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Censuses are the most important statistical demographic operation carried out by any country. The 
fundamental attribute regarding censuses is that they allow governments, interested organisations 
and researchers to handle key demographic information at any geographical level within a country. 
As any statistical collection processes, censuses are susceptible to what is technically known as 
"non-response". Non-response occurs when any investigated variable for any unit within the 
"universe of study" is missing in the final format for the analysis. Non-response can affect analysis, 
leading to erroneous or invalid findings and consequent decision-making. 

This thesis compares different methods for imputing item non-response present in census 
information based on classification. The strategy for carrying out the imputation is divided in two 
steps. First, the data set is classified using a Tree-Based Technique, and second, the imputation is 
made using some of the known imputation methods. 

The "Classification and Regression Tree" (CART) technique used for tree-based modelling is 
basically a set of classification rules (recursive binary segmentation) that partition the data set into 
mutually exhaustive and non-overlapping subsets (terminal nodes) based on the values of a group of 
explanatory variables. These subsets are expected to be internally more homogeneous with respect 
to the response variable (the variable for which the tree is generated) than the whole database. 
Once the classification is made, each imputation method is applied independently within each 
terminal node. Three common imputation methods for categorical data are used. 
The combination of classification and imputation makes possible the assessment of the following 
aspects: 1) the effect of using this classification technique on the imputation results (including the 
use of different tree-sizes), and 2) the accuracy of the different imputation methods based on this 
classification technique. 

The analysis was carried out for two different settings: the univariate case where a single variable 
is imputed, and the multivariate case where a composite variable is imputed. A composite variable 
is defined by the cross-classification of two or more single variables. The use of the composite 
variable allows for the imputation of two or more single variables at the same time. 

The preservation of joint and individual marginal distributions as well as the preservation of 
individual values are evaluated. Graphs and tests for those comparisons are presented. 
Additionally, assessment of biases and variances, as well as variance estimation in some cases, are 
presented. 

The simulation was made using a subset of UK 1991 Census information. Only categorical variables 
related to persons (except age, which was converted to categorical) were used for the analysis. 
After deleting the records with missing information from the original database, artificial holes were 
created using the real pattern of missing information present in the original database. This makes 
possible the measurement of the accuracy of the imputation by comparing the real values and the 
imputed values. 

Some general conclusions are obtained from the simulations: 1) the use of the classification tree as 
a method for creating imputation cells before the imputation is carried out does improve the 
imputation results, although the size of the tree does not have a major impact on the results. 2) 
most of the imputation procedures used in the simulation produce unbiased estimates for the total 
and for the variance, additionally, they have a very high values for the coverage as well as low 
values for the relative Mean Square Error, 3) in general, the best performing method is the 
Frequency Distribution method (even when compared with Sequential Hot Deck imputation). 
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CHAPTER 1 

1.1. CENSUS DATA AND NONRESPONSE 

Census data are the most important source of statistical information for a country. This is the 

basis of planning and decision-making by governmental offices. In addition, as an important 

attribute, census Information may be used in the sampling frame for many surveys carried 

out by either government or any other official institute. 

The collection process of census information requires much effort and some complex 

procedures. These two factors, together with the magnitude of the data collected, make 

census Information susceptible to missing values. The missing information problem introduces 

difficulties to the analysis. 

Several factors can lead to missing information in a census (or survey in general). 

Noncoverage, measurement errors and nonresponse are the most common sources of missing 

Information. No one solution exists to remedy all of these issues. Different problems require 

different solutions. Despite this, some techniques are valid for more than one problem; for 

example, imputation could be used not only for filling in missing values due to nonresponse, 

but also for replacing items with measurement errors as these can be treated as missing 

values in the final data once they have been detected by the editing process. 

Even though we have said that missing information may arise from different sources, 

nonresponse will be the main aspect considered in this thesis. 

Nonresponse is caused by the incapacity to obtain complete measurements for any of the 

units or variables in a census (survey). There are two different kinds of nonresponse: Unit 

Nonresponse and Item Nonresponse. Unit nonresponse occurs when a unit fails to participate 



in the study. In this case, none of the variables or information for that unit is collected. In 

contrast, item nonresponse occurs when information for one or more items in an accessible 

unit is not available. This means that only a part of the information for that unit is collected. 

Different factors can generate nonresponse. Unit nonresponse can be caused by temporary or 

permanent unavailability of the unit; because the unit refused to participate, or it might be 

unable to answer the questions. On the other hand, causes for item nonresponse include 

interviewee refusal or inability to answer a specific question; perhaps the interviewer omits 

to ask the question or fails to record the answer for a specific item. Additionally, after the 

editing process, records with invalid responses that cannot be fixed by this process are also 

considered within the pool of nonresponse in order to be imputed. 

This thesis considers the case of item nonresponse as the main problem to be investigated. 

In order to illustrate the item nonresponse problem, Tables 1.1.1 show an example of the 

percentages of item missing presented in a single county of the UK for 1991 census. 

Tables 1.1.1 

Missing information for a single County in the UK 

Table A 
Household 

Table B 
Individuals 

Variable % missing Variable % missing 
Bath and shower facility 0.12 Age 7.20 
Brick building 1.55 Primary activity last week 5.83 
Building type 3.82 Country of birth 7.26 
Number of cars owned by the household 2.06 Ethnicity 16.24 
Central heating facility 0.48 Long term illness 13.37 
Number of rooms occupied by household 25.59 Marital status 7.05 
Ownership/rental status 1.21 Sex 4.93 
Type of accommodation 5.00 Ability with welsh 13.39 
Toilet facility 0.13 

These tables show an example of the percentage of item missing for single variables, 

however, census information commonly has different missing items for the same person. That 

is, combination of missing values between these variables may be also present. Therefore, 

we can see that it is not a straightforward problem given the amount of missing information 

present and the complexity of the missing pattern (all possible combinations missing). 

There are several consequences of nonresponse for the analysis when the loss of information 

is too high within persons or households. Reduction of the number of units composes one of 

these consequences, generating some problems, which will be explained later in this 

chapter, for analysing the results (including biased estimates), especially when the size of 

the population is not too large (Lessler and Kalsbeek, 1992; Sande 1982; Madow, et al 1983). 

Also, when more than one variable is missing at the same time, the size of the population 



may change from one variable to another, making estimation, computation, and comparisons 

more difficult. 

Another crucial consequence of nonresponse is the possible presence of bias. This is an 

important aspect to be taken into account since it could generate a completely misinformed 

analysis. Bias is usually considered as the main measure of the nonresponse impact on the 

results (Lessler and Kalsbeek, 1992). The bias quantifies the difference between the 

expected value of an estimator over all possible samples and the population value. 

Because of the progressive increase of the nonresponse problem over the years, many 

solutions have been developed recently to address this problem (Lessler and Kalsbeek, 1992; 

Kalton and Kasprzyk 1982; Sande 1982; Madow, et al 1983). One of the most Important 

attempts for reducing this problem is an endeavour to decrease or at least control the 

nonresponse rates present by making some additional effort at the moment of Interview or 

post-interview. However, this is not enough to eliminate the problem. Sometimes, it is more 

complicated or too expensive to go back to the interviewee in order to get the full answer; 

maybe the interviewee simply does not know or is unwilling to give an answer. Consequently, 

because of the incapacity of researchers to obtain complete data, different compensating 

procedures have been developed to confront the problem. These compensating procedures 

are commonly made by using weighting or imputation methods. In general, weighting 

procedures are used in the case of unit nonresponse or noncoverage, while imputation 

procedures are used in presence of Item nonresponse (Lessler and Kalsbeek, 1992, Kalton, 

1983, Madow et al 1983). However, In the case of census data, post-enumeration surveys are 

generally used to deal with the noncoverage problem (e.g. Ericksen, Kadane and Turkey, 

1989; Breiman,1994; Kearney, A. Ikeda, M. 1999). 

Our main concern is the item nonresponse problem in census data. Therefore, the objective 

of this thesis is to consider compensating procedures for this specific problem. 

1.2 COMPENSATING FOR ITEM NONRESPONSE 

Given that item nonresponse is usually present in most data, different solutions can be used 

in order to deal with this problem. One solution could be to analyse the data by either using 

the available cases, which uses all the available values or deleting the cases with missing 

values in order to use complete cases (Little and Rubin, 1987). 

In the first case, available cases, there are several complications, starting with the fact that 

sample sizes change from variable to variable creating complications for making tabulations 

including many variables or when comparisons across variables are made. Also, some 

procedures for analysing the data, as well as some computational programs, make use of only 



complete cases. Additionally, unless the mechanism generating the missing information is 

completely at random, the introduction of the bias could also be a considerable problem. 

In the second case, complete cases, there are both advantages and disadvantages. The use of 

a common sample (only complete cases) and therefore the use of standard methods make 

the analysis simpler and easier. Hov/ever, there could be a very high loss of information when 

discarding incomplete cases, as well as a loss in the sample size. In addition, if the 

information is not missing completely at random, the introduction of bias in the results may 

represent an important aspect to consider when using the resultant information. 

Another possible option could be to separate the units containing missing information to a 

different category, which can be called "unknowns". However, this procedure is still ignoring 

information available for other variables within the same unit. In this case, analyst will 

generally refer to the unknowns as a category without being able to use the micro data 

(Sande, 1982). 

Despite all the options mentioned before, it can be seen from the description of the methods 

mentioned above that these have been insufficient in solving the item nonresponse problem. 

As a result of this, the use of compensating methods in the presence of missing information 

has increased over the last several years, making simpler analysis possible. In fact, the 

multivariate nature of the information collected in census, where all the variables can be 

subject to nonresponse, makes the use of compensating procedures for item nonresponse 

more necessary and useful. 

As mentioned before, item nonresponse problem is generally solved by the use of imputation 

procedures. 

In general, the use of imputation procedures implies certain pros and cons (Kalton, 1983; 

Kalton and Kasprzyk, 1986; Sande 1982; Lessler and Kalsbeek, 1992). 

Some important advantages to be mentioned include: 

1. As any compensating procedure, imputation aims to reduce the biases in the estimates 

arising from nonresponse; 

2. Imputation makes the analysis easier and the results simpler to present, i.e. no complex 

procedures for analysing incomplete data are required; 

3. Results from different analyses are bound to be consistent; 

4. Imputation assigns values at the micro-level, which allows for a more complex analysis 

(taking into account the correspondent considerations or restrictions) 

Important disadvantages of using imputation methods constitute the following; 

1. Less bias is not guaranteed after the imputation has been done. In fact, bias can be 

greater (depending on the suitability of the assumptions built into the method used); 

2. Bias of univariate statistics can be reduced while the relationship between variables could 

be distorted; 



3. The data could be used as a complete set overstating the precision of the estimates; 

There are also a number of problems to be dealt with when using an imputation procedure. 

Sande (1982) describes some of them in the following manner: 

1. The close relationship between editing and imputation. It is not easy to decide which 

record(s) (or item(s)) has to be imputed when an edit fails. Additionally, the imputed 

records must satisfy the edit constraints in order to produce consistent data. Fellegi and 

Holt (1976) propose a methodology for dealing with this problem, which specifies that 

the imputation must be done by changing as few items as possible (among other aspects) 

(see Section 1.7). 

1. Different records can have different patterns of missing information. This makes the 

decision regarding selection of an imputation procedure more difficult. 

3. The time constraints constitute very important factors to be taken into account. 

Normally, there is no time for testing with the data until it is ready. 

4. The use of imputation does not guarantee better results compared to using classical 

estimation techniques for incomplete data. In fact, it could sometimes be considered 

worse to use imputation. 

5. Estimates from imputed data could be less reliable than when complete data are used. 

Normally, the estimation of variances is inadequate, as they do not include error arising 

from imputation. 

6. The ethical problem of giving out the micro-data. Alternatives such as identifying the 

imputed values or giving the edited but non-imputed data are options that have to be 

decided upon. 

1.3 NOTATION 

Before starting on a description of imputation methods, let us begin with some notation that 

will be employed throughout this thesis. 

Let U be a finite population of N units U = ; = 1,2,..., . Let Y = ( j . ) be a 

(Nxl) - vector of response variable, where y. represents the i th element and let 

X = (x,.^) be a (NxK)-matrix of auxiliary variables with as the A: f/z variable for ith 

the element. X can be represented as X = where 

- is a vector of values 



Given that the aim of this research is to present an alternative solution for the missing 

information problem in census data, sampling is not considered in this thesis. That is, all the 

units in the population are included in the study. 

Assuming that variable y. are subject to nonresponse and Xy are fully observed, we also 

define R = (^.) as {Nx\)-vector of indicator variables for Y , which identifies whether or 

fl if y. is observed 
not V. is missing. That is, r. =< 

[0 otherwise 

Hence, the population can be represented as follows; 

X, ^\k ^\K yx 

m\ 

m̂+1,1 

mk 
X. 'm+l,k 

^Nk 

inK 
X, m+\,K 

^NK 

0 

where m is the number of records for which Y is observed (measured) and the zeros 

represent the missing values. That is, we take, without loss of generality, 

^ = ^ = . . . = ^ = 1 and — • 

This case corresponds to the univariate case in which only one variable is subject to 

nonresponse. However, this can be extended to the case in which many variables can be 

subject to nonresponse at the same time. In this case, Y and R will become a matrices of 

variables and it is explained in Chapter 5. 

1.4 MISSING DATA MECHANISMS 

The process by which the missing data are generated represents an important aspect when 

choosing a compensation procedure. Little and Rubin (1987) distinguish isnorable and non-

ignorable mechanisms. An ignorable missing data mechanism is such that the missing values 



do not depend on the variable which is missing. On the other hand, in the case of the non-

ignorable mechanisms, the missing information depends on the values of the absent 

variables. 

There are two important ideas related to the concept of an ignorable missing data 

mechanism. First, the missing data are Missing at Random (MAR) when the probability of the 

variable being absent does not depend on the value of this variable conditional on observed 

information; and second, Missing Completely at Random (MCAR) when this probability of 

response does not depend either on the value of the missing variable or on the rest of the 

variables. In these two cases, the missing data mechanism is ignorable. 

When missingness depends on the values of the missing variable and possibly on the rest of 

the variables, the missing data mechanism is non-ignorable. 

Since most of the common imputation methods make assumptions about the probability of 

nonresponse, it Is important to understand the missing data process in order to carry out 

imputation procedures. Therefore, these concepts will be explained in a more formal way 

hereafter. 

As assumed above, suppose that Y is subject to nonresponse and X is fully observed. Let 

R be the response indicator for Y . 

Since the model treats as random variables, let us consider the model where y., and 

/; are all random variables. Then, we write the joint distribution as / ( Y , X , R ) . 

When R is independent of Y given X , that is / ( x 1%,^ =1) = = 0 ) the 

data is called Missing at Random, AAAR, where / ( Y | X , R ) denotes the probability function 

of Y given X and R . 

When R is independent of Y , that is / ( y . \r.=l) = f {y. \r. =0) the data are Missing 

Completely at Random, MCAR, where / ( Y | R ) denotes the probability function of Y 

given R . 

In these cases, the process that generates the missing data mechanism is ignorable as the 

missing data mechanism is such that the missing values do not depend on the variable which 

is missing. 



1.5 IMPUTATION 

Imputation is the process through which individual missing items are given a value in order to 

produce complete data (i.e. "imputation completes' incomplete responses" (Sande, 1982)). 

The information used to produce the imputed values normally comes from the respondents. 

The broad idea of imputation methods is to pick a replacement value that is as similar as 

possible to the missing item (Lessler and Kalsbeek, 1992). 

Imputation procedures can be classified in different ways. A common way for grouping the 

imputation methods indicates a division into three very general groups (GSS Methodology 

Series, 1996): 

Deductive methods, in which the values are deduced from known information, either from 

complete records or other available information, with certainty or high probability. This 

depends on some redundancy in the information collected; for example, if a member of a 

family if under 16, deduce marital status as "single". 

Deterministic methods, when, under the same conditions, repeated imputations produce the 

same answers. Examples of this kind of imputation are mean (or mode) imputation, 

regression imputation, and nearest neighbour imputation. 

Stochastic methods, when repeated imputations made under the same conditions can 

produce different results. This indicates that there is a random element included. Examples 

of this are imputing from randomly selected cases and regression imputation with a random 

term. 

Another way to classify imputation methods depends upon the use of internal or external 

sources of information (Lessler and Kalsbeek, 1992; Kalton, 1983). 

Cold-Deck procedures imply the use of external information (different from cases in the 

survey or census) for the imputation process. This makes use of information from different 

sources like, for example, past data sets from the same population. This method has the 

disadvantage of a potential lack of comparability between past and present values, which 

can be a problem when imputing (e.g. the use of different procedures for collecting the data 

or different definitions for a variable). 

On the other hand, Hot-Deck procedures make use of the data available in the survey or 

census In order to create an imputation. Since the term Hot-Deck determines only whether 

the imputations are derived (or not) from the same data set, different ways of selecting the 

imputations can be used such as imputing from a randomly selected cases or nearest 

neighbour imputation. 



Before embarking upon a description of the different imputation procedures, it is important 

to define some common concepts used in the area. 

A Donor is the record from which the value to be assigned to the missing item is normally 

taken. The records with the missing items (for which the imputation is done) are called 

Recipients. It is important to point out that not all the imputation methods assign values to 

recipients from a donor, e.g. mean imputation. 

Imputation is the value used in order to fi l l in the missing item. In the case of donor 

imputation this value comes from the same variable being imputed but from a complete 

case. 

Auxiliary variables (also called control variables, matching variables or assignment 

variables) are those related to the variable with missing values. These are available for 

respondents and non-respondents. They are not only used for defining imputation cells, but 

also for defining regression models for imputing and quantifying how close donors and 

recipients are. 

Imputation classes define partitions of the population made according to similarities 

generally based on the values of a set of auxiliary variables. 

In order to describe a general imputation method, let y. be the imputed value, and 

x- a K-dimensional vector of auxiliary variables for the ith unit with 

actual value . A wide class of imputation methods can be written in the following way 

x = g ( 4 ) + G , , 

where g{-) is a function of the auxiliary variables, and are specified residuals. In this 

case, the specification of the form of g(-) and whether the imputation is fixed or random 

(depending on the use of e.) allow for the making of a distinction between the different 

imputation methods (Lessler and Kalsbeek, 1992). 

In the case of deterministic imputation, e. = 0, different specifications of g(-) can be 

written, for example, 

j", = g ( 4 ) = 43 

or 

In the case of linear regression imputation, the function of the auxiliary variables can be 

written as 



k=\ 

where and b^'s are estimated by standard methods such as least squares or maximum 

likelihood. In the case of a categorical response variable, the regression can be done by using 

logistic or log linear models. 

In the case of stochastic imputation, the linear regression function can be written as 

K 

t=l 

in which a random term is used. 

In the case of mean imputation, the definition of the imputed value has the form 

A = J'o 

where represents the mean of the observed values for the variable ();.) to be imputed. 

Here, the imputation does not depend on the auxiliary variables. However, the method can 

be generalised by taking the mean within imputation classes, which are defined by the x- .̂. 

This is a deterministic method, which does not make use of any random term. 

In the case of categorical data, may take the value of the modal category and moreover, 

if the imputation is carried out within imputation classes, may take the value of the 

modal category of the specific class to which i belongs. 

In the case of nearest neighbour imputation, the imputed value is obtained from a donor 

which is selected according to a function of distance, which can be defined in many different 

ways. For example, 

K 

where y .̂ satisfies with . 

Some imputation methods are suitable for categorical variables while others are suitable for 

continuous variables. There are some cases in which both kinds of variables can be used and 

on some occasions, more than one method can be combined in order to determine a final 

strategy for imputing. 

Since this research is mainly concerned with the missing information problem in population 

census data, the kind of variables used are principally categorical variables. Therefore, our 
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interest wil l be imputation procedures for this particular kind of data. However, it is 

important to point out that the method proposed in this thesis can be used when treating not 

only categorical variables but also continuous variables or a mixture of them in any of the 

cases, independent or dependent variables, by making certain adjustments especially to the 

imputation methods. 

An important method commonly used for imputation, especially in the case of census data, is 

what is traditionally called hot deck imputation. The traditionally called hot deck imputation 

is basically a sequential procedure in which given a set of imputation classes, within each 

class the records are treated in a sequential way. If a record has a response in the y. 

variable, this value is stored replacing the previous one in order to be used for Imputation. If 

a record has a missing value in the variable, the value currently stored is assigned to that 

missing item. The starting value within each imputation class is normally assigned from 

previous surveys (census). 

One of the most important advantages of using a hot-deck procedure is the use of 

information from the same census (survey), which can help maintaining relationships 

between variables while completing the missing information. Also, utilising information from 

the same investigation guarantees the use of the same theoretical context in terms of 

definitions and concepts used. 

If the method traditionally called hot-deck is used, where the sequential procedure is 

involved, then, depending on the way in which the file is ordered, an additional degree of 

matching is introduced (Kalton, 1983). However, an important disadvantage of this procedure 

is that it may easily lead to the situation of multiple use of donors, which can contribute to a 

lowering of the precision of estimates and underestimation of the variances in surveys. 

1.6 EVALUATION OF IMPUTATION 

In order to choose an imputation procedure It is necessary to evaluate its performance. This 

section considers some ways In which this may be done. 

The most common aspects to be taken into account when choosing the imputation procedure 

are (Lessler and Kalsbeek, 1992): 

1. The statistical repercussion of the method on the estimates. It would be desirable to find 

a method that allows for doing the statistical inference intended while minimising the 

effect of the nonresponse on that inference. 
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2. The effect of the compensation procedure on the relationship between the variables. 

Cross-tabulations, regressions and other analyses for investigating relationships between 

variables can be affected by the method chosen. 

3. The availability of the auxiliary data, if required. Some of the methods may require 

auxiliary information, which must be available to allow for the use of the compensation 

procedure selected. 

4. Not only statistical effectiveness has to be considered, but also the practical 

implications. Sometimes, the compensation procedure is statistically adequate but 

extremely difficult (or even impossible) to implement because of the practical 

requirements. A compromise between statistical and practical effectiveness is important. 

5. A review of recent comparative studies can also be useful in the selection of 

compensation procedure. The comparison can be made in the use of biases and variances 

(analytical comparison) or comparing real vs. imputed values (empirical comparison). 

All these are important aspects to be taken into account when a procedure for imputing is to 

be chosen. However, many other factors can influence the decision. Despite knowledge 

about a large number of aspects, there are no rules for combining all of them in order to 

dictate how to establish the appropriate procedure for imputing. Nevertheless, the 

imputation procedure will be more accurate when taking into account as much information 

as possible within the decision process. 

Some other criteria are also useful in choosing an imputation procedure as explained 

hereafter. 

Before defining some procedures for this task, let us introduce some useful notation. 

Let 6 be the population parameter and 9 its estimator based upon the imputed dataset. Let 

be the standard error for 8 and 6 ±2SE(^) its 95% confidence interval. 

The first measure of performance is bias. A good imputation method requires low bias, which 

means £"(9 ) close to 9 . As the bias itself may be difficult to interpret, there are two ways 

of looking at it in order to get alternative information for the evaluation of the imputation 

performance. 

First, relative bias can be defined in the following way, . This can also be 

expressed as a percentage of 9 . That is ——*100. These values are easier to 9 

interpret since they are relative measures. 
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A second way of using the bias for evaluation proposes is using a standardised bias, as a 

percentage of standard error. This is *100 . "Once this exceeds 30-40% it starts to 

adversely affect coverage of confidence intervals" (Schafer 2001). 

The second measure of performance is the variance. A good imputation method also requires 

low variances for 9 , V(9). However, low variance does not help very much when 9 is 

biased. 

Combining the two aspects mentioned before provides a measure of the accuracy. That is. 

M$E(8) = ^ 9 —9 F^9 j- f £ " ^9^ -9 . High values of MSE(Q) are not desirable 

since they imply either big variance or big bias (or both). 

Confidence intervals for the estimator of the parameters, 9 ± 2&E'(9 ) , can also be used for 

evaluating the imputation procedure. They should be as narrow as possible, and include the 

true value of 9 the specified proportion (e.g. 95%) of tries. 

In this thesis, different ways of assessing the imputation procedures are used. One of them is 

the assessment of the properties of the different method used, including biases and 

variances. Additionally, the use of graphical methods and statistical tests for comparing 

distributions are also used in order to verify the validity of the results. 

1.7 SOME IMPUTATION EXPERIENCES WITH CENSUS DATA 

The main focus of this thesis is the use of imputation for missing information in population 

census data. Different approaches to imputation have been used by different organisations in 

charge of the census programs. Most offices for statistics use similar methods for imputing 

demographic categorical data, which is basically the kind of data obtained from a population 

census. For example, most offices use decision tables, look-up tables or hot-deck methods 

such as sequential hot deck, fixed-cell or nearest neighbour methods. In many cases, the use 

of these methods arises from a lack of financial or technical resources. Additionally, 

simplicity and time-saving are attributes highly important for governmental offices when 
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treating census data given the amount of information involved and the urgency of the 

results. 

It can also be said that the solution to the missing information problem is reduced, in some 

countries, to the use of editing and coding systems rather than imputation systems. 

Editing is defined by Granquist (1997) as the procedure for identifying, by means of edit 

rules, and for adjusting, manually or automatically, errors resulting from data collection or 

data processing. 

Granquist (1997) specifies in his article that there are three roles editing has, v/hich are 

mentioned here in priority order: 

" Identify and collect data on problem areas, and error causes in data collection and 

processing, producing the basics for the future improvement of the survey vehicle 

• Provide information about the quality of the data 

• Identify and handle concrete important errors and outliers in individual data 

Hov/ever, many countries use editing as a tool for cleaning up the data in order to have valid 

information. Some countries integrate the editing process v/ith the data entry procedure such 

that the data is clean i.e. it passes all the edits, after the data entry routine is done. 

It is important to mention that the editing process could be seen as imputation v^hen codes 

are changed due to inconsistencies. However, the term imputation in this work refers to the 

use of any of the procedures known in the literature as imputation method. 

Fellegi and Holt (1976) refer to the relationship between editing and imputation and the 

importance of the creation of an edit and imputation system which allows for the following: 

= The data should be so that satisfy the edit rules by changing as fewer items as possible. 

That is, maintaining as much original information as possible. 

• Imputation rules should be derived automatically from the edit rules in order to ensure 

the validity of the imputed records. That is, imputed records will continue to pass edit 

rules. 

" The imputed data should be such that the individual marginal and joint distributions are 

maintained as far as possible. 

Fellegi and Holt refer in this paper to topics like the application of logical edits to a record, 

derivation of a complete set of logical edits, derivation of a complete set of arithmetic edits, 

identification of the minimal set of fields for imputation and some procedures for 

imputation. 

Therefore, we can see the close relationship between editing and imputation, however, this 

thesis is concern with the imputation aspect rather than the editing aspect of the census 

data. 
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Some examples of systems for Imputation with census data developed by statistical offices in 

the recent years are NIM, EDIS and SCIA. 

NIM (New Imputation Methodology) is a system developed by Statistic Canada used for 

population census data (Bankier, 1999; Poirier,1999; Bankier, Lachance & Poirier, 1999; Hill, 

1976; Bankier, Houle, Luc & Newcombe, 1998). This system is essentially based on the 

nearest neighbour methodology, selecting the donor randomly from the pool of possible 

donors based on the minimum distance. The "feasible" donors are those that allow the 

recipient to pass the edits. This also introduces the Fellegi and Holt idea of minimum change, 

which comprises the use of as much of the information present in the data as possible (i.e. to 

change as few items as possible in a record) as explained before in this section. This system 

was used in the Canadian Census in 1996 and it has been reviewed during recent years 

achieving some improvements. 

DIS (Donor Imputation System) is a system developed by the Office for National Statistics in 

the U.K (Anderson, F. and Whitfield K. 2000; Vickers, 1999; Vickers and Mohammed, 1998; 

Richards, 1999). This system includes the editing and imputation processes of the census and 

it is also based in the nearest neighbour methodology introducing the Fellegi and Holt idea of 

minimum change. That is, given certain set of matching variables chosen a priori, the 

methodology look for the closest donor to impute the missing item. The difference between 

this methodology and the NIM system is the use of a set of matching variables, defined from 

the start, which are employed to calculate the distance between the recipient and the 

donor. Additionally, different measure distances are used to find the closest possible donor. 

This methodology has been developed during the last few years and it is planned to be used 

for the 2001 Census in the U.K. 

SCIA (Automatic Control and Imputation System) is a software developed by the Population 

and Housing Census and Territory Statistics Service (ISTAT) in Italy (Valente and Massimini, 

199?). This methodology involves a mixture of deterministic and probabilistic corrections of 

persons and housing units records and it also uses the Fellegi and Holt proposal. This 

methodology was used in the 1991 Italian census, however, new explorations have been 

carried out in order to create a new system based on the NIM system, and it is also planned 

to be used in the 2001 Census. 

Additionally, the Methodological Department of the Instituto Brasileiro de Geografia e 

Estadistica in Brasil has implemented a new approach based on regressions trees for imputing 

income in the population census carried out in the year 2000 (Silva 2001, personal 

communication). 

This approach uses the features provided by the software package SPLUS, for creating the 

regression trees mentioned, which are essentially binary segmentations based on the 
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complete information as will be explained in successive chapters. After the final partition is 

created, a random hot deck imputation method is applied independently within each group 

(terminal nodes of the tree) in order to obtain the final results. 

Of special interest is the new development made by National Statistical Office in Korea. The 

National Statistical Office in Korea is studying the possibility of using CART for creating 

imputation cells together with a nearest neighbour procedure for imputing missing items with 

relatively high nonresponse rates in the census (Ryu, J.B. et al 2001). 

The main idea of implementing this procedure is to avoid following (2"^ and 3"̂ )̂ call-backs 

after the census in order to get an answer, and instead, to replace the missing values after 

the 1 '̂ call-back by imputed values. 

This procedure has been tested using a pilot survey data for census 2000 for imputing two 

variables for which nonresponse is higher (2.9% and 2,6%), comparing the results of the 2"'' 

and 3''̂  call-backs with the imputed values. Analyses show that imputation is strongly 

recommended after the 1 '̂ call-back. Unfortunately, no more information about this study 

was found available. 

Not many offices have published their work done in this area, however the tendency to use 

donor imputation combined with the minimum change principal proposed by Fellegi and Holt 

seems to be a common factor in their projects. The preservation of joint distributions is 

becoming another important factor when doing imputation, which is basically another output 

of the Fellegi and Holt proposal. 

There are many other systems developed by different organisations to improve edit and 

imputation procedures; however, these are not used for population census data due to their 

specifications, that is, they were created to solve the missing data problem in specific 

surveys. Examples of these are: GEIS (Generalised Edit and Imputation System) developed by 

Statistic Canada; SPEER (Structured Program for Economic Editing and Referrals) developed 

by U.S. Bureau of the Census; StEPS (Standard Economic Processing System) developed by 

U.S. Bureau of the Census; Plain Vanilla (General-Purpose Edit and Imputation System for 

Economic Censuses) developed by U.S. Bureau of the Census; AGGIES (Agriculture 

Generalised Imputation and Edit System) developed by U.S. Department of Agriculture 

(Todaro, 1999); Macro View (Graphical Macro Editing System) developed by Statistics 

Netherlands; CANEDIT developed by Statistic Canada (Bankier, Filliion, Luc 8t Nadeu, 1994) 

and DISCRETE developed by U.S. Bureau of the Census. 
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1.8 LIMITATIONS OF CURRENT METHODS 

In general, different imputation methods, some of them used for imputing missing values in 

census, have different disadvantages. For example, Look up Tables can affect the 

distribution of the response, the suitability of the methods may be marginal and the use of 

external data can adversely affect relationship betv^een variables; Mean (or Mode) 

imputation can distortion relationship between variables and i t can modify original 

distributions and contribute to lowering error estimation; Regression imputation can 

distortion relationships between variables if they are not included in the model, compresses 

distributions and lead to problems in estimating valid errors. However, even when these 

methods can be used for imputing missing information in census data, they are not the most 

common methods employed in this task. 

As mentioned before, the most common method used for imputing census data is a hot deck 

method, which is normally used in the way of sequential hot deck (Little and Rubin, 1987; 

Kalton, 1983; Kalton and Kalsbeek, 1992; Madow, et al 1983). This method has the advantage 

of being very simple and easy to implement, making efficient use of the computing resources 

as each data file is read only once. Furthermore, when the data is ordered in a way that 

creates autocorrelation, an additional degree of matching is Introduced. However, this 

method also has some drawbacks that make it a rather Inefficient method. One of the 

problems with the sequential hot deck is the use of very few variables for the classification. 

This fact does not allow for a very good degree of matching between records, risking the 

maintenance of relationships between variables. Another important drawback is the possible 

multiple use of donors, which can contribute to a lowering of the precision of estimates and 

underestimation of the variances in surveys (census). 

Probably one of the most important drawbacks of using hot deck is the aspect related to the 

preservation of joint distributions. The hot deck method does not necessarily aim for the 

preservation of joint distributions since the imputation is not made jointly for all the missing 

values in a record, and even more, the values for filling in the gaps in a specific recipient do 

not come necessarily from the same donor. This can constitute a very important issue when 

analysing the data. Sometimes it is not enough to preserve individual marginal distributions, 

depending on the kind of analysis required. 

In fact, one of the most important uses of census data is for examining relationships between 

variables, for example, how many females for a specific age group who work In a specific 

area, which makes the maintenance of the joint distributions a very important aspect to take 

into account when using Imputation procedures. 

The other Imputation method widely used is the Nearest Neighbour. It can be seen from the 

new imputation development mentioned in the last section that nearest neighbour seems to 

be a common factor in their projects. This imputation method has some advantages and 
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drawbacks (Lessler and Kalsbeek, 1992; Chen and Shao, 2001; Little and Rubin, 1987). This 

method identifies the donor that best matches the nonrespondent given a distant function 

based on a set of auxiliary variables. That makes this method more efficient than other hot 

deck methods that do not use auxiliary information. It also has the advantage that the data 

used for imputation is chosen from the same database. However, Nearest Neighbour 

imputation has also some drawbacks as it does requires considerable computing power since 

for each recipient the method looks for the closest donor within the dataset. This represents 

one of the most important drawbacks when imputing census data. It also requires a logical 

(suitable) choice for measuring "nearness". 

1.9 AIMS AND OUTLINE OF THE THESIS 

The deficiencies of the current methods described in the previous section, added to the 

importance of the census data for the statistics in a country, are the main reasons why 

research about improved methodology for imputing this kind of data has been undertaken 

here. 

The idea is to investigate an alternative method, which uses a different approach to the 

current available methods, being also simple and efficient. 

The method to be investigated in this research involves the use of classification as a first 

step, followed by imputation within each imputation class. The main idea is to use a 

classification techniques called CART, which is basically a classification tree technique based 

on binary segmentation as will be explained in detail in Chapter 2, in order to form the 

imputation classes. After the imputation classes are created, common methods for imputing 

categorical data are used within each terminal node of the tree. The results of the tree as a 

whole are compared in order to assess the use of this classification technique in imputation, 

as well as to compare the different imputation methods used. 

The analysis will be carried out for two different targets: the univariate case where a single 

variable will be imputed, and the multivariate case where two or more single variables will 

be imputed at the same time by the use of a composite variable. A composite variable is 

defined by the cross-classification of two or more single variables. 

A potential advantage of the proposed approach is the fact that i t does not imply the use of 

complicated procedures or sophisticated technical resources. An aim of the new method is 

that it should be easy to implement and not require a large amount of time. Moreover, it 

should not involve high costs. 
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The use of as many variables as possible (as many as are involved in the relationship) in the 

classification step is another important aspect of this proposal. The aim is to make the 

selection of the donor easier and faster. 

One of the main aims of the proposed approach is the maintenance of joint distributions, 

v/hich means upholding correlations between variables when working on the multivariate 

missing case. The method tries to obtain all the imputations needed for a specific record 

from the same donor. 

Another important aim is for the method proposed to allow for the use of missing covariates 

in the classification process or even in the imputation process. This is not normally the case. 

That is, the aim is for the records containing missing information for the variables to be 

included in the process of growing the tree or to be used as auxiliary information for the 

imputation. 

As this thesis investigates an alternative method for solving the item nonresponse problem in 

census data, the classification is followed by an imputation procedure. Hence, three 

different basic imputation methods for categorical data are implemented in this thesis in 

order to compare the results given the classification. The selection of the methods includes 

Probability Distribution imputation. Highest Probability (Modal) imputation as well as the use 

of Nearest Neighbour procedure as it seems to be a common factor in most of the new 

methodologies created for census data, as mentioned in Section 1.7. 

