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The scope of this work has been the development of an efficient method for the dynamics modelling of
structural systems in category II missions in space. Specified by NASA, category II missions will employ
large-scale articulated multibody structural systems of complex interconnected flexible and rigid
components. Typical examples include space-science laboratories, earth-observation platforms and

space-station configurations.

As opposed to the direct application of the finite element method for the dynamics modelling of an entire
structure as a single entity, structural systems in this work have been modelled as collections of
interacting components. It is required that the method should provide high accuracy, though low order,
mathematical models, and amongst other critical advantages, should be computationally more efficient
than the global finite element approach. A recursive Lagrangian formulation of generalised coordinates
was considered the most efficient m.ethodology for the modelling objectives specified. The recursive
nature permits the formulation of kinematical expressions relative to the inboard component and results in
a minimal set of differential equations of motion. Component linear elastic deformation is approximated
using spatial discretisation techniques with a small number of component modes. Several component
mode sets, combinations of dynamic and static modes, have been proposed or adapted from the area of
component-mode synthesis. Truncation of the system order can be achieved at substructural level, by
reducing the number of component modes, resulting in low order mathematical models.

A number of methods have been developed and thoroughly assessed on the suitability for the dynamics
modelling of category II systems. The fittest of the methods, which directly utilises the finite element.
component matrices, has been shown to be computationally faster than the global finite element
approach over a large number of case studies. A network of custom developed programs, based on this
method, has been generated and interfaced to a commercial finite element code for modelling complex

aerospace structures.

The network of programs has been used for both the verification of the theoretical integrity of the
proposed method and as importantly for the assessment of the component mode sets employed in the
analysis. For this purpose a wide range of eigenvalue and frequency response analyses have been
undertaken. The results, which in all cases have been compared to those obtained by the direct finite
element approach, demonstrate that for large flexible multibody structures in space the right selection of
component modes is of foremost importance. Utilising appropriate combinations of component mode
sets, excellent agreement of the method to the finite element approach can be achieved even with a low
number of differential equations.
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Introduction

I-1. Prologue
I-1-1. Background

A number of future space missions will use large flexible structures in low-earth and
geostationary orbits. Possible structures include antenna concepts, space-science
laboratories, earth-observation systems and space-station configurations. Such
multibody systems typically consist of complex tubular-frame platforms with
appended componenis such as booms, solar arrays, reflector antennas, robotic
manipulators, and their dimensions may range from meters to hundreds of meters.
These structures, due to their particular design, large dimensions, lightweight
construction for launching purposes, and the large number of components, exhibit
high modal density and local deformation at the component interfaces and actuator
locations. These characteristics distinguish such structures to the more conventional

satellite systems and demand more elaborated treatment for design and simulation

purposes.

Studies related to the dynamical behaviour of structures in space may include,
amongst others, manoeuvring and deployment/reconfiguration dynamics, active
vibration suppression, accurate payload pointing, platform attitude control and
sequential or integrated control—structure optimisation. The mathematical modelling
requirements, for treating the system dynamics, depend on the actual mission
objectives, which define the particular performance envelope of the multibody
structure. In this sense the mathematical models for flexible structures in space have

been divided by NASA / DoD into various broad categories’.

The category I missions in space will employ structural systems with non-articulating

components. Typical examples are large antenna concepts, such as the hoop-
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column and wrap-rib antennas. The mission objectives are restricted to fine pointing
of the structure and vibration suppression for improving performance. In category I,
the interest is concentrated in developing mathematical models for systems where
the components are connected in single-point holonomic interfaces and form in
general open-loop articulated multibody systems. Typical examples are space-
science laboratories, earth-observation systems and space-station configurations.
The mission requirements may include precision attitude control of the main platform,
stringent pointing of the articulated payloads and vibration suppression. The
mathematical models for the dynamics modelliing of structural systems employed in
category I, II missions are linear, since the rotational manoeuvring of the main
structure is maintained sufficiently small and the relative rotational motion of the

components is restricted either completely or in the linear range.

Categories III, IV are the nonlinear counterparts of categories I, II respectively.
Missions that belong in Category III will require large angie precision rotational
manoeuvring of the entire structure for retargeting or tracking purposes, and
subsequently or simultaneously suppression of any induced vibration. Moreover,
category IV may require large angle manoeuvring of the main platform, while
simultaneously and independently deploying, pointing or driving with accuracy,
through large angle rotations, various articulating components and perhaps
suppressing the induced vibration at the same time. Typical examples include solar
panel deployment, reflector-antennas reorientation, robotic manipulator operations or
general reconfiguration of the structure in space. Nonlinear mathematical models are

essential for the description of the dynamical behaviour of these systems.

I-1-2. Scope and Approach

The scope of this work has been the development of a method suited to the
particular dynamics modelling requirements of structural systems in category II
missions in space. The method should be able to model open-loop muiltibody
structural systems with single-point articulated flexible or rigid components. It is of
critical importance that the method would provide low order mathematical models

which at the same time would approximate the dynamics of complex structural

configurations with high accuracy.
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As opposed to the direct finite element method that considers the entire structural
system as a single entity, structural systems in this work have been considered as
collections of distinct interacting components. The individual components are treated
separately to each other, process akin to substructuring methodologies. A
substructuring approach has a number of benefits over the more conventional direct
application of the finite element method. Most important attributes include the lower

computational cost and memory requirements for dynamics analysis.

Using the finite element method, a complex structural system is modelled as a single
structural entity. For reducing the computational cost, large order systems undergo a
transformation to modal generalised coordinates prior to any dynamic analysis. The
transformation involves an eigenvalue analysis of the entire structural system, and
since computer time increases at about the square or cube with an increase in the
number of degrees of freedom, the dynamic analysis of a large structure can be

computationally expensive.

in the case of a substructuring approach the eigenvalue analysis of the complete
structure is substituted by a series of eigenvalue analyses of the individual
components. The small number of derived normal modes, complemented by static
modes, can be used to describe the linear elastic deformation of each component.
Importing the component modes into a generic mathematical model that can couple
the overall motion of the components, low order differential equations of a particular
structural system can be produced. The resulting low order system is very
economical for obtaining the eigenvalues and eigenvectors of the global system or
for any further dynamic analysis. In general, the total computational time spent for
the derivation of component modes, coupling process and analysis of the resulting
low order system is lower to the time spend for the direct finite element analysis of

the entire structure.

In fact, the computational time saved relative to the global finite element method
increases as the number of degrees of freedom of the structural system increase.
Moreover, memory requirement is reduced since mathematical manipulations at
component level involve lower order matrices. A substructuring approach is therefore

particularly suitable for large-scale system modelling, like those treated in this work.
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Further time benefits can be realised since structural systems in space contain a

large number of repeated components.

Despite this work is not concerned with proposing or implementing control strategies,
a substructuring approach would facilitate control application. This is attributed to the
independent modelling of each individual articulated component with a low number of
component modes which allows the design of decentralised control algorithms.
Additional advantages are introduced since designing control systems for articulated
structures requires analysis over a large number of structural configurations.
Component reorientation studies are efficiently performed using a substructuring

approach since only a small part of the overall dynamic analysis has to be executed

at each iteration.

Although there is a number of reasons that support the use of substructuring, the
success of such an approach is ultimately linked to the component modes
implemented in the analysis. It proves that the kind of component mode sets utilised
is of vital importance for the modelling accuracy of large flexible structures in space.
The reasons are linked to inherent characteristics of these systems such as high
modal density and local deformation at component interfaces. Inappropriate
component mode sets not only negate the computer time benefits of a substructuring
approach due to convergence issues but may also result in inaccurate dynamics
modelling. The latter can prove detrimental since unmodelled dynamics, due to
control-structure interaction, can result in catastrophic destabilisation. The right
selection of component modes is therefore central to the implementation of a
substructuring approach. In this work several component mode sets have been
employed and include redundant constraint, constraint, loaded-interface, fixed-

interface and free-interface sets.

I-1-3. Proposed Methodology

Within the framework of substructuring one is confronted with a number of
methodology strategies. The particular methodology followed has been decided upon
the particular modelling requirements of structural systems in category II missions in

space. From a critical review of the area of multibody dynamics and component-
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mode synthesis, it has been decided that the most efficient methodology, for meeting
the modelling objectives set, would be a nonlinear recursive Lagrangian formulation

of generalised coordinates.

in nonlinear kinematics the overall motion of each component can be perceived as a
rigid body motion relative to which elastic deformation can be observed. In this
sense, one can assign to each component a suitably positioned floating reference
frame that moves with the rigid part of the motion and relative to which linear elastic
deformation can be measured. Therefore, the overall motion of each component can
be described in terms of the motion of a floating reference frame, and the

deformation measured relative to it.

For modelling the linear elastic deformation, a simple geometry component can be
spatially discretised using the continuous version of the assumed-modes method,
whereas for a complex geometry component spatial discretisation can be
accomplished using the finite element method. The finite element model of the
component is subsequently reduced using the discrete version of the assumed-
modes method. For the description of small linear elastic deformation, in both cases
the transformation involves a finite set of generating modes, referred to as
component mode set, which may be a combination of a number of dynamic modes
complemented by static modes. By truncating the number of the dynamic modes, the
system order is reduced at the component level, which is particularly beneficial for

large-scale systems modelling.

In recursive formulations, the orientation of the floating reference frame of a
component is specified relative to a local reference frame positioned within the
preceding component and located at the interface attachment between the adjacent
components. To ensure that the various components act as part of the whole
structure, a suitable kinematical procedure has been proposed to accommodate the
interface conditions between each component and the preceding one. The
component absolute kinematical expressions are formed relative to the suitably
positioned reference frame within the preceding component. The exact expressions
of the outboard component kinematics are subject to the constraints at the interface
with the inboard component. The interface kinematics in this work allow any of the

three articulation axes to be completely free or locked. For articulating structural
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systems, one is particularly interested in relative kinematical formulations, since
relative component orientation, velocity and acceleration are directly measured for
controller feedback purposes, therefore a recursive formulation proves an added
advantage. Utilising the kinematical relationship, established for any two adjacent
bodies, repeatedly for all components in the structure, the absolute kinematical
expressions characterising the motion of any component can be expressed in terms
of the independent generalised coordinates of all preceding components in the same

muitibody chain.

The kinematical procedure followed in this wok is only feasible for multibody systems
where no closed-loops and multi-point interfaces are formed between the articulated
components. Structures in space are typical examples of such configurations. The
formulation of the interface kinematics proposed is general enough to employ any
component mode set without violating the geometric interface conditions between
adjacent components. This is accomplished by the introduction of ‘correction terms’

into the interface kinematical expressions.

I-1-4. Methods of Mathematical Modelling

The nonlinear recursive kinematical expressions have been linearised in order to
obtain expressions for the formulation of the linear system dynamics. Transition from
the nonlinear to linear expressions has been performed using symbolic
manipulations. Distinct linear kinematical expressions have been accomplished and
formulated using either hybrid or generalised coordinate sets. Utilising these, three
linear methods for the dynamics modelling of structures in category II missions have

been produced.

The first of the methods uses a hybrid set of coordinates where for each component
the rigid-body part of the motion is described by physical displacement coordinates
and the linear elastic deformation by generalised coordinates. In the second method,
the hybrid set has been substituted by a generalised coordinate set, since the rigid-
body motion of each component has been described using rigid-body modes,
modeliing allowed only with the assumption of small rotational displacement. In both

methods the structural subdomains can be spatially discretised using the continuous
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version of the assumed modes method or the finite element approach. In the third
method all components have been spatially discretised using the finite element
method. The consistent mass matrices of each component in the structure appears
explicitly in the equations of motion of the multibody system. The third method also

utilises a generalised coordinate set.

All methods proposed can treat open-loop tree-configuration multibody structural
systems with single-point articulated rigid or flexible components. For assessment
and comparison, the methods have been utilised to develop mathematical models of
peripheral multibody structures of varying modelling complexity. Such systems
consist of an arbitrary number of components attached to a main carrier platform
without forming any closed-loops. Peripheral formation muitibody mathematical
models are easier to present analytically than generic tree-configuration models,
which are best generated computationally. The configuration [imitation of the
mathematical models does not in any extend restrict the conclusions drawn form this

work since it is of quantitative and not qualitative nature.

I-2. Summary of Chapters
I-2-1. Chapter I : Introduction

The remaining of this chapter looks into various areas of research that are closely
related to the modelling requirements in this work. The modelling of the linear elastic
domain was first examined. Clear understanding of this area is critical for
comprehending more complex subjects such as the coupling of the elastic
deformation to the nonlinear component kinematics, modelling of interface
kinematics between adjacent components and component mode representations.
The limitations and advantages of the exact and approximate modelling have been
discussed. Amongst others, Rayleigh-Ritz type approximate methods, such as the
continuous version of the assumed-modes method and the finite element method,

have been presented.

Subsequently the discussion turned to the examination of global modelling practices

as opposed to the substructuring approach. A number of advantages of



Chapter I - Introduction

substructuring over the more conventional global finite element approach have been
detailed. This part of the review is important for justifying the primary modelling step

of this work.

Within the framework of substructuring a number of methodologies have been
presented. The scope was to determine the particular methodology that can meet the
modelling requirements of this work in the most efficient way. A thorough discussion
on minimal versus augmented modelling, non-recursive versus recursive
formulations and Lagrangian versus Netwon-Euler methods has been given. A brief

review of the area of component-mode synthesis follows.
I-2-2. ChapterII : Component Mode Sets.

Component modes have been proposed or adapted from the area of component-
mode synthesis. This field of geometrically linear dynamics is concerned with large-
scale structures where the substructures are in general connected to each other in
multi-point interfaces. The physical coordinate constraint sets of the component have
been defined so that the component characterisation is generalised to include the
statically indeterminate, determinate and underdeterminate cases. The component
mode sets used are combinations of dynamic and static modes. Variations of
component mode sets found in the literature have also been proposed. Component
modes utilised include redundant constraint, constraint, loaded-interface, fixed-
interface and free-interface sets. Mathematical proofs for determining the size of the
physical coordinate constraint sets in order to define the various static modes are
also provided where necessary. Preliminary advantages and disadvantages of the
various component mode sets are discussed, previous to their implementation and

assessment for simulating the system dynamics.
I1-2-3. Chapter III : Nonlinear Recursive Component Kinematics

This chapter is concerned with the kinematics modelling of open-loop multibody
flexible structures in space. The nonlinear kinematical expressions of a single flexible
component are first derived. In Appendix-A the kinematics of an arbitrary component
joint to the preceding one via a non-translating single-point interface have been

developed. This part of the nonlinear kinematical analysis is recursive. Suitable
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kinematical component expressions have been developed in order to accommodate
the component interface conditions with the inboard component. The resuking
mathematical expressions are general enough to employ any component mode set
without violating the interface conditions. This is accomplished with the introduction
of ‘correction terms’ in the component interface kinematical expressions. The final
expressions of the component kinematics connected to the preceding component for
arbitrary interface constraints have been presented. Utilising the kinematical
relationship, established for any two adjacent bodies, repeatedly for all components
in the structure, the absolute kinematical expressions characterising the motion of
any arbitrary component can be expressed in terms of all the independent
generalised coordinates that specify the time-varying configuration of the
components preceding and including the arbitrary component in the same multibody

chain.
1-2-4. Chapter1V : Methods of Multibody Dynamics Modelling

Having obtained the nonlinear recursive kinematical expressions for an arbitrary
component in a multibody chain, the aim of this chapter is to linearise them in order
to obtain expressions for the formulation of the linear system dynamics. For this
purpose the theoretical background of the large arbitrary angular displacement and
nonlinear rotational kinematics has been reviewed in Appendix-B and the distinct
mechanisms that introduce geometrical nonlinearity into the multibody system
dynamics have been thoroughly examined. Returning to chapter IV, transition from
the nonlinear to linear kinematical expressions for a component as part of a
multibody chain has been performed using symbolic formulations. Dinstinct linear
kinematical expressions are accomplished and formulated using either hybrid or
generalised coordinate sets. Utilising these kinematical expressions, three linear
methods for the dynamics modelling of category II missions in space have been

proposed.

The kinetic energy of each component can be expressed in terms of all the
independent generalised coordinates that describe, at any instance, the configuration
of the preceding multibody chain of components. The elastic potential energy can
readily be derived using the expressions approximating the linear elastic deformation

of the component. These approximate expressions of the component's deformation
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field are independent of the exact position of the component in the multibody system.
Dissipation energy can be included as structural damping at substructural level and

also as viscous damping.

Using a unified coordinate set formulation, the energy functions for all methods and
for discrete or continuous flexible components have been derived. An initial
assessment of the methods and discussion on their differences on theoretical and

numerical implementation level has been presented.

I-2-5. ChapterV : Mathematical Models of Peripheral Multibody
Structures

For assessment and comparison, the methods developed have been utilised to
derive mathematical models of peripheral formation multibody structures. Four
distinct mathematical models have been developed. Based on these mathematical
models, the three methods have been assessed and compared on a large variety of
criteria on their suitability for modelling the dynamics of Category II missions in
space. The comparison clearly demonstrated the most efficient method. The
resulting model uses explicitly the consistent mass matrix of the individual
components and a generalised coordinate set. This model provides an excellent tool

for research, analysis and design of large-scale flexible structures in space.

This chapter concludes with the derivation of the generalised force expressions for a
multibody structure and the mathematical steps for performing a direct or modal
frequency response analysis using the reduced order mathematical model of the
multibody system. Structural and localised viscous damping has been included at

substructural level.
I-2-6. Chapter VI : Computational Implementation

A network of programs has been developed for the computational implementation of
the most efficient of the methods. The final deliverables of the network are the
eigenvalues of the multibody system and the eigenvectors in modal or physical
space. Additionally, physical displacement, velocity and acceleration of any point on

the structure can be derived as a function of the forcing frequency using either direct

10
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or modal frequency response analysis.

Since structures in space are composed of complex components, within the
framework of this network each component has been spatially discretised using the
finite element method. For this purpose, the network has been interfaced with the
commercial finite element package ANSYS. Redundant constraint, constraint,
loaded-interface, fixed-interface and free-interface component mode sets have been
employed. Within the network of programs the redundant constraint and constraint
modes, that complement the dynamic modes to form a component mode set, are

calculated using specifically developed algorithms.

The capabilities and the structure of the network are presented in the first part of
chapter IV. The remaining of the chapter is dedicated to computational cost analysis
studies of the proposed method relative to the direct finite element approach. A
number of studies have been undertaken and demonstrate that in general the
proposed method can be considerably faster over the more conventional global finite
element approach. A number of conclusions on the efficiency of the method and its

potential limitations have been reached.
I-2-7. Chapter VII : Results

Using the network of programs, the natural frequencies of peripheral structural
configurations have been derived by incorporating several kinds of component mode
sets, and the results have been compared to those obtained by modelling the entire
structure using the finite element method. Similarly several frequency response
analyses have been undertaken to further examine the integrity of the method and
the accuracy of the component modes used. Employing the finite element method as
a benchmark has long been established both for the verification of the theoretical

integrity and the accuracy of results obtained from linear mathematical models.

Conclusions on the efficiency of the component mode sets have been firmly
established. The right selection of component mode sets is challenging for large-
scale flexible multibody structures in space, since these structures exhibit high modal
density and local deformation at the component interfaces. Moreover, the inherently

large differential problem would increase further if the component modes employed

11
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cannot efficiently model the linear elastic deformation of the components. A
gualitative criterion has been established that predicts the possibility of local
deformation being low or high. The criterion can be used to guide the analyst on the

number and type of component modes best utilised.

Finally the theoretical integrity of the proposed maethod has been demonstrated,
since it can provide results with excellent accuracy relative to the finite element
method, even with a low number of degrees of freedom, subject to the kind of

component modes used.

I-3. Elastic Domain Modelling
I-3-1. Exact and Approximate Modelling

Of foremost importance within the framework of flexible multibody dynamics is the
modelling of the distributed elastic domain. Small linear elastic deformation has been
assumed throughout this work. A linear elastic structure can be either modelled as an
infinite parameter system or discretised to a finite one. Structural systems are in
reality distributed parameter systems, therefore their description requires an infinite
number of degrees of freedom. Although distributed parameter modelling is desirable
for the exact solution of the structural dynamics problem, this is only feasible for
systems with fairly simple geometry or systems idealised as such®. Moreover, not all
distributed parameter mathematical models have closed-form solution®*. Numerical
solutions, although difficult, are possible to produce, but render the ‘exact’ character
of the modelling approximate. Since distributed parameter modelling posses the
aforementioned difficulties, alternative methodologies have been established where
the infinite number parameter system is approximated by a finite dimensional model.
Such a procedure, called generally discretisation, may be considered any
approximation process that aims in reducing the infinite number of degrees of
freedom representation of a real system to a finite number. Discretisation may either
involve lumping mass and stiffness characteristics or expanding the linear
deformation of a system in a finite series of functions, procedure referred to as
spatial discretisation. Lumped parameter models are more intuitive, arbitrary in
character and the analyst has little control over the error involved in the discretisation

12
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process.
I-3-2. Rayleigh-Ritz Type Spatial Discretisation Methods
1-3-2-1. Continuous Version of the Assumed-Modes Method

Whereas the Rayleigh-Ritz method is a methodology for solving the differential
eigenvalue problem, the continuous version of the assumed-modes method is a
Rayleigh-Ritz type spatial discretisation of a distributed parameter system prior to the
derivation of the equations of motion®. Therefore, there is no longer need to
establish the partial differential equations describing the dynamics of the distributed
system. As in the Rayleigh-Ritz method, the deformation is approximated in the form
of finite series of space-dependant admissible functions, with the difference that the
coefficients are not constant but time dependant and form the generalised
coordinates of the system. The series can be substituted in the kinetic and potential
energy expressions, thus rendering them to discrete form, and the equations of
motion can be derived by means of a variational method such as the Lagrange
equations. The assumed-modes method can therefore be also used in deriving the
response of a system to external forces and initial excitation. Utilising the continuous
form of the assumed-modes method, a continuous media, described normally by
partial differential equations, can be modelled by a reduced order finite set of
ordinary differential equations. More interestingly the assumed-modes method yields
the same eigenvalue problem as the Rayieigh-Ritiz method, i.e. the Galerkin
equations®. The assumed-modes method will be considered here, in agreement with
the literature, as a method suited for spatial discretisation of a complete structural
system or a large subdomain of a system®'. This implies that the admissible functions
used are ‘global’ functions capable of describing large parts of the system. This
makes the method difficult to deal with complex, geomeirically irregular structures. It
is indeed a very difficult task, and most of the cases impossible, to select admissible
functions capable of describing complex systems with accuracy. An answer to

complex geometries is provided by the finite element method.
1-3-2-2. The Finite Element Method

The finite element method is recognised as another Rayleigh-Ritz type discretisation,

13
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which like the assumed-modes method is not designed for solving differential
eigenvalue problems, but for modelling a distributed parameter system with finite
degrees of freedom. Like the assumed-modes method, the finite element method is
seeking admissible functions for approximating the system dynamics, but as
opposed to the assumed-modes method these trial functions are defined for much
smaller structure subdomains, the elements. Therefore, the trial functions are not
considered ‘global’ functions but ‘local’. Although this difference seems to be of
quantitative nature, a particular methodology facilitated by the use of 'local’ functions
results to a distinct mathematical model. In other words, although the finite element
method qualifies as a Rayleigh-Ritz type spatial discretisation technique, the
associated (discrete parameter) algebraic eigenvalue problem does not result to the
Galerkin equations. Defining admissible functions for only small subdomains is one
of the features of the finite element method that makes it so versatile for modelling
complex structures. Indeed for most of the cases one needs to use only simple
admissible functions, known as interpolation functions, in order to approximate the
linear deformation within an element. At the elemental level the distributed
deformation, approximated by a finite series of local functions, is finally expressed in
terms of the unknown nodal displacements’. It is this mathematical manipulation that
really distinguishes, on mathematical level, the finite element method to the
assumed-modes method and gives it extreme power as an engineering tool. The
nodal displacements play the role of generalised coordinates in the element entity.
The local functions are very attractive computationally, as integrals for the derivation
of Lagrangian expressions at the elemental domain, involve functions that can be
evaluated in closed-form, thus eliminating numerical integration errors. Displacement
compatibility between elements can directly be enforced in an assembling process.
Assembling the energy functions of the system from the elemental energy
expressions is straightforward. By applying the Lagrange equations, the linear
differential equations of motion are readily obtained. The system degrees of freedom

are the nodal physical displacement coordinates of the structure.
I1-3-3. Discrete Version of the Assumed-Modes Method
It has been discussed that the continuous version of the assumed-modes method

and the finite element method are Rayleigh-Ritz type spatial discretisation

techniques. Their purpose is not to approximate the solution of partial differential
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equations, but to create in their place a set of ordinary differential equations. This is
particularly convenient, since partial differential equations can only be derived for a
small family of systems. Moreover, the solution of the ordinary differential problem is
much simpler than the solution of the partial differential problem. Other than spatial
discretisation techniques, lumped parameter modelling also concludes to a set of
ordinary differential equations. In general, however, both the lumping and particularly
the finite element method result in high order differential systems. In any case, the
analyst may wish to reduce the order of the resulting system, and this may be
accomplished, amongst other techniques, by the application of the discrete version of
the assumed-modes method®. This method can be considered as a linear
transformation of a discretised system from one finite dimensional space to another.
The discrete version, although in mathematical formalism is similar to the continuous
version, it is not considered a spatial discretisation technique, but just a
transformation of a high order discretised model to a lower one. It can be shown that
the discrete version of the assumed-modes method satisfies the Rayleigh’s quotient
for discrete parameter systems. Thus a finite set of time-varying coordinates
describing a particular discretised system can be approximated by a series of
admissible vectors multiplied by a set of time-varying generalised coordinates®. The
discrete version of the assumed-modes method is therefore an extremely useful tool

for truncation purposes of high order spatially discretised systems.

I - 4. Global Modelling versus Substructuring

In the literature there is a plethora of methodologies for modelling the geometrically
nonlinear and linear dynamics of large-scale flexible systems. Linear structural
systems can be composed of any number of substructures connected together in
multi-point or single-point interfaces, forming open-loop or closed-loop configurations
and allowing any possible small displacement between the substructures. In the
content of this work, substructure is considered any distinct component or more
generally any idealised finite subdomain of a structure much larger than a finite
element. The most general separation of methodologies regarding the formulation of
the dynamics of multibody structures is to either model the entire system as a single
entity - global modelling - or consider the structure as a collection of a number of

substructures and treat each one individually - substructuring approach.
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I-4.1. Global Modelling

Traditionally, the linear dynamical behaviour of large-scale complex structures has
been modelled, in engineering practice, by the direct use of the finite element
method. As analysed earlier, distributed parameter formulations (exact modelling) or
the continuous version of the assumed-modes method may not be feasible for
modelling complex systems. Lumping methods are more applicable, but control over
the modelling error is generally restricted. On the other hand, using the direct finite
element method, the structural system can be treated as a single entity and the
dynamics of the structure are represented by a high-order coupled ordinary linear
differential equations. The global modes (eigenvectors) of the system and natural
frequencies can be straightforwardly obtained by solving the associated algebraic
eigenvalue problem. For a forced problem the solution of the nonhomogeneous
differential equations is facilitated by the modal analysis method. This is
accomplished by appropriately introducing a small number of modal vectors (number
usually decided on the forcing frequency of interest) into the high-order differential
equations. The coupled high-order differential set not only reduces to a smaller one
but also the homogeneous part acquires an uncoupled form, due to the orthogonality
property of the modal vectors. The high number of coupled differential equations are

reduced to a small number of uncoupied equations.

Although treating the structural system as a single entity by the use of finite element
method is a straightforward and very accurate process, and has been successfully
used for numerous structural and control applications®, there are inherent
disadvantages with such an approach. The primary concern is linked to computing
time considerations. The resulting eigenvalue problem, of a high order coupled
algebraic equations, needs to be solved prior to proceeding with the order reduction
of the differential system. The computing time involved in solving the eigenvalue
problem is about proportionate to the square or cube of the degrees of freedom of
the system. in the case that numerical solution is possible by solving only part of the
eigenvalue problem, i.e. extract only a small number of eigenvalues and
eigenvectors, the computing time is significantly reduced, but still depends highly on
the order of the problem. At the same time large-scale problems need advanced
computer hardware and software to be able to store and solve the eigenvalue

problem.
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Moreover, the design of control algorithms and their implementation to real-time
systems is not possible using high order mathematical models. For control
applications, a series of global level truncation techniquessz'"'65 have long now been
established to reduce the size of linear mathematical models taking into account the
control strategies to be implemented. The global order reduction techniqgues estimate
which of the modes of the global system do not contribute to the control-structure
interaction and eliminate those from the modal set. The reduced size linear
mathematical models can subsequently be used for control algorithm design and
real-time (on-board) implementation. Nevertheless, solution of a large part of the high
order formulated linear problem is still necessary prior to the application of truncation

techniques, increasing the computational cost significantly.
I-4-2. The Substructuring Approach

The alternative to global modelling of large-scale systems is provided with treating
each substructure individually. Most of the methodologies established, utilising the

substructuring concept, can alleviate all the above mentioned difficulties. Moreover,

other benefits are to be gained.

Most importantly, system order reduction can be performed at the substructure level,
resulting directly in low order linear differential equations. This is accomplished by
approximating the linear elastic deformation of each substructure using spatial
discretisation techniques. As discussed previously, for complex geometry
substructures the finite element method can be applied. The finite element model of
the component is subsequently reduced using the discrete version of the assumed-
modes method. For the description of the small linear elastic deformation, the
transformation involves a finite set of generating modes (vectors), referred to as
component mode set, which may be a combination of a number of dynamic modes
(vectors) complemented by a number of static modes (vectors)®. For deriving the
dynamic modes of each substructure an algebraic eigenvalue should be solved. This
eigenvalue problem is of much smaller dimension to the eigenvalue problem of the
entire structure. Since computer time in vibration analysis increases at about the
square or cube with an increase in the number of degrees of freedom, it is beneficial

if the eigenvalue analysis of the complete system is substituted by the eigenvalue
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analysis of its individual substructures. By truncating the number of the dynamic
modes of each substructure, the reduced size component mode sets can
subsequently be imported in any generic mathematical model that can couple the
overall motion of the substructures, and the low order linear differential equations of
a particular structural system can be produced. Similar comments apply if the
substructures are of simple geometry and spatial discretisation can be achieved by

the continuous version of the assumed-modes method.

An additional computing time advantage is obtained due to the inherent nature of
large-scale systems. Such systems are composed of a large number of identical
components, and in the case of structures in space these may include solar panels,
radiation booms, antennas, spacetruss boxes etc. Therefore, utilising a
substructuring approach, modelling and analysis of common components has to be
performed only once. Therefore, not only the solution of the dynamical problem is
accelerated, but at the same time low order systems do not need advanced
computer hardware and software capabilities for storing and solving the formulated

problem.

Moreover, structural systems may include articulated components, allowing the
change in orientation of these components for facilitating various operations. It is
therefore always a demand for the dynamic analysis of the structure in different
configurations. Modelling and solving the complete system over a large domain of
different configurations of interest can prove an exiremely time consuming process.
However, modelling the structure as a collection of substructures this problem can be
overcome easily, just by allowing different orientations to the articulated
substructures and solving only part of the substructuring analysis. Similarly, in the
design process, even the location of some members may be altered, hence the
substructuring approach will definitely facilitate efficient repositioning operations. In
optimisation problems computational time is greatly reduced if a small number of

substructures are to be optimised.

Since complete structural systems have become very complex, major components
are often designed, produced and tested by different organisations. Therefore, not
only it is often difficult to assemble an entire finite element model in a timely manner,

but experimental data for individual components has sometimes to be incorporated
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into the analysis of the entire system®. Such implementation would not be possible

using the finite element model of the entire structure.

The control community is also interested in modelling the structural systems as
collections of components. Additionally to the benefits obtained concerning the
structural dynamics part, truncation technigues can be further implemented at
component level, considering the particular control strategy to be utilised. This
particular approach is preferential for control applications, especially so, for the

1920 If necessary, further order

complex structures with articulated components
truncation can be performed at the global level. Moreover, decentralised control

algorithms can be implemented.
I-4-3. Multibody Dynamics and Component-Mode Synthesis

Both the areas of multibody dynamics and component-mode synthesis empioy ihe
concept of substructuring. As the term implies, the muitibody dynamics field
considers a structural system as a collection of interacting bodies. The genesis of
this field is traced to the need for the description of the dynamical behaviour of
systems composed of interconnected rigid components undergoing large rotational
displacements. Gradually, due to new demands in applications, the rigid body
assumption was relaxed and rigid bodies were replaced with flexible ones. The
contribution of this area lies mainly in the formulation of nonlinear mathematical
models for structural systems composed of interconnected flexible and rigid
components. Multibody dynamics, uniike most of the nonlinear finite element
formulations, inherently utilises the concept of substructuring, and the nonlinear
mathematical models obtained are of low order. By linearising the large angular
displacement, some of the approaches in the area of multibody dynamics lead to

efficient low order linear mathematical modes.

Component-mode synthesis is an area of geometrically linear structural dynamics
that is concerned with the modelling of large-scale complex structures. The area was
mainly initiated for overcoming difficulties associated with the modelling of the entire
structure using the finite element method, such a computing time and storing
problems. In the component-mode synthesis, the large-scale structural system is

decomposed to substructures, which, in general, are connected to each other in
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multi-point interfaces. Initially the synthesis processes for deriving the linear
differential equation of motion for the global system, using the component modes of
each substructure, were very much dependant on the kind component modes
utilised. Subsequently, it was shown that the most efficient way to derive
mathematical models, regardless of the component modes used, is by a Lagrangian
formulation using the Jacobian partitions of the constraint equations'. In this sense,
component-mode synthesis can be considered a linear mulibody dynamics method,
particularly effective for handing large number of substructures connected generally

in multi-point interfaces.

Component-mode synthesis area has vastly contributed in providing component
mode sets for accurately capturing the linear deformation of components.
Component mode sets, and mainly those that include static modes, have been
recently used extensively in the nonlinear muiltibody dynamics area, for structural
dynamics and control applications'®?°. In fact, the kind of component modes
imported in a mathematical model is of foremost importance for the accurate

modelling of the dynamics of large flexible multibody structures.

The current state of the art methodologies for treating large-scale flexible nonlinear
or linear systems are multibody dynamics methods for establishing generic
mathematical models, and incorporate component mode sets, from the component-
mode synthesis area. The formulations can model exactly the geometrically
nonlinear or linear rigid-body motion and with high accuracy the linear elastic

deformation of the components with a low number of differential equations®'.

I -5. Selection of Modelling Methodology

I-5-1. Background

The intention in this work has been the development a method suitable for the linear
dynamics modelling of large multibody structures that belong in the category II
missions in space. The method should result in a low order linear mathematical

model that at the same time would approximate accurately the dynamics of large

complex flexible structures.
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A methodology framework has been fully established and can deliver geometrically
nonlfinear and linear methods. The study in this section has been compiled for
justifying that the methodology framework developed in this work is capable of
producing linear and nonlinear methods for multibody dynamics modeliing for all
categories of missions in space. The modelling objectives of the methodology are the
following:

Exact modelling of the large geometrically nonlinear motion.

Single-point holonomic constraints.

Open-loop topology.

Linear elastic deformation modelling.

Multi-point articulation, non-holonomic constraints, closed-loop topology and
nonlinear elastic deformation are outside the modelling objectives. The restrictions of
the methodology are limited and are not often encountered in the dynamics
modeliing of structures in space. In general, structural systems in space are typical
examples of open-loop multibody systems with operational components connected at
single-point interfaces. Setting the above objectives, the methodology should be able
to generate nonlinear and linear mathematical models for most of the current and

near future applications involved in all categories of missions in space.

More specifically, the subject of this review is to establish the characteristics of the
methodology followed in this work in such a way as to demonstrate that it is mostly
efficient for satisfying all modelling objectives set. With such broad objectives, one is
confronted with a series of decisions on methodology strategies. These may be
prioritised in the following way:

Augmented versus minimal formulations.

Non-recursive versus recursive formulations.

Lagrangian versus Netwon-Euler formulations.
I-5-2. Augmented versus Minimal Formulation
In the augmented formulation, the kinematic constraint equations are adjoint to the

system of dynamic differential equations using the technique of Lagrange multipliers.

If N the number of interdependent generalised coordinates of the muitibody system
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and N, the number of independent kinematic constraints, then the multibody system
in the augmented approach is described by a set of N number of differential
equations coupled to the set of N, kinematic constraint equations. The coupled
system of equations has to be solved simuitaneously. It is obvious that the
independent generalised coordinates (degrees of freedom) of the system are N-N..
Therefore, the augmented formulation does not result in the minimum number of

equations.

Using an augmented Lagrangian approach both holonomic and non-holonomic
constraints can be modelled. Moreover, the constraint forces and torgues (Lagrange
multipliers) of the multibody system are directly furnished by solving the augmented
set of equations. In addition, the coupled set of the nonlinear differential equations
and the constraint equations can be derived in a systematic way facilitating
computational implementation. Nevertheless, the solution phase of the augmented
formulation is numerically compiex and, in some applications, complications with
integration schemes can be encountered®’. An additional penalty is that the

computational cost is very high compared to the minimal formulations.

For the case of non-holonomic constraints and using a Lagrangian approach the
non-minimal formulation is unavoidable. The complications of this sophisticated
numerical formulation, of having to solve a higher than needed set of coupled
nonlinear differential equations along with generally nonlinear algebraic equations,
can be avoided for holonomic systems. For multibody systems with holonomic
constraints (scleronomic or rheonomic) there is always possible to express the
interdependent generalised coordinates of the system as functions of the
independent ones. This is accomplished by the use of partitions of the Jacobian
matrix of the constraint equations. in the case of a non-holonomic system this
procedure is not possible since the constraint equations cannot be integrated. It can
be proved, by the use of the Lagrange form of D’Alembert’s principle, that in the case
of holonomic constraints the resulting set of differential equations can always acquire
a minimal size (N-N)*. Therefore, the Lagrangian formulation with multiplies can be
substituted by a Lagrangian formulation with Jacobian matrix partitions. For
holonomic systems the benefit of such an approach over the augmented method is
reduced computational cost and less complex numerical freatment that this

methodology requires. Nevertheless, it is not always straightforward to select the
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right partitions, i.e. to decide which of the coordinates should be dependent and
which independent, in order to result to nonsingular partiioned matrices.
Computational techniques such as Gaussian elimination®” and singular value
decomposition have been used to account for matrices ill-conditioning. Moreover, the
constraint forces eliminated from the analysis by the use of the Jacobian matrix
partitions need systematic treatment in order to be recovered. An example of the
use of Lagrangian formulation with Jacobian matrix partitions, can be found in the
literature of component-mode synthesis techniques®. It has been demonstrated that
for the case of multi-point holonomic interfaces between substructures, the most
efficient way to synthesise the component modes of the various substructures, in
order to derive the linear equation of motion of the system, is by the use of the
Jacobian matrix partitions. The proof considered the general case of Lagrange
multipliers formulation and reduced that to a minimal set of linear differential

equations.

Other than Lagrangian formulations, Kane’s method of generalised speed® can also
treat non-holonomic constraints. Unlike the Lagrange multipliers formulation, the
resulting differential equations are of minimal dimensions. At the same time, Kane’s
method is computationally efficient since it combines the advantages of both Netwon-
Euler approach and the recursive Lagrangian formulation - the non-working
constraint forces and torques do not appear in the equations and the large number of
differentiation of the kinetic energy expressions are avoided®. Considering the
minimal character of Kane’s formulation and the computational advantages
mentioned, it may seem inexplicable that the method is not that popular for all-
purpose multibody coding. Perhaps the answer is dual. Firstly there is not an easy
and systematic way to derive the constraint forces and torques of the system, and
secondly the mathematical treatment needed for resulting to the computational

implementation is very complex and elaborate®.

