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This thesis examines the issues affecting the design and implementation of scal-

able agent-baaed systems which use query routing for resource or service discovery. 

Query routing is a type of informed distributed search in which agents reason about 

the capabilities of other agents in order to constrain the scope of a query and the 

cost of processing it. 

The technique of query routing bears many similarities to the use of mediators 

in multi-agent systems. We discuss the relation between mediator-based systems for 

service discovery in multi-agent systems and the use of query routing in distributed 

information systems, and present a novel model of the query routing task which 

we have used to examine the complexity and scalability of a number of commonly 

encountered architectures for resource or service discovery. 

This theory-based approach is complemented by our practical experiences of 

building query routing systems using our simple agent framework, Phyle. Finally, 

we perform an empirical study of the behaviour of different query routing systems 

in order to validate our model, using our simulator for query routing systems, 

Paraphyle. 
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Chapter 1 

Introduction 

During the last decade, the dramatic growth of the Internet and the World Wide 

Web have only been surpassed by our growing expectations of their effects on our 

future lives. Hypertext, for years an academic curiosity, is set to become a medium 

with penetration on a par with television or the printed word. The environment of 

our libraries and teaching institutions is set to change as the rising tide of digitally 

available information begins to augment or supplant the traditional physical hold-

ings of ink-and-paper resources. Our direct involvement in day-to-day commercial 

transactions will decline as we rely on software agents which we have empowered 

to make buying decisions on our behalf. Behind much of this hyperbole lies an as-

sumption made by many of the more vociferous Internet advocates, that the growth 

of the Internet is effectively unbounded. Unfortunately, this assumption is incorrect 

in one key area, that of searching the World Wide Web. 

At present, there are two distinct ways of searching the Web. Individual web 

servers may have a search facility which covers the pages on that server, but this 

is only of use if the user has prior knowledge of which server is likely to hold the 

documents which they need. The alternative to this are the web search engines, 

centralised indices of the Web which are constructed by a brute force traversal of 

the Web that index each page found. The largest of these services - Altavista\ 

Google^, Lycos^ and so on - are household names, and provide a way for users to 

search the contents of many web servers at once. They are a vital part of the web 

infrastructure, but there are signs that they are increasingly less able to provide an 

effective service as the Internet and World Wide Web grow. 

^http;//www.altavista.com/ 
^http;//www.google.com/ 
^http://www.lycos.com/ 

http://www.altavista.com/
http://www.google.com/
http://www.lycos.com/


Studies of the major search engines by Lawrence and Giles (1998, 1999) esti-

mated the size of the publicly indexable Web to be in the region of 320 million 

pages in 1998, rising to 800 million pages in 1999. Of these pages, at most 16% 

(and frequently less) were indexed by the search engines studied in 1999, and this 

proportion had fallen since the first survey in 1998. The latency of index records 

also grew, with a typical wait of several months for new pages to be indexed, and 

as many as 10% of returned links pointing to non-existent resources. Much of this 

is due to the logistical difficulties of performing a 'full' web traversal in reason-

able time. At the time of writing, estimates of Web size exceed two billion pages 

(Cyveillance, 2000), yet the largest published indices have only just reached one 

billion pages (Google, 2000). In short, the existing solutions are not scaling well. 

The advent of the next generation Semantic Web (Berners-Lee et al., 2001), 

which posits the existence of intelligent agents that can reason using ontologically 

marked up content found on the Web, is set to highlight the inadequacies of the 

current approaches to searching large scale distributed systems by reducing the 

intrinsic granularity of the Web from webpage-level artifacts to entities more akin 

to facts in a expert system knowledge base. 

The task of searching a distributed system for objects with certain desired char-

acteristics, known as resource discovery, is found in many domains other than the 

Web. Hypermedia link resolution in hypertext systems with first class links, white 

page directory lookup, agent mediation and bibliographic search must all perform 

resource discovery in a distributed context. 

One solution which addresses the question of scalability of the resource discovery 

task relies on the distributed nature of the system to spread the index-building load. 

In the Web domain, for example, this would entail each web server indexing its own 

documents. Searching for documents in this distributed environment requires that 

the query be evaluated (logically, at least) on each server. If each server passes a 

summary of their contents to the other web servers, a user's client can locate and 

query only those servers with relevant content, a technique which is known as query 

routing. We can view this process as the composition of three subtasks: database 

selection, in which a web server containing possibly relevant material is located; 

query evaluation, in which documents matching the query criteria are identified; and 

data access, in which the identifiers are used to retrieve the matching documents. In 

some domains, the first two tasks are collectively known as name resolution, since 

they turn a descriptive name into an address for a resource. 



For query routing to work, the servers must have sufficient a priori knowledge 

about the contents of other servers to be able to guide the user's client to its 

destination. This knowledge may be characterised as a belief about the knowledge 

of another server. Combined with the distributed, ad-hoc nature of the problem, this 

suggests that (Jennings, 2000), which models computation 

as the social interactions in a group of autonomous processes, is a suitable technique 

for studying query routing systems. Indeed, the resource discovery task is closely 

related to the service discovery task or connection task (Decker et al., 1996) in 

which agents in a multi-agent system attempt to locate other agents which can 

provide them with a service that they need. Service or resource discovery services 

are an essential component of loosely coupled systems like multi-agent systems, 

as noted by Gasser (2000). Brazier et al. (2001) note that there have been few 

studies of multi-agent system scalability to date, even though this should be an 

important consideration when deploying agent systems, and that the majority of 

agent scalability problems are not agent problems per ae, but are related to the 

services provided for name resolution and resource or service discovery. 

In this thesis, we study the suitability of query routing as a technique for 

database selection as part of the resource discovery task, based on an experimental 

implementation of an agent-based query routing system. In Chapter 2, we review 

existing systems for resource or service discovery, some of which make use of query 

routing, and summarise relevant previous work in our chosen problem domains of 

hypermedia, white pages directories and bibliographic metadata. Chapter 3 con-

tains a model of the query routing task based on existing information retrieval 

formalisms, while in Chapter 4 we examine the effects of the underlying topology 

of a query routing system on its behaviour and scalability. In Chapter 5 we present 

Phyle, an agent-based system for query routing search, and Paraphyle, a simulator 

for large Phyle systems, and in Chapter 6 we discuss the design of agent-based sys-

tems which use query routing, as well as knowledge representation ontologies for our 

chosen problem domains. Finally, Chapter 7 contains an empirical study of Phyle's 

behaviour in different network topologies, while Chapter 8 contains our recommen-

dations for building effective and scalable query routing systems, and outlines a 

number of potential avenues for future research. 



Chapter 2 

Literature Review 

2.1 Introduction 

The resource discovery task appeeirs in several domains, and consequently there 

have been a number of attempts to construct systems which perform well at it. In 

this chapter, we concentrate on the contributions from traditional computer science, 

artificial intelligence (by way of multi-agent systems) and library and information 

science by studying exemplar systems and other previous work from these areas. 

In addition, we summarise key technologies from our specified problem domains of 

bibliographic search, hypertext link resolution and white pages directories. 

2.2 Distributed Search Systems 

Distributed search is used here as a catch-all which encompasses both 'pure' resource 

discovery systems and other systems which, while not strictly resource discovery, 

still have the concept of searching for objects which satisfy some criteria. In this 

latter category we include systems for name resolution and federated databases. 

There are important differences between this category and resource discovery, not 

least the type of queries which are formulated and the type and number of answers 

which are returned. 

As noted in the previous chapter, resource discovery systems take a query and 

return a number of objects which satisfy the query. These objects need not all be 

distinct; some may be copies or equivalent objects, but most will be different. In 

contrast, a name resolution system takes a query (a name) and returns the address 

to which the name resolves. More than one address may be returned, but these are 

all taken to be references to the same object, or copies of tha t object. 



Federated databases (Sheth and Larson, 1990) are composed of a collection of 

cooperating but autonomous databases, possibly heterogeneous. Retrieving data 

from a federated database requires that a query be directed to the appropriate con-

stituent databases. The task of choosing candidate databases is known as database 

and is a key part of the resource discovery task in a distributed informa-

tion system. 

There are a number of different Internet-based distributed search, information 

retrieval or name resolution systems, some more widespread than others. These 

approach the distributed search task in different ways and focus on different aspects 

of the problem. In addition, the growth of interest in digital libraries (whose contents 

are digital artifacts rather than the physical artifacts held by traditional libraries 

- paper books and journals, for example) has led to the creation of a number of 

systems for resource discovery in digital libraries (Dushay et al., 1999; French et al., 

1998; French and Viles, 1996; Fuhr, 1999; Liu, 1999). 

2.2.1 Domain Name Service 

Description 

The Domain Name System (Mockapetris, 1987a,b) is the most widespread dis-

tributed search system in use on the Internet, and is used to map domain names 

(eg. s tone.warwick.ac.uk) onto Internet addresses (eg. 137.205.224.4). DNS is 

a replacement for an earlier system of name resolution in which a central database 

(the HOSTS. TXT file) was replicated to all of the machines on the network. The ef-

fort involved in propagating updates to this database increased as the square of the 

number of network hosts, even if the actual resolution of names increased linearly. 

Internet domain names are hierarchical, and so DNS breaks the namespace into 

zones (eg. . so ton .ac .uk) , each of which has a number of nameservers which hold 

the resource records (the components of the name-address mapping) for the hosts 

in that zone. When a nameserver is queried about hosts about which it does not 

hold authoritative data (ie. they are not within its zone), it has three options: 

1. give a non-authoritative response from cached data if present, 

2. issue a referral to another nameserver which is better placed to answer the 

query, 

3. issue the same query to another nameserver which is better placed to answer 

the query 



The referral information is an expression of the expected knowledge of another 

nameserver, and is derived from the name hierarchy; a nameserver will typically 

have pointers to other name servers that can be used to lead to information from 

any part of the domain tree. 

The latter two responses above illustrate two general approaches to distributing 

queries. In the first (the iterative case), the nameserver issues a referral and lets the 

client pursue the query, whereas in the second {recursive) case, the server pursues 

the query on behalf of the client (ie. the client is effectively delegating the whole of 

the query task to the server). The difference between these two is further discussed 

in Section 3.4. 

Discussion 

DNS is a name resolution system which returns a single address binding for a name, 

rather than an information retrieval system which returns all records which match 

a query. The structure of Internet domain names makes it comparatively easy to 

create an efficient name resolution system, but it is unlikely that this would be the 

case if DNS were applied to other problem domains. 

2.2.2 Harvest 

Description 

The Harvest Information Retrieval System (Bowman et al., 1995b,a) was originally 

designed as a general purpose IR tool. Rather than concentrating on the efficient 

retrieval of information from existing indices, the Harvest project concentrated on 

the construction of those indices. 

In a conventional Web-based indexing system (Koster, 1994) such as Altavista, 

an autonomous program or robot traverses each server which is to be indexed, 

retrieving each of the objects thereon and adding it to its database. Although there 

are techniques for minimising the load that this traversal places on the server, it 

can be a resource intensive operation because under earlier (but still used) versions 

of the Hypertext Transport Protocol (Berners-Lee et al., 1996) each object retrieval 

creates a separate TCP connection. 

Harvest reduces the network load inherent in remote traversal index building 

by using software on each site to index the local objects, and then submitting a 

summary of the objects to the index server. The components of a Harvest system 

are thus divided into three groups; 
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Broker 

Broker Broker 

Gatherer Gatherer Gatherer 

1 L i 1 i 1 

Provider Provider Provider 

Figure 2.1: The Harvest Architecture 

Providers: These are the information servers whose contents are indexed by the 

Harvest system. 

Gatherers: These collect and extract indexing information from the providers. 

Brokers: These provide the indexing and a query interface to the gathered infor-

mation. 

The components of a Harvest system are organised as shown in Figure 2.1. The 

brokers in the system are commonly arranged in a hierarchy, with lower-level brokers 

passing a filtered version of the summaries that were received from the gatherers to 

a broker in the level above, which can then provide a refined search capability to 

users. 

Discussion 

Harvest does not provide a referral mechanism to guide the client during the resource 

discovery task; a query sent to a broker can only return references to objects on the 

providers which the broker's gatherers index. Any global searches over the set of 

brokers are carried out in a brute force fashion, the query being replicated to each 

in turn. 

2.2.3 CCSO Nameserver 

Description 

The CCSO Nameserver (Hedburg and Pomes, 1998) (also known as 'Ph') is a white 

pages database designed to hold a relatively small amount of information about a 



large number of entities (eg. an institutional telephone directory), and to provide 

networked access to that information. These nameservers are local, in that they 

cannot refer a client to another server which might contain the desired information, 

although it is possible for a server to contain a list of other servers which can be 

retrieved by the clients. 

Discussion 

Ph cannot be used as the basic technology for distributed search, but it is widely 

used to serve collections of data (in Harvest terms, it acts as a provider). Ph also 

highlights a common problem with the resource discovery task; if more than one 

distinct database is to be queried, the databases must either have the same core 

schema (for a field-based system like Ph, the names of possible fields and their uses) 

or there must be a way of converting one schema into another. 

2.2.4 Referral Whois 

Description 

Whois (Harrenstien et al., 1985), the predecessor to RWhois, is an Internet white 

pages service containing administrative information such as contact names and ad-

dress for Internet hosts and domains. The original Whois system consisted of a 

small number of centralised databases containing all the records in certain top-level 

domains (eg. one for .com and .org, one for .mil and .gov). If a user did not 

know which database to query (eg. they had a user's name but not their domain), 

they had to query each Whois server in turn. 

RWhois (Williamson et al., 1997) improves upon this by creating a hierarchical 

namespace for the records, based upon the domain names from DNS. This names-

pace is broken down into a number of authority areas, much like DNS zones, which 

contain the administrative information for certain types of hosts or domains (for 

example, the . uk authority area would contain information for the subdomains of 

.uk, and for the hosts in those domains). 

An RWhois server for a given authority area is able to give authoritative answers 

for queries about hosts and domains within that area. However, in the event that an 

authority area is further subdivided (to . ac.uk, . org.uk and . co. uk, for example), 

the server for the parent area is not able to give authoritative answers for queries 

about hosts and domains in the subareas; the subareas have their own RWhois 

servers which answer authoritatively. 

8 
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eng.bar.com eng.bar.com 

Figure 2.2: RWhois referrals 

Thus, RWhois servers may issue referrals to direct the client to another server 

{query routing). RWhois identifies three distinct types of referral: 

link: The authority area of the referred-to server is the same as that in the original 

query (ie. the referral is to a server who will be able to authoritatively answer 

the query). 

reduction: The authority area is not equal to the query, but this referral is still 

constraining the search space. 

punt: No authority is sent; the client is being referred up the hierarchy and the 

search expanded. 

In Figure 2.2, the client is issuing a query about the host brunel .eng.bar .com 

to the RWhois server with authority area bar.com. If the server issues a referral to 

the server with authority area brunel .eng.bar .com, this is a link referral, whereas 

a referral to the server with authority area eng.bar .com would be a reduction 

referral. If the query was not within the authority area of the initial server (for 

example, a query about the s c i . f o o .com domain), a punt referral would be issued 

to the server's parent, whose authority area is . com. 

Discussion 

The structured white pages records which RWhois is designed to search for could be 

modified to contain other types of data, such as bibliographic data. However, the 

type of knowledge that RWhois servers have about each other is closely linked to 

the hierarchy of authority areas, which places restrictions on the type of data each 

server may hold. It would be possible to partition the search space into authority 

areas based on a hierarchical subject classification like Dewey Decimal, but would be 

9 



impractical to do likewise based on a keyword subject classification - this restriction 

may make RWhois unsuitable for some applications. 

2.2.5 \A/hois-)--|-

Description 

The WHOIS++ (Welder et al., 1996; Faltstrom et al., 1998) directory service is a 

different refinement of the Whois network white pages service and is intended to 

provide a simple, extensible white pages directory service using a template-based 

information model and a flexible query model. While not designed to be a general 

tool for distributed information retrieval, it addresses many of the problems which 

affect such systems. 

Like the RWhois system, WHOIS++ uses a system of referrals to direct the client 

from one server to a more relevant server and constrain the search space. If a query 

is formulated which does not specify any informat ion p e r t a i n i n g to the namespace, 

RWhois a t t e m p t s a global search - an expensive propos i t ion . W H O I S + + does not 

restrict the referrals to a simple hierarchy; bu t genera tes t hem from a mesh of 

forward knowledge which describes the contents of servers (in much the same way 

as Harvest summaries). 

This forward knowledge comes in the form of centroids, partially instantiated 

records which subsume some group of records. These centroids may be constructed 

for any database schema; in WHOIS++ , the fields in a centroid contain a list of all 

of the words which appear in the fields of the records which the centroid represents. 

For example, a database containing three records, each of which has a contact name 

field with respective values 'John Smith', 'Peter Jones' and 'Robert Smith', would 

generate a centroid whose contact name field has the value 'John Smith Peter Jones 

Robert'. This 'words-appearing-in' summarisation is performed independantly on 

each field of the records. Although the WHOiS-|--f specification does not require 

the elimination of stop words or stemming of terms, these techniques could easily 

be used to improve the effectiveness of centroids. 

In the WHOis+-f- system, the individual white pages records are held by a layer 

of base level servers. The contents of these are summarised by a layer of indexing 

servers which hold forward knowledge about the base level servers. In turn, these 

may be described by the forward knowledge held by a second layer of indexing 

servers, and so on. Unlike RWhois, there need not be a strong correspondence 

between the domain name hierarchy and the records contained within a given server. 

10 



Client 

Figure 2.3: WHOIS++ referrals 

The flexibility of the centroid and mesh approach of the WHOIS++ system lends 

itself to a rich range of server interactions (Faltstrom et al., 1996). A WHOIS+H-

server may issue two types of referral. The first, a servers-to-ask referral, is issued 

when a server contains centroids for another server's contents which are relevant to 

the query, and acts to constrain the search to more relevant servers. The second 

type, the poUed-by referral, indicates that a centroid for the current server is held by 

a different server (which may hold relevant centroids for other servers), and expands 

the search. 

Discussion 

WHOIS++ is arguably a more flexible approach to a distributed white pages direc-

tory service than RWhois, but is not as widely used. Even if WHOIS++ has been 

largely abandoned, elements of it have found use in other protocols; the Common 

Indexing Protocol (see Section 2.2.7) is a further development of the index building 

techniques in WHOIS++ , while later developments of RWhois use similar types of 

forward knowledge. There are some notable omissions from the WHOIS++ spec-

ification. The RFCs do not explicitly state how a query is to be matched against 

a centroid; it is not apparent whether all the words in a query phrase should be 

present in a centroid for a referral to be generated. 

Together with the RWhois system, WHOIS++ is the origin of the general idea 

of query routing which this thesis explores. 

2.2.6 ROADS 

Description 

ROADS (Resource Organisation and Discovery in Subject-based Services) (Knight 

and Hamilton, 1996) is a project in the JlSC-funded Electronic Libraries (eLib) 
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programme. It uses WHOIS++ as the basis for a system which could be used 

to build subject gateways, human-compiled metadata repositories for Internet re-

sources. The aim of the subject gateways is to provide a high-quality alternative to 

existing WWW search engines (Altavista, Lycos) and resource directories (Yahoo). 

The gateways were organised by subject clagsiAcation, with separate gateways 

for medicine, business studies, history and so on. The role of ROADS in this was to 

provide a means whereby queries of an interdisciplinary nature could be redirected 

from one gateway to another, hence the use of WHOIS++ • 

Discussion 

ROADS is primarily of interest because it uses WHOISH—H for something other than 

white pages directory information. ROADS uses lAFA templates (see Section 2.4.2) 

to store details about the resources described by the subject gateways, although it 

can translate these to a number of other formats (Dublin Core (DCMI, 1999), LDIF 

(University of Michigan, 1996) and SOIF (Hardy et al., 1996)). 

By virtue of a concrete implementation, ROADS clarifies some of the ambiguities 

in the WHOIS++ specifications, most notably the matching of queries to centroids. 

ROADS requires that all the words in a query phrase must be present in a centroid 

for a referral to be generated to the server whose centroid it is. 

2.2.7 Common Indexing Protocol 

Description 

The Common Indexing Protocol (Allen, 1997) is a further development of the dis-

tributed indexing techniques introduced by WHOIS-|-+ . CIP is not a protocol 

for data access or information retrieval, but is used to pass indexing information 

between servers to facilitate query routing (ie. by issuing referrals) and make fu-

ture data accesses by clients more efficient. CIP must therefore be used in concert 

with a data access protocol, such as Z39.50 (Z39.50 Maintenance Agency, 1995) or 

HTTP (Fielding et al., 1999), which is responsible for issuing the referrals that are 

generated from the indices built by CIP. 

The basic premise of index passing is that an index object generated by lossy 

compression methods (such as those used by W H O i S - t - - t - ) still contains useful hints 

for routing queries. As servers collect index objects, they may choose to remove 

the redundancy between those objects by aggregating them into one. The index 

objects used in CIP are more sophisticated than the centroids found in WHOIS-H-

12 



; not all queries will benefit from the same type of index, so new types of index 

object may be created (using a common syntajc based on the MIME speciGcation 

for structured Internet mail (Allen and Mealling, 1998). This introduces a problem 

related to the schema conversion problem (of CCSO and others); a server may not 

understand the index objects it receives. Such a heterogeneous network of servers 

is advised against in CIP, though there may be situations in which it is necessary. 

CIP identifies two modes in which index objects are passed between servers, 

index polling and index pushing: 

Index polling: This is a symmetric relationship between two servers which have 

agreed to share index data. Both sides may initiate the dialogue; the polling 

server may request an update of the polled server's index object, or the polled 

server may notify the other if its index is modified. 

Index pushing: In this mode, a server simply sends an index object to another 

server which may then handle it as it pleases. This mode is intended for leaf 

nodes which only want to pass their index objects to a higher level of the 

mesh (cf. Harvest providers). 

Discussion 

CIP is a key specification on the IETF standard track, and promises a degree of 

integration between other Internet technologies; later versions (v2.0 or higher) of 

the Referral Whois protocol (Blacka et al., 1998) work with CIP meshes as well as 

its own hierarchical referrals, and indices can be generated for LDAP (Wahl et al., 

1997) directories. 

2.2.8 X.500 and LDAP 

Description 

X.500 (ITU, 1993a) is a distributed directory system (serving white pages informa-

tion) which forms part of the ITU Open Systems Interconnection family of stan-

dards. The directory provides a lookup facility by which OSI objects can be located 

given only their name. Each object in the directory is described by a set of attributes 

whose values form part of the name used to specify that object. 

X.500 assumes that the directory information is organised as a tree (the Direc-

tory Information Tree), and that servers {Directory System Agents) provide access 

to sections of the tree [Naming Contexts) to the clients {Directory User Agents). 

The entries stored in the DIT are field based records consisting of a set of attributes 
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o=bbc o=soton o=xyz 

ou=ecs ^ ou=registry ou=epg 
ou=sa es 

cn=fax cn=Nick Gibbins cn=Wendy Hall 

, ou=legal 

cn=fax 

Figure 2.4: The objects in the hypothetical DIT shown above are labelled with their 
RDNs, which may be concatenated to form the DN for an object. A DSA whose 
naming context encompassed the subtree below o=soton would have the context pre-
fix o=soton,c=gb. 

which are constrained by a schema. These schemas are described in subschema en-

tries held by each DSA. X.500 specifies a Directory Access Protocol which binds the 

DUAs to the DSAs. 

There are two types of name used to identify objects in the DIT. The first, 

Momea, are part of X.500 while the second, nomea are a 

concept introduced by Neufeld (1989). 

Within each entry in the DIT, one or more attribute values may be marked 

as distinguished. The set of the distinguished attributes on an entry are known 

as the relative distinguished name of the entry, and must be unique amongst the 

entry's siblings. The distinguished name for an entry gives its location in the DIT 

by specifying a path from the root of the tree to the entry; the DN is the sequence 

of RDNs for the entries on that path. Within such a strict hierarchy, it is often 

not possible to determine a single place to put an object, so it is common to insert 

aliases for an object in different places in the DIT; these aliases contains a reference 

to the DN of the objects they stand for. 

Because the directory is distributed, it may not be possible for one DSA to re-

solve a given distinguished name. In this case, the DSA uses the DNs of the root en-

tries in other naming contexts (the context prefix) to identify the DSA which is best 

placed to handle the request. Each DSA has a set of references which describe how 

its naming context fits into the DIT as a whole by specifying ancestor/child/cross-

reference relationships with the naming contexts of other DSAs. It is this set of 

references which is used to generate referrals to other DSAs. 
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In summary, distinguished names are hierarchical and the distribution of the 

X.500 naming service relies explicitly on this hierarchy. The hierarchy in the tree 

is similar to that used by DNS and divides the space on geographical and or-

ganisational lines (a sample DN for a personal entry might be cn=Nick Gibbins, 

ou=ECS, o=University of Southampton, c=gb). 

If distinguished names identify objects by specifying the path taken to reach 

them, descriptive names identify objects by listing the attr ibute values they must 

have (known as naming attributes). The order of these at tr ibute values is unimpor-

tant, and the set of attribute values need only be populated enough to unambigu-

ously identify the object. 

Descriptive naming therefore exists as a naming technique which does not rely 

on the name hierarchy of the DIT for resolution. Also, because there may be more 

than one descriptive name for an object, it is no longer necessary to populate the 

DIT with alias entries to provide alternate names for objects. In order to resolve 

descriptive names without resorting to global search, objects may have a unique 

name (unique amongst the descendants of the immediate parent of the 

object) which must form part of the descriptive name of all objects beneath it. 

Although superficially similar to a context prefix, a registered name is a set, not a 

sequence, of RDNs. 

LDAP (Wahl et al., 1997) is a Lightweight Directory Access Protocol which 

provides the DUA to DSA binding directly over TCP without much of the ses-

sion/ presentation overhead of X.500 DAP. Later versions of LDAP (v3 and higher) 

allow DSAs to send referrals to DUAs; earlier versions (Yeong et al., 1995, 1993) 

required the DSA to handle referrals itself (performing a recursive search, in DNS 

terminology) without resorting to the return of such referrals to the DUA. 

A related development, the Directory Assistance Service (Rose, 1991), provides a 

different interface to X.500 DSAs by splitting the DUA functionality and interposing 

a Directory Assistant between a simplified DUA (the DA-client) and the DSA. The 

DA consists of two entities, a DAP-listener which speaks X.500 DAP to the DSA, 

and a DA-server which uses a simpler protocol, the DA-protocol, to speak to the 

DA-client. This division hides the handling of referrals from the user client in a 

similar fashion to the earlier versions of LDAP. 

Discussion 

The OSI directory is a powerful model of distributed search which has already 

found use in studies in domains other than white pages lookup (Barker (1992) gives 
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a description of an X.500-based system for accessing bibliographic information). 

Although X.500 is a mature standard, it is not widely used, in part due to the com-

plexity of implementation and a lack of political will to create the infrastructure for 

the DIT. The chief weakness of the OSI directory lies in the rigid naming hierarchy 

which all objects must use. Alternate naming solutions such as descriptive naming 

go some way to providing a more flexible naming system, but still rely on the DIT 

for their distribution. 

Other X.500-related standards such as LDAP have found wider acceptance, and 

have been used in systems for general resource discovery (Roszkowski and Lukas, 

1998) and hypertext link resolution (DeRoure et al., 2000). 

2.2.9 Nomenclator 

Description 

The Internet Nomenclator Project (Ordille, 1998) aims to integrate publicly avail-

able CCSO servers into a tree reminiscent of the X.500 DIT and allow searching 

across these servers, even though they may have differing database schemas. The 

Nomenclator server takes a data fusion approach and provides a translation from 

the schemas used by existing data repositories and CCSO servers (the local view) 

to a global schema understood by Nomenclator clients (the world view). 

Nomenclator adopts a descriptive naming approach (Ordille and Miller, 1993), 

using referrals to successively constrain the search. It uses cached responses and 

its knowledge of the translations between the world view and the local views to 

ensure that a query expression is only passed on to those CCSO servers for which 

the query is relevant. The Nomenclator system is thus divided into two groups of 

components: 

Distributed Catalog Service: This gathers metadata about the data reposito-

ries, such as schema types, attribute value constraints, translation techniques 

and known patterns of data distribution across the repositories. 

Query Resolvers: These use the metadata in the DCS to direct user queries to 

appropriate data repositories. There may be several different resolvers in the 

system (eg. for different organisations). 

The referral mechanism resides in the DCS; catalog functions return a list of 

references to data access functions (which can tell a resolver how to query specific 

data repositories) or to other catalog functions and a template which describes the 

scope of those functions. A list of the relevant data access functions is generated by 
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matching the referral templates against the query expression, in a similar way to 

the matching of WHOIS++ centroids against queries. User clients talk to the query 

resolvers using a common query protocol, the Simple Nomenclator Query Protocol 

(Elliott and Ordille, 1998); there is no direct communication between the clients 

and the DCS. 

Discussion 

Nomenclator differs from WHOIS++ in that the client does not directly query the 

database servers, relying instead on the intermediate Query Resolver; the referrals 

are contained within the server side of Nomenclator. Although the distributed 

catalogue system may be distributed (as is suggested by its name), no specific 

technique for its distribution, in particular for searching or data integrity, is given. 

The generation of Nomenclator referrals is governed by a set of rules which, 

summarised, require that a referral is only generated when a query is completely 

covered by (more specific than) the template on a catalog function, and that the 

templates used to generate speciAc referrals are in strictly increasing speciEcity. The 

latter requirement prohibits the generation of referrals which increase the search 

space; all referrals narrow the search. 

2.2.10 Z39.50 

Description 

Z39.50 (Z39.50 Maintenance Agency, 1995) is an ANSI standard for an interoper-

ability protocol which allows clients to search a variety of databases. Originally 

designed for use in libraries, it primarily deals with schemas for bibliographic data 

(such as MARC records - see Section 2.4.1). Z39.50 allows a user to use a single 

application to search multiple heterogeneous databases by using a common protocol 

between all clients and servers (in Z39.50 terminology. Origins and Targets) and by 

standardising the structure and semantics of the search query. 

Discussion 

As it stands, Z39.50 does not address distribution issues, but does represent one 

approach to the problem of schema translation, namely by adopting a common 

profile which provides a core set of functionality. The Bath Profile (Lunau et al., 

2000) is one such profile for Z39.50, designed for library functions such as the search 
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and retrieval of bibliographic records for inter-library loans or the construction of 

union catalogues, and defines types of query which must be supported in addition to 

schema definitions. Z39.50 shows some promise for query routing-based distributed 

search, as the work on ZBroker by Lin at al. (1999) demonstrates. 

