
AN AGENT SYSTEM FOR QUERY ROUTING SEARCH

By

Nicholas Miles Gibbins

A thesis submitted for the degree of

Doctor of Philosophy

Department of Electronics and Computer Science,

University of Southampton,

United Kingdom.

February 2002

UNIVERSITY OF SOUTHAMPTON

ABSTRACT

FACULTY OF ENGINEERING

ELECTRONICS AND COMPUTER SCIENCE DEPARTMENT

Doctor of Philosophy

An Agent System for Query Routing Search

by Nicholas Miles Gibbins

This thesis examines the issues affecting the design and implementation of scal-

able agent-baaed systems which use query routing for resource or service discovery.

Query routing is a type of informed distributed search in which agents reason about

the capabilities of other agents in order to constrain the scope of a query and the

cost of processing it.

The technique of query routing bears many similarities to the use of mediators

in multi-agent systems. We discuss the relation between mediator-based systems for

service discovery in multi-agent systems and the use of query routing in distributed

information systems, and present a novel model of the query routing task which

we have used to examine the complexity and scalability of a number of commonly

encountered architectures for resource or service discovery.

This theory-based approach is complemented by our practical experiences of

building query routing systems using our simple agent framework, Phyle. Finally,

we perform an empirical study of the behaviour of different query routing systems

in order to validate our model, using our simulator for query routing systems,

Paraphyle.

This thesis is dedicated to Isobel Stark,

and to the memory of Catherine 'Kit' Manning (1919-2002).

Contents

Chapter 1 Introduction 1

Chapter 2 Literature Review 4

2.1 Introduction 4

2.2 Distributed Search Systems 4

2.2.1 Domain Name Service 5

2.2.2 Harvest 6

2/13 CCSONiHae&&n%^ 7

2.2.4 Referral Whois 8

2.2.5 Whois++ 10

2J16 flO/UOS 11

2.2.7 Common Indexing Protocol 12

2.&8 :%J%IOand LDVlP 13

2.2.9 Nomenclator 16

2L2.10 Z39Jm 17

2.2.11 Uniform Resource Name Resolution 18

2/112 Sl^lRTS 19

2.2.13 Napster 19

2.2.14 Gnutella 21

2.2.15 Freenet 23

2.3 Agent Technologies 24

2.3.1 The DARPA Knowledge Sharing Effort 26

2.3.2 FIPA 29

2.4 Bibliographic Metadata 30

2/Ll NiAfK] 31

2.4.2 lAFA 32

2.4.3 Summary Object Interchange Format 32

2.4.4 Platform for Internet Content Selection 33

IV

2.4.5 Dublin Core 33

2.4.6 Resource Description Framework 33

2.5 Hypertext and Hypermedia 34

2.5.1 Xanadu 35

2.5.2 Microcosm-TNG 35

2.5.3 HyperDisco 36

2.5.4 Hyper-G/Hyper Wave 36

2.5.5 World Wide Web 36

2.5.6 DLS 37

2.5.7 Open Hypermedia Protocol 38

2.5.8 Agents and Hypermedia 38

2.6 Summary 38

Chapter 3 A Model of Query Routing Search 39

3.1 Introduction

3.2 Problem Statement

3.3 Foundations

3.3.1 Retrieval Effectiveness

3.3.2 Forward Knowledge Effectiveness .

3.3.3 Relevance and Structural Matching

3.3.4 Modelling Retrieval

3.3.5 Retrieval Efficiency

3.4 Delegation and Referral

3.5 Modelling Forward Knowledge

3.5.1 The Forward Knowledge Graph . .

3.6 Summary

39

40

41

41

42

44

45

50

52

54

55

57

Chapter 4 Query Routing and Network Topology 58

4.1 Introduction 58

4.2 Forward Knowledge Distribution 58

4.3 Ordered Networks 59

4.3.1 Single index server 60

4.3.2 Distinguished index servers 61

4.3.3 Non-distinguished index servers 63

4.3.4 Multiple hierarchies 63

4.3.5 Search expansion 64

4.3.6 Complete Graph 67

4.3.7 Councils 67

4.4 Disordered Networks 68

4.4.1 Flooding 72

4.4.2 Distance Vector Routing 72

4.4.3 Path Vector Routing 74

4.4.4 Link State Routing 74

4.4.5 Hierarchical Routing 75

4.5 Mutual State 77

4.6 Summary 80

Chapter 5 The Phyle Agent Framework 81

5.1 Introduction 81

5.2 The Phyle Agent Framework

5.2.1 Agent Naming

5.2.2 Agent Environment .

5.2.3 Message Handling . .

5.2.4 Subsumption Lattices

5.3 The Paraphyle Simulator . .

5.4 Summary

82

83

84

86

88

92

93

Chapter 6 An Agent System for Query Routing Search 94

6.1 Introduction 94

6.2 Query Routing Protocols 94

6.3 Representing Forward Knowledge 99

6.4 Extensionality 104

6.5 Mutual Search Algorithms 106

6.6 Domain Ontology Design 110

6.6.1 Bibliographic Data I l l

6.6.2 Hypermedia 114

6.6.3 White Pages 116

6.7 Summary 117

Chapter 7 Experimentation 118

7.1 Introduction 118

7.2 Approach 118

7.3 Data Generation 120

7.4 Experiments 122

VI

7.4.1 Single Index Server

7.4.2 Hierarchy

7.4.3 Hierarchy with Search Expansion

7.4.4 Complete Graph

7.4.5 Councils

7.4.6 Flooding

7.4.7 Distance Vector

7.4.8 Link State

7.5 Discussion

7.6 Summary

122

124

127

129

131

134

136

138

141

143

Chapter 8 Further Work and Conclusion 144

8.1 Conclusion 144

8.2 Future Work 146

8.2.1 Future System Development 146

8.2.2 Future Research Directions 147

Appendices 151

Appendix A Domain Ontologies 152

A.l Bibliographic Metadata 152

A.2 Hypermedia 154

A.3 White Pages 155

Appendix B Sample Simulation Data 156

Glossary 160

Bibliography 162

Vll

List of Figures

2.1 The Harvest Architecture 7

2.2 RWhois referrals 9

SL3 \VHOKH-+rebnak 11

2.4 The X.500 Directory Information Tree 14

2.5 The Napster Architecture 20

2.6 Search flooding in Gnutella 22

2.7 KQML Facilitator 28

2.8 The FIPA Agent Platform 29

3.1 Retrieval Mapping with Indexing Function 45

3.2 Refined Retrieval Model 46

3.3 Delegation and Referral 53

3.4 Path extension 56

3.5 Summary labels for parallel paths 56

3.6 Summary labels for diverging paths 57

4.1 Single index server 60

4.2 Hierarchy of distinguished index servers 61

4.3 Constructing path labels 62

4.4 Hierarchy of index servers 63

4.5 Multiple hierarchies 63

4.6 Expansion labels (k) 66

4.7 Complete graph 67

4.8 Councils 68

4.9 Constructing small world networks 69

4.10 Augmented Routing Tables 71

4.11 Distance Vector routing table 73

4.12 Hierarchical Routing 76

4.13 Redundant referrals 79

Vlll

5.1 Conceptual layers in Phyle

5.2 Bus Communications

5.3 Agent Naming System URL Schema

5.4 Finite state machine for FIPA Request protocol

5.5 Lattice Insertion

6.1 FIPA query-ref and response

6.2 Referral query as compound request

6.3 Referral query as separate messages

6.4 Exception-based Referrals in SoFAR - server . . .

6.5 Exception-based Referrals in SoFAR - client . . .

6.6 Passing FIPA SL encoded forward knowledge . . .

6.7 FIPA SL encoded forward knowledge exchange . .

6.8 FIPA SL referral query

6.9 Aggregating FIPA SL encoded forward knowledge

6.10 Pull model forward knowledge exchange

6.11 Redundant referrals

6.12 Aggregated Forward Knowledge

6.13 Pruned referral query

6.14 The Dublin Core Ontology

6.15 OHP Linking Model

6.16 The OHP Ontology

6.17 The Directory Ontology

7.1 Results for single index server

7.2 Results for hierarchy

7.3 Results for hierarchy with large vocabulary

7.4 Results for hierarchy with search expansion

7.5 Results for complete graph

7.6 Results for council

7.7 Comparison between council and hierarchy with search expansion

7.8 Results for flooding

7.9 Results for distance vector

7.10 Results for link state

7.11 Control complexity comparison 142

B.l Sample dataset for a Paraphyle agent 156

IX

82

84

84

87

91

95

97

97

98

98

101

101

102

103

104

106

109

110

114

115

116

117

123

125

126

128

130

132

133

135

137

140

B.2 Graph for sample dataset I57

List of Tables

3.1 Retrieval Effectiveness Table 41

3.2 Forward Knowledge Effectiveness Table 43

3.3 Syntax and semantics of ACM 47

4.1 Summary of Query Routing Complexity by Topology 78

A.l Bibliographic Ontology 153

A.2 Hypermedia Ontology 154

A.3 White Pages Ontology 155

XI

List of Algorithms

4.1 ADAPTED-DIJKSTRA 75

5 . 1 M O S T - S P E C I F I C - S U B S U M I N G 8 9

5.2 LATTICE-FIND-PARENTS 90

5.3 LATTICE-FIND-CHILDREN 91

5.4 LATTICE-DELETE 92

6.1 SEARCH 107

Xll

Acknowledgements

I would like to thank the following people for the help and support they have given

me during the course of this work:

• My supervisor, Wendy Hall, for her comments and guidance.

® Nigel Shadbolt, for making it possible for me to balance writing this thesis

against a full time job.

® The members of the Intelligence, Agents and Multimedia research group, cur-

rent and previous officemates in particular, for four years of thought provoking

and informed discussion.

• The members of totl.net for providing welcome distractions when needed.

• Isobel Stark, for keeping me sane even while I was driving her mad.

The work in this thesis was financially supported by an EPSRC research stu-

dentship.

Xlll

Chapter 1

Introduction

During the last decade, the dramatic growth of the Internet and the World Wide

Web have only been surpassed by our growing expectations of their effects on our

future lives. Hypertext, for years an academic curiosity, is set to become a medium

with penetration on a par with television or the printed word. The environment of

our libraries and teaching institutions is set to change as the rising tide of digitally

available information begins to augment or supplant the traditional physical hold-

ings of ink-and-paper resources. Our direct involvement in day-to-day commercial

transactions will decline as we rely on software agents which we have empowered

to make buying decisions on our behalf. Behind much of this hyperbole lies an as-

sumption made by many of the more vociferous Internet advocates, that the growth

of the Internet is effectively unbounded. Unfortunately, this assumption is incorrect

in one key area, that of searching the World Wide Web.

At present, there are two distinct ways of searching the Web. Individual web

servers may have a search facility which covers the pages on that server, but this

is only of use if the user has prior knowledge of which server is likely to hold the

documents which they need. The alternative to this are the web search engines,

centralised indices of the Web which are constructed by a brute force traversal of

the Web that index each page found. The largest of these services - Altavista\

Google^, Lycos^ and so on - are household names, and provide a way for users to

search the contents of many web servers at once. They are a vital part of the web

infrastructure, but there are signs that they are increasingly less able to provide an

effective service as the Internet and World Wide Web grow.

^http;//www.altavista.com/
^http;//www.google.com/
^http://www.lycos.com/

http://www.altavista.com/
http://www.google.com/
http://www.lycos.com/

Studies of the major search engines by Lawrence and Giles (1998, 1999) esti-

mated the size of the publicly indexable Web to be in the region of 320 million

pages in 1998, rising to 800 million pages in 1999. Of these pages, at most 16%

(and frequently less) were indexed by the search engines studied in 1999, and this

proportion had fallen since the first survey in 1998. The latency of index records

also grew, with a typical wait of several months for new pages to be indexed, and

as many as 10% of returned links pointing to non-existent resources. Much of this

is due to the logistical difficulties of performing a 'full' web traversal in reason-

able time. At the time of writing, estimates of Web size exceed two billion pages

(Cyveillance, 2000), yet the largest published indices have only just reached one

billion pages (Google, 2000). In short, the existing solutions are not scaling well.

The advent of the next generation Semantic Web (Berners-Lee et al., 2001),

which posits the existence of intelligent agents that can reason using ontologically

marked up content found on the Web, is set to highlight the inadequacies of the

current approaches to searching large scale distributed systems by reducing the

intrinsic granularity of the Web from webpage-level artifacts to entities more akin

to facts in a expert system knowledge base.

The task of searching a distributed system for objects with certain desired char-

acteristics, known as resource discovery, is found in many domains other than the

Web. Hypermedia link resolution in hypertext systems with first class links, white

page directory lookup, agent mediation and bibliographic search must all perform

resource discovery in a distributed context.

One solution which addresses the question of scalability of the resource discovery

task relies on the distributed nature of the system to spread the index-building load.

In the Web domain, for example, this would entail each web server indexing its own

documents. Searching for documents in this distributed environment requires that

the query be evaluated (logically, at least) on each server. If each server passes a

summary of their contents to the other web servers, a user's client can locate and

query only those servers with relevant content, a technique which is known as query

routing. We can view this process as the composition of three subtasks: database

selection, in which a web server containing possibly relevant material is located;

query evaluation, in which documents matching the query criteria are identified; and

data access, in which the identifiers are used to retrieve the matching documents. In

some domains, the first two tasks are collectively known as name resolution, since

they turn a descriptive name into an address for a resource.

For query routing to work, the servers must have sufficient a priori knowledge

about the contents of other servers to be able to guide the user's client to its

destination. This knowledge may be characterised as a belief about the knowledge

of another server. Combined with the distributed, ad-hoc nature of the problem, this

suggests that (Jennings, 2000), which models computation

as the social interactions in a group of autonomous processes, is a suitable technique

for studying query routing systems. Indeed, the resource discovery task is closely

related to the service discovery task or connection task (Decker et al., 1996) in

which agents in a multi-agent system attempt to locate other agents which can

provide them with a service that they need. Service or resource discovery services

are an essential component of loosely coupled systems like multi-agent systems,

as noted by Gasser (2000). Brazier et al. (2001) note that there have been few

studies of multi-agent system scalability to date, even though this should be an

important consideration when deploying agent systems, and that the majority of

agent scalability problems are not agent problems per ae, but are related to the

services provided for name resolution and resource or service discovery.

In this thesis, we study the suitability of query routing as a technique for

database selection as part of the resource discovery task, based on an experimental

implementation of an agent-based query routing system. In Chapter 2, we review

existing systems for resource or service discovery, some of which make use of query

routing, and summarise relevant previous work in our chosen problem domains of

hypermedia, white pages directories and bibliographic metadata. Chapter 3 con-

tains a model of the query routing task based on existing information retrieval

formalisms, while in Chapter 4 we examine the effects of the underlying topology

of a query routing system on its behaviour and scalability. In Chapter 5 we present

Phyle, an agent-based system for query routing search, and Paraphyle, a simulator

for large Phyle systems, and in Chapter 6 we discuss the design of agent-based sys-

tems which use query routing, as well as knowledge representation ontologies for our

chosen problem domains. Finally, Chapter 7 contains an empirical study of Phyle's

behaviour in different network topologies, while Chapter 8 contains our recommen-

dations for building effective and scalable query routing systems, and outlines a

number of potential avenues for future research.

Chapter 2

Literature Review

2.1 Introduction

The resource discovery task appeeirs in several domains, and consequently there

have been a number of attempts to construct systems which perform well at it. In

this chapter, we concentrate on the contributions from traditional computer science,

artificial intelligence (by way of multi-agent systems) and library and information

science by studying exemplar systems and other previous work from these areas.

In addition, we summarise key technologies from our specified problem domains of

bibliographic search, hypertext link resolution and white pages directories.

2.2 Distributed Search Systems

Distributed search is used here as a catch-all which encompasses both 'pure' resource

discovery systems and other systems which, while not strictly resource discovery,

still have the concept of searching for objects which satisfy some criteria. In this

latter category we include systems for name resolution and federated databases.

There are important differences between this category and resource discovery, not

least the type of queries which are formulated and the type and number of answers

which are returned.

As noted in the previous chapter, resource discovery systems take a query and

return a number of objects which satisfy the query. These objects need not all be

distinct; some may be copies or equivalent objects, but most will be different. In

contrast, a name resolution system takes a query (a name) and returns the address

to which the name resolves. More than one address may be returned, but these are

all taken to be references to the same object, or copies of tha t object.

Federated databases (Sheth and Larson, 1990) are composed of a collection of

cooperating but autonomous databases, possibly heterogeneous. Retrieving data

from a federated database requires that a query be directed to the appropriate con-

stituent databases. The task of choosing candidate databases is known as database

and is a key part of the resource discovery task in a distributed informa-

tion system.

There are a number of different Internet-based distributed search, information

retrieval or name resolution systems, some more widespread than others. These

approach the distributed search task in different ways and focus on different aspects

of the problem. In addition, the growth of interest in digital libraries (whose contents

are digital artifacts rather than the physical artifacts held by traditional libraries

- paper books and journals, for example) has led to the creation of a number of

systems for resource discovery in digital libraries (Dushay et al., 1999; French et al.,

1998; French and Viles, 1996; Fuhr, 1999; Liu, 1999).

2.2.1 Domain Name Service

Description

The Domain Name System (Mockapetris, 1987a,b) is the most widespread dis-

tributed search system in use on the Internet, and is used to map domain names

(eg. s tone.warwick.ac.uk) onto Internet addresses (eg. 137.205.224.4). DNS is

a replacement for an earlier system of name resolution in which a central database

(the HOSTS. TXT file) was replicated to all of the machines on the network. The ef-

fort involved in propagating updates to this database increased as the square of the

number of network hosts, even if the actual resolution of names increased linearly.

Internet domain names are hierarchical, and so DNS breaks the namespace into

zones (eg. . so ton .ac .uk) , each of which has a number of nameservers which hold

the resource records (the components of the name-address mapping) for the hosts

in that zone. When a nameserver is queried about hosts about which it does not

hold authoritative data (ie. they are not within its zone), it has three options:

1. give a non-authoritative response from cached data if present,

2. issue a referral to another nameserver which is better placed to answer the

query,

3. issue the same query to another nameserver which is better placed to answer

the query

The referral information is an expression of the expected knowledge of another

nameserver, and is derived from the name hierarchy; a nameserver will typically

have pointers to other name servers that can be used to lead to information from

any part of the domain tree.

The latter two responses above illustrate two general approaches to distributing

queries. In the first (the iterative case), the nameserver issues a referral and lets the

client pursue the query, whereas in the second {recursive) case, the server pursues

the query on behalf of the client (ie. the client is effectively delegating the whole of

the query task to the server). The difference between these two is further discussed

in Section 3.4.

Discussion

DNS is a name resolution system which returns a single address binding for a name,

rather than an information retrieval system which returns all records which match

a query. The structure of Internet domain names makes it comparatively easy to

create an efficient name resolution system, but it is unlikely that this would be the

case if DNS were applied to other problem domains.

2.2.2 Harvest

Description

The Harvest Information Retrieval System (Bowman et al., 1995b,a) was originally

designed as a general purpose IR tool. Rather than concentrating on the efficient

retrieval of information from existing indices, the Harvest project concentrated on

the construction of those indices.

In a conventional Web-based indexing system (Koster, 1994) such as Altavista,

an autonomous program or robot traverses each server which is to be indexed,

retrieving each of the objects thereon and adding it to its database. Although there

are techniques for minimising the load that this traversal places on the server, it

can be a resource intensive operation because under earlier (but still used) versions

of the Hypertext Transport Protocol (Berners-Lee et al., 1996) each object retrieval

creates a separate TCP connection.

Harvest reduces the network load inherent in remote traversal index building

by using software on each site to index the local objects, and then submitting a

summary of the objects to the index server. The components of a Harvest system

are thus divided into three groups;

6

Broker

Broker Broker

Gatherer Gatherer Gatherer

1 L i 1 i 1

Provider Provider Provider

Figure 2.1: The Harvest Architecture

Providers: These are the information servers whose contents are indexed by the

Harvest system.

Gatherers: These collect and extract indexing information from the providers.

Brokers: These provide the indexing and a query interface to the gathered infor-

mation.

The components of a Harvest system are organised as shown in Figure 2.1. The

brokers in the system are commonly arranged in a hierarchy, with lower-level brokers

passing a filtered version of the summaries that were received from the gatherers to

a broker in the level above, which can then provide a refined search capability to

users.

Discussion

Harvest does not provide a referral mechanism to guide the client during the resource

discovery task; a query sent to a broker can only return references to objects on the

providers which the broker's gatherers index. Any global searches over the set of

brokers are carried out in a brute force fashion, the query being replicated to each

in turn.

2.2.3 CCSO Nameserver

Description

The CCSO Nameserver (Hedburg and Pomes, 1998) (also known as 'Ph') is a white

pages database designed to hold a relatively small amount of information about a

large number of entities (eg. an institutional telephone directory), and to provide

networked access to that information. These nameservers are local, in that they

cannot refer a client to another server which might contain the desired information,

although it is possible for a server to contain a list of other servers which can be

retrieved by the clients.

Discussion

Ph cannot be used as the basic technology for distributed search, but it is widely

used to serve collections of data (in Harvest terms, it acts as a provider). Ph also

highlights a common problem with the resource discovery task; if more than one

distinct database is to be queried, the databases must either have the same core

schema (for a field-based system like Ph, the names of possible fields and their uses)

or there must be a way of converting one schema into another.

2.2.4 Referral Whois

Description

Whois (Harrenstien et al., 1985), the predecessor to RWhois, is an Internet white

pages service containing administrative information such as contact names and ad-

dress for Internet hosts and domains. The original Whois system consisted of a

small number of centralised databases containing all the records in certain top-level

domains (eg. one for .com and .org, one for .mil and .gov). If a user did not

know which database to query (eg. they had a user's name but not their domain),

they had to query each Whois server in turn.

RWhois (Williamson et al., 1997) improves upon this by creating a hierarchical

namespace for the records, based upon the domain names from DNS. This names-

pace is broken down into a number of authority areas, much like DNS zones, which

contain the administrative information for certain types of hosts or domains (for

example, the . uk authority area would contain information for the subdomains of

.uk, and for the hosts in those domains).

An RWhois server for a given authority area is able to give authoritative answers

for queries about hosts and domains within that area. However, in the event that an

authority area is further subdivided (to . ac.uk, . org.uk and . co. uk, for example),

the server for the parent area is not able to give authoritative answers for queries

about hosts and domains in the subareas; the subareas have their own RWhois

servers which answer authoritatively.

8

punt rCfferral
\

Client query
bar bar

y. " reduction referra
/

1
\

r 1
eng.bar.com

f o o . c o m

s c i . f o o . c o m 8ec . foo .com

brunel. whitworth.
eng.bar.com eng.bar.com

Figure 2.2: RWhois referrals

Thus, RWhois servers may issue referrals to direct the client to another server

{query routing). RWhois identifies three distinct types of referral:

link: The authority area of the referred-to server is the same as that in the original

query (ie. the referral is to a server who will be able to authoritatively answer

the query).

reduction: The authority area is not equal to the query, but this referral is still

constraining the search space.

punt: No authority is sent; the client is being referred up the hierarchy and the

search expanded.

In Figure 2.2, the client is issuing a query about the host brunel .eng.bar .com

to the RWhois server with authority area bar.com. If the server issues a referral to

the server with authority area brunel .eng.bar .com, this is a link referral, whereas

a referral to the server with authority area eng.bar .com would be a reduction

referral. If the query was not within the authority area of the initial server (for

example, a query about the s c i . f o o .com domain), a punt referral would be issued

to the server's parent, whose authority area is . com.

Discussion

The structured white pages records which RWhois is designed to search for could be

modified to contain other types of data, such as bibliographic data. However, the

type of knowledge that RWhois servers have about each other is closely linked to

the hierarchy of authority areas, which places restrictions on the type of data each

server may hold. It would be possible to partition the search space into authority

areas based on a hierarchical subject classification like Dewey Decimal, but would be

9

impractical to do likewise based on a keyword subject classification - this restriction

may make RWhois unsuitable for some applications.

2.2.5 \A/hois-)--|-

Description

The WHOIS++ (Welder et al., 1996; Faltstrom et al., 1998) directory service is a

different refinement of the Whois network white pages service and is intended to

provide a simple, extensible white pages directory service using a template-based

information model and a flexible query model. While not designed to be a general

tool for distributed information retrieval, it addresses many of the problems which

affect such systems.

Like the RWhois system, WHOIS++ uses a system of referrals to direct the client

from one server to a more relevant server and constrain the search space. If a query

is formulated which does not specify any informat ion p e r t a i n i n g to the namespace,

RWhois a t t e m p t s a global search - an expensive propos i t ion . W H O I S + + does not

restrict the referrals to a simple hierarchy; bu t genera tes t hem from a mesh of

forward knowledge which describes the contents of servers (in much the same way

as Harvest summaries).

This forward knowledge comes in the form of centroids, partially instantiated

records which subsume some group of records. These centroids may be constructed

for any database schema; in WHOIS++ , the fields in a centroid contain a list of all

of the words which appear in the fields of the records which the centroid represents.

For example, a database containing three records, each of which has a contact name

field with respective values 'John Smith', 'Peter Jones' and 'Robert Smith', would

generate a centroid whose contact name field has the value 'John Smith Peter Jones

Robert'. This 'words-appearing-in' summarisation is performed independantly on

each field of the records. Although the WHOiS-|--f specification does not require

the elimination of stop words or stemming of terms, these techniques could easily

be used to improve the effectiveness of centroids.

In the WHOis+-f- system, the individual white pages records are held by a layer

of base level servers. The contents of these are summarised by a layer of indexing

servers which hold forward knowledge about the base level servers. In turn, these

may be described by the forward knowledge held by a second layer of indexing

servers, and so on. Unlike RWhois, there need not be a strong correspondence

between the domain name hierarchy and the records contained within a given server.

10

Client

Figure 2.3: WHOIS++ referrals

The flexibility of the centroid and mesh approach of the WHOIS++ system lends

itself to a rich range of server interactions (Faltstrom et al., 1996). A WHOIS+H-

server may issue two types of referral. The first, a servers-to-ask referral, is issued

when a server contains centroids for another server's contents which are relevant to

the query, and acts to constrain the search to more relevant servers. The second

type, the poUed-by referral, indicates that a centroid for the current server is held by

a different server (which may hold relevant centroids for other servers), and expands

the search.

Discussion

WHOIS++ is arguably a more flexible approach to a distributed white pages direc-

tory service than RWhois, but is not as widely used. Even if WHOIS++ has been

largely abandoned, elements of it have found use in other protocols; the Common

Indexing Protocol (see Section 2.2.7) is a further development of the index building

techniques in WHOIS++ , while later developments of RWhois use similar types of

forward knowledge. There are some notable omissions from the WHOIS++ spec-

ification. The RFCs do not explicitly state how a query is to be matched against

a centroid; it is not apparent whether all the words in a query phrase should be

present in a centroid for a referral to be generated.

Together with the RWhois system, WHOIS++ is the origin of the general idea

of query routing which this thesis explores.

2.2.6 ROADS

Description

ROADS (Resource Organisation and Discovery in Subject-based Services) (Knight

and Hamilton, 1996) is a project in the JlSC-funded Electronic Libraries (eLib)

11

programme. It uses WHOIS++ as the basis for a system which could be used

to build subject gateways, human-compiled metadata repositories for Internet re-

sources. The aim of the subject gateways is to provide a high-quality alternative to

existing WWW search engines (Altavista, Lycos) and resource directories (Yahoo).

The gateways were organised by subject clagsiAcation, with separate gateways

for medicine, business studies, history and so on. The role of ROADS in this was to

provide a means whereby queries of an interdisciplinary nature could be redirected

from one gateway to another, hence the use of WHOIS++ •

Discussion

ROADS is primarily of interest because it uses WHOISH—H for something other than

white pages directory information. ROADS uses lAFA templates (see Section 2.4.2)

to store details about the resources described by the subject gateways, although it

can translate these to a number of other formats (Dublin Core (DCMI, 1999), LDIF

(University of Michigan, 1996) and SOIF (Hardy et al., 1996)).

By virtue of a concrete implementation, ROADS clarifies some of the ambiguities

in the WHOIS++ specifications, most notably the matching of queries to centroids.

ROADS requires that all the words in a query phrase must be present in a centroid

for a referral to be generated to the server whose centroid it is.

2.2.7 Common Indexing Protocol

Description

The Common Indexing Protocol (Allen, 1997) is a further development of the dis-

tributed indexing techniques introduced by WHOIS-|-+ . CIP is not a protocol

for data access or information retrieval, but is used to pass indexing information

between servers to facilitate query routing (ie. by issuing referrals) and make fu-

ture data accesses by clients more efficient. CIP must therefore be used in concert

with a data access protocol, such as Z39.50 (Z39.50 Maintenance Agency, 1995) or

HTTP (Fielding et al., 1999), which is responsible for issuing the referrals that are

generated from the indices built by CIP.

The basic premise of index passing is that an index object generated by lossy

compression methods (such as those used by W H O i S - t - - t -) still contains useful hints

for routing queries. As servers collect index objects, they may choose to remove

the redundancy between those objects by aggregating them into one. The index

objects used in CIP are more sophisticated than the centroids found in WHOIS-H-

12

; not all queries will benefit from the same type of index, so new types of index

object may be created (using a common syntajc based on the MIME speciGcation

for structured Internet mail (Allen and Mealling, 1998). This introduces a problem

related to the schema conversion problem (of CCSO and others); a server may not

understand the index objects it receives. Such a heterogeneous network of servers

is advised against in CIP, though there may be situations in which it is necessary.

CIP identifies two modes in which index objects are passed between servers,

index polling and index pushing:

Index polling: This is a symmetric relationship between two servers which have

agreed to share index data. Both sides may initiate the dialogue; the polling

server may request an update of the polled server's index object, or the polled

server may notify the other if its index is modified.

Index pushing: In this mode, a server simply sends an index object to another

server which may then handle it as it pleases. This mode is intended for leaf

nodes which only want to pass their index objects to a higher level of the

mesh (cf. Harvest providers).

Discussion

CIP is a key specification on the IETF standard track, and promises a degree of

integration between other Internet technologies; later versions (v2.0 or higher) of

the Referral Whois protocol (Blacka et al., 1998) work with CIP meshes as well as

its own hierarchical referrals, and indices can be generated for LDAP (Wahl et al.,

1997) directories.

2.2.8 X.500 and LDAP

Description

X.500 (ITU, 1993a) is a distributed directory system (serving white pages informa-

tion) which forms part of the ITU Open Systems Interconnection family of stan-

dards. The directory provides a lookup facility by which OSI objects can be located

given only their name. Each object in the directory is described by a set of attributes

whose values form part of the name used to specify that object.

X.500 assumes that the directory information is organised as a tree (the Direc-

tory Information Tree), and that servers {Directory System Agents) provide access

to sections of the tree [Naming Contexts) to the clients {Directory User Agents).

The entries stored in the DIT are field based records consisting of a set of attributes

13

o=bbc o=soton o=xyz

ou=ecs ^ ou=registry ou=epg
ou=sa es

cn=fax cn=Nick Gibbins cn=Wendy Hall

, ou=legal

cn=fax

Figure 2.4: The objects in the hypothetical DIT shown above are labelled with their
RDNs, which may be concatenated to form the DN for an object. A DSA whose
naming context encompassed the subtree below o=soton would have the context pre-
fix o=soton,c=gb.

which are constrained by a schema. These schemas are described in subschema en-

tries held by each DSA. X.500 specifies a Directory Access Protocol which binds the

DUAs to the DSAs.

There are two types of name used to identify objects in the DIT. The first,

Momea, are part of X.500 while the second, nomea are a

concept introduced by Neufeld (1989).

Within each entry in the DIT, one or more attribute values may be marked

as distinguished. The set of the distinguished attributes on an entry are known

as the relative distinguished name of the entry, and must be unique amongst the

entry's siblings. The distinguished name for an entry gives its location in the DIT

by specifying a path from the root of the tree to the entry; the DN is the sequence

of RDNs for the entries on that path. Within such a strict hierarchy, it is often

not possible to determine a single place to put an object, so it is common to insert

aliases for an object in different places in the DIT; these aliases contains a reference

to the DN of the objects they stand for.

Because the directory is distributed, it may not be possible for one DSA to re-

solve a given distinguished name. In this case, the DSA uses the DNs of the root en-

tries in other naming contexts (the context prefix) to identify the DSA which is best

placed to handle the request. Each DSA has a set of references which describe how

its naming context fits into the DIT as a whole by specifying ancestor/child/cross-

reference relationships with the naming contexts of other DSAs. It is this set of

references which is used to generate referrals to other DSAs.

14

In summary, distinguished names are hierarchical and the distribution of the

X.500 naming service relies explicitly on this hierarchy. The hierarchy in the tree

is similar to that used by DNS and divides the space on geographical and or-

ganisational lines (a sample DN for a personal entry might be cn=Nick Gibbins,

ou=ECS, o=University of Southampton, c=gb).

If distinguished names identify objects by specifying the path taken to reach

them, descriptive names identify objects by listing the attr ibute values they must

have (known as naming attributes). The order of these at tr ibute values is unimpor-

tant, and the set of attribute values need only be populated enough to unambigu-

ously identify the object.

Descriptive naming therefore exists as a naming technique which does not rely

on the name hierarchy of the DIT for resolution. Also, because there may be more

than one descriptive name for an object, it is no longer necessary to populate the

DIT with alias entries to provide alternate names for objects. In order to resolve

descriptive names without resorting to global search, objects may have a unique

name (unique amongst the descendants of the immediate parent of the

object) which must form part of the descriptive name of all objects beneath it.

Although superficially similar to a context prefix, a registered name is a set, not a

sequence, of RDNs.

LDAP (Wahl et al., 1997) is a Lightweight Directory Access Protocol which

provides the DUA to DSA binding directly over TCP without much of the ses-

sion/ presentation overhead of X.500 DAP. Later versions of LDAP (v3 and higher)

allow DSAs to send referrals to DUAs; earlier versions (Yeong et al., 1995, 1993)

required the DSA to handle referrals itself (performing a recursive search, in DNS

terminology) without resorting to the return of such referrals to the DUA.

A related development, the Directory Assistance Service (Rose, 1991), provides a

different interface to X.500 DSAs by splitting the DUA functionality and interposing

a Directory Assistant between a simplified DUA (the DA-client) and the DSA. The

DA consists of two entities, a DAP-listener which speaks X.500 DAP to the DSA,

and a DA-server which uses a simpler protocol, the DA-protocol, to speak to the

DA-client. This division hides the handling of referrals from the user client in a

similar fashion to the earlier versions of LDAP.

Discussion

The OSI directory is a powerful model of distributed search which has already

found use in studies in domains other than white pages lookup (Barker (1992) gives

15

a description of an X.500-based system for accessing bibliographic information).

Although X.500 is a mature standard, it is not widely used, in part due to the com-

plexity of implementation and a lack of political will to create the infrastructure for

the DIT. The chief weakness of the OSI directory lies in the rigid naming hierarchy

which all objects must use. Alternate naming solutions such as descriptive naming

go some way to providing a more flexible naming system, but still rely on the DIT

for their distribution.