Conclusively, the use of the augmented Lagrangian formulation for all-purpose
multibody codes is justified, since it is computationally straightforward to apply, can
solve both holonomic and non-holonomic systems and furnishes directly the
constraint forces and torques of the multibody system. Nerertheless, indiscriminate
use of the method for any application has been encountered in the literature. With

less generic modelling objectives, such as those involving holonomic constraints, the
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augmented method cannot be considered the most efficient methodology, because
of the high computational cost involved. Straightforward mathematical modelling for
computational implementation can also be accomplished by the Lagrangian
formulation of the Jacobian partitions, which is faster to produce results. In fact the
higher the number of the interconnected bodies and holonomic constraints, the more
costly the Lagrangian augmented formulation can be relative to the minimum
Lagrangian formulation. Accounting for all parameters, and considering the
mathematical complexity of formulating mathematical models using Kane’s minimum
approach, the Lagrangian formulation of the Jacobian partitions seems to be the

preferential one for holonomic system modelling between all three methodologies

examined.

However, since computational difficulties are also encountered on separating the
independent to the dependent generalised coordinates in the minimal Lagrangian
approach of Jacobian partitions, one is motivated to seek for an alternative minimum
formulations for solving holonomic multibody systems. An additional reason for
seeking for alternative minimum formulations is that, in the case of the Lagrangian
formulation with Jacobian partitions, the constraint equations and more significantly
the component kinematics are derived relative to an absolute frame of reference (the
same applies for the Lagrangian augmented approach). This means that the history
of the orientation, position and their rates for each component, obtained from the
solution of the differential equations, are given relative to an inertial observer. ldeally,
one is interested, especially so in spatially nonlinear dynamics, in the relative
orientation and position between adjacent bodies. The implication that the
component kinematics are formed relative to an absolute reference frame is that the
relative joint coordinates and their derivatives are not explicitly available, and this
limits at some extend the implementation of control strategies, since it usually much
easier to measure relative joint displacements, velocities and accelerations. In order
to acquire relative kinematical expression one needs to transform at each time step
the absolute expressions to relative ones, adding to the computational cost. The
answer to the computational difficulties and the drawback of the absolute reference
frame kinematical expressions, encountered in the minimum Lagrangian formulation

of Jacobian partitions, can be provided by the recursive formulations.
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I-5-3. Recursive versus Non-Recursive Formulations

In the recursive methods, the component absolute kinematical expressions are
written directly relative to a suitably positioned reference frame within the preceding
component. The exact expressions of the outboard component Kinematics are
subject to the constraints at the interface with the inboard component. The absolute
kinematical expressions of the outboard component involve the absolute kinematical
expressions of the local reference frame positioned in the inboard component and
relative kinematical expressions of the outboard component (relative) to the local
reference frame. These relative kinematical expressions are only functions of the
independent generalised coordinates of the outboard component. In a systematic
manner, the absolute kinematical expressions characterising the motion of any
component in a system can be expressed in terms of all the independent generalised

coordinates of the components that precede it in the multibody chain.

Recursive methods are more elaborate in deriving the absolute kinematical
expressions of components, since they account for the motion of the preceding
component and at the same time the interface constraints. The procedure may be
complex in terms of kinematical descriptions, but on the other hand does not involve
intensive mathematical treatment. In actual fact, this complex analytical process
gives an excellent insight in the kinematics of the component, unlike the case of non-
recursive methods. Moreover, the resulting differential equations are of minimal size,
since the kinematical expressions of each component are only functions of
independent generalised coordinates. The solution of the differential equations
furnishes directly the orientation and position (and their time derivatives) of any
component relative to the preceding one, with the aforementioned advantages. Since
the Jacobian matrices do not need to be formulated and the mathematical treatment
is not that involving, recursive methods can be computationally and mathematically

less complicated to the other minimal approaches.

The main drawbacks of recursive methods are that the description of rheonomic
constraints may be difficult and the constraint forces and torques need systematic
treatment in order to be derived, since, as anticipated, they are not furnished directly
by the solution of the minimal of differential equations. Moreover, in the author's

knowledge, treatment for multi-point interfaces has not yet been established in the
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literature using minimal recursive methods. In any case, multi-point interfaces have
been set outside of the modelling objectives since such cases are rarely treated in

the dynamics modelling of structures in space.
I-5-4. Lagrangian versus Netwon-Euler Recursive Formulations

Recursive methods can be obtained using either a Lagrangian approach, a Newton-
Euler formulation or hybrid Netwon-Lagrange methods. The Netwon-Euler equations
have the main disadvantage that the non-working constraint forces and torques need
to be eliminated from the system equations. On the other hand the recursive
Lagrange formulation needs a large number of differentiations for obtaining the
nonlinear differential equations of motion. The hybrid methods have essentially the

disadvantages encountered in the Netwon-Euler approach.

In a Netwon-Euler formulation there are systematic ways to eliminate the non-
working forces using amongst others graph theory or projection matrices®, but in
general these techniques are more elaborate than differentiating systematically the
kinetic energy of the system. Moreover, the recursive derivation of the acceleration
expressions from one component to the next, in order to obtain the absolute
acceleration of the terminal body, is a much more involving process than dealing with
the velocity expressions of the components, especially so for flexible components.
The recursive Lagrangian approach seems less demanding than the Netwon-Euler
for resulting to the set of the nonlinear differential equations. For geometrically linear
system, the amount and form of the expressions to be differentiated is simplified in
such an extend that the linear differential equations can be readily obtained form the

scalar energy functions in a single step.

Conclusively, the most efficient methodology for modelling holonomic open-loop
multibody systems is a recursive Lagrangian formulation of generalised coordinates.
It results to a minimum set of differential equations, uses relative reference frame
component kinematical expressions, offers a better physical insight into the
components kinematics, and does not implicate complex computational algorithms.

The structural dynamics methodology is shown in Table I-1.
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Structural Dynamics Modelling

Global Modelling

Substructuring Approach

/

Finite Element Multibody Dynamics
Method
Methodologies (nonlinear / linear)
Augmented

Minimal

v

N

Lagrance with Recursive Kane’s Method Non-recursive
Multipliers
A4 \ Lagrange with
Netwon-Euler Lagrange Netwon-Lagrange Jacobian Partitions

i

:

Quasi-coordinates

Generalised
Coordinates

Component-Mode
Synthesis (linear)

b 4

Floating Reference Frame

4

Large Displacement

(geometrically nonlinear)

A\ 4

Linear Elastic Deformation

<4— Coupled to —p

.

Small Displacement
(geometrically linear)

Exact Modelling

Approximate Modelling

Lumping

Spatial Discretisation
(and order reduction)

/

N

Table I-1

Continuous Version of the Assumed-
Mode Method

Finite Element Method
(and discrete version of the
assumed-mode method)

> Methodology followed in this work

Structural Dynamics Modelling Methodology
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I-6. Component - Mode Synthesis

The research in the area of component-mode synthesis has been focused in two
main areas. Most importantly in identifying component mode sets that would
accurately and efficiently capture the actual deformation of the substructures, once
they are reassembled to form the structural system. Secondarily the interest is
focused on effectively synthesising the component modes to form the linear

differential equations of the structural system.

In most component-mode synthesis methods, the synthesis techniques, for
assembling the substructures component modes to form the différential equations of
the global system, are coupled to the actual description of the component modes
utilised. As pointed out in the ‘Critical Selection of Modelling Methodolody’, it has
been proved that all the separate techniques of synthesis (in the time domain) can be
substituted by a Lagrangian formulation of Jacobian partitions. This approach can
allow any component mode sets to be directly employed in the equations, and
therefore the tailored ‘synthesis techniques are not essential. in this respect,
component mode synthesis methods can be considered as a subset of the multibody
dynamics modelling for geometrically linear systems where components are
connected in general in multi-point interfaces. In fact the Lagrangian formulation of
Jacobian partitions is the most efficient way of formulating the linear differential

equations of motion when multi-point interfaces are considered.

On the other hand, the most important contribution of the area is the development of
efficient component mode sets for the approximation of the linear deformation of the
substructures. In this respect the research involved in component mode synthesis
can be used in multibody dynamics of flexible systems. The first component-'mode
synthesis method'" that appeared in the literature uses fixed-interface normal modes
complemented with a number of redundant contraint modes. The fixed-interface
normal modes are the eigenmodes of the component with all internal (interface) and
external (boundary) constraints fixed. Redundant interface constraint modes are
defined by applying successive unit displacements to all redundant constraints in the
system while the rest of the constraints (interface and boundary) remain fixed.

Therefore, the number of the static modes equals the number of the redundant
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constraints of the component, whereas the number of dynamic modes can be

truncated to reduce the size of the formulated problem.

Following this pioneering work, a lot of interest was generated for deriving alternative
component mode sets. A significant modification to the original redundant constraint
method was proposed®® where all the interface constraints of the system are treated
alike. Seperation to redundant and nonredundant constraints is avoided. This is
particular beneficial since it is not always an easy task to separate the interface
constraints. In the constraint mode method, the fixed-interface normal modes are
defined exactly as in the redundant constraint method and the number of constraint
modes equals the number of the total interface constraints of the system. A variation
on constraint interface component mode sets is proposed in this work to allow for

application in determinate and underdeterminate interfaces.

Another component mode set with excellent convergence properties is the inertia-
relief attachment mode set'®®, which is complemented to free-interface normal
modes. The inertia-relief attachment modes can be defined by applying successive
unit equilibrated force at the interface constraints. This equilibrated force consists of
an external applied force equilibrated by a rigid-body inertia force. These modes are
then modified to be orthogonal to the rigid body modes®'®. To make these modes
linearly independent to the kept free-interface normal modes, residual inertia relief
attachment modes are defined by modifying the inertia relief attachment modes to be

linear independent to kept free-interface normal modes ™.

The residual inertia-relief attachment mode set, along with any existing rigid-body
modes of the component, have been proved to be a statically complete mode set',
That is, the superposition of the modes in this set is sufficient to determine exactly
the ‘static’ response of the component subject to the interface forces. Since this static
mode set is statically complete, can be complemented with either free-interface or

fixed-interface normal modes.

A component mode set that does not use any static modes is the loaded-interface
normal mode set. The substructure is loaded with the equivalent mass and stiffness
contributions from the remaining components and the loaded-interface normal modes

are obtained by the solution of the loaded component eigenvalue problem”. Unlike
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the previous sets, the loaded-interface component mode set is not appropriate for
independent modelling, since the data needed for its derivation depends on data
obtained form the other components in the structure. For this reason its application
may become very involving for the modelling requirements of large chains of
components. A variation of the loaded interface component mode set has been

proposed and implemented in this work.

Several other component modes have been proposed in the literature of component-
modes synthesis®'®?! for improving convergence, but it is mainly the components
mode sets referred previously that have been employed with success in the

multibody dynamics area. 872036545

It is interesting to note that the component modes are also used in the controls

community'®? for component order reduction, as a first step, prior to reducing the

order of the component further considering the control strategy.®®
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II-1. Prologue
II-1-1. Background

The information regarding the component modes has been drawn from the area of
component-mode synthesis. This field of geometrically linear dynamics is concerned
with large-scale structures where the substructures are in general connected to each
other in multi-point interfaces. Therefore, the substructures in the area of component-
mode synthesis are in general statically indeterminate. On the other hand, in the area
of articulated multibody dynamics the components are in general connected in
single-point interfaces and may perform large spatial rotational displacement via
gimbal joints. In other cases particular articuration axes may be locked and the
component may be undergoing large planar angular motion relative to the adjacent
components. Other examples may involve small, geometrically linear spatial or
planar motion of the components, excited by the control system for either readjusting
the components to a line of sight or suppressing induced vibration. In most of its
operational time, the component may be completely locked relative to the adjacent
components. The components in the articulated multibody dynamics can be statically

indeterminate, determinate or underdeteterminate.

In this work, the physical coordinate constraint sets of the component (interface and
external) are redefined so that the component characterisation is generalised to
include the statically determinate and underdeterminate cases. Additional constraints
that belong to the set of internal physical coordinates are proposed for defining static
modes in the cases of statically determinate and underdeterminate components.
These additional constraints are imaginary since they do not correspond to any
physical interface constraints of the components. Several component mode sets are
defined and may be combinations of dynamic and static modes or dynamic modes
alone. The dynamic modes used in this work are normal modes of vibration.

Mathematical proofs to determine the size of the physical coordinate constraint sets
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in order to define the various static modes has also been provided where necessary.
The only assumption made in this part of the work is that adjacent components are
connected in single-point interfaces. This assumption, however, does not restrict the
generality of definitions of the physical coordinate constraint sets or the component

characterisation.
II-1-2. Physical Coordinate Sets

Several groups of physical coordinates, illustrated in Figure II-1, have been
redefined in order to generalise the definitions found in the component-mode

synthesis literature.

{B}: Set with b number of boundary constrains

{B} : Set with § number of nonredundant boundary constraints
{I}: Set with i number of internal physical coordinates

{S}: Set with s number of nonredundant interiace constraints
{R}: Set with r number of redundant interface constraints
{C}: Set of the total number c of interface constraints

{H}: Set with h number of imaginary constraints

{T}: Set of the total number t of physical coordinates
More specifically, we can define

I Boundary constraint set {B} contains the externally constrained physical
coordinates, i.e. constraints fixed in the inertial space. Nonredundant
boundary constraint set {8} contains the minimum number B of boundary

constraints that can restrict the rigid-body motion of a component.

ii. Constraint set {C} contains the total of interface constraints that a component

shares with the adjacent components.

iii. Nonredundant constraint set {S} contains the minimum number s of interface
constraints that can ‘remove’ any rigid-body degrees of freedom from a
component, and is a subset of {C}. The maximum number of interface

nonredundant constraints is 6.
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iv. Redundant constraint set {R} is the complement of {S} in {C}, i.e.

{R}+{S}={C}.

Bi+( k-1)

Bi+(k+1)

Figure II-1  Inboard component B;and appended components B, attached at
single-point interfaces / illustration of the physical coordinate sets

V. Imaginary constraint set {H} contains h number of constraints. Imaginary
constraints are a subset of the internal physical coordinates of the
component. {H} is not a subset of interface constraints {C} , thus these

constraints are imaginary.

Vi. The set {T} contains the total number of physical coordinates t of the

component, {T}={B}+{I}+{C}.
The nonredundant constraints {S} are a subset of interface constraints of the

component and do not reduce the rigid-body degrees of freedom of a component in

actual terms. These can only be reduced by the nonredundant boundary constraints
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{B}, i.e. the external to the component nonredundant constraints that are fixed in the
inertial space. This is the reason the word ‘remove’ in the definition of the
nonredundant internal constraints is in quotation marks. One ‘removes’ the rigid-body
degrees of freedom for the purpose of defining a statics problem that may furnish
static modes. For example, a component free of external constraints has 6 rigid-body
degrees of freedom, but by being connected to other bodies it may have 6

nonredundant interface constraints and therefore ‘no rigid-body degrees of freedom’.

As discussed, in the same sense that the term ‘nonredundant’ can be used to
describe internal constraints, it can also be used for external constraints, ie.
constraints fixed in the inertial space. The difference is that external nonredundant
constraints remove the actual degrees of freedom. The number of rigid-body degrees

of freedom n, of a body in space is given by

where B the number of nonredundant external boundary constraints imposed on the
body. The rest of the physical coordinate constraints in {B}, b-p, are considered
redundant, because they cannot restrict the actual rigid-body motion of the

component any further.
11-1-3. Component Characterisation

The component characterisation depends on the size of particular constraint sets
(interface and boundary), and will prove useful for defining and deriving dynamic and

static modes. The following component characterisations can be defined:

i. If s=nr and r>1 then the component is considered statically indeterminate.

This means that there are enough nonredundant interface constraints to
‘remove’ the rigid-body degrees of freedom of the component, and the rest of
the interface constraints, since they cannot ‘remove’ any further rigid-body
degrees of freedom are considered redundant. The definition s=n,, r=1 is

valid for any value of s in [0,6].

ii. If s=nr and r=0 then the component is considered statically determinate.
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There are just enough interface constraints to ‘remove’ the rigid-body
degrees of freedom of the component. Therefore, {S}={C} and {R} is an

empty set. The definition s=n,, r=0 is valid for any values of s in [1,6].

ii. If s<nr, regardless of the value of r, then the component is considered

statically underdeterminate.

There are not enough nonredundant interface constraints to ‘remove’ the
rigid-body degrees of freedom, but there may still be a number of redundant
interface constraints, which are not capable of ‘removing’ any more rigid-

body degrees of freedom, and therefore are considered redundant.

The three cases have been demonstrated with suitable examples. Figures 1I-2, II-3,
II-4 have been used to illustrate examples of statically determinate, indeterminate
and underdeterminate components respectively. In all cases the rigid-body degrees
of freedom n, are equal o 6, since no external boundaries are applied (b=0). The
axes of rotational constraints at the joints are illustrated where is needed. A collective
Table II-1 is presented to account for all cases. The calculation of the number s of

the nonredundant constraints has been performed by inspection.

@ Clamped Joint

Figure II-2 Statically determinate component
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Figure II-3 Statically indeterminate components

' o (a)
2
1
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Y
X
Z
10 ) e (c)
o) Universal Joint @ Revolute Joint

Figure [I-4  Statically underdeterminate component
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Example |Nonredundant Total Redundant Component
Interface
Case Interface Interface Characterisation
Constraints
Constraints* Constraints {R}
{C}
{s} (r=s-c)
(€=)¢,)

11I-2(a) s=6 c=1xc=6 r=0 Statically determinate
II1-3(a) S= c=2xcy=12 =6 Statically indeterminate
II1-3(b) 5=6 C=C1+C4=9 r=3 Statically indeterminate

s=6 c=3xc4=9 =3 Statically indeterminate
111-3(c) ¢ y

S= C=C4+Ca=7 r=1 Statically indeterminate
II1-3(d)

s=6 C=Cy+C4=8 r=2 Statically indeterminate
II1-3(e)
1I1-4(a) s=3 c=1xcs=3 r=0 Statically underdeterminate
III-4(b) §= c=3xC,=15 r=10 Statically underdeterminate

S= C=2XC4=6 r=1 Statically underdeterminate
III-4(c)

Clamped joint: number of constraints ¢y=6
Revolute joint: number of constraints c.=5
Universal joint: number of constraints c;=4

Spherical joint: number of constraints ¢,=3

Table II-1 Collective table for the component characterisation examples of Figure II-2, 1I-3, II-4

*External constraints {B}={0} for all cases =n,=6
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II - 2. Dynamic Mode Sets

Three sets of dynamic modes have been used in this work, namely the free-interface

normal mode set, fixed-interface normal mode set and loaded-interface normal mode

set.

A free-interface normal mode set can be obtained from an eigenvalue analysis of the
component with the total of the interface constraints of the component free, i.e. {C} is
null in this analysis. If B<6, the body has a number of rigid body modes, n=6-, and

these should be removed from the analysis.

Fixed-interface normal mode set can be obtained from an eigenvalue analysis with
the total of the interface and external constraints of the component fixed. If the
system is statically underdeterminate, i.e. there are not enough nonredundant
interface constraints to ‘remove’ the rigid-body degrees of freedom from the
eigenvalue analysis (s<nr), then n,-s ‘rigid-body modes’ should be removed from the

analysis (equation (11I-3)).

As for a free-interface mode set, the loaded-interface normal mode set proposed in
this work can be obtained from an eigenvalue analysis with all internal constraints of
the component B; free, {C}=0 for the analysis. The same remarks apply in this case
for the removal of ‘rigid-body modes’ as in the case of free-interface modes. In this
work, the loaded-interface normal modes are defined for a cluster formation structure
but can easily be generalised for a tree-configuration. Each interface node of a
component B; is loaded with the generalised inertia of the adjacent component. The
modelling assumption that components attach to each other at single-point interfaces
has been utilised. The rigid mass matrices, i.e. the generalised inertias, of the
appended components By, k=1,2,... are superimposed on the consistent mass
matrix of the component B; at the interface nodes. The rigid body mass matrix of the

appended component Bi,, where k is the K" appended component on component B;

is given by

i+k

Mg — M ’ m [BBiE)HkJ (11-4)
Sym‘; B'I i+k /Ji+k

1
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where m is the mass of the appended component Bi x

M is a diagonal matrix with m; =m

X
( P, *) is the skew-symmetric distance matrix of the interface node to
Bi -

the centre of mass of the appended component By, expressed
in the body frame of the component B;

5 L7 s the inertia of the appended component B, relative to the

interface node Ji, and expressed in the body frame of

component B;

If the nodal interface constraints are less than 6, i.e. the interface node allows
articulation, one needs to appropriately truncate the full form of the appended

component rigid mass matrix to allow for the rotational degrees of freedom.

II-3. Static Mode Sets

In the content of this work two sets of static modes have been defined, the redundant
constraint mode set and the constraint mode set. Either of these static mode sets

can be calculated in a single step using the multiple algebraic equation

Ky '@, -Ry, =0 (II-5)
where

K;EM is the txt finite element stiffness matrix of the component B.

P

s s the txn static mode matrix containing either the redundant constraint modes
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or constraint modes. n is the number of static modes derived in each set.

is the txn reaction force matrix on component B; resulting from the application

of the redundant constraint displacements or constraint displacements. n is

the number of static modes derived in each set.

I1-3-1. Redundant Constraint Mode Set

A redundant constraint mode set is always well defined for statically indeterminate
components, i.e. s=n, and r>1. By definition redundant constraint modes cannot be
obtained for statically determinate components, since {R}={0}. Later in this section, it
will be shown that they cannot be derived for the case of underdeterminate
components, even if {R} is not an empty set. The following definition applies in the

case of a statically indeterminate component'".

A redundant constraint mode set is obtained by applying a unit displacement to each
redundant interface constraint in the set {R} set in turn, while the rest of the interface
constraints in {C} remain fixed in space. Using the multiple equation expression (II-

5), the matrix of the redundant constraint modes is defined by

~
~
B
A~
>

4 (11-6)

bs 1 T™bb Bi br /Bj br /Bi

where

X. is the ixr matrix containing the displacements of the physical coordinates in {I}

Ir

for each redundant constraint mode.

I, s the rxr unit matrix corresponding the unit displacement imposed on each

redundant constraint in {R} in turn and the zero displacements imposed on the

remaining redundant constraints.
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is the sxr null matrix formed for the restriction that the nonredundant

constraints have zero displacement values imposed for each unit displacement

applied on the redundant constraints in turn.

is the bxr null matrix corresponding to the values of displacement at the

external boundary constraints.

is the ixr null matrix representing the reactions on the internal degrees of

freedom {I} due to application of unit displacement imposed at each redundant

constraint in turn.

is the rxr matrix containing the reactions on the redundant constraints {R} due

to application of unit dispiacement imposed at each redundant constraint in

turn.

is the sxr matrix containing the reactions on the nonredundant constraints {S}

due to application of unit displacement imposed at each redundant constraint

in turn.

is the bxr matrix containing the reactions on the boundary constraints {B} due

to application of unit displacement imposed at each redundant constraint in

turn.

The matrix equation (II-6) has been partitioned into the different sets of coordinates

participating to define the redundant constraint mode matrix. The coordinate sets

have been repositioned in a suitable form to facilitate the mathematical operations.

The solution of the muitiple algebraic equation (I1-6) gives the r number of redundant

constraint modes in the form

L (11-7)

Bi
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where

@ s the txr redundant constraint matrix containing r number of redundant

constraint modes of the component B;.

K.  maitrix represents the stiffness matrix of the component with all interface

constraints {C} and the total external constraints {B} fixed.

If s+Bp=6, then for any indeterminate case possible, K. matrix represents the

stiffness matrix of a component with no ‘rigid-body degrees of freedom’, n; =0

(equation (II-3)). A structural component with no rigid degrees of freedom has a

positive definite potential energy, therefore the stiffness matrix of the component is

positive definite. If the Kﬁ> 0 then the matrix is non-singular and the inverse always

exists, so does the solution of (I1-8).

For the proof to be complete it has to be shown that in the case of a statically
indeterminate system the sum of the nonredundant internal constraints and the

nonredundant boundary constraints is always equal to 6, i.e. f+s=6. ltis
n=6-fos+f=6+(s—n,) (11-8)

By definition n=s for a statically indeterminate system, therefore from (I1I-8) s+p=6

for any acceptable values of s, B.

In the case of a statically underdeterminate component the matrix K, is always

singular for any value of r, since always B+s<6. Using equation (II-8) and the
definition of the statically underdeterminate component, s<n, for any value of r, it can
readily be proved that B+s<6 in all cases. The stiffness matrix is singular, cannot be
inverted, so no redundant constraint modes can be derived, even in the case that

redundant interface constraints exist, i.e. {R}={0}.
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II-3-2. Constraint Mode Set

Constraint mode sets can generally be well defined for statically indeterminate
components, but there are exceptions as will be demonstrated in this section. For
statically determinate components constraint mode sets can be defined, but are not
flexible modes since they reduce to rigid-body modes, and therefore are not useful
for the purposes of this analysis. In the case of statically underdeterminate
components, constraint mode sets cannot be derived. By introducing additional
constraints, the imaginary constraints, it will be shown that constraint modes can be

redefined for any possible component characterisation.

A constraint mode set is obtained by applying a unit displacement to each interface
constraint in the set {C} in turn while the rest of the internal constraints in {C} remain
fixed in space'. Using the multiple equation expression (II-5), the matrix of the

constraint modes is defined as

K Kxc i Kib ic Oic
K, KCC K, || L. | =R, (11-9)
Kb1 Kbc 'Kbb Bi bc /B Rbc Bi

where

X. . s the ixc matrix containing the displacements of the physical coordinates in {I}

c

in each constraint mode derived.

I.. isthe cxc unit matrix corresponding the unit displacement imposed on each

interface constraint in {C} in turn and the zero displacements imposed on the

remaining constraints.

is the bxc null matrix corresponding to the values of the displacements at the

external boundary constraints in each constaint mode.

0. is the ixc null matrix representing the reactions at the internal degrees of

freedom {I} due to application of unit displacement imposed at each interface

constraint in turn.
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R _. is the cxc matrix containing the reactions at the interface constraints {C} due to

cc

application of unit displacement imposed at each interface constraint in turn.

R

w18 the bxc matrix containing the reactions on the boundary constraints {B} due

to application of unit displacement imposed at each interface constraint in turn.

The matrix equation (II-9) has been partitioned into the different sets of coordinates
participating to define the constraint mode matrix. The solution of the multiple

algebraic equation (1I-9) gives the ¢ number of constraint modes in the form

- Ki-i_lKic
OMEES I (II-10)

cc

be Bi
where

®3. isthetxc constraint mode matrix containing ¢ number of constraint modes for

the component B;.

K. represents the stiffness matrix of the component with all external and internal

1

interface constraints fixed

It was proven before that for the case of statically indeterminate components p+s=6
holds. Similarly for the constraint modes, K, is non-singular, so the solution of (II-9)
exists. Although, for statically indeterminate systems it has been proven that the
inverse of K. always exists, since the system has no ‘rigid-body degrees of

freedom’, thus a solution of (II-9) also exist, it may come as an unexpected fact that

rigid-body modes may be furnished in the solution (II-9) in particular cases.

To demonstrate this, it is helpful to return to examples of Figure 1I-3 and Table II-1. It
can be shown by inspection, and also proved mathematically, without solving

equation (II-9), that cases 3(b), 3(d), 3(e) which correspond to statically

44



Chapter II - Component Modes

indeterminate components will furnish one single rigid-body mode, along with the c-1
constraint modes. More specifically, in case 3(b) a unit displacement of the
nonredundant interface constraint 6, at node 2 will cause a rigid-body rotation around
axis X. Similarly, in case 3(d), 3(e) a unit displacement of the nonredundant interface
constraint 6, at node1 will cause a rigid-body rotation around axis X. It is obvious that
in order to proceed with the approximation of the linear deformation of the
component using the constraint mode set obtained, the rigid-body modes should be

removed from the analysis. However, a possibly useful constraint mode cannot be

derived.

Another interesting case emerges if the number of total constraints in {C} equals the
number of the nonredundant constraints in {S}, i.e. there are no redundant interface
constraints, {R}={0}, so the component is statically determinate. The multiple solution
equation (II-9) will furnish only rigid-body modes. Rigid-body modes are not of
interest since the aim is to obtain a number of constraint modes, in order to
approximate the deformation field of the component. Therefore constraint modes

cannot be obtained for a statically determinate component.

Furthermore, in the case of redundant constraint modes, constraint modes cannot be

derived in the case of a statically underdeterminate component.

in summary, constraint modes cannot be derived in the cases of statically
determinate and underdeterminate components. Also there are cases in the
derivation of the constraint mode set for a statically indeterminate component that
there may be 1 rotational rigid-body mode furnished along with the c-1 constraint
modes. In an attempt to define constraint modes for any component characterisation,
an additional set of constrains {H}, subset of the internal physical coordinates, is
introduced in the system. In other words, the imaginary constraints are not a subset

of the inteface constraint set {C}.

One may redefine the constraint mode set by imposing a unit displacement at each
internal constraint in {C} in turn, while keeping the rest of the interface constraints in
{C} and the imaginary constraints in {H} zero. The multiple algebraic equation can be

written as
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Kci ;ch ;Kch chb Icc _ Rcc

e = % (11-11)
Ko Ko i K 1Ky ] O Ry

Kb' bec ;Kbh iKbb Bi Obc Bi Rbc Bi

where

Xic is the ixc mairix containing the displacements of the physical coordinates in {l}
for each constraint mode.

I.. s the cxc unit matrix corresponding the unit displacement imposed on each
interface constraint in {C} in turn and the zero displacements imposed on the
remaining interface constraints.

0,. is the hxc null matrix formed with the restriction that the imaginary constraints
have zero displacement values imposed for each unit displacement applied on
the interface constraints {C} in turn.

0,. s the bxc null matrix corresponding to the values of displacement at the
external boundary constraints.

0,. s the ixc null matrix representing the reactions on the internal degrees of
freedom {I} due to application of unit displacement imposed at each interface
constraint in turn.

R, is the cxc matrix containing the reactions on the interface constraints {C} due to
application of unit displacement imposed at each interface constraint in turn.

RhC is the hxc matrix containing the reactions on the imaginary constraints {H} due
to application of unit displacement imposed at each interface constraint in turn.

R,. is the bxc matrix containing the reactions on the boundary constraints {B} due

to application of unit displacement imposed at each interface constraint in

turn.

46



Chapter II - Component Modes

The imaginary constraints need to contain at least a nonredundant constraint set in
order for h+B326 to hold and the component to have no ‘rigid-body degrees of
freedom’ (n;). It can be proved that if the aforementioned hold, then for any
component statically indeterminate, determinate or underdeterminate there will be a
solution of equation (II-11) and also no rigid-body modes will be furnished in the
analysis. In practice though it is difficult to determine for every component the value
or position of the {H} set in order for {H} to contain a nonredundant imaginary
constraint set. For this reason one may define the imaginary constraint set for all
cases as an imaginary fixed point within the component. It is important to note that
the size of the {H} set does not affect the size of the constraint mode set, which is

fixed to ¢, i.e. equal to the number of the interface constraints.

By repositioning the partitions, the solution of equation (II-11) is given by

- Kx_llKic
(I)’; = e I «©o (11-12)
Ohc
Obc Bi

A collective Table II-2 is presented with the component characterisation and the
solution of the dynamics and statics problem for defining the various dynamic and

static mode sets.
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Component Free-Interface or | Fixed-Interface Redundant Constraint

Characterisation Loaded- Mode Set Constraint Mode Set
Interface Mode Mode Set +

Set Imaginary

Constraints

Eigenvalue Analysis Eigenvalue Multiple Algebraic Multiple Algebraic
Analysis Solution Solution
Nk Ny

Statically normal modes normal modes r c

Indeterminate

rigid-body modes

rigid-body modes

static modes

static modes

Nk Nk
Statically normal modes normal modes No Definition c (=s) static
Determinate + + {R}=0 modes
n =6-p n, =0
rigid-body modes rigid-body modes
Nk N
Statically normal modes normal modes No Solution c
Underdeterminate + + K, singular static modes
n =6-f n=6-f-s

rigid-body modes

rigid-body modes

Table II-2. Component characterisation and size of formulated dynamic and static mode sets.
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II-4. Component Mode Sets

A component mode set, may be a combination of a finite number of dynamic modes

complemented by a number of static modes or can be a dynamic mode set alone.

Various component mode sets are derived using the dynamic and static modes

defined, and are presented in Table II-3.

Component Mode Set

Dynamic Modes

Static Modes

Free-Iinterface Component

Mode Set

ny free-interface normal

modes

Fixed-Interface Component

Mode Set

n, fixed-interface normal

modes

Loaded-Interface

Component Mode Set

n, loaded-interface normal

modes

Redundant Constraint

Component Mode Set

n, fixed-interface normal

modes

r

redundant constraint modes

Constraint Component

Mode Set

n, fixed-interface normal

modes

C

constraint modes

Table II-3 Definition of component mode sets

it is clear that the redundant constraint component mode sets cannot be defined or

furnished for statically determinate or underdeterminate components. Constraint

component mode sets can always be defined with the addition of imaginary

constraints. For all component mode sets the rigid-body modes have been removed

from the eigenvalue solution. Details have been presented in Table I1-2.
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II -5. Conclusions

The loaded-interface component mode set has the following disadvantages:

Component dependence: The loaded-interface component mode set
defined for one component is dependent from the data of the appended
components.

It may be laborious to be applied to a chain of components.

It is not suitable for geometrically nonlinear dynamics, since for large
rotation analysis the rotary inertia of the appended component constantly
changes relative to the inboard component. lts application would mean
derivation of loaded-interface mode sets at each time step of the
analysis. This would surely increase the cost of the analysis by a
considerable amount.

Even in the linear cases of appendage reorientation exercises the
analyst would have to derive the loaded-interface mode set at each

configuration of interest.

The redundant component mode set has the following disadvantages:

Separation between the nonredundant and the redundant constraints is
essential and this may prove an involving procedure for a large
multibody structure.

Static modes are not obtained for the whole internal constraint set {C},
which may be fine for a highly redundant interface, but for a component
with a small set of internal constraints may prove inappropriate. Even if
an interface has a moderate number of constraints the decision on which
redundant constraints static modes need to be defined for, is difficult to
be decided a priori.

The redundant constraint component mode set reduces to the fixed-
interface component mode set for a statically determinate and
underdeterminate component, since redundant constraint modes cannot

be obtained in either case.
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Using constraint component mode sets most of the disadvantages of the
redundant constraint component mode sets are circumvented. Separation of
the internal constraints to nonredundant and redundant is avoided and all
constraints are treated alike. Static modes can be defined for the whole
interface. By appropriately selecting a set of imaginary constraints, the
constraint component mode set can be defined for statically determinate and
underdeterminate components. At the same time no ‘rigid-body modes’ are
furnished in particular cases of statically indeterminate components. If
imaginary constraints are defined as an imaginary fixed point within the
component, all applications are treated alike and no special consideration is
needed for the selection of imaginary constraints.. For well defined statically
indeterminate components imaginary constraints need not to be used. But
even if they are used, the number of constraint modes does not increase,

thus computational cost is not affected.
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Nonlinear Recursive
Component Kinematics
III - 1. Prologue

In nonlinear kinematics the overall motion of each component can be perceived as a
rigid body motion relative to which elastic deformation can be observed. In this
sense, one can assign to each component a suitably positioned floating reference
frame that moves with the rigid part of the motion and relative to which the linear
elastic deformation can be measured. Therefore, the overall motion of each
component can be described in terms of the motion of the floating reference frame,

and the deformation relative to it.

A floating reference frame is an orthogonal set of axes assigned to each component
and follows the imaginary rigid-body part of the motion of the component. It is
positioned at a point and orientation of preference within the imaginary rigid-body
and therefore the position and the orientation of the rigid-body relative to an inertial
or an arbitrary reference frame can be specified. At the same time an observer
travelling with the floating reference frame can perceive the motion of the flexible
component just as a time-varying deformation. In this sense, deformation can be
measured and described relative to the floating frame in exactly the same fashion as
a time-varying deformation of a component restrained in the inertial space would

have been measured and described by an inertial observer.

The small linear elastic deformation of the components can be approximated using
spatial discretisation techniques. The recursive Lagrangian formulation acquires a
simple form, and includes in the set of (independent) coordinates the subset of the
finite number of generalised coordinates associated with the elastic deformation of
each component. As discussed in detail in the section 'Elastic Domain Modelling’
within the introduction, if a component is of simple geometry, it can be spatially

discretised using the continuous version of the assumed-modes method. For
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complex geometry, the component can be spatially discretised using the finite
element method. The finite element model of the component is subsequently
reduced using the discrete version of the assumed-modes method. The
transformation involves a finite set of generating modes (functions for the continuous
version, vectors for the discrete version), referred to as component mode sets, which
may be a combination of a number of dynamic modes (functions or vectors)

complemented by static modes (functions or vectors).

In the recursive formulation, the time-varying configuration of each component is
specified by the use of the floating reference frame where the rigid-part of the motion
is described by the position and orientation of the floating frame relative to a
reference frame within the inboard component, and the linear deformation using
component modes measured relative to the floating frame. By truncating the number

of dynamic modes, system order reduction can be performed at the component level.

With the use of the floating reference frame the nonlinear kinematical expressions for
a single component have been derived. As discussed, in recursive formulations the
orientation of the floating reference frame of a component is specified relative to a
local reference frame positioned within the preceding component and located at the
interface attachment between the adjacent components. To ensure that the various
components act as part of the whole structure, a suitable kinematical procedure,
common in all methods, has been proposed to accommodate the interface conditions
between each component and the preceding one. The component absolute
kinematical expressions are written directly relative to the suitably positioned
reference frame within the preceding component. The exact expressions of the
outboard component kinematics are subject to the constraints at the interface with

the inboard component.

More specifically, in Appendix-A the kinematics of an arbitrary component connected
to the preceding component via a non-translating single-point interface have been
developed. The particular kinematical procedure followed in this work is only possible
for multibody systems where no closed-loops and multi-joint interfaces are formed
between the articulated components. Structures in space are typical examples of
open-loop multibody systems with operational components joint at single-point
interfaces. Initially the interface constraints between the two adjacent components
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are considered as either rotationally free (spatially articulating component) or fixed
(locked component). The resulting mathematical expressions are general enough to
employ any component mode set without violating the interface conditions. This is
accomplished with the introduction of ‘correction terms’ into the component recursive
kinematical expressions. The physical significance of these terms has been analysed
by the use of rotating observers positioned appropriately in the adjacent components.
From this nonlinear analysis a great deal of insight is profited into the kinematics of
the components in a multibody system, and suitable geometric interface conditions
between adjacent bodies have been defined. Since any interface constraints can be
considered a combination of locked (fixed) and articulating (free) axes, the
component interface kinematics can be generalised for any possible joint
configuration. The final expressions for the kinematics of a component connected to

the inboard one have been presented for arbitrary interface constraints.

The absolute kinematical expressions of the outboard component involve the
absolute kinematical expressions of the local reference frame positioned at the
interface within the inboard component and relative kinematical expressions of the
outboard component (relative) to the local inboard reference frame. These relative
kinematical expressions are functions of the independent kinematical parameters of
the outboard component. Utilising the kinematical relationship, established for any
two adjacent bodies, repeatedly for all components in a multibody chain, the absolute
kinematical expressions characterising the motion of any component B; can be
expressed in terms of the independent kinematical parameters of all components

preceding and including B; in the chain.

Figure III-1 demonstrates an open-loop tree-configuration multibody system and the

notation of joints used in this chapter.
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Figure III-1  Open-loop tree-configuration multibody system and joint notation
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III-2. Nonlinear Component Kinematics

IIl-2-1. Floating Reference Frame

b

Figure III-2. General displacement component kinematics
(a) Rigid-body motion of component B,
(b) Combined rigid-body motion and deformation of component B,

(c) Component B,_, arbitrarily displaced and deformed
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Figure III-2 is used for explaining and illustrating the kinematics of a general
displacement of an arbitrary point Q within an arbitrarily moving (rotating and
translating) linear elastic body B;. Figure III-2(a) shows the body after rigid-body
displacement and the attached body-frame B; {floating reference frame} at the point
of origin J;. Figure III-2(b) shows the final position of the body in the rigidly displaced
and linearly deformed state. The arbitrary point Q has undergone a vector
displacement u due to the deformation and is depicted as Q. A local observer
positioned at the rotating and translating floating reference frame B; can comprehend
the final position of the body only as the deformed state of the body. Figure III-2(c)
shows the preceding (inboard) body By at its final position. Bodies B; and By at their
final positions are joint together at the points J;" and J;', where J;* is the position of J;
within component B; after the deformation. It is obvious that the intermediate position
2(a) of the body B; is fictitious and its purpose is to view the body’s motion, at any
instant, as a rigid-body motion relative to which an elastic domain deformation can be
measured. The rigid-body part of the motion can be perceived as an instantaneous

equilibrium position about which the elastic domain vibrates.

