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The scope of this work has been the development of an efficient method for the dynamics modelling of 

structural systems in category I I missions in space. Specified by NASA, category I I missions will employ 

large-scale articulated multibody structural systems of complex interconnected flexible and rigid 

components. Typical examples include space-science laboratories, earth-observation platforms and 

space-station configurations. 

As opposed to the direct application of the finite element method for the dynamics modelling of an entire 

structure as a single entity, structural systems in this work have been modelled as collections of 

interacting components. It is required that the method should provide high accuracy, though low order, 

mathematical models, and amongst other critical advantages, should be computationally more efficient 

than the global finite element approach. A recursive Lagrangian formulation of generalised coordinates 

was considered the most efficient methodology for the modelling objectives specified. The recursive 

nature permits the formulation of kinematical expressions relative to the inboard component and results in 

a minimal set of differential equations of motion. Component linear elastic deformation is approximated 

using spatial discretisation techniques with a small number of component modes. Several component 

mode sets, combinations of dynamic and static modes, have been proposed or adapted from the area of 

component-mode synthesis. Truncation of the system order can be achieved at substructural level, by 

reducing the number of component modes, resulting in low order mathematical models. 

A number of methods have been developed and thoroughly assessed on the suitability for the dynamics 

modelling of category I I systems. The fittest of the methods, which directly utilises the finite element 

component matrices, has been shown to be computationally faster than the global finite element 

approach over a large number of case studies. A network of custom developed programs, based on this 

method, has been generated and interfaced to a commercial finite element code for modelling complex 

aerospace structures. 

The network of programs has been used for both the verification of the theoretical integrity of the 

proposed method and as importantly for the assessment of the component mode sets employed in the 

analysis. For this purpose a wide range of eigenvalue and frequency response analyses have been 

undertaken. The results, which in all cases have been compared to those obtained by the direct finite 

element approach, demonstrate that for large flexible multibody structures in space the right selection of 

component modes is of foremost importance. Utilising appropriate combinations of component mode 

sets, excellent agreement of the method to the finite element approach can be achieved even with a low 

number of differential equations. 
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I Introduction 

1-1. Prologue 

1-1-1. Background 

A number of future space missions will use large flexible structures in low-earth and 

geostationary orbits. Possible structures include antenna concepts, space-science 

laboratories, earth-observation systems and space-station configurations. Such 

multibody systems typically consist of complex tubular-frame platforms with 

appended components such as booms, solar arrays, reflector antennas, robotic 

manipulators, and their dimensions may range from meters to hundreds of meters. 

These structures, due to their particular design, large dimensions, lightweight 

construction for launching purposes, and the large number of components, exhibit 

high modal density and local deformation at the component interfaces and actuator 

locations. These characteristics distinguish such structures to the more conventional 

satellite systems and demand more elaborated treatment for design and simulation 

purposes. 

Studies related to the dynamical behaviour of structures in space may include, 

amongst others, manoeuvring and deployment/reconfiguration dynamics, active 

vibration suppression, accurate payload pointing, platform attitude control and 

sequential or integrated control-structure optimisation. The mathematical modelling 

requirements, for treating the system dynamics, depend on the actual mission 

objectives, which define the particular performance envelope of the multibody 

structure. In this sense the mathematical models for flexible structures in space have 

been divided by NASA / DoD into various broad categories\ 

The category I missions in space will employ structural systems with non-articulating 

components. Typical examples are large antenna concepts, such as the hoop-
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column and wrap-rib antennas. The mission objectives are restricted to fine pointing 

of the structure and vibration suppression for improving performance, in category H, 

the interest is concentrated in developing mathematical models for systems where 

the components are connected in single-point holonomic interfaces and form in 

general open-loop articulated multibody systems. Typical examples are space-

science laboratories, earth-observation systems and space-station configurations. 

The mission requirements may include precision attitude control of the main platform, 

stringent pointing of the articulated payloads and vibration suppression. The 

mathematical models for the dynamics modelling of structural systems employed in 

category I, I I missions are linear, since the rotational manoeuvring of the main 

structure is maintained sufficiently small and the relative rotational motion of the 

components is restricted either completely or in the linear range. 

Categories III, r v are the nonlinear counterparts of categories I, I I respectively. 

Missions that belong in Category I I I will require large angle precision rotational 

manoeuvring of the entire structure for retargeting or tracking purposes, and 

subsequently or simultaneously suppression of any induced vibration. Moreover, 

category IV may require large angle manoeuvring of the main platform, while 

simultaneously and independently deploying, pointing or driving with accuracy, 

through large angle rotations, various articulating components and perhaps 

suppressing the induced vibration at the same time. Typical examples include solar 

panel deployment, reflector-antennas reorientation, robotic manipulator operations or 

general reconfiguration of the structure in space. Nonlinear mathematical models are 

essential for the description of the dynamical behaviour of these systems. 

1-1-2. Scope and Approach 

The scope of this work has been the development of a method suited to the 

particular dynamics modelling requirements of structural systems in category I I 

missions in space. The method should be able to model open-loop multibody 

structural systems with single-point articulated flexible or rigid components. It is of 

critical importance that the method would provide low order mathematical models 

which at the same time would approximate the dynamics of complex structural 

configurations with high accuracy. 
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As opposed to the direct finite element method that considers the entire structural 

system as a single entity, structural systems in this work have been considered as 

collections of distinct interacting components. The individual components are treated 

separately to each other, process akin to substructuring methodologies. A 

substructuring approach has a number of benefits over the more conventional direct 

application of the finite element method. Most important attributes include the lower 

computational cost and memory requirements for dynamics analysis. 

Using the finite element method, a complex structural system is modelled as a single 

structural entity. For reducing the computational cost, large order systems undergo a 

transformation to modal generalised coordinates prior to any dynamic analysis. The 

transformation involves an eigenvalue analysis of the entire structural system, and 

since computer time increases at about the square or cube with an increase in the 

number of degrees of freedom, the dynamic analysis of a large structure can be 

computationally expensive. 

In the case of a substructuring approach the eigenvalue analysis of the complete 

structure is substituted by a series of eigenvalue analyses of the individual 

components. The small number of derived normal modes, complemented by static 

modes, can be used to describe the linear elastic deformation of each component. 

Importing the component modes into a generic mathematical model that can couple 

the overall motion of the components, low order differential equations of a particular 

structural system can be produced. The resulting low order system is very 

economical for obtaining the eigenvalues and eigenvectors of the global system or 

for any further dynamic analysis. In general, the total computational time spent for 

the derivation of component modes, coupling process and analysis of the resulting 

low order system is lower to the time spend for the direct finite element analysis of 

the entire structure. 

In fact, the computational time saved relative to the global finite element method 

increases as the number of degrees of freedom of the structural system increase. 

Moreover, memory requirement is reduced since mathematical manipulations at 

component level involve lower order matrices. A substructuring approach is therefore 

particularly suitable for large-scale system modelling, like those treated in this work. 
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Further time benefits can be realised since structural systems in space contain a 

large number of repeated components. 

Despite this work is not concerned with proposing or implementing control strategies, 

a substructuring approach would facilitate control application. This is attributed to the 

independent modelling of each individual articulated component with a low number of 

component modes which allows the design of decentralised control algorithms. 

Additional advantages are introduced since designing control systems for articulated 

structures requires analysis over a large number of structural configurations. 

Component reorientation studies are efficiently performed using a substructuring 

approach since only a small part of the overall dynamic analysis has to be executed 

at each iteration. 

Although there is a number of reasons that support the use of substructuring, the 

success of such an approach is ultimately linked to the component modes 

implemented in the analysis. It proves that the kind of component mode sets utilised 

is of vital importance for the modelling accuracy of large flexible structures in space. 

The reasons are linked to inherent characteristics of these systems such as high 

modal density and local deformation at component interfaces. Inappropriate 

component mode sets not only negate the computer time benefits of a substructuring 

approach due to convergence issues but may also result in inaccurate dynamics 

modelling. The latter can prove detrimental since unmodelled dynamics, due to 

control-structure interaction, can result in catastrophic destabilisation. The right 

selection of component modes is therefore central to the implementation of a 

substructuring approach. In this work several component mode sets have been 

employed and include redundant constraint, constraint, loaded-interface, fixed-

interface and free-interface sets. 

1-1-3. Proposed Methodology 

Within the framework of substructuring one is confronted with a number of 

methodology strategies. The particular methodology followed has been decided upon 

the particular modelling requirements of structural systems in category I I missions in 

space. From a critical review of the area of multibody dynamics and component-
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mode synthesis, it has been decided that the most efficient methodology, for meeting 

the modelling objectives set, would be a nonlinear recursive Lagrangian formulation 

of generalised coordinates. 

In nonlinear kinematics the overall motion of each component can be perceived as a 

rigid body motion relative to which elastic deformation can be observed. In this 

sense, one can assign to each component a suitably positioned floating reference 

frame that moves with the rigid part of the motion and relative to which linear elastic 

deformation can be measured. Therefore, the overall motion of each component can 

be described in terms of the motion of a floating reference frame, and the 

deformation measured relative to it. 

For modelling the linear elastic deformation, a simple geometry component can be 

spatially discretised using the continuous version of the assumed-modes method, 

whereas for a complex geometry component spatial discretisation can be 

accomplished using the finite element method. The finite element model of the 

component is subsequently reduced using the discrete version of the assumed-

modes method. For the description of small linear elastic deformation, in both cases 

the transformation involves a finite set of generating modes, referred to as 

component mode set, which may be a combination of a number of dynamic modes 

complemented by static modes. By truncating the number of the dynamic modes, the 

system order is reduced at the component level, which is particularly beneficial for 

large-scale systems modelling. 

In recursive formulations, the orientation of the floating reference frame of a 

component is specified relative to a local reference frame positioned within the 

preceding component and located at the interface attachment between the adjacent 

components. To ensure that the various components act as part of the whole 

structure, a suitable kinematical procedure has been proposed to accommodate the 

interface conditions between each component and the preceding one. The 

component absolute kinematical expressions are formed relative to the suitably 

positioned reference frame within the preceding component. The exact expressions 

of the outboard component kinematics are subject to the constraints at the interface 

with the inboard component. The interface kinematics in this work allow any of the 

three articulation axes to be completely free or locked. For articulating structural 
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systems, one is particularly interested in relative kinematical formulations, since 

relative component orientation, velocity and acceleration are directly measured for 

controller feedback purposes, therefore a recursive formulation proves an added 

advantage. Utilising the kinematical relationship, established for any two adjacent 

bodies, repeatedly for all components in the structure, the absolute kinematical 

expressions characterising the motion of any component can be expressed in terms 

of the independent generalised coordinates of all preceding components in the same 

multibody chain. 

The kinematical procedure followed in this wok is only feasible for multibody systems 

where no closed-loops and multi-point interfaces are formed between the articulated 

components. Structures in space are typical examples of such configurations. The 

formulation of the interface kinematics proposed is general enough to employ any 

component mode set without violating the geometric interface conditions between 

adjacent components. This is accomplished by the introduction of 'correction terms' 

into the interface kinematical expressions. 

1-1-4. Methods of Mathematical Modelling 

The nonlinear recursive kinematical expressions have been linearised in order to 

obtain expressions for the formulation of the linear system dynamics. Transition from 

the nonlinear to linear expressions has been performed using symbolic 

manipulations. Distinct linear kinematical expressions have been accomplished and 

formulated using either hybrid or generalised coordinate sets. Utilising these, three 

linear methods for the dynamics modelling of structures in category 11 missions have 

been produced. 

The first of the methods uses a hybrid set of coordinates where for each component 

the rigid-body part of the motion is described by physical displacement coordinates 

and the linear elastic deformation by generalised coordinates. In the second method, 

the hybrid set has been substituted by a generalised coordinate set, since the rigid-

body motion of each component has been described using rigid-body modes, 

modelling allowed only with the assumption of small rotational displacement. In both 

methods the structural subdomains can be spatially discretised using the continuous 
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version of the assumed modes method or the finite element approach. In the third 

method all components have been spatially discretised using the finite element 

method. The consistent mass matrices of each component in the structure appears 

explicitly in the equations of motion of the multibody system. The third method also 

utilises a generalised coordinate set. 

All methods proposed can treat open-loop tree-configuration multibody structural 

systems with single-point articulated rigid or flexible components. For assessment 

and comparison, the methods have been utilised to develop mathematical models of 

peripheral multibody structures of varying modelling complexity. Such systems 

consist of an arbitrary number of components attached to a main carrier platform 

without forming any closed-loops. Peripheral formation multibody mathematical 

models are easier to present analytically than generic tree-configuration models, 

which are best generated computationally. The configuration limitation of the 

mathematical models does not in any extend restrict the conclusions drawn form this 

work since it is of quantitative and not qualitative nature. 

1-2. Summary of Chapters 

1-2-1. Chapter I: Introduction 

The remaining of this chapter looks into various areas of research that are closely 

related to the modelling requirements in this work. The modelling of the linear elastic 

domain was first examined. Clear understanding of this area is critical for 

comprehending more complex subjects such as the coupling of the elastic 

deformation to the nonlinear component kinematics, modelling of interface 

kinematics between adjacent components and component mode representations. 

The limitations and advantages of the exact and approximate modelling have been 

discussed. Amongst others, Rayleigh-Ritz type approximate methods, such as the 

continuous version of the assumed-modes method and the finite element method, 

have been presented. 

Subsequently the discussion turned to the examination of global modelling practices 

as opposed to the substructuring approach. A number of advantages of 
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substructuring over the more conventional global finite element approach have been 

detailed. This part of the review is important for justifying the primary modelling step 

of this work. 

Within the framework of substructuring a number of methodologies have been 

presented. The scope was to determine the particular methodology that can meet the 

modelling requirements of this work in the most efficient way. A thorough discussion 

on minimal versus augmented modelling, non-recursive versus recursive 

formulations and Lagrangian versus Netwon-Euler methods has been given. A brief 

review of the area of component-mode synthesis follows. 

1-2-2. Chapter II: Component Mode Sets. 

Component modes have been proposed or adapted from the area of component-

mode synthesis. This field of geometrically linear dynamics is concerned with large-

scale structures where the substructures are in general connected to each other in 

multi-point interfaces. The physical coordinate constraint sets of the component have 

been defined so that the component characterisation is generalised to include the 

statically indeterminate, determinate and underdeterminate cases. The component 

mode sets used are combinations of dynamic and static modes. Variations of 

component mode sets found in the literature have also been proposed. Component 

modes utilised include redundant constraint, constraint, loaded-interface, fixed-

interface and free-interface sets. Mathematical proofs for determining the size of the 

physical coordinate constraint sets in order to define the various static modes are 

also provided where necessary. Preliminary advantages and disadvantages of the 

various component mode sets are discussed, previous to their implementation and 

assessment for simulating the system dynamics. 

1-2-3. Chapter III: Nonlinear Recursive Component Kinematics 

This chapter is concerned with the kinematics modelling of open-loop multibody 

flexible structures in space. The nonlinear kinematical expressions of a single flexible 

component are first derived. In Appendix-A the kinematics of an arbitrary component 

joint to the preceding one via a non-translating single-point interface have been 

developed. This part of the nonlinear kinematical analysis is recursive. Suitable 
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kinematical component expressions have been developed in order to accommodate 

the component interface conditions with the inboard component. The resulting 

mathematical expressions are general enough to employ any component mode set 

without violating the interface conditions. This is accomplished with the introduction 

of 'correction terms' in the component interface kinematical expressions. The final 

expressions of the component kinematics connected to the preceding component for 

arbitrary interface constraints have been presented. Utilising the kinematical 

relationship, established for any two adjacent bodies, repeatedly for all components 

in the structure, the absolute kinematical expressions characterising the motion of 

any arbitrary component can be expressed in terms of all the independent 

generalised coordinates that specify the time-varying configuration of the 

components preceding and including the arbitrary component in the same multibody 

chain. 

1-2-4. Chapter IV; Methods of Multibody Dynamics Modelling 

Having obtained the nonlinear recursive kinematical expressions for an arbitrary 

component in a multibody chain, the aim of this chapter is to linearise them in order 

to obtain expressions for the formulation of the linear system dynamics. For this 

purpose the theoretical background of the large arbitrary angular displacement and 

nonlinear rotational kinematics has been reviewed in Appendix-B and the distinct 

mechanisms that introduce geometrical nonlinearity into the multibody system 

dynamics have been thoroughly examined. Returning to chapter IV, transition from 

the nonlinear to linear kinematical expressions for a component as part of a 

multibody chain has been performed using symbolic formulations. Dinstinct linear 

kinematical expressions are accomplished and formulated using either hybrid or 

generalised coordinate sets. Utilising these kinematical expressions, three linear 

methods for the dynamics modelling of category I I missions in space have been 

proposed. 

The kinetic energy of each component can be expressed in terms of all the 

independent generalised coordinates that describe, at any instance, the configuration 

of the preceding multibody chain of components. The elastic potential energy can 

readily be derived using the expressions approximating the linear elastic deformation 

of the component. These approximate expressions of the component's deformation 
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field are independent of the exact position of the component in the multibody system. 

Dissipation energy can be included as structural damping at substructural level and 

also as viscous damping. 

Using a unified coordinate set formulation, the energy functions for all methods and 

for discrete or continuous flexible components have been derived. An initial 

assessment of the methods and discussion on their differences on theoretical and 

numerical implementation level has been presented. 

1-2-5. Chapter V: Mathematical Models of Peripheral Multibody 

Structures 

For assessment and comparison, the methods developed have been utilised to 

derive mathematical models of peripheral formation multibody structures. Four 

distinct mathematical models have been developed. Based on these mathematical 

models, the three methods have been assessed and compared on a large variety of 

criteria on their suitability for modelling the dynamics of Category I I missions in 

space. The comparison clearly demonstrated the most efficient method. The 

resulting model uses explicitly the consistent mass matrix of the individual 

components and a generalised coordinate set. This model provides an excellent tool 

for research, analysis and design of large-scale flexible structures in space. 

This chapter concludes with the derivation of the generalised force expressions for a 

multibody structure and the mathematical steps for performing a direct or modal 

frequency response analysis using the reduced order mathematical model of the 

multibody system. Structural and localised viscous damping has been included at 

substructural level. 

1-2-6. Chapter VI: Computational Implementation 

A network of programs has been developed for the computational implementation of 

the most efficient of the methods. The final deliverables of the network are the 

eigenvalues of the multibody system and the eigenvectors in modal or physical 

space. Additionally, physical displacement, velocity and acceleration of any point on 

the structure can be derived as a function of the forcing frequency using either direct 

10 
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or modal frequency response analysis. 

Since structures in space are composed of complex components, within the 

framework of this network each component has been spatially discretised using the 

finite element method. For this purpose, the network has been interfaced with the 

commercial finite element package ANSYS. Redundant constraint, constraint, 

loaded-interface, fixed-interface and free-interface component mode sets have been 

employed. Within the network of programs the redundant constraint and constraint 

modes, that complement the dynamic modes to form a component mode set, are 

calculated using specifically developed algorithms. 

The capabilities and the structure of the network are presented in the first part of 

chapter IV. The remaining of the chapter is dedicated to computational cost analysis 

studies of the proposed method relative to the direct finite element approach. A 

number of studies have been undertaken and demonstrate that in general the 

proposed method can be considerably faster over the more conventional global finite 

element approach. A number of conclusions on the efficiency of the method and its 

potential limitations have been reached. 

1-2-7. Chapter VII: Results 

Using the network of programs, the natural frequencies of peripheral structural 

configurations have been derived by incorporating several kinds of component mode 

sets, and the results have been compared to those obtained by modelling the entire 

structure using the finite element method. Similarly several frequency response 

analyses have been undertaken to further examine the integrity of the method and 

the accuracy of the component modes used. Employing the finite element method as 

a benchmark has long been established both for the verification of the theoretical 

integrity and the accuracy of results obtained from linear mathematical models. 

Conclusions on the efficiency of the component mode sets have been firmly 

established. The right selection of component mode sets is challenging for large-

scale flexible multibody structures in space, since these structures exhibit high modal 

density and local deformation at the component interfaces. Moreover, the inherently 

large differential problem would increase further if the component modes employed 

11 
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cannot efficiently model tlie linear elastic deformation of tlie components. A 

qualitative criterion has been established that predicts the possibility of local 

deformation being low or high. The criterion can be used to guide the analyst on the 

number and type of component modes best utilised. 

Finally the theoretical integrity of the proposed maethod has been demonstrated, 

since it can provide results with excellent accuracy relative to the finite element 

method, even with a low number of degrees of freedom, subject to the kind of 

component modes used. 

1-3 . Elastic Domain Modelling 

1-3-1. Exact and Approximate Modelling 

Of foremost importance within the framework of flexible multibody dynamics is the 

modelling of the distributed elastic domain. Small linear elastic deformation has been 

assumed throughout this work. A linear elastic structure can be either modelled as an 

infinite parameter system or discretised to a finite one. Structural systems are in 

reality distributed parameter systems, therefore their description requires an infinite 

number of degrees of freedom. Although distributed parameter modelling is desirable 

for the exact solution of the structural dynamics problem, this is only feasible for 

systems with fairly simple geometry or systems idealised as such^. Moreover, not all 

distributed parameter mathematical models have closed-form solution^'^. Numerical 

solutions, although difficult, are possible to produce, but render the 'exact' character 

of the modelling approximate. Since distributed parameter modelling posses the 

aforementioned difficulties, alternative methodologies have been established where 

the infinite number parameter system is approximated by a finite dimensional model. 

Such a procedure, called generally discretisation, may be considered any 

approximation process that aims in reducing the infinite number of degrees of 

freedom representation of a real system to a finite number. Discretisation may either 

involve lumping mass and stiffness characteristics or expanding the linear 

deformation of a system in a finite series of functions, procedure referred to as 

spatial discretisation. Lumped parameter models are more intuitive, arbitrary in 

character and the analyst has little control over the error involved in the discretisation 

12 
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process. 

1-3-2. Rayleigh-Ritz Type Spatial Discretisation il^ethods 

1-3-2-1. Continuous Version of the Assumed-Modes Method 

Whereas the Rayleigh-Ritz method is a methodology for solving the differential 

eigenvalue problem, the continuous version of the assumed-modes method is a 

Rayleigh-Ritz type spatial discretisation of a distributed parameter system prior to the 

derivation of the equations of motion^®. Therefore, there is no longer need to 

establish the partial differential equations describing the dynamics of the distributed 

system. As in the Rayleigh-Ritz method, the deformation is approximated in the form 

of finite series of space-dependant admissible functions, with the difference that the 

coefficients are not constant but time dependant and form the generalised 

coordinates of the system. The series can be substituted in the kinetic and potential 

energy expressions, thus rendering them to discrete form, and the equations of 

motion can be derived by means of a variational method such as the Lagrange 

equations. The assumed-modes method can therefore be also used in deriving the 

response of a system to external forces and initial excitation. Utilising the continuous 

form of the assumed-modes method, a continuous media, described normally by 

partial differential equations, can be modelled by a reduced order finite set of 

ordinary differential equations. More interestingly the assumed-modes method yields 

the same eigenvalue problem as the Rayleigh-Ritz method, i.e. the Galerkin 

equations^. The assumed-modes method will be considered here, in agreement with 

the literature, as a method suited for spatial discretisation of a complete structural 

system or a large subdomain of a sys temTh is implies that the admissible functions 

used are 'global' functions capable of describing large parts of the system. This 

makes the method difficult to deal with complex, geometrically irregular structures. It 

is indeed a very difficult task, and most of the cases impossible, to select admissible 

functions capable of describing complex systems with accuracy. An answer to 

complex geometries is provided by the finite element method. 

1-3-2-2. The Finite Element Method 

The finite element method is recognised as another Rayleigh-Ritz type discretisation. 

13 
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which like the assumed-modes method is not designed for solving differential 

eigenvalue problems, but for modelling a distributed parameter system with finite 

degrees of freedom. Like the assumed-modes method, the finite element method is 

seeking admissible functions for approximating the system dynamics, but as 

opposed to the assumed-modes method these trial functions are defined for much 

smaller structure subdomains, the elements. Therefore, the trial functions are not 

considered 'global' functions but 'local'. Although this difference seems to be of 

quantitative nature, a particular methodology facilitated by the use of 'local' functions 

results to a distinct mathematical model. In other words, although the finite element 

method qualifies as a Rayleigh-Ritz type spatial discretisation technique, the 

associated (discrete parameter) algebraic eigenvalue problem does not result to the 

Galerkin equations. Defining admissible functions for only small subdomains is one 

of the features of the finite element method that makes it so versatile for modelling 

complex structures. Indeed for most of the cases one needs to use only simple 

admissible functions, known as interpolation functions, in order to approximate the 

linear deformation within an element. At the elemental level the distributed 

deformation, approximated by a finite series of local functions, is finally expressed in 

terms of the unknown nodal displacements^. It is this mathematical manipulation that 

really distinguishes, on mathematical level, the finite element method to the 

assumed-modes method and gives it extreme power as an engineering tool. The 

nodal displacements play the role of generalised coordinates in the element entity. 

The local functions are very attractive computationally, as integrals for the derivation 

of Lagrangian expressions at the elemental domain, involve functions that can be 

evaluated in closed-form, thus eliminating numerical integration errors. Displacement 

compatibility between elements can directly be enforced in an assembling process. 

Assembling the energy functions of the system from the elemental energy 

expressions is straightforward. By applying the Lagrange equations, the linear 

differential equations of motion are readily obtained. The system degrees of freedom 

are the nodal physical displacement coordinates of the structure. 

1-3-3. Discrete Version of the Assumed-n/lodes l\^ethod 

It has been discussed that the continuous version of the assumed-modes method 

and the finite element method are Rayleigh-Ritz type spatial discretisation 

techniques. Their purpose is not to approximate the solution of partial differential 

14 
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equations, but to create in their place a set of ordinary differential equations. This is 

particularly convenient, since partial differential equations can only be derived for a 

small family of systems. Moreover, the solution of the ordinary differential problem is 

much simpler than the solution of the partial differential problem. Other than spatial 

discretisation techniques, lumped parameter modelling also concludes to a set of 

ordinary differential equations. In general, however, both the lumping and particularly 

the finite element method result in high order differential systems, in any case, the 

analyst may wish to reduce the order of the resulting system, and this may be 

accomplished, amongst other techniques, by the application of the discrete version of 

the assumed-modes method®. This method can be considered as a linear 

transformation of a discretised system from one finite dimensional space to another. 

The discrete version, although in mathematical formalism is similar to the continuous 

version, it is not considered a spatial discretisation technique, but just a 

transformation of a high order discretised model to a lower one. It can be shown that 

the discrete version of the assumed-modes method satisfies the Rayleigh's quotient 

for discrete parameter systems. Thus a finite set of time-varying coordinates 

describing a particular discretised system can be approximated by a series of 

admissible vectors multiplied by a set of time-varying generalised coordinates^. The 

discrete version of the assumed-modes method is therefore an extremely useful tool 

for truncation purposes of high order spatially discretised systems. 

1-4 . Global Modelling versus Substmcturing 

In the literature there is a plethora of methodologies for modelling the geometrically 

nonlinear and linear dynamics of large-scale flexible systems. Linear structural 

systems can be composed of any number of substructures connected together in 

multi-point or single-point interfaces, forming open-loop or closed-loop configurations 

and allowing any possible small displacement between the substructures. In the 

content of this work, substructure is considered any distinct component or more 

generally any idealised finite subdomain of a structure much larger than a finite 

element. The most general separation of methodologies regarding the formulation of 

the dynamics of multibody structures is to either model the entire system as a single 

entity - global modelling - or consider the structure as a collection of a number of 

substructures and treat each one individually - substructuring approach. 
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1-4.1. Global Modelling 

Traditionally, the linear dynamical behaviour of large-scale complex structures has 

been modelled, in engineering practice, by the direct use of the finite element 

method. As analysed earlier, distributed parameter formulations (exact modelling) or 

the continuous version of the assumed-modes method may not be feasible for 

modelling complex systems. Lumping methods are more applicable, but control over 

the modelling error is generally restricted. On the other hand, using the direct finite 

element method, the structural system can be treated as a single entity and the 

dynamics of the structure are represented by a high-order coupled ordinary linear 

differential equations. The global modes (eigenvectors) of the system and natural 

frequencies can be straightforwardly obtained by solving the associated algebraic 

eigenvalue problem. For a forced problem the solution of the nonhomogeneous 

differential equations is facilitated by the modal analysis method. This is 

accomplished by appropriately introducing a small number of modal vectors (number 

usually decided on the forcing frequency of interest) into the high-order differential 

equations. The coupled high-order differential set not only reduces to a smaller one 

but also the homogeneous part acquires an uncoupled form, due to the orthogonality 

property of the modal vectors. The high number of coupled differential equations are 

reduced to a small number of uncoupled equations. 

Although treating the structural system as a single entity by the use of finite element 

method is a straightforward and very accurate process, and has been successfully 

used for numerous structural and control applications^®, there are inherent 

disadvantages with such an approach. The primary concern is linked to computing 

time considerations. The resulting eigenvalue problem, of a high order coupled 

algebraic equations, needs to be solved prior to proceeding with the order reduction 

of the differential system. The computing time involved in solving the eigenvalue 

problem is about proportionate to the square or cube of the degrees of freedom of 

the system. In the case that numerical solution is possible by solving only part of the 

eigenvalue problem, i.e. extract only a small number of eigenvalues and 

eigenvectors, the computing time is significantly reduced, but still depends highly on 

the order of the problem. At the same time large-scale problems need advanced 

computer hardware and software to be able to store and solve the eigenvalue 

problem. 
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Moreover, the design of control algorithms and their implementation to real-time 

systems is not possible using high order mathematical models. For control 

applications, a series of global level truncation techniques^ '̂'̂ '̂®® have long now been 

established to reduce the size of linear mathematical models taking into account the 

control strategies to be implemented. The global order reduction techniques estimate 

which of the modes of the global system do not contribute to the control-structure 

interaction and eliminate those from the modal set. The reduced size linear 

mathematical models can subsequently be used for control algorithm design and 

real-time (on-board) implementation. Nevertheless, solution of a large part of the high 

order formulated linear problem is still necessary prior to the application of truncation 

techniques, increasing the computational cost significantly. 

1-4-2. The Substructuring Approach 

The alternative to global modelling of large-scale systems is provided with treating 

each substructure individually. Most of the methodologies established, utilising the 

substructuring concept, can alleviate all the above mentioned difficulties. Moreover, 

other benefits are to be gained. 

Most importantly, system order reduction can be performed at the substructure level, 

resulting directly in low order linear differential equations. This is accomplished by 

approximating the linear elastic deformation of each substructure using spatial 

discretisation techniques. As discussed previously, for complex geometry 

substructures the finite element method can be applied. The finite element model of 

the component is subsequently reduced using the discrete version of the assumed-

modes method. For the description of the small linear elastic deformation, the 

transformation involves a finite set of generating modes (vectors), referred to as 

component mode set, which may be a combination of a number of dynamic modes 

(vectors) complemented by a number of static modes (vectors)^®. For deriving the 

dynamic modes of each substructure an algebraic eigenvalue should be solved. This 

eigenvalue problem is of much smaller dimension to the eigenvalue problem of the 

entire structure. Since computer time in vibration analysis increases at about the 

square or cube with an increase in the number of degrees of freedom, it is beneficial 

if the eigenvalue analysis of the complete system is substituted by the eigenvalue 
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analysis of its individual substructures. By truncating the number of the dynamic 

modes of each substructure, the reduced size component mode sets can 

subsequently be imported in any generic mathematical model that can couple the 

overall motion of the substructures, and the low order linear differential equations of 

a particular structural system can be produced. Similar comments apply if the 

substructures are of simple geometry and spatial discretisation can be achieved by 

the continuous version of the assumed-modes method. 

An additional computing time advantage is obtained due to the inherent nature of 

large-scale systems. Such systems are composed of a large number of identical 

components, and in the case of structures in space these may include solar panels, 

radiation booms, antennas, spacetruss boxes etc. Therefore, utilising a 

substructuring approach, modelling and analysis of common components has to be 

performed only once. Therefore, not only the solution of the dynamical problem is 

accelerated, but at the same time low order systems do not need advanced 

computer hardware and software capabilities for storing and solving the formulated 

problem. 

Moreover, structural systems may include articulated components, allowing the 

change in orientation of these components for facilitating various operations. It is 

therefore always a demand for the dynamic analysis of the structure in different 

configurations. Modelling and solving the complete system over a large domain of 

different configurations of interest can prove an extremely time consuming process. 

However, modelling the structure as a collection of substructures this problem can be 

overcome easily, just by allowing different orientations to the articulated 

substructures and solving only part of the substructuring analysis. Similarly, in the 

design process, even the location of some members may be altered, hence the 

substructuring approach will definitely facilitate efficient repositioning operations. In 

optimisation problems computational time is greatly reduced if a small number of 

substructures are to be optimised. 

Since complete structural systems have become very complex, major components 

are often designed, produced and tested by different organisations. Therefore, not 

only it is often difficult to assemble an entire finite element model in a timely manner, 

but experimental data for individual components has sometimes to be incorporated 
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into the analysis of the entire system®. Such implementation would not be possible 

using the finite element model of the entire structure. 

The control community is also interested in modelling the structural systems as 

collections of components. Additionally to the benefits obtained concerning the 

structural dynamics part, truncation techniques can be further implemented at 

component level, considering the particular control strategy to be utilised. This 

particular approach is preferential for control applications, especially so, for the 

complex structures with articulated components^®'̂ °. If necessary, further order 

truncation can be performed at the global level. Moreover, decentralised control 

algorithms can be implemented. 

1-4-3. Multibody Dynamics and Component-Mode Synthesis 

Both the areas of multibody dynamics and component-mode synthesis employ the 

concept of substructuring. As the term implies, the multibody dynamics field 

considers a structural system as a collection of interacting bodies. The genesis of 

this field is traced to the need for the description of the dynamical behaviour of 

systems composed of interconnected rigid components undergoing large rotational 

displacements. Gradually, due to new demands in applications, the rigid body 

assumption was relaxed and rigid bodies were replaced with flexible ones. The 

contribution of this area lies mainly in the formulation of nonlinear mathematical 

models for structural systems composed of interconnected flexible and rigid 

components. Multibody dynamics, unlike most of the nonlinear finite element 

formulations, inherently utilises the concept of substructuring, and the nonlinear 

mathematical models obtained are of low order. By linearising the large angular 

displacement, some of the approaches in the area of multibody dynamics lead to 

efficient low order linear mathematical modes. 

Component-mode synthesis is an area of geometrically linear structural dynamics 

that is concerned with the modelling of large-scale complex structures. The area was 

mainly initiated for overcoming difficulties associated with the modelling of the entire 

structure using the finite element method, such a computing time and storing 

problems. In the component-mode synthesis, the large-scale structural system is 

decomposed to substructures, which, in general, are connected to each other in 
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multi-point interfaces. Initially the synthesis processes for deriving the linear 

differential equation of motion for the global system, using the component modes of 

each substructure, were very much dependant on the kind component modes 

utilised. Subsequently, it was shown that the most efficient way to derive 

mathematical models, regardless of the component modes used, is by a Lagrangian 

formulation using the Jacobian partitions of the constraint equations^®. In this sense, 

component-mode synthesis can be considered a linear multibody dynamics method, 

particularly effective for handing large number of substructures connected generally 

in multi-point interfaces. 

Component-mode synthesis area has vastly contributed in providing component 

mode sets for accurately capturing the linear deformation of components. 

Component mode sets, and mainly those that include static modes, have been 

recently used extensively in the nonlinear multibody dynamics area, for structural 

dynamics and control applications^®'̂ ". In fact, the kind of component modes 

imported in a mathematical model is of foremost importance for the accurate 

modelling of the dynamics of large flexible multibody structures. 

The current state of the art methodologies for treating large-scale flexible nonlinear 

or linear systems are multibody dynamics methods for establishing generic 

mathematical models, and incorporate component mode sets, from the component-

mode synthesis area. The formulations can model exactly the geometrically 

nonlinear or linear rigid-body motion and with high accuracy the linear elastic 

deformation of the components with a low number of differential equations®^ 

1-5 . Selection of Modelling Methodology 

1-5-1. Background 

The intention in this work has been the development a method suitable for the linear 

dynamics modelling of large multibody structures that belong in the category I I 

missions in space. The method should result in a low order linear mathematical 

model that at the same time would approximate accurately the dynamics of large 

complex flexible structures. 
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A methodology framework has been fully established and can deliver geometrically 

nonlinear and linear methods. The study in this section has been compiled for 

justifying that the methodology framework developed in this work is capable of 

producing linear and nonlinear methods for multibody dynamics modelling for all 

categories of missions in space. The modelling objectives of the methodology are the 

following; 

Exact modelling of the large geometrically nonlinear motion. 

Single-point holonomic constraints. 

Open-loop topology. 

Linear elastic deformation modelling. 

Multi-point articulation, non-holonomic constraints, closed-loop topology and 

nonlinear elastic deformation are outside the modelling objectives. The restrictions of 

the methodology are limited and are not often encountered in the dynamics 

modelling of structures in space, in general, structural systems in space are typical 

examples of open-loop multibody systems with operational components connected at 

single-point interfaces. Setting the above objectives, the methodology should be able 

to generate nonlinear and linear mathematical models for most of the current and 

near future applications involved in all categories of missions in space. 

More specifically, the subject of this review is to establish the characteristics of the 

methodology followed in this work in such a way as to demonstrate that it is mostly 

efficient for satisfying all modelling objectives set. With such broad objectives, one is 

confronted with a series of decisions on methodology strategies. These may be 

prioritised in the following way: 

Augmented versus minimal formulations. 

Non-recursive versus recursive formulations. 

Lagrangian versus Netwon-Euler formulations. 

1-5-2. Augmented versus Minimal Formulation 

In the augmented formulation, the kinematic constraint equations are adjoint to the 

system of dynamic differential equations using the technique of Lagrange multipliers. 

If N the number of interdependent generalised coordinates of the multibody system 
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and No the number of independent kinematic constraints, then the multibody system 

in the augmented approach is described by a set of N number of differential 

equations coupled to the set of kinematic constraint equations. The coupled 

system of equations has to be solved simultaneously. It is obvious that the 

independent generalised coordinates (degrees of freedom) of the system are N-Nc. 

Therefore, the augmented formulation does not result in the minimum number of 

equations. 

Using an augmented Lagrangian approach both holonomic and non-holonomic 

constraints can be modelled. IVIoreover, the constraint forces and torques (Lagrange 

multipliers) of the multibody system are directly furnished by solving the augmented 

set of equations. In addition, the coupled set of the nonlinear differential equations 

and the constraint equations can be derived in a systematic way facilitating 

computational implementation. Nevertheless, the solution phase of the augmented 

formulation is numerically complex and, in some applications, complications with 

integration schemes can be encountered®^. An additional penalty is that the 

computational cost is very high compared to the minimal formulations. 

For the case of non-holonomic constraints and using a Lagrangian approach the 

non-minimal formulation is unavoidable. The complications of this sophisticated 

numerical formulation, of having to solve a higher than needed set of coupled 

nonlinear differential equations along with generally nonlinear algebraic equations, 

can be avoided for holonomic systems. For multibody systems with holonomic 

constraints (scleronomic or rheonomic) there is always possible to express the 

interdependent generalised coordinates of the system as functions of the 

independent ones. This is accomplished by the use of partitions of the Jacobian 

matrix of the constraint equations. In the case of a non-holonomic system this 

procedure is not possible since the constraint equations cannot be integrated. It can 

be proved, by the use of the Lagrange form of D'Alembert's principle, that in the case 

of holonomic constraints the resulting set of differential equations can always acquire 

a minimal size (N-Nc)'* .̂ Therefore, the Lagrangian formulation with multiplies can be 

substituted by a Lagrangian formulation with Jacobian matrix partitions. For 

holonomic systems the benefit of such an approach over the augmented method is 

reduced computational cost and less complex numerical treatment that this 

methodology requires. Nevertheless, it is not always straightforward to select the 
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right partitions, i.e. to decide which of the coordinates should be dependent and 

which independent, in order to result to nonsingular partitioned matrices. 

Computational techniques such as Gaussian elimination®^ and singular value 

decomposition have been used to account for matrices ill-conditioning. Moreover, the 

constraint forces eliminated from the analysis by the use of the Jacobian matrix 

partitions need systematic treatment in order to be recovered. An example of the 

use of Lagrangian formulation with Jacobian matrix partitions, can be found in the 

literature of component-mode synthesis techniques^®. It has been demonstrated that 

for the case of multi-point holonomic interfaces between substructures, the most 

efficient way to synthesise the component modes of the various substructures, in 

order to derive the linear equation of motion of the system, is by the use of the 

Jacobian matrix partitions. The proof considered the general case of Lagrange 

multipliers formulation and reduced that to a minimal set of linear differential 

equations. 

Other than Lagrangian formulations, Kane's method of generalised speed®^ can also 

treat non-holonomic constraints. Unlike the Lagrange multipliers formulation, the 

resulting differential equations are of minimal dimensions. At the same time, Kane's 

method is computationally efficient since it combines the advantages of both Netwon-

Euler approach and the recursive Lagrangian formulation - the non-working 

constraint forces and torques do not appear in the equations and the large number of 

differentiation of the kinetic energy expressions are avoided'̂ ®. Considering the 

minimal character of Kane's formulation and the computational advantages 

mentioned, it may seem inexplicable that the method is not that popular for all-

purpose multibody coding. Perhaps the answer is dual. Firstly there is not an easy 

and systematic way to derive the constraint forces and torques of the system, and 

secondly the mathematical treatment needed for resulting to the computational 

implementation is very complex and elaborate^^. 

Conclusively, the use of the augmented Lagrangian formulation for all-purpose 

multibody codes is justified, since it is computationally straightforward to apply, can 

solve both holonomic and non-holonomic systems and furnishes directly the 

constraint forces and torques of the multibody system. Nerertheless, indiscriminate 

use of the method for any application has been encountered in the literature. With 

less generic modelling objectives, such as those involving holonomic constraints, the 
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augmented method cannot be considered the most efficient methodology, because 

of the high computational cost involved. Straightforward mathematical modelling for 

computational implementation can also be accomplished by the Lagrangian 

formulation of the Jacobian partitions, which is faster to produce results. In fact the 

higher the number of the interconnected bodies and holonomic constraints, the more 

costly the Lagrangian augmented formulation can be relative to the minimum 

Lagrangian formulation. Accounting for all parameters, and considering the 

mathematical complexity of formulating mathematical models using Kane's minimum 

approach, the Lagrangian formulation of the Jacobian partitions seems to be the 

preferential one for holonomic system modelling between all three methodologies 

examined. 

However, since computational difficulties are also encountered on separating the 

independent to the dependent generalised coordinates in the minimal Lagrangian 

approach of Jacobian partitions, one is motivated to seek for an alternative minimum 

formulations for solving holonomic multibody systems. An additional reason for 

seeking for alternative minimum formulations is that, in the case of the Lagrangian 

formulation with Jacobian partitions, the constraint equations and more significantly 

the component kinematics are derived relative to an absolute frame of reference (the 

same applies for the Lagrangian augmented approach). This means that the history 

of the orientation, position and their rates for each component, obtained from the 

solution of the differential equations, are given relative to an inertial observer. Ideally, 

one is interested, especially so in spatially nonlinear dynamics, in the relative 

orientation and position between adjacent bodies. The implication that the 

component kinematics are formed relative to an absolute reference frame is that the 

relative Joint coordinates and their derivatives are not explicitly available, and this 

limits at some extend the implementation of control strategies, since it usually much 

easier to measure relative joint displacements, velocities and accelerations. In order 

to acquire relative kinematical expression one needs to transform at each time step 

the absolute expressions to relative ones, adding to the computational cost. The 

answer to the computational difficulties and the drawback of the absolute reference 

frame kinematical expressions, encountered in the minimum Lagrangian formulation 

of Jacobian partitions, can be provided by the recursive formulations. 
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1-5-3. Recursive versus Non-Recursive Formulations 

In the recursive methods, the component absolute kinematical expressions are 

written directly relative to a suitably positioned reference frame within the preceding 

component. The exact expressions of the outboard component kinematics are 

subject to the constraints at the interface with the inboard component. The absolute 

kinematical expressions of the outboard component involve the absolute kinematical 

expressions of the local reference frame positioned in the inboard component and 

relative kinematical expressions of the outboard component (relative) to the local 

reference frame. These relative kinematical expressions are only functions of the 

independent generalised coordinates of the outboard component. In a systematic 

manner, the absolute kinematical expressions characterising the motion of any 

component in a system can be expressed in terms of all the independent generalised 

coordinates of the components that precede it in the multibody chain. 

Recursive methods are more elaborate in deriving the absolute kinematical 

expressions of components, since they account for the motion of the preceding 

component and at the same time the interface constraints. The procedure may be 

complex in terms of kinematical descriptions, but on the other hand does not involve 

intensive mathematical treatment. In actual fact, this complex analytical process 

gives an excellent insight in the kinematics of the component, unlike the case of non-

recursive methods. Moreover, the resulting differential equations are of minimal size, 

since the kinematical expressions of each component are only functions of 

independent generalised coordinates. The solution of the differential equations 

furnishes directly the orientation and position (and their time derivatives) of any 

component relative to the preceding one, with the aforementioned advantages. Since 

the Jacobian matrices do not need to be formulated and the mathematical treatment 

is not that involving, recursive methods can be computationally and mathematically 

less complicated to the other minimal approaches. 

The main drawbacks of recursive methods are that the description of rheonomic 

constraints may be difficult and the constraint forces and torques need systematic 

treatment in order to be derived, since, as anticipated, they are not furnished directly 

by the solution of the minimal of differential equations. Moreover, in the author's 

knowledge, treatment for multi-point interfaces has not yet been established in the 
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literature using minimal recursive methods. In any case, multi-point interfaces have 

been set outside of the modelling objectives since such cases are rarely treated in 

the dynamics modelling of structures in space. 

1-5-4. Lagrangian versus Netwon-Euler Recursive Formulations 

Recursive methods can be obtained using either a Lagrangian approach, a Newton-

Euler formulation or hybrid Netwon-Lagrange methods. The Netwon-Euler equations 

have the main disadvantage that the non-working constraint forces and torques need 

to be eliminated from the system equations. On the other hand the recursive 

Lagrange formulation needs a large number of differentiations for obtaining the 

nonlinear differential equations of motion. The hybrid methods have essentially the 

disadvantages encountered in the Netwon-Euler approach. 

In a Netwon-Euler formulation there are systematic ways to eliminate the non-

working forces using amongst others graph theory or projection matrices®®, but in 

general these techniques are more elaborate than differentiating systematically the 

kinetic energy of the system. Moreover, the recursive derivation of the acceleration 

expressions from one component to the next, in order to obtain the absolute 

acceleration of the terminal body, is a much more involving process than dealing with 

the velocity expressions of the components, especially so for flexible components. 

The recursive Lagrangian approach seems less demanding than the Netwon-Euler 

for resulting to the set of the nonlinear differential equations. For geometrically linear 

system, the amount and form of the expressions to be differentiated is simplified in 

such an extend that the linear differential equations can be readily obtained form the 

scalar energy functions in a single step. 

Conclusively, the most efficient methodology for modelling holonomic open-loop 

multibody systems is a recursive Lagrangian formulation of generalised coordinates. 

It results to a minimum set of differential equations, uses relative reference frame 

component kinematical expressions, offers a better physical insight into the 

components kinematics, and does not implicate complex computational algorithms. 

The structural dynamics methodology is shown in Table 1-1. 
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Structural Dynamics Modelling 

Global Modelling Substructuring Approach 

/ 
Finite Element 

Method 
Methodologies 

Multibody Dynamics 

(nonlinear / linear) 

Augmented 

/ 
Lagrance with 

Multipliers 
Recursive 

\ 
Minimal 

Kane's Method Non-recursive 

Netwon-Euler Lagrange Netwon-Lagrange 
Lagrange with 

Jacobian Partitions 

j / 
Quasi-coordinates Generalised 

Coordinates 
Component-Mode 
Synthesis (linear) 

Floating Reference Frame Large Displacement 
(geometrically nonlinear) 

Linear Elastic Deformation Coupled to 

y ' 

Exact Modelling Approximate Modelling 

T 

Small Displacement 
(geometrically linear) 

Lumping Spatial Discretisation 
(and order reduction) 

Z 
Continuous Version of the Assumed-

Mode Method 

Finite Element Method 
(and discrete version of the 
assumed-mode method) 

Methodology followed in this work 

Table 1-1 Structural Dynamics Modelling Methodology 

27 



Chapter I - Introduction 

1-6 . Component - Mode Synthesis 

The research in the area of component-mode synthesis has been focused in two 

main areas. Most importantly in identifying component mode sets that would 

accurately and efficiently capture the actual deformation of the substructures, once 

they are reassembled to form the structural system. Secondarily the interest is 

focused on effectively synthesising the component modes to form the linear 

differential equations of the structural system. 

In most component-mode synthesis methods, the synthesis techniques, for 

assembling the substructures component modes to form the differential equations of 

the global system, are coupled to the actual description of the component modes 

utilised. As pointed out in the 'Critical Selection of Modelling Methodolody', it has 

been proved that all the separate techniques of synthesis (in the time domain) can be 

substituted by a Lagrangian formulation of Jacobian partitions. This approach can 

allow any component mode sets to be directly employed in the equations, and 

therefore the tailored synthesis techniques are not essential. In this respect, 

component mode synthesis methods can be considered as a subset of the multibody 

dynamics modelling for geometrically linear systems where components are 

connected in general in multi-point interfaces. In fact the Lagrangian formulation of 

Jacobian partitions is the most efficient way of formulating the linear differential 

equations of motion when multi-point interfaces are considered. 