Other X.500-related standards such as LDAP have found wider acceptance, and

have been used in systems for general resource discovery (Roszkowski and Lukas,

1998) and hypertext link resolution (DeRoure et al., 2000).

2.2.9 Nomenclator

Description

The Internet Nomenclator Project (Ordille, 1998) aims to integrate publicly avail-

able CCSO servers into a tree reminiscent of the X.500 DIT and allow searching

across these servers, even though they may have differing database schemas. The

Nomenclator server takes a data fusion approach and provides a translation from

the schemas used by existing data repositories and CCSO servers (the local view)

to a global schema understood by Nomenclator clients (the world view).

Nomenclator adopts a descriptive naming approach (Ordille and Miller, 1993),

using referrals to successively constrain the search. It uses cached responses and

its knowledge of the translations between the world view and the local views to

ensure that a query expression is only passed on to those CCSO servers for which

the query is relevant. The Nomenclator system is thus divided into two groups of

components:

Distributed Catalog Service: This gathers metadata about the data reposito-

ries, such as schema types, attribute value constraints, translation techniques

and known patterns of data distribution across the repositories.

Query Resolvers: These use the metadata in the DCS to direct user queries to

appropriate data repositories. There may be several different resolvers in the

system (eg. for different organisations).

The referral mechanism resides in the DCS; catalog functions return a list of

references to data access functions (which can tell a resolver how to query specific

data repositories) or to other catalog functions and a template which describes the

scope of those functions. A list of the relevant data access functions is generated by

16

matching the referral templates against the query expression, in a similar way to

the matching of WHOIS++ centroids against queries. User clients talk to the query

resolvers using a common query protocol, the Simple Nomenclator Query Protocol

(Elliott and Ordille, 1998); there is no direct communication between the clients

and the DCS.

Discussion

Nomenclator differs from WHOIS++ in that the client does not directly query the

database servers, relying instead on the intermediate Query Resolver; the referrals

are contained within the server side of Nomenclator. Although the distributed

catalogue system may be distributed (as is suggested by its name), no specific

technique for its distribution, in particular for searching or data integrity, is given.

The generation of Nomenclator referrals is governed by a set of rules which,

summarised, require that a referral is only generated when a query is completely

covered by (more specific than) the template on a catalog function, and that the

templates used to generate speciAc referrals are in strictly increasing speciEcity. The

latter requirement prohibits the generation of referrals which increase the search

space; all referrals narrow the search.

2.2.10 Z39.50

Description

Z39.50 (Z39.50 Maintenance Agency, 1995) is an ANSI standard for an interoper-

ability protocol which allows clients to search a variety of databases. Originally

designed for use in libraries, it primarily deals with schemas for bibliographic data

(such as MARC records - see Section 2.4.1). Z39.50 allows a user to use a single

application to search multiple heterogeneous databases by using a common protocol

between all clients and servers (in Z39.50 terminology. Origins and Targets) and by

standardising the structure and semantics of the search query.

Discussion

As it stands, Z39.50 does not address distribution issues, but does represent one

approach to the problem of schema translation, namely by adopting a common

profile which provides a core set of functionality. The Bath Profile (Lunau et al.,

2000) is one such profile for Z39.50, designed for library functions such as the search

17

and retrieval of bibliographic records for inter-library loans or the construction of

union catalogues, and defines types of query which must be supported in addition to

schema definitions. Z39.50 shows some promise for query routing-based distributed

search, as the work on ZBroker by Lin at al. (1999) demonstrates.

2.2.11 Uniform Resource Name Resolution

Description

Uniform Resource Names (Moats, 1997) are a development of the Uniform Resource

Locator scheme (Berners-Lee et al., 1994b) used to reference Internet information

resources (Web documents, etc). Although they are not yet in common use, they

promise to provide a more sophisticated and robust namespace than is available at

present. Strictly speaking, URLs are addresses and not names, because they encode

the physical location of a resource as a machine name (here we overlook the use of

DNS tricks which allow a domain name to resolve to more than one IP address).

In contrast, URNs are names and not addresses, such as URNs for International

Standard Book Numbers, of which u r i : i sbn: 0123456789 is an example.

The translation of URN names to URL addresses involves an indirection mecha-

nism which also enables the transparent mirroring and caching of resources. This in-

direction requires a resolution service, and there have been several proposed. Some

of these resolution services harness existing technologies such as HTTP (Daniel,

1997) or DNS (Daniel and Mealling, 1997), but the problem of finding a suitable

resolver for a URN remains.

The Resolver Discovery Service (Sollins, 1998) proposes a three tier model for

URN resolution. At the bottom lie the URN resolvers which map URNs onto URLs.

Above that lies a mesh of RDS servers which accept a URN and return either a

reference to a URN resolver or a rule which generates a reference to another RDS

server. The top tier is occupied by a Global NID (Namespace ID) Registry which is

used to identify the first RDS server to be contacted. This model, though complex,

should allow the partitioning of the RDS database on boundaries other than those

of the name delegation denoted by the URN namespaces.

Discussion

The RDS takes a similar approach to name resolution to X.500 and DNS. The

search space is hierarchically partitioned with a server having authority over each

partition. However, the use of a global registry to identify which server to talk to

18

initially sets RDS apart from X.500 and DNS, which allow queries to be started

anywhere in the server tree. The RDS global registry is effectively a root server

which must be queried every time a URN is resolved; X.500 and DNS both allow

referrals which point towards the root of the server tree, so queries need not be

started at the root.

For example, given a query (or name to be resolved) of u r i : i sbn: 0123456789,

an RDS client would consult the global registry to find an initial resolver to query

(which would be the top-level resolver for the isbn type). If the query were initially

presented to a different resolver (for example, one for US patents), resolution would

fail because there would be no way to generate a referral to the global registry (and

from there to the appropriate resolvers for ISBNs).

2.2.12 STARTS

Description

STARTS (Gravano et al., 1997) is a Stanford proposal for a protocol and metadata

schema to be used by meta-search engines that take a query and submit it to

a number of other search engines (examples are MetaCrawler or Dogpile). The

merging of returns from the queried sources is difficult because they may be very

different: they may not determine relevance in the same way, nor use the same

ranking algorithms, nor even the same query language.

Discussion

STARTS informs resource discovery by providing a way for a meta-search engine to

assess the capabilities of other sources, but is not a technique for distributed search

as such, rather a component of a heterogeneous distributed search system.

2.2.13 Napster

Description

Napster is a system designed to enable Internet users to share .mp3 files (MPEG

Layer 3 digital audio) amongst themselves. Although it has attracted a lot of

attention (and not a few lawsuits) due to the uses to which it has been put and

their implications with respect to copyright and fair use, it remains a good example

of a distributed search system.

19

Napster server

Figure 2.5: The Napster Architecture

All Napster users run a piece of software which is simultaneously a search client

and a server. When the Napster software is started, it builds a catalogue of the

user's files (or rather, those of the user's files which they wish to share) and sends

this description to a central index server. When a Napster user wishes to find a

particular file, the client sends a query to the central index server which compares

the query to its collection of catalogues and returns a list of the locations of likely

hits, these locations being other Napster clients. The client then attempts to fetch

the file from these locations, treating the remote Napster clients as file servers.

Discussion

Although it has proved phenomenally successful, the design of Napster is flawed in

that it contains a single point of failure, namely the central index server, without

which the system cannot work. This weakness has been aptly demonstrated both

by the actions of a number of US universities which now block access to the Nap-

ster server with their firewall in order to reduce the network traffic that Napster

generates, and by a recent court ruling ordering the closure of the index server.

The index server also bears a disproportionate part of the system load, because all

client interactions are mediated through it.

While the Napster service was still in operation, the issue of the server bottle-

neck was addressed by providing a number of different servers and letting the user

choose which server their client connected to. However, there was no communica-

tion between these servers, so .mp3s known to one server would not be known by

another. This rather defeated the purpose of distributing the server functionality,

because users would either pick the 'best' server (being the one which knew about

the most . mp3s, and so the one which had to support the greatest number of client

connections) or would query each one of the servers in turn.

20

2.2.14 Gnutella

Description

Gnutella is a system with similar origins to those of Napster, although it enables

the sharing of more than just .mp3 files and has a markedly different architecture.

In Gnutella there is no central index server; instead, queries are broadcast to the

network at large.

When a Gnutella server joins the network, it sends out a flood message to

discover the other servers on the network. All flood messages in the system contain

a globally unique ID which should be shared with no other message and a time-to-

live field (TTL) which limits the distance in hops it can be sent from the originating

server. When a server receives a flood message, it records in its routing table the

GUID of the message and the name of the server from which it directly received

it, and forwards the message with a decreased TTL. Later messages containing the

same GUID are silently discarded, as are messages with a TTL less than one.

The responses from the discovered servers contain information about the number

of files owned by a server and the total size of those files. When a server sends a

response, it looks up the GUID of the message to which it is responding in its

routing table and sends the reply to the server from which it received the original

message. Other servers receiving responses behave similarly, so a response traces a

path which is the reverse of the path taken by the original message.

This is illustrated in Figure 2.6; the central grey node is the user's client, while

the grey node toward the lower left corner is the server which contains the goal. The

edges (both solid and dotted) indicate mutual awareness between servers that has

been gathered by means of the flood messages sent when servers enter the system.

When a user wishes to locate a particular file, their Gnutella server floods the

query in a similar way to the discovery messages. The query responses contain

the location of the matching files, which are then fetched by the user's server using

HTTP. The solid lines in Figure 2.6 show the edges over which the query is first sent

during query flooding, and the numbers within the nodes give the shortest distance

from the originating node (in effect, the initial time-to-live minus the current time-

to-live at that node). The dashed line around the central connected component

of the network shows the flooding boundary brought about by the chosen initial

time-to-live (in the figure, five).

21

o

Figure 2.6: Search flooding in Gnutella

This query Hooding induces a spanning tree over the network with the originating

client at its root; returning search results to the client is a matter of tracing the

(unique) path from the relevant server to the root.

Discussion

Gnutella is truly distributed and so does not have the problem of a central index

server that Napster has, but does have problems of its own. Chief amongst these

is the question of message flooding, which is generally considered wasteful. The

scalability of the Gnutella network became an important issue when the Napster

service was served with an injunction on 26 July 2000 and large numbers of its

users switched to using Gnutella instead (the 'Napster Flood'). This influx of users

accompanied a severe increase in the time taken to process Gnutella queries (an

informal analysis of this is given by Ritter (2001), one of the Napster developers).

Some of the criticisms directed at Gnutella over this issue are purely implemen-

tation dependent; each server sends a discovery message every minute or so, which

constitutes a substantial overhead. Some informal studies by the Gnutella designers

estimate that as many as 50% of messages sent by the system are related to the

initial server discovery on joining the system, and that this could be dramatically

cut if each server were to keep a record of the information contained in response

messages that it forwards (in effect, caching results closer to the originating client).

Implementation issues aside, the flooding of messages means that messages are

frequently sent to servers which contain no relevant files, and the ad-hoc network

topology of the system leads to the presence of cycles which cause the same message

22

to be received by a given server several times. The TTL imposed on messages also

leads to a horizon effect whereby a query Eooded into the network may not reach

a server which contains relevant Ales because the server is out of range, directly

affecting the effectiveness of the search. This issue could be addressed by increasing

the initial TTL and rebroadcasting the query from the original starting point (an

expensive proposition), by rebroadcasting the query from a different starting point

close to the horizon of the original search (still not guaranteed to produce an answer)

or by modifying the topology of the network in order to reduce its diameter to less

than the TTL. Of these approaches, only the latter has been attempted so far, by

creating a backbone network of servers which connect distant parts of the network

and reduce its overall diameter.

2.2.15 Freenet

Description

Freenet (Clarke, 1999) is another system designed to enable users to share Gles, but

imposes further constraints on its operation than either Napster or Gnutella. In

addition to decentralisation, the design for Freenet called for anonymous publication

and retrieval and the duplication of popular material.

Strictly speaking, Freenet is a name resolution system rather than a distributed

search system, since it is designed to be able to retrieve documents with fixed,

predetermined keys (names). Each server in the system maintains a data store

containing documents with their associated keys and the address of another server

known to hold the same document. A server may also hold records about documents

which it has deleted, but which it knows other servers hold.

When a Freenet user issues a query, the user's client sends a message containing

the key specified to a server, usually one local to the user. The server compares the

key with the keys for documents it holds and returns a matching document if one

exists. If no copy of the document exists on that server (no key exactly matches

the query), it finds the closest matching key to the query and forwards the message

to the server associated with that key.

If a matching key is found, the document it references is returned to the client by

the reverse path, otherwise the request is forwarded again in the same manner. The

document may also be cached by the servers on the route home in order to facilitate

future requests for the same document. If the message reaches its maximum range

(its TTL reaches zero), arrives at a server for a second time or finds that the server to

23

which it is being forwarded is unavailable, the most recent server to have forwarded

the message resends it to the server that is associated with the next closest key in

its data store, so backtracking on failure.

Discussion

The immediate advantage of Freenet over Gnutella is that it conducts searches

in a depth first manner, reducing the immediate impact on the network. Also, the

ability to locally cache documents makes the Freenet network (as defined by servers'

knowledge about each other) adapt to changing user demand.

However, Freenet as implemented is unusable as a resource discovery system

because the keys by which documents are identified are cryptographic hashes either

of a keyword or of the document itself; the system can only be used to retrieve

documents whose keys are known a priori. Another drawback is that the search

strategy employed by Freenet will only return the first matching document. This

is not a problem in a name resolution system where all the object identified by a

name are equivalent, but is not appropriate for use as a resource discovery system

where a user expects to receive several matching documents.

2.3 Agent Technologies

Agent-based computing is widely held to be a software engineering paradigm of

growing importance (Sargent, 1992; Maes, 1994). However, although the term

is now commonly accepted in the fields of computer science and artificial intelligence,

it has a plethora of subtly differing definitions.

In their oft-cited 1995 paper (Wooldridge and Jennings, 1995), Wooldridge and

Jennings identify two main types of agenthood and list the characteristics necessary

for each. The first, weak agency requires the following four properties:

autonomy: the ability to operate without the direct intervention of humans or

others

social ability: the ability to interact with other agents

reactivity: the ability to perceive their environment and respond to changes in a

timely fashion

proactivity: the ability to take the initiative and display goal directed behaviour

Strong agency, the second type, is a subset of weak agency in which the agent's

state is characterised using mentalistic notions such as belief, knowledge, intention

24

or obligation and its communications using speech act theory (Searle, 1969), in addi-

tion to fulfilling the criteria for weak agency. This intentional stance (Dennett, 1971)

is important, since it allows us to reason about the behaviours of complex Multi-

Agent Systems using naive psychological terms. In his paper on Agent-Oriented

Programming (Shoham, 1993), Shoham summarises this as:

An agent is an entity whose state is viewed as consisting of mental com-

ponents such as beliefs, capabilities, choices and commitments. These

components are defined in a precise fashion, and stand in rough corre-

spondence to their common sense counterparts.

A very pragmatic definition of agency has been proposed by Huhns and Singh

(1997), as follows:

A system containing one or more reputed agents should change substan-

tively if another reputed agent is added to the system.

There are three main components to a system for agent-based computing:

• a language for determining the behaviour of agents, or agent programming

famgwope

• a language for representing the knowledge of an agent, or content language

• a language for expressing the messages sent by agents, or agent communication

language (ACL)

The first is an implementation of an agent theory, which Wooldridge and Jen-

nings describe in (Wooldridge and Jennings, 1995) as a specification for an agent.

An agent theory is an attempt to represent the properties of an agent, and as

such affects the internal structure, behavioural characteristics and implementation

of an agent. There are a number of agent theories at present, including Cohen

and Levesque's theory of intention (Cohen and Levesque, 1990a), Moore's theory of

knowledge and action (Moore, 1990), Rao and Georgeff's Belief, Desire, Intention

(BDI) architecture (Rao and GeorgefF, 1991) and others beside.

While the agent programming languages specify and constrain the behaviour of

the agents, and the content languages are used to express the beliefs held by the

agents, the agent communication language provides the definitions of the messages

sent between agents. There is a strong relationship between the three languages;

the content language affects both the agent theory (by specifying an ontology with

which the agent must reason) and the agent communication language (an agent's

beliefs are commonly the subject of inter-agent communication).

25

In addition to these three languages, an agent system also requires a number of

ancillary services by virtue of its nature as a loosely coupled distributed system. By

loosely coupled, we mean that the interactions between the entities in the system

(the agents) are not constrained by design-time decisions, but that the agents can

interact and form relationships in an ad-hoc and opportunistic fashion. These

ancillary services include, but are not limited to, the following list (adapted from

(Gasser, 2000)).

• certification services, which enable an agent to verify the origin of another

agent

• security services, which enforce the social norms necessary for a functioning

system, such as trust, veracity or data integrity

• resource description and discovery services, which enable agents to o%r ser-

vices or to discover other agents which can provide certain services

® economics services, which provide facilities for charging and managing eco-

nomic interactions between agents.

These services all support the interactions of the agents in an agent system, but

are not considered to be necessary prerequisites for agency, nor are they encoun-

tered exclusively in agent systems. Indeed, these ancillary services are commonly

encountered features of loosely coupled distributed systems in general, particularly

where the system components are not automatically trusted (so raising the require-

ment for certification and security services). Similarly, if a system component is to

be able to make use of other components whose existence was not known when it

was being designed, some form of resource or service discovery must be a require-

ment. Examples of services in these areas can be found in the CORBA Services

specification (CORBA, 1995), which describes a level of infrastructure which lies

above the transport-oriented (or communication-oriented) infrastructure of the core

CORBA specification.

Of these services, we are most interested in the provision of resource description

and discovery services in agent systems (as the subject of this study).

2.3.1 The DARPA Knowledge Sharing Effort

The DARPA Knowledge Sharing Effort (KSE) (Patil at al., 1992) was an early

effort to produce a standard framework for agent communication, and has met

with some success. The main deliverables of this work were the Knowledge Query

and Manipulation Language (KQML) (KAG, 1992; Labrou and Finin, 1997), an

26

agent communication language, and the Knowledge Interchange Format (KIF)

(Genesereth and Fikes, 1992), a content language.

KQML provides a rich set of speech acts for agent communication with an

s-expression syntax, and has been used in a wide variety of projects: Agent-K

(Davies and Edwards, 1994) and AgentBuilder (AgentBuilder, 1998) use KQML

in a framework based on Shoham's AOP, while other systems such as Stanford's

Infomaster (Genesereth et al., 1997) use it with KIF as an interlingua to express

queries from heterogeneous sources expressed in SQL or other query languages.

The linkage between KQML, KIF and an agent programming language is less

strong than might be expected. Cohen and Levesque (1990b) note that there are

no formal semantics given for the KQML performatives, so their meaning (the

illocutionary effect upon the recipient) is unclear. The independence of KQML

from the content language KIF means that self-defeating speech acts could be sent

from one agent to another (eg. an agent could send a message expressing Moore's

paradox, "I hereby inform you that p is true and that I do not believe that p is

true") because the message content cannot be checked for compatibility with the

performative type.

The set of speech acts provided by KQML is incomplete. Although several di-

rectives exist (eg. a sk - i f or subscribe) , the most fundamental directive, request is

not present. This means that an agent cannot ask another to perform an arbitrary

action, but must instead use the achieve directive to ask it to make the postcon-

dition of the action true. Since all the other directives may be expressed in terms

of request (eg. a sk - i f is equivalent to requesting someone to tell you if a sentence

is true), this omission is an important oversight.

Similarly, Cohen and Levesque also note that KQML does not include any com-

missive speech acts (those which would commit an agent to a particular course of

action); KQML agents cannot accept proposals, promise to perform tasks or agree

on a matter under consideration. KQML is designed to be extensible, so these

speech acts could be added to the set, but this requires KQML developers to be

aware of these new acts and their required behaviours.

KIF is a declarative language for the representation of knowledge by computer

programs and was one of the deliverables of the DARPA Knowledge Sharing Effort,

along with KQML. Strictly speaking, KIF is an interlingua, a language for commu-

nicating knowledge between computer programs, but not necessarily used internally

by them (although it can well be used for this purpose).

27

recommend-one
advertise

forward

s) - " (c)

Figure 2.7: KQML Facilitator

KIF has a simple s-expression (Lisp-like) syntax and is based on first order pred-

icate logic. This expressivity is important; KIF can express sentences which rela-

tional database languages and languages based on Horn Clauses alone (eg. Prolog)

cannot. KIF's suitability as an interlingua has led to its adoption by several projects

as a neutral intermediary for expressing queries in different database schemas. The

Infomaster system (Genesereth et al., 1997) from Stanford University and the In-

foSleuth system (Bayardo et al., 1996) from MCC both use KIF to translate queries

in a heterogeneous database environment, while the TAMBIS project (Baker et al.,

1995) at the University of Manchester takes a similar approach with a different

ontology language, GRAIL.

The DARPA KSE provides a number of speech acts within KQML which allow

agents to discover which agents provide certain services. In Figure 2.7 is illustrated

a simple system consisting of three agents: a server agent (S) which is providing

some service, a client agent (C) which is trying to find an agent which can provide

that service and a facilitator agent (F) which matches clients to servers. The server

begins the exchange by sending an a d v e r t i s e message to the facilitator which

contains a message template which will match messages tha t the server can process.

When a client wishes to find an agent which can provide a service, it composes a

message which would invoke that service (leaving the : t o field empty) and sends

that message as the body of a recommend-one agent to the facilitator (as with many

KQML performatives, recommend is available in -one and - a l l variants depending

on whether the querent wants one answer, or an exhaustive list of all answers).

The facilitator responds by sending a forward message which contains the server's

advertisement, which provides the client with the knowledge necessary to be able

to invoke the desired service on the server.

28

PR .DF

nop
Agent Communication Channel Agent Communication Channel Agent Communication Channel

Agent Platform

Agent Communication Channel

Agent Platform

Figure 2.8: The FIPA Agent Platform

2.3.2 FIPA

The Foundation for Intelligent Physical Agents is a non-profit association which

aims to increase interoperability between agent systems through a set of specifi-

cations for an agent architecture, including a content language and ACL (FIPA,

1997b). FIPA have taken a stance of strong agency, and so the FIPA ACL is

similar to KQML in many ways. It presents a rich set of speech acts and has an

s-expression syntax, but addresses the problems with KQML discussed above.

A notable facility in the FIPA ACL which adds a level of abstraction to the

above are its protocols, characteristic exchanges of messages, used for common con-

versation like requests, auctions or contract nets. The use of protocols in FIPA

allows the agents to better reason about their conversations. From a programmer's

point of view, protocols provide a shortcut into agent communications which allows

sophisticated behaviour without excessive attention to detail.

The FIPA content language si, standing for semantic language, is a first order

modal logic with identity and so is more expressive than KIF. si is used to define the

communicative acts in the ACL, giving them the semantic grounding that KQML

lacks. The FIPA Specification includes far more than the ACL and si, defining a

standard CORBA-like environment (OMG, 1996) in which the agents operate. This

environment or agent platform (AP) consists chiefly of the agent communication

channel (ACC), a bus which agents use to communicate with each other in much the

same way as the object request broker or ORB mediates inter-object communications

in CORBA. Communication between agents on different ACCs is also handled by

the ACCs, which communicate with each other by means of the CORBA Internet

Inter-ORB Protocol (HOP).

In Figure 2.8, the agents labelled A and B can communicate via their local ACC

because they are both on the same AP, whereas a message sent from agent C to

agent D first goes to C's local ACC, then to D's ACC (via HOP) which delivers it

to its destination.

29

FIPA also specifies a number of standard agent management services (corre-

spending to the ancillary agent services in Section 2.3) which are deployed as part

of the agent platform, of which the directory facilitator (DF) is a key example. The

directory facilitator is an agent which provides a yellow pages service (i.e. describing

agent services or capabilities, equivalent to the resource description and discovery

services from Section 2.3) to the other agents in the system. The FIPA DF service

is a simple one, enabling agents to register (or deregister) the services which they

provide and to search for agents which can provide given services, and exists on

every agent platform.

A key difference to note between the FIPA DF and the equivalent service in the

DARPA KSE model is that the DF functionality is implemented as a set of services

which are opaque expressions from the ACL layer, where the KSE implements

its service discovery functionality as speech acts within KQML. Consequently, the

FIPA DF can be considered to exist at a level of abstraction above that of the KQML

solution. This decision was taken for pragmatic reasons; by keeping facilitation

separate from the agent communication language, the specification of the ACL is

kept simple because it does not need to model the capabilities of agents.

2.4 Bibliographic Metadata

Currently, the majority of systems for searching the Internet (including the cen-

tralised systems such as AltaVista or Lycos) use full text searching techniques.

This type of search has been known to be flawed for some time, but it has only

been with the emergence of indices containing millions of full text records for global

distributed information systems such as the Internet that we are seeing the full ex-

tent of their shortcomings. A search for a common word or phrase in such a system

may yield hundreds of thousands of hits, almost all of which are of no relevance to

the user who made the query.

The move has been made towards attaching some semantic information to elec-

tronic resources in order to make information retrieval more useful by reducing the

number of these false hits. This semantic information is metadata, information

which describes some information resource, commonly including the item's author,

publisher, date of publications, classification number or edition.

It is unsurprising that the design of the metadata records for containing this

semantic data has closely paralleled the design of the bibliographic records used in

libraries, since the two are effectively the same (with some minor differences due to

30

an electronic context). There are a number of existing metadata schemes (similar to

database schemas, in that they define the structure of the metadata records) in use

in the library and Internet worlds, most of which have been designed independently,

and which have had varying degrees of success.

The majority of the metadata formats below specify a syntax in which records

can be encoded in addition to the semantics expressed by the schema. Although this

plays a part in the translation of records from one format to another, the semantic

transformation is the harder to accomplish, and so the schema, not the syntax, is

the more crucial. Another important distinction which should be made is between

metadata formats and cataloguing rules. The latter, of which the Anglo-American

Cataloguing Rules (Gorman and Winkler, 1988) are the best known example, spec-

ify the way in which data is entered into the bibliographic records specified by the

metadata format. For example, the metadata format might require a field called

'author' which gives the creator of a document, but the cataloguing rules say how

the name is to be written: surname, first-name or first-name surname.

A different strand of metadata classification has grown out of the work in the

Artificial Intelligence field on knowledge representation. This type of metadata

is typically a declarative language used with an ontology to express objects in a

particular domain; the language (for example, KIF - see Section 2.3.1) roughly

corresponds to the syntax used by a traditional metadata format, and the ontology

roughly corresponds to the schema.

2.4.1 MARC

MARC (MARBI/ALA/LOC, 1996) stands for MAchine Readable Cataloguing, and

is a standard format for representing bibliographic information (as might be found

in a library catalogue) in an electronic form. Although designed for the library

community, it has been adopted elsewhere as a convenient method for storing or

exchanging data.

Originally designed by the Library of Congress, more than twenty other MARC

formats have sprung up, including UKMARC (used by the British National Bib-

liography) and other national formats. As a reaction to the way in which the

proliferation of national MARC formats have impeded the exchange of data, an

international format, UNIMARC, was developed in the late 1970s.

31

MARC is an extremely rich metadata format, containing many hundreds of

different fields. The data within these fields is highly structured, so that the com-

ponents of an author's name may be extracted, for example. This complexity comes

at a price; MARC records are time consuming to write and extremely difficult to

generate automatically (the vast majority of library catalog records were originally

written by humans).

2.4.2 lAFA

lAFA templates (Deutsch et al., 1995) were devised by the Internet Anonymous FTP

Archive (lAFA) Working Group of the Internet Engineering Task Force (IETF) as a

means for describing the contents of anonymous FTP archives (Beckett, 1995). The

Internet Draft in which they were proposed has since expired, but has influenced

the development of a number of other metadata schemes, such as SOIF and ROADS

templates (more about which below).

An lAFA record is a field-based entity in which each field or data element is a

discrete piece of information about some resource, along much the same lines as the

fields in a MARC record. Unlike MARC, fields are not broken down into subfields

when further describing an element. Also, there are certain classes of data elements,

such as contact information, which always occur together. lAFA templates define

the notion of a cluster^, which allows these classes to be referred to in a shorthand

manner.

2.4.3 Summary Object Interchange Format

SOIF (Hardy et al., 1996) is the native metadata format used by the Harvest system

(see Section 2.2.2) to summarise the contents of the resources it holds. SOIF is a

simple metadata scheme which extracts only a few properties from the resources

(typically author, title, keywords, abstract and a description) and gives over most

of its fields to information about the indexing process (the entity which gathered

the properties, the time of gathering, the time until the record is to be discarded).

^Not to be confused with the conventional IR definition of this term as a group of related
documents.

32

2.4.4 Platform for Internet Content Selection

Unlike the other Internet-based metadata schemes, PICS (Resnick and Miller, 1996)

waa not originally intended as a tool for resource discovery, but rather a tool for in-

formation filtering. PICS was conceived as a means by which parents could prevent

their children from viewing certain types of information resources on the Internet,

depending on some attached to the resources. The ratings are assigned by

a number of rating services (Miller et al., 1996), individuals or organisations which

provide content labels (Krauskopf et al., 1996) for resources on the Internet (eg.

RSACi (Martin and Reagle, 1996)).

The labels provided are based on a rating system which specifies the dimensions

used for labelling (eg. the attributes in the metadata record, in this case things like

the severity of obscene language), the scale of allowable values for each dimension

and some description of the criteria used in assigning values. In addition to the

attributes specified by the rating service, a number of attributes are included in all

PICS labels, and are automatically assigned (eg. the aasigning service, the date of

label creation).

2.4.5 Dublin Core

At present, the field of Internet metadata is undergoing its first round of standard-

isation, with the Dublin Core Metadata Set (DCMI, 1999) as the new standard

scheme. Compared to expressive formats like MARC, DC is extremely simple, but

this is in keeping with its positioning as a resource metadata scheme which is readily

usable by the majority of authors on the World Wide Web. Its simplicity also lends

it to being used as an interoperability format between the other schemes used to

describe electronic resources.

Unlike the other metadata formats, the Dublin Core does not define a single

encoding; the aim is to use native encodings to incorporate the metadata into a

wide variety of resources. For example, DC data may be inserted into the <META>

tag in an HTML (Raggett, 1997) document, encoded in a PICS label, written in a

SGML (Goldfarb, 1990; ISO, 1986) DTD or expressed in RDF.

2.4.6 Resource Description Framework

RDF (Lassila and Swick, 1999) is a foundation for Web-based metadata which

emphasises facilities for automated processing. Designed for generality, the W3C

33

intends to use RDF for a number of purposes, including resource discovery and

cataloguing, content rating (see PICS in Section 2.4.4), knowledge sharing between

software agents and digital signatures. RDF is divided into three parts:

Syntax: RDF uses a common encoding based on XML (Bray et al., 1998), an ex-

tensible Markup Language derived from SGML.

Model: The RDF model is the basic ontology used by all RDF records, and can

be used to represent both traditional attribute value pairs, and relationships

between resources.

Schema: RDF uses the RDF Schema language (Brickley and Guha, 2000) to define

schemas (classes of resource and the properties which exist between resources)

in the RDF model.

This separation of encoding from schema (ontology) simplifies many of the prob-

lems inherent in translating metadata records from one format to another.

RDF is an important component of the Semantic Web (Berners-Lee et al., 2001),

the next stage in the development of the World Wide Web. A simple summary of the

goals of the Semantic Web effort is that it aims to use the distribution mechanisms

of the World Wide Web to build a large scale distributed knowledge base.

2.5 Hypertext and Hypermedia

The origins of the modern hypertext system are considered by many to lie with

the Memex described by Bush (1945). Although revolutionary in its outlook, this

system belies its pre-computer networking origins, for it effectively serves only a

single user at one time and stores all of its data locally.

The first distributed hypertext appeared some twenty years later, albeit in em-

bryonic form, with Ted Nelson's Xanadu system (Nelson, 1987), remembered chiefly

for its first-class links (objects in their own right, stored separately from the docu-

ments they annotate) and the notion of transclusion (transparent quotation through

inclusion, rather than through the copying of the quoted data).

An important notion in hypermedia systems is that of open hypertext or open

hypermedia, the general term for systems which store links separately, and has

lead to a number of further developments: first-class aggregate documents and

links without fixed endpoint, such as generic links which construct a temporary

endpoint on the fly which matches some phrase, or functional links which calculate

their destination when invoked. A key publication which has affected much of the

34

development of open hypermedia systems is the Dexter model (Halasz and Schwartz,

1990), an early attempt at a comprehensive formal model and characterisation of

hypertext and hypermedia systems.

The reiSed links which are a characteristic of open hypermedia systems are a

very structured type of data, and their collection in linkbases makes them amenable

to searching in a similar manner to metadata or directory records.

Distributed hypermedia has only properly come of age in the last fifteen years

with the advent of affordable networking, and in that t ime there have been several

systems which are important in their approaches to distribution.

2.5.1 Xanadu

Although Xanadu (Nelson, 1987) never progressed beyond a prototype, the pub-

lished details of the system included several distribution-related features. Xanadu

uses a single, extendible addressing scheme for all servers, users, document and even

bytes, and has a published protocol (FEBE - the front-end/back-end protocol) for

communications between the user's client program and the server. Unfortunately,

many of the features most crucial to distribution remained unpublished for many

years, including the BEBE (back-end/back-end) protocol used to forward client re-

quests (when interviewed, Nelson (2001) confirmed that the BEBE protocol work

had not been satisfactorily completed) and the Enfilade algorithm used to search

for objects in the servers (an early version has since been published under the aegis

of the open source Udanax^ project).

2.5.2 Microcosm-TNG

Microcosm-TNG (Goose et al., 1997) was a further development of the Microcosm

(Fountain et al., 1990) open hypermedia system which added distribution. The

original Microcosm, which had been designed for a single user accessing a collec-

tion of multimedia data, was composed of a group of communicating processes or

filters which transformed the stream of requests originating from the user's client

application.

Microcosm-TNG used a more sophisticated communications model which al-

lowed these processes to be based on different machines, and is designed for use at

enterprise level. In addition, the processes of different users could communicate,

enabling collaborative working. Amongst the processes were processes dedicated

^http://www.udanax.org/

35

http://www.udanax.org/

to message routing, process management and brokerage, in a way which hag an-

ticipated the design of the largely CORBA-inspired agent environment used by

FIPA (Microcosm-TNG's message router is equivalent to FIPA's ACC, while the

brokerage component is equivalent to the FIPA DF - see Section 2.3.2).

2.5.3 HyperDisco

In its degree of distribution, HyperDisco (Wiil and Leggett, 1996) is an open hy-

permedia system similar in scope to Microcosm-TNG. HyperDisco is designed to

work with a medley of different tools and information sources which are abstracted

and integrated to create a uniform system. Although HyperDisco has a distributed

hyperbase management system, there is no mention of the distributed search meth-

ods which are to be used to search this system; it is assumed that an exhaustive

search will be used due to the expected size of a HyperDisco system.

2.5.4 Hyper-G/HyperWave

The Hyper-G (now HyperWave) system (Kappe, 1991) has been design for wide

scale distribution from the outset, using an efficient and robust algorithm for cir-

culating changes between constituent servers (i.e. maintaining consistency between

servers). This algorithm, p-flood (Kappe, 1994), plays a similar role in Hyper-G to

that of the Common Indexing Protocol in RWhois systems, that is as a method for

facilitating query routing by passing indexing or other information between servers,

p-flood is used to propagate changes to links and nodes through a Hyper-G system.