111-2-2. Nonlinear Kinematics of a Single Flexible Component

Assigning an inertial frame 1 (global frame), the absolute velocity of the point Q can

be written as

IViQ =fiQ = fiﬁ +pi +ﬁi (11-1)

where the symbols are obvious from Figure III-2 and the overdot implies
differentiation relative to the inertial frame. The rate of change of the position of point
Q, moving with the rigid-body, relative to an absolute (inertial) observer can be
expressed® as

+

pi =0, +I(DiBiXpi (I11- 2)
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where the overcross refers to time differentiation relative to the body frame B; , i.e.
the rate of change of the vector position of Q as observed from the local frame B. It

is apparent that, since Q is a point of the rigid-body configuration,

p,=0 (ITI-3)

Similarly, one can express the absolute rate of change of the vector deformation u as

. + .
u,=u,+ o Xu, (III- 4)

where ' @;" is the angular velocity of body frame B; (floating reference frame)

relative to the inertial frame.

Symbolising the absolute velocity of the origin J; of the local frame as IViJi it is
Yvit=r” (1115

Substituting (I11-2), (I1I-3), (II-4), (III-5) into (II-1) the absolute velocity of Q can

be written as

’ . ; + .
it =i M xp, +u, + o <, (II1-6)

The vector equation (III-6) expresses the absolute linear velocity of an arbitrary point
in a moving flexible component, in terms of the absolute angular and linear velocity of

the origin of the component body reference frame B; (Figure I11-2).

The vector equation (III-6) can also be derived in the following alternative way

IViQ :-IViQ+IViQ/Q (I11-7)
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where the last term in (II-7) is the velocity of point Q relative to Q, due to the

deformation, as observed by an inertial observer. It can be directly verified that

fvie=ly)” +I(x)iBi><pi (I11-8)

s+ .
'v; ¥ =u+ i X, (111-9)

By substitution of (II1-8),(III-9) into (III-7) equation (III-6) can be furnished.

Utilising the addition theorem for angular velocities®’, the absolute angular velocity of

frame travelling with the point Q can be immediately recognised as

, ) i , o+
‘ot =+ o = T+, (ITI-10)

0. s rate of change of the angular displacement due to component deformation at

an arbitrary point Q, measured at the floating reference frame of component B.

The vector equation (III-10) expresses the absolute angular velocity of a frame
travelling with an arbitrary point in a disjoint and arbitrarily moving flexible
component, in terms of the absolute angular velocity of the origin of the component

body reference frame B; (Figure III- 2).

The kinematical equations (III-6), (III-10) depend explicitly on the motion of the
preceding (inboard) body and the interface conditions. Equations (III-6), (III-10) are
the most general nonlinear vector kinematical expressions for a single flexible
component. In other mathematical formalisms®* equations (III-6), (III-10) may have

different, but equivalent, expressions.
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With the intention of keeping only zeroth-order nonlinear terms, one may reduce the

kinematical expressions by placing

' xu.=0 (11-11)

Substituting (III-11) into (III-6) the absolute velocity of Q is given by the following
vector equation

+

vi? ='vi" + " xp, +u, (I-12)

1

The vector equation (III-12) expresses the absolute linear velocity of an arbitrary
point in a disjoint and arbitrarily moving non-spinning flexible component, in terms of
the absolute angular and linear velocity of the origin of the component body

reference frame B,.

IIl-2-3. Nonlinear Kinematics of a Flexible Component in a

Multibody Chain

For the purposes of this research, where no closed loops and multi-joint interfaces
are intended in the analysis, a suitable kinematical procedure can be derived to
accommodate the interface conditions and the kinematics of the preceding body
explicitly into equations (III-10), (III-12). In this way, the influence of the motion of
the inboard body B;.; can be directly accounted for in the motion of the current body

Bi in the analysis.
Using equations (III-10), (I1I-12), the derivation of the joint component kinematics is

performed in Appendix-A, and is given by equations (A-24) and (A-25), repeated in
this chapter as (III-14) and (II1-13) respectively.
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S 5N” rel + * +
Vi + @i’ XP, i Xp,tu,— || u, | +| 6, | Xp, (II1-13)
- ~ 7 -7 b T s -

I e el | py
Wi+~ +0; +0,— 6, (I1-14)
- - - - Ji

is the absolute linear velocity at the interface point J, within the inboard

component B;.;.

is the absolute angular velocity of a frame travelling with the interface

point J; within the inboard component B;;.

is the angular velocity of the body reference frame of an articulating

component B; , as observed from the reference frame J; , travelling with

the interface point J 1" within the inboard component B;...

is the rate of the angular displacement due to component deformation at

the interface point J;’ of the component B; , as measured by an observer

travelling with the body reference frame of the component B;.

is the rate of the linear displacement due to deformation at the interface

point J f of the component B; , as measured by an observer travelling

with the body reference frame of the component B;.
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Equations (III-13), (III-14) give the absolute linear and angular velocity of a frame
travelling with an arbitrary point Q for a flexible component B; part of a multibody
chain, in terms of the absolute linear and angular velocity at the interface within the
inboard component B,y for any possible non-translating joint configuration. In other
words, the kinematics of a flexible component B; joint to the preceding one, can be
described with the equations (III-13), (III-14) for any joint configuration that does not
allow relative translation of the adjacent components at their interface. Such an non-
translating interface may represent a spherical, universal, revolute, fixed or

torsionally elastic joint.

The formulation of the interface kinematics allows the incorporation into the
equations (III-13), (III-14) of any possible component mode set without violating the

interface compatibility between adjacent components. This is achieved by the

+ +
introduction of the ‘correction terms’ [GiJ , (uiJ in the equations (III-13), (III-
B b

14). Details of the derivation of the equations (III-13), (III-14) and the physical

significance of the ‘correction terms’ is provided in appendix A.

Expressing the vector equations (III-13), (III-14) in appropriately selected reference

frames, the following matrix equations (III-15), (I1I-16) are furnished respectively

1. qQ 1 b x 1 i x 1 : ' x '
vi- =C, Vit — pi C, Ot — Pi o+ u, u, | + Pi 0,
Bi - Bi-1 - Bi - Bi-1 - Bi - Bi- Bi - Bi-' ). mi- (BT Jy

(111-15)

i Q= C, "o + 0+ 9!—( 91) (111-16)
i- Bi - Bi .
Ii

Bi ~ Bi-1 — Bi

The left subscript on the above symbols indicates the reference frame where the

associated vector quantities have been expressed.
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The C; matrix is in general a time-varying rotation matrix, which, with the assumption
that the deformation of the component is linear, specifies at any instant the
orientation of the body reference frame of the outboard component B; relative to the

body reference frame of the inboard component B.;. The rotation matrix C; can

generally be written as

nom rot
C,=Cr C™(1)
where

cr is a rotation matrix specifying the nominal orientation of the component B;

relative to the inboard component B,.4, i.e. at t=0.

Ci"’t (t) is atime-varying rotation matrix specifying at any instant the orientation of

the body reference frame B; relative to its nominal position, for t=0.

Details for parametric descriptions of a time-varying matrix are provided in Appendix-

B.

The linear and angular rate of displacement of a frame travelling with point Q, due to
the linear deformation of the component B; , and as measured by a observer

travelling with the body reference frame B; , can be expressed in the body reference

frame B, as

Lui=Undy (I1-17)
Bi — —

where

Ufi isa 3x nf matrix containing the linear displacement of an arbitrary point Q
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due to small linear elastic deformation of the component B, and nf the

number of flexible component modes retained in the analysis for
approximating the linear deformation of the component B,.

isa 3x nf matrix containing the angular displacement of a frame travelling

with an arbitrary point Q due to small linear elastic deformation of the

component B;.

Qs; nif X1 vector containing the rates of the generalised coordinates associated to

the flexible component modes.

The forms (I1I-17), (III-18) are presented in matrix form, for both discrete and
continuous component modelling, since it is convenient for computational

implementation.

By applying equations (III-15) and (III-186), along with (IlI-17), (III-18), repeatedly
for all components in a multibody chain, the absolute angular and linear velocities of
an arbitrary point on any component B; can be expressed in terms of the independent
kinematical parameters that specify the motion of the components preceding and
including B; in the chain. In this way the motion of any ilexible articulated component

in an open-loop multibody system can be coupled to the motion of all other

components in the system.

Kinematical equations (III-15), (III-18), along with expressions (I1I-17), (III-18),
regarding the linear deformation of a component B;, can be used in order to develop
various methods for describing the dynamical behaviour of multibody structures in
space. Although this work is aimed in the development of linear methods, the
kinematical descriptions up to this point in the analysis are general enough to
accommodate geometrical nonlinearities and can treat any open-loop articulated
multibody structure in space. Simplification of the kinematical equations for linear

system dynamics modelling will be introduced as needed latter in the analysis.
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Methods of Multibody
I " Dynamics Modelling
IV-1. Prologue

The vast capabilities and the limited restrictions of the recursive Lagrangian
methodology allow the modelling of a large number of structural systems in space,
involving either geometrically nonlinear or linear dynamical analysis. In this chapter,
the nonlinear analysis has to be adapted for developing methods suitable for the
linear dynamics modelling for the Category II missions in space.

More specifically, having obtained nonlinear kinematical expressions for a
component as part of a multibody system, the aim of this chapter is to linearise them
in order to obtain expressions for the formulation of linear system dynamics. For this
purpose, in Appendix-B, the theoretical background of the large arbitrary angular
displacement and nonlinear rotational kinematics has been reviewed and the distinct
mechanisms that introduce geometrical nonlinearity into the multibody system
dynamics have been thoroughly examined. In this chapter transition from the
nonlinear to linear kinematical expressions for a component as part of a multibody
chain has been performed using symbolic formulations. The nonlinear kinematical
expressions of a component B; have been written as symboiic functions of all the
independent kinematical parameters, in quasicoordinate form, that describe the
motion of all components preceding and including the component B; in a multibody
chain. Subsequently, the nonlinear kinematical expressions of the component can be
written as symbolic functions of independent generalised coordinates (in the
Lagrangian content). This is accomplished by importing in the nonlinear kinematical
expressions of quasicoordinate form the mathematical expressions of the
mechanisms that introduce the geometrical nonlinearity in the multibody system.
These mathematical expressions are nonlinear functions of the angular displacement
parametric set. By eliminating the mathematical nonlinearities, the linear kinematical
expressions of the component B; can be formed as symbolic functions of all the
independent generalised coordinates. Dinstinct linear kinematical expressions have
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been accomplished and formulated using either hybrid or generalised coordinate

sets.

At this stage the linear methods can be readily obtained. All three methods
developed can ftreat the linear dynamics of any open-loop tree-configuration
multibody structure in space with single-point articulated rigid or flexible components.
The first method uses a hybrid set of coordinates where for each component the
rigid-body part of the motion is described by physical displacement coordinates and
the linear elastic deformation by generalised coordinates. This method is akin to
nonlinear dynamics modelling. In the second method, the hybrid set is substituted by
a generalised coordinate set, since the rigid-body motion of each component has
been described using rigid-body modes, modelling allowed only with the assumption
of smali rotational displacement. In both methods the structural system can be
composed of either continuous or discrete components. In the third method all
components are necessarily considered discrete. The consistent mass matrix of each
component in the structure appears explicitly in the equations of motion of the
multibody system. The third method also utilises a generalised coordinate set.

The kinetic energy of each component is expressed in terms of all the independent
generalised coordinates that describe, at any instance, the configuration of the
preceding multibody chain of components. The elastic potential energy expression
can readily be derived using the expressions approximating the linear elastic
deformation of the component. Dissipation energy can be included at substructural

level.

A unified coordinate set formalism has been defined to account for both the hybrid
and generalised coordinate sets. Using the unified coordinate set, the multibody
system kinetic, potential and dissipative energy expressions can be presented in a
uniform form for all methods as well as for discrete or continuous components.

In the context of this chapter and for reasons of brevity, a discrete component (or
elastic domain) will be considered any component (or elastic domain) that has been
spatially discretised using the finite element method. On the other hand, a continuous
component (or elastic domain) has been spatially discretised using the continuous
version of the assumed-modes method.
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IV-2. Transition from Nonlinear to Linear Kinematical
Expressions

The kinematical expressions derived in chapter III and appendix-A are considered
nonlinear, since no assumption of small angular displacement has been employed.
For the purpose of presenting methods for linear system dynamics, in this section the
transition from nonlinear kinematical expressions to linear expressions has been

formulated symboilically, and the coordinate sets utilised in each method have been

defined.

IV-2-1. Symbolic Nonlinear Parametric Velocity Expressions for a

Component Joint in a Multibody Chain

The absolute linear and angular velocity of a frame travelling with an arbitrary point
on a component B; in a chain of components can be written as a symbolic function of
all the kinematical parameters that define the motion of all components in the chain,
preceding and including B;. For facilitating the symbolic presentation, the vector
velocity of the component B; is expressed at an inertial reference frame, unlike in the
equations (ITI-15), (III-16) where it has been expressed in the components’ body

reference frame.

For an open-loop single-point interface multibody system with non-translating joints,

the following expressions can be obtained

-

1

IV1Q= fC/d { Clrot 5 IVIO, :(’310’ qfl} ’{ C:ﬁ ) (Drie—lk s qf(i—k)}
- - z i~k - z
1 i-1
i3[2,m]and k3[0,i-2]  av-1)

1 .Q __ .c/d rot I .0 ot rel
mi _ g { Cl Py l(i)l 9 qfl } P { Cl—k 9 wi—k . qf(l—k)} Py
- 1 i-1

i-k — -

i3[2,m]andk 3[0,i-2] @av-2)
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are symbolic functions in the discrete {d) or continuous (¢) domain.

symbolises a set of n subsets of kinematical parameters.

is the absolute linear velocity of the reference frame at point O,

which is the origin of the body reference frame of the carrier
component By, and is expressed at the inertial frame.

is the absolute angular velocity of the reference frame at point O, and
is expressed at the inertial frame.

is the vector n} X1 of the rates of the generalised coordinates,

associated with the n} number of the component modes retained in
the analysis for the carrier component B,.

is a generic time-varying rotation matrix, that specifies at any instant
the orientation of the carrier platform relative to its nominal orientation
for 10.

is the angular velocity of the reference body frame of an articulating

component By relative to the interface reference frame of the inboard
component Bi..; and is expressed at the local reference frame Biy.

is the vector n?"k) X1 of the generalised coordinate rates, associated

with the nf_k) number of the component modes retained in the analysis

for the component B.
is a generic time-varying rotation matrix, that specifies at any instant

the orientation of the component B, body reference frame relative to

its nominal orientation for t=0.
is the total number of components in the multibody chain, with the first
being the carrier platiorm, which in general is the natural choice.
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The symbolic expressions (IV-1), (IV-2) relate the absolute linear and angular
velocity of a frame travelling with an arbitrary point Q in a flexible component B,
where B; can be any component in a chain of m number of components, to the
kinematical parameters that can describe the motion of all components in the chain
preceding and including component B, For each component, the associated
kinematical parametric set can be considered the generalised coordinate set of the
component, in the general Lagrangian sense. In fact, because of the explicit
appearance of angular velocity expressions in (IV-1), (IV-2) the parametric set of
each component is a guasicoordinate set. Angular velocity as such is not, in general,
a quantity that can be directly integrated for obtaining angular displacements

expressions, since angular displacements are not vector guantities.

The rotation matrices that appear in the expressions (IV-1), (IV-2) are time-varying
quantities since they are functions of the parametric description of the angular
displacements, and therefore are included in the symbolic parametric expressions.
The purpose of the rotation matrices is to express vector or dyadic quantities from

one reference frame to another.

It is obvious that if a particular component By, is not articulating to the preceding one
in any direction, the kinematical parameters in the subset m will be truncated
accordingly. It can be also be observed from equation (IV-1) that it is only the
parameter set corresponding to the carrier platform that contains linear velocity
parameters. This is so since it has been assumed that the components are
connected to each other via non-translating joints. If the platform carrier is assumed
docked in a much larger orbiting structure, then the rigid-body motion parameters

should be truncated from (IV-1), (IV-2) accordingly.

The symbolic expressions (IV-1) and (IV-2) are nonlinear in the angular
displacement / orientation parametric sets that implicitly enter the (IV-1), (IV-2). As
analysed in Appendix-B, for large arbitrary rotation, the angular velocity and the time-
varying rotation matrices are in general nonlinear in the angular displacement

parametric set. More specifically, the following expression is obtained for the angular
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velocity using the Euler angle parametric set (which is a minimal parametric set and

can be used along with the general methodology of this work)

i-k ik —

W, = Ei-k[%%(bg) 0, , (IV-3)

where

E,_, is an Euler angle matrix, formed for a particular body sequence of principal
rotations for the component Bi..
(I)p the orientation angles, i.e. the angular parametric set, for each sequence,

p=1,2,3

(I)i_k the rate of change of the orientation angles for component B
i-k —

The time-varying Euler angle rotation matrix is given by

i~k

o= [ c.(0,) ¢, (6) ¢, ( 05) j (1v-4)

which is valid for any sequence r,5,2=1,2,3 as long as r#s, s#z, i.e. for independent
principal axis sequential description. The matrices in the parentheses are time-
varying direction cosine matrices corresponding to each principal rotation in the

sequence pattern selected.

Substituting symbolically the angular velocity expression (IV-3) and the orientation

angles rotation matrix expression (IV-4) into (IV-1) and (IV-2), the following forms

are obtained

i\_/iQ = gud {Clrm((bj ,I\_’1O,E1(¢}1¢10,q“} ,{Cﬁ(((b) =Ei~k(¢}_ k(l.)ilk’qf(i—k)}
h TP T T - T i-1

is[2,m]and k3[0,i-2] @v-5)
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i(piQ'z %c/d {Clrot(?) ,El((?) ,l(i)lo’ élfl} ,{Cﬁ{?} ,Ei_k(q)) ’~_k(?iiekl

i3[2,m]and k3[0,i-2] @v-6)

Expressions (IV-5),(IV-6) seem to be different from (IV-1),(IV-2) only in the explicit
appearance of the Euler angle matrices E(¢), and in the substitution of the generic
rotation matrices to the specific Euler angle rotation matrices C(¢). In fact, by
expressing the angular velocity as a nonlinear function of the Euler angle parametric
set ¢ , the symbolic forms (IV-5),(IV-6) are expressed in terms of the independent
generalised coordinates of the system. The sequencing of rotations, which is directly
employed in the Euler angle matrix form (IV-3), offers enough information regarding
the relationship of the angular velocity and the angular displacement parametric set
0. The parametric set ¢ and the rate of ¢ can be considered generalised coordinates
of the system. Therefore, from the quasicoordinate form of symbolic expressions
(Iv-1),(IV-2), transition io generalised coordinate form of (IV-5), (IV-6) has been
accomplished. More specifically, the generalised coordinate set ¢ and its rates is
considered a physical coordinate set, since it is related to particular reference frames
positioned at specific points on the component. In this way the angular displacement
parametric set ¢ is separated in description from the generalised coordinate sets,

which in the context of this work are associated to the rigid-body and component

modes.

Both the Euler angle matrix and the time-varying Euler angle rotation matrix (IV-3),
(IV-4) are in general nonlinear in the orientation angles parameter set. It is obvious
that in order to obtain linear expressions in (IV-5), (IV-6) the nonlinear dependence

of these matrices to the parametric sets should be eliminated. For a chain of
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components the only possible way to derive linear expressions is under the
assumption of small angular displacement. In that case both the Euler angle matrix

and Euler rotation matrices become unity matrices (Appendix-B, Table B-1).

IV-2-2. Symbolic Linear Parametric Velocity Expressions for a

Component Part of a Multibody Chain

IV-2-2-1. Method I

With the assumption of small angular displacement, the Euler angle and Euler angle
rotation matrices become unity matrices for all components in the system, and the

expressions (IV-5) and (IV-6) result in the following linear form

I Q‘_ c/d 0 1,0 ) - rel :
IYi ‘t: {1{1 a0, qﬂ} a{ 0.5 qf(i—k)} ’
- - ik - - 4
1 i-1

i3[2,m]and k3[0,i-2] @v-7)

v~}

1 Qy_ c/d 1, 0 ) . rel i
I(i)i = {lq)l ) qf]} ’{ Oy qf(i—k)} )
- - Jp Uik - i-1

i3[2,m]and k3[0,i-2] (V-8

It is obvious from (IV-7) and (IV-8) that the coordinate set for the method I is a
hybrid coordinate set, consisting of the physical coordinate set and the generalised

coordinate set for each component preceding and including component B;

It has to be mentioned, that in the case of small rotational displacement, the

sequencing is irrelevant to the orientation of the body. In this respect the attitude
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angle rates @ do not have to be assigned with a particular sequencing and their

interpretation is simplified.

I1V-2-2-2. Methods I1, 111

In methods II, III the linearisation of equations (IV-5),(IV-6) is implemented in two
steps. The first step has already been described and essentially is that of method 1.
Moreover, for methods II, III the physical coordinate set of each component is
transformed to an equal size generalised coordinate set multiplied by the rigid-body
modes of each component. Rigid-body modes are vector quantities in the sense that
the cumulative rule of addition is valid in their case. Therefore, rigid-body modes

description of rigid body motion is only permitted for small angular displacements.

Equations (IV-7) and (IV-8) obtain the following forms with the use of rigid-body

modes

I Q c/d : ' : i
IYi = f_‘ { q;:> q“} ,{ qr(i_k), qf(i—k)}
- - 1 - B i-1

i3[2,m] and k 3[0,i-2] (IV-9)

) c/d : ) : i
I(Pi = % { q..» qfl} ’{ 9 (-x) qf(i—k)}
- - 1 - - i-1

i3[2,m] and k 3[0,i-2] (IV-10)

where the additional symbols represent

q,, is a n: X1 vector containing the generalised coordinate rates associated

with the ni rigid-body modes of the main component, the carrier platform.
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dQ.4x) 82 ni‘k %1 vector containing the generalised coordinate rates associated

with the ni"k rigid-body modes of the component B;

Method III is only possible in the discrete elastic domain, therefore the symbolic

. /d . d
function £°'° has only meaning as .

IV-3. Unified Coordinate Set Formalism

As detailed previously, method I utilises a hybrid coordinate set and methods II, IIl a
generalised coordinate set. For facilitating the expressions of energy functions the

coordinate set of a component B; can be written for all methods in the following

unified form
}_(ri
q.= (Iv-11)
- 9
where
X, is a nir %1 column matrix containing the coordinates associated with the

rigid-body motion of the component Bi ,and nir equals the number of
rigid-body degrees of freedom of the component.

q;; isa nif X1 column matrix containing the generalised coordinates associated
with the linear elastic deformation of the component Bi , and nif equals the

number of component modes retained in the analysis of component B;.

In method I, X, is a physical displacement (rotational and translational) coordinate

set and is related to the particular point on each component where the origin of the

body reference frame (floating reference frame) is positioned. In methods II and III,
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X,; is the generalised coordinate set (| ;, since the rigid-body motion is described

with the use of rigid-body modes. For components other than the platform carrier, the

X,; has a maximum of three coordinates, since the multibody system consists of

components that are connected with non-translational joints.

The different coordinate sets used in method I and II is the only difference between
these methods. Although this seems a minor point it will prove to have a huge effect
on the presentation of the global mass matrix for a multibody structure. Methods 11
and III use a generalised coordinate set and this is the main common feature

between these methods.

in method LII the multibody structure can be composed of either continuous or
discrete components. In method III the components are necessarily discrete. The
absolute angular and linear velocity of a point Q on the component B; , for all

methods can be written symbolically as functions of the coordinate set of each

component.

IV-4. Elastic Potential Energy Expressions for a
Multibody System

IV-4-1. Elastic Potential Energy for Continuous components;

The elastic potential energy of a multibody system composed of a number of

continuous linear elastic components is given by

. T
V=1 i f (gi) & dv, (IV-12)

where
k is the total number of components in the system.
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O, s the stress vector (6x1) at an arbitrary point in the component B,.

€, s the stain vector (6x1) at an arbitrary point in the component B;.

dV, is the infinitesimal volume within the component B,.

For linear material properties the stress is related to the strain as follows,

c=D. € (IvV-13)

where D, is the material stiffness matrix of the component B;_

The strain is related to the deformation at the arbitrary point as follows,

e=A, u (IV-14)

1 1 1

where A, is a partial differential operator matrix.

Substituting (IV-13) and (IV-14) into (IV-12) and using the integrated form of (17),

the elastic potential energy of a continuous multibody system is given by

T
k
V:% z (qfi) Kfi ;i (IV-15)
=1\ - -
where
Ky=[Uf, A Di Ai Uri dV, (IV-16)
Bi

and the additional symbolism

Uf. is a 3><nif matrix containing the deformation at an arbitrary point in the

1

continuous component B;, and n‘f the number of component modes
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{functions) retained in the analysis of the component B; .

q;; Isa nif X1 vector containing the generalised coordinates associated with the

component modes.

The component has been spatially discretised using the assumed-modes method, in
order to approximate the distibuted parameter (infinite) elastic domain with a finite
dimensional one. The finite number of component modes, which are space-
dependent functions, are in general trial functions (in the Rayleigh-Ritz sense), but
they may also be exact solutions of a differential eigenvalue problem, if closed-form

solution can be obtained.

IV-4-2. Elastic Potential Energy for Discrete Components;

Potential energy expressions in the form of (IV-15), (IV-16) are possible to derive for
components with fairly regular geometry. For complex geometry components, exact
modelling of a component is usually infeasible, and if not so the closed-form
solutions are even more unlikely. Moreover, even trial functions may be difficult to
obtain for describing the deformation with an acceptable accuracy. For irregular
geometry, the structural components can be spatially disretised using the finite
element method. The resulting high order discrete parameter elastic domain is

truncated with the use of the discrete version of the assumed-modes method.

For a multibody structure, modelled with the use of the finite element method, the

elastic potential energy of the system is given by

K T
V=1 (;_(ij K™ x, (IV-17)

i=1

where

KiFEM is the stiffness matrix of the component B; derived using the finite element

method.
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X, is the nodal displacement vector, nit %1, where ni is the number of nodal

degrees of freedom of the component.

The high order discrete elastic domain description can be truncated using the

discrete version of the assumed-modes method, hence

)__(izq)fi dg; av-18)
where
Q.. isa nit ><nif matrix containing nif component modes (vectors) retained in

the analysis of the component B;.

Even in the case that the component is discretised using the finite element method,
and the solution of the eigenvalue problem is numerically convenient, the component
modes are not necessarily only the eigenvectors of the algebraic eigenvalue
problem, but can be complemented by other trial vectors such as static modes, for

improving convergence and local deformation maodelling.

Substituting (IV-18) into (IV-17), the elastic potential energy of the multibody system

can be written as

T

K

V=; (qfi) K gy (IV-19)
g - -

where

Kfi=<q)fi)T K,FEM D (Iv-20)
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1V-4-3. Unified Expression of the Elastic Potential Energy of a
Multibody Structure

For continuous or discrete components, the potential energy of the system can be
expressed in exactly the same form as appears in equations (IV-15), IV-19). The

potential energy of the multibody structure can be written as

V=3 ElT Ks g (Iv-21)

KG is the global stiffness matrix of the multibody structure and has the form

K; = (IV-22)

where all other entries not designated are zero and component B; generalised
stiffness matrix is given by

G=| ~H=om (IV-23)
;Kfi
where
0 is a nir ><nir null matrix and nir are the rigid-body degrees of freedom of
the component B;
Kfi is given by (IV-16) for a continuous component B; and by (IV-20) for a

discrete component.

The coordinate set of the multibody structure is
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o) (o) ()

q, is a hybrid or generalised coordinate set for each discrete or continuous

component B, corresponding to either method | or methods I,1li respectively.

IV-5. Dissipative Energy Expressions for a Muitibody
System

There are a lot of distinct damping mechanisms that cause energy dissipation in
structures. In this work two dissipation mechanisms are addressed at substructural
level, namely structural and localised viscous damping. Structural damping will be

included directly in the frequency domain equations of motion.

IV-5-1. Localised Viscous Damping Modelling

Viscous dampers can be modelled as acting within the component’s structural
domain. The viscous damping dissipative energy expression is essentially similar to

the elastic potential energy expressions derived for discrete components.

k /. \T ,
Dv :%2()_(1) Bvi X. (IV-25)

where
B, is the viscous damping matrix of the component B;
X is the nodal rate of displacement vector, ni X1, where ni is the number

of nodal degrees of freedom of the component.
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Transforming (IV-25) from the physical coordinate space to a reduced generalised

one with the use of (IV-18), the following dissipative energy expression is readily

available.
k NG _

D, =3 Z [qfiJ Bsi 9y (IV-26)
-1 - -

where

BGln—(q)fi)T B, &, av-27)

The viscous damping dissipative energy expression (IV-26) can readily written using

the unified coordinate set formalism as

T

D,=lq Bgq (IV-28)

B, is the global viscous matrix of the multibody structure and has the form

B; = . (Iv-29)

where all other entries not designated are zero and component B;
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IV-6. Kinetic Energy Expression for a Multibody
System

1V-6-1. Kinetic Energy Expression; Methods I, 11
1V-6-1-1. Continuous Component

For a multibody structure with continuous components the kinetic energy of the

system is given by

k s s
T=L ) f( ‘viQ) iyiQ dm, (IV-30)
i=1

where

k is the number of continuous components in the multibody structure.
IViQ, is the absolute linear velocity of an arbitrary point Q in the component B
I —

dm; is the infinitesimal mass associated with the point Q' .

For method 1, the 'vi¥is given symbolically by expression (IV-7) and for method II
I —
by (IV-10). For a continuous component the symbolic function fC/d in IV-7) and

(IV-10) have only meaning as £, referring to continuous modelling.

1V-6-1-2. Discrete Component

For a multibody system composed of discrete components the kinetic energy

expression is given by

ko : :
T=L Y ( IviQ“J 'vi® 8m, (IV-31)
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where

k the total number of discrete components in the multibody sytem.
r1it the total number of nodes of the component B; .

iYiQ; is the absolute linear velocity of Q’ associated to the nodal point N.
dm. is the finite mass concentrated at the nodal point.

For method 1, the IViQ’ is given symbolically by expression (IV-7) and for method II
I -
by (IV-10). For a discrete component the symbolic function f ed in IV-7) and (IV-

10) have only meaning as fd, referring to discrete modelling.

1V-6-1-3. Comparison of Continuous and Discrete Forms of the Kinetic

Energy Expressions

Comparing the continuous expression (IV-30) to the discrete expression (IV-31), the
main difference is noticed at the integration scheme in the former, which has been
substituted with a summation scheme in the later. It is obvious that in the case of the
continuous modelling the integration scheme may be treated as summation scheme
for the purpose of numerical integration. Therefore for numerical implementation both
continuous and discrete kinetic energy expressions will have the form of (IV-31).
This, nevertheless, does not imply that the methods are numerically equivalent. In
the case of the continuous modelling, the analyst can select the number of
integration points, whereas in the case of discrete modelling the number of
summation points is dictated by the finite element model mesh of the component.
More importantly, in the case of continuous modelling, the analyst is also able to
choose a numerical integration scheme of preference. On the contrary, in the case of
discrete modelling the summation scheme is predetermined by the lumped mass
model of the discretised component. For example, integrating numerically the

velocity expressions of a dicretised beam structure, the summation scheme is
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necessarily that of the trapezoid integration. In more complex structures the
summation scheme is arbitrary and determined by the mass concentrated at the
nodal point, obtained from the lumped mass matrix of the finite element model. The
continuous modelling accuracy depends on the number of integration points and the
integration scheme utilised, which both can be manipulated independently of the
structural model. Continuous modelling can therefore be more accurate than discrete
modelling, which relies only on the number of nodes and the mass distribution

predetermined by the finite element model.

It has to be mentioned, that in the case of the discrete method the vectors
(component modes) are typically obtained from a consistent finite element model for
better accuracy, whereas the distribution of mass from a lumped mass model. In
computational terms, using discrete modelling means the extraction of both

consistent and inconsistent mass matrices, with obvious disadvantages.

1V-6-2. Kinetic Energy Expression; Method 111

Method HI is subject only to discrete modelling and it circumvents the problems
associated to numerical accuracy of the discrete versions of methods I, II. Method
III does not involve summation schemes and does not rely on the lumped mass
matrix. It utilises directly the consistent mass matrices of the components to obtain

the kinetic energy expression of the muitibody structure.

The kinetic energy of the multibody system can be written as

k oA\T :
— I FEM I
T "% ;[17_(1) Mi 17_(i Iv-32)
where
k is the number of discrete components in the multibody system.

M™M s the consistent mass matrix of component B;

X, is the nit X1 vector, where nit the nodal degrees of freedom of the
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component, and contains the nodal absolute linear and angular velocity

vectors for component B;

The absolute linear and angular nodal velocities for method III are given by the

symbolic expressions (IV-9) and (IV-10) respectively. For a discrete component the

symbolic functions £%n (IV-9) and gC/din (IV-10) have only meaning as

f‘and gd , referring to discrete modelling.

1V-6-3. Unified Expression for the Kinetic Energy of a iMultibody
System

The kinetic energy expressions for all methods and regardless the discrete or

continuous modelling assumptions can be written in the following form

. T .
T :%- q Mg q (IV-33)
where
M, is the global mass matrix of the multibody system.
q the rate of the coordinate set of the multibody system given by the first

derivative of (IV-24).

For method I the coordinate set is hybrid and for methods II, IIl a generalised
coordinate set. Unlike the global stiffness matrix, the global mass matrix of a
multibody structure is highly coupled, since the linear and angular velocities of an
arbitrary point in a component B; are not only functions of the coordinate set of the
component B; , but also functions of all the coordinate sets of the preceding

components in the chain.
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Mathematical Models of
Peripheral Multlbody
Structures

V-1. Prologue

For comparison and assessment, the methods derived in chapter IV have been
utilised to derive mathematical models for generic peripheral multibody structures in
space. Such systems consist of an arbitrary number of components attached to a
main carrier platform without forming closed-loops. A peripheral or else cluster
formation multibody structure is shown in Figure V-1. Cluster formation multibody
mathematical models are easier to present analytically than generic tree-
configuration models, which are best generated computationally. In this respect a
better understanding of the component interaction dynamics is accomplished with the
cluster formation multibody models. Moreover, the different methods are better
compared on their efficiency employing the analytical expressions of the
mathematical models. In reality, cluster configuration covers a large number of the
structural systems in space for the present and near future applications. In addition,
by appropriate assumptions almost any tree-configuration multibody structure can be
modelled as a cluster formation for the purposes of linear dynamics modelling. The
configuration limitation of the mathematical models does not in any extent restrict the

conclusions drawn form this work since it is of quantitative and not qualitative nature.

For the purpose of comprehensive assessment of the methods, 4 mathematical
models of varying complexity have been developed. Mathematical mode! A, B are
formulated using methods I, II respectively, and refer to a flexible cluster formation
structure where the appendages can only carry concentrated mass rigid payloads.
Mathematical models C, D are obtained from methods II, III respectively, and refer
to a cluster formation structure where appended components can also carry
distributed mass rigid payloads. Moreover, explicit expressions of the torsional
deformation of beam modelled appendages appear in mathematical model C, along
with terms that allow the kinematical description of Timoshenko beam theory. In

mathematical model D these terms are included implicitly in the consistent mass and
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stiffness matrices of the components. Detailed assessment and comments on each
individual mathematical model follow the mathematical derivation. The methods and
mathematical models generated have been illustrated for reference purposes in
Table V-1.

The three methods have been compared on their suitability for modelling the
dynamics of Category II missions in space. For comparison purposes, a particular
pairing has been chosen. Method I is compared to method II using the mathematical
models A,B respectively. Mathematical mode! A, B have exactly the same modelling
capabilities. In both cases, the appended components can carry concentrated mass,
but not distributed mass. Neither of the models includes beam-modelled
appendages. Beam-modelled appendages need detailed mathematical treatment
and are included only in the more complex mathematical models. The second pair of
comparisons is between methods II and III, using mathematical models C, D.
Mathematical model C is a very comprehensive model, and utilising it, any cluster
formation structure can be modelled. The same applies for mathematical model D.
Conclusions, on which method is the most efficient for developing mathematical
models for the category II missions in space, have been presented at the end of the

chapter.

The general criteria for the comparison have been established out of the experience
gained in developing and programming the methods for obtaining efficient and
accurate mathematical models of flexible multibody systems. Criteria include
mathematical model development effort and complexity, physical insight capability,
programming effort, potential numerical accuracy, potential computing time for
application completion, programming validation effort, analyst interference with the
data input and ease for modelling a generic tree-configuration multibody system.

In chapter IV the global stiffness and damping matrices of a generic muitibody
structure have been explicitly developed utilising a unified coordinate set for discrete
or continuous components and for all methods involved. Unlike the global stiffness
and damping matrices, the global mass matrix is highly coupled, since the velocity
terms of a point within a component are functions of the generalised coordinates
preceding the component in the multibody chain.

The chapter concludes with the derivation of the generalised force expressions for a
multibody structure and the mathematical steps for performing a direct or modal
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frequency response analysis using the reduced order mathematical model of a
multibody system. Structural and localised viscous damping has been included at
substructural level.

o

Figure V-1 Peripheral multibody structural system
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Cluster Mathematical Mathematical Mathematical Mathematical
Formation Model A Model B Model C Model D
Structure

Method I I I 1

Continuous Yes Yes Yés No
Components
Discrete Yes Yes Yes Yes
Components
Coordinate Set Hybrid Generalised Generalised Generalised
Concentrated
Mass Payload Yes Yes Yes Yes
on
Appendages
Distributed
Mass Payload No No Yes Yes
on
Appendages
Beam-
modelled No No Yes Yes
Component
Terms

Table V-1  Reference table for the methods and mathematical models developed
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V-2. Mathematical Model A

V-2-1. Global Mass Matrix Derivation

Using method I, the global mass maitrix of a cluster formation structure in space,
which can carry arbitrary number of concentrated masses on the appended
components, has been developed. In method I the components can be modelled as

either continuous or discrete.

The kinetic energy of the system having k number of appendages is given by

A\ : k AT ,
_1f[ 140 1, Q 1 1,.Q 1,.Q .
T—Zi( m ) ( LV )dm+2 j; Bj(BjYJ ) (BjYJ Jdm (V-1)

The kinetic energy expression has been presented in (IV-1) for a continuous
multibody system. For discrete modelling the integration schemes should be

substituted by summations over the nodal points of each component.

Kinetic Energy of Main Platform

Using (ITI-15),(111-16),(I1-17),(III-18), and the specific notation for cluster formation
structures, the absolute angular and linear velocity for an arbitrary point on the

flexible carrier platform can be expressed as

IVmQ: IVmo"' [Mpm) I(PmM'*‘Ufmqu (IV-Z)
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IU)mQ= I(!)mM+ ®fmc.lfm (IV-3)
M - I~ _

where the rotation matrix has been placed to unity, with the assumption of small
angular displacement. Since the main platform carrier is the inboard component of
the structure, the correction terms appearing in (III-15),(I11-16) have not been

included in (IV-2),(IV-3).