This thesis is divided into two main parts, comprising four chapters. Before these two main 

parts are presented, a description of the tree-based technique with emphasis in CART is 

given in Chapter 2. 

The first main part of the thesis is the development of the use of classification trees in the 

univariate case (when there is only one variable subject to nonresponse). This univariate 

case consist of two chapters. Chapter 3 where all the theoretical background and theoretical 

considerations are explained, and Chapter 4 which includes the simulation procedures 

employed and the results obtained for this univariate case. 

The second main issue studied in this work is the multivariate case (where more than one 

variable can be missing at the same time). This case is also divided into two chapters. 

Chapter 5 where issues related to the theoretical aspect of the multivariate case are 

approached, including a description of the different ways in which CART can be used for 

imputation in the multivariate missing data, and Chapter 6 which describes the simulation 

procedure undertaken and the results obtained for this case. 

A final chapter, Chapter 7, summarises the results and some further work suggested is 

presented. 

19 



CHAPTER 2 

i r / aE lE- j&A jSEY) ( jL/LSS/f-AC/ lT-ACWV 

2.1 INTRODUCTION 

The basic principle guiding this thesis is the introduction of a classification method during 

the imputation process. The procedure to be followed involves classification and imputation, 

with imputation as the last step within the groups formed by the classification. 

Different alternatives that make use of auxiliary information such as Logistic Regression, 

Linear/Loglinear Regression or Hot Deck within imputation classes can also be employed to 

impute missing values. In some way, those methods also involve classification as the 

imputation process control for auxiliary information. However, we refer to classification in 

this thesis as the use of an auxiliary technique to form imputation classes. Therefore, the 

approach presented in this thesis consists of two steps, i.e. firstly creating the imputation 

cells by using a specific classification technique and secondly imputing missing values within 

those cells using a specific imputation technique. 

There are a huge number of methods for classifying elements Hand (1997). Some of them 

require the estimation of certain parameters (parametric procedures) whilst others do not 

require those estimations (non-parametric procedures). Some methods require more 

sophisticated and complex procedures than others. In any case, classification procedures 

structure the population in a certain way that is useful for researchers in solving specific 

problems. This structure is constituted by a set of rules based on the values of the variables 

used for the classification. These variables are measured on a set of units generally called 

"the learning sample". 

The set of rules structuring the population (learning sample) plays two different roles (Hand 

1997): one of which is to formulate the class structure, unsupervised classification, and the 
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other operates as a strategy for classifying new elements into those groups already 

determined, supervised classification. 

Given that this thesis deals with the missing information problem, the aim of this research is 

not only the generation of the classification groups (by the use of the learning sample), 

which in our problem will be the imputation classes, but also the generation of that set of 

rules that allows for the classification of units which are not part of the learning sample, 

which in our case are the records subject to missing information and they are not included in 

the generation of the original classification. 

It has always been assumed that the more homogeneous the population is the better the 

results of the imputation due to the donor selected. That is, if one can find a procedure that 

classifies the population in very homogenous sub-groups, the imputation performance should 

improve in terms of accuracy. 

However, the selection of the classification method used is not only based on the accuracy of 

the classification made. It is also important to say that the use of a procedure that allows the 

researcher to do the classification without the utilisation of very sophisticated and complex 

techniques is really convenient when too much information and a very limited time scale for 

carrying out the task are requested. 

Tree-based models have been used over the last several years as an important and useful 

approach for classifying elements (Gordon, A.D., 1987; Loh, W.Y. and Vanichsetakul, 1988; 

De Waal, T. 2000; Ryu, J.-B., Kim, Y.-W., Park, J.-W. & Lee, J.-W. 2001). The use of tree-

based models release researchers from problems like using complex procedures for 

parameter estimations or searching for prior information. The power of this methodology in 

working with large databases and creating accurate and quick classifications as well as some 

practical factors such as ease of use, recent improvements and computational developments 

constitute some of the influential factors on the decision for using tree-based models in this 

analysis. 

A tree-based model is a set of classification rules that partitions a data set into mutually 

exhaustive and non-overlapping subsets (Breiman, L., et al 1984). The rules are defined in 

terms of the values of a group of explanatory variables. The model is constructed by 

progressively splitting the data set into smaller subsets that are increasingly more 

homogeneous with respect to a response variable. This splitting process continues until a 

stopping criterion is met. Then, the tree-based model is represented by a hierarchical set of 

splits that eventually lead to the final subsets or "terminal nodes" of the tree. 

The Automatic Interaction Detection (AID) program of Sonquist, Baker and Morgan (1971) is 

one of the first methods for fitting a tree-based model to data. This is based on a recursive 
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binary algorithm, which successively splits the original data set into tv/o smaller subsets. As 

mentioned above, these subsets are meant to be more homogeneous subsets than the 

original one. The partition is made by a succession of sequential binary splits. 

A similar recursive binary segmentation algorithm constitutes the bases of the CART 

(Classification and Regression Tree) program developed by Breiman et al (1984). These ideas 

have also been implemented in the regression and classification tree analysis modules in S-

Plus (Martin and Minardi, 1995). An alternative, non-binary, recursive splitting algorithm 

underpins the CHAID program (Kass, 1980). 

The literature usually refers to tv/o types of tree-based models: Classification Tree models 

and Regression Tree models. The basic difference betv/een the tv/o models is the scale of 

measurement of the response variable, in a classification tree model the response variable is 

assumed to be categorical. In this case, an appropriate measure of homogeneity for 

categorical data is used in order to determine the splits. In the case of a regression tree, 

since the response variable is assumed to be continuous, appropriate measures of 

homogeneity relevant to continuous variables are used to determine the splits in the tree, 

in both cases, the explanatory variables can be either categorical or continuos variables. 

2 . 2 CART: THE METHODOLOGY 

Classification and Regression Trees (CART) is a segmentation algorithm developed by Breiman 

et al in the 1980's. This algorithm is known as a binary recursive partition that represents its 

results in the form of decision trees. It is binary because parent nodes are always split into 

two subsets (children), and it is recursive because each child could also be treated as a 

parent and therefore it could also be split. The tree starts with a root node, which is the 

complete data set of units (universe in our case). This universe is split into two subsets (child 

nodes) using yes/no questions. Some of the nodes are terminal, which means they are not 

split any more, while others are not terminal being split until a terminal node is reached. 

The main idea behind this classification method is to find decision points for partitioning the 

universe into mutually exhaustive non-overlapping subsets, given a target or dependent 

variable (variable for which the classification is done) and given a set of explanatory or 

independent variables (variables in which the classification is based). These decision points 

simply represent a set of rules defined in terms of the values of a group of explanatory 

variables (independent variables), with the model constructed by successively splitting the 

universe into subsets that are increasingly more homogeneous with respect to a response 

variable of interest. This splitting process continues until a stopping criterion is met. The 
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tree model is then represented by the hierarchy of splits that eventually lead to the final 

subsets (terminal nodes) of the tree. 

As previously mentioned, the decision points are such the classification is as homogeneous as 

possible v/ithin the terminal nodes created. This means that some categories of the target 

variable go to one child node and the rest go to the other child node, depending on the 

values of the independent variable used in order to form groups in v/hich most of the 

elements come from the same category of the target variable. However, these similarities 

are not only related to the target variable, but also to the independent variables used in the 

analysis since the classification is based on their values. 

In a classification tree model the response variable is assumed to be categorical, and 

measures of homogeneity appropriate to categorical data are used to determine the splits in 

the tree. The independent variables can be either categorical or numerical. 

Figure 4.5.3.1 shows an example of a tree that classifies a sample of census records using a 

variable Primary Activity Last Week as the response and the variables Age, Ethnic Origin and 

Limiting Long-Term Illness as explanators. 

2.3 THEORETICAL FORMULATION 

In a more formal way, CART involves specifying the conditional distribution of a dependent 

variable given a measurement vector x. of independent variables. The binary tree gives a 

partition of the predictor space in different subgroups for which the distribution of the 

independent variable is more homogeneous. Each terminal node of the tree corresponds to a 

region of this partition, and these are determined by splitting rules. At the end, each 

element of the population is assigned to only one terminal node generating the conditional 

distribution of the dependent variable at each node. 

There are three key elements in CART analysis: 

/ splitting each node in a tree 

/ deciding when a tree is complete 

/ assigning each terminal node to a class outcome (or predicted value for regression) 

Each of these elements involves different rules that can be followed in order to obtain the 

final and optimal tree and they will be explained later. 
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2.3.1. Definitions 

There are some important notation and definitions to be reviewed before starting on a 

description of CART features. 

^ Response (Dependent variable) is the variable for which the analysis is being made 

(variable subject to nonresponse), that is, the variable for which the tree is grown. 

Auxiliary variables {Independent variables) are the set of variable used to grow the 

tree, that is, those variables used as splits. 

^ A measurement vector x,. = a vector containing a number of 

measurements of variables made on a unit i . The collection of all possible measurement 

vectors in the population U defines the measurement space % . 

^ C = {l,...., j } is the set of classes of the response variable in which each unit may fall 

into. 

^ A classifier is a function of defined on % which gives a value between 

1, ,J to every measurement vector x-. 

^ A J is the subset of % for which d (x,.) = j . So, % = uAj . Then, a classifier can be 

defined as a partition of % into J disjoint subsets , Aj for which every element 

X. e A. has j as the predicted class. These disjoint subsets are denominated nodes. 

These nodes can be terminal (if they are not split anymore) or non-terminal (if they are 

further split by the process). 

^ A Learning Sample is defined by Z = | ( x , , 7 , ) , where x,. is a 

measurement vector with x,. e % e , and j. is the true class for 

ith unit. M is a subset of the population. In some cases, M can be equal to N 

(population size). 

^ The test sample is a subsample of the learning sample used for estimating the 

misclassification rate via test sample estimation or cross-validation estimation (see 

Section 2.3.6.). Frequently, this subsample is taken as a 1/3 of the cases. In a 10-fold 
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cross-validation, the total of cases are divided in 10 parts, using a different 1/10 each 

time as a test sample to estimate the misclassification rate. 

^ C(7i I 72) is the cost of misclassifying a class element as a class | 

satisfies: 

(a) 

(t>) C(7, 172) ~ 0' j\ ~ ii • 

v' A split 5 is defined by a question of the form Is e ^ A cz % that sends unit i to the 

left or right child node depending on the ansv/er of the question. 

^ 71 (7) Is the set of prior probabilities, that is, the prior probabilities that y^ = j , 

j = . These probabilities are either estimated by j / m | or pre-specified (i.e. 

a particular prior distribution for the dependent variable can be specified), with M j as 

the number of units in class j in the learning sample. Thus, for a given set of prior 

71(7')) /)(7, ̂ ) = ( 7 ) M (f) / M y is taken as the resubstitution estimate for the 

probability that a unit will both be in class 7 and fall into node t , where M j is 

the proportion of class 7 cases in L falling into t. 

/ p{t) is the resubstitution estimate of the probability that any case falls into node t, 

and is defined by p{t) = ^^p{j,t), with p{j,t) defined as before. Then, the 
j 

resubstitution estimate of the probability that a case is in class 7 given that it falls into 

node t is given by p{j 11) = p{j,t)/p{t) and satisfies ^ .77(7 | 0 = 1 • 

•/ If {71(7')} = |m^ . / iV f j , then p{j ,t) = M j{t)! M {t), thus are the relative 

proportions of class 7 cases in node t . 

/ r is the set of terminal nodes 

is the tree complexity (number of terminal nodes) 
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^ Cost complexity measure is defined by R^{t)= R{T) + aT , where R{T) is the 

misclassification rate (see Section 2.3.6) and a is the complexity parameter, a > 0 . 

This cost complexity is then a combination between the misclassification cost of the tree 

plus a cost penalty for complexity. 

The impurity function is a function 0 defined on (/?,, with p j the proportion 

of units in class j, 7 = 1, ,J , and satisfying 

(a) P j > 0 and 

(b) 

and i t has the following properties: 

(i) O is a maximum only at the point 
1 1 

U j j ) 

(ii) 0 achieves its minimum only at the points (1 ,0 , . . . ,0 ) , (0 ,1 , . . . ,0 ) , (0 ,0 , 

(iii) O is a symmetric function of p ^ , . . . p . . 

2.3.2. Splitting Rules 

As mentioned before, CART is known as a binary recursive partitioning. It means that each 

node is split into two child nodes based on a splitting criterion. 

A set S of splits s is generated by a set Q of binary questions in which every value of x. in 

a node t for which the answer "yes" goes to the descendant left node and every value of 

X. answering "no" goes to the descendant right node . In general, if the question is {Is 

X; e A?} , then =t nA and = t n A". 

Two different criteria can be found for splitting, Gini criterion and Twoing criterion. 

• Gini criterion 

This splitting criterion is based on a node impurity measure. The idea is to find the split that 

reduce the tree impurity defined by I{t) = with / ( f ) = 5 ( t ) p ( t ) , where; 
tef 
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6 ( f ) is a node impurity function defined as 0 ( p ( l | f), ,p{j\t)) (relative 

proportion of class j units in node t), 

- 10 is defined by | f) = ^)/ , 

and pit) is the probability that any case falls into node t where pit) = ^^.p{j,t) 

Another way for defining the impurity function is minimising / ( r ) , which is the same as 

maximising lSlis,t) = lit)-litj^-litg) where M{s,t) represents the decrease in 

impurity. In other words, to maximise A5 (5,?) = 6 i t ) - p j p , where is 

the proportion of units which go from t to and the proportion of units which go from 

^ to . Hence, the best split will be that such as reduce more the misclassification rate 

R(t). 

If 5 ( f ) is defined as rit) where rit) is the misclassification rate for the node t, thus, 

reducing / ( j ) could be seen as a reducing the misclassification rate R i r ) , where 

r{t) = min c{i \ j)pij \ t). Therefore, the best split would be that for which 
' J 

r i f ) - P i ^ r i f j ^ - P j ^ r i f i ^ ) is maximum. This is equivalent to say that is 

maximum. 

There are different criteria for generating the impurity function 5 (?). These are: 

Gfn; Impurity Function 

This impurity function has the form 6 (?) = l-SQ in which SQ is the sum of squares of the 

estimated class probabilities p{j 11). That is, 5 (?) = (7 | ?). 
J 

Given the form of the impurity function, i t can be noticed that this function takes values in 

the interval [0 , l ) . The function reaches the minimum (zero) when the node consists only of 

a single class, in which case, the node is considered perfectly pure. The function takes the 

maximum 1 
J 

when the node contains equal number of cases for each class. 

In this case, it is assumed that all the costs for misclassifying class 7, as a class are equal 

to 1 for all 7, ^ 72. 

Sometimes, the problem requires defining different misclassification costs for different types 

of misclassification since some of these actions imply more risk than others. 
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If an unknown element is assigned to a class j with estimated probability p { j \ t ) , the 

expected cost is ^ C(_/i |^2)^(71 I ^ ^ ( ^ 2 10 where C(y, | is the misclassification 

cost. This is the expression used as a Gini node impurity for variable misclassification costs, 

which is an extension of the original one. 

Symmetric Gini Impurity Function 

The use of this index assumes symmetry of the misclassification cost matrix. The criterion 

used is exactly the same used in Gini with the variable cost term. Consequently, the impurity 

function is ^ C(y, | ) p ( j i I (^2 I above, where C(y, | is a variable 
J2 Jl 

misclassification cost but coming from a symmetric matrix. 

• Twoinq Criterion 

The second criterion uses a different strategy. This criterion is based on class separation 

instead of node homogeneity. 

Twoinq 

The basic idea in this method is maximise the difference between the probability that a class 

J element goes to the left from the probability that the same element goes to the right 

node. 

This criterion defines the towing criterion function as follows: 

r -|2 

- J 
Cl(s,t) = -

4 

where, in a two-class criterion for a given split s and a class 

Q (5) = { j : p(j\t^)> )} that maximises A5 max A6 (5', Cj) = Q (5, ?) . 

Then, the best towing split s*(C*) is given by the split s* which maximises with 

C* as C* = jy: p(J I / ) > p(J 11*̂  )|. t* and / are given by the split 5*. 

This criterion does not work on the overall impurity measurement of the node maximising 

A5 {s,t) . So, it is not possible to obtain a tree impurity measurement I{t). 
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Ordered Twoin^ 

Sometimes the categorical variables used are ordered, and it may be desirable to take this 

characteristic into account. In this case, the twoing criterion can be used but with an 

additional condition. 

The ordered twoing criterion considers a new partition {C,, Q } of the class C = 

using the following restriction: C, = } , Q = {7, +1, , / } . It means that there will 

be a cut-point for which all the classes below this point go to one node and the rest go to the 

other node. For example, a split can separate classes 1 and 2 from the classes 3 and 4, but 

cannot separate classes 1 and 3 from the classes 2 and 4. 

Therefore, the criterion is given by Q(5',^) = maxA5 as for twoing but using the 

restriction mentioned. 

2.3.3. Class Probability Trees 

This method is used when it is important to estimate the probability that a unit goes to a 

specific class instead of assigning a class to this element. The probability results are obtained 

from the within-node distributions of the terminal nodes for the response variable. The tree 

is always grown using the Gini splitting rule and it is not possible to specify misclassification 

costs because this tree is not for classifying elements. 

The main goal is to estimate the probability distribution of the target variable. It allows 

specifying prior probabilities. In other words, the basic idea is to estimate 

P{j\Xi) = P[yj = j\Xi =Xi'), j = , where x. is a measurement vector. This 

means, to estimate the probability that a case is in class j given an observed vector ' of 

measurements. 

2.3.4. Class Assisnment Rule 

The main objective of the tree is to classify all of the units. This implies the assignment of a 

class (category) to every unit. This assignment depends on the distribution of the categories 

of the response variable within each terminal node. Then, once all the elements are 

allocated to a terminal node, they are assigned a class depending on the node they end up 

in. Since a single class is allocated to all of the units of each terminal node, these units are 

treated as they really are from the class assigned. When a tree is finally created, the class 

assigned to a node identifies all the elements in that particular terminal node. 

Thus, each terminal node t eT has an assigned class j e {l, , j ] that is denoted by j{t). 
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There are two different ways for assigning a class to the units: 

^ If the prior probabilities are = \ ^ M , then class assignment is basically the 

plurality rule for assigning the class. This means t is classified as that class for which 

MJ {t) is largest. 

^ For any other set of priors, ^ p{j 11) is the resubstitution estimate of the probability 

of misclassification given that a case falls into node t. The class assignment rule j{t) is 

that rule that minimises this estimate. That is, if p { j 11) = max p{i 11) then j{t) = j . 

2.3.5. Surrogates 

One of the important issues related to surrogates is the fact that they allow for the 

classifying of elements with missing information in the auxiliary variables. This makes 

possible the use of the whole data set even when missing values are present in the auxiliary 

variables. 

The importance of the surrogate and their uses in the imputation process are explained later 

in this work. 

A surrogate is defined as the alternative split which divides the same set of units in the most 

similar way to the best split. This similarity is not only related to the number of units in each 

child node and their internal distributions, but i t is also related to which units go to each 

child node. Surrogates closely mimic the action of the primary split. 

In a more formal way, let us take the best split s* at node t , which divides a set of 

elements of a node into two different child nodes and . Let us also take any variable 

% with a set of splits and set of complementary splits . Then, for any split 

5̂  that divides node t into ' and we have M j ( L L ) as the number of 

units in t sent to left by both s* and s^.. That is, number of units sent to \ Similarly 

we have M j ( R R ) as the number of units in t sent to right by both 5* and 5^. That is, 

number of units sent to n ' . 
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The estimated probability that a case falls into is defined by 

P(^L 5 ] ^ (7) ^ ^ — - . Additionally, the estimated probability that both 5* and 
; M • 

sent a case into t to the left, Pi^{s ,Sj^) is defined by Pi,^{s . These 

probabilities are defined in a similar way for the right node. Additionally, 

Thus, a split s^. is defined as surrogate split on if = maxp(s*,si^) 

over 5"̂  u . This surrogate split can be interpreted as the split on that predicts in the 

most accurate way the action of s*. 

Another important aspect related to the use of surrogates is to give a ranking of the auxiliary 

variables according to their importance in classifying the units. Sometimes, these variables 

offer trees as accurate as the trees constructed with the original splits. 

A measure of the importance of variable is given by = ^ A 7 ( 5 ^ , , f ) , where 
(er 

M i s the decrease in impurity mentioned in the splitting rules. The quantity used for 

ranking the importance of the variables is a relative magnitude based on the last equation 

defined by 100 * 6 (x.^ )ymax 6 ) , giving a value 100 to the most important variable, and 

a value between 0 and 100 to the rest. 

2.3.6. Estimation of the Misclassification Rate 

The misclassification rate is a measure of how accurate the classification is. Given a class 

structure, the misclassification rate determines the percentage of units misclassified once a 

class is assigned to each terminal node. These rates could be used for determining, in a way, 

the predictive power of the tree. 

Thus, given a classifier d(xi^), its "true misclassification rate" can be denoted by R*(d), 

which is defined as the proportion of cases misclassified by d(x i^) . There are three different 

ways for estimating the misclassification rate in this method. 

31 



First, i t is necessary to define a function x O ' which is 1 if the condition inside the 

parentheses is true and 0 otherwise. The ways for calculating the misclassification rate are 

based on this function. 

^ Method 1: The first way for estimating the misclassification rate, R{d), is called the 

2 M 
resubstitution estimate and is defined by R{^d) = — j ] ) • This method 

M I 

uses the data used to construct the classifier, that is, the learning sample L . 

^ Method 2: The second way is called test sample estimation, R"{d). In this case, L is 

divided into two groups, Xj with M , elements and L j with elements, 

L = L^yj L^. Zj (learning sample) is used for constructing the classifiers, and (test 

sample) is used for estimating R''{d), which is defined by 

= — ^ ^ % [ d { x l ) ^ 7 ; ) . Z, and should be considered independent and 

coming from the same distribution. is generally 1 /3 of L ' s size. 

^ Method 3: The third way for estimating the misclassification rate is called cross-

validation and it is denoted by R"". In this option, the learning sample L is divided in 

V subsets of equal size (approximately) denoted by i , , ,L^. The classifiers 

{xf), v = \,.....,M, are constructed with all the elements present in L but not in 

L^, {L-L^ ). An estimation of R" is given by = ^ — ^ (%.) 

where M ^ = M l V and none of the elements in Ly are used in the construction of 

d^"^. Then, the final estimation of misclassification rates via cross-validation is 

1 K , 
= — A l l of the F classifiers are constructed using M ( 1 - 1 / F) . In 

V y_ l 

this case, every element is used to construct d and is also used once in the test sample. 

The importance of misclassification rates is related to their uses in the generation and 

pruning processes and other issues about predictive power of the tree. 
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2.3.7. Pruning Trees 

Since CART does not use any procedure to stop growing a tree, a procedure for pruning it is 

used to obtain the optimal tree. That is, after the maximal tree is grown, the pruning 

process starts cutting branches based on misclassification rates and a penalty for complex 

trees. 

The purpose in the pruning process is to find the tree from the sequence that minimises 

(T) , where (T) = R(T) + a T In this equation is the complexity of the tree 

(with T as the number of terminal nodes), and a is the complexity parameter. Thus, the 

last term of the equation can be seen as a cost penalty for complexity, assuming that a is 

the penalty imposed per additional terminal node. 

Then, the process finds the tree that minimises {T) for a specified value of a . 

The values of a can be either specified by the analyst or automatically obtained by an 

iterative process carried out by the Software, in which a function of the misclassification 

rate is minimised (See Breiman, L., et al 1984 for details). 

2.3.8. Some Properties 

Some of the important attributes that can be mentioned about CART technique are: 

• CART does not require the user to make a prior selection of the auxiliary variables. They 

wil l be selected from the complete list of variables depending on their power in 

classifying the units in the population treated. 

• Each auxiliary variable can be used in different parts of the tree to detect important 

interactions between their different combinations. That is, one variable can be used 

more than once during the growing process. 

" CART is invariant with respect to transformations of the auxiliary variables. The use of 

any transformation will result in the same conclusion. 

" Linear combinations of non-categorical auxiliary variables can be used. Also, continuous 

auxiliary variables can be converted to categorical ones and categorical variables can be 

collapsed. 

" The selection of the variables made by CART can be used for further analyses with linear 

or logistic regression models, managing a smaller list of variables and prior information 

about these variables. 
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It is nonparametric procedure, which means that does not require any prior specification 

of the model relating y. and . 

Missing values for the predictors can be handled by using surrogate splits. 

Surrogates are alternative splits generated when the primary splitting variable is 

missing. This option permits working with more cases. 

By the use of surrogates, low-cost predictors can be selected. Satisfactory surrogates 

can generate similar predictions to the original variables. Surrogates can be also useful 

when the values of some variables are difficult to obtain. 

2.4 CART: THE SOFTWARE 

CART software was created based on the technique proposed by Breiman, Friedman, Olshen 

and Stone (1984). This software is a computational version of the original CART methodology, 

which allows for the rapid growth of trees following all the theoretical processes. It was 

created in order to simplify the practice of the generation of tree-based models. 

There are different versions of this software. The first version was created in 1990. The 

current version (1999 version, used in this work) introduces new aspects that were not 

included in previous versions facilitating the use of the original concepts of the technique. In 

addition, the capacities of data handling have Increased from the original version. 

This software contains many different options in the growing-tree process; however, not 

many of them need to be specified during the process since they are specified as default. A 

brief explanation of some of the most Important options follows hereafter; 

• The first aspect to be decided is whether a classification or regression tree will be 

grown. In our application we are only concerned with categorical response variables and 

so, a classification tree Is grown. For growing a classification tree, the labels of the 

target variable have to be specified. 

• The independent variables have to be also defined as categorical or continuous. In the 

first case, the labels of the categories do not need to be specified but they have to be 

continuous numbers. 

" There are different splitting criteria for growing the tree as explained before. The 

default method used by CART is the Gini index. However, this could be changed to any 
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of the others above mentioned. The selection of the splitting criterion depends on the 

kind of variables used for the analysis, both response and auxiliary variables. Depending 

on the methods used for splitting, the auxiliary variables v^ill be treated as a 

categorical, ordinal or continuous. 

When continuous variables are used as auxiliary variables, it is possible to use 

combination of them as splits. In this case, one must specify to the software that a 

combination of variables is wanted, then, the software decides which linear 

combinations, if any, are the best splits. 

As explained before, there are also different ways for testing the tree. CART uses Cross-

Validation as default considering 10 groups (10-fold cross-validation). It could be 

changed to any of the other options mentioned in previous sections. 

If any of the variables has any value that should not be included in the analysis for any 

reason, CART allows the exclusion of specific values from the database used. It is 

possible to select a subset of values for any of the variables used in the analysis. 

The minimum number of units in each parent node and each terminal node can be 

specified using an option included in the software; as well as the minimum complexity 

required (number of terminal nodes required). It is also necessary to specify the 

maximum number of units used in the learning sample since CART uses 3000 records as 

default. 

Costs and prior probabilities for the response variable can also be changed. There is a 

matrix of costs that uses cost 1 for any kind of misclassification as default. This can be 

changed and symmetrized. In terms of the prior probabilities, equal probabilities are 

used as default, but this can be changed to the proportion present in the learning 

sample, test sample, the data, a mixture of them or another specified distribution. 

In terms of surrogates, it is possible to select how many surrogates are wanted to appear 

and to decide whether or not all of them have the same weight for the variable 

importance. 

Sometimes, the data set used is too large for using any determined version of the 

software. In these cases, there are a number of options to solve this problem. Test 

sample sizes and learning sample sizes can be modified. The depth of the tree, the 

number and size of the nodes can also be changed. Also, a subsampling of the data set 

can be used for the analysis. 
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CHAPTER 3 

I A N 7 W L R A A 7 1 E C / U N T 

i r fYE jO jRfTT-AC/ lL / ^ R V t / W f T W D / f f f 

3,1. INTRODUCTION 

This chapter contains the theoretical formulation of the univariate work undertaken in this 

thesis. Here, the univariate case is explained including modelling description, the use of 

classification trees, imputation methods used and estimation of population quantities. 

Additionally, properties of the estimators are studied. 

It is important to specify that in this work the terms univariate and multivariate refer to the 

number of variables subject to nonresponse, no matter how many variables are fully 

observed. This is, the univariate case refers to the situation where only one variable is 

subject to nonresponse and the multivariate case refers to the situation where more than 

one variable are subject to nonresponse. The theoretical formulation for the multivariate 

case is presented in Chapter 5. 

3.2 NOTATION 

Using the notation defined in Chapter 1, let U be a finite population of N elements 

U = . Let Y = (jy,) be a {Nx\)-vector of response variable, where 

represents the ith element and let X = (x.^) be a (NxK)-matrix of auxiliary variables 

where represents the k th variable for i th the element. 
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In this case, Y can be represented as a vector of N values y., Y = ; 

X can be represented as X - , where is a 

vector of N values . 

Assuming that Y is subject to nonresponse and X is fully observed, we have R = (^.) as 

(Nxl)-vector of indicator variables for Y identifying whether or not y. is missing. That 

fl if y^ is observed 

is, r.—< R can be represented as a vector of N values r., 

R ( r j , ^ 2 , T j y ) . 
It is also assumed the population is fully enumerated (no sample is taken). 

The data take the form 

Z, Z ; ... Y R 

Xj, X]2 ... y^ 1 

^ml ^ml ••• ^niK ^ 

•̂ m+U m̂+1,2 ^m+l,K 0 0 

^N\ ^N2 ••• ^NK 0 0 

where the zeros represent the missing values in the population and x.̂  and y. are 

specific values for a specific realisation of the model, with m the number of records for 

which Y is observed (measured), the zeros represent the missing values and N is the 

number of elements in the population. That is, we take without loss of generality 

n = ^ = 1 and =.. . = A ^ = 0 . 
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3.3 MODEL DESCRIPTION 

Under the model-based approach, and are considered random variables with 

distribution / ( X , Y | 0) indexed by the parameter (sets of parameters) 0 . 

As the response process can be seen as a random process, the response outcome R is also 

included as a random variable v/ith distribution / ( R | X , Y,(p). 

Providing that X is fully observed and Y is subject to nonresponse, the full form of the 

distribution can be v/ritten as / ( X , Y , R | 0 , ( p ) indexed by the parameters (sets of 

parameters) 0 and (p , with R as a response indicator. 

The joint distribution of X , Y and R , / ( X , Y , R 1 0 , ( p ) , can be decomposed as the 

product of the probability distribution of X and Y indexed by the parameter (set of 

parameters) 0 and the conditional distribution of R given X and Y (the distribution for 

the missing data mechanism) indexed by the parameter (set of parameters) (p . That is. 

Since Y is subject to nonresponse, we can write Y = Y ^ j J , where Y^y,, which is a 

vector of size mxl, represents the observed values of Y and , which is a vector of size 

(N-m)xl, represents the missing values of Y . 

Therefore, the distribution / ( X , Y,R|8, (p) can be written as / ( X , Y^y,, Y^ ,R10 , (p ) . 

Furthermore, equation (1) can be written as 

/ ( X , Y . ^ , Y ^ , „ R | 8 , ( p ) = / ( X , Y . b . , Y m . | 8 ) / ( R | X , Y ^ , Y ^ „ 9 ) . 

The distribution of the observed data can be obtained by integrating Y ^ out of the joint 

distribution of X , YandR. That is, y ( X , Y^^, R ) = j / ( X , Y , R) ( fY^, . More 

specifically, / ( X , Y ^ , R18, (p) = ^ / ( X , ' Y.^ 16) / ( R I X , Y^^, Y ^ , (p) . 

Assumptions about the model are normally made in order to obtain valid estimation. One of 

the most common assumptions is that the missing values are "missing at random", AAAR (Little 

and Rubin 1987). 
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As explained in Chapter 1, the data is said to be missing at random if the response indicator 

R does not depend on the missing values of Y , . That is, MAR holds if 

/ ( R I X , Y ^ , 9 ) = / ( R I X , Y.b.,9) -

Then, assuming that AAAR holds, and given that the actual observed data is (X^Y^y^.R), we 

now have 

/ ( X , Y.^,R 18,9) = / ( X , Y.„ 18)/(R | X, Y.^,(p) -

In this case, the common maximum likelihood procedure used for fully observed data can be 

used for estimating the parameter 0 required when the data is incomplete (data with 

missing values). That is, 6 can be estimated by maximising y(X,Yg^, |0) the observed 

data. Hence, the missing data mechanism is ignorable, that is the second part of the right 

hand side of the last equation can be ignored in the estimation of 0 . 

Thus, if AAAR holds, inferences for 0 are based on the likelihood function Z(0|X,Y^,^J, 

which is a function of 0 proportional to / ( X , Y^̂ ^ 10) . 

3.4 USING CLASSIFICATION TREES 

One of the important issues underlying this work is the use of classification as a first step for 

imputation. Here, the classification is employed to form the classes in which the imputation 

will be carried out. 

As described in Chapter 2, the classification method used is called CART (Classification and 

Regression Trees) and consists of grouping records depending on a set of values of the 

variables x- .̂, independent or explanatory variables, which are assumed to be fully observed 

in this chapter. These groups are called terminal nodes or classification groups and they are 

used as imputation classes. Additionally, these terminal nodes are expected to be exclusive 

and exhaustive groups. 

In practice, the explanatory variables can also be subject to nonresponse. However, let us 

assume fully observed explanatory variables in this section. 

As in Chapter 2, let t represent the node, which is defined by a set of values of the 

explanatory variables identifying the classification groups. In this case we will use f a s a 

39 



subscript for representing only terminal nodes, with t e | l , 2 , , and T equal to the 

total number of terminal nodes for a specific tree. 

As also defined in Chapter 2, a measurement vector is a vector 

containing a number of measurements made on unit i, v/here X = ( % ) is the matrix 

containing the values of these variables fully observed defined at the beginning of the 

chapter. The collection of all possible measurement vectors defines the measurement space 

X , with X = ; i = 1,2,..., . We define x , as the set of measurement vectors belonging 

to a specific terminal node with x = Xi X2 Xr • 

Under the model-based assumption, we also write the probability function of Y , which is 

subject to nonresponse, given the terminal node defined by x , as / ( Y |x; e Xr) • That is, 

the probability function of Y given a set of values of the explanatory variables identifying 

that terminal node (classification group). To simplify the notation we write 

/ ( Y | % , € x , ) = / ( Y | 0 . 

Since all the variables used in this work are categorical, we write 

f y U \ t ) - P { y i ~ 7 14 G Xf) 3S the probability that y . takes the value j in a terminal 

node t. Here, 7 = represent different categories of the variable y.. 

Example 

To illustrate this, let y. be the dependent variables taking values 0 or 1, and X = 

two independent vector of variables with taking values 1 or 2 and taking values 1, 2 

or 3. Then, the measurement space x > is defined by 

X={(1,1) , (1 ,2) , (1 ,3) , (2 ,1) , (2 ,2) , (2 ,3)} . 

Suppose that the classification tree divides the group of elements in three terminal nodes, 

with, the space % consisting of % =%, U x?. Xs - defined by Xi = ; ̂ ,1 = 1} : 

X2 = = 2 and x-^ = l } and X3 = { 4 ' = 2 and = 2 or x.^ = 3) } . As it can be 

seen in the following picture, these groups are exclusive and exhaustive groups. 
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1 2 
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2 • 
3 • 

• • 
Terminal node 1 

Terminal node 2 

Terminal node 3 

Providing the set of classification rules defining the three terminal nodes, these terminal 

nodes can be written as = { ( l , l ) , ( l , 2 ) , ( l , 3 ) ) , X2 = {(2,1)} , and = { (2 ,2 ) , (2 ,3 ) } . 

Then, the probability that 3;. takes value j given the terminal node , or equivalent t, 

can be written as / y O 10 = = 7 10 = w i t h 7 = 0 , 1 , ( =1,2,3 and 

The inclusion of the classification groups introduces a new factor to the distributions 

mentioned so far. That is, given a specific classification, let us write 

/ ( Y | x , , 0 ) = / ( Y | f , 9 ) as the probability function of Y given the terminal node t 

indexed by set of parameters 6 = (8,,82,...,8^) . 

Now, the joint distribution of Y and R given a terminal node t can be written as 

/ (Y ,R | / , 6 ,<p ) and as in equation (1), this can be decomposed as 

/ ( Y , R U, e, 9 ) = / (Y11 , e ) / ( R IY , t, (P) . 

As before, if MAR holds and assuming independence between units, then 

/ ( X I r. = O,?,0,(p) = /(jKy I r. = l ,^9,(p) = f{y^ | f ,e) (Little and Rubin, 1987). 