Information about surface links (links from one server's resources to another

server's resources) are passed to all interested parties, with a probabilistic parame-

ter governing the number of redundant copies which are transmitted in an attempt

to forestall failures due to poor connectivity. Hyper-G uses this system to propa-

gate linking information with the aim of providing the sort of referential integrity

required by the Dexter model (Halasz and Schwartz, 1990).

2.5.5 World Wide Web

The World Wide Web (Berners-Lee et al., 1994a) needs little introduction, being

the single largest hypertext system yet built. Unlike the other hypermedia systems

in this section, the Web has a very simple linking model which is limited to static,

36

embedded, non-reified links. The Web's success as a distributed hypermedia sys-

tem is largely due to the simplicity and robustness of its Uniform Resource Locator

addressing scheme (Berners-Lee et al., 1994b) which gains its distributed character-

istics from the Domain Name Service (Mockapetris, 1987a), which is used to resolve

part of the URL.

The Web protocols (chiefly HTTP (Fielding et al., 1999)) do not contain any

support for maintaining link integrity, unlike several other hypermedia systems.

There have been proposals for systems which would provide such a capability, such

as the ATLAS system described by (Pitkow and Jones, 1996).

Recent developments from the Web standards body, the World Wide Web Con-

sortium (W3C) ^ have included XML (Bray et al., 1998), a subset of SGML, whose

related specifications include XLink (W3C, 1999a) and XPt r (W3C, 1999b). These

draft standards describe a more complex linking model for the Web which could

support first-order links. Resolving those links may require a distributed search

systems, but as yet no such system has been proposed.

As mentioned in Section 2.4.6, the W3C vision for the future development of

the World Wide Web is that of a semantic web containing information imbued with

machine-readable meaning (Berners-Lee et al., 2001), which goes far beyond the

existing typeless associative hyperlinks of the Web.

2.5.6 DLS

The Distributed Link Service (Carr et al., 1995) uses Microcosm's linking model

with the Web by interposing a proxy between the user's client software and the

sever. This server intercepts requests, consults a linkbase and then rewrites the

received page to reflect the results from the linkbase. Originally designed so that

the linkbase selection were made from an explicit list, more recent developments

(DeRoure et al., 1999) have used query routing to resolve links in an unordered

collection of linkbases.

Related work to the DLS includes the COHSE project (Goble and Carr, 1999),

a conceptual open hypermedia system which employs a knowledge base in the con-

struction and selection of hyperlinks for the contextual annotation of documents.

http://www.w3.org

37

http://www.w3.org

2.5.7 Open Hypermedia Protocol

The Open Hypermedia Protocol (Reich et al., 2000) can be seen as the continua-

tion of the work which begun with the Dexter model(Halasz and Schwartz, 1990),

designing a rich data model and protocol to allow different hypermedia systems to

interact. The distribution of OHP is on a par with that of Microcosm; it is possible

to do, but there is no explicit support for the sort of distributed search required to

make link resolution or resource discovery work.

2.5.8 Agents and Hypermedia

Agents have been used as a framework for distribution in several hypertext and

hypermedia systems. The University of Michigan Digital Library Project (UMDL)

(Birmingham, 1995), the Zuno Digital Library (Ferguson and Wooldridge, 1997) and

the MNA project use agents as mediators which match user requests to appropriate

collections of data, while the Voyager project (Dale, 1997; Dale and DeRoure, 1996)

uses agency as a more general technique for distributing all aspects of an open

hypermedia system. Perhaps the most ambitious agent-based hypermedia system

is NIKOS (Salampasis, 1998; Salampasis et al., 1996), which has specialised agents

for handling each of the base components (nodes, links, composites) in the storage

layer of the Dexter model (Halasz and Schwartz, 1990).

2.6 Summary

In this chapter we have summarised prior work in the literature which is relevant

to our study of query routing systems, or which informs the design of ontologies for

our chosen application domains. In the following chapter we describe a model of

a query routing system, and in Chapter 4 we investigate the effects that different

network topologies (drawn from the exemplar distributed search systems in this

chapter) affect the behaviour of a query routing system.

38

Chapter 3

A Model of Query Routing Search

3.1 Introduction

In this chapter, we describe a model of a query routing system which is based on

functional aspects of query routing (effectiveness at answering queries) rather than

on the performance aspects (efficiency of answering queries).

The distributed search systems considered in the previous chapter have the same

common aim: to provide a means by which objects may be located in a distributed

system given only a description of the properties which the objects should possess

(bibliographic metadata, for example). This task is commonly known as resource

discovery. The services which carry out the resource discovery task are variously

considered as name resolution services, information retrieval services or brokerage

services, but in each case the action of the system is the same, even though the

acceptable parameters for its operation may differ^

The resource discovery task is a surprisingly common one, appearing in disci-

plines from information retrieval and library science to open hypermedia and the

Web or distributed artificial intelligence. In all of these areas, a robust and reliable

resource discovery service is a key requirement in managing system distribution,

but the majority of such services are themselves not distributed. This presents

a potential limit to the scalability of these distributed systems as it will become

progressively harder to locate objects as the systems grow.

Many of the distributed systems for resource discovery considered in the previous

chapter try to reduce the complexity of the task by discarding large numbers of

candidate solutions in order to prune the search space. The exact method by

^Locating objects which only partially meet the criteria is more acceptable in information
retrieval than in name resolution, for example.

39

which this is carried out varies, but the essence of the technique is to partition the

search space (a necessary prerequisite for distribution anyway) and then to use the

knowledge of the contents of these partitions to guide the processing of the query

by selecting partitions which are particularly likely to contain satisfactory answers.

As the system as a whole grows, the number of partitions should also increase, so

that the size of the partitions remains more-or-less constant.

An ideal system for distributed resource discovery would process queries with

maximum efficiency by pruning the search space to only those partitions which

contained satisfactory solutions (and similarly attain maximum effectiveness by

selecting all the partitions which contains solutions).

3.2 Problem Statement

In order to design an efficient and effective system for distributed resource discovery,

we must first understand the variables which affect the performance of such a sys-

tem. We make the following assumptions about the composition of the distributed

system.

• The system is composed of a number of entities capable of performing com-

putations, which we shall call servers.

• The data objects which are to be the target of the resource discovery task are

distributed amongst the servers in the system. We call a server to which have

been allocated data objects a data server.

• The data objects allocated to a given data server have some similarities and

are said to form a duster (i.e. a collection of related documents).

• It is possible to construct an expression which represents the contents of a

cluster, which we call a cluster representative. The centroids used by the

WHOiS-|--t- system described in Section 2.2.5 are one possible type of cluster

representative.

• If a server contains the cluster representative for another server, it is said to

have forward knowledge about that server.

® We call a server which has forward knowledge an index server.

9 Two or more cluster representatives held by an index server may be combined

to give an expression which represents the data objects which the index server

has forward knowledge about.

40

Relevant Non-relevant
Retrieved Drel n Dret Dret

Not retrieved Drel ~'Drel n "'Dj-et ~^Dret
Drel ^Drel D

Table 3.1: D is the set of documents in the system, Dj-ei the set of documents which are
relevant to the query and Dret the set of documents which are retrieved as a result of
processing the query,

• An index server may have forward knowledge about the forward knowledge

of another index server (a recursive definition to allow an arbitrary number

of levels)

3.3 Foundations

If the aim of information retrieval or resource discovery systems is to find documents

or objects which are relevant to a user's query, then relevance is perhaps the most

important notion in information retrieval. Relevance has consequently been the

subject of much research, but despite this attention, relevance remains a concept

which is notoriously difficult to define to the satisfaction of all, a fact borne out

by the large number of different definitions in the literature Mizzaro (1998). The

ability of an IR system to retrieve relevant documents while keeping the number of

irrelevant documents to a minimum is commonly known as the effectiveness of the

system. As with relevance, there are a number of measures of effectiveness, of which

we will be considering the most widely used, precision and recall. Finally, if the

effectiveness of an IR system measures its ability to retrieve relevant documents,

its ability to achieve this end with the minimum expenditure of effort is measured

by its efficiency.

3.3.1 Retrieval Effectiveness

The definitions of precision and recall are based on a contingency table (Table 3.1)

that partitions the set of documents in the system based on retrieval and relevance.

The precision (P) of a system is the number of records relevant to the query

which were retrieved, expressed as a proportion of the total number of records

retrieved. A precision of 1 means that all the records retrieved were relevant, a

precision of 0 means that none were.

41

T) \Drel n Dret\ (n
P = (3 1)

\^ret I

The recall (R) of a system is the number of records relevant to the query which

were retrieved, expressed as a proportion of the total number of relevant records in

the system. A recall of 1 means that all of the relevant records were retrieved, a

recall of 0 means that none were.

R = (3.2)
Wrel\

Precision and recall are in an inverse relationship. If the set of records retrieved

in response to a query is enlarged (by relaxing the criteria which are used to judge

whether or not a record is retrieved, for example), there will be an increase in recall

(because potentially more of the relevant records in the system are retrieved) at the

expense of a decrease in precision (because there is potentially a greater proportion

of irrelevant records in the retrieved set), and vice versa when the retrieval set is

reduced in size.

3.3.2 Forward Knowledge Effectiveness

The forward knowledge which a server holds about another server can be viewed as

a surrogate for the knowledge contained in the other server. We assume that the

records in a server are closely related to each other and form a cluster. The records

in a server are therefore likely to be relevant to the same requests, following the

cluster hypothesis (summarised by van Rijsbergen (1979)).

The construction of such clusters is considered to be beyond the scope of this

work; Jain et al. (1999) give a comprehensive review of clustering techniques. Of

particular interest is the notion of data abstraction, by which a cluster is repre-

sented or described in a compact form. The construction of centroid-based cluster

representatives for forward knowledge (as in WHOIS+H— see Section 2.2.5) is such

an example of data abstraction.

As an example of a potential approach to clustering structured objects such as

bibliographic records, Murty and Jain (1995) describe a scheme for the construction

of clusters in the context of collection management. In this, objects in the collection

(journal articles, for example) are represented by conjunction of weighted disjunc-

tions, where the elements in each disjunction are node labels taken from a subject

42

In cluster Not in cluster
In representation Dclu n Drep -"Ddu n Drep Drep

Not in represention Dclu n '^Drep -iDdu n ~~'Drep
Dclu D

Table 3.2: D is the set of documents in the system, Ddu the set of documents which
lie within a cluster and Drep the set of documents which are represented by the cluster
representative.

classification hierarchy (eg. Dewey Decimal or the ACM Computing Reviews clas-

sification). The representation of a single object is a summary of the subjects which

it deals with (for example, this thesis could be described as being 40% 1.2.11 - Dis-

20% TZepreseaWzoM fomioZzamg

and 40% H.3.3 - Information Search and Retrieval or H.3.7 - Digital Libraries).

In this approach, the descriptions are clustered by using a complete-link hierar-

chical clustering algorithm with a similarity measure which takes into account the

structure in the classification scheme.

An instance of forward knowledge contains two things; a reference to a server,

and an expression which represents the contents of tha t server. The ability of

forward knowledge to accurately direct search depends on how closely the expression

reflects the underlying cluster. In our previous work (Gibbins, 1997), we defined the

measures of completeness and faithfulness for describing the effectiveness of forward

knowledge. These measures are similar to those used for retrieval effectiveness, and

are constructed by partitioning the set of records into those which fall within the

cluster, and those represented by the expression (see Table 3.2).

The completeness (C) of a forward knowledge representation is a measure of how

much of a cluster's contents it describes. The most general representation which

claims to describe the entire contents of a cluster is trivially complete.

I DqIU I

The faithfulness (J-) of a forward knowledge representation is a measure of how

many of the documents described by the representation are not in the clusters it

describes. The most general representation is complete, bu t is not faithful because

it falsely claims that the cluster contains a number of records which in fact it does

not.

l^clu n -Prep I 2̂ z|)
I-Prep I

43

There is a tradeoff between completeness and faithfulness which is analogous

to that between precision and recall (described in Section 3.3.1), in that rewriting

the cluster representative in order to relax the criteria for membership in a cluster

is likely to correctly categorise more of the records which belong in the cluster

(increasing completeness) at the expense of incorrectly more records which do not

belong in the cluster (decreasing faithfulness).

3.3.3 Relevance and Structural Matching

The definitions of relevance in the literature (summarised in Mizzaro (1998)) are

largely subjective in nature, being concerned with the user's self-assessment of their

information need and the degree to which the retrieved documents satisfy this need.

In particular, users possessed of different information needs may still formulate the

same queries and so will rate the relevance of documents differently.

These subjective definitions of relevance present some problems in assessing the

effectiveness of distributed search systems. Subjective relevance is of most use in

systems which offer full text searching on largely unstructured documents, but many

of the distributed search systems contain only highly structured resources such as

white pages (directory) entries or hypertext links. With these sorts of resources,

it is possible to give a purely objective definition of relevance based on structural

matching such as unification or subsumption.

Unification is a general-purpose pattern matching algorithm which is widely used

in traditional AI applications and languages such as Prolog. Unification compares

the structures of two expressions containing variables, and generates a substitution

which binds those variables to values which will make one expression equivalent

to the other. A one-way matching would take a pattern and a target and find a

substitution such that:

pattern ® substitution = target

For example, a substitution which binds % i-> 0 and Y t-> s(0) will unify the

expressions g(A)̂ -H y and s(0) s(0):

[s(x) + y] . {o /x . s (0) / r } = [s(0) + s(o)]

44

Query
space

'escriptio:
space

Record
spiMe

Figure 3.1: Retrieval Mapping with Indexing Function

For the purposes of examining search in this chapter, we are not interested in

the values taken by the variables, and for clarity will write pUt to denote that p

unifies with t.

Subsumption is a form of structural matching which is not symmetric (unlike

unification, where s • t t • s). An expression subsumes another (denoted

s • t) if it is more general. For example, the expression s(0) + s(0) is subsumed by

the expression g(0) + g(A') (and not vice versa, because the latter is more general),

while the expressions g(0)4-X and g(y) + s(0) do not subsume each other (although

they do unify with each other).

3.3.4 Modelling Retrieval

The set theoretical view of information retrieval has been studied in the past be-

cause it provides a simple formalism of the IR process. Salton (1979) and others

introduced a model of the mapping from the set of queries Q to the set of docu-

ments S (the record space), as shown in Figure 3.1. This incorporated an indexing

function X : S D which assigns descriptions to documents. The overall retrieval

process is represented by the function T : Q 2^ which maps queries to sets of

relevant documents, and can be composed from the function mapping queries onto

the descriptions of documents which might be relevant, F : Q —>• 2^, and the inverse

o f X .

We refine this model by assuming that document descriptions and queries (also

cluster representatives) are all described using the same language, so retrieval may

be modelled as a mapping from the expressions of that language to the set of

documents (see Figure 3.2). We take the set Q to be the set of possible expressions

in that language, both those which denote a single document, like metadata records,

and those which denote many documents, like queries or cluster representatives.

The retrieval function T maps these expressions onto the records which they denote.

The indexing function X maps S, the set of records, onto D, now a subset of Q,

45

Record
space

Expression
Space

lescriptioi
Space

Figure 3.2: Refined Retrieval Model

such that for each element in S there is one and only one expression in this subset

that describes it, but also that a description may be shared by several records.

The function % deSnes an equivalence relation on 5" such that documents gj E

S are equivalent if and only if X(si) = X(sj). A justification for this can be taken

from the library world; two books may be physically different entities but share the

same bibliographic data in a library catalogue since they are both the same edition

of the same work and so equivalent. In this respect, the expressions in D are similar

to the descriptive names introduced by Neufeld (1989) (although the latter denote

objects unambiguously, while the former denote a class of equivalent objects).

The function T is such that, if its domain is restricted to D, it is equivalent to

the inverse of X. This allows us to define the unifies {n : Q x Q) and subsumed by

(•: Q X Q) relations as follows;

T (z) c r (? /)

a; O ?/ <=> D T(?/) ^

(3.5)

(3.6)

The set Q has a partial order under C and forms a lattice bounded by T (top,

the expression which denotes all records) and ± (bottom, the expression which

denotes no record), being isomorphic with 2^ under C bounded by S and 0. It is

useful to define the most general unification (• : Q x Q —> Q) and most specific

(U : Q x Q —> Q) operations (the meet and join of this lattice) aa:

r(a; n 2/)

T(a; U ?/)

r (3;)nT(z/)

7(3;) U r(z/)

(3.7)

(3.8)

In stating that both queries and forward knowledge expressions are drawn from

46

Syntax Semantics Description

A C A primitive concept
R C A X A primitive role
T A top

0 b o t t o m

- i C A \ C : ^ complement
C n D conjunction
C U D disjunction

{a ; : Vi/..R^(a;, ?/) = C^{y)} universal quantification
3.R {:r : 3?/ existential quantification

Table 3.3: Syntax and semantics of ACU

Q, we make the assumption here that it is possible to formulate a query which

completely speciBes a single record; if this is not the case, queries should be drawn

from Q\D. The function T defines which documents are relevant to a given query,

and unification and subsumption are used to determine if a forward knowledge

expression is relevant to a query. Existing distributed search systems use both

unification and subsumption to determine whether a record or template is relevant

to a query - the effect of the choice of relation on the behaviour will be dealt with

later.

This model of relevance resembles a version of the simple description logic

ACU{pomm et al., 1996). Description logics (DLs) arose out of the development of

frame-based knowledge representation languages, for which they provide a formal

foundation. DLs consist of conce;)fg, roZea and concepts are expressions

which describe a set of individuals which have some commonality. Individuals are

related to each other by roles, which describe the properties of individuals, and

which are also used in the formation of concepts.

Traditionally, the semantics of a description logic are described through the use

of an interpretation consisting of a domain A and an interpretation function

which maps individuals onto elements of A, concepts onto subsets of A and roles

onto subsets of A x A. The concepts in ACU (denoted by C and D) are constructed

according to the syntax rules in Table 3.3 and have the given extensions under

Our simple model of information retrieval is equivalent to a subset of ACU which

does not contain roles; S is our domain, Q is the set of concepts and T is an

interpretation function. Following the standard description logic conventions, we

will subsequently refer to the set of records in our model as A, the set of queries

and descriptions as C (the set of all concepts) and the retrieval function as

47

We can express the measures for forward knowledge effectiveness using this

model. Here we measure the effectiveness of an expression i G Q at representing a

clustered set of documents,

c(t) = (3,9)
l^dul

Defining relevance in this way as a yes/no proposition is, however, at odds with

many of the existing notions about relevance; two expressions either unify or do not,

but there are many shades of relevance between a completely relevant document

and a completely irrelevant one. The choice of such binary relevance also affects the

values taken by the effectiveness measures; if unification is also used to determine

which records are to be retrieved, all searches are trivially precise (= 1) because

it is possible to retrieve only completely relevant documents. We can expand our

definition of relevance to include non-binary values by drawing on the concepts

introduced by fuzzy set theory.

Fuzzy set theory (Klir and Yuan, 1995) is a generalisation of classical (crisp) set

theory in which the degree of membership of an element in a set can range from

entirely to not at all. Formally, a fuzzy subset A of a crisp set X is defined as a set

of tuples (x, IIA{X)) where x £ X and /i^ is a membership function HA '• A [0,1]

which indicates the degree of membership of x in A. When the values taken by IJ,A

are drawn from the set {0,1}, the behaviour of A under the familiar set operations

is the same as if it were a crisp subset. In the interval between, the set behaviour

is defined in terms of the membership function. An alpha-cut Aa of a fuzzy set A

is a crisp set which contains those elements which have a degree of membership in

A of at least a.

//AuaW = max(//,4(a;),//g(a;)) union

Î Ar\B{x) = min(/i^(:r),//g(:c)) intersection

|A| = Ylxex cardinality

A C g 4=^ subset

Aa — {x : ^JLA{X) > o;} alpha-cut

Ao:+ = {x : IIA{^) > Oi} strict alpha-cut

48

We can extend our model to include fuzzy characteristics following the work

of Straccia (1998) on fuzzy description logics. We redeBne the range of the inter-

pretation function to be the set of membership functions A [0,1] so that we

can now talk about documents in A being 'mostly relevant' or 'slightly relevant'

to expressions in C. The deEnition of subsumption (3.5) remains as before, but

unification is now defined as in Equation 3.11. The intuition behind this definition

is that two concepts should be considered to be capable of being unified if there is

any overlap between the (fuzzy) extensions of those concepts; the alpha-cut at zero

selects all elements of the domain which have at least some degree of membership

in the intersection of the concept extensions.

zOT/ <=> (a;^n?/^)o+#0 (3.11)

Having defined the notion of relevance using a fuzzy interpretation function, we

can now express our relevance measures in terms of this function. We can give the

user a means of trading precision and recall off against each other by defining the set

of retrieved documents to be the alpha-cut of the set of relevant documents. There

can be no fuzziness in the set of retrieved documents; documents are either retrieved

or not. The set of relevant documents, however, need not be a crisp set, because the

documents may be of varying degrees of relevance to the user's information need

(the membership degree of an element in the set indicating relevance). We use an

alpha-cut to represent the retrieved document set because it is a crisp set based on

the relevant set; the value of ct is a parameter which can be tuned in order to trade

off the precision of a query against its recall by retrieving more or fewer records.

The measures of precision and recall can therefore be defined as follows:

P M = (3.12)
19 al

\Q^ A I
Rh) = (3.13)

However, our chosen application domains typically use structured records for

which matching techniques such as subsumption or unification are appropriate. The

nature of relevance in information retrieval systems is domain dependant; the fuzzy

model given above is appropriate for those domains which require a sliding scale of

relevance, but for our chosen domains its crisp counterpart based on conventional

description logics will suffice.

49

3.3.5 Retrieval Efficiency

Information retrieval research has traditionally focussed on effectiveness as a mea-

sure for the assessment of information retrieval systems, so concentrating on im-

proving the accuracy of the results that such a system returns. Indeed, efficiency is

commonly considered to be a lesser concern to effectiveness because a system which

returns poor quality results is of little use, regardless of how quickly it returns those

results. A recent study by Frieder et al. (1999) notes t h a t one recent collection of

seminal research papers (Sparck Jones and Willett, 1997) did not contain a single

paper on efficiency considerations.

The advent and rise of distributed information retrieval has changed this state of

affairs to some extent. Web search engines are under considerable pressure to deliver

their results quickly; the process of evaluating a query is perceived by many users

as being no more complex than that of following a link, so the search engine should

return its results within an order of magnitude of the time taken to traverse a link.

Similarly, the impact that the information retrieval system has on its environment

(its use of network resources while building its index and processing queries, for

example) is vitally important. A web search engine which places a heavy load on

the network would be deemed unacceptable and antisocial.

Existing studies of information retrieval efficiency have made use of measure-

ments such as the time taken to process queries or the size of an index in bytes.

While wholly appropriate for an empirical study of an existing system, they are

less so when modelling the behaviour of a hypothetical system. We choose a set

of more abstract complexity measures of communication and space. While these

are strongly related to the real-world measurements, they are more amenable to a

study which does not consider the added modelling complexities of network latency

and the like.

Query Complexity

When a query is submitted to the system, the number of request and response

messages which are generated between system components (the message traffic) is

a measure of the communication complexity of query processing. The rate at which

this grows relative to the number of servers in the network gives an indication of its

scalability. In addition, the individual message traffic for each server in the system

can be used to show the presence of bottlenecks, servers which contribute dispro-

portionately to the global message traffic. We do not explicitly specify whether the

50

system operates by means of referrals or by delegation since a single referral gen-

erates as many messages as a single delegation. However, a system which operates

by referrals is less prone to making redundant queries (where a server is queried

more than once) because the state of the query is stored in one location (the client),

making it easy to remove duplicates. A system which uses delegation could be ex-

pected to send more redundant messages, but the exact effect cannot be quantified

without more detailed knowledge of the exact structure of the forward knowledge

graph and the query being asked.

We consider our hypothetical systems to operate in synchronous parallel rounds,

one round being the time for each entity in the network to communicate with one

or more of its neighbours. The running time (time complexity) for query processing

is the number of rounds required until the client receives an answer to its query.

Control Complexity

Although the message traffic generated by submitting queries can be used to mea-

sure system load under normal operations, it would not be possible to process

queries at all if there were no forward knowledge in the system. This forward

knowledge must be built up by passing messages which contain forward knowledge

summaries between servers.

The forward knowledge graph affects the query message traffic by constraining

the types of referral which may be issued. However, the forward knowledge graph

must be constructed by an initial exchange of messages. These messages are equiv-

alent to the control messages which allow a communications network to build its

routing tables; the number of control messages sent by the system gives the com-

munication complexity of the forward knowledge building operation. We consider

only those control messages sent when a system is started; control messages sent

as the result of dynamic changes over time to the resources held by the servers are

not considered.

As with query message traffic above, we measure time complexity by counting

the number of rounds taken for the system to complete its task. In this case,

the system must converge, reach a state where each server has sufficient forward

knowledge that all resources that are relevant to a query are reachable).

51

Update Complexity

While the control complexity of a system measures the effort required to build the

forward knowledge network from scratch, frequently we will be presented with a

situation in which a single server has changed its holdings and wishes to advertise

this fact. In this situation, we need to know the complexity of propagating such an

incremental update, and in particular how it compares to the complexity of building

the forward knowledge network from fresh.

Again, time complexity is measured by counting the number of rounds until

convergence and communication complexity by counting the number of messages

sent within the system in the course of propagating the update.

Routing Table Size

If the number of control messages shows the communications overhead inherent in

building the forward knowledge graph, the size of the routing tables held by each

server as a result of the control messages above shows the space required to store the

routing information. A system's control message tra@c could be largely redundant,

so a server would not retain each message it received; this measure gives the size of

the 'useful' control information.

3.4 Delegation and Referral

Although forward knowledge controls the distribution scope of the processing of

a query, it does not control how the query is distributed. Delegation and referral

are two commonly used techniques by which the processing of a query may be

distributed through a system. When a query is presented to a server which is aware

(by virtue of its forward knowledge) that there is another server better suited to

dealing with the query, it can choose to propagate the query by either method.

On delegating a query (Figure 3.3(a)), the server asks the query of the second

server, and on receiving an answer, passes this back to the client which issued

the request, so delegating responsibility for processing the query to the second

server. Alternatively, the server might instead refer the client to the second server

(Figure 3.3(b)), informing it of its existence and its suitability to the task in hand,

and leaving the client to carry out further work.

Delegation and referral are known by different names in the agent world, namely

brokerage and matchmaking. Agents which provide either facility are collectively

52

quay

response (Z*)

query' (^2)

response' (is)

query (Zi) ̂

y - T —
referral (Z2)

query Ob)

(a) Delegation

Figure 3.3: Delegation and Referral

response (&*)

(b) Referral

known as middle agents or mediators, because they are interposed between agents

which provide information and those agents which seek it. Brokering in particular

may go beyond information retrieval concerns; a broker may be presented with

a task which it then recruits a team of agents to fulfill, using a plan of its own

formulation. The treatment of middle agents in Decker et al. (1996) identifies a

difference in the ways that a client interacts with matchmakers and brokers, based

on the semantics of the messages exchanged.

When talking to a matchmaker, a client sends a message asking "who is able to

service my request". By comparison, when a client speaks to a broker, it sends a

message saying "service this request". The content of these messages is observably

different, even if both messages are requests to be sent information.

This is at odds with the behaviour of a number of existing search systems (most

notably DNS) in which a service request may be responded to with either referrals

or brokered answers. In effect, the queries sent by DNS clients are hybrid entities

which informally might correspond to the question "tell me what you know about

X and/or tell me who knows about x".

The example given by Decker et al. (1996) also uses different KQML message

types for communicating with matchmakers and brokers (a s k - a l l and s t r e a m - a l l

respectively), but this is not relevant to the above argument; the message types have

the same semantics (the effects on the listener, as noted informally by ?), and differ

only in the mode of delivery of their responses (a s k - a l l requires an agent to send

all its responses in one message, whereas s t r e a m - a l l returns a stream identifier

which the recipient may use to control the rate at which it receives the responses).

Delegation and referral are different coordination strategies to the distribution

of queries, but can be driven from the same forward knowledge. The difference

53

between the strategies lies in which entity has control over the progress of the query.

A server which delegates a query controls which data is returned to the client, and

80 may aggregate solutions from other sources before dispatching them to the client.

The client may however be possessed of knowledge which might aid the satisfaction

of the query (for example, which servers are considered to be sources of trustworthy

information) and which cannot be used because the server haa sole control over

which sources are used. Conversely, while issuing referrals grants clients the power

to decide how and where a query is processed, they are under no obligation to follow

the suggestions made by the issuing server. In Decker et al. (1997), the authors go

further in their characterisation of middle agents by identifying and classifying a

variety of middle agent roles based on which agents initially know the preferences

of the requesting agents and the capabilities of the providing agents. This privacy

based model of the connection problem (finding other agents with the capabilities

you need) investigates the distribution of initial knowledge in the system, which

in turn gives agents the necessary means to control the direction and scope of the

search.

Delegation and referral represent the extremes of a continuum of distributed

search techniques. At one end, the servers maintain the state of processing of the

query (the list of servers which have been queried so far, and those which have

been identified as possibly relevant, but which have yet to be queried), while at the

other this is controlled by the client. Each has advantages over the other in certain

circumstances, as will be further explained in Section 4.5, so there is some reason to

believe that a search system with mutual state - shared between servers and clients

- could combine the best features of both.

3.5 Modelling Forward Knowledge

The organisation of a distributed search system is the key factor which determines

its effectiveness and efficiency. If a given query is to be processed with perfect (= 1)

recall, it must be presented to all of the nodes which contain relevant data. On the

other hand, we wish to use as few system resources as possible in the processing of

the query, so the query should be presented to as few nodes as possible. Thirdly, we

do not want the burden of query processing to rest unevenly on particular nodes;

as far as is possible, all of the nodes in the system should play an equal role in the

processing of queries. We have used a graph-based approach to model the network

54

of forward knowledge in a query system, but see (van Eijk et al., 2000) for work

which uses the Kripke structures of a modal logic to model network topologies.

3.5.1 The Forward Knowledge Graph

If a query is to be presented to a server which haa relevant data, there must exist

a chain of referrals from the initial server (where the query was first asked) to the

target server. For these referrals to be generated, the templates for the forward

knowledge from which they are generated must be relevant to the query. As a

precursor to determining the effects of forward knowledge distribution on the per-

formance of distributed search systems, we can model the forward knowledge and

identify useful properties by considering the graph made by the forward knowledge

(this work is derived from the path calculus described by Gormen et al. (1990,

p.570)).

The forward knowledge graph is a multigraph G = {V,E) with directed edges

which are labelled with (possibly non-unique) expressions from C (the forward

knowledge templates) and nodes which are also labelled with expressions from C

(each data server holds some subset of A, so the node labelling expressions from

C are cluster representatives for each server in the system). We represent the edge

labelling with the functions A : F x V —> C and the node labelling with the function

: y — C . Because A is deGned over the domain y x y , we take A(%/, t;) = _L if

(u, v) ^ E (i.e. non-existent edges are treated as though they existed and had been

labelled with bottom, the expression which does not subsume any expressions).

The notion of edge labels may be extended to label paths with the most general

expression which will satisfy all of the edges in the path; if this expression is relevant

to a query, sufficient referrals will be generated to allow the propagation of the query

to the path end (which presumably holds records which are relevant to the query).

If we have a path p from VQ to (written as and shown in Figure 3.4),

the n operator (3.8) can be used as an extension operator to give a path label

determined by:

(p) = A(Y;o, ^i) n A(i;i, 1̂ 2) n - - - n A(2;n-1, (3.14)

Although the edges would be traversed in order from (fo, f i) to (wn-i, when

a query is processed in a real system, n is associative on C. Since T is an identity

for n, the system (C, n, T) is monoid.

55

Vn

Figure 3.4; Path extension

vo

A(P2)

Figure 3.5: Summary labels for parallel paths

The forward knowledge graph may contain more than one path from the initial

node to the target node, so we must also define a summary operator which can

combine the labels of several paths in order to give an expression which denotes

the queries which can be answered by the target node, starting at the initial node.

For systems which use unification (•) for their relevance relation, we can use the

most speciSc generalisation (u) as our summary operator. The aggregate label

fn) for a,ll of the paths fo is given by:

[J (3.15)

vo v„

However, U is not immediately appropriate as a summary operator for those

systems which use subsumption (•) as their relevance relation; in this group of

systems are included Nomenclator (Ordille, 1998) and RWhois (Blacka et al., 1998)),

which both require that only templates which completely cover a query are used for

generating referrals. If we envisage a graph with two paths vi Vn and vi

labelled with A (Figure 3.5), the summary label of the two paths is A(pi) U A(p2)- If

we formulate a query q e C such that q C A(pi) U X{p2), q % A(pi) and q g A^%),

q cannot be satisfied by I;„ from VQ because there is no single path that can be

traversed, despite what the summary label suggests.

If we allow queries to be decomposed into smaller queries, U does hold as a

summary operator. If we formulate q E C and then break it down into qi,q2 E C

such that q = qi U q2, qi Q X{pi) and 92 E A(p2), each of the two parts of the query

can be satisfied by traversing a different path to Vn from vq.

In addition, if we use U as a summary operator, the issue of contradictory

summaries, where the generated summary has an empty extension, does not arise.

The expressions which are summarised each denote a class of entities, and the

56

A(pi)

A(P2)

Figure 3.6: Summary labels for diverging paths

the extension of the summary is the union of the extensions of those expressions.

For example, the expressions Book U3AUTH0R. Jane-Austen (books written by Jane

Austen) and BookU3AUTH0R.Charles-Dickens (books written by Charles Dickens)

have disjoint extensions, but their summary using U is not a contradiction, having

an extension which is the union of the two component extensions.

The summary operator may also be used to combine diverging paths, so as to

represent all of the routes which may be taken from the initial node. For example,

in Figure 3.6, the summary of the paths is A(pi) U A(p2).

3.6 Summary

In this chapter we have presented a model of a query routing distributed search

system which can be used to study the effects of different distribution topologies

on system performance. Although there are a large number of deployed query

routing systems, there have been only limited analytical studies of their behaviour

to date. Our model draws on previously published results from the information

retrieval, artificial intelligence and graph theory communities (in the form of the

set-theoretic modelling of the information retrieval process, description and fuzzy

logics and the path calculus of Gormen et al. (1990)), bu t the combination and

application of these results to be a novel one.

In the next chapter, we will use this model to study the effects of different

forward knowledge network topologies on the retrieval efficiency and scalability of

a system (as given by the complexity measures in Section 3.3.5).

57

Chapter 4

Query Routing and Network

Topology

4.1 Introduction

Using the model deEned in the previous chapter, we can now investigate the effects

of the distribution of forward knowledge (the topology of the forward knowledge

network) on the efficiency of processing queries. An earlier version of the material

appearing in this chapter was published in (Gibbins and Hall, 2001), and a summary

of the complexities of the topologies discussed in this chapter is given in Table 4.1.

