * 1 0 4*10 6 * 1 0 8*10 

z/f 

1*10' 

Figure 7.6a Through-Thickness Stress Distribution 

-3*10 

3*10 -3*10 2*10 -1*10 0*10 1 - 1 0 2 - 1 0 

- -

z/t 0 . 0 0.0 z/t 

- 2 * 1 0 ° - 1 * 1 0 ° 0 * 1 0 ° 1 - 1 0 ° 2-10° 3-10° 

Figure 7.6b In-plane Tension Stress Distribution 

Figure 7.6 Stresses Distribution Along Thickness in Antisymmetric 4-ply Laminate 

83 



7. Throush-Thickness Stresses in Curved Composite Beams 

0 * 1 0 

z/t 

2 * 1 0 " 4*10° 6 * 1 0 " 

6 * 1 0 " 

Figure 7.7a Through-Thickness Stress Distribution 

8 * 1 0 ° 

0.0 vt 

-0.4-

0 * 1 0 8 * 1 0 " 

Tjt 

3*10 -3*10 - 2 * 1 0 - 1 * 1 0 0 * 1 0 1 * 1 0 2*10 

0 . 3 -

- 0 . 2 0 . 2 -

0.0 Vt 

0 . 2 -

-3*10' - 2 * 1 0 -1*10 0*10 1 * 1 0 ° 2*10° 3*10° 

Figure 7.7b In-plane Tension Stress Distribution 

Figure 7.7 Stresses Distribution Along Thickness—Stacking Sequence 

[0°/90°/0°/90°/0°] 

84 



7. Throush-Thickness Stresses in Curved Comvosite Beams 

z/t 

0 * 1 0 2 * 1 0 4*10 6*10 8 * 1 0 

Thick skin 
Thin skin 

0 .0 -

0*10 2 * 1 0 4*10 6*10 

-4*10" 
0 .5 -

- 2 * 1 0 

I 

a4-

0.3-

0 . 2 -

0.1 -

0 . 0 -

-0 .1 -

-0.2-

- 0 . 3 -

-0.4 — 

-0.5-
-4*10° 

Thick skin 
Thin skin 

2 * 1 0 

- 2 * 1 0 0 * 1 0 ° 2*10° 

z/t 

8 * 1 0 " 

Figure 7.8a Through-Thickness Stress Distribution 

4*10° 

- 0 . 5 

- 0 . 4 

- 0 . 3 

-0.2 

-0.1 

-0.0 z/f 

- - 0 . 1 

--0.2 

--0.3 

--0.4 

-0 .5 
4*10° 

cr@(fa) 

Figure 7.8b In-plane Tension Stress Distribution 

Figure 7.8 Stresses Distribution Along Thickness in Sandwich Panel 

85 



8. Delamination and Local Instability Damase Estimation of Curved Sandwich Beam 

Chapter 8: Delamination and Local Instability 

Damage Estimation of Curved 

kSawicLvMhch ISeztm 

8.1 Introduction 

Sandwich construction is widely used in industries where weight considerations have 

become important and has become an alternative in many new applications. In many such 

cases, curved sandwich panels or beams are needed. The geometry curvature in the 

structure results in not-so-insignificant through-thickness tensile stresses. These can 

significantly affect the performance of the structures due to the low values of through-

thickness tensile strength. For example, the delamination of the skin in curved sandwich 

beam is more likely to occur in such cases. The analyses on this kind of failure mode are 

given in Chapters 4 and 7. The effects of some geometry related variables such as 

thickness of skin and geometry curvature of the sandwich beam on through-thickness 

stress leading to delamination are also investigated in Chapter 7. 

One other feature of the curvature is the effect it has on the buckling/wrinkling 

characterisation of the face in compression. If the compression in the face of sandwich 

beam exceeds a critical load, this compressed face is then subject to a particular kind of 

instability which is either column/global buckling or local wrinkling/rippling. The local 

instability problem of straight sandwich beam can be studied by considering a long strut 

supported by a continuous elastic isotropic medium (Allen, 1969). However, as far as the 

curved sandwich beam is concerned, this problem becomes a little more complicated. In 

this chapter, the core material is still considered as elastic foundation and the Winkler 

Hypothesis is assumed. The theoretical solution achieved in Chapter 5 for critical value 
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of instability of a curved composite beam on an elastic foundation is then used to analyse 

the bending strength limit of a curved sandwich beam in the buckling/wrinkling failure of 

compressed skin. 

8.2 Problem statement and approach for solution 

Tensile stress 

Figure 8.1a Opening bending moment 

Compressed 

Stretched 

Figure 8.1b Closing bending moment 

Figure 8.1 Typical curved sandwich beam under different loads 

For flat sandwich beams a bending moment is transferred to the structure as compressive 

and tensile forces, while the core is subjected to very small through-thickness normal 

stress which can be neglected. The situation is different for curved sandwich beams. 

Through-thickness stresses occur due to the curved geometry in the structure. When a 

curved sandwich beam is subjected to an opening bending moment, as shown in Figure 

8.1a, this stress is tensile. This tensile through-thickness stress could directly result in 

delamination. If, on the other hand this curved sandwich beam is subjected to a closing 

bending moment, as shown in Figure 8.1b, the stress is compressive. Under this 

condition, delamination is not so likely to occur as in the previous case. However, 

because the inner face of sandwich beam is compressed then instability becomes the 

cause of concern. These two cases are studied separately in the following paragraphs. 
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8.2.1 MODEL A: Curved sandwich beam with opening bending moment 

According to the approach developed in Chapter 4, the through-thickness tensile stress 

distribution can be obtained, as has been shown in Chapter 7. Consequently, the opening 

bending strength limit can also be determined, provided that the through-thickness 

strengths of skin and core material and the adhesive strength of interface are all known. 

And also we can predict the occur of delamination in curved sandwich beam 

8.2.2 MODEL B: Curved sandwich beam with closing bending moment 

Consider a curved sandwich beam subjected to a closing bending moment. Its inner face 

is then under compression and instability becomes the cause of concern. In this section, 

the core is considered as an elastic foundation and the Winkler hypothesis (Selvadurai, 

1979) is assumed. The compressed skin is considered as a curved composite beam lying 

on an elastic foundation. The critical load for buckling/wrinkling of the compressed skin 

can then be derived under this condition that curved sandwich is subjected to pure 

bending by curved beam theory and virtual displacement principle, as derived in Chapter 

5. Thus the critical bending moment of curved sandwich beam can also be determined 

consequently in the failure of local instability (buckling/wrinkling) of compressed skin. 

M 
Curved composite 

M 

Elastic Foundation 

Figure 8.2a Global sketch Figure 8.2b Local sketch 

Figure 8.2 Sketches to analyse Model B 
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In calculating the critical bending moment, the following approximate formula is adapted 

to the thin skin sandwich sample: 

= (8 1) 

where Ncr is the critical value of buckling/wrinkling of skin which can be obtained from 

the theoretical solution in Chapter 5, and in the analyses, the elastic stiffness of 

foundation ~k is calculated by the approximation (Allen, 1969): 

k = E j t , (8.2) 

As far as thick skin curved sandwich beam is concerned, formula (8.1) is not suitable any 

longer. Meanwhile, the determination of critical value of skin Ncr is not very simple. The 

problem then becomes more complicated. 

8.3 Application and comparison with numerical and 

experimental results 

8.3.1 Through-thickness stress in curved sandwich beam with opening 

bending moment 

In order to investigate the stress distribution in curved sandwich beams, the approach 

developed in Chapter 4 about through-thickness stress is applied to analyse two samples 

once used in Smidt's research work (Smidt, 1993 and 1996). The theoretical results are 

compared with corresponding numerical results and other approximate analytical results. 

The magnitudes and material properties of curved sandwich beam sample are as follows: 
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Width b = 95 mm, Inner radius of core R=166 mm 

Skin thickness tf= 2 mm, 10 mm Core thickness tc=50 mm 

Young's modulus of skin; In plane-Ei = 18.1 GPa; 

Through thickness—E2= 9.05 GPa (assumed) 

Young's modulus of core: Ec = 55 MPa 

Poisson's ratio of skin: V\2=0.4, Vai = 0.2 (assumed) 

Poisson's ratio of core: v= 0.3 

'10° 3 .0*10 ' 6.0*10° 9.0*10= 1.2*10 

77://% Care 
- 0 . 5 

& 2 5 -

r / 2 0.0 - 0 . 0 

- - 0 . 2 5 -0 .25 

-0 .75 

-1 .25 

*10" 3.0*10° 6.0*10° 9.0*10° 1.2*10° 

4 / 2 

Figure 8.3 Through-thickness tensile stress distribution in curved sandwich beam 

Figure 8.3 shows the results for these two curved sandwich beam samples. In this figure, 

abscissa is the value of through-thickness stress and ordinate is the normalised thickness 

z = —-—, where tc is the thickness of core. As can be seen again, a significant through-
12 

thickness stress gradient exists in the skin, and the maximum through-thickness stress 

generally occurs at the interface between core and the inner skin (sometimes in the core 
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but near to that interface). It can also be noted that the through-thickness stress changes 

only very slightly in the core; it keeps a high level nearly through the whole thickness of 

the core. This explains why in Gibson and Chandler's experiment (Gibson et al, 1994), 

delamination sometimes was seen to occur between either skin or core, and sometimes 

between both skins and the core. 

Comparing the trends in thin skin case and thick skin case, although in a thick-skin 

sandwich beam, there is a smaller through-thickness stress than that in a thin-skin 

sandwich beam, it should be noted that the thickness of thick skin is five times of the thin 

skin and the distance between the centrelines of the faces increased up to 15.4%, which 

lead to bigger general bending stiffness of sandwich beam and much bigger weight of 

course. If the total thickness of sandwich beam is kept constant, then thick skin structure 

pose the bigger through-thickness stress which has been shown in Chapter 7. 

-1.2*10° -8.0*10' -4.0*10' 0.0*10° 4.0*10' 8.0*10' 1.2*10° 

TTzfcA: atm 
77% m .FArm 
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0.5 

- 1 . 0 

1—'—' ' I '—'—^ 
-1.2*10° -8.0*10' -4.0*10' 0.0*10° 4.0*10' 8.0*10' 1.2*10 

-1.5 

aAPa) 

Figure 8.4 In-plane tensile stress distribution in curved sandwich beam 
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The results for in-plane tensile stress are shown in Figure 8.4. The largest value of in-

plane stress in thin skin sandwich beam is as 3.93 times big as that in thick skin one 

(Noting that the thickness of thick skin is five times of the thin skin, and both samples 

have the same thickness of core). 

Here it should also be pointed out that Gibson et al (1994) and Smidt (1993) once gave an 

approximation separately for calculating the maximum through-thickness stress in curved 

sandwich panel with thin skin which can both be expressed as: 

Max.(7 J.——— (8 3) 

where in Gibson's formula R is the curvature radius of mid-plane of core and t is the total 

thickness of sandwich panel, while in Smidt's formula R is the inner radius of core and t 

is the thickness of core (which is later optimised to the distance between the centrelines 

of the faces (Smidt, 1996)). 

Applying the formula for the above sandwich beams, Gibson's approximation 

underestimates maximum through-thickness stress considerably, especially to the 

sandwich panel with a thick skin, meanwhile Smidt's approximation overestimates 

maximum through-thickness stress. 

Smidt also studied and examined the stresses distribution in these two sample and effects 

of material- and geometry-related variables of curved sandwich beam by FEM. In the 

numerical analyses (Smidt, 1993 and 1996), the maximum values of through-thickness 

stresses are 1.14 MPa and 0.95 MPa respectively, which are both located at the inner 

interface. As can be seen, the theoretical results—of about 1.16 MPa and 0.985 MPa— 

coincide well with the numerical results. 