On the other hand, the most important contribution of the area is the development of 

efficient component mode sets for the approximation of the linear deformation of the 

substructures. In this respect the research involved in component mode synthesis 

can be used in multibody dynamics of flexible systems. The first component-mode 

synthesis method^^ that appeared in the literature uses fixed-interface normal modes 

complemented with a number of redundant contraint modes. The fixed-interface 

normal modes are the eigenmodes of the component with all internal (interface) and 

external (boundary) constraints fixed. Redundant interface constraint modes are 

defined by applying successive unit displacements to all redundant constraints in the 

system while the rest of the constraints (interface and boundary) remain fixed. 

Therefore, the number of the static modes equals the number of the redundant 
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constraints of the component, whereas the number of dynamic modes can be 

truncated to reduce the size of the formulated problem. 

Following this pioneering work, a lot of interest was generated for deriving alternative 

component mode sets. A significant modification to the original redundant constraint 

method was proposed®® where all the interface constraints of the system are treated 

alike. Seperation to redundant and nonredundant constraints is avoided. This is 

particular beneficial since it is not always an easy task to separate the interface 

constraints. In the constraint mode method, the fixed-interface normal modes are 

defined exactly as in the redundant constraint method and the number of constraint 

modes equals the number of the total interface constraints of the system. A variation 

on constraint interface component mode sets is proposed in this work to allow for 

application in determinate and underdeterminate interfaces. 

Another component mode set with excellent convergence properties is the inertia-

relief attachment mode set̂ ®'®, which is complemented to free-interface normal 

modes. The inertia-relief attachment modes can be defined by applying successive 

unit equilibrated force at the interface constraints. This equilibrated force consists of 

an external applied force equilibrated by a rigid-body inertia force. These modes are 

then modified to be orthogonal to the rigid body modes®'̂ ®. To make these modes 

linearly independent to the kept free-interface normal modes, residual inertia relief 

attachment modes are defined by modifying the inertia relief attachment modes to be 

linear independent to kept free-interface normal modes^". 

The residual inertia-relief attachment mode set, along with any existing rigid-body 

modes of the component, have been proved to be a statically complete mode set^^. 

That is, the superposition of the modes in this set is sufficient to determine exactly 

the 'static' response of the component subject to the interface forces. Since this static 

mode set is statically complete, can be complemented with either free-interface or 

fixed-interface normal modes. 

A component mode set that does not use any static modes is the loaded-interface 

normal mode set. The substructure is loaded with the equivalent mass and stiffness 

contributions from the remaining components and the loaded-interface normal modes 

are obtained by the solution of the loaded component eigenvalue problem^t Unlike 
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the previous sets, the loaded-interface component mode set is not appropriate for 

independent modelling, since the data needed for its derivation depends on data 

obtained form the other components in the structure. For this reason its application 

may become very involving for the modelling requirements of large chains of 

components. A variation of the loaded interface component mode set has been 

proposed and implemented in this work. 

Several other component modes have been proposed in the literature of component-

modes synthesis®'*'̂ ®'̂ ^ for improving convergence, but it is mainly the components 

mode sets referred previously that have been employed with success in the 

multibody dynamics 

It is interesting to note that the component modes are also used in the controls 

community^®'̂ ° for component order reduction, as a first step, prior to reducing the 

order of the component further considering the control strategy.®® 
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II-1. Prologue 

11-1-1. Background 

The information regarding the component modes has been drawn from the area of 

component-mode synthesis. This field of geometrically linear dynamics is concerned 

with large-scale structures where the substructures are in general connected to each 

other in multi-point interfaces. Therefore, the substructures in the area of component-

mode synthesis are in general statically indeterminate. On the other hand, in the area 

of articulated multibody dynamics the components are in general connected in 

single-point interfaces and may perform large spatial rotational displacement via 

gimbal joints, in other cases particular articuration axes may be locked and the 

component may be undergoing large planar angular motion relative to the adjacent 

components. Other examples may involve small, geometrically linear spatial or 

planar motion of the components, excited by the control system for either readjusting 

the components to a line of sight or suppressing induced vibration. In most of its 

operational time, the component may be completely locked relative to the adjacent 

components. The components in the articulated multibody dynamics can be statically 

indeterminate, determinate or underdeteterminate. 

In this work, the physical coordinate constraint sets of the component (interface and 

external) are redefined so that the component characterisation is generalised to 

include the statically determinate and underdeterminate cases. Additional constraints 

that belong to the set of internal physical coordinates are proposed for defining static 

modes in the cases of statically determinate and underdeterminate components. 

These additional constraints are imaginary since they do not correspond to any 

physical interface constraints of the components. Several component mode sets are 

defined and may be combinations of dynamic and static modes or dynamic modes 

alone. The dynamic modes used in this work are normal modes of vibration. 

Mathematical proofs to determine the size of the physical coordinate constraint sets 
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in order to define the various static modes has also been provided where necessary. 

The only assumption made in this part of the work is that adjacent components are 

connected in single-point interfaces. This assumption, however, does not restrict the 

generality of definitions of the physical coordinate constraint sets or the component 

characterisation. 

II-1-2. Physical Coordinate Sets 

Several groups of physical coordinates, illustrated in Figure 11-1, have been 

redefined in order to generalise the definitions found in the component-mode 

synthesis literature. 

{B}: Set with b number of boundary constrains 

{P}: Set with (3 number of nonredundant boundary constraints 

{I}: Set with i number of internal physical coordinates 

{S}: Set with s number of nonredundant interface constraints 

{R}: Set with r number of redundant interface constraints 

{C}: Set of the total number c of interface constraints 

{H}: Set with h number of imaginary constraints 

{T}; Set of the total number t of physical coordinates 

More specifically, we can define 

i. Boundary constraint set {B} contains the externally constrained physical 

coordinates, i.e. constraints fixed in the inertial space. Nonredundant 

boundary constraint set {P} contains the minimum number (3 of boundary 

constraints that can restrict the rigid-body motion of a component. 

ii. Constraint set {C} contains the total of interface constraints that a component 

shares with the adjacent components. 

Hi. Nonredundant constraint set {S} contains the minimum number s of interface 

constraints that can 'remove' any rigid-body degrees of freedom from a 

component, and is a subset of {C}. The maximum number of interface 

nonredundant constraints is 6. 
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iv. Redundant constraint set {R} is the complement of {S} In {C), i.e. 

{R}+{S}={C}. 

i+(k-l) 

i+(k+1) 

Figure II-1 Inboard component B, and appended components Bj+k attached at 

single-point interfaces / illustration of the physical coordinate sets 

V. Imaginary constraint set {H} contains h number of constraints. Imaginary 

constraints are a subset of the internal physical coordinates of the 

component. {H} is not a subset of interface constraints {C} , thus these 

constraints are imaginary. 

vi. The set {T} contains the total number of physical coordinates t of the 

component, {T}={B}+{I}+{C}. 

The nonredundant constraints {S} are a subset of interface constraints of the 

component and do not reduce the rigid-body degrees of freedom of a component in 

actual terms. These can only be reduced by the nonredundant boundary constraints 
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{P}, i.e. the external to the component nonredundant constraints that are fixed in the 

inertial space. This is the reason the word 'remove' in the definition of the 

nonredundant internal constraints is in quotation marks. One 'removes' the rigid-body 

degrees of freedom for the purpose of defining a statics problem that may furnish 

static modes. For example, a component free of external constraints has 6 rigid-body 

degrees of freedom, but by being connected to other bodies it may have 6 

nonredundant interface constraints and therefore 'no rigid-body degrees of freedom'. 

As discussed, in the same sense that the term 'nonredundant' can be used to 

describe internal constraints, it can also be used for external constraints, i.e. 

constraints fixed in the inertial space. The difference is that external nonredundant 

constraints remove the actual degrees of freedom. The number of rigid-body degrees 

of freedom n̂  of a body in space is given by 

iij. = 6 - ( 3 

where (3 the number of nonredundant external boundary constraints imposed on the 

body. The rest of the physical coordinate constraints in {B}, b-p, are considered 

redundant, because they cannot restrict the actual rigid-body motion of the 

component any further. 

11-1-3. Component Characterisation 

The component characterisation depends on the size of particular constraint sets 

(interface and boundary), and will prove useful for defining and deriving dynamic and 

static modes. The following component characterisations can be defined: 

i. If s=nr and r>1 then the component is considered statically indeterminate. 

This means that there are enough nonredundant interface constraints to 

'remove' the rigid-body degrees of freedom of the component, and the rest of 

the interface constraints, since they cannot 'remove' any further rigid-body 

degrees of freedom are considered redundant. The definition s=nr, r>1 is 

valid for any value of s in [0,6]. 

ii. If s=nr and r=0 then the component is considered statically determinate. 
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There are just enough interface constraints to 'remove' the rigid-body 

degrees of freedom of the component. Therefore, {S}={C} and {R} is an 

empty set. The definition s^n^, r=0 is valid for any values of s in [1,6]. 

ii. If s<nr, regardless of the value of r, then the component is considered 

statically underdeterminate. 

There are not enough nonredundant interface constraints to 'remove' the 

rigid-body degrees of freedom, but there may still be a number of redundant 

interface constraints, which are not capable of 'removing' any more rigid-

body degrees of freedom, and therefore are considered redundant. 

The three cases have been demonstrated with suitable examples. Figures II-2, 11-3, 

II-4 have been used to illustrate examples of statically determinate, indeterminate 

and underdeterminate components respectively. In all cases the rigid-body degrees 

of freedom n̂  are equal to 6, since no external boundaries are applied (b=0). The 

axes of rotational constraints at the joints are illustrated where is needed. A collective 

Table 11-1 is presented to account for all cases. The calculation of the number s of 

the nonredundant constraints has been performed by inspection. 

Clamped Joint 

Figure 11-2 Statically determinate component 
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1 0 #2 (a) (a) 

1 Q # 2 (b) (b) 

Y 
2 

(c) ' V u (c) 

/ 
z 

X 

1 2 
(d) u (d) 

1 2 
(e) (e) 

o Spherical Joint • Clamped Joint o Universal Joint o Revolute Joint 

Figure 11-3 Statically indeterminate components 

1 O- (a) 

2 

(b) 

/ 
X 

(c) 

O Universal Joint O Revolute Joint 

Figure n-4 Statically underdeterminate component 
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Example 

Case 

Nonredundant 

Interface 

Constraints* 

{S} 

Total 
Interface 

Constraints 

{C} 

(C=2 ' ^a ) 

Redundant 

Interface 

Constraints {R} 

(r=s-c) 

Component 

Characterisation 

III-2(a) s=6 c=1xci=6 r=0 Statically determinate 

III-3(a) 

III-3(b) 

ni-3(c) 

III-3(d) 

III-3(e) 

s=6 

s=6 

s=6 

s=6 

s=6 

c=2xci=12 

c=Ci+C4=9 

0=3x04=9 

C—C4"^"C3~7 

C=C2+C4=8 

r=6 

r=3 

r=3 

r=1 

r=2 

Statically indeterminate 

Statically indeterminate 

Statically indeterminate 

Statically indeterminate 

Statically indeterminate 

in-4(a) 

III-4(b) 

III-4(c) 

s=3 

s=5 

s=5 

C=1XC4=3 

C=3XC2=1 5 

0=2x04=6 

r=0 

r=10 

r=1 

Statically underdeterminate 

Statically underdeterminate 

Statically underdeterminate 

Clamped joint: number of constraints Ci=6 

Revolute joint: number of constraints 02=5 

Universal joint: number of constraints C3=4 

Spherical joint: number of constraints 04=3 

Table II-1 Collective table for the component characterisation examples of Figure 11-2, II-3, n-4 

*External constraints {B}={0} for all cases =>nr=6 
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I I - 2. Dynamic Mode Sets 

Three sets of dynamic modes have been used in this work, namely the free-interface 

normal mode set, fixed-interface normal mode set and loaded-interface normal mode 

set. 

A free-interface normal mode set can be obtained from an eigenvalue analysis of the 

component with the total of the interface constraints of the component free, i.e. {C} is 

null in this analysis. If |3<6, the body has a number of rigid body modes, nr=6-|3, and 

these should be removed from the analysis. 

Fixed-interface normal mode set can be obtained from an eigenvalue analysis with 

the total of the interface and external constraints of the component fixed. If the 

system is statically underdeterminate, i.e. there are not enough nonredundant 

interface constraints to 'remove' the rigid-body degrees of freedom from the 

eigenvalue analysis (s<nr), then n^s 'rigid-body modes' should be removed from the 

analysis (equation (11-3)). 

As for a free-interface mode set, the loaded-interface normal mode set proposed in 

this work can be obtained from an eigenvalue analysis with all internal constraints of 

the component B, free, {C}=0 for the analysis. The same remarks apply in this case 

for the removal of 'rigid-body modes' as in the case of free-interface modes. In this 

work, the loaded-interface normal modes are defined for a cluster formation structure 

but can easily be generalised for a tree-configuration. Each interface node of a 

component Bj is loaded with the generalised inertia of the adjacent component. The 

modelling assumption that components attach to each other at single-point interfaces 

has been utilised. The rigid mass matrices, i.e. the generalised inertias, of the 

appended components B|+k, k = 1 , 2 , . . . are superimposed on the consistent mass 

matrix of the component Bj at the interface nodes. The rigid body mass matrix of the 

appended component Bj+k, where k is the k'̂  appended component on component B, 

is given by 

^ I r 
M ! m 

sy™! Bii 

Pi+k 

xBi+k/Ji+k 

(n-4) 
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where m is the mass of the appended component 

IVI is a diagonal matrix with = m 

is the skew-symmetric distance matrix of the interface node to 
^Bi 

the centre of mass of the appended component Bj+k, expressed 

in the body frame of the component B, 

^^jBi+k/ji+k jg inertia of the appended component Bj+k relative to the 

interface node Ji+k, and expressed in the body frame of 

component Bj, 

If the nodal interface constraints are less than 6, i.e. the interface node allows 

articulation, one needs to appropriately truncate the full form of the appended 

component rigid mass matrix to allow for the rotational degrees of freedom. 

II-3. Static Mode Sets 

In the content of this work two sets of static modes have been defined, the redundant 

constraint mode set and the constraint mode set. Either of these static mode sets 

can be calculated in a single step using the multiple algebraic equation 

- 1 1 * == 0 (11-5) 

where 

K ™ is the txt finite element stiffness matrix of the component B,. 

Ogj is the txn static mode matrix containing either the redundant constraint modes 
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or constraint modes, n is the number of static modes derived in each set. 

Rgj is the txn reaction force matrix on component B, resulting from the application 

of the redundant constraint displacements or constraint displacements, n is 

the number of static modes derived in each set. 

II-3-1. Redundant Constraint Mode Set 

A redundant constraint mode set is always well defined for statically indeterminate 

components, i.e. s=nr and r>1. By definition redundant constraint modes cannot be 

obtained for statically determinate components, since {R}={0}. Later in this section, it 

will be shown that they cannot be derived for the case of underdeterminate 

components, even if {R} is not an empty set. The following definition applies in the 

case of a statically indeterminate component". 

A redundant constraint mode set is obtained by applying a unit displacement to each 

redundant interface constraint in the set {R} set in turn, while the rest of the interface 

constraints in {C} remain fixed in space. Using the multiple equation expression (II-

5), the matrix of the redundant constraint modes is defined by 

K , K , K , Km 

K , Krb 

K , K . K . K , , 

K y Ky. K , , 

c 
6_ 

Bi V 
0 br 

r ' 
Rs 

R . 

(n-6) 

Bi 

where 

Xjj. is the ixr matrix containing the displacements of the physical coordinates in {1} 

for each redundant constraint mode. 

is the rxr unit matrix corresponding the unit displacement imposed on each 

redundant constraint in {R} in turn and the zero displacements imposed on the 

remaining redundant constraints. 
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is the sxr null matrix formed for the restriction that the nonredundant 

constraints have zero displacement values imposed for each unit displacement 

applied on the redundant constraints in turn. 

is the bxr null matrix corresponding to the values of displacement at the 

external boundary constraints. 

Oj, is the ixr null matrix representing the reactions on the internal degrees of 

freedom {1} due to application of unit displacement imposed at each redundant 

constraint in turn. 

is the rxr matrix containing the reactions on the redundant constraints {R} due 

to application of unit displacement imposed at each redundant constraint in 

turn. 

Rgj. is the sxr matrix containing the reactions on the nonredundant constraints {S} 

due to application of unit displacement imposed at each redundant constraint 

in turn. 

is the bxr matrix containing the reactions on the boundary constraints {B} due 

to application of unit displacement imposed at each redundant constraint in 

turn. 

The matrix equation (11-6) has been partitioned into the different sets of coordinates 

participating to define the redundant constraint mode matrix. The coordinate sets 

have been repositioned in a suitable form to facilitate the mathematical operations. 

The solution of the multiple algebraic equation (11-6) gives the r number of redundant 

constraint modes in the form 

0 Bi 
Os. 

0 
br 

(n-7) 

Bi 
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where 

Ogj is the txr redundant constraint matrix containing r number of redundant 

constraint modes of the component B,. 

K- j matrix represents the stiffness matrix of the component with all interface 

constraints {C} and the total external constraints {B} fixed. 

If s+p=6, then for any indeterminate case possible, matrix represents the 

stiffness matrix of a component with no 'rigid-body degrees of freedom', 11̂ . = 0 

(equation (11-3)). A structural component with no rigid degrees of freedom has a 

positive definite potential energy, therefore the stiffness matrix of the component is 

positive definite. If the K ^ > 0 then the matrix is non-singular and the inverse always 

exists, so does the solution of (II-6). 

For the proof to be complete it has to be shown that in the case of a statically 

indeterminate system the sum of the nonredundant internal constraints and the 

nonredundant boundary constraints is always equal to 6, i.e. (3+s=6. It is 

n j . = 6 —P<=^s + P = 6 + (s —xij.) (11-8) 

By definition n^=s for a statically indeterminate system, therefore from (11-8) s+P=6 

for any acceptable values of s, p. 

In the case of a statically underdeterminate component the matrix K j j is always 

singular for any value of r, since always (3+s<6. Using equation (II-8) and the 

definition of the statically underdeterminate component, s<nr for any value of r, it can 

readily be proved that p+s<6 in all cases. The stiffness matrix is singular, cannot be 

inverted, so no redundant constraint modes can be derived, even in the case that 

redundant interface constraints exist, i.e. {RMO}. 
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II-3-2. Constraint Mode Set 

Constraint mode sets can generally be well defined for statically indeterminate 

components, but there are exceptions as will be demonstrated in this section. For 

statically determinate components constraint mode sets can be defined, but are not 

flexible modes since they reduce to rigid-body modes, and therefore are not useful 

for the purposes of this analysis. In the case of statically underdeterminate 

components, constraint mode sets cannot be derived. By introducing additional 

constraints, the imaginary constraints, it will be shown that constraint modes can be 

redefined for any possible component characterisation. 

A constraint mode set is obtained by applying a unit displacement to each interface 

constraint in the set {C} in turn while the rest of the internal constraints in {C} remain 

fixed in space^t Using the multiple equation expression (11-5), the matrix of the 

constraint modes is defined as 

K i i I ' K ; / r x . ' f o . . 

K , I K , , | K c b I c e 
= 

R c c 

^ b i i K ^ Bi Bi 

(n-9) 

Bi 

where 

Xjg is the ixc matrix containing the displacements of the physical coordinates in {1} 

in each constraint mode derived. 

is the cxc unit matrix corresponding the unit displacement imposed on each 

interface constraint in {C} in turn and the zero displacements imposed on the 

remaining constraints. 

Oyg is the bxc null matrix corresponding to the values of the displacements at the 

external boundary constraints in each constaint mode. 

Ojj, is the ixc null matrix representing the reactions at the internal degrees of 

freedom {1} due to application of unit displacement imposed at each interface 

constraint in turn. 
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is the cxc matrix containing the reactions at the interface constraints {C} due to 

application of unit displacement imposed at each interface constraint in turn, 

is the bxc matrix containing the reactions on the boundary constraints {B} due 

to application of unit displacement imposed at each interface constraint in turn. 

The matrix equation (II-9) has been partitioned into the different sets of coordinates 

participating to define the constraint mode matrix. The solution of the multiple 

algebraic equation (II-9) gives the c number of constraint modes in the form 

where 

(n-10) 

is the txc constraint mode matrix containing c number of constraint modes for 

the component B,. 

K j j represents the stiffness matrix of the component with all external and internal 

interface constraints fixed 

it was proven before that for the case of statically indeterminate components p+s=6 

holds. Similarly for the constraint modes, is non-singular, so the solution of (II-9) 

exists. Although, for statically indeterminate systems it has been proven that the 

inverse of always exists, since the system has no 'rigid-body degrees of 

freedom', thus a solution of (II-9) also exist, it may come as an unexpected fact that 

rigid-body modes may be furnished in the solution (11-9) in particular cases. 

To demonstrate this, it is helpful to return to examples of Figure 11-3 and Table II-1. It 

can be shown by inspection, and also proved mathematically, without solving 

equation (11-9), that cases 3(b), 3(d), 3(e) which correspond to statically 
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indeterminate components will furnish one single rigid-body mode, along with the c-1 

constraint modes. IVIore specifically, in case 3(b) a unit displacement of the 

nonredundant interface constraint 8% at node 2 will cause a rigid-body rotation around 

axis X. Similarly, in case 3(d), 3(e) a unit displacement of the nonredundant interface 

constraint 8% at nodal will cause a rigid-body rotation around axis X. It is obvious that 

in order to proceed with the approximation of the linear deformation of the 

component using the constraint mode set obtained, the rigid-body modes should be 

removed from the analysis. However, a possibly useful constraint mode cannot be 

derived. 

Another interesting case emerges if the number of total constraints in {C} equals the 

number of the nonredundant constraints in {S}, i.e. there are no redundant interface 

constraints, {RMO}, so the component is statically determinate. The multiple solution 

equation (II-9) will furnish only rigid-body modes. Rigid-body modes are not of 

interest since the aim is to obtain a number of constraint modes, in order to 

approximate the deformation field of the component. Therefore constraint modes 

cannot be obtained for a statically determinate component. 

Furthermore, in the case of redundant constraint modes, constraint modes cannot be 

derived in the case of a statically underdeterminate component. 

In summary, constraint modes cannot be derived in the cases of statically 

determinate and underdeterminate components. Also there are cases in the 

derivation of the constraint mode set for a statically indeterminate component that 

there may be 1 rotational rigid-body mode furnished along with the c-1 constraint 

modes. In an attempt to define constraint modes for any component characterisation, 

an additional set of constrains {H}, subset of the internal physical coordinates, is 

introduced in the system. In other words, the imaginary constraints are not a subset 

of the inteface constraint set {C}. 

One may redefine the constraint mode set by imposing a unit displacement at each 

internal constraint in {C} in turn, while keeping the rest of the interface constraints in 

{C} and the imaginary constraints in {H} zero. The multiple algebraic equation can be 

written as 
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Ku K , 

K , K . , 

K h 

^ b i 

i l 

Bi 

be 

be /Bi 

0 . 

R„ 

R 

R 

he 

be 

where 

Xjg is the ixc matrix containing the displacements of the physical coordinates in {1} 

for each constraint mode. 

is the cxc unit matrix corresponding the unit displacement imposed on each 

interface constraint in {C} in turn and the zero displacements imposed on the 

remaining interface constraints. 

0 be is the hxc null matrix formed with the restriction that the imaginary constraints 

have zero displacement values imposed for each unit displacement applied on 

the interface constraints {C} in turn. 

Oyg is the bxc null matrix corresponding to the values of displacement at the 

external boundary constraints. 

Ojj, is the ixc null matrix representing the reactions on the internal degrees of 

freedom {1} due to application of unit displacement imposed at each interface 

constraint in turn. 

Rg^ is the cxc matrix containing the reactions on the interface constraints {C} due to 

application of unit displacement imposed at each interface constraint in turn. 

Rî ^ is the hxc matrix containing the reactions on the imaginary constraints {H} due 

to application of unit displacement imposed at each interface constraint in turn. 

R;,^ is the bxc matrix containing the reactions on the boundary constraints {B} due 

to application of unit displacement imposed at each interface constraint in 

turn. 
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The imaginary constraints need to contain at least a nonredundant constraint set in 

order for h+p>6 to hold and the component to have no 'rigid-body degrees of 

freedom' ( n J . It can be proved that if the aforementioned hold, then for any 

component statically indeterminate, determinate or underdeterminate there will be a 

solution of equation (11-11) and also no rigid-body modes will be furnished in the 

analysis. In practice though it is difficult to determine for every component the value 

or position of the {H} set in order for {H} to contain a nonredundant imaginary 

constraint set. For this reason one may define the imaginary constraint set for all 

cases as an imaginary fixed point within the component. It is important to note that 

the size of the {H} set does not affect the size of the constraint mode set, which is 

fixed to c, i.e. equal to the number of the interface constraints. 

By repositioning the partitions, the solution of equation (11-11) is given by 

K : ' K , 

0 be 

0 be 

(n-12) 

Bi 

A collective Table 11-2 is presented with the component characterisation and the 

solution of the dynamics and statics problem for defining the various dynamic and 

static mode sets. 
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Component Free-Interface or Fixed-Interface Redundant Constraint 

Characterisation Loaded- Mode Set Constraint Mode Set 

Interface Mode Mode Set + 

Set Imaginary 

Constraints 

Eigenvalue Analysis Eigenvalue Multiple Algebraic Multiple Algebraic 

Analysis Solution Solution 

NK NK 

Statically normal modes normal modes r C 

Indeterminate + + static modes static modes 

= 6 - P i i : = o 

rigid-body modes rigid-body modes 

NK NK 

Statically normal modes normal modes No Definition c (=s) static 

Determinate + + {n}=o modes 

n) = 6 - | 3 iij. = 0 

rigid-body modes rigid-body modes 

NK Nk 

Statically normal modes normal modes No Solution c 

U nderdeterm Inate + + K j j singular static modes 

n| = 6 - P = 6 - P - s 

rigid-body modes rigid-body modes 

Table 11-2. Component characterisation and size of formulated dynamic and static mode sets. 
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11-4. Component Mode Sets 

A component mode set, may be a combination of a finite number of dynamic modes 

complemented by a number of static modes or can be a dynamic mode set alone. 

Various component mode sets are derived using the dynamic and static modes 

defined, and are presented in Table 11-3. 

Component Mode Set Dynamic Modes Static Modes 

Free-Interface Component 

Mode Set 

Hk free-interface normal 

modes 

Fixed-Interface Component 

Mode Set 

n̂  fixed-interface normal 

modes 

Loaded-Interface 

Component Mode Set 

n̂  loaded-interface normal 

modes 

Redundant Constraint 

Component Mode Set 

Hk fixed-interface normal 

modes 

r 

redundant constraint modes 

Constraint Component 

Mode Set n̂  fixed-interface normal 

modes 

c 

constraint modes 

Table 11-3 Definition of component mode sets 

It is clear that the redundant constraint component mode sets cannot be defined or 

furnished for statically determinate or underdeterminate components. Constraint 

component mode sets can always be defined with the addition of imaginary 

constraints. For all component mode sets the rigid-body modes have been removed 

from the eigenvalue solution. Details have been presented in Table 11-2. 
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I I - 5. Conclusions 

i. The loaded-interface component mode set has the following disadvantages: 

Component dependence: The loaded-interface component mode set 

defined for one component is dependent from the data of the appended 

components. 

It may be laborious to be applied to a chain of components. 

It is not suitable for geometrically nonlinear dynamics, since for large 

rotation analysis the rotary inertia of the appended component constantly 

changes relative to the inboard component. Its application would mean 

derivation of loaded-interface mode sets at each time step of the 

analysis. This would surely increase the cost of the analysis by a 

considerable amount. 

Even in the linear cases of appendage reorientation exercises the 

analyst would have to derive the loaded-interface mode set at each 

configuration of interest. 

ii. The redundant component mode set has the following disadvantages: 

Separation between the nonredundant and the redundant constraints is 

essential and this may prove an involving procedure for a large 

multibody structure. 

Static modes are not obtained for the whole internal constraint set {C}, 

which may be fine for a highly redundant interface, but for a component 

with a small set of internal constraints may prove inappropriate. Even if 

an interface has a moderate number of constraints the decision on which 

redundant constraints static modes need to be defined for, is difficult to 

be decided a priori. 

The redundant constraint component mode set reduces to the fixed-

interface component mode set for a statically determinate and 

underdeterminate component, since redundant constraint modes cannot 

be obtained in either case. 
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iii. Using constraint component mode sets most of the disadvantages of the 

redundant constraint component mode sets are circumvented. Separation of 

the internal constraints to nonredundant and redundant is avoided and all 

constraints are treated alike. Static modes can be defined for the whole 

interface. By appropriately selecting a set of imaginary constraints, the 

constraint component mode set can be defined for statically determinate and 

underdeterminate components. At the same time no 'rigid-body modes' are 

furnished in particular cases of statically indeterminate components. If 

imaginary constraints are defined as an imaginary fixed point within the 

component, all applications are treated alike and no special consideration is 

needed for the selection of imaginary constraints.. For well defined statically 

indeterminate components imaginary constraints need not to be used. But 

even if they are used, the number of constraint modes does not increase, 

thus computational cost is not affected. 
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Ill Nonlinear Recursive 

Component Kinematics 

I I I - 1 . Prologue 

In nonlinear kinematics the overall motion of each component can be perceived as a 

rigid body motion relative to which elastic deformation can be observed. In this 

sense, one can assign to each component a suitably positioned floating reference 

frame that moves with the rigid part of the motion and relative to which the linear 

elastic deformation can be measured. Therefore, the overall motion of each 

component can be described in terms of the motion of the floating reference frame, 

and the deformation relative to it. 

A floating reference frame is an orthogonal set of axes assigned to each component 

and follows the imaginary rigid-body part of the motion of the component. It is 

positioned at a point and orientation of preference within the imaginary rigid-body 

and therefore the position and the orientation of the rigid-body relative to an inertial 

or an arbitrary reference frame can be specified. At the same time an observer 

travelling with the floating reference frame can perceive the motion of the flexible 

component just as a time-varying deformation. In this sense, deformation can be 

measured and described relative to the floating frame in exactly the same fashion as 

a time-varying deformation of a component restrained in the inertial space would 

have been measured and described by an inertial observer. 

The small linear elastic deformation of the components can be approximated using 

spatial discretisation techniques. The recursive Lagrangian formulation acquires a 

simple form, and includes in the set of (independent) coordinates the subset of the 

finite number of generalised coordinates associated with the elastic deformation of 

each component. As discussed in detail in the section 'Elastic Domain Modelling' 

within the introduction, if a component is of simple geometry, it can be spatially 

discretised using the continuous version of the assumed-modes method. For 



Chapter I I I - Nonlinear Recursive Component Kinematics for Multibody Systems 

complex geometry, the component can be spatially discretised using the finite 

element method. The finite element model of the component is subsequently 

reduced using the discrete version of the assumed-modes method. The 

transformation involves a finite set of generating modes (functions for the continuous 

version, vectors for the discrete version), referred to as component mode sets, which 

may be a combination of a number of dynamic modes (functions or vectors) 

complemented by static modes (functions or vectors). 

In the recursive formulation, the time-varying configuration of each component is 

specified by the use of the floating reference frame where the rigid-part of the motion 

is described by the position and orientation of the floating frame relative to a 

reference frame within the inboard component, and the linear deformation using 

component modes measured relative to the floating frame. By truncating the number 

of dynamic modes, system order reduction can be performed at the component level. 

With the use of the floating reference frame the nonlinear kinematical expressions for 

a single component have been derived. As discussed, in recursive formulations the 

orientation of the floating reference frame of a component is specified relative to a 

local reference frame positioned within the preceding component and located at the 

interface attachment between the adjacent components. To ensure that the various 

components act as part of the whole structure, a suitable kinematical procedure, 

common in all methods, has been proposed to accommodate the interface conditions 

between each component and the preceding one. The component absolute 

kinematical expressions are written directly relative to the suitably positioned 

reference frame within the preceding component. The exact expressions of the 

outboard component kinematics are subject to the constraints at the interface with 

the inboard component. 

More specifically, in Appendix-A the kinematics of an arbitrary component connected 

to the preceding component via a non-translating single-point interface have been 

developed. The particular kinematical procedure followed in this work is only possible 

for multibody systems where no closed-loops and multi-joint interfaces are formed 

between the articulated components. Structures in space are typical examples of 

open-loop multibody systems with operational components joint at single-point 

interfaces. Initially the interface constraints between the two adjacent components 
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are considered as either rotationally free (spatially articulating component) or fixed 

(locked component). The resulting mathematical expressions are general enough to 

employ any component mode set without violating the interface conditions. This is 

accomplished with the introduction of 'correction terms' into the component recursive 

kinematical expressions. The physical significance of these terms has been analysed 

by the use of rotating observers positioned appropriately in the adjacent components. 

From this nonlinear analysis a great deal of insight is profited into the kinematics of 

the components in a multibody system, and suitable geometric interface conditions 

between adjacent bodies have been defined. Since any interface constraints can be 

considered a combination of locked (fixed) and articulating (free) axes, the 

component interface kinematics can be generalised for any possible joint 

configuration. The final expressions for the kinematics of a component connected to 

the inboard one have been presented for arbitrary interface constraints. 

The absolute kinematical expressions of the outboard component involve the 

absolute kinematical expressions of the local reference frame positioned at the 

interface within the inboard component and relative kinematical expressions of the 

outboard component (relative) to the local inboard reference frame. These relative 

kinematical expressions are functions of the independent kinematical parameters of 

the outboard component. Utilising the kinematical relationship, established for any 

two adjacent bodies, repeatedly for all components in a multibody chain, the absolute 

kinematical expressions characterising the motion of any component Bj can be 

expressed in terms of the independent kinematical parameters of all components 

preceding and including Bj in the chain. 

Figure III-1 demonstrates an open-loop tree-configuration multibody system and the 

notation of joints used in this chapter. 
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Figure III-1 Open-loop tree-configuration muitibody system and joint notation 
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III-2. Nonlinear Component Kinematics 

III-2-1. Floating Reference Frame 

Figure 111-2. General displacement component kinematics 

(a) Rigid-body motion of component B j 

(b) Combined rigid-body motion and deformation of component B j 

(c) Component Bj_j arbitrarily displaced and deformed 
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Figure 111-2 is used for explaining and illustrating the kinematics of a general 

displacement of an arbitrary point Q within an arbitrarily moving (rotating and 

translating) linear elastic body Bj. Figure 111-2(a) shows the body after rigid-body 

displacement and the attached body-frame B| (floating reference frame) at the point 

of origin J,, Figure III-2(b) shows the final position of the body in the rigidly displaced 

and linearly deformed state. The arbitrary point Q has undergone a vector 

displacement u due to the deformation and is depicted as Q. A local observer 

positioned at the rotating and translating floating reference frame B, can comprehend 

the final position of the body only as the deformed state of the body. Figure III-2(c) 

shows the preceding (inboard) body Bm at its final position. Bodies B| and B,.! at their 

final positions are joint together at the points and Jf, where Jî  is the position of Jj 

within component Bj after the deformation. It is obvious that the intermediate position 

2(a) of the body B, is fictitious and its purpose is to view the body's motion, at any 

instant, as a rigid-body motion relative to which an elastic domain deformation can be 

measured. The rigid-body part of the motion can be perceived as an instantaneous 

equilibrium position about which the elastic domain vibrates. 

III-2-2. Nonlinear Kinematics of a Single Flexible Component 

Assigning an inertial frame I (global frame), the absolute velocity of the point Q can 

be written as 

=11*^ = r i ^ ' + P j - t - U j ( I I I - 1 ) 

where the symbols are obvious from Figure III-2 and the overdot implies 

differentiation relative to the inertial frame. The rate of change of the position of point 

Q, moving with the rigid-body, relative to an absolute (inertial) observer can be 

expressed^® as 

P;=P;4-'(l)i^'Xp; (EI- 2) 
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where the overcross refers to time differentiation relative to the body frame Bj , i.e. 

the rate of change of the vector position of Q as observed from the local frame B,. It 

is apparent that, since Q is a point of the rigid-body configuration, 

& = 0 

Similarly, one can express the absolute rate of change of the vector deformation u as 

Uj=Ui+ 'a) i®'xu. ( I l l -4) 

where 'cOi^' is the angular velocity of body frame B, (floating reference frame) 

relative to the inertial frame. 

Symbolising the absolute velocity of the origin J, of the local frame as ' Vi^' it is 

'T/i*==ri* (in-5) 

Substituting (III-2), (111-3), (III-4), (111-5) into (III-1) the absolute velocity of Q can 

be written as 

= \ i ^ '+ ' (O i ^ ' xP j+U i+ ' (O i^ ' x i l ; (III-6) 

The vector equation (111-6) expresses the absolute linear velocity of an arbitrary point 

in a moving flexible component, in terms of the absolute angular and linear velocity of 

the origin of the component body reference frame Bj (Figure 111-2). 

The vector equation (111-6) can also be derived in the following alternative way 

'vjO zz'T/iQ-t'T/iCQ (]ll-7) 
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where the last term in (111-7) is the velocity of point Q relative to Q, due to the 

deformation, as observed by an inertial observer. It can be directly verified that 

(ni-8) 

= u . + ' c 0 i ' ^ ' x u . ( I I I -9) 

By substitution of (111-8),(111-9) into (111-7) equation (111-6) can be furnished. 

Utilising the addition theorem for angular velocities''^, the absolute angular velocity of 

frame travelling with the point Q can be immediately recognised as 

=^(j0i^'-|-^'0)i'^ = '(Oi^'+G; (111-10) 

where 

0j is rate of change of the angular displacement due to component deformation at 

an arbitrary point Q , measured at the floating reference frame of component Bj. 

The vector equation (111-10) expresses the absolute angular velocity of a frame 

travelling with an arbitrary point in a disjoint and arbitrarily moving flexible 

component, in terms of the absolute angular velocity of the origin of the component 

body reference frame B, (Figure III- 2). 

The kinematical equations (111-6), (111-10) depend explicitly on the motion of the 

preceding (inboard) body and the interface conditions. Equations (ni-6), (111-10) are 

the most general nonlinear vector kinematical expressions for a single flexible 

component. In other mathematical formalisms'"^ equations (111-6), (111-10) may have 

different, but equivalent, expressions. 
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With the intention of keeping only zeroth-order nonlinear terms, one may reduce the 

kinematical expressions by placing 

0 001-11) 

Substituting (111-11) into (111-6) the absolute velocity of Q is given by the following 

vector equation 

= ' v i ^ ' + ' ( O i ^ ' x P ; + U i ( I I I -12) 

The vector equation (111-12) expresses the absolute linear velocity of an arbitrary 

point in a disjoint and arbitrarily moving non-spinning flexible component, in terms of 

the absolute angular and linear velocity of the origin of the component body 

reference frame B,. 

Ill-2-3. Nonlinear Kinematics of a Flexible Component in a 

Multibody Chain 

For the purposes of this research, where no closed loops and multi-joint interfaces 

are intended in the analysis, a suitable kinematical procedure can be derived to 

accommodate the interface conditions and the kinematics of the preceding body 

explicitly into equations (111-10), (111-12). In this way, the influence of the motion of 

the inboard body Bj.i can be directly accounted for in the motion of the current body 

B, in the analysis. 

Using equations (111-10), (111-12), the derivation of the joint component kinematics is 

performed in Appendix-A, and is given by equations (A-24) and (A-25), repeated in 

this chapter as (111-14) and (III-13) respectively. 
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XPj+COi^'xPj+Uj U: + 
/^+ ^ 

8; XPi (in-13) 
V ya - / y 

where 

'V i - / ' ' is the absolute linear velocity at the interface point Jj within the inboard 

component Bi.i. 

^ 0)i-/ ' is the absolute angular velocity of a frame travelling with the interface 

point J. within the inboard component Bj.i. 

rel COi is the angular velocity of the body reference frame of an articulating 

component Bj, as observed from the reference frame J r , travelling with 

the interface point j r , within the inboard component Bn. 

Ui 
I 

is the rate of the angular displacement due to component deformation at 

the interface point of the component B,, as measured by an observer 

travelling with the body reference frame of the component B,. 

is the rate of the linear displacement due to deformation at the interface 

point of the component B,, as measured by an observer travelling 

with the body reference frame of the component Bj. 
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Equations (111-13), (111-14) give the absolute linear and angular velocity of a frame 

travelling with an arbitrary point Q for a flexible component Bi part of a multibody 

chain, in terms of the absolute linear and angular velocity at the interface within the 

inboard component for any possible non-translating joint configuration. In other 

words, the kinematics of a flexible component 8, joint to the preceding one, can be 

described with the equations (IE-13), (III-14) for any joint configuration that does not 

allow relative translation of the adjacent components at their interface. Such an non-

translating interface may represent a spherical, universal, revolute, fixed or 

torsionally elastic joint. 

The formulation of the interface kinematics allows the incorporation into the 

equations (111-13), (111-14) of any possible component mode set without violating the 

interface compatibility between adjacent components. This is achieved by the 

introduction of the 'correction terms' 
f+ \ 

0i , 
I " / n 

U: in the equations (111-13), (III-

14). Details of the derivation of the equations (III-13), (III-14) and the physical 

significance of the 'correction terms' is provided in appendix A. 

Expressing the vector equations (111-13), (III-14) in appropriately selected reference 

frames, the following matrix equations (111-15), (III-16) are furnished respectively 

=C; ' v i - / ' - - Pi"" C0i'^'+ U;-
Bi — Bi-1 — Bi ~ Bi-1 — g | _ Bi — Bi — 

/ y . \ 
+ P i 

Bi -

(in-15) 

Bi - Bi-1 -

r \ 

Bi - Bi 
(ni-16) 

The left subscript on the above symbols indicates the reference frame where the 

associated vector quantities have been expressed. 
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The Ci matrix is in general a time-varying rotation matrix, which, with the assumption 

that the deformation of the component is linear, specifies at any instant the 

orientation of the body reference frame of the outboard component B| relative to the 

body reference frame of the inboard component Bn. The rotation matrix Ci can 

generally be written as 

Cj = c r c r ( t ) 

where 

is a rotation matrix specifying the nominal orientation of the component B, 

relative to the inboard component B|.i, i.e. at t=0. 

C™' ( t ) is a time-varying rotation matrix specifying at any instant the orientation of 

the body reference frame B, relative to its nominal position, for t>0. 

Details for parametric descriptions of a time-varying matrix are provided in Appendix-

B. 

The linear and angular rate of displacement of a frame travelling with point Q, due to 

the linear deformation of the component B, , and as measured by a observer 

travelling with the body reference frame B,, can be expressed in the body reference 

frame B, as 

Bi 
U;== (m-1;') 

(III-18) 
B i - _ 

where 

U f j is a 3xn[ matrix containing the linear displacement of an arbitrary point Q 
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due to small linear elastic deformation of the component B, and n[ the 

number of flexible component modes retained in the analysis for 

approximating the linear deformation of the component Bj. 

© f j is a 3xn[ matrix containing the angular displacement of a frame travelling 

with an arbitrary point Q due to small linear elastic deformation of the 

component B,. 

i n [ x l vector containing the rates of the generalised coordinates associated to 

the flexible component modes. 

The forms (111-17), (111-18) are presented in matrix form, for both discrete and 

continuous component modelling, since it is convenient for computational 

implementation. 

By applying equations (HI-15) and (IE-16), along with (IE-17), (EI-18), repeatedly 

for all components in a multibody chain, the absolute angular and linear velocities of 

an arbitrary point on any component Bj can be expressed in terms of the independent 

kinematical parameters that specify the motion of the components preceding and 

including B, in the chain. In this way the motion of any flexible articulated component 

in an open-loop multibody system can be coupled to the motion of all other 

components in the system. 

Kinematical equations (EI-15), (EI-16), along with expressions (IE-17), (EI-18), 

regarding the linear deformation of a component B,, can be used in order to develop 

various methods for describing the dynamical behaviour of multibody structures in 

space. Although this work is aimed in the development of linear methods, the 

kinematical descriptions up to this point in the analysis are general enough to 

accommodate geometrical nonlinearities and can treat any open-loop articulated 

multibody structure in space. Simplification of the kinematical equations for linear 

system dynamics modelling will be introduced as needed latter in the analysis. 
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IV 
IV-1. Prologue 

Methods of Multibody 

Dynamics Modelling 

The vast capabilities and the limited restrictions of the recursive Lagrangian 

methodology allow the modelling of a large number of structural systems in space, 

involving either geometrically nonlinear or linear dynamical analysis. In this chapter, 

the nonlinear analysis has to be adapted for developing methods suitable for the 

linear dynamics modelling for the Category I I missions in space. 

More specifically, having obtained nonlinear kinematical expressions for a 

component as part of a multibody system, the aim of this chapter is to linearise them 

in order to obtain expressions for the formulation of linear system dynamics. For this 

purpose, in Appendix-B, the theoretical background of the large arbitrary angular 

displacement and nonlinear rotational kinematics has been reviewed and the distinct 

mechanisms that introduce geometrical nonlinearity into the multibody system 

dynamics have been thoroughly examined. In this chapter transition from the 

nonlinear to linear kinematical expressions for a component as part of a multibody 

chain has been performed using symbolic formulations. The nonlinear kinematical 

expressions of a component Bj have been written as symbolic functions of all the 

independent kinematical parameters, in quasicoordinate form, that describe the 

motion of all components preceding and including the component B| in a multibody 

chain. Subsequently, the nonlinear kinematical expressions of the component can be 

written as symbolic functions of independent generalised coordinates (in the 

Lagrangian content). This is accomplished by importing in the nonlinear kinematical 

expressions of quasicoordinate form the mathematical expressions of the 

mechanisms that introduce the geometrical nonlinearity in the multibody system. 

These mathematical expressions are nonlinear functions of the angular displacement 

parametric set. By eliminating the mathematical nonlinearities, the linear kinematical 

expressions of the component B, can be formed as symbolic functions of all the 

independent generalised coordinates. Dinstinct linear kinematical expressions have 
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been accomplished and formulated using either hybrid or generalised coordinate 

sets. 

At this stage the linear methods can be readily obtained. All three methods 

developed can treat the linear dynamics of any open-loop tree-configuration 

multibody structure in space with single-point articulated rigid or flexible components. 

The first method uses a hybrid set of coordinates where for each component the 

rigid-body part of the motion is described by physical displacement coordinates and 

the linear elastic deformation by generalised coordinates. This method is akin to 

nonlinear dynamics modelling. In the second method, the hybrid set is substituted by 

a generalised coordinate set, since the rigid-body motion of each component has 

been described using rigid-body modes, modelling allowed only with the assumption 

of small rotational displacement. In both methods the structural system can be 

composed of either continuous or discrete components. In the third method all 

components are necessarily considered discrete. The consistent mass matrix of each 

component in the structure appears explicitly in the equations of motion of the 

multibody system. The third method also utilises a generalised coordinate set. 

The kinetic energy of each component is expressed in terms of all the independent 

generalised coordinates that describe, at any instance, the configuration of the 

preceding multibody chain of components. The elastic potential energy expression 

can readily be derived using the expressions approximating the linear elastic 

deformation of the component. Dissipation energy can be included at substructural 

level. 

A unified coordinate set formalism has been defined to account for both the hybrid 

and generalised coordinate sets. Using the unified coordinate set, the multibody 

system kinetic, potential and dissipative energy expressions can be presented in a 

uniform form for all methods as well as for discrete or continuous components. 

In the context of this chapter and for reasons of brevity, a discrete component (or 

elastic domain) will be considered any component (or elastic domain) that has been 

spatially discretised using the finite element method. On the other hand, a continuous 

component (or elastic domain) has been spatially discretised using the continuous 

version of the assumed-modes method. 
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IV-2. Transition from Nonlinear to Linear Kinematical 
Expressions 

The kinematical expressions derived in chapter I I I and appendix-A are considered 

nonlinear, since no assumption of small angular displacement has been employed. 

For the purpose of presenting methods for linear system dynamics, In this section the 

transition from nonlinear kinematical expressions to linear expressions has been 

formulated symbolically, and the coordinate sets utilised in each method have been 

defined. 

IV-2'1. Symbolic Nonlinear Parametric Velocity Expressions for a 

Component Joint in a Multibody Chain 

The absolute linear and angular velocity of a frame travelling with an arbitrary point 

on a component B, in a chain of components can be written as a symbolic function of 

all the kinematical parameters that define the motion of all components in the chain, 

preceding and including Bj. For facilitating the symbolic presentation, the vector 

velocity of the component B, Is expressed at an inertial reference frame, unlike in the 

equations (HI-15), (111-16) where it has been expressed in the components' body 

reference frame. 

For an open-loop single-point interface multibody system with non-translating joints, 

the following expressions can be obtained 

C,™ . ;v,°, ;(0,°. q „ | , | C« . ^ 

i 3 [2,m] and k 3 [0,i - 2] (IV-1) 

I - _ 1 - _ i - k -
J 1 L J i - l y 

i 3 [2, m] and k 3 [O, i - 2] (IV-2) 
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where 

^c/d^ gC/d symbolic functions in the discrete (d) or continuous (c) domain. 

{ symbolises a set of n subsets of kinematical parameters. 

is the absolute linear velocity of the reference frame at point O , 

I -

which is the origin of the body reference frame of the carrier 

component Bi , and is expressed at the inertial frame. 

