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This thesis is concerned with the analysis of curved laminates and sandwich beams with a focus

on delamination and instability.

An elasticity-theory-based approach is developed for delamination and flexural strength of curved
layered composite laminates and sandwich beams. The governing equations in this case are
derived from the results of curved orthotropic beam on an elastic foundation under flexural
loading. The approach ensures an accurate description of the through-thickness and in-plane
stresses in curved laminate beams. The solutions for various geometrical configurations are
provided. The effects of key parameters, such as stacking sequence of the laminate, thickness of

the skin, the curvature radius etc. are studied.

The critical load for instability of a curved beam on an elastic foundation, which is correspondent
to the skin of sandwich beam under pure bending, is derived by beam theory and virtual
displacement principle. The flexural strength of curved sandwich beam is studied with a view to

identify delamination and local instability characteristics.

The delamination buckling in curved composite beam is also investigated in this document. Based
on linear and non-linear curved beam theory coupled with fracture mechanics concepts, two
theoretical approaches are developed respectively for linear and nonlinear problems of
delamination buckling which are concerned in the cases of normal delamination buckling and

snap buckling of the inner layer.
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delamination, instability, delamination buckling
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1. Introduction

Chapter 1 Introduction

1.1 Background of the work

Fibre reinforced plastic (FRP) composite materials are finding increased usage in a wide
variety of structural applications in the aerospace, civil construction, marine and offshore
industries. A key feature of most such structures is the presence of bonded joints
connecting two plate panels either butted together in-plane or placed in a tee fashion for
out-of plane load transfer. In either case straps of laminated plates (or overlaminates) are
bonded together to the base place to effect the load transfer. The good performance of the
joints then is decided by correct selection of the adhesive and proper design of the
overlaminate. There is a large body of literature dealing with specific aspects of adhesion
and adhesively bonded joints, for example, Kinloch (1997), Thomas et al (1998) and
Charalambidi et al (1998). One of the objectives of this thesis is the mechanical

characterisation of such curved composite structure elements as the overlaminate.

(1) Frame/shell (2) Bulkhead/shell
(3) Stiffener ending (4) Stiffener intersection
(5) Deck-edge (tee) (6) Deck-edge (knee)

Figure 1.1 Ship Hull Compartment Showing Typical Tee Connections
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1. Introduction

Tee joints, curved sandwich beams and top-hat stiffeners as well as curved layered beams
are widely used in many applications, for example, ship hulls. A typical tee-joint and
curved sandwich beam configuration is shown in Figure 1.2. The behaviour of such
curved structural elements has been studied to a certain extent (Pei & Shenoi, 1996). It
has been known that the strength of tee joint is a great deal dependent on the nature of
boundary angles, especially the geometry curvature and thickness as well as its material
(Shenoi et al, 1992, 1993 and 1998). It is found that increasing the thickness of the
overlamination, traditionally the criterion used for the design of joints, has a detrimental
effect on the properties of the joint; on the other hand, the radius of the fillet, which
traditionally is given little or no consideration by current design methods, is critical to the
performance of the joint (Hawkins et al, 1993). The effect of geometry curvature on the
strength of the beam is also always neglected in the traditional design of curved
composite beam or sandwich beam. Designers with composites generally estimate the
mechanical behaviour of these curved structure elements with the conventional treatment

of laminates and the strength criteria for flat beam or laminates.

However, up to now, most work in this area has focused on experimental and numerical
analyses, for example, Shenoi & Hawkins (1994 and 1995) besides those which have
been mentioned in the above. There are few theoretical analyses relating to the strength
and other mechanical characteristics such as local instability and delamination buckling

of these curved composite structural elements.

No. and Material
Makeup of Plies

f Lengths of Overlamination

Fillet Radius Curved composite Beam l

Type of Resin
Length of Overlap
]

Elastic Foundation

Gap

Figure 1.2 A typical tee-joint and curved sandwich beam configuration
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1. Introduction

1.2 The aims and objectives

The aims of thesis are therefore to investigate the flexural behaviour of curved laminates

and sandwich beams, and predict their strengths by theoretical approaches.

The key objectives of this thesis are four-fold:

To develop a model for characterising flexural behaviour of a curved beam on an

elastic foundation;

To obtain accurate elasticity solutions for stresses, especially through-thickness
tensile stress in curved laminates and sandwich beams, and investigate the effects of
some key parameters such as radius of curvature, stacking sequence, and foundation

modulus (if the beam resting on an elastic foundation) etc.;

To find a theoretical solution for buckling/wrinkling of curved composite beams on
an elastic foundation and, then based on the results, to estimate the bending strength

of global curved sandwich beam in terms of local instability of the skin;

To investigate delamination buckling of a curved layered beam by analytical

approaches under conditions of opening and closing bending moments respectively.

1.3 Scope of the work and literature review

1.3.1 Flexural response of curved beam on an elastic foundation

In the first stage of our analytical research work, a model for this kind of curved structure

element such as tee-joint and curved sandwich beam is developed. Overlaminate in a tee

joint or the skin of curved sandwich beam are considered as curved composite beam,

meanwhile the fillet in tee joint or core in sandwich beam are considered as elastic

17



1. Introduction

foundation. Thus the first problem under consideration becomes evaluating the flexural

response of curved composite beam on an elastic foundation.

There is a wide body of literature on the analysis of beams and plates resting on elastic
foundations. Sinha (1963) has examined the flexural behaviour of uniformly loaded,
isotropic plates resting on a Winkler elastic foundation by using Berger’s approach
(1955). Yang (1970) has derived load-deflection curves for uniformly loaded, isotropic
plates on a Winkler foundation using the finite element method. Ghosh (1977) has
obtained load versus bending moment and shear force curves for isotropic plate on elastic
foundation of the Pasternak-type. Chia (1980) gives analytical formulations for the large
deflection behaviour of uniformly loaded orthotropic plates on a Winkler foundation. In

all these cases, the plates considered were flat.

The analysis of curved beam made from isotropic material has also been well
documented, for example, Hetenyi (1946). The circular isotropic bar resting on elastic
foundation with different boundary conditions and under different kinds of load is studied
in detail. However, there are not many publications focusing on curved composite beam
on an elastic foundation. Therefore, the first part of this thesis document is to extend
current approaches of elastic foundation analysis and laminate theory to include the

effects of curvature on structural response.

1.3.2 Through-thickness stresses in curved laminates and sandwich

beams

One of the key features of a curved (as distinct from a straight) laminated beam is the
presence of not so insignificant through-thickness tensile stresses. These can significantly
affect the performance of curved composite beams due to the low values of through-
thickness tensile strength. For example, the delamination is more likely to occur in such
curved structural elements. Therefore, it is imperative to obtain the stress distribution

through the thickness more accurately when analysing the behaviour of curved composite

18



1. Introduction

beam. However, the problem of delamination in curved composite beams has mostly
been investigated experimentally and numerically (Shenoi & Hawkins, 1994 and 1995;
Smidt, 1993 and 1996) due to the difficulty of taking into account geometry curvature.
Researchers and designers with composites are familiar with the conventional treatment
of laminates such as the classical laminated plate theory (CPT) and thin shell theory
(Reissner, 1961). In these classic treatments of curved shells, the assumption of a state of
plane stress in the constitutive relations eliminates the possibility of rigorous calculation
of interlaminar stresses. Moreover, although many high order, refined laminated plate
theories and some approximate methods are available (Whitney, 1969; Reddy, 1984;
Bhate, 1995), their application to curved beams is limited (Chang, 1986). Most of these
theories or methods retain parts of the assumptions of classical plate and thin shell theory,
and only incorporate the influence of shear deformation etc. on plate deflection in
composite laminates. So while they can compute transverse shear stresses and give more
accurate results for the in-plane stresses and displacements, they are unable to deal with

through-thickness stresses.

Pagano (1967 and 1969) studied the multi-ply composite laminates using linear elastic
theory, and provided an exact solution for composite laminates in cylindrical bending.
However, the composite laminates he considered were all flat and subjected to only
transverse load condition. Lekhnitskii (1981) gave a general solution to the problem
“Bending of a Plane Curved Rod by Moments”. He studied the curved orthotropic beam
but did not consider the response of a rod on an elastic foundation. The response of a
curved beam without a foundation is quite different from that with a foundation. It can
only sustain load condition such as pure bending or a pair tension/compression forces at
the ends, and cannot sustain the circumferential force without radial restraints. But it is
. obvious that the interaction generally exists between every two adjacent plies of laminate
especially in a curved laminate, so the solution of Lekhnitskii cannot be directly

transformed to analyse the curved layered composite beam.

Most recent reported work about the curved beams deals with plane strain applications of

classical laminated plate theories (Wu, 1993; Gibson, 1994 and Chandler, 1993). The
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1. Introduction

extension of classical theories to curved beams is based on tight assumptions. For
example, Wu (1993), Gibson and Chandler (1994 and 1993) adopt the same model which
keeps the assumption that the stress normal to the cross-section of beam distributes
linearly. This is acceptable when the longitudinal elastic modulus of composite beam
does not change through thickness, such as a laminated beam composed of many layers
oriented in the same direction (or unidirectional composite beam). This assumption is not
valid, however, for a general layered composite beam, in which the stiffness properties
vary drastically from layer to layer. Stress components are thus likely to be discontinuous
in their variation. Therefore the method and results obtained by Wu et al cannot be used
to analyse a general curved laminated beam. Tolf (1983) analysed homogeneous
transverse isotropy condition in detail, but in his discrete model, he took the laminate as
one ply fibre material by one ply matrix material, consequently each ply in laminate is
considered as homogeneous and isotropic. Lu (1994) provided a solution of
homogeneous anisotropy, but as with Tolf (1983), his model and solution cannot be used
to study layered composite curved beam and curved sandwich beam. In the recent past,
Wisnom (1995, 1996 and 1996) and Kaczmarek et al (1998) has contributed much
research work on experimental analyses and numerical approaches for interlaminar
failure and flexural strength of composite laminate. The focus of this work has been

towards understanding delamination failure in curved laminated beams.

Interlaminar normal and shear stresses, acting either singly or interactively can lead to
delamination as reported by Wisnom (1995 and 1996), thus affecting structural integrity.
It is important to know through-thickness stresses even well below the delamination limit
value, because these could have an interactive effect on failure under in-plane stress to
some extent (Wu, 1993). Especially in curved composite structure, the distribution and
effect of through-thickness stresses should be paid more attention to, because there
originally exists tension-bending coupling in the mechanical behaviour of composite
laminate meanwhile the through-thickness tensile stresses is not so insignificant as in flat
one. Therefore, it is imperative to obtain the stress distribution through the thickness

more accurately when analysing the behaviour of curved composite beam.
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1.3.3 Buckling/wrinkling of curved composite beam on an elastic

foundation

One other feature of the curvature of an overlaminate in a tee joint or the skin of curved

sandwich beam is the effect it has on the buckling/wrinkling characterisation of the face

in compression.

If the compression in the face of such structures exceeds a critical load, this compressed
face is then subject to a particular kind of instability, which is either column/global
buckling or local wrinkling (or rippling in which the wavelength of the buckled form is of
the same order as the thickness of the core). The local instability problem of straight
sandwich beam can be studied by considering a long strut supported by a continuous
elastic isotropic medium (Allen, 1969; Hoff and Mautner, 1945). Ordinary buckling
theory indicates that the lowest critical load is that which corresponds to a buckled form
in which the half-wavelength is equal to the length of flat beam with both ends simply
supported. Nevertheless in some suitable circumstances of the bar resting on an elastic
foundation, short-wavelength instablity may occur at a still lower load. And the problem
of the buckling of straight bar on an elastic foundation has also been considered in some

literature, for example, Timoshenko (1936) and Hetenyi (1946).

However, as far as the curved sandwich beam is concerned, this problem becomes a little
more complicated. The curved structure has different characteristic of instability from the
straight one. For example, even under the condition that there is no foundation and both
ends are pinned, the lowest critical load for curved beam subjected to uniformly
distributed pressure is that which corresponds to the buckled form with two, not one,
half-waves (Timoshenko, 1936). This difference just results from the geometry curvature.
In our research work, the fillet or core material is still considered as elastic foundation
and the Winkler Hypothesis (Selvadurai, 1979) is assumed. In this thesis document, a
critical load for buckling/wrinkling of the skin is derived by virtual displacement

principle under the condition that the global curved sandwich is subject to pure bending.
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1.3.4 Delamination buckling of curved layered composite beam

Apart from the delamination arising from large through-thickness stress which exceeds
the interlaminar strength of layered composite beam, another way in which early
structural failure can be caused is by delamination buckling. Local delamination can be
considered as a crack in the interlaminar bond. Under buckling of the delaminated layer
there appears a high interlaminar stress level at crack tip which leads to crack growth. On
the other hand, delamination growth can also adversely affect the structural instability

and even lead to catastrophic collapse of overall structure. They are coupled with each

other.

In recent years the problem of delamination buckling of composite beam has been studied
by several researchers, both experimentally and theoretically. Chai et al (1981) used the
energy release rate criterion based on a fracture mechanics approach to model the process
using a post-buckling solution for a delaminated beam-column. Wang et al (1985) studied
the compressive stability of delaminated random short-fibre composites by Rayleigh-Ritz
method as well as by a finite element analysis. Moshaiov (1991) gave a characteristic
equation for the buckling involving the length of delamination and its location the beam.
Chattopadhyay (1996) and Gu (1998) give an exact elasticity solution for buckling of a
simply supported orthotropic plate and then composite laminates whose behaviour is
referred to as cylindrical bending. However, most of the work concerns straight laminated

beams.

Kachanov (1988) studied two types of delamination buckling in delamination damage of
fibre/glass tube. And in his research work, he considered the problem of delamination of
a fibre-glass tube due to residual stresses and the problem of snap delamination buckling
of a ring under external pressure, which are respectively corresponding to linear and non-
linear problem of delamination buckling. Before this, Bugakov’s (1977) experimental
research work on fibre/glass rings subjected to uniform external pressure also revealed

some characteristics in the snap buckling of its inner surface layer.
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As mentioned in the beginning, delamination and delamination buckling are more likely
to occur in curved composite beam due to the geometry curvature. Meanwhile, compared
to the flat beam, the curved geometry also makes it more difficult to achieve the solution
to the problem. Up to now, there have still been few analytical research works reported
considering the delamination buckling in curved composite laminatés, although many
investigations on the problem of delamination buckling in flat composite beam have been

received to some extent.

Toward this objective, two problems are considered in the last part of thesis — curved
composite layered beam subjected to opening and closing bending moments respectively
(snap buckling occurring in the latter case) — which are corresponding to the linear and

non-linear problems of delamination buckling of curved composite beam.

1.4 Layout of thesis

The through-thickness stress in curved composite laminate or sandwich beam is studied
in this thesis by an elasticity-theory-based approach. Chapter 2 develops a model for
characterising linear-static flexural behaviour of a curved beam on an elastic foundation
by classical beam theory. The supporting reaction force of elastic foundation, bending
moment and shear force within the beam are obtained from the governing equations.
These results are then used in Chapter 3 as boundary conditions for an elasticity solution
for an orthotropic beam on an elastic foundation. Then a general solution for curved
layered composite beam is achieved in Chapter 4. Chapter 5 studies the instability of
curved composite beam on an elastic foundation. The critical values of compressed load
for different kinds of instability--wrinkling/buckling--are obtained by beam theory and
principle of virtual displacement. The effects of key variables on stress distribution within
a curved beam are investigated in Chapter 6, and Chapter 7 shows the effects of stacking
sequence and curvature radius of curved composite laminate on the through-thickness
stress. Estimation of delamination and local instability damage in curved sandwich beams

is achieved in Chapter 8 based on the approaches developed in previous chapters. The
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application of the approach is also made to analyse the failure of some tee joint samples
under a 45° pull-off condition in Chapter 9. Chapter 10 investigates the delamination
buckling in curved composite layered beam. Both the problem of delamination coupled
with buckling when curved beam is subjected to opening bending moment and the
problem of snap buckling of inner layer when curved beam is subjected to closing
bending moment are considered. The concluding Chapter 11 summaries the achievements
of the whole research work. Further work aimed at improving the accuracy of the

approaches and scope of their applications are listed and commented upon.
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2. Flexural Response of a Curved Beam on an Elastic Foundation

Chapter 2 Flexural Response of a Curved Beam

on an Elastic Foundation

2.1 Background and aim

The background of the problem provided in this chapter is the strength of tee joint,
curved sandwich beam etc. As mentioned in the chapter of introduction, in our research
work, we adopt a model for these kinds of curved structure element which considers the

overlaminate or skin as curved beam meanwhile the fillet or core as elastic foundation, as

shown in Figure 2.1.

Overlaminate

[ Curved composite Beam l

Elastic Foundation

Gap

Figure 2.1a Tee joint Figure 2.1b Curved sandwich beam

Figure 2.1 Model sketch for the problem statement

The aim of this chapter is to develop a model for characterising and investigating the
mechanical behaviour of a curved composite beam on an elastic foundation under
flexural loading. The governing differential equation for general curved composite beam
on an elastic foundation is derived from force-moment equilibrium considerations and
classical laminate theory. And the flexural behaviour of a circular composite beam on an

elastic foundation is studied in detail.
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2. Flexural Response of a Curved Beam on an Elastic Foundation

2.2 Equilibrium equation and corresponding constitutive

relation
Consider a curved beam resting on an elastic foundation. Assuming the intrinsic equation

of its free shape is 8 = ©(s), where s is measured along the length of the arc and 81is the

slope at s , as shown in Figure 2.2a.

Zo‘ /
= 0(s)

Foundation

O Y,
Figure 2.2a Beam geometry Figure 2.2b Forces on a small element

Figure 2.2 Curved beam on an elastic foundation

Consider next the conditions of equilibrium of the forces on an element of the beam, as

shown in Figure 2.2b, the following can be obtained:

In radial direction: p-ds—N-d6—q-ds=dQ (2-1)
In tangential direction: Q-d6 =dN (2-2)
Moment equilibrium:  dM =Q-ds (2-3)
2
Then there has: p—q- N40_ 42 _d M (2-4)
ds ds ds’
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2. Flexural Response of a Curved Beam on an Elastic Foundation

Assuming the modulus of elastic foundation is &k, and Winkler Hypothesis is taken for
the elastic foundation here. Hence the reaction forces in the foundation are then normal to
the axis of the beam and proportional at every point to the radial deflection of the beam w

at the point, that is to say:
p=k-w (2-5)

By substituting equation (2-5) into (2-4) the equilibrium equation of curved beam on an

elastic foundation can be obtained:

do d*M
N s T &0

In order to obtain the solution to the above differential equation, it is necessary to obtain a
relation between the moment M and normal displacement w. In the case of laminated

composite beam, the relationship is obtained from the classical plate constitutive equation

(see Appendix A):
N A | B g’
il i Rl Bt B At @-7)
M B | D K
where
N, M, £ K.
N={N, ¢, [M]={M, }, [¢]=1{e"+, [x]=1x,
N M, 7, K
%
(4;,B;,D;) = J‘Qiﬁk)(l,z,zz)dz (2-8)
%
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2. Flexural Response of a Curved Beam on an Elastic Foundation

Apparently, as far as a general composite laminate is concerned, because of the tension-
bending coupling and bending-torsion coupling, a simple expression of M and k; needed
for solving the differential equation (2-6), cannot be obtained easily. In the following,
some pertinent cases will be considered. In the derivations, g is assumed to be a
constant, as is the case for the commonly occurring condition of hydrostatic pressure

loading.