The radius of curved sandwich beam also has big effect on the stress, especially to the 

thick-skin sandwich beam. In the third case, the thicknesses of core and skin are both the 
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same as the above ones, only the inner radius decrease from 166 mm to 116 mm. The 

result for this case is shown in Figure 8.5. In this figure, ordinate is the normalised 

thickness z/t. As can be seen, the maximum of through-thickness stress increases 

significantly. 

t 

3.0*10 6.0*10 9.0*10 1.2*10 

0 . 3 -

3.0*10* 6.0*10 9.0*1Gf 

(Tr(Pa) 

1 . 2 * 1 0 

t 

Figure 8.5 Through-thickness tensile stress distribution in curved sandwich beam 

with small radius 

8.3.2 Strength of curved sandwich beam with closing bending moment 

compared to experimental results 

As an application example of theoretical solution for instability of curved composite 

beam on an elastic foundation, the experimental results by S. Smidt (1993) are quoted 

and compared with the theoretical analyses. 

93 



8. Delamination and Local Instability Damase Estimation of Curved Sandwich Beam 

Many sets of experiments on curved sandwich beams were designed and completed by 

Smidt, much part of which were investigation on the failure of curved sandwich beam 

under pure bending load. When the curved sandwich beam is subject to a critical closing 

bending moment, buckling in inner skin of sandwich beam will arise from compression. 

This is obviously local instability of the general beam. Thus the inner face and the core of 

the sandwich beam will then be considered as curved beam and elastic foundation 

respectively in the theoretical analyses. 

It should also be pointed here that Smidt's typical sample is composed of straight part and 

curved part; and in some experiments, the buckling occurs in the straight part of the beam 

or very close to the transition between curved part and straight part. Therefore, these 

experiment results should be neglected. Three sets of tests are chosen here for 

comparision. The magnitudes of the curved part of the sample are as follows (Smidt, 

1993): 

Width = 95 mm. Inner radius i?=7(5(5 mm 

Skin thickness tf=2 mm, Core thickness tc=50 mm 

The material property of the core: 

H60 : Density-p=60 kg/m^; Young's Modulus-£'c=55 MPa 

H130: Density-yO=iJ0 kg/m'^; Young's Modulus-£'c=i^C MPa 

The Young's moduli for the faces were 12 GPa (Woven roving laminates) and 18.1 GPa 

(Knitted cloth laminates). 

Results from tests are then compared to calculation results from the above theoretical 

analyses. In theoretical analyses, the critical value of local instability of the skin is 

obtained from the approach presented in Chapter 5, and the critical bending moment is 

then calculated by formula (8.1) because the samples considered in this section are all 

thin skin samples. Both the theoretical results and experimental results are shown in 

Table 1. It could be seen from Table 1 that the theoretical results in all cases qualitatively 

agree with the experiment results respectively. 
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Table 8.1 Strength of curved sandwich beams with closing moment compared to theoretical 

results 

Face Core 
Failure Load 

(experimental) 
[Nm] 

Critical Load 
(theoretical) 

[Nm] 

GRP(biaxial) 
H60/60 

Heat formated 
754 921 

GRP(triaxial) 
H60/130' 

Heat formated 
1875 1803 

GRP(triaxial) 
H130/130 

Heat formated 
2011 1803 

• H60/130 means the core material in the straight part of sandwich beam H60, and in the curved part 

H130. H60/60 and H130/130 in the same column have the similar implication. 

8.4 Summary 

An elasticity-theory-based approach is used for studying through-thickness tension in 

curved sandwich beam whose behaviour is referred to under pure bending load condition. 

Since the solutions are exact within the assumptions of linear elasticity, there need be no 

strict distinction between thick and thin skin curved sandwich beam. The biggest through-

thickness stress generally exists at the interface between core and inner face. The results 

from theoretical analyses satisfy well with the numerical results by other researchers, and 

are compared to two simply approximation formulae. 

The critical bending moment for local instability of curved sandwich beam is also 

presented. The solution is based on consideration for buckling/wrinkling of curved 

laminate on an elastic foundation by beam theory and virtual displacement principle. 

Analyses for three samples give qualitative agreement with the experimental results in the 

literature. 

The approaches presented in this thesis can therefore be used as a simple design tool for 

estimating ultimate limit state capability of a curved sandwich beam. 
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The developed approach could be applicable in practical contexts involving the design 

and characterisation of tee joints, for example. A typical tee joint, with variables 

influencing the design, is shown in Figure 9.1. Currently such structures are analysed 

using physical (Hawkins et al, 1993; Shenoi and Hawkins, 1992) or numerical modelling 

(Shenoi and Hawkins, 1992; Dodkins et al, 1994). Much of the experimental (and FEA) 

work relates to a 45° pull-off condition, where the tee piece is clamped on the two flanges 

and a load (at 45°) is applied to the tip of the web, as shown in Figure 9.2. In most of the 

work it has been shown that the performance of the joint is dependent on the strength of 

the boundary angle. A critical condition determining performance is the value of through-

thickness inter-laminar tensile stresses, which induce the first delamination in the 

overlaminate or boundary angle and thus lead to eventual failure of the joint. Currently 

such conclusions can only be drawn after comprehensive and detailed numerical 

modelling. 

F (Load) 

No. and Material 
Makeup of Plies 

Lengths of Overlamination 

Fillet Radius 

Type of Resin 

Length of Overlap 

Gap 

Curved Beam 

Elastic 
Foundation 

Figure 9.1 A typical tee-joint configuration Figure 9.2 Boundary conditions 
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9.2 Application 

The analytical approach developed in this paper is amenable for a relatively simple 

application to the boundary angle in the tee joint. Table 9.1 lists the design particulars of 

four different joint designs - all subjected to a 17.23kN pull-off load shown in Figure 9.2. 

Table 9.1 Design details of the tee jo in t s 

Sample 
Boundary angle 
thickness (mm) 

Fillet radius 
(mm) 

Fillet overlay Resin 
Edge gap 

(mm) 

B 15 50 CR1200 20 

F 2 75 2WR' CR1200 15 

K 2 50 2WR CR1200 15 

L 2 75 2WR+CSM+ polyester 15 

® * WR - woven roving; 

• + CSM - chopped strand mat 

Table 9.2 Comparison of FEA with curved beam model results 

Sample 
Numerical Result [24,25] 

Maximum T-T Stress 
(MPa) 

Theoretical Result 
Sample 

Numerical Result [24,25] 
Maximum T-T Stress 

(MPa) 
Maximum T-T Stress 

(MPa) 
Location 

B 1&85 Very large (>50.00) Near midplane 

F 2J9 519 interface 

K 14.28 interface 

L &05 8.09 interface 

In the brief theoretical analyses for these samples, it is assumed that in the transition part 

of tee joint the load is totally sustained by the overlaminates and the shear forces in the 

overlaminates are neglected. By dividing load into vertical and horizontal components, 

and Fî , as shown in Figure 9.2, the axial force and bending moment in every 
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overlaminate can then be approximately calculated. The left overlaminate obviously 

posses the bigger axial force, thus it was taken as the object to be analysed by the 

approach in Chapter 3. It should be noticed here that the practical load condition actually 

does not coincide with the load condition required in the theoretical approach which is 

no-circimferential-dependence. Therefore the analyses presented here will give only 

relatively approximate results but can provide qualitative trend in a series of samples. 

The inter-laminar tensile stresses calculated from the curved beam model are listed in 

Table 9.2 and compared with values deduced from previous FEA analyses (Shenoi and 

Hawkins, 1992; Dodkins et al, 1994). As can be observed, there is close qualitative 

agreement of results in all cases. Importantly the trend is consistent. The reasons for the 

differences are two-fold. Firstly, deducing the boundary conditions at the edge of the 

boundary angles for purposes of analytical calculations proved difficult. Therefore some 

simplifications had to be made regarding the fixity and rigidity of the root region of the 

joint. These assumptions led to increased apparent stiffness in the boundary angle, 

leading to increased stresses. Secondly, the numerical analyses were carried out with a 

geometrical non-linearity option whereas the curved beam analytical model is based on 

inherent geometric and material linearities. This again would tend to increase (deflection, 

strains and thus) stresses. Such simple closed form, curved beam analyses can thus be 

used as a quick design reference to check for adequacy in a load-bearing context. 

9.3 Summary 

The approach for treating curved orthotropic beams resting on an elastic foundation and 

subjected to flexural loading has been also used to analyse four tee joint samples. The 

analytical results show close qualitative agreement with the results of FEM in all cases. 

The trend is consistent with the conclusion of numerical analyses or experiments. The 

approach is simple enough to be used for both qualitative and quantitative evaluation at 

design stages of practical structures. 
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10. Delamination Bucklins of Curved Composite Beam 
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Composite Beam 

10.1 Introduction 

As is known, delamination can significantly reduce the load-bearing capacity of 

composite structures. Delamination in curved composite laminates is more likely to be 

introduced during operational life as well as during the manufacturing process. One of the 

primary causes for delamination during operational life is the not-so-insignificant 

through-thickness tensile stress in curved laminates. One of the ways in which early 

structural failure can be caused is by delamination buckling. Local delamination can be 

considered as a crack in the interlaminar bond. Under buckling there appears a high 

interlaminar stress level at crack tip which leads to the crack process. Delamination 

growth can also lead to structural instability. 

In recent years the problem of delamination buckling has been studied by some 

researchers, both experimentally and theoretically. However, it is noticeable that most of 

the work concerns straight laminated beams. 

The delamination buckling in curved composite beam is investigated in this chapter. 

Based on linear and non-linear curved beam theory coupled with fracture mechanics 

concepts, two theoretical approaches are developed respectively for linear and nonlinear 

problems of delamination buckling which are concerned in the cases of normal 

delamination buckling and snap buckling. The general solutions are also applied to 

analyse some special cases e.g. delamination occurring at midplane and very close to 

surface of the beam. The effects of the arc angle of delamination crack and the radius of 

curvature of the beam etc. on the critical load in each case are also evaluated. 
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10.2 Problem Statements 

The proposed problem deals with a circular arc shaped composite beam subjected to pure 

bending. This can be sub-divided into two cases. 

Firstly, consider the case of a curved beam with pre-induced delamination in the middle 

of the whole span under the action of opening bending moment, as shown in Figure la. 

Here, in the middle part which contains delamination, the outer ply is subjected to 

compression and bending, while the inner ply is subjected to tension and bending. Upon 

further loading, the delamination crack will be opened and the outer ply may buckle to 

some extent. If the load—couple Mo exceeds a limit, then the crack will progress. 

Actually this is a problem of coupled delamination and delamination induced buckling. 

Secondly, consider the case of a curved beam with or without pre-induced delamination 

under the action of a closing bending moment. Thus the inner layer is subjected to 

compression and bending. When this compression reaches a critical value, the inner layer 

will suddenly transfer to a new equilibrium state by a snap mechanism, as shown in 

Figure lb. Even if there is no pre-induced delamination, due to the weak interlaminar 

strength, this kind of snap buckling is also likely to occur in the inner thin film. 

(a) Opening bending moment (b) Closing bending moment 

Figure 10.1 curved composite beam subjected to pure bending 
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These cases will be investigated separately in the following two sections. Further, it is 

assumed that the delaminated part or potentially delaminated part is in the middle of 

global beam. Then owing to symmetry, only half the global beam need be considered. 

Actually because the curved beam is subjected to pure bending, the length of 

undelaminated part does not affect the mechanical characteristics of global beam. 

10.3 Linear Problem—Delamination and Delamination 

Induced Buckling 

10.3.1 General solution 

As described above, in the case of a curved beam with delamination in the middle part 

and under the action of an opening bending moment, The problem is one of coupled 

delamination and delamination induced buckling. Here it is assumed that the new 

equilibrium form of delaminated part is close to the equilibrium form before deformation. 

Hence this problem is still considered as linear problem and linear theory is used for 

analysis. 