2.2.11 Uniform Resource Name Resolution 

Description 

Uniform Resource Names (Moats, 1997) are a development of the Uniform Resource 

Locator scheme (Berners-Lee et al., 1994b) used to reference Internet information 

resources (Web documents, etc). Although they are not yet in common use, they 

promise to provide a more sophisticated and robust namespace than is available at 

present. Strictly speaking, URLs are addresses and not names, because they encode 

the physical location of a resource as a machine name (here we overlook the use of 

DNS tricks which allow a domain name to resolve to more than one IP address). 

In contrast, URNs are names and not addresses, such as URNs for International 

Standard Book Numbers, of which u r i : i sbn: 0123456789 is an example. 

The translation of URN names to URL addresses involves an indirection mecha-

nism which also enables the transparent mirroring and caching of resources. This in-

direction requires a resolution service, and there have been several proposed. Some 

of these resolution services harness existing technologies such as HTTP (Daniel, 

1997) or DNS (Daniel and Mealling, 1997), but the problem of finding a suitable 

resolver for a URN remains. 

The Resolver Discovery Service (Sollins, 1998) proposes a three tier model for 

URN resolution. At the bottom lie the URN resolvers which map URNs onto URLs. 

Above that lies a mesh of RDS servers which accept a URN and return either a 

reference to a URN resolver or a rule which generates a reference to another RDS 

server. The top tier is occupied by a Global NID (Namespace ID) Registry which is 

used to identify the first RDS server to be contacted. This model, though complex, 

should allow the partitioning of the RDS database on boundaries other than those 

of the name delegation denoted by the URN namespaces. 

Discussion 

The RDS takes a similar approach to name resolution to X.500 and DNS. The 

search space is hierarchically partitioned with a server having authority over each 

partition. However, the use of a global registry to identify which server to talk to 
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initially sets RDS apart from X.500 and DNS, which allow queries to be started 

anywhere in the server tree. The RDS global registry is effectively a root server 

which must be queried every time a URN is resolved; X.500 and DNS both allow 

referrals which point towards the root of the server tree, so queries need not be 

started at the root. 

For example, given a query (or name to be resolved) of u r i : i sbn: 0123456789, 

an RDS client would consult the global registry to find an initial resolver to query 

(which would be the top-level resolver for the isbn type). If the query were initially 

presented to a different resolver (for example, one for US patents), resolution would 

fail because there would be no way to generate a referral to the global registry (and 

from there to the appropriate resolvers for ISBNs). 

2.2.12 STARTS 

Description 

STARTS (Gravano et al., 1997) is a Stanford proposal for a protocol and metadata 

schema to be used by meta-search engines that take a query and submit it to 

a number of other search engines (examples are MetaCrawler or Dogpile). The 

merging of returns from the queried sources is difficult because they may be very 

different: they may not determine relevance in the same way, nor use the same 

ranking algorithms, nor even the same query language. 

Discussion 

STARTS informs resource discovery by providing a way for a meta-search engine to 

assess the capabilities of other sources, but is not a technique for distributed search 

as such, rather a component of a heterogeneous distributed search system. 

2.2.13 Napster 

Description 

Napster is a system designed to enable Internet users to share .mp3 files (MPEG 

Layer 3 digital audio) amongst themselves. Although it has attracted a lot of 

attention (and not a few lawsuits) due to the uses to which it has been put and 

their implications with respect to copyright and fair use, it remains a good example 

of a distributed search system. 
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Napster server 

Figure 2.5: The Napster Architecture 

All Napster users run a piece of software which is simultaneously a search client 

and a server. When the Napster software is started, it builds a catalogue of the 

user's files (or rather, those of the user's files which they wish to share) and sends 

this description to a central index server. When a Napster user wishes to find a 

particular file, the client sends a query to the central index server which compares 

the query to its collection of catalogues and returns a list of the locations of likely 

hits, these locations being other Napster clients. The client then attempts to fetch 

the file from these locations, treating the remote Napster clients as file servers. 

Discussion 

Although it has proved phenomenally successful, the design of Napster is flawed in 

that it contains a single point of failure, namely the central index server, without 

which the system cannot work. This weakness has been aptly demonstrated both 

by the actions of a number of US universities which now block access to the Nap-

ster server with their firewall in order to reduce the network traffic that Napster 

generates, and by a recent court ruling ordering the closure of the index server. 

The index server also bears a disproportionate part of the system load, because all 

client interactions are mediated through it. 

While the Napster service was still in operation, the issue of the server bottle-

neck was addressed by providing a number of different servers and letting the user 

choose which server their client connected to. However, there was no communica-

tion between these servers, so .mp3s known to one server would not be known by 

another. This rather defeated the purpose of distributing the server functionality, 

because users would either pick the 'best' server (being the one which knew about 

the most . mp3s, and so the one which had to support the greatest number of client 

connections) or would query each one of the servers in turn. 
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2.2.14 Gnutella 

Description 

Gnutella is a system with similar origins to those of Napster, although it enables 

the sharing of more than just .mp3 files and has a markedly different architecture. 

In Gnutella there is no central index server; instead, queries are broadcast to the 

network at large. 

When a Gnutella server joins the network, it sends out a flood message to 

discover the other servers on the network. All flood messages in the system contain 

a globally unique ID which should be shared with no other message and a time-to-

live field (TTL) which limits the distance in hops it can be sent from the originating 

server. When a server receives a flood message, it records in its routing table the 

GUID of the message and the name of the server from which it directly received 

it, and forwards the message with a decreased TTL. Later messages containing the 

same GUID are silently discarded, as are messages with a TTL less than one. 

The responses from the discovered servers contain information about the number 

of files owned by a server and the total size of those files. When a server sends a 

response, it looks up the GUID of the message to which it is responding in its 

routing table and sends the reply to the server from which it received the original 

message. Other servers receiving responses behave similarly, so a response traces a 

path which is the reverse of the path taken by the original message. 

This is illustrated in Figure 2.6; the central grey node is the user's client, while 

the grey node toward the lower left corner is the server which contains the goal. The 

edges (both solid and dotted) indicate mutual awareness between servers that has 

been gathered by means of the flood messages sent when servers enter the system. 

When a user wishes to locate a particular file, their Gnutella server floods the 

query in a similar way to the discovery messages. The query responses contain 

the location of the matching files, which are then fetched by the user's server using 

HTTP. The solid lines in Figure 2.6 show the edges over which the query is first sent 

during query flooding, and the numbers within the nodes give the shortest distance 

from the originating node (in effect, the initial time-to-live minus the current time-

to-live at that node). The dashed line around the central connected component 

of the network shows the flooding boundary brought about by the chosen initial 

time-to-live (in the figure, five). 
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Figure 2.6: Search flooding in Gnutella 

This query Hooding induces a spanning tree over the network with the originating 

client at its root; returning search results to the client is a matter of tracing the 

(unique) path from the relevant server to the root. 

Discussion 

Gnutella is truly distributed and so does not have the problem of a central index 

server that Napster has, but does have problems of its own. Chief amongst these 

is the question of message flooding, which is generally considered wasteful. The 

scalability of the Gnutella network became an important issue when the Napster 

service was served with an injunction on 26 July 2000 and large numbers of its 

users switched to using Gnutella instead (the 'Napster Flood'). This influx of users 

accompanied a severe increase in the time taken to process Gnutella queries (an 

informal analysis of this is given by Ritter (2001), one of the Napster developers). 

Some of the criticisms directed at Gnutella over this issue are purely implemen-

tation dependent; each server sends a discovery message every minute or so, which 

constitutes a substantial overhead. Some informal studies by the Gnutella designers 

estimate that as many as 50% of messages sent by the system are related to the 

initial server discovery on joining the system, and that this could be dramatically 

cut if each server were to keep a record of the information contained in response 

messages that it forwards (in effect, caching results closer to the originating client). 

Implementation issues aside, the flooding of messages means that messages are 

frequently sent to servers which contain no relevant files, and the ad-hoc network 

topology of the system leads to the presence of cycles which cause the same message 
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to be received by a given server several times. The TTL imposed on messages also 

leads to a horizon effect whereby a query Eooded into the network may not reach 

a server which contains relevant Ales because the server is out of range, directly 

affecting the effectiveness of the search. This issue could be addressed by increasing 

the initial TTL and rebroadcasting the query from the original starting point (an 

expensive proposition), by rebroadcasting the query from a different starting point 

close to the horizon of the original search (still not guaranteed to produce an answer) 

or by modifying the topology of the network in order to reduce its diameter to less 

than the TTL. Of these approaches, only the latter has been attempted so far, by 

creating a backbone network of servers which connect distant parts of the network 

and reduce its overall diameter. 

2.2.15 Freenet 

Description 

Freenet (Clarke, 1999) is another system designed to enable users to share Gles, but 

imposes further constraints on its operation than either Napster or Gnutella. In 

addition to decentralisation, the design for Freenet called for anonymous publication 

and retrieval and the duplication of popular material. 

Strictly speaking, Freenet is a name resolution system rather than a distributed 

search system, since it is designed to be able to retrieve documents with fixed, 

predetermined keys (names). Each server in the system maintains a data store 

containing documents with their associated keys and the address of another server 

known to hold the same document. A server may also hold records about documents 

which it has deleted, but which it knows other servers hold. 

When a Freenet user issues a query, the user's client sends a message containing 

the key specified to a server, usually one local to the user. The server compares the 

key with the keys for documents it holds and returns a matching document if one 

exists. If no copy of the document exists on that server (no key exactly matches 

the query), it finds the closest matching key to the query and forwards the message 

to the server associated with that key. 

If a matching key is found, the document it references is returned to the client by 

the reverse path, otherwise the request is forwarded again in the same manner. The 

document may also be cached by the servers on the route home in order to facilitate 

future requests for the same document. If the message reaches its maximum range 

(its TTL reaches zero), arrives at a server for a second time or finds that the server to 
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which it is being forwarded is unavailable, the most recent server to have forwarded 

the message resends it to the server that is associated with the next closest key in 

its data store, so backtracking on failure. 

Discussion 

The immediate advantage of Freenet over Gnutella is that it conducts searches 

in a depth first manner, reducing the immediate impact on the network. Also, the 

ability to locally cache documents makes the Freenet network (as defined by servers' 

knowledge about each other) adapt to changing user demand. 

However, Freenet as implemented is unusable as a resource discovery system 

because the keys by which documents are identified are cryptographic hashes either 

of a keyword or of the document itself; the system can only be used to retrieve 

documents whose keys are known a priori. Another drawback is that the search 

strategy employed by Freenet will only return the first matching document. This 

is not a problem in a name resolution system where all the object identified by a 

name are equivalent, but is not appropriate for use as a resource discovery system 

where a user expects to receive several matching documents. 

2.3 Agent Technologies 

Agent-based computing is widely held to be a software engineering paradigm of 

growing importance (Sargent, 1992; Maes, 1994). However, although the term 

is now commonly accepted in the fields of computer science and artificial intelligence, 

it has a plethora of subtly differing definitions. 

In their oft-cited 1995 paper (Wooldridge and Jennings, 1995), Wooldridge and 

Jennings identify two main types of agenthood and list the characteristics necessary 

for each. The first, weak agency requires the following four properties: 

autonomy: the ability to operate without the direct intervention of humans or 

others 

social ability: the ability to interact with other agents 

reactivity: the ability to perceive their environment and respond to changes in a 

timely fashion 

proactivity: the ability to take the initiative and display goal directed behaviour 

Strong agency, the second type, is a subset of weak agency in which the agent's 

state is characterised using mentalistic notions such as belief, knowledge, intention 
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or obligation and its communications using speech act theory (Searle, 1969), in addi-

tion to fulfilling the criteria for weak agency. This intentional stance (Dennett, 1971) 

is important, since it allows us to reason about the behaviours of complex Multi-

Agent Systems using naive psychological terms. In his paper on Agent-Oriented 

Programming (Shoham, 1993), Shoham summarises this as: 

An agent is an entity whose state is viewed as consisting of mental com-

ponents such as beliefs, capabilities, choices and commitments. These 

components are defined in a precise fashion, and stand in rough corre-

spondence to their common sense counterparts. 

A very pragmatic definition of agency has been proposed by Huhns and Singh 

(1997), as follows: 

A system containing one or more reputed agents should change substan-

tively if another reputed agent is added to the system. 

There are three main components to a system for agent-based computing: 

• a language for determining the behaviour of agents, or agent programming 

famgwope 

• a language for representing the knowledge of an agent, or content language 

• a language for expressing the messages sent by agents, or agent communication 

language (ACL) 

The first is an implementation of an agent theory, which Wooldridge and Jen-

nings describe in (Wooldridge and Jennings, 1995) as a specification for an agent. 

An agent theory is an attempt to represent the properties of an agent, and as 

such affects the internal structure, behavioural characteristics and implementation 

of an agent. There are a number of agent theories at present, including Cohen 

and Levesque's theory of intention (Cohen and Levesque, 1990a), Moore's theory of 

knowledge and action (Moore, 1990), Rao and Georgeff's Belief, Desire, Intention 

(BDI) architecture (Rao and GeorgefF, 1991) and others beside. 

While the agent programming languages specify and constrain the behaviour of 

the agents, and the content languages are used to express the beliefs held by the 

agents, the agent communication language provides the definitions of the messages 

sent between agents. There is a strong relationship between the three languages; 

the content language affects both the agent theory (by specifying an ontology with 

which the agent must reason) and the agent communication language (an agent's 

beliefs are commonly the subject of inter-agent communication). 
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In addition to these three languages, an agent system also requires a number of 

ancillary services by virtue of its nature as a loosely coupled distributed system. By 

loosely coupled, we mean that the interactions between the entities in the system 

(the agents) are not constrained by design-time decisions, but that the agents can 

interact and form relationships in an ad-hoc and opportunistic fashion. These 

ancillary services include, but are not limited to, the following list (adapted from 

(Gasser, 2000)). 

• certification services, which enable an agent to verify the origin of another 

agent 

• security services, which enforce the social norms necessary for a functioning 

system, such as trust, veracity or data integrity 

• resource description and discovery services, which enable agents to o%r ser-

vices or to discover other agents which can provide certain services 

® economics services, which provide facilities for charging and managing eco-

nomic interactions between agents. 

These services all support the interactions of the agents in an agent system, but 

are not considered to be necessary prerequisites for agency, nor are they encoun-

tered exclusively in agent systems. Indeed, these ancillary services are commonly 

encountered features of loosely coupled distributed systems in general, particularly 

where the system components are not automatically trusted (so raising the require-

ment for certification and security services). Similarly, if a system component is to 

be able to make use of other components whose existence was not known when it 

was being designed, some form of resource or service discovery must be a require-

ment. Examples of services in these areas can be found in the CORBA Services 

specification (CORBA, 1995), which describes a level of infrastructure which lies 

above the transport-oriented (or communication-oriented) infrastructure of the core 

CORBA specification. 

Of these services, we are most interested in the provision of resource description 

and discovery services in agent systems (as the subject of this study). 

2.3.1 The DARPA Knowledge Sharing Effort 

The DARPA Knowledge Sharing Effort (KSE) (Patil at al., 1992) was an early 

effort to produce a standard framework for agent communication, and has met 

with some success. The main deliverables of this work were the Knowledge Query 

and Manipulation Language (KQML) (KAG, 1992; Labrou and Finin, 1997), an 
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agent communication language, and the Knowledge Interchange Format (KIF) 

(Genesereth and Fikes, 1992), a content language. 

KQML provides a rich set of speech acts for agent communication with an 

s-expression syntax, and has been used in a wide variety of projects: Agent-K 

(Davies and Edwards, 1994) and AgentBuilder (AgentBuilder, 1998) use KQML 

in a framework based on Shoham's AOP, while other systems such as Stanford's 

Infomaster (Genesereth et al., 1997) use it with KIF as an interlingua to express 

queries from heterogeneous sources expressed in SQL or other query languages. 

The linkage between KQML, KIF and an agent programming language is less 

strong than might be expected. Cohen and Levesque (1990b) note that there are 

no formal semantics given for the KQML performatives, so their meaning (the 

illocutionary effect upon the recipient) is unclear. The independence of KQML 

from the content language KIF means that self-defeating speech acts could be sent 

from one agent to another (eg. an agent could send a message expressing Moore's 

paradox, "I hereby inform you that p is true and that I do not believe that p is 

true") because the message content cannot be checked for compatibility with the 

performative type. 

The set of speech acts provided by KQML is incomplete. Although several di-

rectives exist (eg. a sk - i f or subscribe) , the most fundamental directive, request is 

not present. This means that an agent cannot ask another to perform an arbitrary 

action, but must instead use the achieve directive to ask it to make the postcon-

dition of the action true. Since all the other directives may be expressed in terms 

of request (eg. a sk - i f is equivalent to requesting someone to tell you if a sentence 

is true), this omission is an important oversight. 

Similarly, Cohen and Levesque also note that KQML does not include any com-

missive speech acts (those which would commit an agent to a particular course of 

action); KQML agents cannot accept proposals, promise to perform tasks or agree 

on a matter under consideration. KQML is designed to be extensible, so these 

speech acts could be added to the set, but this requires KQML developers to be 

aware of these new acts and their required behaviours. 

KIF is a declarative language for the representation of knowledge by computer 

programs and was one of the deliverables of the DARPA Knowledge Sharing Effort, 

along with KQML. Strictly speaking, KIF is an interlingua, a language for commu-

nicating knowledge between computer programs, but not necessarily used internally 

by them (although it can well be used for this purpose). 
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Figure 2.7: KQML Facilitator 

KIF has a simple s-expression (Lisp-like) syntax and is based on first order pred-

icate logic. This expressivity is important; KIF can express sentences which rela-

tional database languages and languages based on Horn Clauses alone (eg. Prolog) 

cannot. KIF's suitability as an interlingua has led to its adoption by several projects 

as a neutral intermediary for expressing queries in different database schemas. The 

Infomaster system (Genesereth et al., 1997) from Stanford University and the In-

foSleuth system (Bayardo et al., 1996) from MCC both use KIF to translate queries 

in a heterogeneous database environment, while the TAMBIS project (Baker et al., 

1995) at the University of Manchester takes a similar approach with a different 

ontology language, GRAIL. 

The DARPA KSE provides a number of speech acts within KQML which allow 

agents to discover which agents provide certain services. In Figure 2.7 is illustrated 

a simple system consisting of three agents: a server agent (S) which is providing 

some service, a client agent (C) which is trying to find an agent which can provide 

that service and a facilitator agent (F) which matches clients to servers. The server 

begins the exchange by sending an a d v e r t i s e message to the facilitator which 

contains a message template which will match messages tha t the server can process. 

When a client wishes to find an agent which can provide a service, it composes a 

message which would invoke that service (leaving the : t o field empty) and sends 

that message as the body of a recommend-one agent to the facilitator (as with many 

KQML performatives, recommend is available in -one and - a l l variants depending 

on whether the querent wants one answer, or an exhaustive list of all answers). 

The facilitator responds by sending a forward message which contains the server's 

advertisement, which provides the client with the knowledge necessary to be able 

to invoke the desired service on the server. 
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Figure 2.8: The FIPA Agent Platform 

2.3.2 FIPA 

The Foundation for Intelligent Physical Agents is a non-profit association which 

aims to increase interoperability between agent systems through a set of specifi-

cations for an agent architecture, including a content language and ACL (FIPA, 

1997b). FIPA have taken a stance of strong agency, and so the FIPA ACL is 

similar to KQML in many ways. It presents a rich set of speech acts and has an 

s-expression syntax, but addresses the problems with KQML discussed above. 

A notable facility in the FIPA ACL which adds a level of abstraction to the 

above are its protocols, characteristic exchanges of messages, used for common con-

versation like requests, auctions or contract nets. The use of protocols in FIPA 

allows the agents to better reason about their conversations. From a programmer's 

point of view, protocols provide a shortcut into agent communications which allows 

sophisticated behaviour without excessive attention to detail. 

The FIPA content language si, standing for semantic language, is a first order 

modal logic with identity and so is more expressive than KIF. si is used to define the 

communicative acts in the ACL, giving them the semantic grounding that KQML 

lacks. The FIPA Specification includes far more than the ACL and si, defining a 

standard CORBA-like environment (OMG, 1996) in which the agents operate. This 

environment or agent platform (AP) consists chiefly of the agent communication 

channel (ACC), a bus which agents use to communicate with each other in much the 

same way as the object request broker or ORB mediates inter-object communications 

in CORBA. Communication between agents on different ACCs is also handled by 

the ACCs, which communicate with each other by means of the CORBA Internet 

Inter-ORB Protocol (HOP). 

In Figure 2.8, the agents labelled A and B can communicate via their local ACC 

because they are both on the same AP, whereas a message sent from agent C to 

agent D first goes to C's local ACC, then to D's ACC (via HOP) which delivers it 

to its destination. 
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FIPA also specifies a number of standard agent management services (corre-

spending to the ancillary agent services in Section 2.3) which are deployed as part 

of the agent platform, of which the directory facilitator (DF) is a key example. The 

directory facilitator is an agent which provides a yellow pages service (i.e. describing 

agent services or capabilities, equivalent to the resource description and discovery 

services from Section 2.3) to the other agents in the system. The FIPA DF service 

is a simple one, enabling agents to register (or deregister) the services which they 

provide and to search for agents which can provide given services, and exists on 

every agent platform. 

A key difference to note between the FIPA DF and the equivalent service in the 

DARPA KSE model is that the DF functionality is implemented as a set of services 

which are opaque expressions from the ACL layer, where the KSE implements 

its service discovery functionality as speech acts within KQML. Consequently, the 

FIPA DF can be considered to exist at a level of abstraction above that of the KQML 

solution. This decision was taken for pragmatic reasons; by keeping facilitation 

separate from the agent communication language, the specification of the ACL is 

kept simple because it does not need to model the capabilities of agents. 

2.4 Bibliographic Metadata 

Currently, the majority of systems for searching the Internet (including the cen-

tralised systems such as AltaVista or Lycos) use full text searching techniques. 

This type of search has been known to be flawed for some time, but it has only 

been with the emergence of indices containing millions of full text records for global 

distributed information systems such as the Internet that we are seeing the full ex-

tent of their shortcomings. A search for a common word or phrase in such a system 

may yield hundreds of thousands of hits, almost all of which are of no relevance to 

the user who made the query. 

The move has been made towards attaching some semantic information to elec-

tronic resources in order to make information retrieval more useful by reducing the 

number of these false hits. This semantic information is metadata, information 

which describes some information resource, commonly including the item's author, 

publisher, date of publications, classification number or edition. 

It is unsurprising that the design of the metadata records for containing this 

semantic data has closely paralleled the design of the bibliographic records used in 

libraries, since the two are effectively the same (with some minor differences due to 
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an electronic context). There are a number of existing metadata schemes (similar to 

database schemas, in that they define the structure of the metadata records) in use 

in the library and Internet worlds, most of which have been designed independently, 

and which have had varying degrees of success. 

The majority of the metadata formats below specify a syntax in which records 

can be encoded in addition to the semantics expressed by the schema. Although this 

plays a part in the translation of records from one format to another, the semantic 

transformation is the harder to accomplish, and so the schema, not the syntax, is 

the more crucial. Another important distinction which should be made is between 

metadata formats and cataloguing rules. The latter, of which the Anglo-American 

Cataloguing Rules (Gorman and Winkler, 1988) are the best known example, spec-

ify the way in which data is entered into the bibliographic records specified by the 

metadata format. For example, the metadata format might require a field called 

'author' which gives the creator of a document, but the cataloguing rules say how 

the name is to be written: surname, first-name or first-name surname. 

A different strand of metadata classification has grown out of the work in the 

Artificial Intelligence field on knowledge representation. This type of metadata 

is typically a declarative language used with an ontology to express objects in a 

particular domain; the language (for example, KIF - see Section 2.3.1) roughly 

corresponds to the syntax used by a traditional metadata format, and the ontology 

roughly corresponds to the schema. 

2.4.1 MARC 

MARC (MARBI/ALA/LOC, 1996) stands for MAchine Readable Cataloguing, and 

is a standard format for representing bibliographic information (as might be found 

in a library catalogue) in an electronic form. Although designed for the library 

community, it has been adopted elsewhere as a convenient method for storing or 

exchanging data. 

Originally designed by the Library of Congress, more than twenty other MARC 

formats have sprung up, including UKMARC (used by the British National Bib-

liography) and other national formats. As a reaction to the way in which the 

proliferation of national MARC formats have impeded the exchange of data, an 

international format, UNIMARC, was developed in the late 1970s. 
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MARC is an extremely rich metadata format, containing many hundreds of 

different fields. The data within these fields is highly structured, so that the com-

ponents of an author's name may be extracted, for example. This complexity comes 

at a price; MARC records are time consuming to write and extremely difficult to 

generate automatically (the vast majority of library catalog records were originally 

written by humans). 

2.4.2 lAFA 

lAFA templates (Deutsch et al., 1995) were devised by the Internet Anonymous FTP 

Archive (lAFA) Working Group of the Internet Engineering Task Force (IETF) as a 

means for describing the contents of anonymous FTP archives (Beckett, 1995). The 

Internet Draft in which they were proposed has since expired, but has influenced 

the development of a number of other metadata schemes, such as SOIF and ROADS 

templates (more about which below). 

An lAFA record is a field-based entity in which each field or data element is a 

discrete piece of information about some resource, along much the same lines as the 

fields in a MARC record. Unlike MARC, fields are not broken down into subfields 

when further describing an element. Also, there are certain classes of data elements, 

such as contact information, which always occur together. lAFA templates define 

the notion of a cluster^, which allows these classes to be referred to in a shorthand 

manner. 

2.4.3 Summary Object Interchange Format 

SOIF (Hardy et al., 1996) is the native metadata format used by the Harvest system 

(see Section 2.2.2) to summarise the contents of the resources it holds. SOIF is a 

simple metadata scheme which extracts only a few properties from the resources 

(typically author, title, keywords, abstract and a description) and gives over most 

of its fields to information about the indexing process (the entity which gathered 

the properties, the time of gathering, the time until the record is to be discarded). 

^Not to be confused with the conventional IR definition of this term as a group of related 
documents. 
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2.4.4 Platform for Internet Content Selection 

Unlike the other Internet-based metadata schemes, PICS (Resnick and Miller, 1996) 

waa not originally intended as a tool for resource discovery, but rather a tool for in-

formation filtering. PICS was conceived as a means by which parents could prevent 

their children from viewing certain types of information resources on the Internet, 

depending on some attached to the resources. The ratings are assigned by 

a number of rating services (Miller et al., 1996), individuals or organisations which 

provide content labels (Krauskopf et al., 1996) for resources on the Internet (eg. 

RSACi (Martin and Reagle, 1996)). 

The labels provided are based on a rating system which specifies the dimensions 

used for labelling (eg. the attributes in the metadata record, in this case things like 

the severity of obscene language), the scale of allowable values for each dimension 

and some description of the criteria used in assigning values. In addition to the 

attributes specified by the rating service, a number of attributes are included in all 

PICS labels, and are automatically assigned (eg. the aasigning service, the date of 

label creation). 

2.4.5 Dublin Core 

At present, the field of Internet metadata is undergoing its first round of standard-

isation, with the Dublin Core Metadata Set (DCMI, 1999) as the new standard 

scheme. Compared to expressive formats like MARC, DC is extremely simple, but 

this is in keeping with its positioning as a resource metadata scheme which is readily 

usable by the majority of authors on the World Wide Web. Its simplicity also lends 

it to being used as an interoperability format between the other schemes used to 

describe electronic resources. 

Unlike the other metadata formats, the Dublin Core does not define a single 

encoding; the aim is to use native encodings to incorporate the metadata into a 

wide variety of resources. For example, DC data may be inserted into the <META> 

tag in an HTML (Raggett, 1997) document, encoded in a PICS label, written in a 

SGML (Goldfarb, 1990; ISO, 1986) DTD or expressed in RDF. 

2.4.6 Resource Description Framework 

RDF (Lassila and Swick, 1999) is a foundation for Web-based metadata which 

emphasises facilities for automated processing. Designed for generality, the W3C 
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intends to use RDF for a number of purposes, including resource discovery and 

cataloguing, content rating (see PICS in Section 2.4.4), knowledge sharing between 

software agents and digital signatures. RDF is divided into three parts: 

Syntax: RDF uses a common encoding based on XML (Bray et al., 1998), an ex-

tensible Markup Language derived from SGML. 

Model: The RDF model is the basic ontology used by all RDF records, and can 

be used to represent both traditional attribute value pairs, and relationships 

between resources. 

Schema: RDF uses the RDF Schema language (Brickley and Guha, 2000) to define 

schemas (classes of resource and the properties which exist between resources) 

in the RDF model. 

This separation of encoding from schema (ontology) simplifies many of the prob-

lems inherent in translating metadata records from one format to another. 

RDF is an important component of the Semantic Web (Berners-Lee et al., 2001), 

the next stage in the development of the World Wide Web. A simple summary of the 

goals of the Semantic Web effort is that it aims to use the distribution mechanisms 

of the World Wide Web to build a large scale distributed knowledge base. 

2.5 Hypertext and Hypermedia 

The origins of the modern hypertext system are considered by many to lie with 

the Memex described by Bush (1945). Although revolutionary in its outlook, this 

system belies its pre-computer networking origins, for it effectively serves only a 

single user at one time and stores all of its data locally. 

The first distributed hypertext appeared some twenty years later, albeit in em-

bryonic form, with Ted Nelson's Xanadu system (Nelson, 1987), remembered chiefly 

for its first-class links (objects in their own right, stored separately from the docu-

ments they annotate) and the notion of transclusion (transparent quotation through 

inclusion, rather than through the copying of the quoted data). 

An important notion in hypermedia systems is that of open hypertext or open 

hypermedia, the general term for systems which store links separately, and has 

lead to a number of further developments: first-class aggregate documents and 

links without fixed endpoint, such as generic links which construct a temporary 

endpoint on the fly which matches some phrase, or functional links which calculate 

their destination when invoked. A key publication which has affected much of the 

34 



development of open hypermedia systems is the Dexter model (Halasz and Schwartz, 

1990), an early attempt at a comprehensive formal model and characterisation of 

hypertext and hypermedia systems. 

The reiSed links which are a characteristic of open hypermedia systems are a 

very structured type of data, and their collection in linkbases makes them amenable 

to searching in a similar manner to metadata or directory records. 

Distributed hypermedia has only properly come of age in the last fifteen years 

with the advent of affordable networking, and in that t ime there have been several 

systems which are important in their approaches to distribution. 

2.5.1 Xanadu 

Although Xanadu (Nelson, 1987) never progressed beyond a prototype, the pub-

lished details of the system included several distribution-related features. Xanadu 

uses a single, extendible addressing scheme for all servers, users, document and even 

bytes, and has a published protocol (FEBE - the front-end/back-end protocol) for 

communications between the user's client program and the server. Unfortunately, 

many of the features most crucial to distribution remained unpublished for many 

years, including the BEBE (back-end/back-end) protocol used to forward client re-

quests (when interviewed, Nelson (2001) confirmed that the BEBE protocol work 

had not been satisfactorily completed) and the Enfilade algorithm used to search 

for objects in the servers (an early version has since been published under the aegis 

of the open source Udanax^ project). 