With the assumption of small angular displacement the Euler angle matrix becomes
a unity matrix and the absolute angular velocity of the body reference frame of the

main platform can be expressed as
I -

'om M=E (d)mo,t) On’= Om° (IV-4)
i T

Substituting (IV-4) into the equations (IV-2),(IV-3) the absolute linear and angular

velocity expressions at any point on the main platform can be expressed as

X

'V = - ( pmJ ¢mO+Ufmqu IV-5)
M - I- M - - z

1 Q' .0 )

(Dm = q)m +@fm qu (IV-G)

= - B
where
"Val= (IV-7)

1- -

has been utilised.
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Kinetic Energy of Appended Component B;

From equations (IV-5),(IV-6) and for Q’ =], the linear and angular velocity of the

junction point J can be readily obtained. Substituting (IV-5),(IV-6) for Q’ =] into

(I11I-15), and using (III-17), the absolute linear velocity at an arbitrary point in an
appended component B;, with the assumption of small angular displacement, can be

expressed as

_( pj) 0" +V;,q;, (IV-8)

Bj - Bj - -

where

Vi, = Ufr(UfjJ +( .pj) (6”) (IV-9)
\ i AP i

Substituting (IV-5),(IV-6) into (IV-1), the global mass matrix of the cluster formation

multibody structure can be readily derived

Mrr qu) Mrm Mrw1 Mrbl . Mru)j Mrbj

MW M¢m M¢m1 M¢b1 v qu)j M¢bj

Mmm Mmu) Mmb - M ; M b,

i 1 1'11(1)J ml §

M,., M,. 0 0
10 151
M, = Mblbl 0 0 (IV-10)

SYM

Mu)-ur Mmb

7] fae!

Mbjbj
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where the hybrid coordinate set of the multibody structure is

(qj = (Igmo) (q)m‘)] (qu) ( q)‘ei) (qm) el 0 (qu)
- L I- J - B - - Bj - -

(V-11)
The matrices appearing in the global mass matrix (IV-10) of the multibody structure

have the following forms

«
M, :(mm+2mj] 1 (Iv-12)
. X k X i X
M,, :(pm) mm+2 —(pm] m —Cf(pj) m,C, (IV-13)
z = - -

k X
M= jUfmderZ((Ufm) mj—C}"(p’;) mjcjf@fm) ] (IV-14)
M j=1 j .

] .
M,; =C] [V, dm (IV-16)
Bj
M¢¢:IM/O+Z(_(pm) (pm) mj‘(pm)_ Cf(pj) ijJ.—CjT(pJ) ijj(F_)
j=1 = Ji\—~ Ji - Ji - -

Bj/Jj
(C.T I C, J (IV-17)
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M%j:(pm) Cj(pj) m+C; 1% (IV-19)
M%jz( ) jvfjdm+c j( )V dm (IV-20)

x T T
Mm=ijUmdm+2 (Ufm) (Ufmj mj{@fm) cr ™ Cj((afm)
M = j j j j
k T X T X
+2( [Ufm) .(p?J mjcj(@fmj +[®fm] c}(pj) mjcj[Ume
=1 i - i j - j

(IV-21)

/ T X T \
M,, =-m, LUfm) c; (o) (@) cr 1™ av-22)

T T X
M, = (Ufm) o fv dm+(® JCJT f(pj) V;; dm (IV-23)
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M, ,=I"" (IV-24)
My 4= f[pj) Vi jdm (IV-25)
Bj\ ™
T
M, bj:j[vfj) V,,dm (IV-26)
Bj

V-2-2. Comments and Assessment of Method I Based on

Mathematical Model A

Method I is akin to nonlinear dynamics modelling. The hybrid set of coordinates is
necessary for accommodating large angular displacements. The resulting
expressions are fairly complex for a linear articulated peripheral multibody structure,
even for this case that the appended components do not carry any distributed mass
payload. The development effort for the formulation of mathematical model A, is not
high as such, but caution should be exercised for the correct interpretation of

resulting integrals from the mathematical manipulations.

It may be useful to examine three different partitions of the global mass matrix in

order to gain insight into the physics of the system. These are

Mrr Mrtb Mml
qu» M«pm (Iv-27)
Sym M, .
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Mru)j Mrbj
M M, (IV-28)
Mmu)j Mmbj
ija) Mbj w;
Sym M, , (IV-29)

The partition matrix (IV-27) would give the kinetic energy of the multibody system |if
the appendages were rigid and rigidly attached at the interfaces, i.e. all articulation
axes locked. This is not a very obvious observation, since by examining the
individual terms, the particular form of the terms obscures physical interpretation. If
the main platform is restrained externally, so that it possesses no rigid-body degrees
of freedom, the first two columns and rows of global mass matrix should be removed,

along with terms in the first two columns and rows of the global stiffness matrix.

The partition matrix (IV-28) contains the interaction of the rigid-body motion and the
deformation of the main platform with the rigid-body motion (due to articulation) and

the deformation of the appended component B;, columns 1 and 2 respectively.

The partition matrix (IV-29) would be the kinetic energy of the appendage B;, if the
interface constraints were external boundary constraints of the appendage. The
contribution of the articulation and the flexibility appear explicitly and the interaction
term exists only if the component modes used are not the normal modes of the

boundary eigenvalue problem.

By examining individual terms, it is difficult, in a lot of cases, to decide on their
physical significance, and the interpretation of the mathematical expressions is not
readily obvious. Interpretation of the significance of particular terms is only feasible

by examining those as part of the global mass matrix.
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In the computational part, the large number of integration schemes for each
component, the arbitrary number of appended components and the ‘correction’ terms
appearing in most of the expressions complicate the programming part of the model.
In addition to this, if specific terms should not be included for an application,
particular attention should be exercised for their elimination. Moreover, the validation
of parts of the program can become very tedious. The potential accuracy of the
results is subject to the large number of integration schemes appearing in the terms.
Verification of the final results can only be possible with comparison to results

obtained from commercial packages.

V-3. Mathematical Model B

V-3-1. Global Mass Matrix Derivation

Using method 1II, the mathematical mode!l B has been developed for modelling
exactly the same structure as mathematical model A; that is, a cluster formation
multibody structure where the appended components can carry concentrated, but not
distributed, mass payloads. The difference of method II to I, is mainly that the
second utilises a generalised coordinate set instead of a hybrid one. This is only
possible under the assumption of small angular displacement, hence the rigid-body

motion of the components can be described with the use of rigid-body modes.

The kinetic energy for a multibody structure with k number of appended components

is expressed as

AT . k N ,
"V @ ‘v | dm+1 Y [[ Tvs@ 'vi? | dm @v-30)
M M- M - = B Bj - Bj —

T=14]

The kinetic energy expression has been presented in (IV-30) for a continuous
multibody system. For discrete modelling the integration schemes should be

substituted by summations over the nodal points of each component.
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Kinetic Energy of the Main Platform

In the second method, simplification is accomplished by describing the rigid-body
motion using rigid-body modes. The absolute linear and angular velocity at any point

in the main flexible platform can readily be expressed as

'Vn®=U_q. (V-31)

'0a?=0_q, (V-32)
Kinetic Energy of Appended Component B;

Similarly the angular velocity of the reference body frame of an articulating appended

component B; relative to the interface reference frame of the main platform can be

expressed as
.(Djrd:(@fjj d,; (V-33)

From equations (V-31),(V-32) for Q’ = J, the linear and angular velocity of a frame
travelling with the junction point J can be readily obtained. Substituting the (V-
31),(V-32) for Q’ =J and (V-33) into (IlI-15), and using (III-17), the absolute
linear velocity at an arbitrary point in an appended component B; with the

assumption of small angular displacement, can be expressed as

I.VjQ’_—_ Cj(Um)j—( pj) Cj(®m)j élm—Vjélj (V-34)
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V= U, gUfj—(Ufjj +[?J) (QMJ (V-35)
! j j

Substituting (V-31) and (V-34) into the kinetic energy expression (IV-30), the global

mass matrix for a cluster configuration multibody structure can be readily obtained in

the following form

Mm.m Mmbl Mmbj
M,, 0 0
M= . 0 (V-36)
SYM M,,

where generalised coordinate set of the multibody structure is given by
T

e 6

and j=1,...k , where k is the total number of appended components on the main

platform.

The submatrices in the global mass matrix of the structure have the following

expressions

T k T . T
(Umj U,dm+) (%] cl 1" c (%) i +m (UJ (Um)
= j j ; j j

M,.=]

M
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T T X
Mmbjz(Um) c}‘jvjdm+(@m) c}‘f[pj) V,dm (V-39)
Bj

i i B\~

T
M, = j(vj) V,dm (V-40)
Bj

V-3-2. Comments and Assessment of Method II Based on

Mathematical Model B

The use of generalised coordinates, for the description of the rigid-body motion for a
geometrical linear system, simplifies the form of the resulting equations. Moreover,
the physical interpretation of the terms is obvious, and possible even without

examining the terms as part of the global mass matrix.

Expression (V-38) would give the kinetic energy of the system if all appendages
were rigid and fixed on the main platform. This term cannot recognise that the
appended component may be articulating. If in actual fact the appendages were rigid
and articulating, (V-38) alone would not be able to give the correct kinetic energy of
the system. Contribution of the other terms would be essential for the differential

system to recognise the articulation of the appended components.

Expression (V-40) would represent the kinetic energy of component B, if the
interface conditions were the external boundary constraints of the component, i.e. the
component isolated and restrained relatively to the inertial space. The kinetic energy
of the component, not interacting to the platform, is a contribution from the rigid-body
motion, due to articulation, and the deformation of the component due to flexibility.

The term (V-40) exists if either of the two contributions exist.
Expression (V-39) represents the interaction of the rigid-body motion and

deformation of the main platform with the angular motion and deformation of an

appended component B;. If one assumes that the appended component is not
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articulating relatively to the main platform, then the term would only give the
interaction of the platform motion (flexible and rigid) with the deformation of the
component. If the appended component were rigid and non-articulating, then this
term would disappear, along with (V-40), and the kinetic energy of the system would

be represented by (V-38) alone.
The programming, validation and verification of results has been simplified compared

to mathematical model A. Furthermore, the lower number of integration schemes will

potentially give more accurate resuits, than those obtained form model A.

V-4. Mathematical Model C

V-4-1. Global Mass Matrix Derivation

Using method II, the mathematical model of a cluster formation structure has been
derived for the case the appended flexible components can carry distributed mass
rigid payloads. In the same mathematical model explicit expressions of the torsional
deformation of beam-modelled appendages, along with terms that allow the

kinematical description of the Timoshenko beam theory, have been included.

The kinetic energy of the multibody system can be written as

where
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k is the total number of appended components

s is the total number of distributed mass rigid payloads on each appended

Distributed mass rigid payload or cross-section of beam structure

Figure V-2 Component B; and distributed mass rigid payload or beam cross-

section.

In Figure V-2, the vector quantity I; locates the position a point M which is part of

the rigid body configuration of the component B; , i.e. before the deformation of the

component. The point M can be the position of an integration point on a cross-
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section of a beam structure and/or the location at an integration point on a distributed

mass rigid payioad before the deformation of component B;. In both accounts, the

position of the r; after the deformation of the component B; will be designated by

vector rj’. The vector I, has rotated by an amount equal to the angular
displacement at point Q' due to deformation and translated by an amount equal to
the linear displacement of the point Q due to deformation. In both occasions, the

magnitude of the vector I, remains unchanged, since it is part of either the

distributed mass rigid payload or the cross section of a beam.

From the above description, and placing a local reference frame at point Q, it can be
verified that the integration or summation point M’ within each continuous or discrete

component relates to the arbitrary point Q with the following expressions

X

1. M ' , '
Vi =IVJ~Q— T. Ioon (V-42)

IVij = IVJQ - T, I(1)3(2 (V-43)
Bj - Bi- ) | s’ Bi— )
i

where expression (V-42) relates M and Q for the case that M is an integration point
wlthin the elastic domain and expression (V-43) relates M and Q' for the case that M
is an integration point within the mass distributed rigid payload. In both cases Q'is
considered a point within the elastic domain that its motion is known, using

expressions (III-15), (III-16). Points Q,, M are shown in Figure V-2.
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Equation (V-42) as such will only be used for a beam-modelled structure, meaning
that integration of the second term of equation (V-42) in the kinetic energy

expression will take place only for a beam structure.

Substituting (I1I-15), (III-16) into (V-42) and (V-43), with the assumption of small
angular displacement, and using the notation established for cluster formation

structures, the following expressions are obtained respectively

X X
I M I3 I J rel
vi =C. v + 1. | C. o 4+ T,
Bj—) j M_m {BjPJ Bj_JJ j M_m ‘(ij‘_)_l Bj—JJ Bj(?j
. . X X
+ u. u. |+ p.+ T 0. |+ r 0. (V-44)
B -1 | Bj-1 ; Bj_,l Bj - Bj -] ; Bj- Bj -]

where

( o) j) is the position where the distributed mass payload mounds within
Bj - P

component B;, measured from the origin of the body reference frame B,
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In expression (V-44) the quantity ©O j is the rate of the angular deformation at an
Bi

grbitrary point within the structure, and if the structure is a beam, then Gj will
Bj -

contain the torsional deformation rate of the beam along with the bending angular
displacement rates due to deformation, which in the case of the Timoshenko beam

theory will include an extra rotational rate of the cross-section due to shear.
The vector quantity j, in equations (V-44) and (V-45) has directly been substituted

by I, since small linear deformation has been assumed for the elastic domain,

therefore the angular displacement of the vector r j, is sufficiently small.

For a beam component equation (V-44) is integrated both over p j and 1.,
Bj -

whereas for any other structural component only over P; ( locates point Q).
Bj -

The following expressions can directly be substituted into (V-44) and (V-45):

- Expressions (III-17),(I1I-18), regarding the deformation approximation of the

elastic domain.

- Expressions (V-31),(V-32), which describe the absolute linear and angular
velocity of the main platform at the joints to the appendages by using rigid-body
modes and component modes.

- Expression (V-33), which describes, using rigid-body modes, the angular
velocity of the body reference frame of component B; , due to articulation, relative

to the joint local reference frame within the main platform.

By substitution of the above into (V-44) and (V-45), the following expressions are

obtained respectively.
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1M _ _ " : : L
BjYJ _Lcj(Uml (Bj9j+Bj{j) Cj (®m)j)gm+vjc_lj‘(3j{jJ Qjc_lj

(V-46)

V; =(Un‘ ;foj—(Uf}.) +(E’j) [@)u} } (V-48)
5 j j

gzj:[@”. %i@fj-{@fjj ] (V-49)
! j

Substituting (V-46), (V-47) into (V-41) and performing the integrations, the global

mass matrix of the cluster structure has the form of (V-36) , where the partitions are

s forfusmsgfo] & efo)onf[0][1r]]
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T T b
Mmbf(Um)C}f jvjdm+[@m)cf j(pj)vjdm

i Bj,Bjp J Bj.Bip \. ~

1

+(@m Tc’j fix) dex+(®m JTC} (Z{I(QJ H
/i Bj i p=l P

(V-52)
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V-4-2. Comments and Assessment of Method II Based on

Mathematical Model C

Mathematical model C is a generic model of a realistic peripheral structure in space.
Beam modelled appendages are included in the model. A number of appendages,
such as booms, can be accurately modelled as beams. Moreover, the model allows
for the inclusion of distributed mass rigid payloads. It is not uncommon in space
structures that the appendages may carry rigid distributed mass payloads, such as
control hardware units, and in a lot of occasions the centre of mass of the rigid

payload is at some distance from the mounting points.

Mathematical model C, is therefore a comprehensive mode!, which can capture the
dynamics of a realistic cluster formation structure in space with the minimum size of
formulated differential equations. Nevertheless, it has some drawbacks. Before
preceding to those, it may prove helpful to examine closer the terms in the partitioned

submatrices of the global mass matrix.

As in mathematical model B, which has been developed with the same method as
the current model, the matrix M__ would be the kinetic energy of the system, if all
appended components, loaded with the mass and inertia of the payloads, were rigid
and fixed on the main platform. All inertia related terms in M represent the
combined inertia of the appendage and the rigid payloads. The term Mbjbj would
give the kinetic energy of an appendage B loaded with rigid payloads, if the
interface constraints on the appendage were real external boundary constraints and
the appendage were isolated from the platform. The term Mmbj is an interaction

term between the motion of the main platform and the motion of the appendage B;.

108



Chapter V - Mathematical Models of Peripheral Multibody Structures

More specifically, term 1 in (V-51) is the interaction of the main platform with an
appended non-beam component B;, loaded with the mass of the distributed mass
rigid payloads concentrated at the mounting points. For facilitating the numerical
integration, term 1 integrates directly the mass of the rigid-payloads along with the
distributed or discretised mass of the component. Term 2 needs to be calculated only
if the appendage has been modelled as a beam structure. Hence, term 1 and 2
would give the interaction of the main platform and a beam appendage carrying
concentrated mass. Term 3 gives the contribution in the interaction of the distributed
mass payloads. If the rigid payload mounting point is coincident to its centre of
mass, then I*’? is the rotary inertia of the payload around its centre of mass. Terms
4 exist only if the payload is offset, i.e. its centre of mass is on a different location to
the mounting point. This distance is described by LE ; J , and if equals to zero all

p
terms disappear.

Term 5 in (V-52) would give the kinetic energy of a non-beam component, if isolated
and with all internal constraints considered as external boundary constraints. If this
component has been modelled as a beam then term 6 needs to be included in the
mathematical model. In term 6 the matrix quantity €2 jcontains terms for the rotation
of the beam appendage as a rigid articulating component, useful mainly for
describing the articulation around the beam axis, torsional deformation and bending
deformation terms. If the appendage has been modelled as in Timoshenko beam
theory the shear and the rotary inertia of the cross-section are directly taken into
account by term 6. If static modes have been used to describe the local deformation
of the components at the interface with the main platform, .Qj contains ‘correction’
terms to re-enforce the interface geometric compatibility. Term 7 exists only if the
appendage is loaded with distributed mass rigid payload. If the payload is offset

terms 8 complement the rest of the terms.
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The drawbacks of the mathematical model C, other than its inherent complexity for
programming, are mostly attributed to the essential interference of the analyst with
providing specific information to the model. Assuming that the information of the
inertia related data is collected from a lumped mass matrix of the component, the
following problems can be located. Information about the distributed inertia of a
structure is usually not available from the a lumped mass model. Although the inertia
of a component can be calculated very accurately by using the nodal lumped mass,
the nodal masses of a beam structure cannot provide the inertia of the beam around
its longitudinal axis. Moreover, even if the inertia is provided, the distribution of the
inertia along the axis needs to be calculated. In theory this may be a simple
operation, but in practice, for an arbitrary number of beam appendages of non-
uniform cross section, this might be time involving. In addition to these, information
needs to be provided to the analyst about the mass and offset of the rigid payload.
The mass of the payload cannot be separated easily form the nodal mass of the
flexible component in the lumped mass matrix, at least not all the times. The rest of
the inertia related information can be retrieved and processed with fair ease to

provide the total mass and the inertia of arbitrary non-beam components.

Another drawback of the model is that both a lumped mass finite element model, for
exiracting nodal masses, and a consistent finite element model of a component,
usually necessary for the accurate extraction of the normal modes of the component,
need to be derived. Since both models need to be generated, time related

disadvantages are expected.

Nevertheless, other than a few disadvantages that occur generally in all
computational applications, model C is an excellent tool for design and analysis of

realistic cluster formation structures in space.
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V-5. Mathematical Model D

V-5-1. Global Mass Matrix Derivation

Mathematical model D has been developed using method III with the intention to

model any cluster configuration structure in space by treating all components alike.

The kinetic energy of the multibody system can be expressed as

. T . k oN\T i
_ FEM
T"%(M)fm) MP (M)—(m)+%j§=l (ij_gj) MFEM(BJ-’.(J‘) (V-53)

where

k is the total number of appended components in the multibody system.

M™M s the consistent mass matrix of the main platform.

X is the n;" X(6><1) column matrix containing 1} absolute linear and

angular velocity vectors (6x1) at the nodal points of the component, and

ninthe total number of nodes in the main component.

M™" s the consistent mass matrix of the appended component B;

X, is the nf X(6><1) column matrix containing nf absolute linear and

angular velocity vectors (6x1) at the nodal points of the component B;, and

nf the total number of nodes in the component B;.

Kinetic Energy of Main Platform

For the total of nodes in the main platform the following expression can directly be

verified
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Xn=®,4, (V-54)
M - z
where
® isa (nin ><6)>< (n;n + n;“) matrix containing n;" component modes for

approximating the deformation field of the main platform and n;“the rigid-

body degrees of freedom of the main platform.

Kinetic Energy of Appended Component B;

The absolute linear and angular velocity of a nodal point on a discrete component

can be directly obtained from expressions (III-15) and (III-16) respectively. The

following expressions can be substituted into equations (I11-15),(I11-16).

- Expression (111-17),(111-18) for approximating the deformation field of any
component.

- Expression (V-33) for describing the angular velocity of the appended

component body reference frame relative to the interface reference frame of the

main platform at the joint J.

By substitution, expressions (I1I-15) and (I1I-16) obtain the following form

Pon . .
BjYJ'- Cj(Umj. "(Bj‘?j} Cj(gmj. C_lm_Vj ‘_lj (V-55)
j j

I n_ . n
e Cj[ng 9m 259, (V-56)
i

where
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Vi =U ,EUfI;{Ufj) +(pj) (®fj) (V-57)
] j - j

Ql =l o §®:j —(@f j) (V-58)
= j

Using (V-55) and (V-56) the absolute linear and angular velocity (6x1) of a nodal
point N in the discrete appended component B; can be expressed in the following

compact matrix form

I n
V.
‘n i~ n : n
B}_)_(J: BIJQ)“ =Pj b (—1m+‘P}. c_lj (V-59)
Bj - ) i
where
Pi= CW (v-60)
0 Cj
Yi=| @), ’;(I){}+H}‘((D;‘j) (V-61)
= j
" = “Iﬁ(E’J) (V-62)

By stacking the (6x1) vector of (V-59) for all nfnodes of the component B;, the

following form is readily obtained

).(jz (q)m) (jm+qjjq1‘ (V-63)
i . -

Bj ~
J
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where

Y = cDrjgcpfﬁHj(d)fjJ (V-64)
‘ i

Y. isa (nf><6)><(nj +ng> matrix and

n! is the total number of nodes in the component B,

n’  the rigid-body modes D .

n!  the component modes CI)fj

‘Pj also includes nﬁ number of ‘correction’ terms [Cbﬁ) , that re-enforce
j

compatibility between adjacent components if violated by the selected set of

component modes @ ; (Appendix-A).

The matrix I1 ; Is a (6x6) ‘correction” and ‘joint’ coefficient matrix. By manipulating
the entries inT[j one can control which axis of a joint is locked or free. At the same
time ‘correction’ term coefficients allow only part of the ‘correction’ terms to be used

depending if are essential for a particular direction of a joint or not.

The matrix | @m | contains the component modes of the main platform at joint J.

i
Substituting (V-54) and (V-63) into the kinetic energy expression (V-53) the global

matrix of the form (V-36) is obtained, where the submatrices are the following

T k T T
M__ =(®m] MM ¢m+2(¢m) (Pj) M Pj(Cij (V-65)
J =1 j » j

~
1
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T T
M :[cbmJ [PJ M™ ¥ (V-66)

T
M, =(‘Pj) M Y, (V-67)

V-5-2. Comments and Assessment of Method 111 Based on
Mathematical Model D

Since method III uses a generalised set of coordinates, the submatrices
interpretation is exactly the same as it appears in previous section for the
mathematical model B. The use of generalised coordinates, along with the use of the
consistent mass matrix of the structure, results in a generic and compact form of
differential equations. There is no need to separate the components to beam-
modelled or components which may be loaded with distributed mass rigid payloads.
All components are treated alike. The result of this is that the complex equations that
appear in mathematical model C, along with all the drawbacks detailed in the
relevant section can be circumvented. The consistent mass matrix contains all the
information regarding concentrated or distributed mass rigid payloads. Utilising the
mass matrix explicitly in the equations, all the information is transferred indirectly into

the mathematical model.

Moreover, the term designated as 1, in (V-61), is the rigid-body mass matrix (6x6) of
component By. This is particular useful, since by simple multiplications involving the
consistent mass matrix of the component, its inertia characteristics are revealed. The
exact form of the matrix is described in chapter II by expression (II-4). Complex
computer programs for calculating the rotary inertia and mass of a component, by
using information from the lumped mass matrix can be avoided. As importantly, there
is no more need to create a lumped mass model of a component, along the

consistent one, with obvious computing time related advantages.
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The rigid-body mass matrix obtained by expression 1, is extremely accurate, and its
accuracy depends on the number of nodes of the component. The rotary inertia of a
beam structure around the longitudinal axis can easily be obtained and in actual fact
with great accuracy compared to exact hand calculations even for a small number of
nodes. It is obvious that the knowledge of the inertia characteristics is not directly
needed in model D, but this particular manipulation can be used in conjunction with
the loaded-interface method for extracting loaded-interface normal modes for any

component in the structure.

The interference of the analyst to provide ‘extra’ information to the mathematical
model, is eliminated. Moreover, the potential accuracy of the system is high since
integration schemes have been substituted by multiplication of matrices. In this work,
in order to achieve even higher accuracy of results, the consistent finite element
matrix of each component, as well as the stiffness matrix, are included in the

programming network with precision of 12 decimal places.

Returning to the mathematical model D, it is apparent that the programming of the
global mass matrix is straightforward compared to methods LII. The potential
computing time is also reduced since the integration schemes are eliminated both
explicitly from the equation and also implicitly from the calculation of the inertia

related terms.

The physical significance of each term is clear and especially the interaction
dynamics of the platform and the components. The effort to analytically develop the
mathematical model D is minimal compared to model C. Programming validation is

also easy, since the form of the matrices imported in the model or created within the

model is very simple.
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V-6. Comparison of the Methods and Conclusions

The assessment of each individual method and indirect comparison to other methods
has been performed, based on the mathematical models produced for cluster
formation structures in space. In this section, the methods have been compared
directly and conclusions drawn. For this purpose a few general criteria have been
established out of the experience gained in developing and programming the
methods for obtaining efficient mathematical models of multibody structures. A
particular pairing of comparisons has been chosen. Method I is compared to method
I using the mathematical models A,B respectively. The comparison of the methods
LIT is shown in Table V-2. The second pair of comparisons is between methods I
and Ill, using mathematical models C, D. The comparison of the methods II, III is

shown in Table V-3.

All methods result in the same order differential equations. Methods LII are
essentially very similar other than the coordinate sets utilised for each. Method 1
uses a hybrid coordinate set and therefore is akin to nonlinear modelling. Despite its
generality in this respect, hybrid coordinate set overcomplicates the resulting set of
equations even for the simplest of cluster formation structures. It would be difficult to
generalise such a model to include distributed mass payloads and beam-modelled

appendages.

The method TI, is much more efficient than method 1, since it uses a generalised set
of coordinates, by describing the rigid body motion using rigid-body modes.
Nevertheless, for appended components loaded with distributed mass rigid payloads,
the resulting equations are fairly complex which means are difficult to develop,
program and validate. Moreover, the interference of the analyst may become

laborious.

Method III uses explicitly the consistent mass matrix of the components and a
generalised coordinate set. Both these characteristics contribute to the efficient
mathematical modelling, and result to a compact form of differential equations.
Mathematical model D, obtained by method III, is mostly efficient for modelling
cluster formation structures in space. It can incorporate any kind of component

modes in the literature, contains ‘correction’ terms for any possible application, any
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gimbal articulation axis can be free, locked or driven, and results in a compact form
of equations of low order. Moreover, it has a high potential accuracy of results and

the interference of the analyst has been eliminated.

In the form of equations (V-65)-(V-67), method III provides an excelient tool for
research, analysis and design of large-scale flexible multibody cluster formation
structures in space. For issues involving the dynamical behaviour of category II
missions in space, such as main platform attitude control, stringent payload pointing,
vibration suppression, control structure interaction, or general control algorithm

implementation etc., mathematical model D can definitely be a solid basis for such

applications.

As importantly, method II can easily furnish linear low order mathematical modes for
virtually any tree-configuration articulated multibody system that belongs in category

IT missions in space.
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Criteria

Method I

(Mathematical Model A)

Method 11

(Mathematical Model B)

Hybrid Coordinate Set

Generalised Coordinate Set

Discrete or Continuous

Discrete or Continuous

Components Components

Model Complexity High Low

Analytical Development Medium Low
Effort

Physical Insight Difficult Clear

Programming Effort High Low

Potential Numerical Average Good

Accuracy
Computing Time for Average Good
Completion of Application

Programming Validation High Low
Effort

Analyst Interference Low Low

Results Verification Difficult Easy

Table V-2 Comparative study between method I (model A) and method il (model B)
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Criteria

Method II

(Mathematical Model C)

Method II1

(Mathematical Model D)

Generalised Coordinate Set

Generalised Coordinate Set

Discrete or continuous

Discrete Components

components
Model Complexity High Low
Analytical Development High Low
Effort
Physical Insight Average Clear
Programming Effort Very High Low
Potential Numerical Average Very High
Accuracy
Computing Time for High Low
Completion of Application
Programming Validation Very High Low
Effort
Analyst Interference Average None
Results Verification Very Difficult Easy
No Excellent

Subject to generalisation

Table V-3 Comparative study between method II (model C) , method III (model D)
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V-7. Generalised Forces

For presentation purposes the generalised forces analysis will be performed

assuming a discrete component, ie. a component spatially discretised using the finite

element method.

The generalised force vector due to forces and moments applied on a discrete
component B; can be written as
T T
I_n I n
n | OV n | O 0
Q=X —"|f + 3 —| g (V-68)
~j  n=l 8q n n=l Bq -

where
n is the total number of nodes in the component B;

M is the absolute linear velocity of node n within component B;

'o" s the absolute angular velocity of node n within component B;

n | O X
0 = yi -2 I_rjn (V-69)
=7 n=1 ﬂq
where
I v n
x =| B (V-70)
Bj - j W
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and

F = is a 6x1 vector of the forces and moments acting at node n of

component B;

Finally the generalised forces acting on the component B; can be expressed in the

compact form

Q = B -F. (V-70)

where

. .1 T .n T
X = ( XJ [ X j (V-71)
Bj-j Bj—j Bj—j
T T\T
Fj:[ (F“] ...(an) ] (V-72)

All previous expressions are general enough and can be used to calculate the

generalised forces for any component in a multibody chain.

At this point the analysis will be concentrated in a cluster formation structural system.
Substituting expression (V-63) into (V-70) for any appended component and (V-54)
into (V-70) for the mainbody, the expression for the generalised forces takes the

following compact matrix form
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=G f
Q=G1 (V-73)
where
@, (@) P (®,)P - (@,)P
VI 0 0
G=| 0 0 quT 0 (V-74)
0 0 0 T
T T T T\T
and
¢ isa (ni“ ><6)>< (n;” + n}“) matrix containing Ny’ component modes for

approximating the deformation field of the main platform and n’r“the rigid-

body degrees of freedom of the main platform.

Y. is given by (V-64)

P. is given by (V-60)

V-8. Frequency Response Analysis

Using Lagrange equations it can be shown that the resulting linear equations of

motion for a multibody structure have the following form.

Maé +Baé + K;qg=0 (V-76)
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where

M, s the global mass matrix.
K isthe global stiffness matrix.
B, isthe global viscous damping matrix.

Q s the generalised force vector.

q is the hybrid or generalised coordinate set.

Two methods will be exploited for performing a frequency response analysis. The
first is a direct method and the second uses a modal substitution. The modal
frequency response analysis may be more computationally efficient than direct
frequency response analysis if the mathematical model (V-76) still contains a large
number of differential equations. This may be the case where the structural system
contains a large number of components and a high number of component modes

have been used for stringent convergence.

V-8-1. Direct Frequency Response Analysis

Substituting equation (V-73) to (V-76) the following form is obtained

Myq +Byq + Ksq4=G f (V-77)

Harmonic excitation is assumed where forces and moments can be applied at any
node on the structural system. The harmonic excitation frequency is identical at any
forcing point, however forces can have arbitrary magnitude, direction and phase.

Using complex notation the harmonic forcing vector can be written as
f =f :ejwt (V-78)
where

o is the forcing frequency.
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f : is a complex vector representation where each entry has the form

f o= foie® (V-79)
where
foi is the magnitude of the force applied at any nodal degree of freedom

¢; is the phase angle of the force applied at any nodal degree of freedom

The solution should be of the form

q=q ¢/ (V-80)
where
Qo =G o &7 (V-81)

Substituting (V-78) and (V-80) into (V-77) and adding structural damping at

component level, the following system of complex algebraic equations is obtained

( ~0*M g +j ( wB, +D,)+ K, )q;=G f: (V-82)

where D, is the global structural damping of the system and has the form

Dy

3

Dg

2

D, = (V-83)

il

where all other entries not designated are zero and the component B; generalised

structural damping matrix is given by
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Dy =7 g, 0 [ (V-84)
Ky

where

0 isa nr’ xnrj null matrix and nr’ are the rigid-body degrees of freedom of

the component B;

Kfj is given by (IV-16) for a continuous component B;and by (IV-20) for a
discrete component.
8, is the structural damping factor for the component B;.

For the calculation of the structural damping expressions of each individual
component it has been assumed that structural damping is uniform within the
component. in cases where the damping is not uniform, the calculation of the
structural damping dissipation energy may be difficult to obtain for a continuous
component. For a discrete component it would be beneficial to obtain the structural
damping component matrix directly from a finite element model, where the structural

damping can easily be entered at elemental level.

The above equation can be solved for any forcing frequency of interest. The solution

can be written as

Jok ((x)) and Wy, (03) for any k=1,..n (V-85)

where n the degrees of freedom of the truncated system.

Finally partitioning (V-85) into the 'modal’ responses of the individual components
and substituting the appropriate partitions in equations (V-54) or (V-59) the physical
displacement - magnitude and phase - can be written as function of the forcing

frequency.
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V-8-2. Modal Frequency Response Analysis

Modal frequency response analysis can be easily accomplished by the

transformation
q.= P p, (V-86)

where P is the global modal matrix of the structural system obtained by solving the

eigenvalue problem related to equation (V-76).

Substituting (V-86) into (V-82) a transformation to the global modal coordinates has

been achieved, as opposed to the component modal coordinates of equation (V-82).

( ~w’P™™M4;P+j PT(0Bg +Dg;) PT+PTK ;P )p§=PTG fo (V-87)

By retaining only a number of modes in the global modal matrix P, the order of
equation (V-87) is reduced. The equation in the form of (V-87) is advantageous over
the form (V-82) in cases that the multibody system has been modelled with a large

number of component modes.

Although the mass and stiffness related terms in (V-87) are of an uncoupled form the
damping terms in general are not. If localised viscous damping is assumed negligible
and a uniform structural damping is assumed for all components, the form of (V-87)
can be written in a uncoupled -diagonal- form, which is computationally much more
efficient to solve. Although this would be ideal, in reality is very rare to come across
large multibody structures where such hypothesis would hold true. Nevertheless
equations in the form (V-87) may be still beneficial to use since the order of the
system can be dramatically reduced. Finally, reconstruction to the physical

coordinates can be achieved in two steps using equation (V-86)
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VI-1. Network of Programs

VI-1-1. Network Deliverables

A network of programs has been developed for the computational implementation of
mathematical model D. The final deliverables of the network are the eigenvalues of
the multibody system and the eigenvectors in modal or physical space. Additionally,
physical displacement, velocity and acceleration of any point on the structure can be
derived as a function of the forcing frequency using either direct or modal frequency
response analysis. Results can be compared to those obtained by direct application
of the finite element method for the verification of theoretical integrity of the
mathematical model D and as importantly for the assessment of the several

component mode sets implemented in the code.

VI-1-2. Network Capabilities

Special care has been exercised so that the network of programs has a simple
structure and at the same time be generic enough to model any complex cluster
formation multibody structure. Attention has also been paid (within the resources
available) in order for the network to perform its tasks in the minimum possible time.
The network is easily usable and reliable, since it has been through extensive

validation tests.

Components with identical mass, stiffness, damping matrices and interface
constraints are only analysed once within the same network run. As it will be
demonstrated later in this chapter, this feature has dramatic effect in sparing
computing time. Large multibody systems are typical examples of structures with a

high number of identical components. Further time reduction is realised since
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matrices for identical components are created, stored and retrieved only once. A
typical model of cluster formation large flexible muitibody structure with a number of

identical components has been illustrated in Figure IV-1.

Computing time reduction is also accomplished in exiracting static modes using a
mulitiple algebraic solution. Special algorithms have been developed for this
operation and have been incorporated along numerical algorithms from the NAG

Routines Library.

The modularity of the network structure suggests that for a number of operations only
a small part of the network needs to be executed, with obvious computing time
related benefits. A few examples would be the addition or removal of components,
structural modification on a small number of components, repositioning or
reorientation of members, alterations on the interface conditions between adjacent

substructures, different component set utilisation and component mode set size

reduction.

Other capabilities of the network are of inherent nature, since they are directly linked

to the capabilities of the general methodology and the mathematical model derived.

VI-1-3. Implementation of Component Mode Sets

The linear elastic deformation field of each component is approximated using
component mode sets. The component modes may be combinations of dynamic and
static modes. Several component mode sets have been incorporated in the network
of programs. The structure of mathematical model D, being generic and compact,
allows the direct implementation of any component mode set possible. 'Correction’
terms are included in the mathematical model D so that interface conditions at the

boundaries of distinct components are not violated for any component mode sets.
Since structures in space are composed of complex components, within the

framework of this network each component has been spatially discretised using the

finite element method. The network has been interfaced with the commercial finite
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element package ANSYS. The finite element model of a component is imported into
ANSYS pre-processor and in the solution phase the consistent mass and stiffness
matrices of the finite element model are calculated. Using ANSYS post-processor
facility the matrices can be output in binary files. Specially adapted programs from
ANSYS Programmer's Manual®' have been employed to output the matrices in 12
decimal places precision, reducing the numerical error. ANSYS solver is also utilised
for deriving the rigid-body modes and dynamic normal vibration modes, subject to the

interface constraints dictated by the component mode selection.

Within the network of programs the static modes such as redundant constraint and
constraint modes, that complement the dynamic modes to form a component mode
set, are calculated using specially developed algorithms. In total 5 distinct component
mode sets have been implemented, namely the redundant constraint, constraint,

loaded-interface, fixed-interface and free-interface component mode sets.

VI-1-4. Network Structure

All data extracted from finite element package ANSYS is processed by several
custom developed programs before reaching the final program of the network.
Information can also flow into ANSYS and is provided by special programs that
output the necessary data in ANSYS language. The final program, which is
essentially the programming code for the mathematical model D, calculates the
global mass, stiffness, damping matrices and generalised forces acting on the
system. Subsequently, using external subroutines form the NAG Routines Library,
the natural frequencies and mode shapes of the structural system are obtained.

Additionally a direct or modal frequency response analysis can be performed.

The analyst develops the finite element models of the components that need to be
analysed in ANSYS language and also provides, using data files, the following

information:

i. The kind of flexible component mode set to be used for each component.
ii. The number of component normal modes to be retained in the analysis, thus

controlling the size of the formulated problem.
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Vi.
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The orientation of the appendages relative to the main platform.

The location points of the appendages on the main piatform.

The interface constraints between an appendage and the main platform.
The external boundary constraints on the main platform.

The identical components so that they are treated only once.

The forces acting on the system.

The time step for frequency response analysis analysis.

The detailed structure of the network is presented in Table 1. The user’s data files,

programs developed as well as intermediate and final results data files are presented

subsequently.
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P
f Appendagej Mainbody

Users.dat

Users.dat

Attach.dat

il '

Global
Mass Matrix
Stiffness Matrix
Damping Matrix

Attach.dat

Boundary.dat

Generalised
Forcing

¢ Attach.dat

Rotation.dat

Eigenvalue
Analysis | Users.dat [T

Modal or Direct
Frequency
Response Forcing.dat

Analysis

Step.dat

—> Reapeat for each appendage j with different geometry — + different interface conditions

[ Allincluded files I Executable program Data File ~ B Results File

Table VI-1  Network of Programs based on Mathematical Model D
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VI-2. Computational Cost

VI-2-1. Background and Assumptions

At this part the concentration is shifted on the computing time related advantages of
the proposed method relative to the computer time consumed by the direct
application of finite element method for obtaining the eigenvalues and eigenvectors
of a structural system. More specifically, it will be demonstrated that it is
advantageous to use the proposed method over the more conventional direct finite
element approach for formulating and solving the eigenvalue problem. As a direct
outcome of the computer time advantage to perform an eigenvalue analysis, it can
be easily extrapolated that the proposed method is faster for performing frequency

response analysis than the modal, and hence the direct, finite element method.