Beam 2 

Beam 3 

Beam 1 

Figure 10.2 Delamination buckling in curved beam subjected to opening bending 
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The model sketch is shown in Figure 2. Assume the delamination is located exactly in the 

middle of the beam. The whole span is then symmetric. Hence in the following analysis, 

only the half span is analysed. Appropriate boundary conditions are placed at the 

symmetry cross section AA . The delaminated curved beam is further divided into three 

parts, the normal undelaminated part is designated as beam 1, the outer layer of 

delaminated part is designated as beam 2, the inner layer is beam 3, as shown in Figure 2. 

The load applied on each beam and the respective boundary condition are shown in 

Figure 10.3(a). 

Beam 2 

Beam 3 

Beam i\ =2,3 

Beam 1 Mr) 

M2C6) 

^ 3 ( / 3 ) 

(20 (b) 

Figure 10.3 Model sketch for every part in the global beam 

The general bending equation for a curved beam with a radius of curvature R is 

— - + w = — ^ ^ 
D 

(10-1) 

where D is the flexural rigidity of the beam and M is taken to be positive when it 

produces a decrease in the curvature. 

It should be noted that a curved beam without any other restriction (e.g. foundation etc.) 

can only undertake pure bending or a pair of forces applied along the line linking the two 
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applied points. Therefore, the direction of forces acting on beams 2 and 3 can be known, 

which according to the considered conditions should be in the horizontal direction as 

shown in Figure 10.3a. Beams 2 and 3 can be described uniformly by Figure 10.3b, and 

the internal bending moment at any cross section of the beam can consequently be 

expressed uniformly as: 

M, (^) = M/yg) - 7̂  cos ̂  cos yg), f = 2,3 (10-2) 

Substituting this into the bending equation (10-1), the following equation can then be 

obtained 

^ ^ ^ cosd-^-[M•[^) + P^R.cosi = 2,3 
D: 

(10-3) 

The solution of this differential equation is 

R: P:R: 
w, = A. cos ̂  -k sin ̂  M,. (/)) + 7̂ 2?, cosyg] + ( = 2,3 (10-4) 

Beam I is subjected to pure bending, and its displacement can be solved directly by 

equation (10-1) and where the M(d) is replaced by constant Mo 

W[ = A; cos 0+ B^ sin 6-
D 

(10-5) 

Noting the symmetry condition, 5 ; = 0 ( / = 1,2 and 3). Then the radial displacement in 

each part beam is: 

w, = A cos 9 — 
' ' D 

R^ P R^ 
iW2 = A2C0sd--^[M 2(/3) + PjRj COS ^ s i n ^ 

R 
W3 = AjCOsO —[M^{P) + P-^R.^ cos + sin 0 

D. 2D, 

(10-6) 
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where 

t - d 

' 2 

R. = R 

Thus there are seven unknown variables in the above results: Ai, A2, A3, Mj, M3, P2, P3. 

Here it is assumed: 

tViLwo =0 (10-7) 

The displacement compatibility in the cross section of 0=;^ leads to: 

-7.' 

(10-8) 

1 dw2 , _ 1 dwĵ  
,^3 dd dd 

Further, according to the equilibrium condition at cross section BB in Figure 2, there are 

the following relations hold true: 

t-d d (10-9) 
M3(yg) + P; ^ COSyff-P3—COSyg= Mq 

As can be seen, there are just seven equations altogether—equations (10-7)~(10-9). Thus 

the coefficients in the above result expressions (10-5) can be all solved out by these 

equations as follows: 
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A = M X 
D 

4MQ D 

R f a 
cosfi-

R^ r D, 
cosfi-

D U 2 ^3 J 
cosfi-

D [^2 ^3 J 
(l - cos 0) 

sin/? 
+ COSy0 

(10-10) 

(10-11) 

D 2D, 

(10-12) 

Mj{p) = A.^—|-cos/?+P2^2 ->^sin/?-coSy5 + M g — 5 - — ( l - c o s / ? ) 
R, 

D (I 
M^{P) = A^—|-cosy0+—/?siny0-cosy5 

v2 

° D 

D 
(10-13) 

+ Mq 5- —(l-C0Sy5) ° D 

Consequently the bending moment in beams 1, 2 and 3 respectively are: 

M,((9) = Mq 

M2iO)= M2(/3) + P2R2 cosP2R2 cos6 

Mj(d)= M^(0) + P^R^ cosjB- P^R^ cos0 

(10-14) 

The consequential strain energies in the beams are: 

2D 
1 

-'o 2D, 

^ Jo 2D, 3 \ / 3 

(10-15) 

The total strain energy in the global curved beam is then obtained: 

(/ = [/, +[ /2+[ /3 (10-16) 
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From the Griffith's criterion of fracture, the following relation is true; 

ac/ 

d(R-0) 
= 2r (10-17) 

where R* - R + — - d which is the curvature radius of delamination crack, and T is 
2 

surface energy (energy required to form a unit of a new surface in the body). Substituting 

all the related equations into the above relation, the external bending couple Mq can then 

be finally solved out as a function of half arc angle of delamination crack /?, given that 

other parameters are all fixed. 

Obviously the expression of this solution for the general case is very complex, so it is not 

given here for reasons of saving space. Two usual important cases will be considered in 

detail in the following sections as examples for the above analytical approach. 

10.3.2 Delamination occurs at the midplane of curved beam 

According to previous work (e.g. Shenoi & Wang, 2001), the maximum through-

thickness tension stress in curved orthotropic beam always exists in a location very close 

to midplane; so delamination is most likely to occur there. Also the occurrence and 

growth of the delamination is assumed to be in its own plane in keeping with the laminate 

character of layered composite. We note that the delaminated layers may not possess the 

same properties of the original perfect beam. Such material behaviour change can be 

readily dealt with at the expense of introducing additional parameters into the problem, as 

shown in the above. However neither the physical principles involved in the analyses nor 

the general character of the results will change, hence attention to these details will be 

omitted here and in the following parts. For simplicity reasons the properties of the 

curved beam are assumed homogeneous, linearly elastic, and the same before and after 
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delamination. Further, it is assumed here that delamination is exactly at the midplane so 

as to simplify the problem, with d = t/2 , leading to D2 = £>3 = D/8. 

Let 3= t/R. Assume ( J « 1, so (t-d)/R and d/R « 1 too. Then 

^ = -P. 
M„ 

(10-18) 

sin/9 
+ cos^ 

Substitute this into expressions (10-12) and (10-13). Further, because S « 1, for the 

reasons of simplification the approximation: R2~ Rs- R holds true. A2, A3, Ma and M3 can 

all be determined then: 

^ ^ 4/ ; ' Mo y 

^ S \ 

3 - — cos ̂  (sin (3 + P cos 0) 

P + sm/S cos P 

3 - —cos/? (sin/? + /?cos 
D D t P + s i n P cos /? 

M, 
Mq 3 MQR „MQR s i n C O S / ? 

. -| j -

2 t t /? + sin^cos /? 

Mq 3 MQR „ MQR sin ^cos/? M 3 = : T ^ - — ^ + 3 ° 
8 2 f t P + smP cos P 

(10-19) 

The equations (10-15) can then be simplified as 

4R tP 9 

AR cP 9 
M,\e)de 

(10-20) 

and the relation (10-17) can be simplified as: 
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IRT (10-21) 

By substituting equation (10-19) into equations (10-15) and (10-16), and then using the 

relation (10-20), the final solution can be deduced: 

jlDT 

isw 

(10-22) 

where Mo is the critical value of Mq for the progress of delamination crack, and: 

= / W - f 

'^y0-siny5cosy5^ sm ficos P- PPcos^ P ( 2sin^y0 

+ sin y5cos/? 
+ • 

[P + sm P cos, 0) P + smPcosP 

(10-23) 
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Figure 10.4 Dimensionless critical load with respect to half arc angle of delamination 
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According to equations (10-22) and (10-23), the trend of normalised critical bending 

moment with respect to normalised half delamination arc angle /3/7r is shown in 

Figure 10.4 as a dashed line under the condition that R/t=10. 

If P is large enough, compared with the first term in the right side of expression of g{P), 

the second term is usually small enough to be neglected, then the result can be further 

simplified: 

' (10-24) 
VdT 3 ^ / 7 ^ 

Considering the extreme condition of /? = 0, which means there is no delamination in 

curved beam at first: Urn f[0) = Q. Then the critical value of Mq from equation (10-24) 

at this condition becomes infinite, which is expected: 

AfJLw,:-* (10-25) 

However it should be pointed out that when P'ls, small, the value from equation (10-24) is 

always quite larger than the value (designated as MQ) which induces through-thickness 

tensile stress exceeding the interface strength of curved composite beam and leading to 

delamination. Therefore, as far as the critical value of bending couple for curved 

composite beam with delamination crack is concerned, it should be the smaller of these 

two value (Mo* and M^)—designated as Mj: 

Therefore as shown in Figure 10.4, Ml= MQ when P is small and Mj= Mq for large P . 
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In order to investigate the effect of curvature radius on the critical load for delamination 

buckling, equation (10-24) is rewritten, noting S=t/R and L=RJ3 

p 

VDT 3L 
(10-27) 

where L is the half length of delamination 

As can be seen, if L and t - the length and thickness of delamination — are both constant, 

the value of critical load is only subject to the value of function , ^ . The variation of 

p 
function , is shown in Figure 10.5. The abscissa represents the normalised half arc 

W ) 

angle of delamination and ordinate represents the value of the function. 

P/7t 

Figure 10.5 Variation of function 
4 M 
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When P increases, the function firstly decreases and then increases. It reaches minimum 

value at 0.71:7?. Noting that fi=L/R and L is assumed to be constant, that means when 

R decreases, the value of critical bending moment firstly decreases and then increases, 

and it reaches minimum if L= O.llnR . Also note that when R is very large, the value of 

critical load is not calculated from equation (10-27) but is subject to the value of Mq 

(equation (10-26)). 

It should also be noted that Mg is not the same for different beam geometries. Our 

previous research work (Shenoi & Wang, 2001) shows that radius of curvature R has a 

major effect on the maximum through-thickness tension stress consequently Mq. From 

the previous work, it can be known that larger R leads to a smaller through-thickness 

tensile stress which results in larger critical bending moment - provided that other 

parameters are all constant. Therefore, above all, after the point R=L/Q.llTt increasing 

curvature radius R results in an increased value of the critical load. 

10.3.3 Delamination occurs very close to the surface of considered 

curved beam 

Sometimes delamination exists close to the surface of the beam. Assuming here 

delamination occurs very close to outer surface, which means d « t, it is called thin film 

delamination. Based on this assumption, we have: 

= 0 and 
D 

i i _ 
D V f y 

= 1 - 3 - (10-28) 
t 

Then from equation (10-11), and also taking the similar assumption with 5=t/R«l: 
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P2-
s in^ 

fi + sinficosjS 
(10-29) 

Using the approach in the preceding subsection, substituting this into equations (10-12) 

and (10-13), and also using the approximation: = -̂ 3 = R, ^3, M2 and M3 can then be 

determined again: 

4 " 
6/;^ sin/g-H ygcoSjg 

D 
• + • 

£>2 y5 + siny?cos/? 