2.5.2 Microcosm-TNG 

Microcosm-TNG (Goose et al., 1997) was a further development of the Microcosm 

(Fountain et al., 1990) open hypermedia system which added distribution. The 

original Microcosm, which had been designed for a single user accessing a collec-

tion of multimedia data, was composed of a group of communicating processes or 

filters which transformed the stream of requests originating from the user's client 

application. 

Microcosm-TNG used a more sophisticated communications model which al-

lowed these processes to be based on different machines, and is designed for use at 

enterprise level. In addition, the processes of different users could communicate, 

enabling collaborative working. Amongst the processes were processes dedicated 

^http://www.udanax.org/ 

35 

http://www.udanax.org/


to message routing, process management and brokerage, in a way which hag an-

ticipated the design of the largely CORBA-inspired agent environment used by 

FIPA (Microcosm-TNG's message router is equivalent to FIPA's ACC, while the 

brokerage component is equivalent to the FIPA DF - see Section 2.3.2). 

2.5.3 HyperDisco 

In its degree of distribution, HyperDisco (Wiil and Leggett, 1996) is an open hy-

permedia system similar in scope to Microcosm-TNG. HyperDisco is designed to 

work with a medley of different tools and information sources which are abstracted 

and integrated to create a uniform system. Although HyperDisco has a distributed 

hyperbase management system, there is no mention of the distributed search meth-

ods which are to be used to search this system; it is assumed that an exhaustive 

search will be used due to the expected size of a HyperDisco system. 

2.5.4 Hyper-G/HyperWave 

The Hyper-G (now HyperWave) system (Kappe, 1991) has been design for wide 

scale distribution from the outset, using an efficient and robust algorithm for cir-

culating changes between constituent servers (i.e. maintaining consistency between 

servers). This algorithm, p-flood (Kappe, 1994), plays a similar role in Hyper-G to 

that of the Common Indexing Protocol in RWhois systems, that is as a method for 

facilitating query routing by passing indexing or other information between servers, 

p-flood is used to propagate changes to links and nodes through a Hyper-G system. 

Information about surface links (links from one server's resources to another 

server's resources) are passed to all interested parties, with a probabilistic parame-

ter governing the number of redundant copies which are transmitted in an attempt 

to forestall failures due to poor connectivity. Hyper-G uses this system to propa-

gate linking information with the aim of providing the sort of referential integrity 

required by the Dexter model (Halasz and Schwartz, 1990). 

2.5.5 World Wide Web 

The World Wide Web (Berners-Lee et al., 1994a) needs little introduction, being 

the single largest hypertext system yet built. Unlike the other hypermedia systems 

in this section, the Web has a very simple linking model which is limited to static, 
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embedded, non-reified links. The Web's success as a distributed hypermedia sys-

tem is largely due to the simplicity and robustness of its Uniform Resource Locator 

addressing scheme (Berners-Lee et al., 1994b) which gains its distributed character-

istics from the Domain Name Service (Mockapetris, 1987a), which is used to resolve 

part of the URL. 

The Web protocols (chiefly HTTP (Fielding et al., 1999)) do not contain any 

support for maintaining link integrity, unlike several other hypermedia systems. 

There have been proposals for systems which would provide such a capability, such 

as the ATLAS system described by (Pitkow and Jones, 1996). 

Recent developments from the Web standards body, the World Wide Web Con-

sortium (W3C) ^ have included XML (Bray et al., 1998), a subset of SGML, whose 

related specifications include XLink (W3C, 1999a) and XPt r (W3C, 1999b). These 

draft standards describe a more complex linking model for the Web which could 

support first-order links. Resolving those links may require a distributed search 

systems, but as yet no such system has been proposed. 

As mentioned in Section 2.4.6, the W3C vision for the future development of 

the World Wide Web is that of a semantic web containing information imbued with 

machine-readable meaning (Berners-Lee et al., 2001), which goes far beyond the 

existing typeless associative hyperlinks of the Web. 

2.5.6 DLS 

The Distributed Link Service (Carr et al., 1995) uses Microcosm's linking model 

with the Web by interposing a proxy between the user's client software and the 

sever. This server intercepts requests, consults a linkbase and then rewrites the 

received page to reflect the results from the linkbase. Originally designed so that 

the linkbase selection were made from an explicit list, more recent developments 

(DeRoure et al., 1999) have used query routing to resolve links in an unordered 

collection of linkbases. 

Related work to the DLS includes the COHSE project (Goble and Carr, 1999), 

a conceptual open hypermedia system which employs a knowledge base in the con-

struction and selection of hyperlinks for the contextual annotation of documents. 

http://www.w3.org 
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2.5.7 Open Hypermedia Protocol 

The Open Hypermedia Protocol (Reich et al., 2000) can be seen as the continua-

tion of the work which begun with the Dexter model(Halasz and Schwartz, 1990), 

designing a rich data model and protocol to allow different hypermedia systems to 

interact. The distribution of OHP is on a par with that of Microcosm; it is possible 

to do, but there is no explicit support for the sort of distributed search required to 

make link resolution or resource discovery work. 

2.5.8 Agents and Hypermedia 

Agents have been used as a framework for distribution in several hypertext and 

hypermedia systems. The University of Michigan Digital Library Project (UMDL) 

(Birmingham, 1995), the Zuno Digital Library (Ferguson and Wooldridge, 1997) and 

the MNA project use agents as mediators which match user requests to appropriate 

collections of data, while the Voyager project (Dale, 1997; Dale and DeRoure, 1996) 

uses agency as a more general technique for distributing all aspects of an open 

hypermedia system. Perhaps the most ambitious agent-based hypermedia system 

is NIKOS (Salampasis, 1998; Salampasis et al., 1996), which has specialised agents 

for handling each of the base components (nodes, links, composites) in the storage 

layer of the Dexter model (Halasz and Schwartz, 1990). 

2.6 Summary 

In this chapter we have summarised prior work in the literature which is relevant 

to our study of query routing systems, or which informs the design of ontologies for 

our chosen application domains. In the following chapter we describe a model of 

a query routing system, and in Chapter 4 we investigate the effects that different 

network topologies (drawn from the exemplar distributed search systems in this 

chapter) affect the behaviour of a query routing system. 
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Chapter 3 

A Model of Query Routing Search 

3.1 Introduction 

In this chapter, we describe a model of a query routing system which is based on 

functional aspects of query routing (effectiveness at answering queries) rather than 

on the performance aspects (efficiency of answering queries). 

The distributed search systems considered in the previous chapter have the same 

common aim: to provide a means by which objects may be located in a distributed 

system given only a description of the properties which the objects should possess 

(bibliographic metadata, for example). This task is commonly known as resource 

discovery. The services which carry out the resource discovery task are variously 

considered as name resolution services, information retrieval services or brokerage 

services, but in each case the action of the system is the same, even though the 

acceptable parameters for its operation may differ^ 

The resource discovery task is a surprisingly common one, appearing in disci-

plines from information retrieval and library science to open hypermedia and the 

Web or distributed artificial intelligence. In all of these areas, a robust and reliable 

resource discovery service is a key requirement in managing system distribution, 

but the majority of such services are themselves not distributed. This presents 

a potential limit to the scalability of these distributed systems as it will become 

progressively harder to locate objects as the systems grow. 

Many of the distributed systems for resource discovery considered in the previous 

chapter try to reduce the complexity of the task by discarding large numbers of 

candidate solutions in order to prune the search space. The exact method by 

^Locating objects which only partially meet the criteria is more acceptable in information 
retrieval than in name resolution, for example. 
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which this is carried out varies, but the essence of the technique is to partition the 

search space (a necessary prerequisite for distribution anyway) and then to use the 

knowledge of the contents of these partitions to guide the processing of the query 

by selecting partitions which are particularly likely to contain satisfactory answers. 

As the system as a whole grows, the number of partitions should also increase, so 

that the size of the partitions remains more-or-less constant. 

An ideal system for distributed resource discovery would process queries with 

maximum efficiency by pruning the search space to only those partitions which 

contained satisfactory solutions (and similarly attain maximum effectiveness by 

selecting all the partitions which contains solutions). 

3.2 Problem Statement 

In order to design an efficient and effective system for distributed resource discovery, 

we must first understand the variables which affect the performance of such a sys-

tem. We make the following assumptions about the composition of the distributed 

system. 

• The system is composed of a number of entities capable of performing com-

putations, which we shall call servers. 

• The data objects which are to be the target of the resource discovery task are 

distributed amongst the servers in the system. We call a server to which have 

been allocated data objects a data server. 

• The data objects allocated to a given data server have some similarities and 

are said to form a duster (i.e. a collection of related documents). 

• It is possible to construct an expression which represents the contents of a 

cluster, which we call a cluster representative. The centroids used by the 

WHOiS-|--t- system described in Section 2.2.5 are one possible type of cluster 

representative. 

• If a server contains the cluster representative for another server, it is said to 

have forward knowledge about that server. 

® We call a server which has forward knowledge an index server. 

9 Two or more cluster representatives held by an index server may be combined 

to give an expression which represents the data objects which the index server 

has forward knowledge about. 
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Relevant Non-relevant 
Retrieved Drel n Dret Dret 

Not retrieved Drel ~'Drel n "'Dj-et ~^Dret 
Drel ^Drel D 

Table 3.1: D is the set of documents in the system, Dj-ei the set of documents which are 
relevant to the query and Dret the set of documents which are retrieved as a result of 
processing the query, 

• An index server may have forward knowledge about the forward knowledge 

of another index server (a recursive definition to allow an arbitrary number 

of levels) 

3.3 Foundations 

If the aim of information retrieval or resource discovery systems is to find documents 

or objects which are relevant to a user's query, then relevance is perhaps the most 

important notion in information retrieval. Relevance has consequently been the 

subject of much research, but despite this attention, relevance remains a concept 

which is notoriously difficult to define to the satisfaction of all, a fact borne out 

by the large number of different definitions in the literature Mizzaro (1998). The 

ability of an IR system to retrieve relevant documents while keeping the number of 

irrelevant documents to a minimum is commonly known as the effectiveness of the 

system. As with relevance, there are a number of measures of effectiveness, of which 

we will be considering the most widely used, precision and recall. Finally, if the 

effectiveness of an IR system measures its ability to retrieve relevant documents, 

its ability to achieve this end with the minimum expenditure of effort is measured 

by its efficiency. 

3.3.1 Retrieval Effectiveness 

The definitions of precision and recall are based on a contingency table (Table 3.1) 

that partitions the set of documents in the system based on retrieval and relevance. 

The precision (P) of a system is the number of records relevant to the query 

which were retrieved, expressed as a proportion of the total number of records 

retrieved. A precision of 1 means that all the records retrieved were relevant, a 

precision of 0 means that none were. 
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T) \Drel n Dret\ (n 
P = (3 1) 

\^ret I 

The recall (R) of a system is the number of records relevant to the query which 

were retrieved, expressed as a proportion of the total number of relevant records in 

the system. A recall of 1 means that all of the relevant records were retrieved, a 

recall of 0 means that none were. 

R = (3.2) 
Wrel\ 

Precision and recall are in an inverse relationship. If the set of records retrieved 

in response to a query is enlarged (by relaxing the criteria which are used to judge 

whether or not a record is retrieved, for example), there will be an increase in recall 

(because potentially more of the relevant records in the system are retrieved) at the 

expense of a decrease in precision (because there is potentially a greater proportion 

of irrelevant records in the retrieved set), and vice versa when the retrieval set is 

reduced in size. 

3.3.2 Forward Knowledge Effectiveness 

The forward knowledge which a server holds about another server can be viewed as 

a surrogate for the knowledge contained in the other server. We assume that the 

records in a server are closely related to each other and form a cluster. The records 

in a server are therefore likely to be relevant to the same requests, following the 

cluster hypothesis (summarised by van Rijsbergen (1979)). 

The construction of such clusters is considered to be beyond the scope of this 

work; Jain et al. (1999) give a comprehensive review of clustering techniques. Of 

particular interest is the notion of data abstraction, by which a cluster is repre-

sented or described in a compact form. The construction of centroid-based cluster 

representatives for forward knowledge (as in WHOIS+H— see Section 2.2.5) is such 

an example of data abstraction. 

As an example of a potential approach to clustering structured objects such as 

bibliographic records, Murty and Jain (1995) describe a scheme for the construction 

of clusters in the context of collection management. In this, objects in the collection 

(journal articles, for example) are represented by conjunction of weighted disjunc-

tions, where the elements in each disjunction are node labels taken from a subject 
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In cluster Not in cluster 
In representation Dclu n Drep -"Ddu n Drep Drep 

Not in represention Dclu n '^Drep -iDdu n ~~'Drep 
Dclu D 

Table 3.2: D is the set of documents in the system, Ddu the set of documents which 
lie within a cluster and Drep the set of documents which are represented by the cluster 
representative. 

classification hierarchy (eg. Dewey Decimal or the ACM Computing Reviews clas-

sification). The representation of a single object is a summary of the subjects which 

it deals with (for example, this thesis could be described as being 40% 1.2.11 - Dis-

20% TZepreseaWzoM fomioZzamg 

and 40% H.3.3 - Information Search and Retrieval or H.3.7 - Digital Libraries). 

In this approach, the descriptions are clustered by using a complete-link hierar-

chical clustering algorithm with a similarity measure which takes into account the 

structure in the classification scheme. 

An instance of forward knowledge contains two things; a reference to a server, 

and an expression which represents the contents of tha t server. The ability of 

forward knowledge to accurately direct search depends on how closely the expression 

reflects the underlying cluster. In our previous work (Gibbins, 1997), we defined the 

measures of completeness and faithfulness for describing the effectiveness of forward 

knowledge. These measures are similar to those used for retrieval effectiveness, and 

are constructed by partitioning the set of records into those which fall within the 

cluster, and those represented by the expression (see Table 3.2). 

The completeness (C) of a forward knowledge representation is a measure of how 

much of a cluster's contents it describes. The most general representation which 

claims to describe the entire contents of a cluster is trivially complete. 

I DqIU I 

The faithfulness (J-) of a forward knowledge representation is a measure of how 

many of the documents described by the representation are not in the clusters it 

describes. The most general representation is complete, bu t is not faithful because 

it falsely claims that the cluster contains a number of records which in fact it does 

not. 

l^clu n -Prep I 2̂ z|) 
I-Prep I 
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There is a tradeoff between completeness and faithfulness which is analogous 

to that between precision and recall (described in Section 3.3.1), in that rewriting 

the cluster representative in order to relax the criteria for membership in a cluster 

is likely to correctly categorise more of the records which belong in the cluster 

(increasing completeness) at the expense of incorrectly more records which do not 

belong in the cluster (decreasing faithfulness). 

3.3.3 Relevance and Structural Matching 

The definitions of relevance in the literature (summarised in Mizzaro (1998)) are 

largely subjective in nature, being concerned with the user's self-assessment of their 

information need and the degree to which the retrieved documents satisfy this need. 

In particular, users possessed of different information needs may still formulate the 

same queries and so will rate the relevance of documents differently. 

These subjective definitions of relevance present some problems in assessing the 

effectiveness of distributed search systems. Subjective relevance is of most use in 

systems which offer full text searching on largely unstructured documents, but many 

of the distributed search systems contain only highly structured resources such as 

white pages (directory) entries or hypertext links. With these sorts of resources, 

it is possible to give a purely objective definition of relevance based on structural 

matching such as unification or subsumption. 

Unification is a general-purpose pattern matching algorithm which is widely used 

in traditional AI applications and languages such as Prolog. Unification compares 

the structures of two expressions containing variables, and generates a substitution 

which binds those variables to values which will make one expression equivalent 

to the other. A one-way matching would take a pattern and a target and find a 

substitution such that: 

pattern ® substitution = target 

For example, a substitution which binds % i-> 0 and Y t-> s(0) will unify the 

expressions g(A )̂ -H y and s(0) s(0): 

[s(x) + y ] . {o /x . s ( 0 ) / r } = [s(0) + s(o)] 
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Figure 3.1: Retrieval Mapping with Indexing Function 

For the purposes of examining search in this chapter, we are not interested in 

the values taken by the variables, and for clarity will write pUt to denote that p 

unifies with t. 

Subsumption is a form of structural matching which is not symmetric (unlike 

unification, where s • t t • s). An expression subsumes another (denoted 

s • t) if it is more general. For example, the expression s(0) + s(0) is subsumed by 

the expression g(0) + g(A') (and not vice versa, because the latter is more general), 

while the expressions g(0)4-X and g(y) + s(0) do not subsume each other (although 

they do unify with each other). 

3.3.4 Modelling Retrieval 

The set theoretical view of information retrieval has been studied in the past be-

cause it provides a simple formalism of the IR process. Salton (1979) and others 

introduced a model of the mapping from the set of queries Q to the set of docu-

ments S (the record space), as shown in Figure 3.1. This incorporated an indexing 

function X : S D which assigns descriptions to documents. The overall retrieval 

process is represented by the function T : Q 2^ which maps queries to sets of 

relevant documents, and can be composed from the function mapping queries onto 

the descriptions of documents which might be relevant, F : Q —>• 2^, and the inverse 

o f X . 

We refine this model by assuming that document descriptions and queries (also 

cluster representatives) are all described using the same language, so retrieval may 

be modelled as a mapping from the expressions of that language to the set of 

documents (see Figure 3.2). We take the set Q to be the set of possible expressions 

in that language, both those which denote a single document, like metadata records, 

and those which denote many documents, like queries or cluster representatives. 

The retrieval function T maps these expressions onto the records which they denote. 

The indexing function X maps S, the set of records, onto D, now a subset of Q, 
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Figure 3.2: Refined Retrieval Model 

such that for each element in S there is one and only one expression in this subset 

that describes it, but also that a description may be shared by several records. 

The function % deSnes an equivalence relation on 5" such that documents gj E 

S are equivalent if and only if X(si) = X(sj). A justification for this can be taken 

from the library world; two books may be physically different entities but share the 

same bibliographic data in a library catalogue since they are both the same edition 

of the same work and so equivalent. In this respect, the expressions in D are similar 

to the descriptive names introduced by Neufeld (1989) (although the latter denote 

objects unambiguously, while the former denote a class of equivalent objects). 

The function T is such that, if its domain is restricted to D, it is equivalent to 

the inverse of X. This allows us to define the unifies {n : Q x Q) and subsumed by 

(•: Q X Q) relations as follows; 

T ( z ) c r ( ? / ) 

a; O ?/ <=> D T(?/) ^ 

(3.5) 

(3.6) 

The set Q has a partial order under C and forms a lattice bounded by T (top, 

the expression which denotes all records) and ± (bottom, the expression which 

denotes no record), being isomorphic with 2^ under C bounded by S and 0. It is 

useful to define the most general unification ( • : Q x Q —> Q) and most specific 

(U : Q x Q —> Q) operations (the meet and join of this lattice) aa: 

r(a; n 2/) 

T(a; U ?/) 

r (3;)nT(z/) 

7(3;) U r(z/) 

(3.7) 

(3.8) 

In stating that both queries and forward knowledge expressions are drawn from 
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Syntax Semantics Description 

A C A primitive concept 
R C A X A primitive role 
T A top 

0 b o t t o m 

- i C A \ C : ^ complement 
C n D conjunction 
C U D disjunction 

{a ; : Vi/..R^(a;, ?/) = C^{y)} universal quantification 
3.R {:r : 3?/ existential quantification 

Table 3.3: Syntax and semantics of ACU 

Q, we make the assumption here that it is possible to formulate a query which 

completely speciBes a single record; if this is not the case, queries should be drawn 

from Q\D. The function T defines which documents are relevant to a given query, 

and unification and subsumption are used to determine if a forward knowledge 

expression is relevant to a query. Existing distributed search systems use both 

unification and subsumption to determine whether a record or template is relevant 

to a query - the effect of the choice of relation on the behaviour will be dealt with 

later. 

This model of relevance resembles a version of the simple description logic 

ACU{pomm et al., 1996). Description logics (DLs) arose out of the development of 

frame-based knowledge representation languages, for which they provide a formal 

foundation. DLs consist of conce;)fg, roZea and concepts are expressions 

which describe a set of individuals which have some commonality. Individuals are 

related to each other by roles, which describe the properties of individuals, and 

which are also used in the formation of concepts. 

Traditionally, the semantics of a description logic are described through the use 

of an interpretation consisting of a domain A and an interpretation function 

which maps individuals onto elements of A, concepts onto subsets of A and roles 

onto subsets of A x A. The concepts in ACU (denoted by C and D) are constructed 

according to the syntax rules in Table 3.3 and have the given extensions under 

Our simple model of information retrieval is equivalent to a subset of ACU which 

does not contain roles; S is our domain, Q is the set of concepts and T is an 

interpretation function. Following the standard description logic conventions, we 

will subsequently refer to the set of records in our model as A, the set of queries 

and descriptions as C (the set of all concepts) and the retrieval function as 
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We can express the measures for forward knowledge effectiveness using this 

model. Here we measure the effectiveness of an expression i G Q at representing a 

clustered set of documents, 

c(t) = (3,9) 
l^dul 

Defining relevance in this way as a yes/no proposition is, however, at odds with 

many of the existing notions about relevance; two expressions either unify or do not, 

but there are many shades of relevance between a completely relevant document 

and a completely irrelevant one. The choice of such binary relevance also affects the 

values taken by the effectiveness measures; if unification is also used to determine 

which records are to be retrieved, all searches are trivially precise (= 1) because 

it is possible to retrieve only completely relevant documents. We can expand our 

definition of relevance to include non-binary values by drawing on the concepts 

introduced by fuzzy set theory. 

Fuzzy set theory (Klir and Yuan, 1995) is a generalisation of classical (crisp) set 

theory in which the degree of membership of an element in a set can range from 

entirely to not at all. Formally, a fuzzy subset A of a crisp set X is defined as a set 

of tuples (x, IIA{X)) where x £ X and /i^ is a membership function HA '• A [0,1] 

which indicates the degree of membership of x in A. When the values taken by IJ,A 

are drawn from the set {0,1}, the behaviour of A under the familiar set operations 

is the same as if it were a crisp subset. In the interval between, the set behaviour 

is defined in terms of the membership function. An alpha-cut Aa of a fuzzy set A 

is a crisp set which contains those elements which have a degree of membership in 

A of at least a. 

//AuaW = max(//,4(a;),//g(a;)) union 

Î Ar\B{x) = min(/i^(:r),//g(:c)) intersection 

|A| = Ylxex cardinality 

A C g 4=^ subset 

Aa — {x : ^JLA{X) > o;} alpha-cut 

Ao:+ = {x : IIA{^) > Oi} strict alpha-cut 
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We can extend our model to include fuzzy characteristics following the work 

of Straccia (1998) on fuzzy description logics. We redeBne the range of the inter-

pretation function to be the set of membership functions A [0,1] so that we 

can now talk about documents in A being 'mostly relevant' or 'slightly relevant' 

to expressions in C. The deEnition of subsumption (3.5) remains as before, but 

unification is now defined as in Equation 3.11. The intuition behind this definition 

is that two concepts should be considered to be capable of being unified if there is 

any overlap between the (fuzzy) extensions of those concepts; the alpha-cut at zero 

selects all elements of the domain which have at least some degree of membership 

in the intersection of the concept extensions. 

zOT/ <=> (a;^n?/^)o+#0 (3.11) 

Having defined the notion of relevance using a fuzzy interpretation function, we 

can now express our relevance measures in terms of this function. We can give the 

user a means of trading precision and recall off against each other by defining the set 

of retrieved documents to be the alpha-cut of the set of relevant documents. There 

can be no fuzziness in the set of retrieved documents; documents are either retrieved 

or not. The set of relevant documents, however, need not be a crisp set, because the 

documents may be of varying degrees of relevance to the user's information need 

(the membership degree of an element in the set indicating relevance). We use an 

alpha-cut to represent the retrieved document set because it is a crisp set based on 

the relevant set; the value of ct is a parameter which can be tuned in order to trade 

off the precision of a query against its recall by retrieving more or fewer records. 

The measures of precision and recall can therefore be defined as follows: 

P M = (3.12) 
19 al 

\Q^ A I 
Rh) = (3.13) 

However, our chosen application domains typically use structured records for 

which matching techniques such as subsumption or unification are appropriate. The 

nature of relevance in information retrieval systems is domain dependant; the fuzzy 

model given above is appropriate for those domains which require a sliding scale of 

relevance, but for our chosen domains its crisp counterpart based on conventional 

description logics will suffice. 
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3.3.5 Retrieval Efficiency 

Information retrieval research has traditionally focussed on effectiveness as a mea-

sure for the assessment of information retrieval systems, so concentrating on im-

proving the accuracy of the results that such a system returns. Indeed, efficiency is 

commonly considered to be a lesser concern to effectiveness because a system which 

returns poor quality results is of little use, regardless of how quickly it returns those 

results. A recent study by Frieder et al. (1999) notes t h a t one recent collection of 

seminal research papers (Sparck Jones and Willett, 1997) did not contain a single 

paper on efficiency considerations. 

The advent and rise of distributed information retrieval has changed this state of 

affairs to some extent. Web search engines are under considerable pressure to deliver 

their results quickly; the process of evaluating a query is perceived by many users 

as being no more complex than that of following a link, so the search engine should 

return its results within an order of magnitude of the time taken to traverse a link. 

Similarly, the impact that the information retrieval system has on its environment 

(its use of network resources while building its index and processing queries, for 

example) is vitally important. A web search engine which places a heavy load on 

the network would be deemed unacceptable and antisocial. 

Existing studies of information retrieval efficiency have made use of measure-

ments such as the time taken to process queries or the size of an index in bytes. 

While wholly appropriate for an empirical study of an existing system, they are 

less so when modelling the behaviour of a hypothetical system. We choose a set 

of more abstract complexity measures of communication and space. While these 

are strongly related to the real-world measurements, they are more amenable to a 

study which does not consider the added modelling complexities of network latency 

and the like. 

Query Complexity 

When a query is submitted to the system, the number of request and response 

messages which are generated between system components (the message traffic) is 

a measure of the communication complexity of query processing. The rate at which 

this grows relative to the number of servers in the network gives an indication of its 

scalability. In addition, the individual message traffic for each server in the system 

can be used to show the presence of bottlenecks, servers which contribute dispro-

portionately to the global message traffic. We do not explicitly specify whether the 
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system operates by means of referrals or by delegation since a single referral gen-

erates as many messages as a single delegation. However, a system which operates 

by referrals is less prone to making redundant queries (where a server is queried 

more than once) because the state of the query is stored in one location (the client), 

making it easy to remove duplicates. A system which uses delegation could be ex-

pected to send more redundant messages, but the exact effect cannot be quantified 

without more detailed knowledge of the exact structure of the forward knowledge 

graph and the query being asked. 

We consider our hypothetical systems to operate in synchronous parallel rounds, 

one round being the time for each entity in the network to communicate with one 

or more of its neighbours. The running time (time complexity) for query processing 

is the number of rounds required until the client receives an answer to its query. 

Control Complexity 

Although the message traffic generated by submitting queries can be used to mea-

sure system load under normal operations, it would not be possible to process 

queries at all if there were no forward knowledge in the system. This forward 

knowledge must be built up by passing messages which contain forward knowledge 

summaries between servers. 

The forward knowledge graph affects the query message traffic by constraining 

the types of referral which may be issued. However, the forward knowledge graph 

must be constructed by an initial exchange of messages. These messages are equiv-

alent to the control messages which allow a communications network to build its 

routing tables; the number of control messages sent by the system gives the com-

munication complexity of the forward knowledge building operation. We consider 

only those control messages sent when a system is started; control messages sent 

as the result of dynamic changes over time to the resources held by the servers are 

not considered. 

As with query message traffic above, we measure time complexity by counting 

the number of rounds taken for the system to complete its task. In this case, 

the system must converge, reach a state where each server has sufficient forward 

knowledge that all resources that are relevant to a query are reachable). 
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Update Complexity 

While the control complexity of a system measures the effort required to build the 

forward knowledge network from scratch, frequently we will be presented with a 

situation in which a single server has changed its holdings and wishes to advertise 

this fact. In this situation, we need to know the complexity of propagating such an 

incremental update, and in particular how it compares to the complexity of building 

the forward knowledge network from fresh. 

Again, time complexity is measured by counting the number of rounds until 

convergence and communication complexity by counting the number of messages 

sent within the system in the course of propagating the update. 

Routing Table Size 

If the number of control messages shows the communications overhead inherent in 

building the forward knowledge graph, the size of the routing tables held by each 

server as a result of the control messages above shows the space required to store the 

routing information. A system's control message tra@c could be largely redundant, 

so a server would not retain each message it received; this measure gives the size of 

the 'useful' control information. 

3.4 Delegation and Referral 

Although forward knowledge controls the distribution scope of the processing of 

a query, it does not control how the query is distributed. Delegation and referral 

are two commonly used techniques by which the processing of a query may be 

distributed through a system. When a query is presented to a server which is aware 

(by virtue of its forward knowledge) that there is another server better suited to 

dealing with the query, it can choose to propagate the query by either method. 

On delegating a query (Figure 3.3(a)), the server asks the query of the second 

server, and on receiving an answer, passes this back to the client which issued 

the request, so delegating responsibility for processing the query to the second 

server. Alternatively, the server might instead refer the client to the second server 

(Figure 3.3(b)), informing it of its existence and its suitability to the task in hand, 

and leaving the client to carry out further work. 

Delegation and referral are known by different names in the agent world, namely 

brokerage and matchmaking. Agents which provide either facility are collectively 
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known as middle agents or mediators, because they are interposed between agents 

which provide information and those agents which seek it. Brokering in particular 

may go beyond information retrieval concerns; a broker may be presented with 

a task which it then recruits a team of agents to fulfill, using a plan of its own 

formulation. The treatment of middle agents in Decker et al. (1996) identifies a 

difference in the ways that a client interacts with matchmakers and brokers, based 

on the semantics of the messages exchanged. 

When talking to a matchmaker, a client sends a message asking "who is able to 

service my request". By comparison, when a client speaks to a broker, it sends a 

message saying "service this request". The content of these messages is observably 

different, even if both messages are requests to be sent information. 

This is at odds with the behaviour of a number of existing search systems (most 

notably DNS) in which a service request may be responded to with either referrals 

or brokered answers. In effect, the queries sent by DNS clients are hybrid entities 

which informally might correspond to the question "tell me what you know about 

X and/or tell me who knows about x". 