^ COi° is the absolute angular velocity of the reference frame at point O, and 
I -

is expressed at the inertial frame. 

J is the vector n ) x l of the rates of the generalised coordinates, 

associated with the nj. number of the component modes retained in 

the analysis for the carrier component Bi. 

Ci™' is a generic time-varying rotation matrix, that specifies at any instant 

the orientation of the carrier platform relative to its nominal orientation 

for t>0. 

0)/^ is the angular velocity of the reference body frame of an articulating 

component Bj.k relative to the interface reference frame of the inboard 

component Bj.k-i and is expressed at the local reference frame B|.k. 

'lf(i-k) is the vector X l of the generalised coordinate rates, associated 

with the number of the component modes retained in the analysis 

for the component Bi.k. 

is a generic time-varying rotation matrix, that specifies at any instant 

the orientation of the component Bi_k body reference frame relative to 

its nominal orientation for t>0. 

m is the total number of components in the multibody chain, with the first 

being the carrier platform, which in general is the natural choice. 
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The symbolic expressions (IV-1), (IV-2) relate the absolute linear and angular 

velocity of a frame travelling with an arbitrary point Q in a flexible component Bi, 

where B, can be any component in a chain of m number of components, to the 

kinematical parameters that can describe the motion of all components in the chain 

preceding and including component B,. For each component, the associated 

kinematical parametric set can be considered the generalised coordinate set of the 

component, in the general Lagrangian sense. In fact, because of the explicit 

appearance of angular velocity expressions in (IV-1), (IV-2) the parametric set of 

each component is a quasicoordinate set. Angular velocity as such is not, in general, 

a quantity that can be directly integrated for obtaining angular displacements 

expressions, since angular displacements are not vector quantities. 

The rotation matrices that appear in the expressions (IV-1), (IV-2) are time-varying 

quantities since they are functions of the parametric description of the angular 

displacements, and therefore are included in the symbolic parametric expressions. 

The purpose of the rotation matrices is to express vector or dyadic quantities from 

one reference frame to another. 

It is obvious that if a particular component Bm is not articulating to the preceding one 

in any direction, the kinematical parameters in the subset m will be truncated 

accordingly. It can be also be observed from equation (IV-1) that it is only the 

parameter set corresponding to the carrier platform that contains linear velocity 

parameters. This is so since it has been assumed that the components are 

connected to each other via non-translating joints. If the platform carrier is assumed 

docked in a much larger orbiting structure, then the rigid-body motion parameters 

should be truncated from (IV-1), (IV-2) accordingly. 

The symbolic expressions (IV-1) and (IV-2) are nonlinear in the angular 

displacement / orientation parametric sets that implicitly enter the (IV-1), (IV-2). As 

analysed in Appendix-B, for large arbitrary rotation, the angular velocity and the time-

varying rotation matrices are in general nonlinear in the angular displacement 

parametric set. More specifically, the following expression is obtained for the angular 
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velocity using the Euler angle parametric set (which is a minimal parametric set and 

can be used along with the general methodology of this work) 

r 

i - k 
01'02'^3 

V y 

<l>i i - k (IV-3) 
i -k 

where 

E j j, is an Euler angle matrix, formed for a particular body sequence of principal 

rotations for the component Bj i-k-

(j)p the orientation angles, i.e. the angular parametric set, for each sequence, 

p=1,2,3 

the rate of change of the orientation angles for component Bi.̂  
i -k -

The time-varying Euler angle rotation matrix is given by 

c 5 = I c,(<!,,) c . ( k ) (IV-4) 
i - k 

which is valid for any sequence r,s,z=1,2,3 as long as r ^ , s#z , i.e. for independent 

principal axis sequential description. The matrices in the parentheses are time-

varying direction cosine matrices corresponding to each principal rotation in the 

sequence pattern selected. 

Substituting symbolically the angular velocity expression (IV-3) and the orientation 

angles rotation matrix expression (IV-4) into (IV-1) and (IV-2), the following forms 

are obtained 

I -
c , 

i 3 [ 2 ,m] and k 3 [0, i - 2] (IV-5) 
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I -
c r 4) ,Ej 4) , 4)1°, q,, , en, 4) ,E,_j 4) , 4)i:' , 

' i-1 

i 3 [2, m] and k 3 [0,i - 2] (rV-6) 

Expressions (rV-5),(IV-6) seem to be different from (rV-1),(IV-2) only in the explicit 

appearance of the Euler angle matrices E{^), and in the substitution of the generic 

rotation matrices to the specific Euler angle rotation matrices C((j)). In fact, by 

expressing the angular velocity as a nonlinear function of the Euler angle parametric 

set (j) , the symbolic forms (IV-5),(IV-6) are expressed in terms of the independent 

generalised coordinates of the system. The sequencing of rotations, which is directly 

employed in the Euler angle matrix form (rV-3), offers enough information regarding 

the relationship of the angular velocity and the angular displacement parametric set 

(|). The parametric set <|) and the rate of $ can be considered generalised coordinates 

of the system. Therefore, from the quasicoordinate form of symbolic expressions 

(rV-1),(IV-2), transition to generalised coordinate form of (IV-5), (IV-6) has been 

accomplished. More specifically, the generalised coordinate set <j) and its rates is 

considered a physical coordinate set, since it is related to particular reference frames 

positioned at specific points on the component. In this way the angular displacement 

parametric set (|) is separated in description from the generalised coordinate sets, 

which in the context of this work are associated to the rigid-body and component 

modes. 

Both the Euler angle matrix and the time-varying Euler angle rotation matrix (IV-3), 

(IV-4) are in general nonlinear in the orientation angles parameter set. It is obvious 

that in order to obtain linear expressions in (IV-5), (IV-6) the nonlinear dependence 

of these matrices to the parametric sets should be eliminated. For a chain of 
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components the only possible way to derive linear expressions is under the 

assumption of small angular displacement. In that case both the Euler angle matrix 

and Euler rotation matrices become unity matrices (Appendix-B, Table B-1). 

IV-2-2. Symbolic Linear Parametric Velocity Expressions for a 

Component Part of a Multibody Chain 

IV-2-2-1. Method I 

With the assumption of small angular displacement, the Euler angle and Euler angle 

rotation matrices become unity matrices for all components in the system, and the 

expressions (IV-5) and (IV-6) result in the following linear form 

1 -
C , qfO-

rel 

1 - i-k -
k) 

i-1 

i 3 [2, m] and k 3 [O, i - 2] (IV-7) 

COi = g 
I - : 

qf(i_ 
i - k ' i - I 

i 3 [2, m] and k 3 [0,i - 2] (IV-8) 

It is obvious from (IV-7) and (rV-8) that the coordinate set for the method I is a 

hybrid coordinate set, consisting of the physical coordinate set and the generalised 

coordinate set for each component preceding and including component B,. 

It has to be mentioned, that in the case of small rotational displacement, the 

sequencing is irrelevant to the orientation of the body. In this respect the attitude 
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angle rates (p do not have to be assigned with a particular sequencing and their 

interpretation is simplified. 

IV-2-2-2. Methods II, III 

In methods II, I I I the linearisation of equations (rV-5),(IV-6) is implemented in two 

steps. The first step has already been described and essentially is that of method I. 

Moreover, for methods II, III the physical coordinate set of each component is 

transformed to an equal size generalised coordinate set multiplied by the rigid-body 

modes of each component. Rigid-body modes are vector quantities in the sense that 

the cumulative rule of addition is valid in their case. Therefore, rigid-body modes 

description of rigid body motion is only permitted for small angular displacements. 

Equations (IV-7) and (IV-8) obtain the following forms with the use of rigid-body 

modes 

I - I I r l ' Q f l j ' I ^ r ( i - k ) ' 1 f ( i - k ) | 

i 3 [2, m ] and k 9 [0 , i - 2] (rV-9) 

I r l ' Q f l j ' I Q r ( i - k ) » Q f ( i - k ) j 

y 

i 3 [2, m] and k 3 [O, i - 2] (IV-10) 

where the additional symbols represent 

q^j is a n j x l vector containing the generalised coordinate rates associated 

with the n | rigid-body modes of the main component, the carrier platform. 
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•IrO-k) is a X l vector containing the generalised coordinate rates associated 

.i-k with the iij. rigid-body modes of the component Bj_k. 

Method I I I is only possible in the discrete elastic domain, therefore the symbolic 

• c / d 
function f has only meaning as f 

IV-3. Unified Coordinate Set Formalism 

As detailed previously, method I utilises a hybrid coordinate set and methods II, I I I a 

generalised coordinate set. For facilitating the expressions of energy functions the 

coordinate set of a component B, can be written for all methods in the following 

unified form 

q i = 
q f i 

V y 

OV^M) 

where 

Xj.j is a nJ.Xl column matrix containing the coordinates associated with the 

rigid-body motion of the component B j , and nj. equals the number of 

rigid-body degrees of freedom of the component. 

i is a n'f x l column matrix containing the generalised coordinates associated 

with the linear elastic deformation of the component B j , and n j equals the 

number of component modes retained in the analysis of component B,. 

In method I, is a physical displacement (rotational and translational) coordinate 

set and is related to the particular point on each component where the origin of the 

body reference frame (floating reference frame) is positioned. In methods n and III, 
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Xj i is the generalised coordinate set q^., since the rigid-body motion is described 

with the use of rigid-body modes. For components other than the platform carrier, the 

X^j has a maximum of three coordinates, since the multibody system consists of 

components that are connected with non-translational joints. 

The different coordinate sets used in method I and I I is the only difference between 

these methods. Although this seems a minor point it will prove to have a huge effect 

on the presentation of the global mass matrix for a multibody structure. IVIethods I I 

and I I I use a generalised coordinate set and this is the main common feature 

between these methods. 

In method I,I I the multibody structure can be composed of either continuous or 

discrete components. In method I I I the components are necessarily discrete. The 

absolute angular and linear velocity of a point Q on the component B, , for all 

methods can be written symbolically as functions of the coordinate set of each 

component. 

IV-4. Elastic Potential Energy Expressions for a 

Multibody System 

IV-4-1. Elastic Potential Energy for Continuous components; 

The elastic potential energy of a multibody system composed of a number of 

continuous linear elastic components is given by 

V 4 Z I 9 
Bi ^ y 

\T 
6i (T/, (TV^2) 

where 

k is the total number of components in the system. 
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Oj is the stress vector (6x1) at an arbitrary point in the component B,. 

Ej is the stain vector (6x1) at an arbitrary point in the component Bj. 

d V ; is the infinitesimal volume within the component B,. 

For linear material properties the stress is related to the strain as follows, 

= Bj (IV-13) 

where D j is the material stiffness matrix of the component Bj, 

The strain is related to the deformation at the arbitrary point as follows, 

6; = A j Uj (rV-14) 

where A . is a partial differential operator matrix. 

Substituting (IV-13) and (TV-14) into (IV-12) and using the integrated form of (17), 

the elastic potential energy of a continuous multibody system is given by 

. f Y 
V = i E h f , K , i Qn (IV-15) 

i=l / 

where 

Kfi==j[uZ'i IDi y\.i I J f i dT/i (I\r-16) 
Bi 

and the additional symbolism 

U f j is a S x i i f matrix containing the deformation at an arbitrary point in the 

continuous component B,, and the number of component modes 
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(functions) retained in the analysis of the component B,. 

; is a nj. X1 vector containing the generalised coordinates associated with the 

component modes. 

The component has been spatially discretised using the assumed-modes method, in 

order to approximate the distibuted parameter (infinite) elastic domain with a finite 

dimensional one. The finite number of component modes, which are space-

dependent functions, are in general trial functions (in the Rayleigh-Ritz sense), but 

they may also be exact solutions of a differential eigenvalue problem, if closed-form 

solution can be obtained. 

IV-4-2. Elastic Potential Energy for Discrete Components; 

Potential energy expressions in the form of (IV-15), (IV-16) are possible to derive for 

components with fairly regular geometry. For complex geometry components, exact 

modelling of a component is usually infeasible, and if not so the closed-form 

solutions are even more unlikely. Moreover, even trial functions may be difficult to 

obtain for describing the deformation with an acceptable accuracy. For irregular 

geometry, the structural components can be spatially disretised using the finite 

element method. The resulting high order discrete parameter elastic domain is 

truncated with the use of the discrete version of the assumed-modes method. 

For a multibody structure, modelled with the use of the finite element method, the 

elastic potential energy of the system is given by 

v = i E 
k ^ 

i=l V y 

K i r " " (ITZ-l/O 

where 

K j is the stiffness matrix of the component B, derived using the finite element 

method. 
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is the nodal displacement vector, n | x l , where n j is the number of nodal 

degrees of freedom of the component. 

The high order discrete elastic domain description can be truncated using the 

discrete version of the assumed-modes method, hence 

:%;== (If i (TT/-18) 

where 

Of i is a n'j X i i f matrix containing n j component modes (vectors) retained in 

the analysis of the component Bj. 

Even in the case that the component is discretised using the finite element method, 

and the solution of the eigenvalue problem is numerically convenient, the component 

modes are not necessarily only the eigenvectors of the algebraic eigenvalue 

problem, but can be complemented by other trial vectors such as static modes, for 

improving convergence and local deformation modelling. 

Substituting (IV-18) into (IV-17), the elastic potential energy of the multibody system 

can be written as 

k / 
V = i E K „ q „ (IV-19) 

i=l V y 

where 

=((Df i ) " ICfS" (Df i (T\f.20) 
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IV-4-3. Unified Expression of the Elastic Potential Energy of a 

Multibody Structure 

For continuous or discrete components, the potential energy of the system can be 

expressed in exactly the same form as appears in equations (IV-15), (IV-19). The 

potential energy of the multibody structure can be written as 

V = i q K , q (IV-21) 

K g is the global stiffness matrix of the multibody structure and has the form 

K . 

K G2 

^Gi 

(IV-22) 

where all other entries not designated are zero and component Bj generalised 

stiffness matrix is given by 

K a i = 

/ 

0 
Kn 

(IV-23) 

where 

Q is a n|. xn j . null matrix and nj. are the rigid-body degrees of freedom of 

the component B|, 

K f i is given by (IV-16) for a continuous component Bj and by (IV-20) for a 

discrete component. 

The coordinate set of the multibody structure is 
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f \ 
T 

f ^ 
T 

f ^ 
T 

= q i q z q i (IV-24) 

V I ' V \ - J \ - J V 

and 

q. is a hybrid or generalised coordinate set for each discrete or continuous 

component B| corresponding to either method I or methods 11,111 respectively. 

IV 5. Dissipative Energy Expressions for a Muitibody 
System 

There are a lot of distinct damping mechanisms that cause energy dissipation in 

structures, in this work two dissipation mechanisms are addressed at substructural 

level, namely structural and localised viscous damping. Structural damping will be 

included directly in the frequency domain equations of motion. 

IV-5-1. Localised Viscous Damping l\/lodelling 

Viscous dampers can be modelled as acting within the component's structural 

domain. The viscous damping dissipative energy expression is essentially similar to 

the elastic potential energy expressions derived for discrete components. 

i=l 

/ • , \ 

X 

V y 
Bd X 

- 1 

(IV-25) 

where 

is the viscous damping matrix of the component B, 

X; is the nodal rate of displacement vector, n | x l , where n | is the number 

of nodal degrees of freedom of the component. 
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Transforming (IV-25) from the physical coordinate space to a reduced generalised 

one with the use of (IV-18), the following dissipative energy expression is readily 

available. 

D y - ' 2 ^ I f i ® G i Q f i 
i=l 

(IV-26) 

where 

Bo, = ( 4 ' , , ) ' B,. (IV-27) 

The viscous damping dissipative energy expression (TV-26) can readily written using 

the unified coordinate set formalism as 

Dy q Bg q (IV-28) 

BQ is the global viscous matrix of the multibody structure and has the form 

Bq -

B. 

B G2 

B Gi 

(IV-29) 

where all other entries not designated are zero and component Bj 
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IV-6. Kinetic Energy Expression for a Multibody 

System 

IV-6-1. Kinetic Energy Expression; Methods 1,11 

IV-6-1-1. Continuous Component 

For a multibody structure with continuous components the kinetic energy of the 

system is given by 

T=f E J 
1=1 BiV ' J 

I . .Q' (ini, (IT/<30) 

where 

k is the number of continuous components in the multibody structure. 

' Vi^ is the absolute linear velocity of an arbitrary point Q in the component Bj 
I -

dm, is the infinitesimal mass associated with the point Q' . 

For method I, the ' is given symbolically by expression (IV-7) and for method 11 
1 -

by (IV-10). For a continuous component the symbolic function in (IV-7) and 

(rV-10) have only meaning as f " , referring to continuous modelling. 

IV-6-1-2. Discrete Component 

For a multibody system composed of discrete components the kinetic energy 

expression is given by 

T=i S E I V , 
i=l n=l 
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where 

k the total number of discrete components in the multibody sytem. 

n j the total number of nodes of the component B|. 

' is the absolute linear velocity of Q' associated to the nodal point N. 
I -

Snii is the finite mass concentrated at the nodal point. 

For method I, the ^ is given symbolically by expression (IV-7) and for method I I 
I -

by (IV-10). For a discrete component the symbolic function in (IV-7) and (IV-

10) have only meaning a s f * , referring to discrete modelling. 

IV-6-1-3. Comparison of Continuous and Discrete Forms of the Kinetic 

Energy Expressions 

Comparing the continuous expression (IV-30) to the discrete expression (IV-31), the 

main difference is noticed at the integration scheme in the former, which has been 

substituted with a summation scheme in the later, it is obvious that in the case of the 

continuous modelling the integration scheme may be treated as summation scheme 

for the purpose of numerical integration. Therefore for numerical implementation both 

continuous and discrete kinetic energy expressions will have the form of (IV-31). 

This, nevertheless, does not imply that the methods are numerically equivalent. In 

the case of the continuous modelling, the analyst can select the number of 

integration points, whereas in the case of discrete modelling the number of 

summation points is dictated by the finite element model mesh of the component. 

More importantly, in the case of continuous modelling, the analyst is also able to 

choose a numerical integration scheme of preference. On the contrary, in the case of 

discrete modelling the summation scheme is predetermined by the lumped mass 

model of the discretised component. For example, integrating numerically the 

velocity expressions of a dicretised beam structure, the summation scheme is 
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necessarily that of the trapezoid integration. In more complex structures the 

summation scheme is arbitrary and determined by the mass concentrated at the 

nodal point, obtained from the lumped mass matrix of the finite element model. The 

continuous modelling accuracy depends on the number of integration points and the 

integration scheme utilised, which both can be manipulated independently of the 

structural model. Continuous modelling can therefore be more accurate than discrete 

modelling, which relies only on the number of nodes and the mass distribution 

predetermined by the finite element model. 

It has to be mentioned, that in the case of the discrete method the vectors 

(component modes) are typically obtained from a consistent finite element model for 

better accuracy, whereas the distribution of mass from a lumped mass model. In 

computational terms, using discrete modelling means the extraction of both 

consistent and inconsistent mass matrices, with obvious disadvantages. 

IV-6-2. Kinetic Energy Expression; l\/lethod III 

Method I I I is subject only to discrete modelling and it circumvents the problems 

associated to numerical accuracy of the discrete versions of methods I, II. Method 

I I I does not involve summation schemes and does not rely on the lumped mass 

matrix. It utilises directly the consistent mass matrices of the components to obtain 

the kinetic energy expression of the multibody structure. 

The kinetic energy of the multibody system can be written as 

k / . 
T 4 E 

i=l V V 

where 

k is the number of discrete components in the multibody system. 

M ™ is the consistent mass matrix of component Bj. 

|X j is the n | x l vector, where n j the nodal degrees of freedom of the 
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component, and contains the nodal absolute linear and angular velocity 

vectors for component B,, 

The absolute linear and angular nodal velocities for method I I I are given by the 

symbolic expressions (IV-9) and (IV-IO) respectively. For a discrete component the 

symbolic functions f'^^'^in (IV-9) and in (rV-10) have only meaning as 

f '^andg' ' , referring to discrete modelling. 

IV-6-3. Unified Expression for the Kinetic Energy of a i\/!ultibody 

System 

The kinetic energy expressions for all methods and regardless the discrete or 

continuous modelling assumptions can be written in the following form 

T ==-1 IVtc (1 (I\r.33) 

where 

MQ is the global mass matrix of the multibody system. 

q the rate of the coordinate set of the multibody system given by the first 

derivative of (IV-24). 

For method I the coordinate set is hybrid and for methods II, I I I a generalised 

coordinate set. Unlike the global stiffness matrix, the global mass matrix of a 

multibody structure is highly coupled, since the linear and angular velocities of an 

arbitrary point in a component Bj are not only functions of the coordinate set of the 

component B, , but also functions of all the coordinate sets of the preceding 

components in the chain. 
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V Mathematical Models of 
Peripheral Multlbody 

Structures 

V-1. Prologue 

For comparison and assessment, the methods derived in chapter IV have been 

utilised to derive mathematical models for generic peripheral multibody structures in 

space. Such systems consist of an arbitrary number of components attached to a 

main carrier platform without forming closed-loops. A peripheral or else cluster 

formation multibody structure is shown in Figure V-1. Cluster formation multibody 

mathematical models are easier to present analytically than generic tree-

configuration models, which are best generated computationally. In this respect a 

better understanding of the component interaction dynamics is accomplished with the 

cluster formation multibody models. Moreover, the different methods are better 

compared on their efficiency employing the analytical expressions of the 

mathematical models. In reality, cluster configuration covers a large number of the 

structural systems in space for the present and near future applications. In addition, 

by appropriate assumptions almost any tree-configuration multibody structure can be 

modelled as a cluster formation for the purposes of linear dynamics modelling. The 

configuration limitation of the mathematical models does not in any extent restrict the 

conclusions drawn form this work since it is of quantitative and not qualitative nature. 

For the purpose of comprehensive assessment of the methods, 4 mathematical 

models of varying complexity have been developed. Mathematical model A, B are 

formulated using methods I, I I respectively, and refer to a flexible cluster formation 

structure where the appendages can only carry concentrated mass rigid payloads. 

Mathematical models C, D are obtained from methods II, I I I respectively, and refer 

to a cluster formation structure where appended components can also carry 

distributed mass rigid payloads. Moreover, explicit expressions of the torsional 

deformation of beam modelled appendages appear in mathematical model C, along 

with terms that allow the kinematical description of Timoshenko beam theory. In 

mathematical model D these terms are included implicitly in the consistent mass and 
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stiffness matrices of the components. Detailed assessment and comments on each 

individual mathematical model follow the mathematical derivation. The methods and 

mathematical models generated have been illustrated for reference purposes in 

Table V-1. 

The three methods have been compared on their suitability for modelling the 

dynamics of Category I I missions in space. For comparison purposes, a particular 

pairing has been chosen. Method I is compared to method I I using the mathematical 

models A,B respectively. Mathematical model A, B have exactly the same modelling 

capabilities. In both cases, the appended components can carry concentrated mass, 

but not distributed mass. Neither of the models includes beam-modelled 

appendages. Beam-modelled appendages need detailed mathematical treatment 

and are included only in the more complex mathematical models. The second pair of 

comparisons is between methods I I and III, using mathematical models C, D. 

Mathematical model C is a very comprehensive model, and utilising it, any cluster 

formation structure can be modelled. The same applies for mathematical model D. 

Conclusions, on which method is the most efficient for developing mathematical 

models for the category I I missions in space, have been presented at the end of the 

chapter. 

The general criteria for the comparison have been established out of the experience 

gained in developing and programming the methods for obtaining efficient and 

accurate mathematical models of flexible multibody systems. Criteria include 

mathematical model development effort and complexity, physical insight capability, 

programming effort, potential numerical accuracy, potential computing time for 

application completion, programming validation effort, analyst interference with the 

data input and ease for modelling a generic tree-configuration multibody system. 

In chapter IV the global stiffness and damping matrices of a generic multibody 

structure have been explicitly developed utilising a unified coordinate set for discrete 

or continuous components and for all methods involved. Unlike the global stiffness 

and damping matrices, the global mass matrix is highly coupled, since the velocity 

terms of a point within a component are functions of the generalised coordinates 

preceding the component in the multibody chain. 

The chapter concludes with the derivation of the generalised force expressions for a 

multibody structure and the mathematical steps for performing a direct or modal 
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frequency response analysis using the reduced order mathematical model of a 

multibody system. Structural and localised viscous damping has been included at 

substructural level. 

Figure V-1 Peripheral multibody structural system 
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Cluster 

Formation 

Structure 

Mathematical 

Model A 

Mathematical 

Model B 

Mathematical 

Model C 

Mathematical 

Model D 

Method I I I I I I I I 

Continuous 

Components 

Yes Yes Yes No 

Discrete 

Components 

Yes Yes Yes Yes 

Coordinate Set Hybrid Generalised Generalised Generalised 

Concentrated 

IVlass Payload 

on 

Appendages 

Yes Yes Yes Yes 

Distributed 

IVlass Payload 

on 

Appendages 

No No Yes Yes 

Beam-

modelled 

Component 

Terms 

No No Yes Yes 

Table V-1 Reference table for the methods and mathematical models developed 
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V-2. Mathematical Model A 

V-2-1. Global Mass Matrix Derivation 

Using method I, the global mass matrix of a cluster formation structure in space, 

which can carry arbitrary number of concentrated masses on the appended 

components, has been developed. In method I the components can be modelled as 

either continuous or discrete. 

The kinetic energy of the system having k number of appendages is given by 

T = d 'VmS 
M - M -

dm + i i j f j i ' l f 
M Bj 

The kinetic energy expression has been presented in (IV-1) for a continuous 

multibody system. For discrete modelling the integration schemes should be 

substituted by summations over the nodal points of each component. 

Kinetic Energy of Main Platform 

Using (III-15),(III-16),(III-17),(III-18), and the specific notation for cluster formation 

structures, the absolute angular and linear velocity for an arbitrary point on the 

flexible carrier platform can be expressed as 

M - I -

A" 

M -

( O m ' + U , a f m " f m (IV-2) 
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' o ) m ^ = ^0)m^+ GfmQfr 
M - I -

(IV-3) 

where the rotation matrix has been placed to unity, with the assumption of small 

angular displacement. Since the main platform carrier is the inboard component of 

the structure, the correction terms appearing in (III-15),(111-16) have not been 

included in (rV-2),(IV-3). 

With the assumption of small angular displacement the Euler angle matrix becomes 

a unity matrix and the absolute angular velocity of the body reference frame of the 

main platform can be expressed as 

' (Dm ' '=E (IV-4) 
I- I 

Substituting (IV-4) into the equations (IV-2),(IV-3) the absolute linear and angular 

velocity expressions at any point on the main platform can be expressed as 

' v m Q = r m ° -
M • 1 -

(IV-5) 

- ( j ) m + 0 f m 9 f r 
M I -

(IV-6) 

where 

1 0 0 
V m — r m 

I - I -
(IV-7) 

has been utilised. 
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Kinetic Energy of Appended Component By 

From equations (IV-5),(IV-6) and for Q = J, the linear and angular velocity of the 

junction point J can be readily obtained. Substituting (rV-5),(IV-6) for Q = J into 

(III-15), and using (111-17), the absolute linear velocity at an arbitrary point in an 

appended component Bj, with the assumption of small angular displacement, can be 

expressed as 

B j 'Y''=c, . r * "1 P. 
M - yj i I -

Pj C: (|)m + 8 . f m i f m 

/ Bj 

(IV-8) 

where 

f j u f j U n 
V Vj 

+ pj 
^Bj y 

0 f j 
V y j 

(IV-9) 

Substituting (IV-5),(rV-6) into (IV-1), the global mass matrix of the cluster formation 

multibody structure can be readily derived 

M , 

-

I d * , ' 

. Mmbj 

Mffllbi • 0 0 

-
• 0 0 

SYM 

M . 

(IV-10) 
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where the hybrid coordinate set of the multibody structure is 

/ Y q 
\ / 

(|)r 

V J V' J 
I f m 

V" J 
4)1 Qfi 

V" J 
0" 

V ' J V J 

0/^M) 

The matrices appearing in the global mass matrix (TV-IO) of the multibody structure 

have the following forms 

M . m. 

V y 

(IV-12) 

M * = 
/ \ * k 

Pm I G l m + g 
V- / 

f \ 
Pm 

V Ji J 
Gl jCj 

M ™ = J U , „ d m + 2 : 
M j=l 

U , . 
V yj 

m - c ; P, n i j C j e. f m 
V y j y 

Mrmj=C; 
/ . V 

Pi 
V- J 

n i : (IV-15) 

Bj 

(IV-16) 

M « = I " ™ + E 
j=l yj V" JI 

Pm m . y p ^ C j Pj n i j C - C j Pj n i j C j P . 
V" yj 

+ x 
j=i 

CI I C j 0V^I7) 
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j Pm U,mdm + 2 
M \ - / .H 

f \ 
u f m n i : 

V Ji 

Pm c ; 
V- y j 

Pj e . f m 
V y j , 

j=i 
c ' 

•( , Y 
Pj 

V- y 
n i j C j 

f \ 
U , . 

V yj 
- c " C j 0 fm 

V y j y 

(IV.18) 

M L T c / 
\ - y j v 

p- m , + c ; I « " (IV-19) 

^ * b j = 
/ 

P m 
I - y j ]% 

C l J V , , d m + C j J Pj 
q \ - y 

V^^jdm (IV-20) 

M „ . = j U , „ U , „ d m + 2 
M j=l 

u . f m 
V yj 

U , f m 
V yj 

n i j H 
r Y 

Gfm 
V y j 

C " I % " C j 
y 

Gfm 
V y j y 

f 

j=i 

r y \x 

V 

Ufm 
V yj 

c [ P J 
V" J 

m j C j 

f \ 

Gfm 
V yj 

+ 
r _y 

0 f m cj 
f \ 

n ^ C j 
V yj V- y 

Ufm 
V yj 

(IV-21) 

M 
r V _ / . V / V 

mco, = - n i j u . f m 
V yj 

C P j + e . f m 
V yj 

(IV-22) 

^mbj -

y 
U , 

y 

f m 
V y j ^ 

c ; j -V . j d m + 8 , ^ C } j Pj ckn ( r y ^ 3 ) 
V y j y 
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(IV-24) 

Mcuj bj- J Pj 
A" 

V f jdm (IV-25) 

.,= J V, j 
Bĵ  V 

V f j d m (IV-26) 

V-2-2. Comments and Assessment of Method I Based on 

Mathematical Model A 

Method I is akin to nonlinear dynamics modelling. The hybrid set of coordinates is 

necessary for accommodating large angular displacements. The resulting 

expressions are fairly complex for a linear articulated peripheral multibody structure, 

even for this case that the appended components do not carry any distributed mass 

payload. The development effort for the formulation of mathematical model A, is not 

high as such, but caution should be exercised for the correct interpretation of 

resulting integrals from the mathematical manipulations. 

It may be useful to examine three different partitions of the global mass matrix in 

order to gain insight into the physics of the system. These are 

M _ 

Sym 

M 

M . 
(|)m (IV-27) 
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f 

ML_. 

J 

^oijCOj ^bjCOj 

Sym M,. 

(IV-28) 

(IV-29) 

The partition matrix (IV-27) would give the kinetic energy of the multibody system if 

the appendages were rigid and rigidly attached at the interfaces, i.e. all articulation 

axes locked. This is not a very obvious observation, since by examining the 

individual terms, the particular form of the terms obscures physical interpretation. If 

the main platform is restrained externally, so that it possesses no rigid-body degrees 

of freedom, the first two columns and rows of global mass matrix should be removed, 

along with terms in the first two columns and rows of the global stiffness matrix. 

The partition matrix (IV-28) contains the interaction of the rigid-body motion and the 

deformation of the main platform with the rigid-body motion (due to articulation) and 

the deformation of the appended component Bj, columns 1 and 2 respectively. 

The partition matrix (IV-29) would be the kinetic energy of the appendage B,, if the 

interface constraints were external boundary constraints of the appendage. The 

contribution of the articulation and the flexibility appear explicitly and the interaction 

term exists only if the component modes used are not the normal modes of the 

boundary eigenvalue problem. 

By examining individual terms, it is difficult, in a lot of cases, to decide on their 

physical significance, and the interpretation of the mathematical expressions is not 

readily obvious. Interpretation of the significance of particular terms is only feasible 

by examining those as part of the global mass matrix. 
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In the computational part, the large number of integration schemes for each 

component, the arbitrary number of appended components and the 'correction' terms 

appearing in most of the expressions complicate the programming part of the model. 

In addition to this, if specific terms should not be included for an application, 

particular attention should be exercised for their elimination. Moreover, the validation 

of parts of the program can become very tedious. The potential accuracy of the 

results is subject to the large number of integration schemes appearing in the terms. 

Verification of the final results can only be possible with comparison to results 

obtained from commercial packages. 

V-3. Mathematical Model B 

V-3-1. Global Mass Matrix Derivation 

Using method II, the mathematical model B has been developed for modelling 

exactly the same structure as mathematical model A; that is, a cluster formation 

multibody structure where the appended components can carry concentrated, but not 

distributed, mass payloads. The difference of method I I to I, is mainly that the 

second utilises a generalised coordinate set instead of a hybrid one. This is only 

possible under the assumption of small angular displacement, hence the rigid-body 

motion of the components can be described with the use of rigid-body modes. 

The kinetic energy for a multibody structure with k number of appended components 

is expressed as 

T = i j f J y - ' I f J Y - " ' ! dm + i t j f 'Y) ' '1 f 1 dmdV-so) , M -Mv y 

The kinetic energy expression has been presented in (IV-30) for a continuous 

multibody system. For discrete modelling the integration schemes should be 

substituted by summations over the nodal points of each component. 

97 



Chapter V - Mathematical Models of Peripheral Multibody Structures 

Kinetic Energy of the Main Platform 

In the second method, simplification is accomplished by describing the rigid-body 

motion using rigid-body modes. The absolute linear and angular velocity at any point 

in the main flexible platform can readily be expressed as 

Vr 
M -

M -

(V-31) 

(V-32) 

Kinetic Energy of Appended Component B, 

Similarly the angular velocity of the reference body frame of an articulating appended 

component B, relative to the interface reference frame of the main platform can be 

expressed as 

COj 
Bj -

rel 
© 0 

\ y j 

Qrj (V'33) 

From equations (V-31),(V-32) for Q = J , the linear and angular velocity of a frame 

travelling with the junction point J can be readily obtained. Substituting the (V-

31),(V-32) for Q = J and (V-33) into (111-15), and using (HI-17), the absolute 

linear velocity at an arbitrary point in an appended component Bj, with the 

assumption of small angular displacement, can be expressed as 

C i ( U j , q . - V j Q j (V-34) 

where 
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V j = U r j u . r 
V Vj 

+ p j 

V yj 

(V-35) 

Substituting (V-31) and (V-34) into the kinetic energy expression (IV-30), the global 

mass matrix for a cluster configuration multibody structure can be readily obtained in 

the following form 

M . 

Mmm M mbi 

^bib, 0 0 

0 

SYM M bib; 

(V-36) 

where generalised coordinate set of the multibody structure is given by 

qj (V-37) 

y 

and j=1 ,..,k , where k is the total number of appended components on the main 

platform. 

The submatrices in the global mass matrix of the structure have the following 

expressions 

U _ d m + 2 
mv y 

8m 
V yj 

c 7 c 
r \ 

0 . 
V y 

-l-m U . 
ni 

V yj V yj J J 

k 

j=I 

m U„ cl 
r 

Pj 
I yj V- y j 

©n 
V yj 

C + 0m 
V Ji 

" C l p / c 
y j 

u „ 
V y j ; 

(V-38) 
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r ^ 
Urn 

V VJ % 
C j J V j d m + C j J Pj V j d m (V-39) 

V / j 

Ivlbj bj= 1 T f j d m C\/"40) 
Bj\ 

V-3-2. Comments and Assessment of MethodII Based on 

Mathematical Model B 

The use of generalised coordinates, for the description of the rigid-body motion for a 

geometrical linear system, simplifies the form of the resulting equations. Moreover, 

the physical interpretation of the terms is obvious, and possible even without 

examining the terms as part of the global mass matrix. 

Expression (V-38) would give the kinetic energy of the system if all appendages 

were rigid and fixed on the main platform. This term cannot recognise that the 

appended component may be articulating. If in actual fact the appendages were rigid 

and articulating, (V-38) alone would not be able to give the correct kinetic energy of 

the system. Contribution of the other terms would be essential for the differential 

system to recognise the articulation of the appended components. 

Expression (V-40) would represent the kinetic energy of component B,, if the 

interface conditions were the external boundary constraints of the component, i.e. the 

component isolated and restrained relatively to the inertial space. The kinetic energy 

of the component, not interacting to the platform, is a contribution from the rigid-body 

motion, due to articulation, and the deformation of the component due to flexibility. 

The term (V-40) exists if either of the two contributions exist. 

Expression (V-39) represents the interaction of the rigid-body motion and 

deformation of the main platform with the angular motion and deformation of an 

appended component B,. If one assumes that the appended component is not 
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articulating relatively to the main platform, then the term would only give the 

interaction of the platform motion (flexible and rigid) with the deformation of the 

component. If the appended component were rigid and non-articulating, then this 

term would disappear, along with (V-40), and the kinetic energy of the system would 

be represented by (V-38) alone. 

The programming, validation and verification of results has been simplified compared 

to mathematical model A. Furthermore, the lower number of integration schemes will 

potentially give more accurate results, than those obtained form model A. 

V-4. Mathematical Model C 

V-4-1. Global Mass Matrix Derivation 

Using method II, the mathematical model of a cluster formation structure has been 

derived for the case the appended flexible components can carry distributed mass 

rigid payloads. In the same mathematical model explicit expressions of the torsional 

deformation of beam-modelled appendages, along with terms that allow the 

kinematical description of the Timoshenko beam theory, have been included. 

The kinetic energy of the multibody system can be written as 

\T/ 

M -
d m 

j= i 

where 

JL: ' v jW 
Bj -

I , M 
V j 

Bj • 
]dm + ^ 

p=i bIpV •' 

M") l y M 
v * - I I Vw kkn 

(V-41) 
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k is the total number of appended components 

s is the total number of distributed mass rigid payioads on each appended 

Distributed mass rigid payload or cross-section of beam structure 

Figure V-2 Component Bj and distributed mass rigid payload or beam cross-

section. 

In Figure V-2, the vector quantity r . locates the position a point M which is part of 

the rigid body configuration of the component Bj , i.e. before the deformation of the 

component. The point M can be the position of an integration point on a cross-
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section of a beam structure and/or the location at an integration point on a distributed 

mass rigid payioad before the deformation of component Bj. In both accounts, the 

position of the Tj after the deformation of the component Bj will be designated by 

vector i j . The vector has rotated by an amount equal to the angular 

displacement at point Q due to deformation and translated by an amount equal to 

the linear displacement of the point Q due to deformation. In both occasions, the 

magnitude of the vector i j remains unchanged, since it is part of either the 

distributed mass rigid payioad or the cross section of a beam. 

From the above description, and placing a local reference frame at point Q, it can be 

verified that the integration or summation point M' within each continuous or discrete 

component relates to the arbitrary point Q with the following expressions 

I M I Q 
Vj = Vj 

f \ 

h 'cOjO (V-42) 

I M 
Vjp — 

f •\ 

- y 
B 

V " J 

(V-43) 

yp 

where expression (V-42) relates M and Q for the case that M is an integration point 

within the elastic domain and expression (V-43) relates IVI and Q for the case that M 

is an integration point within the mass distributed rigid payioad. In both cases Q is 

considered a point within the elastic domain that its motion is known, using 

expressions (111-15), (111-16). Points Q , M are shown in Figure V-2. 
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Equation (V-42) as such will only be used for a beam-modelled structure, meaning 

that integration of the second term of equation (V-42) in the kinetic energy 

expression will take place only for a beam structure. 

Substituting (III-15), (111-16) into (V-42) and (V-43), with the assumption of small 

angular displacement, and using the notation established for cluster formation 

structures, the following expressions are obtained respectively 

' v j ' ' = C j 'Vm'-
Bj - J M -

r \ 

' M -
y 

rel 

+ u . -
Bj 

f • \ f 

+ 
y 

/ . \ 
+ 

f \ 
e. 

Bj 
(V-44) 

I M I J 
V j p =C: V m -

Bj - M 

f \ 
Pi 

VP 

C j 'cOm'-
M -

+ r . 
Bj , - J 

rel 

Bj-J 

+ U: 
r • \ 

+ 
Bj 

Pj 
yp ; 

f . \ 

+ 
f \ 

Bj 
8; ( \^45) 

where 

( \ 
is the position where the distributed mass payload mounds within 

component Bj, measured from the origin of the body reference frame B, 

104 



Chapter V - Mathematical Models of Peripheral Multibody Structures 

In expression (V-44) the quantity 8 is the rate of the angular deformation at an 
Bj 

qrbitrary point within the structure, and if the structure is a beam, then 9, will 
Bj - J 

contain the torsional deformation rate of the beam along with the bending angular 

displacement rates due to deformation, which in the case of the Timoshenko beam 

theory will include an extra rotational rate of the cross-section due to shear. 

The vector quantity r j in equations (V-44) and (V-45) has directly been substituted 

by r j , since small linear deformation has been assumed for the elastic domain, 

therefore the angular displacement of the vector r j is sufficiently small. 

For a beam component equation (V-44) is integrated both over p, and r , , 
B j - B j - J 

whereas for any other structural component only over (locates point Q ). 
Bj -

The following expressions can directly be substituted into (V-44) and (V-45): 

Expressions (III-17),(III-18), regarding the deformation approximation of the 

elastic domain. 

Expressions (V-31),(V-32), which describe the absolute linear and angular 

velocity of the main platform at the joints to the appendages by using rigid-body 

modes and component modes. 

Expression (V-33), which describes, using rigid-body modes, the angular 

velocity of the body reference frame of component Bj, due to articulation, relative 

to the joint local reference frame within the main platform. 

By substitution of the above into (V-44) and (V-45), the following expressions are 

obtained respectively. 
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I M 
c , 8 m 

V Jj 
q m + ^ ^ q 

J 
V y 

" j i j 

(V-46) 

I M 

B j ' " 
c 

r \ 
Urn 

jv y j 
P i 

VP 

C , e „ 

y j 

qm + 
/- \ 

V j 
\ yp 

Qj- Tj 
Bj 

V y 

r \ 
£2) q j 

\ y p 

(V-47) 

V , u 
r j 

u f j U n + 
V Vj ^ 

P j 8 , J 
V y j 

(V-48) 

0 . J o f j 

r \ 
0 < j 

V y j 

(V-49) 

Substituting (V-46), (V-47) into (V-41) and performing the integrations, tine global 

mass matrix of the cluster structure has the form of (V-36), where the partitions are 

M _ _ = U r 

M\̂  y 
Urndm + Z 

j=i \ y j 

C } f ' " C @m + m j 
jV y j 

m 
V yj 

U „ 
V y j y 

k 

+ E 
j=i 

ni j 
r V 
u„ 

/ V f \ 
c j Pj C 

V yj 
o „ m 

jV VJ 
4" o „ c p j c . 

V yj V- y 
Urn 

V Jj Ji 

(V-50) 
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( f 

V / j 
C } j V j d m + 8 ^ C } j Pj V j d m 

V yj 

+ 0,, 
V yj Bj 

j i ( x ) O j d x + 
/ V 
0 

V yj 
C ' I 

p=l 

/ \ 
r P / P Q.. 

\ yp 

+ CI I 
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\ yp 
r j 

V VP 
mjp 
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(V-51) 

V j U m + n O j i ( x ) Q j dx + y 
%%pV y wL ^ L ^ 

v.. 
r Y 

n 

\ yp 

/ \ 
r P / P 

\ yp 

p=l 

/ ^ 

V . 
\ yp 

/ ^ Y 
r j " m . 

/ \ 
Q 

f 
+ n . m . 

JP 
\ yp \ yp \ yp \ yp 

( \ 
V : 

\ yp 

(V-52) 
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V-4-2. Comments and Assessment of Method II Based on 

Mathematical Model C 

Mathematical model C is a generic model of a realistic peripheral structure in space. 

Beam modelled appendages are included in the model. A number of appendages, 

such as booms, can be accurately modelled as beams. Moreover, the model allows 

for the inclusion of distributed mass rigid payloads. It is not uncommon in space 

structures that the appendages may carry rigid distributed mass payloads, such as 

control hardware units, and in a lot of occasions the centre of mass of the rigid 

payload is at some distance from the mounting points. 

Mathematical model C, is therefore a comprehensive model, which can capture the 

dynamics of a realistic cluster formation structure in space with the minimum size of 

formulated differential equations. Nevertheless, it has some drawbacks. Before 

preceding to those, it may prove helpful to examine closer the terms in the partitioned 

submatrices of the global mass matrix. 

As in mathematical model B, which has been developed with the same method as 

the current model, the matrix would be the kinetic energy of the system, if all 

appended components, loaded with the mass and inertia of the payloads, were rigid 

and fixed on the main platform. All inertia related terms in represent the 

combined inertia of the appendage and the rigid payloads. The term would 

give the kinetic energy of an appendage Bj, loaded with rigid payloads, if the 

interface constraints on the appendage were real external boundary constraints and 

the appendage were isolated from the platform. The term is an interaction 

term between the motion of the main platform and the motion of the appendage Bj. 
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More specifically, term 1 in (V-51) is the interaction of the main platform with an 

appended non-beam component Bj, loaded with the mass of the distributed mass 

rigid payloads concentrated at the mounting points. For facilitating the numerical 

integration, term 1 integrates directly the mass of the rigid-payloads along with the 

distributed or discretised mass of the component. Term 2 needs to be calculated only 

if the appendage has been modelled as a beam structure. Hence, term 1 and 2 

would give the interaction of the main platform and a beam appendage carrying 

concentrated mass. Term 3 gives the contribution in the interaction of the distributed 

mass payloads. If the rigid payload mounting point is coincident to its centre of 

mass, then F ' ' ' is the rotary inertia of the payload around its centre of mass. Terms 

4 exist only if the payload is offset, i.e. its centre of mass is on a different location to 

the mounting point. This distance is described by I r . | , and if equals to zero all 

terms disappear. 

Term 5 in (V-52) would give the kinetic energy of a non-beam component, if isolated 

and with all internal constraints considered as external boundary constraints. If this 

component has been modelled as a beam then term 6 needs to be included in the 

mathematical model. In term 6 the matrix quantity contains terms for the rotation 

of the beam appendage as a rigid articulating component, useful mainly for 

describing the articulation around the beam axis, torsional deformation and bending 

deformation terms. If the appendage has been modelled as in Timoshenko beam 

theory the shear and the rotary inertia of the cross-section are directly taken into 

account by term 6. If static modes have been used to describe the local deformation 

of the components at the interface with the main platform, contains 'correction' 

terms to re-enforce the interface geometric compatibility. Term 7 exists only if the 

appendage is loaded with distributed mass rigid payload. if the payload is offset 

terms 8 complement the rest of the terms. 
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The drawbacks of the mathematical model C, other than its inherent complexity for 

programming, are mostly attributed to the essential interference of the analyst with 

providing specific information to the model. Assuming that the information of the 

inertia related data is collected from a lumped mass matrix of the component, the 

following problems can be located. Information about the distributed inertia of a 

structure is usually not available from the a lumped mass model. Although the inertia 

of a component can be calculated very accurately by using the nodal lumped mass, 

the nodal masses of a beam structure cannot provide the inertia of the beam around 

its longitudinal axis. Moreover, even if the inertia is provided, the distribution of the 

inertia along the axis needs to be calculated. In theory this may be a simple 

operation, but in practice, for an arbitrary number of beam appendages of non-

uniform cross section, this might be time involving. In addition to these, information 

needs to be provided to the analyst about the mass and offset of the rigid payload. 

The mass of the payload cannot be separated easily form the nodal mass of the 

flexible component in the lumped mass matrix, at least not all the times. The rest of 

the inertia related information can be retrieved and processed with fair ease to 

provide the total mass and the inertia of arbitrary non-beam components. 

Another drawback of the model is that both a lumped mass finite element model, for 

extracting nodal masses, and a consistent finite element model of a component, 

usually necessary for the accurate extraction of the normal modes of the component, 

need to be derived. Since both models need to be generated, time related 

disadvantages are expected. 

Nevertheless, other than a few disadvantages that occur generally in all 

computational applications, model C is an excellent tool for design and analysis of 

realistic cluster formation structures in space. 
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V-5. Mathematical Model D 

V-5-1. Global Mass Matrix Derivation 

Mathematical model D has been developed using method I I I with the intention to 

model any cluster configuration structure in space by treating all components alike. 

The kinetic energy of the multibody system can be expressed as 

T = i X, 
yr / . \ 

jyjFEM 
M - j = l 

k f V . \ 
M ™ X| (V-53) 

where 

M FEM 

M FEM 

is the total number of appended components in the multibody system, 

is the consistent mass matrix of the main platform. 

is the n ™ x ( 6 x l ) column matrix containing n™ absolute linear and 

angular velocity vectors (6x1) at the nodal points of the component, and 

n™the total number of nodes in the main component. 

is the consistent mass matrix of the appended component Bj. 

Xj is the n | x ( 6 x l ) column matrix containing n j absolute linear and 

angular velocity vectors (6x1) at the nodal points of the component B,, and 

n | the total number of nodes in the component Bj. 