^ ,^ + sin,^cos;9 D A 

M, 
M^Rd 13-smPcos 13 

(10-30) 

& 
D 

P + s,mPcos.p 

g M^Rd /9-sin)8cos/8 

P+sin ficos 13 

Let 7y = —, so D; = rfD. Substituting all the above equations (10-29) and (10-30) into 

equation (10-15) to estimate strain energies with three beams, then into (10-16) to 

estimate total strain energy with system and then into relation (10-21) for the Griffith's 

criterion, the final solution for the case of thin film delamination can be deduced: 

Mo _ 

W ) 

(10-31) 

where Ml is the critical value for the case of thin film delamination, and 

/(/?) ;5-sin/?cos/?^ ^ ^ y0^sin/?cosy5-/?sin^y0cos^ >0 

+ sin ŷ COS 
+ 2 

{l3+s,m Pcos 0) 

2sin^ P 

P + S I N P COS P 
•P 

(10-32) 
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Figure 10.6 Dimensionless critical loads corresponding to different R/t 

The results for four cases of different R/t (equal to 8, 10, 15, 20 respectively) are shown 

in Figure 10.6. Here the abscissa still represents the normalised half arc angle of 

delamination p / n , and the ordinate represents the normalised critical load value 

the same as in Figure 10.5, for the reason of comparision. Comparing the case of R/t=\0 

with Figure 10.5, it can be seen that the values in Figure 10.6 are smaller than 

corresponding values in Figure 10.5. This is mostly due to the existence of yfrj in 

equation (10-31) compared with equation (10-24). This result shows that delamination 

buckling is more likely to occur close to the surface in curved composite beam. That can 

explain to some extent why in some samples delamination occurs and progress very close 

to the surface although the maximum through-thickness tensile stress usually exists at 

midplane of global curved beam (Shenoi & Hawkins, 1992). 

It should be noted that equations (10-31) and (10-32) are both deduced from the 

assumption of thin film delamination. If we extend it to general cases, it will probably 
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bring errors to some extent. For example, if it is used to analyse the case of delamination 

at midplane, in this case rj = 1/2. The right side of equation (10-31) is not only V2 times 

right side of equation (10-24), h u t f i f i ) of equation (10-22) is obviously different from 

f[j3) of equation (10-32). The comparison of function / (/? ) with f(0) is shown in 

Figure 10.7. 

0.0 0.2 0.4 0.6 0.8 1 . 0 

0.0 0.2 0.4 0.6 0.8 

Figure 10.7 f(^) and f{/3) 

However, as can be seen from Figure 10.7, there is only very little difference between 

functions/(y5) and in the scope of . Therefore if the delamination arc is 

smaller than a semi-circle, which is the usual case, an approximate formula based on the 

interpolation of these two cases can be provided to analyse the general case 

m; S r( (10-33) 

114 



10. Delamination Buckling of Curved Composite Beam 

where Tj' = —{yfl —1 (̂277~ l) + {0 < t] <1) 

As in the last subsection, the effect of radius of curvature R on the value of the critical 

load in the case that delamination buckling occurs very close to the surface can be 

analysed by the variation of function 
J3 

very similar to function 
J3 

V m ' 

, as shown in Figure 10.8. The trend of it is 

Figure 10.8 Variation of function 

10.4 Nonlinear Problem-Snap Buckling 

In this section the problem of a curved composite beam under a closing bending moment 

will be considered. Under this condition, the layer next to the inner surface of the beam is 

then subjected to compressive stress. If this stress is high enough, snap buckling of 
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internal layer arises due to the relatively low strength of the inter-laminar bond in the 

layered composite beam. If there already exists a delamination in this curved beam before 

the load is applied, then snap buckling of the inner layer is certainly more likely to occur, 

and progress of this delamination crack becomes of considerable concern. 

In this case, the new equilibrium state is not close to the initial one. Therefore this 

problem is a nonlinear problem. The general solution of this problem can be found by the 

nonlinear analyses on deformation of the flexible beam. 

10.4.1 General solution 

P 
D R 1 

A 
/ / / / / / / / 

/ g e 
D 

/ g 

• 

P 

r ULJ 
K-

h 
4 

(aO (b) (c) 

Figure 10.9 Model sketch for the basic problem 

Because it is more difficult to directly begin with the basic equations of curved bar under 

point loads to analyse its nonlinear deflection, the method of similarity is used here. At 

first consider a straight, vertical strut AB subjected to a load P on the top and a clockwise 

couple M=EI/R acting at the same point, as shown in Figure 10.9a. The action of the 
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couple M will bend the strut into a circular arc of radius R, while the load P is still acting 

on the free end, as shown in Figure 10.9b. This latter bar-the circular bar-will therefore 

be analysed in our approach to the present problem. 

The couple M and the load P will now be replaced by a force P acting on a rigid lever of 

length e=M/P. Expressing e as 

where k 
c p 

, EI is the flexural rigidity of the curved beam. 

Using the principle of elastic similarity, extend the bar past B until it intersects the line of 

action of P which is exerted on the lever. Let this point be D, as shown in Figure 10.9c. 

And so far as the shape AB is concerned, it does not matter whether the load acts on the 

bar ABD or through the lever e. The total length of the new strut AD is then: 

2,== +JL2 (lC)-35) 

Li is the length of original strut which is known, Li is the length of extension BD. 

Using the knowledge of nonlinear deflection of flexible bar (Appendix C), introducing 

the modulus p and parameter ^ -equation (C-6) (Appendix C), from Figure 10.9c and 

noting equation (C-5) (Appendix C) 

==-̂  (lC)-:36) 
* A 2p 

Substituting equation (10-34) into equation (10-36), the following is true 

cos^g =—-— (10-37) 
* 2p&R 

From equation (C-8), the modulus p can be solved out by 

117 



10. Delamination Buckling of Curved Composite Beam 

A — ^ ^b) (10-38) 

and then the slope, arc length and coordinates at any point of bar AB can be calculated by 

the related formulae in Appendix C. 

Let us now go back to the beginning of this section and look into the original question. If 

a curved composite beam is subjected to closing bending, its inner ply is likely to be 

subjected to snap buckling as shown in Figure 10.10a. It is assumed here that the new 

equilibrium state of outer ply (still named as beam 2 in Figure 10.10a, similarly to in last 

section) is still close to its initial state. So the linear theory is still used to analyse this ply. 

However when the inner ply (still named as beam 3 in Figure 10.10a), where the snap 

buckling occurs, is investigated, the nonlinear analyses mentioned above and in Appendix 

C must be used. 

Beam 3 Beam 2 Beam 1 

(a) 

Figure 10.10 Model sketch for the problem 

z 

We still consider half of the global curved beam due to symmetry. As far as the buckled 

inner ply (beam 3) is concerned, from Figure 10.10b, the deformed shape of beam 3 has a 
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point of inflection -C. So in the following analyses, this beam must be divided into three 

parts for consideration - Part I, II and III are the parts between pointa A to C, C to Ai, and 

Alto B respectively. 

Parts I and II are obviously antisymmetric with respect to point C. Their lengths can both 

be expressed from equation (10-38) in which the value of needs to be nfl 

r(i) _ x") _ (10-39) 

The length of Part III can also be obtained from equation (10-38) 

(1&40) 

"'2 

where in equations (10-39) and (10-40), F ( p , a n d p) are first kind Legendre's 

elliptic integral and complete elliptic integral of the first kind respectively, 

= F 
V ^ J 

So the total length of beam 3 can be expressed as 

Z, = + z!'") = [2;ir(p) + j (10-41) 

From equation (10-37) 

cos^g = — - — (10-42) 

where R'̂  is the radius of curvature of beam 3 under the action of the same load before 

snap buckling. 

Combining equation (10-42) with equation (C-6) (Appendix C): 

cos6'g = l - 2 s i n ^ — = 1 + — ( 1 0 - 4 3 ) 
2 2&:#f 
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So 

— = cos 6 g + 2/?^ — 1 (10-44) 

and noting equation (10-42), then 

= cos" 
-\jcos 6 g +2p^ — 1 

-Jlp 

Again from equation (10-44) and noting that for beam 3 k = , then 

(10-45) 

^ = ^ ^ ( c o s e , + 2 / - l ) (10-46) 

Meanwhile according to the assumption that the length of the beam does not change 

during buckling 

(10-47) 

where, as in the preceding section, Rj, and /? are respectively the original curvature radius 

and half original arc angle of inner delaminated layer (layer ACB in Figure 10.10a). 

Substituting it together with equations (10-44) and (10-45) into equation (10-41), then the 

following equation can be obtained finally: 

+ F p,COS 
_i -sjcosOg + 2p^ -1 

-Jlp 
•sJcosOg +2p^ - 1 (10-48) 

According to the bending equation for beam 3, at point B, the following is true 
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(l()-49a) 

Substituting equation (10-46) into it, the following equation can then be obtained 

% | ^ = j ^ ( c o s g , + 2 / - l ) - j . (10-4%) 
El, I j D / ' R, 

The third equation can be acquired from equilibrium of the global beam—equation (10-9) 

M^[0)+ Mj^[0) + ^cos.dg = (10-50) 

where for the reason of clarification the positive direction of every term is actually 

adverse to the ones in equation (10-9) because in present question the curved beam is 

subjected to closing bending moment, and hence P = -Pj = P^ • 

According to the assumption in the section of Problem Statements, linear theory will still 

be used to analyse the outer ply—beam 2 in Figure 10.10a. Then by Castigliano's second 

theorem 

A x , = ^ (10-52) 

where AO^ and Axj are respectively the rotation and displacement in % direction of outer 

layer (beam 2) at the section B owing to the action of corresponding loads. U2 is the strain 

energy of beam 2 whose description is shown by substituting equation (10-14) into (10-

15X 

Another displacement compatibility condition for the global beam at section B in % 

direction (horizontal direction in Figure 10a) can be expressed as 
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COS/? + Axj = X3 +-^ sin 6'g (10-53) 

where X3 is the vertical deflection of beam 3, which can be calculated from the nonlinear 

analyses for beam 3, as shown in the following. 

The vertical deflections of Parts I and II of beam 3 are equal due to antisymmetry, which, 

according to equation (C-14) (Appendix C), is 

and the vertical deflection of Part III from equation (C-12) (Appendix C) is 

^ 2£ (p ,0 . ) -F (p .»> . ) (10-55) 

where and are respectively first and second kind Legendre's elliptic 

integral and complete elliptic integral of the first kind, and are respectively 

complete elliptic integral of the first and second kind, K[p) = F and 

E(p) = E 

So 

X3 = - H ) ] + - F ( p , ( 1 0 - 5 6 ) - v ^ ^ (") u. ^ (ni) 

Substituting equation (10-56) together with (10-52) into equation (10-53) and noting 

k = , then combined with equations (10-48), (10-49b), (10-50) and (10-51) there 

forms a group of 5 equations which contain 6g,p , M2(/?), M^{0) dindP. These five 

variables can be totally determined by the above 5 equations, consequently achieving the 

solution of the initial problem. 
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However, as can be seen, the general solution actually cannot directly be solved out in 

explicit description, and generally it is not very easy to solve the above 5 equations either, 

even by ordinary numerical techniques such as the iteration method. Therefore further 

assumptions are needed when this analytical approach is applied to study some special 

cases. 

10.4.2 Delamination very close to inner surface 

Consider the case that the layer next to the inner surface, which is potentially to be 

subjected simultaneously to delaminations and snap buckling, is very thin. The stress in 

this thin film is then considered approximately as uniform distribution. It is further 

assumed that the snap buckling of this thin film has little effect on the global deformation 

of the other parts. So before and after snap buckling of the inner thin film, the shape of 

the outer base layer and undelaminated part of the global curved beam stays constant. 

This is shown schematically in Figure 10.11. t and t' are the thicknesses of the global 

beam and inner delaminated layer respectively and here t' « t . 

Figure 10.11 Delamination occurs very close to inner face 
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The compressed stress cr' in this thin film with unit width before buckling approximates 

to: 

Mt 
= (10-57) 

2/ 

where t and I are thickness and moment inertia of the global curved beam with unit width. 

The strain energy of the thin film before buckling can be expressed as 

[/(') == (l()-58) 
2E' 

E 
where E' = , Ei is the effective Young's modulus in the circumferential direction, 

l - v 

f'is the thickness of thin film, R' and >5'are respectively radius of curvature and assumed 

half arc angle of the delamination crack before thin film's snap buckling. 