4.2 Forward Knowledge Distribution

The organisation of forward knowledge within a query routing search system plays

a great part in the effectiveness, eSciency and scalability of the system. Forward

knowledge should direct a query to the relevant servers with less effort than if the

query were sent to all servers (an exhaustive search), and ideally the effort expended

should grow more slowly than the number of servers as the system is expanded.

The order implicit in this network of forward knowledge is also important; the

majority of existing query routing search systems presuppose the servers to have

been arranged in a hierarchical manner with an omniscient root server (or group

of servers) indirectly aware of the contents of every other server. This has been

demonstrated to scale well in systems such as the Domain Name System (Mock-

apetris, 1987a), but it requires that a degree of control be exerted over the servers

to force them into a hierarchy. Thus, ordered systems have the drawback that it

may be costly or politically inexpedient to organise such a system; scalable ordered

58

systems rely on some centralised components for their operation, and the responsi-

bility for running these may be too large to entrust them to an 'ordinary user' (the

administrator of a simple leaf server, for example). These administrative, political

or social costs are difficult to quantify (if not impossible), and are not reflected in

the complexities of the given topologies.

A different approach treats all servers as peers and models the interactions

between them as if they were social acquaintances; the majority of servers know

only about their close neighbours, but a few servers have knowledge of more distant

servers. This type of graph, known as a small world network, has attracted much

attention of late in domains as diverse as paper citations, hypertextual linking on the

World Wide Web (Albert et al., 1999), disease epidemiology and neural networks.

In both types of system, the key aim is that a properly labelled path exists from

the server by which a query enters the graph, to the server or servers which can

satisfy that query. With ordered network topologies it is possible to provide simple

rules by which forward knowledge is passed, whereas disordered networks benefit

from flooding techniques akin to those used by conventional routing algorithms.

In the example topologies given in the following two sections, the assumption

has been made that all forward knowledge is faithful and complete, and this has

aEected the analyses of system performance accordingly, most of all those for query

message traffic. While it is not possible to give specifics of performance for all

systems in which forward knowledge is incomplete or unfaithful, a rule of thumb is

that incomplete knowledge will reduce the query message traffic (as fewer referrals

are generated) while unfaithful knowledge will increase the traffic. Similarly, the

topologies studied have also been chosen such that a correctly labelled path will

always exist between the entry points to the network and the other nodes, which

ensures that all searches will have a recall of one (a relevant server can always be

found by following the forward knowledge).

4.3 Ordered Networks

The majority of query routing search systems arrange their servers in a hierarchical

fashion, with the data servers which hold the objects of the search at the leaves of

the tree, and progressive layers of index servers further up the tree.

59

4.3.1 Single index server

This simplest hierarchical network for query routing consists of a set of data servers

which hold the records in the system and a single index server which contains a

complete description of the contents of each data server (as shown in Figure 4.1).

Queries are submitted to the index server, which uses its forward knowledge to

propagate the query to the relevant data servers. This arrangement is used by

Napster (Section 2.2.13) and most Internet meta-search engines.

data server

O index server

Figure 4.1: Single index server

We model this system as a directed graph (F, E) in which there is a distinguished

fo E y which is the single index server and all edges in ^ are of the form ('Uo,̂).

The contents of the data servers (the elements of the set V \ {ifo}) are denoted by

the vertex labelling u : V C. Each data server passes a summary of its contents

to the index server, so G y,^; t'o,A((fo,i;)) = Therefore, given a query

q E C which can be satisfied by the contents of a data server, there exists a path

(edge) from the index server to that data server whose label also satisfies q.

Our estimates of the efficiency of the system rely on faithful and complete for-

ward knowledge, and can therefore be regarded as best cases. The worst cases, those

where all forward knowledge is entirely incomplete or unfaithful, are degenerate

cases where the system reduces to either exhaustive search (unfaithful knowledge)

or a null search in which no results are returned (incomplete knowledge).

When a query which may be satisfied by a single data server is submitted to the

system, the generated query message traffic is constant with increasing system size

(one request and response with the index server and the chosen server), as is the

running time. Although query complexity is low, the index server is a bottleneck,

since all queries presented to the system must be processed by it. The number of

control messages sent initially scales as 0{\V\), the number of servers in the system.

The number of entries in the routing table held by the index server also scales as

0 (| y |) . The update complexity for a single data server is constant for both time

and communication (a single message sent to the index server).

60

4.3.2 Distinguished index servers

Although the system above is capable of routing queries to relevant data servers,

it is unlikely to scale well as the number of data servers increases. The limiting

factors are most likely to be the number of forward knowledge expressions that the

index server must hold and the uneven load distribution that it is under.

It is natural to expand the system to a multi-layer hierarchy in order to address

the first of these concerns. The lowest layer of the system consists purely of data

servers which pass forward knowledge up the tree to index servers that summarise

it and pass it in turn to their parent. Clients present their queries to the system

as a whole by sending them to the root index server, which forwards the query

to those second-level servers that might be able to pass it on to appropriate data

servers (and so on, until the query reaches the data servers). To begin, consider the

system shown in Figure 4.2, in which the leaves of the tree alone hold data and the

servers internal to the tree summarise this data.

data server

O index server

Figure 4.2: Hierarchy of distinguished index servers

Let G = (y, E) be a directed layered graph such tha t the set V of vertices

is partitioned into the sets Lq, L i , . . . , and all edges e E E are of the form

{v,w),v E Li, w E Li+i- The set LQ contains the root elements of the graph; for

this system we take LQ to be singleton, so the graph is single-rooted. We denote

the root vertex by VQ. For convenience we define the function ch : V ^ 2^ which

maps a vertex onto its children:

= {a; G y : (u, a;) E E }

The vertices in V are labelled with the function u : V C. This describes

the contents of the data servers in L„ with the most specific generalisation of those

contents and describes all index servers as having no content.

%/(%;)
summary of contents of u if v E

_L otherwise

61

Figure 4.3: Constructing path labels

As in the previous case, the edges are labelled with the function X : E C.

The function differs from its previous definition by adding a summary of the edge

labels from the layer below.

X{u,v) = i^{v) U |_J X{v,x) (4.1)
x&ch{v)

If we take a query g G C for which some data server G contains a relevant

document (which we can tell if g C v{v)), there will be a chain of forward knowl-

edge from the root server to this data server which will satisfy g if g C X{VG^V).

Consider the example shown in Figure 4.3. If V2 contains some document relevant

to g, that is if g C 2/(^2), we can show that the label on the path V0^V2 satisfies q

(i.e. V2 is reachable from Vq given q, ov q Q X{vq'^V2)).

The path label is the most general label that will satisfy all of the edge labels

along the path; if q is satisfied by this it will by definition be satisfied by the edge

labels, guaranteeing the reachability of

When a query which may be satisfied by a single d a t a server is submitted to

the system, the generated query message traffic and query running time scale as

0(log |F|) , the depth of the hierarchy. The number of control messages sent initially

scales as 0{\V\), as each data and index server passes forward knowledge towards

the root while the control running time scales as 0(log | y |) . The mean number of

entries in the routing table held by each index server, including the root, is constant

with increasing system size (assuming an even distribution of servers beneath each

index server), being equal to the breadth b of the hierarchy (the number of direct

children of a node). If a single data server wishes to send an update, the complexity

of this update is 0 (l o g | y |) messages over O(log |y |) rounds (considering a system

which operates in synchronous parallel rounds, with one round being the time for

each entity in the network to communicate with one or more of its neighbours, as

discussed in Section 3.3.5).

62

4.3.3 Non-distinguished index servers

The model in the previous section may be expanded by weakening the distinction

made between index servers and data servers. In the example system shown in

Figure 4.4, all of the servers contain some data of their own, even those which

contain forward knowledge about others.

C
data server

combined data/ index server

Figure 4.4: Hierarchy of index servers

The vertex-labelling function v will now potentially return a non-bottom value

for all V &V, but this will not alter the definition of A given in (4.1).

The efficiency estimate for this class of system is based on the worst case where

the data server which contains relevant records is in 1/̂ , so is equivalent to that for

the system with distinguished index servers.

4.3.4 Multiple hierarchies

A further relaxation of this model may be made by allowing the hierarchy to have

more than one root, as in Figure 4.5. We can model this by allowing the set LQ to

contain more than one vertex, but we must add a further restriction to the graph to

ensure that all roots are functionally equivalent in terms of the queries which they

can answer, or the data servers which can be reached from them. We define the

path projection of a vertex VQ as a subset of {v e Ln : VQ^V}, which contains

those vertices which are connected to VQ. If data and index servers are distinct, two

root servers are equivalent if their path projections are the same.

data server

O index server

Figure 4.5: Multiple hierarchies

63

A graph with multiple hierarchies in which the roots are equivalent may therefore

be considered as the conflation of two or more different hierarchies constructed atop

the data servers in 1,̂ - The data servers are reachable from any root, as for a single

hierarchy with distinguished index servers.

This is no longer the case if the data servers and index servers are not distinct.

Each hybrid data/index server contains data of its own, and so must be reachable

from each root if queries are to have the same effectiveness regardless of where they

are started, but may appear in different positions within the hierarchies beneath

each root. However, if a given index server appears in different positions in several

hierarchies, it must have a different set of forward knowledge for each hierarchy (the

forward knowledge being for those servers which are beneath it in each hierarchy),

and more importantly, it must have some way of knowing which set of forward

knowledge is the correct set to use for a given query (i.e. it must have some idea

of the hierarchical context in which it was asked the query). If this is not so, all of

the hierarchies must be identical.

Ignoring this degenerate case, the efBciency of this class of system will be as

that for single hierarchies with distinguished index servers.

4.3.5 Search expansion

So far, the hierarchical topologies which have been described are intended to be

searched from the root to the leaves, but this often involves the expenditure of

more effort than is necessary if all of the relevant servers lie within a particular sub-

tree of the graph. In this case, searching from the root of this sub-tree is sufficient

to retrieve all relevant objects.

Also, a single root represents a considerable bottleneck if it must process every

query in the system. In order to spread the load more evenly across the servers

in the system, queries are initially directed at a server chosen at random. If the

query does not lie within the area of expertise of this server, it may choose to issue

a referral to the server to which it customarily passes its forward knowledge (in

R W H O I S terms, a punt referral).

The justification for such search expanding referrals differs from that of con-

ventional referrals in that a server placed higher up in the hierarchy will be able

to provide referrals that are relevant to a wider variety of queries. In the Domain

Name System, a query (name lookup) that is addressed to a server (nameserver)

which cannot provide a referral that narrows the search space (i.e. a referral to a

64

server which is better placed to answer the question) is passed up the tree until it

reaches a server which can narrow the search space.

Search expanding referrals may also sometimes be generated by servers which are

themselves able to generate referrals down the tree. These referrals allow the client

to aak the query of a broader range of servers in order to achieve a better recall.

The assumption made here is that a group of servers who all pass their forward

knowledge to the same server are in some sense clustered, so that they have similar

competences and areas of knowledge. A referral which directs the client to look

further up the hierarchy is informing it that the parent server likely to know

about other relevant servers, because it knows about me".

The knowledge which drives these referrals can be represented by another edge

labelling, related to, but separate from the A-labelling already in use. More specifi-

cally, this labelling (which we will denote by K) is a labelling of the transpose of the

original graph, in which all edges have a sense which is the reverse of that in G.

The values taken by K indicate the manner in which the search space is expanded

(that is, the manner in which referrals which point up the hierarchy are generated).

This may have a substantial effect on the performance of the system because it

leads to the generation of extra messages, which affects the query complexity.

The systems listed in Section 2.2 which allow search expansion show some variety

in the labellings they give to the transpose graph. WHOis-l—t- labels all transpose

edges with the vertex labels at their source (equation (4.2)), in effect giving each

data server V the reasoning that, if the index server U knows about me, it must also

know about other things like me.

K{V,U) = I^{V) U [_ J X{V,X) (4 . 2)

xGch{u)

DNS and X.500 take a different approach, in that they have a rigid naming

hierarchy in place which is used to direct search. In this case the reasoning is that

the parent of a server knows about a set of expressions that includes, but is not

limited to, the knowledge of that server (equation (4.3)).

U U A(i;, r) (4.3)
x&ch{u)

Both of these approaches use only a crude approximation to the total knowledge

of parent servers because they have minimised the number of control messages which

were sent around the system when the forward knowledge mesh was being built up.

65

/{(%;, If)

Figure 4.6: Expansion labels (K)

If we allow knowledge about the contents and capabilities of servers to flow in

reverse (from the root of the graph towards the leaves) as well in the conventional

way, we can obtain a more accurate estimate for the total knowledge of a parent

server (equation (4.4), see also 6gure 4.6).

K,{v,u) = K{W,V) U u{v) U [_! X(v,x) (4.4)
xech(v)\{u}

Estimating the efficiency of this class of systems is more complicated than in

previous cases due to the uncertainty of the initial server queried. In the worst

case, the initial server is in LN and has VQ G LQ as its only ancestor in common

with the target data server, which would give query message trafBc of 0 (log |y |)

messages because the query is propagated all the way to the root before it begins

to be constrained. In the cases described by (4.2), (4.3) and (4.4), the routing table

is of constant size, but the control message traffic in (4.4) scales as 0{\V\) because

forward knowledge is propagated down the hierarchy as well as up. However, be-

cause routing knowledge is passed down the hierarchy as well as up, the complexity

of propagating an update from a single data server is now 0{\V\) messages over

0(log |y |) rounds (as described in Section 3.3.5) because the change in forward

knowledge is propagated to all servers.

66

4.3.6 Complete Graph

This ordered graph is not a hierarchy, but describes a system with mutual forward

knowledge, where all the servers know about the contents of all the other servers (see

Figure 4.7). The message traffic generated by queries in this system is constant (4

messages) and takes constant time to process. Each server requires a routing table

of size 0 (| y |) and the control message trafhc scales as 0 (| y p) because the graph

contains | F | (| y | — 1) edges. The running time for control messages is constant (one

round). The complexity of propagating an update from a single server is 0 (| y |)

messages and takes constant time.

C combined data/ index server

Figure 4.7: Complete graph

4.3.7 Councils

Councils are a cross between complete networks and hierarchies that were intro-

duced in Lejter and Dean (1996) (Figure 4.8). The servers are divided into \V\lh

groups of b members each. Within a group, there is complete forward knowledge;

every server knows about the contents of every other server. Each group is repre-

sented in a council by a chosen member from that group. This pattern is repeated in

the councils; a council is also fully connected and makes representation to a higher

level council, and so on.

Provided that b |y | , a council has the same control complexity for queries,

control messages and updates as a hierarchy. As b grows, the effort required to ex-

change control messages with group peers grows and the control message complexity

approaches 0{\V\^), that of a complete network (the running time is 0(log \V\) re-

gardless of b). The query message complexity and running time for a council are

0(log |F |)) . For each group in which a server participates, it will have a constant

b entries in its routing table. In the worst case a server will be a representative

in groups at all levels; here the server's routing table size will scale as (9(log|V|).

67

w
D combined data/ index server

Figure 4.8: Councils

Also, because such a server handles a disproportionately large number of messages

(being responsible for gatewaying messages between subtrees), it is a bottleneck,

though not to as great an extent as the root server in a hierarchical network (here,

the load is shared with its peer servers).

4.4 Disordered Networks

While ordered, hierarchical networks are a simple abstraction for studying the be-

haviour of query routing systems, it should be noted that similar real world systems

are, for the most part, not ordered. In order to study networks with little or no

implicit order, we need a family of graphs which are structurally similar to the types

of disordered network that are likely to be encountered in real world systems, and

for which it is known how the key properties which affect complexity and scalability

change with graph size (such key properties being the diameter of a graph and the

maximum vertex degree).

Small world networks are a class of random graphs which show a large degree

of local order while retaining many of the characteristics of Erdos-Renyi random

graphs (see Bollobas (1985) for a review of this work), such as low graph diameter

(scales as log |y |) . In the model proposed by Watts and Strogatz (1998), the graph

is based on the ring lattice Ln,k (also known as a circulant graph or a 1-lattice), in

which each of the n nodes in V are adjacent to their k nearest neighbours (for a total

of — edges). This ordered graph used as a basis for the small world model could

also be a rectangular lattice as used in Shehory (1999) (also known as 2-lattices with

k = 4 in Watts (1999, p35)). This graph is then modified, with each edge being

rewired at random with probability p. The resulting graph is greatly ordered locally,

in that many neighbourhoods persist after rewiring, but appear more disordered

68

(a) Ring lattice L 1 2 , 4 (b) Modified ring lattice

Figure 4.9: Constructing small world networks

overall due to the existence of 'long distance' edges between otherwise distant nodes

(see Figure 4.9 for an example).

These long distance edges have the effect of reducing the diameter of the graph.

When their number is above some critical value, the diameter of the graph begins

to scale as rather than as ^ in the unrewired ring lattice. This change in the

nature of the graph to a small world network is characterised variously as a phase

transition on the rewiring probability (Watts and Strogatz, 1998) or as a crossover

phenomenon involving both the size of the network and the rewiring probability

(Barthelemy and Amaral, 1999).

A number of real world systems have been shown to be small worlds (including

the Gnutella peer-to-peer search system (Jovanovic et al., 2001)). However, the

small world model has its flaws. Chief among these is its failure to model the prob-

ability distribution of vertex degree. A number of real world examples, including

actor collaborations, webpage linking, electrical power grids and journal citation,

follow a power-law distribution, where the probability of a vertex having a degree

k is p{k) ~ In contrast, the small world model gives vertex degree a Poisson

distribution. The practical upshot of this is that the real world networks contain a

few exceptionally well connected vertices, while the vertices in small world networks

are of more even degree.

Barabasi and Albert (1999) call the class of random networks with power-law de-

gree distribution scale-free networks, which differ from Erdos-Renyi random graphs

and Watts-Strogatz small world networks in the method of their construction. Ran-

dom graphs have a fixed number of vertices which stays constant throughout the

69

connecting process, while small world networks have not only a fixed number of

vertices, but also a fixed number of edges by virtue of the rewiring process. Scale

free networks are open, and grow by the addition of nevy vertices. These new ver-

tices are connected to existing vertices, with a preference placed for links to vertices

which are already well-connected. This rich-get-richer linking echoes the observed

behaviour in real world networks (commonly cited papers attract more citations, for

example) and results in a graph with a very few well-connected vertices, a slightly

larger number of less well-connected vertices, and so on.

Scale-free networks still commonly have the small world property of a diameter

which scales logarithmically as the number of vertices increases, as noted by (Albert

et al., 1999). Barabasi et al. (2000) give a model of scale-free networks which creates

graphs such that |F | = t+rriQ and \E\ = tm, where mo is the size of the initial 'seed'

network, t the number of vertices subsequently added and m the number of edges

which connect each new vertex to the graph. In Albert et al. (2000), the authors

also note that scale free networks are also more robust t han small world networks in

the event of failure, if not in the event of malicious attack; the high degree vertices

are crucial to the connectivity of the graph, but are comparatively rare making them

less likely to fail if all vertices have an equal probability of failure, but allowing a

malicious attack that specifically targets those vertices to have a greater effect.

Small world and scale free networks therefore offer an attractive abstraction of

networks with partial disorder such as the World Wide Web (although see Broder

et al. (2000) for a different characterisation of Web topology in which the Web as

a whole does not possess small world connectivity). In particular, these graphs

seem to be ideal for studying systems in which component entities are clustered

by ability, interest or location (the limited communications afforded the cells in an

amorphous computing system by Abelson et al. (1999) are a good example of the

latter).

To begin with, we will assume that the servers in our search systems are not

clustered by interest or ability, but form neighbourhoods based on some real world

or network distance criteria. The edges in the graph show basic mutual aware-

ness between servers. These edges may be concatenated using traditional network

routing techniques to produce shortest paths to the other servers.

There is a fundamental difference between network routing and query routing,

namely the treatment of addresses. In network routing, an address is a unique object

used to identify a server. The routing process takes an address and constructs a path

70

expr next dest

9̂ d d

expr next dest

c d
4> h d

expr next dest

0 d d

Figure 4.10: Augmented Routing Tables

from the source to the destination server which bears tha t address; each server's

routing tables are indexed by these destination addresses.

In contrast, query routing takes a query expression, which does not uniquely

identify a server, and attempts to construct paths from the source to each des-

tination server which can satisfy the query expression. The routing tables may

therefore contain more than one entry for a given expression, but this presents a

problem while the routing tables are being constructed; do two entries with the

same expression refer to the contents of different servers (and so should be retained

as separate entries), or are they both references to the same server (and should be

contracted into a single entry)?

This ambiguity may be resolved by including both the server's content summary

and its name in the routing table, so that each routing table entry contains the

expression which is to be compared with queries, the name of the server to which

a referral should be generated and the name of the server which will eventually

be reached if the referral is followed. An example of this is given in Figure 4.10,

which shows a simple network of four servers. Server d contains some records whose

summary we denote with Servers h and c have routing table entries which indicate

that received queries which are subsumed by (j) should be routed to d. Server a has

a routing table containing two entries, both for paths labelled with cj). These two

paths {a ^ b d and a c d) both lead to d, but by different intermediaries. If

a's routing table did not contain this information, a would be unable to distinguish

between the two entries and would generate referrals to both b and c for queries

matching cp, when only referrals to one or the other were required.

71

Making this change to the structure of routing tables brings to light a different

question. If a server's routing table contains the name of a data server, why can't

the query take a shortcut and be sent to the destination directly without having to

traverse the path generated by the routing process? If the query is sent directly to

the destination, none of the non-routing knowledge accumulated by the intermediate

servers (namely, cached answers) may be brought to bear on the query.

4.4.1 Flooding

The first technique we present for searching in a disordered distributed system

does not use query routing, and is including for comparison purposes. Gnutella

(see Section 2.2.14) and FreeNet (see Section 2.2.15) are both peer-to-peer systems

which do not use a centralised server to hold routing knowledge (and so could be

considered to be 'true' distributed search systems), and both propagate queries

using flooding or similar uninformed exhaustive techniques.

Although Gnutella clients flood a discovery message on joining the network,

this is not used to gather or to distribute any routing knowledge, so the control

message complexity and routing table size efficiency measures are not relevant.

The complexity of querying a Gnutella system, however, is that of flooding the

query message from the originating server to the rest of the system, which is 0(|£ ' |)

messages over a period of 0(log | y |) ticks (the query is sent at most once over each

edge in the network and reaches all vertices within a number of rounds equal to the

diameter of the network).

FreeNet does not flood its queries as does Gnutella (effectively a breadth-first

traversal of the system which uses delegation rather than referral), but performs

a depth-first traversal of the system which reduces the peak loading caused by

broadcasting a message to several destinations at the same time. This traversal

is still uninformed, and there is no coordination between servers, so the query

complexity is still 0{\E\), but spread over rounds. In practice, the control

message traffic is less because FreeNet is a name resolution system in which any

two entities that satisfy a query are considered equivalent; the search need not be

exhaustive.

4.4.2 Distance Vector Routing

The Distance Vector (also known as Ford-Fulkerson or Bellman-Ford) algorithm is

a dynamic, distributed routing algorithm widely used in the Internet, where it goes

72

by the name of the Routing Information Protocol (Hedrick, 1988). Each server

maintains a routing table which contains, for each destination, the lengths of the

shortest paths to that destination and the server to which data bound for that

destination should be passed (see Figure 4.11).

Each server sends updates to its neighbours which consists of that server's cur-

rent estimates of path lengths. Each server uses the received update to recalculate

its routing table, substituting newly-found shorter paths for its current ones, if any

exist. Over time, the routing tables converge to a stable state in which they contain

optimal lengths. In this way the topological knowledge about the network is dis-

tributed amongst the servers in the network. Updates may be sent asynchronously,

and as work by Bertsekas and Gallaher (1987) shows, the system will converge

in finite time. Lynch (1996) notes that in a synchronous network, DV converges

in 0 (| y |) rounds with a communication complexity of 0{\V\\E\), making this an

expensive algorithm which scales poorly.

Each server's routing table requires storage of 0 (|K |) to hold information about

all other servers. When a query is submitted to the system, the query message

traffic and running time scale as 0(log |y|) , the diameter of the graph. An update

for a single server must be propagated using the standard DV algorithm, so its

complexity is as that for the control traffic.

1 dest dist next

a 0 a
b 1 b
c 3 c
d 5 e
e 2 e

0

Figure 4.11: The routing table shown is for node a.

Distance Vector is considered to have some drawbacks, most notably the count-

to-infinity problem where path length estimates rise indefinitely due to an inability

to detect routing loops when link statuses fluctuate, but these are of less importance

to us because we have restricted ourselves to fixed topology networks. One approach

to the count-to-infinity problem is that used in the RIP implementation of DV,

where path length estimates are given an upper limit of 16 hops. This avoids the

count-to-infinity problem, but limits the use of the algorithm to networks with a

graph diameter of 16 or less.

73

4.4.3 Path Vector Routing

Path Vector routing is derived from Distance Vector, and is designed to circumvent

the count-to-infinity and routing loop problems. Each server's routing table con-

tains a complete path to each of the listed destinations. This allows the servers to

disregard routes which visit any server more than once, so removing routing loops.

As a result, PV is not subject to the graph diameter limitation imposed on DV in

order to avoid counts to infinity.

The main disadvantage of path vector routing lies in the size of the routing

tables; while the tables in PV contain the same number of entries as those in DV,

each entry contains a complete path of average length log \ V\ (the diameter of the

graph). The communication complexity of PV is as that of DV.

4.4.4 Link State Routing

Open Shortest Path First (Moy, 1991) is a Link State algorithm, a dynamic rout-

ing algorithm based on Dijkstra's algorithm (summarised by Gormen et al. (1990,

p.527)). This given in a form modified for use in a query routing system in Algo-

rithm 4.1, following the notes on routing tables in Section 4.4. This differs from the

cited version in the types of the arrays used to store the routing table {d and TT in

lines 2 and 3 for the distance and next columns) and the priority queue of vertices

(Q, line 6), all of which use tuples containing a vertex and the content label for

that vertex (given by the vertex labelling u -.V C - see Section 3.5.1) instead of

just a vertex.

OSPF differs from DV in that each server has a complete copy of the topological

knowledge about the network and calculates a routing table containing shortest

paths for itself from this. The servers in OSPF exchange topological knowledge

by using controlled flooding to send link state advertisements which describe their

local topology to all other servers. The communications complexity of this all-

nodes flooding operation is given by Harchol-Balter et al. (1999) as 0 (| E | log |Y|),

with convergence in 0{log\V\) rounds (assuming a graph diameter that scales as

log |y |) , but it is possible to use other algorithms that accomplish the same task

with more amenable complexity (such as the Name-Dropper algorithm introduced in

that paper, which has communications complexity of 0 (| V | log^|F|) and converges

in 0(log^ |y |) rounds).

Each server has a copy of the topology of the network, which requires storage

of at most 0{\V\ -h \E\), assuming a vertex adjacency representation. When a

74

Algorithm 4.1: Find the shortest paths to all vertices in a forward knowledge network

from a single source

ADAPTED-DlJKSTRA((y, E), i/, lU, a)

1 for all V EV do

2 oo

3 7r[(?;, ;/(?;))]<—NIL

4 c/[s] f - 0

5

6 Q 4- { (f , 6 y }

7 while Q ^ 0 do

8 pick u e Q to minimise d[u]

9 ^ ^ U {ti}

10 for all V e adj[u] do

11 if d[{v,v{v))]> d[{u,u{u))] +w{u,v) then

12 z/(u))] z/W)] + ?;)

13

query is submitted to the system, the query complexity and running time scale as

0 (log |y |) , the diameter of the graph. The flooding operation for a single server

on update scales better than does DV, for a communication complexity of 0 (|E |)

in 0(log |y |) rounds. If Name-Dropper is used, it should be noted that it was not

designed for propagating messages from a single node, but rather for propagating

messages from all nodes to all nodes; in this case, the flooding operation should be

used to give a hybrid system in which global updates (when the system is started)

use Name-Dropper, and individual updates use flooding.

4.4.5 Hierarchical Routing

Link State and Distance Vector routing both have problems in very large networks.

Distance Vector has a horizon to avoid counting to infinity, which places a limit

on the size of network with which it may be used, and Link State requires that

each server has the complete topology for the networks, which entails large routing

tables and a potentially expensive flooding operation.

The routing table sizes can be reduced through the use of hierarchical routing

(Lauder et al., 1991), which divides the network into a hierarchy of areas (sub-

networks) such that areas at lower levels of the hierarchy are represented as single

75

(a) Before contraction

(b) After contraction

Figure 4.12: Hierarchical Routing

nodes at higher levels. Routing within an area is carried out as normal, but each

area contains one server which acts as a gateway to the next higher layer in the

network. In the layer above, routes are calculated to the gateway servers, but not

to the servers beneath.

Hierarchical routing techniques are in use in the Internet; OSPF makes a distinc-

tion between internal routers which handle the traffic between networks in an area,

and backbone routers (also known as gateways) which handle inter-area traffic.

We can model this by selecting connected components from the network and

contracting them in place. Contracting such a component replaces it with a single

vertex which is adjacent to all of the vertices to which the vertices in the component

were originally adjacent, as in Figure 4.12. The topology of the resulting graph

is that of the new higher layer of the network. On the Internet, the contracted

76

components are the networks which exist within organisations and companies, while

the higher layer is the backbone network of connections which join the local networks

together.

The vertices of the contracted component are represented within the higher layer

by a member vertex (a gateway), chosen by some means (normally explicitly by the

network designer, although this could perhaps be automated by using

algorithms, as discussed in Singh (1997) and Awerbuch (1987), which allow a group

of communicating entities to select a single member from amongst themselves).

In the case of Watts-Strogatz networks, any neighbourhood in the unaltered

ring lattice Ln,k which contains at most | + 1 vertices is a clique. Contracting

the maximal such clique to a single vertex results in a new ring lattice,

The query message trafRc remains as before, twice the diameter of the graph, but

the routing table size may be dramatically reduced, depending on how deeply the

hierarchy is constructed.

The control message trafRc is also reduced, the exact amount depending on

hierarchy depth again, but there is also a need for area leaders to advertise aggregate

routes from the area to the layer above and vice versa, much aa in Section 4.3.5.

4.5 Mutual State

If the only forward knowledge in a system is direct (direct knowledge of the contents

of another server, with no forward knowledge about the forward knowledge of other

servers) almost all queries will terminate prematurely without finding any relevant

servers, or stall, even though the system may contain relevant servers. This happens

because there is no appropriately labelled path (eg. one which subsumes the query)

which leads to the destination server, where results which will satisfy the query are

to be found, and the necessary referrals have not been generated.

For such a path to exist with only direct knowledge, each server along the path

would have to have summarised its contents in an unfaithful manner so that all

of the summaries could be considered relevant to any query. If however it were

the case that servers routinely expressed their contents using unfaithful summaries,

there would be many more incorrect referrals where the client was directed to a

server which did not hold relevant data, and the search would tend towards an

exhaustive one.

In general, predicting the degree at which the phase transition between stalling

and exhaustive search occurs is extremely difficult; the topology of the forward

77

Topology Control traffic Control time Query traffic Query time Update traffic Update time Routing table

Ordered

single o (M) constant constant constant constant constant om)

hierarchy o (| v |) O(iog|yj) 0{log|V|) 0(logiV|) 0{loglV|) 0(log | l / |) constant

hierarchy w/ expansion 0{\V\) O(log|l/ |) 0(log | l / |) 0(log | l / |) om) 0(log|V|) constant

complete 0 (| l / p) constant constant constant 0(11^1) constant 0(|V|)

council om) o(iog |y |) 0(logll / |) O(log|l/ |) 0(log|V|) 0 (log | l ' |) constant

Disordered

gnutella (flooding) — — 0 (| £ |) 0(log | l / |) —

distance vector o (l v |) 0(log|V|) 0(tog |V|) Odl ' l iEl) 0(1V]) 0(|V1)

link state 0(]E| log]V|) 0(log|V|) 0{loglVl) O(loglVl) 0 (| E |) 0(log|Vl) om\)

link state w/ name-dropper O(IVllog'lVl) 0(log" ivi) o(iogiyi) O(loglKl) om) 0(log|V|) o (i v |)

Table 4.1: F is the set of vertices in the underlying graph (servers in the system), E is the set of edges

(a) Redundant (b) Not redundant

Figure 4.13: A group of referrals are redundant if they are the initial edges of a group of
labelled paths which terminate at the same vertex.

knowledge graph, the edge labels, the queries and the server to which the query

was initially presented all play a part.

Forward knowledge in a query routing system directs and constrains the search,

allowing clients to prune irrelevant vertices from the referral graph, but aggregated

forward knowledge weakens these constraints by generating many referrals to servers

which in turn will generate referrals to the required data.

In the worst case, a query is directed to one of a group of servers which form a

clique in the forward knowledge graph. If one of these servers has relevant data, a

referral will be generated to it, but a referral will also be generated to every other

server in the clique, even though they only point at the (known) relevant server.

To prevent referrals to known servers, the client should present each server with

which it communicates with the query and the list of servers it has already visited

(its out-list) so that the server will only generate referrals to previously unseen

nodes. This in itself is not sufficient to constrain the unwanted referrals in the

worst case above, since none of the nodes in the clique have yet been visited when

the referral to the clique is accepted by the client.

In response, the referrals generated by the servers should not only include the

name of the server to which the client is being referred, but also the names of

the relevant destinations which may be reached by following this referral and the

distance that the destinations lie from the referred-to server. This fulfils the notion

of mutual state introduced in Section 3.4; clients tell servers of the current state of

the search so that the servers do not create unnecessary referrals, and the servers

provide enough of their routing knowledge to the clients for the clients to be able

to make decisions on which referrals to act on (ie. which to add to their in-list) and

which to discard as redundant.

A server may choose not to generate referrals, but to delegate the search instead

by acting as a client with an empty in-list and the out-list given it by the client who

79

passed it the query. This, however, brings to light coordination problems between

servers. Although this new server-client will not visit any servers already visited by

the original client, its out-list will quickly diverge from that of the original client,

so there may be duplication of effort between them.

4.6 Summary

In this chapter we have examined the effects of forward knowledge distribution on

the efficiency of query routing search by using the model described in Chapter 3

to characterise a number of network topologies and to determine the complexity

of querying and of maintaining the forward knowledge network. In Chapter 5 we

will describe the design and implementation of Phyle, an agent framework which

we have used to build agent systems that use query routing.

80

Chapter 5

The Phyle Agent Framework

5.1 Introduction

In this Chapter, we describe the design and implementation of an agent frame-

work, which was developed solely as part of this research in order to allow us to

construct agent-based query routing systems. Our decision to develop our simple

agent framework, Phyle, was motivated by the need to demonstrate the behaviour

of an agent-based query routing system (which necessarily requires that such a

system be built). The main objectives which drove the design of Phyle were that

it impose few restrictions with respect to the choice of agent communication and

knowledge representation language and allow new performatives or protocols if nec-

essary, so that it could be used to investigate the issues surrounding query routing

agent systems.

At the time this work was undertaken (early 1998), there were very few frame-

works for building agent systems available, and still fewer which made source code

available. This situation has since been remedied with the growth of open source

agent platforms such as FIPA-OS (Poslad et al., 2000) and JADE (Bellifemine et al.,

1999). Unfortunately these appeared too late to be of use to this work, which made

the development of Phyle necessary for this work to take place. In this chapter we

describe the Phyle agent framework, concentrating on those parts of Phyle which

differ from other agent systems. In particular, we describe the subsumption-based

message handling techniques used (Section 5.2.3) and the accompanying algorithms

for lattice manipulation (Section 5.2.4).