2.3 General governing differential equation

Consider a shell curved about only one axis (e.g. cylindrical shell) here, and assume it is
very long in this axis—designated as x-axis. The applied forces and boundary conditions
are both uniform in x-direction, so the deformation is independent of x. And the
assumption of ¢_ =0 is also taken here. Hence this shell can be analysed as a curved beam
with unit width. Then from equations (2-7) and (2-8), the following equations can be

obtained:

N=A,"+B, Kk 2.9)
M =B,&°+D, Kk

where for the reason of clarification and unity with the expression in Figure 2.2b, the
subscripts s in all related variables are omitted, and € is the in-plane strain in s-direction
at mid-surface. Eliminating the term & in the first expression in equation (2-9), results in

the second equation being written as:

2
m=2unio, _%_)K (2-10)

11 11

According to the theory of curved surfaces and elastic shells, when considering the effect

of in-plane deformation on the change of curvature of circular beam or cylindrical shell,
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2. Flexural Response of a Curved Beam on an Elastic Foundation

the relation between the lateral deflection w and curvature x is as below (see Appendix

B):

2
sz-‘z—‘g-d v_ (‘m) @2-11)

where v is the displacement in s-direction.

Substituting expression (2-11) in equation (2-10), the relation between bending moment

M and lateral deflection w for a general curved beam can be known as

2 2 2
m=Buy,ip [1-B |, 40 dw_ (‘w) (2-12)
" A ds® ds ds

and then substituting equation (2-12) in equation (2-6), the governing differential

equation for general curved composite beam on an elastic foundation is finally obtained

as follows:
d'w (dOY d*w  dod*6dw | dod’e [(d*0) k
T — -+ 4— — | 2——+2— | + w
ds ds ) ds ds ds ds ds ds ds B
D, Rty
A,
1 B, d’N  db d*0d> _d0dv d'o
=g+ — +—N |+ —F—5+2—F—F—+—V
B’ A, ds® ds ds* ds ds’> ds ds
D, 1-——
AH

(2-13)

For the case of curved isotropic beam on an elastic foundation, because By;= 0, the above

governing differential equation becomes

29



2. Flexural Response of a Curved Beam on an Elastic Foundation

d'w (dO d*w  dOd*0dw |.ded*0 (d*0\
el Bl B e e ML e st el el 1
ds ds ) ds ds ds® ds ds ds ds

1 dg d*6 d*v d6dv d‘o

=—|g+—N |+ —F—F+2———+—V

D ds ds® ds ds’ ds ds

(2-14)

Furthermore, if the shape of this isotropic curved beam is a circular arc, noting there is

Z—H 1L (constant), equation (2-13) then reduces to

s
d4w+—1—d2w+£w~——1-[ +—1\£) (2-15)
is* R as p DR

Differentiating equation (2-15) with respect to s and then substituting equations (2-2) and
(2-3) into it to eliminate N , and also noting s=R&, the following differential equation for

the case of circular isotropic beam on an elastic foundation is derived again

5 3 4 4
W g dw [ |0 R 44 (2-16)
a¢° “a¢* \ D )d6 D ao

Analyses for this problem has been well documented (Hetenyi, 1946).

2.4 Circular composite beam on an elastic foundation

Consider the case of long cylindrical shell, which is the most usual case, in this section.
Similarly to last section, assuming the deformation is independent of x, and €, = 0. Then
this cylindrical shell can be considered as a circular composite beam with unit with, and
assuming the radius of curvature of this circular beam is R . Hence, in equation (2-13)
o _d’0 _d'o

—=—=5=—7=0, and also noting s=R6@. Then the
ds ds ds

there is a9 = 1 (constant) and
ds R

differential equation (2-13) becomes:
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2. Flexural Response of a Curved Beam on an Elastic Foundation

d*w d* kR* R* 2
v, e dN+%N (2-17)

B

+ + w= g+—L
gt 4o’ 2 2( A, ds’
D”(1~B“ j DH[I—B” ] ne

Differentiating equation (2-17) with respect to €, and noting from equations (2-2) and (2-

1
3), there is an = —@/!-, and also substituting equation (2-12) in it, then the following

d6 R dO

governing differential equation for the problem of circular composite beam on an elastic

foundation can be achieved.

d’w dw kR* dw R* dg 1 B,dN 1 B,dN
5"—2 7t 2"'1 T T A T A S
do do B, de B>\d0 R* A, d6 R A, dx
- Dn"’
All All

(2-18)
Two conditions will be considered next.
1) Ny = Constant

This is a common occurrence in the case of sandwich beams subjected to pure bending,
where the axial force in the skin is a constant throughout the span. This, if coupled with

the previous assumption of constant pressure g, leads to the right part of equation (2-18)

being zero. The equation thus simplifies to be:

d’w  _dw  adw
5t 7N ===
dé do do

0 (2-19)

where: n' (2-20)
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2. Flexural Response of a Curved Beam on an Elastic Foundation

The general solution of the homogeneous differential equation (2-19) is:

w =K, + (K, cosha' 0 +K, sinhar’0)cos 86 + (K, coshar" + K, sinhcr"6) sin 6
(2-21)

where K, are constants. From this, the reaction force of the elastic foundation can be

deduced as:

p=Ay+ (A cosha' 8+ A, sinha’@)cos B0+ (A,cosha’@ + A, sinha’8)sin B0

(2-22)
a* — 77 ""1
where 2 (2-23)
.+l
h= 2

where A, = kK, are also constants to be determined from boundary conditions.

2) N=g,+g cos0

This is the case when a curved sandwich beam is subjected to a pair of
tension/compression forces at two ends. Again, the right hand side of equation (2-18) is
zero again. Thus, the governing differential equation and solutions for the lateral

deflection and reaction forces will be the same as (2-19), (2-21) and (2-22) respectively.

2.5 Circular mid-plane symmetric composite beam

For a laminate symmetric with respect to the midplane, the case becomes simpler,

because there is no tension-bending coupling, i.e. B; = 0. Hence,
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S
IS
IS
IS
kK

K (2-24)

Further, in the case of a special symmetric laminate whose material direction is the same

as the principal direction, there is no bending-torsion coupling either, so D, and D,

become zero. The above equation then turn to be:

M,) [D, D, 017 [«
M,\=|D, D, 0 |« (2-25)
D

M xs O O 66 K xS

In such a case, and still considering a very long cylindrical shell and taking the

assumption of the deformation independent of x, as in the above section about general

laminate case, then:

M (2-26)

2

Substituting expression (2-11) in formula (2-26) and noting Z >
s

d*w w
Dy| —+—|=-M 2-27
”(dxz Rz) ( )

Combining equation (2-6) with equation (2-27), and simultaneously making the

substitution s=R§, the final differential equation can be obtained as:

5 3
Dy pdw w1 1dq (2-28)
do° " "do° " 49 D, Rd6
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4
with: n= Rk +1 (2-29)

Again, noting that g is a constant, for a layered beam symmetric about its mid-plane the
following differential equation is valid:
d’w . d’w . dw

+2——+n°—=0 2-30
do’ do’ 7 do (230

As can be seen, the form of equation (2-30) is the same as the form of equation (2-19).
Only the coefficients 7 in (2-30) and n" in (2-19) are different. As a consequence, the

above equation (2-30) has the same form of solution:

w= K, + (K, cosha8 + K, sinha8) cos 0 + (K, cosh a6 + K, sinh &) sin SO

(2-31)
o= 1=t
where again: 2 (2-32)
_In+l
F=\7

The reaction force of the elastic foundation is:

p=hkw=A,+(A, coshad+A,sinhad)cos 0 + (A, cosh &8 + A, sinh af)sin O
(2-33)

The coefficients A, in the above formula can also be determined from boundary

conditions. If the curved beam is symmetric with respect to the axis 8 =0, then in the

equations (2-31) and (2-33), only even-function parts remain:
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w= K, + K, coshaf cos 6 + K, sinhafsin 6 (2-34)

p=A,+A, coshabcos 0+ A, sinhafsin 56 (2-35)

2.6 Distributions of bending moment and shear force

For a beam symmetric with respect to the axis € = 0, and from the geometry of the beam,

it can be deduced that:

R? d6* R?

=%[(K1a2 +2K,0f - K, 8° + K, )cosh af cos 36 +

(k,0* - 2K, 0 - K, + K, )sinhaBsin 86 + K, | (2-36)

Noting the general form of the relationships in equations (2-20) and (2-23), the following

relationships can be deduced:

& -p2=-1 and aff= (2-37)

Combining equations (2-36) and (2-10) and using equation (2-37), the expression for

bending moment becomes:

B\ 1
—2u N it ) N
M=-1LN (D” " ]RZ [K, + 2K, coshabf cos O (2-38)

— 20K, sinhafsin 56

From equation (2-3), and using the relationship for M from equation (2-38), the

expression for Q becomes:

35



2. Flexural Response of a Curved Beam on an Elastic Foundation

g=ud 2 —-?(D“ _LJ. [(zKlazﬂ -2K, 08’ )cosh a@sin 6 (2-39)

+ (2K, - 2K ,&* B)sinh afcos fO)]
Also, from equations (2-2) and (2-39), the following relationship can be derived:

B 2
%(D“ - 74——] [2K 02 - 2K ,08* cosh afsin 6 + (2K 08> + 2K ,a* B)sinh f cos 56
11

_[Bu_ pldV (2-40)
A, do

When N = N, i.e. a constant, it can be seen that the above equation is satisfied under
any value of 6 only when: K, = K, =0. Thus, for constant N = N, the following

results will hold true:

( 2

N, = RkK, (2-41)
p = kK,

0=0

The above conclusion shows that even in a general case where: (a) tension-bending
coupling occurs as a result of the laminate layer; and (b) the beam is subjected to in-plane

forces N and bending moments M , the shear force Q still is zero. Consequently, the

curved beam on elastic foundation can still be considered as the problem in which

stresses are independent of polar angle.
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2.7 The effect of tension-bending coupling in general

laminate

By comparing formula (2-29) to formula (2-20), it is obvious that:

n>n (2-42)
then, according to formula (2-32) and (2-23):

& >a; Bf>p (2-43)
Therefore, the existence of tension-bending coupling in curved layered composite beam

results in a bit larger oscillation in the distributions of mechanical variables p, w and M, N

etc. along the span of curved beam.

2.8 The solutions by taking into account the thickness of

laminate

Figure 2.3 Curved beam with thickness of # on an elastic foundation
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Thickness of the laminate can be incorporated into the equations. If the thickness of

laminate ¢ is taken into account, equilibrium condition in radial direction (2-1) becomes:
ds t ds t
~—+—)d0 — Ndb — g(— ——)dB = d 2-44a
p( 0 2) q( 10 2) Q ( )

Thus equilibrium equation (2-6) changes to be:

tdé t do do d*M
kQ+——w—-(1-=—)g-N—= 2-45a)
e 2 Vs T (
If it is an circular arch with constant curvature radius R, the above two equations (2-44a)

and (2-45a) turn to be:

p(R + é—)d@ — NdO - g(R - —;—)dé? = dQ (2-44b)

! t N d’M
k(1+—)w—(1- -2 = 2-45b
( 2R)W ( 2R)q R ds ( )

And also considering the existence of unidistributed pressure acting downwards on the

inner surface of curved beam g¢,, as well as constant N = N, by the similar deduction in

the above subsections, following equations can be finally obtained:

-

B B,'. K
M==UN,—(D, -—1). =L
An ’ ( ! Au) R’
t t -
Ny =k(R+2)K, - gy(R—=) (2-46)
2 2
p=kK,
2=0

These results will be used in the following Chapters as force boundary conditions when
an accurate general solution of orthotropic beam on an elastic foundation is obtained

using a stress function approach.
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Chapter 3 Estimation of Response Using Airy

Stress Function Approach

A very long cylindrical shell is still considered here, and also the applied forces and
boundary conditions are both assumed uniform in cylinder axial direction (x-direction),

thus the deformation is independent of x. Therefore the present problem can be analysed

as a generalised plane-strain problem.

3.1 Airy stress function and compatibility equation

By introducing the Airy stress function in polar coordinates ®(r,8), the stresses can be

written as (Timoshenko, 1934):

,

o 10 19D
" oror r?oe?
_oe (3-1)

19° or’

The above equation automatically satisfies the equilibrium equations. For the problem

under consideration, the stress components do not depend on & and, in addition, 7,, =0

(i.e. constant in-plane force and hydrostatic load).

For the cylindrical material anisotropy, a compatibility equation can be obtained as

(Lekhnitskii, 1981):

4 3 2
d'® 2 IO _A d' A dP_, 3-2)

—+ = . kit
dr rodr’ 2 odart P odr
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3. Estimation of Response Using Airy Stress Function Approach

where A = -f:—- (3-3)

1

where E, and E, are the elastic moduli in the in-plane and through-thickness directions

respectively, and A is known as anisotropy ratio. As can be seen, the stress distribution in

anisotropic material depends on the elastic constants of material, which is different from

isotropic material.

3.2 General solution
The general solution to the ordinary differential equation (3-2) is:

O =C, +C,r2 +Cr yC (3-4)
from which stress components can be obtained:

0, =2C, + 1+ VAC; -7 + 1 =AA)C, - (3-5)
0y = 2C, + U+ NIWAC, -1 — (=AW, -

where C,, C; and C4 are all constants which need to be determined.

3.3 Determination of coefficients in solution

In solving the problem, the coefficients C,, C3 and C4 in the above expressions (3-5) can
be determined from appropriate boundary conditions. Equations of (2-46) obtained in the
previous chapter are then considered as the necessary boundary conditions here. From
equations of (2-46) and the geometry and considering the direction of the forces, also

according to St. Venant Principle, the following relationships can then be deduced:
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3. Estimation of Response Using Airy Stress Function Approach

(3-6)

[“0,dr=nN, = —-—k(R+~;—)KO +q,(R —é—)

R+t
J.R_LZO'BrdH =M,
2

.

Substituting the expressions of stress components (3-5) into the above boundary
condition (3-6), then an equation group about the coefficients C,, C3 and C4 can be
obtained. In this equation group, there are four equations but only three unknown
variables. However, it can be seen that the third equation is automatically satisfied when
the first and second equations are both satisfied. This equation group can be solved to

yield values of coefficients C,, C, and C,. For simplification of the solution the entity

O can be introduced:

o= R (3-7)

Here: R =R —é is the inner radius of curved beam. R =R +£ is the outer radius of
¢ 2

curved beam. Also introducing A, Ajand A, as:

(1+v2)a-6"" (1-JA)a- 5V
A=
(VA-1)a-6"") (1+J2) " -1

Ll et (1-VA)1-6"*)R,? .
" RM,+kK,R~gR? (1+4A)8 -1)

(1+V2)1-8"NR> kK, +4q,
(VA-1)a-8")  2M,+kK,R, —qR’
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and denoting the relationships:

A

" (3-9)
A =2

A

The coefficients of the stress formulae can then be obtained as:

2C, =—kKo —(1+~/A)A; = (1-A)A,

_ 3-10
C3=A3‘R01~ﬁ ( )
Ch==2§4~1§}+wﬁi

Substituting them into equations (3-5), the corresponding solution of stresses o, and o,

are.

-

o =|-kk, -1+ VDA, —(1—\/1)&1]+(1+\/Z)&(Ri)ﬁ-l

+ (1= AR, (=)
R, (3-11)
o, = [-kK0 —(1+A)A, —(1—ﬁ)Z4]+(1+ﬁ)-JZ-Z3(RL)ﬁ“

—(1—ﬁ>-ﬁ-Z4(Ri>‘”“‘

3.4 Maximum value of &,

The location of the maximum value of &,, and consequently the most likely location for

delamination in a laminate, is obtained using:

3-12
or ( )
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3. Estimation of Response Using Airy Stress Function Approach

Using the following notation:

(3-13)

I
iy
IA

r=R+¢& -

NSRIEN
N |~

And substituting expression (3-11) into equation (3-12), then the solution can be obtained

as:
L
P | VR S L (3-14)
A, 2 |
Then rr=R+¢

which indicates the radial location where the maximum through-thickness stress o,

maybe exists.

Actually the result directly obtained from equation (3-14) is the location of stationary
value of o,, as shown by equation (3-12). Sometimes it corresponds to the minimum

value and sometimes its value & exceeds the thickness scale of the considered curved

! ! ) .
beam (_ES & SE). Therefore, the values of through-thickness tension stress at three

locations should be calculated separately, as 7,|,_» » O, - and 0,|,_g by equation (3-

11). And then denoting:

O = Max(o,|,_p . O, _ (3-15)

rmax r

O,

r=R, )

which is the value of maximum through-thickness stress o, .
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3. Estimation of Response Using Airy Stress Function Approach

3.5 Corresponding results for curved isotropic beam

Here it should be noted that the above anisotropic solution cannot be extended to the

isotropic case only taking A = —%— =1, though convergence to the isotropic solution can be
1

achieved by putting A4 close to 1. As is known, the isotropic material case of A =1
actually corresponds to a double root of the characteristic equation arising from the
generalised differential equation (3-2), leading to the logarithmic term in the expression
of stress components and stress function. In homogeneous isotropic materials, as to the

problem of plane symmetrical about the axis, the stress distribution can be described as

(Timoshenko, 1934):

(
0, =2 +b(1+2Inr)+2c
r
0, =——+b(3+2Inr)+2c (3-16)
r
Trﬁ =O

If same boundary conditions as in equation (3-6) are assumed, then the constants in the

expressions (3-16) can be determined as:

(3-17)
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Chapter 4: General Solution for Curved

Laminates and Sandwich Beams

4.1 Introduction

Based on the solutions in Chapter 3, further analysis can be done to obtain a general
solution for the problem of through-thickness stress in curved composite laminates and
sandwich beams. A curved layered beam subjected to no-circumferential-dependence
loads is considered in this chapter, as shown in Figure 4.1. This layered beam is
composed of arbitrary number of layers among which each layer can be considered as an
curved orthotropic beam or isotropic beam (e.g. 90° stacking laminae in laminate or core
material in sandwich beam). Thus the solutions in Chapter 3 can be used here to analyse

every layer in curved layered beam.