Here again for the reasons of simplification, the approximation; R^ = R^ - R' is taken 

based on the assumption of 1. The bending energy of thin film after buckling is: 

^ ( 2 ) = ^ ^ n (10-59) 
2 -'0 L d j /( 'J 

where D' is effective flexural rigidity of thin film. 

From the above subsection, the deformed shape of buckled film is divided into three parts 

due to the existence of the inflection point C. Part I, II and III are the parts between points 

A to C, C to D, and D io B respectively. The upper-limits of integration for both Parts I 

and II is then R'y, while that for Part III is R'fi'. y is the slope angle at inflection point 

C, as shown in Figure 10b. 

From equation (C-6) and (C-7) (Appendix C), we can get the relation 
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dd dd d(j) 2pcos(p 

= Ikpcos^ 

p 's in" , 
(10-60) 

Using the elliptic integrals description (Appendix C), and also noting that in the Part II, 

is negative, the above equation for each part can be finally expressed as: 

V'h^=^Ul{E(p)-(l-p')K(p)]-^\ 
2 

r ( 2 ) 

(10-61) 

= y - (l - + 
R' , 

where y = 2sin '(/?) as found from equation (C-6) (Appendix C), which is the slope 

angle at inflection point C. 

So: 

[;(2) = + [/M + [/M 

'e(P) - (1 - r ) K ( p ] ] + 2k[e(p,0,) - (1 - p')F(p.,p,) 
R' 2R'j 

(10-62) 

Noting that modulus p can be determined only from equation (10-48) in which is 

replaced by /?' which is known in the present problem. Then from equation (10-44), k can 

be also determined 

k = 
1 

^'.^2(coS)g' + 2 p " - l ) 
(10-63) 

By using the energy criterion: 
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[ /( ' ) = (10-64) 

where W = IR'fiT, which is the fracture work. 

The final equation can then be obtained after substitutions and reductions as: 

2 r ^ £'F(/jO . „ 

SE' t' IIR / 2 

where 

P' 2(cosyg' + 2 p ^ - l ) 

+2[E(p,i,,)-(l- p y ( p 4 , ) ) + y + 

(10-65) 

(10-66) 

The trend of function F[P') is shown in Figure 10.12 

FC^') 8 

Figure 10.12 The trend of function with respect to /?' 
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It can be seen that although F(/?') increases with respect to /? ' , it changes very little in a 

large range of /3' (as shown in Figure 10.12, from 20° to 120°). The critical bending load 

corresponding to this large range of , from equation (10-66), therefore increases very 

little. Hence it can be concluded that the delamination coupled with snap buckling is very 

easy to progress. 

If there already exists delamination whose half arc angle before snap buckling is P ' , then 

the critical bending moment for this delaminated thin film next to inner face can also be 

obtained from equation (10-65) by letting the first term in right side be zero. 

In order to estimate the effect of original curvature radius of beam R on the value of 

critical load, according to bending equation for curved beam, there is 

1 M 1 
+ • 

a ' EV a 
(10-67) 

Substituting this into equation (10-65) and noting that F[P ' ) is approximately a constant 

in a large range of j3', assumed as Fq, equation (10-65) can then be re-written as 

( 
2 / 

I 2 F R J 1 1 J 6 / ; 1 1 J V 

2 r E 'Kf ' " 1 
' + ' 

t' 12 R^ 
0 (10-68) 

M can then be solved out from the above equation as 

M = -
F,t fi 

4E' 6E' 

F,t / 2 

6/? 
• + . 

Y 2 r E ' & f 1 ^ 

2E ' 3E' t' 
• + • 

12 / r 
(10-69) 

It can be seen that the original radius of curvature of the beam, R, definitely has an effect 

on the value of critical load M. Larger R will lead to small M, which means that the snap 
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buckling of inner surface layer is more likely to happen in the curved beam with larger 

curvature radius. 

Assuming the condition that surface energy F is very small or a delamination crack has 

already existed before the occurrence of snap buckling of this delaminated thin film, then 

equation (10-69) can be simplified as 

R 
(10-70) 

where Go is approximately a constant; 

Fot 
/ 2 

2E' 3E' 

/ 2 

• + . 

2 \ 

2E' 3E' 
(10-71) 

Therefore under this condition, equation (10-70) shows that the value of critical bending 

moment M is approximately inversely proportional to the original radius of curvature of 

the beam, R. 

Now note that the value of right side of equation (10-65) is also dependent on the 

thickness of delaminated film, f'. It can be seen in the following that in theory, the value 

of critical bending moment M can achieve minimum when t' is a designated value. 

As in the front sections, let ri = t ' l t and then equation (10-69) can be re-written as 

M = 
E'l 

1 Fr 
1 - % ' 
2 3 J 

H (10-72) 

where 

H 
2 r 1 

-I- U 
f ' 12 

(10-73) 
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Because t' « t , r]«l. Hence M in equation (10-72) approximates to 

M = (10-74) 

Note that M will achieves minimum when H reaches minimum. 

By rewriting Equation (10-73) and using the fact that 

1 " 1 M 
— Ta, . > slTJa, (a,. > 0, and the equality stands only if a, =•••= a,. =•••= «„) 

V 
(10-75) 

the following relation can be deduced: 

' , (10-76) 
> = 33 

Vf' f ' 12^2 V 12R: 

Therefore, if and only if: 

r F'F 
JL.== (10_77) 
f ' 12*: 

the minimum of M can then be achieved by substituting relation (10-76) into equation 

(10-74) 

ATI UO^rg) 

Equation (10-77) leads to: 
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Hence, in the problem being considered here, there exists a "weak layer" which is most 

prone to be de-laminated. This phenomenon was also mentioned in Kachanov's (1988) 

and Bugakov's (1977) analytical and experimental work on circular fibre/glass ring under 

uniform external pressure. Also from the above, F[P') is approximately a constant, Fq, 

in a large range of (5'. So the thickness of this weak layer can actually be directly 

calculated from equation (10-79). Then the approximate minimum value of the critical 

bending moment can be estimated consequently. 

However it should also be pointed out that the use of equations (10-78) and (10-79) has 

limits. As mentioned in the beginning of this subsection, the results obtained above are 

based on the assumption of thin film snap buckling. The result from equation (10-79) 

should be compared with the thickness of global beam t.lf t'* « t , then the minimum of 

critical bending moment can be obtained by equation (10-78), otherwise the value 

calculated from equation (10-78) is meaningless. 

10.5 Summary 

Theoretical approaches are developed for linear and nonlinear problems of delamination 

buckling in curved composite beam which corresponds to the cases of curved composite 

laminate subjected to opening and closing bending moments respectively. The general 

solutions are applied to analyse some special cases such as delamination occurring either 

at midplane or very close to surface of the beam. The effect of the arc angle of 

delamination crack on the critical load in each case is also studied. 

The results show that both the radius of curvature of the beam and the arc angle of 

delamination have a big effect on the delamination buckling of curved composite beam 
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when it is subjected to opening bending load. Increasing radius of curvature of the beam 

generally leads to larger value of critical bending load. The curvature radius of beam also 

has a significant effect on the snap buckling of inner thin layer of curved composite beam 

when it is subjected to closing bending load. However contrary to the case of the opening 

load, the inner layer is more likely to be induced into snap buckling with increased radius 

of curvature of the beam. In the condition of low surface energy F of the material, the 

value of critical load is even nearly inversely proportional to the original radius of 

curvature of the beam. 
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(ZkuapMbsr 1 1 ( ] c H i c i t w i i n j * ] R j 3 Q i a i i t s 

11.1 Main achievements 

The aim of this work has been to investigate the flexural behaviour of curved laminates 

and sandwich beams, and predict their strengths by theoretical approaches. The major 

achievements of this work are given below 

11.1.1 Flexural response of a curved composite beam on an elastic 

foundation 

A model is developed for characterising the mechanical behaviour of curved composite 

structure element such as overlaminate in tee joint or skin of curved sandwich beam. The 

governing differential equation for general curved composite beam on an elastic 

foundation is derived from force-moment equilibrium considerations and classical 

laminate theory. The flexural response of a circular composite beam on an elastic 

foundation is investigated in detail. The results show that the existence of tension-

bending coupling in the constitutive relations of general laminate results in larger 

oscillation in the distributions of mechanical variables such as bending moment, shear 

force etc. along the span of curved beam on an elastic foundation. The solution for mid-

plane symmetric laminate case is similar to that for curved isotropic beam on an elastic 

foundation. 

11.1.2 Estimation of response using a stress function approach 

An elasticity based approach for treating curved orthotropic beams resting on an elastic 

foundation and subjected to flexural loading has been presented using the Airy stress 
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function approach. The resulting equations have been applied to investigate the effects of 

key parameters defining beam structure on performance. The radius of curvature of the 

beam has a large effect on the through-thickness stress; decreasing the radius of curvature 

resulting in the increased maximum through-thickness tensile stress in a curved beam. 

The results show that, at least in theory, it is possible to design for a "good thickness" or 

"good radius" of the anisotropic material curved beam on elastic foundation according to 

related parameters. The approach has been also used to analyse four tee joint samples. 

The analytical results show close qualitative agreement with the results of FEM in all 

cases. The trend is consistent with the conclusions of numerical analyses or experiments. 

11.1.3 Through-thickness stresses in curved composite laminates and 

sandwich beams 

Based on this solution for curved orthotropic beam on an elastic foundation, an approach 

to define the elasticity solutions for general curved layered composite beam consisting of 

arbitrary numbers of orthotropic or isotropic layers in a no-circumferential-dependence 

case is also presented. Since the approach ensures an accurate description of stresses in 

curved laminated beams, within the assumptions of linear elasticity, there needs to be no 

strict distinction between thick and thin curved beams. Further there is no limitation on 

whether the skin of sandwich panel is thin or thick. 

The effect of stacking sequence and radius of curvature of a curved layered composite 

beam on the distribution and value of through-thickness stress is chiefly investigated. 

Curved sandwich beams with thin and thick skin are studied. The results show that the 

stacking sequences have a significant effect on the delamination and in-plane tensile 

failure to some extent. The radius of curvature of the beam also has a large effect on the 

through-thickness stress, which is consistent with the results for a single layer curved 

orthotropic beam. The biggest through-thickness stress in a curved sandwich beam 

always occurs at the interface between inner skin and core or in the core but very close to 

that interface. Due to the geometry curvature, even in mid-plane symmetric layered 
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beams or same-skin sandwich beams, the distributions of through-thickness and in-plane 

stresses are not strictly symmetric with respect to the mid-plane. 

11.1.4 Local instability of the skin of curved sandwich beam 

The critical bending moment for curved sandwich beam in terms of the local instability of 

the compressed skin is presented. The solution is based on consideration for buckling 

/wrinkling of curved beam on an elastic foundation by beam theory and virtual 

displacement principle. The effects of key parameters such as the flexural rigidity of the 

beam and the stiffness of the elastic foundation (i.e. core material of sandwich beam) are 

evaluated. The results show that if the elastic foundation is hard enough to make 

wrinkling rather than buckling occur, the curved beam has nearly the same possibility to 

lose its stability as the flat one. But if foundation is soft or beam is stiff, then buckling 

occurs, and the critical values for curved beam and straight beam respectively are quite 

different. The solution developed in this part of thesis yields results which are very close 

to experimental values. 

11.1.5 Delamination buckling of curved composite beam subjected to 

opening bending 

The problem of delamination buckling of a curved beam with pre-induced delamination 

and under the action of opening bending moment is considered. The general solution for 

this problem is derived from curved beam theory and a displacement compatibility 

condition coupled with fracture concepts. Two usual important cases that delamination 

occurs at the mid-plane or very close to the surface of curved beam are investigated in 

detail, and an approximate formula for a general case is provided based on the 

interpolation of these two cases. The results show that both the radius of curvature of the 

beam and the arc angle of delamination have a big effect on the delamination buckling of 

curved beam when it is subjected to opening bending load. Increasing radius of curvature 

of the beam generally leads to larger value of critical bending load, which also means that 
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a curved beam with smaller radius of curvature is more likely to induce delamination 

buckling. 