Finally, we describe Paraphyle, a simplified simulation environment for query

routing agent systems.

81

message handler lattice

FlPA parser
1 other acl i
1 parsers i

TCP sockets

behaviour layer

protocol layer

acl layer

transport layer

Figure 5.1: Conceptual layers in Phyle

5.2 The Phyle Agent Framework

Phyle was developed during 1998, and had the twin (and sometimes contradictory)

design philosophies of simplicity and flexibility. As a framework for building agent-

based systems, we felt that where possible, it should make as few assumptions as

possible about the type of agent system which was to be built. The main assumption

that was made concerned the likely complexity of the agents which would be built

using the framework; for distributed information management tasks, we believe

that:

• complex collective behaviour can arise from simple individual behaviours

• many agent tasks can be carried out without resort to sophisticated machine

learning techniques

The design of Phyle owes much to Shoham's Agent-0 language (Shoham, 1993),

adopting a weak approach to agent communications by default, in which incoming

messages trigger the execution of one or more actions from a library of canned

behaviours. The selection of appropriate actions depends in part on the message

received. Each canned behaviour carries one or more exemplar patterns describing

the messages which will trigger it; an incoming message is compared with these

patterns in order to determine which actions should be performed.

The selection of appropriate actions from the behaviour library depends not

only on the messages received, but also on the context in which they are received.

A message received as part of a conversation (the confirmation of a purchase order,

for example) has a different meaning to an identical message received out of context

(which would simply make no sense if the recipient has not received the original

purchase order).

Agents built using Phyle communicate at the transport level via BSD-style In-

ternet sockets, for simplicity. Phyle has where possible reused existing standards for

82

agent communication; the agent communication language used by Phyle is the FIPA

ACL (FIPA, 1997b), while the content language used is the FIPA knowledge repre-

sentation language, SLO. Although Phyle deals natively with the FIPA languages,

it does so in as neutral a fashion as possible. It has been possible to write naive

conversion routines which transform simple KQML, KIF and Prolog expressions

into their rough FIPA equivalents, so allowing a limited degree of communication

with agents that use these languages. Phyle has been designed in a layered manner,

as shown in Figure 5.1, in order that new communication mechanisms (for example,

a different transport layer or ACL) may be added without undue difficulty.

5.2.1 Agent Naming

An important component of an agent framework is the naming system by which

agents identify themselves to each other, but the form which agent names take must

necessarily depend on the means by which agents communicate. In systems such as

CORBA (OMG, 1996) or FIPA (FIPA, 1997a), inter-agent messages are mediated

by a common communications channel. The communications channel (called an

Aegitegt Bro/cer or in CORBA and an Communzcotioma C/zonneZ

or ylCCin FIPA) routes messages between agents, and each agent is situated on a

channel (see Section 2.3.2).

In systems which contain only a single channel, messages sent between agents

are routed locally (Figure 5.2(a)), so in this instance an agent's address need only

be unique within the scope of the shared communications channel (even if this is

not generally the case for multi-channel systems). In systems which contain more

than one channel, messages sent between agents situated on different channels must

be passed from one channel to the other (Figure 5.2(b)), which requires either that

the channel on which an agent is situated is encoded in its address, or that each

channel maintains an address book which lists agents by name and the channels

which they each use. Both CORBA and FIPA adopt the former approach, with

agent names containing the communications channel on which the agent is situated

as well as a local name component which is unique within that channel.

Although we have chosen to use the FIPA Agent Communication Language,

Phyle is not strictly FIPA-compliant because we have not implemented the CORBA-

like ACC. We have chosen instead to make agents communicate directly with each

other by sending FIPA ACL messages over BSD-style Internet sockets, rather than

by talking to an ACC as is required by the FIPA specifications. We are not alone

83

agent

orb/acc

o o

(a) intra (b) inter

Figure 5.2: Bus Communications

in making this choice, as demonstrated by British Telecom's Zeus agent system

(Nwana et al., 1999), which also chooses to transmit FIPA messages over Internet

sockets.

Because Phyle agents communicate in a point-to-point fashion without the use of

intermediaries, the naming scheme used must be such that an agent is able to resolve

a name to an address which can be used to open a channel for communication. We

have adopted a simple naming scheme which uses a transparent URL schema that

identifies the machine on which an agent resides, the port on which it listens and a

user-determined name (see Figure 5.3).

ans://hostname:port/agent-name

Figure 5.3: Agent Naming System URL Schema

Although it incurs some overhead in the opening and closing of TCP connections,

we have implemented Phyle's point-to-point communications in such a way that a

new connection is opened for each message which is sent. Either the sender or the

receiver may close the connection when the communication is finished (although in

practice, the sender usually closes it).

5.2.2 Agent Environment

Agent systems commonly use a facilitation service which enables an agent to locate

other agents which are able to help it achieve its goals, normally by providing

some service. The facilitation service is a specialised middle agent (Decker et al.,

1996) with which agents may advertise their services or enquire about agents which

provide some service. The facilitation service may be provided by a single agent,

or by a federation of agents which share advertisements.

However, if the facilitator's ability to mediate service requests is treated as a

service, we are rapidly left with a chicken and egg problem whereby an agent needs

a facilitator to find a facilitator!

84

There are two main approaches taken to solve this bootstrap problem, both

straightforward, but both with drawbacks. One approach stipulates that a facil-

itator is created with a known name which is provided to all other agents when

they are initialised. This is a low effort way of ensuring that all agents have the

necessary a priori knowledge required to locate the facilitator, and from there the

other agents in the system. The FIPA agent standard takes this approach, and

requires that each Agent Communications Channel has a (fzrec^on/ (see

Section 2.3.2). In this case, the facilitation is provided locally, so that an agent need

look no further than its local environment, but this not need be so; we can envisage

a system in which facilitators are shared between agent execution environments,

albeit a brittle one (the failures of one agent execution environment would render

any others which depended on its facilitator inoperable).

The second approach to the bootstrap problem uses broadcast messages; when

an agent needs the services of a facilitator (and doesn't know where to find one), it

transmits a broadcast request message. On receipt of this message, the facilitator

informs the agents of its presence and proceeds to communicate directly with the

agents. The service location request may be processed in one step (the broadcast

message contains the query, which the facilitator replies to directly) or in two steps

(the broadcast message is used only to locate the facilitator, which then waits to

be contacted by the agent with the service request itself).

This approach is used by the lookup service in the Sun Jini system (Sun, 2000).

In this system, agents repeatedly send multicast UDP packets containing their

request, with increasing times-to-live. When the Jini facilitator (known as a djinn)

receives such a packet, it opens a TCP channel to the agent and sends the response

(the location of the service provider) to the agent.

In Phyle, we have chosen to use the former approach for simplicity's sake; the

broadcast approach is best suited to systems with a common channel which mediates

all communications (such and the CORBA ORB or the FIPA ACC), which we do

not have. Therefore, all Phyle agents expect to be able to find a facilitator listening

on port 4000 on the machine on which they are running.

As an aside, this problem of locating a agent which can perform some service is

essentially the same problem that we're trying to solve using query routing. Given

a starting point (an initial server to query), a query routing system locates an agent

which provides a certain service (in our case, the ability to answer certain types of

question) by using a series of mediators. When queried about service providers, a

facilitator's response can be viewed like a query routing referral (and conversely,

85

locating a starting point for a query routing search is akin to locating a facilitator

prior to sending a service location request).

5.2.3 Message Handling

As described in Section 5.2, a Phyle agent contains a library of predefined behaviours

which are invoked in response to a received message or an environmental event. On

receipt of a message, an agent must identify which particular canned behaviour (if

any) should be initiated as a result of that message; each behaviour is contained in

a message handler which has an attached pattern which will match those messages

(using a structural matching technique such as unification) which can trigger the

behaviour.

This much should be quite familiar to those familiar with the message passing

style of object-oriented programming. However, we also remove the restriction

that a message may trigger only one message handler (as would be the case in an

0 0 system of the method invocation style); a message sent to a Phyle agent may

trigger any number of message handlers. The process of determining which handlers

should be triggered becomes more complicated because we also require some way

of selecting those handlers which we deem to be most appropriate to the message.

For example, responding to certain specific queries may require more intensive

methods than more general queries. We don't wish to waste effort by applying the

intensive methods to queries which can be answered more simply, so a well-written

agent should apply the intensive methods only when appropriate.

We take the most appropriate handlers to be those which most closely subsume

a message; the message handlers may therefore be ordered by subsumption into a

lattice to reduce the effort required to search the library of handlers (see Section

5.2.4 for more details of this). An agent's library of handlers is not a static structure.

Handlers may be inserted and removed as the agent's needs change. In general, the

lattice contains two types of entry;

• permanent entries, representing an agent's advertised capabilities (those mes-

sages which an agent has explicitly declared itself to be able to handle)

® temporary entries, representing an agent's expected communications from

other agents (for example, if an agent is awaiting a response to a query it

has sent, there will be an entry for the answer)

The use of temporary entries in the lattice allows us to model agent communica-

tion protocols like those used by FIPA (FIPA, 1997b); an agent sending a query-ref

86

message to another agent would create temporary handlers in anticipation of both

a successful outcome (an inform message containing an answer) and the various

failure modes (f a i l u r e , r e f u s e or not-understood). When a message matching

any of these is received, the corresponding behaviour is invoked and then all the

handlers in this group are removed from the lattice.

In the general case, each communication protocol is represented with a finite

state machine, each of whose transitions is labelled with a message pattern, a set

of handlers to add to the lattice and a set to be removed. An example FSM for the

FIPA request protocol is shown in Figure 5.4. Although common sense suggests that

the obsolete message handlers should be removed on leaving the old state and the

new handlers added when entering the new state, this gives rise to a potential race

condition where an agent may fail to recognise a legitimate message for the protocol

because it has yet to create the handlers for that message. When a protocol sequence

is initiated, a new FSM is created from an exemplar (the collection of protocol FSM

exemplars held by an agent is the library of protocols in which it can participate),

and when completed, it is destroyed.

r eques t sent
add {ag ree

r e f u s e
not-understood }

Q

not-understood or
refuse received
remove {agree

refuse

not-understood }

agree received
add(failure

inform(Done) }

remove {agree
refuse

not-understood }

failure received
remove {failure

inform(Done) }

inform(Done) receive
remove {failure

inform(Done) }

Figure 5.4: Finite state machine for FIPA Request protocol

The use of a single data structure to hold the transition labels for all of the

current protocol FSMs in an agent makes this a different approach to that taken

by other agent systems such as Zeus (Nwana et al., 1999), where there is no single

structure containing all of an agent's communicative expectations.

87

5.2.4 Subsumption Lattices

In the previous section, we described the message handling component of Phyle,

which uses a lattice to order and select the message handlers, but we refrained from

describing the lattice itself. The intention behind our use of lattices is that we may

be able to determine the set of message handlers which most closely relate to a

received message without recourse to an exhaustive comparison with all the agent's

message handlers. To this end, we construct the Hasse diagram for the lattice and

use the partial ordering on the message handlers to constrain a search through the

lattice.

Conventional lattice theory has concentrated on fixed orderings over fixed sets,

but our design for a lattice-based message handling component requires that we be

able to add and remove handlers from the lattice. Formal concept analysis (Ganter

and Wille, 1998) is an offshoot of lattice theory which deals with the analysis of

data, in particular with the abstraction of the data to form concepts which describe

groups of related objects. This field has produced some results which relate to our

problem, namely the incremental creation of lattices (Godin et a l , 1995), but these

are not directly applicable for two reasons.

Firstly, the lattices used in formal concept analysis are Galois lattices, in which

each concept (element) in the lattice is a tuple composed of the extension of the

concept (the set of individuals in the concept) and its intension (the set of com-

mon features possessed by members of the concept). In our system, we cannot

realistically enumerate the extension of a given expression (the messages which it

matches). Similarly, while many parts of a message envelope can be viewed as

boolean features in the intension of the expression, the languages in which the mes-

sage content is written are too expressive for content sentences to be reduced to such

a feature set. Secondly, formal concept analysis concentrates on the construction

of lattices, whereas we also need to be able to remove elements from our message

handler lattices.

In the description of our algorithms, we take a subsumption lattice to consist of

a partial ordering given by • over a set A. The functions children \ A 2^ and

parents : A -4- 2"̂ (5.1, 5.2), which give the upper and lower covers for elements of

A, define the edges in the corresponding Hasse diagram. If there is an edge from x

to y and x ^ y, then x E parents{y) and y E children{x).

a; G 3/ 3 A ySz € A.(z ^ 2 ; A i / 3 z 3 : c) (5.1)

a; 6 poreM(s(?/) <=^ z 3 ?/ A ,9z G /l.(z A a ; 3 z 3 ^) (5.2)

Algorithm 5.1 is used to locate the most appropriate message handlers in the

lattice, that is the message handlers whose templates most closely subsume the

received message. The algorithm starts with an initial set of candidate solutions,

C, which contains the lattice supremum T only. The algorithm iterates with a

while loop in line 3 which exits when all candidates have been examined. When

a candidate is examined (lines 5-8), each of its children is checked to see if they

subsume the message. If a child subsumes the message, it is added to the set of

candidates and the parent (candidate) is removed. If all the children of a candidate

do not subsume the message, the candidate is one of the most specific expressions

to subsume the message and is added to the set of solutions, S (lines 9-11). Our

description of this algorithm does not explicitly suppose it to be either a depth- or

a breadth-first search; this is determined by the way in which candidate solutions

are selected for testing in line 4.

Algorithm 5.1: Find the most specific subsuming expressions for x in the lattice

MOST-SPECIFIC- S UBSUMING(a;)

1 ^ f - 0

2 C {T}

3 while C ^ 0 do

4 pick ^ E C

5 for all z e children{y) do

6 if ^ • a; then

7

8 C i— C U {z}

9 if y e C then

10 C 4 - C \ W

11 S i— S U {y}

12 return S

If an agent's message handler groups are to be fluid, we must be able to insert

and delete new message handlers in the lattice. Insertion of new expressions in a

subsumption lattice is a two-step process, as given in Algorithms 5.2 and 5.3.

89

Algorithm 5.2 links the new expression to its parents, those expressions in the

lattice which most directly subsume it. This proceeds as in Algorithm 5.1, with two

di&rences. Firstly, the algorithm links the new expression as a side effect (lines

10-11), so there is no solution set to be accumulated and returned (cf. lines 1, 11

and 12 in Algorithm 5.1). Secondly, the condition in line 5 (cf. line 6 in Algorithm

5.1) uses strict subsumption Z] in order to preserve the ordering in the lattice.

Algorithm 5.2: Find parents of new expression x

LATTICE-FlND-PARENTS(a;)

1 C {T}

2 while C ^ 0 do

3 pick y e C

4 for all z € children{y) do

5 if z Z\ X then

6

7 C f - C U { z }

8 if y G C then

9 C f - C \ { y }

10 cW(fren(?/) f - cMZc(re)2(i/) U {a;}

11 poreMfa(a;) paren^g(a;) U

Algorithm 5.3 completes the addition of the new expression to the lattice by

linking it to its children, and by unlinking those children from their old parents

where necessary. The algorithm iterates over all of the siblings of the new expression

(the children of the parents of the new expression, lines 1-2), and if any are strictly

subsumed by the new expression (line 3), they are unlinked from those parents they

have in common with the new expression (lines 4-5) and relinked beneath the new

expression (lines 6-7).

The overall insertion operation is illustrated by an example in Figure 5.5. For

simplicity, we represent the expressions in the lattice by sets (which could be con-

strued to be their intensions), so subsumption is replaced by the subset relation and

T and ± are replaced by 0 and A, the universal set, respectively. The figure shows

the Hasse diagrams before, during and after the insertion of the new expression {be}

into the lattice. The expressions {b} and {c} are the parents of the new expression,

while {abc} is its child. The heavy links show new edges in the Hasse diagram,

while the dashed lines are edges to be removed.

90

Algorithm 5.3: Find children of new expression x

LATTICE- FIND- C HILDRBN (a;)

1 for all y G parents{x) do

2 for all z G children{y) do

3 ii xH z t h e n

4 cA%/dren(?/) f - \ {z}

5 f-poren^s(z) \ {?/}

6 children{x) f - children{x) U z

7 parents{z) parents{z) U x

{6}

{06}

{c} {6}

{06c}

A

{06} {6c}

{06c}

A

{c} {6}

{06 } {6c}

(abcj

A

(a) Before (b) During (c) After

Figure 5.5: Lattice Insertion

Deleting an element from the lattice is the converse of the insertion operation.

The links to the removed expression from its parents are removed and new links

from the parents to the children of the expression are instated where necessary, then

the links to the children of the expression are removed. An edge between a parent

and a child is created only if there are no other intermediary nodes.

In Algorithm 5.4, lines 1-2 and 7-8 remove the links from the deleted node to

its parents and children. Lines 3-6 iterate over the siblings of the deleted node (ie.

its parent's children), creating links from those to the children of the deleted node

where necessary.

91

Algorithm 5.4: Delete expression x from lattice

LATTICE-DELETE(a;)

1 for all y G parents{x) do

2 f - c/izMren(2/) \ {z}

3 for all z G children{y) do

4 for all w G children{x) do

5 if w % z t h e n

6 cA2WreM(?/) U {w}

7 for all y G children{x) do

8 f - \ {z}

5.3 The Paraphyle Simulator

In order to demonstrate the scalability of the different query routing topologies

discussed in Chapter 3, we need to construct large systems containing hundreds of

thousands of agents. Although the Phyle agent framework described above could be

used to build such a system, each agent uses significant computing resources (a bare

Phyle agent with no knowledge base and empty message lattice uses approximately

2Mb of RAM). With the limited computing facilities available, the most appropriate

approach to take is one of simulation.

We have constructed a simulator for Phyle agents which we call Paraphyle. This

abstracts and simplifies several aspects of query routing Phyle agents in order to

make possible the simulation of large query routing systems. The aspects of Phyle

which have been most radically altered are as follows:

Agent Communication Languages: The ACL component of Phyle, with its so-

phisticated protocols and flexible message handling, is unnecessary in a query

routing simulation where the vast majority of messages will be of the query-

referral/query-response variety.

Networking: A simulation of a distributed system need not be distributed itself.

Indeed, for the purposes of data collection and monitoring, a non-distributed

system presents none of the problems encountered in distributed systems

(timestamp synchronisation, data collation, etc). Paraphyle therefore does

not require networking support.

Knowledge representation: Phyle contains an implementation of the FIPA knowl-

edge representation language SL which is used to express knowledge about

information resources. In Paraphyle, information resources are represented

92

by identifiers only. Query and forward knowledge expressions are represented

by their intensions, the set of characteristics possessed by the information

resources which they describe. By doing this, the tests for subsumption and

unification are reduced to tests for subset and set intersection respectively.

User interface: Paraphyle is designed for batch rather than interactive use, so the

html-generating components of Phyle may be dispensed with.

5.4 Summary

In this chapter we have described the Phyle agent framework and the simplified

Paraphyle simulator. In Chapter 6, we will describe the application of Phyle to the

construction of a query routing agent system, while in Chapter 7 we use Paraphyle

to simulate a much larger example of such a system.

93

Chapter 6

An Agent System for Query Routing

Search

6.1 Introduction

In Chapter 5, we described Phyle, our FIPA-baaed agent framework. This de-

scription was deliberately application-neutral, because we wished to explain certain

aspects of it without domain bias; we will now relate the contents of Chapter 5 to

the work presented in Chapter 3, where we described the query routing problem.

In this chapter, we describe the design of an agent-based query routing system

which uses the Phyle agent framework, making note of the conversation protocols

used by such a system, the manner in which forward knowledge is represented, the

search algorithms used and ontologies for the application domains which are being

searched.

6.2 Query Routing Protocols

The FIPA Agent Communication Language provides the means to describe stereo-

typical message exchanges, or protocols. The specification of the ACL (FIPA,

1997b) contains a formal model of the ACL which gives a clear semantics to the

performatives used in terms of their necessary preconditions and their perlocution-

ary effect (the effect on the hearer, also referred to in FIPA terminology as the

rational effect). Of particular interest is the basic directive, reques t , by which an

agent indicates to another agent that it wishes an action be performed (the descrip-

tion of the action specifies who is to perform the action). The perlocutionary effect

of this message is that the action is performed.

94

(query-ref :sender user

:receiver lib-01

:reply-with tn23

;content (iota ?x (and (creator ?r "Austen, Jane")

(identifier ?r (isbn ?x)))))

(inform :sender lib-01

;receiver user

:in-reply-to tn23

:content (= (iota ?x (and (creator ?r "Austen, Jane")

(identifier ?r (isbn ?x))))

((0140430721
0140434259
0140430105
0140430059))))

Figure 6.1: FIPA query-ref and response

The FIPA query-ref message is a composite performative, a reques t that the

receiver inform the sender of those expressions which satisfy a query expression.

The perlocutionary effect of the query-ref message is that the receiver sends an

inform message back to the sender. It is reasonable to suppose that the sending

agent forms an expectation of this as a possible outcome, perhaps by adding an

appropriate entry in its set of message handlers as in Section 5.2.3. The agent's

expectation is not just for a performative, but also for a message envelope (it would

expect to receive the answer from the agent it asked, for example) and for a message

content of a particular type. In the example in Figure 6.1, the user agent sends

a request to a library catalogue agent for the ISBNs of books written by Jane

Austen. A literal interpretation of the message might be "tell me those identifiers

which are ISBNs of resources whose creator is Jane Austen". Correspondingly,

an interpretation of the answer might be "the following are identifiers which are

ISBNs of resources whose creator is Jane Austen: 0140430721, . . . " . As shown in

this example, the form of the content of the inform response should follow the form

of the content of the query-ref message. To put it simply, the reply answers the

question - and no more.

This is not the case with WHOIS++ , our canonical query routing system.

When a WHOiS+4- client queries a server, it provokes a response giving answers to

the query, but may also provoke a response which refers the client to another server.

A single query may therefore produce two different types of answer, one of which

was not explicitly asked for in the query. To ignore this discrepancy between the

95

semantics of F I P A queries and W H O I S + + queries a n d implement a query rout ing

agent sys tem which behaves like W H O I S + + would be t o break the semantics of t he

FIPA ACL.

As a further twist, WHOIS++ does distinguish referral generating queries in

one context, that of query expansion. A WHOIS+4- client may ask a server for the

list of other servers which poll it for centroids (that is, those servers which it knows

to have any form of forward knowledge about itself), or for the list of other servers

which it polls for centroids (those servers about which it holds any form of forward

knowledge). The client uses the list returned to expand the scope of its search,

adding the new servers to its agenda just as servers mentioned in referrals would

be, but the message it receives from the server is not a referral, strictly speaking.

When a server issues a referral, it holds an explicit belief that the referred-to server

either can satisfy the query itself, or that it knows of a server which can. When a

server answers a po l led-by or p o l l e d - f o r query, the client is making an implicit

assumption that the servers contained in the answer are able to satisfy either similar

or broader queries to those which may be satisfied by the server itself.

Staying within FIPA, there is a choice to be made between the two main ap-

proaches to the representation of query routing protocols. The first solution treats

query routing as a new protocol which requires new message types: a type for query

messages which expect both an answer and an optional referral in response (call

it q u e r y - r e f e r r a l , and a type for referrals (call it r e f e r r a l) . This is not unlike

the approach taken by KQML for brokering and matchmaking, where a number of

special purpose performatives were introduced (b r o k e r (- o n e , - a l l) , adver t i se ,

r e c r u i t (-one, a l l) and recommend(-one,-al l)) . The disadvantage of this ap-

proach is that the agent communication language becomes bloated; agent imple-

mentors must support an increasing number of rarely-used performatives if their

agents are to be able to interact freely with other agents.

The second approach reuses existing performatives and pushes the necessary

representation into the content of the message. The FIPA agent communication

language takes this approach for matchmaking and brokering; this is performed by

sending a reques t message to a suitable agent in order to invoke a matchmaking

or brokering service. This approach can be adapted to query routing in two ways.

An agent could send a single request containing a compound action, ordered using

the sequence operator ; containing the query and a request for referral as shown in

Figure 6.2. Alternatively, an agent could send two separate messages, one containing

96

(request

:sender user

:receiver agent-1

:content

(; (inform-ref

;sender agent-1

.•receiver user

:content "query")

(inform-ref

;sender agent-1

:receiver user

:content "referrals for query")

Figure 6.2: Referral query as compound request

(query-ref

:sender user

;receiver agent-1

:protocol fipa-query

;content "query")

(query-ref

:sender user

;receiver agent-1

•.protocol fipa-query

:content "referral query")

Figure 6.3: Referral query as separate messages

the query, and one containing the request for referral (expressed as a query-ref

message).

We have adopted the latter solution for our prototype query routing agent sys-

tem on the grounds of simplicity. It is more straightforward for the client agent to

ask two separate questions ("tell me what satisfies this query" and "tell me who

knows about things which satisfy this query", see Figure 6.3) than it is to ask a

single compound question, especially since many agents may have been designed to

answer only the common FIPA protocols; by splitting the request into two messages,

we can make use of the FIPA-Query protocol.

As an aside, a different school of thought views referrals as exceptional occur-

rences. In agent systems which use a method invocation communication paradigm

(instead of the message passing paradigm favoured by FIPA and KQML), a referral

may be generated by raising an exception which contains the referral. An example

of this, written for the SoFAR agent system (Moreau et al., 2000), is given in

Figures 6.4 and 6.5. Figure 6.4 shows the server's implementation of the query_ref

97

public Predicate[] query_ref(Predicate p, Envelope e)

throws MasException {

if (p.belongsToO .equals(dirOntology)) {

AgentTerm [] refs = forwardKnowledge.getMatches (p);

if (refs != null && refs.length > 0) {

throw new ReferralException(refs);

} else {

return kb.getMatches(p);
}

}
}

Figure 6.4: Exception-based Referrals in SoFAR - server

LinkedList agents = new LinkedList();

LinkedList result = new LinkedList();

agents.add(init);

while(agents.size0 != 0) {

AgentTerm agent = (AgentTerm) agents .removeFirstO ;

try {

result.addAll(java.util.Arrays.asList(

agent .agent 0 .query _ref(q , null)));

} catch (ReferralException e) {

agents.addAll(e.getReferredAgents());
}

}

Figure 6.5: Exception-based Referrals in SoFAR - client

method; if the server has forward knowledge relevant to the query p (line 4) it

throws an exception containing a list of the agents to which the forward knowledge

refers (line 6). Figure 6.5 shows a simple implementation of a client's query rout-

ing search algorithm. The client maintains lists of the agents to be asked and the

received results (lines 1-2). While there are still agents to be asked (line 4), the

client picks an agent (line 5), and asks the query of it, adding any results to the list

(line 7-8). If an exception is received (line 9), the list of agents contained in the

exception is added to the list of those to be asked (line 10).

Although this implementation of a query routing system works, we believe that

it is flawed for two reasons. Firstly, a query routing system must generate referrals

as part of its normal operation. Referrals are not exceptional or error cases, and

should not be treated as such. Secondly, a method may either return a result or

raise an exception, but not both. In query routing systems it is common for a server

to return results which satisfy a query and to generate a referral. For these reasons,

we believe that agent systems which use method invocation should phrase queries

98

which expect referrals as two separate queries, one containing the basic query, and

one asking which agents can answer the query.

So far, we have dealt only with query routing systems that exclusively use re-

ferrals, or to use the agent terminology, those that contain only matchmakers (see

Section 3.4). We have ignored those systems which delegate the responsibility for

fulElling queries to those agents which are better placed to answer those queries

(that is, a system that uses brokers). Here, the client need only ask the basic query

of the servers; it is not interested in information about other agents, and rejects

any control that it might have over the processing of the search. Any knowledge

that a queried server might have about the abilities of other servers is kept strictly

to itself (being used to determine which additional servers it should contact) and is

not communicated.

6.3 Representing Forward Knowledge

In the previous section, we have explained our choice of a query routing protocol in

which the query and the request for a referral are distinct from each other. We need

to be able to represent the forward knowledge which drives the referrals, knowledge

about the query answering capabilities of other agents. This knowledge appears

both in communications between agents, as they construct the forward knowledge

graph and as referrals are issued, and as part of an agent's internal state.

We can characterise the information that an agent holds about specific resources

as beliefs. For example, an agent might believe that the entity with the ISBN 0-

14-043072-1 is a book entitled "Pride and Prejudice", whose author is named Jane

Austen. Forward knowledge, however, is somewhat different. Rather than holding

a belief that some other agent believes a certain expression, an agent with forward

knowledge believes that the other agent has beliefs some claas of expressions.

These generalisations about the beliefs of an agent are an expression of that

agent's capabilities, because the beliefs held by an agent affect the communicative

acts which it is able to send (according to the semantics of the acts and any social

constraints such as truthfulness). This is a different approach to that used in

agent communication languages such as KQML. In KQML, the a d v e r t i s e and

broker performatives also contain a representation of an agent's capabilities in

their content fields, but this is commonly an opaque expression that contains the

name of a service that the agent can provide (for example, the service of answering

queries about bibliographic data, or in a rather more limited case, the service of

99

answering queries about books whose author is Jane Austen). If we were to have

taken the approach used by KQML, we would need to introduce a large number

of domain ontology-speciGc terms for representing these services, given the many

ways in which an agent could express the generalisation of its beliefs (for example,

does it believe 'about books' in general, 'about books' with certain authors, or with

certain publishers, or whose titles contain certain phrases).

In the approach that we have taken, we use the defined semantics of our chosen

agent communication language (in the first instance, FIPA) to inform our choice

of forward knowledge representation. Rather than representing a capability as an

opaque expression, or as a simple pattern which matches those query messages which

the agent can answer, we represent an agent's capabilities in terms of the beliefs

that the agent must hold in order to be able to answer certain types of query, in

accordance with the message preconditions specified in the formal semantics of the

agent communication language.

In the FIPA agent communications language, the in fo rm performative has the

precondition that the sending agent believes the content of the message (thus con-

straining the agent to be truthful). Therefore, when representing the knowledge

that an agent is able to send inform messages in response to certain query-ref

messages, we use the beliefs that the agent must hold in order to be able to send

those inform messages, according to the agent communication language semantics.

Representing the generalised beliefs of an agent presents another choice; we

can either attempt to build expressions which denote a range of beliefs using the

existing constructs of our knowledge representation language, or we can define a

new modality (call it believes-about, or BA) to represent those beliefs. If we choose

the latter approach, we must define inference rules for converting expressions which

use this modality of generalised belief into ones which use the more familiar belief

modality in order to conform to the semantics of the agent communication language.

This is not a particularly parsimonious solution to the problem; defining a new

modality of generalised belief entails extending the knowledge representation lan-

guage, which will potentially cause interoperability problems with other agents

which do not speak the extended knowledge representation language. We choose the

former approach, that of using the existing constructs provided by our knowledge

representation language, which is more elegant and avoids the Babel-like problem

of a proliferation of variant knowledge representation languages. We represent the

generalisation of an agent's beliefs using quantification; in (6.1), an agent which

believes that Xi , . . . ,Xn are members of a concept c can represent its generalised

100

< k, informy, 3x.Bkc(x)) > < j, inform(i, 3x.Bkc{x)) >

BkC(x2)
Bkc{xz)
Bk3x.Bkc{x) Bj3x.Bkc{x) Bi3x.Bkc{x)

BjBk3x.Bi^c{x) BiBj3x.Bkc{x)

Figure 6.6: Passing FIPA SL encoded forward knowledge

(inform .-sender k

rreceiver j

:content (exists ?x (B k (concept ?x))))

Figure 6.7: FIPA SL encoded forward knowledge exchange

beliefs by stating that there exists some entity which it believes to be a member of

c. For example, an agent which held bibliographic metadata for the books written

by Jane Austen could say that there exists some entity such that it believes that

entity to be a book written by Austen. The intuition for this approach is that we

wish to express the fact that an agent has beliefs about a concept in general, rather

than about any specific instance of that concept.

Bic(2;i)ABic(a;2)A - ABic(a;n) 3a;.Bic(z) (6.1)

The manner in which forward knowledge is passed between agents and so affects

their beliefs is illustrated in Figure 6.6. In this diagram, agent k holds a number

of beliefs about members of the concept c. It generalises these beliefs as shown

in (6.1) to give the expression Bk3x.Bkc{x). Note that the expression is cast as

another belief (the agent holds beliefs about its own beliefs) - this is necessary in

order for the agent to be able to send an inform message containing the generalised

belief without breaking the semantics of the FIPA ACL.

Agent k sends an inform message to agent j (shown in Figure 6.7), which has the

rational effect of making j believe the generalisation of A:'s beliefs {Bj3x.Bkc{x)).

Agent j can also infer k's belief in this generalisation, based on the necessary pre-

conditions for the inform message {BjBhBx.Bkc{x)).

Agents can now use this forward knowledge to route queries; an example message

exchange, after the discussion in Section 6.2, is given in Figure 6.8 (compare with

Figure 6.3). In this example, agent i asks agent j which agents hold beliefs about

a certain concept, and agent j replies with a list of appropriate agents.

101

(query-ref ;sender i

:receiver j

:content (iota ?x (exists ?y (B ?x (concept ?y))))

:protocol fipa-query)

(inform :sender j

[r e c e i v e r i
:content (= (iota ?x (exists ?y (B ?x (concept ?y))))

(agent-1

agent-2

. . .))

:protocol fipa-query)

Figure 6.8: FIPA SL referral query

However, the technique we have described for expressing and passing forward

knowledge is incomplete; in Figure 6.6, agent i has direct knowledge about the

beliefs of agent k, even though this information has been passed through an in-

termediary. When queried for a referral, agent i will refer the client directly to

agent k, rather than following the chain for forward knowledge through agent j.

This is at odds with the behaviour of existing query routing systems, where such

'short-circuiting' does not happen.

This discrepancy between the behaviour of our agent-based query routing system

and the behaviour of other query routing systems becomes more apparent when the

aggregation of forward knowledge is considered. Figure 6.9 shows a system where

three agents ki to k^ pass summaries of their beliefs to agent j, which aggregates

the summaries and passes the aggregation to agent i. If the forward knowledge were

passed as shown in Figure 6.6, agent i's belief database would contain individual

direct beliefs for each of agents ki to k^, rather than a single summary belief for

agent j which incorporates the belief summaries for agents ki to k^. This will affect

our estimates of the routing table sizes (belief database sizes) required for different

query routing network topologies given in Chapter 4. In a hierarchical system, for

example, the root server would have direct beliefs about every agent in the system,

which would give it a routing table size of | y | (where V is the number of agents in

the system), and not a constant as we claimed.