Figure 4.1 Typical curved composite beam under loads
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4. General Solution for Curved Laminates and Sandwich Beams

4.2 Extension of solution for curved orthotropic beam to

layered beam

Assuming there are n layers in curved composite beam, where every layer has the elastic

coefficients:

E®, EY, v and v

and where the superscript (i) means this variable is related to the ith layer. The

boundary conditions to be satisfied in every layer are as follows:

rzrl—l O-r O-r
Fr=r: 0',:0',.(’) (4 1)
[ 0,-dr=N®
fin1
f Y0
Oy-r-dr=M
fim

where ¢ is normal tension stress in the interface between i th layer and (i + 1) th layer.

r

In addition, following on from equation (2-46), there exist the following relations:

(-1
r ’;'-l

(i) Bl(;) @) (1)
M :FN - D“ -
11

ND =g .p g

B 4CSP 4-2)
AP | (O 4+ Y

where Co® is assumed to be the radial displacement of ith layer in the global curved

composite layered beam.

In fact, every layer in the curved composite beam can be considered as an orthotropic
beam or isotropic beam, with the interaction forces between adjacent layers taken as the
reaction force of a kind of “elastic foundation”— p and the water pressure —g. This is

; : (i-1) @) i
9
because in a mathematical context, ¢, ’and g, o0,”and p have the same meaning.

They are only constants in the formulae, under no-circumferential-dependence condition.
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4. General Solution for Curved Laminates and Sandwich Beams

Then we analyse the plies of global laminate one by one. From boundary conditions for
each ply--equations (4-1) and equations (3-11), the distributions of through-thickness

stress-0, and in-plane stress-0p in each ply can be expressed in form of functions of

O'

~and C l)l .n » €.8.1n the ith layer, they are:

G, = [O'fi) - (1 + 1/]{(") )Z(;) _ (1 _ /ﬂ(i) )Z(;):l_*_ (1 + W)Z(;) (L)m-l
ki
+ (1= A2 YR (L A7
| N f " (4-3)
- [O"fi) — (]_ -+ /1(1') )Z(;) _ (1 _ ﬂ,(i) )K4]+ (1 + —\/j,(_'))ng)(i)m_l
r

._(1_ ,u’(i) )\/FK(;)(L)” 20
i

where the denotations of variables are all analogue to those in last section, among which
AP — A, )

~ W _
AS _A(i)’ 4 "A()’

(1+W)(1-—5<”m' (1-vA%)a _gorEy
A(i): ‘
(VA7 =1 =67 (1420 )00 1
o _ D (1 W) 5(,)—4——1 .~
A3(i): g r . )
2MO g2 1 0y (1A )50
0 (1+ ﬂ(”)(l—d(”m“‘).ri-? o — gD
A =
’ Gy _ _ VA () (i),.2 (z—l) 2
(VAT ~1)a- 89" 2@ — 607 + 6

where the superscript (i) means this variable is related to the i th layer.
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4. General Solution for Curved Laminates and Sandwich Beams

As in the analysis for the curved orthotropic beam in the last chapter, here too the known
boundary conditions at inner and outer surfaces of the curved layered beam can be

imposed for the global curved layered beam:

r:’;=0 =Ri : O-r =_q0 (4_5)
r:r}N:Ro: Grz—pO

Therefore, in the analysis of the whole laminate, there exist unknown variables

@ i=1,2,n-1 and Cél) i=12...n - The number of these variables is n+(n—1)=2n-1 in

r

o

all.

4.3 The displacement compatibility conditions on the

interfaces

Following the above section, the task left is to determine these variables by appropriate
conditions. The displacement compatibility conditions on the interface can then be used
to achieve this goal. Because of the plane-strain assumption, the equations of Hooke’s

Law of anisotropic material (see Appendix A) can be expressed.

1 vy
8r = 7 Uy 7 0-9
Ez , E1
1% 1
Ey=——50, +—0, (4-6)
E
2 1
c 1
e — ré
2u
12
where:
. E E
El’ — 1 i , E’ — 2
— Vi3V 1- VsV
V1,2 — Vip ViV V. = Vo VsV, 4-7)
? 21 —
1- Vi3V 1- ViVa
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4. General Solution for Curved Laminates and Sandwich Beams

Combining equation (4-3), (4-6) and (4-7) with the relationship between strain

components and displacement components in polar coordinates:

ou u, 1 ou, 1 du, Odu, u,
E = . 3 =—L+_'__"' ) =" L +—- 4'8
"oor r o r 06 Yo =7 080 or r “-8)
- - - - ion: Y2 _Va E,
By integrating the above equations and noting the relation: —%= o A= = the
1

solution of displacement in ith layer can be finally obtained as:

2i) 2{i)
EY E

1

tJi i) b (2] - -

7 {i)
u,=[ T ][crﬁ">—(1+\/,1“>)K3""—(1—W}Z4‘f’]-r+

VAD R,
{( A7) A7 20) VZJMJ-Z"-{;? +70@)

o

JJT

/(:) /(:) ] [crﬁ” -1+ VA® )K3m —(1-4A" )K‘tm]' ro "_[f(i)(g)dﬁ

where the superscript (i) means this variable is related to the ith layer. The arbitrary
function f(8) in the above equations can be determined by the end displacement
boundary conditions of individual layer of global curved composite beam. We assume
that these arbitrary functions f’(8) corresponding to every layer are all the same in the

whole layered beam, provided that there are no delamination or considerable shear slide

on interfaces in this curved composite beam being considered.

Known from Chapter 3, also the above anisotropic solution of displacement cannot be

extended to the isotropic case by only taking l:%—:l. In homogeneous isotropic
1

materials, as to the same problem, the displacement distribution in the jth layer (here it is
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4. General Solution for Curved Laminates and Sandwich Beams

assumed that the jth layer can be considered as isotropic case, for example, the core in

sandwich beam or 90° stacking laminae) is:

u = [—1(1+v)a<f’+2(1—v)b”>r1nr—(1+v)b<“r+2(1—v)c<f'>r]+g”>(0)
r E(j) 7

Wre (410
o =70 —fg‘”(&)d@

Similarly to the anisotropic case, the arbitrary function g’ (&) in the above expression
can also be determined by end boundary conditions of this analysed layer. And here we
still assume that arbitrary functions g(8) or £ (@) are all the same, if there is no

delamination or considerable shear slide occurring on interfaces in the whole layered
beam. According to equation (4-1), then the constants in the above expressions (4-10) can

be determined as:

[ 2.2
SIS () _ 4 li-D B i
a’l’ = o, -0, )-2In=>
Sl ot
20 = 47 = o =207, = (0 - o)
pUY = 7 4-11)
! 2
S N (Y
S
. gW ‘
2V =0 —— b (1+2Inr;)
The displacement compatibility conditions on the interfaces can be represented as:
(D () = D = ooy —
uP(r)=u"(r,) i=12,--,n-1 (4-12)
ud™ ()= us’ (1) i=12,,n-1

ul”(r),uy’(r) are as expressed in equations (4-9), or equation (4-10), according to that

this layer is orthotropic beam or isotropic beam under consideration.
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4. General Solution for Curved Laminates and Sandwich Beams

4.4 The global force boundary condition

Apart from these, for the case of curved beam on an elastic foundation under no-

circumferential-dependence condition, as shown in Figure 4.2a, there is the global force

boundary condition:

YN =Ny, =kR,C{" - q,R, (4-13a)

i=1

where p, = kC"”

And for the case of curved beam subjected to pure bending, as shown in Figure 4.2b

because there is no axial force N,, another global force boundary condition is provided

according to the global equilibrium by equation (2-41):

— B, = B} 4c B’) 4¢P
M0=A—“-No—[z>n—;]~ ° 2=—[D“— L | (4-13b)
11 11 (Ri + ‘Ra) AII (Ri + Ra)
F, o
M, I \ \M,
qo
Po
(a) (b)

Figure 4.2 Curved layered beam under different load condition

As can be seen, there are: 2x(n—-1)+1=2n-1 equations altogether, just the same as

the number of unknown variables. Thus the problem can be solved. Consequently, the
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4. General Solution for Curved Laminates and Sandwich Beams

through-thickness tensile/compressive stress-o; and in-plane tensile/compressive stress-
Op 1n the present curved composite laminate can both be obtained. However, it should be

noted that this general solution for curved layered composite beam on elastic foundation

is under no-circumferential-dependence condition. Note also that ¢”|_ , . are the

tensile through thickness stresses between every two adjacent layers — interface tension

stress, which many researchers and engineers are concerned.

The application and discussion of the theoretical approach developed in this chapter will

be shown in chapters 7 and 9.
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5. Stability of Curved Beam on an Elastic Foundation

Chapter 5: Stability of Curved Beam on an

Elastic Foundation

5.1 Background

The background of the presented problem is the local instability of skin of curved

sandwich beam.

5.2 Problem statement

Figure.5.1 Curved laminate on an elastic foundation

Consider a curved beam lying on an elastic foundation which is subjected to compressed
axial force and bending moment. It also possesses the possibility of instability, analogue
to the problem of buckling of straight bar on an elastic medium which was first discussed
by S.Timoshenko (1936). However, the geometry curvature of the beam make the
problem more complicated. Here the Winkler hypothesis (Selvadurai, 1979) is still

assumed, which means that the reaction of the elastic foundation, at each cross section of
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5. Stability of Curved Beam on an Elastic Foundation

the beam, is proportional to the normal deflection at that cross section and in the normal

(i.e. radial) direction.

In the usual case of a curved sandwich beam subjected to pure bending, for example,
closing bending moment, its inner face is then under compression and buckling or
wrinkling are possible to occur. In this Chapter, the core is considered as elastic
foundation and the skin is considered as a curved composite beam lying on elastic
foundation. In this section, we still denote the radial displacement as w, the coordinates
are all the same as before. Therefore this problem is just the above problem of instability

of curved composite beam on an elastic foundation as shown in Figure 5.1.

5.3 Approach for solution

5.3.1 General Solution

Assuming the buckling deflection of curved beam lying on an elastic foundation is based

on the equilibrium place, then the actual radial deflection of curved beam is:
w=w, +ow (5-1)

Where w, is the radial displacement of the static equilibrium state (see Chapter 2) and

ow is a small perturbation. In the present problem, because axial force N in the curved
composite beam (skin of sandwich beam) is constant Ny, w, is also a constant N,/ k (k

is the elastic stiffness of foundation), through the whole span of this curved beam.

Then it is assumed that dw can be expressed by Fourier series according to the simply

supported boundary condition:

Sw=>a, sin 79 (5-2)
i=l 124
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5. Stability of Curved Beam on an Elastic Foundation

In the case of symmetric stacking laminate, there is the following relationship (Chapter

2):

M=D-x
K___l_d2w+i (5-3a)
R* d6* R?

where x, M, D are curvature change, bending moment and flexural rigidity of beam

respectively. According to equations (5-1) and (5-2), the above equation turns to be:

D i T 2] . 76 I 27 2] . 276
M=—<Sw,+|1-|—| lgsin—+|1-| — | |a,sin +--
R o o o o
1 oz V me [ 22V . 270
K=—F3wy+|1=-|—| lg;sin—+|1-| — | |a,sin +--
R a) | a o o

The strain energy change of bending of the beam due to the small perturbation dw is:

(5-3b)

1 o
AV, =R jOMKdH -V, (5-4a)

where V, = — vozaf is the strain energy of bending of the bean at static equilibrium state.

Substitute equation (5-3b) into the above, and noting: J. sinﬂg-sinj—ﬂe-dﬁ =0 (i #j) and
o o

0
~[sin2 l—ggdﬁ = %’ the following result can then be obtained:
0

2
1 D nw 2 2 2Dw, o ot (n]z‘)Z a
AV, ==Y 1=| == | a  +=—2= 1-[2Z) | 5-4b
g R 2{ [ o j j, n R’ ﬂ_nzglsl: o . ( )
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5. Stability of Curved Beam on an Elastic Foundation

Analogously the deformation energy change of the elastic foundation due to the small

perturbation dw is:
1 a4 1 2
AV, = —kR[ 'w’d0 - —kw,’ Rex
2 Y 2
= 2ka1{ 2 ( )J + ikaR[E )
1,3,5 n=1

Meanwhile, the change of the length of curved beam in circumferential direction is:

(5-5)

al 1{dw —
d=1| = 5-6
J.2 (d@) 4Ra = ‘ (5-6)

The relative change of the angle between two end cross sections of curved beam is:

1 dwiX
P=——mrm
4 R do |0
27 1 & 7 (< D
= na, |+ 3 anaf
& R\ ,-i3s.. 40R"\ ;3
And using the relations (Chapter 2):
N, = kRw,, M, =22 (5-8)

RZ

where M) is the bending moment of this curved beam at the static equilibrium state,

which is also a constant in present problem as Np.

Then the work done by all external forces during the period of small perturbation is:
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5. Stability of Curved Beam on an Elastic Foundation

AT = N,dl + M6

7w, ( D ) - 27 Dw, [ & (5-9)
= k+— n*a® |- =20 na
R4 ;:; n a R3 . 2 n

4a =1,3,5,---

From the principle of virtual displacement (Timoshenko, 1934 and 1936):
AV, + AV, = AT (5-10)

Substituting equations (5-4b), (5-5) and (5-9) into it, and also using the relation (5-8)

again, the following result can finally be obtained:

%ﬁ{g[l - (%75)2}2513} + kRa{g a,f)

N, =
2 o o oo o
Vi D a, T 104 a
S+ = E 242 2 1— et RN 2' a =22 2 Zn
Ra( kR4 )[ll=l " ") kR4 { 1=1,3,5, l: ( ) :l n 124 n=1.3.5.-’jl~ "} 7 =135 1

I S

In order to determine the critical value of the load N,, it is necessary to find such a
relation between the coefficient a,,q,,--+,a, as to make the above expression a minimum.

This result can be approached by making all coefficients, except one, equal to zero.
When = is even, the above expression is simplified as:

272 272
%{1-(-’%’-’-) } a® + kRoa? Rﬂ{l—(%) } KR
9‘_2- (n=2,4,6,...)

No = . D 7 D),
— 1+ n’a’ (1+—Tjn
Ro kR* ! kR

(5-12)

If n is odd, analogously, making all coefficients, equal to zero, except an, then the

following equation can be obtained from equation (5-12):
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2 22(1— nz)za,f + kR?a’
N, = — n=3,5,7,... 5-13
o 2. 8a,( D o ( ) 6-13)
I+ —na, ———* ——+R
7T n\kR°m
So a, can be solved out as:
Ny Dy
nrt \ kR° «
a, = D\ A2 D - (n=3,5,7,...) (5-14)
No(l-i—%-k—;)&—znz-—[:?(l—nz) +kR2J

a, will become infinite in the above expression (that just leads to the unstable state of the

being considered curved beam on an elastic foundation) if:

(n=3,5,7,...) (5-15)

As can be seen, the result of odd # case is the same as that of even #.

Obviously, Nom» is dependent not only on the values ¢ k, D, R, n but also the relations
between them. For n being both odd and even the same conclusion is achieved from

equations (5-12) and (5-15):

o 1 D 1 . D(zY D(xnY
N?TD_{(?"RJ—ZF(;‘) =) J (=23t
+&_

kR*
(5-16)

The number of half-waves n in which the curved beam subdivides at buckling can now be

determined from the condition that the above expression should be a minimum. Provided
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5. Stability of Curved Beam on an Elastic Foundation

that Ny is continuous function of variable n (and the other variables in the above are all

constants), the minimum value of Ny then can be achieved, if and only if:
D 1 p(nY
(3302
R n R \o

4
leading to: n= 341[1 + L (5-17a)
V4 D

However, because # is an integer, not a continuous variables, the real result of n should
be rounded off to the closest integer from the above value. It should be pointed out that,
because n = 1 corresponding to the displacement of curved beam as a rigid body, the
smallest number of half-waves » in which the beam subdivides at buckling is »n = 2. From
the above, as can be seen, if k is very small or D is very big (which means that the
foundation is very soft or the flexural rigidity of curved beam is very big), then always n
= 2, that is the minimum number of half-waves at buckling. On the contrary, if the elastic
foundation is relatively hard or the curved beam is flexural, then the buckling of this

curved beam will occur in more than two half-waves.

Above all, once coefficient k, R, D are all given, the critical buckling load of the curved

beam on an elastic foundation can then be determined:
N, = Min[N,(n)]  (n=2,34,...) (5-18)

The number of half-waves in which the curved beam is most likely to occur buckling can

also be determined simultaneously, as is expressed in the above.

5.3.2 Flexural beam or hard foundation case

In the following, the condition of relatively small D or relatively large k will be

considered first.
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4

If kg >> 1, then equation (5-17a) turn to be:
4
n =24 FR (5-17b)
VD

When 7 is very large, there occurs wrinkling or rippling.

Noting /=R, then:

4
7D (5-19)

-4
k

!
n
which is the length of one half-wave. As can be seen, the wrinkling wavelength is

independent of both arch angle o and the curvature radius R, which is just expected.

From equations (5-16), (5-17a), and (5-18), we have:

2
2D(Z n?-1)
_ o

1
N, = o) e (5-20)
I+—
kR
kR* - : :
If >>1, then combining equations (5-17b), (5-19) and (5-20), the following

conclusion is obtained:

2
27°D (5-21)

Noting that, the critical value of the compressive force for wrinkling of a flat bar on an

elastic foundation is (Timoshenko, 1936):
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2EI 2
_ 27 n (5_22)

If a curved beam made from isotropic material is concerned, there is D = EI. It can be
found that, equation (5-21) is just the same as equation (5-22), which means that the
critical load value for wrinkling of curved beam on an elastic foundation is nearly
identical to that for a flat bar case (the result for curved beam is only very little smaller).
Therefore, under the same condition (and the elastic foundation is hard enough to make
wrinkling rather than buckling occur), the curved beam on an elastic foundation has

nearly the same possibility to lose its stability and result in wrinkling as the flat one.

27°D .
When R — e, N, ———, which means the result for curved beam converges to that

(i/n)’

for straight one.

The equation (5-21) can also be rewritten as a very brief expression by substituting
equation (5-19) into equation (5-21):
N_, =2+ Dk (5-23)

However, it should be noted that, this formula is only fit for the case of wrinkling, in

which the number of buckling half waves must be large enough.