We have been holding the assumption of MAR given the variables. However, since we are 

using classification trees for forming the imputation classes, that is, the imputation is made 

within terminal nodes, we now want to assume MAR within terminal nodes. 

We define the distribution of Y given X as f y { j | x) with f ^ { j | x) = Pr(}'. = 7 | X = x) , 

and the distribution of X as (x) with (%) = Pr(X = x ) , x e x • 
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Then, by definition of terminal nodes we have 'Pr{y.= j | ^) = Pr(j/,. = y | %e where 

Z = y, ̂  = %) ^ A ( ; I A (:() 

*e%, *e%, 
X P r ( X = ^ ) Z / x W 

If Y depends upon X only via the terminal node so that f y { j \ x ) = f y { j \ t ) for all 

Z A O ' l O A W 

, then, Pr()/,. ^ . = A O 10- That is, 
A A W 

Pr();y = y|%e%,) = f ^ i j \ t ) , which implies assuming MAR within terminal nodes. That is 

what we will assume from now on. 

3.5 IMPUTATION METHODS 

Once the classification tree is constructed, each imputation method is applied at each 

terminal node. Three different imputation methods are considered. These methods are 

common for categorical data, which is the kind of data used in the analysis. A description of 

those methods follows. 

Before describing the imputation methods used, let us remember some important concepts 

defined in Chapter 1 that are also used in this section. 

The independent (explanatory) variables are those used for the classification (variables ). 

They are normally fully observed, while the dependent (response) vector of variables is that 

vector for which the classification is done ( Y ) and it is subject to nonresponse. 

Additionally, recipients are those records containing missing values (records to be imputed), 

while donors are those records which information is completely observed (records from which 

values to be imputed are taken) and used to impute missing values. 

Only one vector of variable is subject to nonresponse in the univariate case while many 

vectors of variables can be used as explanatory variables. As before, the explanatory 

variables % are considered fully observed in this section. Different approaches for imputing 

missing values using donors with missing items in some of the exploratory variables will be 

explained later in this work. 
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Given the response indicator R , v/e define r as the set of observed elements, r = = l } 

with = 11Zj. e x j and r = r ' u . . . u r ^ . The same for the unobserved elements, 

nr = |z;^. = 0 } with nr, ={/;?;•= 01 x. e x j and nr = nr^ kj...Kjnr^ . 

Additionally, we define as the number of records in terminal node t and as the 

T 

number of observed records in terminal node t , with m = '^m, total of observed elements 
t=\ 

T 

in the population and N — total of elements in the population. 
f=l 

1. Probability Distribution Method 

As in any case with missing values, we want to impute the missing value of when this is 

missing from / { y ^ | r. = 0,t,B ) . 

Assuming that MAR holds and assuming independence between the units, we can write 

/ (Y„,. I X , , R ) = / ( Y „ „ 1X, ) = / ( ¥ „ , . I X ) , so that 

f ( y , I r, = 0,x,) = / { y , I r, = l,x,) . 

For a tree model it is supposed that f{y.\r.=Q,t,Qi) = f{y.\r;=\,t,Q) where 

f i V i I ^ = 1,^,0) is the probability distribution of the observed values given the terminal 

node t , /( jK, I ^ = O,f,0) is the probability distribution of the missing values given the 

terminal node t . Then, the probability distribution method works as follows: given a specific 

tree, and for each terminal node, the probability distribution of the observed values of the 

response variable / { y . | r. = 1,^,9) determines the values to be imputed. 

Since variables y. are categorical, we write Pr(>'. = j\r.= , where j represents 

the categories of the variable y. with j = . We estimate by the observed 

proportion of cases with category j for the variable y. in terminal node t in the 

population, pj^. 

in summary, the probability distribution of Y for the missing data is assumed to be equal to 

the probability distribution of Y for the observed data, which is estimated by Pj^. 
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Example 

To illustrate this method, suppose that a particular terminal node t of the tree used has the 

following observed distribution for the variable to be Imputed 

.108; j = 1 

^96; = 2 

.242; j = 3 

.054; j = 4 

This is, for that specific terminal node, 10.8% of the records of the observed variable have 

category 1, 59.6% of the records have category 2, 24.2% of the records have category 3 and 

only 5.4% of the records have category 4. 

Then, records with missing values for the variable to be imputed that end up in that terminal 

node will be imputed with category j = \ with probability 0.108, with category j = 2 with 

probability 0.596, and so on. 

2. Highest Probability Method (or Modal Imputation) 

Under the same assumptions made for the probability distribution method, that is, MAR holds 

and independence between units, and given a specific tree, this method Imputes the value 

that is "most likely" in that specific terminal node (I.e. has the highest probability) to all of 

the records with missing values. Thus, the value to be imputed will be f , satisfying 

p > Pj^, for all categories j of the response variable. 

Then, in this case, the Imputation takes the value j),. = / 

It could be more than one f value satisfying this condition. In this case, the method selects 

one of the categories randomly with equal probabilities. 

Example 

An illustration of this method can be given by the following example. Suppose that the 

results for the variable to be Imputed at one specific terminal node t of the tree has the 

same distribution as in the last example, that is. 

.108; j = 1 

^96; j = 2 

.242; j = 3 

.054; j = 4 

44 



Then, all the records with missing values for Y that end up in that specific terminal node 

will be imputed as category 2, given that this category has the highest probability in that 

node. 

3. Nearest Neighbour Method 

Given a specific tree and for each terminal node individually, distances between the 

recipient and each possible donor are calculated and the "nearest" donor defines the 

imputed value for that particular recipient. The nearest donor is determined by the set of 

independent variables. That is, the distance between the two records (recipient and possible 

donor) is calculated by adding one to the distance function every time different values are 

found between them for the independent variables. 

Then, given a recipient z' with values x..^, k = 1,2,...,K for the vector X^., a donor i with 

value for Y and values % , k = \,2,...,K for the vector X. is that record which 

K 

satisfies min[<i;.J with V ^nr* and , and d... 
' k=\ 

Then, the missing value y.. will be imputed with the observed value j,. from the donor i , 

In this case we define A. as the number of times unit i is used as donor, therefore, 

4 = ^ < dj.j for all 1 Gr^). 
few} 

It is important to point out that in this case a record can be used more than once as a donor. 

This means that if a specific record has the least distance to two different recipients, this 

record could be used as a donor to f i l l in the missing values for both of the recipients. 

Moreover, when a recipient has the same distance to two different donors, one of the donors 

is randomly selected with equal probabilities. 

Example 

An example of this method can be given by the following situation. Suppose that there are 

six units in a specific terminal node, one of them have variable y. missing. Each unit 

contains five values for the five different independent variables as follows: 
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Umk % 

U1 0 6 2 0 8 
U2 1 1 1 2 1 9 

U3 4 1 9 3 1 4 

U4 5 0 6 3 1 8 

U5 2 1 5 2 0 7 

U6 2 0 4 3 1 6 

In this case, the distances are calculated between unit 1 (recipient) and the rest of the units 

(possible donors). 

In the first comparison, i t can be seen that the difference between units 1 and 2 is equal to 

four. This is because four of the five variables used for the comparison have different 

values from units 1 to 2, i.e. the recipient and the first possible donor have different values 

between variables x,.,, and and equal values for variable x.^. The same can be 

applied to the rest of the possible donors. 

A table containing the distances between the recipient and all the possible donors is 

hereafter 

Comparison U1 - U2 U1 - U3 UiTTm U1 - U5 U1 - U6 

Distance value 4 5 2 3 4 

Given the distances shown in the last table, we can say that the donor used for imputing the 

recipient will be the unit number 4 (U4) since it produces the smallest distance to the 

5 

recipient. It means. 
=̂1 

i = 2,...,6 Is minimum for U4. Then, since the value 

for the variable in U4 is five, the imputation value will be 5. 

3.6 ESTIMATION OF POPULATION QUANTITIES 

Inferences can be done for finite population quantities or for superpopulation parameters 

depending on the kind of analysis required. 

It Is more commonly the case for census data, that researchers are interested in making 

inferences about the quantities that characterise the population, rather than the 

superpopulation underlying that population. Both cases are important, however. Since the 

aim of this work is more a descriptive analysis than an analytic analysis, the estimation will 

be concentrated on population quantities. 
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Given a finite population U = = 1 , 2 , o f N elements and vector Y of Interest, 

taking values •,i = \,2,...,N, the aim is to estimate a population quantity, for example, 

the total 7 = . 

A population quantity can be represented as a function of the population values, for 

example, 

Suppose that the quantity of interest is the number of cases i with category j for Y , 

which in our case is a categorical variable taking values j from y = . Here, the 

number of cases in category j of Y can be written as gj = = j ) • 
u 

Since not all the data is observed, this population quantity can be estimated as follows 

g ; = E =;)+Z ̂  =;) 

m N 

which is the same as gj = =7 ' )+ ^ / ( j ) , = j ) , where y. is the value of Y for the 
f=l i=m+\ 

unit i if present and j). is the imputed value of Y for the unit i if missing. 

The first part of the expression, = j ) , can be calculated from the observed data, 

while the second part of the expression, = j ) , depends on the imputation method 

used, since the imputed values y. are determined by the imputation method used. 

3.7 PROPERTIES OF THE ESTI/AATORS 

Let us examine the properties of the estimator of the total defined in the last section, in this 

work, we refer to bias and variance as properties of the estimator. 

In order to examine these properties, let us assume the following statements: 

/ ( 7 | X ) represents the probability distribution of the Y given X , where X is fully 

observed. Both, Y and are categorical variables. 
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We are assuming model-based approach, where / ^ ( x = j\Xt) represents the probability 

that y. takes the value j in a specific terminal node t given by the model ^ . 

We are also assuming that Y is missing at random within terminal nodes, that means, 

Pr()/; = j\t,r. = 1) = Pr(}', = j\t,ri = 0 ) as defined in Section 3.4, and holding and x. 

fixed. 

Notation 

Let us summarise some notation used in the assessment of expectation and variance 

y- imputation or imputed value 

7 = categories of the Y variable 

t = terminal nodes 

r respondents, r = 

r, respondents in node t , 

nr nonrespondents, nr = [m + \,...,N^ 

nr, nonrespondents in node t , nr,= [m^ 

T 

total of observed elements in the population 
T 

m = 
f=l 

N = '^Nf total of elements in the population 
t=l 

^ represents the model under the assumption mentioned above 

probability that variable Y takes the value j in terminal node t given the model, that 

is, {y. = j \ t ) , ot equivalently {y. = j | Xt) • This probability is assumed the same 

for all y. within a terminal node t. 

p.^ proportion of cases in category j in node t using the observed data 

expectation with respect to the model 

E, expectation with respect to the imputation process 

As said at the beginning of the section, we refer to bias and variance as properties of the 

estimators. 
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Since the estimator of interest is the total of units i with category j for a specific 

categorical variable, which we define as g . = = j ) , we want to examine the bias 
u 

and variance of the different between the real total and its estimator. That is, we will be 

looking at the expected value and variance of that difference, E^, ^ g j - g j J and 

V{gj - gj) • Additionally, we will search for an estimator of the variance obtained for each 

method and determine if this is unbiased by looking at the difference between 

V ^ E j ( g j - g j ) + E ^ V j { g j - g j ) and the actual variance. 

In our case, we can have two different sources of random variation, one is the model and the 

other is a stochastic random variation coming from some imputation methods. Therefore, we 

take the expected value not only with respect to the model, but also with respect to the 

imputation process. Later in this chapter, we will examine a model free approach in which 

the random variation will come from the response mechanism and the imputation methods. 

In this latest case, no assumptions about the response mechanism are made as in the case 

presented hereafter. 

3,7.1 .Probability Distribution Imputation Case 

Let us define the estimator of the total of Y when using probability distribution method for 

imputing. As explained in Section 3.5, this method sets j). = j with probability Pj^ 

estimated by pj^. Then, the estimator of the total for the Y can be written as follows 

which can be approximated by using the expression 

t r, t 

since Pj, is the observed proportion of cases for category j of Y in terminal node t in the 

population, that is, p^, =— , with equal to the number of observed cases for 

Y in terminal node t . 

That is, y. = j with estimated probability Pj, if i&t and y. is missing. 
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Bias with respect to the model 

To assess the bias of g • as an estimator of g. let us calculate the expected value of 

g,-g,-

A', 

= & 

= & 

f f f f 

SS/(y,=y)+E t E , m - J ) ] - T l ' i y . = j ) 
f f f ^ 

Y ± n y , - M ^ t h ~ I ± ' ( y , = n 
f ^4 f f 

Z Z ^ k = ; ) + Z w - m . ) - Z ^ ^ ^ - T L n y , - j ) 
f f=I 7M, f ^4 

I ±I(y:=j)HN, 
f = ] 

= E 
t 

= i 
t 

= i 

ni; \ / m, 

'Zny,"/) +E; (N,-m,)'Z 
f = ] y 

/ c % = y ) ^ 

V fM, y 

;v, 
] L y ( f , = ; ) 
(=1 

V '=1 
z 
!=1 

4 {i(y,=J))' 

m. J J 
(%=; ) ) 

n 

7M, 
W / ) Jt t Jt t Jt t Jt 

= 0 

Hence, g . is an unbiased estimator of g under the model assumptions. 

Variance with respect to the model 

The variance of the difference between the estimator of g j and the parameter can be 

expressed as follows 

- g y ) = + " g ; ) = ^ + B 
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n 

n 

/ f=I f f=my +1 f ;=] 

Z & ^ k = ; ) + Z i ^ , [ W , = ; ) ] - Z Z ; k = v) 
f f=l f f=m,+I f f=. 

Z Z f k . ; ) + E t p , . - I . h ( y i - J ) 
f f=] / f=m,+l f f=] 

M, 

Z Z ^ ( x = ; ) + E ( ^ r - / » , ) Z 
/Cy, = y) 

= K 

= K 

t /=i m. f f=i 

V, 

V, 

•E 

Z 
t 

I 
t 

E 
t 

Z 

1 + 
V 

m 
= y ) 

t J /=i 1=1 

f=l f=l 

A T w, N, 

—Z =;) - Z =;) - Z =;) 
m t '=1 

v™. y 

/=1 f=M,+I 

N, 
E'te=-/•)- E %=)) 
f=I f=fM,+l 

/ , r V N. 
^ - 1 

V 

(1 - 7^.; ) + ( # , - / » , ) ( i - 7^ ; ) (assuming independence 

between y.) 

^ — 2m^N, + ml ^ 

2 
m. 

7M,+(# , - /» , ) 

' NJ -N,m^ 

/ 
E 

V y 

N, 

/ f=m, +I f f=l 

E^V, 

E E ^ t e = ^ ) + E E w , = / ) - E E / k = / ) 

E E % = ; ) 
f f=m,+] 

= & Z Z ^ / N = ; ) ] 
t i=m, +1 

E ( A ' , - " ' , ) ^ / 0 - / ' / ) 
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TTius, ^ 
t 

• Z 
t 

= z 

V y 
(1 - ) + ( # , - / » , ) 7^/ (1 - ) 

V 

V ; 

Hence, the variance is given by the expression 

V m, / 
(2) 

3.7.2. Some variations in the Probability Distribution Imputation Case 

This section introduces a different approach to the model based. In order to compare with 

the model based approach, the "Finite Population" approach is used in this section. The 

finite population approach corresponds to the case where no model is used. That Is, given a 

finite population, values are treated as fixed and inferences are based on the distribution of 

the observed data. This approach is similar to what is known in the literature as 

"Randomisation Approach" (Little and Rubin, 1987) or "Frequentist Approach" (Rao, 2001) in 

the sense that they do not require model assistance. However, the finite population 

approach in this thesis does not make use of sample selection as the other two mentioned. 

Additionally to the comparison between the model base and finite population, this approach 

represents an important aspect in this thesis as simulations in Chapter 4 and Chapter 6 are 

carried out without the use of model, that is, assuming a finite fixed population as in this 

case. 

A difference between this approach and the model based approach presented in previous 

section Is basically that no assumptions are made about the response mechanism. Therefore, 

bias, variance and variance estimation are assessed with respect to the response mechanism 

as well as to the imputation methods. 
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3.7.2.1 Probability Distribution Imputation Case under Finite Population Approach 

Let us consider the properties of the estimator proposed for the probability distribution 

imputation method under the finite population approach. It is important to point out that in 

this case there are not probabilities involved as the population is fixed. We use the frequency 

distribution of the observed data to estimate missing quantities. 

Bias with respect to the response mechanism 

N, 

= E. 

= 

= En 

Z Z '(y, = i ) + E Z = i ) - 1 1 1 ( y , = ; ) 

X X + X X = -/)) ~ X X = - / ) 
f f t N, 

m. 
• T L i i y , - j ) 

t N, 

N. 

N, 

, m, % t N, 

N. 

t N, 

N, m. 

t N, 

/ N, t N, 

Therefore, we can see that g is an unbiased estimator of g j under the finite population 

approach. 

Variance with respect to the response mechanism 

A = 

f f 
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E,V, 

ZZ%=v) 
f 

= E, 

m' 

m 

N, t N, N. t N, 

m. 

7M, 

I 
V ; 

M - 1 ) 4 , 1 -
( % - l ) 
(#,-1) z 

V m, (#,-1) 4 X l - 4 v ) 

A + B = 
Nf - nil 

V / N,-\ 

(N,-m,)(m,-\)N, 

= z 
t 

= z 

Nj —m^ 
+ 

7M 
f ; v ( i - 4 v ) 

AT.- l # . - 1 

N^ -m^ 

\ '"r VV 

N̂  (N̂  +777,-1) 

; v , - i 

' " y 

4 v ( i - 4 v ) 
y 

'' N,-m ^ 

V y 
( # , + m , ) 7 ^ , ( l - ; ; , ) = Z 

V »%, / 
4 ( 1 - 4 , ) 

Then, the variance of the difference {g j - g j ) is given by the approximation 

f ^ ( g , - g y ) « Z 
V f", V 

4 , ( 1 - 4 , ) (3) 

It can be noticed that the results of the variance obtained in this section (which is an 

approximation) is the same as the results of the variance obtained in the case of model-

based approach (equation 2). Therefore, we can say that the variance of the estimator of 
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the total under the model-based is approximately equal to the variance of the same 

estimator under the finite population approach. 

3.7.2.2 Frequency Distribution Method, another approach to Probability Distribution 

Imputation Method 

Sometimes it is not easy or there is not enough time to implement all the theoretical 

material explained before in practice. Therefore, an easier v/ay of implementing the 

probability distribution imputation method in practice is proposed hereafter. This new 

approach involves certain changes in the way in which values are given to the recipients. We 

call the new version "Frequency Distribution Method". 

In contrast to the probability distribution method, the frequency distribution method does 

not give probabilities to the recipient to be imputed with a certain category depending on 

the probability distribution obtained in a specific terminal node. The frequency distribution 

method imputes all the missing records present in a terminal node by using the frequency 

distribution of the observed values in that terminal node. That means, the number of records 

imputed with a specific category j will depend on the percentage of observed records with 

that category present in that specific terminal node. This new approach makes the 

application of the procedure easier and faster, facilitating and optimising the use of 

computational resources. 

It can be noticed that the main difference between the Probability Distribution and the 

Frequency Distribution imputation methods is that, in the Frequency Distribution, the 

number of records to be imputed in a specific category is fixed as i t is based of the 

frequencies of the response variable in a specific terminal node, while in the Probability 

Distribution case, the expected value of the number of records to be imputed in a specific 

category depends on the probability for that category in that specific terminal node, that is. 

To illustrate this method, suppose that we have the results, used before in this chapter, of a 

particular terminal node f of a tree. This terminal node has the following frequency 

distribution for the variable to be imputed 

.10% ; = 1 

.596; 7 = 2 
Pit = 

" .242; ; = 3 

.054; y = 4 
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This is, for that specific terminal node, 10.8% of the records of the observed variable have 

category 1; 59.6% of the records have category 2; 24.2% of the records have category 3; and 

only 5.4% of the records have category 4. 

Then, for the frequency distribution method all the records with missing values for the 

variable to be imputed that end up in this specific terminal node will be imputed as follows: 

10,8% of the records wil l be imputed as category 7 = 1 ; 59,6% will be imputed as category 

7 = 2 , and so on. The selection of the records for the class assignment is carried out by 

using a simple random selection procedure without replacement for each category to be 

imputed. 

As this new approach makes the application of the procedure easier and faster, the 

simulations presented in the next chapter are carried out using this methodology. Therefore, 

its properties are reviewed hereafter. 

Bias with respect to model 

Let us calculate the expected value of the difference between the estimator of g . and the 

parameter 

f f ^m,+] f fW 

N, 

f f 

= & 

/ = 1 t i = l 

N, ^ /Cx, = ; ) 

;= ] 

z 
t 

z 

& 
\ 

'Lny, = j ) +4 w - " - , ) ! 
y V 

\ f 

Z f ; ( % = ; ) ) + 
/ 

+ 

V V 

4 

1-1 

Z 
i=\ 

m 

/ % 
-E, 

f / V '=1 

4 ( % - ; ) ) 

m. 
X - y)) 

/ / V'=1 

P, 
jt 
m. im') 

y 
Vf * ^ r Jt 

= 0 
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Hence, g is an unbiased estimator of g . under the model assumptions. 

Variance with respect to model 

W e h a v e F ( g . - g . ) + ^ A + B 

A = K 
f f f 

-n 

= K 

^ m, ^ ^ 

f jN W, f 

t 

2 , 
V 

m f y ^ i f=i 

= K 
N, 

m 7 /=1 

K I 
/ = ] / = 1 i=m 4-1 i=\ 

-K z 
/ 

N, 

^N. 

\"<, / 
"•,Pj'(1 -Pp ) + (N,-m,)P;(1 - P / ) (assuming independence 

between y^) 

= Z '' — 2m^N^ + ml ^ 
2 m. 

V f", / 
E 

\ V 

B = A / ( A = ; ) - Z E ^ ( x = ; ) 
f f ^m,+I f 

= 0 
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Then, the variance of the difference between the estimator of g . and the parameter is 

given by the expression 

A ' , P / ( 1 - P / ) (4) 

Bias with respect to the response mechanism 

Z Z +Z A ̂  =;) - Z Z =;) 
/ m, f 

= E„ ZZ^()'' ZZ^()'' 
m. t N, 

N. 

/ m, t N, 

= E„ 
t N, 

N. 
X — Z £« {^ , ) ^ 3 - , = y ) - Z E J - .=J ) 

t N, 

N, m. 

f M 

t N, t N, 

Thus, we can see that g j is an unbiased estimator of g under the finite population 

approach. 

Variance with respect to the response mechanism 

Let us calculate y (g^. - (g^. - g^.) = v4 + ^ 

A= K 
N, 

f m, f m,+] / AT, 
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Z Z ^ ( ) ' ' = ; ) 
f 

F. 
N, 

Z ^ Z ; ( x = ; ) - Z Z / ( ) ^ , = ; ) 
f f Â, 

= F„ 
N, 

Z ^ Z 4 ; ( f , = ; ) - Z Z ; ( f , = ; ) 
, m, % t N, 

= K Z^Z^^(:)'' -;) 
t A/, 

E(/(y, =;))' ^^ (/!,)+Z Z /(y, = my,.=J)cor, {R„R,) 

f#r 

Z_< 2 
m. 

N, 

f \ 1 _ 5 . 

V 
YXi(y,'jSf 

7V̂  

T < 

m. r \ 
i _ a 

V ^ t j isN, i'eN, 
i*i' 

ZZ^()''=;%'=;) 

- Z 
N^ - m , 

\ 'M, V N, 0 ) isN, i'eN, 

Z Z = ; ) 

s 

t 

•Y. 

/ i r ^ 

N,-m^ 

V '"r V 

'̂ TV, -7M, ̂  

Z ( ^ ( ) ' . = ; ) ) 
1 

(-^/ ('eW, I'eTV, 

% ( % - ! ) 

Z Z = ; ) 

7^/) , - ' ^ ^ 

\ y 

(Ar,-1) 

w - i ) 

= z - 7M ̂  

V 'M, V 

N. 

V V 

B= Z Z ^ ( ) ' ' = ; ) + Z Z ^ ( ^ ' = ; ) - Z Z ^ ( : ) ' ' = ; ) 
( / / , 

= 0 
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A + B « 2 

Then, the variance of {gj - g j ) is approximated by the expression 

(5) 

Again, given the results of the variance obtained for the estimator of the total under model-

based in the case of frequency distribution (equation 4), we can see that this is 

approximately equal to the variance of the same estimator under the finite population 

approach (equation 5). 

3.7.3. Hishest Probability Imputation Case 

As explained before, the second imputation method applies the same value to all the records 

with Y missing using the value with highest probability for Y in the observed data. 

Again, the estimator of the total for Y can be written as follows 

with equal to the modal category in node t . 

That is, all the ( # , - / » , ) missing values wil l be replaced by the modal category of that 

specific terminal node t , . 

m, Af, 

Thus, - g ; = ^ ^ / ( } ' , = y ) + ^ ( ; / = ; ) - E Z 
t i=\ t ;=1 

Bias 

The expectation of the difference between the estimator of g and the parameter is given 

by 

-E, 

f f 
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= £ 

f f = l 
+ E. 2 ( A ' , - m , ) / 0 ; ' = j ) 

t 1=1 

For simplicity, we will consider the case when y. can take only two categories 

• The first term of the last equation is 

f t /=i 

• The second term can be obtained as follows 

& = j ) 'Z(N,-m,)E^[l(j: ^})\ 

Where 

' U i = 7 ) ] = Pi(jf = j ) - 4 (pj, -Pt,)for I* j 

- P^(p,.>l-p„)- P,(pj,>a.5) 

A 

-P, f=] >0.5 
7M. 

z , 
a=\m, 12] 

Pjr 

since ) 
f=l 

• The third term is 

f 
ZZ4[%=;)] -
f 

We finally have, 

/ 

= z 
t 

= E 

/ 2] 

a=[m, / 2 ] 
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= z 
m, y 

z 
a=[m, /2] -V 

% 
•pj^ 

Hence, in general, g j is not an unbiased estimator of g j under the model assumptions. 

However, we can see that when is large and Pj^ is much larger than 0.5 (close to 1), 

then î Pĵ  > 0 . 5 ) is approximately 1 and the bias become small. That means, the "purer" 

the terminal nodes are the smaller the bias. 

Therefore, the Highest Probability Distribution seems to be a good low biased method when 

the classification is accurate, otherwise the bias could be very large. 

Finally, an expression for estimating the bias in the case in which y. takes only two different 

categories can be ^ 
m, Y 

z 
a=[m, /2] _v 

7M. 

Variance 

In order to obtain an expression for the variance, we write 

= K 

f f=] t i=l t 

^ /()/, = ;) 
f f 

Z C v , - " ' . t [ ' 0 / = » ] + Z w [ ' ( y : = n \ 

e The first expression can be obtained as follows 

K 

« The second expression is 
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Then, we finally have, 

^ [gy - gy ] = ^ (AT, - ^ J [ l - ) ] + ] ^ [ ( - 7M,) (1 - ) 
t t 

'' m, ^ 
v / h e r e 7 ^ ( ^ . , > ^ J = g 

fl=[m, /2] V 

3.7.4. Nearest Neighbour Imputation Case 

In the case of the nearest neighbour imputation method where the missing value is imputed 

using the closest donor available, the estimator of the total has the form 

g; = Z Z ̂  ()"/=;) +E Z =;) 
f ;; ( 

where A. is the number of times >>., % e is used for imputing a missing record, that is 

4 = X - ^ r i ) for aH / e ^ , with d.,. = %) 
fewT} 

m, mi N, 

Thus, g , - g y = ; ) 
f /=! r f=I f f = ] 

Bias 

h [ s j ~ g j ] - 4 Y L ' i y , = J ) * Y t A A y , = j ) ' - L t ' < . y . = j ) 
f f=l f f=.I 

Y t i i y . = j ) 
f f=l f f=] 

- L t ' i y J ) 
f f=I 

the first term is 

' L t ' ( y , ' j ) 
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® the second term is 

f 
= Z Z 4 4 [ H y . ' J ) ] ' - SCAf, 

t 1=1 t 1=1 t 

since 4- is a fixed quantity given its definition and the assumption of the model, and 

each donor is only used for imputing cases within the same terminal node t . 

• the third term is 

f 

Then, we finally have 

[ g , - g , ] - - E A ' . - P / 
m, t m, 

t 

Therefore, g j is an unbiased estimator of g j . 

Variance 

In order to obtain an expression for the variance we have 

v[t,-Sj] •nE,[s^-g^]+E^r,[gj-g,'\ -

K [ g j ~ g j ] - Vi 
f 

K 

' 1=1 t !=1 

f ^m,+l 

[^ (x + [^(x = y ) ] since 4̂,. is a fixed 
f f=I 

quantity 

= ZtiAfPj.H^-Pjh + 'ZW 
f f=l 
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__ f m, \ 

t V 1=] y 
Pih^-P,h 

Let us define 5^, = 
Z ( 4 - 4 ' _ 1 ( 4 ) 

^ ' - as the variability of A., where A = -' ^ ' 
m. m. 7M. 

given that ={N,-m^), as explained before. Then, [ g ' y -g ' y ] can be written as 
/ = ! 

I 
/ * r ^ 

Nf -7M, p / d - ' p / ) 

yy 

It can be noticed that the size of the variance of - g. depends on how big the variability 

of A. is, that is, on how donors are used. Therefore, - g y j i s smallest when is 

smallest. 

3.7.5. Comparison of the Variance expressions 

Given that we have obtained an expression for the variance in most of the cases (i.e. for the 

different imputation methods), it could be useful to compare these expressions in order to 

find out which of the methods produces larger values. In order to do this, a comparison of 

the expressions for the variances presented in previous sections in made hereafter. 

3.7.5.1. Comparison between Probability Distribution and Frequency Distribution 

imputation methods 

In this case, we have that the variance for the Probability Distribution method has the form 

"•i / 

while the variance for the Frequency Distribution case has the form 

Therefore, we can see that Probability Distribution will always produce larger variances that 

^ -m )N, 
Frequency Distribution as —^——— > ——-—— . 

m. 7M, 
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3.7.5.2. Comparison between Probability Distribution and Nearest Neighbour 

imputation methods 

In this case, we have that the expression for the variance for the Probability Distribution 

method is ) = ^ 
N, - w / 

jt 

On the other hand, the variance for the Nearest Neighbour imputation can be expressed in 

the following way (as in Section 3.7.4) 

r r 

- Z + 

J J 

Then, if these two formulas are compared, we can see the Nearest Neighbour variance 

TV — 771 
produces larger values than the Probability Distribution only if > — for every 

m. 

terminal node t . If this condition is presented in just some of the terminal nodes but not all 

of them, the results do not seem to be that obvious. The same applies to the case in which 

N—m 
- and in the case in which < —-

N, —m. 

m. 

3.7.5.3. Comparison between Frequency Distribution and Nearest Neighbour 

imputation methods 

In this case, we have that the expression for the variance in the case of Frequency 

Distribution method is V^{gj - g j ) = ^ 

On the other hand we have the following expression for the Nearest Neighbour imputation 

AA, - /My + + 

yj 

Then, if these two expressions are compared, we can see the Nearest Neighbour variance will 

always produce larger values than the Frequency Distribution variance, unless the variability 

of 4- ' "S"! , is equal to zero, in which case the two variances are equal. 
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3.8 VARIANCE ESTIMATION 

3.8.1 Probability Distribution Imputation Case 

Variance estimation with respect to the model 

Consider as an estimator of the variance of 

{^gj - g j ) - In this case Pj^ is obtained using only the observed data. 

In order to assess the bias of this variance estimator, we want to examine 

I 

Then, E^Ej E 
V y 

z = E. 

E 
\ y 

Pp-
V y 

V y \ 'Mf y 

( A r ) 

» The first term of the last equation is 

Z 
V/=i 

h / ( x = ; ) 

m 
p: 

t J 
m. 

m. 
- P, 

* The second term of the last equation can be solved as follows 

(A J & z 
/ ( x = ; ) 

TM/ 
& 

V '! 

m 
Z - y)) + Z Z ~ jyiy- - j ) 

f67M̂  f 
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m. fEMy f em, 

m. 

+2 
y2 , (^/r 

m. 
m^Pj, +m •,{m,-l)(p;)' 

Then, we finally have 

E^E,{hgi -g,)) - Z 
t 

= Z 
t 

= E 
t 

=z 
t 

= Z 

\ f", / 

V y 

V V 

4 ( A ' ) -
V f", / 

p. 

p,' 
m. 

r 1 ' 

I J m, . 

^ / - ( m , - l ) ( ^ , ' ) 

\ fK, / 
p, 

jt 
/M, /M, 

V y m. 

Therefore, an unbiased estimator of V^{gj - g j ) is ^ 
V ^ ' - 1 y 

^ v v ( l - A v ) 

Variance estimation with respect to the response mechanism 

Let us consider ^ ^ 

V y 

(iV^ + m , ) p j ^ ( l - P j , ) as an approximate estimator of the 

Vp . Then, in order to assess the bias of this variance estimator we want to examine the 

expected value given the response mechanism and the imputation process of 

69 



Using previous results, we have that ~ • That makes 

E. 
\ 'M, y 

E -1 ^ 
V V 

Then, we have proof that V .̂ - » 0 , that is, is an approximately unbiased 

estimator of . 

It can be noticed that the variances, and therefore the estimator for the variances, are 

approximately equal in both approaches, model-based and finite population approach. 

Therefore, we can say that the estimator obtained under the model-based approach is 

unbiased under the finite population approach and vice-versa. 

3.8.2 Frequency Distribution Imputation Case 

Estimation of the variance with respect to model 

Consider V(gj-gj) = ^ as an estimator of the variance of 

(î y ~Sj)- In this case is obtained using only the observed data. 

In order to assess the bias of this variance estimator, we want to examine 

E^E,(V(g^~g.)) = E^ Z 

Z 
"r J 

N.P„ -

-z 
V 'M, y 

N,-m. 

V y 

«Ah) 

na{pA 

9 The first term of the last equation is 

h[p,y- V '=1 J 

P 

7M 
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« The second term of the last equation can be solved as follov^s 

S 
= y ) 

7M, 

1 
& 

m. 

\2 

1 
r 

E =;)) + Z Z ̂  ()". = =;) 
fem̂  f 

«7, 

J_ 
mi 
J _ 

m. 

fern, ; em 

/ \ 

+ 2 

. 2 V 

Pj, 

[p,') 
m. 

m,Pj, +m •M.-r)[p,^)' 

Then, we finally have 

E^(V(g|-g,)) • Z 
N. -m. 

V y V 'M, V 

" E 
t 

= A 
t 

=z 
t 

= I 

V y 

N. -m. 

\ V 

N, 

m. 

N, p. 
m. 

''N,-m,'' 

K "r J 
N,Pj^ 

1 ( / » , - l ) ^ s 

V m, y 
S f l - f 

m, 

Therefore, an unbiased estimator of V^{gj -gj) is given by ^ 
-/M, ^ 
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Variance estimation with respect to the response mechanism 

Given that ^ N,P j^ ( l -P j^ ) , let us consider 

N iP j i ( l - P j , ) as an estimator of the variance of { g j - g f ) 
J 

Using previous results v^e have E g ^ p j ^ ( \ - p j ^ ) ^ « , therefore, 

= En E 
I "'z j 

I 
/ * r \ 

N, -7M, , ( l - p J = 

Then, v/e have proof that is an approximate unbiased estimator of 

As in the case of probability distribution method, i t can be noticed that the variances, and 

therefore the estimator for the variances, are approximately equal in both approaches, 

model-based and finite population. Therefore, we can say that the estimator obtained under 

the model-based approach is unbiased under the finite population approach and vice-versa. 

3.8.3 Hishest Probability Imputation Case 

In the estimation of the variance of the difference between the estimator and the parameter 

we could substitute by the observed proportion of cases with category j in the data, 

P j , , in order to obtain a value for that estimation, however, since this method is not an 

unbiased procedure and the bias appear to be not ignorable, an estimation of the variance 

seems not to be of major interest. 

3.8.4 Nearest Neighbour Imputation Case 

2 
Consider ^ 4 - ]^ (v4,.) 

I V '=1 J 
P j , ( l ~ P j i ) as an estimator of the variance 

of (gy - g v ) . 
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In order to assess the bias of this variance estimator, we want to examine 

. ' V '=• V 

Then, E. z f fy r ) 
t V 1=1 y 

- & 

77k \ 
2 

- Z N,-m,+Y.(A,f E^[p,,]-E^[P^,] 
t V '=• / 

( m, \ 

= E k , - ' " , + E { 4 f 

/V i^\ J 

f m, 

= E r ^ , - ' « , + Z ( 4 y 

p.} - 1 
m. 