Equation 6.2 gives an inference rule that expresses the notion that if an agent

believes that another agent has beliefs about a certain concept, effectively it too

then has beliefs about that concept. If the beliefs resulting from the application of

this rule are passed to other agents in preference to the beliefs which matched the

LHS of the rule, the short-circuiting behaviour noted above will be prevented; in

102

< ti, inform(j, ci(i)) >

Bki'^x.Bk^ci{x)
< k2,iaiorui{j,3x.Bk̂ C2{x)) > i < J, inform(i, 3a:.SjCi(a:) V C2(x) V C3(x)) >

© KD
jSfcj 3x.Bk̂ C2{x)

< A:3,inform(j, 31.5̂ 3C3(a:)) >

©
Bk^Sx.Bk^C3{x) Bj3x.Bk^ci{x)

Bj3x.Bk^C2{x)
BjBx.BksCslx)
Bj3x.BjCi{x)
Bj3x.BjC2lx)
Bjlx.BjCslx)

Bj3x.BjCi{x) V C2(i) V cs,{x) Bi3x.BjCi{x) V C2{x) V Ci{x)

Figure 6.9: Aggregating FIPA SL encoded forward knowledge

the example given in Figure 6.6, agent % will no longer have direct knowledge of /c's

beliefs, because agent j will have recast its summary of A;'s beliefs as a summary of

its own beliefs.

Bi3x.Bjc{x) =*- Bi3x.Bic{x) (6.2)

Equation 6.3 gives an inference rule which can be used by an agent to aggregate

belief summaries. The intuition behind this rule is that if an agent has beliefs about

a concept Ci and a concept cg, then it has beliefs about the union of these concepts,

Ci U C2.

Bi3x.BiCi{x) A Bi'3x.BiC2{x) ==> Bi'Bx.BiCi{x) V C2{x) (6.3)

Figure 6.9 shows the application of both these rules by agent j ; the initial beliefs

which it formed as a result of the inform messages sent by agents ki to are first

transformed by (6.2), and then aggregated by (6.3). The aggregated belief summary

is then communicated to agent i, so that it holds a single routing belief rather than

the three that would have resulted.

These a priori exchanges of information which lead to the formation of forward

knowledge or routing beliefs can be classified in terms of which entity initiated

the exchange. Either the downstream agent (that which is passing its forward

knowledge) initiates the dialogue with the upstream agent (that which receives

the forward knowledge and develops the consequent routing beliefs) by sending an

inform message containing a summary of its beliefs, as in Figure 6.7 (a push model

103

(query-ref .-sender i
: r ece ive r j
:content (i o t a ?x (e x i s t s ?y (B j ? x))))

(inform -.sender j
: r ece ive r i
:content (= (i o t a ?x (e x i s t s ?y (B j ? x)))

((concept-1 ?y)
(concept-2 ?y)
. . .))

Figure 6.10: Pull model forward knowledge exchange

of forward knowledge distribution), or the upstream agent initiates the exchange

by sending an explicit query-ref message which asks for a summary of the down-

stream agent's beliefs, as in Figure 6.10 (a pull model). The choice of push versus

pull has an important effect on the latency of the forward knowledge; if the pull

model is chosen, there is a tradeoff between the cost of the upstream agent's polls

of the downstream agent (the more frequent, the more costly) and the potential

obsolescence of the forward knowledge (infrequent polling may lead to increasingly

out of date information).

In our Phyle-based query routing system, the message handler which deals with

forward knowledge-containing inform messages like that in Figure 6.7 applies the

rule given in equation (6.2) to the body of the message and adds both the original

belief and this new belief to the agent's database. When the agent sends a summary

of its beliefs (we have implemented the pull model, so this functionality is located

within the message handler for the relevant type of que ry - r e f messages), it applies

the rule in Equation (6.1) to summarise its own beliefs, and that in Equation (6.3)

to integrate this summary with the summaries it has received from other agents.

6.4 Extensionality

In Chapter 5 we described the Phyle agent framework, which makes use of matching

techniques such as unification and subsumption for selecting appropriate message

handlers. These matching techniques compare structured expressions representing

concepts, where the components of these expressions may be thought of as elements

of the intensions of the concepts. However, in the model which we presented in

Chapter 3, we have defined these matching techniques in an extensional manner such

that a concept will unify with another concept if the extensions of the concepts are

104

non-disjoint (or for subsumption, if the extension of one is a subset of the extension

of another).

In doing this, we have made the assumption of that concepts

which have the same extension are the same concept. This is not necessarily the

case, because two concepts with the same extension may have different intensions.

For example, the extensions of the concepts "the book entitled Pride and Prejudice"

and "the book written by Jane Austen, published in 1813" may be the same, but

these two concepts are structurally different.

Queries and forward knowledge in a query routing system can both be considered

as intensional expressions representing some concept; the process of resolving a

query is therefore that of identifying the extension of the query concept. For the

query routing technique to be of use in reducing the search scope in a distributed

system, the forward knowledge must be designed in such a way that a forward

knowledge expression will match a query if the concepts which those expressions

represent share some elements of their extensions.

Existing distributed database systems such as Z39.50 (Z39.50 Maintenance Agency,

1995) avoid this issue by adopting common profiles which specify which sorts of

query are allowable, one example of which is the Bath Profile (Lunau et al., 2000).

These profiles are task-specific interlinguas (specific to the query task) which define

the minimum query facilities that a conforming database must support, and enable

cross-database searching without expensive query translation (although it should

be noted that the query facilities provided by a profile need not be the only query

facilities that a database provides - Z39.50 profiles define new interfaces without re-

placing existing ones). The relation between these profiles and the database schemas

to which they are applied is equivalent to the relation between domain-specific on-

tologies which structure some application domain and the task-specific ontologies

which dictate how knowledge acquired in that domain can be manipulated.

In Chapter 3, we described the similarities between queries and forward knowl-

edge, both of which describe some class of resources in an intensional manner. If

the use of common profiles can avoid the problem of query translation by restricting

queries to use only certain resource properties, a similar approach can be applied

to forward knowledge. By defining a common query profile for a query routing

system and then restricting forward knowledge expressions to use the same set of

resource properties that are permitted in query expressions, we make it more likely

that two concepts which have non-disjoint extensions will have intensions that can

be unified.

105

Figure 6.11: Redundant referrals

6.5 Mutual Search Algorithms

In Section 3.4, we introduced the notion of a search with mutual state, in which the

state of the search is shared between the client and the servers. The existing search

systems described in Section 2.2 use only referral (in which the state of the search

is held solely by the client) or delegation (in which the state is shared between

the servers). Both of these approaches potentially suffer from revisiting previously

covered ground, or from following forward knowledge tha t introduces redundancy.

A system which works by delegation (a brokering system) must coordinate the

efforts of those servers to whom the search task has been delegated. If these servers

do not communicate with each other (either directly, or via the client) and have no

a priori defined search scope, it is likely that they will unwittingly end up querying

the same servers more than once, which is wasted effort. A system which works

by referral (a matchmaking system) does not suffer from this, because the client

alone holds the state of the search, but it does have a different, and more difficult,

problem.

Although the client in a referral-based system can avoid querying a server more

than once (because it keeps a record of the servers which it has already queried),

there is no way for it to determine whether following a chain of forward knowledge

will lead to a solution which has either already been found, or would otherwise be

found in the future based on the forward knowledge chains that the client already

intends to follow.

An example of such a redundant referral is given in Figure 6.11. The first server

to be queried by the client is labelled a, and the solution to the query is held by the

server labelled d. When queried, a issues a referral for b to the client, this referral

being the first in a chain of referrals a b c ^ d. When the client follows this

referral and queries b, it receives the next referral in the chain (b —>• c), and also

a referral to e. The referral to e is the first in a different chain b e ^ f d

106

which also leads to d. If the client follows this referral, it is wasting effort because

the referral will lead it to a solution which it can reach by a already known route.

The basic algorithm used by referral-based systems (Algorithm 6.1) is an agenda

search based on that used in WHOIS++ (Faltstrom et al., 1996). In this, the client

maintains an in-list (line 1), which contains the servers which the client intends

to query, and an (line 2), which contains the servers which the client has

already queried. The in-list is initialised with the set of servers about which the

client has a priori knowledge.

Each iteration, the client selects a server to be queried from the in-list, which has

not already been queried (lines 5-6). In line 7, the client queries the selected server

for answers which will satisfy g, the query expression, by means of the QUERY()

function, any answers being accumulated in the set Answers. In line 8, the client

requests referrals from the selected server by means of the REFER() function, which

are added to the in-list. The selected server is then moved from the in-list to the

out-list and another server selected from the in-list. The process terminates when

there are no more servers to be selected from the in-list.

Algorithm 6.1: Search for entities which satisfy the query q.

SEARCH(g)

1 /n •(— {servers initially known to this client}

2 Out f - 0

3 Answers f - 0

4 while In ^ 0 do

5 pick s e In

6 if s ^ Out then

7 Answers 4 - Answers U QUERY(S, q)

8 In ^ In U R E F E R (S , q)

9 In i- In \ {s}

10 Out <— Out U {s}

11 return Answers

Our definition of the search algorithm uses two additional functions, QUERY()

and REFER(), which respectively return answers to a query or referrals to other

agents for that query (Equations (6.4) and (6.5)).

QuERY(s, g) = {a;: A g 3 z } (6.4)

107

REFER(g, g) = {a; : A ?/ 3 g } (6.5)

This algorithm assumes that the routing tables possessed by each agent contain

only belief summaries (to be matched against query terms) and the identity of the

agents to which a referral is to be generated if the query matches a summary. In

Section 4.4 we discussed the use of traditional network routing algorithms for query

routing, and the difficulty of determining whether two routing tables entries will

lead to the same destination if potentially non-unique belief summaries are used in

place of unique machine addresses.

If the routing tables additionally contain the identity of the agent to whom a

forward knowledge chain eventually leads, the server agent has sufficient knowledge

to be able to improve this situation. If the client agent presents the server with its

in-list and out-list, the server agent is able to prune potentially redundant referrals

from the referral set sent to the client agent. These prunable redundant referrals

fall into two classes: referrals which will lead to agents that the client has already

visited (those in the out-list), and referrals which will lead to agents that the client

has already made a commitment to visit in the future (those in the in-list). Note

that it is not necessary for the server to prune direct referrals (those in which the

agent referred to terminates the forward knowledge chain); the client will do that

itself (lines 5-6 in Algorithm 6.1).

These changes to the routing tables effectively require that each server has

knowledge of the global topology of the forward knowledge network. Although

this is an expensive proposition, and counter to most notions of scalability, query

routing systems which use modified network routing algorithms (such as link state

- see Section 4.4.4) already fiood descriptions of the network topology to all partic-

ipating servers.

The aggregation of forward knowledge affects the behaviour of such a system

which uses such global forward knowledge to prune the referral sets generated by

its servers. In Section 3.5.1 we gave a model of the forward knowledge graph which

used a labelled digraph to describe the forward knowledge possessed by each server.

Figure 6.12 shows a simple network in which two servers, k and I, which respectively

contain knowledge that can be summarised by the node labels u{k) and i/(Z), pass

these summaries to agent j (so creating the edge labels X{j,k) and X{j,l)), which

aggregates them and passes them to agent i.

108

A(j, k) = z/(^
Hi, j) = Kj, 0 U k) u{k)

© "

"(«)

Figure 6.12; Aggregated Forward Knowledge

If the agents' routing tables in this example are augmented as suggested above,

this aggregation is problematic. Agent % must have separate beliefs about the con-

tents of k and I (via j) if it is to be able to restrict its referrals based on the client's

state, but aggregation of these beliefs into a single belief about j (by the application

of the rules in Equations (6.2) and (6.3)) means that i is no longer able to distinguish

between the two sources. For forward knowledge which includes the identity of the

agent which is its source, aggregation has the effect of splitting forward knowledge

chains at the point of aggregation.

This can be partially avoided if we amend the way in which forward knowledge

is represented in the system from that described in Section 6.3. The distribution

scheme illustrated in Figure 6.6 shows forward knowledge that has not been manip-

ulated by the rule in Equation 6.2, and includes expressions such as BiBj3x.Bkc{x)

which identify both the next and the final agents in a chain of forward knowledge

and can be used by a server agent to prune the referral set.

We can express a referral query which specifies the client's in- and out-lists as

shown in Figure 6.13. In this example, the atoms i n - l i s t - x and o u t - l i s t - s are

the names of the agents on these lists (note that no distinction is made between

those servers which are on the in-list and those on the out-list because the referral

set is pruned in the same way for each). This query is structurally similar to that

in Figure 6.8 in order that agents which are unable to prune their referrals are still

able to provide a response, albeit one which might include redundant referrals.

Therefore, there are two methods of passing forward knowledge as a prelude to

a query routing search. The first uses Equation 6.2 to recast the belief summaries

in forward knowledge received by an agent as summaries of that agent's beliefs,

and is used in systems which aggregate forward knowledge in order to reduce the

complexity of distributing the knowledge required by a query routing system. The

second retains the identity of the originating agent, and is used in systems which

maintain a mutual state between clients and servers for the purpose of eliminating

109

(query-ref ;sender i

:receiver j

:content (iota ?x (and (exists ?y (B ?x (concept ?y)))

(not (= ?x in-list-1))

(not (= ?x in-list-2))

(not (= ?x out-list-1))

(not (= ?x out-list-2))

. . J))

Figure 6.13: Pruned referral query

redundant referrals and reducing the complexity of the search process itself. These

techniques complement each other, but are not incompatible. A query routing

system can contain both aggregating agents and agents which will prune the referrals

that they generate, and we have implemented Phyle agents which do both.

6.6 Domain Ontology Design

In Chapter 1, we introduced the three problem domains which we intend to study,

namely bibliographic data, white pages directories and hypertext, these domains

being chosen in order to take advantage of readily available datasets. In this section,

we describe the design of the agent ontologies used to represent knowledge in these

domains.

A central issue faced in all three domains is that of the extent of the designed

ontology; there is an important compromise to be struck between the depth and

the breadth of an ontology. An ontology may be broad, in that it can describe

a wide variety of entities, but also be shallow, in that it describes those entities

only in a cursory manner. Conversely, an ontology may be narrowly focussed, and

so able only to describe a small set of entities, but be able to describe them in

more detail. This is not necessarily an either/or choice. Some ontology designers

have chosen both, most notably Lenat (1995) with the Cyc ontology, which is an

attempt to create a collection of 'common sense' to be used as a foundation for

future AI systems. However, the depth of an ontology is most often curtailed for

human, rather than technological, reasons. The majority of the information in

these domains is human-authored, and deep ontologies require a greater degree of

expertise on the part of the human authors.

Our ontology designs have been informed by the previous work on data represen-

tation in the problem domains. We have opted for comparatively shallow ontologies.

110

matching the available datasets, because we wished to avoid manually annotating

the datasets to make them conform to a deeper ontology. We have documented

our ontologies following the guidelines suggested by Skuce and Monarch (1990),

and these appear in Appendix A; the following sections provide an overview of the

design rationale behind the ontologies.

6 .6 .1 Bibliographic Data

The representation of information about books and journals is a central aim of the

library and information science community, and so there are a wide variety of ex-

isting solutions, of which we will consider a representative sample. Bibliographic

information typically describes the context of an information resource, rather than

attempting to describe its content. For example, the bibliographic data for a scien-

tific paper might note that the title of the paper is ^An Inquiry into the Causes and

Effects of the Variolae Vaccinae', that it was written by Edward Jenner in 1798

and possibly that it is about smallpox inoculation, but would not describe the full

content of the paper itself. For this reason, bibliographic data is also commonly

known as because it is data about data.

Perhaps the most widespread bibliographic format is MARC (MARBI/ALA/LOC,

1996), short for MAchine Readable Cataloguing, which is used in the majority of

library catalogues. MARC records are field-based, with numeric tags denoting some

feature of a resource (for example, publisher or subject classification). The value

of a field may also be broken down into smaller parts, like the components of an

author's name. This structure makes MARC a very rich format, with considerable

depth. The role of the bibliographic format here is distinct from, and should not be

confused with, the role of the cataloguing rules used by a cataloguer. These specify

how a record is built from available information, and typically give rules for title

capitalisation, name writing and the like. An example of such a set of cataloguing

rules are the Anglo-American Cataloguing Rules, 2"*̂ edition (Gorman and Winkler,

1988). MARC is a rich format, and accordingly requires considerable expertise on

the part of cataloguers when they create bibliographic records.

There are several MARC formats available, with many countries using their own

dialects (USMARC (MARBI/ALA/LOC, 1996), UKMARC (NBS) and CAN/MARC

being examples), often for reasons more political than technical. This fragmenta-

tion of the MARC format raises both syntactic and semantic concerns for data

interchange and translation, and the latter are by far the more pernicious. Purely

I l l

syntactic translation occurs when fields from different MARCs share the same mean-

ing but are referred to by different tags. For example, USMARC uses the 020 field

for a book's ISBN, while UKMARC uses 021. Semantic translations occur when

there is no such mapping, and records in one MARC lose information on translation

to another MARC, forfeiting structural detail and becoming simpler in the process.

Over time, there has been a move towards the harmonisation of MARC for-

mats in order to facilitate bibliographic data interchange for services such as union

catalogues, but this too suffers from incipient balkanization, with MARC21 (the

combination of USMARC and CAN/MARC) and UNIMARC (sponsored by the

International Federation of Library Associations) being two different efforts.

The Dublin Core (DCMI, 1999) is a more recent bibliographic metadata format

which takes a markedly different approach from that of MARC. Dublin Core (DC)

is by design a format with minimal structure, and its development has two main

aims. Firstly, it requires less expertise on the part of cataloguers, so Dublin Core

records can be authored by those with only minimal training. Secondly, it accepts

lossy translations from richer formats as unavoidable. Dublin Core is intended as a

format to be used in data fusion (such as the construction of a union catalogue) when

the ontologies of the data sources are dissimilar enough to make direct translation

between source ontologies impractical.

The Dublin Core metadata schema consists of a set of fifteen fields, designed

to be broadly applicable and to have unambiguous, if simple, semantics. A further

development, Qualified Dublin Core (Knight and Hamilton, 1997; DCMI), adds

qualifiers to some of these fields so that the cataloguer's intent may be better

expressed. For example, the Date field may be further qualified to indicate whether

the given date is the date on which the resource was created, or the date on which

it was issued. Qualified DC therefore strikes a compromise between the detail of

MARC and the simplicity of unqualified DC.

There has been some interest in one aspect of bibliographic data, subject classifi-

cation, from within the description logic community (Welty, 1998; Welty and Jenk-

ins, 1999). Subject classification has a long history in the library science community.

Today's classification schemes, such as Dewey Decimal or Library of Congress, are

firmly rooted in the taxonomic and meronomic trees of knowledge used by libraries

five hundred years earlier. Welty's contribution to this has been to clarify the re-

lationship between an information resource (or indeed any entity: persons, events,

organizations, etc) and a subject classification. In his ontology, the subject of a

resource is modelled as an instance, rather than as a class, thus preserving the

112

taxonomic relationships between subjects. For example, the subject of a resource

may be an instance of the 'medieval history' class. This class is subsumed by the

'history' class, so the subject is also an instance of this latter class (in simple terms,

if the book is a medieval history book, it must also be a history book). A similar

approach is described in (Pedersen, 1993), which uses relationship lattices for biblio-

graphic information retrieval. These lattices are not unlike description logics (more

specifically, the description logic ACE) and allow the representation of concepts

such as 'books of fairytales' (or in ACS, Book fl 3 HAS-GENRE.Fairytale).

Gruber (1994) describes an ontology for bibliographic data as part of a case

study of ontology design. His ontology is far simpler than the Dublin Core, but

which contains several important features which are also used in this ontology.

Gruber defines a unary relation for the references themselves, and defines the other

relations as mapping from references to values (authors, titles and so on). In this

way, the identity of the bibliographic record is kept separate from the identity of

the resource which the record describes. This allows us to write metadata about

bibliographic metadata, in order to note the author of a reference for example.

This metadata-about-metadata is referred to by Lassila and Swick (1999) in the

RDF specification as higher-order statements. RDF requires the metadata author

to explicitly reify the statements which are to be described, although the underlying

model treats all statements as reified; the standard RDF syntax hides this for the

convenience of metadata authors.

We have chosen to base our ontology on a commonly-used subset of Qualified

Dublin Core for pragmatic reasons. It is by far the simplest usable metadata schema

in common use and there are well-defined mappings to convert data from existing

sources into the Dublin Core. The ontology is illustrated in Figure 6.14 (and de-

scribed further in Appendix A.l); labels of normal typographical weight are the

names of relations (represented in the FIPA SL as binary predicates), emboldened

labels are the names of concepts (in FIPA SL, unary predicates) and italicised la-

bels are literal types. This ontology reifies the metadata records itself, which allows

us to attach bibliographic provenance to them, and also gives a convenient way of

representing records with repeated fields (a paper may have more than one author,

and more than one creator field as a consequence).

113

title

string

subject

string idenlitier

description
name

string string

contributor string

format
name creator string record string

language

string ubiisher

relation
name

string string

coverage

string source

string

Figure 6.14: The Dublin Core Ontology

6 .6 .2 Hypermedia

The hypertext research community has constructed a number of formal models of

linking over the past two decades, the most well-known of which is the Dexter Hy-

pertext Reference Model, as described by Halasz and Schwartz (1990). Notable

features of Dexter are that it separates the structure of an object from its presen-

tation, and treats hypertextual links as a class of objects in their own right, rather

than a part of a document. This makes possible the application of different sets of

links to a collection of document as variant linking overlays.

In more recent years, the hypertext standardisation effort which begun with

Dexter has moved on to the specification of an Open Hypermedia Protocol (OHP),

aa described by Davis et al. (1998) and Reich et al. (2000).

The OHP specification draws a distinction between different types of hypertext

systems, namely navigational, spatial and taxonomic hypertexts, based around a

kernel of common services (early versions of OHP received some criticism (Niirnberg

and Leggett, 1998; Anderson et al., 1998) for their ignorance of taxonomic or spa-

tial hypermedia). The hypertext systems for which we have built an ontology are

114

Link

End 3oint

Anchor

Locspec

Node

Anchor

Link

End 3oint

Anchor

Locspec

Node

Figure 6.15: OHP Linking Model

primarily navigational, and subscribe to the traditional link-following model of hy-

pertext that uses links as navigable relations which can be followed in order to

explore a collection of documents (as opposed to spatial or taxonomic hypermedia

which use links primarily to impose structure rather than to provide navigation

support), so we have relied on the corresponding navigational subset of the OHP

specification (the OHP-Nav specification).

This type of hypermedia is familiar from systems like Microcosm (Fountain

et al., 1990), the World Wide Web (Berners-Lee et al., 1994a), and Nelson's Xanadu

(Nelson, 1987) (although Xanadu also contains a number of features which are not

typically found in navigational hypertext systems). The Fundamental Open Hyper-

text Model (FOHM) of Millard et al. (2000) unifies these domains by investigating

the common structural features of each.

In our design of an ontology for hypermedia, we have concentrated on naviga-

tional hypermedia as the most commonly encountered form of hypermedia. Unlike

the Dexter model, OHP is specified in terms of the protocol spoken by hypertext

servers and clients, which implicitly asserts the underlying data model. The linking

model employed by the OHP navigational domain (OHP-Nav) is influenced by that

of HyTime (ISO, 1997), in that links, anchors and location specifiers (which identify

the location of an anchor in a node, also known as locspecs) are treated as distinct

entities. The OHP-Nav model also subsumes the model used by the Distributed

Link Service (Carr et al., 1995).

An example of the OHP-Nav linking model is shown in Figure 6.15. In this

example are two nodes (documents) and two links. One of the links goes from one

115

string

direction

has-eps

link endpoint

has-link
has- anchor

has-locspec

anchor locspec anchor locspec

has -node

string node uri string node uri

Figure 6.16; The OHP Ontology

node to the other (or rather, from an anchor located in one node to an anchor

located in the other), while the other link is between two anchors in the same node.

The existence of the OHP-Nav model means that much of the hard work in

designing an ontology - capturing the conceptualisation of the domain - has already

been done. An ontology based on this model has been implemented in the FIPA

SL (shown in Figure 6.16, and further described in Appendix A.2) and is primarily

concerned with the OHP-Nav linking model rather than its other aspects, such as

collaborative working.

6.6.3 Whi te Pages

The White Pages domain, which takes its name from the white pages of a tele-

phone directory, involves information about people and organisations, and the ways

in which they can be contacted. Our White Pages ontology is based heavily on the

schema used by our main datasource, the personnel database of the Department

of Electronics and Computer Science (ECSInfo), which is documented in the de-

partmental handbook (ECS, 1999). The ECSInfo schema is strongly similar to that

used in the OSI X.500 directory service (ITU, 1993b,c), and also to that used by

the vCard electronic business card interchange format (Dawson and Howes, 1998),

although this similarity is largely coincidental. Our ontology is illustrated in Fig-

ure 6.17 (and further described in Appendix A.3), and allows us to express a set of

simple properties that people carry in this domain.

116

group

name

1
string

homepage

string string

email usem ame

te no in-group
person

contact

telephone telno name

string

Figure 6.17: The Directory Ontology

6.7 Summary

In this chapter, we have described the key challenges in implementing an agent-

based system for query routing search using the Phyle agent framework, including

the selection of appropriate communication protocols and knowledge representations

for query routing, the design of search algorithms which make best use of forward

knowledge by sharing the search state between clients and servers, and the design of

application domain-specific ontologies for encoding the data which is to be searched.

In the next chapter, we report the results of an empirical study of query routing

systems using the network topologies discussed in Chapter 4 which we have used to

confirm the conclusions we made regarding the scalability of different query routing

systems.

117

Chapter 7

Experimentation

7.1 Introduction

In Chapter 3 we presented a model of a query routing system which we used to

examine the complexity and scalability of a number of different topologies for the

network of forward knowledge that underlies query routing systems. In order to

increase our conAdence in the ability of this model to accurately reflect the behaviour

of query routing systems and to confirm our conclusions about scalability, we need

to validate the model experimentally.

In order to perform such an empirical validation on a reasonably large scale, we

need to build large query routing systems (100,000+ agents). Our agent framework

Phyle, which we introduced in Chapter 5, is not capable for this because each agent

is too large; a basic Phyle agent requires approximately 2Mb of RAM, and we have

insufficient computing resources to be able to run enough agents. The Paraphyle

simulator allows us to simulate the behaviour of large query routing agent systems

in a lightweight manner by excluding from the simulation all but those components

of an agent which are essential to the operation of a query routing system.

In this chapter, we describe the simulation of agent based query routing systems

and present the results of an empirical study of the behaviour of these systems which

we have used to perform a qualitative validation of our query routing model.

7.2 Approach

Our general approach to simulating query routing systems as described by the model

in Chapter 3 is as follows.

118

We begin by generating graphs of di&rent sizes for the underlying connectivity

of a variety of query routing systems, following the discussion on network topology

in Sections 4.3 and 4.4. We then label each node in these graphs with an expression

which is a summary of the records held by that node. Baaed on the underlying

graph, we then generate forward knowledge for the servers in each of the query

routing systems, such that there exists a correctly labelled path (following the

discussion in Chapter 4) from the designated entry points of the system (where

queries may be presented to the system) to each of the nodes in the system. The

number of messages which were required to create the forward knowledge network

(the control traffic) is recorded.

Having constructed the forward knowledge networks, we generate queries for

presentation to the systems based on the content summaries in the nodes in each

system, such that each query can be satisfied by some node in the system (we are

not interested in the degenerate case where a query cannot be satisfied even by

exhaustively querying each server in the system in turn). We then select the node

at which the query will be inserted into the network and begin the processing of

the query. The queries are processed in an exhaustive manner in order to identify

all the nodes which may satisfy the query, if more than one should exist, and the

number of messages which are sent during the processing of the query (the query

trafBc) is recorded. Because we are searching the system for all the entities which

will satisfy the query, the system is effectively a resource or service discovery system

rather than a name resolution system; the entities which would be retrieved for a

given query are not strictly equivalent, as would be the case with a name resolution

system.

The behaviour of a query routing system on processing a query depends both

on the topology of the forward knowledge network and on the query itself. In order

to reduce any skew introduced into the results due to a particular configuration of

the system, multiple instances are generated of each type of query routing system,

and multiple queries are processed within each instance.

In this empirical study, we are attempting to confirm our conclusions on the

comparative scalability of the query routing systems discussed in Chapter 4, so we

generate systems in a range of sizes within a particular class. It was our intention

to study the scalability of the different query routing topologies for systems of up to

one hundred thousand nodes, but in the case of the more computationally complex

systems this was not possible within the limits imposed by the available computing

119

resources. Where the maximum system size is less than one hundred thousand

agents, this has been noted in the initial experiment descriptions in Section 7.4.

7.3 Data Generation

A key consideration in this empirical study is the generation of the data used in

the simulation. In our simulation, we do not represent the individual records held

by an agent. When simulating a large query routing system, we need to be able to

represent a single agent in that system in as lightweight a manner as possible, and

individual records are simply too small a level of granularity to be practical for this

study. The retrieval from a specified agent of records which match a query is not

our concern, but the effort involved in locating that agent is (i.e. we're concerned

with database selection, not information retrieval).

In addition, we do not need the intricacies of Phyle's knowledge representation

language, but need expressions just detailed enough to be able to determine if one

will subsume the other or if they can be unified. We can choose to model expressions

either extensionally or intensionally. An extensional model of an expression is a set

of the entities that are denoted by the expression, for example, the set of instances

in a concept, while the intensional model contains the common characteristics that

each member of that concept possesses.

For example, if we take an expression like 'books written by Jane Austen' (or

in ACU Description Logic-like terms. Book• 3AUTH0R.Jane-Austen), the extension

of the expression contains the books S'erwe fride GTicf frejtidtce,

Northanger Abbey and so on, while the common characteristics in the intension

are the notions that entities denoted by the expression are books (Book), and were

written by Jane Austen (3AUTH0R. Jane-Austen). An extensional model of concepts

requires that we enumerate all the members of the extension of a concept, which

is potentially a large set. Moreover, the more general the concept, the larger its

extension.

In Paraphyle, we represent concept expressions intensionaily as sets of charac-

teristics which members of the concept must possess. In order to represent the

disjunction of concepts (used when aggregating forward knowledge summaries, as

in Section 3.5), a given concept is represented by a number of sets of common inten-

sional components, each of which corresponds to a conjunction in the disjunctive

normal form rewrite of the concept. Each member of the concept must possess all

of the intensional components in at least one of the sets in this disjunction. The

120

test for the subsumption of a query by a forward knowledge expression or content

summary (which correspond to the generation of a referral and the presence of re-

sults which satisfy the query respectively) is therefore the subset relation; a query

is subsumed by an expression if there is no intensional component of the expression

which does not also appear in the query.

We generate content summaries (concept expressions) for each agent by ran-

domly selecting a number of symbols which represent the intensional characteristics

which members of the concept must possess. These symbols are selected from a vo-

cabulary containing a fixed number of terms such that all terms in the vocabulary

have an equal probability of being selected (i.e. uniform random). It should be

noted that, for the purposes of this simulation, we are not concerned with the ac-

tual characteristics that these symbols might represent (in the example above, these

might be Book), and 3AUTH0R.Jane-Austen); the symbols are opaque symbols of

the form voc-1, voc-2, voc-3 and so on.

The content summaries for each agent are therefore represented in Paraphyle

by lists of the form (voc-23 voc-47 voc-92), whereas forward knowledge sum-

maries are lists of lists of the form ((voc-44 voc-79 voc-67) (voc-48 voc-25

voc-62)), where each list within the outer list is the set of intensional components

corresponding to a conjunction within the disjunctive normal form rewrite of the

forward knowledge concept.

In the following experiments, our content summaries contains three symbols,

each of which is drawn with equal probability from a vocabulary of two hundred

symbols, unless otherwise specified. An example dataset which was generated for

use with Paraphyle is given in Appendix B.

121

7.4 Experiments

7.4.1 Single Index Server

Query routing systems of this type comprise a single index server which holds

forward knowledge for all of the other agents in the system, and are described in

Section 4.3.1.

In this experiment, systems were generated containing 10, 100, 1000, 10000 and

100000 agents. For each of these sizes, a total of twenty different systems were

generated, and twenty queries generated and processed on each. There is only one

entry point for queries in systems of this type, namely the single index server.

Results and Analysis

Graphs showing the results for this experiment are given in Figure 7.1. The graph

for the query traffic, Figure 7.1(a), shows that the cost of processing a query is

almost constant, or increases only very slowly with respect to the number of agents

in the system. The graph for the control traffic, Figure 7.1(b), shows that the cost

of constructing the forward knowledge network increases linearly with the number

of agents in the system.

The slight rise and larger variance for the data point at n = 100000 in the

query graph is an artifact of the way in which the data was generated. There is

a small, but non-zero, probability that given an agent with a particular content

summary, another specified agent will have a content summary that subsumes it.

In other words, given a query generated from an agent's content summary, there is a

slight chance that that will be other agents in the system whose content summaries

subsume the query in addition to the agent from which the query was generated.

As the number of agents in the system increases, the probability that there

does not exist only a single agent whose content summary subsumes the query also

increases; the rise in query messages is due to the existence of multiple agents which

can satisfy a given query.

122

100
single Index server

S 60

1000 10000

number of agents

100000 1e+06 1e+07

(a) Query traffic

lOeS

10e7

10e6

lOeS

1084

10e3

10e2

lOel

lOeO

Single Index server

1000 10000

number of agents

100000 1e+06

(b) Control traffic

Figure 7.1; Results for single index server

123

7.4.2 Hierarchy

Query routing systems of this type form a strict hierarchy in which agents at higher

levels have forward knowledge about agents at lower levels (not necessarily direct

forward knowledge), and are described in more detail in Section 4.3.3.

In this experiment, systems were generated such that each non-leaf agent has

eight children (breadth 6 = 8) for depths ranging from 2 to 7 (i.e. from 9 to 299593

agents, calculated as (6^ —1)/(6 —1)). As in Section 7.4.1, a total of twenty different

systems were generated for each of these sizes, and twenty queries generated and

processed on each. All queries were inserted into the sys tem via the root node.

Results and Analysis

The results for this experiment are given in graphical fo rm in Figure 7.2. The

graph for the query trafhc, Figure 7.2(a), shows that the cost of processing a query

increases logarithmically with increasing system size, while the graph for the control

trafRc, Figure 7.2(b), shows that the cost of constructing the forward knowledge

network increases linearly with system size.

The da ta generation artifact which caused the rise in later da ta points in the

previous experiment is also present in this experiment. T h e magnitude of the rise

is greater than before because the agents which can satisfy a query are now further

from the point of entry than they were in the previous experiment , where the index

server was one hope away from all of the data servers. T h i s causes a more visible

rise in the query traffic because a longer chain of forward knowledge entails the

sending of a larger number of query messages in order to traverse that path, so

magnifying the artifact.

The effect tha t vocabulary size has on the occurrence of multiple solutions is

illustrated in Figure 7.3. In this experiment, the size of t h e vocabulary (the number

of terms from which expressions are constructed) was increased by a factor of ten,

from 200 to 2000 (as explained in Section 7.3, the members of the vocabulary are

opaque symbols). In this figure, there is no rise in t h e query traffic for larger

systems because the larger vocabulary has reduced the probabili ty of duplicate

answers existing in the system.