Kinetic Energy of Main Platform 

For the total of nodes in the main platform the following expression can directly be 

verified 

_ UBRARY 
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Xm=(&mqr 
M -

(V-54) 

where 

0 ^ is a ( n f X 6 ) x (n™ + n™) matrix containing n " component modes for 

approximating the deformation field of the main platform and n " t h e rigid-

body degrees of freedom of the main platform. 

Kinetic Energy of Appended Component B, 

The absolute linear and angular velocity of a nodal point on a discrete component 

can be directly obtained from expressions (III-15) and (111-16) respectively. The 

following expressions can be substituted into equations (111-15),(HI-16). 

Expression (III-17),(III-18) for approximating the deformation field of any 

component. 

Expression (V-33) for describing the angular velocity of the appended 

component body reference frame relative to the interface reference frame of the 

main platform at the joint J. 

By substitution, expressions (III-15) and (111-16) obtain the following form 

U „ 

V VJ 
P j C j 8 . 

J I / j 
q m - v ; q j (V-55) 

Bj 
e 

V yj 
qm+^Iqj (V-56) 

where 

112 



Chapter V - Mathematical Models of Peripheral Multibody Structures 

v; 
c \ 

+ P i 

\ y j 

r \ 
(V-57) 

r j ( > 
Q; = (V-58) 

V V y V 

Using (V-55) and (V-56) the absolute linear and angular velocity (6x1) of a nodal 

point N in the discrete appended component B, can be expressed in the following 

compact matrix form 

X , = 
Bj 

Bj -

. 3 . 

= p: 
/ \ 

On 

V yj 

qm+ 'F j -q j (V-59) 

where 

P" = JI 

X 

P j 
y 

C j 

(V-60) 

f \ 
V y j (V-61) 

/ Y 

n; = - I p j 

1 ) ! - Y ' 

V ' y 

(V-62) 

By stacking the (6x1) vector of (V-59) for all n | nodes of the component Bj, the 

following form is readily obtained 

Bj 
X.=P 

j V J 

qm+^^jAj (V-63) 
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where 

f \ 
(V-64) 

is a (n| x 6 ) x ( n ^ + n | ) matrix and 

n | is the total number of nodes in the component B, 

n;j the rigid-body modes 

n | the component modes O f j 

also includes r i j number of 'correction' terms 

f \ 

that re-enforce 

\ y j 

compatibility between adjacent components if violated by the selected set of 

component modes (Appendix-A). 

The matrix H j is a (6x6) 'correction' and 'joint' coefficient matrix. By manipulating 

the entries i n l l j one can control which axis of a joint is locked or free. At the same 

time 'correction' term coefficients allow only part of the 'correction' terms to be used 

depending if are essential for a particular direction of a joint or not. 

The matrix 
r \ 

0 m 

V y j 

contains the component modes of the main platform at joint J. 

Substituting (V-54) and (V-63) into the kinetic energy expression (V-53) the global 

matrix of the form (V-36) is obtained, where the submatrices are the following 

M, 
( ^ 

V y 
M r 

j=l 
On 

V y j 

y V 
Pj 

k z 

M EEM 
/ \ 

j 0 m 

A y j 

(V-65) 

114 



Chapter V - Mathematical Models of Peripheral Multibody Structures 

Mmbi 
\ Ji 

r 

V y 
Y j (V-66) 

M„ 
f 

V y 
Y j (V-67) 

Y-5-2. Comments and Assessment of Method III Based on 

Mathematical Model D 

Since method I I I uses a generalised set of coordinates, the submatrices 

interpretation is exactly the same as it appears in previous section for the 

mathematical model B. The use of generalised coordinates, along with the use of the 

consistent mass matrix of the structure, results in a generic and compact form of 

differential equations. There is no need to separate the components to beam-

modelled or components which may be loaded with distributed mass rigid payloads. 

All components are treated alike. The result of this is that the complex equations that 

appear in mathematical model C, along with all the drawbacks detailed in the 

relevant section can be circumvented. The consistent mass matrix contains all the 

information regarding concentrated or distributed mass rigid payloads. Utilising the 

mass matrix explicitly in the equations, all the information is transferred indirectly into 

the mathematical model. 

Moreover, the term designated as 1, in (V-61), is the rigid-body mass matrix (6x6) of 

component Bj. This is particular useful, since by simple multiplications involving the 

consistent mass matrix of the component, its inertia characteristics are revealed. The 

exact form of the matrix is described in chapter I I by expression (11-4). Complex 

computer programs for calculating the rotary inertia and mass of a component, by 

using information from the lumped mass matrix can be avoided. As importantly, there 

is no more need to create a lumped mass model of a component, along the 

consistent one, with obvious computing time related advantages. 
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The rigid-body mass matrix obtained by expression 1, is extremely accurate, and its 

accuracy depends on the number of nodes of the component. The rotary inertia of a 

beam structure around the longitudinal axis can easily be obtained and in actual fact 

with great accuracy compared to exact hand calculations even for a small number of 

nodes. It is obvious that the knowledge of the inertia characteristics is not directly 

needed in model D, but this particular manipulation can be used in conjunction with 

the loaded-interface method for extracting loaded-interface normal modes for any 

component in the structure. 

The interference of the analyst to provide 'extra' information to the mathematical 

model, is eliminated. Moreover, the potential accuracy of the system is high since 

integration schemes have been substituted by multiplication of matrices. In this work, 

in order to achieve even higher accuracy of results, the consistent finite element 

matrix of each component, as well as the stiffness matrix, are included in the 

programming network with precision of 12 decimal places. 

Returning to the mathematical model D, it is apparent that the programming of the 

global mass matrix is straightforward compared to methods I,II. The potential 

computing time is also reduced since the integration schemes are eliminated both 

explicitly from the equation and also implicitly from the calculation of the inertia 

related terms. 

The physical significance of each term is clear and especially the interaction 

dynamics of the platform and the components. The effort to analytically develop the 

mathematical model D is minimal compared to model C. Programming validation is 

also easy, since the form of the matrices imported in the model or created within the 

model is very simple. 
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V-6. Comparison of the Methods and Conclusions 

The assessment of each individual method and indirect comparison to other methods 

has been performed, based on the mathematical models produced for cluster 

formation structures in space. In this section, the methods have been compared 

directly and conclusions drawn. For this purpose a few general criteria have been 

established out of the experience gained in developing and programming the 

methods for obtaining efficient mathematical models of multibody structures. A 

particular pairing of comparisons has been chosen. Method I is compared to method 

I I using the mathematical models A,B respectively. The comparison of the methods 

I,I I is shown in Table V-2. The second pair of comparisons is between methods II 

and III, using mathematical models C, D. The comparison of the methods II, I I I is 

shown in Table V-3. 

All methods result in the same order differential equations. Methods I,II are 

essentially very similar other than the coordinate sets utilised for each. Method I 

uses a hybrid coordinate set and therefore is akin to nonlinear modelling. Despite its 

generality in this respect, hybrid coordinate set overcomplicates the resulting set of 

equations even for the simplest of cluster formation structures. It would be difficult to 

generalise such a model to include distributed mass payloads and beam-modelled 

appendages. 

The method II, is much more efficient than method I, since it uses a generalised set 

of coordinates, by describing the rigid body motion using rigid-body modes. 

Nevertheless, for appended components loaded with distributed mass rigid payloads, 

the resulting equations are fairly complex which means are difficult to develop, 

program and validate. Moreover, the interference of the analyst may become 

laborious. 

Method I I I uses explicitly the consistent mass matrix of the components and a 

generalised coordinate set. Both these characteristics contribute to the efficient 

mathematical modelling, and result to a compact form of differential equations. 

Mathematical model D, obtained by method III, is mostly efficient for modelling 

cluster formation structures in space. It can incorporate any kind of component 

modes in the literature, contains 'correction' terms for any possible application, any 
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gimbal articulation axis can be free, locked or driven, and results in a compact form 

of equations of low order. Moreover, it has a high potential accuracy of results and 

the interference of the analyst has been eliminated. 

In the form of equations (V-65)-(V-67), method I I I provides an excellent tool for 

research, analysis and design of large-scale flexible multibody cluster formation 

structures in space. For issues involving the dynamical behaviour of category I I 

missions in space, such as main platform attitude control, stringent payload pointing, 

vibration suppression, control structure interaction, or general control algorithm 

implementation etc., mathematical model D can definitely be a solid basis for such 

applications. 

As importantly, method I I I can easily furnish linear low order mathematical modes for 

virtually any tree-configuration articulated multibody system that belongs in category 

I I missions in space. 
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Criteria Method I 

(Mathematical Model A) 

Method I I 

(Mathematical Model B) 

Hybrid Coordinate Set Generalised Coordinate Set 

Discrete or Continuous 

Components 

Discrete or Continuous 

Components 

Model Complexity High Low 

Analytical Development 

Effort 

Medium Low 

Physical Insight Difficult Clear 

Programming Effort High Low 

Potential Numerical 

Accuracy 

Average Good 

Computing Time for 

Completion of Application 

Average Good 

Programming Validation 

Effort 

High Low 

Analyst Interference Low Low 

Results Verification DMkuK Easy 

Table V-2 Comparative study between method I (model A) and method I I (model B) 
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Criteria Method I I 

(Mathematical Model C) 

Method I I I 

(Mathematical Model D) 

Generalised Coordinate Set Generalised Coordinate Set 

Discrete or continuous 

components 

Discrete Components 

Model Complexity High Low 

Analytical Development 

Effort 

High Low 

Physical Insight Average Clear 

Programming Effort Very High Low 

Potential Numerical 

Accuracy 

Average Very High 

Computing Time for 

Completion of Application 

High Low 

Programming Validation 

Effort 

Very High Low 

Analyst Interference Average None 

Results Verification Very Difficult Easy 

Subject to generalisation No Excellent 

Table V-3 Comparative study between method I I (model C) , method I I I (model D) 
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V-7. Generalised Forces 

For presentation purposes the generalised forces analysis will be performed 

assuming a discrete component, ie. a component spatially discretised using the finite 

element method. 

The generalised force vector due to forces and moments applied on a discrete 

component Bj can be written as 

- j 

e ' v " 
Bj - j 

0 q 

f \ 
Bj - j 

n=l 

V ~ J 

Oq 
•q 

V ~ J 

(V-68) 

where 

n j is the total number of nodes in the component B, 

Bj _ j is the absolute linear velocity of node n within component Bj 

'co" is the absolute angular velocity of node n within component Bj 
Bj - j 

Equation (V-68) can be written in the following form 

2 = t 
- j n=l 

t? X 

V y 

F 
- j n 

(V-69) 

where 

X 
Bj - j 

Bj - j 

' co" 
V % - j / 

(V-70) 
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- J n 

is a 6x1 vector of the forces and moments acting at node n of 

component Bj 

Finally the generalised forces acting on the component Bj can be expressed in the 

compact form 

Q 

where 

r 
0 X 

Bj - j 

iDq 

V ' J 

(V-70) 

r, 
X = 

Bj - j 

V 

X X 
% - j % - j 

V y V y 

(V-71) 

, j 1 
. . . F 

. J" 
(V-72) 

All previous expressions are general enough and can be used to calculate the 

generalised forces for any component in a multibody chain. 

At this point the analysis will be concentrated in a cluster formation structural system. 

Substituting expression (V-63) into (V-70) for any appended component and (V-54) 

into (V-70) for the mainbody, the expression for the generalised forces takes the 

following compact matrix form 
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Q = G f 
(V-73) 

where 

G = 

0 

0 

0 

1 

T % 

0 

0 

0 

Y 7 

0 

0 

Y j 

(V-74) 

F n 

V \ 

F , --
\ / \ y \ / 

\T 

(V-75) 

and 

is a (n™ X 6 ) x (n™ + n " ) matrix containing n™ component modes for 

approximating the deformation field of the main platform and n™the rigid-

body degrees of freedom of the main platform. 

Y ; is given by (V-64) 

Pj is given by (V-60) 

V-8. Frequency Response Analysis 

Using Lagrange equations it can be shown that the resulting linear equations of 

motion for a multibody structure have the following form. 

M Q q + BQ q + KQ q — Q (V-76) 
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where 

M q is the global mass matrix. 

K q is the global stiffness matrix. 

Bq is the global viscous damping matrix. 

Q is the generalised force vector. 

q is the hybrid or generalised coordinate set. 

Two methods will be exploited for performing a frequency response analysis. The 

first is a direct method and the second uses a modal substitution. The modal 

frequency response analysis may be more computationally efficient than direct 

frequency response analysis if the mathematical model (V-76) still contains a large 

number of differential equations. This may be the case where the structural system 

contains a large number of components and a high number of component modes 

have been used for stringent convergence. 

V-8-1. Direct Frequency Response Analysis 

Substituting equation (V-73) to (V-76) the following form is obtained 

Harmonic excitation is assumed where forces and moments can be applied at any 

node on the structural system. The harmonic excitation frequency is identical at any 

forcing point, however forces can have arbitrary magnitude, direction and phase. 

Using complex notation the harmonic forcing vector can be written as 

f (T/-78) 

where 

CO is the forcing frequency. 
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f * is a complex vector representation where each entry has the form 

(V-79) 

where 

foi is the magnitude of the force applied at any nodal degree of freedom 

(pi is the phase angle of the force applied at any nodal degree of freedom 

The solution should be of the form 

q = q o e jfflt (V-80) 

where 

9 ok 
JVk (V-81) 

Substituting (V-78) and (V-80) into (V-77) and adding structural damping at 

component level, the following system of complex algebraic equations is obtained 

+j ( a>B^+D,)+K^ J « ; = G f l (V-82) 

where is the global structural damping of the system and has the form 

DR 

Dr 

D. Gj 

(V-83) 

where all other entries not designated are zero and the component B, generalised 

structural damping matrix is given by 
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; 0 
K fj 

(V-84) 

where 

0 

Kfj 

Sj 

is a n / x n / null matrix and n/ are the rigid-body degrees of freedom of 

the component B,, 

is given by (IV-16) for a continuous component B, and by (IV-20) for a 

discrete component. 
is the structural damping factor for the component Bj. 

For the calculation of the structural damping expressions of each individual 

component it has been assumed that structural damping is uniform within the 

component. In cases where the damping is not uniform, the calculation of the 

structural damping dissipation energy may be difficult to obtain for a continuous 

component. For a discrete component it would be beneficial to obtain the structural 

damping component matrix directly from a finite element model, where the structural 

damping can easily be entered at elemental level. 

The above equation can be solved for any forcing frequency of interest. The solution 

can be written as 

Qok W and V k ( ^ ) for any k=1,..n (V-85) 

where n the degrees of freedom of the truncated system. 

Finally partitioning (V-85) into the 'modal' responses of the individual components 

and substituting the appropriate partitions in equations (V-54) or (V-59) the physical 

displacement - magnitude and phase - can be written as function of the forcing 

frequency. 
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V-8-2. Modal Frequency Response Analysis 

Modal frequency response analysis can be easily accomplished by the 

transformation 

(lo== ]] I)* (T/-86) 

where P is the global modal matrix of the structural system obtained by solving the 

eigenvalue problem related to equation (V-76). 

Substituting (V-86) into (V-82) a transformation to the global modal coordinates has 

been achieved, as opposed to the component modal coordinates of equation (V-82). 

( -m"p" 'MGP-h j P'"(a)BG -^DG) f P ^ K ^ P ) p ; = P ' " G (V-87) 

By retaining only a number of modes in the global modal matrix P, the order of 

equation (V-87) is reduced. The equation in the form of (V-87) is advantageous over 

the form (V-82) in cases that the multibody system has been modelled with a large 

number of component modes. 

Although the mass and stiffness related terms in (V-87) are of an uncoupled form the 

damping terms in general are not. If localised viscous damping is assumed negligible 

and a uniform structural damping is assumed for all components, the form of (V-87) 

can be written in a uncoupled -diagonal- form, which is computationally much more 

efficient to solve. Although this would be ideal, in reality is very rare to come across 

large multibody structures where such hypothesis would hold true. Nevertheless 

equations in the form (V-87) may be still beneficial to use since the order of the 

system can be dramatically reduced. Finally, reconstruction to the physical 

coordinates can be achieved in two steps using equation (V-86) 
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VI Computational 
Implementation 

V11. Network of Programs 

VI-1-1. Network Deliverables 

A network of programs has been developed for the computational implementation of 

mathematical model D. The final deliverables of the network are the eigenvalues of 

the multibody system and the eigenvectors in modal or physical space. Additionally, 

physical displacement, velocity and acceleration of any point on the structure can be 

derived as a function of the forcing frequency using either direct or modal frequency 

response analysis. Results can be compared to those obtained by direct application 

of the finite element method for the verification of theoretical integrity of the 

mathematical model D and as importantly for the assessment of the several 

component mode sets implemented in the code. 

VI-1-2. Network Capabilities 

Special care has been exercised so that the network of programs has a simple 

structure and at the same time be generic enough to model any complex cluster 

formation multibody structure. Attention has also been paid (within the resources 

available) in order for the network to perform its tasks in the minimum possible time. 

The network is easily usable and reliable, since it has been through extensive 

validation tests. 

Components with identical mass, stiffness, damping matrices and interface 

constraints are only analysed once within the same network run. As it will be 

demonstrated later in this chapter, this feature has dramatic effect in sparing 

computing time. Large multibody systems are typical examples of structures with a 

high number of identical components. Further time reduction is realised since 
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matrices for identical components are created, stored and retrieved only once. A 

typical model of cluster formation large flexible multibody structure with a number of 

identical components has been illustrated in Figure IV-1. 

Computing time reduction is also accomplished in extracting static modes using a 

multiple algebraic solution. Special algorithms have been developed for this 

operation and have been incorporated along numerical algorithms from the NAG 

Routines Library. 

The modularity of the network structure suggests that for a number of operations only 

a small part of the network needs to be executed, with obvious computing time 

related benefits. A few examples would be the addition or removal of components, 

structural modification on a small number of components, repositioning or 

reorientation of members, alterations on the interface conditions between adjacent 

substructures, different component set utilisation and component mode set size 

reduction. 

Other capabilities of the network are of inherent nature, since they are directly linked 

to the capabilities of the general methodology and the mathematical model derived. 

VI-1-3. Implementation of Component Mode Sets 

The linear elastic deformation field of each component is approximated using 

component mode sets. The component modes may be combinations of dynamic and 

static modes. Several component mode sets have been incorporated in the network 

of programs. The structure of mathematical model D, being generic and compact, 

allows the direct implementation of any component mode set possible. 'Correction' 

terms are included in the mathematical model D so that interface conditions at the 

boundaries of distinct components are not violated for any component mode sets. 

Since structures in space are composed of complex components, within the 

framework of this network each component has been spatially discretised using the 

finite element method. The network has been interfaced with the commercial finite 
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element package ANSYS. The finite element model of a component is imported into 

ANSYS pre-processor and in the solution phase the consistent mass and stiffness 

matrices of the finite element model are calculated. Using ANSYS post-processor 

facility the matrices can be output in binary files. Specially adapted programs from 

ANSYS Programmer's Manual®^ have been employed to output the matrices in 12 

decimal places precision, reducing the numerical error. ANSYS solver is also utilised 

for deriving the rigid-body modes and dynamic normal vibration modes, subject to the 

interface constraints dictated by the component mode selection. 

Within the network of programs the static modes such as redundant constraint and 

constraint modes, that complement the dynamic modes to form a component mode 

set, are calculated using specially developed algorithms. In total 5 distinct component 

mode sets have been implemented, namely the redundant constraint, constraint, 

loaded-interface, fixed-interface and free-interface component mode sets. 

VI-1-4. Network Structure 

All data extracted from finite element package ANSYS is processed by several 

custom developed programs before reaching the final program of the network. 

Information can also flow into ANSYS and is provided by special programs that 

output the necessary data in ANSYS language. The final program, which is 

essentially the programming code for the mathematical model D, calculates the 

global mass, stiffness, damping matrices and generalised forces acting on the 

system. Subsequently, using external subroutines form the NAG Routines Library, 

the natural frequencies and mode shapes of the structural system are obtained. 

Additionally a direct or modal frequency response analysis can be performed. 

The analyst develops the finite element models of the components that need to be 

analysed in ANSYS language and also provides, using data files, the following 

information: 

i. The kind of flexible component mode set to be used for each component. 

ii. The number of component normal modes to be retained in the analysis, thus 

controlling the size of the formulated problem. 
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iii. The orientation of the appendages relative to the main platform. 

iv. The location points of the appendages on the main platform. 

V. The interface constraints between an appendage and the main platform. 

vi. The external boundary constraints on the main platform. 

vii. The identical components so that they are treated only once. 

viii. The forces acting on the system. 

ix. The time step for frequency response analysis analysis. 

The detailed structure of the network is presented in Table 1. The user's data files, 

programs developed as well as intermediate and final results data files are presented 

subsequently. 
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Appendage] 

ANSYS 

Appendsj.lg 
Appendsj.pst 

Users.dat 

Attach.dat 

\ appends] 

msda 

locatj 

ms daj 

interfema 

inertia 

massj stifj locj 

Global 
Mass Matrix 

Stiffness Matrix 
Damping Matrix 

Generalised 
Forcing 

Eigenvalue 
Analysis 

Modal or Direct 
Frequency 
Response 
Analysis 

cotnpm 

ANSYS Data 

ANSYS 

Rigldml 

Mainbody 

ANSYS 

Mainbodys.lg 
Mainbodys.pst 

T 1 
[ mainbodys 1 locatm 

Users.dat msdm 

msdc 

interfemc 

I 
massm stifm loom 

= ' compa 

Z X " 

Attach.dat 

Boundary.dat 

Normalmi 

feme 

"Rigid -• 
modes 

I 

' Normal 
modes 

static 
modes 

Attach.dat 

Rotation.dat 

Users.dat 
V 

ANSYS Data 

ANSYS 

I 
Rigidaji • : Normalaji 

fema 

Rigid 
modes 

DYNAMICS 

Static 
modes 

Normal 
modes 

Forclng.dat 

Step.dat 

Reapeat for each appendage j with different geometry • + different interface conditions 

CZ\ All included files Executable program Data File Results File 

Table VI-1 Network of Programs based on Mathematical Model D 
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VI-2. Computational Cost 

VI-2-1. Background and Assumptions 

At this part the concentration is shifted on the computing time related advantages of 

the proposed method relative to the computer time consumed by the direct 

application of finite element method for obtaining the eigenvalues and eigenvectors 

of a structural system. More specifically, it will be demonstrated that it is 

advantageous to use the proposed method over the more conventional direct finite 

element approach for formulating and solving the eigenvalue problem. As a direct 

outcome of the computer time advantage to perform an eigenvalue analysis, it can 

be easily extrapolated that the proposed method is faster for performing frequency 

response analysis than the modal, and hence the direct, finite element method. 

In general computer time in eigenvalue analysis increases at about the square or 

cube with an increase in the number of degrees of freedom. Thus, if the structure is 

divided in a number of components, the separate component mode extraction 

analyses will consume much less time than the eigenvalue analysis of the whole 

structure. It is usually the case that the rest of the mathematical operations, ie. 

substructure assembly to form the reduced order mathematical model and the 

subsequent eigenvalue analysis of the truncated model, consume only a fraction of 

the time saved, hence the whole substructuring exercise benefits a large time saving. 

Computer time requirements for an eigenvalue analysis depend on a variety of 

factors. These include amongst others the specific eigenvalue method used, order of 

the formulated mathematical problem, number of eigenvalues extracted, type of 

elements and density of the formulated matrices, time spend on each multiply-add 

loop, time spend to create, store, and read matrices and the memory capabilities of 

the computer. 

Since the purpose is to compare the relative speed of the proposed method to the 

direct finite element method, not the direct calculation of the CPU time, a few 

variables can be excluded from the comparative study. In this sense time spend to 

store and read matrices does not affect the comparison and therefore will be 

eliminated from the study. Additionally it has been assumed that the computer 
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capabilities are such as the eigenvalue problem can be solved in core and no spill 

over effects are present. In fact compromised memory capability is likely to affect 

only the direct finite element approach, and not the proposed method, since the 

formulated matrices in the former are of much larger size. Lastly, time spend in 

generating finite element matrices is linearly proportional to the size of the matrix. 

Therefore creating a single large matrix or a number of smaller ones should take 

approximately the same time. The proposed method has a certain advantage over 

the direct finite element method since matrices of repeated components are not 

generated a second time. Nevertheless, time spend in creating matrices is not 

accounted for, although it would be on the benefit of the proposed method. In 

summary, a number of parameters that would affect the absolute values of computer 

time estimation are assumed of secondary importance for comparison purposes and 

therefore eliminated from the analysis. 

VI-2-2. Time Estimation of Various il^athematicai Operations 

VI-2-2-1. Time Estimation for an Eigenvalue Analysis 

Eigenvalue extraction has been performed using either the Inverse Power Method or 

the Givens IVIethod. The former is advantageous to use with large sparse matrices 

where only a relatively small number of eigenvalues are to be extracted. Matrices 

derived from finite element method application are indeed large and sparse. The 

problems associated with the method is poor reliability caused by skipping 

eigenvalues in cases of high modal density, therefore a Sturm modified version can 

be used. On the other hand Givens Method is best suited to small order problems 

and in the cases that the matrices are dense or a large number of eigenvalues needs 

to be derived. The main problem associated with the method is that it cannot deal 

with semi-positive definite stiffness matrices, hence it is inappropriate for applications 

involving articulated multibody structures. This problem can be circumvented with the 

Modified Givens Method. 

The time requirements to perform an eigenvalue analysis using the Inverse Power 

Method is given by the simplified formula®^ below, leaving aside the secondary 

variables mentioned in the previous paragraph. 
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k g L = k E N C ' + 2 0 N C ) (VI-1) 

where 

k the time spend for each multiply-add loop 

E the number of eigenvalues to be extracted 

N the order of the mathematical model 

C the number of active columns 

The time increases linearly with the number of eigenvalues that need to be extracted, 

rendering the method expensive if a large number of eigenvalues is expected. 

Nevertheless, typical finite element matrices are fairly large and sparse, hence N » 

C, therefore the method best suited to such problems. 

The time required by the Givens method is given by the following simplified 

formula.^ 

k i g j o iY - 2 ^ 
V N , 

(VI-2) 

The method cannot take advantage of sparse matrices and therefore it is very 

expensive relative to the Inverse Power Method for dealing with large sparse 

problems. On the other hand it is ideal for dense matrices such in the cases resulting 

by application of size truncation methods, and especially so if a large number of 

eigenvalues are to be extracted. In these cases the number of active columns C is of 

the same order as the degrees of freedom of the system and the Inverse Power 

Method looses its advantage over the Givens Method unless only the first few 

eigenvalues need to be extracted. 

Utilising equations (VI-1) and (VI-2) and assuming the number of eigenvalues to be 

extracted so that E/N is small, the Inverse Power Method is beneficial over the 

Givens if 
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J ? <: 5 C * 4- 4 0 < : ) (1/1.3) 

In summary the Inverse Power IVIethod has an advantage over the Givens Method 

for matrices where N » C applies, unless a very large number of eigenvalues need to 

be extracted. For dense matrices, unless a very small number of eigenvalues is 

needed, Givens is the preferred method. Equation (VI-3) is an excellent way in 

deciding on the quickest of these methods. 

VI-2-2-2. Time Estimation for the Solution of a System of Equations 

The time requirement for the solution of a multiple algebraic equation of the form 

is given by the following simplified equation.®^ 

T^ig ==]( ( - 1 I f ivi c : ) (l/ i-s) 

where the notation is obvious from the previous equations. 

The first part of equation (VI-5) is the time required to perform the decomposition of 

the Anm matrix and the second part is the solution of the multiple algebraic system 

using a forward and backward substitution. 

VI-2-2-3. Time Estimation for IVIatrix l\/luitiplication 

The time to perform the multiply operation®^ 

• ^NM®MP ~ ( V I 6) 
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is given by 

T,^K=k NIW P r C/L7) 

where 

N is the number of rows of the first matrix 

M is the number of columns of the first matrix 

P is the number of columns of the second matrix 

r is a factor accounting for the density of the denser matrix 

VI-2-3. Time Requirement for the Globai Finite Element IVIettiod 

The finite element model of a structure is a typical example where is most efficient to 

utilise the Inverse Power Method. The time required by the direct application of the 

finite element method is given by 

T.,g = k E J 1 N . C . ' + 2 0 N . C . I ( V I - 8 ) 

where 

l< is the time of multiply-add loop 

Eg is the number of eigenvalues extracted. 

Ng is the order of the global structure mathematical model. 

Cg is the number of active columns of the global matrices. 

VI-2-4. Time Requirement for the Proposed il^ethod 

Although the proposed method (method III) can handle tree configuration multibody 

systems it has been developed analytically for cluster formation structures. For the 

purpose of consistence the following analysis refers to a cluster formation multibody 

structure. 
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Time Estimation for the Eigenvalue Analysis of Individual Components 

The Inverse Power IVIethod has been used to perform eigenvalue analysis on the 

individual substructures. 

T I = k 
eigen / 

E . (0.5 N „ C > 2 0 N „ C „ ) + X f (0.5 N. ,Ci+20 N.,C„) 

(VI-9) 
i=l 

where 

Em is the number of component modes used for the main structure. 

Nm is the order of the main structure mathematical model. 

Cm is the number of active columns associated to the mainbody 

Eai is the number of component modes used for each appended component. 

Na, is the order of the appended component mathematical model. 

Cai is the number of active columns associated to each of the appendages. 

rirep is the minimum number of appended components that need to be analysed. 

Time Estimation for Static Mode Extraction 

The time required to extract static modes can be calculated based on equation 

(VI-5). 

^static - k 

/ \ °rep / 
(0.5 C ^ N „ + 2 N „ ( E „ ) „ C „ ) + 5 ; (0.5 c 5 N . i + 2 N.,(E„„).,C., 

i=l 

(VI-10) 

where the number of static modes for the mainbody and each appe 

respectively given as 

( E „ , L = E ( « . , ) ( ^ " 1 ) 
i=i 
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(Esb,t)ai (VI-12) 

where 

'app is the total number of appended substructures. 

dofai is the degree of constraints at each interface. 

Time Estimation for the Synthesis of the Global Mass Matrix 

The time required to perform all multiplication in order to synthesise the global mass 

matrix of mathematical model D is based on equation (VI-7), where it has been 

assumed that the value r equals to unity for all manipulations. 

(Tmass )D - Tmm + ^mb + ^BH + (VI-13) 

where 

(Tmass)D IS the total time to generate the global mass matrix. 

Tmm is the time to generate the M^m terms given by equation (V-65). 

Tmb is the time to generate the M^b terms given by equation (V-66). 

Tbb is the time to generate the Mbb terms given by equation (V-67). 

T4- is the time to generate the Wj term given by equation (V-64). 

The time required for the above operations is as follows 

Em N : + 
"rep , 

1=1 

(VI-14) 
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f n 

Tbb - k XYNJ, E., +EJ N., 
i=l 

(VI-15) 

2 ( 6 E ^ + 6 E ^ ) 
i=l 

(VI-16) 

f n 

Ty = k 
^ p / 
E « N., E , 
i=l 

(VI-17) 

Time Estimation for the Synthesis of the Stiffness Mass Matrix 

The time to generate the global stiffness matrix is given by the next expression and is 

based on equation (VI-20) 

)d = e„n^ + e5,n„ + x {e.ini + ejn., ) (VI-18) 

i=l 

Time Estimation for the Eigenvalue Analysis of the Reduced Order Global 

Structural Model 

Using equation (VI-3) it can be demonstrated that the eigenvalue analysis is best 

performed using the Givens Method, unless only the first few eigenvalues are of 

interest. The time required to perform an eigenvalue analysis on the reduced order 

mathematical model D can be approximated by the following equation 

T.= \Sub __5 

« g /QIV ~2 
4 k N , (VI-19) 
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where 

Eg the number of eigenvalues 

Nr the order of the reduced mathematical model of the global structure. 

The order of the reduced mathematical model is given by the expression 

N , = (E„ + E . , ) + n . „ (E., + ( E „ ) (VI-20) 

For the comparison of the computer time required by the direct finite element 

approach to perform an eigenvalue analysis relative to the method proposed the 

Computer Time Ratio parameter s is set up and given by the following expression 

= ( t . , . L / ( k i . C + )D + (T™. )D + W . + (T.i. ) (VI-21) 

s>1 implies that the method proposed is faster to the direct element method by as 

many times as the value of s. 

VI-2-5. Case Studies 

The time advantage depends on a variety of reasons, but those inherently linked to 

the structural model are the mathematical size of the entire structure, mathematical 

size of the individual components, the total number of components, the number of 

identical components in the system and the number of component modes used for 

acceptable convergence. It is therefore, the purpose of this section to examine the 

effects of the above on the computing cost relative to the direct application of the 

finite element method. For demonstrating clearly the advantages and limitations of 

the proposed method in terms of computer time a number of case studies have been 

employed. 
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VI-2-5-1. Case Study 1 

It is the intention to demonstrate the relative computer time required to perform each 

stage of the proposed method as function of the order of the entire system and 

compare this to the time consumed by the direct finite element approach for resulting 

to the eigenvalues of the system. 

The structural system modelled, similar to that illustrated in FigureVI-1, is composed 

of a main platform and eight appended components. The platform carrier is 30 

meters long, 1.5 meters high and 1.5 meters wide. It is composed of aluminium 

hollow beam components positioned appropriately in space in order to create a high 

stiffness structure. The appendages are may represent solar panels, antennas, 

booms etc. 

In this study case all appendage are considered different to each other. The order of 

the mathematical model of the main structure is 20% of the degrees of freedom of 

the structural system and the order of each appendage approximately 10%. The 

linear elastic deformation of the main structure has been modelled with 30 dynamic 

modes and for each appendage with 10 dynamic modes. The dynamic modes have 

been complemented with 6 static modes for each interface node. It has been 

assumed that static correction modes have been used to model all components. 30 

eigenvalues have been obtained from both the finite element model and the reduced 

size model. 

For the number of active columns to the order of the finite element matrices has been 

assumed that 

5 _ = ^ = 5 L = o_o2 
Ng 

corresponding to sparse matrices in all cases. 
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The computing time dependency on the degrees of freedom of the system is 

illustrated in Figure VI-2. From Figure VI-2 and the formulas developed several 

conclusions have been drawn. 

i. The larger the number of degrees of freedom of the system the higher the 

time benefits of the proposed method relative to the direct finite element 

application. 

ii. If the total number of the degrees of freedom of the entire structural system 

is relatively small there may be no advantage in pursuing a substructuring 

approach. In the particular example this is true if the order of the system is 

lower than approximately 1400. This limitation has been anticipated for a 

variety of reasons. Most importantly any substructuring exercise ceases to 

be beneficial if the generalised modal coordinates tend to be close in number 

to the physical degrees of freedom of the substructure. In the particular 

example the physical degrees of freedom have been varied but the number 

of component modes stayed unchanged. 

ill. It is difficult to generalise the findings of this study case for any possible 

structural configuration for assessing the exact relative time that the various 

stages of the proposed method require for completion. Relative time 

depends on various parameters such as the order of the system, number of 

component modes included, total number of components, number of 

identical components, density of the formulated matrices, number of 

eigenmodes extracted etc. In general though, it can be concluded, with 

parallel examination of the formulas developed, that the most time-

consuming stage, within the proposed method, is the process of synthesising 

the equations of motion and the extraction of the eigenmodes for all the 

individual components. The extraction of static modes and the eigenvalue 

analysis of the reduced order global model occupy the least time. This is not 

to imply that the static modes contribute only minimally to the computer time 

requirements of the proposed method. At the synthesis stage and the final 

eigenvalue analysis, each static mode included results to the same time 

penalty as each dynamic mode. 

143 



Chapter V I - Computational Implementation 

iv. More specifically, in the particular example the synthesis stage not only is 

the slowest, but also occupies over 90% of the total time of the 

substructuring exercise. This can be attributed to a number of reasons: 

a. The number of component modes used is very large, due to the 

inclusion of static modes for every component. In practice this is not 

always necessary. 

b. The factor accounting for the density of the matrices in the 

multiplications involved in the synthesis process has been considered 

equal to unity. This not always the case and much smaller values can 

be achieved in reality, accelerating the process by far. 

c. The finite element matrices of the individual components have been 

assumed sparse and the number of the extracted normal modes fairly 

low. Increasing the density of the matrices and the number of normal 

modes extracted the eigenvalue analysis of the individual components 

may be as computationally time intensive as the synthesis process. 

V. This example was purposely designed to offer an advantage to the direct 

finite element approach. The finite element matrices of the complete 

structure have been assumed very sparse and a small number of modes 

have been extracted. Nevertheless, it has been demonstrated that even in 

the case of a large number of component modes, dissimilar substructures 

and least favourable matrix multiplications, a substructuring method is in 

general more computationally efficient to the direct application of the finite 

element method. 

VI-2-5-2. Example Case 2 

The purpose of the second example case is to demonstrate the time benefits of the 

proposed method over the direct finite element method as the number of individual 

component increases. 

In the first case the structure is modelled with eight appended components all 

assumed to be different to each other. The order of the mathematical model of the 
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main structure is 20% of the degrees of freedom of the structural system and the 

order of each appendage approximately 10% of the total. 

In the second case the same structure is modelled, with the difference that two of the 

appendages are included in the mainbody model. The rest six appended 

components have all been considered different to each other. The order of the 

mathematical model of the main structure is 40% of the degrees of freedom of the 

structural system and the order of each of the six appendages approximately 10%. 

In the third and fourth cases the same structural models are considered as in first 

and second case respectively with the difference that the appended components are 

considered identical. 

The last case considers a different structure, where the mainbody occupies 20% of 

the degrees of freedom of the total system and six dissimilar appendages share the 

remaining degrees of freedom equally. 

For all cases the linear elastic deformation of main structure has been modelled with 

30 dynamic modes and for each appendage with 10 dynamic modes. It has been 

assumed that static correction modes have been used to model all components as in 

the previous example case. Moreover the ratio of active columns to the order of the 

components is as detailed in the previous example case. 

In Figure VI-3, the Computer Time Ratio s of the proposed method relative to the 

direct finite element method has been illustrated as function of the total degrees of 

freedom of the structure. The conclusions of this example case are the listed below. 

i. The number of identical component is a crucial factor and the relative speed 

of the proposed method increases as the number of identical components 

increase. By examination of the formulas presented it is apparent that the 

number of identical components affects the time of every stage in the 

substructuring process other than the final eigenvalue extraction. 

ii. The effect of the number of appendages on the computing time of the 

proposed method is less straightforward. Figure VI-3 demonstrates large 
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differences in computer speed between two structures with the same number 

of dissimilar appendages and the same number of total degrees of freedom. 

The difference between the two cases can be traced in the fact that the 

distribution of the degrees of freedom between the substructures is much 

more uniform in the faster of the processes. In fact, uniform distribution 

results in reduced computer time in all stages of the substructuring analysis 

other than the final eigenvalue extraction, according to the formulas 

presented. Moreover, the overall speed performance of this particular case 

with six appendages is even better than for the case of eight appended 

components. Since the computer time requirements for the analysis of the 

mainbody is essentially the same between the two cases, the conclusion is 

that the uniform distribution of component degrees of freedom can be more 

important factor for the speed of the substructuring method than the total 

number of components. This will depend largely on the number of total 

components, identical components, and component modes. In general 

though, it is expected that the relative speed of the method should increase 

as the number of components increase. 

ill. In general, the detailed study of the speed of a substructuring method as a 

function of the number of substructures and the distribution of degrees of 

freedom can pose an interesting problem. For the structural systems studied 

in this work such an investigation is surplus since the number and size of the 

components is predetermined. The particular discussion has been presented 

only in order to demonstrate that even in the cases that a small number of 

substructures is present it may still be beneficial to pursue a substructuring 

method. 

iv. For a structure with 'well distributed' degrees of freedom and a large number 

of appendages a tenfold speed difference between the proposed method 

and the direct finite element approach may well be a conservative estimate. 
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VI-2-5-3. Example Case 3 

It has been concluded from the first example case that the computer time required for 

the extraction of normal modes of vibration for the individual components is much 

higher than for the calculation of static modes. Moreover, the number of dynamic 

modes can be directly truncated from the component mode set using a cut-off 

criterion as opposed to the static modes. In any case it is important to assess the 

benefits of the proposed method relative to the direct application of the finite element 

method as the number of normal modes increases. 

As in the previous cases the structure has been modelled with eight appended 

components all assumed to be different to each other. The order of the mathematical 

model of the main structure is 20% of the degrees of freedom of the structural 

system and the order of each appendage approximately 10%. The ratio of the active 

columns to the order of the components remains small as in the previous cases. 

The normal modes extracted have been varied for both the main structure and each 

of the appendages. The component mode sets have been complemented with 6 

static modes for each interface node. It has been assumed that static correction 

modes have been used to model all components. 

Two cases have been examined. In the first case the total degrees of freedom of the 

system have been set to 2000 and in the second case to 10000. The speed ratio s 

for both cases has been illustrated in Figure VI-4. The conclusions of this example 

case are listed below. 

i. Increasing the number of component dynamic modes is crucial to the speed 

performance of the proposed method relative to the direct finite element 

method. This implies that serious consideration should be exercised on the 

number of dynamic modes that need to retained in the analysis. 

11. As anticipated the smaller the order of the system the more important it is to 

reduce the number of dynamic modes to the bare minimum if the benefits of 

the proposed method are to be retained. 
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As discussed previously the speed reduction due to inclusion of static modes is not 

to be underestimated, since both the synthesis and final eigenvalue analysis are 

affected by the static mode number as much as by the number of normal modes. It is 

therefore wise to understand where the inclusion of static modes is necessary and 

where can be omitted. 

VI-2-5-4. Example Case 4 

Even in the 'extreme' case that one complete iteration of the proposed method may 

not be beneficial relative to the direct finite element method for reasons covered in 

the previous cases, it may still be a gain if only a part of the particular analysis were 

to be executed for a number of iterations. 

Moreover, in a lot of applications a particular component or number of components 

need to de redesigned whereas the rest remain unchanged. This implies that in the 

substructuring approach only a part of the process needs to be re-executed. If the 

particular components are to be redesigned a number of times, the time benefited 

from one application will be gained multiple times. Perhaps an optimisation loop 

around only a few components is an example that most has to be benefited. 

Other cases may involve an articulated multibody system where a study of the 

system in a number of configurations is of interest. Reorientation of components in 

space can be accomplished by executing only the synthesis process of the proposed 

method and an eigenvalue analysis of the reduced order system. Similar would be 

the cases of component repositioning relative to the main structure. 

To demonstrate the benefits of utilising the proposed method for partial redesigning 

of the system and for reorientation or general repositioning purposes, a structural 

system composed of eight appendages has been selected. The mainbody occupies 

the 60% of the total degrees of freedom and the rest of the degrees of freedom are 

divided equally between the remaining substructures. As in the previous examples, 

the linear elastic deformation of main structure has been modelled with 30 dynamic 

modes and for each appendage with 10 dynamic modes. It has been assumed that 
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static correction modes have been used to model all components as in the previous 

example case. Moreover the ratio of active columns to the order of the components 

is as detailed in the previous example case. 

Two cases have been examined. In the first case only two of the appended 

components have undergone design changes and the relative speed of the proposed 

method to the direct application of the finite element method has been assessed as a 

function of the total degrees of freedom of the system. In the second case a 

reorientation study of all the appended components has been performed. As a 

control study a complete substructuring exercise has also been performed. The 

results of the studies have been illustrated in Figure VI-5. The following conclusions 

have been drawn. 

i. As anticipated, the complete application of the proposed method is not faster 

than the direct application of the finite element method even for a large 

number of degrees of freedom. 

ii. For each redesign process of the two components time has been gained 

relative to the direct finite element approach. Even if the gains are not 

enormous repeating the process a large number of times, as in the case of 

an optimisation routine, a lot has to be profited. 

ill. It is obvious that even in this 'extreme' example case a reorientation exercise 

is quicker using the proposed method. Maybe in the first execution of the 

proposed method some time is lost relative to the direct finite element 

approach but the time lost will be made up by the time gained in every 

reorientation exercise. 

VI-2-6. Conclusions on the Computational Cost 

It has to be noted that in all comparisons the 'advantage' has been offered to the 

direct finite element method in order not to bias results in favour the proposed 

method. These include the inclusion of static modes for all components, a very small 

active column ratio to the order of the system, a density factor of unity involving all 
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multiplications performed in the proposed method, a small number of appendages, 

memory issues etc. 

The benefits of the proposed method over the direct finite element application on the 

computer time requirements are summarised bellow. 

i. The speed of the proposed method increases relative to the direct finite 

element approach as 

® The number of degrees of freedom of the structural system increases. 

• The distribution of the degrees of freedom is more uniform between the 

components. 

• The number of identical components increases. 

• The number of component increases. 

• The number of component modes per component decrease. 

ii. Even in cases that a single complete application of the proposed method is 

not beneficial in computational time, it may still be advantageous to utilise 

the proposed method for a small number of component design iterations, as 

well as for component reorientation and repositioning studies. 

iii. The analyst should exercise judgement on the number of dynamic modes 

retained in the analysis since these have a pronounced effect on the speed 

of the proposed method. 

iv. In general there is a lot to be gained in computer time terms by the 

application of the proposed method. In a typical multibody structure, as the 

ones proposed for future space missions, a tenfold of speed gain seems to 

be a conservative target to achieve for eigenvalue analysis purposes. 

V. If there is a time benefit in eigenvalue analysis, it is straightforward to 

conclude that the same would apply for a frequency response analysis 

relative to the direct or modal finite element method frequency response 

analysis. 
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VI-3. Conclusions on Computational Implementation 

i. The network of programs has been based on mathematical model D 

therefore any complexity peripheral formation multibody structure can be 

analysed. 

ii. The final deliverables of the network are the eigenvalues of the structural 

system and the eigenvectors in modal or physical space. Additionally, 

physical displacement, velocity and acceleration of any point on the structure 

can be derived as a function of the forcing frequency using either direct or 

modal frequency response analysis. 

iii. The network is interfaced with the commercial finite element package 

ANSYS. Components of any complexity can be modelled using the finite 

element method. 

iv. Any of the three articulation axes at the interface between the components 

can be free or locked, thus any non-translating joint configuration can be 

modelled. 

V. Identical components are analysed only once reducing the computational 

time to a great extend. 

vi. Any type of component mode set can be imported. Already 5 component 

mode sets have been implemented. 

vii. Analyst input is minimal since the network is controlled by only 5 user's data 

files. The analyst can select the kind of component modes to be 

implemented for each component and the number of normal modes to be 

retained in the analysis, thus has control over the computer time required 

and the accuracy of results. Moreover, the analyst can easily specify the 

orientation and the location of the appendages, the constraints at the 

interfaces between components and the external boundary constraints on 

the main platform carrier. 
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viii. The structure of the network is modular and in many cases only part of the 

network needs to be executed to obtain solutions, thus reducing 

computational cost. 

ix. The network needs low memory requirements to perform, unlike the direct 

finite element approach that models the entire structure as a single entity, 

hence large-scale systems can be analysed with limited computer resources, 

and computer speed accelerated. 

X. The network has been validated over a large range of cases and is therefore 

reliable. 

xi. In general there is a lot to be gained in computer time terms by the 

application of the proposed method. In a typical multibody structure, as the 

ones proposed for future missions in space, a tenfold of speed gain seems to 

be a conservative target to achieve for eigenvalue analysis purposes. 

xii. The speed of the method relative to the global finite element method 

increases as the number of the total degrees of freedom increase, 

distribution of component degrees of freedom is more uniform, number of 

components and identical components increase and component mode 

number decreases. 

xiii. If there is a time benefit in eigenvalue analysis, it is straightforward to 

conclude that the same would apply for a frequency response analysis 

relative to the direct or modal finite element method frequency response 

analysis. 
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VII Results 

VII-1. Prologue 

The natural frequencies of peripheral formation structural configurations have been 

derived utilising several component mode sets, and results obtained have been 

compared to those derived by modelling the entire structure using the finite element 

method. Moreover, frequency response analysis studies have been undertaken. 

Several conclusions have been reached for both the efficiency of various component 

mode sets and modelling practices for large flexible structures in space. 

The modal frequency response analysis is the most efficient way, within the 

framework of this work, for demonstrating the accuracy of the global modes derived 

by using the proposed method. Global finite element frequency response analysis 

has been used as a benchmark. Cross mode orthogonality methods could also be 

used for comparing the global modes derived by the proposed method to those 

derived from direct application of the finite element method. Nevertheless, such an 

exercise would be difficult to perform due to dimensionality differences between the 

finite element model and model resulting for the proposed method. 

This chapter includes five main case studies. The purpose of the first case study is to 

demonstrate that large flexible components, such as space-frame platforms, exhibit 

high modal density and local deformation at the component attachments. In the 

second case study a structural parametric study is undertaken in order to establish a 

general criterion which may determine the degree of the local deformation at 

component interfaces. The third, fourth and fifth case studies compare the 

effectiveness of several kinds of component mode sets in capturing the deformation 

of complex components, and thus modelling with accuracy the dynamics of flexible 

structural systems. 
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VII-2. Localised Deformation (Case Study I ) 

A typical example of a platform in space is illustrated in Figure VII-1. This space-

frame beam-like lightweight platform is very similar in design to space-frame 

structures that have been used, amongst others, by NASA for theoretical and 

experimental research on integrated structure/control optimisation^^'^^. The platform 

carrier is 30 meters long, 1.5 meters high and 1.5 meters wide. It is composed of 

aluminium hollow beam components positioned appropriately in space in order to 

create a high stiffness structure. The total mass of the structure, including the control 

hardware, does not exceed 300 Kg. 