11.1.6 Snap buckling of the inner layer of a curved composite beam 

subjected to closing bending 

The problem of snap buckling of inner layer when a curved beam is under the action of 

opening bending moment is also considered. The general solution for this problem is 

acquired based on non-linear beam theory, the principle of similarity and fracture 

concepts. The case of thin film delamination is investigated further. The results show that 

in a large range of arc angle of delamination, the delamination coupled with snap 

buckling is very easy to progress. The radius of curvature of the beam has a significant 

effect on the snap buckling of inner thin layer of curved composite beam. However 

contrary to the case of the opening load, the inner layer is more likely to be induced into 

snap buckling with increased radius of curvature of the beam. In the condition of low 

surface energy of the material, the value of critical load is even nearly inversely 

proportional to the original radius of curvature of the beam. 

11.2 Further work 

Three proposals aimed at improving the accuracy of approaches and scope of their 

applications are outlined below. 

11.2.1 Elastic foundation 

In this thesis, the Winkler hypothesis is assumed for the behaviour of elastic foundation. 

It is the simplest model for the foundation material. The accuracy of the solution can be 

improved by using more complex models for foundation, for example Pasternak type 

which considers the reaction of foundation including not only the normal supporting 
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force but also the shear force. However, it is obvious that it becomes then more difficult 

to obtain the final governing differential equation and the corresponding solution, 

because the distribution of bending moment is also dependent on the circumferential 

displacement. 

11.2.2 Non-linear analysis 

As is known, under the same load condition, a curved composite beam generally has 

more apparent or larger deformation compared to a flat one. This is due to the original 

geometry curvature. Therefore, in order to improve the accuracy of solution or the range 

of its application further, non-linear beam theory should be also used to analyse the 

flexural behaviour of curved composite beam. 

11.2.3 Experimental modelling 

Validation of the practical aspects of the theory presented in this thesis would be a further 

avenue for future work. Since there are no standard ASTM/BS/ISO procedures, specific 

tests involving curved sandwich beams or curved thick/thin laminates with and without 

delaminations would need to be devised. 

136 



List of References 

IJust()f]Bbefer%%i(x%s: 

Allen, H.G., (1969), Analysis and Design of Structural Sandwich Panels, Pergamon 

Press, Oxford 

Berger, H.M., (1955), A New Approach to The Analysis of Large Deflections of Plates, 

Journal of Applied Mechanics, ASME, Vol.22, p465-472. 

Bhate, S R., Nayak, U.N. and Patki, A.V., (1995), Deformation of Composite Beam 

Using Refined Theory, Computers & Structure, Vol.54, No.3, p541-546 

Bugakov, I.I., (1977), Delamination of Fibre-Glass Tubes under External Pressure, 

Vestnik of Leningrad University, No. 13, pl26-131 

Chai, H., Babcock, C.D. and Knauss, W.G., (1981), One Dimensional Modeling of 

Failure in Laminated Plates by Delamination Buckling, International Journal of Solids 

Structures, Vol.17, No.11, pl069-1083 

Chandler, H.W., Longmuir, A.J., McRobbie, S., Wu, Y.S. and Gibson, A G., (1993), 

Tensile Delamination Failure of Curved Laminates of Single and Double-Skinned 

Construction, Proceedings of 2nd International Conference on Deformation and Fracture 

of Composites, UMIST, Manchester, UK, p29-31 

Chang, Fu-Kuo, (1986), The Strength Analysis of Wooden Bends, Journal of 

Reinforced Plastics and Composites, Vol.5, p239-252 

Charalambidi, M.N., Kinloch, A.J., Matthews, F.L., (1998), Adhesively Bonded 

Repairs to Fibre-Composite Materials 11: Finite Element Modeling, Composites Part A— 

Applied Science and Manufacturing, Vol.29, No. 11, pl383-1396 

137 



List of References 

Chattopadhyay, A. and Gu, H., (1996), Exact Elasticity Solution for Buckling of 

Composite Laminates, Composite Structures, Vol.34, p291-299 

Chia, C.Y., (1980), Nonlinear Analysis of Plates'", McGraw Hill, New York 

Clark, S.D., Shenoi, R.A. and Allen, H.G., (1999), Modelling the Fatigue Behaviour of 

Sandwich Beams under Monotonic, 2-step and Block-loading Regimes, Composites 

Science and Technology, Vol.59, p471-486. 

Cui, W.C., Wisnom, M.R. and Jones.M, (1994), An experimental and Analytical Study 

of Delamination of Unidirectional Specimens with Cut Central Plies, Journal of 

Reinforced Plastics and Composites, Vol.13, No.8, p722-739 

Dodkins, A.R., Shenoi, R.A. & Hawkins, G.L., (1994), Design of Joints and 

Attachments in FRP Ships' Structures, Marine Structures, Vol.7, p365-398. 

Flanagan, G., (1993), A Sublaminate Analysis Method for Predicting Disbond and 

Delamination Loads in Composite Structures, Journal of Reinforced Plastics and 

Composites, Vol.12, p876-887 

Frish-Fay, R., (1962), Flexible Bars, Butterworths & Co. (Publishers) Ltd., London 

Ghosh, P.K., (1977), Large Deflection of a Rectangular Plate Resting on a Pastemak-

type Elastic Foundation, Journal of Applied Mechanics, ASME, Vol.44, p509-511 

Gu., H. and Chattopadhyay, A., (1998), Elasticity Approach for Delamination Buckhng 

of Composite Beam Plates, AIAA Journal, Vol.36, No.8, pl529-1534 

Gibson, AG., Chandler, H.W., Longniuir, A.J. and Wilcox, J.A.D., (1994), 

Delamination and Failure of Curved Composite Laminates, Proceedings of Structural 

Materials In Marine Environment, The Royal Society, London, UK, p88-98 

138 



List of References 

Hawkins, G.L., Holncss, J.W., Dodkins, A.R. & Shenoi, R.A., (1993), The Strength of 

Bonded Tee-Joints in FRP Ships, Plastics Rubber and Composites Processing and 

Applications, Vol.19, p279-284 

Hetenyi, M., (1946), Beams On Elastic Foundation—Theory with Applications in the 

Fields of Civil and Mechanical Engineering, The University of Michigan Press 

Hill, G.F.J., (2000), The Development and Application of a Delamination Prediction 

Method to Composite Structures, Ph.D Thesis, Department of Aerospace Engineering, 

University of Bristol, Bristol, UK 

Hoff, N.J. and Mautner, S.E., (1945), Buckling of Sandwich Type Panels, Journal of the 

Aeronautical Sciences, Vol.12, No.3, p285-297 

Jiang Yongqiu, Lu Fengsheng and Gu Zhijian, (1990), Composites Mechanics (in 

Chinese), Xi'an Jiao Tong University Press, Xi'an, China 

Kachanov, L.M., (1988), Delamination Buckling of Composite Materials, Kluwer 

Academic Publishers, The Netherlands 

Kaczniarek, K., Wisnom, M R., Jones, M.I., (1998), Edge Delamination in Curved 

(04/456)s glass-fibre/epoxy beams loaded in bending. Composites Science and Technology 

T/oL58,pl55-161 

Kinloch, A.J., (1997), Adhesives in Engineering, Proceedings of The Institution of 

Mechanical Engineers Part G—Journal of Aerospace Engineering, Vol.61, No. 1-4, p71-

95 

Lekhnitskii, (1981), Theory of Elasticity of an Anisotropic Body, Moscow, Mir 

139 



List of References 

Lu, T.J., Xia, Z.C., and Hutchinson, J.W., (1994), Delamination of Beams under 

Transverse Shear and Bending, Materials Science and Engineering, A188, pl03-l 12 

Meunier, M., (2001), Dynamic Analysis of FRP Laminated and Sandwich Plates, Ph.D 

Thesis, School of Engineering Sciences, Ship Science, University of Southampton, 

Southampton, UK 

Moshaiov, A. and Marshall, J., (1991), Analytical Determination of the Critical Load of 

Delaminated Plates, Journal of Ship Research, Vol.35, No.l, p87-90 

Narayanan, R., eds. (1985), Shell Structures: Stability and Strength, Elsevier Applied 

Science Publishers, London and New York 

Padhi, G.S., Shenoi, R.A., Moy, S.S.J., and Hawkins, G.L., (1998), Progressive Failure 

and Ultimate Collapse of Laminated Composite Plates in Bending, Composite Structures, 

Vol.40, Nos. 3-4, p277-291 

Pagano, N.J., (1969), Exact solution for composite laminates in cylindrical bending. 

Journal of Composite Materials,Vol.3, No.3, p398-411 

Pagano, N.J., (1967), Analysis of the flexure test of bidirectional composites. Journal of 

Composite Materials, Vol.1, No.4, p336-442 

Pei, J. and Shenoi R.A., (1996), Examination Of Key Aspects Defining The Performance 

Characteristics Of Out-Of-Plane Joints In FRP Marine Structures. Composites, Vol.27A, 

No.2, p89-103 

Press, W.H., Teukolsky, S.A., Vetterling, W.T. and Flannery, B P (1999), Numerical 

Recipes in FORTEAN, The Art of Scientific Computing, Second edition, Cambridge 

University Press, UK 

140 



List of References 

Read, P.J.C.L. & Shenoi, R.A., (1999), Fatigue Behaviour of Single Skin FRP Tee 

Joints, International Journal of Fatigue, Vol.21, p281-296 

Reddy, J.N., (1984), A Simple Higher Order Theory for Laminated Composite Plates, 

Journal of Applied Mechanics, Vol.51, p745-752 

Reissner, E. and Stavsky, Y.S., (1961), Bending and stretching of certain types of 

heterogeneous aeolotropic elastic plates, Journal of Applied Mechanics, Vol.28, p402-

408 

Selvadurai, A.P.S., (1979), Elastic Analysis of Soil-foundation interaction, Elsevier 

Scientific Publishing Company, Amsterdam-Oxford-New York 

Shen, H.S., (2000), Non-linear Bending of Shear Deformable Laminated Plates under 

Lateral Pressure and Thermal Loading and Resting on Elastic Foundation, Journal of 

Strain Analysis, Vol.35, No.2, p93-108 

Shenoi, R.A. & Hawkins, G.L., (1992), "Influence of Material and Geometry Variations 

on the Behaviour of Bonded Tee Connections in FRP Ships", Composites, Vol.23, No.5, 

p335-345 

Shenoi, R.A. and Hawkins, G.L., (1994), The Formulation of A Curved Composite 

Brick Finite Element Using A Layer-Wise Theory, Proc. ICCM-12, Whistler,Canada, 

Vol. V, p 149-156 

Shenoi, R.A. & Hawkins, G.L., (1995), An Investigation into the Performance 

Characteristics of Top-hat Stiffener to Shell Plating Joints, Composite Structures, Vol.30 

Shenoi, R.A., Read, P.J.C.L. and Hawkins, G.L., (1995), Fatigue Failure Mechanisms 

in Fibre-reinforced Plastic Laminated Tee Joints, International Journal of Fatigue, 

Vol.17, No.6,p415-426 

141 



List of References 

Shenoi, R.A., Read, P.J.C.L. and Jackson, C.L., (1998), Influence of Joint Geometry 

and Load Regimes on Sandwich Tee Joint Behaviour, Journal of Reinforced Plastics and 

Composites, Vol.17, No.8, p725-740. 