124

100

s 60

E

hierarchy, b

1000 10000

number of agents

100000 1e+06 1e+07

(a) Query traffic

10e8

10e7

1066

lOeS

10e4

10e3

1062

lOel

lOeO

hierarchy, b=8

1000 10000

number of agents

100000 1e+06

(b) Control traffic

Figure 7.2: Results for hierarchy

125

100

2 60

E

hierarchy, b=8, v=2000

1000 10000

number of agents

100000 le+OG 1e+07

(a) Query traffic

10e8

10e7

10e6

lOeS

1064

10e3

10e2

lOel

lOeO

hierarchy, b=8, v=2000

1000 10000

number of agents

100000 1e+06

(b) Control traffic

Figure 7.3: Results for hierarchy with large vocabulary

126

7.4.3 Hierarchy with Search Expansion

Query routing systems of this type are like the hierarchical systems of the previous

experiment, but include forward knowledge that leads from the leafs of the tree

towards the root, so tha t queries can be inserted anywhere in the systems, not just

at the root node.

In this experiment, systems were generated such that each non-leaf agent has

eight children (breadth 6 = 8) for depths, d, ranging f rom 2 to 7 (i.e. from 9

to 299593 agents). As in Section 7.4.1, a total of twenty different systems were

generated for each of these sizes, and twenty queries generated and processed on

each. An insertion point for each query was chosen at random from the nodes in

the system.

Results and Analysis

The results for this experiment are given in Figure 7.4. The control traffic for

this experiment. Figure 7.4(b), shows that the cost of constructing the forward

knowledge network increases linearly with system size, and is increased by a constant

factor from tha t for a simple hierarchy.

The query traffic, shown in Figure 7.4(a), shows t h a t the cost of processing a

query increases logarithmically with increasing system size (with the same proviso

as before with regards to the artifact introduced by the vocabulary size). However,

because queries may be introduced into the system at any node rather than just

at the root, the maximum path length from the insertion point to the goal is now

2d — 2, rather than d — 1 as it was in a simple hierarchy, which accounts for the

greater query traffic generated by this system in comparison to the simple hierarchy

in Section 7.4.2.

127

100

2 60

E
£•

hierarchy with exp&nsion, b

1000 10000

number of agents

100000 1e+06 18+07

(a) Query trafSc

lOeS

10e7

10e6

1085

10e4

1083

1082

10e1

lOeO

hierarchy with expansion, b=

1000 10000

number of agents

100000 1e+06

(b) Control traffic

Figure 7.4; Results for hierarchy with search expansion

128

7.4.4 Complete Graph

In systems of this type, every agent has direct forward knowledge about every other

agent, as described in Section 4.3.6. Queries may therefore be inserted at any point

in the system.

In this experiment, systems were generated with 10, 50, 100, 500, 1000 and

2000 agents. Note that the largest system studied here contains fewer than 100000

agents due to constraints imposed by the available comput ing resources. As in

earlier experiments, a total of twenty different systems were generated for each of

these sizes, and twenty queries generated and processed on each. An insertion point

for each query was chosen at random from the nodes in t h e system.

Results and Analysis

The results for this experiment are given in graphical form in Figure 7.5. The query

traHic for this experiment. Figure 7.5(a), shows that the cost of processing a query

is constant with increasing system size. However, the control trafBc, Figure 7.5(b),

indicates that the cost of constructing the forward knowledge network increases

polynomially as the square of system size, making this an expensive system to

build.

129

100
complete graph

80

60

E

40

20

10 100 1000 10000

number of agents

100000 1e+06 1e+07

(a) Query traffic

lOeS

10e7

10e6

10eS

1084

10e3

10e2

lOel

lOeO

complete graph

1000 10000

number of agents

100000 1e+06

(b) Control traffic

Figure 7.5: Results for complete graph

130

7.4.5 Councils

Council networks are a cross between hierarchical networks and complete graphs

in which the nodes are arranged into layers with each layer being fully connected

internally (described previously in Section 4.3.7).

In this experiment, the systems that were generated contained councils of size 9,

in order that the results be comparable with those obtained for hierarchical systems

(a given council within the network corresponds to a n o d e and its direct children

in a hierarchical network, hence a breadth of 8 for a hierarchical network requires

a council size of 9 for the corresponding council network). We generated systems

containing between 1 and 6 layers of councils, again to faci l i tate comparison with the

equivalent hierarchical network. As in earlier experiments, a total of twenty different

systems were generated for each of these sizes, and twenty queries generated and

processed on each. An insertion point for each query was chosen at random from

the nodes in the system.

Results and Analysis

Graphs showing the results for this experiment are given in Figure 7.6. The query

trafBc for this type of system increases logarithmically with increasing system size

(shown in Figure 7.6(a)) though at a slightly lower level than did the traffic for

the hierarchical system with search expansion in Section 7.4.3 (a comparison of the

query traffic for these two systems is given in Figure 7.7). T h e difference between the

two traffic levels is constant, and is due to the way in which this type of network tries

to improve on the efficiency of query routing search. A council network effectively

contains a shortcut which can be used when a path passes through two siblings;

instead of having to route the query via their common parent , the query may be

passed directly from one to the other. However, the processing of a query in a

council network involves at most one query transfer of t h i s type, which lies at the

apex of the query's pa th from source to goal, so the advantage offered by this type

of network is limited to the elimination of a single referral.

The control traffic for these networks, Figure 7.6(b), shows tha t the cost of con-

structing the forward knowledge network increases linearly with increasing system

size, but also tha t this cost is a constant factor higher t h a n the equivalent cost for

hierarchical systems. This constant factor arises from t h e exchange of messages

which is necessary to make each inidividual council a clique within the network.

131

100
^unci l , b*8

P 60

1000 10000

number of agents

100000 18+06 1e+07

(a) Query traffic

council, b=6

10e6

1000 10000

number of agents

100000 1e+06

(b) Control traffic

Figure 7.6: Results for council

132

100

80 -

2 60

40

20

kuncU, b=
hierarchy with expansion, b=

10 100 1000 10000

number of agents

100000 le+OG

Figure 7.7: Comparison between council and hierarchy with search expansion

133

7.4.6 Flooding

Flooding from a single source is used to propagate queries in Gnutella-like systems.

In our simulation of these systems, we represented the underlying network topology

by constructing a disordered graph following the me thods outlined for small world

networks (Watts, 1999) and for scale-free networks (Barabaai and Albert, 1999).

The construction of these networks takes different parameters; for the small world

network, we started with the ring lattice L„_4 and rewired with probability 0,25,

and for the scale free network we started with the complete graph and grew the

graph by adding M — 4 nodes, each with degree 4.

In this experiment, systems were generated with 10, 50, 100, 500, 1000 and 2000

agents (again due to available computing resources). As in previous experiments, a

total of twenty different systems were generated for each of these sizes (and for each

network type), and twenty queries generated and processed on each. An insertion

point for each query was chosen at random from the nodes in the system. When

an agent 6rst receives the query, it sends on it to all of i ts neighbours. Subsequent

receipts of the query by an agent are ignored (i.e. do not result in the query being

passed to neighbouring agents).

No measurements were made for control traffic in this experiment (Gnutella does

not construct a forward knowledge network).

Results and Analysis

A graph showing the results for this experiment is given in Figure 7.8. The query

traffic for this system increases linearly with increasing sys tem size, which is con-

sistent with the prediction in Chapter 4 of 0{\E\) complexity for the flooding op-

eration.

Small world and scale free networks are sparse graphs (|E'| |V^P) where the

number of edges are proportional to the number of vertices (due to the 6xed neigh-

bourhood size of the unmodified ring lattice for small world networks, and the fixed

degree for new vertices in scale free networks), so a flooding operation which re-

quires tha t the message be sent once only over every edge in the network would be

expected to scale linearly. It should be noted, however, t h a t this is a considerably

more expensive operation than the logarithmic or cons tan t complexity solutions

considered earlier in this chapter.

134

10e8

10e7 -

1086

0) 10e5

small world
scale free

E I0e4
e-

10e3 -

10e2

10e1 -

lOeO
10 100 1000 10000

number of agents

100000 1e+06

Figure 7.8: Results for flooding

135

7.4.7 Distance Vector

As in Section 7.4.6, we represented the underlying network topology by constructing

disordered graphs following the methods outlined for small world and scale free

networks and using the same parameters (for the small world network, we started

with the ring lattice 2/̂ ,4 and rewired with probability 0.25, and for the scale free

network we started with the complete graph 1̂̂ 4 and grew the graph by adding n, — 4

nodes, each with degree 4).

In this experiment, systems were generated with 10, 20, 50, 100, 200, 500, 1000,

2000 and 5000 agents. As in previous experiments, a total of twenty different

systems were generated for each of these sizes (and for each network type), and

twenty queries generated and processed on each. An insert ion point for each query

was chosen at random from the nodes in the system.

The forward knowledge network was constructed by running the distance vector

algorithm (altered slightly to use the augmented rout ing tables discussed in Sec-

tion 4.4), halting when the routing tables in the systems had converged (i.e. when

a round of the algorithm produced no change in the routing tables).

Results and Analysis

Graphs showing the results for this experiment are given in Figure 7.9. The query

traffic for this type of system increases logarithmically wi th increasing system size

(Figure 7.9(a)) on both small world and scale free networks, which agrees with the

predictions made in Chapter 4.2. However, the query message traffic for scale free

networks increases more slowly than that for small world networks, which suggests

tha t for the rewiring probability we have used, small world networks have a larger

diameter than scale free networks with equal number of vertices and edges.

The control message traffic for both systems increases at the same rate as jVp

(see comparison with the control message traffic for complete graphs in Figure 7.11),

which is consistent with our prediction in Section 4.4 of 0{\V\\E\) because both

scale free and small world networks have |E | proport ional to \V\ (in both cases,

adding a node to the networks adds a fixed number of edges).

136

100

90

80

70

small world
scale free

2 60

50

Q) 40

30

20

10

10 100 1000 10000

number of agents

100000 le+OG

10e8

(a) Query traffic

small world
scale free

10e7

10e6

lOeS

10e3

10e2

10e1

lOeO
10 100 1000 10000

number of agents

100000 1e+06

(b) Control traffic

Figure 7.9: Results for distance vector

137

7.4.8 Link State

As with the experiments for Hooding and distance vector routing, we represented

the underlying network topology by constructing disordered graphs following the

methods outlined for small world and scale free networks and using the same pa-

rameters (for the small world network, we started wi th the ring lattice 2,̂ ,4 and

rewired with probability 0.25, and for the scale free network we started with the

complete graph and grew the graph by adding n - 4 nodes, each with degree 4).

In this experiment, systems were generated with 10, 20, 50, 100, 200, 500, 1000,

2000 and 5000 agents. As in previous experiments, a total of twenty different

systems were generated for each of these sizes (and for each network type), and

twenty queries generated and processed on each. An insert ion point for each query

was chosen at random from the nodes in the system.

The construction of the network of forward knowledge was simulated by Hood-

ing each agent's local topology to all other agents and then running our modiEed

version of Dijkstra 's algorithm (Algorithm 4.1). The m a n n e r in which this was per-

formed diEered from that given in Section 7.4.6; each tick, every agent sends to its

neighbours all the content expressions tha t it received for t h e first t ime in the previ-

ous tick, so combining several pieces of forward knowledge into a single message. In

order to reduce the effort involved in running this s imulat ion, Dijkstra 's algorithm

was not run for every agent in the system, but rather only for those agents identified

as insertion points for queries; these agents therefore have complete knowledge of

the topology of the network (and in particular, its shortest paths) , which is used to

simulate the processing of a query by the system.

Results and Analysis

Graphs showing the results for this experiment are given in Figure 7.10. The query

traffic for this type of system increases logarithmically w i t h increasing system size

(Figure 7.10(a)) on both small world and scale free networks, which agrees with the

predictions made in Chapter 4.2.

As with the distance vector experiment, query message traffic for scale free

networks increases more slowly than tha t for small world networks, which suggests

tha t for the rewiring probability we have used, small world networks have a larger

diameter than scale free networks with equal number of vertices and edges. The

control message traffic for both systems appears to increase linearly with increasing

138

number of vertices, which is at odds with our earlier prediction of 0(|E|log|y|)

complexity.

However, as mentioned in Section 7.4.7, |E| is proportional to | y | for scale free

and small world networks (so the complexity could be restated as 0 (| y | l o g | y |)) ,

and over the range of system sizes studied, the logarithmic factor in this complexity

introduced by the graph diameter has a much smaller effect on the measured trafhc

than does the number of edges.

139

100

90 -

80 -

70 -

2 60

50

m 40

small world
scale free

30

20

1 0 -

10 100 1000 10000

number of agents

100000 1e+06

10e8 -

1 % 7 -

(a) Query traffic

small world
scale free

10e6 -

lOeS

10e4

10e3

10e2 -

lOel

lOeO
10 100 1000 10000

number of agents

100000 1e+06

(b) Control traffic

Figure 7.10; Results for link state

140

7.5 Discussion

In the previous section, we presented the results of the experiments which we have

used to examine the scalability of different network topologies for query routing

systems. The systems which we have studied can be divided into three rough

categories: those which try to minimise the cost of querying the system without

regard to the cost of building the forward knowledge network, those which minimise

the cost of building the network without regard to the cost of processing queries,

and those which attempt to trade off the cost of querying and network building

against each other.

An example of the first category is the complete network, which has a constant

querying cost but requires that every agent should contact every other agent, and an

example of the second category is the Gnutella-like flooding system, which does not

use forward knowledge, but which requires that a query be sent to every agent. The

remaining systems are all characterised by a query cost which scales logarithmically

as the system grows in size, but they approach the problem in two significantly

different ways. One set of systems constructs an ordered forward knowledge network

which consists of an explicit hierarchy of agents, while the other set assumes that

the underlying network topology will be disordered and at tempts to construct the

forward knowledge network using adapted network routing algorithms.

The routing algorithms used in these disordered systems do not scale as well

as the ordered systems; in Chapter 4 we gave control message complexities from

0{\E\ log |y |) to 0{\E\\V\) for these systems. The disordered networks (small world

and scale free) that we used to simulate these systems are sparse, and have |E|

proportional to | y | (in both cases, adding a node to the network adds a fixed number

of edges), so in effect the complexities range from 0{\V\'^) to 0 (| F | log |I^|).

The graph in Figure 7.11 contrasts the control message traffic for distance vector

and link state routing with that for complete graphs and hierarchies. As can be

seen in this, the control message traffic for distance vector grows at the same rate

as for complete graphs (verifying our prediction of 0{\V\'^) complexity), while the

traffic for link state routing (the all pairs flooding operation) grows at a considerably

slower rate (it appears to be linear in this graph because log 1^1 ^ |^ |) -

Our approach to studying the scalability of query routing systems by considering

the complexity of query processing and the construction of the forward knowledge

network makes the assumption that the cost of performing these tasks is adequately

represented by the communication complexity, but this fails to take into account

141

10e8

10e7

lOeG

lOeS

10e4

10e3

10e2

10e1

lOeO

dv on small world
dv on scale free
complete graph

Is on small world
Is on scale free
hierarchy, b=8

10 100 1000 10000

number of agents

100000 1e+06

Figure 7.11: Control complexity comparison

other costs of a social or political nature which are associated with the creation and

maintenance of an ordered system (the cost of agreeing on the placement of agents

in the hierarchy, for example — contrast this with the low organisational costs of

more anarchic peer-to-peer systems such as Gnutella or Freenet). The maintenance

of hierarchical systems like DNS requires a great deal of human effort that perhaps

should be accounted for, if only it were possible to quantify it; unfortunately, these

costs are largely implicit. Our overall recommendations for scalable query routing

systems must therefore take a number of factors into consideration:

• The frequency of queries is greater than the frequency of updates, so it is

more important that the cost of processing a query be low.

® After the cost of processing queries, it is impor tant to reduce the cost of

constructing and maintaining the network of forward knowledge.

• Ordered systems may involve hidden organisational costs which cannot be

easily quantised.

The first of these concerns forces us to rule out flooding based systems such

as Gnutella, while the second excludes the complete g raph and distance vector

systems. Of the remaining systems, the single index server places too great a load

on a single component, leading to a potential bottleneck and single point of failure.

The choice which remains is between the hierarchical systems (including coun-

cils) and the disordered systems which use link state rout ing (see Table 4,1). Given

our characterisation of the underlying disordered network topology as a small world

142

or scale free network, both feature logarithmic query complexities. The control com-

plexity for the two are different, with hierarchies remaining linear as opposed to the

linear-log complexity of link state systems, but the logarithmic factor grows slowly

enough to have little eSFect over the range of system sizes we have studied. Finally,

if the expansion of query scope is allowed in hierarchical systems, the cost of prop-

agating an update scales linearly with the size of the system, as it also does for

the link state systems (|E | being proportional to | y | in small world and scale free

networks). This leaves the hidden organisational costs of ordered systems as the

only remaining criterion; in the absence of any other criteria, our recommendation

is therefore for query routing systems which do not assume that the system is or-

dered, and which use our modified link state algorithm to construct the forward

knowledge network.

7.6 Summary

In this chapter, we have described a series of experiments which we have conducted

using the Paraphyle simulator (described in Section 5.3) in order to validate our

model of a query routing system (described in Chapter 3), and to confirm our

conclusions with respect to the effects on scalability of different forward knowledge

network topologies (see Chapter 4).

In Chapter 8, we will summarise the contributions we have made in this work,

and discuss potential avenues for further development of the agent systems we have

built and future research topics which expand on the work presented in this thesis.

143

Chapter 8

Further Work and Conclusion

8.1 Conclusion

In this thesis, we have presented a model of the query routing paradigm which we

have subsequently used to inform the design of scalable agent systems for query

routing. The main objective of this work was to s tudy the behaviour, and in

particular the scalability, of query routing systems, an area which has received little

attention to date. To achieve this objective, we performed an empirical study of a

variety of network topologies for query routing systems which we used to confirm

the conclusions which we had drawn on the complexity of constructing and using

systems baaed on these topologies, these conclusions being based on our study of

the model we created.

The concept of query routing is a pattern which occurs frequently in distributed

systems which need to perform the resource discovery or name resolution tasks, as

was discussed in our survey of existing systems in Chapter 2. The majority of the

systems studied were hierarchical in nature, but the swiftly growing popularity of

peer-to-peer computing (Napster, Gnutella and so on) suggests that a less restrictive

approach to the construction of the network of forward knowledge that underpins

a query routing system can promote wider participation in such a system.

In order to study query routing systems in the abstract , we built a graph the-

oretic model of the query routing process, described in Chapter 3, with which we

were able to characterise a number of different system topologies, based on the sys-

tems discussed in the previous chapter. This is an impor tant contribution of this

work, since no such model of the query routing paradigm existed previously.

In Chapter 4, we settled on the use of a family of partially disordered graphs

to represent the anarchic, but not entirely structure-free, coalitions of users that

144

characterise many peer-to-peer systems. We suggested that where most traditional

query routing systems construct their forward knowledge networks in a hierarchical

manner, these more loosely organised systems might benefit from the application of

network routing algorithms which have been suitably modiHed for use in the query

routing domain.

Using our query routing model, we determined the scalability of the different

system topologies under examination in terms of the communication and space

complexity of processing queries and of constructing the network of forward knowl-

edge which is necessary for correct operation of a query routing system. We believe

that this particular section of this thesis is potentially of great use to designers and

implementors of peer-to-peer systems, because it provides an objective compari-

son of the performance and scalability of peer-to-peer systems based on different

underlying topologies.

We then turned our attention to the application of t h e query routing technique

to the problem of coordination in multi-agent systems (in particular to the service

discovery task). In Chapter 5, we discussed the design of our agent framework

Phyle, with particular emphasis on its novel features, such as fluid message handlers.

Although the Phyle agent framework was not explicitly designed for the construction

of query routing agent systems, there were no suitable alternatives available at the

time we carried out this stage of our work; had such alternatives been available,

we would have used them in preference to the task of reinventing the wheel. Our

views on the future development of the Phyle agent framework are summarised in

Section 8.2.1.

While it was possible to build small multi-agent systems containing a handful of

agents in Phyle, the framework was not lightweight enough to permit the construc-

tion of large scale systems containing many thousands of agents. In order to address

this, we designed the Paraphyle simulator, which used a minimal representation of

an agent which was specifically tuned to the requirements of query routing.

In Chapter 6, we discussed the issues that affect t he design of query routing

agent systems, with particular emphasis on the semantics of queries and referrals.

This work made use of our model in order to explain the way in which agents in a

query routing agent system aggregate forward knowledge during the construction

of the forward knowledge network. We feel that this chapter is a particularly novel

contribution to the development of mediator systems for multi-agent systems.

Finally, in Chapter 7 we used the Paraphyle simulator to study the behaviour of

large scale query routing agent systems in order to confirm the conclusions on the

145

scalability of different query routing system topologies that we had drawn following

our analysis in Chapter 4, and in doing so validate our model.

Query routing is a complex domain, and there are a number of aspects which we

did not study in this work. In particular, the effects of failures and other aspects of

unreliable systems on the e%ctiveness of database selection in query routing systems

of various topologies is still an open issue which we feel merits future attention.

In Section 8.2.2, we have identified two possible avenues for future research and

summarised our immediate intuitions as to potential techniques which could prove

useful in these areas.

8.2 Future Work

During the course of this work, a number of areas of interest came to our attention

which we were not able to further develop or study due to time constraints. In this

section, we summarise the areas which we consider to be worthy of future research

and outline a possible path for the future development of the software discussed in

this thesis.

8.2.1 Future System Development

There are two areas in which future systems development must be considered,

namely further development of the Phyle agent framework (see Chapter 5) and the

development of agent-based query routing systems (see Chapter 6), not necessarily

using the Phyle framework.

The Phyle agent framework was born out of necessity; when the implementation

phase of this study was conducted, there was no suitably mature and freely available

agent framework. This is no longer the case, and there are a number of well rounded

agent frameworks which conform to standards, such as those published by FIPA

(of which FIPA-OS (Poslad et al., 2000), Jade (Bellifemine et al., 1999) and Zeus

(Nwana et al., 1999) are good examples). Although Phyle has some features which

are not present in other frameworks (such as its fluid message handlers), it also

lacks some features which are present in those frameworks (particularly integration

with system facilities or other external services like LDAP) .

Conversely, the implementation of query routing systems such as those described

in this thesis is not inextricably tied to the Phyle framework. Indeed, the best

way to encourage a more widespread use of query routing-like systems for service

146

discovery in multiagent systems would be to implement t hem in more widely used

agent frameworks.

The increaaing complexity of emerging agent standards like FIPA places a greater

workload on the implementors of agent frameworks. If compliance with these stan-

dards is to be maintained, this work is best spread amongs t a community following

the open source model (Raymond, 1999). For this reason, we believe that the Phyle

agent framework should not be further developed, and t h a t any future system de-

velopment should take the form of query routing implementat ions for other agent

frameworks.

8.2.2 Future Research Directions

There are two areas related to query routing which we believe merit further inves-

tigation in the long term. The Erst is the robustness of the system, or its ability

to cope with failures. The second is the effect of unfa i th fu l or incomplete forward

knowledge on the e%rt required to process queries.

Robustness and Failure

An area which has not been addressed in this work is t h e robustness of a query

routing system, tha t is the effects of failure on its behaviour. A promising approach

to a s tudy of this area uses work from statistical physics, namely percolation theory

(Grimmett , 1999). This is a branch of stochastic graph theory which deals with

the effects of varying the interconnections in a r andom system, and is used in

applications from studies of the spread of disease in a popula t ion to the porosity of

concrete.

The basic idea of percolation is tha t the overall connectivity of a system varies

with the probability tha t a given connection exists in such a way tha t there is a

sharp transition (a phase transition) from a disconnected t o a connected graph when

the probability rises above some critical value (the percolat ion threshold). This

transition is not unlike the transition to a small-world network noted by Wat ts and

Strogatz (1998); in (Watts, 1999), Wat ts comments on t h e similarity between these

effects.

The topologies studied in Chapter 4 treated the connectivity of the network as

an invariant property; in the given networks, the techniques used for propagating

forward knowledge were such tha t there would exist an appropr ia te ly labelled path

from the network entry points to every other node in the network. The existence of

147

these paths means that if there is an answer to a query somewhere in the system, it

should be possible to locate that answer using the query routing technique (giving

the query a perfect recall).

There are two types of failure which may occur in a query routing system. In

the first instance, a server may fail (known as site percolation). If this server holds

the answer to the query, the query will obviously fail, aa will also be the case if

there is a single path to the location of the answer and t h e failing server lies on tha t

path. Secondly, one of the edges in the network may b e removed (known as bond

percolation) as a server loses a piece of forward knowledge, which again affects the

processing of a query if that edge is part of a path which leads to the answer to the

query.

Percolation theory is of interest to us because it allows us to determine which

topologies are more robust in the event of failure. If t h e property which we are

interested in maintaining under failure is the existence of correctly labelled paths

to all destinations, the higher the percolation threshold for this property, the more

robust the system.

Robustness clearly has some relation with redundancy (of paths or forward

knowledge, and not necessarily of the referrals generated f rom tha t forward knowl-

edge). Par t of a future study of the robustness of query routing systems should

include an investigation of the effects of redundancy on robustness, and the condi-

tions under which redundancy best improves robustness (i.e. where to add redun-

dant forward knowledge to best improve robustness).

Unfaithful Forward Knowledge

In Section 3.3.2 we introduced the forward knowledge effectiveness measures, faith-

fulness and completeness, which are used to express how well an expression sum-

marises a set of records.

In our investigation of the effects of different topologies on the behaviour of

query routing systems, we have made the assumption t h a t the forward knowledge

in the system is both faithful and complete. This is not necessarily the case (and in

fact is frequently the opposite in real world systems), b u t it does give us an upper

bound on the effectiveness of a query routing system.

There are two main sources of inaccuracy in a query rout ing system's forward

knowledge. It may either be inaccurate from the outset due to the poor summari-

sation of a server's records, or it may have been formed by the lossy aggregation of

forward knowledge from other sources.

148

The former source was outside the remit of this study because we were primar-

ily interested in the database selection problem. While poor summarisation a%ct8

the e&ctiveness of the use of query routing for database selection, it is not some-

thing that can be mitigated against within the realm of conventional query routing

systems. If a database advertises its capabilities incorrectly, a query routing sys-

tem cannot detect this when it is building its routing tables without exhaustively

querying such a database to determine whether the summary is correct.

Lossy aggregation typically occurs because a server wishes to reduce the size

of the intension of a forward knowledge summary (in order to reduce the storage

or transmission requirements). The intension size is reduced by removing selected

characteristics from the summary expression, but this hag the effect of increasing

the extension of the summary so that it denotes more records than it should; the

summary thus becomes unfaithful.

Regardless of its source, the eEect of unfaithful forward knowledge is to introduce

false positives in the process of database selection. While these do not necessarily

affect the overall effectiveness of a query routing system (no records which match

the query are hidden from the querying client), they do represent an increase in the

effort required to obtain results from the system because the false positives are not

identified as such until they are queried.

A possible solution to these problems, and a fruitful area for future research, is

the introduction of adaptive behaviour into query rout ing systems, so that queries

which fail to produce predicted results are used to modify the forward knowledge on

which the prediction of results was made. These modifications could be incremental

and take the form of counter examples induced by failed queries (e.g. this server

knows about Victorian novels, except those written by Charles Dickens), or they

could be full updates in which a server which requests a new forward knowledge

summary to replace one which it believes to be incorrect. In this way, adaptive

forward knowledge could also be used as an alternative to the explicit updating of

forward knowledge discussed in Section 3.3.5.

The issue of which entity controls a query routing search reappears here, in that a

server which issues referrals is unaware of the success or failure of the client to which

it provided the referral unless that client informs it of i ts status (so behaving as a

'good neighbour', which recalls Singh's work (Singh, 1998) on agent communication

languages which are defined in terms of social norms). Conversely, a server to which

has been delegated the task of processing a query is relying on its own forward

knowledge, and so is aware when that forward knowledge gives false positives.

149

Relying on failure alone to trigger forward knowledge updates requires that there

are suGcient queries to exercise the forward knowledge. Forward knowledge which

relates to seldom queried servers would potentially have greater latency and could

stagnate. In the worst case, a domain which combined infrequent queries with

rapidly changing data would result

A future study of the e%cts of unfaithful forward knowledge should therefore

include an investigation into the comparative complexities of explicit forward knowl-

edge updates and adaptive forward knowledge, and the t ime complexity of conver-

gence in systems with adaptive forward knowledge.

150

Appendices

151

Appendix A

Domain Ontologies

The ontologies in this appendix were designed and documented following the guide-

lines suggested by Skuce and Monarch (1990) and Uschold and King (1995).

A . l Bibliographic Metadata

Our ontology for bibliographic metadata (described in Section 6.6.1) is based on

the terminology introduced by the Dublin Core effort (DCMI, 1999), and is centred

around the concept of a record which bears metadata as a proxy for the resource

which is being described (as opposed to a resource-centric view where the biblio-

graphic data is attached directly to the resource).

152

Name Type
title Relation
subject Relation
description Relation
type Relation
format Relation

language Relation
relation Relation
coverage Relation
rights Relation

date Relation

identifier Relation

contributor Relation

creator Relation

publisher Relation

source Relation

Description
A name given to the resource described by this record.
The topic of the content of t h e resource.
An account of the content of t h e resource.
The nature or genre of the content of the resource.
The physical or digital manifes ta t ion of the resource
(signified by a MIME media type).
A language of the intellectual content of the resource.
A reference to a related resource.
The extent or scope of the content of the resource.
Information about the rights held in or over the re-
source.
A date associated with an event in the life cycle of
the resource (typically the creat ion of the resource).
An unambiguous reference to t h e resource described
by this record within a given context (a URI).
An entity responsible for mak ing contributions to the
content of the resource.
An entity primarily responsible for making the con-
tent of the resource.
An entity responsible for mak ing the resource avail-
able.
A reference to a source f rom which this resource is
derived.

Table A.l: Bibliographic Ontology

153

A.2 Hypermedia

Our hypermedia ontology (introduced in Section 6.6.2) is based on the data model

used by the Open Hypermedia Protocol (Reich et al., 2000).

Name Type Description

link Class An entity which provides an association (possibly
navigable) between nodes.

endpoint
anchor

Class
Cla^s

The endpoint (source a n d / o r destination) of a link.
An entity which denote a n o d e or a location within
a node (denoted by a locspec) which can be used as
the endpoint of a Hnk.

locspec Class A location specifier which denotes a particular point
or range in a node.

node Class An entity which may be linked.
direction

has-endpoint

has-link

has-anchor

has-node
type

has-locspec

content

Relation Indicates the direction of a particular endpoint:
source, destination or bi-directional.

Relation Indicates tha t a link contains a particular endpoint.
The inverse of the has-link relat ion.

Relation Indicates tha t an endpoint is used as part of a partic-
ular link. The inverse of the has-endpoint relation.

Relation Indicates the anchor with wi th a particular endpoint
is associated.

Relation Indicates the node to which a n anchor refers,
Relation Indicates the media type of a node: image, text, au-

dio, etc.
Relation Indicates the location within a node to which an an-

chor refers.
Relation Indicates the location of the content of a node (i.e.

the address of a file or resource)

Table A.2: Hypermedia Ontology

154

A.3 White Pages

Our White Pages ontology (described in Section 6.6.3) is based on a simplified

version of the class model of the X.500 directory (ITU, 1993b,c) and on the schema

used by the Department of Electronics and Computer Science (ECS, 1999).

Name Type Description
person Class A person.
group Class A named group of people or other organisation (de-

partment , research group, e tc) .

email Relation The email address of a person.
in-group Relation Indicates memberhop of a person in a group.
contact Relation Indicates the person who is the contact name for a

group.
username Relation Indicates the username of a person.
name Relation The name of a group (required).
fax Relation The fax number for a person.
telephone Relation The telephone .number for a person.
homepage Relation The URI of the homepage of a person or group.
personal-name Relation The personal (Grst) name of a person.
family-name Relation The last (family) name of a person.
title Relation The title (Mr, Dr, Rev, etc) of a person.

Table A.3: White Pages Ontology

155

Appendix B

Sample Simulation Data

This appendix contains a sample dataset which was generated for use with the

Paraphyle simulator. This dataset describes a network of agents (labelled hier-1

to hier-2l) which form a hierarchy of three levels in which each agent has four

direct children (see diagram in Figure B.2).

The network is represented as a list of agents; each agent in the list is represented

as a list as shown in Figure B.l. The first item in the list (line 1) is a symbol used

as the agent name, in this case h ier -15 . The second line is the content summary

for the agent, which in this case is the expression voc-33 fl voc-98 • voc-118.

The remaining lines give the forward knowledge held by the agent, represented as

a list of pairs where the first part of each pair is the forward knowledge summary

expression and the second part is the name of the agent about which this forward

knowledge is held. For example, the agent hier-15 has forward knowledge about

agent h i e r - 1 2 such that it believes that h i e r - 1 2 knows about expressions which

are subsumed by voc-121 fl voc-114 fl voc-145.

1 (hier-15

2 (voc-33 VOC-98 voc-118)

3 ((((voc-176 voc-66 voc-78)) . hier-11)

4 (((voc-121 voc-114 voc-145)) . hier-12)

5 (((voc-40 voc-9 voc-101)) . hier-13)

6 (((voc-64 voc-115 voc-101)) . hier-14)))

Figure B.l: Sample dataset for a Paraphyle agent

156

Figure B.2: Graph for sample dataset

157

((hier-21

(voc-73 voc-62 voc-19)

((((voc-17 voc -90 voc-49)
(voc-75 voc-3 voc-32)

(voc-153 voc-83 voc-147)

(voc-196 VOC-75 voc-143)

(voc-101 voc-93 voc-191)) . hier-5)

(((voc-99 voc-192 voc-138)

(voc-1 voc-164 voc-117)

(voc-178 voc-114 VOC-94)

(voc-77 voc-84 voc-188)

(voc-125 voc-5 voc-13)) . hier-10)

(((voc-33 voc-98 voc-118)

(voc-176 voc-66 voc-78)

(voc-121 voc-114 voc-145)

(voc-40 voc-9 voc-101)

(voc-64 voc-115 voc-101)) . hier-15)

(((voc-193 voc-92 voc-143)

(voc-114 voc-186 voc-10)

(voc-67 voc-37 voc-132)

(voc-143 VOC-94 voc-126)

(voc-120 voc-168)) . hier-20)))

(hier-20

(voc-193 voc-92 voc-143)

((((voc-114 voc-186 voc-10)) . hier-16)

(((voc-67 VOC-37 voc-132)) . hier-17)

(((voc-143 voc-94 voc-126)) . hier-18)

(((voc-120 voc-168)) . hier-19)))

(hier-19

(voc-120 voc-168)

0)

(hier-18

(voc-143 VOC-94 voc-126)
())

(hier-17

(voc-67 voc-37 voc-132)

0)

(hier-16

(voc-114 voc-186 voc-10)

0)
(hier-15

(voc-33 voc-98 voc-118)

((((voc-176 VOC-66 voc-78)) . hier-11)

(((voc-121 voc-114 VOC-145)) . hier-12)

(((voc-40 voc-9 voc-101)) . hier-13)

(((v o c - 6 4 voc-115 voc-101)) . hier-14)))
(hier-14

(voc-64 voc-115 voc-101)

158

0)

(hier-13

(voc-40 voc-9 voc-101)

0)

(hier-12

(voc-121 voc-114 voc-145)

())
(hier-11

(voc-176 voc-66 voc-78)

0)
(hier-10

(voc-99 voc-192 voc-138)

((((voc-1 voc-164 voc-117)) . hier-6)

(((voc-178 voc-114 voc-94)) . hier-7)

(((voc-77 voc-84 voc-188)) . hier-8)

(((voc-125 voc-5 voc-13)) . hier-9)))

(hier-9

(voc-125 voc-5 voc-13)

0)
(hier-8

(voc-77 voc-84 voc-188)

())
(hier-7

(voc-178 voc-114 voc-94)

0)

(hier-6

(voc-1 voc-164 voc-117)

())
(hier-5

(voc-17 voc-90 voc-49)

((((voc-75 voc-3 voc-32)) . hier-1)

(((voc-153 voc-83 voc-147)) . hier-2)

(((voc-196 VOC-75 voc-143)) . hier-3)

(((voc-101 VOC-93 voc-191)) . hier-4)))

(hier-4

(voc-101 VOC-93 VOC-191)

())
(hier-3

(voc-196 VOC-75 v o c - 1 4 3)

())
(hier-2

(voc-153 VOC-83 voc-147)

())
(hier-1

(voc-75 voc-3 voc-32)
()))

1 5 9

Glossary

ACL Agent Communication Language The language used to express the intent of

the messages that an agent sends.