5.3.3 Stiff beam or soft foundation case

If the foundation is not very hard or the curved beam is not very flexible, n should be
given as 2 or more according to equation (5-17a), and then equations (5-16) and (5-18)
should be used to calculate the critical load for buckling which is the function of arch
angle « and curvature radius R . The calculation for results becomes more complicated
than the above case. And the critical value is not similar to that of straight beam case any

longer. Another extreme case is considered in the following.
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5. Stability of Curved Beam on an Elastic Foundation

If the condition is that D is relatively very big or & is relatively very small, which means
the beam is very stiff or foundation is very soft. Then, according to previous conclusion,

there is n = 2. From equation (5-16) and Noting /=R ¢, the following result is true:

2 2
N =1 _ 1[224—1«132)(—“—) —222+i§—(5)
1+£ 4\ R 7 R* R\«

kR* (5-24)

_ @D 1 4_£(Lj2+_1__ | AR (_l_)
I? D\ 2Z\R) 4 D AR
4

As can be seen, the critical value of buckling load depends on not only the length of beam

and foundation modulus, but also the curvature radius under this condition. Noting that

the buckling load for a flat bar on an elastic foundation is (Timoshenko, 1936):

, oD , k*
P = n 4 — 5-25
cr 2 ( n27Z'4D ( )

By comparing the above two equations, it can be found that when R — oo, equation (5-
24) converges to equation (5-25) of case that n = 2. However, under the condition of big
D or small £, the critical value of buckling load for a flat bar on an elastic foundation is
calculated by equation (5-25) in which n = 1 (Timoshenko, 1936). Therefore, the

buckling critical force for curved beam on an elastic foundation does not converge to that

for flat bar case by only let R — oo,

5.3.4 “Unstable length”

Now equation (5-24) is considered again. Assuming that the curvature radius is a

constant, then critical force value will achieve a minimum if it happens that
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2
a=—L (5-26)
4 1 + ZC_R;
D
andthen [ =22 (5-27)
kR*
4 1 +
D

Here is an interesting phenomenon. It is due to the existence of elastic foundation and the
geometry curvature, under some conditions there exists an “unstable length”-- I, with
which the beam has the minimum buckling critical load value. At this time, the shorter
means the safer which is understandable, but the longer maybe also means the safer to
some extent. That — we can say -- is the characteristic phenomenon for the curved beam

on an elastic foundation.
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Chapter 6: The Effects of Key Parameters on

Flexural Behaviour Pattern

As an application of the theoretical analyses given in Chapter 2 and 3, the effects of some
key material- and geometry-related variables on stresses and displacements will be

examined. In this section, we chiefly investigate the effects of A,d,R,k which is

respectively anisotropy ratio of the material, ratio of outer radius to inner radius,

curvature radius of the beam and stiffness of elastic foundation, and also the Poisson’s

ratio v (v;2) of the material of beam is studied.

The model considered here is a curved orthotropic beam lying on an elastic foundation, as

shown in Figure 6.1:

Figure 6.1 Curved orthotropic beam on an elastic foundation

From equations (3-14) and (3-11), the maximum through-thickness stress o, and its

location can then both be determined. Figure 6.2 shows the variation of & with respect to

8, which is the ratio of inner radius to outer radius of a curved beam. & indicates the
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location of the maximum normal, through-thickness stress; the distance is measured from
the midplane axis. The result for the anisotropic beam without foundation is obtained
from equation (3-14) by setting k to equal zero. Here we take: R = 1 (unit), anisotropy
ratio A = E, /E, = 0.25 (which corresponds to typical glass fibre/epoxy composites), and
assume k/E, =0.25. As can be seen, when 6 approaches 1.0, i.e. the thickness of
curved beam is very small compared to its curvature radius, the point of maximum o,

approaches the midplane. In the curved beam with anisotropy, this point is closer to the

midplane, and owing to elastic foundation, this deviation become smaller.

0.5

0.00E+00

-4.00E-02 4

-8.00E-02 4

No foundation

-1.20E-01 A

= \ith fOUNdation

-1.60E-01

&)

Figure 6.2 Effect of foundation on the location of maximum through thickness stress

Figure 6.3 shows the variation of £ and maximum radial stress o, as functions of &.
The variables are normalised, N,/t=0, is the base stress. Here, again: R,= 1 and
anisotropy ratio A = E,/E, = 0.25. It can be seen that if the foundation is very hard, the
absolute value of maximumo, become smaller when & becomes bigger. However, if

foundation is soft, the absolute values of maximum o, first increase, and then steadily
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decrease. Note that as ¢ approaches 1.0, there is no big difference between the two

cases-this is to be expected.
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Figure 6.3b Effect of § on the value of maximum o,

Figure 6.3 Effect of § (ratio of inner radius to outer radius)
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Figure 6.5 Effect of ¢ on the value of maximum o, -- very soft foundation
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If the foundation is extremely soft, the results shown in Figure 6.4 and Figure 6.5 are

quite different from the above results shown in Figure 6.3.

As can be noticed, when elastic foundation is very soft, with k/E, =0.01, 0.005 (such as
the foam core of a sandwich), then the value of maximum o, decreases steeply at first
and gradually approaches to a constant when § becomes bigger and gradually
approaches to 1.0. There is an abrupt change in the curves of Figure 6.4 showing the
location of maximum o,. It can be noted that the point of this abrupt change
corresponds to the point at which value of normal tension stress nearly equals zero (i.e.

o, =0) in Figure 6.5. Therefore, it is understandable that & varies very abruptly in the

small local of this singular point.

In order to investigate this singular point of £ and confirm it is not due to numerical
artefact, Figures 6.6a~6.6f show the distribution of through thickness stress along with
thickness for those cases where the values of ¢ lie in the vicinity of this “singular point”.
In Figures 6a~6f, the anisotropy ratio 4= 0.25, and k&/E»= 0.01. As described in Chapter
3, 5 from equation (3-14) is actually the location of stationary value of ¢;. From Figures
6.6a~6.6f, we can see the trend of changes of location where the stationary value exists.
In the very small region of & €(0.73,0.74), the location of stationary value of o; changes

from very close to inner face to very close to outer face of the curved beam. That is the

abrupt change of £'.
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Figure 6.6a  §=0.70 Figure 6.6b  6=0.73
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Figure 6.6 The distribution of o, through the thickness of the beam

The above results (Figures 6.4 and 6.5) also show that if the foundation is very soft, then

an “optimal thickness” of the curved beam can be specified which can make delamination

stress-- 0, be very small.
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Figure 6.8 Effect of the anisotropy ratio of beam

Figure 6.7 and Figure 6.8 show the effect of foundation stiffness kand the effect of

anisotropy ratio A = E, /E, separately. It can be seen that 4 nearly has no effect on the
location of maximum ¢, in the most of the regions, but does have an effect on the value

of maximum o,. When 1 becomes bigger, the absolute value of maximum o, also
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becomes bigger, and gradually approaches to a constant. If § is close to 1.0 (for example

0 = 0.95 in Figure 6.7), k also has no effect on the location of maximum o,, and even
has no effect on the value of maximum o,. Nevertheless, if d is not close to 1.0, k also
has effects on the location of maximum o, and the value of maximum o, especially in

the region of small & value, e.g.when the foundation is very soft.

Figures 6.9, 6.10 and 6.11 show the effect of radius of curvature under different

conditions. In Figures 6.9 and 6.10, the value of outer radius R, is taken as x-axis, the

thickness of beam ¢ equals 0.1; in Figure 6.11, R /¢ is taken as x-axis, and ¢ equals

0.01.
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Figure 6.11 Effects of radius and Poisson Ratio with &/ E, = 0.005

As can be seen, the radius of curved beam has big effect on the value of maximum o,

especially when R/t is not very big. The value of maximum o, decreases considerably
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initially when R, becomes bigger, although gradually this effect becomes less. For
example, in Figure 6.11, after the point R, /¢ = 20, the radius of curved beam nearly has
no effect on the value of maximum o ,. There also exists a “singular point” about the
location of maximum o,, which corresponds to the point of o, being zero. This is in

conformity with what has been discussed above and is consistent with earlier finite

element analysis based results (Shenoi & Hawkins, 1995). The location of maximum o,

changes very much in the beginning then approaches the midplane of beam with R,

becoming bigger.

In contrast, in Figures 6.9, 6.10 and 6.11, Poisson’s Ratio v has little effect on the present

delamination research.
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Chapter 7: Through-Thickness Stresses in

Curved Composite Beams

7.1 Introduction

The effects of material- and geometry-related variables of a single-layer curved
orthotropic beam and the elastic foundation on stresses and displacements have been
examined in Chapter 6. In this Chapter, the effects of the stacking sequence of curved
layered composite beam and the thickness of skin in curved sandwich on stress

distributions along through-thickness direction are studied and examined based on the

approach developed in Chapter 4.

7.2 Effect of laminate stacking sequence on stresses

The model considered here is a curved layered beam subjected to pure bending, as shown

in Figure 7.1:

Figure 7.1 Typical curved composite beam under loads
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In order to investigate the effects of stacking sequence of layered composite beam, an
individual layer of unidirectional fibrous composite material is considered to possess the

following properties (corresponding to a general E-glass/epoxy composite):

E, =38.6GPa E,=827GPa G, =4.14GPa G =2.76 GPa
v,y =0.26 Vi =05
vV, =045

Where L signifies the direction parallel to the fibres, T the transverse direction, and v, ;
is the Poisson ratio measuring strain in the transverse direction under uniaxial normal
stress in the L direction. And it is assumed that the material characteristics through
thickness direction are the same as those in the transverse direction totally. These
properties are used in appropriate contexts in the equations for calculating stresses and
displacements (3-3), (4-7) and (4-10). For example, for a UD ply with 0° orientation, then
E,=E,; and E, = Ey; for a ply with 90° orientation, E, = E, and E, = E;, which means
isotropic in the y-—z plane, thus E=E7. Similar analogies can be given for other

properties or for other layups.

Several separate stacking configurations are considered, namely:

(1) [0°/0°] and [90°/90°] — Describing orthortropic and isotropic beam respectively.

(2) [0°/90°] and [90°/0°] — Two bidirectional (coupled) laminates with the layers
being of equal thickness.

(3) [0°/90°/0°] — A symmetric 3-ply laminate with cross-ply stacking ratio m =1.0

(4) [0°/90°/0°/90°] and [90°/0°/90°/0°] — Two antisymmetric 4-ply laminates both
with m =1.0.

(5) [0°/90°/0°/90°/0°] — A symmetric 5-ply laminate with the layers being of equal

thickness.

In each case, the curved beams have the same curvature radius: R, =30 mm,
R, =36 mm, so the thickness of the beam is # = 6 mm. The curved beam is subjected to

pure bending, the bending moment is M = -1000 N-m.

75



7. Through-Thickness Stresses in Curved Composite Beams

The functions of prime interest in the present case are radial stress o, (the through-
thickness stress of the curved layered composite beam) and circumferential stress o, (the
in-plane stress of the curved layered composite beam). Under the no-circumferential-
dependence condition, shear stress equals zero. Based on the approach developed in
Chapter 4, the solutions for ¢, and o, are calculated and illustrated in Figures 7.3-7.7.
In each figure, abscissa is the value of stress and ordinate is the normalized thickness

z=2z/t.

The stresses distribution in [0°/0°] layered beam are shown in Figure 7.3. The results of
[90°/90°] layered beam are very similar to Figure 7.3. This correspond to the result for
curved orthotropic beam on an elastic foundation (Chapter 6), which showed that
anisotropy ratio A has no significant effect on the stress distribution in the curved beam.
The maximum through-thickness stress occurs on the inner side of the midplane of beam,

very close to the midplane. Its value is 7.60 MPa.

Figure 7.4 gives the results for [0°/90°] and [90°/0°] — two bidirectional (coupled)
laminate cases. In each case, the layers are of equal thickness. The results show that there
is a big difference between these two coupled laminates, not only in the distribution of
through-thickness stress and in-plane stress, but also in their values. The maximum

absolute values of o, and o, in [0°/90°] case are both more than 10% higher than those
in [90°/0°] case separately. This difference will become bigger as the ratio 6(=R,/R,)
decreases. In a flat layered composite beam, this distinguishing difference does not exist.
In these two laminates, the maximum through-thickness stresses are both occur in the 0°

layer.

A similar result can also be found in the analyses of [0°/90°/0°], [0°/90°/0°/90°] and
[90°/0°/90°/0°] laminates. The stresses distribution in these case are showed in Figures
7.5 and 7.6. Three laminates have the same stacking ratio (m =1.0) . It is reasonable that

the stress distributions are different among these cases due to their different stacking

76



7. Through-Thickness Stresses in Curved Composite Beams

sequence, but the maximum absolute values of stress in each laminate are quite different.
The maximum values of through-thickness and in-plane stress are respectively 6.79 MPa
and 192 MPa in [0°/90°/0°] laminate, 8.54 MPa and 261 MPa in [0°/90°/0°/90°] laminate,
8.11 MPa and 240 MPa in [90°/0°/90°/0°] laminate each. The maximum through-
thickness stresses in three cases all occur in the 90° layer and close to the midplane of

laminate.

Figure 7.7 shows the results for symmetric 5-ply stacking case. The value of maximum

through-thickness stress in [0°/90°/0°/90°/0°] laminate curved beam is close to that in

[0°/90°/0°] case, only very a little higher.

The above results indicate that the stacking sequence of layered composite beam does
have an effect on stresses. In two-ply (coupled) case, stacking sequence [90°/0°] is
“better” than [0°/90°]); in 4-ply case, stacking [90°/0°/90°/0°] is “better” than
[0°/90°/0°/90°]. Under the condition of the same stacking ratio, apparently the [0°/90°/0°]
is the “best” stacking sequence among the above stacking cases. It should also be noticed
that in theory a unidirectional (UD) stacking is not a better one; the maximum value of
through-thickness stress(7.60 MPa) in the UD case is more than 10% higher than that of
[0°/90°/0°] case, although its maximum value of in-plane stress is lower(178 MPa). This
indicates the possibility of identifying an “optimal stacking sequence” for a curved

layered composite beam.

7.3 Through-thickness stresses in curved sandwich beams

In order to investigate the stress distribution in curved sandwich beams, two separate

geometrical configurations are considered first:
(1) Thick skin-sandwich panel with ¢ /¢, = %

(2) Thin skin-sandwich panel with ¢/t = %6
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The skin is a unidirectional cylindrical shell with the fibres oriented in the circumferential
direction. The other geometrical variables of curved sandwich beam are the same as those
of curved layered composite beam studied in the previous section. The material properties
of the skin are the same as the above. The elastic constants of the isotropic core material
of sandwich beam are:
FE=1.103 GPa v=03

The curved sandwich beam is also subjected to pure bending, similar to the model in
above section. The bending moment is also:

M =-1000 N-m

Q Anisotropic be

Isotropic beam

Figure 7.2 Three individual parts in the global sandwich beam

In our analyses, skins and core are considered as cylindrical anisotropic beam and
isotropic beam respectively, as shown in Figure 7.2. Also using the approach developed
in Chapter 4, the radial stress (Through-thickness stress) and circumferential stress in
both skins and core can then be obtained. Because in our investigated samples, the inner
skin and outer skin are the same, then there is B, = 0 in equation (4-13b). Therefore, this

4cy
(Ri + Ro )2

global boundary condition involved in solution becomes: M, =D, -

Figure 7.8 shows the results for these two kinds of curved sandwich beam. As can be

seen, a significant through-thickness stress gradient exists in the skin, but the maximum
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through-thickness stress occurs in the core. It is sometimes at the interface between core
and the inner skin, sometimes in the core but near to that interface (as shown in Figure
7.8a). It can also be noted that the through-thickness stress changes only very slightly in
the core; it keeps a high level nearly through the whole thickness of the core. This
explains why in Gibson and Chandler’s experiment (1994), delamination sometimes was

seen to occur between either skin or core, and sometimes between both skins and the

core.

From the trends in Figures 7.8a and 7.8b, it is known that in a thin-skin sandwich beam,
there is a smaller through-thickness stress than that in a thick-skin sandwich beam, but a

bigger in-plane stress exists also in the thin-skin sandwich beam, which is reasonable.

In order to investigate the effect of radius of the curved beam on stresses, another
geometrical configuration of the curved layered composite beam is studied: R; = 18 mm,
R, = 24 mm. The thickness of the beam is still # = 6 mm. The curved beam is still
subjected to pure bending, the bending moment is M =-1000 N-m. Here the [0°/90°/0°]

stacking sequence is again considered. The results are as follows as shown in Figure 7.5.

As would be expected, the radius of curved beam has big effect on the stresses, especially
on the value of through-thickness stress, which is similar to the result for curved
orthotropic beam (Chapter 6). As can be seen, when the thickness is stable and outer
radius becomes a third smaller, the maximum of through-thickneyss stress in beam

increases by 50%, simultaneously the maximum in-plane stress becomes a little bigger.

7.4 Summary

The effect of stacking sequence and radius of curvature of a curved layered composite
beam on the distribution and value of through-thickness stress is chiefly investigated.
Curved sandwich beams with thin and thick skin are also studied. The results show that

the stacking sequences have a significant effect on the delamination and in-plane tensile
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failure to some extent. The radius of curvature of the beam also has a large effect on the
through-thickness stress, which is consistent with the results for a single layer curved
orthotropic beam. The biggest through-thickness stress in a curved sandwich beam
always occurs at the interface between inner skin and core or in the core but very close to

that interface.
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Figure 7.6b In-plane Tension Stress Distribution

Figure 7.6 Stresses Distribution Along Thickness in Antisymmetric 4-ply Laminate
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Figure 7.8 Stresses Distribution Along Thickness in Sandwich Panel

85



8. Delamination and Local Instability Damage Estimation of Curved Sandwich Beam

Chapter 8: Delamination and Local Instability
Damage Estimation of Curved

Sandwich Beam

8.1 Introduction

Sandwich construction is widely used in industries where weight considerations have
become important and has become an alternative in many new applications. In many such
cases, curved sandwich panels or beams are needed. The geometry curvature in the
structure results in not-so-insignificant through-thickness tensile stresses. These can
significantly affect the performance of the structures due to the low values of through-
thickness tensile strength. For example, the delamination of the skin in curved sandwich
beam is more likely to occur in such cases. The analyses on this kind of failure mode are
given in Chapters 4 and 7. The effects of some geometry related variables such as
thickness of skin and geometry curvature of the sandwich beam on through-thickness

stress leading to delamination are also investigated in Chapter 7.