In this case study, the platform is assumed to have docked on a much larger orbiting 

structure, such as a space station, for servicing purposes. The space-frame platform 

has been modelled as clamped at the nodal points that belong to the plane where the 

platform attaches to the docking station (Figure VII-1). A symmetric, uniform 

Timoshenko beam, clamped at one end and with the first few natural frequencies 

close to those of the space-frame platform has been devised for comparative studies. 

The natural frequencies of the space-frame and the equivalent beam structure are 

shown in Tables VII-1,2 respectively. 

Both structures are loaded with mass first and then with mass and rotary inertia at 

their free ends, at a nodal point at the centre of their respective geometric cross-

sections. In order to examine the extent of the localised deformation at the points 

where the rigid payload attaches to the structure, the deformation field for both the 

space-frame and the beam equivalent are modelled using free-interface normal 

modes. Free-interface modes cannot by nature capture the deformation effect of the 

attached payload on the structure, so they are ideal for this study. A number of free-

interface normal modes have been imported into the generic mathematical model 

and the 30 first eigenfrequencies have been derived for several values of mass and 

rotary inertia. For each loading case the results have been compared to the 

eigenfrequencies obtained by modelling both structural systems using the finite 

element method. For this purpose the first case study has been further divided in 

several example cases and remarks for each example have been produced. The 

conclusions of the first case study follow the example cases. 
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VII-2-1. Example Case 1 

Both the space-frame and the beam structure have been loaded with concentrated 

mass at their free ends. The mass is 16 Kg, which is only a small payload to be 

carried by the structure and in reality this may represent the mass of a small servo-

motor. The first 30 natural frequencies of the loaded beam structure and space-frame 

have been derived using the finite element method and compared to the natural 

frequencies obtained using 40 free-interface modes. The results are shown in Tables 

VII-3,4 respectively. The following remarks can be made: 

i. In general, there is a very good agreement in the results between the finite 

element method and the free-interface method in the case of the beam, as 

demonstrated in Table VII-3. 

ii. The largest differences observed, modes 2,15 etc. (Table VII-3), correspond 

to axial modes, but these are still small. This is an anticipated result since in 

the spectrum of the 40 free-interface normal modes employed there is only a 

very small amount of axial beam modes (Table VII-2), thus convergence is 

difficult. 

iii. The torsional modes of the loaded beam should be the same to the torsional 

modes of the unloaded beam, since no rotary inertia has been added on the 

tip of the beam. Extremely small discrepancies between the finite element 

method and the free-interface results (Table Vn-3; modes 3,13 etc.) are 

mainly due to numerical errors associated with matrix multiplications in 

mathematical model D and possible rounding errors in the results as 

presented by the commercial finite element method package ANSYS. 

iv. Comparing the frequencies in Tables VII-3,4 to Tables VII-2,1 respectively, 

another observation would be that the space-frame structure is generally 

less affected by the inclusion of the mass than the beam structure. 

V. For the case of the space-frame. Table V I M , there is generally a good 

agreement in the results obtained by the finite element method and the free-

interface method. 
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vi. The highest discrepancy is noted in the case of the axial modes 5, 11 etc, 

Table V I M . This discrepancy is fairly considerable for mode 5 (~ 5%), 

implying at there may be a localised out of plane bending deformation of the 

cross members supporting the mass. This argument is also supported by the 

high drop in frequency of the first axial mode in the loaded case compared to 

the unloaded case (loaded case: mode 5, unloaded case: mode 10). Such 

high discrepancy is not noted for the bending modes since the cross 

members supporting the mass are fairly stiff in compression - extension. 

VII-2-2. Example Case 2 

Exactly the same structural system as previously is presented. In this example case 

50 free-interface modes are included. The results are shown in Table VII-5 for the 

beam and in Table VII-6 for the space-frame. The following remarks can be made: 

i. By using a higher number of modes, the difference between the finite 

element method and the free-interface method is decreased for both 

structures and for all modes (Tables VII-5,6 versus Tables VII-3,4). This is 

an anticipated result, since free-interface normal modes belong to a 

complete set. 

ii. Although, by adding 10 extra modes, in the case of the beam structure the 

difference between the finite element method and the free-interface method 

has been reduced dramatically for the case of the axial modes, this is not 

true in the case of the space-frame structure. The improvement on the 1^ 

axial mode (mode 5) in the case of the space-frame is extremely small 

(Tables VII-6,4), supporting the argument regarding the local bending 

deformation of the supporting cross-members. The large number of free-

interface modes cannot effectively capture the local deformation of the cross-

members. 
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VII-2-3. Example Case 3 

This example is similar to the previous one other than that the attached mass has 

been increased by a fivefold. The mass is 80 Kg, and in reality may represent the 

mass of a control hardware system. 50 free-interface normal modes have been used 

and the 30 first natural frequencies obtained have been compared to results from the 

finite element method. Tables VII-7,8 correspond to the beam and space-frame 

structures respectively. The following comments can be made: 

i. Generally the difference between the finite element method and free-

interface method has been increased for both the beam and space-frame 

(due to extra mass), but are still fairly small, although the mass has been 

increased by 5 times. 

ii. The highest differences are observed in the cases of the axial modes. 

ill. The effect of the much larger attached mass causes localised deformation at 

the attachment points of the space-frame, but the error is not that much more 

pronounced than in the case of the smaller mass (Tables VII-5,6). 

VII-2-4. Example Case 4 

In this example the mass is reduced at its initial value of 16 Kg and a small amount of 

rotary inertia is added at the tip of both the beam and space-frame structures. The 

rotary inertia has the same value of 100 Kg-m^ in all three directions. This load may 

represent in reality a small lightweight solar panel. 50 free-interface normal modes 

are included to describe the deformation of the beam and space-frame. The first 30 

natural frequencies of the beam and space-frame are obtained and compared to 

those derived by the finite element method, in Tables VII-9,10 respectively. The 

following comments can be made: 

i. Comparing Tables VII-5,7,9 corresponding to the beam structure, we notice 

that the effect of the small rotary inertia is much stronger than the effect of 

the large mass attached. 
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ii. The difference between the finite element method and the free-interface 

method for the calculation of the mass and rotary inertia loaded beam 

frequencies is not significant even in the case of inertia attached. This 

implies that there is no localised deformation as such associated to the beam 

structure. 

iii. Unlike the beam structure, in the case of the space-frame there is a 

enormous difference between the finite element method and the free-

interface method when rotary inertia is added (difference - 200%). This 

strongly suggests that there is high local deformation of the supporting cross-

members in torsion and bending in and out of plane. 

VII-2-5. Example Case 5 

In order to support further the argument for localised deformation at the attachment 

points of a space-frame structure, in this example the flexible load-supporting cross-

members have been substituted by rigid ones. The attached mass is 16 Kg and 

rotary inertia 100 Kg-m^ for all three axes, as in the previous example. The natural 

frequencies of the unloaded space-frame have been calculated using the finite 

element method and are shown in Table VII-11. 50 free-interface normal modes are 

used to derive the natural frequencies of the loaded space frame. The 30 first natural 

frequencies of the system have been compared to the frequencies derived using the 

finite element method and are shown in Table VII-12. The following remarks can be 

made; 

i. The natural frequencies of the unloaded space-frame with rigid cross-

members (Table VII-11) are very close to the natural frequencies of the 

space-frame with flexible cross-members (Table VII-1). This implies that the 

rigid cross-members do not stiffen the original structure at any degree. 

ii. Using rigid load-supporting cross-members, the difference of the natural 

frequencies obtained by the finite element method to those resulting form the 

free-interface method is small, and comparable to the difference observed in 

the beam case (Table VII-9). 
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Hi. Since the rigid cross-members do not stiffen the unloaded structure, the 

reduction in the difference of the natural frequencies between the finite 

element method and the free-interface method (compared to the difference 

with flexible cross-members) suggests that the previous extreme differences 

were due to localised deformation at the mass attachment. 

iv. Using rigid load-supporting cross-members the localised deformation at the 

attachments has been diminished. 

Vn-2-6. Conclusions of Case Study I 

i. It was shown that large lightweight structures in space, such as space-frame 

components, may exhibit high modal density and, in cases, strong local 

deformation near the attachments of appended payloads. 

ii. More conventional structural components such as beams, plates, cylinders 

etc do not exhibit localised deformation as such at the attachments to 

appended payload. Using a higher amount of modes, accepted convergence 

can be easily, however not effectively, accomplished. However, this may not 

be the case for components that may exhibit localised deformation when 

loaded, such as the large flexible space-frame structures. For these 

components even a large number of interface modes may not suffice to offer 

acceptable convergence. 

iii. Modelling a complex geometry lightweight components, such as a space-

frame platform, with an equivalent beam, plate, cylinder etc. may be practical 

for reducing the size of the formulated problem, but erroneous results may 

be obtained if payloads would be attached on the component. 

iv. Approximating the deformation field of structural components that may 

exhibit local deformation using free-interface normal modes should be 

avoided, since they may lead to wrong results, even in the lower frequency 

range. For more conventional components, free-interface normal mode 

representation of the deformation may be an option, but a large amount of 

modes may be needed for convergence. 
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Vn-3. Criterion for the Prediction of Local 

Deformation (Case Study I I ) 

This study case is concerned with the investigation of the parameters which affect 

the degree of the local deformation of a space-frame component at its attachments to 

the other components in order to establish a general criterion. For this purpose a 

structural parametric study has been undertaken. In this case study the space-frame 

platform of Figure VII-1 has been loaded with two solar panels, as shown in Figure 

VII-2. The solar panels have been modelled in this case study as beam-like 

appendages. The structural system is considered free in space. 

The obvious structural parameters to be manipulated are the inertia and stiffness 

characteristics of the appendages and the stiffness of the platform carrier. Both the 

inertia and stiffness characteristics of any structural component are depended on the 

geometric characteristics of the component. In order to manipulate the inertia of the 

components without affecting the stiffness of the components and vice versa, the 

geometric characteristic of all structural components remain unchanged throughout 

this case study. The inertia of the appendages will be changed by altering the 

material density, and the stiffness of the components by altering the material 

stiffness. The location and orientation of the appendages remain fixed throughout the 

study. 

Free-interface normal modes will be used to indicate the local deformation effects of 

the space-frame platform. The appendage deformation is approximated by fixed-

interface normal modes. For every example case 30 free-interface normal modes for 

the platform and 12 fixed-interface normal modes for each of the appendages have 

been included in the mathematical model. The number of modes for both the 

platform and the appendages are enough for modelling the structural system in the 

frequency range of interest. The first 30 natural frequencies obtained for each 

example case have been compared to the results from application of the finite 

element method. The conclusions of the case study along with the comparative 

Table VII-18 follow the example cases. 
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VII-3-1. Example Case 1 

For investigating the effect of the appendage stiffness on the local deformation at the 

attachments of the space-frame platform, 3 values of material stiffness for the 

appendages are chosen. The material stiffness of the appendages drops by a tenfold 

in each case, E=7.2E10N/m^, E=7.2E9N/m^, E=7.2E8N/m^. The material density of 

the appendages is fixed in all three cases at the value of p=270Kg/m^. The material 

stiffness and density of the platform are also fixed in all three cases at the values of 

E=7.2E10N/m^ and p=2700Kg/m^ respectively. Using the comparative results in 

Tables VII-13,14,15 the following remarks can be made: 

i. Decreasing the stiffness of the appended payload, the local deformation of 

the platform at the attachments decreases. A physical explanation to the this 

observation can be offered; appendages with low stiffness 'give in' more and 

deform less the space-frame. 

ii. For the case of very low appendage stiffness, E=7.2E8N/m^, the space-

frame free-interface normal modes give fairly good results, implying that the 

local deformation of the platform at the attachments to the appendages is 

fairly low. 

VII-3-2. Example Case 2 

If the decrease of the stiffness of the appended payload reduces the deformation of 

the platform at the attachments, so should the increase of the stiffness of the space-

frame. To demonstrate the above, in the current example the material stiffness of the 

space-frame platform has been increased by a tenfold, whereas its material density 

has remained unchanged (E=7.2E11N/m^ and 2700Kg/m^). The appendages have 

values of E=7.2E10N/m^ and 270Kg/m. The results are shown in Table VII-16. The 

following remarks can be made: 

i. Tables VII-13,16 show that by increasing the material stiffness of the 

platform the local deformation decreases. 
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ii. Although the natural frequencies of the structural system in Table VII-14 are 

very different to the frequencies in Table VII-16, the difference between the 

finite element method and the free-interface method is almost exactly the 

same in the two cases for every mode. This implies that the local 

deformation of the space-frame may be related to the relative stiffness of the 

attached components. 

iii. Extending the above observation one may assume that there may be a 

relationship between the natural frequencies of the platform and the 

appendages that determines the degree of the local deformation at the 

attachments. 

VII-3-3. Example Case 3 

The aim of this example is dual. Firstly to investigate the effect of the increase of the 

inertia of the appendages on the local deformation of the space-frame at the 

attachments. Secondly to establish if there is a relationship between the natural 

frequencies of the platform and the natural frequencies of the appendages that may 

determine the degree of the local deformation. For this purpose, the material density 

and material stiffness of the appendage are set at p=2700 Kg/m^ and E=7.2E10N/m^ 

respectively. The material density and material stiffness of the platform are set at 

p=2700 Kg/m^ and E=7.2E10N/m^. If there is a straight relationship between the 

natural frequencies of the appendages and the platform that determines the local 

deformation at the attachment of the components, then the difference in the results 

between the finite element method and the free-interface method for this example 

should be the same as in Table VII-14. The example case that corresponds to Table 

VII-14 involves a platform with the same characteristics as the current example case 

and appendage characteristics of p=270 Kg/m® and E=7.2E9N/m^, thus the same 

appendage natural frequencies as the current example. The results of the current 

example are found in Table VII-17. The following comments apply: 

i. Comparing the results presented in Tables VII-14,17 we notice that the local 

deformation is higher in Table VII-17 than in Table VII-14, whereas the 

natural frequencies of all components are the same in both cases. This 
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suggests that there is not a straight relationship between the natural 

frequencies of the appended payload and the natural frequencies of the 

platform that may determine the degree of the local deformation at the 

attachments. 

ii. The difference between the finite element method and the free-interface 

method, which determines the degree of the local deformation at the 

attachments of the main platform, is of the same order as in Table VII-13. 

The example case that corresponds to Table VII-13 Involves a platform with 

the same characteristics as the current example case and appendage 

characteristics of p=270 Kg/m^ and E=7.2E10N/m^, i.e. appendage with 

much lower inertia characteristics, and therefore of much higher natural 

frequencies. This suggests that the effect of increasing the inertia of the 

appendage is not readily obvious and it seems it may affect only slightly the 

local deformation of the platform at the attachments. This also suggests that 

there is not a straight relationship between the natural frequencies of the 

appended payload and the natural frequencies of the platform that may 

determine the degree of the local deformation at the attachments. 

VII-3-4. Criterion for Local Deformation Prediction 

The results regarding the degree of the local deformation of the platform along with 

the material stiffness and material density of the space-frame and the appendages 

for the example cases 1,2,3 of the current case study are shown in the collective 

Table VII-18. 

The objective is to establish a general criterion that determines the degree of the 

local deformation of the carrier platform at the attachments to the appended payload. 

For this purpose, the natural frequencies of the appendages involved in all previous 

examples are calculated using the finite element method and shown in Tables VII-

19,20,21. The natural frequencies of the platform loaded the inertia of the associated 

appendages are also calculated and shown in Tables VII-22,23,24. The 

correspondence of the tables associated to the natural frequencies of the 
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components for each structural system to the Tables VII-13,14,15,16,17, that 

determine the degree of the local deformation for each system, is as follows: 

Tables VII-19,22 correspond to the structural system associated to Table VII-13; 

high deformation 

Tables VII-20,22 correspond to the structural system associated to Table ¥11-14; 

medium deformation 

Tables VII-21,22 correspond to the structural system associated to Table VII-15; 

low deformation 

Tables VII-19,23 correspond to the structural system associated to Table VII-16; 

medium deformation 

Tables VII-20,24 correspond to the structural system associated to Table VII-17; 

high deformation 

Comparing for each case the natural frequencies of the platform loaded with the 

inertia of the appendages to the natural frequencies of the appendages and the 

associated local deformation of the platform the following remarks can be made: 

i. The higher the natural frequencies of the loaded platform relative to the 

natural frequencies of the appendage, the lower the local deformation of the 

platform at the attachments. This criterion applies for all example cases. 

ii. More specifically, for the particular structural configuration, the higher the 

fundamental frequency of the loaded platform relative to the fundamental 

frequency of the appendages, the lower the local deformation of the platform. 

iii. For the particular structural system the following quantitative results apply: 

If the loaded platform's fundamental eigenvalue is twice or more the 

value of the appendage's fundamental eigenvalue then the local 

deformation on the platform attachments is low (Tables VII-21,22 and 

15X 

If the loaded platform's fundamental eigenvalue is close to appendage's 

fundamental eigenvalue then the local deformation on the platform 
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attachments is of medium degree. (Tables VII-20,22 and 14, Tables 

VII-19,23 and 15). 

If the loaded platform's fundamental eigenvalue is three times or less the 

value of the appendage's fundamental eigenvalue then the local 

deformation on the platform attachments is high (Tables VII-20,24 and 

17, Tables Vn-19,22 and 13). 

iv. The most interesting case concerns the examples that correspond to Tables 

VII-14,16. In these particular cases, the differences in the results between 

the finite element method and the free-interface method are almost identical 

for the two structural systems for the whole frequency range. Examining 

closely the platform natural frequencies in Table VII-22 and comparing those 

to the natural frequencies of the platform in Table VII-23, we notice that their 

ratio has identical value throughout the range. The same ratio value have the 

attached appendages of Tables VII-20 and 19 for all natural frequencies. 

V. Utilising the criterion established, one can predict the increase in the local 

deformation in the example case that corresponds to Table VII-17 relative to 

the local deformation for the structural system that corresponds to Table VII-

14. In both cases the platform has the same mass and stiffness 

characteristics. In both cases the appendages have the same natural 

frequencies, but in the case of Table VII-17 the appendages have much 

higher inertia than in the case of Table VII-14. The higher inertia of the 

appendages, the lower the loaded natural frequencies of the platform, 

whereas the natural frequencies of the appendages are the same, thus, as 

the criterion predicts, the local deformation is higher in the case of Table VII-

17. 

vi. Comparing the component mass and stiffness characteristics for the cases 

of Tables VII-13 and 17 it is not obvious in which case the local deformation 

will be higher (unless one examines the natural frequencies of the 

components). In both cases the platform has the same mass and stiffness 

characteristics. The appendages in both cases have the same stiffness 

characteristics, but the appendages of Table VII-13 are much lighter to the 
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appendages of Table VII-17. Without the aid of the criterion established, one 

would expect that the appendages with higher inertia would locally deform 

the structure more. Based on the criterion though, the appendage with the 

higher inertia has much lower natural frequencies, but at the same time 

loads the platform much more and lowers the loaded natural frequencies. In 

actual fact it proves that in both cases the local deformation is high, but lower 

in the case of the higher inertia appendages. Apparently by increasing the 

inertia of the appendages, in the example case of Table VII-17, the natural 

frequencies of the appendages dropped more, in relative terms to the 

example of Table VII-13, than the loaded natural frequencies of the platform. 

Thus, is not essential that increasing the inertia of an appended component 

the local deformation will definitely increase or decrease. A closer 

examination of the natural frequencies of the components is essential. 

VII-3-5. Conclusions of Case Study II 

i. The criterion which determines the extent of the local deformation of the 

space-frame platform at the attachments with the appended payload has to 

do with the relationship between the natural frequencies of the platform 

component, loaded with the inertia of the appendages, and the natural 

frequencies of the appendages. 

ii. The higher the natural frequencies of the platform, loaded with the inertia of 

the attached payloads, relative to the natural frequencies of the appended 

payload, the lower is predicted the local deformation of the carrier structure 

at the attachment. 

ill. It is expected that the criterion has limits of application. In the case that the 

appended component is rigid, it is not anticipated that the local deformation 

will be infinite. The lower the inertia of the appended component the higher 

the natural frequencies of the component. Since the loaded natural 

frequencies of the inboard component have an upper limit the unloaded 

natural frequencies, it is not expected after a point that by decreasing the 

inertia of the appended component the local deformation will increase. On 
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the contrary, after a point the local deformation will start decreasing although 

the natural frequency of the component will be increasing. Generally for very 

high appendage natural frequencies relative to the frequencies of the loaded 

inboard component, caution should be exercised with the interpretation of 

the criterion. 

The criterion can be applied to any inboard component of a multibody 

structure and not necessarily to the main platform carrier. Inboard 

component is considered any component that precedes other components. 

V. The criterion cannot specify a priori the degree of the local deformation by 

the natural frequencies of the loaded inboard component and those of the 

appended payload. The degree of local deformation will depend on the 

attachment locations and the rigidity of the members that support the 

payload. But the criterion can definitely predict the possibility of the local 

deformation being relatively low or high. This is helpful in indicating the 

number of modes essential for good convergence. 

vi. Even in a case that a component does not exhibit local deformation as such, 

the criterion still suggests that a large amount of component modes need to 

be used for convergence. 

vii. If the local deformation of a component is predicted to be potentially high, 

special care should be exercised for approximating the deformation field the 

appropriate component-mode sets that can account for the effect of the local 

deformation. 

V I M . Component Mode Set Selection ( Case Study I I I ) 

The aim of this case study is to investigate how different component mode sets 

compare in the accurate description of the deformation field of the space-frame 

platform. As explained in the previous case studies, the platform may, under 

particular conditions, exhibit high local deformation at the interfaces with other 
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components. The component mode sets which have been examined are shown 

below and have been assigned with a method number for brevity purposes. 

Method I; Free-interface component mode set 

Method II: Fixed-interface component mode set 

Method III: Loaded-interface component mode set 

Method rV; Redundant constraint component mode set 

Method V: Constraint component mode set 

The structural configuration chosen for this case study is shown in Figure VII-2. The 

structural system is of exactly the same design as in the previous case studies. For 

pronouncing the differences between the results obtained for each method, the 

properties of the components are selected to have such values that the local 

deformation of the space-frame at the attachments is high. The material properties of 

both the space-frame platform and the appended components are p=2700 Kg/m^ and 

E=7.2E10N/m^. For the space-frame platform the total number of component modes 

(static + dynamic modes) is fixed to 30 for all example cases that follow. The 

appendages are modelled using 12 fixed-interface normal modes in all example 

cases. 

Other than tables which contain natural frequency comparisons, a number of graphs 

which correspond to frequency response analysis complement the results of this 

case study. Figure V I M corresponds to the frequency response of point 71, at the 

interface of the main structure with the appendage, where the local deformation is 

expected to be high. Figure VII-5 corresponds to point 1 away from the interface. 

The points are shown in Figure VII-2. 

For facilitating the presentation of the results shown in tables. Figure VII-6 contains 

a graphical representation of the natural frequencies obtained using the various 

component mode sets. 
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VII-4.1. Example Case 1 

A direct finite element frequency response versus a modal finite element frequency 

response analysis has been undertaken to demonstrate the number of global modes 

that suffice to model the response of the structural system up to the excitation 

frequency of 20 Hz. A structural damping factor of 0.02 has been assumed for the 

entire structure. 

Modal response analysis has been performed using 10, 18, 24 and 30 global normal 

modes of the structure. Table VII-25 shows that the correspondence of the normal 

mode number to the natural frequencies of the system is as follows 

Normal Mode 10 : Frequency 7.68 Hz, 0.38 times the maximum forcing frequency 

Normal Mode 18 ; Frequency 23.61 Hz, 1.18 times the maximum forcing frequency 

Normal Mode 24 : Frequency 26.26 Hz, 1.31 times the maximum forcing frequency 

Normal Mode 30 : Frequency 41.96 Hz, 2.09 times the maximum forcing frequency 

The frequency response of the structure has been obtained at point 71, located at 

the interface of the mainbody and the appendage, and has been illustrated in Figure 

VII-3. The following can be concluded: 

i. Modal frequency response analysis using 24 global normal modes gives as 

good results as using 30 global normal modes for the frequency range of 

interest. 24 modes correspond to frequency 26.26 Hz which is 1.31 times the 

forcing frequency. Although it is usually recommended to use modes in the 

frequency range between 1.5 and 2 times the forcing frequency, in the 

particular case this would be unnecessary since the extra modes result in 

virtually no improvement on the frequency response. 

ii. Modal response using 24 global modes gives excellent results relative to the 

direct finite element method frequency response analysis. In actual fact the 

results are virtually indistinguishable to those obtained for the direct 

response analysis especially so in the resonance frequencies of the 

structure. 
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Hi. Using less than 24 modes compromises the results in the higher frequency 

domain. 

In view of the above, an excellent agreement between the direct finite element 

method frequency response analysis and the methods proposed in this work should 

give near as good results as those obtained by the modal finite element method 

frequency response analysis and using as many as 24 global modes. 

VII-4-2. Example Case 2 

The space-frame platform is modelled using 30 free-interface component modes. 

The results are shown in Table VII-26 and in figures 4, 5, 6. The following comments 

apply: 

i. The local deformation of the space-frame platform at the attachments is high. 

ii. The free-interface component modes are not appropriate for modelling the 

deformation of the space-frame platform. Free-interface normal modes 

cannot capture the eigenvalues of the system (Table VII-26) and also fail to 

predict the frequency response of the structure (Figures VIM,5). 

VII-4-3. Example Case 3 

The space-frame platform is modelled using 30 fixed-interface component modes. 

The results are shown in Table VII-27. The following remarks can be made; 

i. The differences in results between the finite element method and the fixed-

interface method are high. Comparing Table VII-26 to 25 we notice that the 

difference in results is of the same order between using fixed-interface 

components modes and free-interface component modes. 

ii. Fixed-interface normal modes should be able to capture the deformation at 

the attachments due to the loading of the appendages, since by fixing the 

interface, the deformation near the boundaries is high. In reality though, by 
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using fixed interface normal modes, there is no coupling between the flexible 

part of the platform's motion and the rigid and flexible part of the 

appendages' motion. So in effect the most important part of the interaction 

dynamics between the components is not modelled. 

iii. The fixed-interface component modes may capture the local deformation of 

the space-frame platform, but are not suitable for modelling the interaction 

between adjacent components. 

iv. Nevertheless, fixed interface mode set would be appropriate for modelling 

terminal components. In all the examples that follow, the appendages have 

been modelled using the fixed-interface mode set and the error involved is 

very low. 

VII-4-4. Example Case 4 

30 loaded-interface component modes are used in this example case. The results 

are shown in Table VII-28 and Figure V I M , 5, 6. The following comments can be 

made: 

i. The difference between the finite element method and the loaded-interface 

method is very small throughout the frequency range. The largest difference 

is only 0.3 percent and occurs at mode 26. 

ii. The loaded-interface normal modes can capture very accurately the local 

deformation of the platform. 

iii. From Figures VII-4,5 one may observe that the displacement measured at 

point 71 at the interface as well as at point 1 away from the interface is in 

extremely good agreement to the direct finite element. It has to be 

emphasised that for the calculation of the displacements only 24 modes 

have been retained in the frequency response analysis. 
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VII-4-5. Example Case 5 

The particular structural configuration possesses 6 nonredundant constraints and 6 

redundant constraints. Therefore, for keeping the total number of flexible component 

modes to 30, a combination of 24 fixed-interface normal modes and 6 redundant 

constraint modes are imported in the mathematical model. The results are shown in 

Table VII-29 and Figures 4, 5, 6. The following comments apply: 

i. The difference between the finite element method and the redundant 

constraint method is very small thought the frequency range. Largest 

difference of 0.27 percent occurs at mode 21. 

ii. The difference is of comparable order to that of the loaded-interface method. 

The redundant constraint method generally converges more uniformly than 

the loaded-interface method. 

iii. Referring to Figures VII-4, 5 the redundant interface component modes offer 

excellent results relative to the finite element direct frequency response. As 

in the case of modal finite element frequency response analysis, 24 global 

modes have been retained for the frequency response analysis using the 

proposed method. 

VII-4-6. Example Case 6 

The constraint method is a modification of the redundant constraint method. 

Constraint modes are developed for all the interface constraints, redundant and 

nonredundant. For keeping the total number of component modes to 30, 12 

constraint modes and 18 fixed-interface modes are employed. The results are shown 

in Table VII-30 and Figures V I M , 5, 6. The following remarks apply: 

i. The difference between the finite element method and the constraint method 

is very small. The highest difference occurs in mode 21 and is only 0.27%. 

ii. Referring to Figures VII-4, 5 the constraint interface component modes offer 

excellent results relative to the finite element direct frequency response. As 
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In the case of modal finite element frequency response analysis, 24 global 

modes have been retained for the frequency response analysis using the 

proposed method. 

VII-4-7. Conclusion of Case Study III 

i. The fixed-interface and free-interface component modes are not appropriate, 

in general, for modelling the dynamics of complex components which may 

exhibit local deformation. 

ii. The loaded-interface component modes give excellent results, but are not 

appropriate for independent modelling, nonlinear dynamics and may become 

very involving for the modelling requirements of large chains of components. 

iii. The redundant constraint method and the constraint method give as 

excellent results, or even better, than the loaded-interface method and also 

circumvent all the associated problems of the latter. 

iv. Loaded-interface, redundant constraint and constraint methods give 

excellent results relative to the finite element method by utilising only a small 

number of component modes. Moreover, the global modes derived by the 

method proposed in this work with a combination of any of the above 

component mode sets have been shown to be extremely close to those 

obtained by modal analysis of the global finite element model. This has been 

demonstrated by comparison of the modal finite element frequency response 

results to those obtained using the proposed method. In both cases the 

results are indistinguishable to those obtained from the direct finite element 

response analysis and in both cases only the minimum of 24 global modes 

have been used for the analysis. 
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VII-5. Convergence of Component Mode Sets 
( Case Study I V ) 

In this section, an investigation of the effect that the number of component modes 

has on the accuracy of results has been undertaken. The structural configuration is 

the same as in the previous case study other than that the whole system is assumed 

to have docked on a much larger structure. The structural system can therefore be 

modelled as clamped at the free end face. The properties of the components are the 

same as in the previous case study p=2700 Kg/m^ and E=7.2E10N/m^. In this 

particular case study, the redundant constraint and constraint component mode sets 

contain the same number of static modes (since the system does not have any rigid 

body motion), and therefore no distinction between them has been made. The 

appendages have been modelled using 12 fixed-interface normal modes. 

As in the previous case study frequency response graphs have been produced along 

with tables comparing the natural frequencies obtained using the various component 

modes. For all frequency response analyses the structural damping factor has been 

assumed equal to 0.02. 24 global modes have been retained for the frequency 

response analysis. 

For facilitating the presentation of the results in the tables that correspond in this 

case study. Figure VII-8 contains a graphical representation of the natural 

frequencies obtained using the various component mode sets. 

VII-5-1. Example Case 1 

The space-frame platform is modelled using 30 loaded interface component modes. 

It has been demonstrated in table VII-31 that there is an excellent agreement 

between the finite element method and the loaded-interface method. 

VII-5-2. Example Case 2 

In example case 2 the space-frame platform is modelled using 18 loaded interface 

component modes. The purpose for reducing the number of modes is for comparison 

178 



Chapter V I I - Results 

purposes relative to subsequent examples using constraint component mode sets 

where the number of dynamic normal modes is refrained to 18. In this respect 

comparison is achieved with the same number of dynamic modes. From Table VII-

32 and Figure VII-7 the following can be concluded. 

i. 18 loaded interface component modes give almost as good results in the 

lower frequency range as the case with 30 loaded interface modes. As 

expected after a cutting off frequency large discrepancies relative to the finite 

element method are produced (Table VII-32). 

ii. Nevertheless for the forcing frequency of interest 18 loaded interface 

component modes seem to suffice for excellent agreement with the direct 

finite element response analysis (Figure VII-7). 

VII-5-3. Example Case 3 

Using the constraint component mode set (or equivalently for this example the 

redundant constraint component mode set) the space-frame platform is modelled 

using 30 fixed-interface normal modes and 12 constraint modes. The results are 

shown in Table VII-33 and Figure VII-7. Generally the constraint method converges 

better than the loaded-interface method for the same number of dynamic modes in 

all but a few modes. Relative to the direct finite element frequency response analysis 

the results obtained in this example case are in excellent agreement. 

VII-5-4. Example Case 4 

In this example case, 18 fixed-interface normal modes and 6 redundant constraint 

modes are used. The results are shown in Table VII-34 and Figure VII-7. The 

following remarks can be made: 

i. Comparing Tables VII-34 to 33, there is a very small difference in the 

eigenvalues obtained by using 12 dynamic modes less for this example. As 

expected, the difference increases as the mode number increases. 
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ii. Using only 18 dynamic modes the eigenfrequencies are still better to those 

obtained by using 30 loaded-interface component modes, other than a few 

exceptions and definitely much better than those obtained using 18 loaded 

interface component modes (Tables VII-34, 31,32). 

iii. It seems that the constraint component modes give better results than the 

loaded-interface component modes for the same number of dynamic modes. 

Although computing time can be saved using less dynamic modes, a penalty 

is paid for the calculation of static modes which complement the dynamic 

modes in constraint or redundant constraint component modes. However it 

has been shown in the previous chapter that the overall time penalty for 

using static modes is much smaller compared to the total cost for using 

normal modes of vibration. 

iv. As far as frequency response analysis is concerned 18 redundant 

component modes seem to be adequate for providing excellent results 

relative to the finite element direct frequency response analysis (Figure VII-

7). If the forcing frequency was higher it would definitely be the case that 

constraint component modes would converge better for the same, minimum 

number of dynamic modes. 

VII-5-4. Example Case 5 

In this example case only 6 fixed-interface modes are used in the redundant 

constraint method. The results are shown in Table VII-35 and comparing them to the 

results of Tables VII-31,32 the following comments can be made: 

i. The eigenfrequencies in this example case have excellent agreement with 

the finite element method up to the cutting off frequency of mode 12. 

ii. Using only 6 fixed-interface modes the difference in results to those using 18 

and 30 fixed-interface normal modes is only significant after the cutting off 

frequency. 
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iii. If only the low frequency domain is of interest, only a small number of 

dynamic modes need to be used, thus reducing the size of the formulated 

problem considerably. 

iv. The discrepancy noticed after the cutting off mode is due to the small 

number of dynamic modes and not due to unmodelled high local deformation 

of the platform at the attachments. 

V. Similar comments apply for the frequency response analysis (Figure VII-7). 

Vn-5-5. Conclusion of the Case Study IV 

i. It seems that the constraint component modes give better results than the 

loaded-interface component modes for the same number of dynamic modes. 

Considerable computing time can be saved using less dynamic modes 

whereas the extra time penalty paid for the calculation of static modes which 

complement the dynamic modes in constraint or redundant constraint 

component modes is relatively small. This is an extra reason why redundant 

constraint and constraint modes should be preferred to the loaded interface 

component modes. 

ii. Both the redundant constraint method and the constraint method can 

accurately model the deformation field of an inboard component with a small 

number of dynamic modes. If only the low frequency domain is of interest, 

only a small number of dynamic modes need to be used, thus reducing the 

size of the formulated problem considerably. 

iii. Static modes describe accurately the local deformation at the interfaces 

whereas dynamic modes the 'global' deformation of the component. If 

dynamic modes are included in very small numbers then the local 

deformation at the interfaces will be captured by the static modes and 

convergence will be excellent up to some frequency, but poor convergence 

will be noticed suddenly after a cutting off mode. 
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VII-6. Constraint Versus Redundant Constraint 
Component IVIodes (Case Study V ) 

It is anticipated that the local deformation of the space-frame platform would be very 

high if the flexible solar panels were substituted by rigid ones. In this case study it 

has been established that both the redundant constraint and constraint component 

modes can still model accurately the deformation of the space-frame structure, it has 

also been intended to demonstrate the most efficient component mode set between 

the redundant constraint and the constraint sets. For this purpose the bare minimum 

of 18 dynamic modes has been employed in both component mode sets. 

The material density and stiffness of the space-frame are p=2700 Kg/m^ and 

E=7.2E10N/m^ respectively and the material density of the appendages p=2700 

Kg/m®. The structural system is free in space. 

VII-6-1. Example Case 1 

To demonstrate the degree of the local deformation of the space-frame at the 

interfaces, the space-frame deformation has been modelled using 30 free-interface 

component modes. The results have been shown in Table VII-36. The differences 

between the finite element method and the free-interface method are enormous 

(-575% for mode 8), suggesting very high local deformation of the platform. 

VII-6-2. Example Case 2 

The space-frame has been modelled using 24 redundant constraint component 

modes (18 fixed-interface normal modes and 6 redundant constraint modes). The 

results have been shown in Table VII-37. The difference between the finite element 

method and the redundant constraint method are very small throughout the 

frequency range. 
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Vn-6-3. Example Case 3 

The space-frame deformation is modelled using 30 constraint component modes (18 

fixed-interface normal modes and 12 constraint modes). The results have been 

demonstrated in Table VII-38. The difference between the finite element method and 

the constraint method is very small. 

VII-6-4. Conclusions of Case Study V 

i. Both the constraint method and the redundant constraint methods have 

given excellent results even in the case where the local deformation of the 

space-frame platform at the interface is very high. 

ii. For the same number of dynamic modes the redundant constraint 

component mode set has given as accurate results as the constraint mode 

set. Since there is only a very small computational time penalty associated 

with the obtaining a larger set of static modes (if a multiple algebraic solution 

is performed), it may be beneficial to use the constraint component mode set 

in order to overcome the problems associated with the redundant constraint 

component mode set, detailed in chapter II. 

VII-7. Collective Conclusions 

i. It was shown that large lightweight structural components, such as space-

frame platforms, exhibit high modal density and, in cases, high local 

deformation near the attachments of appended payloads. 

ii. A criterion has been established which predicts the possibility of the local 

deformation being low or high. The higher the natural frequencies of an 

inboard component, loaded with the inertia of the appended payloads, 

relative to the natural frequencies of the appended payload, the lower the 

local deformation of the inboard body at the interfaces is predicted to be. The 

criterion has boundaries of application. If the natural frequencies of the 
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appended component are very high compared to the loaded natural 

frequencies of the inboard component, caution should be exercised with the 

interpretation of the criterion. 

iii. If the local deformation of a component is predicted to be potentially high, 

special care should be exercised for approximating the deformation field with 

appropriate component mode sets that can account for the effect of the local 

deformation at the interfaces. An increased number of component modes 

may also prove essential. 

iv. The right selection of component mode sets is challenging and of foremost 

importance for large-scale flexible multibody structures In space, since these 

structures, due to their particular design, large dimensions, lightweight 

construction, and the large number of components, exhibit high modal 

density and local deformation at the component interfaces. The 

consequences of selecting an inappropriate component mode set are listed 

below in order of increasing impact to the structural dynamics modelling. 

• A larger number of component modes will be needed for convergence, 

therefore the inherently large size of the differential problem will increase 

further, which is detrimental to computer time involved. 

• For components likely to exhibit high local deformation the convergence 

issue becomes more crucial. Flexible component mode sets that fail to 

closely resemble the real deformation of the individual components, when 

attached to each other to form the structure, proved inadequate or even 

completely inappropriate for efficiently capturing the dynamics of the entire 

structural system, even in the low frequency range. This implies that even 

a large number of component modes, employed for convergence, will fail 

to model the dynamics accurately. Not only the computational cost will 

increase, but convergence will still be poor. 

• Due to high modal density of the particular structural system examined, if 

component mode sets utilised are not appropriate the chances are that a 

number of modes will not be captured at all. Unmodelled dynamics is one 
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of the main causes of destabiiisation of structures in space. 

V. The fixed-interface and free-interface component modes are not appropriate, 

in general, for modelling the dynamics of complex components which may 

exhibit local deformation. Nevertheless, these component mode sets are 

ideal for simpler components and in particular modelling circumstances can 

reduce the order and computational cost compared to more sophisticated 

mode sets. 

vi. The loaded-interface component mode set gives excellent results relative to 

the finite element methods, but is not appropriate for independent modelling, 

nonlinear dynamics and may become very involving for the modelling 

requirements of large chains of components. 

vii. The redundant constraint and constraint component mode set give as 

excellent results, or even better, than the loaded interface component mode 

set and also circumvent all the associated problems of the latter. In actual 

fact it has been demonstrated that the constraint and redundant constraint 

component mode sets give better results than the loaded interface 

component modes for the same number of dynamic modes. Considerable 

computing time can be saved using a smaller number of dynamic modes, 

and only a small penalty paid for the calculation of static modes which 

complement the dynamic modes in constraint or redundant constraint 

component mode sets. However, regardless of the computational cost 

involved, the use of redundant constraint or constraint component modes 

should be preferred due to the aforementioned problems encountered with 

the loaded interface component modes. 

viii. It was shown that both the redundant constraint and constraint component 

mode set can accurately model the deformation field of an inboard 

component with a small number of dynamic modes. If only the low frequency 

domain is of interest, a very small number of dynamic modes need to be 

used, thus reducing the size of the formulated problem considerably. In fact if 

dynamic modes are included in very small numbers then the local 
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deformation at the interfaces will still be captured by the static modes and 

convergence will be excellent up to some frequency, but poor convergence 

will be noticed suddenly after a cutting off mode. On the other hand, if static 

modes are not accounted for in a component that may exhibit high local 

deformation at the interfaces, then the deformation at the interface will be 

poorly approximated and convergence will be extremely difficult even if a 

large number of dynamic modes are included. If static modes are included 

even for a component that is not likely to exhibit local deformation at the 

interfaces, then the convergence will be accelerated. 

ix. A redundant component mode set cannot be defined or obtained in the 

cases of statically determinate and underdeterminate components, unlike the 

constraint mode set. This leads to the conclusion that the constraint 

component mode set is better suited than the redundant constraint 

component mode set for the dynamics modelling of large-scale articulated 

multibody systems. 

X. The global modes derived by the method proposed in this work with a 

combination of any of the loaded, redundant constraint and constraint 

component mode sets have been shown to be extremely close to those 

obtained by modal analysis of the global finite element model. This has been 

demonstrated by comparison of the modal finite element frequency response 

results to those obtained using the proposed method. In both cases the 

results are indistinguishable to those obtained from the direct application of 

the finite element response analysis and in both cases only the minimum of 

24 global modes have been used for the analysis. 

xi. Lastly, the theoretical integrity of the mathematical model D has been 

verified, since it can give results with extreme accuracy to the finite element 

method, even with a low number of degrees of freedom. This model can 

definitely be used for studies related to structures that belong in category I I 

missions in space. 
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Figure VII-1 Typical Space-Frame Platform 



Figure VII-2 Space-Frame Platform and Solar Panels 
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Chapter V I I - Results 

Mode Freqency(Hz) Mode Type 

1 1.2465 l'̂'" Bending Plane A 
2 1.2497 1®'̂  Bending Plane B 
3 7.3501 2™̂  Bending Plane A 
4 7.4500 2™̂  Bending Plane B 
5 10.2370 1®"̂  Torsional 
6 17.2440 2°^ Torsional 
7 18.8180 3̂ ^ Bending Plane A 
8 19.2660 3 ^ Bending Plane B 
9 21.5230 3rd Torsional 

10 22.3100 1̂ "̂  Axial 
11 30.5180 — 

12 31.5840 — 

13 32.7500 
14 33.5260 — 

15 40.3290 — 

16 44.2480 — 

17 44.4670 — 

18 44.8340 — 

19 45.3520 — 

20 45.9430 — 

21 46.0130 — 

22 46.5340 — 

23 46.5590 — 

24 46.8240 — 

25 47.7460 — 

26 48.7680 — 

27 48.9900 — 

28 49.8530 — 

29 50.1840 — 

30 50.9840 — 

31 51.2200 — 

32 51.8420 — 

33 51.9980 — 

34 52.0740 — 

35 52.7900 — 

36 53.0650 — 

37 53.6040 — 

38 53.9230 — 

39 53.9830 — 

40 54.5680 — 

41 54.6760 — 

42 54.6850 — 

43 54.8150 — 

44 54.8570 — 

45 54.9620 — -

46 55.0190 — 

47 55.0710 — 

48 55.1120 — 

49 55.1810 — 

50 55.2380 — 1 

Table VII-1 Natural Frequencies (Hz) of the cantilever beam-like 

space-frame platform shown in Figure VII-1 
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Mode Frequency(Hz) Mode Type 

1 1 . 2 5 7 3 1®*̂  Bending Plane A 
2 1 . 2 5 7 3 1̂ *̂  Bending Plane B 
3 7 . 8 6 1 0 2^^ Bending Plane A 
4 7 . 8 6 1 0 2""̂  Bending Plane B 
5 2 1 . 9 2 8 0 3^ Bending Plane A 
6 2 1 . 9 2 8 0 3̂ ^̂  Bending Plane B 
7 2 6 . 2 5 6 0 1®"̂  Torsional 
8 4 2 . 7 3 5 0 4"^ Bending Plane A 
9 4 2 . 7 3 5 0 4*^ Bending Plane B 

10 4 3 . 0 3 6 0 1®*̂  Axial 
11 7 0 . 1 4 8 0 5*̂** Bending Plane A 
12 7 0 . 1 4 8 0 5"^ Bending Plane B 
13 7 8 . 8 1 2 0 2nd Torsional 
14 103.9000 6"^ Bending Plane A 
15 1 0 3 . 9 0 0 0 6*^ Bending Plane B 
16 1 2 9 . 1 8 0 0 2^^ A x i a l 
17 1 3 1 . 4 9 0 0 3rd Torsional 
18 1 4 3 . 6 8 0 0 7"^ Bending Plane A 
19 1 4 3 . 6 8 0 0 7"^ Bending Plane B 
20 1 8 4 . 3 9 0 0 t̂h Torsional 
21 1 8 9 . 1 5 0 0 — 

22 1 8 9 . 1 5 0 0 — 

23 2 1 5 . 5 3 0 0 — 

24 2 3 7 . 5 9 0 0 — 

25 2 3 9 . 9 4 0 0 — 

26 2 3 9 . 9 4 0 0 — 

27 2 9 1 . 1 7 0 0 — 

28 2 9 5 . 6 8 0 0 — 

29 2 9 5 . 6 8 0 0 - — ~ 

30 3 0 2 . 2 3 0 0 — 

31 3 4 5 . 2 2 0 0 — 

32 355.9700 — 

33 3 5 5 . 9 7 0 0 — 

34 3 8 9 . 4 2 0 0 — 

35 3 9 9 . 8 3 0 0 — 

36 4 2 0 . 4 3 0 0 — -

37 4 2 0 . 4 3 0 0 — 

38 4 5 5 . 0 9 0 0 — 

39 4 7 7 . 2 5 0 0 — 

40 4 8 8 . 7 0 0 0 — 

41 4 8 8 . 7 0 0 0 — 

42 5 1 1 . 0 8 0 0 — 

43 5 6 0 . 4 2 0 0 — 

44 5 6 0 . 4 2 0 0 — 

45 5 6 5 . 8 4 0 0 — 

46 5 6 7 . 8 9 0 0 — 

47 6 2 5 . 6 1 0 0 — 

48 6 3 5 . 2 6 0 0 — 

49 6 3 5 . 2 6 0 0 — 

50 6 5 5 . 3 5 0 0 — 

Table VII-2 Natural Frequencies (Hz) of a cantilever symmetric and uniform 

Timoshenko beam 
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Mode FEM Method I Difference(%) 

1 0 . 7 7 3 5 8 0 . 7 7 3 7 4 0 . 0 2 0 5 6 

2 0 . 7 7 3 5 8 0 . 7 7 3 7 4 0 . 0 2 0 5 8 

3 6 . 1 3 2 7 0 6 . 1 3 3 2 0 0 . 0 0 8 1 3 

4 6 . 1 3 2 7 0 6 . 1 3 3 2 8 0 . 0 0 9 4 6 

5 1 8 . 5 4 5 0 0 1 8 . 5 4 8 8 1 0 . 0 2 0 5 7 

6 1 8 . 5 4 5 0 0 1 8 . 5 4 9 7 7 0 . 0 2 5 7 2 

7 2 6 . 2 5 6 0 0 2 6 . 2 5 7 0 6 0 . 0 0 4 0 4 

8 3 1 . 2 3 2 0 0 3 1 . 3 6 7 8 4 0 . 4 3 4 9 5 

9 3 7 . 7 6 2 0 0 3 7 . 7 7 6 1 3 0 . 0 3 7 4 2 

10 3 7 . 7 6 2 0 0 3 7 . 7 8 0 4 9 0 . 0 4 8 9 7 

11 6 3 . 6 6 8 0 0 6 3 . 7 0 8 1 5 0 . 0 6 3 0 6 

12 6 3 . 6 6 8 0 0 6 3 . 7 2 1 1 3 0 . 0 8 3 4 5 

13 7 8 . 8 1 2 0 0 7 8 . 8 1 3 7 8 0 . 0 0 2 2 6 

14 9 6 . 0 3 3 0 0 9 6 . 1 2 3 2 5 0 . 0 9 3 9 8 

15 9 6 . 0 3 3 0 0 96.15351 0 . 1 2 5 4 8 

16 1 0 2 . 1 8 0 0 0 1 0 4 . 2 4 3 3 5 2 . 0 1 9 3 3 

17 1 3 1 . 4 9 0 0 0 1 3 1 . 4 9 8 3 6 0 . 0 0 6 3 6 

18 1 3 4 . 5 7 0 0 0 1 3 4 . 7 4 7 8 6 0 . 1 3 2 1 7 

19 134.57000 1 3 4 . 8 0 8 4 9 0 . 1 7 7 2 2 

20 1 7 8 . 9 6 0 0 0 179^16776 0 . 1 7 1 9 7 

21 1 7 8 . 9 6 0 0 0 1 7 9 . 3 7 8 1 4 0 . 2 3 3 6 5 

22 1 8 2 . 1 3 0 0 0 1 8 4 . 3 9 6 2 9 1 . 2 4 4 3 2 

23 1 8 4 . 3 9 0 0 0 1 8 7 . 1 5 7 7 3 1 . 5 0 1 0 2 

24 228^nOOO 2 2 9 . 3 4 3 1 4 0 . 2 2 4 2 5 

25 228J^mOO 2 2 9 ^ ^ ^ 8 3 0 . 3 0 7 1 4 

26 2 3 7 . 5 9 0 0 0 2 3 7 . 5 9 3 3 2 0.00140 

27 2 6 5 / ^ ^ 0 0 2 7 4 . 0 4 4 8 9 3 . 1 3 2 9 6 

28 2 8 3 J ^ ^ 0 0 2 8 4 . 6 1 8 4 5 0 . 2 8 1 3 2 

29 2 8 3 ^ ^ ^ 0 0 2 8 4 . 9 3 7 3 4 0 . 3 9 3 6 8 

30 2 9 1 . 1 7 0 0 0 2 9 1 . 1 7 5 6 3 0 . 0 0 1 9 3 

Table VII-3 Natural frequency(Hz) comparative study between the Finite 

Element Method and Method l ' for the loaded beam structure' 