P/ using previous results 

y 
p. 

Then, an unbiased estimator of V{gj - g j ) is ^ N, -m^ + ^ ( 4 ) 
' V '=1 

m. 

Several papers have been published in the last years about Nearest Neighbour imputation. 

Many of these publications include the assessment of bias, variance and variance estimation 

for this case. Rao 2001; Steel and Fay 1995; Fay 1999; Chen and Shao 1999, 2000 and 2001 

and Rancourt 1999 are some of the most recent works published in the area of variance 

estimation. 

Rancourt 1999, for example, presents in his paper an estimator for the variance using model 

based approach. He starts by defining GEIS (Generalised Edit and Imputation System), which 

is an imputation system for economics surveys developed by Statistics Canada. This system 

includes the use of nearest neighbour as one of the imputation procedures. 

After explaining different surveys in which this system is used, he presents some properties 

for the nearest neighbour imputation method. First, the imputation procedure is represented 

by a model. Then bias and variance are estimated. 

In this paper, Rancourt denotes the imputation value as follows 

A — + ^/(t) 

where is the donor I for unit k and is the auxiliary information defining the 

nearest donor, B is the parameter of the model and the error. 
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The paper follows the decomposition in Sarndal (1992) where 

(7^ — 7y) = (i^ — ) + (7^ — i^) with as the population total, 7̂  the estimation of the 

total given the sample and 7^ the estimator of the total given the sample in presence of 

nonresponse. Therefore, he represents the total variance as + Vj^p + . 

In this paper, Rancourt presents the imputation variance component obtained in Forget 

(1999) using the same model presented before. This component has the form 

ZMP — 2 
n 

where —— is the sampling weight, tj represents the number of times each donor is used, z, 
n 

represents auxiliary information, is the conditional bias of the estimator of the 

total. 

After exposing that the second component of the variance is small and of lower magnitude 

than the left component, he ends up with an estimator for the variance for the imputation 

part as follows 

V, /MP ^ 2 
n 

a 

We can see that the estimator of the variance obtained in this thesis in the case of nearest 

( ^ j7l 
neighbour imputation ^ - m , + ^ ( 4 ) — c o r r e s p o n d s to the 

t V '=1 y ~ 

estimator of the variance presented in this paper by Rancourt. 

^ 2 

The term —— does not apply to our formula since we do not use sampling, is the 

number of times the same donors are used multiply by a variable which in our case would be 
m, 

variable that indicates if the records belongs to a specific terminal node in our 
i i=i 

case), would be the number of missing cases -7M,)in our case) and cr^, in 

0 t 

our case, is the variance of a binomial given that we are estimating the total of cases which 

belong to a specific category. 
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CHAPTER 4 

l / N 7 V V L R A 4 i n E C A < % r 

jSAAIWL/ lTVO/V 

4.1. introduction 

The aim of this chapter is to assess the performance of using classification trees to form 

imputation classes, using a specific methodology called CART, which includes the use of a 

software package especially created for this technique. In order to assess this performance, 

several simulations were carried out using a database that contains synthetic missing values. 

In these simulations different classification tree sizes as well as different imputation 

methods were used in order to compare their effect on results. 

Moreover, biases and variances (and expected variance estimators for some cases) were 

calculated in order to evaluate the properties of the estimators used as explained in Section 

3.7 in Chapter 3. 

4.2. simulation procedure 

A brief description of all the steps taken in these simulations will be given in this section. 

This includes the use of the trees, imputation and more general material as, for example, 

the generation of the synthetic database. A more extended description of each step will be 

given in the following sections. 

4.2.1. Generation of the synthetic database. A synthetic database was created as shown in 

Figure 4.3.2.1. This contains artificial holes for which the real values are known. The 
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holes were created by an ignorable missing mechanism. In this case, the data is 

considered at least as missing at random. 

The generation of the database includes several steps: 

a) The first step was to get the database ready for the simulation. As will be 

explained in the data description, the information used corresponded to the UK 

1991 Census. This database was given in an ASCII format and it had to be 

converted into a readable format such as FOXPRO or SAS for carrying out the 

simulation. A process in SAS was followed to match the structure of the database 

(dictionary) with the data itself. The resulting database is called an "original 

database". 

b) Second, once the original database was in a readable format, personal information 

was separated from household information in order to treat the two sets of 

variables at different times. 

c) The third stage was to find the pattern of missing information in order to create 

the artificial holes for the comparison. This stage included the elaboration of a 

SAS routine for finding all the possible combinations of missing information in the 

database and how much of the total they represented. The output of the routine 

was a complete list of all possible combinations of missing variables with their 

corresponding percentage with respect to the total, as shown in Appendix 1. 

d) Fourth, all the records with missing information were deleted from the database 

in order to create a "complete database", which is a database with only fully 

observed records. Only 10.82% of the records were deleted due to the percentage 

of missing information present in the original database as explained in Section 

4.3.2. 

e) Fifth, after the complete database had been constructed, the pattern of missing 

information found in c) was used for creating artificial holes. Then, a "synthetic 

database" was generated by replicating the pattern of missing information 

randomly on the complete database. This synthetic database therefore contains 

holes for which the real values are known in order to measure the accuracy of the 

imputation results. 

4.2.2. Growing trees. Different trees were grown for each target variable using the 

complete database. 
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a) For each target variable, three different tree-sizes were used in the analysis in 

order to compare the effect of the size on the imputation results. The selection 

of the sizes is explained in Section 4.5.2. 

b) After all the trees had been grown, the records with missing values in the target 

variables were dropped into each tree to find out which terminal node they will 

end up in for the imputation. This was made for each different tree-sizes. The 

complete process is explained in Section 4.5.3. 

4.2.3. Imputins. After the different trees were grown, imputation was carried out 

independently for each of the trees. 

a) The three different imputation methods described in Section 3.4 were combined 

with the three different tree sizes to obtain 9 different imputation results for 

each target variable. This was made using trees grown with the complete 

database. 

b) For each of the trees, the imputations were produced independently into each 

terminal node. Then, the results were summarised in order to be compared with 

the results from other trees. 

4.2.4. Evaluation. Different graphs, tests, biases and variances were used for the evaluation 

of the imputation. 

a) Cross-tabulations between the imputed values and the real values were made for 

all of the possible combinations of tree sizes and imputation methods. 

b) Different graphs were made for all of the above tables in order to compare 

preservation of joint and marginal distributions and preservation of individual 

values. 

c) Tests were also run for each of the cross-tabulations in order to confirm the 

preservation of joint and marginal distributions and of individual values. 

d) Biases and variances were estimated for imputed variables in order to assess the 

properties of the estimators used. Additionally, estimation for the variances in the 

case of Frequency Distribution and Nearest Neighbour were also obtained. 
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4. 3. data 

4.3.1. Data description 

The database used for the analysis consists of a group of variables measured for one single 

County of England in the 1991 UK Census. The variables used refer to persons in households. 

Neither the household variables nor identification variables were included in the analysis. 

Because the database was not edited completely for all of the variables and all of the 

persons, the information used in the analysis is only composed of the variables for which all 

the records were 100% edited in the database. That is, for all of the persons in the database, 

all the variables were 100% corrected by the editing process. This is important at the 

imputation stage as i t implies that one can be practically sure that the data do not contain 

inconsistencies. 

Different stages were followed in order to get the database ready for the analysis. 

As mentioned before, the first stage was to transform the ASCII database into a readable 

format as DBASE or SAS file. This included matching the structure of the database (the 

dictionary) with the database itself, identifying all the variables for all of the records. 

The size of the database used (original database) is 222872 records with 23 variables. 

Because not all of the variables were useful for the analysis, all the identification variables 

were dropped as well as the variables for which the information was not relevant. 

Table 4.3.1.1 shows the final list of variables used for the analysis and their descriptions. 

Table 4.3.1.1 

List of variables included in the analysis 

Variable Definition 

AGE Age of the person, calculated from date of birth 
ALWPRIM Primary activity last week 

COB Country of birth 

ETHNIC Ethnic origin 

LTILL Long term illness 

MARCON Marital status 

SEX Sex 
WELSH Welsh language abilities 

As can be seen, all of the variables are categorical, except for the variable AGE, which is 

numerical. This variable was converted to a categorical one by grouping it for the analysis. 
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Because some of the variables originally had too many categories for growing trees, they 

were collapsed. Then, the criterion was to collapse all the variables with more than ten 

categories. A complete list of variables with their original categories as well as new ones is 

Tables 4.3.1.2. 

Tables 4.3.1.2 

Single Variable Definitions 

Table A 
AGE 

Group 1 

Group New Code 

0-4 1 

5-9 2 

10-15 3 

16-18 4 

19-21 5 

22-24 6 

25-29 7 

Group New Code 

30-34 8 

35-39 9 

40-44 10 

45-49 11 

50-54 12 

55-59 13 

60-64 14 

Group New Code 

65-69 15 

70-74 16 

75-79 17 

80-84 18 

85 + 19 

AGE 

Group 2 

Group New Code 

0-4 7 

5-15 6 

16-24 5 

25-34 4 

3 

55-64 2 

65 + 1 

Table B 
ETHNIC 

Group Codes New Code 
White 00 1 
Any black including mixed 01 / 02 / 70-80 2 
Asian 03-05 3 
China / Other including other mixed 06 / 81-97 4 

Table C 
COUNTRY OF BIRTH 

Countries Codes New Code 
UK 601-609 1 
Europe / USA 610-612 / 639-641 / 645-671 / 679 2 
Indian Sub-continent 632-635 3 
Africa / Caribbean 613-631 / 642-644 / 672-678 / 680 4 
Asia / Central and South America / Other 636-638 / 681-702 5 

Table D 
PRIAAARY ACTIVITY LAST WEEK 

Primary Activity Codes New Codes 
Employee working ful l t ime / 01 / 
Employee working part time / 02 / 
Self employed, employing others / 03 / 1 
Self employed, not employing others / 04 / 
Government employment or training scheme 05 
Waiting to take/start a job / 06 / 2 
Unemployed / looking for a work / 07 
At school or in full time education / 08 / 
Unable to work because of long term disability / 09 / 
Retired from paid work / 10 / 3 
Looking after home/family / 11 / 
Other economically inactive 12 
No code required $ 4 
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Table E 
SEX 

Male 1 
Female 2 

Table G 
LONG TERM ILLNESS 

Has a health problem 1 
Does not have a health problem 2 

Table F 
WELSH 

Does not know Welsh 0 
Can speak Welsh 1 
Can read Welsh 2 

Table H 
MARITAL STATUS 

Single 1 
Married (first marriage) 2 
Remarried 3 
Divorced 4 
Widowed 5 

It is important to point out that new versions of CART are available, handling much more 

categories for the variables used. However, using too many variables with too many 

categories can make the process of growing a tree very slow and make the analysis more 

difficult. 

4.3.2. Pattern of missins information 

The second stage in the process involved looking at the pattern of missing information 

present in the data. This stage included the elaboration of a SAS routine for finding all the 

possible combinations of missing information in the database and how much of the total they 

represented. The output of this routine was a complete list of all possible combinations of 

missing variables with their correspondent percentages with respect to the total, as shown in 

Appendix 1. 

As can be seen in Appendix 1 the pattern of missing information was not a straightforward 

one. This included a large number of combinations (168 combinations in total), with up to 6 

different variables missing at the same time. This fact made the possibility of creating a tree 

for every single combination of missing variables very difficult. 

Table 4.3.2.1 shows an example of the missing combinations used in the simulations carried 

out in this thesis 
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Table 4.3.2.1 

Missing combinations used for the simulations 

(original database) 

COB ETHN C LT LL 
16.24 
13.37 

it can be seen from this table that with only three variables involved we have seven different 

combinations of missing information. 

The total number of records with missing information is 24116, which represents 10.82 % of 

the original database (222872 records). 

To generate the synthetic database, firstly, all records with at least one missing value were 

deleted from the original database, obtaining a new "complete database" which contains 

198756 records ( 222872 - 24116 ). Secondly, the pattern of missing information found at the 

beginning was randomly reproduced on the complete database. This procedure was carried 

out using a SAS routine for generating the artificial holes using a simple random sample 

without replacement. That is, for each combination of variable with missing information, a 

simple random sample without replacement was selected from the complete database in 

order to delete their values. The size of each random sample depended on the size of the 

combination missing, as presented in the last table. In this way, the synthetic database was 

created, containing 198756 records of which 21520 have missing values (10.827% out of 

198756). 

Table 4.3.2.2 shows the combinations and their totals used in this analysis after creating the 

synthetic database 

Table 4.3.2.2 

Missing combinations used for the simulations 

(synthetic database) 

COB ETHNIC LTILL 
16.24 
3.37 
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The sizes of all these databases are shown in Table 4.3.2.3 

Table 4.3.2,3 

Databases sizes and Percentages of missing information 

Database Size Complete Information Missing Information 
Original Database 222872 198756 10.820% 
Complete Database 198756 198756 None 
Synthetic Database 198756 177236 10.827% 

The whole procedure of the generation of the database used for the analysis is shown in 

Figure 4.3.2.1. 
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Figure 4.3.2.1; SYNTHETIC DATABASE GENERATION 

ORIGINAL DATABASE (222872 records) COMPLETE DATABASE (198756 records) 

Alrprim LtiU Sex Cob Welsh Marcon Age Ethnic 

m m m m m m 
Deleting cases 

cases with 

missing values 

s k p f z ; 

Alrprim LdH Sex Cob WeUh Marcon Age Ethnic 

Aplication of Missing Pattern 
Step (3 ) 

SYNTHETIC DATABASE (198756 records) 

' Step f f ) 

MISSING PATTERN 

Alrprim LtiU Sex Cob Welsh Marcon Age Ethnic 

m m 
### 

In order to compare the 
imputation results, a 
synthetic database was created 
(database with artificial holes 
for which the real values 
are known) 

The steps for the generation 
of this database is as follows; 

Steps 

1. Finding the pattern of 
missingness 
Find the pattern of missing 
information from the original 
database 

2. Creating a complete data 
Delete all the records with 
missing information from the 
original database 

3. Creating synthetic data 
Replay the pattern of missing 
information found in the 
original database on the 
complete database 



4.3.3. Databases used in the analysis 

Every time a combination of variables with missing information is chosen to define a target 

variable, the remaining information changes as well since different variables are left as 

covariates (auxiliary variables). Therefore, depending on the combination used as a target, 

the databases used for the analysis (growing trees, etc.) are different. 

The sizes of the three databases depending on the target combination studied for the 

univariate case are shown in the next table 

Table 4.3.3.1 

Databases sizes for the Univariate Case 

Variable Database Size Missing Information 
Any 198756 (observed records) None 

Ethnic 198756 - 3916 (Records with Ethnic missing) independent variables 
Cob 198756 - 1751 (Records with Cob missing) Independent variables 
LtiU 198756 - 3224 (Records with Ltill missing) Independent variables 

It is important to point out that, for simplicity, only one database is used for growing the 

tree independently of the missing combination study. The database used is the one 

containing only fully observed records for all the variables and it is the "complete database" 

shown in Table 4.3.2.3. 

It is also important to point out that the analysis could be done including missing information 

for the covariates, however, for simplicity, only complete information is included in the 

generation of the tree. A previous study by Mesa, Tsai and Chambers (2000) shows that the 

inclusion of missing information for growing the tree seems to have no impact on the results 

when using the same imputation procedures used in this thesis. This study presents the case 

in which missing information for the auxiliary variables is used in the growing-tree process. In 

this case, trees were created using and not using missing information for the auxiliary 

variables in order to compare the impact of the use of missing covariates on the imputation 

results. The results showed that the use of variables with missing information when creating 

the classification tree by using CART does not have a major impact on the imputation results. 

That is, the results obtained for all of the imputation methods are very similar in both cases. 
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4.4. classification 

The first step of the process is the classification of the units (persons) into the terminal 

nodes of the tree. This classification was made using the CART methodology described in 

Chapter 2. The specific features of this methodology used for this simulation are now 

described. 

4.4.1. Splitting criterion 

Since the variables used are categorical, the criterion based on the Gini index used to 

classify categorical variables was selected to split the elements in this study. 

The impurity function defined by Gini has the form 5 (?) = 1 - SQ in which SQ is the sum 

of squared probabilities p{j\t). That is, 5 (?) = 1 - ^ / ? ^ (7 |?), where 5 (?) is a node 
j 

impurity function defined as 0(/?(l | i), ,p{j \ ?)) (relative proportion of class j cases in 

node t), and p{j | i ) is defined by p{j 11) = p{j,t)lpit), with pit) is the probability that 

any case falls into node t where pit) = y]. p{j, t) 

In this analysis the misclassification cost remained constant. In this way, it was assumed that 

all the costs for misclassifying class j , as a class are equal to 1 for all . 

4.4.2. Class assignment rule 

Given that one of the imputation methods used involves the use of the class assignment, it is 

important to define how this assignation was made. 

Each terminal node teT has an assigned class 7 e {l, , j ] , denoted by j(t). This 

depends on how the prior probabilities are set. In this analysis, the prior probabilities were 

assumed to be equal, then the class assignment rule j{t) is defined by the plurality rule. 

That is, node t is classified as the class for which Mj(t) (number of elements with category 

j in node t in the learning sample) is largest. (See Section 2.3.4. for details). 
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4.5, tree process 

4.5.1. Growing the tree 

Once the variable to be imputed is selected, a tree for that variable is grown. The process of 

growing a tree is very straightforward. The only necessary requirement for growing a tree 

using the CART software is the specification of the set of explanatory variables and 

identification of the response variable. Then, all the software instructions were followed in 

order to obtain the tree. 

When missing values are present in the target variable (variable for which the tree is grown), 

all the cases are automatically deleted by the software. A case cannot be classified if it does 

not have its respective class. However, when missing values are present in the auxiliary 

variables, the cases are still usable for the process of growing the tree. This is possible by 

the use of surrogates defined by the explanatory variables with non-missing values as 

explained in Section 2.3.5 in Chapter 2. However, due time constraints, and since including 

missing information in the auxiliary variable does not seem to have any major impact on the 

results, databases using missing information in the auxiliary variables are not used in this 

simulation. An example of using surrogates for classifying missing information in the auxiliary 

variables is presented by Mesa, Tsai and Chambers (2000). 

4.5.2. Selection of the tree size 

On occasion, trees can have a very large number of terminal nodes. When the size of the 

tree is very large, the imputation process becomes a very long and time consuming one. 

Hence, a decision about the size of the tree used for the analysis is an important aspect to 

consider in this chapter in order to perform all the simulations required for the analysis. 

However, the use of different sizes of trees is also desirable in order to compare the 

effectiveness of the imputation procedures when different numbers of terminal nodes 

(imputation classes) are used. The process followed for making those decisions is given 

hereafter. 

When a tree is very large, it is usually necessary to find ways to "prune" it without 

compromising its effectiveness. One of the most common ways to prune a classification tree 

is by the use of its misclassification rate. As explained in Section 2.3.6 in Chapter 2, this rate 

is a measure of the percentage of cases misclassified by the class assignment rule used in any 

terminal node. As noted before, each terminal node is given a class, in this case, depending 

on the modal category for that node. 
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Figure 4.5.2.1 plots the change in the misclassification rate calculated by the cross-

validation method of a CART tree mentioned in Section 2.3.6 for the variable Primary 

Activity Last Week by the number of terminal nodes. 

Misclassification Rate 
ALWPRIM 

m 

14 18 21 28 29 34 45 4 7 99 523 

No. of Terminal Nodes -Cross-Validation 

Figure 4.5.2.1 Misclassification Rate Plot 

It can be seen that the misclassification rate clearly decreases until the tree has 7 terminal 

nodes and then i t remains relatively constant. Similar patterns were observed in the 

misclassification rate figures of all other trees investigated in this analysis. 

The three different sizes chosen were based on a compromise between the misclassification 

rate and the number of terminal nodes. This implied the use of misclassification rates, which 

were as small as possible with a manageable number of terminal nodes. Then, a "small" tree 

was defined as having around 7 terminal nodes, a "medium" tree with around 15 terminal 

nodes and a "large" tree with around 30 terminal nodes. 

Since the misclassification rate is very stable after certain point as shown in Figure 4.5.2.1, 

large trees (larger that 30 terminal nodes) were not used due to time consuming in the 

imputation process. 

CART software allows for an "optimal" tree to be built. As explained in Chapter 2, this is 

done by initially growing the largest possible tree and then pruning i t back until a specified 

criterion is reached. This criterion is based on a compromise between the cost complexity of 

the tree (based on the number of terminal nodes) and its misclassification rate as shown in 

Section 2.3.7. Occasionally, the optimal tree could be the largest possible tree. 

Whenever possible, the performance of the optimal tree was compared against the rest of 

those selected in order to evaluate differences between the optimal tree performance and 

other trees. 
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The next table present the results of the expected values of the point estimates and their 

variances for the four categories of the variable Ethnic v/hen using different tree sizes. More 

information such as bias and standard deviations for this case can be seen in the Appendix 2. 

Table 4.5.2.1 

Expected values of the point estimates for the total and their variances depending 

on the number of terminal nodes used for the variable Ethnic 

Categories 

Nodes 2 ( y ) ^ ( 7 ) ^ ( y ) 

2 142189 465 3?%4 403 7047 97 9796 151 

3 142189 463 39725 365 7047 96 9796 141 

4 142189 465 39724 366 7047 80 9796 133 

10 142189 464 39724 366 7046 80 9797 136 

13 142189 464 39724 366 7046 80 9797 136 

In general, it can be seen from last table that neither the expected values of the point 

estimates nor their variances change very much v/hen using different number of terminal 

nodes, however, we will see later in this chapter that using trees for forming the imputation 

classes does improve the imputations results. In this sense, we could say that there are not 

real differences between choosing a big or a small tree but only when taking into account 

computational and time resources. 

4.5.3. Classifying the records for imputation 

After the tree is grown using the observed cases for the auxiliary variable, the records with 

missing information in the response variable were "dropped down" the tree. This involved 

the identification of the terminal nodes (imputation classes) in which those records end up in 

the tree. The discovery of these terminal nodes also defines the pool of records from which 

imputed values will be obtained (pool of donors). 

The process of dropping the records with missing information down the tree uses the set of 

rules (classification structure) that generate the tree. These rules categorise the records 

with missing information in the response variable depending on the values of the auxiliary 

variables. This requires each case to have sufficient information, in terms of the explanatory 

variables to allow for the classification to be done. 

Then, the final result will be two different groups of records in each terminal node of the 

tree. One group is the pool of donors and the other group is the pool of recipients. 

Figure 4.5.3.1 shows an example of a classification tree generated by CART 



Figure 4 . 5 . 3 . 1 

Example of a Classification Tree Generated by CART 

(Variable: Primary Activity Last Week) 
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The tree shown in the last figure is a classification tree for the variable Primary Activity Last 

Week (ALWPRIM). There is a set of conditions associated with each terminal node, which 

define that node, and these are given by the classifiers as explained in Section 2.3.1 in 

Chapter 2. For example, to reach terminal node 1, the record has to have values 3,4,5,6,or 7 

in the variable AGE to be located in node 2 (instead of node 7) and then value 7 for the same 

variable AGE to be located in terminal node 1 (instead of node 3). After the whole tree is 

done, records with ALWPRIM missing but observed values for the rest of the variables can be 

dropped down the tree in order to be classified. The values of ALWPRIM missing can then be 

imputed from the range of values of AWLPRIM of those "observed" cases present in the 

specific terminal node where the records with missing values end up, using any of the 

imputation methods employed in the analysis. 

After classifying all the records with missing information by the tree structure, the 

imputation was carried out independently at each terminal node. The imputation methods 

used for the analysis are explained in the next section. 

4.6. imputation methods 

Three different imputation methods were used in this research as described in Chapter 3. A 

brief reminder of those methods. 

Frequency Distribution Method 

As described in Section 3.4 in Chapter 3, the probability distribution method can be applied 

in practice in two different ways, the way in which probability of having an specific class is 

given to the recipients depending on the probability distribution obtained In that terminal 

node, Probability Distribution imputation method itself; or the way in which the frequency 

distribution of the terminal node defines how many records will have an specific class 

assigned, Frequency Distribution imputation method. 

This thesis uses the Frequency Distribution method instead of the Probability Distribution 

method due to its computational simplicity. 

In the Frequency Distribution case the response distribution of the terminal node determines 

the values to be Imputed. It means that the imputations will depend on the frequencies of 

the response variable in each terminal node. 
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Hishest Probability Method (or Modal Imputation) 

This method imputes the value that is "most likely" (i.e. has the highest probability) to all of 

the records v/ith missing values in a specific terminal node as explained in Section 3.4. 

Nearest Neighbour Method 

As also described in Section 3.4, in this case, distances between the recipient and each 

possible donor v/ithin the node are calculated and the "nearest" donor defines the imputed 

value for that particular recipient. The nearest donor is then determined by the set of 

auxiliary variables. That is, the distance betv^een the two records (recipient and possible 

donor) is calculated by the differences between their values for each of the auxiliary 

variables. 

It Is important to point out that a record can be used more than once as a donor. This means 

that if a record has the less distance to two different recipients it could be used as a donor 

to fi l l in the missing values for both of the recipients. 

Moreover, when a recipient has the same distance to two different donors, one of the donors 

is selected randomly with equal probabilities. 

All the imputation methods were applied to all of the tree sizes in order to obtain 

information about the relationship between the different imputation methods and the 

different tree sizes. The comparison is made in the results section. 

4.7. evaluation of imputation performance 

4.7.1. in troduction 

The evaluation should depend on the aims of the study and the information available for 

testing the results. This must be decided before the simulation is carried out and all the key 

aspects of the investigation must be taken into account. 

In this work, we evaluate the imputation procedure as a whole, including the classification 

tree used. Different aspects are taken into account for carrying out the evaluation: 
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If a single variable is being imputed, as in this case, the evaluation of the performance of the 

imputation is based on: 

/ a comparison of marginal distributions (real and imputed values), 

/ a comparison of the individual values (real and imputed values for each single record) 

/ assessment of the properties of the estimator used 

The results obtained from the simulations carried out can be analysed from different 

perspectives. 

In general, different comparisons can be done depending on the area to be evaluated. 

1. to assess the impact of using a classification tree for imputation, comparisons of the 

results of imputation using trees and not using trees can be done. 

2. to evaluate the performance of the different imputation methods when using 

classification trees, comparisons between the results obtained using different 

imputation methods can be done. 

3. to evaluate the properties of the estimators used in the analysis, bias and variances can 

be estimated. 

4. in addition, if more details want to be given, comparisons can be made between the 

different categories of the variable being imputed. 

In this thesis, the main aspect to be analysed are the differences in the imputation 

performance regarding the use of classification trees for forming the Imputation classes. 

In any case, the evaluation can be made by comparing marginal distributions and individual 

values before and after the imputation. For some authors, preservation of the distributions 

(both individual marginal distributions and joint distributions) and the preservations of 

individual values are the most important aspects to be evaluated when doing imputation. For 

others, bias and variances of the estimator used are more important, in this thesis, we try to 

cover as much as possible given the available resources. 

The preservation of marginal distributions is essential to be assessed when the imputed data 

is going to be used for estimating aggregates or totals. In this case, preserving marginal 

distributions guarantee an accurate estimation of these aggregates, since individual values 

are not needed separately, such as in descriptive studies wherein only calculations of 

parameter as totals and proportions are needed. However, there are some cases where the 

micro data is required, as for example analytical analysis at individual levels, where it is 

important to maintain relationship between variables for the subjects. In these cases, where 

single cases can be needed, the preservation of individual values is a crucial aspect to be 

assessed when using imputation procedures. 
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In order to evaluate the three aspects mentioned at the beginning of this section, three 

different criteria v^ere used. These are: 

^ Graphical comparison 

^ Test of agreement 

^ Bias and variance 

All these include comparisons betv^een real and imputed values. 

The first two components of the evaluation are based on a comparison of the performance of 

the different combinations of classification trees and imputation methods. As can be seen, 

there are a very large number of possible combinations to analyse. For this reason, a 

description of the different methods used for evaluating these aspects will be given next and 

results of those, for all of the possible combinations, wil l be given in Section 4.8. 

4.7.2. Graphical comparison 

This evaluation consists of a comparison of the real and the imputed marginal distributions 

and individual values of the variables used in the analysis. The aim of this evaluation is to 

compare the real against the imputed marginal distribution in order to assess how the 

imputation preserves the original marginal distributions. 

In order to carry out the comparisons mentioned above, two steps were followed. First, a 

cross-tabulation of the imputed values against the real values was produced. An example of 

this cross-tabulation is shown in the next table. 

Table 4.7.2 

Cross-Tabulation between real and imputed values for variable Primary Activity Last Week 

2819 cases in table 

|N I 
1N/RowTotal| 
iN/ColTobali 
|N/Total j 

Alwprim| Alwprim (real values) 
|2 |3 |4 

1 1787 ^ 4 2 1306 1 0 |1235 
|o .6372 |o .1150 |0 .2478 |o .0000 |0.438 
|0 .6542 |o .5703 |0 .3579 |0 .0000 1 
!o .2792 |0 .0504 |0 .1085 |0 .0000 1 

2 1138 1 27 1 68 j 0 1233 
|o .5923 |o .1159 |o .2918 1 0. .0000 |0.083 
|o. .1147 |o .1084 |0 .0795 jo, .0000 1 
1 0. .0490 1 0 .0096 |0 .0241 |0, .0000 1 

3 1278 1 1 30 1481 1 0 |839 
|0. .3313 |0 .0954 1 0 .5733 |o. .0000 |0.298 
|0. .2311 |0 .3213 |o .5626 |0. .0000 1 
|0. .0986 |o .0284 |0 .1706 |0, .0000 1 

4 1 0 1 0 1 0 1512 
|0. 0000 1 0. .0000 |0 .0000 fi-.0000 jo.182 
|0. 0000 |0. .0000 |0 .0000 ll- 0000 1 
|0. 0000 1 0. .0000 jo. .0000 |0. 1816 

ColToCl ̂ 2 03 1249 1855 1512 |2819 
|0. 427 |0. .088 |0, .303 |0. 182 1 
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In this case, the imputation was made for the variable Primary Activity Last Week (records 

for which variable ALWPRIM is missing), and using a specific tree size and a specific method 

for imputation. 

All the tables were produced using the software S-Plus. 

Second, two different types of graphs were made. The first kind of graph is for comparing 

marginal distributions. An example of this graph is next. 

Figure 4.7.2.1 

Comparison of Marginal Distributions 
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Here, the blue columns represent the distribution of the imputed values for all of the 

categories of the variable used (ALWPRIM), and the red columns represent the distribution of 

the real values for the same categories of the variable. On the top of the figure, the name of 

the variable and the method used for imputation can be seen. Information about the size of 

the tree used is also included in the results section. 

The second kind of graph is shown below and is used to compare how accurate the 

preservation of the individual values is. It compares each value of the variable before and 

after the imputation. 
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Figure 4.7.2.2 

Comparison of Individual Values 
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In this figure, the blue part of the column represents the percentage of cases belong that 

category whose values were recovered by the imputation. On the other hand, the red part of 

the column represents the percentage of records that belong that category whose records 

were incorrectly imputed. It can be seen that all together represent the percentage of 

original records that belong to a specific category. 

In this example, the percentage of records belonging to category 1 is 42.67%. After 

imputation, the percentage of records imputed correctly as a category 1 is 27.46% out of the 

total number of records in the database. This means, 64.35% of category 1 records were 

correctly imputed (27.46 out of 42.67) and the remaining 35.65% were imputed in any other 

category. 

4.7.3. Test of Agreement 

The aim of this evaluation is to determine whether or not marginal distributions, or even 

more individual values, are preserved after the imputation process is carried out. 

Two different statistics were used for comparing marginal distributions and individual values. 

The first comparison was between marginal distributions (imputed versus real) using a Wald 

Statistic proposed by Chambers (2000). This statistic tests how similar the two distributions 

are. Therefore, our null hypothesis is that both marginal distributions, imputed and real 

distributions, are equal versus the hypothesis that they are different. 

The statistic has the form: 

1 
W = -yi)' 

n ,=i 
~^(yi -yi)(yi ~ j , ) ' 
n ,=i 

- I 
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where represents the imputed value and the real values of Y for the i th unit and n 

is the number of records in the cross-tabulation across the categories of the variable being 

imputed. 

Under the hypothesis that the two marginal distributions (real and imputed) are equal, W 

should has an approximate chi-square distribution with p-1 degrees of freedom, where p is 

the order of the actual vs. imputed cross-tabulation mentioned before. 

The second statistic proposed by Chambers (2000) is used for testing whether or not the 

individual values were maintained after the imputation was carried out. Therefore, our null 

hypothesis is the preservation of individual values of Y by the imputation. For 

simplification, the statistic is called "Diagonal" in this work and has the form: 

D 
r ; 

V ^ ( ^ ) 

where D is the proportion of incorrectly imputed cases 

f=l 

with estimated variance 

F(Z)) = - - 1' Xx, - y - (y, - Xy, - )' ] j l 

Then, provided one cannot reject the hypothesis that the imputation method preserves the 

marginal distribution using the Wald statistic mentioned before, the preservation of 

individual values can be tested by using the confidence interval for D . In this case, 

D - 2-^V(D) should be less than zero in order to have some evidences that the individual 

values are preserved. In other words, if - 2 < 0 , then, the individual values can be said 

to be preserved. 

Both statistics are described in detail in Chambers (2000). All the values for the both 

statistics and their p-values are shown in the results section. 

An example of the table containing these results follows: 
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Table 4.7.3.1 

Wald statistic for Primary Activity Last Week by imputation method and number 

of terminal nodes 

Terminal Nodes Frequency Distribution Highest Probability Nearest Neighbour 

7 3.37 361.17 0.37 

14 4J0 336.06 3.66 

29 7.03 309.32 7.01 

In this table, the columns represent the different imputation methods used and the rows the 

different tree sizes used. The numbers in the table are the values for the Wald statistic. 

Similar tables are presented for the p-values of the Wald statistic and for the values of the 

Diagonal statistics for all the variables, imputation methods and tree sizes. 

This example was made using the same information used for the graphs shown before. 

4.7.4. Bias and Variance 

In order to study the properties of the estimators obtained by the imputation methods, 

biases and variances were estimated. These properties were studied in theory in Chapter 3. 

In this chapter, we assess their properties by simulation. 

Simulation study 

In order to obtain the bias and the variances of the estimators as well as estimates for the 

variance in some cases, a simulation was carried out. The simulation involved several steps, 

which are explained hereafter 

1. Generation of the databases. First, 1000 databases were created. Each database is a 

simple random sample of 9241 units of the complete database (which contains 198756 

records). These 1000 databases, which are called sample databases in this work, contain 

fully observed information. The size of the sample databases is such that it takes into 

account all the possible missing combinations used in the simulation study. The number 

of cases missing for each combination is shown in Table 4.3.2.2 in Section 4.3.2. 

2. Generation of the synthetic holes. The original percentages of missing information for 

the variables involved in the study were replicated on each of the sample databases 

using a simple random procedure without replacement. That is, for each combination 

missing, a simple random sample of records was selected without replacement from the 
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sample database in order to delete their values. The size of this selection depended on 

the number of cases missing for that specific combination. The variables for which the 

distributions are to be estimated in the univariate case are the same variables involved 

in the imputation process, these are Ethnic, Country of birth and Long-term illness. The 

total number of records missing in each variable is shown in Table 4.3.2.2. Thus, 7928 

records were missing in each sample database for the univariate case. 

3. Classifying the records for imputation. In order to carry out the imputation, each 

record within each sample database was classified using the set of rules generated by the 

tree used. All the records (including those for which Y was missing) were classified into 

specific terminal nodes depending on the values of the auxiliary variables. Since the size 

of the tree does not seem to have an effect on the imputation results (see Section 4.8.1 

for the univariate results), only one tree size was used for the simulation. 

Then, each sample was divided into the number of groups required depending on the size 

of the tree chosen for each specific variable to be imputed. 

4. Imputation. After each record was classified into its correspondent group, the 

imputation was carried out independently within those groups and then totalled in order 

to obtain the estimator required for the analysis. That is, 1000 estimates were obtained 

(each from each sample database) 

5. Calculation of the biases and variances. Once the 1000 estimates were obtained the 

bias, variance for the simulation and estimation of the variance (this was calculated only 

for two of the three Imputation methods) were obtained. These calculations were based 

on the 1000 samples as follows 

1000 

• Bias = ^ Y 

1000 

• Variance is the variability obtained from the 1000 estimates for the total. It is 

important to point out that the true variance can be calculated by using the 

formulas obtained in Chapter 3. However, given that in some cases only the 

model-based approach was used, we do not have the probabilities for each 

category of the response variable given by the model. Therefore, the value 

taken as a true variance is the variability of the 1000 estimates obtained from 

the simulations. 