One other feature of the curvature is the effect it has on the buckling/wrinkling
characterisation of the face in compression. If the compression in the face of sandwich
beam exceeds a critical load, this compressed face is then subject to a particular kind of
instability which is either column/global buckling or local wrinkling/rippling. The local
instability problem of straight sandwich beam can be studied by considering a long strut
supported by a continuous elastic isotropic medium (Allen, 1969). However, as far as the
curved sandwich beam is concerned, this problem becomes a little more complicated. In
this chapter, the core material is still considered as elastic foundation and the Winkler

Hypothesis is assumed. The theoretical solution achieved in Chapter 5 for critical value
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of instability of a curved composite beam on an elastic foundation is then used to analyse
the bending strength limit of a curved sandwich beam in the buckling/wrinkling failure of

compressed skin.

8.2 Problem statement and approach for solution

Tensile stress

Stretched

Figure 8.1a Opening bending moment Figure 8.1b Closing bending moment

Figure 8.1 Typical curved sandwich beam under different loads

For flat sandwich beams a bending moment is transferred to the structure as compressive
and tensile forces, while the core is subjected to very small through-thickness normal
stress which can be neglected. The situation is different for curved sandwich beams.
Through-thickness stresses occur due to the curved geometry in the structure. When a
curved sandwich beam is subjected to an opening bending moment, as shown in Figure
8.1a, this stress is tensile. This tensile through-thickness stress could directly result in
delamination. If, on the other hand this curved sandwich beam is subjected to a closing
bending moment, as shown in Figure 8.1b, the stress is compressive. Under this
condition, delamination is not so likely to occur as in the previous case. However,
because the inner face of sandwich beam is compressed then instability becomes the

cause of concern. These two cases are studied separately in the following paragraphs.
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8.2.1 MODEL A: Curved sandwich beam with opening bending moment

According to the approach developed in Chapter 4, the through-thickness tensile stress
distribution can be obtained, as has been shown in Chapter 7. Consequently, the opening
bending strength limit can also be determined, provided that the through-thickness
strengths of skin and core material and the adhesive strength of interface are all known.

And also we can predict the occur of delamination in curved sandwich beam

8.2.2 MODEL B: Curved sandwich beam with closing bending moment

Consider a curved sandwich beam subjected to a closing bending moment. Its inner face
is then under compression and instability becomes the cause of concern. In this section,
the core is considered as an elastic foundation and the Winkler hypothesis (Selvadurai,
1979) is assumed. The compressed skin is considered as a curved composite beam lying
on an elastic foundation. The critical load for buckling/wrinkling of the compressed skin
can then be derived under this condition that curved sandwich is subjected to pure
bending by curved beam theory and virtual displacement principle, as derived in Chapter
5. Thus the critical bending moment of curved sandwich beam can also be determined

consequently in the failure of local instability (buckling/wrinkling) of compressed skin.

Curved composite

ii beam j:

Elastic Foundation

Figure 8.2a Global sketch Figure 8.2b Local sketch

Figure 8.2 Sketches to analyse Model B

88



8. Delamination and Local Instability Damage Estimation of Curved Sandwich Beam

In calculating the critical bending moment, the following approximate formula is adapted

to the thin skin sandwich sample:
M, =N_,t.b (8.1)

where N,, is the critical value of buckling/wrinkling of skin which can be obtained from
the theoretical solution in Chapter 5, and in the analyses, the elastic stiffness of

foundation — k is calculated by the approximation (Allen, 1969):
k=E c / I3 c (82)

As far as thick skin curved sandwich beam is concerned, formula (8.1) is not suitable any
longer. Meanwhile, the determination of critical value of skin N, is not very simple. The

problem then becomes more complicated.

8.3 Application and comparison with numerical and

experimental results

8.3.1 Through-thickness stress in curved sandwich beam with opening

bending moment

In order to investigate the stress distribution in curved sandwich beams, the approach
developed in Chapter 4 about through-thickness stress is applied to analyse two samples
once used in Smidt’s research work (Smidt, 1993 and 1996). The theoretical results are

compared with corresponding numerical results and other approximate analytical results.

The magnitudes and material properties of curved sandwich beam sample are as follows:
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Width b = 95 mm, Inner radius of core R=766 mm
Skin thickness #r= 2 mm, /O mm  Core thickness 7c=50 mm

Young’s modulus of skin:  In plane--E; = 18.1 GPa;
Through thickness--E;= 9.05 GPa (assumed)

Young’s modulus of core:  E. =55 MPa

Poisson’s ratio of skin: V12=0.4, v»; = 0.2 (assumed)
Poisson’s ratio of core: v=03
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Figure 8.3 Through-thickness tensile stress distribution in curved sandwich beam

Figure 8.3 shows the results for these two curved sandwich beam samples. In this figure,

abscissa is the value of through-thickness stress and ordinate is the normalised thickness

Z= 2 where ¢ is the thickness of core. As can be seen again, a significant through-
)

c

thickness stress gradient exists in the skin, and the maximum through-thickness stress

generally occurs at the interface between core and the inner skin (sometimes in the core
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but near to that interface). It can also be noted that the through-thickness stress changes
only very slightly in the core; it keeps a high level nearly through the whole thickness of
the core. This explains why in Gibson and Chandler’s experiment (Gibson et al, 1994),
delamination sometimes was seen to occur between either skin or core, and sometimes

between both skins and the core.

Comparing the trends in thin skin case and thick skin case, although in a thick-skin
sandwich beam, there is a smaller through-thickness stress than that in a thin-skin
sandwich beam, it should be noted that the thickness of thick skin is five times of the thin
skin and the distance between the centrelines of the faces increased up to 15.4%, which
lead to bigger general bending stiffness of sandwich beam and much bigger weight of
course. If the total thickness of sandwich beam is kept constant, then thick skin structure

pose the bigger through-thickness stress which has been shown in Chapter 7.
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Figure 8.4 In-plane tensile stress distribution in curved sandwich beam
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The results for in-plane tensile stress are shown in Figure 8.4. The largest value of in-
plane stress in thin skin sandwich beam is as 3.93 times big as that in thick skin one
(Noting that the thickness of thick skin is five times of the thin skin, and both samples

have the same thickness of core).

Here it should also be pointed out that Gibson et al (1994) and Smidt (1993) once gave an
approximation separately for calculating the maximum through-thickness stress in curved

sandwich panel with thin skin which can both be expressed as:

Max.o, = % (8.3)

where in Gibson’s formula R is the curvature radius of mid-plane of core and ¢ is the total
thickness of sandwich panel, while in Smidt’s formula R is the inner radius of core and ¢
is the thickness of core (which is later optimised to the distance between the centrelines

of the faces (Smidt, 1996)).

Applying the formula for the above sandwich beams, Gibson’s approximation
underestimates maximum through-thickness stress considerably, especially to the
sandwich panel with a thick skin, meanwhile Smidt’s approximation overestimates

maximum through-thickness stress.

Smidt also studied and examined the stresses distribution in these two sample and effects
of material- and geometry-related variables of curved sandwich beam by FEM. In the
numerical analyses (Smidt, 1993 and 1996), the maximum values of through-thickness
stresses are 1.14 MPa and 0.95 MPa respectively, which are both located at the inner
interface. As can be seen, the theoretical results—of about 1.16 MPa and 0.985 MPa—

coincide well with the numerical results.

The radius of curved sandwich beam also has big effect on the stress, especially to the

thick-skin sandwich beam. In the third case, the thicknesses of core and skin are both the
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same as the above ones, only the inner radius decrease from 166 mm to 116 mm. The
result for this case is shown in Figure 8.5. In this figure, ordinate is the normalised

thickness z/#. As can be seen, the maximum of through-thickness stress increases

significantly.
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Figure 8.5 Through-thickness tensile stress distribution in curved sandwich beam

with small radius

8.3.2 Strength of curved sandwich beam with closing bending moment

compared to experimental results

As an application example of theoretical solution for instability of curved composite
beam on an elastic foundation, the experimental results by S. Smidt (1993) are quoted

and compared with the theoretical analyses.
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Many sets of experiments on curved sandwich beams were designed and completed by
Smidt, much part of which were investigation on the failure of curved sandwich beam
under pure bending load. When the curved sandwich beam is subject to a critical closing
bending moment, buckling in inner skin of sandwich beam will arise from compression.
This is obviously local instability of the general beam. Thus the inner face and the core of
the sandwich beam will then be considered as curved beam and elastic foundation

respectively in the theoretical analyses.

It should also be pointed here that Smidt’s typical sample is composed of straight part and
curved part; and in some experiments, the buckling occurs in the straight part of the beam
or very close to the transition between curved part and straight part. Therefore, these
experiment results should be neglected. Three sets of tests are chosen here for
comparision. The magnitudes of the curved part of the sample are as follows (Smidt,
1993):

Width b = 95 mm, Inner radius R=166 mm

Skin thickness #=2 mm, Core thickness #.=50 mm
The material property of the core:

H60 : Density-p=60 kg/m’; Young’s Modulus-E.=55 MPa
HI130: Density-p=130 kg/m3; Young’s Modulus-E,.=140 MPa

The Young’s moduli for the faces were 12 GPa (Woven roving laminates) and /8.1 GPa

(Knitted cloth laminates).

Results from tests are then compared to calculation results from the above theoretical
analyses. In theoretical analyses, the critical value of local instability of the skin is
obtained from the approach presented in Chapter 5, and the critical bending moment is
then calculated by formula (8.1) because the samples considered in this section are all
thin skin samples. Both the theoretical results and experimental results are shown in
Table 1. It could be seen from Table 1 that the theoretical results in all cases qualitatively

agree with the experiment results respectively.
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Table 8.1 Strength of curved sandwich beams with closing moment compared to theoretical

results
Failure Load Critical Load
Face Core (experimental) (theoretical)
[Nm] [Nm]
GRP(biaxial) Heaﬁ‘?gﬁ; o 754 921
GRP(triaxial) H;fg rligte . 1875 1803
GRP(triaxial) Hitl ?gr/ rln 33(26 ; 2011 1803

e  HG60/130 means the core material in the straight part of sandwich beam H60, and in the curved part

H130. H60/60 and H130/130 in the same column have the similar implication.

8.4 Summary

An elasticity-theory-based approach is used for studying through-thickness tension in
curved sandwich beam whose behaviour is referred to under pure bending load condition.
Since the solutions are exact within the assumptions of linear elasticity, there need be no
strict distinction between thick and thin skin curved sandwich beam. The biggest through-
thickness stress generally exists at the interface between core and inner face. The results
from theoretical analyses satisfy well with the numerical results by other researchers, and

are compared to two simply approximation formulae.

The critical bending moment for local instability of curved sandwich beam is also
presented. The solution is based on consideration for buckling/wrinkling of curved
laminate on an elastic foundation by beam theory and virtual displacement principle.
Analyses for three samples give qualitative agreement with the experimental results in the

literature.

The approaches presented in this thesis can therefore be used as a simple design tool for

estimating ultimate limit state capability of a curved sandwich beam.
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Chapter 9: Application to Tee Joint Structures

9.1 Introduction

The developed approach could be applicable in practical contexts involving the design
and characterisation of tee joints, for example. A typical tee joint, with variables
influencing the design, is shown in Figure 9.1. Currently such structures are analysed
using physical (Hawkins et al, 1993; Shenoi and Hawkins, 1992) or numerical modelling
(Shenoi and Hawkins, 1992; Dodkins et al, 1994). Much of the experimental (and FEA)
work relates to a 45° pull-off condition, where the tee piece is clamped on the two flanges
and a load (at 45°) is applied to the tip of the web, as shown in Figure 9.2. In most of the
work it has been shown that the performance of the joint is dependent on the strength of
the boundary angle. A critical condition determining performance is the value of through-
thickness inter-laminar tensile stresses, which induce the first delamination in the
overlaminate or boundary angle and thus lead to eventual failure of the joint. Currently

such conclusions can only be drawn after comprehensive and detailed numerical

modelling.

o — F (Load)
00
No. and Material t > _
Makeup of Plies F,
Jibengths of Overlamination
Fillet Radius Curved Beam
Type of Resin Elastic
Length of Overlap ] Foundation -
— Gap
I P 1 1 |
Figure 9.1 A typical tee-joint configuration Figure 9.2 Boundary conditions
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9.2 Application

The analytical approach developed in this paper is amenable for a relatively simple
application to the boundary angle in the tee joint. Table 9.1 lists the design particulars of

four different joint designs — all subjected to a 17.23kN pull-off load shown in Figure 9.2.

Table 9.1 Design details of the tee joints
Boundary angle | Fillet radius . ) . Edge gap
Sample thickness (mm) (mm) Fillet overlay Resin (mm)
B 15 50 --- CR1200 20
F 2 75 2WR" CR1200 15
K 2 50 2WR CR1200 15
L 2 75 2WR+CSM"* polyester 15
e * WR - woven roving;
e + CSM - chopped strand mat
Table 9.2 Comparison of FEA with curved beam model results
Numerical Result [24,25] Theoretical Result
Sample Maximum T-T Stress Maximum T-T Stress Location
(MPa) (MPa)
B 10.85 Very large (>50.00) Near midplane
F 2.79 5.79 interface
K 9.10 14.28 interface
L 8.05 8.09 interface

In the brief theoretical analyses for these samples, it is assumed that in the transition part

of tee joint the load is totally sustained by the overlaminates and the shear forces in the

overlaminates are neglected. By dividing load into vertical and horizontal components, F,

and F,, as shown in Figure 9.2, the axial force and bending moment in every
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overlaminate can then be approximately calculated. The left overlaminate obviously
posses the bigger axial force, thus it was taken as the object to be analysed by the
approach in Chapter 3. It should be noticed here that the practical load condition actually
does not coincide with the load condition required in the theoretical approach which is
no-circimferential-dependence. Therefore the analyses presented here will give only

relatively approximate results but can provide qualitative trend in a series of samples.

The inter-laminar tensile stresses calculated from the curved beam model are listed in
Table 9.2 and compared with values deduced from previous FEA analyses (Shenoi and
Hawkins, 1992; Dodkins et al, 1994). As can be observed, there is close qualitative
agreement of results in all cases. Importantly the trend is consistent. The reasons for the
differences are two-fold. Firstly, deducing the boundary conditions at the edge of the
boundary angles for purposes of analytical calculations proved difficult. Therefore some
simplifications had to be made regarding the fixity and rigidity of the root region of the
joint. These assumptions led to increased apparent stiffness in the boundary angle,
leading to increased stresses. Secondly, the numerical analyses were carried out with a
geometrical non-linearity option whereas the curved beam analytical model is based on
inherent geometric and material linearities. This again would tend to increase (deflection,
strains and thus) stresses. Such simple closed form, curved beam analyses can thus be

used as a quick design reference to check for adequacy in a load-bearing context.

9.3 Summary

The approach for treating curved orthotropic beams resting on an elastic foundation and
subjected to flexural loading has been also used to analyse four tee joint samples. The
analytical results show close qualitative agreement with the results of FEM in all cases.
The trend is consistent with the conclusion of numerical analyses or experiments. The
approach is simple enough to be used for both qualitative and quantitative evaluation at

design stages of practical structures.
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Chapter 10: Delamination Buckling of Curved

Composite Beam

10.1 Introduction

As is known, delamination can significantly reduce the load-bearing capacity of
composite structures. Delamination in curved composite laminates is more likely to be
introduced during operational life as well as during the manufacturing process. One of the
primary causes for delamination during operational life is the not-so-insignificant
through-thickness tensile stress in curved laminates. One of the ways in which early
structural failure can be caused is by delamination buckling. Local delamination can be
considered as a crack in the interlaminar bond. Under buckling there appears a high
interlaminar stress level at crack tip which leads to the crack process. Delamination

growth can also lead to structural instability.

In recent years the problem of delamination buckling has been studied by some
researchers, both experimentally and theoretically. However, it is noticeable that most of

the work concerns straight laminated beams.

The delamination buckling in curved composite beam is investigated in this chapter.
Based on linear and non-linear curved beam theory coupled with fracture mechanics
concepts, two theoretical approaches are developed respectively for linear and nonlinear
problems of delamination buckling which are concerned in the cases of normal
delamination buckling and snap buckling. The general solutions are also applied to
analyse some special cases e.g. delamination occurring at midplane and very close to
surface of the beam. The effects of the arc angle of delamination crack and the radius of

curvature of the beam etc. on the critical load in each case are also evaluated.
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10.2 Problem Statements

The proposed problem deals with a circular arc shaped composite beam subjected to pure

bending. This can be sub-divided into two cases.

Firstly, consider the case of a curved beam with pre-induced delamination in the middle
of the whole span under the action of opening bending moment, as shown in Figure la.
Here, in the middle part which contains delamination, the outer ply is subjected to
compression and bending, while the inner ply is subjected to tension and bending. Upon
further loading, the delamination crack will be opened and the outer ply may buckle to
some extent. If the load—couple My exceeds a limit, then the crack will progress.

Actually this is a problem of coupled delamination and delamination induced buckling.

Secondly, consider the case of a curved beam with or without pre-induced delamination
under the action of a closing bending moment. Thus the inner layer is subjected to
compression and bending. When this compression reaches a critical value, the inner layer
will suddenly transfer to a new equilibrium state by a snap mechanism, as shown in
Figure 1b. Even if there is no pre-induced delamination, due to the weak interlaminar

strength, this kind of snap buckling is also likely to occur in the inner thin film.

L: i_/ \»j ;/
Mo My M My

(a) Opening bending moment (b) Closing bending moment

Figure 10.1  curved composite beam subjected to pure bending
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These cases will be investigated separately in the following two sections. Further, it is
assumed that the delaminated part or potentially delaminated part is in the middle of
global beam. Then owing to symmetry, only half the global beam need be considered.
Actually because the curved beam is subjected to pure bending, the length of

undelaminated part does not affect the mechanical characteristics of global beam.

10.3 Linear Problem—Delamination and Delamination

Induced Buckling

10.3.1 General solution

As described above, in the case of a curved beam with delamination in the middle part
and under the action of an opening bending moment, The problem is one of coupled
delamination and delamination induced buckling. Here it is assumed that the new
equilibrium form of delaminated part is close to the equilibrium form before deformation.

Hence this problem is still considered as linear problem and linear theory is used for

analysis.

f . Beam 2
1A d
i Beam 3
A ) Beam 1
j B
» | A
Mo MO
a

el
Oo

Figure 10.2  Delamination buckling in curved beam subjected to opening bending
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The model sketch is shown in Figure 2. Assume the delamination is located exactly in the
middle of the beam. The whole span is then symmetric. Hence in the following analysis,
only the half span is analysed. Appropriate boundary conditions are placed at the
symmetry cross section AA'. The delaminated curved beam is further divided into three
parts, the normal undelaminated part is designated as beam 1, the outer layer of
delaminated part is designated as beam 2, the inner layer is beam 3, as shown in Figure 2.

The load applied on each beam and the respective boundary condition are shown in

Figure 10.3(a).