Cluster A group of related data objects.

Centroid A type of summary object which summarises a number of data objects,

most commonly those which form a cluster.

Cluster representat ive A summary of a cluster.

Content s u m m a r y A summary of the data held by an entity in a distributed

information system.

D a t a access The task of retrieving a particular da ta object from a distributed

information system.

Database se lect ion The task of identifying the entity within a distributed database

which can satisfy a particular query.

F I P A Foundation for Intelligent Physical Agents Standards body which has de-

fined a standard ACL (the FIPA ACL) and a knowledge representation lan-

guage (si, or semantic language).

Forward knowledge Information held by an index server which contains a con-

tent summary for another server, and which is used for query routing.

Index server A server in a distributed information system which holds forward

knowledge about other servers.

KIF Knowledge Interchange Format A knowledge representation language defined

by the Knowledge Sharing Effort.

K Q M L Knowledge Query Manipulation Language An ACL defined by the Knowl-

edge Sharing Effort.

Knowledge Sharing Effort DARPA-funded US agent standardisation effort which

produced KQML and KIF.

Query rout ing A technique for distributed search which uses forward knowledge

to constrain the scope of the search.

160

Resource discovery The task of searching a distributed information system for

data objects with particular characteristics

Service discovery The task of searching a distributed information system for en-

tities which can provide a particular service.

161

Bibliography

H. Abelson, D. Allen, D. Coore, C. Hanson, G. Homsy, T. Knight, R. Nagpal,

E. Ranch, G. Sussman, and R. Weiss. Amorphous computing. AI Memo 1665,

Artificial Intelligence Laboratory, Massachusetts Institute of Technology, 1999.

AgentBuilder. AgentBuilder: An integrated toolkit for constructing intelligent soft-

ware agents. White paper. Reticular Systems, Inc., J an . 1998. Available online

at h t t p : / / w w w . a g e n t b u i l d e r . c o m / .

R. Albert, H. Jeong, and A.-L. Barabasi. The diameter of the world wide web.

Nature, 401:130-131, 1999.

R. Albert, H. Jeong, and A.-L. Barabasi. Error and a t tack tolerance of complex

networks. 406:378-382, 2000.

J. Allen. The Architecture of the Common Indexing Protocol (CIP). Internet Draft

draft-ietf-find-cip-arch-01.txt, Internet Engineering Task Force, Nov. 1997.

J. Allen and M. Mealling. MIME object definitions for the Common Indexing Pro-

tocol (CIP). Internet Draft draft-ietf-find-cip-mime-02.txt, Internet Engineering

Task Force, Jan. 1998.

K. M. Anderson, R. N. Taylor, and E. J. Whitehead, J r . A critique of the open

hypermedia protocol. JounioZ 1(2), Jan. 1998.

B. Awerbuch. Optimal distributed algorithms for minimum weight spanning tree,

counting, leader election, and related problems. In Proceedings of the Nineteenth

Annual ACM Conference on Theory of Computing, pages 230-240, 1987.

P. G. Baker, A. Brass, S. Bechhofer, C. Coble, N. Pa ton , and M. Quinna. Trans-

parent access to multiple biological information sources, an overview. Technical

report. Department of Computer Science, University of Manchester, 1995.

A.-L. Barabasi and R. Albert. Emergence of scaling in random networks. Science,

286(509), 1999.

A.-L. Barabasi, R. Albert, and H. Jeong. Scale-free characteristics of random net-

works: The topology of the world wide web. Physica A, 281:69-77, 2000.

162

http://www.agentbuilder.com/

p. Barker. Use of the OSI directory for accessing bibliographic information. Pro-

26(2):345-359, 1992.

M. Barthelemy and L. A. N. Amaral. Small-world networks: Evidence for a

crossover picture. TZemew 82:3180-3183, 1999.

R. Bayardo, W. Bohrer, R. Brice, A. Cichocki, G. Fowler, A. Helal, V. Kashyap,

T. Ksiezyk, G. Martin, M. Nodine, M. Rashid, M. Rusinkiewicz, R. Shea, C. Un-

nikrishnan, A. Unruh, and D. Woelk. InfoSleuth: Agent-based semantic in-

tegration of information in open and dynamic environments. Technical Re-

port MCC-INSL-088-96, Microelectronics and Computer Technology Corpora-

tion, Oct. 1996.

D. Beckett. lAFA Templates in use as Internet Metada ta . In Proceedings of the

Fourth International World Wide Web Conference. World Wide Web Consortium,

Dec. 1995.

P. Bellifemine, A. Poggi, and G. Rimassa. Jade; A F I P A compliant agent frame-

work. In PAAM99 - The Fourth International Conference and Exhibition on the

pages 97-108, 1999.

T. Berners-Lee, R. Cailliau, A. Luotonen, H. F. Nielsen, and A. Secret. The World

Wide Web. o/ (Ae /or 37

(8):76-82, Aug. 1994a.

T. Berners-Lee, R. Fielding, and H. Frystyk. Hypertext Transfer Protocol -

HTTP/1.0 . Request For Comments 1945, Internet Engineering Task Force, May

1996.

T. Berners-Lee, J. Hendler, and O. Lassila. The Semantic Web. Scientific American,

May 2001.

T. Berners-Lee, L. Masinter, and M. McCahill. Uniform Resource Locators. Request

For Comments 1738, Internet Engineering Task Force, Dec. 1994b.

D. Bertsekas and R. Gallaher. Data Networks. Prentice-Hall, 1987.

W. P. Birmingham. An agent-based architecture for digital libraries. D-Lib Maga-

zine, July 1995.

D. Blacka, M. Kosters, M. Lu, L. Meador, M. Mealling, G. Pierce, A. Rao, J. Singh,

S. Williamson, and K. Zeilstra. Referral Whois Protocol RWhois 2.0. Internet

Draft draft-ietf-asid-rwhois-OO.txt, Internet Engineering Task Force, Jan. 1998.

B. Bollobas. Random Graphs. Academic Press, 1985.

C. M. Bowman, P. B. Danzig, D. R. Hardy, U. Manber, and M. F. Schwartz.

The Harvest Information Discovery and Access System. Computer Networks and

28(1-2):119-125, Dec. 1995a.

163

C. M. Bowman, P. B. Danzig, D. R. Hardy, U. Manber , M. F. Schwartz, and

D. P. Wessels. Harvest: A scalable, customizable discovery and access system.

Technical Report CU-CS-732-94, Department of Computer Science, University of

Colorado, Mar. 1995b.

T. Bray, J. Paoli, and C. M. Sperberg-McQueen. Extensible Markup Language

(XML) 1.0. W3C Recommendation REC-xml-19980210, World Wide Web Con-

sortium, Feb. 1998.

F. Brazier, M. van Steen, and N. Wijngaards. On MAS scalability. In Proceedings

of the Second Workshop on Infrastructure for Agents, MAS and Scalable MAS at

the Fifth International Conference on Autonomous Agents (ICMAS2001), pages

121-127, May 2001.

D. Brickley and R. Guha. Resource Description Framework (RDF) Schema Speci-

fication 1.0. Technical Report CR-rdf-schema-20000327, World Wide Web Con-

sortium, Mar. 2000.

A. Broder, R. Kumar , F. Maghoul, P. Raghavan, S. Rajagopalan, R. Stata,

A. Tomkins, and J. Wiener. Graph structure in the web. In Proceedings of the

PKzde CoM/erence. Elsevier Science, May 2000.

V. Bush. As we may think. The Atlantic Monthly, 176(1):101-108, 1945.

L. Carr, D. DeRoure, W. Hall, and G. Hill. The dis t r ibuted link service: A tool

for publishers, authors and readers. In Proceedings of the Fourth International

Con/erence, pages 647-656, Dec. 1995.

I. Clarke. A distributed decentralised information storage and retrieval system. Ba

dissertation, Division of Informatics, University of Edinburgh, 1999.

P. R. Cohen and H. J. Levesque. Intention is choice wi th commitment . Artificial

Intelligence, 42:213-261, 1990a.

P. R. Cohen and H. J. Levesque. Performatives in a rat ional ly based speech act

theory. In f o/ (Ae .AMMuaJ Meefmp o / /or Com-

putational Linguistics, pages 79-88, 1990b.

CORBA. CORBAservices: Common Object Services Specification. Object Man-

agement Group, Mar. 1995.

T. H. Gormen, C. E. Leiserson, and R. L. Rivest. Introduction to Algorithms. MIT

Press, 1990.

Cyveillance. Internet exceeds 2 billion pages, 10 July 2000. URL http://www.

cyveillance.eom/newsroom/pressr/000710.asp. Press release.

J. Dale. A Mobile Agent Architecture for Distributed Information Management.

PhD thesis. University of Southampton, Sept. 1997.

164

http://www

J. Dale and D. DeRoure. Towards a framework for developing mobile agents for

managing distributed information resources. Technical report, Multimedia Re-

search Group, Department of Electronics and Computer Science, University of

Southampton, 1996.

R. Daniel. A trivial convention for using H T T P in U R N resolution. Request For

Comments 2169, Internet Engineering Task Force, June 1997.

R. Daniel and M. Mealling. Resolution of Uniform Resource Identfiers using the

Domain Name System. Request For Comments 2168, Internet Engineering Task

Force, June 1997.

W. H. Davies and P. Edwards. Agent-K: an integration of AOP and KQML. Tech-

nical Report AUCS/TR9406, Department of Comput ing Science, University of

Aberdeen, 1994.

H. C. Davis, D. E. Millard, and S. Reich. Ohp - communicating between hyper-

media aware applications. In J. Whitehead, editor, f rocee<im^g o/ fAe

"Towards a New Generation of HTTP", A workshop on global hypermedia in-

frastructure, held in conjunction with the 7th International World Wide Web

Con/ereace, Irvine, CA 92697-3425, Apr. 1998. University of California, Irvine

Department of Information and Computer Science.

F. Dawson and T. Howes. vCard MIME directory profile. Request For Comments

2426, Internet Engineering Task Force, Sept. 1998.

DCMI. Dublin Core metadata element set, version 1.1: Reference description.

Recommendation, Dublin Core Metadata Initiative, Ju ly 1999.

DCMI. Dublin core qualifiers. Recommendation, Dublin Core Metadata Initiative,

11 July 2000.

K. Decker, K. Sycara, and M. Williamson. Middle-agents for the internet. In Pro-

ceedings of the Fifteenth International Joint Conference on Artificial Intelligence

1997.

K. Decker, M. Williamson, and K. Sycara. Matchmaking and brokering. In Proceed-

ings of the Second International Conference on Multi-Agent Systems (ICMAS-

Pg;, 1996.

D. C. Dennett. Intentional systems. Journal of Philosophy, 68(4), Feb. 1971.

D. DeRoure, S. El-Beltagy, N. Gibbins, L. Carr, and W . Hall. Integrating link

resolution services using query routing. In Fifth Workshop on Open Hypermedia

Systems (0HS5), Darmstadt, Germany, Feb. 1999.

D. DeRoure, N. Walker, and L. Carr. Investigating link service infrastructures. In

Proceedings of the Eleventh International ACM Hypertext Conference, 2000.

165

p. Deutsch, A. Emtage, M. Koster, and M. Stumpf. Publishing information on the

Internet with anonymous FTP. Internet draft (expired), Internet Engineering

Task Force, June 1995.

F. Donini, M. Lenzerini, D. Nardi, and A. Schaerf. Reasoning in description logics.

In G. Brewka, editor, fnnczpZeg 0/ jiTnoiuWge

Studies in Logic, Language and Information, pages 193-238. CSLI Publications,

1996.

N. Dushay, J. C. French, and C. Lagoze. Using query mediators for distributed

searching in federated digital libraries. In Proceedings of the Fourth ACM Con-

ference on Digital Libraries (DL99), 1999. Submitted to ACM Digital Libraries

99.

ECS. Handbook of the Department of Electronics and Computer Science. Depart-

ment of Electronics and Computer Science, University of Southampton, 1999.

J. Elliott and J. Ordille. Simple Nomenclator Query Protocol (SNQP). Request

For Comments 2259, Internet Engineering Task Force, Jan . 1998.

P. Faltstrom, L. L. Daigle, and S. Newell. Architecture of the Whois++ service.

Internet Draft draft-ietf-asid-whoispp-02.txt, Internet Engineering Task Force,

Mar. 1998.

P. Faltstrom, R. Schoultz, and C. Weider. How to Interact with a Whois++ Mesh.

Request For Comments 1914, Internet Engineering Task Force, Feb. 1996.

I. A. Ferguson and M. J. Wooldridge. Paying their way: Commercial digital libraries

for the 21"* century. D-Lib Magazine., June 1997. Available online at h t t p :

/ / w w w . d l i b . o r g / d l i b / J u n e 9 7 / z u n o / 0 6 f e r g u s o n . h t m l .

R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L, Masinter, P. Leach, and T. Berners-

Lee. Hypertext Transfer Protocol - HTTP/1.1 . Request For Comments 2616,

Internet Engineering Task Force, June 1999.

FIPA. FIPA 97 Specification part 1: Agent Management. Technical report. Foun-

dation for Intelligent Physical Agents, 1997a.

FIPA. FIPA 97 Specification part 2: Agent Communication Language. Technical

report. Foundation for Intelligent Physical Agents, 1997b.

A. M. Fountain, W. Hall, I. Heath, and H. C. Davis. Microcosm: An open model

for hypermedia with dynamic linking. In Proceedings of the European Conference

on Hypertext. Cambridge University Press, 1990.

J. French, A. Powell, and W. Creighton, III. Efficient searching in distributed

digital libraries. In Proceedings of the Third ACM Conference on Digital Libraries

pages 283-284, 1998.

166

http://www.dlib.org/dlib/June97/zuno/06ferguson.html

J. C. French and C. L. Viles. Ensuring retrieval effectiveness in distributed digital

libraries. JoumoZ 0/ yzauoZ omd 7(1){GI-

TS, Adar. 1996.

0 . Frieder, D. A. Grossman, A. Chowdhury, and G. Frieder. Efficiency considera-

tions for scalable information retrieval servers. Journal of Digital Information, 1

(5), Dec. 1999.

N. Fuhr. Resource discovery in distributed digital libraries. In Digital Libraries '99:

Advanced Methods and Technologies, Digital Collections, 1999.

B. Ganter and R. Wille. Applied lattice theory: Formal concept analysis. In G. A.

Gratzer, editor. General lattice theory, pages 591-605. Birkhauser Verlag, second

edition, 1998.

L. Gasser. MAS infrastructure definitions, needs and prospects. In Proceedings of

the First Workshop on Infrastructure for Agents, MAS and Scalable MAS at the

Con/ereMce on 2000.

M. R. Genesereth and R. E. Fikes. Knowledge Interchange Format Version 3.0

Reference Manual. Technical Report Logic-92-1, Computer Science Laboratory,

Stanford University, June 1992.

M. R. Genesereth, A. M. Keller, and O. Duschka. Infomaster : An information

integration system. In Proceedings of the 1997 ACM SIGMOD International

Conference of the Management of Data, May 1997.

N. Gibbins. Agent-based Resource Discovery in Distr ibuted Information Systems.

Master 's thesis, Department of Artificial Intelligence, University of Edinburgh,

1997.

N. Gibbins and W. Hall. Scalability issues for query rout ing service discovery.

In f roceedmpg 0/ (Ae 5'econ(f on /or

Scalable MAS at the Fifth International Conference on Autonomous Agents (IC-

MylggOOjj, pages 209-217, May 2001.

C. Goble and L. Garr. GOHSE: Informed W W W link navigation using ontologies.

In Proceedings of the IEEE Colloquium "Lost in the Web", Sept. 1999.

R. Godin, R. Missaoui, and H. Alaoui. Incremental concept formation algorithms

based on Galois (concept) lattices. Computational Intelligence, l l (2):246-267,

1995.

G. F. Goldfarb. The SGML Handbook. Oxford University Press, 1990.

Google. Google launches world's largest search engine, 26 June 2000. URL http:

//www.google.com/pressrel/pressrelease26.html. Press release.

167

http://www.google.com/pressrel/pressrelease26.html

S. Goose, J. Dale, W. Hall, and D. DeRoure. Microcosm TNG: A distributed archi-

tecture to support reSexive hypermedia applications. In M. Bernstein, L. Carr,

and K. 0sterbye, editors,

Con/erence, pages 226-227. ACM Press, 1997.

M. Gorman and P. W. Winkler, editors. Anglo-American Cataloguing Rules. Library

Association Publishing, second edition, 1988.

L. Gravano, K. Chang, H. Garcia-Molina, C. Lagoze, and A. Paepcke. STARTS:

Stanford protocol proposal for Internet retrieval and search. Technical report.

Digital Library Project, Stanford University, Jan. 1997.

G. Grimmett. Springer-Verlag, second edition, 1999.

T. R. Gruber. Toward principles for the design of ontologies used for knowledge

sharing. In N. Guarino and R. Poli, editors. Formal Ontology in Conceptual

Analysis and Knowledge Representation. Kluwer Academic Publishers, 1994.

F. Halasz and M. Schwartz. The Dexter Hypertext Reference Model. In J. Moline,

D. Benigni, and J. Baronas, editors, Proceedings of the NIST Hypertext Stan-

VForAraAop, pages 95-133. US Government Printing OfRce, 16-18 Jan.

1990.

M. Harchol-Balter, T. Leighton, and D. Lewin. Resource discovery in distributed

networks. In Proceedings of the Eighteenth Annual ACM Symposium on Principles

of Distributed Computing, pages 229-237, 1999.

D. R. Hardy, M. F. Schwartz, and D. Wessels. Harvest User's Manual. University

of Colorado, Version 1.4 patchlevel 2 edition, Jan. 1996.

K. Harrenstien, M. Stahl, and E. Feinler. NICNAME/WHOIS. Request For Com-

ments 954, Internet Engineering Task Force, Oct. 1985.

R. Hedburg and P. Pomes. The ccso nameserver (ph) architecture. Request For

Comments 2378, Internet Engineering Task Force, Sept. 1998.

C. Hedrick. Routing information protocol. Request For Comments 1058, Internet

Engineering Task Force, 1988.

M. N. Huhns and M. P. Singh. The agent test. IEEE Internet Computing, 12(5):

78-79, Sept.-Oct. 1997.

ISO. Information processing - text and office systems - Standard Generalized

Markup Language (SGML). International Standard ISO 8879:1986, JTC1/SC18,

International Standards Organisation, 1986.

ISO. Hytime: Hypermedia/time-based structuring language. International Stan-

dard ISO 10744, JTC1/SC18, International Standards Organisation, 1997.

168

ITU. Information Technology - Open Systems Interconnection - The directory:

Overview of concepts, models and services. ITU Recommendation X.500, Inter-

national Telecommunication Union, Nov. 1993a.

ITU. Information Technology - Open Systems Interconnection - The Directory;

Selected attribute types. ITU Recommendation X.520, International Telecom-

munication Union, Nov. 1993b.

ITU. Information Technology - Open Systems Interconnection - The Directory:

Selected object classes. ITU Recommendation X.521, International Telecommu-

nication Union, Nov. 1993c.

A. Jain, M. Murty, and P. Flynn. Data clustering: a review. ACM Computing

3l(3):264-323, 1999.

N. Jennings. Agent-based software engineering. Artificial Intelligence, 117(2):277-

296, 2000.

M. A. Jovanovic, F. S. Annexstein, and K. A. Herman. Scalability issues in large

peer-to-peer networks - a case study of gnutella. Technical report, Department

of Electrical and Computer Engineering and Computer Science, University of

Cincinnati, 2001.

KAG. An overview of KQML: A knowledge query and manipulation language.

Draft, KQML Advisory Group, mar 1992.

F. Kappe. Aspects of a Modern Multi-Media Information System. PhD thesis,

Institute for Foundations of Information Processing and Computer Supported

New Nedia (IICM), Graz University of Technology, 1991.

F. Kappe. A Scalable Architecture for Maintaining Referential Integrity in Dis-

tributed Information Systems. Technical report, IICM, Graz University of Tech-

nology, 1994.

G. J. Klir and B. Yuan. oncf iT/ieon/ oncf

Prentice-Hall, 1995.

J. P. Knight and M. Hamilton. Overview of the ROADS Software. Technical Report

LUT SC-TR 1010, Loughborough University of Technology, 1996.

J. P. Knight and M. Hamilton. Dublin Core qualifiers. Draf t , Loughborough Uni-

versity of Technology, Feb. 1997.

M. Koster. Guidelines for robot writers, 1994. URL h t t p : / / i n f o . w e b c r a w l e r .

c o m / m a k / p r o j e c t s / r o b o t s / g u i d e l i n e s . h t m l .

T. Krauskopf, J. Miller, P. Resnick, and W. Treese. PICS label distribution label

syntax and communication protocols. W3C Recommendation REC-PICS-labels,

World Wide Web Consortium, Oct. 1996.

169

http://info.webcrawler

Y. Labrou and T. Finin. A proposal for a new KQML specification. Technical

Report CS-97-03, University of Maryland Baltimore County, Feb. 1997.

0 . Laasila and R. Swick. Resource Description Framework (RDF) model and syntax

specification. Technical Report REC-rdf-syntax, World Wide Web Consortium,

22 Feb. 1999.

P. Lauder, R. Kummerfeld, and A. Fekete. Hierarchical network routing. In f roceed-

o/ Con/erence on pages

105-114,1991.

S. Lawrence and C. L. Giles. Searching the World Wide Web. Science, 280(5360);

98, 1998.

S. Lawrence and C. L. Giles. Accessibility of information on the web. Nature, 400;

107-109, July 1999.

M. Lejter and T. Dean. A framework for the development of multiagent architec-

tures. IEEE Expert, l l(6):47-59, 1996.

D. B. Lenat. CYC; a large-scale investment in knowledge infrastructure. Commu-

Moc/imen/, 38(ll):33-38, 1995.

Y. Lin, J. Xu, E.-R Lim, and W.-K. Ng. ZBroker; A query routing broker for

Z39.50 databases. Available from www.arXiv.org as cs.DL/9902018, 1999.

L. Liu. Query routing in large-scale digital library systems. In Proceedings of the

15th International Conference on Data Engineering (ICDE'99). IEEE Press, Mar.

1999.

C. Lunau, P. Miller, and W. E. Moen. The Bath Profile; An international Z39.50

specification for library applications and resource discovery. Technical report.

The Bath Group, June 2000. Available online at h t t p ; / / w w w . u k o l n . a c . u k /

i n t e r o p - f o c u s / b a t h / .

N. A. Lynch. Distributed Algorithms. Morgan Kaufmann, 1996.

P. Maes. Agents that reduce work and information overload. Communications of

the Association for Computing Machinery, 37(7);31-40, July 1994.

MARBI/ALA/LOC. US MARC Formats; Background and Principle. Technical re-

port, ALCTS/LITA/RUSA Machine-Readable Bibliographic Information Com-

mittee (MARBI) and Network Development and MARC Standards Office, Amer-

ican Library Association and Library of Congress, Nov. 1996.

C. D. Martin and J. M. Reagle, Jr. An alternative to government regulation and

censorship; Content advisory systems for the Internet. Technical report. Recre-

ational Software Advisory Council, 1996.

170

http://www.arXiv.org
http://www.ukoln.ac.uk/

D. E. Millard, L. Moreau, H. C. Davis, and S. Reich. FOHM; A fundamental open

hypertext model for investigating interoperability between hypertext domains. In

froceecfmga CoM/erg^ce, 2000.

J. Miller, P. Resnick, and D. Singer. Rating services and rating systems (and

their machine readable descriptions). W3C Recommendation REC-PICS-services,

World Wide Web Consortium, Oct. 1996.

S. Mizzaro. How many relevances in information retrieval? Interacting With Com-

10(3):305-322, 1998.

R. Moats. URN syntax. Request For Comments 2141, Internet Engineering Task

Force, May 1997.

P. Mockapetris. Domain names - concepts and facilities. Request For Comments

1034, Internet Engineering Task Force, Nov. 1987a.

P. Mockapetris. Domain names - implementation and specification. Request For

Comments 1035, Internet Engineering Task Force, Nov. 1987b.

R. C. Moore. A formal theory of knowledge and action. In J. F. Allen, J. Hendler,

and A. Tate, editors, f JoMnmg, pages 480-519. Morgan Kaufmann

Publishers, San Mateo, CA, 1990.

L. Moreau, N. Gibbins, D. DeRoure, S. El-Beltagy, W. Hall, G. Hughes, D. Joyce,

S. Kim, D. Michaelides, D. Millard, S. Reich, R. Tansley, and M. Weal. SoFAR

with DIM agents: An agent framework for distributed information management.

In PAAM2000 - The Fifth International Conference and Exhibition of the Pratical

Applications of Intelligent Agents and Multi-Agents, pages 369-388, 2000.

J. Moy. OSPF version 2. Request For Comments 1247, Internet Engineering Task

Force, July 1991.

M. N. Murty and A. K. Jain. Knowledge-based clustering scheme for collection

management and retrieval of library books. Pattern Recognition, 28(7);949-963,

1995.

T. H. Nelson. Literary machines. Published by the author , 1987.

T. H. Nelson. Personal interview, Aug. 2001.

G. Neufeld. Descriptive names in x.500. In Proceedings of the 1989 ACM Symposium

on frofocok, pages 64-71, 1989.

P. J. Niirnberg and J. J. Leggett. A vision for open hypermedia systems. Journal

of Digital Information, 1(2), Jan. 1998.

H. Nwana, D. Ndumu, L. Lee, and J. Collis. Zeus; A tool-kit for building distributed

multi-agent systems. Applied Artificial Intelligence Journal, 13(1):129-186, 1999.

171

OMG. TAe Common BroA;er .Arc/iz^ec^ifre. Object Management

Group, 1996.

J. Ordille. Internet Nomenclator Project. Request For Comments 2258, Internet

Engineering Task Force, Jan. 1998.

J. J. Ordille and B. P. Miller. Distributed active catalogs and meta-data caching in

descriptive name services. In f o/ (Ae CoM/erence

on pages 120-129, May 1993.

R. Patil, R. Fikes, P. Patel-Schneider, et al. DARPA Knowledge Sharing Effort

Progress Report. In W. S. Charles Rich, Bernhard Nebel, editor. Principles of

TTnoioWpe J2epreaen(o(%on an(f .Reoaonmp." froceecfm^a o/f/ ie

Conference. Morgan Kaufmann, 1992.

G. S. Pedersen. A browser for bibliographic information retrieval based on an

application of lattice theory. In Proceedings of the Sixteenth Annual International

ylCM ,9/G/R Con/erence on .ReaeorcA Det/eZopmen^ m 7n/onno(zon

pages 270-279, 1993.

J. E. Pitkow and R. K. Jones. Supporting the web; A distributed hyperlink database

system. In froceejm^a o/ (Ae PFe6 Con/erence,

May 1996.

S. Poslad, P. Buckle, and R. Hadingham. The FIPA-OS agent platform; Open

source for open standards. In PAAM2000 - The Fifth International Conference

and Exhibition of the Pratical Applications of Intelligent Agents and Multi-Agents,

pages 355-368, 2000.

D. Raggett. HTML3.2 reference specification. W3C Recommendation REC-html32,

World Wide Web Consortium, Jan. 1997.

A. Rao and M. Georgeff. Modeling rational agents within a BDI architecture. In

R. Fikes and E. Sandewall, editors, Proceedings of Knowledge Representation and

Reasoning (KR&R-91), pages 473-484, San Mateo, CA, 1991. Morgan Kaufmann

Publishers.

E. S. Raymond. The Cathedral and the Bazaar. O'Reilly & Associates, Inc., 1999.

S. Reich, U. K. Wiil, P. J. Niirnberg, H. C. Davis, K. Gr0nbaek, K. M. Anderson,

D. E. Millard, and J. M. Haake. Addressing interoperability in open hypermedia;

The design of the Open Hypermedia Protocol. T/ie ./Vew TZeijieiu o/ Ei/penTiedia,

5:207-248, Apr. 2000.

P. Resnick and J. Miller. PICS; Internet access controls without censorship. Com-

munications of the Association for Computing Machinery, 39(10):87-93, 1996.

172

J. Ritter. Why Gnutella can't scale. No, really., 2001. URL ht tp : / /www.

d a r k r i d g e . c o n i / ~ j p r 5 / d o c / g n u t e l l a . h t m l .

M. Rose. Directory assistance service. Request For Comments 1202, Internet En-

gineering Task Force, Feb. 1991.

M. Roszkowski and C. Lukas. A distributed architecture for resource discovery

using metadata. Magazine, June 1998. ISSN 1082-9873.

M. Salampasis. An Agent-Based Hypermedia Digital Library. PhD thesis. University

of Sunderland, 1998.

M. Salampasis, J. Tait, and C. Bloor. Co-operative information retrieval in digital

libraries. Presented in the 18th annual colloquium of the BCS IR SG, Manchester,

U.K, Mar. 1996.

G. Salton. Mathematics and information retrieval. Journal of Documentation, 35

(l): l-29. Mar. 1979.

P. Sargent. Back to school for a brand new ABC. The Guardian, 12 Mar.:28, 12

Mar. 1992.

J. Searle. Speech Acts: An Essay in the Philosophy of Language. Cambridge Uni-

versity Press, 1969.

O. Shehory. A scalable agent location mechanism. In Intelligent Agents VI - Pro-

ceedings of the Sixth International Workshop on Agent Theories, Architectures

and Languages (ATAL'99), volume 1757 of Lecture Notes in Artificial Intelli-

pence, pages 162-172, 1999.

A. P. Sheth and J. A. Larson. Federated database systems for managing distributed,

heterogeneous, and autonomous databases. ACM Computing Surveys, 22(3):183-

236, 1990.

Y. Shoham. Agent-oriented Programming. Artificial Intelligence, 60:51-92, 1993.

G. Singh. Leader election in complete networks. SIAM Journal on Computing, 26

(3):772-785, 1997.

M. P. Singh. Agent communication languages: Rethinking the principles. IEEE

Computer, pages 40-47, Dec. 1998.

D. Skuce and I. Monarch. Ontological issues in knowledge base design: some prob-

lems and suggestions. In /or

tems Workshop, Banff, 1990.

K. Sollins. Architectural principles of Uniform Name Resolution. Request For

Comments 2276, Internet Engineering Task Force, Jan . 1998.

K. Sparck Jones and P. Willett, editors. Readings in Information Retrieval. Morgan

Kaufmann, 1997.

173

http://www

U. Straccia. A fuzzy description logic. In Proceedings of AAAI-98, Fifteenth Na-

Con/ereMce on pages 594-599, 1998.

Jmz Core 6^ec^caf%0M. Sun Microsystems Inc, Oct. 2000.

NBS. UKMARC Manual. The British Library National Bibliographic Service,

fourth edition, 1996.

University of Michigan. The SLAPD and SLURPD Administrators Guide Re-

lease 3.3, 1996. Available online at h t t p : / / w w w . u m i c h . e d u / ~ d i r s v c s / l d a p /

d o c / g u i d e s / s l a p d / .

M. Uschold and M. King. Towards a methodology for building ontologies. In

on Basic On̂ oZopicaZ Jasttea m jfnoiuZed^e S'Aorinp, AeZd m conduction

with IJCAI-95, July 1995. AIAI-TR-183.

R. M. van Eijk, F. S. de Boer, W. van der Hoek, and J.-J . C. Meyer. A modal

logic for network topologies. In M. Ojeda-Aciego, M. de Guzman, G. Brewka,

and L. Pereira, editors. Proceedings of the Seventh European Workshop on Logics

in /nteZ%ence pages 269-283. Springer-Verlag, 2000.

C. van Rijsbergen. /n/ormation .RetneiiaZ. Butterworths, second edition, 1979.

W3C. XML Linking Language (XLink). W3C Working Draft WD-xlink-19990726,

World Wide Web Consortium, 26 July 1999a.

W3C. XML Pointer Language (XPointer). W3C Working Draf t WD-xptr-19990709,

World Wide Web Consortium, 9 July 1999b.

M. Wahl, T. Howes, and S. Kille. Lightweight Directory Access Protocol (v3).

Request For Comments 2251, Internet Engineering Task Force, Dec. 1997.

D. J. Watts. Small Worlds: the dynamics of networks between order and random-

ness. Princeton University Press, 1999.

D. J. Watts and 8. H. Strogatz. Collective dynamics of 'small-world' networks,

m t w e , 393:440-442, 1998.

C. Weider, J. Fullton, and S. Spero. Architecture of the Whois-|—f Index Service.

Request For Comments 1913, Internet Engineering Task Force, Feb. 1996.

C. Welty. The ontological nature of subject taxonomies. In N. Guarino, editor,

Formal Ontology in Information Systems: Proceedings of FOIS'98, Frontiers in

AI Applications Series. lOS Press, 6-8 June 1998.

C. A. Welty and J. Jenkins. Formal ontology for subject. Journal on Data and

Knowledge Engineering, 31:155-181, 1999.

U. K. Will and J. J. Leggett. The HyperDisco approach to open hypermedia sys-

tems. In Proceedings of the Seventh International ACM Hypertext Conference,

pages 140-148, Mar. 1996.

174

http://www.umich.edu/~dirsvcs/ldap/

S. Williamson, M. Kosters, D. Blacka, J. Singh, and K. Zeilstra. Referral Whois

(RWhois) Protocol vl.5. Request For Comments 2167, Internet Engineering Task

Force, June 1997.

M. Wooldridge and N. R. Jennings. Intelligent Agents: Theory and Practice. Knowl-

.Remetu, 10(2), June 1995.

W. Yeong, T. Howes, and S. Kille. X.500 Lightweight Directory Access Protocol.

Request For Comments 1487, Internet Engineering Task Force, July 1993.

W. Yeong, T. Howes, and S. Kille. Lightweight Directory Access Protocol. Request

For Comments 1777, Internet Engineering Task Force, Mar. 1995.

Z39.50 Maintenance Agency. Information Retrieval (Z39.50): Application Ser-

vice Definition and Protocol Specification. Standard ANSI/NISO Z39.50-1995,

ANSI/NISO, July 1995.

175