In general computer time in eigenvalue analysis increases at about the square or
cube with an increase in the number of degrees of freedom. Thus, if the structure is
divided in a number of components, the separate component mode extraction
analyses will consume much less time than the eigenvalue analysis of the whole
structure. It is usually the case that the rest of the mathematical operations, ie.
substructure assembly to form the reduced order mathematical model and the
subsequent eigenvalue analysis of the truncated model, consume only a fraction of

the time saved, hence the whole substructuring exercise benefits a large time saving.

Computer time requirements for an eigenvalue analysis depend on a variety of
factors. These include amongst others the specific eigenvalue method used, order of
the formulated mathematical problem, number of eigenvalues exiracted, type of
elements and density of the formulated matrices, time spend on each multiply-add

loop, time spend to create, store, and read matrices and the memory capabilities of

the computer.

Since the purpose is to compare the relative speed of the proposed method to the
direct finite element method, not the direct calculation of the CPU time, a few
variables can be excluded from the comparative study. In this sense time spend to
store and read mairices does not affect the comparison and therefore will be

eliminated from the study. Additionally it has been assumed that the computer
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capabilities are such as the eigenvalue problem can be solved in core and no spill
over effects are present. In fact compromised memory capability is likely to affect
only the direct finite element approach, and not the proposed method, since the
formulated matrices in the former are of much larger size. Lastly, time spend in
generating finite element matrices is linearly proportional to the size of the matrix.
Therefore creating a single large matrix or a number of smaller ones should take
approximately the same time. The proposed method has a certain advantage over
the direct finite element method since matrices of repeated components are not
generated a second time. Nevertheless, time spend in creating matrices is not
accounted for, although it would be on the benefit of the proposed method. In
summary, a number of parameters that would affect the absolute values of computer
time estimation are assumed of secondary importance for comparison purposes and

therefore eliminated from the analysis.

VI-2-2. Time Estimation of Various Mathematical Operations

VI-2-2-1. Time Estimation for an Eigenvalue Analysis

Eigenvalue extraction has been performed using either the Inverse Power Method or
the Givens Method. The former is advantageous to use with large sparse matrices
where only a relatively small number of eigenvalues are to be extracted. Matrices
derived from finite element method application are indeed large and sparse. The
problems associated with the method is poor reliability caused by skipping
eigenvalues in cases of high modal density, therefore a Sturm modified version can
be used. On the other hand Givens Method is best suited to small order problems
and in the cases that the matrices are dense or a large number of eigenvalues needs
to be derived. The main problem associated with the method is that it cannot deal
with semi-positive definite stiffness matrices, hence it is inappropriate for applications
involving articulated multibody structures. This problem can be circumvented with the

Modified Givens Method.
The time requirements to perform an eigenvalue analysis using the Inverse Power

Method is given by the simplified formula® below, leaving aside the secondary

variables mentioned in the previous paragraph.

134



Chapter VI - Computational Implementation

= 1 2 -1
M) =k E(1 NC?420NC ) (VI)
where
k  the time spend for each multiply-add loop
E  the number of eigenvalues to be extracted
N the order of the mathematical model
C  the number of active columns

The time increases linearly with the number of eigenvalues that need to be extracted,
rendering the method expensive if a large number of eigenvalues is expected.
Nevertheless, typical finite element matrices are fairly large and sparse, hence N >>

C, therefore the method best suited to such problems.

The time required by the Givens method is given by the following simplified

formula.®?

(Teig )GIV

=5 k N{H%) (VI-2)

The method cannot take advantage of sparse matrices and therefore it is very
expensive relative to the Inverse Power Method for dealing with large sparse
problems. On the other hand it is ideal for dense matrices such in the cases resulting
by application of size truncation methods, and especially so if a large number of
eigenvalues are to be extracted. in these cases the number of active columns C is of
the same order as the degrees of freedom of the system and the Inverse Power
Method looses its advantage over the Givens Method uniess only the first few

eigenvalues need to be extracted.

Utilising equations (VI-1) and (VI-2) and assuming the number of eigenvalues to be
extracted so that E/N is small, the inverse Power Method is beneficial over the

Givens if
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E<5N2/(C2+ 40C) (VI-3)

In summary the Inverse Power Method has an advantage over the Givens Method
for matrices where N>>C applies, unless a very large number of eigenvalues need to
be extracted. For dense matrices, unless a very small number of eigenvalues is
needed, Givens is the preferred method. Equation (VI-3) is an excellent way in

deciding on the quickest of these methods.

VI-2-2-2. Time Estimation for the Solution of a System of Equations

The time requirement for the solution of a multiple algebraic equation of the form
A =B (VI-4)

is given by the following simplified equation.®

T, =k (1 C* N+2 NMC) (VI-5)

alg

where the notation is obvious from the previous equations.

The first part of equation (VI-5) is the time required to perform the decomposition of
the Ayy matrix and the second part is the solution of the multiple algebraic system

using a forward and backward substitution.
VI-2-2-3. Time Estimation for Matrix Muitiplication
The time to perform the multiply operation®

AnmBump =Cnp (VI-6)
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is given by

T .=kNMPr (VI-7)

mult

where

N is the number of rows of the first matrix
M is the number of columns of the first matrix
P is the number of columns of the second matrix

r is a factor accounting for the density of the denser matrix

VI-2-3. Time Requirement for the Global Finite Element Method

The finite element model of a structure is a typical example where is most efficient to
utilise the Inverse Power Method. The time required by the direct application of the

finite element method is given by

G 2 -
( Teig )INV =k Eg (% Ng Cg +20 Ng Cg ) (VI 8)

where

k is the time of multiply-add loop
Ey is the number of eigenvalues extracted.

Ny s the order of the global structure mathematical model.
C

g is the number of active columns of the global matrices.

VI-2-4. Time Requirement for the Proposed Method

Although the proposed method (method III) can handle tree configuration multibody
systems it has been developed analytically for cluster formation structures. For the

purpose of consistence the following analysis refers to a cluster formation multibody

structure.
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Time Estimation for the Eigenvalue Analysis of Individual Components

The Inverse Power Method has been used to perform eigenvalue analysis on the

individual substructures.

Drep

(Tugen ) o =k [ By 05 N,C2 420 NuCL )+ Y ( B, (0.5 N,C%+20 N,C,) |
- (VI-9)

where

En is the number of component modes used for the main structure.

N, is the order of the main structure mathematical model.

Cn  is the number of active columns associated to the mainbody

E. is the number of component modes used for each appended component.
Na; is the order of the appended component mathematical model.

C. is the number of active columns associated to each of the appendages.

Nep  is the minimum number of appended components that need to be analysed.

Time Estimation for Static Mode Extraction

The time required to extract static modes can be calculated based on equation
(VI-5).

Drep
wio =k | (0.5 C2N, 42 N (B ). Con )+ > 05 C2N, +2 Ny (B ) Cai)

TS
i=1
(VI-10)
where the number of static modes for the mainbody and each appe
respectively given as
Rapp
(Bya ) = D, (dof ;) (VI-11)

i=1
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(Estat )ai = dof (VI-12)
where
Napp IS the total number of appended substructures.

dofy is the degree of constraints at each interface.

Time Estimation for the Synthesis of the Global Mass Matrix

The time required to perform all multiplication in order to synthesise the global mass
matrix of mathematical model D is based on equation (VI-7), where it has been

assumed that the value r equals to unity for all manipulations.

(T )D =Tom + Ty Ty ¥ T (VI-13)

mass

where

(Tmase)p  is the total time to generate the global mass matrix.

Tam is the time to generate the M, terms given by equation (V-65).
T is the time to generate the M, terms given by equation (V-66).
Ty,  is the time to generate the My, terms given by equation (V-67).

Ty is the time to generate the ‘¥ term given by equation (V-64).

The time required for the above operations is as follows

Drep
T =K | By N2 B2 N, + D (6 N2 +62N,, +6%E, +6 E3)| (VI-14)
1=1
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Drep
-1

Ty, = Z(NZi E, +Ea2i Nai) (VI-15)

i=1

J VI-16
T, =k | S.(6 N, E, +6 E2) (VI-16)

i=1

Drep
Ty =k 2(6 Ny E) (VI-17)

i=1

Time Estimation for the Synthesis of the Stiffness Mass Matrix

The time to generate the global stiffness matrix is given by the next expression and is

based on equation (VI-20)

Dyep

(Tugttneee )y = BN + EZN, E(E N2 +E2N

S

) (VI-18)

Time Estimation for the Eigenvalue Analysis of the Reduced Order Global

Structural Model

Using equation (VI-3) it can be demonstrated that the eigenvalue analysis is best
performed using the Givens Method, unless only the first few eigenvalues are of
interest. The time required to perform an eigenvalue analysis on the reduced order

mathematical model D can be approximated by the following equation

eig

(T B =5 k N, [HEJ (VI-19)
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where

E; the number of eigenvalues

N, the order of the reduced mathematical model of the global structure.

The order of the reduced mathematical model is given by the expression

Nr = (Em + Eai )+ Napp (Eai + (Estat )ai) (V1-20)

For the comparison of the computer time required by the direct finite element
approach to perform an eigenvalue analysis relative to the method proposed the

Computer Time Ratio parameter s is set up and given by the following expression

5= (Teig )ICI}\IV/ ( <Teig )SINuE/ + (TStatic )D + (Trnass )D + Tstifness + (Teig )i;lz,) (VI-21)

s>1 implies that the method proposed is faster to the direct element method by as

many times as the value of s.

VI-2-5. Case Studies

The time advantage depends on a variety of reasons, but those inherently linked to
the structural mode! are the mathematical size of the entire structure, mathematical
size of the individual components, the total number of components, the number of
identical components in the system and the number of component modes used for
acceptable convergence. It is therefore, the purpose of this section to examine the
effects of the above on the computing cost relative to the direct application of the
finite element method. For demonstrating clearly the advantages and limitations of

the proposed method in terms of computer time a number of case studies have been

employed.
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VI-2-5-1. Case Study 1

It is the intention to demonstrate the relative computer time required to perform each
stage of the proposed method as function of the order of the entire system and
compare this to the time consumed by the direct finite element approach for resulting

to the eigenvalues of the system.

The structural system modelled, similar to that illustrated in FigureVI-1, is composed
of a main platform and eight appended components. The platform carrier is 30
meters long, 1.5 meters high and 1.5 meters wide. It is composed of aluminium
hollow beam components positioned appropriately in space in order to create a high
stiffness structure. The appendages are may represent solar panels, antennas,

booms etc.

In this study case all appendage are considered different to each other. The order of
the mathematical model of the main structure is 20% of the degrees of freedom of
the structural system and the order of each appendage approximately 10%. The
linear elastic deformation of the main structure has been modelled with 30 dynamic
modes and for each appendage with 10 dynamic modes. The dynamic modes have
been complemented with 6 static modes for each interface node. It has been
assumed that static correction modes have been used to model all components. 30
eigenvalues have been obtained from both the finite element model and the reduced

size model.

For the number of active columns to the order of the finite element matrices has been

assumed that

aQ

C ,
o S g
N, N, Ny

1]

corresponding to sparse matrices in all cases.
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The computing time dependency on the degrees of freedom of the system is

illustrated in Figure VI-2. From Figure VI-2 and the formulas developed several

conclusions have been drawn.

The larger the number of degrees of freedom of the system the higher the
time benefits of the proposed method relative to the direct finite element

application.

If the total number of the degrees of freedom of the entire structural system
is relatively small there may be no advantage in pursuing a substructuring
approach. In the particular example this is true if the order of the system is
lower than approximately 1400. This limitation has been anticipated for &
variety of reasons. Most importantly any substructuring exercise ceases to
be beneficial if the generalised modal coordinates tend to be close in number
to the physical degrees of freedom of the substructure. In the particular
example the physical degrees of freedom have been varied but the number

of component modes stayed unchanged.

It is difficult to generalise the findings of this study case for any possible
structural configuration for assessing the exact relative time that the various
stages of the proposed method require for completion. Relative time
depends on various parameters such as the order of the system, number of
component modes included, total number of components, number of
identical components, density of the formulated matrices, number of
eigenmodes extracted etc. In general though, it can be concluded, with
parallel examination of the formulas developed, that the most time-
consuming stage, within the proposed method, is the process of synthesising
the equations of motion and the extraction of the eigenmodes for all the
individual components. The extraction of static modes and the eigenvalue
analysis of the reduced order global model occupy the least time. This is not
to imply that the static modes contribute only minimally to the computer time
requirements of the proposed method. At the synthesis stage and the final
eigenvalue analysis, each static mode included results to the same time

penalty as each dynamic mode.
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iv. More specifically, in the particular example the synthesis stage not only is
the slowest, but also occupies over 90% of the total time of the
substructuring exercise. This can be attributed to a number of reasons:

a. The number of component modes used is very large, due to the
inclusion of static modes for every component. In practice this is not
always necessary.

b. The factor accounting for the density of the matrices in the
multiplications involved in the synthesis process has been considered
equal to unity. This not always the case and much smaller values can
be achieved in reality, accelerating the process by far.

c. The finite element matrices of the individual components have been
assumed sparse and the number of the extracted normal modes fairly
low. Increasing the density of the matrices and the number of normal
modes extracted the eigenvalue analysis of the individual components

may be as computationally time intensive as the synthesis process.

V. This example was purposely designed to offer an advantage to the direct
finite element approach. The finite element matrices of the complete
structure have been assumed very sparse and a small number of modes
have been extracted. Nevertheless, it has been demonstrated that even in
the case of a large number of component modes, dissimilar substructures
and least favourable matrix multiplications, a substructuring method is in
general more computationally efficient to the direct application of the finite

element method.

VI-2-5-2. Example Case 2

The purpose of the second example case is to demonstrate the time benefits of the
proposed method over the direct finite element method as the number of individual

component increases.

In the first case the structure is modelled with eight appended components all

assumed to be different to each other. The order of the mathematical model of the
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main structure is 20% of the degrees of freedom of the structural system and the

order of each appendage approximately 10% of the total.

In the second case the same structure is modelled, with the difference that two of the
appendages are included in the mainbody model. The rest six appended
components have all been considered different to each other. The order of the
mathematical model of the main structure is 40% of the degrees of freedom of the

structural system and the order of each of the six appendages approximately 10%.

In the third and fourth cases the same structural models are considered as in first
and second case respectively with the difference that the appended components are

considered identical.

The last case considers a different structure, where the mainbody occupies 20% of
the degrees of freedom of the total system and six dissimilar appendages share the

remaining degrees of freedom equally.

For all cases the linear elastic deformation of main structure has been modelled with
30 dynamic modes and for each appendage with 10 dynamic modes. It has been
assumed that static correction modes have been used to model all components as in
the previous example case. Moreover the ratio of active columns to the order of the

components is as detailed in the previous example case.

In Figure VI-3, the Computer Time Ratio s of the proposed method relative to the
direct finite element method has been illustrated as function of the total degrees of

freedom of the structure. The conclusions of this example case are the listed below.

i. The number of identical component is a crucial factor and the relative speed
of the proposed method increases as the number of identical components
increase. By examination of the formulas presented it is apparent that the
number of identical components affects the time of every stage in the

substructuring process other than the final eigenvalue extraction.

ii. The effect of the number of appendages on the computing time of the

proposed method is less straightforward. Figure VI-3 demonstrates large
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differences in computer speed between two structures with the same number
of dissimilar appendages and the same number of total degrees of freedom.
The difference between the two cases can be traced in the fact that the
distribution of the degrees of freedom between the substructures is much
more uniform in the faster of the processes. In fact, uniform distribution
results in reduced computer time in all stages of the substructuring analysis
other than the final eigenvalue extraction, according to the formulas
presented. Moreover, the overall speed performance of this particular case
with six appendages is even better than for the case of eight appended
components. Since the computer time requirements for the analysis of the
mainbody is essentially the same between the two cases, the conclusion is
that the uniform distribution of component degrees of freedom can be more
important factor for the speed of the substructuring method than the total
number of components. This will depend largely on the number of total
components, identical components, and component modes. In general
though, it is expected that the relative speed of the method should increase

as the number of components increase.

In general, the detailed study of the speed of a substructuring method as a
function of the number of substructures and the distribution of degrees of
freedom can pose an interesting problem. For the structural systems studied
in this work such an investigation is surplus since the number and size of the
components is predetermined. The particular discussion has been presented
only in order to demonstrate that even in the cases that a small number of

substructures is present it may still be beneficial to pursue a substructuring

method.

For a structure with 'well distributed’ degrees of freedom and a large number
of appendages a tenfold speed difference between the proposed method

and the direct finite element approach may well be a conservative estimate.
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VI-2-5-3. Example Case 3

It has been concluded from the first example case that the computer time required for
the extraction of normal modes of vibration for the individual components is much
higher than for the calculation of static modes. Moreover, the number of dynamic
modes can be directly truncated from the component mode set using a cut-off
criterion as opposed to the static modes. In any case it is important to assess the
benefits of the proposed method relative to the direct application of the finite element

method as the number of normal modes increases.

As in the previous cases the structure has been modelled with eight appended
components all assumed to be different to each other. The order of the mathematical
model of the main structure is 20% of the degrees of freedom of the structural
system and the order of each appendage approximately 10%. The ratio of the active

columns to the order of the components remains small as in the previous cases.

The normal modes extracted have been varied for both the main structure and each
of the appendages. The component mode sets have been complemented with 6
static modes for each interface node. It has been assumed that static correction

modes have been used to model all components.

Two cases have been examined. In the first case the total degrees of freedom of the

system have been set to 2000 and in the second case to 10000. The speed ratio s

for both cases has been illustrated in Figure VI-4. The conciusions of this example

case are listed below.

i. Increasing the number of component dynamic modes is crucial to the speed
performance of the proposed method relative to the direct finite element
method. This implies that serious consideration should be exercised on the

number of dynamic modes that need to retained in the analysis.

ii. As anticipated the smaller the order of the system the more important it is to
reduce the number of dynamic modes to the bare minimum if the benefits of

the proposed method are to be retained.
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As discussed previously the speed reduction due to inclusion of static modes is not
to be underestimated, since both the synthesis and final eigenvalue analysis are
affected by the static mode number as much as by the number of normal modes. It is
therefore wise to understand where the inclusion of static modes is necessary and

where can be omitted.

VI-2-5-4. Example Case 4

Even in the 'extreme’ case that one complete iteration of the proposed method may
not be beneficial relative to the direct finite element method for reasons covered in
the previous cases, it may still be a gain if only a part of the particular analysis were

to be executed for a number of iterations.

Moreover, in a lot of applications a particular component or number of components
need to de redesigned whereas the rest remain unchanged. This implies that in the
substructuring approach only a part of the process needs to be re-executed. If the
particular components are to be redesigned a number of times, the time benefited
from one application will be gained multiple times. Perhaps an optimisation loop

around only a few components is an example that most has to be benefited.

Other cases may involve an articulated multibody system where a study of the
system in a number of configurations is of interest. Reorientation of components in
space can be accomplished by executing only the synthesis process of the proposed
method and an eigenvalue analysis of the reduced order system. Similar would be

the cases of component repositioning relative to the main structure.

To demonstrate the benefits of utilising the proposed method for partial redesigning
of the system and for reorientation or general repositioning purposes, a structural
system composed of eight appendages has been selected. The mainbody occupies
the 60% of the total degrees of freedom and the rest of the degrees of freedom are
divided equally between the remaining substructures. As in the previous examples,
the linear elastic deformation of main structure has been modelled with 30 dynamic

modes and for each appendage with 10 dynamic modes. It has been assumed that
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static correction modes have been used to model all components as in the previous
example case. Moreover the ratio of active columns to the order of the components

is as detailed in the previous example case.

Two cases have been examined. In the first case only two of the appended
components have undergone design changes and the relative speed of the proposed
method to the direct application of the finite element method has been assessed as a
function of the total degrees of freedom of the system. In the second case a
reorientation study of all the appended componenis has been performed. As a
control study a complete substructuring exercise has also been performed. The
results of the studies have been illustrated in Figure VI-5. The following conclusions

have been drawn.

i, As anticipated, the complete application of the proposed method is not faster
than the direct application of the finite element method even for a large

number of degrees of freedom.

ii. For each redesign process of the two components time has been gained
relative to the direct finite element approach. Even if the gains are not
enormous repeating the process a large number of times, as in the case of

an optimisation routine, a lot has to be profited.

fii. It is obvious that even in this ’extreme’ example case a reorientation exercise
is quicker using the proposed method. Maybe in the first execution of the
proposed method some time is lost relative to the direct finite element
approach but the time lost will be made up by the time gained in every

reorientation exercise.
VI-2-6. Conclusions on the Computational Cost
It has to be noted that in all comparisons the 'advantage’ has been offered to the
direct finite element method in order not to bias results in favour the proposed

method. These include the inclusion of static modes for all components, a very small

active column ratio to the order of the system, a density factor of unity involving all
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multiplications performed in the proposed method, a small number of appendages,

memory issues etc.

The benefits of the proposed method over the direct finite element application on the

computer time requirements are summarised bellow.

The speed of the proposed method increases relative to the direct finite

element approach as

e The number of degrees of freedom of the structural system increases.
¢ The distribution of the degrees of freedom is more uniform between the
components.

The number of identical components increases.

The number of component increases.

The number of component modes per component decrease.

Even in cases that a single complete application of the proposed method is
not beneficial in computational time, it may still be advantageous to utilise
the proposed method for a small number of component design iterations, as

well as for component reorientation and repositioning studies.

The analyst should exercise judgement on the number of dynamic modes
retained in the analysis since these have a pronounced effect on the speed

of the proposed method.

In general there is a lot to be gained in computer time terms by the
application of the proposed method. In a typical multibody structure, as the
ones proposed for future space missions, a tenfold of speed gain seems to

be a conservative target to achieve for eigenvalue analysis purposes.

If there is a time benefit in eigenvalue analysis, it is straightforward to
conclude that the same would apply for a frequency response analysis

relative to the direct or modal finite element method frequency response

analysis.
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VI-3. Conclusions on Computational Implementation

Vi.

Vii.

The network of programs has been based on mathematical model D
therefore any complexity peripheral formation multibody structure can be

analysed.

The final deliverables of the network are the eigenvalues of the structural
system and the eigenvectors in modal or physical space. Additionally,
physical displacement, velocity and acceleration of any point on the structure
can be derived as a function of the forcing frequency using either direct or

modal frequency response analysis.

The network is interfaced with the commercial finite element package
ANSYS. Componenis of any complexity can be modelled using the finite

element method.

Any of the three articulation axes at the interface between the components
can be free or locked, thus any non-translating joint configuration can be

modelled.

Identical components are analysed only once reducing the computational

time to a great extend.

Any type of component mode set can be imported. Already 5 component

mode sets have been implemented.

Analyst input is minimal since the network is controlled by only 5 user’s data
files. The analyst can select the kind of component modes to be
implemented for each component and the number of normal modes to be
retained in the analysis, thus has control over the computer time required
and the accuracy of results. Moreover, the analyst can easily specify the
orientation and the location of the appendages, the constraints at the
interfaces between components and the external boundary constraints on

the main platform carrier.
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The structure of the network is modular and in many cases only part of the
network needs to be executed to obtain solutions, thus reducing

computational cost.

The network needs low memory requirements to perform, unlike the direct
finite element approach that models the entire structure as a single entity,
hence large-scale systems can be analysed with limited computer resources,

and computer speed accelerated.

The network has been validated over a large range of cases and is therefore

reliable.

In general there is a lot to be gained in computer time terms by the
application of the proposed method. In a typical multibody structure, as the
ones proposed for future missions in space, a tenfold of speed gain seems to

be a conservative target to achieve for eigenvalue analysis purposes.

The speed of the method relative to the global finite element method
increases as the number of the total degrees of freedom increase,
distribution of component degrees of freedom is more uniform, number of
components and identical components increase and component mode

number decreases.

If there is a time benefit in eigenvalue analysis, it is straightforward to
conclude that the same would apply for a frequency response analysis
relative to the direct or modal finite element method frequency response

analysis.
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Results

VII-1. Prologue

The natural frequencies of peripheral formation structural configurations have been
derived utilising several component mode sets, and results obtained have been
compared to those derived by modelling the entire structure using the finite element
method. Moreover, frequency response analysis studies have been undertaken.
Several conclusions have been reached for both the efficiency of various component

mode sets and modelling practices for large flexible structures in space.

The modal frequency response analysis is the most efficient way, within the
framework of this work, for demonstrating the accuracy of the global modes derived
by using the proposed method. Global finite element frequency response analysis
has been used as a benchmark. Cross mode orthogonality methods could also be
used for comparing the global modes derived by the proposed method to those
derived from direct application of the finite element method. Nevertheless, such an
exercise would be difficult to perform due to dimensionality differences between the

finite element model and model resulting for the proposed method.

This chapter includes five main case studies. The purpose of the first case study is to
demonstrate that large flexible components, such as space-frame platforms, exhibit
high modal density and local deformation at the component attachments. In the
second case study a structural parametric study is undertaken in order to establish a
general criterion which may determine the degree of the local deformation at
component interfaces. The third, fourth and fifth case studies compare the
effectiveness of several kinds of component mode sets in capturing the deformation
of complex components, and thus modelling with accuracy the dynamics of flexible

structural systems.
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VII-2. Localised Deformation ( Case Study 1)

A typical example of a plaiform in space is illustrated in Figure VII-1. This space-
frame beam-like lightweight platform is very similar in design to space-frame
structures that have been used, amongst others, by NASA for theoretical and
experimental research on integrated structure/control optimisation’”’®. The platform
carrier is 30 meters long, 1.5 meters high and 1.5 meters wide. It is composed of
aluminium hollow beam components positioned appropriately in space in order to
create a high stiffness structure. The total mass of the structure, including the control

hardware, does not exceed 300 Kg.

In this case study, the platform is assumed to have docked on a much larger orbiting
structure, such as a space station, for servicing purposes. The space-frame platform
has been modelled as clamped at the nodal points that belong to the plane where the
platform attaches to the docking station (Figure VII-1). A symmetric, uniform
Timoshenko beam, clamped at one end and with the first few natural frequencies
close to those of the space-frame platform has been devised for comparative studies.
The natural frequencies of the space-frame and the equivalent beam structure are

shown in Tables VII-1,2 respectively.

Both structures are loaded with mass first and then with mass and rotary inertia at
their free ends, at a nodal point at the centre of their respective geometric cross-
sections. In order to examine the extent of the localised deformation at the points
where the rigid payload attaches to the structure, the deformation field for both the
space-frame and the beam equivalent are modelled using free-interface normal
modes. Free-interface modes cannot by nature capture the deformation effect of the
attached payload on the structure, so they are ideal for this study. A number of free-
interface normal modes have been imported into the generic mathematical model
and the 30 first eigenfrequencies have been derived for several values of mass and
rotary inertia. For each loading case the results have been compared to the
eigenfrequencies obtained by modelling both structural systems using the finite
element method. For this purpose the first case study has been further divided in
several example cases and remarks for each example have been produced. The

conclusions of the first case study follow the example cases.
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VII-2-1. Example Case 1

Both the space-frame and the beam structure have been loaded with concentrated

mass at their free ends. The mass is 16 Kg, which is only a small payload to be

carried by the structure and in reality this may represent the mass of a small servo-

motor. The first 30 natural frequencies of the loaded beam structure and space-frame

have been derived using the finite element method and compared to the natural

frequencies obtained using 40 free-interface modes. The results are shown in Tables

VII-3,4 respectively. The following remarks can be made:

In general, there is a very good agreement in the results between the finite
element method and the free-interface method in the case of the beam, as

demonstrated in Table VII-3.

The largest differences observed, modes 2,15 etc. (Table VII-3), correspond
to axial modes, but these are still small. This is an anticipated result since in
the spectrum of the 40 free-interface normal modes employed there is only a
very small amount of axial beam modes (Table VII-2), thus convergence is

difficult.

The torsional modes of the loaded beam should be the same to the torsional
modes of the unloaded beam, since no rotary inertia has been added on the
tip of the beam. Extremely small discrepancies between the finite element
method and the free-interface results (Table VII-3: modes 3,13 etc.) are
mainly due to numerical errors associated with matrix multiplications in
mathematical model D and possible rounding errors in the results as

presented by the commercial finite element method package ANSYS.

Comparing the frequencies in Tables VII-3,4 to Tables VII-2,1 respectively,
another observation would be that the space-frame structure is generally

less affected by the inclusion of the mass than the beam structure.

For the case of the space-frame, Table VII-4, there is generally a good
agreement in the results obtained by the finite element method and the free-

interface method.
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The highest discrepancy is noted in the case of the axial modes 5, 11 etc,
Table VII-4. This discrepancy is fairly considerable for mode 5 (~ 5%),
implying at there may be a localised out of plane bending deformation of the
cross members supporting the mass. This argument is also supported by the
high drop in frequency of the first axial mode in the loaded case compared to
the unloaded case (loaded case: mode 5, unloaded case: mode 10). Such
high discrepancy is not noted for the bending modes since the cross

members supporting the mass are fairly stiff in compression — extension.

VII-2-2. Example Case 2

Exactly the same structural system as previously is presented. In this example case

50 free-interface modes are included. The results are shown in Table VII-5 for the

beam and in Table VII-6 for the space-frame. The following remarks can be made:

By using a higher number of modes, the difference between the finite
element method and the free-interface method is decreased for both
structures and for all modes (Tables VII-5,6 versus Tables VII-3,4). This is
an anticipated result, since free-interface normal modes belong to a

complete set.

Although, by adding 10 extra modes, in the case of the beam structure the
difference between the finite element method and the free-interface method
has been reduced dramatically for the case of the axial modes, this is not
true in the case of the space-frame structure. The improvement on the 1%
axial mode (mode 5) in the case of the space-frame is extremely small
(Tables VII-6,4), supporting the argument regarding the local bending
deformation of the supporting cross-members. The large number of free-
interface modes cannot effectively capture the local deformation of the cross-

members.
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VII-2-3. Example Case 3

This example is similar to the previous one other than that the attached mass has
been increased by a fivefold. The mass is 80 Kg, and in reality may represent the
mass of a control hardware system. 50 free-interface normal modes have been used
and the 30 first natural frequencies obtained have been compared to results from the
finite element method. Tables VII-7,8 correspond to the beam and space-frame

structures respectively. The following comments can be made:

i. Generally the difference between the finite element method and free-
interface method has been increased for both the beam and space-frame
(due to extra mass), but are still fairly small, although the mass has been

increased by 5 times.
ii. The highest differences are observed in the cases of the axial modes.

iii. The effect of the much larger attached mass causes localised deformation at
the attachment points of the space-frame, but the error is not that much more

pronounced than in the case of the smaller mass (Tables VII-5,6).

VII-2-4. Example Case 4

In this example the mass is reduced at its initial value of 16 Kg and a small amount of
rotary inertia is added at the tip of both the beam and space-frame structures. The
rotary inertia has the same value of 100 Kg-m?in all three directions. This load may
represent in reality a small lightweight solar panel. 50 free-interface normal modes
are included to describe the deformation of the beam and space-frame. The first 30
natural frequencies of the beam and space-frame are obtained and compared to
those derived by the finite element method, in Tables VII-9,10 respectively. The

following comments can be made:

i. Comparing Tables VII-5,7,9 corresponding to the beam structure, we notice
that the effect of the small rotary inertia is much stronger than the effect of

the large mass attached.
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ii. The difference between the finite element method and the free-interface
method for the calculation of the mass and rotary inertia loaded beam
frequencies is not significant even in the case of inertia attached. This
implies that there is no localised deformation as such associated to the beam

structure.

jii. Unlike the beam structure, in the case of the space-frame there is a
enormous difference between the finite element method and the free-
interface method when rotary inertia is added (difference ~ 200%). This
strongly suggests that there is high local deformation of the supporting cross-

members in torsion and bending in and out of plane.

VII-2-5. Example Case 5

In order to support further the argument for localised deformation at the attachment
points of a space-frame structure, in this example the flexible load-supporting cross-
members have been substituted by rigid ones. The attached mass is 16 Kg and
rotary inertia 100 Kg-m2 for all three axes, as in the previous example. The natural
frequencies of the unloaded space-frame have been calculated using the finite
element method and are shown in Table VII-11. 50 free-interface normal modes are
used to derive the natural frequencies of the loaded space frame. The 30 first natural
frequencies of the system have been compared to the frequencies derived using the
finite element method and are shown in Table VII-12. The following remarks can be

made:

i. The natural frequencies of the unloaded space-frame with rigid cross-
members (Table VII-11) are very close to the natural frequencies of the
space-frame with flexible cross-members (Table VII-1). This implies that the
rigid cross-members do not stiffen the original structure at any degree.

ii. Using rigid load-supporting cross-members, the difference of the natural
frequencies obtained by the finite element method to those resulting form the
free-interface method is small, and comparable to the difference observed in

the beam case (Table VII-9).
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Since the rigid cross-members do not stiffen the unloaded structure, the
reduction in the difference of the natural frequencies between the finite
element method and the free-interface method (compared to the difference
with flexible cross-members) suggests that the previous extreme differences

were due to localised deformation at the mass attachment.

Using rigid load-supporting cross-members the localised deformation at the

attachments has been diminished.

VII-2-6. Conclusions of Case Study I

It was shown that large lightweight structures in space, such as space-frame
components, may exhibit high modal density and, in cases, strong local

deformation near the attachments of appended payloads.

More conventional structural components such as beams, plates, cylinders
etc do not exhibit localised deformation as such at the attachments to
appended payload. Using a higher amount of modes, accepted convergence
can be easily, however not effectively, accomplished. However, this may not
be the case for components that may exhibit localised deformation when
loaded, such as the large flexible space-frame structures. For these
components even a large number of interface modes may not suffice to offer

acceptable convergence.

Modelling a complex geometry lightweight components, such as a space-
frame platform, with an equivalent beam, plate, cylinder etc. may be practical
for reducing the size of the formulated problem, but erroneous results may

be obtained if payloads would be attached on the component.

Approximating the deformation field of structural components that may
exhibit local deformation using free-interface normal modes should be
avoided, since they may lead to wrong results, even in the lower frequency
range. For more conventional components, free-interface normal mode
representation of the deformation may be an option, but a large amount of

modes may be needed for convergence.
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VII-3. Criterion for the Prediction of Local
Deformation ( Case Study II)

This study case is concerned with the investigation of the parameters which affect
the degree of the local deformation of a space-frame component at its attachments to
the other components in order to establish a general criterion. For this purpose a
structural parametric study has been undertaken. In this case study the space-frame
platform of Figure VII-1 has been loaded with two solar panels, as shown in Figure
VII-2. The solar panels have been modelled in this case study as beam-like

appendages. The structural system is considered free in space.

The obvious structural parameters to be manipulated are the inertia and stiffness
characteristics of the appendages and the stiffness of the platform carrier. Both the
inertia and stiffness characteristics of any structural component are depended on the
geometric characteristics of the component. In order to manipulate the inertia of the
components without affecting the stiffness of the components and vice versa, the
geometric characteristic of all structural components remain unchanged throughout
this case study. The inertia of the appendages will be changed by altering the
material density, and the stiffness of the components by altering the material
stiffness. The location and orientation of the appendages remain fixed throughout the

study.

Free-interface normal modes will be used to indicate the local deformation effects of
the space-frame platform. The appendage deformation is approximated by fixed-
interface normal modes. For every example case 30 free-interface normal modes for
the platform and 12 fixed-interface normal modes for each of the appendages have
been included in the mathematical model. The number of modes for both the
platform and the appendages are enough for modelling the structural system in the
frequency range of interest. The first 30 natural frequencies obtained for each
example case have been compared to the results from application of the finite
element method. The conclusions of the case study along with the comparative

Table VII-18 follow the example cases.
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VII-3-1. Example Case 1

For investigating the effect of the appendage stiffness on the local deformation at the
attachments of the space-frame platform, 3 values of material stiffness for the
appendages are chosen. The material stiffness of the appendages drops by a tenfold
in each case, E=7.2E10N/m?, E=7.2E9N/m?, E=7.2E8N/m®. The material density of
the appendages is fixed in all three cases at the value of p=27OKg/m3. The material
stiffness and density of the platform are also fixed in all three cases at the values of
E=7.2E10N/m® and p=2700Kg/m® respectively. Using the comparative results in

Tables VII-13,14,15 the following remarks can be made:

i. Decreasing the stiffness of the appended payload, the local deformation of
the platform at the attachments decreases. A physical explanation to the this
observation can be offered; appendages with low stiffness ‘give in’ more and

deform less the space-frame.

ii. For the case of very low appendage stiffness, E=7.2E8N/m?, the space-
frame free-interface normal modes give fairly good results, implying that the
local deformation of the platform at the attachments to the appendages is

fairly low.
VII-3-2. Example Case 2

If the decrease of the stiffness of the appended payload reduces the deformation of
the platform at the attachments, so should the increase of the stiffness of the space-
frame. To demonstrate the above, in the current example the material stiffness of the
space-frame platform has been increased by a tenfold, whereas its material density
has remained unchanged (E=7.2E11N/m? and 2700Kg/m®). The appendages have
values of E=7.2E10N/m? and 270Kg/m. The results are shown in Table VII-16. The

following remarks can be made:

i. Tables VII-13,16 show that by increasing the material stiffness of the

platform the local deformation decreases.
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ii. Although the natural frequencies of the structural system in Table VII-14 are
very different to the frequencies in Table VII-16, the difference between the
finite element method and the free-interface method is almost exactly the
same in the two cases for every mode. This implies that the local
deformation of the space-frame may be related to the relative stiffness of the

attached components.

iii. Extending the above observation one may assume that there may be a
relationship between the natural frequencies of the platform and the
appendages that determines the degree of the local deformation at the

attachments.
VII-3-3. Example Case 3

The aim of this example is dual. Firstly to investigate the effect of the increase of the
inertia of the appendages on the local deformation of the space-frame at the
attachments. Secondly to establish if there is a relationship between the natural
frequencies of the platform and the natural frequencies of the appendages that may
determine the degree of the local deformation. For this purpose, the material density
and material stiffness of the appendage are set at p=2700 Kg/m® and E=7.2E10N/m’
respectively. The material density and material stiffness of the platform are set at
p=2700 Kg/m® and E=7.2E10N/m>. If there is a straight relationship between the
natural frequencies of the appendages and the platform that determines the local
deformation at the attachment of the components, then the difference in the results
between the finite element method and the free-interface method for this example
should be the same as in Table VII-14. The example case that corresponds to Table
VII-14 involves a platform with the same characteristics as the current example case
and appendage characteristics of p=270 Kg/m® and E=7.2E9N/m?, thus the same
appendage natural frequencies as the current example. The results of the current

example are found in Table VII-17. The following comments apply:
i. Comparing the results presented in Tables VII-14,17 we notice that the local

deformation is higher in Table VII-17 than in Table VII-14, whereas the

natural frequencies of all components are the same in both cases. This
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suggests that there is not a straight relationship between the natural
frequencies of the appended payload and the natural frequencies of the
platform that may determine the degree of the local deformation at the

attachments.

ii. The difference between the finite element method and the free-interface
method, which determines the degree of the local deformation at the
attachments of the main platform, is of the same order as in Table VII-13.
The example case that corresponds to Table VII-13 involves a platform with
the same characteristics as the current example case and appendage
characteristics of p=270 Kg/m® and E=7.2E10N/m? i.e. appendage with
much lower inertia characteristics, and therefore of much higher natural
frequencies. This suggests that the effect of increasing the inertia of the
appendage is not readily obvious and it seems it may affect only slightly the
local deformation of the platform at the attachments. This also suggests that
there is not a straight relationship between the natural frequencies of the
appended payload and the natural frequencies of the platform that may

determine the degree of the local deformation at the attachments.

VII-3-4. Criterion for Local Deformation Prediction

The results regarding the degree of the local deformation of the platform along with
the material stiffness and material density of the space-frame and the appendages
for the example cases 1,2,3 of the current case study are shown in the collective

Table VII-18.