Beam 2 Beam i|.;3

P,
Beam 3 WMZW
P
Juy(8)
Beam 1 M, ( B ) M,
(a) (b)

Figure 10.3  Model sketch for every part in the global beam

The general bending equation for a curved beam with a radius of curvature R is

2 . R2
ng M(9)- R (10-1)

where D is the flexural rigidity of the beam and M is taken to be positive when it

produces a decrease in the curvature.

It should be noted that a curved beam without any other restriction (e.g. foundation etc.)

can only undertake pure bending or a pair of forces applied along the line linking the two
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applied points. Therefore, the direction of forces acting on beams 2 and 3 can be known,
which according to the considered conditions should be in the horizontal direction as
shown in Figure 10.3a. Beams 2 and 3 can be described uniformly by Figure 10.3b, and

the internal bending moment at any cross section of the beam can consequently be

expressed uniformly as:
M(0)= M,(f) - P(R cos@— R, cosf3), i=23 (10-2)
Substituting this into the bending equation (10-1), the following equation can then be

obtained

d*w. P-R’ R’
Ltw, = —t—tecos@—-—| M.(f)+ PR.cos S|, =23 10-3
dg* ' D, D, [M£)+ R cos ] l (19

The solution of this differential equation is

2 3
w, = A, cos0 + B, sine—%[Mi(ﬁ) + PR, cos 8] + %—-HSine, i=23 (10-4)
Beam I is subjected to pure bending, and its displacement can be solved directly by

equation (10-1) and where the M(@) is replaced by constant My

2
w, = A cos@+ B sin6 - M,R (10-5)
D

Noting the symmetry condition, B; =0 (i = 1, 2 and 3). Then the radial displacement in

each part beam is:

2
w, = A, cosf — M,R
R’ BR)’
w, = A, cos@ ——-[M,(S) + PR, cos f]+ 22 0sin 0 (10-6)
D, 2D,
R2 3
w, = A, cos @ ——~[M,(f) + BR, cos B]+ R, @sin 6
\ D, 2D,
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where
R, —r+1Z4
2
d
R,=R-—
2

Thus there are seven unknown variables in the above results: Ay, A, Az, Mo, M3, P,, Ps.

Here it is assumed:

Wpee =0 (10-7)

The displacement compatibility in the cross section of 8 =/1eads to:

Wlle:,e = w2|e=,6

wil,_ =Wy _
to=p s (10-8)
Wl[e:ﬁ = W3]9=ﬂ
er:ﬁ = w3'9=ﬂ
, ladw , 1adw, , 1 dw,
where W/ = ———,w) =— JWy = ——=,
R d6 R, d@ R, df

Further, according to the equilibrium condition at cross section BB in Figure 2, there are

the following relations hold true:

B+P=0

M,y (B)+ My(B)+ P,

1—d (10-9)

cosﬂ-ﬂ%cosﬂE M,

As can be seen, there are just seven equations altogether—equations (10-7)~(10-9). Thus
the coefficients in the above result expressions (10-5) can be all solved out by these

equations as follows:
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A= (10-10)

2
- R[D, Dy cos,B-—E— —D—22+—D—35 (1-cos f)
R, R, D\R’ "R,
P =-B=

2 B

sin

(10-11)

+cosf8

A =—2L R+I; (1+ Beot )
(10-12)
M, R PR

A= l; R3—l~23 (1+,Bcot,8)

5 &(l—cosﬁ)
,~ D

(10-13)
R2 D,

B —3(1-cos f)

M,(B) = Az—lle——)—zz—cosﬂ+ PZRZ(—;-,BSin,B—cosﬂ)+ M

2

M,(B)= A3%cos,6’+ PR, ( Bsin - cosﬁ)

3 3

Consequently the bending moment in beams 1, 2 and 3 respectively are:

M0 =M
M,(0)= M,(B)+ P,R,cos S~ P,R,cosO (10-14)
M,(6) = M,(B)+ P,R,cos S~ P,R,cosf

The consequential strain energies in the beams are:

el _ MyR,
U, = 30 M, (0)Rd0-—2D (a-p)

s 1
U, = jo EB:-MZZ(B)RZdQ (10-15)

51
U, = jo — M} (O)R,dO

3

The total strain energy in the global curved beam is then obtained:

U=U,+U,+U, (10-16)
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From the Griffith’s criterion of fracture, the following relation is true:

U__,or (10-17)

* 4 . . . . .
where R = R+—i—d which is the curvature radius of delamination crack, and I' is

surface energy (energy required to form a unit of a new surface in the body). Substituting
all the related equations into the above relation, the external bending couple M, can then
be finally solved out as a function of half arc angle of delamination crack £, given that

other parameters are all fixed.

Obviously the expression of this solution for the general case is very complex, so it is not
given here for reasons of saving space. Two usual important cases will be considered in

detail in the following sections as examples for the above analytical approach.

10.3.2 Delamination occurs at the midplane of curved beam

According to previous work (e.g. Shenoi & Wang, 2001), the maximum through-
thickness tension stress in curved orthotropic beam always exists in a location very close
to midplane; so delamination is most likely to occur there. Also the occurrence and
growth of the delamination is assumed to be in its own plane in keeping with the laminate
character of layered composite. We note that the delaminated layers may not possess the
same properties of the original perfect beam. Such material behaviour change can be
readily dealt with at the expense of introducing additional parameters into the problem, as
shown in the above. However neither the physical principles involved in the analyses nor
the general character of the results will change, hence attention to these details will be
omitted here and in the following parts. For simplicity reasons the properties of the

curved beam are assumed homogeneous, linearly elastic, and the same before and after
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delamination. Further, it is assumed here that delamination is exactly at the midplane so
as to simplify the problem, with d = #/2 , leading to D, = D3 = D/8.
Let 6= t/R. Assume 6 << 1, so (t-d)/R and d/R << 1 too. Then

M 3—écosﬁ
P =-P =20 ﬂ4 (10-18)

sin 8

+cos

Substitute this into expressions (10-12) and (10-13). Further, because & << 1, for the
reasons of simplification the approximation: R, = R3= R holds true. A, A3, M, and M3 can

all be determined then:

3- g cos ﬁ)(sin B+ Bcos B)

M 2 3 (
g MR 4R M,

D D t [ +sin fcos S
) :
L MR 4R M, (3—Zcosﬁ)(sm,3+ fcos )
’ D D t [ +sin Bcos [
(10-19)
M, = M, +__3_ M,R 3 MR sm.,b’cosﬁ
8 2 1t t pB+sinfcosf
M, = M, 3 M,R 13 M,R sm.,Bcos,B
8 2 ¢ t [P+sinfBcosf
The equations (10-15) can then be simplified as
v, = MR, _p)
' 2D
(10-20)

_ 4R,
Up=— [ M, 66

4R,
Uy=— [ Ml @)a0

and the relation (10-17) can be simplified as:
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9 _spr

3 (10-21)

By substituting equation (10-19) into equations (10-15) and (10-16), and then using the
relation (10-20), the final solution can be deduced:

._ |2Dr
M= 2= 10-22
=1 208) (10-22)

where My is the critical value of M, for the progress of delamination crack, and:

s0)=18(2) 16)-2

8

f(ﬂ):(ﬁ—SiHﬂCOSﬂJz N B’ sin fcos f— Bsin® fcos’ ,5( 2sin® B "'BJ
B +sin Bcos f (B+ sin,Bcos,B)2 [+ sin Scos f

(10-23)
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Figure 10.4 Dimensionless critical load with respect to half arc angle of delamination
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According to equations (10-22) and (10-23), the trend of normalised critical bending

.— with respect to normalised half delamination arc angle 8/7 is shown in

moment
N2DI'

Figure 10.4 as a dashed line under the condition that R/#=10.

If fis large enough, compared with the first term in the right side of expression of g(f),
the second term is usually small enough to be neglected, then the result can be further

simplified:

o 1
= 10-24
3 ( )

M,
VDT 3 [f(B)

Considering the extreme condition of £ = 0, which means there is no delamination in

curved beam at first: Iﬂm% /()= 0. Then the critical value of M, from equation (10-24)

at this condition becomes infinite, which is expected:

M{|pg= oo (10-25)

However it should be pointed out that when £is small, the value from equation (10-24) is
always quite larger than the value (designated as MO) which induces through-thickness
tensile stress exceeding the interface strength of curved composite beam and leading to

delamination. Therefore, as far as the critical value of bending couple for curved

composite beam with delamination crack is concerned, it should be the smaller of these

two value (Mo and M,)—designated as M,
My = Min{My, M, } (10-26)

Therefore as shown in Figure 10.4, M;=M, when fBis small and M= M, for large /.
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In order to investigate the effect of curvature radius on the critical load for delamination

buckling, equation (10-24) is rewritten, noting d=#/R and L=Rf3

M, _t B _ (10-27)

Jor 3L [7(B)

where L is the half length of delamination

As can be seen, if L and ¢ — the length and thickness of delamination -- are both constant,

p

the value of critical load is only subject to the value of function \/._. . The variation of
f

is shown in Figure 10.5. The abscissa represents the normalised half arc

. B
function
unctio r—_f(ﬂ)

angle of delamination and ordinate represents the value of the function.

0.0 0.2 0.4 0.6 0.8 1.0
10 ‘ ‘ : ' 10
g -8
ﬁ 6 —6
4] 4
2 2
o ! T 1 T 0
0.0 0.2 0.4 0.6 0.8 1.0
B/r

Figure 10.5 Variation of function p
J7(B)
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When f increases, the function firstly decreases and then increases. It reaches minimum
value at = 0.717. Noting that f=L/R and L is assumed to be constant, that means when
R decreases, the value of critical bending moment firstly decreases and then increases,
and it reaches minimum if L= 0.717zR . Also note that when R is very large, the value of

critical load is not calculated from equation (10-27) but is subject to the value of M,

(equation (10-26)).

It should also be noted that M, is not the same for different beam geometries. Our
previous research work (Shenoi & Wang, 2001) shows that radius of curvature R has a
major effect on the maximum through-thickness tension stress consequently M,. From
the previous work, it can be known that larger R leads to a smaller through-thickness
tensile stress which results in larger critical bending moment — provided that other
parameters are all constant. Therefore, above all, after the point R=L/0.717 increasing

curvature radius R results in an increased value of the critical load.

10.3.3 Delamination occurs very close to the surface of considered

curved beam

Sometimes delamination exists close to the surface of the beam. Assuming here
delamination occurs very close to outer surface, which means d << ¢, it is called thin film

delamination. Based on this assumption, we have:

D,
D
3
.’.?;z(ﬂ] Y (10-28)
D
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12M i
J12Md __ sinfp (10-29)
t*  [+sinfcosf

B =-P

Using the approach in the preceding subsection, substituting this into equations (10-12)
and (10-13), and also using the approximation: Ry = R3 = R, Ay A3, M, and M3 can then be

determined again:

M,R? N 6R’> M,d sin B+ Bcos B

A =

2 D D, t* B+sinfBcosf
A= M R* 6R’ Md sin 3+ fcosf3

D D, t* B+sinfcosf (10-30)
Y ~6M0Rd [ —sin Bcos S

2 t>  B+sinBcosf
M, =23‘Mo P Mosz ,B—an,Bcos,B

D t*  [+sinfcosf

Let :é, so D, = n’D. Substituting all the above equations (10-29) and (10-30) into

equation (10-15) to estimate strain energies with three beams, then into (10-16) to
estimate total strain energy with system and then into relation (10-21) for the Griffith’s

criterion, the final solution for the case of thin film delamination can be deduced:

(10-31)

where M o is the critical value for the case of thin film delamination, and

2o\ _ [ B=sinBcos B ’ [ sin Bcos B— Bsin* Bcos® B 2sin’ 8
74) (,B+sin/3cos,3) *2 (ﬁ+sin;6’cosﬂ)2 (,6’+sin,6’cos,6’ ﬁ)
(10-32)
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Figure 10.6 Dimensionless critical loads corresponding to different R/t

The results for four cases of different R/t (equal to 8, 10, 15, 20 respectively) are shown

in Figure 10.6. Here the abscissa still represents the normalised half arc angle of

*

M
delamination /7, and the ordinate represents the normalised critical load value S -,
g P J2DT

the same as in Figure 10.5, for the reason of comparision. Comparing the case of R/t=10

with Figure 10.5, it can be seen that the values in Figure 10.6 are smaller than
corresponding values in Figure 10.5. This is mostly due to the existence of \/ﬁ in
equation (10-31) compared with equation (10-24). This result shows that delamination
buckling is more likely to occur close to the surface in curved composite beam. That can
explain to some extent why in some samples delamination occurs and progress very close
to the surface although the maximum through-thickness tensile stress usually exists at

midplane of global curved beam (Shenoi & Hawkins, 1992).

It should be noted that equations (10-31) and (10-32) are both deduced from the

assumption of thin film delamination. If we extend it to general cases, it will probably
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bring errors to some extent. For example, if it is used to analyse the case of delamination
at midplane, in this case 77 = 1/2. The right side of equation (10-31) is not only V2 times
right side of equation (10-24), but f (£ ) of equation (10-22) is obviously different from
f (B) of equation (10-32). The comparison of function f (£ ) with f (B) is shown in

Figure 10.7.

0.0 0.2 0.4 0.6 0.8 1.0
- i i i i -
= 6
5] —(B) s

—(8)
4] 4
31 -3
2 L2
1 -
0 T T T T 0
0.0 0.2 0.4 0.6 0.8 1.0

Figure 10.7  f(f)and f(B)

However, as can be seen from Figure 10.7, there is only very little difference between
functions f (B) and f(/3) in the scope of B e (0’§J' Therefore if the delamination arc is

smaller than a semi-circle, which is the usual case, an approximate formula based on the

interpolation of these two cases can be provided to analyse the general case

M, —g Ui (10-33)

J£(B)
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where 7’ = [—(\/5—1)(277—1)2 +ﬁ}\/ﬁ (0<n<l)

As in the last subsection, the effect of radius of curvature R on the value of the critical

load in the case that delamination buckling occurs very close to the surface can be

analysed by the variation of function b , as shown in Figure 10.8. The trend of it is

N

F(B)
very similar to function b .
VI (B)
0.0 0.2 0.4 0.6 0.8 1.0
10 ] | ] I 10
8 —8
B
A 61 —6
F(p)
4 -4
2 —2
0 T T T | 0
0.0 0.2 0.4 0.6 0.8 1.0
B/
Figure 10.8 Variation of function :B
F(B)

10.4 Nonlinear Problem-Snap Buckling

In this section the problem of a curved composite beam under a closing bending moment
will be considered. Under this condition, the layer next to the inner surface of the beam is

then subjected to compressive stress. If this stress is high enough, snap buckling of
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internal layer arises due to the relatively low strength of the inter-laminar bond in the
layered composite beam. If there already exists a delamination in this curved beam before
the load is applied, then snap buckling of the inner layer is certainly more likely to occur,

and progress of this delamination crack becomes of considerable concern.
In this case, the new equilibrium state is not close to the initial one. Therefore this

problem is a nonlinear problem. The general solution of this problem can be found by the

nonlinear analyses on deformation of the flexible beam.

10.4.1 General solution

B
VP
R
L

A y_ Al 23
VL L e 77 Ul

L h J

< g
(@) ®) ©

Figure 10.9 Model sketch for the basic problem

Because it is more difficult to directly begin with the basic equations of curved bar under
point loads to analyse its nonlinear deflection, the method of similarity is used here. At
first consider a straight, vertical strut AB subjected to a load P on the top and a clockwise

couple M=EI/R acting at the same point, as shown in Figure 10.9a. The action of the
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couple M will bend the strut into a circular arc of radius R, while the load P is still acting
on the free end, as shown in Figure 10.9b. This latter bar—the circular bar—will therefore

be analysed in our approach to the present problem.

The couple M and the load P will now be replaced by a force P acting on a rigid lever of

length e=M/P. Expressing e as

e-_-ﬂ.:%— 1 (10-34)

12
where k = (é—}) , ET 1is the flexural rigidity of the curved beam.

Using the principle of elastic similarity, extend the bar past B until it intersects the line of
action of P which is exerted on the lever. Let this point be D, as shown in Figure 10.9c.
And so far as the shape AB is concerned, it does not matter whether the load acts on the

bar ABD or through the lever e. The total length of the new strut AD is then:
L=L+L, (10-35)
L; is the length of original strut which is known, L, is the length of extension BD.

Using the knowledge of nonlinear deflection of flexible bar (Appendix C), introducing
the modulus p and parameter ¢ --equation (C-6) (Appendix C), from Figure 10.9¢ and
noting equation (C-5) (Appendix C)

e ek
cosS@, = — = — 10-36
P n2p ( )

Substituting equation (10-34) into equation (10-36), the following is true

cos@, = 2—,)1?13 (10-37)

From equation (C-8), the modulus p can be solved out by
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L =“]1‘€‘F(p,¢3)

(10-38)

and then the slope, arc length and coordinates at any point of bar AB can be calculated by

the related formulae in Appendix C.

Let us now go back to the beginning of this section and look into the original question. If

a curved composite beam is subjected to closing bending, its inner ply is likely to be

subjected to snap buckling as shown in Figure 10.10a. It is assumed here that the new

equilibrium state of outer ply (still named as beam 2 in Figure 10.10a, similarly to in last

section) is still close to its initial state. So the linear theory is still used to analyse this ply.

However when the inner ply (still named as beam 3 in Figure 10.10a), where the snap

buckling occurs, is investigated, the nonlinear analyses mentioned above and in Appendix

C must be used.

Beam 3

Beam 2

Beam 1

(a)

g
B €
(I11), VP
)
A o,
an
4
C
h M
(b)

Figure 10.10 Model sketch for the problem

We still consider half of the global curved beam due to symmetry. As far as the buckled

inner ply (beam 3) is concerned, from Figure 10.10b, the deformed shape of beam 3 has a
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point of inflection —C. So in the following analyses, this beam must be divided into three
parts for consideration — Part I, IT and III are the parts between pointa A to C, C to Ay, and

A, to B respectively.