The example given by Decker et al. (1996) also uses different KQML message 

types for communicating with matchmakers and brokers ( a s k - a l l and s t r e a m - a l l 

respectively), but this is not relevant to the above argument; the message types have 

the same semantics (the effects on the listener, as noted informally by ?), and differ 

only in the mode of delivery of their responses ( a s k - a l l requires an agent to send 

all its responses in one message, whereas s t r e a m - a l l returns a stream identifier 

which the recipient may use to control the rate at which it receives the responses). 

Delegation and referral are different coordination strategies to the distribution 

of queries, but can be driven from the same forward knowledge. The difference 
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between the strategies lies in which entity has control over the progress of the query. 

A server which delegates a query controls which data is returned to the client, and 

80 may aggregate solutions from other sources before dispatching them to the client. 

The client may however be possessed of knowledge which might aid the satisfaction 

of the query (for example, which servers are considered to be sources of trustworthy 

information) and which cannot be used because the server haa sole control over 

which sources are used. Conversely, while issuing referrals grants clients the power 

to decide how and where a query is processed, they are under no obligation to follow 

the suggestions made by the issuing server. In Decker et al. (1997), the authors go 

further in their characterisation of middle agents by identifying and classifying a 

variety of middle agent roles based on which agents initially know the preferences 

of the requesting agents and the capabilities of the providing agents. This privacy 

based model of the connection problem (finding other agents with the capabilities 

you need) investigates the distribution of initial knowledge in the system, which 

in turn gives agents the necessary means to control the direction and scope of the 

search. 

Delegation and referral represent the extremes of a continuum of distributed 

search techniques. At one end, the servers maintain the state of processing of the 

query (the list of servers which have been queried so far, and those which have 

been identified as possibly relevant, but which have yet to be queried), while at the 

other this is controlled by the client. Each has advantages over the other in certain 

circumstances, as will be further explained in Section 4.5, so there is some reason to 

believe that a search system with mutual state - shared between servers and clients 

- could combine the best features of both. 

3.5 Modelling Forward Knowledge 

The organisation of a distributed search system is the key factor which determines 

its effectiveness and efficiency. If a given query is to be processed with perfect (= 1) 

recall, it must be presented to all of the nodes which contain relevant data. On the 

other hand, we wish to use as few system resources as possible in the processing of 

the query, so the query should be presented to as few nodes as possible. Thirdly, we 

do not want the burden of query processing to rest unevenly on particular nodes; 

as far as is possible, all of the nodes in the system should play an equal role in the 

processing of queries. We have used a graph-based approach to model the network 
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of forward knowledge in a query system, but see (van Eijk et al., 2000) for work 

which uses the Kripke structures of a modal logic to model network topologies. 

3.5.1 The Forward Knowledge Graph 

If a query is to be presented to a server which haa relevant data, there must exist 

a chain of referrals from the initial server (where the query was first asked) to the 

target server. For these referrals to be generated, the templates for the forward 

knowledge from which they are generated must be relevant to the query. As a 

precursor to determining the effects of forward knowledge distribution on the per-

formance of distributed search systems, we can model the forward knowledge and 

identify useful properties by considering the graph made by the forward knowledge 

(this work is derived from the path calculus described by Gormen et al. (1990, 

p.570)). 

The forward knowledge graph is a multigraph G = {V,E) with directed edges 

which are labelled with (possibly non-unique) expressions from C (the forward 

knowledge templates) and nodes which are also labelled with expressions from C 

(each data server holds some subset of A, so the node labelling expressions from 

C are cluster representatives for each server in the system). We represent the edge 

labelling with the functions A : F x V —> C and the node labelling with the function 

: y — C . Because A is deGned over the domain y x y , we take A(%/, t;) = _L if 

(u, v) ^ E (i.e. non-existent edges are treated as though they existed and had been 

labelled with bottom, the expression which does not subsume any expressions). 

The notion of edge labels may be extended to label paths with the most general 

expression which will satisfy all of the edges in the path; if this expression is relevant 

to a query, sufficient referrals will be generated to allow the propagation of the query 

to the path end (which presumably holds records which are relevant to the query). 

If we have a path p from VQ to (written as and shown in Figure 3.4), 

the n operator (3.8) can be used as an extension operator to give a path label 

determined by: 

(p) = A(Y;o, ^i) n A(i;i, 1̂ 2) n - - - n A(2;n-1, (3.14) 

Although the edges would be traversed in order from (fo, f i ) to (wn-i, when 

a query is processed in a real system, n is associative on C. Since T is an identity 

for n, the system (C, n, T) is monoid. 

55 



Vn 

Figure 3.4; Path extension 

vo 

A(P2) 

Figure 3.5: Summary labels for parallel paths 

The forward knowledge graph may contain more than one path from the initial 

node to the target node, so we must also define a summary operator which can 

combine the labels of several paths in order to give an expression which denotes 

the queries which can be answered by the target node, starting at the initial node. 

For systems which use unification ( • ) for their relevance relation, we can use the 

most speciSc generalisation (u) as our summary operator. The aggregate label 

fn) for a,ll of the paths fo is given by: 

[ J (3.15) 

vo v„ 

However, U is not immediately appropriate as a summary operator for those 

systems which use subsumption ( • ) as their relevance relation; in this group of 

systems are included Nomenclator (Ordille, 1998) and RWhois (Blacka et al., 1998)), 

which both require that only templates which completely cover a query are used for 

generating referrals. If we envisage a graph with two paths vi Vn and vi 

labelled with A (Figure 3.5), the summary label of the two paths is A(pi) U A(p2)- If 

we formulate a query q e C such that q C A(pi) U X{p2), q % A(pi) and q g A^%), 

q cannot be satisfied by I;„ from VQ because there is no single path that can be 

traversed, despite what the summary label suggests. 

If we allow queries to be decomposed into smaller queries, U does hold as a 

summary operator. If we formulate q E C and then break it down into qi,q2 E C 

such that q = qi U q2, qi Q X{pi) and 92 E A(p2), each of the two parts of the query 

can be satisfied by traversing a different path to Vn from vq. 

In addition, if we use U as a summary operator, the issue of contradictory 

summaries, where the generated summary has an empty extension, does not arise. 

The expressions which are summarised each denote a class of entities, and the 
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A(pi) 

A(P2) 

Figure 3.6: Summary labels for diverging paths 

the extension of the summary is the union of the extensions of those expressions. 

For example, the expressions Book U3AUTH0R. Jane-Austen (books written by Jane 

Austen) and BookU3AUTH0R.Charles-Dickens (books written by Charles Dickens) 

have disjoint extensions, but their summary using U is not a contradiction, having 

an extension which is the union of the two component extensions. 

The summary operator may also be used to combine diverging paths, so as to 

represent all of the routes which may be taken from the initial node. For example, 

in Figure 3.6, the summary of the paths is A(pi) U A(p2). 

3.6 Summary 

In this chapter we have presented a model of a query routing distributed search 

system which can be used to study the effects of different distribution topologies 

on system performance. Although there are a large number of deployed query 

routing systems, there have been only limited analytical studies of their behaviour 

to date. Our model draws on previously published results from the information 

retrieval, artificial intelligence and graph theory communities (in the form of the 

set-theoretic modelling of the information retrieval process, description and fuzzy 

logics and the path calculus of Gormen et al. (1990)), bu t the combination and 

application of these results to be a novel one. 

In the next chapter, we will use this model to study the effects of different 

forward knowledge network topologies on the retrieval efficiency and scalability of 

a system (as given by the complexity measures in Section 3.3.5). 
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Chapter 4 

Query Routing and Network 

Topology 

4.1 Introduction 

Using the model deEned in the previous chapter, we can now investigate the effects 

of the distribution of forward knowledge (the topology of the forward knowledge 

network) on the efficiency of processing queries. An earlier version of the material 

appearing in this chapter was published in (Gibbins and Hall, 2001), and a summary 

of the complexities of the topologies discussed in this chapter is given in Table 4.1. 

4.2 Forward Knowledge Distribution 

The organisation of forward knowledge within a query routing search system plays 

a great part in the effectiveness, eSciency and scalability of the system. Forward 

knowledge should direct a query to the relevant servers with less effort than if the 

query were sent to all servers (an exhaustive search), and ideally the effort expended 

should grow more slowly than the number of servers as the system is expanded. 

The order implicit in this network of forward knowledge is also important; the 

majority of existing query routing search systems presuppose the servers to have 

been arranged in a hierarchical manner with an omniscient root server (or group 

of servers) indirectly aware of the contents of every other server. This has been 

demonstrated to scale well in systems such as the Domain Name System (Mock-

apetris, 1987a), but it requires that a degree of control be exerted over the servers 

to force them into a hierarchy. Thus, ordered systems have the drawback that it 

may be costly or politically inexpedient to organise such a system; scalable ordered 
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systems rely on some centralised components for their operation, and the responsi-

bility for running these may be too large to entrust them to an 'ordinary user' (the 

administrator of a simple leaf server, for example). These administrative, political 

or social costs are difficult to quantify (if not impossible), and are not reflected in 

the complexities of the given topologies. 

A different approach treats all servers as peers and models the interactions 

between them as if they were social acquaintances; the majority of servers know 

only about their close neighbours, but a few servers have knowledge of more distant 

servers. This type of graph, known as a small world network, has attracted much 

attention of late in domains as diverse as paper citations, hypertextual linking on the 

World Wide Web (Albert et al., 1999), disease epidemiology and neural networks. 

In both types of system, the key aim is that a properly labelled path exists from 

the server by which a query enters the graph, to the server or servers which can 

satisfy that query. With ordered network topologies it is possible to provide simple 

rules by which forward knowledge is passed, whereas disordered networks benefit 

from flooding techniques akin to those used by conventional routing algorithms. 

In the example topologies given in the following two sections, the assumption 

has been made that all forward knowledge is faithful and complete, and this has 

aEected the analyses of system performance accordingly, most of all those for query 

message traffic. While it is not possible to give specifics of performance for all 

systems in which forward knowledge is incomplete or unfaithful, a rule of thumb is 

that incomplete knowledge will reduce the query message traffic (as fewer referrals 

are generated) while unfaithful knowledge will increase the traffic. Similarly, the 

topologies studied have also been chosen such that a correctly labelled path will 

always exist between the entry points to the network and the other nodes, which 

ensures that all searches will have a recall of one (a relevant server can always be 

found by following the forward knowledge). 

4.3 Ordered Networks 

The majority of query routing search systems arrange their servers in a hierarchical 

fashion, with the data servers which hold the objects of the search at the leaves of 

the tree, and progressive layers of index servers further up the tree. 
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4.3.1 Single index server 

This simplest hierarchical network for query routing consists of a set of data servers 

which hold the records in the system and a single index server which contains a 

complete description of the contents of each data server (as shown in Figure 4.1). 

Queries are submitted to the index server, which uses its forward knowledge to 

propagate the query to the relevant data servers. This arrangement is used by 

Napster (Section 2.2.13) and most Internet meta-search engines. 

# data server 

O index server 

Figure 4.1: Single index server 

We model this system as a directed graph (F, E) in which there is a distinguished 

fo E y which is the single index server and all edges in ^ are of the form ('Uo,̂ ). 

The contents of the data servers (the elements of the set V \ {ifo}) are denoted by 

the vertex labelling u : V C. Each data server passes a summary of its contents 

to the index server, so G y,^; t'o,A((fo,i;)) = Therefore, given a query 

q E C which can be satisfied by the contents of a data server, there exists a path 

(edge) from the index server to that data server whose label also satisfies q. 

Our estimates of the efficiency of the system rely on faithful and complete for-

ward knowledge, and can therefore be regarded as best cases. The worst cases, those 

where all forward knowledge is entirely incomplete or unfaithful, are degenerate 

cases where the system reduces to either exhaustive search (unfaithful knowledge) 

or a null search in which no results are returned (incomplete knowledge). 

When a query which may be satisfied by a single data server is submitted to the 

system, the generated query message traffic is constant with increasing system size 

(one request and response with the index server and the chosen server), as is the 

running time. Although query complexity is low, the index server is a bottleneck, 

since all queries presented to the system must be processed by it. The number of 

control messages sent initially scales as 0{\V\), the number of servers in the system. 

The number of entries in the routing table held by the index server also scales as 

0 ( | y | ) . The update complexity for a single data server is constant for both time 

and communication (a single message sent to the index server). 
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4.3.2 Distinguished index servers 

Although the system above is capable of routing queries to relevant data servers, 

it is unlikely to scale well as the number of data servers increases. The limiting 

factors are most likely to be the number of forward knowledge expressions that the 

index server must hold and the uneven load distribution that it is under. 

It is natural to expand the system to a multi-layer hierarchy in order to address 

the first of these concerns. The lowest layer of the system consists purely of data 

servers which pass forward knowledge up the tree to index servers that summarise 

it and pass it in turn to their parent. Clients present their queries to the system 

as a whole by sending them to the root index server, which forwards the query 

to those second-level servers that might be able to pass it on to appropriate data 

servers (and so on, until the query reaches the data servers). To begin, consider the 

system shown in Figure 4.2, in which the leaves of the tree alone hold data and the 

servers internal to the tree summarise this data. 

# data server 

O index server 

Figure 4.2: Hierarchy of distinguished index servers 

Let G = (y, E) be a directed layered graph such tha t the set V of vertices 

is partitioned into the sets Lq, L i , . . . , and all edges e E E are of the form 

{v,w),v E Li, w E Li+i- The set LQ contains the root elements of the graph; for 

this system we take LQ to be singleton, so the graph is single-rooted. We denote 

the root vertex by VQ. For convenience we define the function ch : V ^ 2^ which 

maps a vertex onto its children: 

= {a; G y : (u, a;) E E } 

The vertices in V are labelled with the function u : V C. This describes 

the contents of the data servers in L„ with the most specific generalisation of those 

contents and describes all index servers as having no content. 

%/(%;) 
summary of contents of u if v E 

_L otherwise 
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Figure 4.3: Constructing path labels 

As in the previous case, the edges are labelled with the function X : E C. 

The function differs from its previous definition by adding a summary of the edge 

labels from the layer below. 

X{u,v) = i^{v) U |_J X{v,x) (4.1) 
x&ch{v) 

If we take a query g G C for which some data server G contains a relevant 

document (which we can tell if g C v{v)), there will be a chain of forward knowl-

edge from the root server to this data server which will satisfy g if g C X{VG^V). 

Consider the example shown in Figure 4.3. If V2 contains some document relevant 

to g, that is if g C 2/(^2), we can show that the label on the path V0^V2 satisfies q 

(i.e. V2 is reachable from Vq given q, ov q Q X{vq'^V2)). 

The path label is the most general label that will satisfy all of the edge labels 

along the path; if q is satisfied by this it will by definition be satisfied by the edge 

labels, guaranteeing the reachability of 

When a query which may be satisfied by a single d a t a server is submitted to 

the system, the generated query message traffic and query running time scale as 

0(log |F|) , the depth of the hierarchy. The number of control messages sent initially 

scales as 0{\V\), as each data and index server passes forward knowledge towards 

the root while the control running time scales as 0(log | y | ) . The mean number of 

entries in the routing table held by each index server, including the root, is constant 

with increasing system size (assuming an even distribution of servers beneath each 

index server), being equal to the breadth b of the hierarchy (the number of direct 

children of a node). If a single data server wishes to send an update, the complexity 

of this update is 0 ( l o g | y | ) messages over O(log |y | ) rounds (considering a system 

which operates in synchronous parallel rounds, with one round being the time for 

each entity in the network to communicate with one or more of its neighbours, as 

discussed in Section 3.3.5). 
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4.3.3 Non-distinguished index servers 

The model in the previous section may be expanded by weakening the distinction 

made between index servers and data servers. In the example system shown in 

Figure 4.4, all of the servers contain some data of their own, even those which 

contain forward knowledge about others. 

C 
data server 

combined data/ index server 

Figure 4.4: Hierarchy of index servers 

The vertex-labelling function v will now potentially return a non-bottom value 

for all V &V, but this will not alter the definition of A given in (4.1). 

The efficiency estimate for this class of system is based on the worst case where 

the data server which contains relevant records is in 1/̂ , so is equivalent to that for 

the system with distinguished index servers. 

4.3.4 Multiple hierarchies 

A further relaxation of this model may be made by allowing the hierarchy to have 

more than one root, as in Figure 4.5. We can model this by allowing the set LQ to 

contain more than one vertex, but we must add a further restriction to the graph to 

ensure that all roots are functionally equivalent in terms of the queries which they 

can answer, or the data servers which can be reached from them. We define the 

path projection of a vertex VQ as a subset of {v e Ln : VQ^V}, which contains 

those vertices which are connected to VQ. If data and index servers are distinct, two 

root servers are equivalent if their path projections are the same. 

# data server 

O index server 

Figure 4.5: Multiple hierarchies 
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A graph with multiple hierarchies in which the roots are equivalent may therefore 

be considered as the conflation of two or more different hierarchies constructed atop 

the data servers in 1,̂ - The data servers are reachable from any root, as for a single 

hierarchy with distinguished index servers. 

This is no longer the case if the data servers and index servers are not distinct. 

Each hybrid data/index server contains data of its own, and so must be reachable 

from each root if queries are to have the same effectiveness regardless of where they 

are started, but may appear in different positions within the hierarchies beneath 

each root. However, if a given index server appears in different positions in several 

hierarchies, it must have a different set of forward knowledge for each hierarchy (the 

forward knowledge being for those servers which are beneath it in each hierarchy), 

and more importantly, it must have some way of knowing which set of forward 

knowledge is the correct set to use for a given query (i.e. it must have some idea 

of the hierarchical context in which it was asked the query). If this is not so, all of 

the hierarchies must be identical. 

Ignoring this degenerate case, the efBciency of this class of system will be as 

that for single hierarchies with distinguished index servers. 

4.3.5 Search expansion 

So far, the hierarchical topologies which have been described are intended to be 

searched from the root to the leaves, but this often involves the expenditure of 

more effort than is necessary if all of the relevant servers lie within a particular sub-

tree of the graph. In this case, searching from the root of this sub-tree is sufficient 

to retrieve all relevant objects. 

Also, a single root represents a considerable bottleneck if it must process every 

query in the system. In order to spread the load more evenly across the servers 

in the system, queries are initially directed at a server chosen at random. If the 

query does not lie within the area of expertise of this server, it may choose to issue 

a referral to the server to which it customarily passes its forward knowledge (in 

R W H O I S terms, a punt referral). 

The justification for such search expanding referrals differs from that of con-

ventional referrals in that a server placed higher up in the hierarchy will be able 

to provide referrals that are relevant to a wider variety of queries. In the Domain 

Name System, a query (name lookup) that is addressed to a server (nameserver) 

which cannot provide a referral that narrows the search space (i.e. a referral to a 
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server which is better placed to answer the question) is passed up the tree until it 

reaches a server which can narrow the search space. 

Search expanding referrals may also sometimes be generated by servers which are 

themselves able to generate referrals down the tree. These referrals allow the client 

to aak the query of a broader range of servers in order to achieve a better recall. 

The assumption made here is that a group of servers who all pass their forward 

knowledge to the same server are in some sense clustered, so that they have similar 

competences and areas of knowledge. A referral which directs the client to look 

further up the hierarchy is informing it that the parent server likely to know 

about other relevant servers, because it knows about me". 

The knowledge which drives these referrals can be represented by another edge 

labelling, related to, but separate from the A-labelling already in use. More specifi-

cally, this labelling (which we will denote by K) is a labelling of the transpose of the 

original graph, in which all edges have a sense which is the reverse of that in G. 

The values taken by K indicate the manner in which the search space is expanded 

(that is, the manner in which referrals which point up the hierarchy are generated). 

This may have a substantial effect on the performance of the system because it 

leads to the generation of extra messages, which affects the query complexity. 

The systems listed in Section 2.2 which allow search expansion show some variety 

in the labellings they give to the transpose graph. WHOis-l—t- labels all transpose 

edges with the vertex labels at their source (equation (4.2)), in effect giving each 

data server V the reasoning that, if the index server U knows about me, it must also 

know about other things like me. 

K{V,U) = I^{V) U [ _ J X{V,X) ( 4 . 2 ) 

xGch{u) 

DNS and X.500 take a different approach, in that they have a rigid naming 

hierarchy in place which is used to direct search. In this case the reasoning is that 

the parent of a server knows about a set of expressions that includes, but is not 

limited to, the knowledge of that server (equation (4.3)). 

U U A(i;, r) (4.3) 
x&ch{u) 

Both of these approaches use only a crude approximation to the total knowledge 

of parent servers because they have minimised the number of control messages which 

were sent around the system when the forward knowledge mesh was being built up. 
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/{(%;, If) 

Figure 4.6: Expansion labels (K) 

If we allow knowledge about the contents and capabilities of servers to flow in 

reverse (from the root of the graph towards the leaves) as well in the conventional 

way, we can obtain a more accurate estimate for the total knowledge of a parent 

server (equation (4.4), see also 6gure 4.6). 

K,{v,u) = K{W,V) U u{v) U [_! X(v,x) (4.4) 
xech(v)\{u} 

Estimating the efficiency of this class of systems is more complicated than in 

previous cases due to the uncertainty of the initial server queried. In the worst 

case, the initial server is in LN and has VQ G LQ as its only ancestor in common 

with the target data server, which would give query message trafBc of 0 ( log |y | ) 

messages because the query is propagated all the way to the root before it begins 

to be constrained. In the cases described by (4.2), (4.3) and (4.4), the routing table 

is of constant size, but the control message traffic in (4.4) scales as 0{\V\) because 

forward knowledge is propagated down the hierarchy as well as up. However, be-

cause routing knowledge is passed down the hierarchy as well as up, the complexity 

of propagating an update from a single data server is now 0{\V\) messages over 

0(log |y | ) rounds (as described in Section 3.3.5) because the change in forward 

knowledge is propagated to all servers. 
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4.3.6 Complete Graph 

This ordered graph is not a hierarchy, but describes a system with mutual forward 

knowledge, where all the servers know about the contents of all the other servers (see 

Figure 4.7). The message traffic generated by queries in this system is constant (4 

messages) and takes constant time to process. Each server requires a routing table 

of size 0 ( | y | ) and the control message trafhc scales as 0 ( | y p ) because the graph 

contains | F | ( | y | — 1) edges. The running time for control messages is constant (one 

round). The complexity of propagating an update from a single server is 0 ( | y | ) 

messages and takes constant time. 

C combined data/ index server 

Figure 4.7: Complete graph 

4.3.7 Councils 

Councils are a cross between complete networks and hierarchies that were intro-

duced in Lejter and Dean (1996) (Figure 4.8). The servers are divided into \V\lh 

groups of b members each. Within a group, there is complete forward knowledge; 

every server knows about the contents of every other server. Each group is repre-

sented in a council by a chosen member from that group. This pattern is repeated in 

the councils; a council is also fully connected and makes representation to a higher 

level council, and so on. 

Provided that b |y | , a council has the same control complexity for queries, 

control messages and updates as a hierarchy. As b grows, the effort required to ex-

change control messages with group peers grows and the control message complexity 

approaches 0{\V\^), that of a complete network (the running time is 0(log \V\) re-

gardless of b). The query message complexity and running time for a council are 

0( log |F | ) ) . For each group in which a server participates, it will have a constant 

b entries in its routing table. In the worst case a server will be a representative 

in groups at all levels; here the server's routing table size will scale as (9(log|V|). 
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w 
D combined data/ index server 

Figure 4.8: Councils 

Also, because such a server handles a disproportionately large number of messages 

(being responsible for gatewaying messages between subtrees), it is a bottleneck, 

though not to as great an extent as the root server in a hierarchical network (here, 

the load is shared with its peer servers). 

4.4 Disordered Networks 

While ordered, hierarchical networks are a simple abstraction for studying the be-

haviour of query routing systems, it should be noted that similar real world systems 

are, for the most part, not ordered. In order to study networks with little or no 

implicit order, we need a family of graphs which are structurally similar to the types 

of disordered network that are likely to be encountered in real world systems, and 

for which it is known how the key properties which affect complexity and scalability 

change with graph size (such key properties being the diameter of a graph and the 

maximum vertex degree). 

Small world networks are a class of random graphs which show a large degree 

of local order while retaining many of the characteristics of Erdos-Renyi random 

graphs (see Bollobas (1985) for a review of this work), such as low graph diameter 

(scales as log |y | ) . In the model proposed by Watts and Strogatz (1998), the graph 

is based on the ring lattice Ln,k (also known as a circulant graph or a 1-lattice), in 

which each of the n nodes in V are adjacent to their k nearest neighbours (for a total 

of — edges). This ordered graph used as a basis for the small world model could 

also be a rectangular lattice as used in Shehory (1999) (also known as 2-lattices with 

k = 4 in Watts (1999, p35)). This graph is then modified, with each edge being 

rewired at random with probability p. The resulting graph is greatly ordered locally, 

in that many neighbourhoods persist after rewiring, but appear more disordered 
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(a) Ring lattice L 1 2 , 4 (b) Modified ring lattice 

Figure 4.9: Constructing small world networks 

overall due to the existence of 'long distance' edges between otherwise distant nodes 

(see Figure 4.9 for an example). 

These long distance edges have the effect of reducing the diameter of the graph. 

When their number is above some critical value, the diameter of the graph begins 

to scale as rather than as ^ in the unrewired ring lattice. This change in the 

nature of the graph to a small world network is characterised variously as a phase 

transition on the rewiring probability (Watts and Strogatz, 1998) or as a crossover 

phenomenon involving both the size of the network and the rewiring probability 

(Barthelemy and Amaral, 1999). 

A number of real world systems have been shown to be small worlds (including 

the Gnutella peer-to-peer search system (Jovanovic et al., 2001)). However, the 

small world model has its flaws. Chief among these is its failure to model the prob-

ability distribution of vertex degree. A number of real world examples, including 

actor collaborations, webpage linking, electrical power grids and journal citation, 

follow a power-law distribution, where the probability of a vertex having a degree 

k is p{k) ~ In contrast, the small world model gives vertex degree a Poisson 

distribution. The practical upshot of this is that the real world networks contain a 

few exceptionally well connected vertices, while the vertices in small world networks 

are of more even degree. 

Barabasi and Albert (1999) call the class of random networks with power-law de-

gree distribution scale-free networks, which differ from Erdos-Renyi random graphs 

and Watts-Strogatz small world networks in the method of their construction. Ran-

dom graphs have a fixed number of vertices which stays constant throughout the 
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connecting process, while small world networks have not only a fixed number of 

vertices, but also a fixed number of edges by virtue of the rewiring process. Scale 

free networks are open, and grow by the addition of nevy vertices. These new ver-

tices are connected to existing vertices, with a preference placed for links to vertices 

which are already well-connected. This rich-get-richer linking echoes the observed 

behaviour in real world networks (commonly cited papers attract more citations, for 

example) and results in a graph with a very few well-connected vertices, a slightly 

larger number of less well-connected vertices, and so on. 

Scale-free networks still commonly have the small world property of a diameter 

which scales logarithmically as the number of vertices increases, as noted by (Albert 

et al., 1999). Barabasi et al. (2000) give a model of scale-free networks which creates 

graphs such that |F | = t+rriQ and \E\ = tm, where mo is the size of the initial 'seed' 

network, t the number of vertices subsequently added and m the number of edges 

which connect each new vertex to the graph. In Albert et al. (2000), the authors 

also note that scale free networks are also more robust t han small world networks in 

the event of failure, if not in the event of malicious attack; the high degree vertices 

are crucial to the connectivity of the graph, but are comparatively rare making them 

less likely to fail if all vertices have an equal probability of failure, but allowing a 

malicious attack that specifically targets those vertices to have a greater effect. 

Small world and scale free networks therefore offer an attractive abstraction of 

networks with partial disorder such as the World Wide Web (although see Broder 

et al. (2000) for a different characterisation of Web topology in which the Web as 

a whole does not possess small world connectivity). In particular, these graphs 

seem to be ideal for studying systems in which component entities are clustered 

by ability, interest or location (the limited communications afforded the cells in an 

amorphous computing system by Abelson et al. (1999) are a good example of the 

latter). 

To begin with, we will assume that the servers in our search systems are not 

clustered by interest or ability, but form neighbourhoods based on some real world 

or network distance criteria. The edges in the graph show basic mutual aware-

ness between servers. These edges may be concatenated using traditional network 

routing techniques to produce shortest paths to the other servers. 

There is a fundamental difference between network routing and query routing, 

namely the treatment of addresses. In network routing, an address is a unique object 

used to identify a server. The routing process takes an address and constructs a path 
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Figure 4.10: Augmented Routing Tables 

from the source to the destination server which bears tha t address; each server's 

routing tables are indexed by these destination addresses. 

In contrast, query routing takes a query expression, which does not uniquely 

identify a server, and attempts to construct paths from the source to each des-

tination server which can satisfy the query expression. The routing tables may 

therefore contain more than one entry for a given expression, but this presents a 

problem while the routing tables are being constructed; do two entries with the 

same expression refer to the contents of different servers (and so should be retained 

as separate entries), or are they both references to the same server (and should be 

contracted into a single entry)? 

This ambiguity may be resolved by including both the server's content summary 

and its name in the routing table, so that each routing table entry contains the 

expression which is to be compared with queries, the name of the server to which 

a referral should be generated and the name of the server which will eventually 

be reached if the referral is followed. An example of this is given in Figure 4.10, 

which shows a simple network of four servers. Server d contains some records whose 

summary we denote with Servers h and c have routing table entries which indicate 

that received queries which are subsumed by (j) should be routed to d. Server a has 

a routing table containing two entries, both for paths labelled with cj). These two 

paths {a ^ b d and a c d) both lead to d, but by different intermediaries. If 

a's routing table did not contain this information, a would be unable to distinguish 

between the two entries and would generate referrals to both b and c for queries 

matching cp, when only referrals to one or the other were required. 
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Making this change to the structure of routing tables brings to light a different 

question. If a server's routing table contains the name of a data server, why can't 

the query take a shortcut and be sent to the destination directly without having to 

traverse the path generated by the routing process? If the query is sent directly to 

the destination, none of the non-routing knowledge accumulated by the intermediate 

servers (namely, cached answers) may be brought to bear on the query. 

4.4.1 Flooding 

The first technique we present for searching in a disordered distributed system 

does not use query routing, and is including for comparison purposes. Gnutella 

(see Section 2.2.14) and FreeNet (see Section 2.2.15) are both peer-to-peer systems 

which do not use a centralised server to hold routing knowledge (and so could be 

considered to be 'true' distributed search systems), and both propagate queries 

using flooding or similar uninformed exhaustive techniques. 

Although Gnutella clients flood a discovery message on joining the network, 

this is not used to gather or to distribute any routing knowledge, so the control 

message complexity and routing table size efficiency measures are not relevant. 