Shenoi, R.A. & Wellicome, J.F. eds., (1993) Composite Materials in Maritime 

Structures, Ocean Technology Series, Cambridge University Press 

Shenoi, R.A. and Wang, W., (2001), Flexural Behaviour of a Curved Orthotropic Beam 

on an Elastic Foundation, Journal of Strain Analysis for Engineering Design, Vol.36, 

No.l, pl-16 

Shenoi, R.A., and Wang, W., (2001), Through-Thickness Stress in Curved Composite 

Laminates and Sandwich beams. Composites Science and Technology, Vol.61, No.ll , 

pl501-1512 

Shenoi, R.A. and Wang, W., (2001), Design of Connections in FRP Ships Using an 

Analytical Approach, Proceedings of the 8'^ International Symposium on Practical 

Design of Ships and Other Floating Structures, Shanghai, China, Vol.2, pl339-1344 

Sinha, S.N., (1963), Large Deflections of Plates on Elastic Foundations, Journal of 

Engineering Mechanics, ASCE, Vol.89, pi-24 

Smidt, S., Curved Sandwich Beams and Panels: Theoretical and Experimental Studies, 

Report No.93-10, Royal Institute of Technology, Stockholm, Sweden 

Smidt, S., (1996), Bending of Curved Sandwich Beams: a Numerical Approach, 

Composite Structures, Vol.34, p279-290 

Siniitses, G.J., (1996), Buckling of Pressure-loaded, Delaminated, Cylindrical Shells and 

Panels, Key Engineering Materials, Vols.121-122, p407-426 

142 



List of References 

Thomas, R., Garcia, L, Guild, F.J., Adams, R.D., (1998), Adhesive Joining of 

Composite Laminates, Plastics Rubber and Composites Processing and Applications, 

Vol.27, No.4, p.200-205 

Timoshenko, S., (1934), Theory of Elasticity, New York and London: McGraw-Hill 

book Company, Inc. 

Timoshenko, S. (1936), Theory of Elastic Stability, McGraw-Hill Book Company, Inc., 

New York and London 

Tolf, G., (1983), Stress in a Curved Laminated Beam, Fibre Science and Technology, 

Vol.19, pp243-267 

Towse, A., et al, (1998), Specimen Size Effects in the Tensile Failure Strain of an Epoxy 

Adhesive, Journal of Materials Science, Vol.33, No. 17, p4307-4314 

Vieira Carneiro, C.A. and Savi, M.A., (2000), Modelling and Simulation of the 

Delamination in Composite Materials, Journal of Strain Analysis, Vol.35, No.6, p479-

492 

Wang, W., and Shenoi, R.A., Analytical Solutions to Predict Flexural Behaviour of 

Curved Sandwich Beams, Journal of Sandwich Structures & Materials, (submitted for 

publication) 

Wang, W., and Shenoi, R.A., (2001), Estimation of Delamination and Local Instability 

Damage in Curved Sandwich Beams, Proceedings of 6th International Conference on 

Deformation and Fracture of Composites, UMIST, Manchester, UK, p67-75 

Wang, W., and Shenoi, R.A., Delamination Buckling in Curved Composite Beam 

subjected to pure bending, (accepted by FRC2002, Ninth International Conference on 

Fibre Reinforced Composites, 26-28 March 2002, Newcastle, UK) 

143 



List of References 

Wang, S.S., Zahlan, N.M. and Suemasu, H., (1985), Compressive Stability of 

Delaminated Random Short-Fibre Composites, Part I - Modelling and Methods of 

Analysis, Journal of Composite Materials, Vol.19, p296-316 

Wang, S.S., Zahlan, N.M. and Suemasu, H., (1985), Compressive Stability of 

Delaminated Random Short-Fibre Composites, Part II - Experimental and Analytical 

Results, Journal of Composite Materials, Vol.19, p317-333 

Whitney, J.M., (1969), Effect of Transverse Shear Deformation on the Bending of 

Laminated Plates. Journal of Composite Materials, Vol. 3, p534-547 

Wisnom, M.R., (1996), Modelling the effect of Cracks on Interlaminar Shear Strength, 

Composites Part A: Applied Science and Manufacturing, Vol.27, No.l, pi7-24 

Wisnom, M.R., (1996), 3-D Finite Element Analysis of Curved Beam in Bending. 

Journal of Composite Materials, Vol.30, No.l 1, pi 178-1190 

Wisnom, M.R., Jones, M.I., (1995), Delamination Due to Interaction between Curvature 

Induced Interlaminar Tension and Stresses at Terminating Plies, Composites Structure, 

Vol.32, No.32, p615-620 

Whitcomb, J.D., (1982), Approximate Analysis of Post-buckled Through-width 

Delaminations, Composites Technology Review, Vol.4 No.3, p71-77 

Wu, Y.S., Longmuir, A.J., Chandler, H.W. and Gibson, A G., (1993), Delamination of 

Curved Composite Shells due to Through-Thickness Tensile Stress, Plastics Rubber and 

Composites Processing and Applications. Vol.19, No.l, p39-46 

Yang, H.T., (1970), "Flexible Plate Finite Element on Elastic Foundation", Journal of 

Structural Division, ASE, Vol.96, p2033-2101 

144 



Appendix A 

Appendix A: Preliminaries Related to Layered 

Anisotropic Materials 

A.l Elasticity of homogeneous anisotropic materials 

A.1.1 Generalized Hooke's law 

Generalized Hooke's law can be expressed by the following tensor equation; 

(A -̂1) 

where £'p; is elasticity tensor, and stand for stress and strain tensor, i, j, k, I can 

independently be 1,2 or 3 in a 3-dimensional case. 

Four order tensor Ep, in 3-dimensional case has 81 components. However, because of 

the symmetry of stress and strain components, and also because of the existing of strain 

energy density function, actually has only 21 independently constants for general 

anisotropic materials. Equation (A-1) can then be expressed in matrix form as: 

C j i C12 C , 3 Q 4 C . 5 

c r ^ C22 ( "23 ^ 2 4 ^ 2 5 ^ 2 

0-3 ^ 3 3 C 3 4 C35 C 3 6 ^ 3 

0 -4 C 4 4 C 4 6 ^ 4 

Q 5 £5 

, ^ 6 . / 6 . 

(A-2) 
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A.1.2 Orthotropic materials 

Orthotropic material system has three mutually perpendicular planes of elastic symmetry. 

Then the number of independent elastic constants can be reduced to nine. The stress-

strain relations for an orthotropic material are given by: 

"c,, (:u Cn 0 0 0 1̂ 

CTj C22 ("23 0 0 0 2̂ 

^3 3̂3 0 0 0 3̂ 

C44 0 0 4̂ 

Q5 0 5̂ 

^6. Q6. A . 

(A.3) 

The stiffness coefficients Q for an orthotropic material may be expressed in terms of the 

engineering constants: 

^ ^23^32 p _ ^21 + ^31^23 p _ ^12 ^ ^32^13 rr 
C,[ - C, , 1̂2 - ^1 - . ^2 — (-21 

A A A 

1 - + y.nWn (2̂ , =:__iw:iL22 , c ,3= 
A "3 "" 3̂1 

A ^ ^ 

C44 = M23 ' Qs ~ Mi3 ' Qe ~ Mn 

3̂ - 3̂2 

£. 
~ —— , A = 1 — VjjVji — V23 3̂2 ~ 3̂1̂ 13 ~ 2̂1̂ 32̂ 13 "" 1̂2̂ 23̂ 3 

(A-4) 

A.1.3 Transverse isotropic materials 

If the material is isotropic in one plane of elastic symmetry of an orthotropic material 

system, it is referred to as a transverse isotropic material system. Only five coefficients 
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are independent. In the expressions of stiffness matrix components of orthotropic material 

(A-4): 

C33 — C22 , Cjj — C12 , C44 — ^ (C22 C23) , C55 Cgg (A-5) 

Most of fibre cross-sections in the transverse plane of a unidirectional FRP are randomly 

distributed. In the transverse plane, the properties of the material are independent of 

direction, so that the material is transversely isotropic. 

A.2 Two dimensional problem of orthotropic materials 

A.2.1 Orthotropic laminae—plane stress problem 

In orthotropic analyses, assuming plane stress condition (<733 = 0,Ti3 = 0,723 = O), ^ e 

stress-strain relations can be written in axes aligned with the local axes of orthotropy: 

2̂2 

3̂3 

1̂2 -

i " - " i " - " E, 
1 

+ — 
E, 

2̂3 
£2 

1 

2//,2 

22 

'22 
(A-6) 

a 22 

which induce to orthotropic laminae. The above equation can be rewritten as the 

following style, which is familiar to researchers; 

Gil GI2 0 " '^r 
(72 . = Q22 0 £2 (A-7) 

.^3, Gas .̂ 6. 

147 



Appendix A 

Where; 

O - Q ^2 

2i2 - 1 ~ ' ' 066 ~ Al (A-8) 
1 - 1̂2̂ 21 

Considering the lamina with arbitrary orientation, here should introduces coordinate 

transformation matrix {T] and let: 

k)]== Dr]-'[G!ljr] (yi.9) 

Then the similar stress-strain relation is achieved: 

However it should be noticed that [g] is a full matrix here. 

A.2.2 Plane strain problem 

For Plane strain problem, the expression of stress-strain relation (A.6) can still be used; 

however, the elastic constants need to be respectively by the following quantities: 

E / = 
(̂ 131̂ 31 i-y23y32 

1—'̂ 13̂ 31 2̂3̂ 32 

Obviously, the Plane strain problem is a little more complicated than the Plane stress 

problem, because the elastic constants related to the third direction appear in the 

expression of stress-strain relation. 
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A.3 Classical laminate theory (CLT) 

The Kirchhof-Love hypothesis is used in the derivation of the classical laminate theory. 

The Kirchhof-Love hypothesis chiefly involves following assumptions; Straight lines 

perpendicular to the midplane before deformation remain (1) straight; (2) inextensible; 

(3) normal to the midplane after deformation. Based on Kirchhof-Love hypothesis, the 

functional form of the displacement for the plate are: 

v(%,)',z) = Vo(x,)')-z 

y, z) = Wo(x,);) 

dx 

(A.12) 

Substituting it into geometry equations, the following can then be obtained; 

< • + z-

r . , . rl. 

(A-13) 

where {/s:} is the curvature of midplane; 

a'-W 0 w _ 
, r , = - - ^ , k^=-2 

d' w 

ay dxdy 
(A-14) 

Assuming there are N-plies in laminate, substituting equation (A. 13) into equation 

(A. 10), and integrate it, and also using external force components instead of stress 

components in the expression; 
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Ai A 2 Ae Bu Bn B,: K 
A 2 Az Ae 1̂2 B22 2̂6 < 
Ao As Ae 5,a 2̂6 Bee /I 
Bn Bn 1̂6 c„ Cn 

My Bn B22 B26 ("22 ^26 

KJ Ae B2e 6̂6 Cee_ 

(A-15) 

where are tension stiffness, coupling stiffness, flexible stiffness respectively, 

they can be expressed as: 

4 = - 4_,) = 

1 

^ A-=l 
(A. 16) 

k=\ 
N 

3 6 *=1 t=I 

is the thickness of the ith ply, + z*_,) is the location of midplane of 

Ah ply. 

Obviously, for the laminate symmetric with respect to the midplane. By = 0, which 

means there does not exit the tension-bending coupling. This will simplify the analyses of 

midplane symmetric laminate. 
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B.l Curved surface and local co-ordinate system 

Consider a general curved surface: z = f{x,y), the location of any point on this curved 

surface can be described by the vector 

r = xi + >*] + zk (B-1) 

Assuming that (cx,/3) is one kind of local co-ordinate system on this curved surface, r 

can be alternatively described as 

iF = F(<2,/3) (13-2) 

and here is x = x[a,0), y = y{a,0), z = z{cx,0). Then let 

- _ _ T - r 

(B-3) 

= .cpi + :yfj + 

The Lame coefficients can then be defined as 

= 1/̂ 1 = 

B = , r 2 , 2 , 2 

0^4) 
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B.2 Curvature change of shell 

B.2.1 Curvature change of general shell 

According to the theory of shell and theory of curved surface, the final expression about 

the curvature changes of mid-surface of the general shell along a and directions 

respectively and the twist curvature after deformation can be derived as below. 