The objective is to establish a general criterion that determines the degree of the
local deformation of the carrier platform at the attachments to the appended payload.
For this purpose, the natural frequencies of the appendages involved in all previous
examples are calculated using the finite element method and shown in Tables VII-
19,20,21. The natural frequencies of the platform loaded the inertia of the associated
appendages are also calculated and shown in Tables VII-22,23,24. The

correspondence of the tables associated to the natural frequencies of the
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components for each structural system to the Tables VII-13,14,15,16,17, that

determine the degree of the local deformation for each system, is as follows:

Tables VII-19,22 correspond to the structural system associated to Table VII-13;
high deformation

Tables VII-20,22 correspond to the structural system associated to Table VII-14;
medium deformation

Tables VII-21,22 correspond to the structural system associated to Table VII-15;
low deformation

Tables VII-19,23 correspond to the structural system associated to Table VII-16;
medium deformation

Tables VII-20,24 correspond to the structural system associated to Table VII-17;

high deformation

Comparing for each case the natural frequencies of the platform loaded with the
inertia of the appendages to the natural frequencies of the appendages and the

associated local deformation of the platform the following remarks can be made:

i. The higher the natural frequencies of the loaded platform relative to the
natural frequencies of the appendage, the lower the local deformation of the

platform at the attachments. This criterion applies for all example cases.

ii. More specifically, for the particular structural configuration, the higher the
fundamental frequency of the loaded platform relative to the fundamental

frequency of the appendages, the lower the local deformation of the platform.

iii. For the particular structural system the following quantitative results apply:

- If the loaded platform’s fundamental eigenvalue is twice or more the
value of the appendage’s fundamental eigenvalue then the local
deformation on the platform attachments is low (Tables VII-21,22 and
15).

- If the loaded platform’s fundamental eigenvalue is close to appendage’s

fundamental eigenvalue then the local deformation on the platform
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attachments is of medium degree. (Tables VII-20,22 and 14, Tables
VII-19,23 and 15).

- If the loaded platform’s fundamental eigenvalue is three times or less the
value of the appendage’s fundamental eigenvalue then the local
deformation on the platform attachments is high (Tables VII-20,24 and
17, Tables VII-19,22 and 13).

The most interesting case concerns the examples that correspond to Tables
VII-14,16. In these particular cases, the differences in the results between
the finite element method and the free-interface method are almost identical
for the two structural systems for the whole frequency range. Examining
closely the platform natural frequencies in Table VII-22 and comparing those
to the natural frequencies of the platform in Table VII-23, we notice that their
ratio has identical value throughout the range. The same ratio value have the

attached appendages of Tables VII-20 and 19 for all natural frequencies.

Utilising the criterion established, one can predict the increase in the local
deformation in the example case that corresponds to Table VII-17 relative to
the local deformation for the structural system that corresponds to Table VII-
14. In both cases the platform has the same mass and stiffness
characteristics. In both cases the appendages have the same natural
frequencies, but in the case of Table VII-17 the appendages have much
higher inertia than in the case of Table VII-14. The higher inertia of the
appendages, the lower the loaded natural frequencies of the platform,
whereas the natural frequencies of the appendages are the same, thus, as
the criterion predicts, the local deformation is higher in the case of Table VII-

17.

Comparing the component mass and stiffness characteristics for the cases
of Tables VII-13 and 17 it is not obvious in which case the local deformation
will be higher {unless one examines the natural frequencies of the
components). in both cases the platform has the same mass and stiffness
characteristics. The appendages in both cases have the same stiffness

characteristics, but the appendages of Table VII-13 are much lighter to the
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appendages of Table VII-17. Without the aid of the criterion established, one
would expect that the appendages with higher inertia would locally deform
the structure more. Based on the criterion though, the appendage with the
higher inertia has much lower natural frequencies, but at the same time
loads the platform much more and lowers the loaded natural frequencies. In
actual fact it proves that in both cases the local deformation is high, but lower
in the case of the higher inertia appendages. Apparently by increasing the
inertia of the appendages, in the example case of Table VII-17, the natural
frequencies of the appendages dropped more, in relative terms to the
example of Table VII-13, than the loaded natural frequencies of the platform.
Thus, is not essential that increasing the inertia of an appended component
the local deformation will definitely increase or decrease. A closer

examination of the natural frequencies of the components is essential.

VII-3-5. Conclusions of Case Study I1

The criterion which determines the extent of the local deformation of the
space-frame platform at the attachments with the appended payload has to
do with the relationship between the natural frequencies of the platform
component, loaded with the inertia of the appendages, and the natural

frequencies of the appendages.

The higher the natural frequencies of the platform, loaded with the inertia of
the attached payloads, relative to the natural frequencies of the appended
payload, the lower is predicted the local deformation of the carrier structure

at the attachment.

It is expected that the criterion has limits of application. In the case that the
appended component is rigid, it is not anticipated that the local deformation
will be infinite. The lower the inertia of the appended component the higher
the natural frequencies of the component. Since the loaded natural
frequencies of the inboard component have an upper limit the unloaded
natural frequencies, it is not expected after a point that by decreasing the

inertia of the appended component the local deformation will increase. On
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the contrary, after a point the local deformation will start decreasing although
the natural frequency of the component will be increasing. Generally for very
high appendage natural frequencies relative to the frequencies of the loaded
inboard component, caution should be exercised with the interpretation of

the criterion.

The criterion can be applied to any inboard component of a multibody
structure and not necessarily to the main platform carrier. Inboard

component is considered any component that precedes other components.

The criterion cannot specify a priori the degree of the local deformation by
the natural frequencies of the loaded inboard component and those of the
appended payload. The degree of local deformation will depend on the
attachment locations and the rigidity of the members that support the
payload. But the criterion can definitely predict the possibility of the local
deformation being relatively low or high. This is helpful in indicating the

number of modes essential for good convergence.

Even in a case that a component does not exhibit local deformation as such,
the criterion still suggests that a large amount of component modes need to

be used for convergence.

If the local deformation of a component is predicted to be potentially high,
special care should be exercised for approximating the deformation field the
appropriate component-mode sets that can account for the effect of the local

deformation.

VII-4. Component Mode Set Selection ( Case Study III)

The aim of this case study is to investigate how different component mode sets

compare in the accurate description of the deformation field of the space-frame

platform. As explained in the previous case studies, the platform may, under

particular conditions, exhibit high local deformation at the interfaces with other

171



Chapter VII - Results

components. The component mode sets which have been examined are shown

below and have been assigned with a method number for brevity purposes.

Method I. Free-interface component mode set
Method II: Fixed-interface component mode set
Method III: Loaded-interface component mode set
Method IV: Redundant constraint component mode set

Method V: Constraint component mode set

The structural configuration chosen for this case study is shown in Figure VII-2. The
structural system is of exactly the same design as in the previous case studies. For
pronouncing the differences between the results obtained for each method, the
properties of the components are selected to have such values that the local
deformation of the space-frame at the attachments is high. The material properties of
both the space-frame platform and the appended components are p=2700 Kg/m3 and
E=7.2E10N/m? For the space-frame platform the total number of component modes
(static + dynamic modes) is fixed to 30 for all example cases that follow. The

appendages are modelled using 12 fixed-interface normal modes in all example

cases.

Other than tables which contain natural frequency comparisons, a number of graphs
which correspond to frequency response analysis complement the results of this
case study. Figure VII-4 corresponds to the frequency response of point 71, at the
interface of the main structure with the appendage, where the local deformation is
expected to be high. Figure VII-5 corresponds to point 1 away from the interface.
The points are shown in Figure VII-2.

For facilitating the presentation of the results shown in tables, Figure VII-6 contains
a graphical representation of the natural frequencies obtained using the various

component mode sets.
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VII-4.1. Example Case 1

A direct finite element frequency response versus a modal finite element frequency
response analysis has been undertaken to demonstrate the number of global modes
that suffice to model the response of the structural system up to the excitation

frequency of 20 Hz. A structural damping factor of 0.02 has been assumed for the

entire structure.

Modal response analysis has been performed using 10, 18, 24 and 30 global normal
modes of the structure. Table VII-25 shows that the correspondence of the normal

mode number to the natural frequencies of the system is as follows

Normal Mode 10 : Frequency 7.68 Hz, 0.38 times the maximum forcing frequency
Normal Mode 18 : Frequency 23.61 Hz, 1.18 times the maximum forcing frequency
Normal Mode 24 : Frequency 26.26 Hz, 1.31 times the maximum forcing frequency

Normal Mode 30 : Frequency 41.96 Hz, 2.09 times the maximum forcing frequency

The frequency response of the structure has been obtained at point 71, located at
the interface of the mainbody and the appendage, and has been illustrated in Figure

VII-3. The following can be concluded:

i. Modal frequency response analysis using 24 global normal modes gives as
good results as using 30 global normal modes for the frequency range of
interest. 24 modes correspond to frequency 26.26 Hz which is 1.31 times the
forcing frequency. Although it is usually recommended to use modes in the
frequency range between 1.5 and 2 times the forcing frequency, in the
particular case this would be unnecessary since the extra modes result in
virtually no improvement on the frequency response.

il. Modal response using 24 global modes gives excellent results relative to the
direct finite element method frequency response analysis. In actual fact the
results are virtually indistinguishable to those obtained for the direct
response analysis especially so in the resonance frequencies of the

structure.
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iii. Using less than 24 modes compromises the results in the higher frequency

domain.

In view of the above, an excellent agreement between the direct finite element
method frequency response analysis and the methods proposed in this work should
give near as good results as those obtained by the modal finite element method

frequency response analysis and using as many as 24 global modes.

VII-4-2. Example Case 2

The space-frame platform is modelled using 30 free-interface component modes.

The results are shown in Table VII-26 and in figures 4, 5, 6. The following comments

apply:

i. The local deformation of the space-frame platform at the attachments is high.

ii. The free-interface component modes are not appropriate for modelling the
deformation of the space-frame platform. Free-interface normal modes
cannot capture the eigenvalues of the system (Table VII-26) and also fail to

predict the frequency response of the structure (Figures VII-4,5).

VII-4-3. Example Case 3

The space-frame platform is modelled using 30 fixed-interface component modes.

The results are shown in Table VII-27. The following remarks can be made:

i. The differences in results between the finite element method and the fixed-
interface method are high. Comparing Table VII-26 to 25 we notice that the
difference in results is of the same order between using fixed-interface

components modes and free-interface component modes.

ii. Fixed-interface normal modes should be able to capture the deformation at
the attachments due to the loading of the appendages, since by fixing the

interface, the deformation near the boundaries is high. In reality though, by
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using fixed interface normal modes, there is no coupling between the flexible
part of the platform’s motion and the rigid and flexible part of the
appendages’ motion. So in effect the most important part of the interaction

dynamics between the components is not modelled.

The fixed-interface component modes may capture the local deformation of
the space-frame platform, but are not suitable for modelling the interaction

between adjacent components.

Nevertheless, fixed interface mode set would be appropriate for modelling
terminal components. In all the examples that follow, the appendages have

been modelled using the fixed-interface mode set and the error involved is

very low.

VII-4-4. Example Case 4

30 loaded-interface component modes are used in this example case. The results

are shown in Table VII-28 and Figure VII-4, 5, 6. The following comments can be

made:

The difference between the finite element method and the loaded-interface
method is very small throughout the frequency range. The largest difference

is only 0.3 percent and occurs at mode 26.

The loaded-interface normal modes can capture very accurately the local
deformation of the platform.

From Figures VII-4,5 one may observe that the displacement measured at
point 71 at the interface as well as at point 1 away from the interface is in
extremely good agreement to the direct finite element. it has to be
emphasised that for the calculation of the displacements only 24 modes

have been retained in the frequency response analysis.
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VII-4-5. Example Case 5

The particular structural configuration possesses 6 nonredundant constraints and 6
redundant constraints. Therefore, for keeping the total number of flexible component
modes to 30, a combination of 24 fixed-interface normal modes and 6 redundant
constraint modes are imported in the mathematical model. The results are shown in

Table VII-29 and Figures 4, 5, 6. The following comments apply:

I The difference between the finite element method and the redundant
constraint method is very small thought the frequency range. Largest

difference of 0.27 percent occurs at mode 21.

ii. The difference is of comparable order to that of the loaded-interface method.
The redundant constraint method generally converges more uniformly than

the loaded-interface method.

jii. Referring to Figures VII-4, 5 the redundant interface component modes offer
excellent results relative to the finite element direct frequency response. As
in the case of modal finite element frequency response analysis, 24 global
modes have been retained for the frequency response analysis using the

proposed method.

VII-4-6. Example Case 6

The constraint method is a modification of the redundant constraint method.
Constraint modes are developed for all the interface constraints, redundant and
nonredundant. For keeping the total number of component modes to 30, 12
constraint modes and 18 fixed-interface modes are employed. The results are shown

in Table VII-30 and Figures VI1I-4, 5, 6. The following remarks apply:

i The difference between the finite element method and the constraint method
is very small. The highest difference occurs in mode 21 and is only 0.27%.
ii. Referring to Figures VII-4, 5 the constraint interface component modes offer

excellent results relative to the finite element direct frequency response. As
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in the case of modal finite element frequency response analysis, 24 global
modes have been retained for the frequency response analysis using the

proposed method.

VII-4-7. Conclusion of Case Study II1

iii.

The fixed-interface and free-interface component modes are not appropriate,
in general, for modelling the dynamics of complex components which may

exhibit local deformation.

The loaded-interface component modes give excellent results, but are not
appropriate for independent modelling, nonlinear dynamics and may become

very involving for the modelling requirements of large chains of components.

The redundant constraint method and the constraint method give as
excellent results, or even beiter, than the loaded-interface method and also

circumvent all the associated problems of the latter.

Loaded-interface, redundant constraint and constraint methods give
excellent results relative to the finite element method by utilising only a small
number of component modes. Moreover, the global modes derived by the
method proposed in this work with a combination of any of the above
component mode sets have been shown to be extremely close to those
obtained by modal analysis of the global finite element model. This has been
demonstrated by comparison of the modal finite element frequency response
results to those obtained using the proposed method. In both cases the
results are indistinguishable to those obtained from the direct finite element
response analysis and in both cases only the minimum of 24 global modes

have been used for the analysis.
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VII-5. Convergence of Component Mode Sets
( Case Study IV)

In this section, an investigation of the effect that the number of component modes
has on the accuracy of results has been undertaken. The structural configuration is
the same as in the previous case study other than that the whole system is assumed
to have docked on a much larger structure. The structural system can therefore be
modelled as clamped at the free end face. The properties of the components are the
same as in the previous case study p=2700 Kg/m® and E=7.2E10N/m®. In this
particular case study, the redundant constraint and constraint component mode sets
contain the same number of static modes (since the system does not have any rigid
body motion), and therefore no distinction between them has been made. The
appendages have been modelled using 12 fixed-interface normal modes.

As in the previous case study frequency response graphs have been produced along
with tables comparing the natural frequencies obtained using the various component
modes. For all frequency response analyses the structural damping factor has been

assumed equal to 0.02. 24 global modes have been retained for the frequency

response analysis.

For facilitating the presentation of the results in the tables that correspond in this
case study, Figure VII-8 contains a graphical representation of the natural

frequencies obtained using the various component mode sets.

VII-5-1. Example Case 1

The space-frame platform is modelled using 30 loaded interface component modes.
it has been demonstrated in table VII-31 that there is an excellent agreement

between the finite element method and the loaded-interface method.

VII-5-2. Example Case 2

In example case 2 the space-frame platform is modelled using 18 loaded interface

component modes. The purpose for reducing the number of modes is for comparison
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purposes relative to subsequent examples using constraint component mode sets
where the number of dynamic normal modes is refrained to 18. In this respect
comparison is achieved with the same number of dynamic modes. From Table VII-

32 and Figure VII-7 the following can be concluded.

i. 18 loaded interface component modes give almost as good results in the
lower frequency range as the case with 30 loaded interface modes. As
expected after a cutting off frequency large discrepancies relative to the finite

element method are produced (Table VII-32).

ii. Nevertheless for the forcing frequency of interest 18 loaded interface
component modes seem to suffice for excellent agreement with the direct

finite element response analysis (Figure VII-7).

VII-5-3. Example Case 3

Using the constraint component mode set (or equivalently for this example the
redundant constraint component mode set) the space-frame platform is modelled
using 30 fixed-interface normal modes and 12 constraint modes. The results are
shown in Table VII-33 and Figure VII-7. Generally the constraint method converges
better than the loaded-interface method for the same number of dynamic modes in
all but a few modes. Relative to the direct finite element frequency response analysis

the results obtained in this example case are in excellent agreement.

VII-5-4. Example Case 4

In this example case, 18 fixed-interface normal modes and 6 redundant constraint
modes are used. The results are shown in Table VII-34 and Figure VII-7. The

following remarks can be made:
i Comparing Tables VII-34 to 33, there is a very small difference in the

eigenvalues obtained by using 12 dynamic modes less for this example. As

expected, the difference increases as the mode number increases.
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Using only 18 dynamic modes the eigenfrequencies are still better to those
obtained by using 30 loaded-interface component modes, other than a few
exceptions and definitely much better than those obtained using 18 loaded

interface component modes (Tables VII-34, 31,32).

It seems that the constraint component modes give better results than the
loaded-interface component modes for the same number of dynamic modes.
Although computing time can be saved using less dynamic modes, a penalty
is paid for the calculation of static modes which complement the dynamic
modes in constraint or redundant constraint component modes. However it
has been shown in the previous chapter that the overall time penalty for
using static modes is much smaller compared to the total cost for using

normal modes of vibration.

As far as frequency response analysis is concerned 18 redundant
component modes seem to be adequate for providing excellent results
relative to the finite element direct frequency response analysis (Figure VII-
7). If the forcing frequency was higher it would definitely be the case that
constraint component modes would converge better for the same, minimum

number of dynamic modes.

VII-5-4. Example Case 5

In this example case only 6 fixed-interface modes are used in the redundant

constraint method. The results are shown in Table VII-35 and comparing them to the

results of Tables VII-31,32 the following comments can be made:

The eigenfrequencies in this example case have excellent agreement with

the finite element method up to the cutting off frequency of mode 12.

Using only 6 fixed-interface modes the difference in results to those using 18
and 30 fixed-interface normal modes is only significant after the cutting off

frequency.
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If only the low frequency domain is of interest, only a small number of
dynamic modes need to be used, thus reducing the size of the formulated

problem considerably.

The discrepancy noticed after the cutting off mode is due to the small
number of dynamic modes and not due to unmodelled high local deformation

of the platform at the attachments.

Similar comments apply for the frequency response analysis (Figure VII-7).

VII-5-5. Conclusion of the Case Study IV

iif.

It seems that the constraint component modes give better results than the
loaded-interface component modes for the same number of dynamic modes.
Considerable computing time can be saved using less dynamic modes
whereas the extra time penalty paid for the calculation of static modes which
complement the dynamic modes in constraint or redundant constraint
component modes is relatively small. This is an extra reason why redundant
constraint and constraint modes should be preferred to the loaded interface
component modes.

Both the redundant constraint method and the constraint method can
accurately model the deformation field of an inboard component with a small
number of dynamic modes. If only the low frequency domain is of interest,
only a small number of dynamic modes need to be used, thus reducing the

size of the formulated problem considerably.

Static modes describe accurately the local deformation at the interfaces
whereas dynamic modes the ‘global’ deformation of the component. If
dynamic modes are included in very small numbers then the local
deformation at the interfaces will be captured by the static modes and
convergence will be excellent up to some frequency, but poor convergence

will be noticed suddenly after a cutting off mode.
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VII-6. Constraint Versus Redundant Constraint
Component Modes ( Case Study V)

It is anticipated that the local deformation of the space-frame platform would be very
high if the flexible solar panels were substituted by rigid ones. In this case study it
has been established that both the redundant constraint and constraint component
modes can still model accurately the deformation of the space-frame structure. It has
also been intended to demonstrate the most efficient component mode set between
the redundant constraint and the constraint sets. For this purpose the bare minimum

of 18 dynamic modes has been employed in both component mode sets.

The material density and stiffness of the space-frame are p=2700 Kg/m3 and
E=7.2E10N/m? respectively and the material density of the appendages p=2700

Kg/ma. The structural system is free in space.

VII-6-1. Example Case 1

To demonstrate the degree of the local deformation of the space-frame at the
interfaces, the space-frame deformation has been modelled using 30 free-interface
component modes. The results have been shown in Table VII-36. The differences
between the finite element method and the free-interface method are enormous

(~575% for mode 8), suggesting very high local deformation of the platform.

VII-6-2. Example Case 2

The space-frame has been modelled using 24 redundant constraint component
modes (18 fixed-interface normal modes and 6 redundant constraint modes). The
results have been shown in Table VII-37. The difference between the finite element
method and the redundant constraint method are very small throughout the

frequency range.
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VII-6-3. Example Case 3

The space-frame deformation is modelled using 30 constraint component modes (18

fixed-interface normal modes and 12 constraint modes). The results have been

demonstrated in Table VII-38. The difference between the finite element method and

the constraint method is very small.

VII-6-4. Conclusions of Case Study V

Both the constraint method and the redundant constraint methods have
given excellent results even in the case where the local deformation of the

space-frame platform at the interface is very high.

For the same number of dynamic modes the redundant constraint
component mode set has given as accurate results as the constraint mode
set. Since there is only a very small computational time penalty associated
with the obtaining a larger set of static modes (if a multiple algebraic solution
is performed), it may be beneficial to use the constraint component mode set
in order to overcome the problems associated with the redundant constraint

component mode set, detailed in chapter 11.

VII-7. Collective Conclusions

it was shown that large lightweight structural components, such as space-
frame platforms, exhibit high modal density and, in cases, high local

deformation near the attachments of appended payloads.

A criterion has been established which predicts the possibility of the local
deformation being low or high. The higher the natural frequencies of an
inboard component, loaded with the inertia of the appended payloads,
relative to the natural frequencies of the appended payload, the lower the
local deformation of the inboard body at the interfaces is predicted to be. The

criterion has boundaries of application. If the natural frequencies of the
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appended component are very high compared to the loaded natural
frequencies of the inboard component, caution should be exercised with the

interpretation of the criterion.

If the local deformation of a component is predicted to be potentially high,
special care should be exercised for approximating the deformation field with
appropriate component mode sets that can account for the effect of the local

deformation at the interfaces. An increased number of component modes

may also prove essential.

The right selection of component mode sets is challenging and of foremost
importance for large-scale flexible multibody structures In space, since these
structures, due to their particular design, large dimensions, lightweight
construction, and the large number of components, exhibit high modal
density and local deformation at the component interfaces. The
consequences of selecting an inappropriate component mode set are listed

below in order of increasing impact to the structural dynamics modelling.

* Alarger number of component modes will be needed for convergence,
therefore the inherently large size of the differential problem will increase
further, which is detrimental to computer time involved.

e For components likely to exhibit high local deformation the convergence
issue becomes more crucial. Flexible component mode sets that fail to
closely resemble the real deformation of the individual components, when
attached to each other to form the structure, proved inadequate or even
completely inappropriate for efficiently capturing the dynamics of the entire
structural system, even in the low frequency range. This implies that even
a large number of component modes, employed for convergence, will fail
to model the dynamics accurately. Not only the computational cost will

increase, but convergence will still be poor.

» Due to high maodal density of the particular structural system examined, if
component mode sets utilised are not appropriate the chances are that a

number of modes will not be captured at all. Unmodelled dynamics is one
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of the main causes of destabilisation of structures in space.

The fixed-interface and free-interface component modes are not appropriate,
in general, for modelling the dynamics of complex components which may
exhibit local deformation. Nevertheless, these component mode sets are
ideal for simpler components and in particular modelling circumstances can
reduce the order and computational cost compared to more sophisticated

mode sets.

The loaded-interface component mode set gives excellent resulis relative to
the finite element methods, but is not appropriate for independent modelling,
nonlinear dynamics and may become very involving for the modelling

requirements of large chains of components.

The redundant constraint and constraint component mode set give as
excellent results, or even better, than the loaded interface component mode
set and also circumvent all the associated problems of the latter. In actual
fact it has been demonstrated that the constraint and redundant constraint
component mode sets give better results than the loaded interface
component modes for the same number of dynamic modes. Considerable
computing time can be saved using a smaller number of dynamic modes,
and only a small penalty paid for the calculation of static modes which
complement the dynamic modes in constraint or redundant constraint
component mode sets. However, regardless of the computational cost
involved, the use of redundant constraint or constraint component modes
should be preferred due to the aforementioned problems encountered with

the loaded interface component modes.

It was shown that both the redundant constraint and constraint component
mode set can accurately model the deformation field of an inboard
component with a small number of dynamic modes. If only the low frequency
domain is of interest, a very small number of dynamic modes need to be
used, thus reducing the size of the formulated problem considerably. In fact if

dynamic modes are included in very small numbers then the local
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deformation at the interfaces will still be captured by the static modes and
convergence will be excellent up to some frequency, but poor convergence
will be noticed suddenly after a cutting off mode. On the other hand, if static
modes are not accounted for in a component that may exhibit high local
deformation at the interfaces, then the deformation at the interface will be
poorly approximated and convergence will be extremely difficult even if a
large number of dynamic modes are included. If static modes are included
even for a component that is not likely to exhibit local deformation at the

interfaces, then the convergence will be accelerated.

A redundant component mode set cannot be defined or obtained in the
cases of statically determinate and underdeterminate components, unlike the
constraint mode set. This leads to the conclusion that the constraint
component mode set is beiter suited than the redundant constraint
component mode set for the dynamics modelling of large-scale articulated

multibody systems.

The global modes derived by the method proposed in this work with a
combination of any of the loaded, redundant constraint and constraint
component mode sets have been shown to be extremely close to those
obtained by modal analysis of the global finite element model. This has been
demonstrated by comparison of the modal finite element frequency response
results to those obtained using the proposed method. In both cases the
results are indistinguishable to those obtained from the direct application of
the finite element response analysis and in both cases only the minimum of

24 global modes have been used for the analysis.

Lastly, the theoretical integrity of the mathematical model D has been
verified, since it can give results with extreme accuracy to the finite element
method, even with a low number of degrees of freedom. This model can
definitely be used for studies related to structures that belong in category 11

missions in space.
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Figure VII-1 Typical Space-Frame Platform



Figure VII-2 Space-Frame Platform and Solar Panels
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Figure VII-4 Dispacement of Node 71 in the Frequency Domain using Direct Finite Element Method
versus the proposed Substructuring Method for several Component Mode Sets
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Figure VII-7  Effect of Order Truncation at Component Level on the Accuracy of the Frequency Response Analysis
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Chapter VII - Results

Mode Fregency (Hz) Mode Type
1 1.2465 1%t Bending Plane A
2 1.2497 1%* Bending Plane B
3 7.3501 2™ Bending Plane A
4 7.4500 274 Bending Plane B
5 10.2370 1% Torsional
6 17.2440 2™ Torsional
7 18.8180 3™ Bending Plane A
8 19.2660 3™ Bending Plane B
9 21.5230 3™ Torsional
10 22.3100 1% Axial
11 30.5180 —
12 31.5840 —
13 32.7500 —
14 33.5260 —
15 40.3290 —
16 44.2480 —
17 44.4670 —
18 44.8340 —_
19 45.3520 —
20 45,9430 —
21 46.0130 —
22 46.5340 —
23 46.5590 —
24 46.8240 —
25 47.7460 —
26 48.7680 —
27 48.9900 —
28 49.8530 —
29 50.1840 —
30 50.9840 —
31 51.2200 —
32 51.8420 B
33 51.9980 —
34 52.0740 —
35 52.7900 —
36 53.0650 e
37 53.6040 —
38 53.9230 e
39 53.9830 —
40 54.5680 —
41 54.6760 —
42 54.6850 —
43 54.8150 —
44 54.8570 —
45 54.9620 —
46 55.0190 _—
47 55.0710 —
48 55.1120 —
49 55.1810 —
50 55.2380 —

Table VII-1 Natural Frequencies (Hz) of the cantilever beam-like

space-frame platform shown in Figure VII-1
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Chapter VII - Results

Mode Frequency (Hz) Mode Type
1 1.2573 1°* Bending Plane A
2 1.2573 1%* Bending Plane B
3 7.8610 2™ Bending Plane A
4 7.8610 2™¢ Bending Plane B
5 21.9280 3™ Bending Plane A
6 21.9280 3™ Bending Plane B
7 26.2560 1%* Torsional
8 42,7350 4*® Bending Plane A
9 42,7350 4" Bending Plane B
10 43.0360 15% Axial

11 70.1480 5% Bending Plane A
12 70.1480 5" Bending Plane B
13 78.8120 2%¢ Torsional

14 103.9000 6" Bending Plane A
15 103.9000 6" Bending Plane B
16 129.1800 279 Axial

17 131.4900 3™ Torsional

18 143.6800 7" Bending Plane A
19 143.6800 7" Bending Plane B
20 184.3900 4% Torsional

21 189.1500 —

22 189.1500 —

23 215.5300 —

24 237.5900 —

25 239.9400 —

26 239.9400 —

27 291.1700 —

28 295.6800 —

29 295.6800 —

30 302.2300 —

31 345.2200 —

32 355.9700 —

33 355.9700 —

34 389.4200 —

35 399.8300 —

36 420.4300 —

37 420.4300 —

38 455,0900 —

39 477.2500 —

40 488.7000 —

41 488.7000 —

42 511.0800 —

43 560.4200 —

44 560.4200 —

45 565.8400 —

46 567.8900 —

47 625.6100 —

48 635.2600 —

49 635.2600 —

50 655.3500 —

Table VII-2 Natural Frequencies (Hz) of a cantilever symmetric and uniform

Timoshenko beam
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Chapter VII - Results

Mode FEM Method I Difference (%)
1 0.77358 0.77374 0.02056
2 0.77358 0.77374 0.02058
3 6.13270 6.13320 0.00813
4 6.13270 6.13328 0.00946
5 18.54500 18.54881 0.02057
6 18.54500 18.54977 0.02572
7 26.25600 26.25706 0.00404
8 31.23200 31.36784 0.43495
9 37.76200 37.77613 0.03742

10 37.76200 37.78049 0.04897

11 63.66800 63.70815 0.06306

12 63.66800 63.72113 0.08345

13 78.81200 78.81378 0.00226

14 96.03300 96.12325 0.09398

15 96.03300 96.15351 0.12548

16 102.18000 104.24335 2.01933

17 131.49000 131.49836 0.00636

18 134.57000 134.74786 0.13217

19 134.57000 134.80849 0.17722

20 178.96000 179.26776 0.17197

21 178.96000 179.37814 0.23365

22 182.13000 184.39629 1.24432

23 184.39000 187.15773 1.50102

24 228.83000 229.34314 0.22425

25 228.83000 229.53283 0.30714

26 237.59000 237.59332 0.00140

27 265.72000 274.04489 3.13296

28 283.82000 284.61845 0.28132

29 283.82000 284.93734 0.39368

30 291.17000 291.17563 0.00193

Table VII-3 Natural frequency(Hz) comparative study between the Finite

Element Method and Method I for the loaded beam structure™

* 40 free-interface normal modes

** load mass: m=16 Kg
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Chapter VII - Resulis

Mode FEM Method I Difference (%)
1 1.09440 1.09443 0.00318
2 1.09680 1.09690 0.00936
3 6.72420 6.72784 0.05411
4 6.81100 6.81487 0.05682
5 9.75730 10.22958 4.84029
6 10.23600 10.23610 0.00096
7 17.24400 17.24443 0.00251
8 17.64900 17.68942 0.22905
9 18.06500 18.10899 0.24353

10 21.52300 21.52408 0.00502

11 23.09700 23.17848 0.35279

12 30.48400 30.49068 0.02190

13 31.24500 31.36996 0.39993

14 31.63500 31.65869 0.07490

15 32.11500 32.26888 0.47915

16 44 .24800 44.24892 0.00208

17 44 .46700 44.46838 0.00310

18 44.83400 44.83570 0.00379

19 45.13000 45.35251 0.49305

20 45.34900 45.41361 0.14248

21 45.41000 45.68870 0.61374

22 45.98900 45.99930 0.02239

23 46.01600 46.01943 0.00744

24 46.81800 46.81970 0.00362

25 47.74300 47.74490 0.00398

26 48.76700 48.76864 0.00337

27 48.79400 48.82225 0.05789

28 49.84800 49.85107 0.00617

29 50.17000 50.17534 0.01065

30 50.98400 50.98540 0.00274

Table VII-4 Natural frequency(Hz) comparative study between the Finite

Element Method and Method I for the loaded space-frame platform"

* 40 free-interface normal modes

** load mass: m=16 Kg
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Chapter VII - Results

Mode FEM Method I Difference (%)
1 0.77358 0.77374 0.02047
2 0.77358 0.77374 0.02047
3 6.13270 6.13310 0.00652
4 6.13270 6.13310 0.00652
5 18.54500 18.54765 0.01427
6 18.54500 18.54765 0.01427
7 26.25600 26.25706 0.00404
8 31.23200 31.33271 0.32246
9 37.76200 37.77074 0.02315

10 37.76200 37.77074 0.02316
11 63.66800 63.69215 0.03794
12 63.66800 63.69216 0.03795
13 78.81200 78.81378 0.00226
14 96.03300 96.08626 0.05546
15 96.03300 96.08630 0.05550
16 102.18000 103.70705 1.49447
17 131.45000 131.49836 0.00636
18 134.57000 134.67418 0.07742
19 134.57000 134.67422 0.07745
20 178.96000 179.13573 0.09820
21 178.96000 179.13582 0.09824
22 182.13000 184.39629 1.24432
23 184.35000 185.82855 0.78017
24 228.83000 229.12168 0.12747
25 228.83000 229.12205 0.12763
26 237.59000 237.59332 0.00140
27 265.72000 271.74865 2.26880
28 283.82000 284 .26261 0.15595
29 283.82000 284.26268 0.15597
30 291.17000 291.17563 0.00193

Table VII-5 Natural frequency(Hz) comparative study between the Finite

Element Method and Method I for the loaded beam structure™

* 50 free-interface normal modes

** load mass: m=16 Kg
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Chapter VII - Results

Mode FEM Method I Difference (%)
1 1.09440 1.09443 0.00309
2 1.09680 1.09690 0.00925
3 6.72420 6.72772 0.05239
4 6.81100 6.81471 0.05440
5 9.75730 10.22442 4.78734
6 10.23600 10.23610 0.00095
7 17.24400 17.24443 0.00250
8 17.64900 17.68804 0.22120
9 18.06500 18.10696 0.23229

10 21.52300 21.52408 0.00502
11 23.09700 23.17748 0.34846
12 30.48400 30.49041 0.02103
13 31.24500 31.36531 0.38506
14 31.63500 31.65742 0.07087
15 32.11500 32.26067 0.45360
16 44.24800 44.24892 0.00208
17 44.46700 44.46838 0.00309
18 44.83400 44 .83570 0.00379
19 45.13000 45.35249 0.49299
20 45.34900 45.39630 0.10431
21 45.41000 45.66688 0.56569
22 45.98900 45.99842 0.02048
23 46.01600 46.01920 0.00696
24 46.81800 46.81964 0.00351
25 47.74300 47.74485 0.00387
26 48.76700 48.76860 0.00329
27 48.79400 48.82116 0.05567
28 49.84800 49.85093 0.00588
29 50.17000 50.17487 0.00971
30 50.98400 50.98539 0.00272

Table VII-6 Natural frequency(Hz) comparative study between the Finite

Element Method and Method I  for the loaded space-frame platform"

* B0 free-interface normal modes

** load mass: m=16 Kg
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Chapter VII - Results

Mode FEM Method I Difference (%)
1 0.41288 0.41297 0.02068
2 0.41288 0.41297 0.02068
3 5.66690 5.66735 0.00796
4 5.66690 5.66735 0.00796
5 17.83800 17.98155 0.80475
6 17.97900 17.98155 0.01420
7 17.975800 17.99831 0.10741
8 26.25600 26.25706 0.00404
9 37.16700 37.17712 0.02723

10 37.16700 37.17712 0.02724
11 63.06400 63.09070 0.04233
12 63.06400 63.09070 0.04235
13 78.81200 78.81378 0.00226
14 90.19000 92.28997 2.32838
15 95.43000 95.48892 0.06174
16 95.43000 95.48896 0.06178
17 131.49000 131.49836 0.00636
18 133.98000 134.08909 0.08142
19 133.98000 134.08913 0.08145
20 174.45000 178.56916 2.36123
21 178.37000 178.56926 0.11171
22 178.37000 178.76970 0.22409
23 184.39000 184.39629 0.00341
24 228.26000 228.57888 0.13970
25 228.26000 228.57927 0.13987
26 237.59000 237.59332 0.00140
27 260.26000 266.91751 2.55802
28 283.27000 283.74814 0.16879
29 283.27000 283.74822 0.16882
30 291.17000 291.17563 0.00193

Table VII-7 Natural frequency(Hz) comparative study between the Finite

Element Method and Method I for the loaded beam structure”

* 50 free-interface normal modes

** load mass: m=80 Kg
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Chapter VII - Results

Mode FEM Method I Difference (%)
1 0.78793 0.78808 0.01933
2 0.78939 0.78954 0.01942
3 4.48520 4.72572 5.36256
4 5.96480 5.97751 0.21307
5 6.03850 6.05178 0.21987
6 10.23400 10.23474 0.00727
7 16.56200 16.68050 0.71548
8 16.95400 17.08139 0.75141
9 17.24500 17.24543 0.00249

10 21.52300 21.52404 0.00484
11 23.00500 23.06830 0.27517
12 30.11200 30.42730 1.04708
13 30.35300 30.49125 0.45548
14 31.07800 31.41502 1.08442
15 31.60500 31.60948 0.01416
16 44.10100 44 .24892 0.33540
17 44 .24800 44.46837 0.49804
18 44.44500 44.80858 0.81804
19 44.46700 44 .83560 0.82894
20 44.83500 45.13632 0.67207
21 45.35200 45.35367 0.00368
22 45.97900 45.98530 0.01370
23 46.01500 46.01726 0.00492
24 46.81700 46.81907 0.00442
25 47.74200 47.74407 0.00433
26 48.76600 48.76810 0.00431
27 48.76800 48.80624 0.07842
28 49.84500 49.84930 0.00862
29 50.15900 50.17001 0.02195
30 50.98400 50.98529 0.00254

Table VII-8 Natural frequency(Hz) comparative study between the Finite

Element Method and Method I’ for the loaded space-frame platform”

* 50 free-interface normal modes

** load mass: m=80 Kg
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Chapter VII - Resulis

Mode FEM Method I Difference (%)
1 0.77003 0.77020 0.02157
2 0.77003 0.77020 0.02158
3 5.71530 5.72339 0.14151
4 5.71530 5.72339 0.14153
5 5.71800 5.75951 0.72602
6 15.17300 15.49281 2.10779
7 15.17300 15.49284 2.10797
8 27.48100 29.02983 5.63599
9 27.48100 29.02996 5.63649

10 31.23200 31.33271 0.32246
11 46.52300 49.38645 6.15490
12 46.52300 49.38671 6.15548
13 53.16300 53.99408 1.56326
14 73.23800 77.49976 5.81905
15 73.23800 77.50019 5.81965
16 102.18000 103.70705 1.49447
17 105.46000 107.12987 1.58342
18 106.82000 112.81307 5.61043
19 106.82000 112.81361 5.61094
20 146.70000 154.82028 5.53530
21 146.70000 154.82112 5.53587
22 158.13000 160.67321 1.60831
23 182.13000 185.82855 2.03072
24 192.46000 203.10171 5.52931
25 192.46000 203.10301 5.52999
26 211.11000 214.56845 1.63822
27 243.70000 257.26626 5.56679
28 243.70000 257.26732 5.56722
29 264.45000 268.89151 1.67953
30 265.72000 271.74865 2.26880

Table VII-9 Natural frequency(Hz) comparative study between the Finite

Element Method and Method I for the loaded beam structure™

* B0 free-interface normal modes
** load: m=16 Kg, Ix,ly,Iz=100 Kg.m?
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Chapter VII - Resulis