Parts I and II are obviously antisymmetric with respect to point C. Their lengths can both

be expressed from equation (10-38) in which the value of ¢ needs to be 772
K
o - o - Xp) (10-39)

The length of Part III can also be obtained from equation (10-38)

() _ F(pl;¢8) (10-40)

where in equations (10-39) and (10-40), F(p,¢)and K(p)are first kind Legendre’s

elliptic integral and complete elliptic integral of the first kind respectively,

K(p)= F(p,-;-z-)-

So the total length of beam 3 can be expressed as
L=1+ 1"+ [ = [2K(p) + F(p,¢3)]% (10-41)

From equation (10-37)

CosSs ¢B = ﬁ (10-42)
3

where R; is the radius of curvature of beam 3 under the action of the same load before

snap buckling.
Combining equation (10-42) with equation (C-6) (Appendix C):

. 20 1
0080321—251n27’3:1+m—2p2 (10-43)
3
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So

_]E = V2R\Jcos 6, +2p* ~1 (10-44)

and noting equation (10-42), then

0! Jeos@, +2p* -1

¢, =c (10-45)
B \/’2_p
P 1/2
Again from equation (10-44) and noting that for beam 3 & = (B—J , then
3
1 2P
- = \/F(coseﬂ +2p*-1) (10-46)
R, 3

Meanwhile according to the assumption that the length of the beam does not change

during buckling

L=Rp (10-47)

where, as in the preceding section, R3 and [ are respectively the original curvature radius
and half original arc angle of inner delaminated layer (layer ACB in Figure 10.10a).
Substituting it together with equations (10-44) and (10-45) into equation (10-41), then the

following equation can be obtained finally:

0, +2p* -1
RB=2R]| 2K(p)+ F(p,cos" oos = 4 H\ﬁ0s03+2p2-1 (10-48)
P

According to the bending equation for beam 3, at point B, the following is true
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%(_ﬂ_)—_l_.__l._ (10-49a)

EI, R, R

Substituting equation (10-46) into it, the following equation can then be obtained

MolB) _ 2P (56, +2p> —1) - (10-49b)
EI3 D3 R3

The third equation can be acquired from equilibrium of the global beam—equation (10-9)
Pt
M,(B)+ M,(p) +-cos 0, =M, (10-50)

where for the reason of clarification the positive direction of every term is actually
adverse to the ones in equation (10-9) because in present question the curved beam is

subjected to closing bending moment, and hence P = —~P, = P3 .

According to the assumption in the section of Problem Statements, linear theory will still

be used to analyse the outer ply—beam 2 in Figure 10.10a. Then by Castigliano’s second

theorem
A0, =0,-fF= aZZU(Zﬁ) (10-51)
2
Ax, = oU, (10-52)

JF,

where A8, and Ax, are respectively the rotation and displacement in x direction of outer

layer (beam 2) at the section B owing to the action of corresponding loads. Uj is the strain
energy of beam 2 whose description is shown by substituting equation (10-14) into (10-

15).

Another displacement compatibility condition for the global beam at section B in x

direction (horizontal direction in Figure 10a) can be expressed as
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R, cos B+ Ax, = x, +%sin 0, (10-53)

where x, is the vertical deflection of beam 3, which can be calculated from the nonlinear

analyses for beam 3, as shown in the following.

The vertical deflections of Parts I and II of beam 3 are equal due to antisymmetry, which,

according to equation (C-14) (Appendix C), is

o _ . w _2E(p)-K(p) (10-54)

X, =x, =
3 3 k
and the vertical deflection of Part III from equation (C-12) (Appendix C) is

) 2E(p,¢3) - F(p, ¢B) (10-55)

? k

where F(p,¢) and E(p,¢) are respectively first and second kind Legendre’s elliptic

integral and complete elliptic integral of the first kind. K(p) and E(p) are respectively

complete elliptic integral of the first and second kind, K(p)=F (p,%) and

E(p)= E(p,g]-
So

I 1t m _ 2 1
xy = 0 + o0 M = ;[ZE(p) - K(p)] +E[2E(p, ¢5)— F(p.d5)]  (10-56)

Substituting equation (10-56) together with (10-52) into equation (10-53) and noting
k= ( P/ DB)V : , then combined with equations (10-48), (10-49b), (10-50) and (10-51) there
forms a group of 5 equations which contain 8,, p, M,(), M,(f) and P. These five

variables can be totally determined by the above 5 equations, consequently achieving the

solution of the initial problem.
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However, as can be seen, the general solution actually cannot directly be solved out in
explicit description, and generally it is not very easy to solve the above 5 equations either,
even by ordinary numerical techniques such as the iteration method. Therefore further

assumptions are needed when this analytical approach is applied to study some special

casces.

10.4.2 Delamination very close to inner surface

Consider the case that the layer next to the inner surface, which is potentially to be
subjected simultaneously to delaminations and snap buckling, is very thin. The stress in
this thin film is then considered approximately as uniform distribution. It is further
assumed that the snap buckling of this thin film has little effect on the global deformation
of the other parts. So before and after snap buckling of the inner thin film, the shape of
the outer base layer and undelaminated part of the global curved beam stays constant.
This is shown schematically in Figure 10.11. ¢ and ¢’ are the thicknesses of the global

beam and inner delaminated layer respectively and here ' << ¢ .

Figure 10.11 Delamination occurs very close to inner face
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The compressed stress ¢ in this thin film with unit width before buckling approximates

to:
o' = M (10-57)

where ¢ and 7 are thickness and moment inertia of the global curved beam with unit width.

The strain energy of the thin film before buckling can be expressed as

v =9 pegy (10-58)
T 2E ]

where E’ = L >, E is the effective Young’s modulus in the circumferential direction,

t’is the thickness of thin film, R’ and /3’ are respectively radius of curvature and assumed

half arc angle of the delamination crack before thin film’s snap buckling.

Here again for the reasons of simplification, the approximation: R, = R; = R’ is taken

based on the assumption of d << 1. The bending energy of thin film after buckling is:

—.D,
2

U(Z)

Vo 2
j” (d—9+—1—) ds (10-59)
0 ds R’

where D’is effective flexural rigidity of thin film.

From the above subsection, the deformed shape of buckled film is divided into three parts
due to the existence of the inflection point C. Part I, Il and III are the parts between points

Ato C, Cto D, and D to B respectively. The upper-limits of integration for both Parts I
and Il is then R’y, while that for Part IIl is R’f’. ¥ is the slope angle at inflection point

C, as shown in Figure 10b.

From equation (C-6) and (C-7) (Appendix C), we can get the relation
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d_@ de d¢ __2pcos¢ km
ds d¢ ds J1— p Sln

= 2kpcos ¢

(10-60)

Using the elliptic integrals description (Appendix C), and also noting that in the Part II,

2—6 is negative, the above equation for each part can be finally expressed as:
s

2
D’ {4k:E(p)—(1— pz)K(p)]—-—J—/;} (10-61)

where ¥ = ZSiI‘l_l( p) as found from equation (C-6) (Appendix C), which is the slope

angle at inflection point C.

So:

’)

v =P +u® +ul

- ’{4k[E(P)"(1—p2)K(p)]+2k[E(p,¢B)_(1_pz)F(p,¢B)]+%+_;%}

(10-62)
Noting that modulus p can be determined only from equation (10-48) in which @3 is

replaced by £’ which is known in the present problem. Then from equation (10-44), k can

be also determined

k= ! (10-63)
R’\/Z(cosﬂ’ +2p* - 1)

By using the energy criterion:
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v =w+u® (10-64)

where W = 2R’S'T", which is the fracture work.

The final equation can then be obtained after substitutions and reductions as:

(7]
__,.I__,_ = 2{1 E_F('gltﬂ (10-65)
8E t 12R’
where
1 1
F(f)=— 4 E(p)-(1- p*)K(p)
\/2(cosﬁ’+2p2 —1)[ ( ) (10-66)

+2(E(p.¢,)—(1- pZ)F(P’¢B))} e 35}

The trend of function F(f’) is shown in Figure 10.12
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Figure 10.12 The trend of function F( ﬂ’) with respect to £’
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It can be seen that although F(f’) increases with respect to £, it changes very little in a
large range of A’ (as shown in Figure 10.12, from 20° to 120°). The critical bending load
corresponding to this large range of f’, from equation (10-66), therefore increases very
little. Hence it can be concluded that the delamination coupled with snap buckling is very

easy to progress.

If there already exists delamination whose half arc angle before snap buckling is £’, then

the critical bending moment for this delaminated thin film next to inner face can also be

obtained from equation (10-65) by letting the first term in right side be zero.

In order to estimate the effect of original curvature radius of beam R on the value of

critical load, according to bending equation for curved beam, there is

N +~1— (10-67)
R” ET1 R

Substituting this into equation (10-65) and noting that F(/’) is approximately a constant

in a large range of f’, assumed as Fp, equation (10-65) can then be re-written as

2 ’2 2 ’2 ’ ’2
t,_Fot, (_A{_) _ Fy '(ﬁ)_ 2r  E'Fy % _0 (10-68)
8E" 12E I 6R I t 12 R
M can then be solved out from the above equation as
’2 2 ’2 ’ ’2
M=— 1 _ Fyt [ Ky 2F+EFOt __1_2 (10-69)

Ry 6R 2E" 3E" \ ¢ 12 R
4E’ 6E’

It can be seen that the original radius of curvature of the beam, R, definitely has an effect

on the value of critical load M. Larger R will lead to small M, which means that the snap
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buckling of inner surface layer is more likely to happen in the curved beam with larger

curvature radius.

Assuming the condition that surface energy I' is very small or a delamination crack has
already existed before the occurrence of snap buckling of this delaminated thin film, then

equation (10-69) can be simplified as

=% (10-70)

where Gy is approximately a constant:

> Ft”| 3 3 2" 3E’
2E’  3E’

’2 ’ 72 2 ’2
G =1 Fit +\/EFOZ (z Ry ﬂ (10-71)

Therefore under this condition, equation (10-70) shows that the value of critical bending
moment M is approximately inversely proportional to the original radius of curvature of

the beam, R.

Now note that the value of right side of equation (10-65) is also dependent on the
thickness of delaminated film, #’. It can be seen in the following that in theory, the value

of critical bending moment M can achieve minimum when ¢’ is a designated value.

As in the front sections, let 7 =¢"/r and then equation (10-69) can be re-written as

E1 |F , 1[1(1 F

M= Fo o 1 (_.__o_ ZJH 10-72)
1_5,72{61#7 t\/E’Z 3 (
46

where
’ ,2

=2l ERC 1 (10-73)

¢ 12 R
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Because t'<<t, 171<< 1. Hence M in equation (10-72) approximates to

M:ZﬂEqJE (10-74)

4

Note that M will achieves minimum when H reaches minimum.

By rewriting Equation (10-73) and using the fact that

lZai 25[Ja;  (a,>0, and the equality stands only if a, =-=a, =-=a,)
=] i=1

(10-75)
the following relation can be deduced:
H = £ £ _E,F()_t/z
vt 12R?
I T EF ET?F, (1079
>33 . 21042 33 0
1t 12R? 12R?
Therefore, if and only if:
;=£gﬂ2 (10-77)

the minimum of M can then be achieved by substituting relation (10-76) into equation

(10-74)

74712
w21 [JIBEVT?E, (10-78)

min t R2

Equation (10-77) leads to:
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2
1" = s/lgFR (10-79)
o

Hence, in the problem being considered here, there exists a “weak layer” which is most

prone to be de-laminated. This phenomenon was also mentioned in Kachanov’s (1988)
and Bugakov’s (1977) analytical and experimental work on circular fibre/glass ring under

uniform external pressure. Also from the above, F(£’) is approximately a constant, Fy,
in a large range of A’. So the thickness of this weak layer can actually be directly

calculated from equation (10-79). Then the approximate minimum value of the critical

bending moment can be estimated consequently.

However it should also be pointed out that the use of equations (10-78) and (10-79) has
limits. As mentioned in the beginning of this subsection, the results obtained above are
based on the assumption of thin film snap buckling. The result from equation (10-79)
should be compared with the thickness of global beam z. If ** << ¢, then the minimum of
critical bending moment can be obtained by equation (10-78), otherwise the value

calculated from equation (10-78) is meaningless.

10.5 Summary

Theoretical approaches are developed for linear and nonlinear problems of delamination
buckling in curved composite beam which corresponds to the cases of curved composite
laminate subjected to opening and closing bending moments respectively. The general
solutions are applied to analyse some special cases such as delamination occurring either
at midplane or very close to surface of the beam. The effect of the arc angle of

delamination crack on the critical load in each case is also studied.

The results show that both the radius of curvature of the beam and the arc angle of

delamination have a big effect on the delamination buckling of curved composite beam

130



10. Delamination Buckling of Curved Composite Beam

when it is subjected to opening bending load. Increasing radius of curvature of the beam
generally leads to larger value of critical bending load. The curvature radius of beam also
has a significant effect on the snap buckling of inner thin layer of curved composite beam
when it is subjected to closing bending load. However contrary to the case of the opening
load, the inner layer is more likely to be induced into snap buckling with increased radius
of curvature of the beam. In the condition of low surface energy I' of the material, the
value of critical load is even nearly inversely proportional to the original radius of

curvature of the beam.
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Chapter 11 Concluding Remarks

11.1 Main achievements

The aim of this work has been to investigate the flexural behaviour of curved laminates
and sandwich beams, and predict their strengths by theoretical approaches. The major

achievements of this work are given below

11.1.1 Flexural response of a curved composite beam on an elastic

foundation

A model is developed for characterising the mechanical behaviour of curved composite
structure element such as overlaminate in tee joint or skin of curved sandwich beam. The
governing differential equation for general curved composite beam on an elastic
foundation is derived from force-moment equilibrium considerations and classical
laminate theory. The flexural response of a circular composite beam on an elastic
foundation is investigated in detail. The results show that the existence of tension-
bending coupling in the constitutive relations of general laminate results in larger
oscillation in the distributions of mechanical variables such as bending moment, shear
force etc. along the span of curved beam on an elastic foundation. The solution for mid-

plane symmetric laminate case is similar to that for curved isotropic beam on an elastic

foundation.

11.1.2 Estimation of response using a stress function approach

An elasticity based approach for treating curved orthotropic beams resting on an elastic

foundation and subjected to flexural loading has been presented using the Airy stress
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function approach. The resulting equations have been applied to investigate the effects of
key parameters defining beam structure on performance. The radius of curvature of the
beam has a large effect on the through-thickness stress; decreasing the radius of curvature
resulting in the increased maximum through-thickness tensile stress in a curved beam.
The results show that, at least in theory, it is possible to design for a “good thickness” or
“good radius” of the anisotropic material curved beam on elastic foundation according to
related parameters. The approach has been also used to analyse four tee joint samples.
The analytical results show close qualitative agreement with the results of FEM in all

cases. The trend is consistent with the conclusions of numerical analyses or experiments.

11.1.3 Through-thickness stresses in curved composite laminates and

sandwich beams

Based on this solution for curved orthotropic beam on an elastic foundation, an approach
to define the elasticity solutions for general curved layered composite beam consisting of
arbitrary numbers of orthotropic or isotropic layers in a no-circumferential-dependence
case is also presented. Since the approach ensures an accurate description of stresses in
curved laminated beams, within the assumptions of linear elasticity, there needs to be no
strict distinction between thick and thin curved beams. Further there is no limitation on

whether the skin of sandwich panel is thin or thick.

The effect of stacking sequence and radius of curvature of a curved layered composite
beam on the distribution and value of through-thickness stress is chiefly investigated.
Curved sandwich beams with thin and thick skin are studied. The results show that the
stacking sequences have a significant effect on the delamination and in-plane tensile
failure to some extent. The radius of curvature of the beam also has a large effect on the
through-thickness stress, which is consistent with the results for a single layer curved
orthotropic beam. The biggest through-thickness stress in a curved sandwich beam
always occurs at the interface between inner skin and core or in the core but very close to

that interface. Due to the geometry curvature, even in mid-plane symmetric layered
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beams or same-skin sandwich beams, the distributions of through-thickness and in-plane

stresses are not strictly symmetric with respect to the mid-plane.

11.1.4 Local instability of the skin of curved sandwich beam

The critical bending moment for curved sandwich beam in terms of the local instability of
the compressed skin is presented. The solution is based on consideration for buckling
/wrinkling of curved beam on an elastic foundation by beam theory and virtual
displacement principle. The effects of key parameters such as the flexural rigidity of the
beam and the stiffness of the elastic foundation (i.e. core material of sandwich beam) are
evaluated. The results show that if the elastic foundation is hard enough to make
wrinkling rather than buckling occur, the curved beam has nearly the same possibility to
lose its stability as the flat one. But if foundation is soft or beam is stiff, then buckling
occurs, and the critical values for curved beam and straight beam respectively are quite
different. The solution developed in this part of thesis yields results which are very close

to experimental values.

11.1.5 Delamination buckling of curved composite beam subjected to

opening bending

The problem of delamination buckling of a curved beam with pre-induced delamination
and under the action of opening bending moment is considered. The general solution for
this problem is derived from curved beam theory and a displacement compatibility
condition coupled with fracture concepts. Two usual important cases that delamination
occurs at the mid-plane or very close to the surface of curved beam are investigated in
detail, and an approximate formula for a general case is provided based on the
interpolation of these two cases. The results show that both the radius of curvature of the
beam and the arc angle of delamination have a big effect on the delamination buckling of
curved beam when it is subjected to opening bending load. Increasing radius of curvature

of the beam generally leads to larger value of critical bending load, which also means that
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a curved beam with smaller radius of curvature is more likely to induce delamination

buckling.

11.1.6 Snap buckling of the inner layer of a curved composite beam

subjected to closing bending

The problem of snap buckling of inner layer when a curved beam is under the action of
opening bending moment is also considered. The general solution for this problem is
acquired based on non-linear beam theory, the principle of similarity and fracture
concepts. The case of thin film delamination is investigated further. The results show that
in a large range of arc angle of delamination, the delamination coupled with snap
buckling is very easy to progress. The radius of curvature of the beam has a significant
effect on the snap buckling of inner thin layer of curved composite beam. However
contrary to the case of the opening load, the inner layer is more likely to be induced into
snap buckling with increased radius of curvature of the beam. In the condition of low
surface energy of the material, the value of critical load is even nearly inversely

proportional to the original radius of curvature of the beam.

11.2 Further work

Three proposals aimed at improving the accuracy of approaches and scope of their

applications are outlined below.

11.2.1 Elastic foundation

In this thesis, the Winkler hypothesis is assumed for the behaviour of elastic foundation.
It is the simplest model for the foundation material. The accuracy of the solution can be
improved by using more complex models for foundation, for example Pasternak type

which considers the reaction of foundation including not only the normal supporting
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force but also the shear force. However, it is obvious that it becomes then more difficult
to obtain the final governing differential equation and the corresponding solution,

because the distribution of bending moment is also dependent on the circumferential

displacement.

11.2.2 Non-linear analysis

As is known, under the same load condition, a curved composite beam generally has
more apparent or larger deformation compared to a flat one. This is due to the original
geometry curvature. Therefore, in order to improve the accuracy of solution or the range
of its application further, non-linear beam theory should be also used to analyse the

flexural behaviour of curved composite beam.