Variance - — . Each estimation of the variance (for each sample) was 

1000 

calculated by using the respective formula for the variance estimator obtained 

for each method. 



Results and comments are shown in the results section. 

It is Important to point out that the approach undertaken for the generation of the sample 

databases (including the generation of the missing values) was essentially design-based. That 

is, the original database was used as a given population, and 1000 simple random samples 

were drawn from it (no model was used). This approach was used in order to simplify the 

simulation process. 

4.7.5. Implementation of a Hot Deck procedure 

As a basis for comparison a Hot Deck procedure was also implemented, since this is one of 

the most common imputation procedure employed in census data, as explained in Section 1.7 

in Chapter 1. 

The procedure employed for the comparison is a Sequential Hot Deck (Little and Rubin, 1987; 

Kalton, 1983; Kalton and Kalsbeek, 1992; Madow, et al 1983) using two different cases, 1) 

two variables totally observed for creating the imputation cells and 2) three variables totally 

observed for creating the imputation cells. For example, in case 1, two fully observed 

variables were cross-classified in order to form the imputation groups in which imputation is 

carried out. Within each cell, the procedure imputes each missing record with the value of 

the previous record on the list. If the previous record has also missing information for the 

variable to be imputed, the previous of that one was used to impute both records missing. 

The variables used for classifying the records before doing the imputation were AGE and SEX 

in the 2 classification variables case, and Age, Sex and Primary Activity Last Week in the case 

where 3 variables were used for classifying the records for the imputation. 

There are some significant differences between the hot deck approach and the approach 

proposed in this thesis. First, in the case of hot deck, the classification is created by a simple 

cross-tabulation between the different categories of the variables involved, while in the 

procedure proposed in this thesis, the classification is created by classification tree which 

looks for the best way in which this classification can be done based on a learning sample 

and taking into account misclassification costs and complexity of the classification. 

Second, the approach proposed in the thesis uses as many variable as it considers necessary 

for a more accurate classification, which can include not only two but more (even all of 

them) depending on the case, while the hot deck procedure uses only the variables that the 

analyst consider necessary based on experience and resources, which are normally not more 

than three. 

Third, depending on the variables to be imputed, the proposed approach can create a new 

classification according to that specific variable, while hot deck procedure uses the same 

classification for most of the variables. 
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Four, the imputation procedure is different in both cases. In the hot deck case, the 

imputation is carried out in a sequential way as explained before, while the method 

proposed in this thesis uses three different imputation methods which are different from the 

sequential imputation. 

4.8 results 

4.8.1.Using trees 

Table 4.8.1.1 shows the results of the values of the Wald statistic described in Section 4.7.3 

and their corresponding p-values. 

Table 4.8.1.1 

Wald statistic and p-values for the univariate case 

Wald Statistic P-values 

Variable Tree Size d.f. Freq. Dist. High. Prob. Near. Neig. Freq. Dist. High. Prob. Near. Neig. 

COB 6 4 2.90 168.25 5.67 0.57 0.00 0.22 

15 4 2.81 158.47 8.62 0.58 0.00 0.07 

18 4 3.38 163.32 3.97 O^W 0.00 0.40 

No Tree 4 3.04 369.00 2.76 0.55 0.00 0.59 

ETHNIC 4 3 0.67 364.32 1.56 0.87 0.00 0.66 

10 3 0.77 379.97 0.13 0.85 0.00 0.98 

13 3 0.85 382.52 1.32 0.83 0.00 0.72 

No Tree 3 0.08 1006.00 2.88 0.99 0.00 0.40 

LTILL 14 1 0.25 218.38 0.98 0.61 0.00 0.32 

21 1 0.29 202.24 0.82 0.58 0.00 0.36 

29 1 0.31 203.20 1.03 0.57 0.00 0.30 

No Tree 1 0.05 343.00 0.14 0.80 0.00 0.70 

In this table, small values of the Wald statistics (or equivalently, big values for the p-value) 

suggest no evidence to reject the hypothesis that marginal distributions are maintained and 

vice versa. Since the degree of freedom for each variable varies depending on the number of 

categories (i.e. each variable has a different critical value for the test), we simplify the 

analysis by using p-values. 

It can be noticed from this table that some variations can be found for the Wald Statistic, 

depending on the variable being imputed. However, given that all the p values of the Wald 

statistic presented in Table 4.8.1.1 for the Frequency Distribution and Nearest Neighbour, 
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are bigger than 0.05, one can say that marginal distributions are preserved even v/hen no 

trees are used. 

In the case of Highest Probability methods, we can see that marginal distributions are never 

preserved, even when classification trees are used. Therefore, the first conclusion is that it 

seems to be no improvement in the preservation of marginal distribution with the inclusion 

of classification tree in the imputation process. 

Table 4.8.1.2 contains the number of records imputed for each category for the variable 

ETHNIC using Highest Probability method. 

Table 4.8.1.2 

Number of records imputed by category and tree size for variable ETHNIC 

using Highest Probability method 

Category 4 Term.nodes 10 Term, nodes 13 Term, nodes No Tree 

1 2961 2972 2974 3492 

2 351 351 351 

3 71 68 68 

4 109 101 99 

As mentioned before, in the case of Highest Probability, there is not preservation of marginal 

distribution in any of the different tree sizes, as observed in Table 4.8.1.1. However, it can 

be seen that some of the categories of the variable being imputed are represented in the 

imputed marginal distribution when using a tree, which does not happen in the case where 

classification trees are not used. 

In this case, the use of the tree ensure the use of different categories when imputing, 

depending on the class assignment that define the terminal nodes class, while when trees are 

not used, the imputation will be made employing the category with highest probability in the 

whole database, which is just one as shown in Tables 4.8.1.2. 

Similar patterns were found for the rest of the variables 

Moreover, even when the use of a tree does not guarantee the preservation of the marginal 

distributions when using Highest Probability, an improvement in the value of the Wald 

statistic can be observed. There is a big gap between the values obtained when using trees 

and the value when trees are not used, as shown in Table 4.8.1.1. That means, there is a 

slight improvement in the preservation of marginal distributions when using trees. This 

improvement is because, even when there are some differences in the shape of the 

distribution, most of the categories of the imputed variable (sometimes all of them) are 

represented in the imputed distribution. In contrast, in the case where trees are not used. 
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the imputed distribution is formed by only one single category, as explained in the last point. 

This can also be seen from the graphs in Appendix 4 and Appendix 5. 

Table 4.8.1.3 contains the values of the Diagonal Statistic for the variables Country of Birth, 

Ethnic and Long Term Illness for the combination betv/een different imputation methods and 

different tree sizes. 

Table 4.8.1.3 

Diagonal Statistic values for the univariate case 

Variable Tree Size Freq. Dist. High. Prob. Near. Nefg. 

COB 6 12.22 6.72 11.09 

15 11.84 6.75 10.52 

18 11.56 6.78 11.22 

No Tree 19.95 10.68 11.60 

ETHNIC 4 24.22 13.37 19.50 

10 23.63 13.33 20.32 

13 23.53 13.33 19.17 

No Tree 34.66 20.17 19.67 

LTILL 14 9.56 6.41 9.07 

21 9.85 6.20 8^5 

29 9.22 6.22 

No Tree 12.72 6.81 9.13 

Provided one cannot reject the hypothesis that the imputation method preserves the 

marginal distribution using the Wald statistic as pointed out before, the preservation of 

individual values can be tested by using the confidence interval for D (proportion of 

incorrectly imputed cases) as explained in Section 4.73. In this case, D - 2^V(D) must 

be less than zero in order to have some evidences that the individual values are preserved. In 

other v/ords, if - 2 < 0 , then, the individual values can be said to be preserved, v/ith 

D 
. 

Then, if a confidence interval is calculated using the information provided by Table 4.8.1.3, 

we can observed that - 2 is closer to zero when trees are used than in the case of not 

using trees. This improvement can be observed from the point of view of percentage of 

records correctly imputed and it will be explained later. 
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In the case of Nearest Neighbour method, the values of are very similar in both cases, 

v/hen using or not trees. Then, it cannot be said the method performs better when using 

trees than when trees are not used. 

It can also be noted from Table 4.8.1.3 that there is a difference between the values of the 

statistic when using trees and the values when trees are not used for the first two methods 

Frequency Distribution and Highest Probability imputation. Then, in these cases, even when 

the diagonal statistics results indicate that the individual values are not preserved, the 

values of this statistic in the case of using trees are lower than the values when trees are not 

used. 

Therefore, another general conclusion for the univariate case is that the use of the tree 

improves the performance of the imputation results in terms of preservation of individual 

values depending on the method used. 

Tables 4.8.1.4 (as well as Appendix 7) present the "improvement" for the different 

combinations between tree sizes and imputation methods for the variables used in the 

univariate case. 

Table 4.8.1.4 

Improvement by variable, tree size and imputation method 

for the univariate case 

Variable Tree Size Freq. Distrb. High. Prob. Near. Neigh. 

COB 6 21.11 10.48 1.28 

15 22.28 10.40 2.74 

18 23.12 10.31 0.94 

No Tree 0.00 0.00 0.00 

ETHNIC 4 18.69 12.06 0U7 

10 19.86 12.14 -1.07 

13 20.07 12.14 0.83 

No Tree 0.00 0.00 0.00 

LTILL 4 6.03 0.75 0.12 

21 5.46 1 J 4 0.53 

29 6.69 1.10 1.03 

No Tree 0.00 0.00 0.00 

This measure of improvement is calculated based on the percentage of records correctly 

imputed when trees are not used and their differences with the percentage of records 

correctly imputed when trees are used. For example, the percentage of records correctly 

imputed for Country of birth when using a tree with 6 terminal nodes and Frequency 
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Distribution as imputation method is 73.48%, and the same percentage but in the case when 

trees are not used is 60.67%. Then, the improvement when using trees with respect to the 

case where trees are not used is 21.12%, which correspond to (73.48 - 60.67) / 60.67. 

Therefore, it can be said that there is an improvement in the performance of the imputation 

method when using a classification tree in about 21% compared to the case where trees are 

not used. 

If a comparison between the results from the case where trees are used and the case where 

trees are not used is made, we will notice that there is always an improvement in terms of 

records correctly imputed when using trees for the Frequency Distribution and almost always 

for the Highest Probability method. This improvement can reach more than 20% in some 

cases for the univariate case. 

It is clear that the highest improvement is always for Frequency Distribution method, 

followed by Highest Probability and Nearest Neighbour as the last one with almost no 

improvement. 

Therefore, we can say that even when the values of the diagonal statistic in the case of using 

tree reveal that individual values are not preserved, we can confirm that there is an 

improvement on the percentage of records correctly imputed when using trees. 

4.8.2.Comparing Tree-Sizes 

Table 4.8.1.1 and Table 4.8.1.3 show that there are some differences between the values for 

both Wald and Diagonal statistics when the tree size is changed. However, since the p-values 

for the Wald statistic are over 0.05, there is not enough evidence to reject the hypothesis 

that the individual marginal distributions are preserved in any of the cases. Similar 

conclusion can be drawn in the case of the Diagonal Statistic, where all the values, even 

when there are some differences, are big enough to confirm that individual values are not 

maintained. 

Therefore, the main conclusion about using different sizes for the tree is that increasing the 

size does not necessarily improve the imputation performance. The results obtained from the 

analysis show that the changes on the Wald statistic and the Diagonal statistic are not big 

enough to alter the conclusion that the imputation performance is not affected by the size of 

the tree. 

Additionally, the changes on both statistics do not follow similar pattern for all of the cases. 

Sometimes the best results are obtained from the smallest trees and sometimes from the 

biggest trees or even from the medium size trees. 
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Then, an important conclusion is that using complex trees does not necessarily lead to better 

imputation results. 

Moreover, Table 4.8.1.1 and Table 4.8.1.3 include the Wald statistic and the Diagonal 

statistic for the variable COB. In this case, three different tree sizes were used, in which the 

biggest is also the optimal tree given by CART. It is clear from the results that even when this 

optimal tree is used, there are not considerable differences in the results when comparing 

both marginal distributions and individual values. 

Therefore, we can say that the use of the optimal tree given by CART does not make major 

improvement in the performance of the imputation. The optimal tree given by CART is meant 

to be optimal in terms of complexity and misclassification rate. In this sense, the use of the 

optimal tree could be expected to give the best performance, however, it can be observed 

from the results that this hypothesis is not necessarily correct. 

Table 4.8.2.1 contains the percentage of missing data for each variable, the percentage of 

records incorrectly imputed for the different imputation methods as well as the 

misclassification rate for each specific tree. 

Table 4.8.2.1 

Percentage of missing data. Percentage of records incorrectly imputed and 

misclassification rate by variable, imputation method and tree size for the univariate 

case. 

Variable % Miss, data Tree Size Freq. Dist. High. Prob. Near. Neig. Miscl. Rate 

Cob 7.26 6 26.52 15.63 24.40 14.99 

15 25.81 15.69 23.31 14.60 

18 25.30 15.75 24.66 14.57 

No tree 39.33 23.63 25.36 

Ethnic 16.24 4 33.44 20.21 28 18.87 

10 32.78 20.16 2&98 18.82 

13 32.67 20.16 2A6 18.81 

No tree 43.92 28.80 28.20 

Ltii l 13.37 4 16.31 11.26 15.54 11.05 

21 16.76 10.92 15.20 10.99 

29 15.79 10.95 14.78 10.97 

No tree 21.07 11.93 15.65 

There seems to be a relationship between the misclassification rate and the percentage of 

records incorrectly imputed for each variable. It can be seen from this table (and from the 
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set of graphs in Appendix 8) that the percentage of records incorrectly imputed increases 

when the misclassification rates increases and even more when trees are not used. 

Additionally, the percentage of records incorrectly imputed look stable as well as the 

misclassification rate within each variable for each imputation method. 

Also, we can see that these results are not related to the size of the tree, that is, percentage 

of records incorrectly imputed and misclassification rate look very stable across the different 

tree sizes. 

4.8.3.Comparing Imputation Methods 

Table 4.8.1.1 and Table 4.8.1.3 include the p-value for the Wald statistic and the Diagonal 

statistic for the case of the variable Country of birth. The values for this value illustrate how 

the individual marginal distribution for this variable is maintained and how individual values 

are not preserved. 

However, on the other hand, Table 4.8.3.1 shows the total of records correctly imputed 

(including values for variable COB) depending on the size of the tree when using Frequency 

Distribution method for imputation. It is clear that the use of the tree increases this numbers 

with respect to the case where trees are not used. Similar patterns can be observed for 

ETHNIC and LTILL even when the differences are smaller in the last case. 

Table 4.8.3.1 

Total of records correctly imputed by variable, tree size and 

imputation method for the univariate case 

Variable Tree Size Freq. Distrb. High. Prob. Near. Neigh. 

COB 6 1147 1317 1180 

15 1158 1316 1197 

18 1166 1315 1176 

No Tree 947 1192 1165 

ETHNIC 4 2324 2786 2514 

10 2347 2788 2480 

13 2351 2788 2528 

No Tree 1958 2486 2507 

LTILL 4 2406 2551 2428 

21 2393 2561 2438 

29 2421 2560 2450 

No Tree 2269 2532 2425 

(total of cases: 3492) 

Table 4.8.3.2 shows these results in term of percentages. Appendix 6 shows a graphical 

representation of this table by variable. 
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Table 4.8.3.2 

Percentage of records correctly imputed by variable, tree size 

and imputation method for the univariate case 

Variable Tree Size Freq. Distrb. High. Prob. Nera. Neigh. 

COB 6 73.47 84.36 75.59 

15 74.18 84.30 76.68 

18 74^0 84.24 75.33 

No Tree 60.66 76.36 74^d 

ETHNIC 4 66.55 79.78 71.99 

10 67.21 79^3 71.01 

13 67.32 79.83 72.39 

No Tree 56.07 71.19 71.79 

LTILL 4 83.68 88.73 84.45 

21 83.23 89.07 84.80 

29 89.04 85.21 

No Tree 78.92 88.06 84.34 

Therefore, in the case of Frequency Distribution, there is always an improvement when using 

tree. This improvement is not evident when comparing marginal distributions but it can be 

observed when comparing individual values. 

Next example contains the values for the Wald statistic (p-value) and the Diagonal statistic 

for the variable Ethnic. 

Tables 4.8.3.3 

Wald Statistic, p-value and diagonal statistic for the variable Ethnic 

Wald Statistic Diagonal Statistic 

Tree Size Prob. Distrb. High. Prob. Near. Neigh. Tree Size Prob. Distrb. High. Prob. Near. Neigh. 

4 0.67 364.32 1.56 4 24.22 13.37 19.50 

10 0.77 379.97 0.13 10 23.63 13.33 20.32 

13 0.85 382.52 1.32 13 23.53 13.33 19.17 

No Tree 0.08 1006.00 2.88 No Tree 34.66 20.17 19.67 

Wald Statistics P-value 

Tree Size Prob. Distrb. High. Prob. Near. Neigh. 

4 0.87 0.00 0.66 

10 0.85 0.00 0.98 

13 0.83 0.00 0.72 

No Tree 0.99 0.00 0.40 

These tables show that there are not big changes neither when the size of the tree is altered 

nor when trees are not used when using Nearest Neighbour method. The behaviour of the 

Nearest Neighbour method remains relatively constant in this sense. 
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It is important to point out that, in general, the use of trees does not make any improvement 

in the results when using Nearest Neighbour, probably because the nearest neighbour donor 

will be found either using or not classification. We can see that the results remain the same 

when comparing both marginal distributions and individual values. Additionally, the 

percentage of records correctly imputed remains fairly stable when using Nearest Neighbour 

as showed in Table 4.8.3.2. The use of the tree will probably improve the time consumed in 

the imputation process given that donors will be only sought in the corresponding terminal 

node. 

More examples of this point can be found in Table 4.8.1.1 and Table 4.8.1.3 in Section 4.8.1. 

It can be seen from Table 4.8.3.2 that the best method in preserving individual values is the 

Highest Probability with up to almost 90% of the cases correctly imputed in some situations. 

The percentage of records correctly imputed with this method depends, in a way, on the 

shape of the distribution when using trees and of course on the accuracy of the classification 

tree. 

Thus, in general, the best methods for preserving marginal distributions are Frequency 

Distribution and Nearest Neighbour. These two methods perform very well even when trees 

are not used, which is not the case of the Highest Probability method. Example can be found 

in Appendix 4, which are graphical representations of the Wald statistic from Table 4.8.1.1. 

However, in terms of preservation of individual values, Highest Probability seems to be the 

best performing method. 

4.8.4.Companns Catesories 

Tables 4.8.4.1 contain the percentage of records incorrectly imputed by imputation methods 

tree sizes and categories, as well as the misclassification rates obtained from the different 

tree sizes by categories of the different target variables. 
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Tables 4.8.4.1 

Misclassification rates by tree sizes and categories and percentage of records incorrectly 

imputed by imputation method, tree size and categories for the univariate case 

Table A 

Variable: COUNTRY OF BIRTH 

Percentage of Records Incorrectly Imputed 

Misclass. Rate Freq. Dist. High. Porb. Near. Neigh. 

CaL Records 8 T N 15TN 27 TN 8TN 15TN 27 TN N TRE 8TN 15TN 27 TN NTRE B I N 15TN 27 TN NTRE 

1 137958 1.47 1.68 1.61 14.18 13.59 13.26 22.48 1.34 1.59 1.51 0.00 13.59 11.24 13.09 14.35 

2 11608 100.00 100.00 100.00 94.21 90.91 90.91 95.04 100.00 100.00 100.00 100.00 85.95 90.91 91.74 92.56 

3 3648 57.15 43.75 43.01 72.50 70.00 62.50 97.50 57.50 # ^ 0 40.00 100.00 70.00 65.00 52.50 60.00 

4 18735 36.94 37.59 37.97 43.11 43.11 41.92 91.62 34.73 38.32 40.12 100.00 35.33 37.13 40.72 34.13 

5 5287 74.48 62.74 62.74 73M7 78.05 % U 2 63.41 58.54 5 & M 100.00 78.05 70.73 78.05 

Table B 

Variable: ETHNIC 

Percentage of Records Incorrectly Imputed 

Misclass. Rate Freq. Dist. High. Porb. Near. N e l ^ . 

Cat. Records 4 T N 10 TN 13 TN 4TN 10 TN 13 TN N TRE 4TN 10 TN 13 TN NTRE 4TN 10 TN 13 TN NTRE 

1 126733 2.68 2.47 2.40 19.95 19.55 19.47 28.20 3.14 2.90 2.86 0.00 16.25 17.06 15.33 16.37 

2 35416 58.03 58.03 58.03 63.03 60.91 60.76 77.76 60.34 60.34 60.34 100.00 51.56 53.26 51.56 52.27 

3 6286 58.10 58.38 58.38 69.84 71.43 69.05 94.44 63.49 63.49 63.49 100.00 61.90 65.87 69.84 65.87 

4 8801 66.41 68.34 69.19 79.89 79.89 81.03 94.83 70.11 72,41 72.99 100.00 75.86 74.14 75.29 72.41 

Table C 

Variable: LONG TERM ILLNESS 

Percentage of Records Incorrectly Imputed 

Misclass. Rate Freq. Dist. High. Porb. Near. Neigh. 

Cat. Records 14 TN 21 TN 29 TN 14 TN 21 TN 29 TN NTRE 14 TN 21 TN 29 TN NTRE 14 TN 21 TN 29 TN NTRE 

1 20753 86.99 84.16 84.54 69.97 72.01 67.93 89.21 86.01 82.51 82.80 100.00 68.22 66.47 65.01 66.76 

2 156483 0.98 1.30 1.22 9.04 9.28 8.73 11.85 1.15 1.22 1.22 0.00 8.41 8.25 7.98 8.73 

It can be noticed from these tables that there seems to be a relationship between the 

misclassification rates obtained from the tree and the percentage of records incorrectly 

imputed by categories. Both the misclassification rate and the percentage of records 

incorrectly imputed by categories tend to follow similar patterns most of the time. It can 

also be observed that this relationship is not necessarily the same for the case where trees 

are not used. 
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Another interesting finding obtained from this table is that in the case when trees are not 

used, the percentage of records incorrectly imputed by categories is usually higher (or at 

least equal) than the percentage of records incorrectly imputed when trees are used for the 

Frequency distribution and Highest Probability methods. 

Moreover, depending on the imputation method used, the percentage of records incorrectly 

imputed obtained from the case where trees are not used can be near to 100% for most of 

the categories as is the case of Highest Probability method where only one category is used 

for imputation. This corroborates the statement made previously that the use of trees 

improves the performance of the imputation results depending on the method used. 

In the case of Nearest Neighbour method, all the information, percentage of records 

incorrectly imputed using trees, percentage of records incorrectly imputed when trees are 

not used and misclassification rate, have more similar results across categories than the rest 

of the methods. As said before, this implies that there is not an impact on the imputation 

results when Nearest Neighbour method together with classification trees is used for 

imputation. 

A set of graphs obtained from Tables 4.8.4.1 can be found in the Appendix 9. These graphs 

show the percentage of records incorrectly imputed using and not using trees and the 

misclassification rate by categories for the different imputation methods and different tree 

sizes. 

Figure 4.8.4.1 is an example of the set of graph presented in Appendix 9. This figure shov/s 

the percentage of records incorrectly imputed using and not using trees and the 

misclassification rate by categories for the variable Ethnic, using the Highest Probability 

method and a tree with 4 terminal nodes. 

Figure 4.8.4.1 

Misclassification rate versus percentage of records incorrectly imputed 

by categories for variable Ethnic {Appendix 9) 

Ethnic (4 Nodes) 

Categories 
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It can be seen from the figure how the lines for the percentage of records incorrectly 

imputed obtained using trees (red line) and the misclassification rates for the same 

categories (blue line) follow the same pattern. Alternatively, the line representing the 

percentage of records incorrectly imputed in the case where trees are not used (yellow line) 

is different from the two lines mentioned before. 

There seems to be a relationship between the misclassification rate (blue lines) and the 

percentage of records incorrectly imputed (red line) for each category when trees are used. 

It means that both the misclassification rate and the percentage of records incorrectly 

imputed by categories tend to have the same values or at least follow similar patterns most 

of the time. 

It can also be observed that this relationship with the percentage of records incorrectly 

imputed (red line in the graph) is not necessarily the same for the case where trees are not 

used (yellow lines in the graph). 

This is an important finding from the point of view of accuracy. It could be predicted from 

the tree, by using the misclassification rate by categories, which categories of the variable 

being imputed will be more accurate than others after the imputation is done. 

4.8.5. Bias and Variance Results 

Given the results obtained from the previous analysis that the size of tree is not directly 

related to the imputations results, the simulations for the bias and variances were carried 

out using only one tree size. The size chosen for this analysis was the medium tree size 

(about 15 nodes) which represent a reasonable number of groups to work with, as the time 

consuming for the variance simulations is in fact very long, specially in the case of the 

Nearest Neighbour imputation. 

Each section presents a set of summary tables, more detailed information can be seen in 

Appendix 3. 

4.8.5.1. Bias 

Tables 4.8.5.1.1 contain the bias results obtained from the simulations described in Section 

4.7.4 for all the variables and imputation methods used in the univariate case. 

UBRARY > 
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Tables 4.8.5.1.1 
Biases estimation for the univariate case 

Table A 
Variable: Country of birth 

Frequency Distribution Highest Probability Nearest Neighbour 

Categories Categories Categories 

1 1 
154760 13046 4060 21015 154760 154915 12944 4058 20975 5864 154760 13046 4060 21015 5874 

E{Y)-Y 0 . 3 6 - 0 . 3 6 - 0 . 4 0 - 0 . 4 7 0 .36 155.00 -102.00 - 2 . 0 0 - 4 0 . 0 0 - 1 1 . 0 0 0.21 0 . 36 -0 .15 0 . 0 9 - 0 . 5 0 

((f(y)-r)/y)'ioo 0.000 -0.002 -0.009 -0.002 0.014 0.100 -0.781 -0.049 -0.190 -0.187 0.000 0.002 -0.003 0.000 -0.008 

Hot Deck (clas.: 2 var.) Hot Deck (clas.: 3 var.) 

Categories Categories 

1 2 3 4 5 1 2 3 4 5 

E ( y ) 154760 13046 4060 21015 5875 154759 13046 4060 21015 5875 

E{Y)-~Y 0.00 0.00 0.00 0.00 0.00 -1.00 0.00 0.00 0.00 0.00 

0 . 0 0 0 O.OOO O.OOO O.OOO 0 . 0 0 0 0 . 0 0 0 0 . 0 0 0 0 . 0 0 0 0 .000 0 . 0 0 0 

Table B 
Variable: Ethnic 

Frequency Distribution Highest Probability Nearest Neighbour 

Categories Categories Categories 

1 2 3 4 1 2 3 4 1 2 3 4 

E ( y ) 142189 39724 7046 9797 142653 39496 6993 9714 142190 39724 7047 9795 

E{Y)~Y - 0 . 3 4 0 . 0 3 -1 .07 1 .37 4 6 4 . 0 0 - 3 2 8 . 0 0 - 5 4 . 0 0 - 8 2 . 0 0 0 .64 -0.35 0 . 3 0 - 0 . 5 8 

( { £ ( n - j ' ) / r ) - i o o 0 . 0 0 0 0 . 0 0 0 - 0 . 0 1 5 0 .013 0 . 3 2 6 - 0 . 8 2 5 - 0 . 7 6 6 - 0 . 8 3 7 0 . 0 0 0 0 .000 0 .004 - 0 . 0 0 5 

Hot Deck (clas.: 2 var.) Hot Deck (clas.; 3 var.) 

Categories Categories 

1 2 3 4 1 2 3 4 

142189 39724 7046 9797 142190 39724 7046 9796 

E{Y)-Y 0.00 0.00 -1.00 1.00 1.00 0.00 -1.00 0.00 

( ( f ( n - r ) / y ) ' i o o O.OOO 0 .000 - 0 . 0 1 4 0 . 0 1 0 0 . 0 0 0 0 . 0 0 0 - 0 . 0 1 4 0 .000 
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Table C 
Variable: Long term illness 

Frequency Distribution Highest Probability Nearest Neighbour 

Categories Categories Categories 

1 2 1 2 1 2 

2 3 2 1 7 175539 22950 175806 2 3 2 1 7 175539 

E ( y ) - y 0 . 1 6 -0 .16 -267 .00 2 6 7 . 0 0 0 . 1 0 -0 .10 

0 . 0 0 0 0 .000 - 1 . 1 5 0 0 . 1 5 2 0.000 0.000 

Hot Deck (clas.: 2 var.) Hot Deck (clas. : 3 var.) 

Categories Categories 

1 2 1 2 

f ( y ) 2 3 2 1 7 175539 2 3 2 1 7 175539 

Y 0 . 0 0 0.00 0 . 0 0 0 . 0 0 

)'I00 0 . 0 0 0 0 .000 0 . 0 0 0 0 . 0 0 0 

It can be seen from these tables that the Frequency Distribution and Nearest Neighbour 

methods lead to essentially unbiased estimates. That is, the difference between the real 

total and its expected value obtained from the simulations are basically zero. However, that 

difference is increased when the Highest Probability imputation method is used, as expected 

from the theoretical results. It can be noticed that even when some of the bias results for 

this method are about 400, the relative bias results show that these values are not big with 

respect to the real total. 

Additionally, Tables 4.8.5.1.1 show that the bias is positive for the major category of the 

variable and negative for the rest in the case of Highest Probability method. That means, the 

category containing more information is always overestimated and the rest are always 

underestimated. This occurs because the method imputes all the records with missing 

information using the major frequency in the node, which is the category containing most 

records. 

In terms of the Hot Deck imputation, we can see that the estimator of the total is unbiased 

as well as in the case of Frequency Distribution and Nearest Neighbour imputation methods. 

Therefore, there are not major differences in terms of using any of the imputation methods 

(including Hot Deck) for estimating the total of cases in each category of the variables used 

for the analysis, except for the case of Highest Probability method. 
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4.8.5.2 Variance 

Tables 4.8.5.2.1 contains the information related to the variances and variances estimation 

(in some cases) for the different variables when using different imputation methods. 

Tables 4.8.5.2.1 

Variances and Expected Variances Estimators for the univariate case 

Table A 
Variable: Country of birth 

Frequency Distribution Highest Probability Nearest Neighbour 

Categories Categories Categories 

1 1 
£ ( J / ) 167 .97 94 .63 2 0 . 3 4 6 9 . 1 4 3 7 . 1 1 - 332 .16 1 8 8 . 5 0 4 0 . 4 8 135.87 332 .16 

| / ( y ) 160 .80 9 4 . 2 7 19 .25 6 4 . 3 0 38 .11 171 .00 94 .00 2 4 . 0 0 7 3 . 0 0 171 .00 3 1 9 . 2 2 1 8 1 . 4 7 3 5 . 7 0 122.06 319.22 

MSE{Y) 160.93 9 4 . 4 0 19 .41 6 4 . 5 2 3 8 . 8 7 2 4 1 9 6 . 0 10498 .0 2 8 . 0 0 1 6 7 3 . 0 0 168 .00 3 1 9 . 2 6 181 .60 3 5 . 7 2 122 .07 66 .05 

Hot Deck (clas.; 2 var.) Hot Deck (clas.: 3 var.) 

Categories Categories 

1 2 3 4 5 1 2 3 4 5 

X ( y ) 4 4 1 . 0 0 1 6 9 . 0 0 4 9 . 0 0 2 5 6 . 0 0 8 1 . 0 0 4 4 1 . 0 0 169 .00 4 9 . 0 0 2 5 6 . 0 0 8 1 . 0 0 

MSE{Y) 4 4 1 . 0 0 169 .00 4 9 . 0 0 2 5 6 . 0 0 8 1 . 0 0 4 4 2 . 0 0 1 6 9 . 0 0 4 9 . 0 0 2 5 6 . 0 0 8 1 . 0 0 

Table B 
Variable: Ethnic 

Frequency Distribution Highest Probability Nearest Neighbour 

Categories Categories Categories 

1 1 
E ( V ) 4 8 9 . 5 8 4 1 9 . 7 9 8 5 . 1 7 1 3 7 . 2 7 . . . - 970 .78 8 3 1 . 7 8 168 .75 271 .95 

y ( Y ) 4 6 3 . 7 6 3 6 5 . 9 7 7 9 . 8 3 136 .23 4 9 8 . 0 0 398 .00 8 6 . 0 0 1 5 0 . 0 0 797 .95 6 7 1 . 5 9 157 .61 268 .23 

MSE(Y) 4 6 3 . 8 8 3 6 5 . 9 7 8 0 . 9 7 1 3 8 . 1 1 215794 107982 3 0 0 2 . 0 0 6 8 7 4 . 0 0 7 9 8 . 3 6 6 7 1 . 7 1 1 5 7 . 7 0 268 .57 

Hot Deck (clas.: 2 var.) Hot Deck (clas.: 3 var. 

Categories Categories 

1 2 3 4 1 2 3 4 

y ( Y ) 9 6 1 . 0 0 7 2 9 . 0 0 2 2 5 . 0 0 2 8 9 . 0 0 1 0 2 4 . 0 0 7 8 4 . 0 0 196 .00 2 8 9 . 0 0 

MSE{Y) 9 6 1 . 0 0 7 2 9 . 0 0 2 2 6 . 0 0 2 9 0 . 0 0 1 0 2 5 . 0 0 7 8 4 . 0 0 197 .00 2 8 9 . 0 0 
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Table C 
Variable: Long term illness 

Frequency Distribution Highest Probability Nearest Neighbour 

Categories Categories Categories 

1 2 1 2 1 2 
2 3 2 . 5 5 2 3 2 . 5 5 4 6 1 . 9 4 4 6 1 . 9 4 

r( f ) 2 2 6 . 6 9 2 2 6 . 6 9 2 9 1 . 0 0 2 9 1 . 0 0 4 5 1 . 9 0 4 5 1 . 9 0 

MSg(y) 2 2 6 . 7 2 2 2 6 . 7 2 7 1 5 8 0 . 0 7 1 5 8 0 . 0 4 5 1 . 9 1 4 5 1 . 9 1 

Hot Deck (clas.: 2 var.) Hot Deck (clas.: 3 var.) 

Categories Categories 

1 

f ( r ) 

r(f) 

MSg(y) 

4 8 4 . 0 0 

4 8 4 . 0 0 

4 8 4 . 0 0 

4 8 4 . 0 0 

4 0 0 . 0 0 

4 0 0 . 0 0 

4 0 0 . 0 0 

4 0 0 . 0 0 

It can be noticed from last tables that there are not big differences in the values of the 

variances between Frequency Distribution and Highest Probability methods; however, there 

are more notable differences between these two methods and the Nearest Neighbour 

method. The Nearest Neighbour method produces bigger variances than the other two 

methods. 

In term of Hot Deck imputation we can see that there is a difference between the variance 

obtained by this method and variance obtained by any of the rest of the imputation methods 

employed in this analysis. We can see that the variance obtained by Hot Deck is always 

higher than the variance obtained by any of the methods, even for Nearest Neighbour 

method, which produces the biggest variances among all of the three imputation methods 

used in the proposed approach. 

Even when a third variable was included in the classification prior to the imputation when 

using Hot Deck, the results were still very similar. 

However, in terms of mean square errors, Hot Deck provides smaller MSE than Highest 

probability method given the bias of the latest. Therefore, it can be said that any of the 

imputation methods proposed in this thesis perform better than the normal sequential Hot 

Deck imputation method except for the case of Highest Probability imputation method. 
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4.8.5.3. Variance Estimation 

In terms of the variability, v/e can see from Tables 4.8.5.2.1 that the estimator of the 

variance in the case of Frequency Distribution is basically unbiased as demonstrated in the 

theory in Chapter 3. Some small bias can be found depending on the variable used, however, 

these bias are very small compared v/ith the size of the point estimator. The variable v/ith 

less bias for the variance estimation is LTILL followed by COB and ETHNIC respectively. The 

same pattern can be found for the Nearest Neighbour imputation method. 

On the other hand, even when we have proof that the estimator of the variance is unbiased 

in theory in the case of Nearest Neighbour imputation method, we can notice some 

differences between the real value and the expected values of the estimator over the 1000 

simulations. 