Mode FEM Method I Difference (%)
1 1.09210 1.09273 0.05727
2 1.09460 1.09516 0.05128
3 2.22640 6.60554 196.69171
4 2.22700 6.62680 197.56615
5 2.76700 6.75211 144.02270
6 6.73850 10.20975 51.51369
7 6.82610 15.99929 134.38399
8 9.75880 16.81528 72.30889
9 10.74300 17.24554 60.52812

10 17.24400 21.52383 24.81925
11 17.66100 21.81117 23.49904
12 18.07800 22.96068 27.00895
13 21.52300 23.15009 7.55976
14 23.09800 28.33511 22.67342
15 30.67500 31.59475 2.99836
16 31.25500 33.81395 8.18733
17 31.63700 40.49112 27.98658
18 32.13700 41.98755 30.65175
19 44.24800 44 .25367 0.01281
20 44.46800 44 .48513 0.03851
21 44.83600 44.87034 0.07659
22 45.14200 45.39238 0.55466
23 45.35000 45.96616 1.35867
24 45.43000 45.98158 1.21413
25 45.98900 46.53610 1.18963
26 46.02300 47.21560 2.59130
27 46.82600 48.14033 2.80684
28 47.75300 48.76595 2.12122
29 48.77800 49.16839 0.80035
30 48.79400 50.27580 3.03685

Table VII-10 Natural frequency(Hz) comparative study between the Finite
Element Method and Method T for the loaded space-frame platform”

* 50 free-interface normal modes
** load: m=16 Kg, Ix,ly,Iz=100 Kg.m?
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Chapter VII - Resulis

Mode Frequency (Hz)
1 1.2465
2 1.2497
3 7.3518
4 7.4519
5 10.2390
6 17.7750
7 18.8410
8 19.2940
9 22.4560

10 23.1900
11 30.5700
12 32.8340
13 33.6450
14 34.0970
15 44,2520
16 44 .4840
17 44.8730
18 45.4190 ]
19 46.1170
20 46.7740
21 46.8660
22 46.9610
23 47.9290
24 48.6550
25 48.8770
26 48.9980
27 50.1320
28 50.4790
29 51.2330
30 51.2930
31 51.9200
32 52.0990
33 52.3960
34 52.9770
35 53.3940
36 53.7440
37 54.1800
38 54.3870
39 54.6670
40 54.6810
41 54.7770
42 54.8610
43 54.8730
44 55.0610
45 55.0810
46 55.1050
47 55.2680
48 55.4220
49 55.4870
50 56.1540

Table VII-11 Natural Frequencies (Hz) of the cantilever beam-like

space-frame platform with rigid load-supporting cross-

members, shown in Figure VII-1
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Chapter VII - Resuilts

Mode FEM Method I Difference (%)
1 1.09270 1.09272 0.00202
2 1.09510 1.09626 0.10635
3 6.61330 6.61925 0.09004
4 6.65240 6.67414 0.32682
5 6.80410 6.86145 0.84291
6 17.03300 17.16009 0.74612
7 17.38900 17.53125 0.81806
8 17.77500 17.77611 0.00623
9 20.94400 20.98543 0.19780

10 23.18700 23.18858 0.00680
11 23.53800 24.54421 4.27483
12 29.59400 30.37675 2.64495
13 30.22000 31.07875 2.84167
14 34.07200 34.07890 0.02026
15 42.12300 44.25327 5.05727
16 42 .57400 44.40317 4.29646
17 42.61300 44.42943 4.26263
18 44.25200 44.48672 0.53042
19 44.48500 44.87483 0.87632
20 44.87300 45.34003 1.04079
21 45.41900 45.42027 0.00279
22 46.11700 46.11880 0.003590
23 46.95900 46.96068 0.00357
24 47.92800 47.92955 0.00324
25 48.36100 48.47292 0.23143
26 48.58600 48.62640 0.08316
27 48.99700 48.99890 0.00388
28 50.13100 50.13315 0.00428
29 51.23000 51.23185 0.00362
30 51.29200 51.29347 0.00286

Table VII-12 Natural frequency(Hz) comparative study between the Finite

Element Method and Method I for the loaded space-frame

platform™ with rigid load-supporting cross-members

* 50 free-interface normal modes
** load: m=16 Kg, Ix,ly,lz=100 Kg.m?
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Chapter VII - Results

Mode FEM Method I Difference (%)

1 0.00000 0.00004 -

2 0.00000 0.00005 -

3 0.00000 0.00017 -

4 0.00000 0.00033 -

5 0.00000 0.00035 -

6 0.00001 0.00066 -

7 1.81740 3.31977 82.66589
8 2.09470 5.00522 138.94680
9 2.47850 5.18888 109.35557
10 3.24190 6.29948 94.31429
11 6.27390 6.40071 2.02124
12 6.32010 7.29478 15.42194
13 12.04500 12.04631 0.01090
14 16.83600 16.87912 0.25611
15 17.74200 17.75169 0.05461
16 18.49600 18.56660 0.38169
17 15.03700 19.14161 0.54950
18 20.08500 20.09752 0.06232
19 20.98700 21.00715 0.09600
20 21.04100 21.08251 0.19728
21 22.21700 22.90720 3.10664
22 23.45000 25.05482 6.84358
23 23.51500 26.63992 13.28907
24 23.75700 26.93608 13.38168
25 24.70500 27.56352 11.57062
26 26.65400 28.33958 6.32394
27 27.27700 31.76815 16.46497
28 27.69300 32.32499 16.72621
29 28.38900 33.26585 17.17865
30 40.69500 41.02809 0.81851

Table VII-13 Natural Frequency (Hz) Comparative Studies between the Finite
Element Method and Method I for the structure” shown in Figure VII-2

* Space-frame:

*k

Beam appendage:
Properties: Space-frame

30 free-interface normal modes
12 fixed-interface normal modes

E=7.2E10 N/m? p=2700 Kg/m®
Beam appendage E=7.2E10 N/m? p=270 Kg/m®
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Chapter VII - Results

Mode FEM Method I Difference (%)

1 0.00000 0.00004 -

2 0.00000 0.00005 -

3 0.00000 0.00017 -

4 0.00000 0.00033 -

5 0.00000 0.00035 -

6 0.00001 0.00066 -

7 1.26380 1.54706 22.41324

8 1.33850 1.63117 21.86520

9 1.41960 1.64617 15.96023
10 2.00190 2.39003 19.38807
11 6.26310 6.26391 0.01295
12 6.30970 6.31080 0.01750
13 8.48330 9.59981 13.16128
14 8.75500 10.15410 15.98056
15 8.92290 10.15988 13.86296
16 9.06440 10.33413 14.00787
17 12.09500 12.12107 0.21554
18 16.90800 16.94915 0.24339
19 17.75000 17.75944 0.05316
20 18.50600 18.57644 0.38061
21 15.35100 15.36260 0.05993
22 20.19800 20.20770 0.04803
23 21.02100 21.03105 0.04779
24 21.13000 21.13793 0.03754
25 23.02300 23.17991 0.68154
26 24.68900 26.46277 7.18446
27 25.16700 26.65639 5.91804
28 25.56200 27.00346 5.63908
29 25.64100 27.55289 7.45637
30 26.65600 28.22944 5.90275

Table VII-14 Natural Frequency (Hz) Comparative Studies between the Finite
Element Method and Method I for the structure” shown in Figure VII-2

* Space-frame:

Beam appendage:
** Properties: Space-frame

30 free-interface normal modes
12 fixed-interface normal modes

E=7.2E10 N/m? p=2700 Kg/m®

Beam appendage E=7.2E9 N/m? p=270 Kg/m®
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Chapter VII - Resulis

Mode FEM Method I Difference (%)

1 0.00000 0.00004 -

2 0.00000 0.00005 -

3 0.00000 0.00017 -

4 0.00000 0.00033 -

5 0.00000 0.00035 -

6 0.00000 0.00066 -

7 0.50587 0.51674 2.14966

8 0.50651 0.51966 2.59596
9 0.51034 0.52093 2.07578
10 0.74304 0.75869 2.10650
11 3.12760 3.21053 2.65141
12 3.14750 3.21345 2.09530
13 3.16840 3.22823 1.88842
14 3.23070 3.30723 2.36884
15 6.26670 6.26714 0.00705
16 6.31550 6.31579 0.00467
17 8.72170 8.94921 2.60851
18 8.79500 8.99578 2.28292
19 8.83410 9.00230 1.90400
20 8.85810 9.02892 1.92841
21 12.07900 12.08011 0.00918
22 16.71600 16.82869 0.67416
23 17.00000 17.40932 2.40777
24 17.24000 17.61095 2.15170
25 17.31700 17.61638 1.72884
26 17.37400 17.65051 1.59152
27 17.76400 17.83212 0.38349
28 18.46800 18.58455 0.63107
29 19.50600 15.52073 0.07551
30 20.24800 20.26956 0.10650

Table VII-15 Natural Frequency(Hz)Comparative Studies between the Finite
Element Method and Method I for the structure” shown in Figure VII-2

* Space-frame:

** Properties: Space-frame

Beam appendage E=7.2E8 N/m?

E=7.2E10 N/m? p=2700 Kg/m®
p=270 Kg/m®

30 free-interface normal modes
Beam appendage: 12 fixed-interface normal modes
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Mode FEM Method I Difference (%)
1 0.00000 0.00027 -
2 0.00000 0.00054 -
3 0.00000 0.00084 -
4 0.00000 0.00127 -
5 0.00001 0.00174 -
6 0.00001 0.00308 -
7 3.99650 4.89221 22.41245
8 4.23260 5.15818 21.86783
9 4.48910 5.20561 15.96115
10 6.33060 7.55787 19.38633
11 19.80600 19.80819 0.01107
12 19.95300 19.95650 0.01754
13 26.82700 30.35741 13.15991
14 27.68600 32.11011 15.97960
15 28.21700 32.12831 13.86155
16 28.66400 32.67927 14.00808
17 38.24900 38.33014 0.21214
18 53.46700 53.59136 0.23260
19 56.13000 56.15861 0.05087
20 58.52100 58.73022 0.35751
21 61.19300 61.22895 0.05875
22 63.87300 63.90081 0.04354
23 66.47500 66.50432 0.04410
24 66.81800 66.84367 0.03842
25 72.80400 73.29001 0.66755
26 78.07400 83.68291 7.18410
27 79.58600 84.29298 5.91433
28 80.83400 85.38301 5.62759
29 81.08300 87.12901 7.45657
30 84.29400 89.26891 5.90185

Table VII-16 Natural Frequency (Hz) Comparative Studies between the Finite
Element Method and Method I’ for the structure” shown in Figure VII-2

* Space-frame:

Beam appendage: 12 fixed-interface normal modes

30 free-interface normal modes

** Properties: Space-frame

E=7.2E11 N/m? p=2700 Kg/m®
Beam appendage E=7.2E10 N/m? p=270 Kg/m®
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Mode FEM Method I Difference (%)

1 0.00000 0.00002 -

2 0.00000 0.00003 -

3 0.00000 0.00013 -

4 0.00000 0.00022 -

5 0.00000 0.00032 -

6 0.00000 0.00047 -

7 0.67496 1.21965 80.69921

8 0.73492 1.69795 131.03904

S 0.85123 1.81744 113.50749
10 2.18110 4.15299 90.40816
11 6.12260 6.13471 0.19774
12 6.19700 6.21413 0.27640
13 7.47970 8.38139 12.05514
14 7.55270 9.88725 30.91016
15 7.63120 10.14852 32.98722
16 7.68150 10.46960 36.29630
17 12.02600 12.34272 2.63360
18 12.76600 14.46281 13.29161
19 17.36400 17.41714 0.30602
20 17.83000 17.85553 0.14319
21 18.12300 18.22758 0.57706
22 19.74100 19.85850 0.59520
23 20.63100 20.72985 0.47914
24 20.93400 20.95958 0.12221
25 21.48400 21.82548 1.58947
26 23.36300 24.88031 6.49450
27 23.60700 26.23831 11.14633
28 24.06900 26.64211 10.69056
29 24.76900 27.30266 10.22916
30 26.26400 28.05617 6.82369

Table VII-17 Natural Frequency Comparative (Hz) Studies between the

Finite Element Method and Method I for the structure” shown in Figure VII-2

* Space-frame:

Beam appendage: 12 fixed-interface normal modes

** Properties: Space-frame

30 free-interface normal modes

E=7.2E10 N/m? p=2700 Kg/m®
Beam appendage E=7.2E10 N/m? p=2700 Kg/m®
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Table Number Platform Appendage Degree of Local
Properties Properties Deformation

E=7.2el0 N/m? E=7.2el0 N/m?

13 P=2700 Kg/m’ P=270 Kg/m® High
E=7.2el10 N/m? E=7.2e9 N/m?

14 P=2700 Kg/m’ P=270 Kg/m’ Medium
E=7.2el0 N/m? E=7.2e8 N/m?

15 P=2700 Kg/m’ P=270 Kg/m® Low
E=7.2ell N/m? E=7.2el0 N/m?

16 P=2700 Kg/m? P=270 Kg/m® Medium
E=7.2el10 N/m? E=7.2el0 N/m?

17 P=2700 Kg/m’ P=2700 Kg/m’® High

Table VII-18 Collective table for example cases in case study 2

Mode Frequency (Hz)
1 5.1281
2 5.1281
3 32.132
4 32.132
5 89.952
6 89.952
7 176.22
8 176.22
9 291.25

10 291.25

11 415.29

12 435.03

13 435.03

14 607.67

15 607.67

Table VII-19 Natural frequencies of a cantilever beam appendage*

* Properties: E=7.2E10 N/m? p=270 Kg/m®
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Mode Frequency (Hz)
1 1.6217
2 1.6217
3 10.161
4 10.161
5 28.445
6 28.445
7 55.727
8 55.727
9 92.100

10 92.100
11 131.33
12 137.57
13 137.57
14 192.16
15 192.16

Table VII-20 Natural frequencies of a cantilever beam appendage*

* Properties: E=7.2E9 N/m? p=270 Kg/m® or
E=7.2E10 N/m? p=2700 Kg/m®

Mode Frequency (Hz)
1 0.51281
2 0.51281
3 3.2132
4 3.2132
5 8.9952
6 8.9952
7 17.622
8 17.622
9 29.125

10 29.125
11 41.529
12 43.503
13 43.503
14 60.767
15 60.767

Table VII-21 Natural frequencies of a cantilever beam appendage'

* Properties: E=7.2E8 N/m? p=270 Kg/m®
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Mode Frequency(Hz)

1 0.

2 0.

3 0.

4 0.

5 0.

6 0.

7 1.9333

8 2.2832

9 2.8124
10 3.5679
11 6.2767
12 12.056
13 16.896
14 17.750
15 18.509
16 19.288
17 20.262
18 21.032
19 21.127
20 23.218
21 26.648
22 27.154
23 27.413
24 28.237
25 40.583
26 40.723
27 44.180
28 44.232
29 44.806
30 44,975

Table VII-22 Natural Frequencies (Hz) of space-frame platform

*

loaded with the inertia of the appendages™*

* Properties: E=7.2E10 N/m? p=2700 Kg/m®

** Properties: p=270 Kg/m®
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Mode Frequency (Hz)

1 0
2 0
3 0.42796E-05
4 0.69442E-05
5 0.72302E-05
6 0.79422E-05
7 6.1137
8 7.2200
9 8.8934

10 11.283

11 15.849

12 19.996

13 38.124

14 53.429

15 56.132

16 58.530

17 60.993

18 64.073

19 66.509

20 66.811

21 73.421

22 84.267

23 85.870

24 86.688

25 89.294

26 128.34

27 128.78

28 139.71

29 139.87

30 141.69

*

Table VII-23 Natural Frequencies (Hz) of space-frame platform
loaded with the inertia of the appendages™”

* Properties: E=7.2E11 N/m? p=2700 Kg/m®
** Properties: p=270 Kg/m®
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Mode Frequency (Hz)

1 0.

2 0.

3 0.

4 0.

5 0.

6 0.37609E-06

7 0.72148

8 0.80417

9 0.96729
10 2.4590
11 6.1676
12 6.2594
13 11.758%
14 12.324
15 17.197
16 17.439
17 17.794
18 19.675
19 20.634
20 20.942
21 21.572
22 26.23%
23 26.594
24 26.714
25 27.651
26 35.779
27 39.802
28 40.719
29 43.154
30 44.179

Table VII-24 Natural Frequencies (Hz) of space-frame platform

loaded with the inertia of the appendages™*

* Properties: E=7.2E10 N/m? p=2700 Kg/m®

** Properties: p=2700 Kg/m®

*
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Mode Frequency (Hz)

1 0.0

2 0.0

3 0.0

4 0.0

5 0.0

6 0.0

7 0.67496

8 0.73492

S 0.85123
10 2.1811
11 6.1226
12 6.1970
13 7.4797
14 7.5527
15 7.6312
16 7.6815
17 12.026
18 12.766
19 17.364
20 17.830
21 18.123
22 19.741
23 20.631
24 20.934
25 21.484
26 23.363
27 23.607
28 24.069
29 24.769
30 26.264
31 26.792
32 27.670
33 28.346
34 36.806
35 40.421
36 41.955
37 44 .180
38 44 .231
39 44.374
40 44.811

Table VII-25 Natural Frequency obtained by direct Finite Element
Method for the structure’ in case study 3

* Properties: Space-frame  E=7.2E10 N/m? p=2700 Kg/m®
Beam appendage E=7.2E10 N/m? p=2700 Kg/m®
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Mode FEM Method I Difference (%)

1 0.00000 0.00001 -

2 0.00000 0.00003 -

3 0.00000 0.00013 -

4 0.00000 0.00022 -

5 0.00000 0.00032 -

6 0.00000 0.00047 -

7 0.67496 1.21965 80.69921

8 0.73492 1.69795 131.03904

9 0.85123 1.81744 113.50749
10 2.18110 4.15299 90.40816
11 6.12260 6.13471 0.19774
12 6.19700 6.21413 0.27640
13 7.47970 8.38139 12.05514
14 7.55270 9.88725 30.91016
15 7.63120 10.14852 32.98722
16 7.68150 10.46960 36.25630
17 12.02600 12.34272 2.63360
18 12.76600 14.46281 13.29161
19 17.36400 17.41714 0.30602
20 17.83000 17.85553 0.14319
21 18.12300 18.22758 0.57706
22 19.74100 19.85850 0.59520
23 20.63100 20.72985 0.47914
24 20.93400 20.95958 0.12221
25 21.48400 21.82548 1.58947
26 23.36300 24.88031 6.49450
27 23.60700 26.23831 11.14633
28 24.06900 26.64211 10.69056
29 24.76900 27.30266 10.22916
30 26.26400 28.05617 6.82369

Table VII-26 Natural Frequency Comparative (Hz) Studies between the
Finite Element Method and Method I for the structure” in case study 3

* Space-frame: 30 free-interface normal modes
Beam appendage: 12 fixed-interface normal modes
** Properties: Space-frame ~ E=7.2E10 N/m? p=2700 Kg/m®
Beam appendage E=7.2E10 N/m? p=2700 Kg/m®
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Mode FEM Method IT Difference (%)

1 0.00000 0.00046 -

2 0.00000 0.00087 -

3 0.00000 0.00181 -

4 0.00000 0.00236 -

5 0.00000 0.00284 -

6 0.00000 0.00344 -

7 0.67496 1.26756 87.79724

8 0.73492 1.67777 128.29230

9 0.85123 1.81160 112.82107
10 2.18110 4.15323 90.41899
11 6.12260 6.13664 0.22935
12 6.19700 6.21677 0.31902
13 7.47970 8.47861 13.35495
14 7.55270 9.83764 30.25322
15 7.63120 10.11636 32.56583
16 7.68150 10.45278 36.07737
17 12.02600 12.33336 2.55580
18 12.76600 14.46565 13.31386
19 17.36400 17.42141 0.33064
20 17.83000 17.89120 0.34326
21 18.12300 18.25241 0.71405
22 19.74100 19.86517 0.62901
23 20.63100 20.75593 0.60555
24 20.93400 20.96335 0.14020
25 21.48400 21.94355 2.13902
26 23.36300 24.95248 6.80341
27 23.60700 26.24642 11.18068
28 24.06900 26.66969 10.80515
29 24.76900 27.29772 10.20921
30 26.26400 27.84476 6.01875

Table VII-27 Natural Frequency Comparative (Hz) Studies between the

Finite Element Method and Method I for the structure” in case study 3

* Space-frame:

** Properties: Space-frame

30 fixed-interface normal modes
Beam appendage: 12 fixed-interface normal modes

E=7.2E10 N/m? p=2700 Kg/m®
Beam appendage E=7.2E10 N/m? p=2700 Kg/m®

219



Chapter VII - Results

Mode FEM Method III Difference (%)

1 0.00000 0.00046 -

2 0.00000 0.00087 -

3 0.00000 0.00181 -

4 0.00000 0.00235 -

5 0.00000 0.00284 -

6 0.00000 0.00344 -

7 0.67496 0.67498 0.00297

8 0.73492 0.73495 0.00407

9 0.85123 0.85125 0.002590
10 2.18110 2.18123 0.00590
11 6.12260 6.12290 0.00492
12 6.19700 6.19730 0.00491
13 7.47970 7.48596 0.08370
14 7.55270 7.55917 0.08567
15 7.63120 7.63805 0.08982
16 7.68150 7.68795 0.08397
17 12.02600 12.02907 0.02555
18 12.76600 12.77325 0.05676
19 17.36400 17.36568 0.00969
20 17.83000 17.83104 0.00586
21 18.12300 18.12925 0.03450
22 19.74100 19.74317 0.01097
23 20.63100 20.63204 0.00503
24 20.93400 20.93442 0.00201
25 21.48400 21.48551 0.00705
26 23.36300 23.43257 0.29777
27 23.60700 23.70678 0.42268
28 24.06900 24.13692 0.28221
29 24.76900 24.83856 0.28084
30 26.26400 26.26793 0.01495

Table VII-28 Natural Frequency Comparative (Hz) Studies between the
Finite Element Method and Method IIT for the structure” in case study 3

* Space-frame:

Beam appendage: 12 fixed-interface normal modes

30 loaded-interface normal modes

** Properties: Space-frame

E=7.2E10 N/m?® p=2700 Kg/m®
Beam appendage E=7.2E10 N/m® p=2700 Kg/m®
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Mode FEM Method IV Difference (%)

1 0.00000 0.00045 -

2 0.00000 0.00087 -

3 0.00000 0.00181 -

4 0.00000 0.00236 -

5 0.00000 0.00284 -

6 0.00000 0.00344 -

7 0.67496 0.67499 0.00381
8 0.73492 0.73512 0.02690

9 0.85123 0.85125 0.00293
10 2.18110 2.18127 0.00787
11 6.12260 6.12286 0.00433
12 6.19700 6.19731 0.00504
13 7.47970 7.48023 0.00702
14 7.55270 7.55322 0.00688
15 7.63120 7.63174 0.00710
16 7.68150 7.68201 0.00660
17 12.02600 12.05462 0.23795
18 12.76600 12.77676 0.08431
19 17.36400 17.37182 0.04504
20 17.83000 17.83579 0.03250
21 18.12300 18.17311 0.27648
22 19.74100 19.76561 0.12465
23 20.63100 20.63895 0.03852
24 20.93400 20.93724 0.01547
25 21.48400 21.49376 0.04543
26 23.36300 23.36671 0.01589
27 23.60700 23.61768 0.04526
28 24.06900 24.08495 0.06627
29 24.76900 24.79578 0.10810
30 26.26400 26.26866 0.01773

Table VII-29 Natural Frequency Comparative (Hz) Studies between the
Finite Element Method and Method IV “for the structure” in case study 3

* Space-frame: 6 redundant constraint modes
24 fixed-interface normal modes
Beam appendage: 12 fixed-interface normal modes

** Properties: Space-frame E=7.2E10 N/m®  p=2700 Kg/m®
Beam appendage E=7.2E10 N/m®  p=2700 Kg/m®
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Mode FEM Method V Difference (%)

1 0.00000 0.00035 -

2 0.00000 0.00068 -

3 0.00000 0.00074 -

4 0.00000 0.00090 -

5 0.00000 0.00098 -

6 0.00000 0.00201 -

7 0.67496 0.67498 0.00282

8 0.73492 0.73495 0.00398

9 0.85123 0.85125 0.00290
10 2.18110 2.18127 0.00779
11 6.12260 6.12286 0.00431
12 6.19700 6.19731 0.00501
13 7.47970 7.48014 0.00587
14 7.55270 7.55314 0.00588
15 7.63120 7.63173 0.00699
16 7.68150 7.68200 0.00647
17 12.02600 12.05456 0.23749
18 12.76600 12.77674 0.08413
19 17.36400 17.37181 0.04497
20 17.83000 17.83578 0.03244
21 18.12300 18.17293 0.27551
22 19.74100 19.76556 0.12442
23 20.63100 20.63893 0.03846
24 20.93400 20.93723 0.01542
25 21.48400 21.49374 0.04535
26 23.36300 23.36656 0.01523
27 23.60700 23.61759 0.04488
28 24.06900 24.08492 0.06613
29 24.76900 24.79573 0.10790
30 26.26400 26.26865 0.01770

Table VI1I-30 Natural Frequency Comparative (Hz) Studies between the
Finite Element Method and Method V "for the structure” in case study 3

* Space-frame: 12 constraint modes
18 fixed-interface normal modes
Beam appendage: 12 fixed-interface normal modes

** Properties: Space-frame E=7.2E10 N/m®*  p=2700 Kg/m3
Beam appendage E=7.2E10 N/m®>  p=2700 Kg/m®
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Mode FEM Method III Difference (%)
1 0.54570 0.54572 0.00346
2 0.65064 0.65066 0.00326
3 0.66780 0.66783 0.00377
4 0.76607 0.76610 0.00362
5 1.10740 1.10746 0.00549
6 1.13800 1.13806 0.00488
7 4.36180 4.36220 0.00922
8 5.04950 5.04972 0.00445
9 6.96820 6.97159 0.04867

10 7.36950 7.38230 0.17368
11 7.53070 7.53832 0.10122
12 7.67510 7.68043 0.06946
13 9.09480 9.09734 0.02793
14 9.30120 9.30178 0.00620
15 12.73600 12.74233 0.04973
16 17.46400 17.46881 0.02756
17 17.55700 17.56191 0.02796
18 20.01600 20.01978 0.01888
19 20.90800 20.90932 0.00631
20 20.92000 20.92047 0.00222
21 21.96400 21.98206 0.08221
22 23.00400 23.02072 0.07268
23 23.35700 23.42315 0.28319
24 24.07000 24.13828 0.28368
25 24.81600 25.02215 0.83070
26 25.89300 25.92073 0.10708
27 26.27400 26.28191 0.03011
28 27.11400 27.15130 0.13757
29 28.03800 28.11203 0.26405
30 31.19300 31.38107 0.60291

Table VII-31 Natural Frequency Comparative (Hz) Studies between the
Finite Element Method and Method I1I ~for the structure™ in case study 4

* Space-frame: 30 loaded-interface normal modes
Beam appendage: 12 fixed-interface normal modes

** Properties: Space-frame E=7.2E10 N/m®  p=2700 Kg/m®
Beam appendage E=7.2E10 N/'m®  p=2700 Kg/m®
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Mode ANSYS Method IIIX Difference (%)
1 0.54570 0.54572 0.00353
2 0.65064 0.65066 0.00336
3 0.66780 0.66783 0.00388
4 0.76607 0.76610 0.00376
5 1.10740 1.10746 0.00550
6 1.13800 1.13806 0.00488
7 4.36180 4.36220 0.00925
8 5.04950 5.04999 0.00975
9 6.96820 6.98281 0.20972

10 7.36950 7.38292 0.18210
11 7.53070 7.54021 0.12622
12 7.67510 7.69862 0.30638
13 9.09480 9.10143 0.07287
14 9.30120 9.30187 0.00722
15 12.73600 12.74971 0.10765
16 17.46400 17.47853 0.08318
17 17.55700 17.57667 0.11201
18 20.01600 20.02141 0.02704
19 20.90800 20.90995 0.00932
20 20.92000 20.92057 0.00274
21 21.96400 21.98409 0.09146
22 23.00400 23.13224 0.55746
23 23.35700 23.46586 0.46607
24 24.07000 24.88774 3.39734
25 24.81600 25.19612 1.53174
26 25.89300 28.12669 8.62662
27 26.27400 48.34568 84.00580
28 27.11400 48.51600 78.93339
29 28.03800 49.20857 75.51029
30 31.19300 49.77220 59.56207

Table VII-32 Natural Frequency Comparative (Hz) Studies between the
Finite Element Method and Method III " for the structure” in case study 4

* Space-frame:

Beam appendage:

18 loaded-interface normal modes
12 fixed-interface normal modes
E=7.2E10 N/m?

** Properties: Space-frame

Beam appendage E=7.2E10 N/m?

p=2700 Kg/m®
p=2700 Kg/m®
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Mode FEM Method IV Difference (%)
1 0.54570 0.54572 0.00347
2 0.65064 0.65066 0.00326
3 0.66780 0.66783 0.00377
4 0.76607 0.76610 0.00345
5 1.10740 1.10745 0.00474
6 1.13800 1.13806 0.00493
7 4.36180 4.36235 0.01269
8 5.04950 5.05005 0.01088
9 6.96820 6.96864 0.00626

10 7.36950 7.36976 0.00357
11 7.53070 7.53103 0.00434
12 7.67510 7.67556 0.00603
13 9.09480 9.09743 0.02896
14 9.30120 9.30162 0.00446
15 12.73600 12.74435 0.06555
16 17.46400 17.48309 0.10933
17 17.55700 17.58738 0.17306
18 20.01600 20.05210 0.18037
19 20.90800 20.91620 0.03920
20 20.52000 20.92333 0.01591
21 21.96400 22.00168 0.17155
22 23.00400 23.00890 0.02131
23 23.35700 23.36064 0.01558
24 24.07000 24.08313 0.05453
25 24.81600 24.86468 0.19615
26 25.89300 25.91174 0.07236
27 26.27400 26.27969 0.02166
28 27.11400 27.15608 0.15520
29 28.03800 28.11790 0.28495
30 31.19300 31.52193 1.05451

Table VII-33 Natural Frequency Comparative (Hz) Studies between the

Finite Element Method and Method IV/ V "for the structure” in case study 4

* Space-frame: 12 redundant constraint modes
30 fixed-interface normal modes

Beam appendage: 12 fixed-interface normal modes
p=2700 Kg/m®
p=2700 Kg/m®

** Properties: Space-frame E=7.2E10 N/m®
Beam appendage E=7.2E10 N/m®
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Mode FEM Method IV Difference (%)
1 0.54570 0.54572 0.00347
2 0.65064 0.65066 0.00326
3 0.66780 0.66783 0.00377
4 0.76607 0.76610 0.00345
5 1.10740 1.10745 0.00475
6 1.13800 1.13806 0.00494
7 4.36180 4.36238 0.01330
8 5.04950 5.05010 0.01188
9 6.96820 6.96865 0.00652

10 7.36950 7.36976 0.00357
11 7.53070 7.53103 0.00434
12 7.67510 7.67558 0.00631
13 9.094890 9.09764 0.03122
14 9.30120 9.30162 0.00453
15 12.73600 12.74447 0.06647
16 17.46400 17.48430 0.11625
17 17.55700 17.59165 0.19734
18 20.01600 20.05516 0.19567
19 20.90800 20.91709 0.04346
20 20.92000 20.92365 0.01744
21 21.96400 22.00233 0.17451
22 23.00400 23.00920 0.02261
23 23.35700 23.36068 0.01574
24 24.07000 24.08477 0.06135
25 24.81600 24.86540 0.19907
26 25.89300 25.91377 0.08022
27 26.27400 26.27976 0.02192
28 27.11400 27.15922 0.16679
29 28.03800 28.12992 0.32786
30 31.19300 31.57207 1.21524

Table VII-34 Natural Frequency Comparative (Hz) Studies between the
Finite Element Method and Method IV/ V “for the structure” in case study 4

* Space-frame: 12 redundant constraint modes
18 fixed-interface normal modes
Beam appendage: 12 fixed-interface normal modes

** Properties: Space-frame E=7.2E10 N/m®>  p=2700 Kg/m®
Beam appendage E=7.2E10 N/m®  p=2700 Kg/m®
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Mode FEM Method IV Difference (%)
1 0.54570 0.54572 0.00347
2 0.65064 0.65066 0.00327
3 0.66780 0.66783 0.00378
4 0.76607 0.76610 0.00354
5 1.10740 1.10752 0.01078
6 1.13800 1.13807 0.00622
7 4.36180 4.37704 0.34937
8 5.04950 5.05552 0.11921
9 6.96820 6.98867 0.29380

10 7.36950 7.36992 0.00566

11 7.53070 7.53111 0.00550

12 7.67510 7.67873 0.04736

13 9.09480 9.26299 1.84929

14 9.30120 9.31632 0.16252

15 12.73600 16.31712 28.11806

16 17.46400 18.46661 5.74100

17 17.55700 22.68856 29.22798

18 20.01600 23.34225 16.61796

19 20.90800 25.16080 20.34055

20 20.92000 25.95071 24.04735

21 21.96400 31.78053 44.69372

22 23.00400 46.99796 104.30341

23 23.35700 49.14400 110.40375

24 24.07000 49.30519 104.84085

25 24.81600 49.59712 99.85945

26 25.89300 56.19048 117.01032

27 26.27400 60.44980 130.07461

28 27.11400 62.21302 129.44979

29 28.03800 69.73042 148.69970

30 31.19300 82.65286 164.97246

Table VII-35 Natural Frequency Comparative (Hz) Studies between the
Finite Element Method and Method IV/ V for the structure in case study 4

* Space-frame: 12 redundant constraint modes
6 fixed-interface normal modes
Beam appendage: 12 fixed-interface normal modes

** Properties: Space-frame E=7.2E10 N/m®  p=2700 Kg/m®
Beam appendage E=7.2E10 N/m?  p=2700 Kg/m®
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Mode FEM Method I Difference (%)

1 0.00000 0.00046 -

2 0.00000 0.00087 -

3 0.00000 0.00181 -

4 0.00007 0.00235 -

5 0.00011 0.00283 -

6 0.00017 0.00344 -

7 0.72154 1.59081 120.47360

8 0.80420 5.42372 574 .42451

9 0.96731 6.24239 545.33493
10 2.45910 9.82287 299.44966
11 6.16760 11.36533 84.27482
12 6.25940 13.45489 114.95490
13 11.75900 17.01452 44.69361
14 12.32500 17.43194 41.43562
15 17.19700 17.62541 2.49117
16 17.44000 18.23226 4.54278
17 17.79400 20.68957 16.27274
18 19.67500 20.95511 6.50627
19 20.63400 21.69468 5.14044
20 20.94200 25.49247 21.72892
21 21.57200 26.53678 23.01492
22 26.23900 26.78879 2.09533
23 26.59400 27.51230 3.45302
24 26.71400 32.19353 20.51182
25 27.65100 32.66011 18.11547
26 35.77900 40.75704 13.91329
27 39.80100 43.43987 9.14265
28 40.71700 44.18175 8.50935
29 43.15100 44 .35021 2.77509
30 44.17500 44.81438 1.43820

Table VII-36 Natural Frequency Comparative (Hz) Studies between the Finite
Element Method and Method I for the structure” in case study 5

* Space-frame:

30 free-interface normal modes

** Properties: Space-frame
Beam appendage E—ee

E=7.2E10 N/m?

p=2700 Kg/m®
p=2700 Kg/m®
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Mode FEM Method IV Difference (%)

1 0.00000 0.00045 -

2 0.00000 0.00087 -

3 0.00000 0.00181 -

4 0.00007 0.00235 -

5 0.00011 0.00284 -

6 0.00017 0.00344 -

7 0.72154 0.72157 0.00443

8 0.80420 0.80445 0.03134

9 0.96731 0.96735 0.00418
10 2.45910 2.45929 0.00754
11 6.16760 6.16789 0.00464
12 6.25940 6.25979 0.00617
13 11.75900 11.76686 0.06687
14 12.32500 12.33038 0.04361
15 17.19700 17.21049 0.07845
16 17.44000 17.47005 0.17230
17 17.79400 17.79774 0.02103
18 19.67500 19.69200 0.08638
19 20.63400 20.64018 0.02994
20 20.94200 20.94483 0.01352
21 21.57200 21.58363 0.05391
22 26.23900 26.24153 0.00964
23 26.59400 26.61124 0.06483
24 26.71400 26.73016 0.06050
25 27.65100 27.67703 0.09415
26 35.77900 35.92830 0.41730
27 39.80100 40.27763 1.19753
28 40.71700 41.01338 0.72790
29 43.15100 44.15899 2.33597
30 44.17900 44.18945 0.02366

Table VII-37 Natural Frequency Comparative (Hz) Studies between the Finite
Element Method and Method IV “for the structure” in case study 5

* Space-frame:

6 redundant constraint modes
18 fixed-interface normal modes

** Properties: Space-frame
Beam appendage E—o

E=7.2E10 N/m? p=2700 Kg/m®
p=2700 Kg/m®

229



Chapter VII - Results

Mode FEM Method V Difference (%)
1 0.00000 0.00041 -
2 0.00000 0.00085 -
3 0.00000 0.00145 -
4 0.00007 0.00186 -
5 0.00011 0.00234 -
6 0.00017 0.00265 -
7 0.72154 0.72157 0.00364
8 0.80420 0.80423 0.00351
9 0.96731 0.96735 0.00418
10 2.45910 2.45928 0.00747
11 6.16760 6.16788 0.00462
12 6.25940 6.25978 0.00615
13 11.75900 11.76685 0.06678
14 12.32500 12.33037 0.04354
15 17.19700 17.21048 0.07839
16 17.44000 17.47001 0.17208
17 17.79400 17.79774 0.02100
18 19.67500 19.69198 0.08628
19 20.63400 20.64017 0.02991
20 20.94200 20.94483 0.01351
21 21.57200 21.58362 0.05386
22 26.23900 26.24153 0.00963
23 26.59400 26.61122 0.06476
24 26.71400 26.73015 0.06045
25 27.65100 27.67701 0.09406
26 35.77900 35.92822 0.41706
27 39.80100 40.27719 1.19644
28 40.71700 41.01329 0.72768
29 43.15100 44.15827 2.33430
30 44.17900 44.18916 0.02300

Table VII-38 Natural Frequency Comparative (Hz) Studies between the Finite
Element Method and Method V "for the structure” in case study 5

* Space-frame:

12 constraint modes
18 fixed-interface normal modes

** Properties: Space-frame
Beam appendage E—eo

E=7.2E10 N/m?

p=2700 Kg/m®
p=2700 Kg/m®
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‘ 7 III Synopsis and
Conclusions

It has been demonstrated that a nonlinear recursive Lagrangian approach of generalised
coordinates is a well suited methodology for the dynamics modelling of complex
articulated open-loop structures in space. Within this approach, and as opposed to global
modelling practices, such as the direct application of the finite element method, structural
systems can be modelled as collections of distinct flexible and rigid components. System
order truncation techniques can be performed at component level reducing the
computational cost and memory requirements associated with solution of large
differential problems. Moreover, independent component modelling by different
contractors, experimental data inclusion and decentralised control algorithm designs can

also be implemented.

The main characteristic of this formulation is its recursive nature which permits a great
deal of physical insight in the nonlinear system kinematics and results in a minimal set of
differential equations of motion. At the same time, the articulated component kinematical
expressions are formed relative to the inboard components, particularly useful for control
applications. Admittedly, recursive methods are more elaborate in deriving the absolute
kinematical expressions of components, accounting for the motion of the preceding
components and at the same time for the interface constraints. The procedure may be
complex in terms of kinematical descriptions, but on the other hand does not involve
intensive computational implementation and can be subjected to systematic treatment for

the kinematics modelling of large chains of interconnected components.

The geometrically nonlinear kinematics were formulated using the floating reference
frame concept. Interface constraints were systematically introduced to describe the
relative kinematics between adjacent flexible components, allowing any articulation axis

to be locked, free or driven. ‘Correction terms’ introduced in the kinematical expressions
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of the outboard components are particularly attractive for the incorporation of component

modes by enforcing geometric interface compatibility.