The complexity of querying a Gnutella system, however, is that of flooding the 

query message from the originating server to the rest of the system, which is 0( |£ ' | ) 

messages over a period of 0(log | y |) ticks (the query is sent at most once over each 

edge in the network and reaches all vertices within a number of rounds equal to the 

diameter of the network). 

FreeNet does not flood its queries as does Gnutella (effectively a breadth-first 

traversal of the system which uses delegation rather than referral), but performs 

a depth-first traversal of the system which reduces the peak loading caused by 

broadcasting a message to several destinations at the same time. This traversal 

is still uninformed, and there is no coordination between servers, so the query 

complexity is still 0{\E\), but spread over rounds. In practice, the control 

message traffic is less because FreeNet is a name resolution system in which any 

two entities that satisfy a query are considered equivalent; the search need not be 

exhaustive. 

4.4.2 Distance Vector Routing 

The Distance Vector (also known as Ford-Fulkerson or Bellman-Ford) algorithm is 

a dynamic, distributed routing algorithm widely used in the Internet, where it goes 
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by the name of the Routing Information Protocol (Hedrick, 1988). Each server 

maintains a routing table which contains, for each destination, the lengths of the 

shortest paths to that destination and the server to which data bound for that 

destination should be passed (see Figure 4.11). 

Each server sends updates to its neighbours which consists of that server's cur-

rent estimates of path lengths. Each server uses the received update to recalculate 

its routing table, substituting newly-found shorter paths for its current ones, if any 

exist. Over time, the routing tables converge to a stable state in which they contain 

optimal lengths. In this way the topological knowledge about the network is dis-

tributed amongst the servers in the network. Updates may be sent asynchronously, 

and as work by Bertsekas and Gallaher (1987) shows, the system will converge 

in finite time. Lynch (1996) notes that in a synchronous network, DV converges 

in 0 ( | y | ) rounds with a communication complexity of 0{\V\\E\), making this an 

expensive algorithm which scales poorly. 

Each server's routing table requires storage of 0 ( |K | ) to hold information about 

all other servers. When a query is submitted to the system, the query message 

traffic and running time scale as 0(log |y|) , the diameter of the graph. An update 

for a single server must be propagated using the standard DV algorithm, so its 

complexity is as that for the control traffic. 

1 dest dist next 

a 0 a 
b 1 b 
c 3 c 
d 5 e 
e 2 e 

0 

Figure 4.11: The routing table shown is for node a. 

Distance Vector is considered to have some drawbacks, most notably the count-

to-infinity problem where path length estimates rise indefinitely due to an inability 

to detect routing loops when link statuses fluctuate, but these are of less importance 

to us because we have restricted ourselves to fixed topology networks. One approach 

to the count-to-infinity problem is that used in the RIP implementation of DV, 

where path length estimates are given an upper limit of 16 hops. This avoids the 

count-to-infinity problem, but limits the use of the algorithm to networks with a 

graph diameter of 16 or less. 
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4.4.3 Path Vector Routing 

Path Vector routing is derived from Distance Vector, and is designed to circumvent 

the count-to-infinity and routing loop problems. Each server's routing table con-

tains a complete path to each of the listed destinations. This allows the servers to 

disregard routes which visit any server more than once, so removing routing loops. 

As a result, PV is not subject to the graph diameter limitation imposed on DV in 

order to avoid counts to infinity. 

The main disadvantage of path vector routing lies in the size of the routing 

tables; while the tables in PV contain the same number of entries as those in DV, 

each entry contains a complete path of average length log \ V\ (the diameter of the 

graph). The communication complexity of PV is as that of DV. 

4.4.4 Link State Routing 

Open Shortest Path First (Moy, 1991) is a Link State algorithm, a dynamic rout-

ing algorithm based on Dijkstra's algorithm (summarised by Gormen et al. (1990, 

p.527)). This given in a form modified for use in a query routing system in Algo-

rithm 4.1, following the notes on routing tables in Section 4.4. This differs from the 

cited version in the types of the arrays used to store the routing table {d and TT in 

lines 2 and 3 for the distance and next columns) and the priority queue of vertices 

(Q, line 6), all of which use tuples containing a vertex and the content label for 

that vertex (given by the vertex labelling u -.V C - see Section 3.5.1) instead of 

just a vertex. 

OSPF differs from DV in that each server has a complete copy of the topological 

knowledge about the network and calculates a routing table containing shortest 

paths for itself from this. The servers in OSPF exchange topological knowledge 

by using controlled flooding to send link state advertisements which describe their 

local topology to all other servers. The communications complexity of this all-

nodes flooding operation is given by Harchol-Balter et al. (1999) as 0 ( | E | log |Y|), 

with convergence in 0{log\V\) rounds (assuming a graph diameter that scales as 

log |y |) , but it is possible to use other algorithms that accomplish the same task 

with more amenable complexity (such as the Name-Dropper algorithm introduced in 

that paper, which has communications complexity of 0 ( | V | log^|F|) and converges 

in 0(log^ |y | ) rounds). 

Each server has a copy of the topology of the network, which requires storage 

of at most 0{\V\ -h \E\), assuming a vertex adjacency representation. When a 
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Algorithm 4.1: Find the shortest paths to all vertices in a forward knowledge network 

from a single source 

ADAPTED-DlJKSTRA((y, E), i/, lU, a) 

1 for all V EV do 

2 oo 

3 7r[(?;, ;/(?;))]<—NIL 

4 c/[s] f - 0 

5 

6 Q 4- { ( f , 6 y } 

7 while Q ^ 0 do 

8 pick u e Q to minimise d[u] 

9 ^ ^ U {ti} 

10 for all V e adj[u] do 

11 if d[{v,v{v))]> d[{u,u{u))] +w{u,v) then 

12 z/(u))] z/W)] + ?;) 

13 

query is submitted to the system, the query complexity and running time scale as 

0 ( log |y | ) , the diameter of the graph. The flooding operation for a single server 

on update scales better than does DV, for a communication complexity of 0 ( |E | ) 

in 0(log |y | ) rounds. If Name-Dropper is used, it should be noted that it was not 

designed for propagating messages from a single node, but rather for propagating 

messages from all nodes to all nodes; in this case, the flooding operation should be 

used to give a hybrid system in which global updates (when the system is started) 

use Name-Dropper, and individual updates use flooding. 

4.4.5 Hierarchical Routing 

Link State and Distance Vector routing both have problems in very large networks. 

Distance Vector has a horizon to avoid counting to infinity, which places a limit 

on the size of network with which it may be used, and Link State requires that 

each server has the complete topology for the networks, which entails large routing 

tables and a potentially expensive flooding operation. 

The routing table sizes can be reduced through the use of hierarchical routing 

(Lauder et al., 1991), which divides the network into a hierarchy of areas (sub-

networks) such that areas at lower levels of the hierarchy are represented as single 
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(a) Before contraction 

(b) After contraction 

Figure 4.12: Hierarchical Routing 

nodes at higher levels. Routing within an area is carried out as normal, but each 

area contains one server which acts as a gateway to the next higher layer in the 

network. In the layer above, routes are calculated to the gateway servers, but not 

to the servers beneath. 

Hierarchical routing techniques are in use in the Internet; OSPF makes a distinc-

tion between internal routers which handle the traffic between networks in an area, 

and backbone routers (also known as gateways) which handle inter-area traffic. 

We can model this by selecting connected components from the network and 

contracting them in place. Contracting such a component replaces it with a single 

vertex which is adjacent to all of the vertices to which the vertices in the component 

were originally adjacent, as in Figure 4.12. The topology of the resulting graph 

is that of the new higher layer of the network. On the Internet, the contracted 
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components are the networks which exist within organisations and companies, while 

the higher layer is the backbone network of connections which join the local networks 

together. 

The vertices of the contracted component are represented within the higher layer 

by a member vertex (a gateway), chosen by some means (normally explicitly by the 

network designer, although this could perhaps be automated by using 

algorithms, as discussed in Singh (1997) and Awerbuch (1987), which allow a group 

of communicating entities to select a single member from amongst themselves). 

In the case of Watts-Strogatz networks, any neighbourhood in the unaltered 

ring lattice Ln,k which contains at most | + 1 vertices is a clique. Contracting 

the maximal such clique to a single vertex results in a new ring lattice, 

The query message trafRc remains as before, twice the diameter of the graph, but 

the routing table size may be dramatically reduced, depending on how deeply the 

hierarchy is constructed. 

The control message trafRc is also reduced, the exact amount depending on 

hierarchy depth again, but there is also a need for area leaders to advertise aggregate 

routes from the area to the layer above and vice versa, much aa in Section 4.3.5. 

4.5 Mutual State 

If the only forward knowledge in a system is direct (direct knowledge of the contents 

of another server, with no forward knowledge about the forward knowledge of other 

servers) almost all queries will terminate prematurely without finding any relevant 

servers, or stall, even though the system may contain relevant servers. This happens 

because there is no appropriately labelled path (eg. one which subsumes the query) 

which leads to the destination server, where results which will satisfy the query are 

to be found, and the necessary referrals have not been generated. 

For such a path to exist with only direct knowledge, each server along the path 

would have to have summarised its contents in an unfaithful manner so that all 

of the summaries could be considered relevant to any query. If however it were 

the case that servers routinely expressed their contents using unfaithful summaries, 

there would be many more incorrect referrals where the client was directed to a 

server which did not hold relevant data, and the search would tend towards an 

exhaustive one. 

In general, predicting the degree at which the phase transition between stalling 

and exhaustive search occurs is extremely difficult; the topology of the forward 
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Topology Control traffic Control time Query traffic Query time Update traffic Update time Routing table 

Ordered 

single o ( M ) constant constant constant constant constant om) 

hierarchy o ( | v | ) O(iog|yj) 0{log|V|) 0(logiV|) 0{loglV|) 0( log | l / | ) constant 

hierarchy w/ expansion 0{\V\) O(log|l/ |) 0( log | l / | ) 0( log | l / | ) om) 0(log|V|) constant 

complete 0 ( | l / p ) constant constant constant 0(11^1) constant 0( |V|) 

council om) o( iog |y | ) 0(logll / | ) O(log|l/ |) 0(log|V|) 0 ( log | l ' | ) constant 

Disordered 

gnutella (flooding) — — 0 ( | £ | ) 0( log | l / | ) — 

distance vector o ( l v | ) 0(log|V|) 0( tog |V|) Odl ' l iEl) 0(1V]) 0(|V1) 

link state 0(]E| log]V|) 0(log|V|) 0{loglVl) O(loglVl) 0 ( | E | ) 0(log|Vl) om\) 

link state w/ name-dropper O(IVllog'lVl) 0(log" ivi) o( iogiyi) O(loglKl) om) 0(log|V|) o ( i v | ) 

Table 4.1: F is the set of vertices in the underlying graph (servers in the system), E is the set of edges 



(a) Redundant (b) Not redundant 

Figure 4.13: A group of referrals are redundant if they are the initial edges of a group of 
labelled paths which terminate at the same vertex. 

knowledge graph, the edge labels, the queries and the server to which the query 

was initially presented all play a part. 

Forward knowledge in a query routing system directs and constrains the search, 

allowing clients to prune irrelevant vertices from the referral graph, but aggregated 

forward knowledge weakens these constraints by generating many referrals to servers 

which in turn will generate referrals to the required data. 

In the worst case, a query is directed to one of a group of servers which form a 

clique in the forward knowledge graph. If one of these servers has relevant data, a 

referral will be generated to it, but a referral will also be generated to every other 

server in the clique, even though they only point at the (known) relevant server. 

To prevent referrals to known servers, the client should present each server with 

which it communicates with the query and the list of servers it has already visited 

(its out-list) so that the server will only generate referrals to previously unseen 

nodes. This in itself is not sufficient to constrain the unwanted referrals in the 

worst case above, since none of the nodes in the clique have yet been visited when 

the referral to the clique is accepted by the client. 

In response, the referrals generated by the servers should not only include the 

name of the server to which the client is being referred, but also the names of 

the relevant destinations which may be reached by following this referral and the 

distance that the destinations lie from the referred-to server. This fulfils the notion 

of mutual state introduced in Section 3.4; clients tell servers of the current state of 

the search so that the servers do not create unnecessary referrals, and the servers 

provide enough of their routing knowledge to the clients for the clients to be able 

to make decisions on which referrals to act on (ie. which to add to their in-list) and 

which to discard as redundant. 

A server may choose not to generate referrals, but to delegate the search instead 

by acting as a client with an empty in-list and the out-list given it by the client who 
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passed it the query. This, however, brings to light coordination problems between 

servers. Although this new server-client will not visit any servers already visited by 

the original client, its out-list will quickly diverge from that of the original client, 

so there may be duplication of effort between them. 

4.6 Summary 

In this chapter we have examined the effects of forward knowledge distribution on 

the efficiency of query routing search by using the model described in Chapter 3 

to characterise a number of network topologies and to determine the complexity 

of querying and of maintaining the forward knowledge network. In Chapter 5 we 

will describe the design and implementation of Phyle, an agent framework which 

we have used to build agent systems that use query routing. 

80 



Chapter 5 

The Phyle Agent Framework 

5.1 Introduction 

In this Chapter, we describe the design and implementation of an agent frame-

work, which was developed solely as part of this research in order to allow us to 

construct agent-based query routing systems. Our decision to develop our simple 

agent framework, Phyle, was motivated by the need to demonstrate the behaviour 

of an agent-based query routing system (which necessarily requires that such a 

system be built). The main objectives which drove the design of Phyle were that 

it impose few restrictions with respect to the choice of agent communication and 

knowledge representation language and allow new performatives or protocols if nec-

essary, so that it could be used to investigate the issues surrounding query routing 

agent systems. 

At the time this work was undertaken (early 1998), there were very few frame-

works for building agent systems available, and still fewer which made source code 

available. This situation has since been remedied with the growth of open source 

agent platforms such as FIPA-OS (Poslad et al., 2000) and JADE (Bellifemine et al., 

1999). Unfortunately these appeared too late to be of use to this work, which made 

the development of Phyle necessary for this work to take place. In this chapter we 

describe the Phyle agent framework, concentrating on those parts of Phyle which 

differ from other agent systems. In particular, we describe the subsumption-based 

message handling techniques used (Section 5.2.3) and the accompanying algorithms 

for lattice manipulation (Section 5.2.4). 

Finally, we describe Paraphyle, a simplified simulation environment for query 

routing agent systems. 
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message handler lattice 
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1 other acl i 
1 parsers i 

TCP sockets 

behaviour layer 

protocol layer 

acl layer 

transport layer 

Figure 5.1: Conceptual layers in Phyle 

5.2 The Phyle Agent Framework 

Phyle was developed during 1998, and had the twin (and sometimes contradictory) 

design philosophies of simplicity and flexibility. As a framework for building agent-

based systems, we felt that where possible, it should make as few assumptions as 

possible about the type of agent system which was to be built. The main assumption 

that was made concerned the likely complexity of the agents which would be built 

using the framework; for distributed information management tasks, we believe 

that: 

• complex collective behaviour can arise from simple individual behaviours 

• many agent tasks can be carried out without resort to sophisticated machine 

learning techniques 

The design of Phyle owes much to Shoham's Agent-0 language (Shoham, 1993), 

adopting a weak approach to agent communications by default, in which incoming 

messages trigger the execution of one or more actions from a library of canned 

behaviours. The selection of appropriate actions depends in part on the message 

received. Each canned behaviour carries one or more exemplar patterns describing 

the messages which will trigger it; an incoming message is compared with these 

patterns in order to determine which actions should be performed. 

The selection of appropriate actions from the behaviour library depends not 

only on the messages received, but also on the context in which they are received. 

A message received as part of a conversation (the confirmation of a purchase order, 

for example) has a different meaning to an identical message received out of context 

(which would simply make no sense if the recipient has not received the original 

purchase order). 

Agents built using Phyle communicate at the transport level via BSD-style In-

ternet sockets, for simplicity. Phyle has where possible reused existing standards for 
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agent communication; the agent communication language used by Phyle is the FIPA 

ACL (FIPA, 1997b), while the content language used is the FIPA knowledge repre-

sentation language, SLO. Although Phyle deals natively with the FIPA languages, 

it does so in as neutral a fashion as possible. It has been possible to write naive 

conversion routines which transform simple KQML, KIF and Prolog expressions 

into their rough FIPA equivalents, so allowing a limited degree of communication 

with agents that use these languages. Phyle has been designed in a layered manner, 

as shown in Figure 5.1, in order that new communication mechanisms (for example, 

a different transport layer or ACL) may be added without undue difficulty. 

5.2.1 Agent Naming 

An important component of an agent framework is the naming system by which 

agents identify themselves to each other, but the form which agent names take must 

necessarily depend on the means by which agents communicate. In systems such as 

CORBA (OMG, 1996) or FIPA (FIPA, 1997a), inter-agent messages are mediated 

by a common communications channel. The communications channel (called an 

Aegitegt Bro/cer or in CORBA and an Communzcotioma C/zonneZ 

or ylCCin FIPA) routes messages between agents, and each agent is situated on a 

channel (see Section 2.3.2). 

In systems which contain only a single channel, messages sent between agents 

are routed locally (Figure 5.2(a)), so in this instance an agent's address need only 

be unique within the scope of the shared communications channel (even if this is 

not generally the case for multi-channel systems). In systems which contain more 

than one channel, messages sent between agents situated on different channels must 

be passed from one channel to the other (Figure 5.2(b)), which requires either that 

the channel on which an agent is situated is encoded in its address, or that each 

channel maintains an address book which lists agents by name and the channels 

which they each use. Both CORBA and FIPA adopt the former approach, with 

agent names containing the communications channel on which the agent is situated 

as well as a local name component which is unique within that channel. 

Although we have chosen to use the FIPA Agent Communication Language, 

Phyle is not strictly FIPA-compliant because we have not implemented the CORBA-

like ACC. We have chosen instead to make agents communicate directly with each 

other by sending FIPA ACL messages over BSD-style Internet sockets, rather than 

by talking to an ACC as is required by the FIPA specifications. We are not alone 
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Figure 5.2: Bus Communications 

in making this choice, as demonstrated by British Telecom's Zeus agent system 

(Nwana et al., 1999), which also chooses to transmit FIPA messages over Internet 

sockets. 

Because Phyle agents communicate in a point-to-point fashion without the use of 

intermediaries, the naming scheme used must be such that an agent is able to resolve 

a name to an address which can be used to open a channel for communication. We 

have adopted a simple naming scheme which uses a transparent URL schema that 

identifies the machine on which an agent resides, the port on which it listens and a 

user-determined name (see Figure 5.3). 

ans://hostname:port/agent-name 

Figure 5.3: Agent Naming System URL Schema 

Although it incurs some overhead in the opening and closing of TCP connections, 

we have implemented Phyle's point-to-point communications in such a way that a 

new connection is opened for each message which is sent. Either the sender or the 

receiver may close the connection when the communication is finished (although in 

practice, the sender usually closes it). 

5.2.2 Agent Environment 

Agent systems commonly use a facilitation service which enables an agent to locate 

other agents which are able to help it achieve its goals, normally by providing 

some service. The facilitation service is a specialised middle agent (Decker et al., 

1996) with which agents may advertise their services or enquire about agents which 

provide some service. The facilitation service may be provided by a single agent, 

or by a federation of agents which share advertisements. 

However, if the facilitator's ability to mediate service requests is treated as a 

service, we are rapidly left with a chicken and egg problem whereby an agent needs 

a facilitator to find a facilitator! 

84 



There are two main approaches taken to solve this bootstrap problem, both 

straightforward, but both with drawbacks. One approach stipulates that a facil-

itator is created with a known name which is provided to all other agents when 

they are initialised. This is a low effort way of ensuring that all agents have the 

necessary a priori knowledge required to locate the facilitator, and from there the 

other agents in the system. The FIPA agent standard takes this approach, and 

requires that each Agent Communications Channel has a (fzrec^on/ (see 

Section 2.3.2). In this case, the facilitation is provided locally, so that an agent need 

look no further than its local environment, but this not need be so; we can envisage 

a system in which facilitators are shared between agent execution environments, 

albeit a brittle one (the failures of one agent execution environment would render 

any others which depended on its facilitator inoperable). 

The second approach to the bootstrap problem uses broadcast messages; when 

an agent needs the services of a facilitator (and doesn't know where to find one), it 

transmits a broadcast request message. On receipt of this message, the facilitator 

informs the agents of its presence and proceeds to communicate directly with the 

agents. The service location request may be processed in one step (the broadcast 

message contains the query, which the facilitator replies to directly) or in two steps 

(the broadcast message is used only to locate the facilitator, which then waits to 

be contacted by the agent with the service request itself). 

This approach is used by the lookup service in the Sun Jini system (Sun, 2000). 

In this system, agents repeatedly send multicast UDP packets containing their 

request, with increasing times-to-live. When the Jini facilitator (known as a djinn) 

receives such a packet, it opens a TCP channel to the agent and sends the response 

(the location of the service provider) to the agent. 

In Phyle, we have chosen to use the former approach for simplicity's sake; the 

broadcast approach is best suited to systems with a common channel which mediates 

all communications (such and the CORBA ORB or the FIPA ACC), which we do 

not have. Therefore, all Phyle agents expect to be able to find a facilitator listening 

on port 4000 on the machine on which they are running. 

As an aside, this problem of locating a agent which can perform some service is 

essentially the same problem that we're trying to solve using query routing. Given 

a starting point (an initial server to query), a query routing system locates an agent 

which provides a certain service (in our case, the ability to answer certain types of 

question) by using a series of mediators. When queried about service providers, a 

facilitator's response can be viewed like a query routing referral (and conversely, 
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locating a starting point for a query routing search is akin to locating a facilitator 

prior to sending a service location request). 

5.2.3 Message Handling 

As described in Section 5.2, a Phyle agent contains a library of predefined behaviours 

which are invoked in response to a received message or an environmental event. On 

receipt of a message, an agent must identify which particular canned behaviour (if 

any) should be initiated as a result of that message; each behaviour is contained in 

a message handler which has an attached pattern which will match those messages 

(using a structural matching technique such as unification) which can trigger the 

behaviour. 

This much should be quite familiar to those familiar with the message passing 

style of object-oriented programming. However, we also remove the restriction 

that a message may trigger only one message handler (as would be the case in an 

0 0 system of the method invocation style); a message sent to a Phyle agent may 

trigger any number of message handlers. The process of determining which handlers 

should be triggered becomes more complicated because we also require some way 

of selecting those handlers which we deem to be most appropriate to the message. 

For example, responding to certain specific queries may require more intensive 

methods than more general queries. We don't wish to waste effort by applying the 

intensive methods to queries which can be answered more simply, so a well-written 

agent should apply the intensive methods only when appropriate. 

We take the most appropriate handlers to be those which most closely subsume 

a message; the message handlers may therefore be ordered by subsumption into a 

lattice to reduce the effort required to search the library of handlers (see Section 

5.2.4 for more details of this). An agent's library of handlers is not a static structure. 

Handlers may be inserted and removed as the agent's needs change. In general, the 

lattice contains two types of entry; 

• permanent entries, representing an agent's advertised capabilities (those mes-

sages which an agent has explicitly declared itself to be able to handle) 

® temporary entries, representing an agent's expected communications from 

other agents (for example, if an agent is awaiting a response to a query it 

has sent, there will be an entry for the answer) 

The use of temporary entries in the lattice allows us to model agent communica-

tion protocols like those used by FIPA (FIPA, 1997b); an agent sending a query-ref 
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message to another agent would create temporary handlers in anticipation of both 

a successful outcome (an inform message containing an answer) and the various 

failure modes ( f a i l u r e , r e f u s e or not-understood). When a message matching 

any of these is received, the corresponding behaviour is invoked and then all the 

handlers in this group are removed from the lattice. 

In the general case, each communication protocol is represented with a finite 

state machine, each of whose transitions is labelled with a message pattern, a set 

of handlers to add to the lattice and a set to be removed. An example FSM for the 

FIPA request protocol is shown in Figure 5.4. Although common sense suggests that 

the obsolete message handlers should be removed on leaving the old state and the 

new handlers added when entering the new state, this gives rise to a potential race 

condition where an agent may fail to recognise a legitimate message for the protocol 

because it has yet to create the handlers for that message. When a protocol sequence 

is initiated, a new FSM is created from an exemplar (the collection of protocol FSM 

exemplars held by an agent is the library of protocols in which it can participate), 

and when completed, it is destroyed. 

r eques t sent 
add {ag ree 

r e f u s e 
not-understood } 

Q 

not-understood or 
refuse received 
remove {agree 

refuse 

not-understood } 

agree received 
add(failure 

inform(Done) } 

remove {agree 
refuse 

not-understood } 

failure received 
remove {failure 

inform(Done) } 

inform(Done) receive 
remove {failure 

inform(Done) } 

Figure 5.4: Finite state machine for FIPA Request protocol 

The use of a single data structure to hold the transition labels for all of the 

current protocol FSMs in an agent makes this a different approach to that taken 

by other agent systems such as Zeus (Nwana et al., 1999), where there is no single 

structure containing all of an agent's communicative expectations. 
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5.2.4 Subsumption Lattices 

In the previous section, we described the message handling component of Phyle, 

which uses a lattice to order and select the message handlers, but we refrained from 

describing the lattice itself. The intention behind our use of lattices is that we may 

be able to determine the set of message handlers which most closely relate to a 

received message without recourse to an exhaustive comparison with all the agent's 

message handlers. To this end, we construct the Hasse diagram for the lattice and 

use the partial ordering on the message handlers to constrain a search through the 

lattice. 

Conventional lattice theory has concentrated on fixed orderings over fixed sets, 

but our design for a lattice-based message handling component requires that we be 

able to add and remove handlers from the lattice. Formal concept analysis (Ganter 

and Wille, 1998) is an offshoot of lattice theory which deals with the analysis of 

data, in particular with the abstraction of the data to form concepts which describe 

groups of related objects. This field has produced some results which relate to our 

problem, namely the incremental creation of lattices (Godin et a l , 1995), but these 

are not directly applicable for two reasons. 

Firstly, the lattices used in formal concept analysis are Galois lattices, in which 

each concept (element) in the lattice is a tuple composed of the extension of the 

concept (the set of individuals in the concept) and its intension (the set of com-

mon features possessed by members of the concept). In our system, we cannot 

realistically enumerate the extension of a given expression (the messages which it 

matches). Similarly, while many parts of a message envelope can be viewed as 

boolean features in the intension of the expression, the languages in which the mes-

sage content is written are too expressive for content sentences to be reduced to such 

a feature set. Secondly, formal concept analysis concentrates on the construction 

of lattices, whereas we also need to be able to remove elements from our message 

handler lattices. 

In the description of our algorithms, we take a subsumption lattice to consist of 

a partial ordering given by • over a set A. The functions children \ A 2^ and 

parents : A -4- 2"̂  (5.1, 5.2), which give the upper and lower covers for elements of 

A, define the edges in the corresponding Hasse diagram. If there is an edge from x 

to y and x ^ y, then x E parents{y) and y E children{x). 



a; G 3/ 3 A ySz € A.(z ^ 2 ; A i / 3 z 3 : c ) (5.1) 

a; 6 poreM(s(?/) <=^ z 3 ?/ A ,9z G /l.(z A a ; 3 z 3 ^ ) (5.2) 

Algorithm 5.1 is used to locate the most appropriate message handlers in the 

lattice, that is the message handlers whose templates most closely subsume the 

received message. The algorithm starts with an initial set of candidate solutions, 

C, which contains the lattice supremum T only. The algorithm iterates with a 

while loop in line 3 which exits when all candidates have been examined. When 

a candidate is examined (lines 5-8), each of its children is checked to see if they 

subsume the message. If a child subsumes the message, it is added to the set of 

candidates and the parent (candidate) is removed. If all the children of a candidate 

do not subsume the message, the candidate is one of the most specific expressions 

to subsume the message and is added to the set of solutions, S (lines 9-11). Our 

description of this algorithm does not explicitly suppose it to be either a depth- or 

a breadth-first search; this is determined by the way in which candidate solutions 

are selected for testing in line 4. 

Algorithm 5.1: Find the most specific subsuming expressions for x in the lattice 

MOST-SPECIFIC- S UBSUMING(a;) 

1 ^ f - 0 

2 C {T} 

3 while C ^ 0 do 

4 pick ^ E C 

5 for all z e children{y) do 

6 if ^ • a; then 

7 

8 C i— C U {z} 

9 if y e C then 

10 C 4 - C \ W 

11 S i— S U {y} 

12 return S 

If an agent's message handler groups are to be fluid, we must be able to insert 

and delete new message handlers in the lattice. Insertion of new expressions in a 

subsumption lattice is a two-step process, as given in Algorithms 5.2 and 5.3. 
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Algorithm 5.2 links the new expression to its parents, those expressions in the 

lattice which most directly subsume it. This proceeds as in Algorithm 5.1, with two 

di&rences. Firstly, the algorithm links the new expression as a side effect (lines 

10-11), so there is no solution set to be accumulated and returned (cf. lines 1, 11 

and 12 in Algorithm 5.1). Secondly, the condition in line 5 (cf. line 6 in Algorithm 

5.1) uses strict subsumption Z] in order to preserve the ordering in the lattice. 

Algorithm 5.2: Find parents of new expression x 

LATTICE-FlND-PARENTS(a;) 

1 C {T} 

2 while C ^ 0 do 

3 pick y e C 

4 for all z € children{y) do 

5 if z Z\ X then 

6 

7 C f - C U { z } 

8 if y G C then 

9 C f - C \ { y } 

10 cW(fren(?/) f - cMZc(re)2(i/) U {a;} 

11 poreMfa(a;) paren^g(a;) U 

Algorithm 5.3 completes the addition of the new expression to the lattice by 

linking it to its children, and by unlinking those children from their old parents 

where necessary. The algorithm iterates over all of the siblings of the new expression 

(the children of the parents of the new expression, lines 1-2), and if any are strictly 

subsumed by the new expression (line 3), they are unlinked from those parents they 

have in common with the new expression (lines 4-5) and relinked beneath the new 

expression (lines 6-7). 

The overall insertion operation is illustrated by an example in Figure 5.5. For 

simplicity, we represent the expressions in the lattice by sets (which could be con-

strued to be their intensions), so subsumption is replaced by the subset relation and 

T and ± are replaced by 0 and A, the universal set, respectively. The figure shows 

the Hasse diagrams before, during and after the insertion of the new expression {be} 

into the lattice. The expressions {b} and {c} are the parents of the new expression, 

while {abc} is its child. The heavy links show new edges in the Hasse diagram, 

while the dashed lines are edges to be removed. 
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Algorithm 5.3: Find children of new expression x 

LATTICE- FIND- C HILDRBN (a;) 

1 for all y G parents{x) do 

2 for all z G children{y) do 

3 ii xH z t h e n 

4 cA%/dren(?/) f - \ {z} 

5 f-poren^s(z) \ {?/} 

6 children{x) f - children{x) U z 

7 parents{z) parents{z) U x 

{6} 

{06} 

{c} {6} 

{06c} 

A 

{06} {6c} 

{06c} 

A 

{c} {6} 

{06 } {6c} 

(abcj 

A 

(a) Before (b) During (c) After 

Figure 5.5: Lattice Insertion 

Deleting an element from the lattice is the converse of the insertion operation. 