11.2.3 Experimental modelling

Validation of the practical aspects of the theory presented in this thesis would be a further
avenue for future work. Since there are no standard ASTM/BS/ISO procedures, specific

tests involving curved sandwich beams or curved thick/thin laminates with and without

delaminations would need to be devised.
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Appendix A: Preliminaries Related to Layered

Anisotropic Materials

A.1 Elasticity of homogeneous anisotropic materials

A.1.1 Generalized Hooke’s law

Generalized Hooke’s law can be expressed by the following tensor equation:

o, =E, &y (A-1)

y

where E,, is elasticity tensor, o, and &,, stand for stress and strain tensor. Z, j,k,/ can

ijki

independently be 1,2 or 3 in a 3-dimensional case.

Four order tensor Ej, in 3-dimensional case has 81 components. However, because of

the symmetry of stress and strain components, and also because of the existing of strain

energy density function, E,; actually has only 21 independently constants for general

anisotropic materials. Equation (A-1) can then be expressed in matrix form as:

s 3 r r

0, C, C, Cy C, Cs Gyl [&]
0, Cpn Cy Cy G Gyl |&
1951 Cy Gy G Gy N €3 | (A-2)
G, Cy Cpis Cy &,
Os Css Css | |&s
O¢) | Ces | s
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A.1.2 Orthotropic materials

Orthotropic material system has three mutually perpendicular planes of elastic symmetry.

Then the number of independent elastic constants can be reduced to nine. The stress-

strain relations for an orthotropic material are given

ro-l \ —Cn Cp, C; O 0
o, ¢, Cy 0 O
ol C, 0 0
o, Cc, O
O-S C55
Os) L

The stiffness coefficients C; for an orthotropic mat

engineering constants:

by:

0 £,
0 £,
01 J& ] (A-3)
0 £,
0 £
C66_ 6 J

erial may be expressed in terms of the

1- ViV Vor V3V Vip t ViV,
Cy=—"F"T=E,C,~= E = E,=C,
A A
I-v,v Vy TV, V Vi3 tV,V
_ 3V ! 2132 -3 1223 _
sz - Ez ’ C13 = E1 = E3 - C31
A A A
1- VipVy, Vi + ViV Vyy tVoVi5
Cy = A E,, Cy= A E,= E; =Gy (A-4)

Co =Mty » Cs=1; 5, Co=u,

E.
_ J —
vV, ==—— , A=1- VigVa1 = Va3 Vi = Vi3 Vi3

A.1.3 Transverse isotropic materials

If the material is isotropic in one plane of elastic

—VyVpViz — VipVasVs

symmetry of an orthotropic material

system, it is referred to as a transverse isotropic material system. Only five coefficients
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are independent. In the expressions of stiffness matrix components of orthotropic material

(A-4):

1
Cy=Cy, Cy=C,, Cy =5(C22 "C23) s Css =Cs (A-5)

Most of fibre cross-sections in the transverse plane of a unidirectional FRP are randomly

distributed. In the transverse plane, the properties of the material are independent of

direction, so that the material is transversely isotropic.

A.2 Two dimensional problem of orthotropic materials

A.2.1 Orthotropic laminae—plane stress problem

In orthotropic analyses, assuming plane stress condition(o,; = 0,7, = 0,7, =0), the

stress-strain relations can be written in axes aligned with the local axes of orthotropy:

£ ! o, -Llg
1 E, 1 E, 2
14
€n = _#011 +“E"O'22
) ! 2 (A-6)
| % 1%
€3 = _”Ew’o'u ‘E2—3022
i 2
1
E fned
\ 12 2, 12

which induce to orthotropic laminae. The above equation can be rewritten as the

following style, which is familiar to researchers:

0, Ql Qz 0 |l&
O, = On 0 35 (A-7)

0-3 Q66 66
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Where:
= __ E = __ L
G I=v,vy + On 1=v,vy ’
— v,.E —
Qi =7~ oo =t (A-8)
127 21

Considering the lamina with arbitrary orientation, here should introduces coordinate

transformation matrix {7’} and let:

lol=[rI"elr] (A-9)
Then the similar stress-strain relation is achieved:

{o}=l0ke} (A-10)

However it should be noticed that LQ] is a full matrix here.

A.2.2 Plane strain problem

For Plane strain problem, the expression of stress-strain relation (A.6) can still be used,

however, the elastic constants need to be respectively by the following quantities:

Vs E ’ E
— 1 — 2
E=r—l—  B=—t—
— VisVy ViV
’ V.,4+ V.V ’ V,, +V,,V
12 13¥32 2 23¥31
Ve =Ryl (A-11)
VizVs, —VyVsy

Obviously, the Plane strain problem is a little more complicated than the Plane stress
problem, because the elastic constants related to the third direction appear in the

expression of stress-strain relation.
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A.3 Classical laminate theory (CLT)

The Kirchhof-Love hypothesis is used in the derivation of the classical laminate theory.
The Kirchhof-Love hypothesis chiefly involves following assumptions: Straight lines
perpendicular to the midplane before deformation remain (1) straight; (2) inextensible;
(3) normal to the midplane after deformation. Based on Kirchhof-Love hypothesis, the
functional form of the displacement for the plate are:

( ow,

u(x’y7z>:u0(x9y)_z”é'_'
X

JV(x,y,Z)=V0(X,y)—Z% (A-12)
dy

w(x, ¥,2) = wy(x,y)

Substituting it into geometry equations, the following can then be obtained:

0
gx Ex Kx
— 0 _
g, +=1€% 1+ziK, (A-13)
0
yf}’ }/,\'y K")’

where {K} is the curvature of midplane:

2 2 2
2°w o°w d°w (A-14)

==, K — 7 -
T Y dy’ i 0xdy

Assuming there are N-plies in laminate, substituting equation (A.13) into equation
(A.10), and integrate it, and also using external force components instead of stress

components in the expression:
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N, PAn A, A By B, By ] rgi) \
N, Ap Ayp Ay By, By By ‘93
) ny - Ay A26 Ags By By, By N }/f)y (A-15)
M, B, B, B C, C, Cg K,
M, B, B, By C, Cp Cy K,
\Mxy ) _Blé By By Ci5 Cy Co 1 Ky ]

C, are tension stiffness, coupling stiffness, flexible stiffness respectively,

§2>

where A;, B

they can be expressed as:

N N
Ay = ZQij(k)(Zk - Zk-l): ZQij(“tk
k=1 k=1
B =100 2 2)= S0, N
i —§k=l Q; \& 74 )= Z;Qy L 2y (A.16)
D = li (k)( 3 3)_ 4 *y,. =2 fk3
i = 2.9 & — )= ZQU (7 +-
33 k=1 12

t, =z, — 2, 18 the thickness of the ith ply, z, = %(zk +z,.,) is the location of midplane of
ith ply.

Obviously, for the laminate symmetric with respect to the midplane, B, =0, which

means there does not exit the tension-bending coupling. This will simplify the analyses of

midplane symmetric laminate.
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Appendix B: The Curvature Change of Shell

B.1 Curved surface and local co-ordinate system

Consider a general curved surface: z = f(x,y), the location of any point on this curved

surface can be described by the vector
F x4 yj4 ok (B-1)

Assuming that (&, £) is one kind of local co-ordinate system on this curved surface, 7

can be alternatively described as
F=Fla,p) (B-2)

and here is x = x(a,B), y = y(a,B), z=z(a,f). Then let

- r e ot g
r,=——=x,i+y,]+z,k

o

= . L. (B-3)

The Lame coefficients can then be defined as

A=l = F v e e,
(B-4)

B= lfﬁ} = \/xﬁz + yﬁ2 + zﬁ2
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B.2 Curvature change of shell

B.2.1 Curvature change of general shell

According to the theory of shell and theory of curved surface, the final expression about

the curvature changes of mid-surface of the general shell along o and [ directions

respectively and the twist curvature after deformation can be derived as below.

ool Ofu) 1 0A v 1 9(1 ow) 1 04 ow &
' A da|R | AB 98 R, A da|A da) AB> 3B 08 R,
ool Ofv ), L 9B u 1 df1 ow) 1 0B ow_¢&s
> B 08|\ R, ABach B 98| B 98| A’B da 0a R, (B-5)
_ 1 A0(u), 1 BIfv) 1 0w 1040w
YR BB\ A]"R A9\ B) AB9wdf A 9f da
_1.9B owy 171 1
B oa of 2\ R R |

where u, v, w are respectively displacement components in direction of 7, 7, and 7, X1z,

R, and R, are curvature radiuses in directions of 7,7, . &,, €gand ¥, are strain

components of mid-surface

o

Ep=

7/ af —

_Llow v oA w
T Ada ABJf R
lov u 0B w

(B-6)
BOoB ABda R,

- 3al3) 5apl)

As can be seen, in any of the above equations (B-5), the last term shows that in-plane

strain &,,&g,7,, have effects on the curvature and the twist curvature K,K,, ¥ .
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B.2.2 Shell curved about one axis

In the case that shell is curved about only one axis like a cylindrical shell however its
cross section is not conformed to circle or arc but a general smooth curve, the generator x

and the tangent of cross section line s are taken as local co-ordinate, corresponding to &

and Prespectively, which means

x=a,ds, = Ado = dx (B-7)
s=pf,ds, =Bdf =ds

Therefore: A=B=1and R =0

Then substituting equation (B-6) into equation (B-5), equation (B-5) ban be reduced as

following
0w
P ox?
of 1 w  w
S ) LA B-8
"2 vas[RJ B R (B-5)

Lo v i(d )
ox Os

If the intrinsic equation of cross section line of this shell is expressed as: 6 = s(s) , where

6 is the slope angle at any point on the line, then the original curvature radius R, = %
The above equation can be rewritten as
__ 0°w
: ox*
K,= v%—;—? - %%V— - w(%g)z (B-9)

1dv w1 (_a_z+§ﬁ)
R,0x Oxds 2R,\0x Os
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Obviously, the circumferential displacement v has effect on curvature change as well as

the normal displacement w.

B.2.3 Cylindrical shell

In cylindrical shell cases, the second curvature radius R is a constant R . Equation (B-9)

can be further reduced. And noting:ds = Rd@, the final expression of k,,k,,% in

cylindrical shell deformation can be obtained as:

1 3w w (B-10)

dv 1 du o*w
= 2L,
2Rl 0x R 00  0xd@

If A very long cylindrical shell is considered here, and also the applied forces and
boundary conditions are both assumed uniform in cylinder axial direction (x-direction),
the deformation is then independent of x. Thus this cylindrical can be considered as a
curved beam with unit width in x-direction. During its happening deformation, the change

of curvature in x-direction is then &3 in equation (B-10), i.e.:

2
1 d'w w (B-10)

Reference for Appendix B:

1. Liu Hongwen, Lin Jianxing and Cao Manling, “Theory of Plates and Shells”(in
Chinese), Zhe Jiang University Press, 1987 '
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Appendix C: Non-linear Deflection of Flexible

Bar

C.1 The concept of linear and non-linear deflections

When the deflections of a loaded bar is investigated, analysis usually begins with the

Bernoulli-Euler law. At any point of the bar, the following formula holds:

dé M(s) -1

where s is measured along the length of the arc and & is the slope at s . In rectangular

coordinates the curvature is expressed as:

1 a,’zy/dx2
—_= 7 (C-Z)

T [+ (dy s ax)’]

because the bending moment M is a function of x, substituting the above equation into the
Bernoulli-Euler formula, a second order nonlinear differential equation arise. In linear
approach, the square of the slope (dy/dx)* is neglected in comparison with unity, as is
known well in conventional engineering applications. This approach is justified provided
the deflections are very small compared with the length of the bar; on the other hand, this
approximation is not permissible for slander bars where the deflections are appreciable
compared to the length or the new equilibrium state after deflection is far away from the
original shape of the bar. The well-known elementary theory, therefore, is not applicable
for the calculation of “large deflections”. It should also be noted, in nonlinear cases, the
deflections are no longer a linear function of the bending moment or of the load, hence

the principle of superposition is not applicable.
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C.2 Elliptic functions and integrals

There is no general method for the solution of second order nonlinear differential
equations, a certain type, called Newton’s equation, may be solved by a simple procedure
and will involve elliptic integrals. Newton’s equation contains the second derivative of

the dependent variable and a nonlinear function of the same variable. It is of the form

d2
o +a®(y)=0 (€3)

The name ‘elliptic integral’ was used by Lengendre to designate integrals of the types

x2dx X

dx d
e I ey

where X is either of the third or fourth degree in x. These are called ‘elliptic integral’ of

the first, second and third kind respectively.

For the analyses in this thesis, only the first and second kind elliptic integrals are

involved. Suitable transformation turns these into

[ Y 0 .

(1-22)"

F(p.g)= [ —2 (C-4)

and of the second:
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12

E(p.9)=[ (1- p*sin* 9) dy (C-5)

It is obvious that F(p,¢)and E(p,¢) both are functions of p, which is called the

modulus, and of the limit ¢. K(p) and E(p) are then designated as:

(C-6)

which are called ‘complete elliptic integral’ of the first kind and second kind respectively,

and their values both depend on p only.

C.3 The basic problem: vertical strut under vertical load

Consider a vertical strut AB, fixed at the bottom and subject to a vertical load P at the top
as shown in Figure C.1a. If the bar is sufficiently flexible it will take the shape in Figure
C.1b. The related coordinate is also shown in Figure C.1. The bending moment in any

section of the strut (its location after deformation assumed to be Z(x,y) ) due to P is

M=—py="2L (C-7)
¥
El 1
oYy (9

12
where k = (——}3—) and r is the radius of curvature. Substituting equation (C-2) into the

above, and then integrating with respect to x, the following result is obtained
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2
¥ = =+ C (C-9)

kz[l +(dy/ dx)2]

. dx 21V2 1 .
Noting that — = cos 8, hence [1 + (dy / dx) } = , equation (C-9) reduces to
ds cos @

y? :k—22c059+C=*];2—2—[1—25in2§}+C (C-10)

Z}
B
4 P
S
L

A y_ VA [
Wl - O;

L h N

€ 7l
C.1(a) C.1(b)

Figure C.1 Vertical Strut under Vertical Load

Introducing # as the total horizontal deflection of the bar, as shown in Figure C.1, which

. 2
means & =y, , leading to A = =t C.So
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y? —nr -t sn2f (C-11)

po 2P (C-12)
where p < 1 and select ¢ such that

sing = psin @ (C-13)

Using equation (C-13) and noting y = hcos¢and ? =sin @, after some reductions, the
s

following result can be obtained

ds =— 2d¢ N (C-14)
k(l—p sin ¢))

0 is negative as shown in Figure C.1, hence ¢ is also negative. The negative sign in
equation (C-14) means that ¢ is decreasing while s increase. Integrating ds from 0 to s

and disregarding the negative sign

_1lp d¢ _1 _
S—_JO (1—p2 sin? ¢)1/2 ‘;F(P’@ (C-15)

Assuming that the length of strut does not change during bending

_1g d¢ _1 .16
L k-[o (1 K(p) (C-16)
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From this equation, the modulus can then be solved out. Hence then by equations (C-15)
and (C-13) the function for curve AZB s=f(60) is determined. Thus the present problem

considered here is solved.

Because the value of ¢ at top point of strut B is g, then from equation (C-13), the slope at

B can be found by

sin %C— p (C-17)

From the above the total horizontal deflection of the bar has been designated as &, from

Figure C.1b, the horizontal deflection at any point of bar is

y=hcos¢=2k—pcos¢ (C-18)

From equation (C-14) and noting dx=dscosf= ds(l —2p*sin® ¢), the vertical

deflection at any point of bar can be obtained by integrating

1 o d¢ 2p* ¢ sin’ gdo
22-,.0 2-2‘/2—](.{0 2 .2 a2
(l—p sin ¢) (l—p sin ¢) (C-19)
1
=~ [2E(p.9)- F(p.9)]
so the total vertical deflection of the bar is
1
v = 7{-[2E( p)-K(p)] (C-20)
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C.4 Vertical strut with a load and a couple at end - principle

of elastic similarity

Consider a vertical strut the same as in the above but with a load P and a clockwise

couple M applied at end B, as shown in Figure C.2a. They can be replaced by a force
acting on a rigid lever-- Figure C.2b. The length of this lever is e=%. From the

principle of similarity, this problem can be converted into the basic problem by extending

the bar past B until it intersects the line of action of P which is exerted on the lever. Let

this point be D.

A

B N D
B e
L

A Yy A (o5

7777 =€ 0]
k h J
€ g

C.2(a) C.2(b)

Figure C.2 Vertical Strut with a Load and a Couple at End
The total length of the new strut AD is then
L=L+1L, (C-21)
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L, is the length of original strut which is known, L; is unknown.

From figure C.2b and noting equation (C-12)

_ck (C-22)

COS@, =—= ;p

>

by which parameter ¢g can be determined. Then from equation (C-15)

L= F(p.0,) (€-23)

by which the modulus p can be solved out, and all other dimensions of the loaded bar can
be obtained consequently. The function of the curve ABC can also be expressed as

in(6/2
equation (C-15), where ¢ = arcsin sin(6/2)

, but here Z<o< 6,. 0 can be obtained

from sin% = psin@,.

It should be pointed out that it is not certain that in any cases the imaginary extension of
bar can intersect with the line of action of P . Under some conditions, e.g. small force P

and large couple M, it is possible the line of P will by pass the elastica. This

corresponding the assumption h* > 2z in equation (C-12). In this thesis, this case is not

concerned and considered.

C.5 Curved bar under point loads

Consider a curved bar in Figure C.3. The line a represents the initial free shape of curved
bar fixed at original point O and its intrinsic equation is
n=1(s)

Line b is the loaded shape which expressed as
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v =y(s)
The bar is assumed to be inextensible, hence s is the same in both equations and let L be
the length of the bar. And it is also assumed that the bar is subjected to an arbitrary load
distribution which can be expressed as v(s) vertically and A(s) horizontally. The bending

equation for an arbitrary plane curve under an arbitrary coplanar loading is then

| gy 4w _dn)i_ _ S )
[EI( . dsj] V(s)cosy — H(s)siny =0 (C-24)

For a bar of constant flexural rigidity, then

El

2 2
‘;;2” —V(s)cosy — H(s)siny = EI L;S? (C-25)

Equation (C-25) generally has no closed form solution. For a circular bar there is

d?_

N 0, and if the load is concentrated force e.g. downward load P shown in Figure C.3,
s

2
then the equation can be simplified
de

? + k2 sin@d =0 (C'26)

where k = 1[£
EI

Above all the nonlinear analyses for curved beam is more difficult than straight beam, so
based on the results for straight beam, the method of analogy and principle of similarity

can often be used for many kinds of problems concerning curved beam, as shown in the

thesis.
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y A
v(s)
n(s)
h(s) W(s)
y, b
v _
o) “x

Figure C.3 Deflection of Initially Curved Bar under Loads
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