It can be seen from Tables 4.8.5.2.1 that these bias can reach up to over 20% in few cases. 

However, these biases are present only in few cases. It is important to point out that these 

differences are considered high for estimating the variance but they are low in relation to 

the size of the point estimator. 

Another important issue about the estimator of the variance in the case of Nearest 

Neighbour, and also in any small difference found for the Frequency Distribution method, is 

the fact that the variance is always overestimated. 

Finally, we can confirm that in terms of variance estimation that, given the results of the 

simulations carried out, Frequency Distribution is in general the best performing imputation 

methods. 

4.8.5.4. Coverage 

Tables 4.8.5.4.1 show the results for the coverage for the different variables and imputation 

methods given by the simulations. 

116 



Tables 4.8.5.4.1 
Coverage for the univariate case 

Table A 
Variable: Country of birth 

Frequency Distribution Highest Probability Nearest Neighbour 

Categories Categories Categories 

Coverage 95.8 95.50 95.10 96.60 95.10 0.00 0.00 92.20 0.10 66.20 96.00 95.00 95.20 95.50 96.10 

Table B 
Variable: Ethnic 

Frequency Distribution Highest Probability Nearest Neighbour 

Categories Categories Categories 

1 
Coverage 94.90 95.60 94.80 95.00 0.00 0.00 0.00 0.00 95.30 94.40 96.40 95.40 

Table C 
Variable: Long term illness 

Frequency Distribution Highest Probability Nearest Neighbour 

Categories Categories Categories 

1 2 1 2 1 2 

Coverage 95.40 95.40 0.00 0.00 95.30 95.30 

Tables 4.8.5.4.1 shov/ how the coverage, that is the proportion of intervals for the estimator 

that include the parameter, is over 94% all the time in both Frequency Distribution and 

Nearest Neighbour. However, in the case of Highest Probability methods, only two cases are 

not 0% coverage. It can be seen from Tables 4.8.5.1.1 that these two cases contain very few 

units (about 3% of the population). 

It is important to point out that the confidence intervals in the case of Highest Probability 

were estimated using the values of the variance instead of the variance estimates given that 

the latest were not obtained in the simulations carried out in this thesis. 

A reason for this coverage problem in the Highest Probability case is that even when the 

variance seems to be as big as the variance in the case of Frequency Distribution imputation 

method (method which has over 94% coverage), the bias is big enough to produce these 

results, in this case, we can see that the size of the bias is as big as the size of the variance 

(or sometimes bigger), which does not occur in the Frequency Distribution case, making the 

coverage very poor. 
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Additionally, there is not visible pattern in the case of coverage neither by imputation 

methods nor by variables. That is, not all the small categories have the less coverage or vice-

versa. 

In conclusion, there are some general findings we can summarise in terms of the analysis for 

the univariate case. 

In general, the use of classification trees does improve the performance of the imputation. 

As seen in the results this improvement cannot be seen from the point of view of the 

maintenance of marginal distributions in most of the cases but from the point of view of 

percentage of records correctly imputed. 

Even when there are differences in the results when using or not trees (i.e. when trees 

improve the performance of the imputation results), the use of different tree sizes does not 

have a major impact on those results. Moreover, the use of the optimal tree given by CART 

does not make much difference on the results. 

Frequency Distribution and Nearest Neighbour methods preserve marginal distributions while 

Highest Probability does not. However, Highest Probability is the best performing imputation 

method. 

In the case of Nearest Neighbour, the use of trees does not seem to have a major impact on 

the results when using Nearest Neighbour procedure. Therefore, as a general conclusion we 

can say that Frequency Distribution is the best performing method overall as it preserves 

marginal distributions, has a reasonable level of preservation of individual values, produces 

unbiased estimates for the total and has the lowest variability between all the methods. 

Frequency Distribution and Nearest Neighbour methods produce unbiased estimates for the 

total number of records in a specific category. In contrast, the Highest Probability method 

does not lead to unbiased estimates as shown in the theoretical results. 

In terms of variability, we can see that the values for the variances in the case of Frequency 

Distribution and Highest Probability methods are very similar. In contrast, Nearest Neighbour 

produces larger variances than the rest of the methods. 

Comparisons between MSEs show that the lowest values are always found for Frequency 

Distribution followed by Nearest Neighbour and Highest Probability (due to the bias) 

respectively. 

The results of the simulation confirm the theoretical result that the estimator of the 

variance proposed for the Frequency Distribution case is an unbiased estimator. However, 

even when in theory the estimator of the variance for the Nearest Neighbour seems to be 
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unbiased, some differences between the real value and the estimator were found. However, 

these differences are probably big when estimating the variance but they are not very 

important in terms of the values of the point estimates as they are very small with respect to 

these values. 

It has been shown in the results that the coverage, is over 94% all the time in the univariate 

case for both Frequency Distribution and Nearest Neighbour. 

Comparisons between the proposed method and a Sequential Hot Deck method show that in 

terms of the point estimates any of the Frequency Distribution, Nearest Neighbour and Hot 

Deck produces unbiased estimators. In terms of variability, the sequential Hot Deck method 

produces larger variances than any of the imputation procedures investigated in this 

research. However, if a comparison between the mean square errors is made, we can see 

that sequential Hot Deck performs better than the Highest Probability procedure, producing 

smaller MSE. 

Thus, Frequency Distribution is still the best performing imputation methods in this research, 

followed by Nearest Neighbour, Sequential Hot Deck and Highest Probability respectively. 
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CHAPTER 5 

T T / f E j O i R i r T V C / l L 

5.1. INTRODUCTION 

This chapter extends Chapter 3 by considering the case where more than one variable is 

subject to nonresponse. 

Here, the multivariate case is explained including modelling description, the use of 

classification trees, imputation methods used and estimation of population quantities. 

Additionally, biases for the proposed estimator are studied. 

5.2. NOTATION 

Using the notation employed in Chapter 3, let U be a finite population of N elements 

U = [ U i ; i = 1 , 2 , . . . , N ] . Let Y = (}"(*) be a ( N x H ) - m a t r i x of variables, where 

represents the h th variable for the i th element and let X = ) be a ( N x K ) - m a t r i x of 

auxiliary variables where x.^ represents the A: variable for the ith element. 

As also defined in Chapter 3, we now have R = (?;.̂ ) as the ( N x H ) - m a t r i x of indicator 

variables identifying whether or not is missing. That is, r.^=< 
0 otherwise 
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In this case, Y can be represented as Y = where 

Yh '^iyu^yih'—^yNh)' is the vector of N values ; X can be represented as 

X = (Xj,X2,...,X^,...,Xj5.) , where is the vector of N values x.^\ 

and R can be represented as R = , where - » % ) ' is a 

vector of N values r.^. 

It is assumed that each vector may be subject to nonresponse but that each vector Xj. is 

fully observed. It is also assumed that the population is fully enumerated (no sample is 

taken). 

The data takes the form: 

X, Xj 
•• 

Y. Y2 • Y 
i j j A R, Rfj 

1 4 , X,2 ^\K yn 0 . 
-

1 0 .. 1 

2 ^21 X22 • ^2K 0 }'22 . 0 0 1 .. 0 

3 ^31 ^32 ^3K 3̂ 31 0 . 
-

1 0 .. 1 

0 ^«2 ynH 0 1 .. 1 

0 * » 0 

. 0 .. 0 

N ^N2 • ^NK 0 . • yNH 1 0 .. 1 

where the zeros represent the missing values in the population and % and are 

specific values for a specific realisation of the model. It is important to point out that in this 

case, the number of missing values can be different for each vector of variables . 

Additionally, we also define as the number of categories for the variable y.^. That is, 

variable has categories 7, = (l,2,..., J j } ; variable y.^ has categories 72 = J j } 

and so on. In general we can say that variable y.^ has categories = {1,2,..., . 
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5.3. MODEL DESCRIPTION 

Under the model-based approach assumption, we consider and random variables with 

joint distribution / ( X , Y10) indexed by the vector of parameters 8 . 

As in the univariate case, the response process can be seen as a random process; therefore, 

the response outcome R is also included as matrix of random variables with distribution 

/ ( R | X , Y , < p ) . 

Given that X is fully observed and Y is subject to nonresponse, we can now write the joint 

distribution as / ( X , Y , R | 0,<p) indexed by the vectors of parameters 0 and (p. 

The joint distribution of X , Y and R , / ( X , Y , R 19,(p), can be decomposed as the 

product of the probability distribution of X and Y indexed by vector of parameters 0 and 

the conditional distribution of R given X and Y indexed by (p . That is, 

j r p L T % R H t 9 ) = / ( X , Y | 8 ) (1) 

Since Y is subject to nonresponse, we can write Y = (Y^^ .̂, Y^ .J , where Y^^^, represents 

the observed part of Y and , represents the missing part of Y . 

Therefore, the distribution f (X , Y , R | 0, cp) can be written as / ( X , Y^f,^, Y ^ , R10, (p) . 

Furthermore, equation (1) can be written as 

/ ( X , Y . ^ , Y ^ , R 16,9) = / ( X , Y . ^ , Y ^ 1 8 ) / ( R | X , Y . ^ , Y ^ , ( p ) -

The distribution of the observed data can be obtained by integrating Y^^ out of the joint 

distribution of X , Y andB.. That is, / ( X , Y^y,,R) = j / ( X , Y , R ) ( fY^, . More 

specifically, / ( X , Y . , . , R | e , < p ) = | / ( X . Y . , . , Y . , . | e ) / ( R | X , Y . ^ . Y ^ . , < | > ) r f Y „ , . 

Assumptions about the model are normally made in order to obtain valid estimation. One of 

the most common assumptions is that the missing values are "m/ss/ng at random", A4AR (Little 

and Rubin, 1987). 

As in Chapter 3, the data is said to be missing at random if the response indicator R does 

not depend on the missing values of Y , Y^,^. That is, tAAR holds if 

/ ( R I X , Y ^ , Y ^ , ( p ) = / ( R I X , Y ^ „ ( p ) . 
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Then, assuming that MAR holds, and given that the actual observed data is (X , we 

now have 

/ ( X , 18,9) = / ( X , X , „ 18)/(R | X, . 

Again, as in Chapter 3, the common maximum likelihood procedure used for fully observed 

data can be used for estimating the parameter 9 required when the data is incomplete (data 

with missing values). That is, 0 can be estimated using the maximum likelihood procedure 

over the observed data given that the missing data mechanism is ignorable, which means 

ignoring the second part of the right hand side of the last equation. 

5.4. USING CLASSIFICATION TREES 

As explained in Chapter 3, the use of classification trees for generating the imputation 

classes represents an important part of this research. 

Also, as described in Chapter 2 and 3, CART consists of grouping records depending on a set 

of values of the explanatory variables . The terminal nodes obtained from this 

classification are expected to be exclusive and exhaustive groups. 

In practice, the explanatory variables can also be subject to nonresponse. However, we 

assume fully observed explanatory variables in this thesis. 

As in Section 3.3, t represent the terminal nodes with t , and T equal to 

the total number of terminal nodes for a specific tree. We also have a measurement vector 

X, = containing a number of measurements made on unit i . The collection 

of all possible measurement vectors defines the measurement space % , with 

X ; z = 1 , 2 , . . . , . We define as the set of measurement vectors belonging to a 

specific terminal node with % = . 

Under the model-based assumption, we have the probability function of y.,̂  given the 

terminal node defined by x, as = j | e x , ) • That is, the probability function of ¥ 

given a set of values of the explanatory variables identifying that terminal node. For 

simplicity, we write | e = y | ^). 
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Since all the variables used in this work are categorical, we denote 

fhUh 10 = Piyih - j I 4 ^ X/) as the probability that takes the value j in the terminal 

node t, with j - {l,..., . Refer to Section 3.3 in Chapter 3 for an example. 

The inclusion of the classification groups introduces a new factor to the distributions 

mentioned so far. Then, for a specific classification, we have | X,) = fhiyn, 10 as the 

probability function of given the terminal node t , and as the joint 

distribution of and r.,̂  given the terminal node t . As in the model description (equation 

1), the last equation can be decomposed as = I } ' ; * / ) - Then, if 

MAR holds and assuming independence between units, 

I ̂  = 0 , 0 = k A = 1 , 0 = / k C j ' f A 10. 

As in Chapter 3, since the imputation is done within terminal nodes we now assume AAAR 

within terminal nodes. That is, P(}'^ = 7^) = fhUh 10- See Section 3.3 in Chapter 3 for 

details. 

5.5. COMPOSITE VARIABLE 

In this work, the imputation process requires the generation of a classification tree as a first 

step. That classification tree is generally constructed for a single categorical variable. 

Therefore, as all the variables used in this work are basically categorical variables, one way 

to undertake joint imputation in the multivariate case is to create a variable that combines 

all the possible categories of the variables that are subject to nonresponse. This variable is 

called a "composite variable". 

Then, a composite variable, denoted by , is a variable that combines the values of all the 

possible variables subject to nonresponse, that is, y." has categories y = 

with y = J jx/2x. . .x/^ . 

Example 

To illustrate the construction of a composite variable let us suppose that we have three 

variables subject to missing information, y.^, y^̂  and y.^. Suppose also that variable has 
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two different categories, 1 and 2; and variables and y.^ have three different categories, 

1, 2 and 3. Then, the composite variable wil l be a variable that contains 18 categories, as 

specified hereafter 

Table 5.5.1 

Example of categories of a composite variable 

Categories 

J . j 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 

X2 1 1 1 2 2 2 1 1 1 2 2 2 1 1 1 2 2 2 

1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 

Composite Var. ) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 

it can be seen from Table 5.5.1 that the composite variable is also a categorical variable 

containing 18 categories, which are the combinations of all possible categories of the 

variables subject to missing values. Then, a record with category 10 in the composite 

variable means a record with categories 2, 2 and 1 for the original variables y.^, y.^ and 

respectively. 

5.6. DIFFERENT APPROACHES TO IMPUTATION IN THE MULTIVARIATE 

CASE WHEN USING CLASSIFICATION TREES 

Before embarking on a description of the different ways of using classification trees for 

imputing in a multivariate case, it is important to specify the different kind of situations that 

can be present in a multivariate case. 

For simplicity, suppose from now on that we have just two vectors of random variables 

subject to nonresponse, Y ,̂ where each y.̂  can take categories j J and 

each y.^ categories { l , ! , . . . , / ; , . . . , , and K fully observed vector of auxiliary variables 

Xf.. In this case, our composite variable is a variable with categories j l , j 

where f corresponds to combination and J ' '=J^xJ^ is the number of categories 

for variable y ' ' . 

There are three different combinations of missing information depending on which variable is 

missing at the time as shown in the next table 
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Table 5.6.1 

Missing combinations for two variables 

Missing Variable 

Missing Combination 3̂ ,-2 

Combination 1 

Combination 2 

Combination 3 

It can be seen from the last table that combination 1 is the case in which only y.̂  is missing, 

combination 2 the case where only y.^ is missing and combination 3 the case where both y.̂  

and y^j are missing at the same time. This Is a typical multivariate case, which involves 

missing values for more than one variable at the same time in the same database. 

Let m be the number of records in the population for which both and y.^ are observed 

and N the size of that population. Let a-m be the number of records with j/., missing 

only, b-a the number of records with missing only and N-b the number of records 

with 7-, and y.2 missing at the same time. In this case, N > b > a > m . Then, the last table 

can be now written as follows 

Table 5.6.2 

Missing combinations and their respective total of cases within a tree 

Missing Variable 

Missing Combination Number of Cases 

Combination 1 a-m 
Combination 2 b-a 
Combination 3 N-b 

Additionally, as mentioned in Section 5.4, this research includes the use of classification 

trees as a first step within the imputation process, therefore, these combinations can be also 

found within terminal nodes. That is, for each terminal node we now have 

Table 5.6.3 

Missing combinations and their respective total of cases within terminal nodes 

Missing Variable 

Missing Combination Number of Cases X , 

Combination 1 

Combination 2 6 , - a , 

Combination 3 
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where a, -m^ is the number of records with missing only within a specific terminal node 

t; 6, - a, is the number of records with y.^ missing only in terminal node t; and - 6 , is 

the number of records with y.̂  and y.^ missing at the same time in terminal node t . Again, 

we have N ^ > b ^ > a ^ > m ^ . 

There are different ways in which tree-based methods could be used for imputing values in a 

multivariate case. The imputation can be made using individual imputation, joint Imputation 

or in a sequential imputation. 

^ In the first case, individual imputation, the imputation is done separately for each 

variable using separate trees. This would thus involve one tree for each variable missing 

in the analysis, without taking into account that they could be missing at the same time 

(see option 1 below). This approach would imply the use of different donors to impute 

different variables missing in the same record. Additionally, it could be very time 

consuming since many trees need to be generated and imputations are done separately. 

^ The second approach, a joint imputation approach, involves the imputation of all the 

missing values in a single record at the same time. Normally, these imputations are 

obtained from the same donor, that is, all the values missing in a specific recipient will 

be filled in using values coming from the same donor (see options 2, 3 and 4 below). In 

any of these options the imputation is done separately for each of the combinations 

described in Table 5.6.3. That means, either a classification tree is done for each 

combination in Table 5.6.3 to be imputed (see options 2 and 3) or the imputations are 

carried out separately for those combinations but using the same tree (see option 4). 

The main purpose of using joint imputation procedure is to preserve relationships 

between variables, that is, preserve joint distributions. This approach may also be faster 

since the donor is sought only once for each specific record. 

^ The last approach, a sequential approach, consists of imputing one variable at a time, 

but using that imputed information for the next step of the process. In this case, if two 

variables are missing at the same time for the same record, one of them is imputed first 

and then that imputed value is used as observed information either for growing a new 

tree for the other variable (see option 5) or for being used within the same tree for 

imputing the missing values of the other variable (see Section 5.7). 

The sequential approach may also use different donors for filling in missing values in the 

same record and it can also be time consuming. 

The difference between individual imputation and sequential imputation is that in the 

first case the imputations are done without taking into account extra information, while 
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in the second case the imputed values are used as observed information for the next 

imputation. 

It is important to point out that in any case, either individual, joint or sequential imputation, 

the classification trees employed in the process can allov/ for missing covariates by the use of 

surrogates. Hov^ever, v/e assume them to be fully observed in this thesis. An option in v/hich 

missing information for the auxiliary variables can be used is presented in Section 5.7. 

Additionally, these approaches take into account all the combinations of missing information 

present in the data, that is, all of the combinations 1 ,2 or 3 mentioned in the two variables 

example presented in Table 5.6.3 are assumed to occur at the same time. 

Table 5.6.4 describes the possible options: 

Table 5.6.4 

Different options using tree models for imputing in the multivariate missing case 

Option Tree used Action 

1 
individual tree for y.̂  • Impute each variable >>., and 

1 
individual tree for ŷ ^ 

independently using the corresponding 
tree. 

joint tree for y.^, y.^ together. • Impute missing values of y.^, y.^ or 

2 individual tree for y.̂  

individual tree for ŷ ^ 

( j /y,, ) independently using the 
corresponding tree. 

Impute (y.^, y^^) using the joint tree 

• Impute and y^j using an extension 

3 joint tree for >>.,, y.^ together. 
• 

of the joint tree. 
Repeat the process for the other 

variable, say j . , using now for 

expanding the tree. 

4 joint tree for , y.^ together. Impute all and jy,;) using 
the same tree 

individual tree for y.̂  

Individual tree for including y.̂  as a 

complete variable 

/ Impute y., using the corresponding tree 

/ Impute yj2 using the correspondent tree, 

which includes the values of y.̂  already 

imputed 

A more detailed description of these options is now given. 
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Option 1 

In this case imputations are carried out individually using one tree for each variable 

missing. For example, if two variables y.̂  and y.2 are missing separately and together 

as explained before, all the records with missing will be imputed using the tree 

grown for that variable (j^.,) and all records with variable y.2 missing will be also 

imputed using the tree created for • The records for which the two variables are 

missing at the same time will be imputed in the same way, all y.̂  using the tree for ŷ ^ 

and all the missing using the tree for y.^. Since, this approach uses different donors 

to impute different variables missing in the same record, joint distributions may not be 

preserved. Additionally, i t is more time consuming than other options since the 

imputations are done separately using different trees, and records are imputed one at 

the time. 

Option 2 

This option implies the use of a different imputation tree for each missing combination in 

Table 5.6.3. That means, three different trees for imputation will be used. One tree for 

imputing y.̂  alone, one tree for imputing y.^ alone and one tree for imputing the 

combination of two of them, (y,i>yi2)- the last case, the imputation is done 

throughout a composite variable formed by the all possible combinations between y.̂  

and y.^ as explained in Section 5.5. 

This option has the advantage that the classification is especially created for the 

combination missing (either for a single variable or for a combination of many variables). 

This allows for the use of more accurate classification for each combination missing. 

However, this procedure can be computer intensive since the number of trees required 

increases with the number of missing variables (or combinations). 

Option 3 

This option comprises the use of one classification tree for imputing all the missing 

combinations but expanding the terminal nodes depending on the variable being missing. 

For example, in the case of two variables subject to missing information shown in Table 

5.6.3, the process followed is. 
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1. grow a tree for the combination missing, joint tree for (y.,, y.^) 

2. use that tree impute the combination (j;.,, y.^) missing 

3. using the observed information for y.̂  expand the tree further to a new set of 

terminal nodes for the other variable missing ŷ ^ and then impute that variable y.2 

using the new set of terminal nodes obtained 

4. as above, using the original tree generated for the combination (y.^, ) and using 

the observed information for y.^ expand that original tree further to a new set of 

terminal nodes for the other variable missing y.̂  and then impute that variable 

using the new set of terminal nodes 

This option has the advantage that only one tree is used, even when this is expanded. 

However, the extension made implies a new procedure that can be more time consuming 

than others since each terminal node of the original tree (tree for (y.^, y^^)) is now used 

as a new database for expanding it. 

Option 4 

Sometimes it may be a very difficult task to grow trees for each combination of missing 

variables because of complexity or the time taken. Additionally, combinations 

(composite variables) involving many variables may require the use of too many 

categories making the analysis also more complex and more time consuming as well. An 

option to solve this problem can be the use of one tree to impute all the possible 

combinations missing in a data set. The selection of the tree to be used will depend on 

which combinations are missing. One possibility is to use the combination with the 

largest percentage of missing information. 

This option has the advantage of using joint imputation since all the missing values in a 

recipient are filled in using values from the same donor. However, the classification used 

for imputation may be right for some combinations but not for others. It will depend on 

how related the variables are. 

Example 

To illustrate this point, suppose that we have four different variables with three 

different combination of missing values, say: 1) y.̂  and y^^, 2) y•^, and y.^, and 3) 

yn ' y n ' 3nd y.^. Suppose also that the percentage of missing information is as follows: 

10% for the first combination, 3% for the second combination and 2% for the last 

combination. In this case, it could be complicated and time consuming to grow trees for 
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all of the three combinations. Instead, i t may be easier to grow a tree for the 

combination number 1 ( a n d y. j ) as this combination has the largest percentage of 

missing information and is also present on the rest of the missing combinations, and then 

use this tree for imputing. The imputation can be made either jointly for y., and y.^ in 

all the records in combinations 1, 2 and 3 and then individually for the rest of variables 

not imputed yet y-^ and y.^; or for all the variables missing in all the combinations, say 

y., and y.^ for the first combination; y.^, y.^, and for the second combination; and 

yn ' JXfz' and y.^ for the last one; but using the same classification tree generated at 

the beginning. 

Additionally, any value missing individually (e.g. 3̂ ,3 alone or y.^) can be imputed using 

the same tree. 

In any case, the task of growing trees is reduced from three trees to one tree. This 

option can be useful for combinations with very small percentage of missing information 

that involve very large number of variables or categories. 

Option 5 

One way of using a sequential procedure in the case of two missing variables is to grow a 

tree for a single missing variable (say y^ ) and impute that variable. Once that variable is 

imputed, its value may be used as a complete covariate for growing the tree for the 

other single missing variable, y.^ and then impute that variable. In this case, the process 

may become slow since many trees have to be created (as many as missing variables 

are). Another disadvantage of this method is again the fact that the imputations for the 

same record come from different donors, which can make the preservation of joint 

distributions a more difficult task. 

Additionally, there should be a pre-established order for the variables to be imputed, 

that is, which variable is imputed first, which is imputed second and so on. 

5.7. SPECIAL CASE, USING AUXILIARY VARIABLES WITH MISSING VALUES 

Up to this point, we have been assuming that all auxiliary variables are fully observed, 

however, sometimes that is not necessarily true. The case where missing information is 
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present not only for the target variable but also for the auxiliary information is very 

common. In this sense, the following procedure represents an alternative when using 

classification trees for imputing in this kind of cases. 

A way to use CART for imputation in the presence of missing covariates is, once a missing 

value in a covariate is found, use a surrogate to classify it, impute it and keep going down 

the tree. That is, once a tree is created using fully observed records, if the variable for 

classification (variable x.^.) is missing in a specific recipient, that record is classified by using 

a surrogate variable and imputed immediately using information from the node in which this 

is. Then, after imputing that value, the classification process continues, following the same 

procedure. Once the tree has reached the terminal nodes, the imputation for the target 

variable is carried out as in any of the cases mentioned in the last section. 

The definition and selection of surrogates is explained in Section 2.3.5 in Chapter 2. 

Example 

To illustrate this approach, let us consider the following example. Suppose there is one 

target variable y / of interest (for which estimation is required) which is a composite 

variable created by the combination of two different variables and y.^ missing at the 

same time and four different independent explanatory variables % with the following 

categories 

Table 5.7.1 

Categories for an example of a set of variables 

Variable Categories 

1,2,3,4,5,6 

4 , 1,2 
^,2 1,2,3 

1,2,3,4 
,̂4 0,1 

Additionally, suppose that the records with variable missing are as follows 

Table 5.7.2 

Example of a database with missing values 

Records X,, X,.3 44 
1 missing 1 missing 4 0 
2 missing 2 1 3 missing 
3 missing missing 3 2 1 
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It can be noticed from the last table that missing values are present not only at the target 

variable but also in some of the independent variables used in the analysis for generating 

the tree. 

Suppose also that the corresponding classification tree generated using only observed x.̂ . is 

as follov/s 

Figure 5.7,1 

Example of a Classification Tree for its use in a Sequential Imputation 

Xi4=(0) 
N2 

S-Xi1=(1) 

5-XI3.(1,4) 

Xi2=(1) 
N3 

S-X(3=(l,4) 

TN3 

TN1 TN2 

Xi2=(1,2) 
N1 

5X11.(1) 

Xi1=(2) 
N5 

5X14.(0) 

S-Xi3=(2) 

Xi3=(2,3) 
N4 

5X11.(2) 

Xi4=(1) 
N6 

TN4 TN5 TN6 TN7 

It is important to point out that the tree can be generated using also incomplete covariates, 

however, only observed information v/as used in this example in order to simplify the 

process. 

In this case, the classification tree is grown for the variable based only on fully observed 

variables . Once the tree is generated, the first node, N1, is defined by values 1 and 2 of 

variable , that is, all the records with values 1 or 2 for variable x^2 go to the left node, 

N2, and records with any other values for variable (x.^ =3 in this case) go to the right 

node, N4. If variable x.^ is missing, which is the case of record one of this example, that 

record will be classified using the surrogate available in this case, which is s - x.^ = (1) (see 
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Section 2.3.5 in Chapter 2 for definition and selection of surrogates). That means, if x-.^ is 

missing, the record will go to the left node, N2, if = (1) and to the right node, N4 

otherwise (x.^ = 2 ) . Once the record with missing values for x.^ is classified, the value of 

x-̂  will be imputed using a value from a donor chosen from the node where that record ends 

up (N2 in this case, as its value for x.^ is missing and x., = (1)). That is, the imputation will 

be one of the values of present in node 2 depending on the modal category of that node. 

Following the same line, for the next classification step on the same record is to look at the 

value of x.^. In this example = 0 , then record one will go to N3 and then, depending on 

the imputed value for , record one will end up either in TNI or TN2. 

Once the record is successfully classified, the donor for imputing the variable missing 

will be chosen from the correspondent terminal node where the recipient ends up, which are 

TNI or TN2 in this case. The same procedure is followed for each of the recipients. 

The disadvantage of this approach is again the fact of using different donors to impute 

different missing items in the same recipient, risking the maintenance of the joint 

distribution, which is an important aspect to be considered when analysing census (or any) 

data. 

5.8. OPTION CONSIDERED IN THIS RESEARCH 

As mentioned in Section 1.8 in Chapter 1, one of the aims of this thesis is to develop a joint 

imputation procedure, which maintains the joint distribution as much as possible. In order to 

achieve that, a good imputation procedure to implement could be a joint imputation process 

with the imputated values coming from the same donor, guaranteeing the preservation of the 

joint distribution since the relationship between variables is not distorted. 

Additionally, since most of the variables used in this thesis are categorical variables, the use 

of composite variables seems to be reasonable and easy to implement. 

The approach undertaken in this work is then the use of classification trees in conjunction 

with joint imputation using composite variables since it seems to be reasonable good in 

efficiency, that is, in time consumed and precision of the results. Therefore, the option 

implemented in this work is Option 4 where a joint tree is used for imputing the variables 

missing together. 
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Additionally, in cases where the pattern of missing information is very large and complex, 

the approach in this thesis wil l tend to be the construction of classification trees for the 

most important combinations in order to use these trees for imputing combinations with low 

percentages of missing information and large number of variables, as described in Option 4 as 

well. In practice, this represents a feasible and good option since the classification can be 

carried out in the presence of missing covariates by the use of surrogates and only one tree is 

required. However, due to time constraints, this option is not further investigated in this 

research. 

Option 4 can be divided into two different alternatives: when many variables are missing at 

the same time but not individually (each of them separately) and when the variables are 

missing at the same time and also individually. 

In a two missing variables case, the first alternative is carried out using a composite variable 

for the combination of the missing variables (combination 3 in Table 5.6.3) as is shown in the 

example presented in Section 5.5. After this variable is created, a classification tree is grown 

as if it was a single variable with number of categories equal to the number of possible 

combinations of the single variables involved in the process. Since the imputation is carried 

out for individual categories of a variable (composite variable), the properties of the 

estimators proposed when using single imputation approach together with classification trees 

shown in the univariate case are still valid when using a composite variable (see Section 

5.11). 

The second alternative uses the joint tree for imputing not only the combination of the 

missing variables, but also the individual variables missing alone (combinations 1,2 and 3 in 

Table 5.6.3). In this case, the process is carried out using the same tree for every 

imputation, as in the last case, but as many times as there are missing combinations. For 

example, in the case presented in Table 5.6.3, the joint tree for the combination (y.,, y.^) 

will be used for imputing the records with that combination missing at the same time as well 

as for imputing the records with the individual variables missing alone. 

5.9 IMPUTATION METHODS 

As in the univariate case, each imputation method is applied at each terminal node. The 

same three different imputation methods used in the univariate case are considered here. 
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In order to explain the imputation methods used, let us assume that the variable of interest 

is a composite variable. That is, in a two variables case, we can have combinations 1,2 and 3 

presented in Table 5.6.3 as explained in Section 5.6. 

In this case, we have that category J" of variable correspond to combination 

for variables and y.^ respectively. Additionally, we define j ) / to be the imputed value 

of variables y." obtained by any of the imputation methods. That is, can be U \ d i ) for 

combination 1 where only variable is missing, for combination 2 where only 

variable y.^ is missing and (7,,72) for combination 3 where both variables y.̂  and y.^ are 

missing at the same time, as shown in Table 5.6.3. 

The explanatory variables x.̂  are still considered fully observed in this section. 

1. Probability Distribution Method 

As in any case with missing values, we want to impute 7 / when this is missing from 

/ ( j x / k ' = 0 , f , 8 ) . 

Assuming that MAR holds and assuming independence between the units, we can write 

f{yi \^i = 0,%.j I 

For a tree model it is supposed that f { y ^ \ r l ' = 0 , t , & ) = f { y ^ ^ \ r ' ' i = l , t , Q ) , where 

/ (>" / I =1,48) is the probability distribution of the observed values given the terminal 

node t, f(y^ \r\ =0,r ,8) is the probability distribution of the missing values given the 

terminal node t . Then, the probability distribution method works as follows: given a specific 

tree, and for each terminal node we use the estimated distribution of the observed variables 

fiy,^ I K - , i.e. I = 1,0 for imputing the missing values. 

Since variable y^ is categorical, we write V { y ' = f Irf" = p , where f 

represents the categories of the variable 3 /̂ with f e J ' j . 

The probability can be estimated in three different ways depending on the missing 

combination. That is, 
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1. If the missing combination is combination 1 in Table 5.6.3, is estimated by the 

observed proportion of cases vyith category f of variable y!' given , 

A / ( v " = / ' ) 
P f j j t ~ ' ' with m y as the number of observed records v/ith y^^ = . 

,=1 

2. If the missing combination is combination 2 in Table 5.6.3, ^ is estimated by the 

observed proportion of cases with category f of variable y." given y^^ = j\, 

A / ( v " = / " ) 
P f j j t ~ ' w^th as the number of observed records with . 

'U 

3. If the missing combination is combination 3 in Table 5.6.3, is estimated by the 

I(y^ = f ) 
observed proportion of cases with category f of variable y.\ p., = V , 

with ntf as the number of observed records. 

In other words, the probability distribution of for the missing data is assumed to be equal 

to the probability distribution of y / for the observed data, which is estimated by any of the 

options mentioned before depending on the combination missing. 

2. Highest Probability Method for Modal Imputation) 

Under the same assumptions made for the probability distribution method, that is, MAR holds 

and independence between units, and given a specific tree, this method imputes the value 

that is "most likely" in that specific terminal node (i.e. has the highest probability) to all of 

the records with missing values. Thus, the value to be Imputed will be and can be 

divided in three cases 

1. If the missing combination is combination 1 in Table 5.6.3, the value to be imputed will 

be satisfying ^ ^ ^, for all categories f of the response variable. 

2. If the missing combination is combination 2 in Table 5.6.3, the value to be imputed will 

be f * satisfying , for all categories f of the response variable. 

3. Finally, if the missing combination is combination 3 in Table 5.6.3, the value to be 

imputed will be f * satisfying p ,̂,̂  > ^ , for all categories f of the response 

variable. 
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Then, in this case, the imputation takes the value j / f = 7'' 

It could be more than one f * value satisfying this condition. In this case, the method 

selects one of the categories randomly with equal probabilities. 

3. Nearest Neighbour Method 

Given a specific tree and for each terminal node individually, distances between the 

recipient and each possible donor are calculated and the "nearest" donor defines the 

imputed value for that particular recipient. The nearest donor is determined by the set of 

independent variables. That is, the distance between the two records (recipient and possible 

donor) is calculated by adding one to the distance function every time different values are 

found between them for the independent variables. 

Then, given a recipient i' with values x.,/., k = l,2,...,K for the variables % , a donor i 

with value j ; / for the variable and values , k = \,2,...,K for the variables is 

K 

that record which satisfies min[J;.,.] with z 'e and i e r / , and d-.^ = ^/(x,..^. ^ x.^) 
' i=i 

Then, the missing value y. f will be imputed with the observed value from the donor i , 

Pr - JK/. As explained before, j , / can be for combination 1 as only variable y.̂  is 

missing, (7,,72) for combination 2 as only variable y^2 is missing and (71,72) for 

combination 3 as both variables y.̂  and y.2 are missing at the same time. 

In this case we define as the number of times unit i is used as donor, therefore, 

4 = ^ lid/.i < d-.i for all Z E 7;') . 

It is important to point out that in this case a record can be used more than once as a donor. 

This means that if a specific record has the least distance to two different recipients, this 

record could be used as a donor to fi l l in the missing values for both of the recipients. 

Moreover, when a recipient has the same distance to two different donors, one of the donors 

is randomly selected with equal probabilities. 
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5.10 ESTIMATION OF POPULATION QUANTITIES 

As in the univariate case, the estimation will be concentrated in population quantities rather 

than superpopulation parameters. 

As mentioned in Section 5.6 we will concentrate in the two missing variables case, that is, 

only two target variables are subject to nonresponse and the rest of the variables, which are 

auxiliary variables, are assumed to be fully observed. 

In order to simplify the estimation procedure, we divide combinations in Table 5.6.3 into two 

different cases. We call Case 1 the case where the two variables are missing at the same 

time and they are not missing on their own, combination 3 in Table 5.6.3. This is a simple 

case to treat since it can be seen as a univariate case where a composite variable is used. In 

the same context, we call Case 2 the case where any of the three combinations mentioned 

before can be present in the data, that is, the two variables can be missing individually and 

together. This case requires a more complex formulation since we need to include all the 

possible missing combinations in the estimation procedure. 