The links to the removed expression from its parents are removed and new links 

from the parents to the children of the expression are instated where necessary, then 

the links to the children of the expression are removed. An edge between a parent 

and a child is created only if there are no other intermediary nodes. 

In Algorithm 5.4, lines 1-2 and 7-8 remove the links from the deleted node to 

its parents and children. Lines 3-6 iterate over the siblings of the deleted node (ie. 

its parent's children), creating links from those to the children of the deleted node 

where necessary. 
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Algorithm 5.4: Delete expression x from lattice 

LATTICE-DELETE(a;) 

1 for all y G parents{x) do 

2 f - c/izMren(2/) \ {z} 

3 for all z G children{y) do 

4 for all w G children{x) do 

5 if w % z t h e n 

6 cA2WreM(?/) U {w} 

7 for all y G children{x) do 

8 f - \ {z} 

5.3 The Paraphyle Simulator 

In order to demonstrate the scalability of the different query routing topologies 

discussed in Chapter 3, we need to construct large systems containing hundreds of 

thousands of agents. Although the Phyle agent framework described above could be 

used to build such a system, each agent uses significant computing resources (a bare 

Phyle agent with no knowledge base and empty message lattice uses approximately 

2Mb of RAM). With the limited computing facilities available, the most appropriate 

approach to take is one of simulation. 

We have constructed a simulator for Phyle agents which we call Paraphyle. This 

abstracts and simplifies several aspects of query routing Phyle agents in order to 

make possible the simulation of large query routing systems. The aspects of Phyle 

which have been most radically altered are as follows: 

Agent Communication Languages: The ACL component of Phyle, with its so-

phisticated protocols and flexible message handling, is unnecessary in a query 

routing simulation where the vast majority of messages will be of the query-

referral/query-response variety. 

Networking: A simulation of a distributed system need not be distributed itself. 

Indeed, for the purposes of data collection and monitoring, a non-distributed 

system presents none of the problems encountered in distributed systems 

(timestamp synchronisation, data collation, etc). Paraphyle therefore does 

not require networking support. 

Knowledge representation: Phyle contains an implementation of the FIPA knowl-

edge representation language SL which is used to express knowledge about 

information resources. In Paraphyle, information resources are represented 

92 



by identifiers only. Query and forward knowledge expressions are represented 

by their intensions, the set of characteristics possessed by the information 

resources which they describe. By doing this, the tests for subsumption and 

unification are reduced to tests for subset and set intersection respectively. 

User interface: Paraphyle is designed for batch rather than interactive use, so the 

html-generating components of Phyle may be dispensed with. 

5.4 Summary 

In this chapter we have described the Phyle agent framework and the simplified 

Paraphyle simulator. In Chapter 6, we will describe the application of Phyle to the 

construction of a query routing agent system, while in Chapter 7 we use Paraphyle 

to simulate a much larger example of such a system. 
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Chapter 6 

An Agent System for Query Routing 

Search 

6.1 Introduction 

In Chapter 5, we described Phyle, our FIPA-baaed agent framework. This de-

scription was deliberately application-neutral, because we wished to explain certain 

aspects of it without domain bias; we will now relate the contents of Chapter 5 to 

the work presented in Chapter 3, where we described the query routing problem. 

In this chapter, we describe the design of an agent-based query routing system 

which uses the Phyle agent framework, making note of the conversation protocols 

used by such a system, the manner in which forward knowledge is represented, the 

search algorithms used and ontologies for the application domains which are being 

searched. 

6.2 Query Routing Protocols 

The FIPA Agent Communication Language provides the means to describe stereo-

typical message exchanges, or protocols. The specification of the ACL (FIPA, 

1997b) contains a formal model of the ACL which gives a clear semantics to the 

performatives used in terms of their necessary preconditions and their perlocution-

ary effect (the effect on the hearer, also referred to in FIPA terminology as the 

rational effect). Of particular interest is the basic directive, reques t , by which an 

agent indicates to another agent that it wishes an action be performed (the descrip-

tion of the action specifies who is to perform the action). The perlocutionary effect 

of this message is that the action is performed. 
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(query-ref :sender user 

:receiver lib-01 

:reply-with tn23 

;content (iota ?x (and (creator ?r "Austen, Jane") 

(identifier ?r (isbn ?x))))) 

(inform :sender lib-01 

;receiver user 

:in-reply-to tn23 

:content (= (iota ?x (and (creator ?r "Austen, Jane") 

(identifier ?r (isbn ?x)))) 

((0140430721 
0140434259 
0140430105 
0140430059) ) ) ) 

Figure 6.1: FIPA query-ref and response 

The FIPA query-ref message is a composite performative, a reques t that the 

receiver inform the sender of those expressions which satisfy a query expression. 

The perlocutionary effect of the query-ref message is that the receiver sends an 

inform message back to the sender. It is reasonable to suppose that the sending 

agent forms an expectation of this as a possible outcome, perhaps by adding an 

appropriate entry in its set of message handlers as in Section 5.2.3. The agent's 

expectation is not just for a performative, but also for a message envelope (it would 

expect to receive the answer from the agent it asked, for example) and for a message 

content of a particular type. In the example in Figure 6.1, the user agent sends 

a request to a library catalogue agent for the ISBNs of books written by Jane 

Austen. A literal interpretation of the message might be "tell me those identifiers 

which are ISBNs of resources whose creator is Jane Austen". Correspondingly, 

an interpretation of the answer might be "the following are identifiers which are 

ISBNs of resources whose creator is Jane Austen: 0140430721, . . . " . As shown in 

this example, the form of the content of the inform response should follow the form 

of the content of the query-ref message. To put it simply, the reply answers the 

question - and no more. 

This is not the case with WHOIS++ , our canonical query routing system. 

When a WHOiS+4- client queries a server, it provokes a response giving answers to 

the query, but may also provoke a response which refers the client to another server. 

A single query may therefore produce two different types of answer, one of which 

was not explicitly asked for in the query. To ignore this discrepancy between the 
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semantics of F I P A queries and W H O I S + + queries a n d implement a query rout ing 

agent sys tem which behaves like W H O I S + + would be t o break the semantics of t he 

FIPA ACL. 

As a further twist, WHOIS++ does distinguish referral generating queries in 

one context, that of query expansion. A WHOIS+4- client may ask a server for the 

list of other servers which poll it for centroids (that is, those servers which it knows 

to have any form of forward knowledge about itself), or for the list of other servers 

which it polls for centroids (those servers about which it holds any form of forward 

knowledge). The client uses the list returned to expand the scope of its search, 

adding the new servers to its agenda just as servers mentioned in referrals would 

be, but the message it receives from the server is not a referral, strictly speaking. 

When a server issues a referral, it holds an explicit belief that the referred-to server 

either can satisfy the query itself, or that it knows of a server which can. When a 

server answers a po l led-by or p o l l e d - f o r query, the client is making an implicit 

assumption that the servers contained in the answer are able to satisfy either similar 

or broader queries to those which may be satisfied by the server itself. 

Staying within FIPA, there is a choice to be made between the two main ap-

proaches to the representation of query routing protocols. The first solution treats 

query routing as a new protocol which requires new message types: a type for query 

messages which expect both an answer and an optional referral in response (call 

it q u e r y - r e f e r r a l , and a type for referrals (call it r e f e r r a l ) . This is not unlike 

the approach taken by KQML for brokering and matchmaking, where a number of 

special purpose performatives were introduced ( b r o k e r ( - o n e , - a l l ) , adver t i se , 

r e c r u i t ( -one, a l l ) and recommend(-one,-al l)) . The disadvantage of this ap-

proach is that the agent communication language becomes bloated; agent imple-

mentors must support an increasing number of rarely-used performatives if their 

agents are to be able to interact freely with other agents. 

The second approach reuses existing performatives and pushes the necessary 

representation into the content of the message. The FIPA agent communication 

language takes this approach for matchmaking and brokering; this is performed by 

sending a reques t message to a suitable agent in order to invoke a matchmaking 

or brokering service. This approach can be adapted to query routing in two ways. 

An agent could send a single request containing a compound action, ordered using 

the sequence operator ; containing the query and a request for referral as shown in 

Figure 6.2. Alternatively, an agent could send two separate messages, one containing 
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(request 

:sender user 

:receiver agent-1 

:content 

(; (inform-ref 

;sender agent-1 

.•receiver user 

:content "query") 

(inform-ref 

;sender agent-1 

:receiver user 

:content "referrals for query") 

Figure 6.2: Referral query as compound request 

(query-ref 

:sender user 

;receiver agent-1 

:protocol fipa-query 

;content "query") 

(query-ref 

:sender user 

;receiver agent-1 

•.protocol fipa-query 

:content "referral query") 

Figure 6.3: Referral query as separate messages 

the query, and one containing the request for referral (expressed as a query-ref 

message). 

We have adopted the latter solution for our prototype query routing agent sys-

tem on the grounds of simplicity. It is more straightforward for the client agent to 

ask two separate questions ("tell me what satisfies this query" and "tell me who 

knows about things which satisfy this query", see Figure 6.3) than it is to ask a 

single compound question, especially since many agents may have been designed to 

answer only the common FIPA protocols; by splitting the request into two messages, 

we can make use of the FIPA-Query protocol. 

As an aside, a different school of thought views referrals as exceptional occur-

rences. In agent systems which use a method invocation communication paradigm 

(instead of the message passing paradigm favoured by FIPA and KQML), a referral 

may be generated by raising an exception which contains the referral. An example 

of this, written for the SoFAR agent system (Moreau et al., 2000), is given in 

Figures 6.4 and 6.5. Figure 6.4 shows the server's implementation of the query_ref 
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public Predicate[] query_ref( Predicate p, Envelope e ) 

throws MasException { 

if ( p.belongsToO .equals( dirOntology ) ) { 

AgentTerm [] refs = forwardKnowledge.getMatches ( p ); 

if ( refs != null && refs.length > 0 ) { 

throw new ReferralException( refs ); 

} else { 

return kb.getMatches( p ); 
} 

} 
} 

Figure 6.4: Exception-based Referrals in SoFAR - server 

LinkedList agents = new LinkedList(); 

LinkedList result = new LinkedList(); 

agents.add( init ); 

while( agents.size0 != 0 ) { 

AgentTerm agent = (AgentTerm) agents .removeFirstO ; 

try { 

result.addAll( java.util.Arrays.asList( 

agent .agent 0 .query _ref( q , null ) ) ); 

} catch ( ReferralException e ) { 

agents.addAll( e.getReferredAgents() ); 
} 

} 

Figure 6.5: Exception-based Referrals in SoFAR - client 

method; if the server has forward knowledge relevant to the query p (line 4) it 

throws an exception containing a list of the agents to which the forward knowledge 

refers (line 6). Figure 6.5 shows a simple implementation of a client's query rout-

ing search algorithm. The client maintains lists of the agents to be asked and the 

received results (lines 1-2). While there are still agents to be asked (line 4), the 

client picks an agent (line 5), and asks the query of it, adding any results to the list 

(line 7-8). If an exception is received (line 9), the list of agents contained in the 

exception is added to the list of those to be asked (line 10). 

Although this implementation of a query routing system works, we believe that 

it is flawed for two reasons. Firstly, a query routing system must generate referrals 

as part of its normal operation. Referrals are not exceptional or error cases, and 

should not be treated as such. Secondly, a method may either return a result or 

raise an exception, but not both. In query routing systems it is common for a server 

to return results which satisfy a query and to generate a referral. For these reasons, 

we believe that agent systems which use method invocation should phrase queries 
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which expect referrals as two separate queries, one containing the basic query, and 

one asking which agents can answer the query. 

So far, we have dealt only with query routing systems that exclusively use re-

ferrals, or to use the agent terminology, those that contain only matchmakers (see 

Section 3.4). We have ignored those systems which delegate the responsibility for 

fulElling queries to those agents which are better placed to answer those queries 

(that is, a system that uses brokers). Here, the client need only ask the basic query 

of the servers; it is not interested in information about other agents, and rejects 

any control that it might have over the processing of the search. Any knowledge 

that a queried server might have about the abilities of other servers is kept strictly 

to itself (being used to determine which additional servers it should contact) and is 

not communicated. 

6.3 Representing Forward Knowledge 

In the previous section, we have explained our choice of a query routing protocol in 

which the query and the request for a referral are distinct from each other. We need 

to be able to represent the forward knowledge which drives the referrals, knowledge 

about the query answering capabilities of other agents. This knowledge appears 

both in communications between agents, as they construct the forward knowledge 

graph and as referrals are issued, and as part of an agent's internal state. 

We can characterise the information that an agent holds about specific resources 

as beliefs. For example, an agent might believe that the entity with the ISBN 0-

14-043072-1 is a book entitled "Pride and Prejudice", whose author is named Jane 

Austen. Forward knowledge, however, is somewhat different. Rather than holding 

a belief that some other agent believes a certain expression, an agent with forward 

knowledge believes that the other agent has beliefs some claas of expressions. 

These generalisations about the beliefs of an agent are an expression of that 

agent's capabilities, because the beliefs held by an agent affect the communicative 

acts which it is able to send (according to the semantics of the acts and any social 

constraints such as truthfulness). This is a different approach to that used in 

agent communication languages such as KQML. In KQML, the a d v e r t i s e and 

broker performatives also contain a representation of an agent's capabilities in 

their content fields, but this is commonly an opaque expression that contains the 

name of a service that the agent can provide (for example, the service of answering 

queries about bibliographic data, or in a rather more limited case, the service of 
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answering queries about books whose author is Jane Austen). If we were to have 

taken the approach used by KQML, we would need to introduce a large number 

of domain ontology-speciGc terms for representing these services, given the many 

ways in which an agent could express the generalisation of its beliefs (for example, 

does it believe 'about books' in general, 'about books' with certain authors, or with 

certain publishers, or whose titles contain certain phrases). 

In the approach that we have taken, we use the defined semantics of our chosen 

agent communication language (in the first instance, FIPA) to inform our choice 

of forward knowledge representation. Rather than representing a capability as an 

opaque expression, or as a simple pattern which matches those query messages which 

the agent can answer, we represent an agent's capabilities in terms of the beliefs 

that the agent must hold in order to be able to answer certain types of query, in 

accordance with the message preconditions specified in the formal semantics of the 

agent communication language. 

In the FIPA agent communications language, the in fo rm performative has the 

precondition that the sending agent believes the content of the message (thus con-

straining the agent to be truthful). Therefore, when representing the knowledge 

that an agent is able to send inform messages in response to certain query-ref 

messages, we use the beliefs that the agent must hold in order to be able to send 

those inform messages, according to the agent communication language semantics. 

Representing the generalised beliefs of an agent presents another choice; we 

can either attempt to build expressions which denote a range of beliefs using the 

existing constructs of our knowledge representation language, or we can define a 

new modality (call it believes-about, or BA) to represent those beliefs. If we choose 

the latter approach, we must define inference rules for converting expressions which 

use this modality of generalised belief into ones which use the more familiar belief 

modality in order to conform to the semantics of the agent communication language. 

This is not a particularly parsimonious solution to the problem; defining a new 

modality of generalised belief entails extending the knowledge representation lan-

guage, which will potentially cause interoperability problems with other agents 

which do not speak the extended knowledge representation language. We choose the 

former approach, that of using the existing constructs provided by our knowledge 

representation language, which is more elegant and avoids the Babel-like problem 

of a proliferation of variant knowledge representation languages. We represent the 

generalisation of an agent's beliefs using quantification; in (6.1), an agent which 

believes that Xi , . . . ,Xn are members of a concept c can represent its generalised 
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< k, informy, 3x.Bkc(x)) > < j, inform(i, 3x.Bkc{x)) > 

BkC(x2) 
Bkc{xz) 
Bk3x.Bkc{x) Bj3x.Bkc{x) Bi3x.Bkc{x) 

BjBk3x.Bi^c{x) BiBj3x.Bkc{x) 

Figure 6.6: Passing FIPA SL encoded forward knowledge 

(inform .-sender k 

rreceiver j 

:content (exists ?x (B k (concept ?x)))) 

Figure 6.7: FIPA SL encoded forward knowledge exchange 

beliefs by stating that there exists some entity which it believes to be a member of 

c. For example, an agent which held bibliographic metadata for the books written 

by Jane Austen could say that there exists some entity such that it believes that 

entity to be a book written by Austen. The intuition for this approach is that we 

wish to express the fact that an agent has beliefs about a concept in general, rather 

than about any specific instance of that concept. 

Bic(2;i)ABic(a;2)A - ABic(a;n) 3a;.Bic(z) (6.1) 

The manner in which forward knowledge is passed between agents and so affects 

their beliefs is illustrated in Figure 6.6. In this diagram, agent k holds a number 

of beliefs about members of the concept c. It generalises these beliefs as shown 

in (6.1) to give the expression Bk3x.Bkc{x). Note that the expression is cast as 

another belief (the agent holds beliefs about its own beliefs) - this is necessary in 

order for the agent to be able to send an inform message containing the generalised 

belief without breaking the semantics of the FIPA ACL. 

Agent k sends an inform message to agent j (shown in Figure 6.7), which has the 

rational effect of making j believe the generalisation of A:'s beliefs {Bj3x.Bkc{x)). 

Agent j can also infer k's belief in this generalisation, based on the necessary pre-

conditions for the inform message {BjBhBx.Bkc{x)). 

Agents can now use this forward knowledge to route queries; an example message 

exchange, after the discussion in Section 6.2, is given in Figure 6.8 (compare with 

Figure 6.3). In this example, agent i asks agent j which agents hold beliefs about 

a certain concept, and agent j replies with a list of appropriate agents. 
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(query-ref ;sender i 

:receiver j 

:content (iota ?x (exists ?y (B ?x (concept ?y)))) 

:protocol fipa-query) 

(inform :sender j 

[ r e c e i v e r i 
:content (= (iota ?x (exists ?y (B ?x (concept ?y)))) 

(agent-1 

agent-2 

. . .)) 

:protocol fipa-query) 

Figure 6.8: FIPA SL referral query 

However, the technique we have described for expressing and passing forward 

knowledge is incomplete; in Figure 6.6, agent i has direct knowledge about the 

beliefs of agent k, even though this information has been passed through an in-

termediary. When queried for a referral, agent i will refer the client directly to 

agent k, rather than following the chain for forward knowledge through agent j. 

This is at odds with the behaviour of existing query routing systems, where such 

'short-circuiting' does not happen. 

This discrepancy between the behaviour of our agent-based query routing system 

and the behaviour of other query routing systems becomes more apparent when the 

aggregation of forward knowledge is considered. Figure 6.9 shows a system where 

three agents ki to k^ pass summaries of their beliefs to agent j, which aggregates 

the summaries and passes the aggregation to agent i. If the forward knowledge were 

passed as shown in Figure 6.6, agent i's belief database would contain individual 

direct beliefs for each of agents ki to k^, rather than a single summary belief for 

agent j which incorporates the belief summaries for agents ki to k^. This will affect 

our estimates of the routing table sizes (belief database sizes) required for different 

query routing network topologies given in Chapter 4. In a hierarchical system, for 

example, the root server would have direct beliefs about every agent in the system, 

which would give it a routing table size of | y | (where V is the number of agents in 

the system), and not a constant as we claimed. 

Equation 6.2 gives an inference rule that expresses the notion that if an agent 

believes that another agent has beliefs about a certain concept, effectively it too 

then has beliefs about that concept. If the beliefs resulting from the application of 

this rule are passed to other agents in preference to the beliefs which matched the 

LHS of the rule, the short-circuiting behaviour noted above will be prevented; in 
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< ti, inform(j, ci(i)) > 

Bki'^x.Bk^ci{x) 
< k2,iaiorui{j,3x.Bk̂ C2{x)) > i < J, inform(i, 3a:.SjCi(a:) V C2(x) V C3(x)) > 

© KD 
jSfcj 3x.Bk̂ C2{x) 

< A:3,inform(j, 31.5̂ 3C3(a:)) > 

© 
Bk^Sx.Bk^C3{x) Bj3x.Bk^ci{x) 

Bj3x.Bk^C2{x) 
BjBx.BksCslx) 
Bj3x.BjCi{x) 
Bj3x.BjC2lx) 
Bjlx.BjCslx) 

Bj3x.BjCi{x) V C2(i) V cs,{x) Bi3x.BjCi{x) V C2{x) V Ci{x) 

Figure 6.9: Aggregating FIPA SL encoded forward knowledge 

the example given in Figure 6.6, agent % will no longer have direct knowledge of /c's 

beliefs, because agent j will have recast its summary of A;'s beliefs as a summary of 

its own beliefs. 

Bi3x.Bjc{x) =*- Bi3x.Bic{x) (6.2) 

Equation 6.3 gives an inference rule which can be used by an agent to aggregate 

belief summaries. The intuition behind this rule is that if an agent has beliefs about 

a concept Ci and a concept cg, then it has beliefs about the union of these concepts, 

Ci U C2. 

Bi3x.BiCi{x) A Bi'3x.BiC2{x) ==> Bi'Bx.BiCi{x) V C2{x) (6.3) 

Figure 6.9 shows the application of both these rules by agent j ; the initial beliefs 

which it formed as a result of the inform messages sent by agents ki to are first 

transformed by (6.2), and then aggregated by (6.3). The aggregated belief summary 

is then communicated to agent i, so that it holds a single routing belief rather than 

the three that would have resulted. 

These a priori exchanges of information which lead to the formation of forward 

knowledge or routing beliefs can be classified in terms of which entity initiated 

the exchange. Either the downstream agent (that which is passing its forward 

knowledge) initiates the dialogue with the upstream agent (that which receives 

the forward knowledge and develops the consequent routing beliefs) by sending an 

inform message containing a summary of its beliefs, as in Figure 6.7 (a push model 
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(query-ref .-sender i 
: r ece ive r j 
:content ( i o t a ?x ( e x i s t s ?y (B j ? x ) ) ) ) 

( inform -.sender j 
: r ece ive r i 
:content (= ( i o t a ?x ( e x i s t s ?y (B j ? x ) ) ) 

( (concept-1 ?y) 
(concept-2 ?y) 
. . . ) ) 

Figure 6.10: Pull model forward knowledge exchange 

of forward knowledge distribution), or the upstream agent initiates the exchange 

by sending an explicit query-ref message which asks for a summary of the down-

stream agent's beliefs, as in Figure 6.10 (a pull model). The choice of push versus 

pull has an important effect on the latency of the forward knowledge; if the pull 

model is chosen, there is a tradeoff between the cost of the upstream agent's polls 

of the downstream agent (the more frequent, the more costly) and the potential 

obsolescence of the forward knowledge (infrequent polling may lead to increasingly 

out of date information). 

In our Phyle-based query routing system, the message handler which deals with 

forward knowledge-containing inform messages like that in Figure 6.7 applies the 

rule given in equation (6.2) to the body of the message and adds both the original 

belief and this new belief to the agent's database. When the agent sends a summary 

of its beliefs (we have implemented the pull model, so this functionality is located 

within the message handler for the relevant type of que ry - r e f messages), it applies 

the rule in Equation (6.1) to summarise its own beliefs, and that in Equation (6.3) 

to integrate this summary with the summaries it has received from other agents. 

6.4 Extensionality 

In Chapter 5 we described the Phyle agent framework, which makes use of matching 

techniques such as unification and subsumption for selecting appropriate message 

handlers. These matching techniques compare structured expressions representing 

concepts, where the components of these expressions may be thought of as elements 

of the intensions of the concepts. However, in the model which we presented in 

Chapter 3, we have defined these matching techniques in an extensional manner such 

that a concept will unify with another concept if the extensions of the concepts are 
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non-disjoint (or for subsumption, if the extension of one is a subset of the extension 

of another). 

In doing this, we have made the assumption of that concepts 

which have the same extension are the same concept. This is not necessarily the 

case, because two concepts with the same extension may have different intensions. 

For example, the extensions of the concepts "the book entitled Pride and Prejudice" 

and "the book written by Jane Austen, published in 1813" may be the same, but 

these two concepts are structurally different. 

Queries and forward knowledge in a query routing system can both be considered 

as intensional expressions representing some concept; the process of resolving a 

query is therefore that of identifying the extension of the query concept. For the 

query routing technique to be of use in reducing the search scope in a distributed 

system, the forward knowledge must be designed in such a way that a forward 

knowledge expression will match a query if the concepts which those expressions 

represent share some elements of their extensions. 

Existing distributed database systems such as Z39.50 (Z39.50 Maintenance Agency, 

1995) avoid this issue by adopting common profiles which specify which sorts of 

query are allowable, one example of which is the Bath Profile (Lunau et al., 2000). 

These profiles are task-specific interlinguas (specific to the query task) which define 

the minimum query facilities that a conforming database must support, and enable 

cross-database searching without expensive query translation (although it should 

be noted that the query facilities provided by a profile need not be the only query 

facilities that a database provides - Z39.50 profiles define new interfaces without re-

placing existing ones). The relation between these profiles and the database schemas 

to which they are applied is equivalent to the relation between domain-specific on-

tologies which structure some application domain and the task-specific ontologies 

which dictate how knowledge acquired in that domain can be manipulated. 

In Chapter 3, we described the similarities between queries and forward knowl-

edge, both of which describe some class of resources in an intensional manner. If 

the use of common profiles can avoid the problem of query translation by restricting 

queries to use only certain resource properties, a similar approach can be applied 

to forward knowledge. By defining a common query profile for a query routing 

system and then restricting forward knowledge expressions to use the same set of 

resource properties that are permitted in query expressions, we make it more likely 

that two concepts which have non-disjoint extensions will have intensions that can 

be unified. 
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Figure 6.11: Redundant referrals 

6.5 Mutual Search Algorithms 

In Section 3.4, we introduced the notion of a search with mutual state, in which the 

state of the search is shared between the client and the servers. The existing search 

systems described in Section 2.2 use only referral (in which the state of the search 

is held solely by the client) or delegation (in which the state is shared between 

the servers). Both of these approaches potentially suffer from revisiting previously 

covered ground, or from following forward knowledge tha t introduces redundancy. 

A system which works by delegation (a brokering system) must coordinate the 

efforts of those servers to whom the search task has been delegated. If these servers 

do not communicate with each other (either directly, or via the client) and have no 

a priori defined search scope, it is likely that they will unwittingly end up querying 

the same servers more than once, which is wasted effort. A system which works 

by referral (a matchmaking system) does not suffer from this, because the client 

alone holds the state of the search, but it does have a different, and more difficult, 

problem. 

Although the client in a referral-based system can avoid querying a server more 

than once (because it keeps a record of the servers which it has already queried), 

there is no way for it to determine whether following a chain of forward knowledge 

will lead to a solution which has either already been found, or would otherwise be 

found in the future based on the forward knowledge chains that the client already 

intends to follow. 

An example of such a redundant referral is given in Figure 6.11. The first server 

to be queried by the client is labelled a, and the solution to the query is held by the 

server labelled d. When queried, a issues a referral for b to the client, this referral 

being the first in a chain of referrals a b c ^ d. When the client follows this 

referral and queries b, it receives the next referral in the chain (b —>• c), and also 

a referral to e. The referral to e is the first in a different chain b e ^ f d 
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which also leads to d. If the client follows this referral, it is wasting effort because 

the referral will lead it to a solution which it can reach by a already known route. 

The basic algorithm used by referral-based systems (Algorithm 6.1) is an agenda 

search based on that used in WHOIS++ (Faltstrom et al., 1996). In this, the client 

maintains an in-list (line 1), which contains the servers which the client intends 

to query, and an (line 2), which contains the servers which the client has 

already queried. The in-list is initialised with the set of servers about which the 

client has a priori knowledge. 

Each iteration, the client selects a server to be queried from the in-list, which has 

not already been queried (lines 5-6). In line 7, the client queries the selected server 

for answers which will satisfy g, the query expression, by means of the QUERY() 

function, any answers being accumulated in the set Answers. In line 8, the client 

requests referrals from the selected server by means of the REFER() function, which 

are added to the in-list. The selected server is then moved from the in-list to the 

out-list and another server selected from the in-list. The process terminates when 

there are no more servers to be selected from the in-list. 

Algorithm 6.1: Search for entities which satisfy the query q. 

SEARCH(g) 

1 /n •(— {servers initially known to this client} 

2 Out f - 0 

3 Answers f - 0 

4 while In ^ 0 do 

5 pick s e In 

6 if s ^ Out then 

7 Answers 4 - Answers U QUERY(S, q) 

8 In ^ In U R E F E R ( S , q) 

9 In i- In \ {s} 

10 Out <— Out U {s} 

11 return Answers 

Our definition of the search algorithm uses two additional functions, QUERY() 

and REFER(), which respectively return answers to a query or referrals to other 

agents for that query (Equations (6.4) and (6.5)). 

QuERY(s, g) = {a;: A g 3 z } (6.4) 
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REFER(g, g) = {a; : A ?/ 3 g } (6.5) 

This algorithm assumes that the routing tables possessed by each agent contain 

only belief summaries (to be matched against query terms) and the identity of the 

agents to which a referral is to be generated if the query matches a summary. In 

Section 4.4 we discussed the use of traditional network routing algorithms for query 

routing, and the difficulty of determining whether two routing tables entries will 

lead to the same destination if potentially non-unique belief summaries are used in 

place of unique machine addresses. 

If the routing tables additionally contain the identity of the agent to whom a 

forward knowledge chain eventually leads, the server agent has sufficient knowledge 

to be able to improve this situation. If the client agent presents the server with its 

in-list and out-list, the server agent is able to prune potentially redundant referrals 

from the referral set sent to the client agent. These prunable redundant referrals 

fall into two classes: referrals which will lead to agents that the client has already 

visited (those in the out-list), and referrals which will lead to agents that the client 

has already made a commitment to visit in the future (those in the in-list). Note 

that it is not necessary for the server to prune direct referrals (those in which the 

agent referred to terminates the forward knowledge chain); the client will do that 

itself (lines 5-6 in Algorithm 6.1). 

These changes to the routing tables effectively require that each server has 

knowledge of the global topology of the forward knowledge network. Although 

this is an expensive proposition, and counter to most notions of scalability, query 

routing systems which use modified network routing algorithms (such as link state 

- see Section 4.4.4) already fiood descriptions of the network topology to all partic-

ipating servers. 

The aggregation of forward knowledge affects the behaviour of such a system 

which uses such global forward knowledge to prune the referral sets generated by 

its servers. In Section 3.5.1 we gave a model of the forward knowledge graph which 

used a labelled digraph to describe the forward knowledge possessed by each server. 