The nonlinear expressions describing the kinematics of a component as part of a
muitibody chain were symbolically reduced to linear expressions. Three distinct linear
kinematical expressions were produced from this transition, and formulated using either
hybrid or generalised coordinate sets. Using these expressions, three linear methods
were established, all capable of modelling the dynamics of large-scale structural systems

that belong to category II missions in space.

The first of the methods uses a hybrid set of coordinates where for each component the
rigid-body part of the motion is described by physical displacement coordinates and the
linear elastic deformation by generalised coordinates. In the second method, the hybrid
set is substituted by a generalised coordinate set, since the rigid-body motion of each
component has been described using rigid-body modes, modelling allowed only with the
assumption of small rotational displacement. In both methods the structural system can
be composed of either continuous or discrete components. In the third method all
components are necessarily considered discrete. The consistent mass matrix of each
component in the structure appears explicitly in the equations of motion of the multibody

system. The third method also utilises a generalised coordinate set.

For assessment and comparison, it was decided that the methods should be examined
on their suitability in modelling peripheral multibody structures. Mathematical models of
peripheral structural systems can be developed analytically, as opposed to generic tree-
configurations models which are best developed computationally. Analytical formulations
would definitely facilitate comparison at a theoretical and also computational level. The
general criteria for method comparison were set as the mathematical model
development effort and complexity, physical insight capability, programming effort,
potential numerical accuracy, potential computing time for application completion,
programming validation effort, analyst interference with the data input, and generalisation

to modelling generic tree-configuration multibody systems.

232



Chapter VIII- Synopsis and Conclusions

Based on the criteria set, it was demonstrated that method III, which uses a generalised
coordinate set and explicitly the consistent mass matrices of the components, is most
efficient of all the methods developed. The mathematical model D, derived by direct
application of this method, is a generic mathematical model of a peripheral structure in
space. The explicit appearance of the consistent mass matrix of each component in the
equations of motion, distinguishes this model from the rest and makes it particularly
attractive. The resulting equations of motion can be presented in a compact form, thus
facilitating the programming. Avoiding integration/summation schemes, unlike the other
models, the potential numerical accuracy of mathematical model D is very high.
Additionally the potential computing time for the completion of an application is lower.
Lastly, the analyst interference to provide data to the mathematical model, which cannot

be obtained in a systematic manner, is eliminated.

Within any of the methods developed, the issue of distributed flexibility modelling would
be much simplified if at the same time the size of the formulated problem was not a
concern. For modelling component deformation efficiently, several component mode sets
have been utilised in this work and may be combinations of dynamic and static modes.
Imaginary constraints, that belong to the set of internal physical coordinates, have been
proposed for defining static modes in the cases of statically determinate and

underdeterminate components.

For both the computational implementation of mathematical model D and for
demonstrating the efficiency of the various components mode set, a network of programs
has been developed. The final deliverables of the network are the eigenvalues of the
multibody system and the eigenvectors in modal or physical space. Additionally, physical
displacement, velocity and acceleration of any point on the structure can be derived as a
function of the forcing frequency using either direct or modal frequency response
analysis. Since structures in space are composed of complex components, within the
framework of this network each component has been spatially discretised using the finite
element method. For this purpose, the network has been interfaced with the commercial

finite element package ANSYS.
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It has been demonstrated that, in general, the computational speed of the proposed
method relative to the direct application of the finite element method increases as the
total degrees of freedom increase, the distribution of component degrees of freedom is
more uniform, total number of components and identical components increase and
component mode number decreases. This translated to a typical peripheral multibody
structure means that for an eigenvalue analysis a tenfold of speed gain over the finite
element method may be a conservative target to expect. Furthermore, if there is a time
benefit in eigenvalue analysis, it is straightforward to conclude that the same would apply
for a frequency response analysis relative to the direct or modal finite element method

frequency response analysis.

Utilising the network, several study cases have been undertaken and the natural
frequencies obtained using mathematical model D were directly compared to the natural
frequencies resulting by modelling the entire structural system using the finite element
method. In addition, modal frequency response studies have performed for further
validation of the method relative to the global finite element analysis, and for verifying

that the structural system eigenvectors obtained are accurate.

Large-scale flexible multibody structures in space, due to there particular design, large
dimensions, lightweight construction, and the large number of components, exhibit high
modal density and local deformation at the component interfaces. It was demonstrated
that the kind of flexible component modes employed in a mathematical model is of
foremost importance for the accurate modelling of the dynamics of these structures.
Combination of component modes that fail to closely resemble the real deformation of
the individual components, when attached to each other to form the structure, proved
inadequate or completely inappropriate for efficiently capturing the dynamics of the entire
structural system, even in the low frequency range. If component mode selection is not
appropriate the chances are that a number of modes will not be predicted, due to the
high modal density of the particular structural systems. Unmodelled dynamics can be a
main cause of destabilisation for structures in space, due to structure-control interaction.
Moreover, the inherently large differential problem will increase further if the flexible

component modes employed cannot model efficiently the linear elastic deformation of
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the components. Finally, a qualitative criterion has been developed that predicts the
possibility of local deformation at the interfaces being low or high. The criterion can be

used as a guidance to the number and type of component modes best utilised.

More precisely, the fixed-interface and free-interface component mode sets are not
appropriate, in general, for modelling of complex components which can exhibit local
deformation at their interfaces to other components. Nevertheless, these component
mode sets are ideal for simpler components, reducing the order and computational cost
of problem compared to more sophisticated mode sets. The proposed loaded-interface
component mode set gives excellent results, but is not appropriate for independent
modelling, and may become very involving for the modelling requirements of large
chains of components. The redundant constraint and constraint component mode set
provide as excellent results, or even better, than the loaded interface method and also
circumvent all the associated problems of the later. Moreover, both use a smaller amount
of dynamic modes to offer the same accuracy of results as the loaded-interface
component modes, thus reducing computational cost. Nevertheless, redundant
component modes cannot be defined or obtained in the cases of statically determinate
and underdeterminate components. On the other hand, constraint modes can be used in
such cases with the introduction of imaginary constraints. This leads to the conclusion
that constraint component modes are better suited than redundant constraint modes for

the dynamics modelling of large-scale articulated multibody systems.

In summary, the theoretical integrity of the mathematical model D has been
demonstrated, since it can provide results with extreme accuracy relative to the finite
element method, even with a low number of degrees of freedom, subject to the
component modes used. It has also been demonstrated that method III, that explicitly
utilises the consistent mass and stiffness matrices of the individual components, is
mostly suitable for the linear dynamics modelling of articulated multibody structures in
space. Most importantly, employing the right type and number of component modes, the
method can deliver extremely accurate results compared to the finite element method,
with a low number of differential equations. Additionally, it has been shown that this

method is more computationally efficient to the direct finite element approach.
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For issues involving the dynamical behaviour of category I missions in space, such as
main platform attitude control, stringent payload pointing, vibration suppression, control-
structure interaction, sequential or integrated control-structure optimisation or general
robust control algorithm investigation, mathematical model D can definitely be a solid
basis for such applications. in this respect, the network of programs that supports
mathematical model D can be employed for realistic research studies in the dynamics
and control area of large-scale flexible structures in space. Moreover, method III, can
easily furnish linear low order mathematical models for any tree-configuration structural

system in category II missions in space.
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Appendix-A

Recursive Kinematics of Articulated

Components

A-1. Prologue

The aim of this appendix is to derive general expressions for the kinematics of a
component in a multibody system with non-translating joints. Such is the case where
components are connected via spherical, universal, revolute, clamped or torsionally
elastic joints, The components are considered articulated, in the sense that any
gimbal articulation axis can be free or locked. This part of the nonlinear kinematical
analysis is recursive. The particular kinematical procedure followed in this work is
only possible for multibody systems where no closed-loops and multi-point interfaces
are formed between the articulated components. Structures in space are typical
examples of open-loop muliibody systems with operational components joint at

single-point interfaces.

Initially the interface constraints between the two adjacent components are
considered as either rotationally free (spatially articulating component) or fixed
(focked component). The resulting mathematical expressions are general enough to
employ any component mode set without violating the interface conditions. This is
accomplished with the introduction of ‘correction terms’ into the joint component
kinematical expressions. The physical significance of these terms is analysed by the
use of rotating observers positioned appropriately in the adjacent components. From
this nonlinear analysis a great deal of insight has been profited for the kinematics of
a component in a multibody chain, and the suitable mathematical expressions
accounting for the geometric interface conditions between adjacent elastic bodies
have been derived. Since any joint configuration can be considered as a combination

of locked (fixed) and articulating (free) axes, the component interface kinematics can
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be generalised for any possible joint. The final expressions of the component
kinematics as a part of a multibody system for arbitrary interface constraints have

been presented.

Equations (III-11), (I1I-13), and repeated here as (A-1), (A-2), give the angular and
linear velocity respectively of a frame travelling with an arbitrary point Q on a flexible
component B;. These equations refer to the component B; being disjoint to the
multibody system; in other words the effect of the motion of other components in the
multibody system on the motion of the component B; has not been accounted for.
The objective is to express the angular and linear velocity of the frame travelling with
the arbitrary point Q' in the component B; considering the influence of the motion of
the inboard component B;4. In essence a kinematical relationship needs to be
established for expressing the angular and linear velocity of the frame travelling with
point Q using the kinematical parameters that determine the motion of the preceding
component at the interface. If such a kinematical expression is defined for two
adjacent bodies, then by utilising it repeatedly for all components in the structure, the
motion of any component can be expressed in terms of the motion of all components

in the same muiltibody chain.

The kinematical formulation in this chapter, like in chapter LI, is geometrically
nonlinear. More specifically, nonlinear component kinematics involve the overall
motion of each component in the multibody system to be perceived as a rigid-body
motion relative to which elastic deformation can be observed. In this sense, one can
assign to each component a suitably positioned floating reference frame that moves
with the rigid part of the motion and relative to which the deformation can be
measured. Therefore, the overall motion of each component can be described in
terms of the motion of a floating reference frame, and deformation relative to it. A

schematic presentation of the aforementioned is iliustrated in Figure A-1.

The following equations (A-1), (A-2) have been proved in chapter III (equations (III-
11), (IlI-13)) and are
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'wi® +0 (A-1)

+

Tyi® =IViJi+I(DiBi><pi +u, (A-2)

where

I(DiQ is the absolute angular velocity of a frame travelling with an arbitrary point
Q' in the component B;

! 1Bi is the absolute angular velocity of the body reference frame (floating
reference frame) of the component B; .

+

Gi is the rate of change of the angular displacement at an arbitrary point Q
due component deformation

IViQ is the absolute linear velocity of an arbitrary point Q in the component B;

: iﬁ is the absolute linear velocity of point J; , the origin of the body reference
frame of the component B; .

P, is the position of an arbitrary point Q before the deformation, measured
from the origin J; of the body reference frame B; .

+ k)

u, the rate of change of the linear displacement of point Q due to deformation

as perceived by an observer travelling with the body reference frame B;
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A-2. Kinematics of a Component Joint at a Non-

Translating Interface

Three reference frames have been assigned that rotate and translate with points
J7,37,1,, which are shown in Figure A-1. J, is the origin of the body reference
frame B;, J; the position of J. after the deformation of the component B;, and J;
the interface point located at the inboard component B;.,. Components B; and B;.; are

joint at the interface points J, and J_ .

For a non-translating joint, the geometric compatibility between the adjacent

components B;and B,.; can be expressed as

Ti g =T i (A-3)

where the above notation is obvious from Figure 1. Equation (A-3) implies that points

JI, J, are coincident at any instant.

Differentiating equation (A-3) with time and relative to the inertial reference frame I,

the absolute linear velocity compatibility equation at the interface is obtained as

* =
byili=lyy ' (A-4)

Utilising equation (A-2), which gives the absolute linear velocity of an arbitrary point
Q' on the disjoint component B;, we can express the absolute linear velocity of point

] as

+ ) +
fvit =ty +(uiJ (A-5)
Ji

where p,=0, since P, is the position of J‘; from the origin J; of body frame B; prior

to the deformation.
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1(c)

O]

Figure A-1  General displacement component kinematics

(a) Rigid-body motion of component B,
(b) Combined rigid-body motion and deformation of component Bi
(c) Component Bi_1 arbitrarily displaced and deformed

Substituting the compatibility equation (A-4) into equation (A-5) the following

expression is obtained

_ +
il =ty -(uij (A-6)
N N -

Equation {(A-8) connects the absolute linear velocity of the origin J; of the body frame

Bi to the absolute linear velocity of the interface point J. in the inboard component
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B.s. Equation (A-8) is valid for any interface condition between two adjacent

components as long as there is no relative translation between them.

Substituting (A-6) to (A-2), the absolute velocity of an arbitrary point Q' within the

component B;can be expressed as

. - . + +
IViQ =IVi—1Ji +IcoiB1><pi+ui—(ui) (A-7)
M . L .

Equation (A-7) relates the absolute velocity of an arbitrary point on an articulated
component to the absolute velocity of the inboard component at the interface, and is

valid for any non-translating interface.

+
The term (u) in (A-7) can be considered a ‘correction term’. lis existence ensures
Ji

that whatever the pattern of the deformation of the component B; at the interface, the
compatibility equation (A-4) would hold. Indeed, substituting J; for Q equation (A-7)

becomes

regardless the value of u at the interface. If the ‘correction term’ did not appear in

the (A-7), then by substituting J :' for Q in equation (A-7) the following expression

would be obtained

+ , - +
Tyl =ty h J{u] (A-8)
Ji

From (A-8), it is obvious that if the ‘correction term’ did not exist, then the
compatibility equation would not hold unless the linear displacement of the

deformation pattern were zero at the interface.
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There are cases that the analyst would use deformation patterns that have linear
displacement value different to zero at a non-translating interface. in these cases it is
obvious from (A-8) that the compatibility equation (A-4) would be violated. On the
other hand, with the appearance of the ‘correction term’ in equation (A-7),
compatibility equation (A-4) would be maintained for any deformation pattern. The
‘correction term’ acts by displacing the deformation pattern u, by (uiJ
Ji
All component mode sets that include static modes will have value different to zero at
the interface. If the linear deformation of a component is described by a set of
component modes that their linear combination would give a non-zero value in the
displacement coordinates at the interface of an articulated component with the

inboard component, equation (A-7) responds by ‘displacing’ each mode by an

+
amount (u) s0 that geometrical compatibility is accomplished. If a particular mode
Ji

k in the set has zero displacement value at the interface, then for this mode

k
+
(u) will be zero and will not affect the equation (A-7). In this respect any
Ji

component mode set can be used without violating the geometrical compatibility

between components.

Similarly as for equation (A-6), for Q equal to J f equation (A-1) is expressed as

+ ; +
w0 fi) w
- b

where no assumption has yet been made for geometric compatibility of angular

velocities between adjacent components.
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Using the addition theorem for angular velocities?, the following general expression

connects the angular velocities of the coincident reference frames J 1+ » J7

+ T T . . +
"o = o+ o+ (A-10)

A-3. Kinematics of a Component Connected at a Fixed

or Torsionally Elastic Joint

The interface conditions for defining a fixed interface between adjacent components

can be expressed as

Yo = o (A-11)

Equation (A-11) implies that the reference frames J;", J; are co-rotational.

Substituting (A-11) into (A-9) the following expression can be written

. def . - +
I(J.),'Bl = I(J)ihzlﬂ)i_lji ‘(9) (A-12)
h - - T

Equation (A-12) expresses the absolute angular velocity of the fixed component B

relative to the angular velocity of the previous component at the interface point J; .

Substituting (A-12) into (A-1) and (A-7), the following expressions are obtained

respectively

: .+ +
I(DiQ =I(J~)i_1Ji +91‘(9) (A-13)
h - " T s
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1..Q 1. I 1 I * * +
Vio= Via 4+ 0ia Xp,+u,~ [ 0 Xp,H u, (A-14)
B N ~ 7 i Ty

Equations (A-13) and (A-14) express the absolute angular and linear velocity of a
frame travelling with an arbitrary point Q' within the component B; that is rigidly

attached to the inboard component B.q.

+ +
The terms (6) , (6) X, can be considered ‘correction terms’. It can be verified
Ji Jioo-

that the component mode sets are allowed to have different to zero angular
displacement at the interface of the component B;, without violating the compatibility

condition (A-11).

Equation (A-13) and (A-14) can be interpreted using different reference frame

descriptions. Considering the reference frame Ji' , that travels (rotates and

translates) with point J., the following interpretation can be given to (A-13) and (A-

14):

The component B;, attached rigidly to component B;;, has an absolute angular

L0 hy ) L1 I .
velocity (i1 and an absolute linear velocity vi-1” , and the observer fravelling

with J; can measure at any instant an angular deformation and a linear

displacement
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respectively, so that (ﬁiJ =0 and (UJ =0 , and the compatibility equation
5 N

(A-4) and (A-11) can be maintained.

Exactly the same interpretation can be given using reference Jf , Since due to
geometric compatibility considerations (A-4), (A-11) is coincident and co-rotational to

reference frame J .

For interpreting equations (A-13) and (A-14) using the reference frame Ji or
equivalently reference body frame B;, equations (A-13) and (A-14) are best rewritten

as

. - + +
i :(ICOHJi ‘(9) j+9i (A-13b)
- - R T
, - + - + +
vi?=| Ty —[ui) 'f'(ICl)i—lJi '-(9] ]Xpi'*'ui (A-14b)
- - )y - “Ju ) - T

where the term in the parenthesis of (A-13Db) is the I(J)iJi as verified by equation (A-

12), and the additional term in equation (A-14b) is the IViJi as verified by equation

(A-6). Using the forms (A-13b) and (A-14b) the following interpretation can be

offered.

An observer located at the reference frame J , can measure the time-varying angular

and linear displacement of a frame due to component deformation equal to 0,, u,

at any instant. The reference frame that the observer travels on, has an absolute

angular and linear velocity of

I (A1) Ay *
Vi = Vi-1 u,
- M -
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o Y (A
W' = W -0
- - T Jn

respectively, which are regulated by the rate of the angular and linear deformation at
the interface point, so that the compatibility equations (A-4), (A-11) can be

conserved. The observer at J; always maintains a time-varying distance and angular

displacement from the interface of the components, which equals to —(ui) and
Ji

—[9) respectively. The aforementioned description is schematically presented in
Ji

Figure A-2.

If the angular and linear displacement (uiJ and (9) were zero at the interface,
I Ji

then J;,J, reference frames would be coincident and co-rotational at all times. If

only the angular displacement due to deformation is zero, then the frames would be
co-rotational but not coincident. Lastly if only the linear displacement due to

deformation were zero, then the frames would be coincident but not co-rotational.

Conclusively, the kinematics of the fixed joint demand that angular and linear
displacement due to deformation at the interface to be zero. Even if the values of
deformation are not chosen to be zero, the ‘correction terms’ accomplish this, by
displacing the deformation pattern translationally and rotationally. The frame J; is not
necessarily coincident and co-rotational to the interface reference frames, and

therefore it would be erroneous to consider compatibility equations in order that

i 1 i i i . .
W = (DiJ and IuaJ =Iu1J , unless the deformation pattern that approximates

the deformation of the disjoint component was selected to assume zero value

angular and linear displacement at the potential interface point.
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Equation (A-13) and (A-14) would also be appropriate for modelling the case of two
components that are connected at a torsionally elastic joint. That is straightforward to
be verified by assuming that a torsional spring is part of either the inboard

component B4 or the outboard component B;. In the former case the torsional spring

would connect to component B; at point J f and in the later to the component B, at

point J. . In either case the torsional spring can be considered as an integrated part

of the flexible component.

Figure A-2 (a) Position of the component B; in the deformed and displaced position
and rigidly attached to the inboard component at interface J. ,J f

(b) Angular and linear deformation as observed from reference frames

Im=J!
(c) Angular and linear deformation as observed from reference frames
J. =B.

1 1
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A-4. Kinematics for a Spatially Articulating Component

A spherical joint allows 3 rotational displacements in space and restricts the
translational displacements. An articulating component that connects to the
preceding one via a spherical joint can perform a three-dimensional rotation due to
interface or external forces and torques applied on it or be free to rotate in space as

an floating object due to initial conditions.

Unlike in the cases of a fixed joint or torsionally elastic joint, the spherical joint

interface conditions can be defined by

il 0 (A-15)

The quantity . ; " is the cornerstone of free or driven articulation kinematics and is

the angular velocity of the body frame of component B; , measured relative to an
observer located at the interface J. , within component Bi-1 , and it will be symbolised

as
ot =Tt = o (A-16)
Substituting (A-15) into (A-10) the following expression can be obtained

Toil (A-17)

which implies that the reference frames J; and J; have different angular velocities

and thus cannot be co-rotational. Equation (A-17) can be considered the interface
condition for two adjacent components connected with a spherical joint. If (A-17) is
violated to an equality, then the spherical joint becomes a fixed joint, equation (A-11).

Utilising the addition theorem for angular velocities, (A-17) can also be written as

o' %0 (A-18)
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which means that an observer translating and rotating with the reference frame J; at

the interface of the component B;,, can observe the reference frame Jf to be

-
rotating with angular velocity i (DJ‘ . More specifically this angular velocity consists

of the rigid-body motion of the component B; and the angular displacement rate due
to deformation of the component at the interface, measured relative to the body
reference frame of component B;. This can be shown by rewriting (A-18) with the use

of the addition theorem as

Tl =T o+ ol (A-19)

and verifying that

1. 7+ def +

‘Wit =106 (A-20)
- - )i

Substituting equation (A-13) into (A-12) and using the definitions (A-16), (A-20), the

following expression is obtained

o ="o + o™ (A-21)

Equation (A-21) connects the absolute angular velocity of the body frame B; to the
absolute  angular velocity of the interface point J . within component B.

Substituting equation (A-21) into (A-1) and (A-7) the following expressions are

derived

I Q’ 1 I rel *

Wi =4 + o +06 (A-22)
1..Q 1 i 1,35 rel * *

Vi =Via H 0 + W |XP;+u,5 (A-23)
- - . - T -,
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Expressions (A-22) and (A-23) give the absolute angular and linear velocity of a
frame relative to an arbitrary point on a component B; in relation to the absolute
angular and linear velocities of the interface frame within the inboard component.

As for equations (A-13) and (A-14), a similar physical interpretation for equations (A-
22) and (A-23) can offered. The interpretation has been demonstrated schematically

in Figure A-3.

For a spherical joint, the angular diplacement at the interface, as measured by an
observer travelling with reference framelJ,, can be zero or non-zero. This is
suggested by the fact that no rotational ‘correction terms’ exist in the equations (A-
22) and (A-23) for the angular deformation. This is so, because whatever the value of
the angular displacement, the interface condition (A-17) cannot be violated, so there
is no need for ‘correction terms’. In Figure A-3 the angular displacement is depicted
as non-zero relative to the body reference frame B, but this is not suggestive that it
should necessarily be non-zero. On the other hand, the linear displacement has been
‘corrected’ to zero since the spherical joint cannot allow translation between the

adjacent components.

Nevertheless, from the kinematics of the spherical articulation there is no physical
mechanism to restraint the value of the angular displacement to zero. Considering
that rigid-body angular displacement is allowed by the spherical joint kinematics, so
should angular displacement due to deformation. In this sense, it may be beneficial
to use deformation patterns which have non-zero angular displacement value at the
interface with the inboard component. Maybe a zero angular displacement pattern
can affect the accuracy of the results, since the physical mechanism of the
articulation is not dealt with properly, but whatever the case the interface condition

(A-17) will still hold.
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- +
» Reference frame J; ® Reference frame J;

Figure A-3. (a) Position of the component B; in the deformed and displaced and
articulating relative to the inboard component B;. '
(b) Linear displacement due to deformation of component B;as

observed from reference frames J' J -

A-5. Kinematics of a Free or Driven Component for

Arbitrary Articulation Axes

Equations (A-13), (A-14) correspond to a component connected at a fixed or
torsionally elastic joint, and equations (A-22), (A-23) to a spatially articulating
component. Combining the two sets of equations (A-13) with (A-22) and (A-14) with
(A-23), the following expression can be accomplished

. - + +
"o ="on" + o +6- (9) (A-24)
“ - L
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Q1. x5 [1.x rel * * p
Vio=via H o+ 0 Xp,tu,— | u |+ 0] Xp, (A-25)
) - mJn T

Equations (A-24) and (A-25) combine all the terms that are contained in their
counterpart sets. Equations (A-24), (A-25) can therefore be used to describe the
component kinematics of an outboard component for any non-translating joint. By
removing term w® from (A-24) and (A-25), equations (A-13) and (A-14) are obtained
respectively. By removing the ‘correction term’ (©);, equation (A-22) and (A-23) are

obtained respectively.

Revolute and universal joints can be considered as consisting of combinations of
focked and free articulation axes. The equations (A-24) and (A-25) can be written as
two sets of three equations each. Each equation can correspond to a different axis
of a joint and each axis can be treated separately. Therefore, (A-24), (A-25) can be
used to model any non-translating joint configuration. The following Table A-1 sums

up the different cases for an arbitrary axis k.

it has been shown that if component mode sets have more angular displacement
freedom than required in any direction due to deformation, then the correction terms
that correspond to the particular direction will zero the angular displacement, so that
the interface conditions are not violated. If a flexible component mode set has less
angular freedom than the joint requires in a particular direction, the interface
conditions are not violated, but the kinematical description may be not so accurate. In
any case, the component mode sets incorporated in this work have been selected so

that they may have more angular deformation freedom, and not fess.

By applying equations (A-24) and (A-25) repeatedly for all components in a multibody
chain, the absolute angular and linear velocities of an arbitrary point on any
component B; can be expressed in terms of independent kinematical parameters that
specify the motion of the components preceding and including B; in the chain. In this
way the motion of any component in a multibody system can be coupled to the

motion of all other components in the system.
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Joint Axis k Articulating

Driven or Free

l.ocked or Elastic

k | orel Yes

No

k +
(6) No
Ji

Yes

+

k
Table A-1. ‘Correction term’ (91) and articulation term “ ;"' can be omitted or
I

included in the equations (A-24), (A-25) for component B; depending on

the articulation of axis k.

254



Appendix - B

Mechanisms of Geometric Noniinearity
in Multibody Systems

In the dynamics of multibody structural systems geometric nonlinearity is introduced
for two reasons; component large angle arbitrary rotational displacement and / or

time-varying configuration.

B-1. Large Angle Arbitrary Rotational Displacement

According to Euler’s theorem® an arbitrary rotational displacement of a rigid body is
equivalent to a rotation around a fixed axis. In other words, if a rigid body is
rotationally displaced form an initial orientation in space to another, the new
orientation of the body can be described by specifying an appropriate axis and an
angle of rotation around the axis. This description of the body’s arbitrary rotational
displacement is performed in a single step by defining an axis in space and a rotation
angle around this axis. The rotational displacement around a single axis will be

considered in the context of this section as a simple rotation.

A rotation matrix, and more specifically a direction cosine rotation matrix, can be
directly defined using the projections of the unit vectors along the orthogonal axes of
a reference frame B to the axes of an arbitrary oriented reference frame A. In this
sense, a rotation matrix is a measure of the relative orientation of two reference
frames. If the orientation between two reference frames can be described using a
rotation matrix, so should the orientation of a body relative to a reference frame.
Equivalently, the rigid body simple rotational displacement, which gives a new
orientation of a body relative to a reference frame, can be described by the use of a
single rotation matrix. Rotation matrices have a string of useful properties, and
amongst them, most importantly, the orthonormality property; the inverse of a

rotation matrix equals its transpose.
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Returning to the Euler’s theorem, a rotation matrix can be derived, to describe the
orientation, i.e. the rotational displacement, of a body, as a function of a vector
defining the orientation of an axis and an angle of rotation around this axis. Without

presenting the exact form of the particular rotation matrix, it is

c=c (0] (B-1)

where the vector A is a vector coincident to the axis of rotation and ¢ is the angle of
rotation around the axis. The vector quaniity A and ¢ are considered the parameters
of the rotational displacement or else the parameter set of the rotation matrix C.

Other parametric expressions of the rotation matrices will be presented latter in this

appendix.

If a rigid body is rotationally displaced in a sequence of simple rotations, through
specific axes in space and angles of rotation, and acquires a final orientation, the
angular displacement can still be described, according to Euler's theorem, by
defining a single axis in space and an angle of rotation around this axis. It can be
proved using the mathematical expression of Euler’s theorem, that if the sequence of
rotations changes, whereas the axis of each rotation and the angle of the rotations
remain unaltered, the final orientation of the body will be different. The above
statement can also be proved true without the use of a particular parametric
expression of a rotation matrix. if a rotational displacement can be described by a
rotation matrix, then a sequence of rotations can be shown to be the multiplication
product of the rotation matrices corresponding to each rotation. Since, in general,
matrices do not commute in multiplication, the final orientation of the body is

dependant on the sequence of the rotations.

The implication of the above is that rotational displacement, in general, is not a
vector quantity, and the commutative rule of addition of vectors cannot be applied. If
a body is displaced in a sequence of simple rotations, the sequence of rotations
along with the rotational displacement parameters - axis of rotation and angle of
rotation in the case of Euler’s theorem - need to be defined in order to determine the
final position of the body. Using an example of two consecutive rotations, the

following applies,
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6,+9, # 6,46, (B-2)

where Q is the rotational displacement and is symbolised with a double underline to

indicate a pseudo-vector quantity.

Defining an orthogonal reference system the quantity _Q can be expressed as

eX
6=|0

0, )

where ei, for i=x,y,z are the projections of the quantity Q to the axis of the
orthogonal reference frame x,y,z respectively. At a first glance, one may assume that
the values Gi, which define the orientation and the magnitude of Q would also
define the axis of rotation and the angle of rotation, thus, according to Euler’s
theorem, _Q would be a valid description of the orientation of the body in space. One

can write O as

6,) (6,) (0) (0
e=|6, |=| 0 [+|8, [+ 0 (B-3)
0,) (0] 0] le,

The above form implies that if rotational displacement were a vector quantity it would
equivalently be written as the sums of the rotational displacements around the
reference system axes with no concern on the priority of summation. But the form (B-
3) fails to give the sequence pattern of the rotations, thus does not specify uniquely
the final position of the body. It is evident that 2 cannot qualify as the description of
rotational displacement, since it misses information about the sequence of rotation

and therefore 6; cannot define the orientation of the body. The assumption that the
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values of 6; can specify the axis of rotation and the magnitude of the rotational

displacement is not true. Defining the orientation of a body using _Q is insufficient.

The conclusion that rotational displacement is not a vector quantity is in general true
for an arbitrary rotational displacement of a rigid body. In specific cases, it can be
shown that rotational displacement is a vector quantity. If a body is rotationally
displaced in a sequence of large angle rotations around parallel axes, then the final
position of the body can be reached regardiess the sequence. This exception is
typically found in the case in plane kinematics. Another exception regards the small
arbitrary rotational displacement, which can be viewed as a vector quantity. The
sequence of displacing a rigid body through a series of small rotations does not
affect the final position of the body. Both statements can be verified using the
mathematical expression of Euler’s theorem and any other parametric description of
a rotational matrix or can be shown geometrically. These exceptions do not mean
that the Eulers theorem, or more generally a rotation matrix description of the
orientation, is not applicable in the case of planar or small rotational displacement,
but that the sequencing of rotations is redundant in large planar and small rotational

displacement analysis.

Up to this stage, it was shown that large arbitrary rotational displacement is not a
vector quantity, and for its description the use of rotation matrices is essential. Based
on Euler's theorem, the Euler rotation matrix expression presented in (B-1) utilises
the orientation of an axis of rotation and an angle of rotation as rotational
displacement parameters. Several other descriptions of a rotation matrix are possible
using different sets of rotational parameters. In other words there are various ways to
describe arbitrary large angular displacement, i.e. the orientation of a body in space,

by the use of different angular displacement parameter sets.

The most relevant to this work rotational parameter set is the Euler angles set or else
orientation, attitude angle set.?® This set uses a sequence of 3 simple linear
independent rotations around either the orthogonal axes of the body frame (body

sequence) or around the axes of a suitable reference frame (space sequence) in
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order to define a rotation matrix and therefore the orientation of the body in space.

More specifically the Euler angles rotation matrix is given by

c=C,(6,) C,(0,) C,(6,) for ijk=1,23 and i#, j#k (B-4)

C,(84) is a direction cosine rotation matrix corresponding to the first rotation around

axis i

C; (6.) is a direction cosine rotation matrix corresponding to the second rotation

around axis j

C« (63) is a direction cosine rotation matrix corresponding to the third rotation around

axis k

In total there are 24 independent combinations of space and body sequences that
can be used to define Euler angles rotation matrices. The 8, 6, 6; rotation angles are
the Euler angles or else orientation, attitude angles. C; A C;, Cx are considered
principal rotation matrices, since simple linearly independent rotations are performed
around the orthogonal axes of the body reference frame or an independent reference

frame for acquiring the Euler angles rotation matrix.

Another useful parametric rotational set is the Euler parameter set, which uses a 4
parametric description of the rotational displacement24. The redundant rotational
parameter description may have particular advantages relative the 3 parameter

description, but also implies that the 4 parameters are not independent.

B-2. Rotational Kinematics

This far the general characteristics of the rotational displacement have been
examined and the means to represent it parametrically with the use of rotation
matrices has been explored. The properties of the large arbitrary rotational

displacement affect the kinematical expressions of a body undergoing arbitrary
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rotational motion. The kinematics of the rotation is involved with the arbitrary angular
displacement evolving with time. The rotation matrix associated with the orientation

of a body, or else with the angular displacement of a body, is time dependent.

By definition?” the skew-symmetric matrix «*, called an angular velocity matrix of a
reference frame B relative to a reference frame A and expressed at the reference

frame B is given by
o*=CTC (B-5)

where C is a generic rotation matrix specifying the orientation of B in A and the
overdot implies time differentiation. The rotation matrix C is considered generic, and

(B-5) applies regardless to the particular parameter set utilised.

C is an orthonormal matrix, hence equation (B-5) can also be written as

C-C @ =0 (B-6)

Equation (B-6) is the cornerstone of rotational kinematics. Equation (B-6) is a matrix
differential equation, has time varying angular velocity coefficients, and in general
cannot be solved in closed-form. The equation implies that if the history of the
angular velocity is known, then by integration, the orientation of a body (or frame)
can be specified at any instant. Such is the case when the history of the angular
velocity has been obtained by the solution of Euler's attitude equations of motion.
Generally, Euler's equations are coupled to Netwon’s equations, for the combined
rotational and translational motion of the body, and, in general, the nonlinear coupled
differential set is solved numerically, along with the equation (B-6) to obtain the

attitude history of a body moving in space.

As analysed before the mathematical expression of the generic rotation matrix C
depends on the parametric set employed. Equation (B-6) can also be written in the

form
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=f|E [p} p (B-7)

The above form is symbolic, where E is a matrix which depends on the rotational
displacement parameter set p, and pis the rate of change of the parameter set. It
should be noted that E is not a rotation matrix. Expression (B-7) states that the
angular velocity of a body (or a reference frame) depends on the rate of angular
displacement parameters, but also on the particular orientation of the body at any
instant. The expression that relates the angular velocity to the rate of angular
displacement parameters is, in general, nonlinear. This is due to the nonlinear form

of E as function of the angular displacement set.

The fact that there should be, in general, a nonlinear relationship between the
angular velocity and the rates of the angular displacement parameters introduced
indirectly by the nonlinear form of matrix E can be shown without mathematical
means. Since the rotational displacement depends on the sequence of rotations,
angular velocity should depend on the orientation of the body at any instant. The
orientation of a body, described by a time-varying rotation matrix, is a nonlinear
function of the rotational displacement parameter set (which is evident from
geometric considerations). Since angular displacement depends on orientation and
orientation is a nonlinear function of the rotational displacement parameter set, so
should the angular velocity. The above consideration correlates the angular
displacement characteristic of sequencing to the nonlinear nature of rotational

kinematics.

In this sense, in planar or small arbitrary rotational displacement, where the
sequence of rotations does not affect the orientation of the body, angular velocity
should be independent to the orientation of the body and a linear relationship
between the angular velocity and the rates of rotational displacement parameters

should exist. In mathematical terms it is

R
il
1D
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All above considerations can be proved mathematically using any form of a rotation

matrix expression.

For the case of the Euler angles rotational parameter set it can be shown that

equation (B-7) has the particular form

®=E(0) 0 (8-8)

where E(0) is the Euler angle matrix and O the vector of the rate of change of the

Euler angles, or else attitude angles. E is a trigopnometric function of the orientation

angles.

In a Lagrangian formulation the orientation angles and their rates can be used as
generalised coordinates (in the general Lagragian context). Therefore, in the
Lagrange equations partial derivatives of the expressions involving the angular
velocity of a body (as a nonlinear function of the orientation angles) relative to the
orientation angles and their rates, introduce nonlinear terms in the equations of

motion.

For a single body performing planar rotation or for a body performing arbitrary smail
angle rotations the Euler angle matrix does not have any physical significance since

the sequence of rotations is not resirictive. Mathematically it can be proved that
E(6,,0,,0,) =1 (B-9)

As explained earlier in these two cases the rotational displacement becomes a vector
quantity. One can express vector rotational displacement as a linear combination of
rigid-body modes. Rigid-body modes can be perceived as simple, small rotational
displacements, and since the sequence of rotational displacements in not restrictive
in these cases, a linear combination of simple rotational displacements is acceptable.
The time-dependant coefficients of the linear combination of rigid-body modes are
considered the generalised coordinates of the rotation, or more generally the

rotational displacement parameter set. At the same time the angular velocity can be
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expressed as a linear combination of rigid-body modes with time dependent

coefficients the rates of the generalised coordinates.

B-3. Time-varying Configuration

Time-varying configuration of a multibody structural system is another cause of
nonlinearity. Although in essence time-varying configuration is caused by large
angular displacement, the mechanism of introducing the nonlinearity into the
equations of motion is distinct. For example, a multibody system with articulating
components that all perform large planar rotations is described by a set of nonlinear
differential equations, although E; ( 84, 8,, 83 )=1, for i=1,2,..,k, where k is the total

number of components in the multibody system.

The mechanism of nonlinearity can be traced directly in the rotation matrices.
Rotation matrices are used in this case for expressing a vector quantity form a
particular reference frame to another. The components of a vector quantity may have
different values in different reference frames, with the constraint that the magnitude
of the vector is constant. The time-varying rotation matrix C; between two reference
frames, that in the case of a multibody system may represent the body frames of two
adjacent and relatively rotating components, is at any instant a nonlinear function of
the set of the rotational displacement parameters that describe the relative

orientation of the two components.

Even in the case of large planar rotation the rotation matrix does not reduce to unity,
unlike the Euler angle rotation matrix. In the case, though, of small arbitrary rotations
the rotation matrix reduces to unity, and in essence the system is not considered of
time-varying configuration. Of course, for time-varying configuration of components
that perform large arbitrary rotations both the rotation matrix C; and E; matrix are
nonlinear functions of the rotational displacement parameter set. Vectorial
expressions transformed from one reference frame to another, where the orientation
of the frames is a nonlinear function of the rotational displacement parameter set (i.e
in the case of large angle orientation), introduce nonlinear terms in the equations of

motion. For reference purposes the several cases are presented in Table B-1.
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System Kinematics Time-Varying Matrix E Equations of
Rotation Matrix Motion
Cc
Single Body Large Angle C nonlinear E nonlinear nonlinear
Arbitrary Rotation | or omitted (C =1)*
Single Body Large Angle C=1 E=1 linear
Planar Rotation
Single Body Small Angle C=1 E=1 linear
Arbitrary Rotation
Articulating Large Angle Ci nonlinear Ei nonlinear nonlinear
Structure Arbitrary Relative
Rotations
Articulating Large Angle Ci nonlinear E =1 Nonlinear
Structure Planar Relative
Rotations
Articulating Small Angle Ci=1 Ei=1 Linear
Structure Arbitrary Relative
Rotations
Table B-1 Reference table for the dynamics description of several systems

* This depends on the expression of the vector quantities on the body

reference frame or an inertial reference frame.
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