* 40 free-interface normal modes 

** load mass: m=16 Kg 
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Mode FEM Method I D i f f e r e n c e ( % ) 

1 1.09440 1 . 0 9 4 4 3 0 . 0 0 3 1 8 

2 1 . 0 9 6 8 0 1 . 0 9 6 9 0 0 . 0 0 9 3 6 

3 6 . 7 2 4 2 0 6 . 7 2 7 8 4 0 . 0 5 4 1 1 

4 6 . 8 1 1 0 0 6 . 8 1 4 8 7 0 . 0 5 6 8 2 

5 9.75730 1 0 . 2 2 9 5 8 4 . 8 4 0 2 9 

6 1 0 . 2 3 6 0 0 1 0 . 2 3 6 1 0 0.00096 

7 17.24400 1 7 . 2 4 4 4 3 0 . 0 0 2 5 1 

8 1 7 . 6 4 9 0 0 1 7 . 6 8 9 4 2 0 . 2 2 9 0 5 

9 1 8 . 0 6 5 0 0 18.10899 0 . 2 4 3 5 3 

10 2 1 . 5 2 3 0 0 2 1 . 5 2 4 0 8 0 . 0 0 5 0 2 

11 2 3 . 0 9 7 0 0 2 3 . 1 7 8 4 8 0 . 3 5 2 7 9 

12 3 0 . 4 8 4 0 0 3 0 . 4 9 0 6 8 0 . 0 2 1 9 0 

13 3 1 . 2 4 5 0 0 3 1 . 3 6 9 9 6 0 . 3 9 9 9 3 

14 3 1 . 6 3 5 0 0 3 1 . 6 5 8 6 9 0 . 0 7 4 9 0 

15 3 2 . 1 1 5 0 0 3 2 . 2 6 8 8 8 0 . 4 7 9 1 5 

16 4 4 . 2 4 8 0 0 4 4 . 2 4 8 9 2 0 . 0 0 2 0 8 

17 4 4 . 4 6 7 0 0 4 4 . 4 6 8 3 8 0 . 0 0 3 1 0 

18 4 4 . 8 3 4 0 0 4 4 . 8 3 5 7 0 0 . 0 0 3 7 9 

19 4 5 . 1 3 0 0 0 4 5 . 3 5 2 5 1 0 . 4 9 3 0 5 

20 4 5 . 3 4 9 0 0 4 5 . 4 1 3 6 1 0 . 1 4 2 4 8 

21 4 5 . 4 1 0 0 0 4 5 . 6 8 8 7 0 0 . 6 1 3 7 4 

22 4 5 . 9 8 9 0 0 4 5 . 9 9 9 3 0 0 . 0 2 2 3 9 

23 4 6 . 0 1 6 0 0 4 6 . 0 1 9 4 3 0.00744 

24 4 6 . 8 1 8 0 0 4 6 . 8 1 9 7 0 0 . 0 0 3 6 2 

25 47 .74300 4 7 . 7 4 4 9 0 0 . 0 0 3 9 8 

26 4 8 . 7 6 7 0 0 4 8 . 7 6 8 6 4 0 . 0 0 3 3 7 

27 4 8 . 7 9 4 0 0 4 8 . 8 2 2 2 5 0.05789 

28 4 9 . 8 4 8 0 0 49.85107 0 . 0 0 6 1 7 

29 50.17000 5 0 . 1 7 5 3 4 0 . 0 1 0 6 5 

30 5 0 . 9 8 4 0 0 5 0 . 9 8 5 4 0 0 . 0 0 2 7 4 

Table Vn-4 Natural frequency(Hz) comparative study between the Finite 

Element Method and Method I for the loaded space-frame platform 

* 40 free-interface normal modes 

** load mass: m=16 Kg 
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Mbde FEM Method I D i f f e r e n c e ( % ) 

1 0 . 7 7 3 5 8 0 . 7 7 3 7 4 0 . 0 2 0 4 7 

2 0 . 7 7 3 5 8 0 . 7 7 3 7 4 0 . 0 2 0 4 7 

3 6 . 1 3 2 7 0 6 . 1 3 3 1 0 0 . 0 0 6 5 2 

4 6 . 1 3 2 7 0 6 . 1 3 3 1 0 0 . 0 0 6 5 2 

5 1 8 . 5 4 5 0 0 1 8 . 5 4 7 6 5 0 . 0 1 4 2 7 

6 1 8 . 5 4 5 0 0 1 8 . 5 4 7 6 5 0 . 0 1 4 2 7 

7 2 6 . 2 5 6 0 0 2 6 . 2 5 7 0 6 0 . 0 0 4 0 4 

8 3 1 . 2 3 2 0 0 3 1 . 3 3 2 7 1 0 . 3 2 2 4 6 

9 3 7 . 7 6 2 0 0 3 7 . 7 7 0 7 4 0 . 0 2 3 1 5 

10 3 7 . 7 6 2 0 0 37.77074 0 . 0 2 3 1 6 

11 6 3 . 6 6 8 0 0 6 3 . 6 9 2 1 5 0 . 0 3 7 9 4 

12 6 3 . 6 6 8 0 0 6 3 . 6 9 2 1 6 0 . 0 3 7 9 5 

13 7 8 . 8 1 2 0 0 7 8 . 8 1 3 7 8 0 . 0 0 2 2 6 

14 9 6 . 0 3 3 0 0 9 6 . 0 8 6 2 6 0 . 0 5 5 4 6 

15 9 6 . 0 3 3 0 0 9 6 . 0 8 6 3 0 0 . 0 5 5 5 0 

16 1 0 2 . 1 8 0 0 0 1 0 3 . 7 0 7 0 5 1.49447 

17 1 3 1 . 4 9 0 0 0 1 3 1 . 4 9 8 3 6 0 . 0 0 6 3 6 

18 134.57000 1 3 4 . 6 7 4 1 8 0 . 0 7 7 4 2 

19 134.57000 1 3 4 . 6 7 4 2 2 0 . 0 7 7 4 5 

20 1 7 8 . 9 6 0 0 0 179.13573 0 . 0 9 8 2 0 

21 1 7 8 . 9 6 0 0 0 179XU^82 0 . 0 9 8 2 4 

22 1 8 2 . 1 3 0 0 0 1 8 4 . 3 9 6 2 9 1 . 2 4 4 3 2 

23 1 8 4 . 3 9 0 0 0 1 8 5 . 8 2 8 5 5 0 . 7 8 0 1 7 

24 2 2 8 . 8 3 0 0 0 2 2 9 . 1 2 1 6 8 0 . 1 2 7 4 7 

25 2 2 8 . 8 3 0 0 0 2 2 9 . 1 2 2 0 5 0.12763 

26 2 3 7 . 5 9 0 0 0 2 3 7 . 5 9 3 3 2 0 . 0 0 1 4 0 

27 2 6 5 . 7 2 0 0 0 2 7 1 . 7 4 8 6 5 2 . 2 6 8 8 0 

28 2 8 3 . 8 2 0 0 0 2 8 4 . 2 6 2 6 1 0 . 1 5 5 9 5 

29 2 8 3 . 8 2 0 0 0 2 8 4 . 2 6 2 6 8 0 . 1 5 5 9 7 

30 2 9 1 . 1 7 0 0 0 2 9 1 . 1 7 5 6 3 0 . 0 0 1 9 3 

Table VII-5 Natural frequency(Hz) comparative study between the Finite 

Element Method and Method I for the loaded beam structure* 

* 50 free-interface normal modes 

** load mass: m=16 Kg 
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Mode FEM Method I Difference(%) 

1 1 . 0 9 4 4 0 1 . 0 9 4 4 3 0 . 0 0 3 0 9 

2 1 . 0 9 6 8 0 1 . 0 9 6 9 0 0 . 00925 

3 6 . 7 2 4 2 0 6 . 7 2 7 7 2 0 . 0 5 2 3 9 

4 6 . 8 1 1 0 0 6 . 8 1 4 7 1 0 . 0 5 4 4 0 

5 9 . 7 5 7 3 0 1 0 . 2 2 4 4 2 4 . 7 8 7 3 4 

5 1 0 . 2 3 6 0 0 1 0 . 2 3 6 1 0 0 . 0 0 0 9 5 

7 1 7 . 2 4 4 0 0 17.24443 0 . 0 0 2 5 0 

8 1 7 . 6 4 9 0 0 1 7 . 6 8 8 0 4 0 . 2 2 1 2 0 

9 1 8 . 0 6 5 0 0 1 8 . 1 0 6 9 6 0 . 2 3 2 2 9 

10 2 1 . 5 2 3 0 0 2 1 . 5 2 4 0 8 0 . 0 0 5 0 2 

11 2 3 . 0 9 7 0 0 2 3 . 1 7 7 4 8 0 . 3 4 8 4 6 

12 3 0 . 4 8 4 0 0 3 0 . 4 9 0 4 1 0 . 0 2 1 0 3 

13 3 1 . 2 4 5 0 0 3 1 . 3 6 5 3 1 0 . 3 8 5 0 6 

14 3 1 . 6 3 5 0 0 3 1 . 6 5 7 4 2 0 . 0 7 0 8 7 

15 3 2 . 1 1 5 0 0 3 2 . 2 6 0 6 7 0 . 4 5 3 6 0 

16 4 4 . 2 4 8 0 0 4 4 . 2 4 8 9 2 0 . 0 0 2 0 8 

17 4 4 . 4 6 7 0 0 4 4 . 4 6 8 3 8 0 . 0 0 3 0 9 

18 4 4 . 8 3 4 0 0 4 4 . 8 3 5 7 0 0 . 0 0 3 7 9 

19 4 5 . 1 3 0 0 0 4 5 . 3 5 2 4 9 0 . 4 9 2 9 9 

20 4 5 . 3 4 9 0 0 4 5 . 3 9 6 3 0 0 . 1 0 4 3 1 

21 4 5 . 4 1 0 0 0 4 5 . 6 6 6 8 8 0 . 5 6 5 6 9 

22 4 5 . 9 8 9 0 0 4 5 . 9 9 8 4 2 0 . 0 2 0 4 8 

23 4 6 . 0 1 6 0 0 4 6 . 0 1 9 2 0 0 . 0 0 6 9 6 

24 4 6 . 8 1 8 0 0 4 6 . 8 1 9 6 4 0 . 0 0 3 5 1 

25 4 7 . 7 4 3 0 0 4 7 . 7 4 4 8 5 0 . 0 0 3 8 7 

26 4 8 . 7 6 7 0 0 4 8 . 7 6 8 6 0 0 . 0 0 3 2 9 

27 4 8 . 7 9 4 0 0 4 8 . 8 2 1 1 6 0.05567 

28 4 9 . 8 4 8 0 0 4 9 . 8 5 0 9 3 0 . 0 0 5 8 8 

29 5 0 . 1 7 0 0 0 5 0 . 1 7 4 8 7 0 . 0 0 9 7 1 

30 5 0 . 9 8 4 0 0 5 0 . 9 8 5 3 9 0 . 0 0 2 7 2 

Table VII-6 Natural frequency(Hz) comparative study between the Finite 

Element Method and Method I for the loaded space-frame platform 

* 50 free-interface normal modes 

** load mass: m=16 Kg 

200 



Chapter VII - Results 

Mode FEM Method 1 D i f f e r e n c e ( % ) 

1 0 . 4 1 2 8 8 0 . 4 1 2 9 7 0 . 0 2 0 6 8 

2 0 . 4 1 2 8 8 0 . 4 1 2 9 7 0 . 0 2 0 6 8 

3 5 . 6 6 6 9 0 5 . 6 6 7 3 5 0 . 0 0 7 9 6 

4 5 . 6 6 6 9 0 5.66735 0 . 0 0 7 9 6 

5 1 7 . 8 3 8 0 0 1 7 . 9 8 1 5 5 0 . 8 0 4 7 5 

6 1 7 . 9 7 9 0 0 17.98155 0 . 0 1 4 2 0 

7 17.97900 1 7 . 9 9 8 3 1 0 . 1 0 7 4 1 

8 2 6 . 2 5 6 0 0 2 6 . 2 5 7 0 6 0.00404 

9 3 7 . 1 6 7 0 0 3 7 . 1 7 7 1 2 0 . 0 2 7 2 3 

10 3 7 . 1 6 7 0 0 37.17712 0 . 0 2 7 2 4 

11 6 3 . 0 6 4 0 0 6 3 . 0 9 0 7 0 0 . 0 4 2 3 3 

12 6 3 . 0 6 4 0 0 6 3 . 0 9 0 7 0 0.04235 

13 7 8 . 8 1 2 0 0 7 8 . 8 1 3 7 8 0 . 0 0 2 2 6 

14 9 0 . 1 9 0 0 0 9 2 . 2 8 9 9 7 2 . 3 2 8 3 8 

15 9 5 . 4 3 0 0 0 9 5 . 4 8 8 9 2 0 . 0 6 1 7 4 

16 9 5 . 4 3 0 0 0 9 5 . 4 8 8 9 6 0 . 0 6 1 7 8 

17 1 3 1 . 4 9 0 0 0 1 3 1 . 4 9 8 3 6 0 . 0 0 6 3 6 

18 1 3 3 . 9 8 0 0 0 1 3 4 . 0 8 9 0 9 0 . 0 8 1 4 2 

19 1 3 3 . 9 8 0 0 0 1 3 4 . 0 8 9 1 3 0 . 0 8 1 4 5 

20 1 7 4 . 4 5 0 0 0 1 7 8 . 5 6 9 1 6 2 . 3 6 1 2 3 

21 178jnOOO 1 7 8 . 5 6 9 2 6 0 . 1 1 1 7 1 

22 178^n^00 1 7 8 . 7 6 9 7 0 0 . 2 2 4 0 9 

23 1 8 4 . 3 9 0 0 0 1 8 4 . 3 9 6 2 9 0 . 0 0 3 4 1 

24 2 2 8 . 2 6 0 0 0 2 2 8 ^ ^ ^ 8 8 0 . 1 3 9 7 0 

25 2 2 8 . 2 6 0 0 0 2 2 8 . 5 7 9 2 7 0 . 1 3 9 8 7 

26 2 3 7 . 5 9 0 0 0 2 3 7 . 5 9 3 3 2 0 . 0 0 1 4 0 

27 2 6 0 . 2 6 0 0 0 2 6 6 . 9 1 7 5 1 2 . 5 5 8 0 2 

28 2 8 3 . 2 7 0 0 0 2 8 3 . 7 4 8 1 4 0 . 1 6 8 7 9 

29 2 8 3 . 2 7 0 0 0 2 8 3 . 7 4 8 2 2 0 . 1 6 8 8 2 

30 2 9 1 . 1 7 0 0 0 2 9 1 . 1 7 5 6 3 0 . 0 0 1 9 3 

Table VII-7 Natural frequency(Hz) comparative study between the Finite 

Element Method and Method I for the loaded beam structure 

* 50 free-interface normal modes 

** load mass: m=:80 Kg 
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Chapter VII - Results 

Mode FEM Method I Difference(%) 

1 0 . 7 8 7 9 3 0 . 7 8 8 0 8 0 . 0 1 9 3 3 

2 0 . 7 8 9 3 9 0 . 7 8 9 5 4 0 . 0 1 9 4 2 

3 4 . 4 8 5 2 0 4 . 7 2 5 7 2 5 . 3 6 2 5 6 

4 5 . 9 6 4 8 0 5 . 9 7 7 5 1 0 . 2 1 3 0 7 

5 6 . 0 3 8 5 0 6.05178 0 . 2 1 9 8 7 

6 1 0 . 2 3 4 0 0 10 .23474 0 . 0 0 7 2 7 

7 1 6 . 5 6 2 0 0 1 6 . 6 8 0 5 0 0 . 7 1 5 4 8 

8 1 6 . 9 5 4 0 0 1 7 . 0 8 1 3 9 0 . 7 5 1 4 1 

9 1 7 . 2 4 5 0 0 1 7 . 2 4 5 4 3 0 . 0 0 2 4 9 

10 2 1 . 5 2 3 0 0 21.52404 0 . 0 0 4 8 4 

11 2 3 . 0 0 5 0 0 2 3 . 0 6 8 3 0 0 . 2 7 5 1 7 

12 3 0 . 1 1 2 0 0 3 0 . 4 2 7 3 0 1 . 0 4 7 0 8 

13 3 0 . 3 5 3 0 0 3 0 . 4 9 1 2 5 0.45548 

14 3 1 . 0 7 8 0 0 3 1 . 4 1 5 0 2 1 . 0 8 4 4 2 

15 3 1 . 6 0 5 0 0 3 1 . 6 0 9 4 8 0 . 0 1 4 1 6 

16 4 4 . 1 0 1 0 0 4 4 . 2 4 8 9 2 0 . 3 3 5 4 0 

17 4 4 . 2 4 8 0 0 4 4 . 4 6 8 3 7 0 . 4 9 8 0 4 

18 4 4 . 4 4 5 0 0 4 4 . 8 0 8 5 8 0 . 8 1 8 0 4 

19 4 4 . 4 6 7 0 0 4 4 . 8 3 5 6 0 0 . 8 2 8 9 4 

20 4 4 . 8 3 5 0 0 4 5 . 1 3 6 3 2 0 . 6 7 2 0 7 

21 4 5 . 3 5 2 0 0 4 5 . 3 5 3 6 7 0 . 0 0 3 6 8 

22 4 5 . 9 7 9 0 0 4 5 . 9 8 5 3 0 0 . 0 1 3 7 0 

23 4 6 . 0 1 5 0 0 4 6 . 0 1 7 2 6 0 . 0 0 4 9 2 

24 4 6 . 8 1 7 0 0 4 6 . 8 1 9 0 7 0 . 0 0 4 4 2 

25 4 7 . 7 4 2 0 0 4 7 . 7 4 4 0 7 0 . 0 0 4 3 3 

26 4 8 . 7 6 6 0 0 4 8 . 7 6 8 1 0 0 . 0 0 4 3 1 

27 4 8 . 7 6 8 0 0 4 8 . 8 0 6 2 4 0 . 0 7 8 4 2 

28 4 9 . 8 4 5 0 0 4 9 . 8 4 9 3 0 0 . 0 0 8 6 2 

29 5 0 . 1 5 9 0 0 50.17001 0 . 02195 

30 5 0 . 9 8 4 0 0 5 0 . 9 8 5 2 9 0.00254 

Table VII-8 Natural frequency(Hz) comparative study between the Finite 

Element Method and Method I for the loaded space-frame platform 

* 50 free-interface normal modes 

** load mass: m=80 Kg 
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Chapter VI I - Results 

Mode FEM Method I Difference(%) 

1 0 . 7 7 0 0 3 0 . 7 7 0 2 0 0.02157 

2 0 . 7 7 0 0 3 0.77020 0 . 0 2 1 5 8 

3 5.71530 5 . 7 2 3 3 9 0.14151 

4 5 . 7 1 5 3 0 5 . 7 2 3 3 9 0 . 1 4 1 5 3 

5 5 . 7 1 8 0 0 5.75951 0 . 7 2 6 0 2 

6 15 .17300 1 5 . 4 9 2 8 1 2 . 1 0 7 7 9 

7 15.17300 1 5 . 4 9 2 8 4 2 . 1 0 7 9 7 

8 2 7 . 4 8 1 0 0 2 9 . 0 2 9 8 3 5 . 6 3 5 9 9 

9 2 7 . 4 8 1 0 0 2 9 . 0 2 9 9 6 5 . 6 3 6 4 9 

10 3 1 . 2 3 2 0 0 31.33271 0 . 3 2 2 4 6 

11 4 6 . 5 2 3 0 0 4 9 . 3 8 6 4 5 6 . 1 5 4 9 0 

12 4 6 . 5 2 3 0 0 4 9 . 3 8 6 7 1 6 . 1 5 5 4 8 

13 5 3 . 1 6 3 0 0 5 3 . 9 9 4 0 8 1 . 5 6 3 2 6 

14 7 3 . 2 3 8 0 0 7 7 . 4 9 9 7 6 5 . 8 1 9 0 5 

15 7 3 . 2 3 8 0 0 7 7 . 5 0 0 1 9 5 . 8 1 9 6 5 

16 1 0 2 . 1 8 0 0 0 103.70705 1 . 4 9 4 4 7 

17 1 0 5 . 4 6 0 0 0 1 0 7 . 1 2 9 8 7 1 . 5 8 3 4 2 

18 1 0 6 . 8 2 0 0 0 1 1 2 . 8 1 3 0 7 5 . 6 1 0 4 3 

19 1 0 6 . 8 2 0 0 0 1 1 2 . 8 1 3 6 1 5 . 6 1 0 9 4 

20 146.70000 1 5 4 . 8 2 0 2 8 5 . 5 3 5 3 0 

21 1 4 6 . 7 0 0 0 0 1 5 4 . 8 2 1 1 2 5 . 5 3 5 8 7 

22 1 5 8 . 1 3 0 0 0 1 6 0 ^ ^ ^ 2 1 1 . 6 0 8 3 1 

23 1 8 2 . 1 3 0 0 0 1 8 5 . 8 2 8 5 5 2 . 0 3 0 7 2 

24 1 9 2 . 4 6 0 0 0 2 0 3 . 1 0 1 7 1 5 . 5 2 9 3 1 

25 1 9 2 . 4 6 0 0 0 2 0 3 . 1 0 3 0 1 5 . 5 2 9 9 9 

26 211.11000 2 1 4 . 5 6 8 4 5 1 . 6 3 8 2 2 

27 2 4 3 . 7 0 0 0 0 2 5 7 . 2 6 6 2 6 5 . 5 6 6 7 9 

28 243 .70000 2 5 7 . 2 6 7 3 2 5 . 5 6 7 2 2 

29 2 6 4 . 4 5 0 0 0 2 6 8 . 8 9 1 5 1 1 . 6 7 9 5 3 

30 2 6 5 . 7 2 0 0 0 2 7 1 . 7 4 8 6 5 2 . 2 6 8 8 0 

Table VII-9 Natural frequency(Hz) comparative study between the Finite 

Element Method and Method I for the loaded beam structure 

* 50 free-interface normal modes 

** load; m=16 Kg, ix,ly,lz=100 Kg.m^ 
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Chapter VII - Results 

Mode FEM Method I D i f f e r e n c e ( % ) 

1 1 . 0 9 2 1 0 1 . 0 9 2 7 3 0 . 0 5 7 2 7 

2 1 . 0 9 4 6 0 1 . 0 9 5 1 6 0 . 0 5 1 2 8 

3 2 . 2 2 6 4 0 6 . 6 0 5 5 4 ' 1 9 6 . 6 9 1 7 1 

4 2 . 2 2 7 0 0 6 . 6 2 6 8 0 1 9 7 . 5 6 6 1 5 

5 2 . 7 6 7 0 0 6 . 7 5 2 1 1 1 4 4 . 0 2 2 7 0 

6 6 . 7 3 8 5 0 1 0 . 2 0 9 7 5 5 1 . 5 1 3 6 9 

7 6 . 8 2 6 1 0 1 5 . 9 9 9 2 9 1 3 4 . 3 8 3 9 9 

8 9 . 7 5 8 8 0 1 6 . 8 1 5 2 8 7 2 . 3 0 8 8 9 

9 1 0 . 7 4 3 0 0 1 7 . 2 4 5 5 4 6 0 . 5 2 8 1 2 

10 1 7 . 2 4 4 0 0 2 1 . 5 2 3 8 3 2 4 . 8 1 9 2 5 

11 1 7 . 6 6 1 0 0 2 1 . 8 1 1 1 7 2 3 . 4 9 9 0 4 

12 1 8 . 0 7 8 0 0 2 2 . 9 6 0 6 8 2 7 . 0 0 8 9 5 

13 2 1 . 5 2 3 0 0 2 3 . 1 5 0 0 9 7 . 5 5 9 7 6 

14 2 3 . 0 9 8 0 0 2 8 . 3 3 5 1 1 2 2 . 6 7 3 4 2 

15 3 0 . 6 7 5 0 0 3 1 . 5 9 4 7 5 2 . 9 9 8 3 6 

16 31.25500 3 3 . 8 1 3 9 5 8 . 1 8 7 3 3 

17 3 1 . 6 3 7 0 0 4 0 . 4 9 1 1 2 2 7 . 9 8 6 5 8 

18 3 2 . 1 3 7 0 0 4 1 . 9 8 7 5 5 3 0 . 6 5 1 7 5 

19 4 4 . 2 4 8 0 0 4 4 . 2 5 3 6 7 0 . 0 1 2 8 1 

20 4 4 . 4 6 8 0 0 4 4 . 4 8 5 1 3 0 . 0 3 8 5 1 

21 4 4 . 8 3 6 0 0 4 4 . 8 7 0 3 4 0 . 0 7 6 5 9 

22 4 5 . 1 4 2 0 0 4 5 . 3 9 2 3 8 0 . 5 5 4 6 6 

23 4 5 . 3 5 0 0 0 4 5 . 9 6 6 1 6 1 . 3 5 8 6 7 

24 4 5 . 4 3 0 0 0 4 5 . 9 8 1 5 8 1 . 2 1 4 1 3 

25 4 5 . 9 8 9 0 0 4 6 . 5 3 6 1 0 1 . 1 8 9 6 3 

26 4 6 . 0 2 3 0 0 4 7 . 2 1 5 6 0 2 . 5 9 1 3 0 

27 4 6 . 8 2 6 0 0 4 8 . 1 4 0 3 3 2 . 8 0 6 8 4 

28 47.75300 4 8 . 7 6 5 9 5 2.12122 

29 4 8 . 7 7 8 0 0 4 9 . 1 6 8 3 9 0 . 8 0 0 3 5 

30 4 8 . 7 9 4 0 0 5 0 . 2 7 5 8 0 3 . 0 3 6 8 5 

Table VII-10 Natural frequency(Hz) comparative study between the Finite 

Element Method and Method I for the loaded space-frame platform 

* 50 free-interface normal modes 

** load: m=16 Kg, lx,ly,lz=100 Kg.m^ 
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Chapter VII - Results 

Mode Frequency(Hz) 

1 1 2465 
2 1 2497 
3 7 3518 
4 7 4519 
5 10 2390 
6 17 7750 
7 18 8410 
8 19 2940 
9 22 4560 

10 23 1900 
11 30 5700 

12 32 8340 
13 33 6450 
14 34 0970 

15 44 2520 
16 44 4840 
17 44 8730 
18 45 4190 
19 4 6 1170 
20 46 7740 

21 46 8660 
22 46 9610 
23 47 9290 
24 48 6550 
25 48 8770 
26 48 9980 
27 50 1320 
28 50 4790 

29 51 2330 
30 51 2930 
31 51 9200 
32 52 0990 
33 52 3960 
34 52 9770 
35 53 3940 
36 53 7440 
37 54 1800 
38 54 3870 
39 54 6670 
40 54 6810 
41 54 7770 

42 54 8610 
43 54 8730 
44 55 0610 
45 55 0810 
46 55 1050 
47 55 2680 
48 55 4220 
49 55 4870 
50 56 1540 

Table VII-11 Natural Frequencies (Hz) of the cantilever beam-like 

space-frame platform with rigid load-supporting cross-

members, shown in Figure VII-1 
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Chapter VII - Results 

Mode FEM Method I Difference(%) 

1 1 . 0 9 2 7 0 1 . 0 9 2 7 2 0 . 0 0 2 0 2 

2 1 . 0 9 5 1 0 1 . 0 9 6 2 6 0 . 1 0 6 3 5 

3 6 . 6 1 3 3 0 6 . 6 1 9 2 5 0 . 0 9 0 0 4 

4 6 . 6 5 2 4 0 6 . 6 7 4 1 4 0 . 3 2 6 8 2 

5 6 . 8 0 4 1 0 6 . 8 6 1 4 5 0 . 8 4 2 9 1 

6 1 7 . 0 3 3 0 0 1 7 . 1 6 0 0 9 0 . 7 4 6 1 2 

7 1 7 . 3 8 9 0 0 1 7 . 5 3 1 2 5 0 . 8 1 8 0 6 

8 1 7 . 7 7 5 0 0 1 7 . 7 7 6 1 1 0 . 0 0 6 2 3 

9 2 0 . 9 4 4 0 0 2 0 . 9 8 5 4 3 0 . 1 9 7 8 0 

10 2 3 . 1 8 7 0 0 2 3 . 1 8 8 5 8 0 . 0 0 6 8 0 

11 2 3 . 5 3 8 0 0 2 4 . 5 4 4 2 1 4 . 2 7 4 8 3 

12 2 9 . 5 9 4 0 0 3 0 . 3 7 6 7 5 2 . 6 4 4 9 5 

13 3 0 . 2 2 0 0 0 31.07875 2 . 8 4 1 6 7 

14 3 4 . 0 7 2 0 0 3 4 . 0 7 8 9 0 0 . 0 2 0 2 6 

15 4 2 . 1 2 3 0 0 4 4 . 2 5 3 2 7 5 . 0 5 7 2 7 

16 4 2 . 5 7 4 0 0 4 4 . 4 0 3 1 7 4 . 2 9 6 4 6 

17 4 2 . 6 1 3 0 0 4 4 . 4 2 9 4 3 4 . 2 6 2 6 3 

18 4 4 . 2 5 2 0 0 4 4 . 4 8 6 7 2 0 . 5 3 0 4 2 

19 4 4 . 4 8 5 0 0 4 4 . 8 7 4 8 3 0 . 8 7 6 3 2 

20 4 4 . 8 7 3 0 0 4 5 . 3 4 0 0 3 1 . 0 4 0 7 9 

21 4 5 . 4 1 9 0 0 4 5 . 4 2 0 2 7 0 . 0 0 2 7 9 

22 4 6 . 1 1 7 0 0 4 6 . 1 1 8 8 0 0 . 0 0 3 9 0 

23 4 6 . 9 5 9 0 0 4 6 . 9 6 0 6 8 0.00357 

24 4 7 . 9 2 8 0 0 4 7 . 9 2 9 5 5 0 . 0 0 3 2 4 

25 4 8 . 3 6 1 0 0 4 8 . 4 7 2 9 2 0 . 2 3 1 4 3 

26 4 8 . 5 8 6 0 0 4 8 . 6 2 6 4 0 0 . 0 8 3 1 6 

27 4 8 . 9 9 7 0 0 4 8 . 9 9 8 9 0 0 . 0 0 3 8 8 

28 50.13100 5 0 . 1 3 3 1 5 0 . 0 0 4 2 8 

29 5 1 . 2 3 0 0 0 5 1 . 2 3 1 8 5 0 . 0 0 3 6 2 

30 5 1 . 2 9 2 0 0 5 1 . 2 9 3 4 7 0 . 0 0 2 8 6 

Table VII-12 Natural frequency(Hz) comparative study between the Finite 

Element Method and Method I for the loaded space-frame 

platform" with rigid load-supporting cross-members 

* 50 free-interface normal modes 

** load: m=16 Kg, lx,ly,lz=100 Kg.m^ 
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Chapter VII - Results 

Mode FEM Method I Difference(%) 

1 0 . 0 0 0 0 0 0 . 0 0 0 0 4 -

2 0.00000 0.00005 — 

3 0 . 0 0 0 0 0 0.00017 -

4 0 . 0 0 0 0 0 0 . 0 0 0 3 3 -

5 0 . 0 0 0 0 0 0 . 0 0 0 3 5 -

6 0.00001 0 . 0 0 0 6 6 -

7 1 . 8 1 7 4 0 3 . 3 1 9 7 7 8 2 . 6 6 5 8 9 

8 2 . 0 9 4 7 0 5 . 0 0 5 2 2 1 3 8 . 9 4 6 8 0 

9 2 . 4 7 8 5 0 5 . 1 8 8 8 8 1 0 9 . 3 5 5 5 7 

10 3 . 2 4 1 9 0 6 . 2 9 9 4 8 9 4 . 3 1 4 2 9 

11 6 . 2 7 3 9 0 6 . 4 0 0 7 1 2 . 0 2 1 2 4 

12 6 . 3 2 0 1 0 7 . 2 9 4 7 8 1 5 . 4 2 1 9 4 

13 1 2 . 0 4 5 0 0 1 2 . 0 4 6 3 1 0 . 0 1 0 9 0 

14 1 6 . 8 3 6 0 0 1 6 . 8 7 9 1 2 0 . 2 5 6 1 1 

15 1 7 . 7 4 2 0 0 1 7 . 7 5 1 6 9 0 . 0 5 4 6 1 

16 1 8 . 4 9 6 0 0 1 8 . 5 6 6 6 0 0 . 3 8 1 6 9 

17 1 9 . 0 3 7 0 0 1 9 . 1 4 1 6 1 0 . 5 4 9 5 0 

18 2 0 . 0 8 5 0 0 2 0 . 0 9 7 5 2 0 . 0 6 2 3 2 

19 2 0 . 9 8 7 0 0 2 1 . 0 0 7 1 5 0 . 0 9 6 0 0 

20 2 1 . 0 4 1 0 0 2 1 . 0 8 2 5 1 0 . 1 9 7 2 8 

21 2 2 . 2 1 7 0 0 2 2 . 9 0 7 2 0 3.10664 

22 2 3 . 4 5 0 0 0 2 5 . 0 5 4 8 2 6 . 8 4 3 5 8 

23 2 3 . 5 1 5 0 0 2 6 . 6 3 9 9 2 1 3 . 2 8 9 0 7 

24 2 3 . 7 5 7 0 0 2 6 . 9 3 6 0 8 1 3 . 3 8 1 6 8 

25 2 4 . 7 0 5 0 0 2 7 . 5 6 3 5 2 1 1 . 5 7 0 6 2 

26 2 6 . 6 5 4 0 0 2 8 . 3 3 9 5 8 6 . 3 2 3 9 4 

27 2 7 . 2 7 7 0 0 31.76815 1 6 . 4 6 4 9 7 

28 2 7 . 6 9 3 0 0 3 2 . 3 2 4 9 9 1 6 . 7 2 6 2 1 

29 2 8 . 3 8 9 0 0 3 3 . 2 6 5 8 5 1 7 . 1 7 8 6 5 

30 4 0 . 6 9 5 0 0 4 1 . 0 2 8 0 9 0 . 8 1 8 5 1 

Table VII-13 Natural Frequency (Hz) Comparative Studies between the Finite 

Element IVlethod and Method I 'for the structure" shown in Figure VII-2 

Space-frame: 

Beam appendage: 

30 free-interface normal modes 

12 fixed-interface normal modes 

Properties: Space-frame E=7.2E10N/m^ p=2700 Kg/m^ 

Beam appendage E=7.2E10 N/m^ p=270 Kg/m^ 
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Chapter VII - Results 

Mode FEM Method I Difference(%) 

1 0 . 0 0 0 0 0 0 . 0 0 0 0 4 — 

2 0 . 0 0 0 0 0 0 . 0 0 0 0 5 — 

3 0 . 0 0 0 0 0 0 . 0 0 0 1 7 -

4 0 . 0 0 0 0 0 0 . 0 0 0 3 3 -

5 0 . 0 0 0 0 0 0 . 0 0 0 3 5 -

6 0 . 0 0 0 0 1 0 . 0 0 0 6 6 -

7 1 . 2 6 3 8 0 1 . 5 4 7 0 6 2 2 . 4 1 3 2 4 

8 1 . 3 3 8 5 0 1 . 6 3 1 1 7 2 1 . 8 6 5 2 0 

9 1 . 4 1 9 6 0 1.64617 1 5 . 9 6 0 2 3 

10 2 . 0 0 1 9 0 2 . 3 9 0 0 3 1 9 . 3 8 8 0 7 

11 6 . 2 6 3 1 0 6 . 2 6 3 9 1 0 . 0 1 2 9 5 

12 6 . 3 0 9 7 0 6 . 3 1 0 8 0 0 . 0 1 7 5 0 

13 8 . 4 8 3 3 0 9 . 5 9 9 8 1 1 3 . 1 6 1 2 8 

14 8 . 7 5 5 0 0 10.15410 1 5 . 9 8 0 5 6 

15 8 . 9 2 2 9 0 1 0 . 1 5 9 8 8 1 3 . 8 6 2 9 6 

16 9 . 0 6 4 4 0 1 0 . 3 3 4 1 3 1 4 . 0 0 7 8 7 

17 1 2 . 0 9 5 0 0 12 .12107 0 . 2 1 5 5 4 

18 1 6 . 9 0 8 0 0 1 6 . 9 4 9 1 5 0 . 2 4 3 3 9 

19 17.75000 1 7 . 7 5 9 4 4 0 . 0 5 3 1 6 

20 1 8 . 5 0 6 0 0 1 8 . 5 7 6 4 4 0 . 3 8 0 6 1 

21 19.35100 1 9 . 3 6 2 6 0 0 . 0 5 9 9 3 

22 2 0 . 1 9 8 0 0 20.20770 0 . 0 4 8 0 3 

23 2 1 . 0 2 1 0 0 21.03105 0 . 0 4 7 7 9 

24 2 1 . 1 3 0 0 0 21.13793 0.03754 

25 2 3 . 0 2 3 0 0 2 3 . 1 7 9 9 1 0 . 6 8 1 5 4 

26 2 4 . 6 8 9 0 0 2 6 . 4 6 2 7 7 7 . 1 8 4 4 6 

27 2 5 . 1 6 7 0 0 2 6 . 6 5 6 3 9 5 . 9 1 8 0 4 

28 25.56200 2 7 . 0 0 3 4 6 5 . 6 3 9 0 8 

29 2 5 . 6 4 1 0 0 2 7 . 5 5 2 8 9 7 . 4 5 6 3 7 

30 2 6 . 6 5 6 0 0 2 8 . 2 2 9 4 4 5 . 9 0 2 7 5 

Table VII-14 Natural Frequency (Hz) Comparative Studies between the Finite 

Element Method and Method I for the structure* shown in Figure VII-2 

Space-frame: 

Beam appendage: 

30 free-interface normal modes 

12 fixed-interface normal modes 

Properties: Space-frame E=7.2E10 N/m^ p=2700 Kg/m^ 

Beam appendage E=7.2E9 N/m^ p=270 Kg/m^ 
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Chapter VII - Results 

Mode FEM Method I Difference(%) 

1 0 . 0 0 0 0 0 0 . 0 0 0 0 4 -

2 0 . 0 0 0 0 0 0 . 0 0 0 0 5 — 

3 0 . 0 0 0 0 0 0 . 0 0 0 1 7 _ 

4 0. 00000 0 . 0 0 0 3 3 -

5 0 . 0 0 0 0 0 0 . 0 0 0 3 5 — 

6 0 . 0 0 0 0 0 0 . 0 0 0 6 6 

7 0 . 5 0 5 8 7 0 . 5 1 6 7 4 2 . 1 4 9 6 6 

8 0 . 5 0 6 5 1 0 . 5 1 9 6 6 2 . 5 9 5 9 6 

9 0 . 5 1 0 3 4 0 . 5 2 0 9 3 2 . 0 7 5 7 8 

10 0 . 7 4 3 0 4 0 . 7 5 8 6 9 2 . 1 0 6 5 0 

11 3 . 1 2 7 6 0 3 . 2 1 0 5 3 2 . 6 5 1 4 1 

12 3 . 1 4 7 5 0 3 . 2 1 3 4 5 2 . 0 9 5 3 0 

13 3 . 1 6 8 4 0 3 . 2 2 8 2 3 1 . 8 8 8 4 2 

14 3 . 2 3 0 7 0 3 . 3 0 7 2 3 2 . 3 6 8 8 4 

15 6 . 2 6 6 7 0 6 . 2 6 7 1 4 0 . 0 0 7 0 5 

16 6 . 3 1 5 5 0 6 . 3 1 5 7 9 0 . 0 0 4 6 7 

17 8 . 7 2 1 7 0 8 . 9 4 9 2 1 2 . 6 0 8 5 1 

18 8 . 7 9 5 0 0 8 . 9 9 5 7 8 2 . 2 8 2 9 2 

19 8 . 8 3 4 1 0 9 . 0 0 2 3 0 1 . 9 0 4 0 0 

20 8 . 8 5 8 1 0 9 . 0 2 8 9 2 1 . 9 2 8 4 1 

21 1 2 . 0 7 9 0 0 1 2 . 0 8 0 1 1 0 . 0 0 9 1 8 

22 1 6 . 7 1 6 0 0 1 6 . 8 2 8 6 9 0 . 6 7 4 1 6 

23 1 7 . 0 0 0 0 0 1 7 . 4 0 9 3 2 2 . 4 0 7 7 7 

24 1 7 . 2 4 0 0 0 1 7 . 6 1 0 9 5 2 . 1 5 1 7 0 

25 1 7 . 3 1 7 0 0 1 7 . 6 1 6 3 8 1.72884 

26 1 7 . 3 7 4 0 0 1 7 . 6 5 0 5 1 1 . 5 9 1 5 2 

27 1 7 . 7 6 4 0 0 1 7 . 8 3 2 1 2 0 . 3 8 3 4 9 

28 1 8 . 4 6 8 0 0 1 8 . 5 8 4 5 5 0 . 6 3 1 0 7 

29 1 9 . 5 0 6 0 0 1 9 . 5 2 0 7 3 0 . 0 7 5 5 1 

30 2 0 . 2 4 8 0 0 2 0 . 2 6 9 5 6 0 . 1 0 6 5 0 

Table VII-15 Natural Frequency(Hz)Comparative Studies between the Finite 

Element Method and Method I* for the structure" shown in Figure VII-2 

* Space-frame: 30 free-interface normal modes 

Beam appendage: 12 fixed-interface normal modes 

** Properties: Space-frame E=7.2E10N/m^ p=2700 Kg/m® 

Beam appendage E=7.2E8 N/m^ p=270 Kg/m^ 
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Chapter VII - Results 

Mode FEM Method 1 Difference(%) 

1 0.00000 0 . 0 0 0 2 7 -

2 0 . 0 0 0 0 0 0 . 0 0 0 5 4 — 

3 0 . 0 0 0 0 0 0 . 0 0 0 8 4 — 

4 0 . 0 0 0 0 0 0 . 00127 -

5 0 . 0 0 0 0 1 0 . 00174 -

6 0 . 0 0 0 0 1 0 . 0 0 3 0 8 -

7 3 . 9 9 6 5 0 4 . 8 9 2 2 1 22 .41245 

8 4 . 2 3 2 6 0 5 . 1 5 8 1 8 21 .86783 

9 4 . 4 8 9 1 0 5 . 2 0 5 6 1 15 .96115 

10 6 . 3 3 0 6 0 7 . 5 5 7 8 7 19 . 38633 

11 1 9 . 8 0 6 0 0 1 9 . 8 0 8 1 9 0 .01107 

12 19.95300 1 9 . 9 5 6 5 0 0 . 01754 

13 2 6 . 8 2 7 0 0 3 0 . 3 5 7 4 1 13 . 15991 

14 2 7 . 6 8 6 0 0 3 2 . 1 1 0 1 1 15 . 97960 

15 2 8 . 2 1 7 0 0 3 2 . 1 2 8 3 1 13 .86155 

16 2 8 . 6 6 4 0 0 3 2 . 6 7 9 2 7 14 00808 

17 3 8 . 2 4 9 0 0 3 8 . 3 3 0 1 4 0 21214 

18 5 3 . 4 6 7 0 0 5 3 . 5 9 1 3 6 0 23260 

19 5 6 . 1 3 0 0 0 5 6 . 1 5 8 6 1 0 05097 

20 5 8 . 5 2 1 0 0 5 8 . 7 3 0 2 2 0 35751 

21 6 1 . 1 9 3 0 0 6 1 . 2 2 8 9 5 0. 05875 

22 6 3 . 8 7 3 0 0 6 3 . 9 0 0 8 1 0. 04354 

23 6 6 . 4 7 5 0 0 6 6 . 5 0 4 3 2 0 04410 

24 6 6 . 8 1 8 0 0 6 6 . 8 4 3 6 7 0 03842 

25 7 2 . 8 0 4 0 0 7 3 . 2 9 0 0 1 0. 66755 

26 7 8 . 0 7 4 0 0 8 3 . 6 8 2 9 1 7 . 18410 

27 7 9 . 5 8 6 0 0 8 4 . 2 9 2 9 8 5 . 91433 

28 8 0 . 8 3 4 0 0 8 5 . 3 8 3 0 1 5 . 62759 

29 8 1 . 0 8 3 0 0 8 7 . 1 2 9 0 1 7 . 45657 

30 8 4 . 2 9 4 0 0 8 9 . 2 6 8 9 1 5 . 90185 

Table VII-16 Natural Frequency (Hz) Comparative Studies between the Finite 

Element Method and Method I* for the structure" shown in Figure VII-2 

* Space-frame; 30 free-interface normal modes 

Beam appendage: 12 fixed-interface normal modes 

** Properties: Space-frame E-7.2E11 N/m^ p=2700 Kg/m® 

Beam appendage E=7.2E10 N/m^ p=270 Kg/m^ 
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Chapter VII - Results 

Mode FEM Method I Difference(%) 

1 0.00000 0 . 0 0 0 0 1 — 

2 0 . 0 0 0 0 0 0 . 0 0 0 0 3 — 

3 0 . 0 0 0 0 0 0 . 0 0 0 1 3 -

4 0 . 0 0 0 0 0 0 . 0 0 0 2 2 -

5 0 . 0 0 0 0 0 0 . 0 0 0 3 2 -

6 0 . 0 0 0 0 0 0 . 0 0 0 4 7 -

7 0.67496 1 . 2 1 9 6 5 8 0 . 6 9 9 2 1 

8 0 . 7 3 4 9 2 1 . 6 9 7 9 5 1 3 1 . 0 3 9 0 4 

9 0 . 8 5 1 2 3 1 . 8 1 7 4 4 1 1 3 . 5 0 7 4 9 

10 2 . 1 8 1 1 0 4 . 1 5 2 9 9 9 0 . 4 0 8 1 6 

11 6 . 1 2 2 6 0 6 . 1 3 4 7 1 0 . 1 9 7 7 4 

12 6 . 1 9 7 0 0 6 . 2 1 4 1 3 0 . 2 7 6 4 0 

13 7 . 4 7 9 7 0 8 . 3 8 1 3 9 1 2 . 0 5 5 1 4 

14 7 . 5 5 2 7 0 9 . 8 8 7 2 5 3 0 . 9 1 0 1 6 

15 7 . 6 3 1 2 0 1 0 . 1 4 8 5 2 3 2 . 9 8 7 2 2 

16 7.68150 1 0 . 4 6 9 6 0 3 6 . 2 9 6 3 0 

17 1 2 . 0 2 6 0 0 1 2 . 3 4 2 7 2 2 . 6 3 3 6 0 

18 1 2 . 7 6 6 0 0 1 4 . 4 6 2 8 1 1 3 . 2 9 1 6 1 

19 1 7 . 3 6 4 0 0 1 7 . 4 1 7 1 4 0 . 3 0 6 0 2 

20 1 7 . 8 3 0 0 0 1 7 . 8 5 5 5 3 0 . 1 4 3 1 9 

21 1 8 . 1 2 3 0 0 1 8 . 2 2 7 5 8 0 . 5 7 7 0 6 

22 1 9 . 7 4 1 0 0 1 9 . 8 5 8 5 0 0 . 5 9 5 2 0 

23 2 0 . 6 3 1 0 0 2 0 . 7 2 9 8 5 0 . 4 7 9 1 4 

24 2 0 . 9 3 4 0 0 2 0 . 9 5 9 5 8 0 . 1 2 2 2 1 

25 2 1 . 4 8 4 0 0 2 1 . 8 2 5 4 8 1 . 5 8 9 4 7 

26 2 3 . 3 6 3 0 0 2 4 . 8 8 0 3 1 6 . 4 9 4 5 0 

27 2 3 . 6 0 7 0 0 2 6 . 2 3 8 3 1 1 1 . 1 4 6 3 3 

28 2 4 . 0 6 9 0 0 2 6 . 6 4 2 1 1 1 0 . 6 9 0 5 6 

29 2 4 . 7 6 9 0 0 2 7 . 3 0 2 6 6 1 0 . 2 2 9 1 6 

30 2 6 . 2 6 4 0 0 - 2 8 . 0 5 6 1 7 6 . 8 2 3 6 9 

TableVII-17 Natural Frequency Comparative (Hz) Studies between the 

Finite Element Method and Method Tfor the structure * shown in Figure VII-2 

* Space-frame: 30 free-interface normal modes 

Beam appendage: 12 fixed-interface normal modes 

** Properties: Space-frame E=7.2E10N/m^ p=2700 Kg/m^ 

Beam appendage E=7.2E10 N/m^ p=2700 Kg/m® 
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Chapter VII - Results 

T a b l e Number P l a t f o r m 
P r o p e r t i e s 

Appendage 
P r o p e r t i e s 

Degree o f Loca l 
D e f o r m a t i o n 

13 

E=7.2e lO N/m2 

P=2700 Kg/m^ 

E=7.2el0 N/m^ 

P=270 Kg/m^ High 

14 

E=7.2e lO N/m2 

P=2700 Kg/m^ 

E=7.2e9 N/mf 

P=270 Kg/mf Medium 

15 

E=7.2e lO N/m^ 

P=2700 Kg/mf 

E=7 .2e8 N/mf 

P=270 Kg/m^ Low 

16 

E = 7 . 2 e l l N/mf 

P=2700 Kg/m^ 

E=7.2e lO N/mf 

P=270 Kg/mf Medium 

17 

E=7.2e lO N/mf 

P=2700 Kg/mf 

E=7.2e lO N/mf 

P=2700 Kg/mf High 

Table VII-18 Collective table for example cases in case study 2 

Mode Frequency(Hz) 

1 5 . 1 2 8 1 
2 5 . 1 2 8 1 
3 32 . 132 
4 32 . 132 
5 89 . 952 
6 89 . 952 
7 176 .22 
8 176 .22 
9 291 .25 

10 291 .25 
11 415 .29 
12 435 .03 
13 435 .03 
14 607 .67 

15 607 .67 

Table VII-19 Natural frequencies of a cantilever beam appendage 

Properties: E=7.2E10 N/m^ p=270 Kg/m 
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Chapter VII - Results 

Mode Freciuency (Hz) 

1 1 . 6 2 1 7 
2 1 . 6 2 1 7 

3 10. 161 

4 10. 161 
5 28 . 445 
6 28 . 445 
7 55 . 727 
8 55 . 727 
9 92 . 100 

10 92 . 100 
11 131 .33 

12 137 .57 

13 137 .57 
14 192 .16 
15 192 .16 

Table VII-20 Natural frequencies of a cantilever beam appendage 

* Properties: E=7.2E9 N/m^ p=270 Kg/m® or 

E=7,2E10N/m^ p=2700 Kg/m^ 

Mode Frequency(Hz) 

1 0 . 5 1 2 8 1 
2 0.51281 

3 3 . 2132 
4 3 . 2132 
5 8 . 9952 
6 8 . 9952 
7 17 . 622 
8 17 . 622 
9 29 . 125 

10 29 .125 
11 41 . 529 
12 43 . 503 
13 43 .503 
14 60 .767 

15 60 .767 

Table VII-21 Natural frequencies of a cantilever beam appendage 

Properties: E=7.2E8 N/m^ p=270 Kg/m 
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Chapter VII - Results 

Mode Fre<juency(Hz) 

1 0 , 

2 0 

3 0 

4 0 

5 0 

6 0 

7 1. 9333 

8 2 . 2832 

9 2 . 8124 

10 3 . 5679 

11 6 . 2767 

12 12 .056 

13 16 .896 

14 17 .750 

15 18 .509 

16 19 .288 

17 20 .262 

18 21 .032 

19 21 .127 

20 23 .218 

21 26 .648 

22 27 .154 

23 27 .413 

24 28 .237 

25 40 .583 

26 40 .723 

27 44 .180 

28 44 .232 

29 44 .806 

30 44 .975 

Table VII-22 Natural Frequencies (Hz) of space-frame platform* 

loaded with the inertia of the appendages** 

* Properties: E=7.2E10 N/m^ p=2700 Kg/m^ 

** Properties: p=270 Kg/m^ 
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Chapter VII - Results 

Mode Frequency(Hz) 

1 0. 