Figure 6.12 shows a simple network in which two servers, k and I, which respectively 

contain knowledge that can be summarised by the node labels u{k) and i/(Z), pass 

these summaries to agent j (so creating the edge labels X{j,k) and X{j,l)), which 

aggregates them and passes them to agent i. 
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Figure 6.12; Aggregated Forward Knowledge 

If the agents' routing tables in this example are augmented as suggested above, 

this aggregation is problematic. Agent % must have separate beliefs about the con-

tents of k and I (via j) if it is to be able to restrict its referrals based on the client's 

state, but aggregation of these beliefs into a single belief about j (by the application 

of the rules in Equations (6.2) and (6.3)) means that i is no longer able to distinguish 

between the two sources. For forward knowledge which includes the identity of the 

agent which is its source, aggregation has the effect of splitting forward knowledge 

chains at the point of aggregation. 

This can be partially avoided if we amend the way in which forward knowledge 

is represented in the system from that described in Section 6.3. The distribution 

scheme illustrated in Figure 6.6 shows forward knowledge that has not been manip-

ulated by the rule in Equation 6.2, and includes expressions such as BiBj3x.Bkc{x) 

which identify both the next and the final agents in a chain of forward knowledge 

and can be used by a server agent to prune the referral set. 

We can express a referral query which specifies the client's in- and out-lists as 

shown in Figure 6.13. In this example, the atoms i n - l i s t - x and o u t - l i s t - s are 

the names of the agents on these lists (note that no distinction is made between 

those servers which are on the in-list and those on the out-list because the referral 

set is pruned in the same way for each). This query is structurally similar to that 

in Figure 6.8 in order that agents which are unable to prune their referrals are still 

able to provide a response, albeit one which might include redundant referrals. 

Therefore, there are two methods of passing forward knowledge as a prelude to 

a query routing search. The first uses Equation 6.2 to recast the belief summaries 

in forward knowledge received by an agent as summaries of that agent's beliefs, 

and is used in systems which aggregate forward knowledge in order to reduce the 

complexity of distributing the knowledge required by a query routing system. The 

second retains the identity of the originating agent, and is used in systems which 

maintain a mutual state between clients and servers for the purpose of eliminating 
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(query-ref ;sender i 

:receiver j 

:content (iota ?x (and (exists ?y (B ?x (concept ?y))) 

(not (= ?x in-list-1)) 

(not (= ?x in-list-2)) 

(not (= ?x out-list-1)) 

(not (= ?x out-list-2)) 

. . J ) ) 

Figure 6.13: Pruned referral query 

redundant referrals and reducing the complexity of the search process itself. These 

techniques complement each other, but are not incompatible. A query routing 

system can contain both aggregating agents and agents which will prune the referrals 

that they generate, and we have implemented Phyle agents which do both. 

6.6 Domain Ontology Design 

In Chapter 1, we introduced the three problem domains which we intend to study, 

namely bibliographic data, white pages directories and hypertext, these domains 

being chosen in order to take advantage of readily available datasets. In this section, 

we describe the design of the agent ontologies used to represent knowledge in these 

domains. 

A central issue faced in all three domains is that of the extent of the designed 

ontology; there is an important compromise to be struck between the depth and 

the breadth of an ontology. An ontology may be broad, in that it can describe 

a wide variety of entities, but also be shallow, in that it describes those entities 

only in a cursory manner. Conversely, an ontology may be narrowly focussed, and 

so able only to describe a small set of entities, but be able to describe them in 

more detail. This is not necessarily an either/or choice. Some ontology designers 

have chosen both, most notably Lenat (1995) with the Cyc ontology, which is an 

attempt to create a collection of 'common sense' to be used as a foundation for 

future AI systems. However, the depth of an ontology is most often curtailed for 

human, rather than technological, reasons. The majority of the information in 

these domains is human-authored, and deep ontologies require a greater degree of 

expertise on the part of the human authors. 

Our ontology designs have been informed by the previous work on data represen-

tation in the problem domains. We have opted for comparatively shallow ontologies. 
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matching the available datasets, because we wished to avoid manually annotating 

the datasets to make them conform to a deeper ontology. We have documented 

our ontologies following the guidelines suggested by Skuce and Monarch (1990), 

and these appear in Appendix A; the following sections provide an overview of the 

design rationale behind the ontologies. 

6 .6 .1 Bibliographic Data 

The representation of information about books and journals is a central aim of the 

library and information science community, and so there are a wide variety of ex-

isting solutions, of which we will consider a representative sample. Bibliographic 

information typically describes the context of an information resource, rather than 

attempting to describe its content. For example, the bibliographic data for a scien-

tific paper might note that the title of the paper is ^An Inquiry into the Causes and 

Effects of the Variolae Vaccinae', that it was written by Edward Jenner in 1798 

and possibly that it is about smallpox inoculation, but would not describe the full 

content of the paper itself. For this reason, bibliographic data is also commonly 

known as because it is data about data. 

Perhaps the most widespread bibliographic format is MARC (MARBI/ALA/LOC, 

1996), short for MAchine Readable Cataloguing, which is used in the majority of 

library catalogues. MARC records are field-based, with numeric tags denoting some 

feature of a resource (for example, publisher or subject classification). The value 

of a field may also be broken down into smaller parts, like the components of an 

author's name. This structure makes MARC a very rich format, with considerable 

depth. The role of the bibliographic format here is distinct from, and should not be 

confused with, the role of the cataloguing rules used by a cataloguer. These specify 

how a record is built from available information, and typically give rules for title 

capitalisation, name writing and the like. An example of such a set of cataloguing 

rules are the Anglo-American Cataloguing Rules, 2"*̂  edition (Gorman and Winkler, 

1988). MARC is a rich format, and accordingly requires considerable expertise on 

the part of cataloguers when they create bibliographic records. 

There are several MARC formats available, with many countries using their own 

dialects (USMARC (MARBI/ALA/LOC, 1996), UKMARC (NBS) and CAN/MARC 

being examples), often for reasons more political than technical. This fragmenta-

tion of the MARC format raises both syntactic and semantic concerns for data 

interchange and translation, and the latter are by far the more pernicious. Purely 

I l l 



syntactic translation occurs when fields from different MARCs share the same mean-

ing but are referred to by different tags. For example, USMARC uses the 020 field 

for a book's ISBN, while UKMARC uses 021. Semantic translations occur when 

there is no such mapping, and records in one MARC lose information on translation 

to another MARC, forfeiting structural detail and becoming simpler in the process. 

Over time, there has been a move towards the harmonisation of MARC for-

mats in order to facilitate bibliographic data interchange for services such as union 

catalogues, but this too suffers from incipient balkanization, with MARC21 (the 

combination of USMARC and CAN/MARC) and UNIMARC (sponsored by the 

International Federation of Library Associations) being two different efforts. 

The Dublin Core (DCMI, 1999) is a more recent bibliographic metadata format 

which takes a markedly different approach from that of MARC. Dublin Core (DC) 

is by design a format with minimal structure, and its development has two main 

aims. Firstly, it requires less expertise on the part of cataloguers, so Dublin Core 

records can be authored by those with only minimal training. Secondly, it accepts 

lossy translations from richer formats as unavoidable. Dublin Core is intended as a 

format to be used in data fusion (such as the construction of a union catalogue) when 

the ontologies of the data sources are dissimilar enough to make direct translation 

between source ontologies impractical. 

The Dublin Core metadata schema consists of a set of fifteen fields, designed 

to be broadly applicable and to have unambiguous, if simple, semantics. A further 

development, Qualified Dublin Core (Knight and Hamilton, 1997; DCMI), adds 

qualifiers to some of these fields so that the cataloguer's intent may be better 

expressed. For example, the Date field may be further qualified to indicate whether 

the given date is the date on which the resource was created, or the date on which 

it was issued. Qualified DC therefore strikes a compromise between the detail of 

MARC and the simplicity of unqualified DC. 

There has been some interest in one aspect of bibliographic data, subject classifi-

cation, from within the description logic community (Welty, 1998; Welty and Jenk-

ins, 1999). Subject classification has a long history in the library science community. 

Today's classification schemes, such as Dewey Decimal or Library of Congress, are 

firmly rooted in the taxonomic and meronomic trees of knowledge used by libraries 

five hundred years earlier. Welty's contribution to this has been to clarify the re-

lationship between an information resource (or indeed any entity: persons, events, 

organizations, etc) and a subject classification. In his ontology, the subject of a 

resource is modelled as an instance, rather than as a class, thus preserving the 
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taxonomic relationships between subjects. For example, the subject of a resource 

may be an instance of the 'medieval history' class. This class is subsumed by the 

'history' class, so the subject is also an instance of this latter class (in simple terms, 

if the book is a medieval history book, it must also be a history book). A similar 

approach is described in (Pedersen, 1993), which uses relationship lattices for biblio-

graphic information retrieval. These lattices are not unlike description logics (more 

specifically, the description logic ACE) and allow the representation of concepts 

such as 'books of fairytales' (or in ACS, Book fl 3 HAS-GENRE.Fairytale). 

Gruber (1994) describes an ontology for bibliographic data as part of a case 

study of ontology design. His ontology is far simpler than the Dublin Core, but 

which contains several important features which are also used in this ontology. 

Gruber defines a unary relation for the references themselves, and defines the other 

relations as mapping from references to values (authors, titles and so on). In this 

way, the identity of the bibliographic record is kept separate from the identity of 

the resource which the record describes. This allows us to write metadata about 

bibliographic metadata, in order to note the author of a reference for example. 

This metadata-about-metadata is referred to by Lassila and Swick (1999) in the 

RDF specification as higher-order statements. RDF requires the metadata author 

to explicitly reify the statements which are to be described, although the underlying 

model treats all statements as reified; the standard RDF syntax hides this for the 

convenience of metadata authors. 

We have chosen to base our ontology on a commonly-used subset of Qualified 

Dublin Core for pragmatic reasons. It is by far the simplest usable metadata schema 

in common use and there are well-defined mappings to convert data from existing 

sources into the Dublin Core. The ontology is illustrated in Figure 6.14 (and de-

scribed further in Appendix A.l); labels of normal typographical weight are the 

names of relations (represented in the FIPA SL as binary predicates), emboldened 

labels are the names of concepts (in FIPA SL, unary predicates) and italicised la-

bels are literal types. This ontology reifies the metadata records itself, which allows 

us to attach bibliographic provenance to them, and also gives a convenient way of 

representing records with repeated fields (a paper may have more than one author, 

and more than one creator field as a consequence). 
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title 

string 

subject 
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description 
name 

string string 
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format 
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language 
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name 

string string 

coverage 

string source 

string 

Figure 6.14: The Dublin Core Ontology 

6 .6 .2 Hypermedia 

The hypertext research community has constructed a number of formal models of 

linking over the past two decades, the most well-known of which is the Dexter Hy-

pertext Reference Model, as described by Halasz and Schwartz (1990). Notable 

features of Dexter are that it separates the structure of an object from its presen-

tation, and treats hypertextual links as a class of objects in their own right, rather 

than a part of a document. This makes possible the application of different sets of 

links to a collection of document as variant linking overlays. 

In more recent years, the hypertext standardisation effort which begun with 

Dexter has moved on to the specification of an Open Hypermedia Protocol (OHP), 

aa described by Davis et al. (1998) and Reich et al. (2000). 

The OHP specification draws a distinction between different types of hypertext 

systems, namely navigational, spatial and taxonomic hypertexts, based around a 

kernel of common services (early versions of OHP received some criticism (Niirnberg 

and Leggett, 1998; Anderson et al., 1998) for their ignorance of taxonomic or spa-

tial hypermedia). The hypertext systems for which we have built an ontology are 
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Figure 6.15: OHP Linking Model 

primarily navigational, and subscribe to the traditional link-following model of hy-

pertext that uses links as navigable relations which can be followed in order to 

explore a collection of documents (as opposed to spatial or taxonomic hypermedia 

which use links primarily to impose structure rather than to provide navigation 

support), so we have relied on the corresponding navigational subset of the OHP 

specification (the OHP-Nav specification). 

This type of hypermedia is familiar from systems like Microcosm (Fountain 

et al., 1990), the World Wide Web (Berners-Lee et al., 1994a), and Nelson's Xanadu 

(Nelson, 1987) (although Xanadu also contains a number of features which are not 

typically found in navigational hypertext systems). The Fundamental Open Hyper-

text Model (FOHM) of Millard et al. (2000) unifies these domains by investigating 

the common structural features of each. 

In our design of an ontology for hypermedia, we have concentrated on naviga-

tional hypermedia as the most commonly encountered form of hypermedia. Unlike 

the Dexter model, OHP is specified in terms of the protocol spoken by hypertext 

servers and clients, which implicitly asserts the underlying data model. The linking 

model employed by the OHP navigational domain (OHP-Nav) is influenced by that 

of HyTime (ISO, 1997), in that links, anchors and location specifiers (which identify 

the location of an anchor in a node, also known as locspecs) are treated as distinct 

entities. The OHP-Nav model also subsumes the model used by the Distributed 

Link Service (Carr et al., 1995). 

An example of the OHP-Nav linking model is shown in Figure 6.15. In this 

example are two nodes (documents) and two links. One of the links goes from one 
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Figure 6.16; The OHP Ontology 

node to the other (or rather, from an anchor located in one node to an anchor 

located in the other), while the other link is between two anchors in the same node. 

The existence of the OHP-Nav model means that much of the hard work in 

designing an ontology - capturing the conceptualisation of the domain - has already 

been done. An ontology based on this model has been implemented in the FIPA 

SL (shown in Figure 6.16, and further described in Appendix A.2) and is primarily 

concerned with the OHP-Nav linking model rather than its other aspects, such as 

collaborative working. 

6.6.3 Whi te Pages 

The White Pages domain, which takes its name from the white pages of a tele-

phone directory, involves information about people and organisations, and the ways 

in which they can be contacted. Our White Pages ontology is based heavily on the 

schema used by our main datasource, the personnel database of the Department 

of Electronics and Computer Science (ECSInfo), which is documented in the de-

partmental handbook (ECS, 1999). The ECSInfo schema is strongly similar to that 

used in the OSI X.500 directory service (ITU, 1993b,c), and also to that used by 

the vCard electronic business card interchange format (Dawson and Howes, 1998), 

although this similarity is largely coincidental. Our ontology is illustrated in Fig-

ure 6.17 (and further described in Appendix A.3), and allows us to express a set of 

simple properties that people carry in this domain. 

116 



group 

name 

1 
string 

homepage 

string string 

email usem ame 

te no in-group 
person 

contact 

telephone telno name 

string 

Figure 6.17: The Directory Ontology 

6.7 Summary 

In this chapter, we have described the key challenges in implementing an agent-

based system for query routing search using the Phyle agent framework, including 

the selection of appropriate communication protocols and knowledge representations 

for query routing, the design of search algorithms which make best use of forward 

knowledge by sharing the search state between clients and servers, and the design of 

application domain-specific ontologies for encoding the data which is to be searched. 

In the next chapter, we report the results of an empirical study of query routing 

systems using the network topologies discussed in Chapter 4 which we have used to 

confirm the conclusions we made regarding the scalability of different query routing 

systems. 
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Chapter 7 

Experimentation 

7.1 Introduction 

In Chapter 3 we presented a model of a query routing system which we used to 

examine the complexity and scalability of a number of different topologies for the 

network of forward knowledge that underlies query routing systems. In order to 

increase our conAdence in the ability of this model to accurately reflect the behaviour 

of query routing systems and to confirm our conclusions about scalability, we need 

to validate the model experimentally. 

In order to perform such an empirical validation on a reasonably large scale, we 

need to build large query routing systems (100,000+ agents). Our agent framework 

Phyle, which we introduced in Chapter 5, is not capable for this because each agent 

is too large; a basic Phyle agent requires approximately 2Mb of RAM, and we have 

insufficient computing resources to be able to run enough agents. The Paraphyle 

simulator allows us to simulate the behaviour of large query routing agent systems 

in a lightweight manner by excluding from the simulation all but those components 

of an agent which are essential to the operation of a query routing system. 

In this chapter, we describe the simulation of agent based query routing systems 

and present the results of an empirical study of the behaviour of these systems which 

we have used to perform a qualitative validation of our query routing model. 

7.2 Approach 

Our general approach to simulating query routing systems as described by the model 

in Chapter 3 is as follows. 

118 



We begin by generating graphs of di&rent sizes for the underlying connectivity 

of a variety of query routing systems, following the discussion on network topology 

in Sections 4.3 and 4.4. We then label each node in these graphs with an expression 

which is a summary of the records held by that node. Baaed on the underlying 

graph, we then generate forward knowledge for the servers in each of the query 

routing systems, such that there exists a correctly labelled path (following the 

discussion in Chapter 4) from the designated entry points of the system (where 

queries may be presented to the system) to each of the nodes in the system. The 

number of messages which were required to create the forward knowledge network 

(the control traffic) is recorded. 

Having constructed the forward knowledge networks, we generate queries for 

presentation to the systems based on the content summaries in the nodes in each 

system, such that each query can be satisfied by some node in the system (we are 

not interested in the degenerate case where a query cannot be satisfied even by 

exhaustively querying each server in the system in turn). We then select the node 

at which the query will be inserted into the network and begin the processing of 

the query. The queries are processed in an exhaustive manner in order to identify 

all the nodes which may satisfy the query, if more than one should exist, and the 

number of messages which are sent during the processing of the query (the query 

trafBc) is recorded. Because we are searching the system for all the entities which 

will satisfy the query, the system is effectively a resource or service discovery system 

rather than a name resolution system; the entities which would be retrieved for a 

given query are not strictly equivalent, as would be the case with a name resolution 

system. 

The behaviour of a query routing system on processing a query depends both 

on the topology of the forward knowledge network and on the query itself. In order 

to reduce any skew introduced into the results due to a particular configuration of 

the system, multiple instances are generated of each type of query routing system, 

and multiple queries are processed within each instance. 

In this empirical study, we are attempting to confirm our conclusions on the 

comparative scalability of the query routing systems discussed in Chapter 4, so we 

generate systems in a range of sizes within a particular class. It was our intention 

to study the scalability of the different query routing topologies for systems of up to 

one hundred thousand nodes, but in the case of the more computationally complex 

systems this was not possible within the limits imposed by the available computing 
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resources. Where the maximum system size is less than one hundred thousand 

agents, this has been noted in the initial experiment descriptions in Section 7.4. 

7.3 Data Generation 

A key consideration in this empirical study is the generation of the data used in 

the simulation. In our simulation, we do not represent the individual records held 

by an agent. When simulating a large query routing system, we need to be able to 

represent a single agent in that system in as lightweight a manner as possible, and 

individual records are simply too small a level of granularity to be practical for this 

study. The retrieval from a specified agent of records which match a query is not 

our concern, but the effort involved in locating that agent is (i.e. we're concerned 

with database selection, not information retrieval). 

In addition, we do not need the intricacies of Phyle's knowledge representation 

language, but need expressions just detailed enough to be able to determine if one 

will subsume the other or if they can be unified. We can choose to model expressions 

either extensionally or intensionally. An extensional model of an expression is a set 

of the entities that are denoted by the expression, for example, the set of instances 

in a concept, while the intensional model contains the common characteristics that 

each member of that concept possesses. 

For example, if we take an expression like 'books written by Jane Austen' (or 

in ACU Description Logic-like terms. Book• 3AUTH0R.Jane-Austen), the extension 

of the expression contains the books S'erwe fride GTicf frejtidtce, 

Northanger Abbey and so on, while the common characteristics in the intension 

are the notions that entities denoted by the expression are books (Book), and were 

written by Jane Austen (3AUTH0R. Jane-Austen). An extensional model of concepts 

requires that we enumerate all the members of the extension of a concept, which 

is potentially a large set. Moreover, the more general the concept, the larger its 

extension. 

In Paraphyle, we represent concept expressions intensionaily as sets of charac-

teristics which members of the concept must possess. In order to represent the 

disjunction of concepts (used when aggregating forward knowledge summaries, as 

in Section 3.5), a given concept is represented by a number of sets of common inten-

sional components, each of which corresponds to a conjunction in the disjunctive 

normal form rewrite of the concept. Each member of the concept must possess all 

of the intensional components in at least one of the sets in this disjunction. The 
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test for the subsumption of a query by a forward knowledge expression or content 

summary (which correspond to the generation of a referral and the presence of re-

sults which satisfy the query respectively) is therefore the subset relation; a query 

is subsumed by an expression if there is no intensional component of the expression 

which does not also appear in the query. 

We generate content summaries (concept expressions) for each agent by ran-

domly selecting a number of symbols which represent the intensional characteristics 

which members of the concept must possess. These symbols are selected from a vo-

cabulary containing a fixed number of terms such that all terms in the vocabulary 

have an equal probability of being selected (i.e. uniform random). It should be 

noted that, for the purposes of this simulation, we are not concerned with the ac-

tual characteristics that these symbols might represent (in the example above, these 

might be Book), and 3AUTH0R.Jane-Austen); the symbols are opaque symbols of 

the form voc-1, voc-2, voc-3 and so on. 

The content summaries for each agent are therefore represented in Paraphyle 

by lists of the form (voc-23 voc-47 voc-92), whereas forward knowledge sum-

maries are lists of lists of the form ((voc-44 voc-79 voc-67) (voc-48 voc-25 

voc-62)), where each list within the outer list is the set of intensional components 

corresponding to a conjunction within the disjunctive normal form rewrite of the 

forward knowledge concept. 

In the following experiments, our content summaries contains three symbols, 

each of which is drawn with equal probability from a vocabulary of two hundred 

symbols, unless otherwise specified. An example dataset which was generated for 

use with Paraphyle is given in Appendix B. 
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7.4 Experiments 

7.4.1 Single Index Server 

Query routing systems of this type comprise a single index server which holds 

forward knowledge for all of the other agents in the system, and are described in 

Section 4.3.1. 

In this experiment, systems were generated containing 10, 100, 1000, 10000 and 

100000 agents. For each of these sizes, a total of twenty different systems were 

generated, and twenty queries generated and processed on each. There is only one 

entry point for queries in systems of this type, namely the single index server. 

Results and Analysis 

Graphs showing the results for this experiment are given in Figure 7.1. The graph 

for the query traffic, Figure 7.1(a), shows that the cost of processing a query is 

almost constant, or increases only very slowly with respect to the number of agents 

in the system. The graph for the control traffic, Figure 7.1(b), shows that the cost 

of constructing the forward knowledge network increases linearly with the number 

of agents in the system. 

The slight rise and larger variance for the data point at n = 100000 in the 

query graph is an artifact of the way in which the data was generated. There is 

a small, but non-zero, probability that given an agent with a particular content 

summary, another specified agent will have a content summary that subsumes it. 

In other words, given a query generated from an agent's content summary, there is a 

slight chance that that will be other agents in the system whose content summaries 

subsume the query in addition to the agent from which the query was generated. 

As the number of agents in the system increases, the probability that there 

does not exist only a single agent whose content summary subsumes the query also 

increases; the rise in query messages is due to the existence of multiple agents which 

can satisfy a given query. 
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Figure 7.1; Results for single index server 
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7.4.2 Hierarchy 

Query routing systems of this type form a strict hierarchy in which agents at higher 

levels have forward knowledge about agents at lower levels (not necessarily direct 

forward knowledge), and are described in more detail in Section 4.3.3. 

In this experiment, systems were generated such that each non-leaf agent has 

eight children (breadth 6 = 8) for depths ranging from 2 to 7 (i.e. from 9 to 299593 

agents, calculated as (6^ —1)/(6 —1)). As in Section 7.4.1, a total of twenty different 

systems were generated for each of these sizes, and twenty queries generated and 

processed on each. All queries were inserted into the sys tem via the root node. 

Results and Analysis 

The results for this experiment are given in graphical fo rm in Figure 7.2. The 

graph for the query trafhc, Figure 7.2(a), shows that the cost of processing a query 

increases logarithmically with increasing system size, while the graph for the control 

trafRc, Figure 7.2(b), shows that the cost of constructing the forward knowledge 

network increases linearly with system size. 

The da ta generation artifact which caused the rise in later da ta points in the 

previous experiment is also present in this experiment. T h e magnitude of the rise 

is greater than before because the agents which can satisfy a query are now further 

from the point of entry than they were in the previous experiment , where the index 

server was one hope away from all of the data servers. T h i s causes a more visible 

rise in the query traffic because a longer chain of forward knowledge entails the 

sending of a larger number of query messages in order to traverse that path, so 

magnifying the artifact. 

The effect tha t vocabulary size has on the occurrence of multiple solutions is 

illustrated in Figure 7.3. In this experiment, the size of t h e vocabulary (the number 

of terms from which expressions are constructed) was increased by a factor of ten, 

from 200 to 2000 (as explained in Section 7.3, the members of the vocabulary are 

opaque symbols). In this figure, there is no rise in t h e query traffic for larger 

systems because the larger vocabulary has reduced the probabili ty of duplicate 

answers existing in the system. 
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7.4.3 Hierarchy with Search Expansion 

Query routing systems of this type are like the hierarchical systems of the previous 

experiment, but include forward knowledge that leads from the leafs of the tree 

towards the root, so tha t queries can be inserted anywhere in the systems, not just 

at the root node. 

In this experiment, systems were generated such that each non-leaf agent has 

eight children (breadth 6 = 8) for depths, d, ranging f rom 2 to 7 (i.e. from 9 

to 299593 agents). As in Section 7.4.1, a total of twenty different systems were 

generated for each of these sizes, and twenty queries generated and processed on 

each. An insertion point for each query was chosen at random from the nodes in 

the system. 

Results and Analysis 

The results for this experiment are given in Figure 7.4. The control traffic for 

this experiment. Figure 7.4(b), shows that the cost of constructing the forward 

knowledge network increases linearly with system size, and is increased by a constant 

factor from tha t for a simple hierarchy. 

The query traffic, shown in Figure 7.4(a), shows t h a t the cost of processing a 

query increases logarithmically with increasing system size (with the same proviso 

as before with regards to the artifact introduced by the vocabulary size). However, 

because queries may be introduced into the system at any node rather than just 

at the root, the maximum path length from the insertion point to the goal is now 

2d — 2, rather than d — 1 as it was in a simple hierarchy, which accounts for the 

greater query traffic generated by this system in comparison to the simple hierarchy 

in Section 7.4.2. 
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7.4.4 Complete Graph 

In systems of this type, every agent has direct forward knowledge about every other 

agent, as described in Section 4.3.6. Queries may therefore be inserted at any point 

in the system. 

In this experiment, systems were generated with 10, 50, 100, 500, 1000 and 

2000 agents. Note that the largest system studied here contains fewer than 100000 

agents due to constraints imposed by the available comput ing resources. As in 

earlier experiments, a total of twenty different systems were generated for each of 

these sizes, and twenty queries generated and processed on each. An insertion point 

for each query was chosen at random from the nodes in t h e system. 

Results and Analysis 

The results for this experiment are given in graphical form in Figure 7.5. The query 

traHic for this experiment. Figure 7.5(a), shows that the cost of processing a query 

is constant with increasing system size. However, the control trafBc, Figure 7.5(b), 

indicates that the cost of constructing the forward knowledge network increases 

polynomially as the square of system size, making this an expensive system to 

build. 
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7.4.5 Councils 

Council networks are a cross between hierarchical networks and complete graphs 

in which the nodes are arranged into layers with each layer being fully connected 

internally (described previously in Section 4.3.7). 

In this experiment, the systems that were generated contained councils of size 9, 

in order that the results be comparable with those obtained for hierarchical systems 

(a given council within the network corresponds to a n o d e and its direct children 

in a hierarchical network, hence a breadth of 8 for a hierarchical network requires 

a council size of 9 for the corresponding council network). We generated systems 

containing between 1 and 6 layers of councils, again to faci l i tate comparison with the 

equivalent hierarchical network. As in earlier experiments, a total of twenty different 

systems were generated for each of these sizes, and twenty queries generated and 

processed on each. An insertion point for each query was chosen at random from 

the nodes in the system. 

Results and Analysis 

Graphs showing the results for this experiment are given in Figure 7.6. The query 

trafBc for this type of system increases logarithmically with increasing system size 

(shown in Figure 7.6(a)) though at a slightly lower level than did the traffic for 

the hierarchical system with search expansion in Section 7.4.3 (a comparison of the 

query traffic for these two systems is given in Figure 7.7). T h e difference between the 

two traffic levels is constant, and is due to the way in which this type of network tries 

to improve on the efficiency of query routing search. A council network effectively 

contains a shortcut which can be used when a path passes through two siblings; 

instead of having to route the query via their common parent , the query may be 

passed directly from one to the other. However, the processing of a query in a 

council network involves at most one query transfer of t h i s type, which lies at the 

apex of the query's pa th from source to goal, so the advantage offered by this type 

of network is limited to the elimination of a single referral. 

The control traffic for these networks, Figure 7.6(b), shows tha t the cost of con-

structing the forward knowledge network increases linearly with increasing system 

size, but also tha t this cost is a constant factor higher t h a n the equivalent cost for 

hierarchical systems. This constant factor arises from t h e exchange of messages 

which is necessary to make each inidividual council a clique within the network. 
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7.4.6 Flooding 

Flooding from a single source is used to propagate queries in Gnutella-like systems. 

In our simulation of these systems, we represented the underlying network topology 

by constructing a disordered graph following the me thods outlined for small world 

networks (Watts, 1999) and for scale-free networks (Barabaai and Albert, 1999). 

The construction of these networks takes different parameters; for the small world 

network, we started with the ring lattice L„_4 and rewired with probability 0,25, 

and for the scale free network we started with the complete graph and grew the 

graph by adding M — 4 nodes, each with degree 4. 

In this experiment, systems were generated with 10, 50, 100, 500, 1000 and 2000 

agents (again due to available computing resources). As in previous experiments, a 

total of twenty different systems were generated for each of these sizes (and for each 

network type), and twenty queries generated and processed on each. An insertion 

point for each query was chosen at random from the nodes in the system. When 

an agent 6rst receives the query, it sends on it to all of i ts neighbours. Subsequent 

receipts of the query by an agent are ignored (i.e. do not result in the query being 

passed to neighbouring agents). 

No measurements were made for control traffic in this experiment (Gnutella does 

not construct a forward knowledge network). 

Results and Analysis 

A graph showing the results for this experiment is given in Figure 7.8. The query 

traffic for this system increases linearly with increasing sys tem size, which is con-

sistent with the prediction in Chapter 4 of 0{\E\) complexity for the flooding op-

eration. 