1 a 
A 

1 a 
g'a/3 

1 

/ \ 

R. 
+ -

V ' y 

R. 

I dA V 1 a 
,4]? 

AB aa a, g a^ 
+ -

1 dw 

A aor 

1 dw 

1 dA dw 
,42?: ay? a/) a, 

1 dB dw 
A^B da da R. 

A d 1 
+ — R, 

B a rv^ 1 d^w 
AB dadfi 

1 aA aw 
B 3)9 

1 
+ — R, A da 

1 d^w 
AB dadfi A'a^ da 

1 dB dw _ 1 

31 
- L + A 
K, K, 

(B-5) 

where u, v, w are respectively displacement components in direction of 4 , and 7̂ . xr^ , 

/?, andi?2are curvature radiuses in directions of r^,rp . e^, and are strain 

components of mid-surface 

-

1 9m V dA w 

1 3v 
£ a — —IT-: + • 

85 
1 

w 

a/? jRz 
(B-6) 

A da\B 

A a 
H 

As can be seen, in any of the above equations (B-5), the last term shows that in-plane 

strain , Yap have effects on the curvature and the twist curvature k^,k^,X-
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B.2.2 Shell curved about one axis 

In the case that shell is curved about only one axis like a cylindrical shell however its 

cross section is not conformed to circle or arc but a general smooth curve, the generator x 

and the tangent of cross section line 5 are taken as local co-ordinate, corresponding to a 

and P respectively, which means 

\x • a,ds^ = Ada = dx 

15 = P,ds2 = BdP = ds 
(B-7) 

Therefore: A = B = I and R, =°° 

Then substituting equation (B-6) into equation (B-5), equation (B-5) ban be reduced as 

following 

/c, 

/ , A 
K1 — V — 

ds v^2 y 

d' w 
~Y 

(B-8) 

1 dv d^w 

dx dxds 2R. 

I fdv du 

dx ds 2 V 

If the intrinsic equation of cross section line of this shell is expressed as: 0 = 5(5), where 

ds 
6 is the slope angle at any point on the line, then the original curvature radius 

The above equation can be rewritten as 

6/^ 

/T. = V-
d^d d^w 

1 Dv d^w 

w 

i?2 dx dxds 2R. 

1 f d v ^ du^ 

dx ds 

(B-9) 

2 V 
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Obviously, the circumferential displacement v has effect on curvature change as well as 

the normal displacement w. 

B.2.3 Cylindrical shell 

In cylindrical shell cases, the second curvature radius R2 is a constant R . Equation (B-9) 

can be further reduced. And noting: ds = Rdd, the final expression of K",, X";, % in 

cylindrical shell deformation can be obtained as: 

_ _ 1 d'w _ w (B-10) 

1 f dv 1 du ^ d^w 
^ 2R dx R do dxdd 

V V 

If A very long cylindrical shell is considered here, and also the applied forces and 

boundary conditions are both assumed uniform in cylinder axial direction (x-direction), 

the deformation is then independent of x. Thus this cylindrical can be considered as a 

curved beam with unit width in x-direction. During its happening deformation, the change 

of curvature in x-direction is then % in equation (B-10), i.e.: 
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1. Liu Hongwen, Lin Jianxing and Cao Manling, "Theory of Plates and Shells"(in 

Chinese), Zhe Jiang University Press, 1987 
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C.l The concept of linear and non-linear deflections 

When the deflections of a loaded bar is investigated, analysis usually begins with the 

Bemoulli-Euler law. At any point of the bar, the following formula holds: 

i = = (C-l) 
r ds EI 

where s is measured along the length of the arc and 6 is the slope at a . I n rectangular 

coordinates the curvature is expressed as: 

1 ^ y/dx ,p 
- r. , . . . 

1 + (dy / dx) 

because the bending moment M is a function of %, substituting the above equation into the 

Bernoulli-Euler formula, a second order nonlinear differential equation arise. In linear 

approach, the square of the slope {dy/dxf is neglected in comparison with unity, as is 

known well in conventional engineering applications. This approach is justified provided 

the deflections are very small compared with the length of the bar; on the other hand, this 

approximation is not permissible for slander bars where the deflections are appreciable 

compared to the length or the new equilibrium state after deflection is far away from the 

original shape of the bar. The well-known elementary theory, therefore, is not applicable 

for the calculation of "large deflections". It should also be noted, in nonlinear cases, the 

deflections are no longer a linear function of the bending moment or of the load, hence 

the principle of superposition is not applicable. 
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C.2 Elliptic functions and integrals 

There is no general method for the solution of second order nonlinear differential 

equations, a certain type, called Newton's equation, may be solved by a simple procedure 

and will involve eUiptic integrals. Newton's equation contains the second derivative of 

the dependent variable and a nonlinear function of the same variable. It is of the form 

dx 

The name 'elliptic integral' was used by Lengendre to designate integrals of the types 

c dx c X dx ,c dx 

where X is either of the third or fourth degree in x. These are called 'elliptic integral' of 

the first, second and third kind respectively. 

For the analyses in this thesis, only the first and second kind elliptic integrals are 

involved. Suitable transformation turns these into 

/ 2 \ 
j-v ^ rx[\-p~X ) dx 

Jo ^ 

writing x = sin (Z), Legendre's standard form of the first kind: 

and of the second: 
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Appendix C 

(C-5) 

It is obvious that F(p,^) and £'(/?, (Z)) both are functions of p, which is called the 

modulus, and of the limit (p. K(p) and E(p) are then designated as: 

= F 

E(p) = E 

(C-6) 

which are called 'complete elliptic integral' of the first kind and second kind respectively, 

and their values both depend on p only. 

C.3 The basic problem: vertical strut under vertical load 

Consider a vertical strut AB, fixed at the bottom and subject to a vertical load P at the top 

as shown in Figure C.la. If the bar is sufficiently flexible it will take the shape in Figure 

C.lb. The related coordinate is also shown in Figure C.l. The bending moment in any 

section of the strut (its location after deformation assumed to be Z{x,y)) due to P is 

M - -Py = 
E/ 

so: y = = -
rP 

(C>7) 

( 0 8 ) 

where k = 
\EI J 

and r is the radius of curvature. Substituting equation (C-2) into the 

above, and then integrating with respect to x, the following result is obtained 
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y 
k- 1 + [dy / dx)' 

11/2 + c (C-9) 

dx 
Noting that — = cos 9, hence 

ds 

1/2 1 
1 + [dy / dx) = , equation (C-9) reduces to 

C O S 0 

y ̂  — —T cos 0 C — —z-1 - 2 sin + C (C-10) 

B 

A 
/ / / / 

X I 

> 

B 

s / 

/ 

z X ^ P 

(:.l(a) C.l(b) 

Figure C.l Vertical Strut under Vertical Load 

Introducing h as the total horizontal deflection of the bar, as shown in Figure C.l, which 

2 
means h = , leading io = — + C. So 

159 



Appendix C 

== (C-11) 
2 

2 2 4 since y is positive, and assuming h < -p-, let 

A = (C>12) 

where p < 1 and select (p such that 

sin Y = p sin ^ (C-13) 

Using equation (C-13) and noting y = A cos ̂  and — = sin0, after some reductions, the 
ds 

following result can be obtained 

(fj = —TB- ((:-!'*) 
X:(l - sin^ 

6 is negative as shown in Figure C.l, hence (j) is also negative. The negative sign in 

equation (C-14) means that (j) is decreasing while s increase. Integrating ds from 0 to 5 

and disregarding the negative sign 

Assuming that the length of strut does not change during bending 
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From this equation, the modulus can then be solved out. Hence then by equations (C-15) 

and (C-13) the function for curve AZB s=f{9) is determined. Thus the present problem 

considered here is solved. 

Because the value of (j) at top point of strut g is —, then from equation (C-13), the slope at 

B can be found by 

s m ^ = p (C-17) 

From the above the total horizontal deflection of the bar has been designated as h, from 

Figure C.lb, the horizontal deflection at any point of bar is 

y = A cos ^ = — cos ^ (C-18) 
k 

From equation (C-14) and noting dx = dscos 6 = ds{l — 2p^ the vertical 

deflection at any point of bar can be obtained by integrating 

_ 1 dcp 2p sin 

^ ° (l - sin^ ^ ° (l - sin^ 

= | [2£(p ,« i ) -F(p ,« t ) ] 

SO the total vertical deflection of the bar is 

(C-19) 

T, = ((:-20) 
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C.4 Vertical strut with a load and a couple at end - principle 

of elastic similarity 

Consider a vertical strut the same as in the above but with a load P and a clockwise 

couple M applied at end B, as shown in Figure C.2a. They can be replaced by a force 

M 
acting on a rigid lever— Figure C.2b. The length of this lever is e = —. From the 

principle of similarity, this problem can be converted into the basic problem by extending 

the bar past B until it intersects the line of action of P which is exerted on the lever. Let 

this point be D. 

B 

A 
//'// 

C.2(a) 

X 
1 

/ g e 
D 

/ g 

^ P 

)' A 1 

4 

C.2(b) 

Figure C.2 Vertical Strut with a Load and a Couple at End 

The total length of the new strut AD is then 

L = Zjj + Lj (C-21) 
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Li is the length of original strut which is known, L2 is unknown. 

From figure C.2b and noting equation (C-12) 

COS^a=- = ; - (C.%% 
h 2p 

by which parameter <pB can be determined. Then from equation (C-15) 

(023) 

by which the modulus p can be solved out, and all other dimensions of the loaded bar can 

be obtained consequently. The function of the curve ABC can also be expressed as 

equation (C-15), where (j) = arcsin ^ ^ but here —<6<6g. Ob can be obtained 
P 2 

from sin = p sin (j)g. 

It should be pointed out that it is not certain that in any cases the imaginary extension of 

bar can intersect with the line of action of P . Under some conditions, e.g. small force P 

and large couple M, it is possible the line of P will by pass the elastica. This 

corresponding the assumption > - ^ in equation (C-12). In this thesis, this case is not 

concerned and considered. 

C.5 Curved bar under point loads 

Consider a curved bar in Figure C.3. The line a represents the initial free shape of curved 

bar fixed at original point O and its intrinsic equation is 

Line b is the loaded shape which expressed as 
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(y = 

The bar is assumed to be inextensible, hence ^ is the same in both equations and let L be 

the length of the bar. And it is also assumed that the bar is subjected to an arbitrary load 

distribution which can be expressed as v(j) vertically and h{s) horizontally. The bending 

equation for an arbitrary plane curve under an arbitrary coplanar loading is then 

d 

ds 
EI 

dy/ dr] 

ds ds 

where V(s) = J 

and H(^S) = J h(s)ds 

V[s) cos y/ - H [ S ) sin = 0 (C-24) 

For a bar of constant flexural rigidity, then 

EI^^-^-V(s)cosy/- H(s)sini// = EI^-~ (C-25) 

Equation (C-25) generally has no closed form solution. For a circular bar there is 

0, and if the load is concentrated force e.g. downward load P shown in Figure C.3, 

then the equation can be simplified 

+ k sin 0 = 0 (C-26) 

where k = J — 
EI 

Above all the nonlinear analyses for curved beam is more difficult than straight beam, so 

based on the results for straight beam, the method of analogy and principle of similarity 

can often be used for many kinds of problems concerning curved beam, as shown in the 

thesis. 
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Figure C.3 Deflection of Initially Curved Bar under Loads 

Reference for Appendix C 

1. Frish-Fay, R., "Flexible Bars", Butterworths & Co. (Publishers) Ltd., London, 1962. 
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