2 0. 

3 0. 42796E-05 

4 0. 69442E-05 

5 0. 72302E-05 

6 0. 79422E-05 

7 6 . 1137 

8 7. 2200 

9 8 . 8934 

10 11 .283 

11 19 . 849 

12 19 . 996 

13 38 .124 

14 53 .429 

15 56 . 132 

16 58 .530 

17 60 .993 

18 64 .073 

19 66 .509 

20 66 . 8 1 1 

21 73 . 4 2 1 

22 84 .267 

23 85 .870 

24 86 .688 

25 89 . 294 

26 1 2 8 . 3 4 

27 1 2 8 . 7 8 

28 139.71 

29 1 3 9 . 8 7 

30 1 4 1 . 6 9 

Table VII-23 Natural Frequencies (Hz) of space-frame platform* 

loaded with the inertia of the appendages** 

* Properties: E=7.2E11 N/m^ p=2700 Kg/m^ 

** Properties: p=270 Kg/m® 
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Chapter V I I - Results 

Mode Frequency(Hz) 

1 0 . 

2 0 . 

3 0. 

4 0. 

5 0. 

6 0 . 3 7 6 0 9 E - 0 6 

7 0 . 72148 

8 0 . 80417 

9 0. 96729 

10 2 . 4590 

11 6 . 1676 

12 6 . 2 5 9 4 

13 11 . 7 5 9 

14 12 . 3 2 4 

15 17 . 1 9 7 

16 17 . 4 3 9 

17 17 . 7 9 4 

18 19 . 6 7 5 

19 20 . 6 3 4 

20 20 . 9 4 2 

21 2 1 . 5 7 2 

22 26 . 2 3 9 

23 26 . 5 9 4 

24 26 . 7 1 4 

25 27 . 6 5 1 

26 35 . 7 7 9 

27 39 . 8 0 2 

28 40 .719 

29 43 . 1 5 4 

30 44 .179 

Table VII-24 Natural Frequencies (Hz) of space-frame platform* 

loaded with the inertia of the appendages** 

* Properties: E=7.2E10 N/m^ p=2700 Kg/m® 

** Properties; p=2700 Kg/m® 
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Chapter V I I - Results 

Mode F r e q u e n c y ( Hz ) 

1 0. 0 

2 0. 0 

3 0. 0 

4 0 . 0 

5 0. 0 

6 0. 0 

7 0 . 67496 

8 0. 7 3 4 9 2 

9 0 . 8 5 1 2 3 

10 2 . 1 8 1 1 

11 6 . 1226 

12 6. 1970 

13 7 . 4797 

14 7 . 5527 

15 7 . 6312 

16 7 . 6815 

17 12 . 0 2 6 

18 12 . 7 6 6 

19 17 . 3 6 4 

20 17 . 8 3 0 

21 18 . 1 2 3 

22 19 . 7 4 1 

23 20 . 6 3 1 

24 20 . 9 3 4 

25 21 . 4 8 4 

26 23 . 3 6 3 

27 23 .607 

28 24 . 0 6 9 

29 24 . 7 6 9 

30 26 . 2 6 4 

31 26 . 7 9 2 

32 27 . 6 7 0 

33 28 . 3 4 6 

34 36 . 8 0 6 

35 40 . 4 2 1 

36 4 1 . 9 5 5 

37 44 . 1 8 0 

38 44 . 2 3 1 

39 44 . 3 7 4 

40 44 . 8 1 1 

Table VII -25 Natural Frequency obtained by direct Finite Element 

Method for the structure* in case study 3 

* Properties; Space-frame E=7.2E10N/m^ p=2700 Kg/m^ 

Beam appendage E=7.2E10 N/m^ p=2700 Kg/m^ 
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Chapter VI I - Results 

Mode FEM Method I Difference{%) 

1 0 . 0 0 0 0 0 0 . 0 0 0 0 1 — 

2 0 . 0 0 0 0 0 0 . 0 0 0 0 3 -

3 0 . 0 0 0 0 0 0 . 0 0 0 1 3 -

4 0 . 0 0 0 0 0 0 . 0 0 0 2 2 -

5 0 . 0 0 0 0 0 0 . 0 0 0 3 2 — 

6 0 . 0 0 0 0 0 0 . 0 0 0 4 7 -

7 0 . 6 7 4 9 6 1 . 2 1 9 6 5 80 . 6 9 9 2 1 

8 0 . 7 3 4 9 2 1 . 6 9 7 9 5 1 3 1 . 0 3 9 0 4 

9 0 . 8 5 1 2 3 1 . 8 1 7 4 4 113 . 5 0 7 4 9 

10 2 . 1 8 1 1 0 4 . 1 5 2 9 9 90 . 4 0 8 1 6 

11 6 . 1 2 2 6 0 6 . 1 3 4 7 1 0 . 1 9 7 7 4 

12 6 . 1 9 7 0 0 6 . 2 1 4 1 3 0 . 2 7 6 4 0 

13 7 . 4 7 9 7 0 8 . 3 8 1 3 9 12 . 0 5 5 1 4 

14 7 . 5 5 2 7 0 9 . 8 8 7 2 5 30 . 9 1 0 1 6 

15 7 . 6 3 1 2 0 1 0 . 1 4 8 5 2 32 9 8 7 2 2 

16 7 . 6 8 1 5 0 1 0 . 4 6 9 6 0 36 2 9 6 3 0 

17 1 2 . 0 2 6 0 0 1 2 . 3 4 2 7 2 2 6 3 3 6 0 

18 1 2 . 7 6 6 0 0 1 4 . 4 6 2 8 1 13 2 9 1 6 1 

19 1 7 . 3 6 4 0 0 1 7 . 4 1 7 1 4 0 3 0 6 0 2 

20 1 7 . 8 3 0 0 0 1 7 . 8 5 5 5 3 0 1 4 3 1 9 

21 1 8 . 1 2 3 0 0 1 8 . 2 2 7 5 8 0 5 7 7 0 6 

22 1 9 . 7 4 1 0 0 1 9 . 8 5 8 5 0 0. 5 9 5 2 0 

23 2 0 . 6 3 1 0 0 2 0 . 7 2 9 8 5 0 4 7 9 1 4 

24 2 0 . 9 3 4 0 0 2 0 . 9 5 9 5 8 0. 1 2 2 2 1 

25 2 1 . 4 8 4 0 0 2 1 . 8 2 5 4 8 1. 5 8 9 4 7 

26 2 3 . 3 6 3 0 0 2 4 . 8 8 0 3 1 6. 4 9 4 5 0 

27 2 3 . 6 0 7 0 0 2 6 . 2 3 8 3 1 11. 1 4 6 3 3 

28 2 4 . 0 6 9 0 0 2 6 . 6 4 2 1 1 10 . 6 9 0 5 6 

29 2 4 . 7 6 9 0 0 2 7 . 3 0 2 6 6 1 0 . 2 2 9 1 6 

30 2 6 . 2 6 4 0 0 2 8 . 0 5 6 1 7 6 . 8 2 3 6 9 

Table VII-26 Natural Frequency Comparative (Hz) Studies between the 

Finite Element Method and Method I for the structure in case study 3 

* Space-frame: 30 free-interface normal modes 

Beam appendage: 12 fixed-interface normal modes 

** Properties: Space-frame E=7.2E10N/m^ p=2700 Kg/m® 

Beam appendage E-7.2E10 N/m^ p=2700 Kg/m® 
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Chapter VI I - Results 

Mode FSM Method 11 Difference{%) 

1 0 . 0 0 0 0 0 0 . 0 0 0 4 6 — 

2 0 . 0 0 0 0 0 0 . 0 0 0 8 7 — 

3 0 . 0 0 0 0 0 0 . 0 0 1 8 1 -

4 0 . 0 0 0 0 0 0 . 0 0 2 3 6 — 

5 0 . 0 0 0 0 0 0 . 0 0 2 8 4 -

6 0 . 0 0 0 0 0 0 . 0 0 3 4 4 — 

7 0 . 6 7 4 9 6 1 . 2 6 7 5 6 8 7 . 7 9 7 2 4 

8 0 . 7 3 4 9 2 1 . 6 7 7 7 7 1 2 8 . 2 9 2 3 0 

9 0 . 8 5 1 2 3 1 . 8 1 1 6 0 1 1 2 . 8 2 1 0 7 

10 2 . 1 8 1 1 0 4 . 1 5 3 2 3 9 0 . 4 1 8 9 9 

11 6 . 1 2 2 6 0 6 . 1 3 6 6 4 0 . 2 2 9 3 5 

12 6 . 1 9 7 0 0 6 . 2 1 6 7 7 0 . 3 1 9 0 2 

13 7 . 4 7 9 7 0 8 . 4 7 8 6 1 1 3 . 3 5 4 9 5 

14 7 . 5 5 2 7 0 9 . 8 3 7 6 4 3 0 . 2 5 3 2 2 

15 7 . 6 3 1 2 0 1 0 . 1 1 6 3 6 3 2 . 5 6 5 8 3 

16 7 . 6 8 1 5 0 1 0 . 4 5 2 7 8 3 6 . 0 7 7 3 7 

17 1 2 . 0 2 6 0 0 1 2 . 3 3 3 3 6 2 . 5 5 5 8 0 

18 12 .76600 1 4 . 4 6 5 6 5 1 3 . 3 1 3 8 6 

19 1 7 . 3 6 4 0 0 1 7 . 4 2 1 4 1 0 . 3 3 0 6 4 

20 1 7 . 8 3 0 0 0 1 7 . 8 9 1 2 0 0 . 3 4 3 2 6 

21 1 8 . 1 2 3 0 0 1 8 . 2 5 2 4 1 0 . 7 1 4 0 5 

22 1 9 . 7 4 1 0 0 1 9 . 8 6 5 1 7 0 . 6 2 9 0 1 

23 2 0 . 6 3 1 0 0 2 0 . 7 5 5 9 3 0 . 6 0 5 5 5 

24 2 0 . 9 3 4 0 0 2 0 . 9 6 3 3 5 0 . 1 4 0 2 0 

25 2 1 . 4 8 4 0 0 2 1 . 9 4 3 5 5 2 . 1 3 9 0 2 

26 2 3 . 3 6 3 0 0 2 4 . 9 5 2 4 8 6 . 8 0 3 4 1 

27 2 3 . 6 0 7 0 0 2 6 . 2 4 6 4 2 1 1 . 1 8 0 6 8 

28 2 4 . 0 6 9 0 0 2 6 . 6 6 9 6 9 1 0 . 8 0 5 1 5 

29 2 4 . 7 6 9 0 0 2 7 . 2 9 7 7 2 1 0 . 2 0 9 2 1 

30 2 6 . 2 6 4 0 0 2 7 . 8 4 4 7 6 6 . 0 1 8 7 5 

Table VII-27 Natural Frequency Comparative (Hz) Studies between the 

Finite Element Method and Method II* for the structure in case study 3 

* Space-frame: 30 fixed-interface normal modes 

Beam appendage: 12 fixed-interface normal modes 

E=7.2E10N/m^ p=2700 Kg/m^ 
Beam appendage E=7.2E10 N/m^ p=2700 Kg/m^ 

Properties: Space-frame 
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Chapter VII - Results 

Mode FEM Method III Difference(%) 

1 0.00000 0 . 0 0 0 4 6 — 

2 0 . 0 0 0 0 0 0 . 0 0 0 8 7 -

3 0 . 0 0 0 0 0 0 . 0 0 1 8 1 -

4 0 . 0 0 0 0 0 0.00235 -

5 0 . 0 0 0 0 0 0 . 0 0 2 8 4 -

6 0 . 0 0 0 0 0 0 . 0 0 3 4 4 — 

7 0 . 6 7 4 9 6 0 . 6 7 4 9 8 0 . 0 0 2 9 7 

8 0 . 7 3 4 9 2 0 . 7 3 4 9 5 0 . 0 0 4 0 7 

9 0 . 8 5 1 2 3 0 . 8 5 1 2 5 0 . 0 0 2 9 0 

10 2 . 1 8 1 1 0 2 . 1 8 1 2 3 0 . 0 0 5 9 0 

11 6 . 1 2 2 6 0 6 . 1 2 2 9 0 0 . 0 0 4 9 2 

12 6 . 1 9 7 0 0 6 . 1 9 7 3 0 0 . 0 0 4 9 1 

13 7.47970 7 . 4 8 5 9 6 0 . 0 8 3 7 0 

14 7 . 5 5 2 7 0 7 . 5 5 9 1 7 0 . 0 8 5 6 7 

15 7 . 6 3 1 2 0 7 . 6 3 8 0 5 0 . 0 8 9 8 2 

16 7 . 6 8 1 5 0 7 . 6 8 7 9 5 0 . 0 8 3 9 7 

17 1 2 . 0 2 6 0 0 1 2 . 0 2 9 0 7 0 . 0 2 5 5 5 

18 1 2 . 7 6 6 0 0 1 2 . 7 7 3 2 5 0 . 0 5 6 7 6 

19 1 7 . 3 6 4 0 0 1 7 . 3 6 5 6 8 0 . 0 0 9 6 9 

20 1 7 . 8 3 0 0 0 1 7 . 8 3 1 0 4 0 . 0 0 5 8 6 

21 1 8 . 1 2 3 0 0 1 8 . 1 2 9 2 5 0 . 03450 

22 1 9 . 7 4 1 0 0 19. 74317 0 . 0 1 0 9 7 

23 2 0 . 6 3 1 0 0 2 0 . 6 3 2 0 4 0 . 0 0 5 0 3 

24 2 0 . 9 3 4 0 0 2 0 . 9 3 4 4 2 0 . 0 0 2 0 1 

25 2 1 . 4 8 4 0 0 2 1 . 4 8 5 5 1 0.00705 

26 2 3 . 3 6 3 0 0 2 3 . 4 3 2 5 7 0 . 2 9 7 7 7 

27 2 3 . 6 0 7 0 0 2 3 . 7 0 6 7 8 0 . 4 2 2 6 8 

28 2 4 . 0 6 9 0 0 2 4 . 1 3 6 9 2 0 . 2 8 2 2 1 

29 2 4 . 7 6 9 0 0 2 4 . 8 3 8 5 6 0 . 2 8 0 8 4 

30 2 6 . 2 6 4 0 0 2 6 . 2 6 7 9 3 0 . 0 1 4 9 5 

Table VII-28 Natural Frequency Comparative (Hz) Studies between the 

Finite Element Method and Method I I I for the structure* In case study 3 

* Space-frame: 30 loaded-Interface normal modes 

Beam appendage: 12 fixed-interface normal modes 

E=7.2E10 N/m^ p=2700Kg/m^ 
Beam appendage E=7.2E10N/m^ p=2700 Kg/m^ 

Properties: Space-frame 
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Chapter VII - Results 

Mode FEM Method IV D i f f e r e n c e ( % ) 

1 0 . 0 0 0 0 0 0.00045 — 

2 0 . 0 0 0 0 0 0 . 0 0 0 8 7 -

3 0.00000 0 . 0 0 1 8 1 -

4 0.00000 0 . 0 0 2 3 6 -

5 0 . 0 0 0 0 0 0 . 0 0 2 8 4 — 

6 0 . 0 0 0 0 0 0 . 0 0 3 4 4 — 

7 0 . 6 7 4 9 6 0 . 6 7 4 9 9 0 . 0 0 3 8 1 

8 0 . 7 3 4 9 2 0.73512 0 . 0 2 6 9 0 

9 0 . 8 5 1 2 3 0 . 8 5 1 2 5 0 . 0 0 2 9 3 

10 2 . 1 8 1 1 0 2 . 1 8 1 2 7 0 . 0 0 7 8 7 

11 6 . 1 2 2 6 0 6 . 1 2 2 8 6 0.00433 

12 6 . 1 9 7 0 0 6 . 1 9 7 3 1 0 . 0 0 5 0 4 

13 7 . 4 7 9 7 0 7 . 4 8 0 2 3 0 . 0 0 7 0 2 

14 7 . 5 5 2 7 0 7 . 5 5 3 2 2 0 . 0 0 6 8 8 

15 7 . 6 3 1 2 0 7 . 6 3 1 7 4 0 . 0 0 7 1 0 

16 7 . 6 8 1 5 0 7 . 6 8 2 0 1 0 . 0 0 6 6 0 

17 1 2 . 0 2 6 0 0 1 2 . 0 5 4 6 2 0 . 2 3 7 9 5 

18 1 2 . 7 6 6 0 0 1 2 . 7 7 6 7 6 0 . 0 8 4 3 1 

19 1 7 . 3 6 4 0 0 1 7 . 3 7 1 8 2 0. 04504 

20 1 7 . 8 3 0 0 0 1 7 . 8 3 5 7 9 0 . 0 3 2 5 0 

21 1 8 . 1 2 3 0 0 1 8 . 1 7 3 1 1 0 . 2 7 6 4 8 

22 1 9 . 7 4 1 0 0 1 9 . 7 6 5 6 1 0 . 1 2 4 6 5 

23 2 0 . 6 3 1 0 0 2 0 . 6 3 8 9 5 0 . 0 3 8 5 2 

24 2 0 . 9 3 4 0 0 2 0 . 9 3 7 2 4 0 . 0 1 5 4 7 

25 2 1 . 4 8 4 0 0 2 1 . 4 9 3 7 6 0 . 0 4 5 4 3 

26 2 3 . 3 6 3 0 0 2 3 . 3 6 6 7 1 0 . 0 1 5 8 9 

27 2 3 . 6 0 7 0 0 2 3 . 6 1 7 6 8 0 . 0 4 5 2 6 

28 2 4 . 0 6 9 0 0 2 4 . 0 8 4 9 5 0 . 0 6 6 2 7 

29 2 4 . 7 6 9 0 0 2 4 . 7 9 5 7 8 0 . 1 0 8 1 0 

30 2 6 . 2 6 4 0 0 2 6 . 2 6 8 6 6 0.01773 

Table VII-29 Natural Frequency Comparative (Hz) Studies between the 

Finite Element Method and Method IV for the structure in case study 3 

* Space-frame: 6 redundant constraint modes 

24 fixed-interface normal modes 

Beam appendage: 12 fixed-interface normal modes 

Properties: Space-frame E=7.2E10 N/m^ p=2700 Kg/m^ 
Beam appendage E=7.2E10 N/m p=2700 Kg/m 
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Chapter VI I - Results 

Mode FEM Method V Difference{%) 

1 0 . 0 0 0 0 0 0 . 0 0 0 3 5 -

2 0 . 0 0 0 0 0 0 . 0 0 0 6 8 — 

3 0 . 0 0 0 0 0 0 . 0 0 0 7 4 -

4 0 . 0 0 0 0 0 0 . 0 0 0 9 0 -

5 0 . 0 0 0 0 0 0 . 0 0 0 9 8 -

6 0 . 0 0 0 0 0 0 . 0 0 2 0 1 -

7 0 . 6 7 4 9 6 0 . 6 7 4 9 8 0 . 0 0 2 8 2 

8 0 . 7 3 4 9 2 0 . 7 3 4 9 5 0 . 0 0 3 9 8 

9 0 . 8 5 1 2 3 0 . 8 5 1 2 5 0 . 0 0 2 9 0 

10 2 . 1 8 1 1 0 2 . 1 8 1 2 7 0 . 0 0 7 7 9 

11 6 . 1 2 2 6 0 6 . 1 2 2 8 6 0 . 0 0 4 3 1 

12 6 . 1 9 7 0 0 6 . 1 9 7 3 1 0 . 0 0 5 0 1 

13 7 . 4 7 9 7 0 7 . 4 8 0 1 4 0 . 0 0 5 8 7 

14 7 . 5 5 2 7 0 7 . 5 5 3 1 4 0 . 0 0 5 8 8 

15 7 . 6 3 1 2 0 7 . 6 3 1 7 3 0 . 0 0 6 9 9 

16 7 . 6 8 1 5 0 7 . 6 8 2 0 0 0 0 0 6 4 7 

17 1 2 . 0 2 6 0 0 1 2 . 0 5 4 5 6 0 2 3 7 4 9 

18 1 2 . 7 6 6 0 0 1 2 . 7 7 6 7 4 0 0 8 4 1 3 

19 1 7 . 3 6 4 0 0 17.37181 0 04497 

20 1 7 . 8 3 0 0 0 1 7 . 8 3 5 7 8 0 0 3 2 4 4 

21 1 8 . 1 2 3 0 0 1 8 . 1 7 2 9 3 0 2 7 5 5 1 

22 1 9 . 7 4 1 0 0 1 9 . 7 6 5 5 6 0 1 2 4 4 2 

23 2 0 . 6 3 1 0 0 2 0 . 6 3 8 9 3 0. 0 3 8 4 6 

24 2 0 . 9 3 4 0 0 2 0 . 9 3 7 2 3 0. 0 1 5 4 2 

25 2 1 . 4 8 4 0 0 2 1 . 4 9 3 7 4 0 04535 

26 2 3 . 3 6 3 0 0 2 3 . 3 6 6 5 6 0 0 1 5 2 3 

27 2 3 . 6 0 7 0 0 2 3 . 6 1 7 5 9 0. 0 4 4 8 8 

28 2 4 . 0 6 9 0 0 2 4 . 0 8 4 9 2 0 . 0 6 6 1 3 

29 2 4 . 7 6 9 0 0 2 4 . 7 9 5 7 3 0 . 1 0 7 9 0 

30 2 6 . 2 6 4 0 0 2 6 . 2 6 8 6 5 0. 0 1 7 7 0 

Table VII-30 Natural Frequency Comparative (Hz) Studies between the 

Finite Element Method and Method V for the structure" in case study 3 

* Space-frame: 12 constraint modes 

18 fixed-interface normal modes 

Beam appendage: 12 fixed-interface normal modes 

** Properties: Space-frame E=7.2E10 N/m^ p=2700 Kg/m^ 

Beam appendage E=7.2E10 N/m^ p=2700 Kg/m® 
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Chapter VII - Results 

Mode FEM Method III Difference(%) 

1 0 . 5 4 5 7 0 0 . 5 4 5 7 2 0 . 0 0 3 4 6 

2 0 . 6 5 0 6 4 0 . 6 5 0 6 6 0 . 0 0 3 2 6 

3 0 . 6 6 7 8 0 0 . 6 6 7 8 3 0 . 0 0 3 7 7 

4 0 . 7 6 6 0 7 0 . 7 6 6 1 0 0 . 0 0 3 6 2 

5 1 . 1 0 7 4 0 1 . 1 0 7 4 6 0 . 0 0 5 4 9 

6 1 . 1 3 8 0 0 1 . 1 3 8 0 6 0 . 0 0 4 8 8 

7 4 . 3 6 1 8 0 4 . 3 6 2 2 0 0 . 0 0 9 2 2 

8 5 . 0 4 9 5 0 5 . 0 4 9 7 2 0 . 0 0 4 4 5 

9 6 . 9 6 8 2 0 6 . 9 7 1 5 9 0 . 0 4 8 6 7 

10 7 . 3 6 9 5 0 7 . 3 8 2 3 0 0 . 1 7 3 6 8 

11 7.53070 7 . 5 3 8 3 2 0.10122 

12 7.67510 7 . 6 8 0 4 3 0 . 0 6 9 4 6 

13 9 . 0 9 4 8 0 9 . 0 9 7 3 4 0 . 0 2 7 9 3 

14 9 . 3 0 1 2 0 9 . 3 0 1 7 8 0 . 0 0 6 2 0 

15 1 2 . 7 3 6 0 0 1 2 . 7 4 2 3 3 0 . 0 4 9 7 3 

16 1 7 . 4 6 4 0 0 1 7 . 4 6 8 8 1 0 . 0 2 7 5 6 

17 1 7 . 5 5 7 0 0 1 7 . 5 6 1 9 1 0 . 0 2 7 9 6 

18 2 0 . 0 1 6 0 0 2 0 . 0 1 9 7 8 0 . 0 1 8 8 8 

19 2 0 . 9 0 8 0 0 2 0 . 9 0 9 3 2 0 . 0 0 6 3 1 

20 2 0 . 9 2 0 0 0 2 0 . 9 2 0 4 7 0 . 0 0 2 2 2 

21 2 1 . 9 6 4 0 0 2 1 . 9 8 2 0 6 0 . 0 8 2 2 1 

22 2 3 . 0 0 4 0 0 2 3 . 0 2 0 7 2 0 . 0 7 2 6 8 

23 2 3 . 3 5 7 0 0 2 3 . 4 2 3 1 5 0 . 2 8 3 1 9 

24 2 4 . 0 7 0 0 0 2 4 . 1 3 8 2 8 0 . 2 8 3 6 8 

25 2 4 . 8 1 6 0 0 2 5 . 0 2 2 1 5 0 . 8 3 0 7 0 

26 2 5 . 8 9 3 0 0 2 5 . 9 2 0 7 3 0 . 1 0 7 0 8 

27 2 6 . 2 7 4 0 0 2 6 . 2 8 1 9 1 0 . 0 3 0 1 1 

28 2 7 . 1 1 4 0 0 2 7 . 1 5 1 3 0 0.13757 

29 2 8 . 0 3 8 0 0 2 8 . 1 1 2 0 3 0 . 2 6 4 0 5 

30 3 1 . 1 9 3 0 0 3 1 . 3 8 1 0 7 0 . 6 0 2 9 1 

Table VII-31 Natural Frequency Comparative (Hz) Studies between the 

Finite Element Method and Method I I I for the structure" in case study 4 

* Space-frame: 30 loaded-interface normal modes 

Beam appendage: 12 fixed-interface normal modes 

Properties; Space-frame E=7.2E10 N/m^ p=2700 Kg/m^ 
Beam appendage E=7.2E10N/m p=2700 Kg/m 
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Chapter VII - Results 

Mode ANSYS Method I I I Difference {%) 

1 0 . 5 4 5 7 0 0 . 5 4 5 7 2 0 . 0 0 3 5 3 

2 0 . 6 5 0 6 4 0 . 6 5 0 6 6 0 . 0 0 3 3 6 

3 0 . 6 6 7 8 0 0 . 6 6 7 8 3 0 . 0 0 3 8 8 

4 0 . 7 6 6 0 7 0 . 7 6 6 1 0 0 . 0 0 3 7 6 

5 1.10740 1.10746 0 . 0 0 5 5 0 

6 1 . 1 3 8 0 0 1 . 1 3 8 0 6 0 . 0 0 4 8 8 

7 4 . 3 6 1 8 0 4 . 3 6 2 2 0 0 . 0 0 9 2 5 

8 5 . 0 4 9 5 0 5 . 0 4 9 9 9 0 . 0 0 9 7 5 

9 6 . 9 6 8 2 0 6 . 9 8 2 8 1 0 . 2 0 9 7 2 

10 7 . 3 6 9 5 0 7 . 3 8 2 9 2 0 . 1 8 2 1 0 

11 7.53070 7 . 5 4 0 2 1 0 . 1 2 6 2 2 

12 7 . 6 7 5 1 0 7 . 6 9 8 6 2 0 . 3 0 6 3 8 

13 9 . 0 9 4 8 0 9 . 1 0 1 4 3 0 . 0 7 2 8 7 

14 9 . 3 0 1 2 0 9 . 3 0 1 8 7 0 . 0 0 7 2 2 

15 1 2 . 7 3 6 0 0 1 2 . 7 4 9 7 1 0 . 1 0 7 6 5 

16 1 7 . 4 6 4 0 0 1 7 . 4 7 8 5 3 0.08318 

17 17.55700 17.57667 0 . 1 1 2 0 1 

18 2 0 . 0 1 6 0 0 2 0 . 0 2 1 4 1 0 . 0 2 7 0 4 

19 2 0 . 9 0 8 0 0 2 0 . 9 0 9 9 5 0 . 0 0 9 3 2 

20 2 0 . 9 2 0 0 0 2 0 . 9 2 0 5 7 0 . 0 0 2 7 4 

21 2 1 . 9 6 4 0 0 2 1 . 9 8 4 0 9 0 . 0 9 1 4 6 

22 2 3 . 0 0 4 0 0 2 3 . 1 3 2 2 4 0 . 5 5 7 4 6 

23 2 3 . 3 5 7 0 0 2 3 . 4 6 5 8 6 0 . 4 6 6 0 7 

24 2 4 . 0 7 0 0 0 2 4 . 8 8 7 7 4 3 . 3 9 7 3 4 

25 2 4 . 8 1 6 0 0 2 5 . 1 9 6 1 2 1 . 5 3 1 7 4 

26 2 5 . 8 9 3 0 0 2 8 . 1 2 6 6 9 8 . 6 2 6 6 2 

27 2 6 . 2 7 4 0 0 4 8 . 3 4 5 6 8 8 4 . 0 0 5 8 0 

28 27.11400 4 8 . 5 1 6 0 0 7 8 . 9 3 3 3 9 

29 2 8 . 0 3 8 0 0 4 9 . 2 0 9 5 7 7 5 . 5 1 0 2 9 

30 3 1 . 1 9 3 0 0 4 9 . 7 7 2 2 0 5 9 . 5 6 2 0 7 

Table VII-32 Natural Frequency Comparative (Hz) Studies between the 

Finite Element Method and Method I I I for the structure" In case study 4 

* Space-frame: 18 loaded-interface normal modes 

Beam appendage: 12 fixed-interface normal modes 
** Properties: Space-frame E=7.2E10N/m^ p=2700 Kg/m^ 

Beam appendage E=7.2E10 N/m^ p=2700 Kg/m^ 
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Chapter VII - Results 

Mode FEM Method IV D i f f e r e n c e ( % ) 

1 0 . 5 4 5 7 0 0 . 5 4 5 7 2 0 . 0 0 3 4 7 

2 0 . 6 5 0 6 4 0 . 6 5 0 6 6 0 . 0 0 3 2 6 

3 0 . 6 6 7 8 0 0 . 6 6 7 8 3 0 . 0 0 3 7 7 

4 0 . 7 6 6 0 7 0 . 7 6 6 1 0 0 . 0 0 3 4 5 

5 1.10740 1 . 1 0 7 4 5 0 . 0 0 4 7 4 

6 1 . 1 3 8 0 0 1 . 1 3 8 0 6 0 . 0 0 4 9 3 

7 4 . 3 6 1 8 0 4 . 3 6 2 3 5 0 . 0 1 2 6 9 

8 5 . 0 4 9 5 0 5 . 0 5 0 0 5 0 . 0 1 0 8 8 

9 6 . 9 6 8 2 0 6 . 9 6 8 6 4 0 . 0 0 6 2 6 

10 7 . 3 6 9 5 0 7 . 3 6 9 7 6 0 . 0 0 3 5 7 

11 7.53070 7 . 5 3 1 0 3 0 . 0 0 4 3 4 

12 7 . 6 7 5 1 0 7 . 6 7 5 5 6 0 . 0 0 6 0 3 

13 9 . 0 9 4 8 0 9 . 0 9 7 4 3 0 . 0 2 8 9 6 

14 9 . 3 0 1 2 0 9 . 3 0 1 6 2 0 . 0 0 4 4 6 

15 12 . 73600 1 2 . 7 4 4 3 5 0 . 0 6 5 5 5 

16 1 7 . 4 6 4 0 0 1 7 . 4 8 3 0 9 0 . 1 0 9 3 3 

17 17.55700 1 7 . 5 8 7 3 8 0 . 1 7 3 0 6 

18 2 0 . 0 1 6 0 0 2 0 . 0 5 2 1 0 0 . 1 8 0 3 7 

19 2 0 . 9 0 8 0 0 2 0 . 9 1 6 2 0 0 . 0 3 9 2 0 

20 2 0 . 9 2 0 0 0 2 0 . 9 2 3 3 3 0 . 0 1 5 9 1 

21 2 1 . 9 6 4 0 0 2 2 . 0 0 1 6 8 0.17155 

22 2 3 . 0 0 4 0 0 2 3 . 0 0 8 9 0 0 . 0 2 1 3 1 

23 2 3 . 3 5 7 0 0 2 3 . 3 6 0 6 4 0 . 0 1 5 5 8 

24 2 4 . 0 7 0 0 0 2 4 . 0 8 3 1 3 0 . 0 5 4 5 3 

25 2 4 . 8 1 6 0 0 2 4 . 8 6 4 6 8 0 . 1 9 6 1 5 

26 2 5 . 8 9 3 0 0 2 5 . 9 1 1 7 4 0 . 0 7 2 3 6 

27 2 6 . 2 7 4 0 0 2 6 . 2 7 9 6 9 0 . 0 2 1 6 6 

28 2 7 . 1 1 4 0 0 2 7 . 1 5 6 0 8 0 . 1 5 5 2 0 

29 2 8 . 0 3 8 0 0 2 8 . 1 1 7 9 0 0 . 2 8 4 9 5 

30 3 1 . 1 9 3 0 0 3 1 . 5 2 1 9 3 1 . 0 5 4 5 1 

Table VII-33 Natural Frequency Comparative (Hz) Studies between the 

Finite Element IVIethod and Method IV/ V 'for the structure" in case study 4 

Space-frame: 12 redundant constraint modes 

30 fixed-interface normal modes 

Beam appendage: 12 fixed-interface normal modes 

Properties: Space-frame E=7.2E10 N/m^ p=2700 Kg/m^ 

Beam appendage E=7.2E10N/m^ p=2700 Kg/m^ 
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Chapter VII - Results 

Mode FEM Method IV Difference(%) 

1 0 . 5 4 5 7 0 0 . 5 4 5 7 2 0 . 0 0 3 4 7 

2 0 . 6 5 0 6 4 0 . 6 5 0 6 6 0 . 0 0 3 2 6 

3 0 . 6 6 7 8 0 0 . 6 6 7 8 3 0 . 0 0 3 7 7 

4 0 . 7 6 6 0 7 0 . 7 6 6 1 0 0 . 0 0 3 4 5 

5 1 . 1 0 7 4 0 1 . 1 0 7 4 5 0 . 0 0 4 7 5 

6 1 . 1 3 8 0 0 1 . 1 3 8 0 6 0 . 0 0 4 9 4 

7 4 . 3 6 1 8 0 4 . 3 6 2 3 8 0.01330 

8 5 . 0 4 9 5 0 5.05010 0 . 0 1 1 8 8 

9 6 . 9 6 8 2 0 6 . 9 6 8 6 5 0 . 0 0 6 5 2 

10 7 . 3 6 9 5 0 7 . 3 6 9 7 6 0 . 0 0 3 5 7 

11 7 . 5 3 0 7 0 7.53103 0 . 0 0 4 3 4 

12 7 . 6 7 5 1 0 7 . 6 7 5 5 8 0 . 0 0 6 3 1 

13 9 . 0 9 4 8 0 9 . 0 9 7 6 4 0 . 0 3 1 2 2 

14 9 . 3 0 1 2 0 9 . 3 0 1 6 2 0 . 0 0 4 5 3 

15 1 2 . 7 3 6 0 0 1 2 . 7 4 4 4 7 0 . 0 6 6 4 7 

16 1 7 . 4 6 4 0 0 1 7 . 4 8 4 3 0 0 . 1 1 6 2 5 

17 1 7 . 5 5 7 0 0 1 7 . 5 9 1 6 5 0 . 1 9 7 3 4 

18 2 0 . 0 1 6 0 0 2 0 . 0 5 5 1 6 0 . 1 9 5 6 7 

19 2 0 . 9 0 8 0 0 2 0 . 9 1 7 0 9 0 . 0 4 3 4 6 

20 2 0 . 9 2 0 0 0 2 0 . 9 2 3 6 5 0 . 0 1 7 4 4 

21 2 1 . 9 6 4 0 0 2 2 . 0 0 2 3 3 0 . 1 7 4 5 1 

22 2 3 . 0 0 4 0 0 2 3 . 0 0 9 2 0 0 . 0 2 2 6 1 

23 2 3 . 3 5 7 0 0 2 3 . 3 6 0 6 8 0 . 0 1 5 7 4 

24 2 4 . 0 7 0 0 0 2 4 . 0 8 4 7 7 0 . 0 6 1 3 5 

25 2 4 . 8 1 6 0 0 2 4 . 8 6 5 4 0 0 . 1 9 9 0 7 

26 2 5 . 8 9 3 0 0 2 5 . 9 1 3 7 7 0 . 0 8 0 2 2 

27 2 6 . 2 7 4 0 0 2 6 . 2 7 9 7 6 0 . 0 2 1 9 2 

28 2 7 . 1 1 4 0 0 2 7 . 1 5 9 2 2 0 . 1 6 6 7 9 

29 2 8 . 0 3 8 0 0 2 8 . 1 2 9 9 2 0 . 3 2 7 8 6 

30 3 1 . 1 9 3 0 0 3 1 . 5 7 2 0 7 1 . 2 1 5 2 4 

Table VII-34 Natural Frequency Comparative (Hz) Studies between the 

Finite Element Method and Method IV/ V for the structure" in case study 4 

* Space-frame; 12 redundant constraint modes 

18 fixed-interface normal modes 

Beam appendage: 12 fixed-interface normal modes 

** Properties: Space-frame E=7.2E10N/m^ p=2700 Kg/m® 

Beam appendage E=7.2E10N/m^ p=2700 Kg/m^ 
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Chapter VII - Results 

Mode FEM Method IV Difference{%) 

1 0 . 5 4 5 7 0 0 . 5 4 5 7 2 0 . 0 0 3 4 7 

2 0 . 6 5 0 6 4 0. 65066 0 . 0 0 3 2 7 

3 0 . 6 6 7 8 0 0 . 6 6 7 8 3 0 . 0 0 3 7 8 

4 0 . 7 6 6 0 7 0 . 7 6 6 1 0 0 . 0 0 3 5 4 

5 1 . 1 0 7 4 0 1 . 1 0 7 5 2 0 . 0 1 0 7 8 

6 1 . 1 3 8 0 0 1 . 1 3 8 0 7 0 . 0 0 6 2 2 

7 4 . 3 6 1 8 0 4 . 3 7 7 0 4 0 . 3 4 9 3 7 

8 5.04950 5 . 0 5 5 5 2 0 . 1 1 9 2 1 

9 6 . 9 6 8 2 0 6 . 9 8 8 6 7 0 . 2 9 3 8 0 

10 7 . 3 6 9 5 0 7 . 3 6 9 9 2 0 . 0 0 5 6 6 

11 7 . 5 3 0 7 0 7.53111 0 . 0 0 5 5 0 

12 7 . 6 7 5 1 0 7 . 6 7 8 7 3 0 . 0 4 7 3 6 

13 9 . 0 9 4 8 0 9 . 2 6 2 9 9 1 . 8 4 9 2 9 

14 9 . 3 0 1 2 0 9 . 3 1 6 3 2 0 . 1 6 2 5 2 

15 1 2 . 7 3 6 0 0 1 6 . 3 1 7 1 2 2 8 . 1 1 8 0 6 

16 1 7 . 4 6 4 0 0 1 8 . 4 6 6 6 1 5 . 7 4 1 0 0 

17 1 7 . 5 5 7 0 0 2 2 . 6 8 8 5 6 2 9 . 2 2 7 9 8 

18 2 0 . 0 1 6 0 0 2 3 . 3 4 2 2 5 1 6 . 6 1 7 9 6 

19 2 0 . 9 0 8 0 0 2 5 . 1 6 0 8 0 2 0 . 3 4 0 5 5 

20 2 0 . 9 2 0 0 0 2 5 . 9 5 0 7 1 2 4 . 0 4 7 3 5 

21 2 1 . 9 6 4 0 0 3 1 . 7 8 0 5 3 4 4 . 6 9 3 7 2 

22 2 3 . 0 0 4 0 0 4 6 . 9 9 7 9 6 1 0 4 . 3 0 3 4 1 

23 2 3 . 3 5 7 0 0 4 9 . 1 4 4 0 0 1 1 0 . 4 0 3 7 5 

24 2 4 . 0 7 0 0 0 4 9 . 3 0 5 1 9 1 0 4 . 8 4 0 8 5 

25 2 4 . 8 1 6 0 0 4 9 . 5 9 7 1 2 99.85945 

26 2 5 . 8 9 3 0 0 5 6 . 1 9 0 4 8 1 1 7 . 0 1 0 3 2 

27 2 6 . 2 7 4 0 0 6 0 . 4 4 9 8 0 1 3 0 . 0 7 4 6 1 

28 2 7 . 1 1 4 0 0 6 2 . 2 1 3 0 2 1 2 9 . 4 4 9 7 9 

29 2 8 . 0 3 8 0 0 6 9 . 7 3 0 4 2 1 4 8 . 6 9 9 7 0 

30 3 1 . 1 9 3 0 0 8 2 . 6 5 2 8 6 1 6 4 . 9 7 2 4 6 

Table VII-35 Natural Frequency Comparative (Hz) Studies between the 
Finite Element Method and Method IV/ V 'for the structure" in case study 4 

Space-frame: 12 redundant constraint modes 

6 fixed-interface normal modes 

Beam appendage: 12 fixed-interface normal modes 

^ Properties: Space-frame E=7.2E10 N/m^ p=2700 Kg/m^ 

Beam appendage E=7.2E10N/m^ p=2700 Kg/m^ 
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Chapter VII - Results 

Mode FEM Method I D i f f e r e n c e ( % ) 

1 0 . 0 0 0 0 0 0 . 0 0 0 4 6 — 

2 0 . 0 0 0 0 0 0 . 0 0 0 8 7 -

3 0 . 0 0 0 0 0 0 . 0 0 1 8 1 -

4 0 . 00007 0 . 0 0 2 3 5 -

5 0 . 0 0 0 1 1 0 . 0 0 2 8 3 — 

6 0 . 0 0 0 1 7 0 . 0 0 3 4 4 -

7 0 . 7 2 1 5 4 1 . 5 9 0 8 1 1 2 0 . 4 7 3 6 0 

8 0 . 8 0 4 2 0 5 . 4 2 3 7 2 5 7 4 . 4 2 4 5 1 

9 0 . 9 6 7 3 1 6 . 2 4 2 3 9 5 4 5 . 3 3 4 9 3 

10 2 . 4 5 9 1 0 9 . 8 2 2 8 7 2 9 9 . 4 4 9 6 6 

11 6 . 1 6 7 6 0 1 1 . 3 6 5 3 3 8 4 . 2 7 4 8 2 

12 6 . 2 5 9 4 0 1 3 . 4 5 4 8 9 1 1 4 . 9 5 4 9 0 

13 11.75900 1 7 . 0 1 4 5 2 4 4 . 6 9 3 6 1 

14 1 2 . 3 2 5 0 0 1 7 . 4 3 1 9 4 4 1 . 4 3 5 6 2 

15 1 7 . 1 9 7 0 0 1 7 . 6 2 5 4 1 2 . 4 9 1 1 7 

16 17.44000 1 8 . 2 3 2 2 6 4 . 5 4 2 7 8 

17 1 7 . 7 9 4 0 0 2 0 . 6 8 9 5 7 1 6 . 2 7 2 7 4 

18 1 9 . 6 7 5 0 0 2 0 . 9 5 5 1 1 6 . 5 0 6 2 7 

19 2 0 . 6 3 4 0 0 2 1 . 6 9 4 6 8 5 . 1 4 0 4 4 

20 2 0 . 9 4 2 0 0 2 5 . 4 9 2 4 7 2 1 . 7 2 8 9 2 

21 2 1 . 5 7 2 0 0 2 6 . 5 3 6 7 8 2 3 . 0 1 4 9 2 

22 2 6 . 2 3 9 0 0 2 6 . 7 8 8 7 9 2 . 0 9 5 3 3 

23 2 6 . 5 9 4 0 0 2 7 . 5 1 2 3 0 3 . 4 5 3 0 2 

24 2 6 . 7 1 4 0 0 3 2 . 1 9 3 5 3 2 0 . 5 1 1 8 2 

25 2 7 . 6 5 1 0 0 3 2 . 6 6 0 1 1 1 8 . 1 1 5 4 7 

26 35 .77900 4 0 . 7 5 7 0 4 1 3 . 9 1 3 2 9 

27 3 9 . 8 0 1 0 0 4 3 . 4 3 9 8 7 9 . 1 4 2 6 5 

28 4 0 . 7 1 7 0 0 4 4 . 1 8 1 7 5 8 . 5 0 9 3 5 

29 4 3 . 1 5 1 0 0 4 4 . 3 5 0 2 1 2 . 7 7 9 0 9 

30 4 4 . 1 7 9 0 0 4 4 . 8 1 4 3 8 1 . 4 3 8 2 0 

Table VII-36 Natural Frequency Comparative (Hz) Studies between the Finite 

Element Method and Method I'for the structure in case study 5 

* Space-frame: 30 free-interface normal modes 

Properties: Space-frame 
Beam appendage 

E=7.2E10 N/m^ p=2700 Kg/m® 
p=2700 Kg/m" 
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Chapter VII - Results 

Mode FEM Method IV Difference{%) 

1 0 . 0 0 0 0 0 0.00045 — 

2 0.00000 0 . 0 0 0 8 7 -

3 0 . 0 0 0 0 0 0 . 0 0 1 8 1 -

4 0 . 0 0 0 0 7 0 . 0 0 2 3 5 -

5 0 . 0 0 0 1 1 0 . 0 0 2 8 4 -

6 0 . 0 0 0 1 7 0 . 0 0 3 4 4 -

7 0 . 7 2 1 5 4 0 . 7 2 1 5 7 0 . 0 0 4 4 3 

8 0 . 8 0 4 2 0 0 . 8 0 4 4 5 0 . 0 3 1 3 4 

9 0 . 9 6 7 3 1 0 . 9 6 7 3 5 0 . 0 0 4 1 8 

10 2 . 4 5 9 1 0 2 . 4 5 9 2 9 0 . 0 0 7 5 4 

11 6 . 1 6 7 6 0 6 . 1 6 7 8 9 0 . 0 0 4 6 4 

12 6 . 2 5 9 4 0 6 . 2 5 9 7 9 0 . 0 0 6 1 7 

13 1 1 . 7 5 9 0 0 1 1 . 7 6 6 8 6 0 . 0 6 6 8 7 

14 1 2 . 3 2 5 0 0 1 2 . 3 3 0 3 8 0 . 0 4 3 6 1 

15 1 7 . 1 9 7 0 0 1 7 . 2 1 0 4 9 0 . 0 7 8 4 5 

16 1 7 . 4 4 0 0 0 1 7 . 4 7 0 0 5 0 . 1 7 2 3 0 

17 1 7 . 7 9 4 0 0 1 7 . 7 9 7 7 4 0 . 0 2 1 0 3 

18 1 9 . 6 7 5 0 0 1 9 . 6 9 2 0 0 0 . 0 8 6 3 8 

19 2 0 . 6 3 4 0 0 2 0 . 6 4 0 1 8 0 . 0 2 9 9 4 

20 2 0 . 9 4 2 0 0 2 0 . 9 4 4 8 3 0 . 0 1 3 5 2 

21 2 1 . 5 7 2 0 0 2 1 . 5 8 3 6 3 0 . 0 5 3 9 1 

22 2 6 . 2 3 9 0 0 2 6 . 2 4 1 5 3 0 . 0 0 9 6 4 

23 2 6 . 5 9 4 0 0 2 6 . 6 1 1 2 4 0 . 0 6 4 8 3 

24 2 6 . 7 1 4 0 0 2 6 . 7 3 0 1 6 0 . 0 6 0 5 0 

25 2 7 . 6 5 1 0 0 2 7 . 6 7 7 0 3 0 . 0 9 4 1 5 

26 3 5 . 7 7 9 0 0 3 5 . 9 2 8 3 0 0 . 4 1 7 3 0 

27 3 9 . 8 0 1 0 0 4 0 . 2 7 7 6 3 1 . 1 9 7 5 3 

28 4 0 . 7 1 7 0 0 4 1 . 0 1 3 3 8 0 . 7 2 7 9 0 

29 4 3 . 1 5 1 0 0 4 4 . 1 5 8 9 9 2 . 3 3 5 9 7 

30 44.17900 4 4 . 1 8 9 4 5 0 . 0 2 3 6 6 

Table VII-37 Natural Frequency Comparative (Hz) Studies between the Finite 

Element Method and Method IV for the structure" in case study 5 

* Space-frame: 6 redundant constraint modes 

18 fixed-interface normal modes 

E=7.2E10 N/m^ p=2700 Kg/m^ 
Beam appendage p=2700 Kg/m^ 

Properties: Space-frame 
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Chapter VII - Results 

Mode FEM Method V Difference(%) 

1 0 . 0 0 0 0 0 0 . 0 0 0 4 1 -

2 0 . 0 0 0 0 0 0 . 0 0 0 8 5 — 

3 0 . 0 0 0 0 0 0.00145 -

4 0 . 0 0 0 0 7 0 . 0 0 1 8 6 -

5 0 . 0 0 0 1 1 0 . 0 0 2 3 4 -

6 0.00017 0 . 0 0 2 6 5 -

7 0 . 7 2 1 5 4 0.72157 0 . 0 0 3 6 4 

8 0 . 8 0 4 2 0 0 . 8 0 4 2 3 0 . 0 0 3 5 1 

9 0 . 9 6 7 3 1 0 . 9 6 7 3 5 0 . 0 0 4 1 8 

10 2 . 4 5 9 1 0 2 . 4 5 9 2 8 0.00747 

11 6 . 1 6 7 6 0 6 . 1 6 7 8 8 0 . 0 0 4 6 2 

12 6 . 2 5 9 4 0 6 . 2 5 9 7 8 0 . 0 0 6 1 5 

13 1 1 . 7 5 9 0 0 11.76685 0 . 0 6 6 7 8 

14 1 2 . 3 2 5 0 0 1 2 . 3 3 0 3 7 0 . 0 4 3 5 4 

15 1 7 . 1 9 7 0 0 1 7 . 2 1 0 4 8 0 . 0 7 8 3 9 

16 17.44000 1 7 . 4 7 0 0 1 0 . 1 7 2 0 8 

17 1 7 . 7 9 4 0 0 17.79774 0 . 0 2 1 0 0 

18 1 9 . 6 7 5 0 0 1 9 . 6 9 1 9 8 0 . 0 8 6 2 8 

19 2 0 . 6 3 4 0 0 2 0 . 6 4 0 1 7 0 . 0 2 9 9 1 

20 2 0 . 9 4 2 0 0 2 0 . 9 4 4 8 3 0 . 0 1 3 5 1 

21 2 1 . 5 7 2 0 0 2 1 . 5 8 3 6 2 0 . 0 5 3 8 6 

22 2 6 . 2 3 9 0 0 2 6 . 2 4 1 5 3 0 . 0 0 9 6 3 

23 2 6 . 5 9 4 0 0 2 6 . 6 1 1 2 2 0 . 0 6 4 7 6 

24 2 6 . 7 1 4 0 0 2 6 . 7 3 0 1 5 0 . 0 6 0 4 5 

25 2 7 . 6 5 1 0 0 27.67701 0 . 0 9 4 0 6 

26 3 5 . 7 7 9 0 0 3 5 . 9 2 8 2 2 0 . 4 1 7 0 6 

27 3 9 . 8 0 1 0 0 4 0 . 2 7 7 1 9 1 . 1 9 6 4 4 

28 4 0 . 7 1 7 0 0 4 1 . 0 1 3 2 9 0 . 7 2 7 6 8 

29 4 3 . 1 5 1 0 0 4 4 . 1 5 8 2 7 2 . 3 3 4 3 0 

30 44.17900 4 4 . 1 8 9 1 6 0 . 0 2 3 0 0 

Table VII-38 Natural Frequency Comparative (Hz) Studies between the Finite 

Element Method and Method V 'for the structure" in case study 5 

* Space-frame: 12 constraint modes 

18 fixed-interface normal modes 

Properties: Space-frame E=7.2E10 N/m^ p=2700 Kg/m^ 
Beam appendage E->°o p=2700 Kg/m" 
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VIII Synopsis and 

Conclusions 

It has been demonstrated that a nonlinear recursive Lagrangian approach of generalised 

coordinates is a well suited methodology for the dynamics modelling of complex 

articulated open-loop structures in space. Within this approach, and as opposed to global 

modelling practices, such as the direct application of the finite element method, structural 

systems can be modelled as collections of distinct flexible and rigid components. System 

order truncation techniques can be performed at component level reducing the 

computational cost and memory requirements associated with solution of large 

differential problems. Moreover, independent component modelling by different 

contractors, experimental data inclusion and decentralised control algorithm designs can 

also be implemented. 