Since we have two variables involved in the missing process, we may be interested in two 

different estimators. First, we may want to estimate the total of cases with category j \ of 

the variable y.̂  or equivalently, total of cases with category of the variable . Second, 

we can consider the estimator of the total of cases with category j \ of variable y.̂  and 

category j \ of variable together, that is, the total of cases with category f of the 

variable • However, we wil l concentrate in the second option, where the parameter of 

interest is the total of cases with category of variable y., and category of the variable 

J/,2 together. 

5.10.1. CASE 1 - Variables missing at the same time only 

Using the notation described in Section 5.2, we have a finite population 

U = (U;;i = l,2,...,Nj of N elements and a variable of interest y.", i = \,2,...,N . The 

aim is to estimate a population quantity, for example, the total ^ . 
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It can be noticed that in this case the number of missing cases for some combinations in 

Table 5.6.3 are zero, that is, a, —m^ = 0 , -a, = 0 and -b, 9̂  0 , in which case we 

have a, = 6, = /M,. 

Given that the quantity of interest is the total of cases i with category f for the variable 

y [ , which in our case is a categorical variable taking values f = , this total can 

be written as g ^ / ( y / = f ) • 
u 

Since not all the data is observed, this population quantity can be estimated as follows 

g = = f ) + ^ / ( j ) / = f ) , where j ) / is the imputed value of the variable y / 
/=] f=my+] 

for the unit i if missing. 

A 
The first part of the expression, 2^ / ( ) ; / = f ) , can be obtained from the observed data, 

(=1 

A 

while the second part of the expression, ^ / ( j ) / = f ) is determined by the imputation 

method used. 

5,10.2. CASE 2 - Variables missing individually and together 

As before, the aim is to estimate the same population quantity, total of cases i with 

category f for the variable . In this case, all the records imputed either individually 

(only one variable missing at the time) or jointly (two variables missing at the same time) 

must be included in the total calculation. 

It can be noticed that in this case the number of missing cases for all of the combinations in 

Table 5.6.3 are different from zero, that is, b , - a ^ ^ Q and 0 , in 

which case we have a, ^ and a^^b^ . That is, the total of records imputed as category 

f will include records with category j j imputed and category observed, the records 

with category y, observed and category imputed, and records with categories 7, and 

imputed. 
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The number of cases in category f of jy/ can be represented as 

g, . =%i / ( ( ) ^n ,X2) = (y],72)), Where 0, ,y2) = / or in a similar way, 
' V 

where =( } 'n ,X2)-
^ u 

As before, we distinguish between the three different combinations mentioned in Table 

5.6.3. That is, given that = (Xi»X2) = (Vi»V2) we then have three different kinds of 

imputed records. The first is when only y.^ is missing, in which case y. = (y;,'>'i2) = Uidi)' 

the second case is when only y.^ is missing, in which case y^ = (jKn, j^,2) = OnVz) 3"^ the 

third case is when both variables y.̂  and y^^ are missing at the same time, in which case 

A = (j ' , i ,X2) = 0 ' i , ;2 ) -

Since not all the data is observed, this population quantity can be estimated as follows 

m a . 6 N 

gy = ( ; i ' ; 2 ) ) + E =(71,72))+ Z = 0 ' „ ; 2 ) ) + Z = (y i , ; 2 ) ) 
f = l f = m + l f = g + l f = 6 + I 

m, N, 
or in a similar way, g ^ / ( y / = 7") + ^ 7( j / / = j " ) , where y." is the imputed value 

f=I ;=m; +] 

of the variable y^ for the unit i if missing. 

A 
Again, the first part of the expression, ^ I { y [ = f ) , is based on the observed data, while 

!=1 
N, 

the second part of the expression, ^ 7( j ) / = f ) is determined by the imputation method 
i=m, +1 

used. 

5.11 PROPERTIES OF THE ESTIMATORS 

Let us examine the bias properties of the total estimator presented in the last section. 

To avoid complexity, we shall not attempt to consider variance properties as in Chapter 3. 
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We are assuming model-based approach, where 7^ (}»/ = f \Xt)' (X i - j\ \%i) and 

P ^ { y i 2 = J i l X t ) represents the probability that jy/ takes the value f in a specific 

terminal node t given by the model ^ , probability that y.̂  takes the value in a specific 

terminal node t given by the model ^ and probability that y^^ takes the value in a 

specific terminal node t given by the model ^ respectively. 

We are also assuming that variable y / , ŷ ^ and >>,2 are missing at random within terminal 

nodes, that means, {y^ = f 11, = 1) = ( y / = f \ t, r!" = 0) , 

( X i = k , = 1) = ( x , = A I ^ = 0) and 

(_y,2 = 72 U,^-2 = 1) = ( ^2 - J2 U'^-2 = 0) and holding and r.^ and % as fixed. 

5.11.1. Probability Distribution Imputation Case 

Case 1 

In this case, y.̂  and are missing at the same time and not individually, that is, 

combination 3 in Table 5.6.3. 

Our interest is to obtain an estimator for the total g of cases with category of y.̂  and 

category of y^^ - In this case, we can use the estimator g , defined in Section 5.10.1. 

The bias of the estimator is given by 

"5/ E 

N, 

Z W = / ) + I 
f = ] f = m , + l 

- Y t ' W ' f ) 

It can be noticed that this case can be treated as univariate case where the missing variable 

is a single variable with categories j l , . Therefore, the results are the 

same as in the univariate case (see Section 3.6.1 in Chapter 3). 

Case 2 

In this case, variables y.̂  and y.g can be missing at the same time and also individually. 

That is, combination 1, combination 2 and combination 3 together. 
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As in case 1, we want to estimate the total of cases with categories 7, and of variables 

and y-2 respectively, that is, the number g of cases with category f of . We use 

the estimator defined in Section 5.10.2. The bias of this estimator is given by the expected 

value of the difference between the estimator and the parameter. 

Let us define category (7,0,720) the specific category to be estimated. So, we would like 

to estimate the number of records for which y. = (7,0,720) 

"5/ 
= & 

%i I 
' ' 

l w = / ) + E w - / ) 
f=l ;=mL+I f 

= E. Z 
m, a, 4 

= ( ) ' „ , ^ 2 ) ) + Z ^(j^, =( j^n ,X2) )+ A =(:)'n,j',2)) 
^4 

+E, 
N, N, 

Z = ( % , X 2 ) ) - 2 ] ^ ( X = X2)) 
f=6,+I !=I 

= & 
E Z / ( x =(X i , ) ' ,2 ) )+ ^ ^(7, =Cyn,X2))+ 2!] = ( ^n ,X2 ) ) 

/ = % + ! f=6, +1 

- E Z 

= Z 
II I E ^( in ~ JioVUn - i 2 o ) + E ^Ui\ - 7io)^(i<2 - Jio) 

f =#»; +1 i=a, +1 

V E ~ Jio) E ~ J20) 
;=6,+I 

E E E , [ / ( j , = 7 m ) ] % = y 2 o ) + E ^ a , = ; , o ) ^ / [ / c / . 

Z 4 = JioVOii = Jioi]- Z ^0,1 =JmWi2 = Ao) 
f=6,+l 

assuming independence between units 

E E ./2o)+ E Av,oJa)/V.o''̂ (̂ 'l ./|o) + ( ^ , 
/=m,+I /=a,+l 

E E ^ j \ o ) ^ i J i 2 - J20) 
f ^m,+i 
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E 
;=^+l 

E E ~ j\o)^^ji2 - V20) 
f 

s 4 [Pu. X ^(^/2 ~ j20) \_PUK.j20V Z ^ ( / i =;,o) 
f=o,+1 

+ z [ w - 4 ) 4 -P/lo' / v . , ] - S 4 [ % , = / . ) % : = ) : . ) ] 

t 

' - 1 [ A . ' k - "•. ) ' ' j . ' + P;,' (4 - «, + W - 4 )f;,.,' - W - P , J ] = " 
t 

It can be noticed that the estimator of the total of cases with combination of 

variables y.̂  and 'S an unbiased estimator in the case where the three of missing 

combinations mentioned before are present in the data and only one tree (the joint tree) is 

used for imputing all the missing records. 

5.11.2. Highest Probability Imputation Case 

Case 1 

Since the missing information is present only for the combination 3 and we are interested in 

an estimator of the total of cases with category of >>;, and category j \ of y.^, we use 

the composite variable 7 / to estimate that total. In order to assess if this estimator is 

unbiased, we have to calculate 

& 
V 

= & 
V 2;/w=/)+ z /(#,'=/) 

;=I f=m,+I 
• Y t n y ' = f ) 

f 
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As in the Probability Distribution case, this case can be treated as univariate case v/here the 

missing variable is a single variable y / with categories ^ 1 , . Therefore, the 

results are the same as in the univariate case (see Section 3.6.3 in Chapter 3). 

Case 2 

In this second case, we can be in the presence of Combination 1, Combination 2 and 

Combination 3 together, that is, variables y.̂  and y.^ can be missing at the same time and 

also individually. 

As before, we want to calculate the expected value of the difference between the estimator 

and the parameter. That is. 

& 

= & 
z Y.'W=n+ f . 

f = ] 

- Y t ' W ' f ) 
f 

Z 
;=1 +I 

+& z 
N, 

Z / ( X = ( , j),2 )) - Z ' % )) 
(=6, +1 f=] 

= ( % , X 2 ) ) + Z =(:K,:,j^,2))+ 2 ] A x =()',i'.P,2)) 
%=m̂+l *=a;+l f=6;+l 

I 

N, 

X ! ^iy'i ~ 2)) 

E Z ^Uuij^^ - jw)^Uil -72o)+ Z ^Ui\ - j\a)Iij It I j^^ - Ao) 
i=a, +1 

+& E E = J K ) I i h , i i „ = J 2 « ) - E -'On ^ U V U n ^ h o ) 
f=6,+I f=m, +1 

= & E ~ Jw) Z ^0,2 "-i2o) + -^02r/y,o - j20) Z ^Ui\ - J i o ) 
i=m, +1 ;=a,+l 

+ & =;:oX(;2,/y,. =;2o)_ 
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N, 

Z % = ; ] o ) % =;2o) 
i=m, +1 

- i i o ) ^ ^Un - J20) + & =720) A % = ; io ) 
i=a, +1 

"hVihui,. = A o ) 

Z 4 

N, 
X [ ^ ( / ] - VioMOn -720)] 

^ ^0,2 -^20) 
i=m, +1 

^ [-̂ Ou/Vzo 7lo)] 

+ 

+ 

r̂-1 
^wmA 2 - 7 i o ) 

; = a , + l 

& ^02(//,n -^20) 

l [ w = > . . ) / { > ; „ , . = > » ) ] 

2 - J\n)^(J/2 -Ao)] 
;=m, +1 

assuming independence between units, 

-'Z[(a, -m,)PjJP'U: = j,„) + (b,-a,)P,y-(jl = j„)\ 

+ X[w-b,)F^U:,=u)I*(h,=h,)-(N,-•n,)P^P^ 

Given the results for the assessment of bias in the univariate case (i.e. the estimator of the 

total of cases in category j is not an unbiased estimator), there is not reason why we would 

think that the quantity presented above as the estimation of the bias in the multivariate case 

is zero. Therefore, we can say that the estimator of the total of cases with y.̂  = j \ and 

yn - Ji not an unbiased estimator in the case where the three missing combinations 

mentioned in Table 5.6.3 are present in the data and only one tree (the joint tree for 

and y.^ together) is used for imputing all the missing records. In this case, the bias will 

depend on probability of the modal category in each specific terminal node given by the 

model and also on the number of records missing within each category. 
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5.11.3. Nearest Neighbour Imputation Case 

Case 1 

Since this case correspond to Combination 3 only, for the total of cases with category f of 

the variable jy/ we have 

4 , - 4 , z 
/ = ! t /=i 

Therefore, we are again in presence of a univariate case, which was considered in Section 

3.6.4 in Chapter 3. 

Case 2 

Since this case includes jy., and missing at the same time and also individually, we have 

E 
f=i f=m, +1 

• Z P ( y . = j ) 
f 

I 
f=l 

+& z Z ^ Oi=(y„ ' y,:)) 
f=^+l f=l 

Z 

N, 
E / ( X =( j ^n ,X2) )+ A = (X l , j ' , 2 ) )+ Z = (X l ,X2 ) ) 

^ ,̂+1 

S Z X2)) 
f=m,+l 

= & z Z = ; i o ) % =720)+ E = 7 i o W / 2 =720) 
f=m, +] f=a,+l 

Z % = 7 , 0 ) % = ; 2 o ) - Z =0',0,720)) 
i=m, +1 i=b, +1 

= & 
z =;,oyC/,'2 = ; 2 o ) + Z ^ / U ' ' 0)^0,2 =^0 ) 
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+ & I % - Jio)^(Jr2 ~ J20) ^ ^(Jn ~ Jio^^Un - j20) 
f'=i f=7?L+l 

' Z ^ 4 ' ^ =;,oXU,2 " ; 2 o ) ] + Z ^ ' ' 4 [ % =;.oXO',2 " A o ) ] 

'^Cj.E^ [/(y.,, - j-io)I{ji<2 - 72o)] ^ ^ [^0,1 - 7ioK(7;2 - 72o)] 
f'=l f=m,+l 

given the definition of A.,, B.. and Q, , number of times unit i is used as specified below, 

4- .= ^ for all I . 
ie(m,+l,a,) 

^ 4'/ ^ ^ (1, )) -
ie(a,+],6,) 

C,-, = ^ < d-.f for all I e (1, mj) . 
,e(6,+!,#,) 

and since each donor is used only for imputing cases within the same terminal node 

= E[(«, ~<n;)P,JP,J H b , + ( N , -b.)PjPj -(N.-m,)P,JP,j] - 0 

It can be noticed that in this case, the estimator of the total of cases with y..̂  = j , and 

yn ~ A is an unbiased estimator even when only the joint tree for 2) used for 

imputing the three different combinations of missing information presented in Table 5.6.3. 
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CHAPTER 6 

j%/Wl%j47VCWV 

6.1 INTRODUCTION 

As in Chapter 4, the aim of this chapter is to describe the simulation procedure followed 

when evaluating the imputation performance given the use of classification trees but 

imputing more than one variable at the same time. Several simulations were carried out 

using the same database used in the univariate case, which contains synthetic missing values. 

As well as in the univariate case, in the multivariate simulations different classification trees 

and imputation methods were used in order to compare the effect of these on the final 

results. Additionally, different ways of evaluation were applied in order to compare the 

different procedures. 

Moreover, biases and variances were estimated in order to evaluate the properties of the 

estimators used. 

6.2 SIMULATION PROCEDURE 

The simulation procedure carried out for the multivariate case is basically the same 

procedure employed in the univariate case but imputing more than one variable at the same 

time. Therefore, since most of the features were described in Chapter 4, a review of the 

most important aspects and description of new ones will be shown in this section. 
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1. Generation of the synthetic database. The database used in the multivariate case is the 

same used in the univariate case. 

2. Growing trees. As in the univariate case, different trees were grown for each target 

variable, but in this case using composite variables describe in Section 5.5 in Chapter 5. 

2.1 For each target variable (composite variables), three different tree-sizes were used 

in the analysis in order to compare the effect of the size of the tree on the 

imputation results. The selection of the sizes was the same procedure explained in 

Section 4.5.2 in the simulation chapter for the univariate case. 

2.2 After all the trees had been grown, the records with missing values in the target 

variables were dropped into each tree to find out which terminal node they will end 

up in order to carry out with the imputation. This procedure was followed for the 

different tree-sizes. 

3. Imputing. After the different trees were generated, imputation was carried out 

independently for each of the trees for the composite variables used. 

3.1 The three different imputation methods were combined with the three different 

tree sizes to obtain 9 different imputation results for each target variable. This was 

made using trees grown with the complete database. 

3.2 For each of the trees, the imputation was carried out independently into each 

terminal node. Then, the results were summarised in order to compare them with 

the results from other trees. 

4. Evaluation Different graphs, tests, biases and variances were used for evaluation of the 

imputation. 

4.1 Cross-tabulations between the Imputed values and the real values were obtained for 

all of the possible combinations of tree sizes and imputation methods. 

4.2 Graphs were created for any of the above tables in order to compare preservation of 

individual marginal and joint distributions and preservation of individual values. 
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4.3 Tests were also used for each of the cross-tabulations in order to confirm the 

preservation of individual marginal and joint distributions and preservation of 

individual values. 

4.4 Biases and variances v^ere estimated for most of the composite variables imputed in 

order to assess the properties of the estimators used. 

6.3 DATA 

6.3.1 Data Description 

The database used for the analysis of the multivariate case consists basically of the same 

database used for the univariate case (see Section 4.3.1). The only difference with respect to 

the univariate case is the variables used as target variables in the analysis. 

In the multivariate case, many variables can be missing at the same time. Therefore, the 

target variables used in these multivariate simulations are basically combinations of two or 

more single variables. 

Because the imputation process in this work requires the generation of a tree for the target 

variable as a first step, and since those trees are grown for single variables, composite 

variables were created. 

As explained in Section 5.5 in Chapter 5, a composite variable is defined by the cross-

classification of two or more single variables with categories defined by the combination of 

the categories of each of the variables involved. 

Since all variables on the database are categorical, combinations of these variables also 

correspond to categorical variables. 

A list of the composite variables used in this thesis for the multivariate analysis is shown in 

Table 6.3.1, including a description of the combinations and the definition of their new 

categories. 
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Tables 6.3.1 

Composite Variable Definitions 

Table A 
Country of Birth - Ethnic (COB - ETHNIC) 

Cob Ethnic Cob Ethnic New Code 
1 UK White 1 
1 2 UK Any black Including mixed 2 
1 3 UK Asian 3 
1 4 UK China / Other including other mixed 4 
2 Europe / USA White 5 
2 2 Europe / USA Any black Including mixed 6 
2 3 Europe / USA Asian 7 
2 4 Europe / USA China / Other Including other mixed 8 
3 1 Indian Sub-continent White 9 
3 2 Indian Sub continent Any black including mixed 10 
3 3 Indian S i t continent Asian 11 
3 4 Indian Sub-continent China / Other including other mixed 12 
4 1 Africa / Caribbean White 13 
4 2 Africa / Caribbean Any black Including mixed 14 
4 3 Africa / Caribbean Asian 15 
4 4 Africa / Caribbean China / Other Including other mixed 16 
5 1 Asia / Central and South America / Other White 17 
5 2 Asia / Central and South America / Other Any black Including mixed 18 
5 3 Asia / Central and South America / Other Asian 19 
5 4 Asia / Central arxl South America / Other China / Other Including other mixed 20 

Table B 
Country of Birth Long term Illness (COB - LTILL) 

Cob Ltill Cob Ltill New Code 
UK Has a health problem 1 

2 UK Does not have a health problem 2 
2 Europe / USA Has a health problem 3 
2 2 Europe / USA Does not have a health problem 4 
3 Indian Sub continent Has a health problem 5 
3 2 Indian SiA-contlnent Does not have a health problem 6 
4 1 Africa / Caribbean Has a health problem 7 
4 2 Africa / Caribbean Does not have a health problem 8 
5 1 Asia / Central and South America / Other Has a health prctlem 9 
5 2 Asia / Central and South America / Other Does not have a health problem 10 

Table C 
Ethnic - Long Term Illness (ETHNIC - LTILL) 

Ethnic Lt i l l Ethnic Ltill New Code 
White Has a health problem 1 

2 White Does not have a health problem 2 
2 1 Any black Including mixed Has a health problem 3 
2 2 Any black irxiluding mixed Does not have a health problem 4 
3 1 Asian Has a health problem 5 
3 2 Asian Does not have a health problem 6 
4 1 China / Other including other mixed Has a health problem 7 
4 2 China / Other Including other mixed Does not have a health problem 8 
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Table D 
Country of Birth - Ethnic - Long Term Illness (COB ETHNIC - LTILL) 

C(d) Ethnic Lt i l i Cob Ethnic Lt i l l New 
Code 

1 1 1 UK White Has a health problem 1 
1 1 2 UK White Does not have a health problem 2 
1 2 1 UK Any black including mixed Has a health problem 3 
1 2 2 UK Any black 1nclud1r% mixed Does not have a health problem 4 
1 3 1 UK Asian Has a health problem 5 
1 3 2 UK Asian Does not have a health problem 6 
1 4 1 UK China / Other including other mixed Has a health problem 7 
1 4 2 UK China / Other including other mixed Does not have a health problem 8 
2 1 1 Europe / USA White Has a health problem 9 
2 1 2 Europe / USA White Does not have a health problem 10 
2 2 1 Europe / USA Any black including mixed Has a health problem 11 
2 2 2 Europe / USA Any black including mixed Does not have a health problem 12 
2 3 Europe / USA Asian Has a health problem 13 
2 3 2 Europe / USA Adan Does not have a health problem 14 
2 4 Europe / USA China / Other including other mixed Has a health problem 15 
2 4 2 Europe / USA China / Other including other mixed Does not have a health problem 16 
3 Indian Sub-condnent White Has a health problem 17 
3 2 Indian Sub-continent White Does not have a health problen 18 
3 2 Indian Sub continent Any black including mixed Has a health problem 19 
3 2 2 Indian Sub cmtlnent Any black including mixed Does not have a health problem 20 
3 3 Indian Sub continent Asian Has a health problem 21 
3 3 2 Indian Sub-continent Asian Does not have a health problem 22 
3 4 Indian Sid)-continent China / Other including other mixed Has a health problem 23 
3 4 2 Indian Sub-continent China / Other including other mixed Does not have a health problem 24 
4 1 1 Africa / Caribbean White Has a health problem 25 
4 1 2 Africa / Caribbean White Does not have a health problem 26 
4 2 1 Africa / Caribbean Any black including mixed Has a health problem 27 
4 2 2 Africa / Caribbean Any black including mixed Does not have a health problem 28 
4 3 1 Africa / Caribbean Asian Has a health problem 29 
4 3 2 Africa / Caribbean Asian Does not have a health problem 30 
4 4 1 Africa / Caribbean China / Other Including other mixed Has a health problem 31 
4 4 2 Africa / Caribbean China / Other including other mixed Does not have a health problem 32 

5 1 1 
Asia / Central and South 
America / Other 

White Has a health problem 33 

5 1 2 
Asia / Central and South 
America / Other 

White Does not have a health problem 34 

5 2 1 
Asia / Central and South 
America / Other 

Any black including mixed Has a health problem 35 

5 2 2 Asia / Central and South 
America / Other 

Any black including mixed Does not have a health problem 36 

5 3 1 Asia / Central and South 
America / Other 

Asian Has a health problem 37 

5 3 2 
Asia / Central and South 
America / Other 

Asian Does not have a health problem 38 

5 4 1 
Asia / Central and South 
America / Other 

China / Other including other mixed Has a health problem 39 

5 4 1 2 
Asia / Central and South 
America / Other 

China / Other including other mixed Does not have a health problem 40 

6.3.2 Pattern ofmissins information 

The second stage involved finding the pattern of missing Information present in the data in 

order to create artificial holes for evaluating the imputation process. Since the database 

used in this chapter is the same used in the univariate case, the pattern of missing 

information is still valid as It includes all the possible combinations of missing information, 

i.e. tv^o, three and more variables missing at the same time. 

As mentioned in Section 4.3.2 in Chapter 4, the size of the database used (original database) 

is 222872 records with 23 variables. The total number of records with missing information is 

24116, which represents 10.82 % of the original database (222872 records). 
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Table 6.3.2.1 includes the combinations of variables, the total numbers of missing cases and 

percentages of missingness used in the multivariate simulations. The complete list of 

combinations of missing variable with their respective percentages can be see in Appendix 1. 

Table 6.3.2.1 

Combinations and percentages of missing information 

used for the simulations in the multivariate case 

Variable 

Country 
of Birth 

Long Term 
Illness 

Ethnic Total Perc. 

465 0.74 

225 1.04 

159 2.16 

464 2.16 

6.3.3. Databases used in the analysis 

Table 6.3.3.1 shows the different sizes of the databases (original, complete and synthetic) 

and percentages of missing information as also explained in Chapter 4. 

Table 6.3.3.1 

Databases sizes and Percentages of missing information 

Database Size Complete Information Missing Information 

Original Database 222872 198756 10.820% 

Complete Database 198756 198756 None 

Synthetic Database 198756 177236 10.827% 

It is important to point out that the analysis could be done including missing information for 

the covariates, however, for simplicity, only complete information is included in the 

generation of the tree. Additionally, a previous study by Mesa, Tsai and Chambers (2000) 

shows that the inclusion of missing information for growing the tree seems to have no impact 

on the results when using the same imputation procedures used in this thesis. 

Every time a combination of variables with missing information is chosen to define a target 

variable, the remaining information also changes since different variables are left as 

covariates (auxiliary variables). Therefore, depending on the combination used as a target, 

the databases used for the analysis (growing trees, etc.) are different. 

The sizes of the four databases used, depending on the target combination studied, are 

shown in the next table 
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Table 6.3.3.2 

Databases sizes for the multivariate case 

Variable Database Size Missing Information 

Any 

Ethnic - Ltil l 

Cob - Ltil l 

Ethnic - Cob 

Ethnic - Cob - Ltill 

198756 (complete records) 

198756 - 465 = 198291 (Records with Ethnic and Ltiii missing) 

198756 - 225 = 198531 (Records with Cob and Ltill missing) 

198756 - 159 = 198597 (Records with Ethnic and Cob missing) 

198756 - 464 = 198292 (Records with Ethnic, Ltill and Cob missing) 

None 

Rest of the variable 

Rest of the variable 

Rest of the variable 

Rest of the variable 

It is important to point out that for simplicity, only one database is used for growing the tree 

independently of the missing combination studied. The database used is the one containing 

only fully observed records for all the variables and it is the "complete database" shown in 

Table 6.3.3.1. 

6.4 CLASSIFICATION 

Once the database is ready, the first step of the process is the classification of the units into 

terminal nodes using CART. In this case, all features related to classification are exactly the 

same as used in the univariate case with the difference that the target variable is now a 

composite variable especially created for this task. 

6.4.1 Splittins Criterion 

The composite variable used as a target variable is basically treated as a single categorical 

variable as i t is a product of the combination of two or more single variables, therefore, the 

procedure followed for generating the tree was exactly the same as in the univariate case. 

That is, the splitting criterion used consists on an impurity function defined by the Gini 

index. Again, costs for misclassifying any class 7, as a class are taken equal to 1 for all 

y, ^ 7 2 -

6.4.2 Class Assisnment Rule 

In the multivariate case, when a composite variable is classified, two or more variables are 

classified at the same time. Thus, each terminal node is assigned a specific category of the 

composite variable, which is a combination of categories of two or more variables. For 
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example, if a terminal node has been assigned category 5 of the composite variable Ethnic-

Long term illness in Table 6.3.1 C in Section 6.3.1, that means, the individual variables 

Ethnic and Long term illness are assigned categories 3 and category 1 respectively. The class 

assignment rule used in the multivariate case is the same used in the univariate case, 

plurality rule, see Section 4.4.2. 

6.4.3 Surrosates 

As mentioned in Chapters 2 and 5, surrogates could be very useful tools for classification for 

imputation. They can be used for classifying elements with missing information in the 

auxiliary variables, allowing for the use of as much information as possible; and also, they 

can be used for imputing in a sequential way. 

The use of surrogates for imputation is explained in Section 5.7 in Chapter 5, however, 

simulations for this aspect are not carried out due to time constraints. 

6.5. TREE PROCESS 

6.5.1 Growing the tree 

Once the variable to be imputed is selected, a tree for that variable is generated. The 

process of growing a tree is as explained in Section 4.5.1 in the univariate case. The only 

difference is that the target variable is now a composite variable, which includes two or 

more single variables. 

6.5.2. Selection of the tree size 

The tree size selection was carried out following the same procedure explained in Section 

4.5.2 in Chapter 4, finding a kind of compromise between misclassification rate and number 

of terminal nodes. Thus, three different tree-sizes were selected for each target variable 

(small, medium and large). These sizes depend on the output obtained for each variable from 

the software. In many cases, the optimal tree given by CART was included as one of the trees 

used for that target variable. In the cases where the optimal tree was too large (with too 

many terminal nodes), this was not included because of processing time. The tree sizes for 

the different target variables used in the multivariate case are as follows: 
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Table 6.5.2.1 

Tree sizes for the multivariate case 

Target variable Name Size of the trees 
(number of terminal nodes) 

COB-ETHNIC COBETH 1 0 - 1 8 (optimal) 

COB-LTILL COBLTI 8 - 1 5 - 2 8 

ETHNIC-LTILL ETHLTI 4 - 1 5 - 2 7 

COB-ETHNIC-LTILL COETLT 5 - 1 2 - 2 3 

Since the optimal tree given by CART is considered to be "the optimal" in terms of complexity 

and misclassification rates, trees larger than the optimal size were not used. 

6.5.3. Classifying the records for imputation 

After the tree is generated, the records with missing information in the response variable 

were dropped down the tree in order to identify the terminal nodes (imputation classes) in 

which those records end up. This procedure is explained in Section 4.5.3. 

6.6. IMPUTATION METHODS 

Once the classification tree is constructed, each imputation method is applied independently 

within each terminal node of the tree. The final imputation results are evaluated for the tree 

as a whole by totalling the imputation results obtained at each terminal node. 

The three different imputation methods used in the univariate case were also used in these 

simulations for the multivariate case. These are Frequency Distribution method, Highest 

Probability method and Nearest Neighbour method and they are recalled in Section 5.9 in 

Chapter 5 as well. 

6.7 EVALUATION OF THE IMPUTATION PERFORMANCE 

As described in Section 4.7 in Chapter 4, the imputation procedure can be evaluated from 

different perspectives. Since in this case the imputation is done for more than one variable 

at the same time, the evaluation of the performance of the imputation must take into 

account the following aspects. 
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^ A comparison of the joint distributions for the combination of variables 

^ A comparison of the individual values 

Assessment of the properties of the estimator used 

In general, different comparisons can be done depending on the area to be evaluated. 

1. To assess the impact of using a classification t ree for imputation, comparisons of the 

results of imputation using trees and not using trees can be done. 

2. To evaluate the performance of the different imputation methods v/hen using 

classification trees, comparisons between the results obtained using different imputation 

methods can be done. 

3. To evaluate the properties of the estimators used in the analysis, bias and variance can 

be estimated. 

4. In addition, if more details want to be given, comparisons can be made between the 

different categories of the variable being imputed. 

It is important to point out that in this thesis, the main aspect to be analysed is the 

differences in the imputation performance regarding the use of classification trees for 

forming the imputation classes. 

In order to evaluate these aspects, three different methods were used: 

^ Graphical comparison 

^ Test of agreement 

Biases and variances 

6.7.7. Graphical Comparison 

Both kind of graphs, for comparing joint distributions and individual values, used in the 

univariate case (see Section 4.7.2) were also employed in the multivariate case. Then, a 

group of graphs, for each combination between the different t ree sizes and the different 

imputation methods were obtained in the multivariate case. They were used to compare the 

imputation performance when imputing more than one variable at the time using different 

tree-sizes and different imputation methods. 

Cross-tabulations between the real and the imputed values were previously obtained for 

producing the graphs. 

6.7.2. Test of asreement 

In order to confirm the results obtained from the graphs described in the last section, both 

statistics Wald statistics and Diagonal statistics described in Section 4.7.3 were also 
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employed in the multivariate case. The Wald statistics was used for comparing joint 

distributions while the Diagonal statistics for comparing individual values. 

The outcomes are presented in the results section. 

6.7.3.Biases and variances 

In order to assess the properties of the estimators used, bias and variance were estimated. 

As mentioned in Chapter 5, in this case, estimators of the variance were not obtained (not 

even in theory). 

Simulation for the biases and variances 

The use of simulation to est imate the biases and variances in the multivariate case were 

carried out in the same way as the simulations explained in the univariate case (see Section 

4.7.4 for more details). 

1. Generation of the databases. The databases used in the multivariate case were the 

same databases (sample databases) generated in the univariate case. The 1000 sample 

databases created in the univariate case were big enough to include the multivariate 

missing cases studied in this thesis. 

2. Generation of the synthetic holes. As in the univariate case, the patterns of missing 

information for the multivariate missing case studied in this thesis were replicated on the 

1000 sample databases at random as explained in Section 4.7.4 in Chapter 4. The 

composite variables used and their missing percentages are shown in Table 6.3.2.1. 

3. Classifying the records for imputation. After a classification t ree was created for each 

composite variable used in the study, each database was divided in the corresponding 

number of terminal nodes depending on the size of the t ree used. Records with missing 

information for the target variable were classified in order to generate the pool of 

recipients to carry out the imputation procedure. As in the univariate case, since the size 

of the t ree does not seem to have a major impact on the imputation results, only one 

tree size was used for the simulations of biases and variances described in this chapter. 

4. Imputation. After having the set of donors generated by the t ree and recipients 

generated in point 3 before for each database classified into two different groups, the 

imputation procedures were applied in order to obtain estimates for the biases and 

variances. The results for each group (terminal nodes) were totalled and comparisons for 

trees as wholes were obtained. Then, 1000 estimates were calculated (each for each 

sample database) in order to measure biases and variances. 
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It is important to point out tha t since Nearest Neighbour procedure is very much time 

consuming, for this part of the simulations only two imputation methods, Frequency 

Distribution and Highest Probability, were used. 

5. Calculation of the biases and variances. Once the 1000 imputations were obtained for 

the tv^o different imputation methods used in the multivariate case, biases and variances 

as described in Section 4.7.4 were obtained. Results and the correspondent comments 

are presented in the results. 

6.8.results 

This section introduces the most notable findings obtained from the analysis regarding the 

use of tree-based models for imputation in the multivariate case. As in Chapter 4, we divide 

it in different sections as follov^s 

6.8.1 Using trees 

Table 6.8.1.1 shows the values of the Wald statistic for the different target variables, 

different imputation methods and different t r ee sizes 

Table 6.8.1.1 

Wald Statistic and P-values for the multivariate case 

Wald Statistic P-values 

Variable Tree Size d.f. Freq. Dist. High. Prob. Near. Neig. Freq. Dist. High. Prob. Near. Neig. 

cobeth 10 19 3X9 26.00 4.00 0.99 0.13 0.99 

18 19 3.54 26.00 2.83 0.99 0.13 0.99 

No Tree 19 4.07 26.00 5.18 0.99 0.13 0.99 

cobiti 8 9 4.01 52.75 2.78 0.91 0.00 0.97 

15 9 6.86 50.75 8.15 0.65 0.00 0.51 

28 9 7.90 48.32 8.58 0.54 0.00 0X7 

No Tree 9 2.17 73.00 10.19 0.98 0.00 0.33 

ethiti 4 7 3.43 108.28 10.16 0.84 0.00 0.17 

15 7 4.66 86.52 10,55 0.70 0.00 0.15 

27 7 7.80 87.66 3^G 0.34 0.00 0.79 

No Tree 7 2.58 170.00 8.04 0.92 0.00 0.32 

coetit 5 39 24.98 184.90 29.58 0.96 0.00 0.86 

12 39 23.08 183.90 32.70 0.97 0.00 0.75 

23 39 26.40 181.56 24.44 0.93 0.00 

No Tree 39 17\87 193.00 25.03 0.99 0.00 0.95 
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As explained in Section 4.8.1, small values of the Wald statistics (or equivalently, big values 

for the p-value) suggest no evidence to reject the hypothesis that marginal distributions are 

maintained and vice versa. Since the degree of freedom for each variable varies depending 

on the number of categories (i.e. each variable has a different critical value), we simplify 

the analysis by using p-values. 

In terms of preservation of marginal distribution (joint marginal distributions in this case), it 

can be seen from this table there is not major impact v/hen using trees. The values of the 

Wald statistics (p-values) indicate that the marginal distributions are maintained even when 

trees are not used, except for the cases in the Highest Probability method. That is, in the 

Highest Probability method, none of the distributions is preserved in any of the cases (using 

or not trees). However, it can be said that the use of trees in the case of Highest Probability 

method improves the performance of the imputation in term of preservation of distributions, 

as it will be explained in the next example. 

Graphical representation of comparisons between real and imputed distributions can be seen 

in Appendix 4. 