Small world and scale free networks are sparse graphs (|E'| |V^P) where the 

number of edges are proportional to the number of vertices (due to the 6xed neigh-

bourhood size of the unmodified ring lattice for small world networks, and the fixed 

degree for new vertices in scale free networks), so a flooding operation which re-

quires tha t the message be sent once only over every edge in the network would be 

expected to scale linearly. It should be noted, however, t h a t this is a considerably 

more expensive operation than the logarithmic or cons tan t complexity solutions 

considered earlier in this chapter. 
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7.4.7 Distance Vector 

As in Section 7.4.6, we represented the underlying network topology by constructing 

disordered graphs following the methods outlined for small world and scale free 

networks and using the same parameters (for the small world network, we started 

with the ring lattice 2/̂ ,4 and rewired with probability 0.25, and for the scale free 

network we started with the complete graph 1̂̂ 4 and grew the graph by adding n, — 4 

nodes, each with degree 4). 

In this experiment, systems were generated with 10, 20, 50, 100, 200, 500, 1000, 

2000 and 5000 agents. As in previous experiments, a total of twenty different 

systems were generated for each of these sizes (and for each network type), and 

twenty queries generated and processed on each. An insert ion point for each query 

was chosen at random from the nodes in the system. 

The forward knowledge network was constructed by running the distance vector 

algorithm (altered slightly to use the augmented rout ing tables discussed in Sec-

tion 4.4), halting when the routing tables in the systems had converged (i.e. when 

a round of the algorithm produced no change in the routing tables). 

Results and Analysis 

Graphs showing the results for this experiment are given in Figure 7.9. The query 

traffic for this type of system increases logarithmically wi th increasing system size 

(Figure 7.9(a)) on both small world and scale free networks, which agrees with the 

predictions made in Chapter 4.2. However, the query message traffic for scale free 

networks increases more slowly than that for small world networks, which suggests 

tha t for the rewiring probability we have used, small world networks have a larger 

diameter than scale free networks with equal number of vertices and edges. 

The control message traffic for both systems increases at the same rate as jVp 

(see comparison with the control message traffic for complete graphs in Figure 7.11), 

which is consistent with our prediction in Section 4.4 of 0{\V\\E\) because both 

scale free and small world networks have |E | proport ional to \V\ (in both cases, 

adding a node to the networks adds a fixed number of edges). 
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7.4.8 Link State 

As with the experiments for Hooding and distance vector routing, we represented 

the underlying network topology by constructing disordered graphs following the 

methods outlined for small world and scale free networks and using the same pa-

rameters (for the small world network, we started wi th the ring lattice 2,̂ ,4 and 

rewired with probability 0.25, and for the scale free network we started with the 

complete graph and grew the graph by adding n - 4 nodes, each with degree 4). 

In this experiment, systems were generated with 10, 20, 50, 100, 200, 500, 1000, 

2000 and 5000 agents. As in previous experiments, a total of twenty different 

systems were generated for each of these sizes (and for each network type), and 

twenty queries generated and processed on each. An insert ion point for each query 

was chosen at random from the nodes in the system. 

The construction of the network of forward knowledge was simulated by Hood-

ing each agent's local topology to all other agents and then running our modiEed 

version of Dijkstra 's algorithm (Algorithm 4.1). The m a n n e r in which this was per-

formed diEered from that given in Section 7.4.6; each tick, every agent sends to its 

neighbours all the content expressions tha t it received for t h e first t ime in the previ-

ous tick, so combining several pieces of forward knowledge into a single message. In 

order to reduce the effort involved in running this s imulat ion, Dijkstra 's algorithm 

was not run for every agent in the system, but rather only for those agents identified 

as insertion points for queries; these agents therefore have complete knowledge of 

the topology of the network (and in particular, its shortest paths) , which is used to 

simulate the processing of a query by the system. 

Results and Analysis 

Graphs showing the results for this experiment are given in Figure 7.10. The query 

traffic for this type of system increases logarithmically w i t h increasing system size 

(Figure 7.10(a)) on both small world and scale free networks, which agrees with the 

predictions made in Chapter 4.2. 

As with the distance vector experiment, query message traffic for scale free 

networks increases more slowly than tha t for small world networks, which suggests 

tha t for the rewiring probability we have used, small world networks have a larger 

diameter than scale free networks with equal number of vertices and edges. The 

control message traffic for both systems appears to increase linearly with increasing 

138 



number of vertices, which is at odds with our earlier prediction of 0(|E|log|y|) 

complexity. 

However, as mentioned in Section 7.4.7, |E| is proportional to | y | for scale free 

and small world networks (so the complexity could be restated as 0 ( | y | l o g | y | ) ) , 

and over the range of system sizes studied, the logarithmic factor in this complexity 

introduced by the graph diameter has a much smaller effect on the measured trafhc 

than does the number of edges. 
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7.5 Discussion 

In the previous section, we presented the results of the experiments which we have 

used to examine the scalability of different network topologies for query routing 

systems. The systems which we have studied can be divided into three rough 

categories: those which try to minimise the cost of querying the system without 

regard to the cost of building the forward knowledge network, those which minimise 

the cost of building the network without regard to the cost of processing queries, 

and those which attempt to trade off the cost of querying and network building 

against each other. 

An example of the first category is the complete network, which has a constant 

querying cost but requires that every agent should contact every other agent, and an 

example of the second category is the Gnutella-like flooding system, which does not 

use forward knowledge, but which requires that a query be sent to every agent. The 

remaining systems are all characterised by a query cost which scales logarithmically 

as the system grows in size, but they approach the problem in two significantly 

different ways. One set of systems constructs an ordered forward knowledge network 

which consists of an explicit hierarchy of agents, while the other set assumes that 

the underlying network topology will be disordered and at tempts to construct the 

forward knowledge network using adapted network routing algorithms. 

The routing algorithms used in these disordered systems do not scale as well 

as the ordered systems; in Chapter 4 we gave control message complexities from 

0{\E\ log |y | ) to 0{\E\\V\) for these systems. The disordered networks (small world 

and scale free) that we used to simulate these systems are sparse, and have |E| 

proportional to | y | (in both cases, adding a node to the network adds a fixed number 

of edges), so in effect the complexities range from 0{\V\'^) to 0 ( | F | log |I^|). 

The graph in Figure 7.11 contrasts the control message traffic for distance vector 

and link state routing with that for complete graphs and hierarchies. As can be 

seen in this, the control message traffic for distance vector grows at the same rate 

as for complete graphs (verifying our prediction of 0{\V\'^) complexity), while the 

traffic for link state routing (the all pairs flooding operation) grows at a considerably 

slower rate (it appears to be linear in this graph because log 1^1 ^ |^ | ) -

Our approach to studying the scalability of query routing systems by considering 

the complexity of query processing and the construction of the forward knowledge 

network makes the assumption that the cost of performing these tasks is adequately 

represented by the communication complexity, but this fails to take into account 
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other costs of a social or political nature which are associated with the creation and 

maintenance of an ordered system (the cost of agreeing on the placement of agents 

in the hierarchy, for example — contrast this with the low organisational costs of 

more anarchic peer-to-peer systems such as Gnutella or Freenet). The maintenance 

of hierarchical systems like DNS requires a great deal of human effort that perhaps 

should be accounted for, if only it were possible to quantify it; unfortunately, these 

costs are largely implicit. Our overall recommendations for scalable query routing 

systems must therefore take a number of factors into consideration: 

• The frequency of queries is greater than the frequency of updates, so it is 

more important that the cost of processing a query be low. 

® After the cost of processing queries, it is impor tant to reduce the cost of 

constructing and maintaining the network of forward knowledge. 

• Ordered systems may involve hidden organisational costs which cannot be 

easily quantised. 

The first of these concerns forces us to rule out flooding based systems such 

as Gnutella, while the second excludes the complete g raph and distance vector 

systems. Of the remaining systems, the single index server places too great a load 

on a single component, leading to a potential bottleneck and single point of failure. 

The choice which remains is between the hierarchical systems (including coun-

cils) and the disordered systems which use link state rout ing (see Table 4,1). Given 

our characterisation of the underlying disordered network topology as a small world 
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or scale free network, both feature logarithmic query complexities. The control com-

plexity for the two are different, with hierarchies remaining linear as opposed to the 

linear-log complexity of link state systems, but the logarithmic factor grows slowly 

enough to have little eSFect over the range of system sizes we have studied. Finally, 

if the expansion of query scope is allowed in hierarchical systems, the cost of prop-

agating an update scales linearly with the size of the system, as it also does for 

the link state systems ( |E | being proportional to | y | in small world and scale free 

networks). This leaves the hidden organisational costs of ordered systems as the 

only remaining criterion; in the absence of any other criteria, our recommendation 

is therefore for query routing systems which do not assume that the system is or-

dered, and which use our modified link state algorithm to construct the forward 

knowledge network. 

7.6 Summary 

In this chapter, we have described a series of experiments which we have conducted 

using the Paraphyle simulator (described in Section 5.3) in order to validate our 

model of a query routing system (described in Chapter 3), and to confirm our 

conclusions with respect to the effects on scalability of different forward knowledge 

network topologies (see Chapter 4). 

In Chapter 8, we will summarise the contributions we have made in this work, 

and discuss potential avenues for further development of the agent systems we have 

built and future research topics which expand on the work presented in this thesis. 
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Chapter 8 

Further Work and Conclusion 

8.1 Conclusion 

In this thesis, we have presented a model of the query routing paradigm which we 

have subsequently used to inform the design of scalable agent systems for query 

routing. The main objective of this work was to s tudy the behaviour, and in 

particular the scalability, of query routing systems, an area which has received little 

attention to date. To achieve this objective, we performed an empirical study of a 

variety of network topologies for query routing systems which we used to confirm 

the conclusions which we had drawn on the complexity of constructing and using 

systems baaed on these topologies, these conclusions being based on our study of 

the model we created. 

The concept of query routing is a pattern which occurs frequently in distributed 

systems which need to perform the resource discovery or name resolution tasks, as 

was discussed in our survey of existing systems in Chapter 2. The majority of the 

systems studied were hierarchical in nature, but the swiftly growing popularity of 

peer-to-peer computing (Napster, Gnutella and so on) suggests that a less restrictive 

approach to the construction of the network of forward knowledge that underpins 

a query routing system can promote wider participation in such a system. 

In order to study query routing systems in the abstract , we built a graph the-

oretic model of the query routing process, described in Chapter 3, with which we 

were able to characterise a number of different system topologies, based on the sys-

tems discussed in the previous chapter. This is an impor tant contribution of this 

work, since no such model of the query routing paradigm existed previously. 

In Chapter 4, we settled on the use of a family of partially disordered graphs 

to represent the anarchic, but not entirely structure-free, coalitions of users that 
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characterise many peer-to-peer systems. We suggested that where most traditional 

query routing systems construct their forward knowledge networks in a hierarchical 

manner, these more loosely organised systems might benefit from the application of 

network routing algorithms which have been suitably modiHed for use in the query 

routing domain. 

Using our query routing model, we determined the scalability of the different 

system topologies under examination in terms of the communication and space 

complexity of processing queries and of constructing the network of forward knowl-

edge which is necessary for correct operation of a query routing system. We believe 

that this particular section of this thesis is potentially of great use to designers and 

implementors of peer-to-peer systems, because it provides an objective compari-

son of the performance and scalability of peer-to-peer systems based on different 

underlying topologies. 

We then turned our attention to the application of t h e query routing technique 

to the problem of coordination in multi-agent systems (in particular to the service 

discovery task). In Chapter 5, we discussed the design of our agent framework 

Phyle, with particular emphasis on its novel features, such as fluid message handlers. 

Although the Phyle agent framework was not explicitly designed for the construction 

of query routing agent systems, there were no suitable alternatives available at the 

time we carried out this stage of our work; had such alternatives been available, 

we would have used them in preference to the task of reinventing the wheel. Our 

views on the future development of the Phyle agent framework are summarised in 

Section 8.2.1. 

While it was possible to build small multi-agent systems containing a handful of 

agents in Phyle, the framework was not lightweight enough to permit the construc-

tion of large scale systems containing many thousands of agents. In order to address 

this, we designed the Paraphyle simulator, which used a minimal representation of 

an agent which was specifically tuned to the requirements of query routing. 

In Chapter 6, we discussed the issues that affect t he design of query routing 

agent systems, with particular emphasis on the semantics of queries and referrals. 

This work made use of our model in order to explain the way in which agents in a 

query routing agent system aggregate forward knowledge during the construction 

of the forward knowledge network. We feel that this chapter is a particularly novel 

contribution to the development of mediator systems for multi-agent systems. 

Finally, in Chapter 7 we used the Paraphyle simulator to study the behaviour of 

large scale query routing agent systems in order to confirm the conclusions on the 
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scalability of different query routing system topologies that we had drawn following 

our analysis in Chapter 4, and in doing so validate our model. 

Query routing is a complex domain, and there are a number of aspects which we 

did not study in this work. In particular, the effects of failures and other aspects of 

unreliable systems on the e%ctiveness of database selection in query routing systems 

of various topologies is still an open issue which we feel merits future attention. 

In Section 8.2.2, we have identified two possible avenues for future research and 

summarised our immediate intuitions as to potential techniques which could prove 

useful in these areas. 

8.2 Future Work 

During the course of this work, a number of areas of interest came to our attention 

which we were not able to further develop or study due to time constraints. In this 

section, we summarise the areas which we consider to be worthy of future research 

and outline a possible path for the future development of the software discussed in 

this thesis. 

8.2.1 Future System Development 

There are two areas in which future systems development must be considered, 

namely further development of the Phyle agent framework (see Chapter 5) and the 

development of agent-based query routing systems (see Chapter 6), not necessarily 

using the Phyle framework. 

The Phyle agent framework was born out of necessity; when the implementation 

phase of this study was conducted, there was no suitably mature and freely available 

agent framework. This is no longer the case, and there are a number of well rounded 

agent frameworks which conform to standards, such as those published by FIPA 

(of which FIPA-OS (Poslad et al., 2000), Jade (Bellifemine et al., 1999) and Zeus 

(Nwana et al., 1999) are good examples). Although Phyle has some features which 

are not present in other frameworks (such as its fluid message handlers), it also 

lacks some features which are present in those frameworks (particularly integration 

with system facilities or other external services like LDAP) . 

Conversely, the implementation of query routing systems such as those described 

in this thesis is not inextricably tied to the Phyle framework. Indeed, the best 

way to encourage a more widespread use of query routing-like systems for service 
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discovery in multiagent systems would be to implement t hem in more widely used 

agent frameworks. 

The increaaing complexity of emerging agent standards like FIPA places a greater 

workload on the implementors of agent frameworks. If compliance with these stan-

dards is to be maintained, this work is best spread amongs t a community following 

the open source model (Raymond, 1999). For this reason, we believe that the Phyle 

agent framework should not be further developed, and t h a t any future system de-

velopment should take the form of query routing implementat ions for other agent 

frameworks. 

8.2.2 Future Research Directions 

There are two areas related to query routing which we believe merit further inves-

tigation in the long term. The Erst is the robustness of the system, or its ability 

to cope with failures. The second is the effect of unfa i th fu l or incomplete forward 

knowledge on the e%rt required to process queries. 

Robustness and Failure 

An area which has not been addressed in this work is t h e robustness of a query 

routing system, tha t is the effects of failure on its behaviour. A promising approach 

to a s tudy of this area uses work from statistical physics, namely percolation theory 

(Grimmett , 1999). This is a branch of stochastic graph theory which deals with 

the effects of varying the interconnections in a r andom system, and is used in 

applications from studies of the spread of disease in a popula t ion to the porosity of 

concrete. 

The basic idea of percolation is tha t the overall connectivity of a system varies 

with the probability tha t a given connection exists in such a way tha t there is a 

sharp transition (a phase transition) from a disconnected t o a connected graph when 

the probability rises above some critical value (the percolat ion threshold). This 

transition is not unlike the transition to a small-world network noted by Wat ts and 

Strogatz (1998); in (Watts, 1999), Wat ts comments on t h e similarity between these 

effects. 

The topologies studied in Chapter 4 treated the connectivity of the network as 

an invariant property; in the given networks, the techniques used for propagating 

forward knowledge were such tha t there would exist an appropr ia te ly labelled path 

from the network entry points to every other node in the network. The existence of 
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these paths means that if there is an answer to a query somewhere in the system, it 

should be possible to locate that answer using the query routing technique (giving 

the query a perfect recall). 

There are two types of failure which may occur in a query routing system. In 

the first instance, a server may fail (known as site percolation). If this server holds 

the answer to the query, the query will obviously fail, aa will also be the case if 

there is a single path to the location of the answer and t h e failing server lies on tha t 

path. Secondly, one of the edges in the network may b e removed (known as bond 

percolation) as a server loses a piece of forward knowledge, which again affects the 

processing of a query if that edge is part of a path which leads to the answer to the 

query. 

Percolation theory is of interest to us because it allows us to determine which 

topologies are more robust in the event of failure. If t h e property which we are 

interested in maintaining under failure is the existence of correctly labelled paths 

to all destinations, the higher the percolation threshold for this property, the more 

robust the system. 

Robustness clearly has some relation with redundancy (of paths or forward 

knowledge, and not necessarily of the referrals generated f rom tha t forward knowl-

edge). Par t of a future study of the robustness of query routing systems should 

include an investigation of the effects of redundancy on robustness, and the condi-

tions under which redundancy best improves robustness (i.e. where to add redun-

dant forward knowledge to best improve robustness). 

Unfaithful Forward Knowledge 

In Section 3.3.2 we introduced the forward knowledge effectiveness measures, faith-

fulness and completeness, which are used to express how well an expression sum-

marises a set of records. 

In our investigation of the effects of different topologies on the behaviour of 

query routing systems, we have made the assumption t h a t the forward knowledge 

in the system is both faithful and complete. This is not necessarily the case (and in 

fact is frequently the opposite in real world systems), b u t it does give us an upper 

bound on the effectiveness of a query routing system. 

There are two main sources of inaccuracy in a query rout ing system's forward 

knowledge. It may either be inaccurate from the outset due to the poor summari-

sation of a server's records, or it may have been formed by the lossy aggregation of 

forward knowledge from other sources. 
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The former source was outside the remit of this study because we were primar-

ily interested in the database selection problem. While poor summarisation a%ct8 

the e&ctiveness of the use of query routing for database selection, it is not some-

thing that can be mitigated against within the realm of conventional query routing 

systems. If a database advertises its capabilities incorrectly, a query routing sys-

tem cannot detect this when it is building its routing tables without exhaustively 

querying such a database to determine whether the summary is correct. 

Lossy aggregation typically occurs because a server wishes to reduce the size 

of the intension of a forward knowledge summary (in order to reduce the storage 

or transmission requirements). The intension size is reduced by removing selected 

characteristics from the summary expression, but this hag the effect of increasing 

the extension of the summary so that it denotes more records than it should; the 

summary thus becomes unfaithful. 

Regardless of its source, the eEect of unfaithful forward knowledge is to introduce 

false positives in the process of database selection. While these do not necessarily 

affect the overall effectiveness of a query routing system (no records which match 

the query are hidden from the querying client), they do represent an increase in the 

effort required to obtain results from the system because the false positives are not 

identified as such until they are queried. 

A possible solution to these problems, and a fruitful area for future research, is 

the introduction of adaptive behaviour into query rout ing systems, so that queries 

which fail to produce predicted results are used to modify the forward knowledge on 

which the prediction of results was made. These modifications could be incremental 

and take the form of counter examples induced by failed queries (e.g. this server 

knows about Victorian novels, except those written by Charles Dickens), or they 

could be full updates in which a server which requests a new forward knowledge 

summary to replace one which it believes to be incorrect. In this way, adaptive 

forward knowledge could also be used as an alternative to the explicit updating of 

forward knowledge discussed in Section 3.3.5. 

The issue of which entity controls a query routing search reappears here, in that a 

server which issues referrals is unaware of the success or failure of the client to which 

it provided the referral unless that client informs it of i ts status (so behaving as a 

'good neighbour', which recalls Singh's work (Singh, 1998) on agent communication 

languages which are defined in terms of social norms). Conversely, a server to which 

has been delegated the task of processing a query is relying on its own forward 

knowledge, and so is aware when that forward knowledge gives false positives. 

149 



Relying on failure alone to trigger forward knowledge updates requires that there 

are suGcient queries to exercise the forward knowledge. Forward knowledge which 

relates to seldom queried servers would potentially have greater latency and could 

stagnate. In the worst case, a domain which combined infrequent queries with 

rapidly changing data would result 

A future study of the e%cts of unfaithful forward knowledge should therefore 

include an investigation into the comparative complexities of explicit forward knowl-

edge updates and adaptive forward knowledge, and the t ime complexity of conver-

gence in systems with adaptive forward knowledge. 
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Appendix A 

Domain Ontologies 

The ontologies in this appendix were designed and documented following the guide-

lines suggested by Skuce and Monarch (1990) and Uschold and King (1995). 

A . l Bibliographic Metadata 

Our ontology for bibliographic metadata (described in Section 6.6.1) is based on 

the terminology introduced by the Dublin Core effort (DCMI, 1999), and is centred 

around the concept of a record which bears metadata as a proxy for the resource 

which is being described (as opposed to a resource-centric view where the biblio-

graphic data is attached directly to the resource). 

152 



Name Type 
title Relation 
subject Relation 
description Relation 
type Relation 
format Relation 

language Relation 
relation Relation 
coverage Relation 
rights Relation 

date Relation 

identifier Relation 

contributor Relation 

creator Relation 

publisher Relation 

source Relation 

Description 
A name given to the resource described by this record. 
The topic of the content of t h e resource. 
An account of the content of t h e resource. 
The nature or genre of the content of the resource. 
The physical or digital manifes ta t ion of the resource 
(signified by a MIME media type). 
A language of the intellectual content of the resource. 
A reference to a related resource. 
The extent or scope of the content of the resource. 
Information about the rights held in or over the re-
source. 
A date associated with an event in the life cycle of 
the resource (typically the creat ion of the resource). 
An unambiguous reference to t h e resource described 
by this record within a given context (a URI). 
An entity responsible for mak ing contributions to the 
content of the resource. 
An entity primarily responsible for making the con-
tent of the resource. 
An entity responsible for mak ing the resource avail-
able. 
A reference to a source f rom which this resource is 
derived. 

Table A.l: Bibliographic Ontology 
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A.2 Hypermedia 

Our hypermedia ontology (introduced in Section 6.6.2) is based on the data model 

used by the Open Hypermedia Protocol (Reich et al., 2000). 

Name Type Description 

link Class An entity which provides an association (possibly 
navigable) between nodes. 

endpoint 
anchor 

Class 
Cla^s 

The endpoint (source a n d / o r destination) of a link. 
An entity which denote a n o d e or a location within 
a node (denoted by a locspec) which can be used as 
the endpoint of a Hnk. 

locspec Class A location specifier which denotes a particular point 
or range in a node. 

node Class An entity which may be linked. 
direction 

has-endpoint 

has-link 

has-anchor 

has-node 
type 

has-locspec 

content 

Relation Indicates the direction of a particular endpoint: 
source, destination or bi-directional. 

Relation Indicates tha t a link contains a particular endpoint. 
The inverse of the has-link relat ion. 

Relation Indicates tha t an endpoint is used as part of a partic-
ular link. The inverse of the has-endpoint relation. 

Relation Indicates the anchor with wi th a particular endpoint 
is associated. 

Relation Indicates the node to which a n anchor refers, 
Relation Indicates the media type of a node: image, text, au-

dio, etc. 
Relation Indicates the location within a node to which an an-

chor refers. 
Relation Indicates the location of the content of a node (i.e. 

the address of a file or resource) 

Table A.2: Hypermedia Ontology 
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A.3 White Pages 

Our White Pages ontology (described in Section 6.6.3) is based on a simplified 

version of the class model of the X.500 directory (ITU, 1993b,c) and on the schema 

used by the Department of Electronics and Computer Science (ECS, 1999). 

Name Type Description 
person Class A person. 
group Class A named group of people or other organisation (de-

partment , research group, e tc ) . 

email Relation The email address of a person. 
in-group Relation Indicates memberhop of a person in a group. 
contact Relation Indicates the person who is the contact name for a 

group. 
username Relation Indicates the username of a person. 
name Relation The name of a group (required). 
fax Relation The fax number for a person. 
telephone Relation The telephone .number for a person. 
homepage Relation The URI of the homepage of a person or group. 
personal-name Relation The personal (Grst) name of a person. 
family-name Relation The last (family) name of a person. 
title Relation The title (Mr, Dr, Rev, etc) of a person. 

Table A.3: White Pages Ontology 
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Appendix B 

Sample Simulation Data 

This appendix contains a sample dataset which was generated for use with the 

Paraphyle simulator. This dataset describes a network of agents (labelled hier-1 

to hier-2l) which form a hierarchy of three levels in which each agent has four 

direct children (see diagram in Figure B.2). 

The network is represented as a list of agents; each agent in the list is represented 

as a list as shown in Figure B.l. The first item in the list (line 1) is a symbol used 

as the agent name, in this case h ier -15 . The second line is the content summary 

for the agent, which in this case is the expression voc-33 fl voc-98 • voc-118. 

The remaining lines give the forward knowledge held by the agent, represented as 

a list of pairs where the first part of each pair is the forward knowledge summary 

expression and the second part is the name of the agent about which this forward 

knowledge is held. For example, the agent hier-15 has forward knowledge about 

agent h i e r - 1 2 such that it believes that h i e r - 1 2 knows about expressions which 

are subsumed by voc-121 fl voc-114 fl voc-145. 

1 (hier-15 

2 (voc-33 VOC-98 voc-118) 

3 ((((voc-176 voc-66 voc-78)) . hier-11) 

4 (((voc-121 voc-114 voc-145)) . hier-12) 

5 (((voc-40 voc-9 voc-101)) . hier-13) 

6 (((voc-64 voc-115 voc-101)) . hier-14))) 

Figure B.l: Sample dataset for a Paraphyle agent 
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Figure B.2: Graph for sample dataset 
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((hier-21 

(voc-73 voc-62 voc-19) 

((((voc-17 voc -90 voc-49) 
(voc-75 voc-3 voc-32) 

(voc-153 voc-83 voc-147) 

(voc-196 VOC-75 voc-143) 

(voc-101 voc-93 voc-191)) . hier-5) 

(((voc-99 voc-192 voc-138) 

(voc-1 voc-164 voc-117) 

(voc-178 voc-114 VOC-94) 

(voc-77 voc-84 voc-188) 

(voc-125 voc-5 voc-13)) . hier-10) 

(((voc-33 voc-98 voc-118) 

(voc-176 voc-66 voc-78) 

(voc-121 voc-114 voc-145) 

(voc-40 voc-9 voc-101) 

(voc-64 voc-115 voc-101)) . hier-15) 

(((voc-193 voc-92 voc-143) 

(voc-114 voc-186 voc-10) 

(voc-67 voc-37 voc-132) 

(voc-143 VOC-94 voc-126) 

(voc-120 voc-168)) . hier-20))) 

(hier-20 

(voc-193 voc-92 voc-143) 

((((voc-114 voc-186 voc-10)) . hier-16) 

(((voc-67 VOC-37 voc-132)) . hier-17) 

(((voc-143 voc-94 voc-126)) . hier-18) 

(((voc-120 voc-168)) . hier-19))) 

(hier-19 

(voc-120 voc-168) 

0) 

(hier-18 

(voc-143 VOC-94 voc-126) 
( ) ) 

(hier-17 

(voc-67 voc-37 voc-132) 

0) 

(hier-16 

(voc-114 voc-186 voc-10) 

0) 
(hier-15 

(voc-33 voc-98 voc-118) 

((((voc-176 VOC-66 voc-78)) . hier-11) 

(((voc-121 voc-114 VOC-145)) . hier-12) 

(((voc-40 voc-9 voc-101)) . hier-13) 

( ( ( v o c - 6 4 voc-115 voc-101)) . hier-14))) 
(hier-14 

(voc-64 voc-115 voc-101) 
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0 ) 

(hier-13 

(voc-40 voc-9 voc-101) 

0 ) 

(hier-12 

(voc-121 voc-114 voc-145) 

( ) ) 
(hier-11 

(voc-176 voc-66 voc-78) 

0) 
(hier-10 

(voc-99 voc-192 voc-138) 

((((voc-1 voc-164 voc-117)) . hier-6) 

(((voc-178 voc-114 voc-94)) . hier-7) 

(((voc-77 voc-84 voc-188)) . hier-8) 

(((voc-125 voc-5 voc-13)) . hier-9))) 

(hier-9 

(voc-125 voc-5 voc-13) 

0) 
(hier-8 

(voc-77 voc-84 voc-188) 

()) 
(hier-7 

(voc-178 voc-114 voc-94) 

0 ) 

(hier-6 

(voc-1 voc-164 voc-117) 

( ) ) 
(hier-5 

(voc-17 voc-90 voc-49) 

((((voc-75 voc-3 voc-32)) . hier-1) 

(((voc-153 voc-83 voc-147)) . hier-2) 

(((voc-196 VOC-75 voc-143)) . hier-3) 

(((voc-101 VOC-93 voc-191)) . hier-4))) 

(hier-4 

(voc-101 VOC-93 VOC-191) 

( ) ) 
(hier-3 

(voc-196 VOC-75 v o c - 1 4 3 ) 

( ) ) 
(hier-2 

(voc-153 VOC-83 voc-147) 

( ) ) 
(hier-1 

(voc-75 voc-3 voc-32) 
( ) ) ) 
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Glossary 

ACL Agent Communication Language The language used to express the intent of 

the messages that an agent sends. 

Cluster A group of related data objects. 

Centroid A type of summary object which summarises a number of data objects, 

most commonly those which form a cluster. 

Cluster representat ive A summary of a cluster. 

Content s u m m a r y A summary of the data held by an entity in a distributed 

information system. 

D a t a access The task of retrieving a particular da ta object from a distributed 

information system. 

Database se lect ion The task of identifying the entity within a distributed database 

which can satisfy a particular query. 

F I P A Foundation for Intelligent Physical Agents Standards body which has de-

fined a standard ACL (the FIPA ACL) and a knowledge representation lan-

guage (si, or semantic language). 

Forward knowledge Information held by an index server which contains a con-

tent summary for another server, and which is used for query routing. 

Index server A server in a distributed information system which holds forward 

knowledge about other servers. 

KIF Knowledge Interchange Format A knowledge representation language defined 

by the Knowledge Sharing Effort. 

K Q M L Knowledge Query Manipulation Language An ACL defined by the Knowl-

edge Sharing Effort. 

Knowledge Sharing Effort DARPA-funded US agent standardisation effort which 

produced KQML and KIF. 

Query rout ing A technique for distributed search which uses forward knowledge 

to constrain the scope of the search. 
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Resource discovery The task of searching a distributed information system for 

data objects with particular characteristics 

Service discovery The task of searching a distributed information system for en-

tities which can provide a particular service. 
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