The main characteristic of this formulation is its recursive nature which permits a great 

deal of physical insight in the nonlinear system kinematics and results in a minimal set of 

differential equations of motion. At the same time, the articulated component kinematical 

expressions are formed relative to the inboard components, particularly useful for control 

applications. Admittedly, recursive methods are more elaborate in deriving the absolute 

kinematical expressions of components, accounting for the motion of the preceding 

components and at the same time for the interface constraints. The procedure may be 

complex in terms of kinematical descriptions, but on the other hand does not involve 

intensive computational implementation and can be subjected to systematic treatment for 

the kinematics modelling of large chains of interconnected components. 

The geometrically nonlinear kinematics were formulated using the floating reference 

frame concept. Interface constraints were systematically introduced to describe the 

relative kinematics between adjacent flexible components, allowing any articulation axis 

to be locked, free or driven. 'Correction terms' introduced in the kinematical expressions 



Chapter VIII- Synopsis and Conclusions 

of the outboard components are particularly attractive for the incorporation of component 

modes by enforcing geometric interface compatibility. 

The nonlinear expressions describing the kinematics of a component as part of a 

muitibody chain were symbolically reduced to linear expressions. Three distinct linear 

kinematical expressions were produced from this transition, and formulated using either 

hybrid or generalised coordinate sets. Using these expressions, three linear methods 

were established, all capable of modelling the dynamics of large-scale structural systems 

that belong to category I I missions in space. 

The first of the methods uses a hybrid set of coordinates where for each component the 

rigid-body part of the motion is described by physical displacement coordinates and the 

linear elastic deformation by generalised coordinates. In the second method, the hybrid 

set is substituted by a generalised coordinate set, since the rigid-body motion of each 

component has been described using rigid-body modes, modelling allowed only with the 

assumption of small rotational displacement. In both methods the structural system can 

be composed of either continuous or discrete components. In the third method all 

components are necessarily considered discrete. The consistent mass matrix of each 

component in the structure appears explicitly in the equations of motion of the muitibody 

system. The third method also utilises a generalised coordinate set. 

For assessment and comparison, it was decided that the methods should be examined 

on their suitability in modelling peripheral muitibody structures. Mathematical models of 

peripheral structural systems can be developed analytically, as opposed to generic tree-

configurations models which are best developed computationally. Analytical formulations 

would definitely facilitate comparison at a theoretical and also computational level. The 

general criteria for method comparison were set as the mathematical model 

development effort and complexity, physical insight capability, programming effort, 

potential numerical accuracy, potential computing time for application completion, 

programming validation effort, analyst interference with the data input, and generalisation 

to modelling generic tree-configuration muitibody systems. 
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Chapter VIII- Synopsis and Conclusions 

Based on the criteria set, it was demonstrated that method I I I , which uses a generalised 

coordinate set and explicitly the consistent mass matrices of the components, is most 

efficient of all the methods developed. The mathematical model D, derived by direct 

application of this method, is a generic mathematical model of a peripheral structure in 

space. The explicit appearance of the consistent mass matrix of each component in the 

equations of motion, distinguishes this model from the rest and makes it particularly 

attractive. The resulting equations of motion can be presented in a compact form, thus 

facilitating the programming. Avoiding integration/summation schemes, unlike the other 

models, the potential numerical accuracy of mathematical model D is very high. 

Additionally the potential computing time for the completion of an application is lower. 

Lastly, the analyst interference to provide data to the mathematical model, which cannot 

be obtained in a systematic manner, is eliminated. 

Within any of the methods developed, the issue of distributed flexibility modelling would 

be much simplified if at the same time the size of the formulated problem was not a 

concern. For modelling component deformation efficiently, several component mode sets 

have been utilised in this work and may be combinations of dynamic and static modes. 

Imaginary constraints, that belong to the set of internal physical coordinates, have been 

proposed for defining static modes in the cases of statically determinate and 

underdeterminate components. 

For both the computational implementation of mathematical model D and for 

demonstrating the efficiency of the various components mode set, a network of programs 

has been developed. The final deliverables of the network are the eigenvalues of the 

multibody system and the eigenvectors in modal or physical space. Additionally, physical 

displacement, velocity and acceleration of any point on the structure can be derived as a 

function of the forcing frequency using either direct or modal frequency response 

analysis. Since structures in space are composed of complex components, within the 

framework of this network each component has been spatially discretised using the finite 

element method. For this purpose, the network has been interfaced with the commercial 

finite element package ANSYS. 
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Chapter VIII- Synopsis and Conclusions 

It has been demonstrated that, in general, the computational speed of the proposed 

method relative to the direct application of the finite element method increases as the 

total degrees of freedom increase, the distribution of component degrees of freedom is 

more uniform, total number of components and identical components increase and 

component mode number decreases. This translated to a typical peripheral multibody 

structure means that for an eigenvalue analysis a tenfold of speed gain over the finite 

element method may be a conservative target to expect. Furthermore, if there is a time 

benefit in eigenvalue analysis, it is straightforward to conclude that the same would apply 

for a frequency response analysis relative to the direct or modal finite element method 

frequency response analysis. 

Utilising the network, several study cases have been undertaken and the natural 

frequencies obtained using mathematical model D were directly compared to the natural 

frequencies resulting by modelling the entire structural system using the finite element 

method. In addition, modal frequency response studies have performed for further 

validation of the method relative to the global finite element analysis, and for verifying 

that the structural system eigenvectors obtained are accurate. 

Large-scale flexible multibody structures in space, due to there particular design, large 

dimensions, lightweight construction, and the large number of components, exhibit high 

modal density and local deformation at the component interfaces. It was demonstrated 

that the kind of flexible component modes employed in a mathematical model is of 

foremost importance for the accurate modelling of the dynamics of these structures. 

Combination of component modes that fail to closely resemble the real deformation of 

the individual components, when attached to each other to form the structure, proved 

inadequate or completely inappropriate for efficiently capturing the dynamics of the entire 

structural system, even in the low frequency range. If component mode selection is not 

appropriate the chances are that a number of modes will not be predicted, due to the 

high modal density of the particular structural systems. Unmodelled dynamics can be a 

main cause of destabilisation for structures in space, due to structure-control interaction. 

Moreover, the inherently large differential problem will increase further if the flexible 

component modes employed cannot model efficiently the linear elastic deformation of 
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Chapter VIII- Synopsis and Conclusions 

the components. Finally, a qualitative criterion has been developed that predicts the 

possibility of local deformation at the interfaces being low or high. The criterion can be 

used as a guidance to the number and type of component modes best utilised. 

More precisely, the fixed-interface and free-interface component mode sets are not 

appropriate, in general, for modelling of complex components which can exhibit local 

deformation at their interfaces to other components. Nevertheless, these component 

mode sets are ideal for simpler components, reducing the order and computational cost 

of problem compared to more sophisticated mode sets. The proposed loaded-interface 

component mode set gives excellent results, but is not appropriate for independent 

modelling, and may become very involving for the modelling requirements of large 

chains of components. The redundant constraint and constraint component mode set 

provide as excellent results, or even better, than the loaded interface method and also 

circumvent all the associated problems of the later. Moreover, both use a smaller amount 

of dynamic modes to offer the same accuracy of results as the loaded-interface 

component modes, thus reducing computational cost. Nevertheless, redundant 

component modes cannot be defined or obtained in the cases of statically determinate 

and underdeterminate components. On the other hand, constraint modes can be used in 

such cases with the introduction of imaginary constraints. This leads to the conclusion 

that constraint component modes are better suited than redundant constraint modes for 

the dynamics modelling of large-scale articulated multibody systems. 

In summary, the theoretical integrity of the mathematical model D has been 

demonstrated, since it can provide results with extreme accuracy relative to the finite 

element method, even with a low number of degrees of freedom, subject to the 

component modes used. It has also been demonstrated that method I I I , that explicitly 

utilises the consistent mass and stiffness matrices of the individual components, is 

mostly suitable for the linear dynamics modelling of articulated multibody structures in 

space. Most importantly, employing the right type and number of component modes, the 

method can deliver extremely accurate results compared to the finite element method, 

with a low number of differential equations. Additionally, it has been shown that this 

method is more computationally efficient to the direct finite element approach. 
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Chapter VIII- Synopsis and Conclusions 

For issues involving the dynamical behaviour of category I I missions in space, such as 

main platform attitude control, stringent payload pointing, vibration suppression, control-

structure interaction, sequential or integrated control-structure optimisation or general 

robust control algorithm investigation, mathematical model D can definitely be a solid 

basis for such applications. In this respect, the network of programs that supports 

mathematical model D can be employed for realistic research studies in the dynamics 

and control area of large-scale flexible structures in space. Moreover, method EI, can 

easily furnish linear low order mathematical models for any tree-configuration structural 

system in category I I missions in space. 
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Appendix-A 

Recursive Kinematics of Articulated 

Components 

A-1. Prologue 

The aim of this appendix is to derive general expressions for the kinematics of a 

component in a multibody system with non-translating joints. Such is the case where 

components are connected via spherical, universal, revolute, clamped or torsionally 

elastic joints. The components are considered articulated, in the sense that any 

gimbal articulation axis can be free or locked. This part of the nonlinear kinematical 

analysis is recursive. The particular kinematical procedure followed in this work is 

only possible for multibody systems where no closed-loops and multi-point interfaces 

are formed between the articulated components. Structures in space are typical 

examples of open-loop multibody systems with operational components joint at 

single-point interfaces. 

Initially the interface constraints between the two adjacent components are 

considered as either rotationally free (spatially articulating component) or fixed 

(locked component). The resulting mathematical expressions are general enough to 

employ any component mode set without violating the interface conditions. This is 

accomplished with the introduction of 'correction terms' into the joint component 

kinematical expressions. The physical significance of these terms is analysed by the 

use of rotating observers positioned appropriately in the adjacent components. From 

this nonlinear analysis a great deal of insight has been profited for the kinematics of 

a component in a multibody chain, and the suitable mathematical expressions 

accounting for the geometric interface conditions between adjacent elastic bodies 

have been derived. Since any joint configuration can be considered as a combination 

of locked (fixed) and articulating (free) axes, the component interface kinematics can 
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be generalised for any possible joint. The final expressions of the component 

kinematics as a part of a multibody system for arbitrary interface constraints have 

been presented. 

Equations (III-11), (111-13), and repeated here as (A-1), (A-2), give the angular and 

linear velocity respectively of a frame travelling with an arbitrary point Q on a flexible 

component Bj. These equations refer to the component Bj being disjoint to the 

multibody system; in other words the effect of the motion of other components in the 

multibody system on the motion of the component 8, has not been accounted for. 

The objective is to express the angular and linear velocity of the frame travelling with 

the arbitrary point Q in the component Bj considering the influence of the motion of 

the inboard component Bn- In essence a kinematical relationship needs to be 

established for expressing the angular and linear velocity of the frame travelling with 

point Q using the kinematical parameters that determine the motion of the preceding 

component at the interface. If such a kinematical expression is defined for two 

adjacent bodies, then by utilising it repeatedly for all components in the structure, the 

motion of any component can be expressed in terms of the motion of all components 

in the same multibody chain. 

The kinematical formulation in this chapter, like in chapter I I I , is geometrically 

nonlinear. More specifically, nonlinear component kinematics involve the overall 

motion of each component in the multibody system to be perceived as a rigid-body 

motion relative to which elastic deformation can be observed. In this sense, one can 

assign to each component a suitably positioned floating reference frame that moves 

with the rigid part of the motion and relative to which the deformation can be 

measured. Therefore, the overall motion of each component can be described in 

terms of the motion of a floating reference frame, and deformation relative to it. A 

schematic presentation of the aforementioned is illustrated in Figure A-1. 

The following equations (A-1), (A-2) have been proved in chapter I I I (equations (Hi-

l l ) , (IE-13)) and are 
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'(01^=1(01^*4-8; (A-1) 

^ ='Vi '^ '+^COi'^'xpj+Uj (A-2) 

wliere 

'cOi*^ is the absolute angular velocity of a frame travelling with an arbitrary point 

Q in the component B, 

'cOi^' is the absolute angular velocity of the body reference frame (floating 

reference frame) of the component B,. 

+ 

Gj is the rate of change of the angular displacement at an arbitrary point Q 

due component deformation 

' V i^ is the absolute linear velocity of an arbitrary point Q in the component Bj 

' Vi^' is the absolute linear velocity of point J j , the origin of the body reference 

frame of the component B,. 

Pj is the position of an arbitrary point Q before the deformation, measured 

from the origin J, of the body reference frame B,, 

+ 

Uj the rate of change of the linear displacement of point Q due to deformation 

as perceived by an observer travelling with the body reference frame B, 
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A-2. Kinematics of a Component Joint at a Non-

Translating Interface 

Three reference frames have been assigned that rotate and translate with points 

, which are shown in Figure A-1. J. is the origin of the body reference 

frame Bj, the position of Jj after the deformation of the component B,, and J; 

the interface point located at the inboard component Bn. Components B, and Bn are 

joint at the interface points and j r . 

For a non-translating joint, the geometric compatibility between the adjacent 

components B, and B^ can be expressed as 

ri ' i ==riH/̂  (A-3) 

where the above notation is obvious from Figure 1. Equation (A-3) implies that points 

, J r are coincident at any instant. 

Differentiating equation (A-3) with time and relative to the inertia! reference frame I, 

the absolute linear velocity compatibility equation at the interface is obtained as 

(A-4) 

Utilising equation (A-2), which gives the absolute linear velocity of an arbitrary point 

Q on the disjoint component Bi, we can express the absolute linear velocity of point 

j ; as 

1 T Ji ^ ^ 
Vi ' = Vi + Uj (A-5) 

where Pi = 0 , since Pj is the position of from the origin J, of body frame Bj prior 

to the deformation. 
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Figure A-1 General displacement component kinematics 

(a) Rigid-body motion of component B j 

(b) Combined rigid-body motion and deformation of component B j 

(c) Component Bi_j arbitrarily displaced and deformed 

Substituting the compatibility equation (A-4) into equation (A-5) the following 

expression is obtained 

I J. I jf 
V i • = V i - i 

/ + \ 

Ui 
I y; 

(A-6) 

Equation (A-6) connects the absolute linear velocity of the origin J, of the body frame 

Bj to the absolute linear velocity of the interface point j r i n the inboard component 
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Bj-i- Equation (A-6) is valid for any interface condition between two adjacent 

components as long as there is no relative translation between them. 

Substituting (A-6) to (A-2), the absolute velocity of an arbitrary point Q within the 

component B, can be expressed as 

I q ' I Jf I I Bi f ^ ^ 
V i = V i - 1 + (Di X P j + U j - U j 

- " I " /"i 

Equation (A-7) relates the absolute velocity of an arbitrary point on an articulated 

component to the absolute velocity of the inboard component at the interface, and is 

valid for any non-translating interface. 

The term u in (A-7) can be considered a 'correction term'. Its existence ensures 

that whatever the pattern of the deformation of the component B, at the interface, the 

compatibility equation (A-4) would hold. Indeed, substituting for Q equation (A-7) 

becomes 

I r I jj" 
V i = V i - i 

regardless the value of u at the interface. If the 'correction term' did not appear in 

the (A-7), then by substituting for Q in equation (A-7) the following expression 

would be obtained 

I jr 
V i - / ' + 

r + \ 
u (A-8) 

From (A-8), it is obvious that if the 'correction term' did not exist, then the 

compatibility equation would not hold unless the linear displacement of the 

deformation pattern were zero at the interface. 
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There are cases that the analyst would use deformation patterns that have linear 

displacement value different to zero at a non-translating interface. In these cases it is 

obvious from (A-8) that the compatibility equation (A-4) would be violated. On the 

other hand, with the appearance of the 'correction term' in equation (A-7), 

compatibility equation (A-4) would be maintained for any deformation pattern. The 

'correction term'acts by displacing the deformation pattern Uj by 
r \ 

Ui 

All component mode sets that include static modes will have value different to zero at 

the interface. If the linear deformation of a component is described by a set of 

component modes that their linear combination would give a non-zero value in the 

displacement coordinates at the interface of an articulated component with the 

inboard component, equation (A-7) responds by 'displacing' each mode by an 

amount u so that geometrical compatibility is accomplished. If a particular mode 

I ' / a 

k in the set has zero displacement value at the Interface, then for this mode 

U will be zero and will not affect the equation (A-7). In this respect any 

component mode set can be used without violating the geometrical compatibility 

between components. 

Similarly as for equation (A-6), for Q equal to equation (A-1) is expressed as 

^0)/' ='cOi^'-i- 9j (A-9) 

Ji 

where no assumption has yet been made for geometric compatibility of angular 

velocities between adjacent components. 
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Using the addition theorem for angular velocities^^, the following general expression 

connects the angular velocities of the coincident reference frames Jr 

'(Oi'i =='001-4'̂  (A-1(0 

A-3. Kinematics of a Component Connected at a Fixed 

or Torsionally Elastic Joint 

The interface conditions for defining a fixed interface between adjacent components 

can be expressed as 

Equation (A-11) implies that the reference frames Jj^, are co-rotational. 

Substituting (A-11) into (A-9) the following expression can be written 

8 (A-12) 

Equation (A-12) expresses the absolute angular velocity of the fixed component B, 

relative to the angular velocity of the previous component at the interface point J r . 

Substituting (A-12) into (A-1) and (A-7), the following expressions are obtained 

respectively 

'cDi'^ + 8 ; - 8 (A-13) 
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V i ^ — V i - l ' + (Oi l ' X p j + U j ' e 
V V j i 

XPj + Ui 
V /' i 

(A-14) 

r + \ 
The terms e , e 

\ J Ji 

Equations (A-13) and (A-14) express the absolute angular and linear velocity of a 

frame travelling with an arbitrary point Q within the component Bj that is rigidly 

attached to the inboard component 8^ , 

x p . can be considered 'correction terms'. It can be verified 

that the component mode sets are allowed to have different to zero angular 

displacement at the interface of the component Bj, without violating the compatibility 

condition (A-l 1). 

Equation (A-13) and (A-14) can be interpreted using different reference frame 

descriptions. Considering the reference frame j r , that travels (rotates and 

translates) with point j r , the following interpretation can be given to (A-13) and (A-

14): 

The component B;, attached rigidly to component Bn, has an absolute angular 

velocity 'cDi-/ ' and an absolute linear velocity \ i - / ' , and the observer travelling 

with Jr can measure at any instant an angular deformation and a linear 

displacement 

f f \ 

e 

V j iJ 

Ui=Uj-
r \ 

XPi + 
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respectively, so that 
C \ 

— 0 and 

(A-4) and (A-11) can be maintained. 

= 0 , and the compatibility equation 

Exactly the same interpretation can be given using reference , since due to 

geometric compatibility considerations (A-4), (A-11) is coincident and co-rotational to 

reference frame J r . 

For interpreting equations (A-13) and (A-14) using the reference frame Jj or 

equivalently reference body frame B,, equations (A-13) and (A-14) are best rewritten 

as 

= 'cOi-/' - f e l +8i (A-13b) 

V I V ji j 

= 
Yi 4- 8 

+ 

XPi+Ui (A-14b) 

^ / V \ y 

where the term in the parenthesis of (A-13b) is the as verified by equation (A-

12), and the additional term in equation (A-14b) is the as verified by equation 

(A-6). Using the forms (A-13b) and (A-14b) the following interpretation can be 

offered. 

An observer located at the reference frame Jj can measure the time-varying angular 

and linear displacement of a frame due to component deformation equal to 6 j , u. 

at any instant. The reference frame that the observer travels on, has an absolute 

angular and linear velocity of 

• v , ' ' 

V 
u 
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'Wi ' ' = 'cOi-/' 4 8 

respectively, which are regulated by the rate of the angular and linear deformation at 

the interface point, so that the compatibility equations (A-4), (A-11) can be 

conserved. The observer at J| always maintains a time-varying distance and angular 

displacement from the interface of the components, which equals to 
r \ 

Ui 
V Jh 

and 

r \ 
e respectively. The aforementioned description is schematically presented in 

Figure A-2. 

If the angular and linear displacement 
{ \ 

Ui 
V Jh 

and 
{ \ 0 

were zero at the interface, 

then Jj ,Jj reference frames would be coincident and co-rotational at all times. If 

only the angular displacement due to deformation is zero, then the frames would be 

co-rotational but not coincident. Lastly if only the linear displacement due to 

deformation were zero, then the frames would be coincident but not co-rotational. 

Conclusively, the kinematics of the fixed joint demand that angular and linear 

displacement due to deformation at the interface to be zero. Even if the values of 

deformation are not chosen to be zero, the 'correction terms' accomplish this, by 

displacing the deformation pattern translationally and rotationally. The frame J, is not 

necessarily coincident and co-rotational to the interface reference frames, and 

therefore it would be erroneous to consider compatibility equations in order that 

and , unless the deformation pattern that approximates 

the deformation of the disjoint component was selected to assume zero value 

angular and linear displacement at the potential interface point. 
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Equation (A-13) and (A-14) would also be appropriate for modelling the case of two 

components that are connected at a torsionally elastic joint. That is straightforward to 

be verified by assuming that a torsional spring is part of either the inboard 

component Bm or the outboard component Bj. In the former case the torsional spring 

would connect to component B, at point and in the later to the component B^ at 

point J r . In either case the torsional spring can be considered as an integrated part 

of the flexible component. 

= .T' 

COi-l 

V i - 1 

( 8 i ) 

V i - 1 

COi 1 

Figure A-2 (a) Position of the component B, in the deformed and displaced position 

and rigidly attached to the inboard component at interface J r , 

(b) Angular and linear deformation as observed from reference frames 

J-

(c) Angular and linear deformation as observed from reference frames 

J. - B , 
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A-4. Kinematics for a Spatially Articulating Component 

A spherical joint allows 3 rotational displacements in space and restricts the 

translational displacements. An articulating component that connects to the 

preceding one via a spherical joint can perform a three-dimensional rotation due to 

interface or external forces and torques applied on it or be free to rotate in space as 

an floating object due to initial conditions. 

Unlike in the cases of a fixed joint or torsionally elastic joint, the spherical joint 

interface conditions can be defined by 

i r 0 (A^^) 

The quantity COî ' is the cornerstone of free or driven articulation kinematics and is 

the angular velocity of the body frame of component B, , measured relative to an 

observer located at the interface J r , within component Bn , and it will be symbolised 

as 

I- T def def , 

= (A (Ayi6) 

Substituting (A-15) into (A-10) the following expression can be obtained 

(/V-17) 

which implies that the reference frames and j r have different angular velocities 

and thus cannot be co-rotational. Equation (A-17) can be considered the interface 

condition for two adjacent components connected with a spherical joint. If (A-17) is 

violated to an equality, then the spherical joint becomes a fixed joint, equation (A-11). 

Utilising the addition theorem for angular velocities, (A-17) can also be written as 
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which means that an observer translating and rotating with the reference frame J; at 

the interface of the component Bj.i, can observe the reference frame to be 

rotating with angular velocity ' CO ' . More specifically this angular velocity consists 

of the rigid-body motion of the component B| and the angular displacement rate due 

to deformation of the component at the interface, measured relative to the body 

reference frame of component Bj. This can be shown by rewriting (A-18) with the use 

of the addition theorem as 

4-̂ : (1)̂ ' (A-19) 

and verifying that 

def 

COi 8 (A-20) 

Substituting equation (A-13) into (A-12) and using the definitions (A-16), (A-20), the 

following expression is obtained 

(A-21) 

Equation (A-21) connects the absolute angular velocity of the body frame Bj to the 

absolute angular velocity of the interface point j r within component Bm. 

Substituting equation (A-21) into (A-1) and (A-7) the following expressions are 

derived 

rel (A-22) 

-I- 4- Wi"" 
+ 

X P j - f - U . - U i 

I " y j 

(A-23) 
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Expressions (A-22) and (A-23) give the absolute angular and linear velocity of a 

frame relative to an arbitrary point on a component B, in relation to the absolute 

angular and linear velocities of the interface frame within the inboard component. 

As for equations (A-13) and (A-14), a similar physical interpretation for equations (A-

22) and (A-23) can offered. The interpretation has been demonstrated schematically 

in Figure A-3. 

For a spherical Joint, the angular diplacement at the interface, as measured by an 

observer travelling with reference frame J r , can be zero or non-zero. This is 

suggested by the fact that no rotational 'correction terms' exist in the equations (A-

22) and (A-23) for the angular deformation. This is so, because whatever the value of 

the angular displacement, the interface condition (A-17) cannot be violated, so there 

is no need for 'correction terms'. In Figure A-3 the angular displacement is depicted 

as non-zero relative to the body reference frame B|, but this is not suggestive that it 

should necessarily be non-zero. On the other hand, the linear displacement has been 

'corrected' to zero since the spherical joint cannot allow translation between the 

adjacent components. 

Nevertheless, from the kinematics of the spherical articulation there is no physical 

mechanism to restraint the value of the angular displacement to zero. Considering 

that rigid-body angular displacement is allowed by the spherical joint kinematics, so 

should angular displacement due to deformation. In this sense, it may be beneficial 

to use deformation patterns which have non-zero angular displacement value at the 

interface with the inboard component. Maybe a zero angular displacement pattern 

can affect the accuracy of the results, since the physical mechanism of the 

articulation is not dealt with properly, but whatever the case the interface condition 

(A-17) will still hold. 
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Jr 
U ; = U ; -

• Reference frame J; • Reference frame j 

Figure A-3. (a) Position of tfie component Bi in the deformed and displaced and 

articulating relative to the inboard component Bn ' 

(b) Linear displacement due to deformation of component Bj as 

observed from reference frames j r 

A-5. Kinematics of a Free or Driven Component for 

Arbitrary Articulation Axes 

Equations (A-13), (A-14) correspond to a component connected at a fixed or 

torsionally elastic joint, and equations (A-22), (A-23) to a spatially articulating 

component. Combining the two sets of equations (A-13) with (A-22) and (A-14) with 

(A-23), the following expression can be accomplished 

-t- (Oi""+8— e 

V A 

(A-24) 
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'V i^ = ' v i - / ' +('cDi^' + COi'®'jxpj+Uj- Ui 
V V'i 

+ 8 xp, 
I -

(A.25) 

Equations (A-24) and (A-25) combine all the terms that are contained in their 

counterpart sets. Equations (A-24), (A-25) can therefore be used to describe the 

component kinematics of an outboard component for any non-translating Joint. By 

removing term ©i''®' from (A-24) and (A-25), equations (A-13) and (A-14) are obtained 

respectively. By removing the 'correction term' (0)j, equation (A-22) and (A-23) are 

obtained respectively. 

Revolute and universal joints can be considered as consisting of combinations of 

locked and free articulation axes. The equations (A-24) and (A-25) can be written as 

two sets of three equations each. Each equation can correspond to a different axis 

of a joint and each axis can be treated separately. Therefore, (A-24), (A-25) can be 

used to model any non-translating joint configuration. The following Table A-1 sums 

up the different cases for an arbitrary axis k. 

It has been shown that if component mode sets have more angular displacement 

freedom than required in any direction due to deformation, then the correction terms 

that correspond to the particular direction will zero the angular displacement, so that 

the interface conditions are not violated. If a flexible component mode set has less 

angular freedom than the joint requires in a particular direction, the interface 

conditions are not violated, but the kinematical description may be not so accurate. In 

any case, the component mode sets incorporated in this work have been selected so 

that they may have more angular deformation freedom, and not less. 

By applying equations (A-24) and (A-25) repeatedly for all components in a multibody 

chain, the absolute angular and linear velocities of an arbitrary point on any 

component B, can be expressed in terms of independent kinematical parameters that 

specify the motion of the components preceding and including Bj in the chain. In this 

way the motion of any component in a multibody system can be coupled to the 

motion of all other components in the system. 
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Joint Axis k Articulating 

Driven or Free 

Locked or Elastic 

Yes No 

8 
I yj i 

No Yes 

Table A-1. 'Correction term' 
I y ; 

and articulation term can be omitted or 

included in the equations (A-24), (A-25) for component Bj depending on 

the articulation of axis k. 
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Mechanisms of Geometric Noniinearity 
in iVIultibody Systems 

In the dynamics of multibody structural systems geometric noniinearity is introduced 

for two reasons; component large angle arbitrary rotational displacement and / or 

time-varying configuration. 

B-1. Large Angle Arbitrary Rotational Displacement 

According to Euler's theorem^® an arbitrary rotational displacement of a rigid body is 

equivalent to a rotation around a fixed axis. In other words, if a rigid body is 

rotationally displaced form an initial orientation in space to another, the new 

orientation of the body can be described by specifying an appropriate axis and an 

angle of rotation around the axis. This description of the body's arbitrary rotational 

displacement is performed in a single step by defining an axis in space and a rotation 

angle around this axis. The rotational displacement around a single axis will be 

considered in the context of this section as a simple rotation. 

A rotation matrix, and more specifically a direction cosine rotation matrix, can be 

directly defined using the projections of the unit vectors along the orthogonal axes of 

a reference frame B to the axes of an arbitrary oriented reference frame A. In this 

sense, a rotation matrix is a measure of the relative orientation of two reference 

frames. If the orientation between two reference frames can be described using a 

rotation matrix, so should the orientation of a body relative to a reference frame. 

Equivalently, the rigid body simple rotational displacement, which gives a new 

orientation of a body relative to a reference frame, can be described by the use of a 

single rotation matrix. Rotation matrices have a string of useful properties, and 

amongst them, most importantly, the orthonormality property: the inverse of a 

rotation matrix equals its transpose. 
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Returning to the Euler's theorem, a rotation matrix can be derived, to describe the 

orientation, i.e. the rotational displacement, of a body, as a function of a vector 

defining the orientation of an axis and an angle of rotation around this axis. Without 

presenting the exact form of the particular rotation matrix, it is 

( : =c: I 4) j (B-1) 

where the vector A is a vector coincident to the axis of rotation and <|) is the angle of 

rotation around the axis. The vector quantity X and (|) are considered the parameters 

of the rotational displacement or else the parameter set of the rotation matrix C. 

Other parametric expressions of the rotation matrices will be presented latter in this 

appendix. 

If a rigid body is rotationally displaced in a sequence of simple rotations, through 

specific axes in space and angles of rotation, and acquires a final orientation, the 

angular displacement can still be described, according to Euler's theorem, by 

defining a single axis in space and an angle of rotation around this axis. It can be 

proved using the mathematical expression of Euler's theorem, that if the sequence of 

rotations changes, whereas the axis of each rotation and the angle of the rotations 

remain unaltered, the final orientation of the body will be different. The above 

statement can also be proved true without the use of a particular parametric 

expression of a rotation matrix. If a rotational displacement can be described by a 

rotation matrix, then a sequence of rotations can be shown to be the multiplication 

product of the rotation matrices corresponding to each rotation. Since, in general, 

matrices do not commute in multiplication, the final orientation of the body is 

dependant on the sequence of the rotations. 

The implication of the above is that rotational displacement, in general, is not a 

vector quantity, and the commutative rule of addition of vectors cannot be applied. If 

a body is displaced in a sequence of simple rotations, the sequence of rotations 

along with the rotational displacement parameters - axis of rotation and angle of 

rotation in the case of Euler's theorem - need to be defined in order to determine the 

final position of the body. Using an example of two consecutive rotations, the 

following applies. 
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0 +G ^ GL+G. (&4) 

where 0 is the rotational displacement and is symbolised with a double underline to 

indicate a pseudo-vector quantity. 

Defining an orthogonal reference system the quantity 0 can be expressed as 

0 

where 0 j , for i=x,y,z are the projections of the quantity 0 to the axis of the 

orthogonal reference frame x,y,z respectively. At a first glance, one may assume that 

the values 8. , which define the orientation and the magnitude of 0 , would also 

define the axis of rotation and the angle of rotation, thus, according to Euler's 

theorem, 0 would be a valid description of the orientation of the body in space. One 

can write 0 as 

e = 
r 0 ^ 

0y = 0 + + 0 (B-3) 

0, 0 0 0z 
V '•J I y V y I 

The above form Implies that if rotational displacement were a vector quantity it would 

equivalently be written as the sums of the rotational displacements around the 

reference system axes with no concern on the priority of summation. But the form (B-

3) fails to give the sequence pattern of the rotations, thus does not specify uniquely 

the final position of the body. It is evident that 0 cannot qualify as the description of 

rotational displacement, since it misses information about the sequence of rotation 

and therefore 8, cannot define the orientation of the body. The assumption that the 
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values of 6, can specify the axis of rotation and the magnitude of the rotational 

displacement is not true. Defining the orientation of a body using 6 is insufficient. 

The conclusion that rotational displacement is not a vector quantity is in general true 

for an arbitrary rotational displacement of a rigid body. In specific cases, it can be 

shown that rotational displacement is a vector quantity. If a body is rotationally 

displaced in a sequence of large angle rotations around parallel axes, then the final 

position of the body can be reached regardless the sequence. This exception is 

typically found in the case in plane kinematics. Another exception regards the small 

arbitrary rotational displacement, which can be viewed as a vector quantity. The 

sequence of displacing a rigid body through a series of small rotations does not 

affect the final position of the body. Both statements can be verified using the 

mathematical expression of Euler's theorem and any other parametric description of 

a rotational matrix or can be shown geometrically. These exceptions do not mean 

that the Euler's theorem, or more generally a rotation matrix description of the 

orientation, is not applicable in the case of planar or small rotational displacement, 

but that the sequencing of rotations is redundant in large planar and small rotational 

displacement analysis. 

Up to this stage, it was shown that large arbitrary rotational displacement is not a 

vector quantity, and for its description the use of rotation matrices is essential. Based 

on Euler's theorem, the Euler rotation matrix expression presented in (B-1) utilises 

the orientation of an axis of rotation and an angle of rotation as rotational 

displacement parameters. Several other descriptions of a rotation matrix are possible 

using different sets of rotational parameters. In other words there are various ways to 

describe arbitrary large angular displacement, i.e. the orientation of a body in space, 

by the use of different angular displacement parameter sets. 

The most relevant to this work rotational parameter set is the Euler angles set or else 

orientation, attitude angle set.̂ ® This set uses a sequence of 3 simple linear 

independent rotations around either the orthogonal axes of the body frame (body 

sequence) or around the axes of a suitable reference frame (space sequence) in 
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order to define a rotation matrix and therefore the orientation of the body in space. 

IVlore specifically the Euler angles rotation matrix is given by 

C = C j (0 J 0^(62) 0^ (83) for i,J,k =1,2,3 and 1,̂ ], j / k (B-4) 

Ci (6i) is a direction cosine rotation matrix corresponding to the first rotation around 

axis i 

Cj (82) is a direction cosine rotation matrix corresponding to the second rotation 

around axis j 

Ck (83) is a direction cosine rotation matrix corresponding to the third rotation around 

axis k 

In total there are 24 independent combinations of space and body sequences that 

can be used to define Euler angles rotation matrices. The 81, 82,83 rotation angles are 

the Euler angles or else orientation, attitude angles. Ci , Cj, Ck are considered 

principal rotation matrices, since simple linearly independent rotations are performed 

around the orthogonal axes of the body reference frame or an independent reference 

frame for acquiring the Euler angles rotation matrix. 

Another useful parametric rotational set is the Euler parameter set, which uses a 4 

parametric description of the rotational displacement^'*. The redundant rotational 

parameter description may have particular advantages relative the 3 parameter 

description, but also implies that the 4 parameters are not independent. 

B-2. Rotational Kinematics 

This far the general characteristics of the rotational displacement have been 

examined and the means to represent it parametrically with the use of rotation 

matrices has been explored. The properties of the large arbitrary rotational 

displacement affect the kinematical expressions of a body undergoing arbitrary 
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rotational motion. The l<inematics of the rotation is involved with the arbitrary angular 

displacement evolving with time. The rotation matrix associated with the orientation 

of a body, or else with the angular displacement of a body, is time dependent. 

By definition^^ the skew-symmetric matrix co", called an angular velocity matrix of a 

reference frame B relative to a reference frame A and expressed at the reference 

frame B is given by 

CO* ==(:? ( : (EL5) 

where C is a generic rotation matrix specifying the orientation of B in A and the 

overdot implies time differentiation. The rotation matrix C is considered generic, and 

(B-5) applies regardless to the particular parameter set utilised. 

C is an orthonormal matrix, hence equation (B-5) can also be written as 

CO* = ( ) (B-6) 

Equation (B-6) is the cornerstone of rotational kinematics. Equation (B-6) is a matrix 

differential equation, has time varying angular velocity coefficients, and in general 

cannot be solved in closed-form. The equation implies that if the history of the 

angular velocity is known, then by integration, the orientation of a body (or frame) 

can be specified at any instant. Such is the case when the history of the angular 

velocity has been obtained by the solution of Euler's attitude equations of motion. 

Generally, Euler's equations are coupled to Netwon's equations, for the combined 

rotational and translational motion of the body, and, in general, the nonlinear coupled 

differential set is solved numerically, along with the equation (B-6) to obtain the 

attitude history of a body moving in space. 

As analysed before the mathematical expression of the generic rotation matrix C 

depends on the parametric set employed. Equation (B-6) can also be written in the 

form 
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00= f E p 
\ , A 

(B-7) 

The above form is symbolic, where E is a matrix which depends on the rotational 

displacement parameter set p , and p is the rate of change of the parameter set. It 

should be noted that E is not a rotation matrix. Expression (B-7) states that the 

angular velocity of a body (or a reference frame) depends on the rate of angular 

displacement parameters, but also on the particular orientation of the body at any 

instant. The expression that relates the angular velocity to the rate of angular 

displacement parameters is, in general, nonlinear. This is due to the nonlinear form 

of E as function of the angular displacement set. 

The fact that there should be, in general, a nonlinear relationship between the 

angular velocity and the rates of the angular displacement parameters introduced 

indirectly by the nonlinear form of matrix E can be shown without mathematical 

means. Since the rotational displacement depends on the sequence of rotations, 

angular velocity should depend on the orientation of the body at any instant. The 

orientation of a body, described by a time-varying rotation matrix, is a nonlinear 

function of the rotational displacement parameter set (which is evident from 

geometric considerations). Since angular displacement depends on orientation and 

orientation is a nonlinear function of the rotational displacement parameter set, so 

should the angular velocity. The above consideration correlates the angular 

displacement characteristic of sequencing to the nonlinear nature of rotational 

l<inematics. 

In this sense, in planar or small arbitrary rotational displacement, where the 

sequence of rotations does not affect the orientation of the body, angular velocity 

should be independent to the orientation of the body and a linear relationship 

between the angular velocity and the rates of rotational displacement parameters 

should exist. In mathematical terms it is 

03 = 9 
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All above considerations can be proved mathematically using any form of a rotation 

matrix expression. 

For the case of the Euler angles rotational parameter set it can be shown that 

equation (B-7) has the particular form 

CO = 13(8) E) (B-8) 

where E(0) is the Euler angle matrix and 9 the vector of the rate of change of the 

Euler angles, or else attitude angles. E is a trigonometric function of the orientation 

angles. 

In a Lagrangian formulation the orientation angles and their rates can be used as 

generalised coordinates (in the general Lagragian context). Therefore, in the 

Lagrange equations partial derivatives of the expressions involving the angular 

velocity of a body (as a nonlinear function of the orientation angles) relative to the 

orientation angles and their rates, introduce nonlinear terms in the equations of 

motion. 

For a single body performing planar rotation or for a body performing arbitrary small 

angle rotations the Euler angle matrix does not have any physical significance since 

the sequence of rotations is not restrictive. Mathematically it can be proved that 

E(9 j ,02,63) = 1 (B-9) 

As explained earlier in these two cases the rotational displacement becomes a vector 

quantity. One can express vector rotational displacement as a linear combination of 

rigid-body modes. Rigid-body modes can be perceived as simple, small rotational 

displacements, and since the sequence of rotational displacements in not restrictive 

in these cases, a linear combination of simple rotational displacements is acceptable. 

The time-dependant coefficients of the linear combination of rigid-body modes are 

considered the generalised coordinates of the rotation, or more generally the 

rotational displacement parameter set. At the same time the angular velocity can be 
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expressed as a linear combination of rigid-body modes with time dependent 

coefficients the rates of the generalised coordinates. 

B-3. Time-varying Configuration 

Time-varying configuration of a multibody structural system is another cause of 

nonlinearity. Although in essence time-varying configuration is caused by large 

angular displacement, the mechanism of introducing the nonlinearity into the 

equations of motion is distinct. For example, a multibody system with articulating 

components that all perform large planar rotations is described by a set of nonlinear 

differential equations, although E, ( 81, 82, 83 )=1, for i=1,2,..,k, where k is the total 

number of components in the multibody system. 

The mechanism of nonlinearity can be traced directly in the rotation matrices. 

Rotation matrices are used in this case for expressing a vector quantity form a 

particular reference frame to another. The components of a vector quantity may have 

different values in different reference frames, with the constraint that the magnitude 

of the vector is constant. The time-varying rotation matrix C, between two reference 

frames, that in the case of a multibody system may represent the body frames of two 

adjacent and relatively rotating components, is at any instant a nonlinear function of 

the set of the rotational displacement parameters that describe the relative 

orientation of the two components. 

Even in the case of large planar rotation the rotation matrix does not reduce to unity, 

unlike the Euler angle rotation matrix. In the case, though, of small arbitrary rotations 

the rotation matrix reduces to unity, and in essence the system is not considered of 

time-varying configuration. Of course, for time-varying configuration of components 

that perform large arbitrary rotations both the rotation matrix Ci and E, matrix are 

nonlinear functions of the rotational displacement parameter set. Vectorial 

expressions transformed from one reference frame to another, where the orientation 

of the frames is a nonlinear function of the rotational displacement parameter set (i.e 

in the case of large angle orientation), introduce nonlinear terms in the equations of 

motion. For reference purposes the several cases are presented in Table B-1. 
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System Kinematics Time-Varying 

Rotation Matrix 

C 

IVIatrix E Equations of 

IVIotion 

Single Body Large Angle 

Arbitrary Rotation 

C nonlinear 

or omitted (C =1)* 

E nonlinear nonlinear 

Single Body Large Angle 

Planar Rotation 

C =1 E=1 linear 

Single Body Small Angle 

Arbitrary Rotation 

C =1 E=1 linear 

Articulating 

Structure 

Large Angle 

Arbitrary Relative 

Rotations 

Ci nonlinear Ei nonlinear nonlinear 

Articulating 

Structure 

Large Angle 

Planar Relative 

Rotations 

Ci nonlinear Ei =1 Nonlinear 

Articulating 

Structure 

Small Angle 

Arbitrary Relative 

Rotations 

Ci =1 Ei=1 Linear 

Table B-1 Reference table for the dynamics description of several systems 

* This depends on the expression of the vector quantities on the body 

reference frame or an inertial reference frame. 
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