In the next example. Tables 6.8.1.2 show a cross tabulation between real and imputed values 

for the variable Ethnic - Long term illness using Highest Probability imputation method, two 

different t ree sizes and no tree. In all the tables, the rows represent the values of the 

imputed variable and the columns represent the real values of the variable. In this case, 465 

records were imputed 

Tables 6.8.1.2 

Cross-tabulation between Real and Imputed Values for the variable Ethnic-Ltill 

Table A 
4 Terminal Nodes 

Real 

Imputed 1 2 3 4 5 6 7 8 Total 

2 45 289 0 48 1 4 0 12 399 

4 1 2 6 37 0 2 2 0 50 

6 0 0 0 0 0 4 0 0 4 

8 0 4 0 4 0 0 0 4 12 

Total 46 295 6 89 1 10 2 16 465 
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Table B 
15 Terminal Nodes 

Real 

Imputed 1 2 3 4 5 6 7 8 Total 

1 5 4 0 0 0 0 0 0 9 

2 40 285 0 48 1 4 0 12 390 

3 0 0 2 3 0 0 0 0 5 

4 1 2 4 34 0 2 2 0 45 

6 0 0 0 0 0 4 0 0 4 

8 0 4 0 4 0 0 0 4 12 

Total 46 295 6 89 1 10 2 16 465 

Table C 
No Trees 

Real 

Imputed 1 2 3 4 5 6 7 8 Total 

2 46 295 6 89 1 10 2 16 465 

Total 46 295 6 89 1 10 2 16 465 

From Table 6.8.1.2 C we have that this variable contains eight different categories. Most of 

them are used for imputation in the case where a classification tree is used Table 6.8.1.2 A 

and Table 6.8.1.2 B, depending on which terminal node each recipient ends up. In this 

example, the trees used have 4 and 15 terminal nodes, which even when it has very few 

number of terminal nodes for the first one, allows for the use of many categories for 

imputing. However, in the case where a classification tree is not used (Table 6.8.1.2 C), only 

the category with highest probability was used for imputing, which is category 2. 

This example shows that employing a classification tree ensure the use of most of the 

categories of the variable for imputation, even when the tree does not have a large number 

of terminal nodes. However, when trees are not used, only one category is used for 

imputation. That is because the imputation when using trees is made at each terminal node 

and categories for imputing will depend on the class assignment that define the terminal 

nodes class, while when trees are not used, the imputation will be made employing the 

category with highest probability in the whole database, which will be just one. 

Therefore, we can say that even when none of the distributions are preserved for the Highest 

Probability method, in this case, the use of the t ree improve the distributions obtained after 

imputation. This aspect can also be seen in a graphical way in Appendix 4 and Appendix 5. 

There is an important aspect to point out in this analysis in terms of preservation of marginal 

distributions. In most of the cases (almost all of them) the marginal individual distribution in 

the case of single variables and joint distributions in the case of composite variables are 
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maintained. A previous analysis made by Mesa, Tsai and Chambers (2000) shows that when 

imputation is done for a composite variable using this procedure not only joint distributions 

are preserved but the individual marginal distributions of the single variables involved in that 

composite variable are also preserved. The work made by Mesa, Tsai and Chambers presents 

an example when two variables, Primary activity last week (ALWPRIM) and Long term illness 

(LTILL) were imputed at the same time. In this case, the joint distribution Primary activity 

last week - Long term illness was maintained, as well as the individual marginal distributions 

for Primary activity last week and Long term illness separately. 

This is a really valuable achievement since it is important to uphold relationships between 

variables without loosing the shape of the distribution of the individual variables. 

Similar simulations have not been done for the variables used in this analysis because of time 

constraints. 

Table 6.8.1.3 show the results of the Diagonal Statistic for the multivariate case. 

Table 6.8.1.3 

Diagonal Statistic ( ) for the multivariate case 

Diagonal Statistic 

Variable Tree Size Freq. Dist. High. Prob. Near. Neig. 

cobeth 10 5.26 2.25 5.393 

18 4.10 2.25 3.349 

No Tree 5.90 2.25 5.02 

coblti 8 8.33 4.57 7.63 

15 7.74 4J9 

28 8.09 4.39 7.51 

No Tree 11.86 5.92 6.96 

ethit i 4 13.87 7.16 12.11 

15 11.86 7.16 11.13 

27 11.78 6.90 11.13 

No Tree 18.50 9.89 11.21 

coetlt 5 23.27 11.72 20.51 

12 22.98 11.64 20.00 

23 22.83 11.72 20.00 

No Tree 22.98 20.90 

As explained in Section 4.7.3 in Chapter 4, provided one cannot reject the hypothesis that 

the imputation method preserves the marginal distribution using the Wald statistic, the 

preservation of individual values can be tested by using the confidence interval for D 

(proportion of incorrectly imputed cases), in this case, D -2-JvxW) should be less than 

zero in order to have some evidences that the individual values are preserved. In other 
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words, if Zg - 2 < 0 , then, the individual values can be said to be preserved, with 

D 
-

It can be noticed that if a confidence interval is calculated as explained before, z ^ - 2 is 

closer to zero when trees are used than in the case of not using trees in many cases. This 

improvement can be observed from the point of view of percentage of records correctly 

imputed and it will be explained later. 

In the case of Nearest Neighbour method, the values of are very similar in both cases, 

when using and not trees. Then, it cannot be said the method performs better when using 

trees than when trees are not used. 

A graphical representation of the preservation of individual values is shown in Appendix 5. 

It is important to point out that even when the values of the diagonal statistic in the case of 

using tree are also large (compared with not using trees) as shown in Table 6.8.1.1 (i.e. 

individual values are not preserved), the percentages of records correctly imputed obtained 

from these results show an improvement on the imputation performance with respect to the 

results of the cases where trees are not used in many cases (or at least remain equal). This 

can be seen in the next table. 

Table 6.8.1.4 presents the "improvement" for the different combinations between tree sizes 

and imputation methods for the different variables. This measure of improvement is based 

on the percentage of records correctly imputed when trees are not used and their 

differences with the percentage of records correctly imputed when trees are used as 

explained in Section 4.8.3 in Chapter 4. See Appendix 7 for graphical representation. 

If a comparison between the results from the case where trees are used and that where trees 

are not used is made, we will notice that there is always an improvement in terms of records 

correctly imputed when using trees for the Frequency Distribution except for the variable 

Cob-Ethnic-Ltill and in many cases for the Highest Probability method. However, in the case 

of Nearest Neighbour, the improvement seems to be more variable since some of them have 

more correctly imputed records when using trees and some have more correctly imputed 

records when trees are not used. 

It is clear that the highest improvement is always for Frequency Distribution method and this 

improvement can reach more than 30% in some cases for the multivariate case. 
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Table 6.8.1.4 

Improvement by variable, t r e e size and imputation method for t h e multivariate case 

Variable Tree-size Freq. Distrib. High. Prob. Near. Neigh. 

Cobeth 10 5.00 0.00 -2.80 

18 15.00 0.00 14.02 

No Tree 0.00 0.00 0.00 

Coblti 8 25.00 3.82 

15 29.81 10.53 8.40 

28 26.92 10.53 4.58 

No Tree 0.00 0.00 0.00 

Ethiti 4 22.28 13^2 -3.96 

15 33.66 0.36 

27 34.16 14.58 0.36 

No Tree 0.00 0.00 0.00 

Coetit 5 -1.20 0.00 1.65 

12 0.00 0.37 3.85 

23 0.60 0.00 3.85 

No Tree 0.00 0.00 0.00 

Table 6.8.1.5 shows the percentage of records incorrectly imputed by variable, tree size and 

imputation method, the misclassification rate by tree size and variables as well as the 

percentage of missing information by variable 

Table 6.8.1.5 

Percentage of missing data, percentage of records incorrectly imputed and 

misclassification rate by variable, imputation method and t r ee size for the multivariate 

case. 

Variable Percentage of 
missing data Tree Size 

Probability 
Distribution 

Highest 
Probability 

Nearest 
Neighbour 

Misclassification 
Rate 

Cob_eth 0.74 10 33.96 16.35 34.59 36.41 

18 27.67 16.35 23.27 36.40 

No tree 37.10 16.35 32.70 

Cob_iti 1.24 8 42.22 26.22 39.55 25.00 

15 40.00 25.33 3&88 24.53 

28 41.33 25.33 39.11 24.29 

No tree 53.77 32.44 41.77 

Eth_lti 2.16 4 46.88 28.17 42.58 29.38 

15 41.93 28.17 40.00 28.80 

27 41.72 27.31 40.00 28.71 

No tree 56.55 36.55 40.21 

Co_et_lt 2.16 5 64.43 41.59 60.12 jMUB 

12 64.00 41.37 59.26 44.14 

23 63.79 41.59 59.26 44.12 

No tree 64.00 41.59 60.77 
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It can be noticed that the relationship between the percentage of records incorrectly 

imputed and the misclassification ra te when using trees is not as obvious as in the univariate 

case. 

Another interesting point to notice from this table is the fact tha t the lowest percentage of 

records incorrectly imputed is for the Highest Probability method, even when trees are not 

used. That is because the majority of the population is always concentrated in one category 

(or two), which is the one used for imputation by this method. Probability Distribution and 

Nearest Neighbour present similar percentages of records incorrectly imputed most of the 

time. 

Additionally, we can see tha t the highest misclassification rates are for the variables with 

more categories as CO-ET-LT and COB-ETH. 

6.8.2 Comparing Tree-Sizes 

It can be seen from Table 6.8.1.1 and Table 6.8.1.3 in the last section that the changes in 

the Wald statistic and the Diagonal statistic are not big enough to alter the conclusion that 

the imputation performance is not affected by the size of the t ree . Additionally, the changes 

on both statistics do not follow similar pattern for all of the cases. Sometimes the best 

results are obtained from the smallest t rees and sometimes from the biggest trees or even 

from the medium size trees. However, since all of the values of the Wald statistics are small 

enough to not reject the hypothesis that marginal distributions are maintained, and the 

values of the Diagonal statistics are big enough to reject the hypothesis that individual values 

are preserved, it can be said that there are not considerable changes on the results when 

using different sizes of trees. 

Therefore, the main conclusion about using different sizes for the t r ee is that increasing the 

size does not necessarily improve the imputation performance. That is, using complex trees 

does not necessary lead to bet ter imputation results. 

Moreover, looking at Tables 6.8.1.1 and 6.8.1.3 it can be noticed that there are no major 

differences between using 10 or 18 terminal nodes for the variable Country of birth - Ethnic 

(COB-ETHNIC) in terms of the values of the Wald statistics and Diagonal statistics, even when 

the t ree with 18 terminal nodes is the optimal t ree given by CART. Then, we can say that the 

use of the optimal t ree given by CART does not seem to make significant improvement in the 

performance of the imputation. The optimal t ree given by CART is meant to be optimal in 

terms of complexity and misclassification rate. In this sense, the use of the optimal t ree 

could be expected to give the best performance, however, it can be observed from the 

results that this hypothesis is not necessarily correct. More results about this aspect, leading 

to the same conclusions, can be found in Mesa, Tsai and Chambers (2000). 
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As shown in Table 6.8.1.5, there seems to be no relationship between the misclassification 

ra te and the percentage of records correctly imputed for each composite variable. The 

percentage of records correctly imputed look stable as well as the misclassification rate 

within each variable for the different t r ee sizes. 

6.8.3 Comparing Imputation Methods 

As said in Section 6.8.1, it can be seen from Table 6.8.1.1 that Frequency Distribution and 

Nearest Neighbour perform very well in term of preservation of marginal distributions given 

the P-values for the Wald statistics when using trees, which is not the case of Highest 

Probability method. 

In the case of Highest Probability, there is not preservation of marginal distribution in any of 

the cases, as observed in Table 6.8.1.1, however, there is an improvement on the 

distribution of the imputed values when trees are used as explained in Section 6.8.1. 

In terms of preservation of individual values we can see that none of the imputation 

procedures used in this research achieve this aim. However, we can see some differences in 

the values of the Highest Probability and the rest of the imputation methods. Highest 

Probability method has always lower values in the diagonal statistics. This fact can also be 

seen in the next table. 

Table 6.8.3.1, as well as Appendix 6 (in graphical terms), shows the percentages of records 

correctly imputed when using or not t ree for the different imputation methods and different 

t ree sizes. 

Table 6.8.3.1 

Percentage of Cases Correctly Imputed for the multivariate case 

Variable Tree-size Freq. Distrb. High. Prob. Near. Neigh. 

cobeth 10 66.04 83.65 65.41 

18 72.33 83.65 76.73 

No Tree 62.89 83.65 67.30 

coti t i 8 57.78 73.78 60.44 

15 60.00 74.67 63.11 

28 58.67 74.67 60.89 

No Tree 46.22 67.56 58.22 

ethlt i 4 53.12 71.83 57.42 

15 58.06 71.83 60.00 

27 58.28 72.69 60.00 

No Tree 43.44 63.44 59.78 

coetit 5 35.56 58.41 39.87 

12 35.99 58.62 40.73 

23 36.21 58.41 40J3 

No Tree 35.99 58.41 39.22 
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It can be seen that always, the higher percentage is obtained when using Highest Probability 

method. 

Even for the strangest cases (Country of birth-Ethnic-Long term illness, COETLT, and Country 

of birth- Ethnic, COBETH), the lowest percentage of records correctly imputed obtained with 

the Highest Probability method is over 58%. 

Thus, we can say that the best method in preserving individual values is the Highest 

Probability with over 80% of the cases correctly imputed in some situations. 

The percentage of records correctly imputed with this method depends, in a way, on the 

shape of the distribution when using trees and of course on the accuracy of the classification 

tree. 

In the case of Frequency Distribution, there is always an improvement when using tree. This 

improvement is not evident when comparing marginal distributions but it can be observed 

when comparing individual values. 

Table 6.8.1.5, as well as Appendix 8, show the relationship between the percentage of 

misclassification rate and the percentage of records correctly imputed. It can be seen that 

the higher the misclassification rate, the lower the number of records correctly imputed. 

This applies to all the methods with some exceptions in the Nearest Neighbour. 

It can also be noticed from Table 6.8.1.5 that as in the univariate case, the highest 

percentages of records incorrectly imputed always corresponds to the Frequency Distribution 

methods, followed by Nearest Neighbour and Highest Probability respectively. 

It can be noticed from the Wald statistic values in Table 6.8.1.1, Diagonal values in Table 

6.8.1.3 and in the percentage of records correctly imputed in Table 6.8.3.1 that in the case 

of Nearest Neighbour, the use of the tree does not have very much impact on the results. 

The results remain the same when comparing both marginal distributions and individual 

values. Additionally, the percentage of records correctly imputed remains fairly stable when 

using Nearest Neighbour. Therefore, we can say that, in general, the use of trees does not 

make any improvement in the results when using Nearest Neighbour, probably because the 

nearest neighbour donor will be found either using or not classification. The use of the tree 

will probably improve the time consumed in the Imputation process. 
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6.8.4 Comparing Categories 

Tables 6.8.4.1 contain the percentage of records incorrectly imputed by imputation 

methods, tree sizes and categories, as well as the misclassification rates obtained from the 

different tree sizes by categories of the target variables 

Tables 6 .8 .4 .1 

Misclassification ra tes by t r e e sizes and categories and percentage of records incorrectly 

imputed by imputat ion method, t r e e size and categories for t he multivariate case 

Table A 

Variable: ETH_LTILL 

Percentage of Records Incorrectly Imputed 

Misclass. Rate Frequency Distribution Highest Probability Nearest Neighbour 

Cat. Records 8 TN 15 TN 27 TN 8TN 15 TN 27 TN N TRE 8TN 15 TN 27 TN N TRE 8TN 15TN 27 TN NTRE 

1 16006 100.00 90.42 89.10 95.65 67.39 67.39 86.96 100.00 89.13 86.96 100.00 67.39 73.91 63.04 71.74 

2 110727 2.78 3.41 3.36 30.17 27.46 27.46 38.98 2.03 3.39 2.71 0.00 31.53 22.71 28.47 24.75 

3 3352 100.00 81.00 74.67 66.67 66.67 83.33 100.00 100.00 66.67 50.00 100.00 50.00 83.33 50.00 66.67 

4 32064 60.81 62.17 62.75 62.92 61.80 61.80 82.02 58.43 61.80 61.80 100.00 53.93 61.80 52.81 60.67 

5 677 100.00 100.00 85.67 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 

6 5609 60.35 60.35 61.76 80.00 70.00 60.00 100.00 60.00 60.00 60.00 100.00 80.00 80.00 70.00 70.00 

7 718 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 

8 8083 66.31 66.31 68.29 87.50 87.50 81.25 100.00 75.00 75.00 75.00 100.00 75.00 87.50 81.25 81.25 

Table B 

Variable: Country of birth - Long term illness 

Percentage of records incorrectly imputed 

Misclass. Rate Frequency Distribution Highest Probability Nearest Neighbour 

Cat. Records 8 TN 15 TN 28 TN 8 TN 15 TN 28 TN N TRE 8 TN 15 TN 28 TN N TRE 8 TN 15 TN 28 TN N TRE 

1 15687 100.00 89.59 89.59 100,00 70.00 75.00 95.00 100.00 90.00 90.00 100.00 70.00 65.00 70.00 75.00 

2 122271 1.51 2.18 2.36 24.34 25.00 25.66 34.21 1.32 1.32 1.32 0.00 23.68 22.37 26.97 21.05 

3 1271 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 

4 10337 100.00 100.00 100.00 82.35 88.24 100.00 94.12 100.00 100.00 100.00 100.00 88.24 94.12 82.35 94.12 

5 629 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 

6 3019 44.85 44.85 44.15 33.33 66.67 66.67 100.00 33.33 33.33 33.33 100.00 33.33 100.00 33.33 33.33 

7 2709 100.00 100.00 68.66 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 50.00 50.00 50.00 100.00 

8 16026 42.64 42.64 44.71 65.00 55.00 55.00 90.00 45.00 45.00 45.00 100.00 65.00 35.00 40.00 45.00 

9 457 100.00 100.00 100.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

10 4830 65.94 65.94 63.66 62.50 62.50 50.00 100.00 62.50 62.50 62.50 100.00 75.00 75.00 75.00 62.50 
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Table C 

Variable: Country of birth - ethnic 

Percentage of Records Incorrectly Imputed 

Misclass. Rate Frequency Distribution Highest Probability Nearest Neighbour 

Cat. Records 10 TN 18 TN 10 TN 18 TN N TRE 10 TN 18 TN N TRE 10 TN 18 TN N TRE 

1 112643 0.11 0.12 22.56 18.80 24.81 0.00 0.00 0.00 24.06 11.28 21.80 

2 19484 100.00 100.00 88.24 64.71 100.00 100.00 100.00 100.00 82.35 88.24 88.24 

3 2091 100.00 100.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

4 3740 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 

5 10693 100.00 100.00 100.00 85.71 100.00 100.00 100.00 100.00 100.00 71.43 85.71 

6 257 100.00 100.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

7 22 100.00 100.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

8 636 100.00 100.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

9 431 100.00 100.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

10 109 100.00 100.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

11 2634 100.00 100.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

12 474 100.00 100.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

13 1538 100.00 100.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

14 14863 98.79 98.53 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

15 1339 100.00 100.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

16 995 100.00 100.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

17 1428 100.00 100.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

18 703 100.00 100.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

19 200 100.00 100.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

20 2956 100.00 100.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

It can be noticed from these tables that there seems to be a relationship between the 

misclassification rates obtained from the tree and the percentage of records incorrectly 

imputed by categories. Both the misclassification rate and the percentage of records 

incorrectly imputed by categories tend to follow similar patterns most of the time. However, 

this relationship does not seem to be as strong as in the univariate case. It can also be 

observed that this relationship will not apply for the case where trees are not used. 

This could be an important finding from the point of view of accuracy. It could be predicted 

from the tree by using the misclassification rate by categories, which categories of the 

variable being imputed will be more accurate than others af ter the imputation is done. 

Another interesting finding obtained from this table is that in the case when trees are not 

used, the percentage of records incorrectly imputed by categories is usually higher (or at 

least equal) than the percentage of records incorrectly imputed when trees are used for the 

Frequency Distribution and Highest Probability methods. 

Moreover, depending on the imputation method used, the percentage of records incorrectly 

imputed obtained from the case where trees are not used can be near to 100% for most of 

the categories as in the case of Highest Probability method where only one category is used 

for imputation. This corroborates the statement made previously that the use of trees 

improves the performance of the imputation depending on the method used. 
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In the case of Nearest Neighbour method, all the information, percentage of records 

incorrectly imputed using trees, percentage of records incorrectly imputed when trees are 

not used and misclassification rate, have more similar results than the rest of the methods 

when comparing different variables. 

Again, this implies tha t there is not an impact on the imputation results when Nearest 

Neighbour method together with classification trees is used for imputation. 

A set of graphs obtained from Tables 6.8.4.1 can be found in the Appendix 9. 

These graphs present the percentage of records incorrectly imputed using and not using trees 

and the misclassification ra te by categories for the different imputation methods and 

different t ree sizes. These graphs show how the lines for the percentage of records 

incorrectly imputed obtained using trees (red line) and the misclassification rates for the 

same categories (blue line) follow similar patterns. Alternatively, the line representing the 

percentage of records incorrectly imputed in the case where trees are not used (yellow line) 

is different from the two lines mentioned before. 

6.8.5 Assessment of Biases and Variances 

Since the variables used in the multivariate case are composite variables (which are treated 

as a simple categorical variable) and since the imputation for these simulations was carried 

out only for the case where the variables are missing at the same time and not individually, 

the estimator for the variance in the case of Frequency Distribution and Nearest Neighbour 

imputation methods presented in Section 3.7 m Chapter 3 is still valid. In the case where the 

missing information is present not only for the combination of variable but also for the 

individual variables forming tha t combinations (combination 1 and 2 in Table 5.6.3 in 

Chapter 5), the estimator of the variance will need to be reformulated. This case is not 

assessed in this thesis. 

Additionally, due to t ime constraints, the estimator of the variance in this chapter is only 

obtained for the Frequency Distribution method and combination of two variables missing at 

the same time only. 

This section presents a set of summary tables; more detailed information can be seen in 

Appendix 3. It is important to point out that in here, as well as in the univariate case, the 

simulations were carried out using only one tree size for each combination of variables, since 

we had said before (in Section 6.8.1) that it seems to be no considerable differences on the 

results when using different t ree sizes. 
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Tables 6.8.5.1 contain the information related to the simulations carried out for the biases, 

variances and variance estimation in the multivariate case for the case of Frequency 

Distribution imputation method. 

Tables 6.8.5.1 

Biases, Variances, Expected Variance Estimators and Coverage for the Frequency 

Distribution Imputation Method for t he multivariate case 

Table A 

Composite variable: Ethnic - Country of birth 

Categories 

1 2 3 4 5 6 7 8 9 10 

126363 21847 2363 4185 12009 297 26 712 489 123 

E(y) - y 0.00 -1.00 0.00 -1.00 -1.00 0.00 0.00 -1.00 0.00 0.00 

( ( 2 ( y ) - y ) / y ) * i o o 0.000 -0.004 0.000 •0.023 -0.008 0.000 0.000 -0.140 0.000 0.000 

f ( K ) 35.00 14.00 2.00 3.00 9.00 0.00 0.00 1.00 0.00 0.00 

r ( y ) 36.00 15.00 2.00 4.00 10.00 0.00 0.00 1.00 0.00 0.00 

M5E(y) 36.00 16.00 2.00 5.00 11.00 0.00 0.00 2.00 0.00 0.00 

Coverage 94.80 94.10 94.30 91.80 90.90 79.20 98.20 88.10 95.50 91.40 

11 12 13 14 15 16 17 18 19 20 

E(y) 2922 525 1730 16673 1509 1101 1597 781 226 3277 

f ( y ) - y -1.00 0.00 0.00 -1.00 0.00 -1.00 0.00 -1.00 0.00 7.00 

( ( £ ( y ) - y ) / y ) * i o o -0.034 0.000 0.000 -0.006 0.000 -0.090 0.000 -0.127 0.000 0.214 

2.00 0.00 1.00 12.00 1.00 1.00 1.00 1.00 0.00 3.00 

r ( f ) 3.00 0.00 1.00 12.00 1.00 1.00 1.00 1.00 0.00 7.00 

4.00 0.00 1.00 13.00 1.00 2.00 1.00 2.00 0.00 56.00 

Coverage 88.90 95.30 95.00 94.10 96.30 79.30 95.70 88.40 82.80 6.00 

Table B 

Composite variable: Ethnic - Long Term Illness 

Categories 

8 

E(Y} 17920 124268 3743 35979 739 6307 811 

E(Y)-Y -1.00 0.00 -1.00 -1.00 -1.00 0.00 -1.00 5.00 

( ( £ ( r ) ~ r ) / r ) » l o o -0.005 0.000 -0.026 -0.002 -0.135 0.000 -0.123 0.055 

E{V) 29.00 78.00 7.00 51.00 2.00 11.00 2.00 17.00 

V(Y) 31.00 79.00 8.00 49.00 2.00 11.00 2.00 21.00 

MSE{Y) 32.00 79.00 9.00 50.00 3.00 11.00 3.00 46.00 

Coverage 94.00 95.00 93.90 95.30 91.80 93.80 86.00 77.00 
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Table C 

Composite variable: Country of birth - Long term illness 

Categories 

1 2 3 4 5 6 7 8 9 10 

2 ( f ) 17553 137207 1452 11591 694 3365 3014 17999 500 5380 

^(X) - y 0.00 0.00 -2.00 -1.00 0.00 •1.00 -1.00 -1.00 -1.00 6.00 

( ( g ( y ) - y ) / y ) » i o o 0.000 0.000 •0.137 -0.008 0.000 -0.029 -0.033 -0.005 -0.199 0.111 

14.00 34.00 2.00 12.00 1.00 3.00 3.00 i i x m 1.00 5.00 

r ( f ) 14.00 35.00 2.00 13.00 1.00 3.00 3.00 12.00 1.00 7.00 

M&g(y) 14.00 35.00 6.00 14.00 1.00 4.00 4.00 13.00 2.00 43.00 

Coverage 95.00 94.70 79.00 93.70 90.80 91.40 91.50 92.60 88.60 24.70 

It can be seen from these tables that the estimator of the total is approximately unbiased for 

all the categories of the target variables. That is, the difference betv/een the real values of 

the total of records in this case and the expected values of the estimator of that total 

obtained by the simulations are very close to zero in the case of Frequency Distribution 

method. These results correspond to the findings obtained in the theoretical formulation. 

Only few cases, category 20 for the composite variable Ethnic-Country of Birth, category 8 

for composite variable Ethnic-Long term Illness and category 10 for composite variable 

Country of Birth-Long Term Illness, show slightly higher bias than the rest. However, these 

biases do not seem to be of major importance compared to the size of the values of the point 

estimates. 

In terms of variability, we can see some differences in the values of the variance depending 

on the different categories of the target variables. Smaller variances are always for the 

smaller categories and bigger variances are always for the larger categories. However, even 

for the largest values we can see that the sizes of those variances are very small compared to 

the sizes of the point estimates. 

In terms of estimation of the variance, we can see that this estimator basically lead to 

unbiased estimates. That is, there are not major differences between the expected value of 

the estimator of the variance and the actual variance. 

The coverage, as in the univariate case, was estimated using a 95% nominal coverage level. 

This seems to be very stable in general, except for some cases with lower coverage, e.g. 

77.00 the lowest. 

Also, there are only few cases for which the coverage does not seem to be at the same level 

as the rest. In these cases, category 20 for the composite variable Ethnic-Country of Birth 

and category 10 for composite variable Country of Birth-Long Term Illness, we can see that 

the bias is bigger than the variance, which makes the coverage lower. That is, the fact the 
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confidence intervals are moved to one side (right side in this cases) given the values of the 

bias and the variances are small, make the coverage poor. 

However, if we take the value of the Mean Square Error for these categories and divide them 

by their respective totals in each case, we can see that the estimator is very accurate since 

the value of the relative Mean Square Errors are very smalls. 

Tables 6.8.5.2 contain the information for the bias, variance and coverage for the case of 

Highest Probability imputation method. In the case of the coverage, this was estimated using 

a 95% nominal coverage level and the variance obtained from the simulations given that 

estimates for these variances were not obtained. 

Tables 6.8.5.2 

Biases, Variances and Coverage for the Highest Probability Imputation Method for the 

multivariate case 

Table A 

Composite variable: Ethnic - Country of birth 

Categories 

1 2 3 4 5 6 7 8 9 10 

126420 21830 2361 4183 12001 297 26 712 489 123 

^ ( y ) - y 5AOO -18.00 -2.00 -3.00 -9.00 0.00 0.00 -1.00 0.00 0.00 

( ( E ( y ) - y ) / y ) ' i o o 0.045 -0.082 -0.084 -0.071 -0.074 0.000 0.000 -0.140 0.000 0.000 

r ( y ) 37.00 16.00 2.00 3.00 10.00 0.00 0.00 1.00 0.00 0.00 

M$E(y) 3286.00 340.00 6.00 12.00 91.00 0.00 0.00 2.00 0.00 0.00 

Coverage 0.00 0.00 71.3 58.3 18.7 79.3 98.2 88.1 68.7 91X 

11 12 13 14 15 16 17 18 19 20 

g ( y ) 2921 525 1729 16661 1508 1101 1596 781 226 3267 

^ ( y ) - y 2.00 0.00 -1.00 -13.00 -1.00 -1.00 -1.00 -1.00 0.00 -3.00 

( ( £ ( / ) - } ' ) / r ) » 100 -0.068 0.000 -0.057 -0.077 -0.066 -0.090 •0.062 -0.127 0.000 -0.091 

r ( y ) 2.00 0.00 1.00 12.00 1.00 1.00 1.00 1.00 0.00 3.00 

MSE(y) 6.00 0.00 2.00 181.00 2.00 2.00 2.00 2.00 0.00 12.00 

Coverage 5&J 65.8 59.7 2.7 64.3 7&7 66.4 88.4 82.8 74.8 
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Table B 

Composite variable: ETHNIC -LTILL 

Categories 

8 

E(Y) 17885 124364 3738 35941 738 6302 810 8977 

E(Y)-Y -36.00 96.00 -6.00 -39.00 -2.00 -5.00 -2.00 -7.00 

( ( £ { y ) - y ) / r ) * l O O -0.200 0.077 -0.160 -0.108 -0.270 -0.079 -0.246 -0.077 

V(Y) 41.00 100.00 9.00 65.00 2.00 12.00 2.00 21.00 

MSE(Y) 1337.00 9316.00 45.00 1586.00 6.00 37.00 6.00 70.00 

Coverage 0 0 51.9 0.3 77.1 63.9 71.7 61.4 

Table C 

Composite variable: Country of birth - Long term Illness 

Categories 

8 9 10 

E(Y) 17537 137247 1452 11579 693 3366 3012 17997 500 5373 

E(Y)-Y -16.00 40.00 -2.00 -13.00 -1.00 0.00 -3.00 -3.00 -1.00 -1.00 

( ( £ ( r ) - r ) / r ) * i o o -0.091 0.029 -0.137 -0.112 -0.144 0.000 -0.099 -0.016 -0.199 -0.018 

V(Y) 18.00 41.00 2.00 13.00 1.00 4.00 3.00 13.00 1.00 6.00 

MSE{Y) 274.00 1641.00 6.00 182.00 2.00 4.00 12.00 22.00 2.00 7.00 

Coverage 2.5 0 77.6 5.8 82.5 91.8 54.7 88.2 88.2 90.3 

It can be noticed from these tables that the Highest Probability imputation method is not an 

unbiased procedure as demonstrated in theory in Chapter 5. Hov/ever, the biased introduced 

by the method does not seem to be very high v/ith respect to the values of the totals. 

Moreover, some of the bias are close to or even zero. 

It can also be seen that the bias are alv/ays positive for the major category and negative for 

the others as would be expected since the method uses the value with highest frequency to 

impute the missing records. 

In terms of variability we can see that the values of the variances are larger than the values 

of the variances obtained in the Frequency Distribution case. Additionally, it can be noticed 

that the bigger variances are always for the larger categories. Estimates for those variances 

were not obtained in this case. 

The coverage values obtained in this case do not seem to be as good as in the Frequency 

Distribution case. It can be noticed from the tables that some of the variable have zero 
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coverage while some others have better results, for example 98% coverage. There seems to 

be a much larger variation on the coverage values than in the Frequency Distribution case. 

As explained in the univariate case, a reason for this coverage problem in the Highest 

Probability case is that this method is not an unbiased procedure. We can see that the size of 

the bias is as big as the size of the variance, which does not occur in the Frequency 

Distribution case. 

Additionally, it can be seen that the smaller coverage is always present in the categories 

with bigger number of records. As explained before, that occurs because of the size of the 

bias in those categories. 

As in the univariate case, there are some general findings we summarise hereafter in terms 

of the analysis 

The use of classification trees does improve the performance of the Imputation. This 

improvement can be noticed from the point of view of the maintenance of marginal 

distributions (either individual marginal or joint distributions) in most of the cases but from 

the point of view of percentage of records correctly imputed. 

As in the univariate case, the use of different t ree sizes does not have a major impact on 

those results. Moreover, the use of the optimal t ree given by CART does not make much 

difference on the results. 

Frequency Distribution and Nearest Neighbour methods preserve marginal distributions while 

Highest Probability does not. However, Highest Probability is the best performing imputation 

method in terms of preservation of Individual values. 

In the case of Nearest Neighbour, the results are very similar in both cases (when using and 

not trees). That is, in general, the use of trees does not seem to have a major impact on the 

results when using Nearest Neighbour procedure. 

As a general conclusion we can say that Frequency Distribution is the best performing 

method overall as it preserves marginal distributions, has a reasonable level of preservation 

of individual values, produces unbiased estimates for the total and has the lowest variability 

between all the methods. 

Frequency Distribution and Nearest Neighbour methods produce unbiased estimates for the 

total number of records in a specific category. In contrast. Highest Probability method does 

not lead to unbiased estimates as shown in the theoretical results. 

In terms of variability, Frequency Distribution and Highest Probability methods produce very 

similar variances. However, the case of Nearest Neighbour does not present the same results. 

It can be seen that this last method produces larger variances than the rest of the methods. 
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If the results for the mean square error obtained from the different methods are compared, 

we can see that the lowest values are always found for Frequency Distribution followed by 

Nearest Neighbour and Highest Probability (due to the bias) respectively. 

As the estimation of the variance in the multivariate case was only carried out for the 

Frequency Distribution methods, no comparison can be made. However, the simulations 

presented for this case show that this method basically leads to unbiased estimates for the 

variance confirming the theoretical results. 

It has been shown in the results that the coverage, is more variable that in the univariate 

case. However, the values are very high in most of the cases. 
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CHAPTER 7 

7.1. summary 

Censuses are the most important statistical demographic operation carried out by any 

country. As any statistical collection processes, censuses are susceptible to "nonresponse". 

Nonresponse occurs when any investigated variable for any element within the "universe of 

study" is missing in the final format for the analysis. Nonresponse can affect analysis, leading 

to erroneous or invalid findings and consequent decision-making. 

The deficiencies of the current methods actually used for solving the problem of missing 

information in census (described in Chapter 1), added to the importance of the census data 

for the statistics in a country, are the main reasons why research about improved 

methodology for imputing this kind of data has been undertaken. 

The main idea was to investigate an alternative method, which uses a different approach to 

the current methods available, being also simple and efficient. 

The method investigated in this research involved the use of classification trees as a first 

step, followed by imputation using common methods for categorical data within each 

imputation class (terminal nodes of the tree). 

The classification technique used in this research is called "Classification and Regression 

Trees" (CART). CART technique is basically a set of classification rules (recursive binary 

segmentation) that partition the data set into mutually exhaustive and non-overlapping 

subsets (terminal nodes) based on the values of a group of explanatory variables. These 

subsets are expected to be internally more homogeneous with respect to response variable 

(variable for which the t ree is generated) than the whole database. 

Once the classification is made, each imputation method is applied independently within 

each terminal node. Three different basic imputation methods for categorical data are 
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implemented in this thesis in order to compare their results given the classification. The 

selection of the methods included Probability Distribution imputation, Highest Probability 

(Modal) imputation as well as the use of Nearest Neighbour procedure as it seems to be a 

common factor in most of the new methodologies created for census data, as mentioned in 

Chapter 1. 

The combination of classification and imputation allow for the measure of: 1) the effect of 

using this classification technique on the imputation results (including the use of different 

tree-sizes), and 2) the accuracy of the different imputation methods based on this 

classification technique. 

The analysis was carried out for two different targets: the univariate case where a single 

variable is imputed, and the multivariate case where a composite variable is imputed. A 

composite variable is defined by the cross-classification of two or more single variables. The 

use of the composite variable allows for the imputation of two or more single variables at the 

same time. 

Preservation of joint and individual marginal distributions as well as preservation of 

individual values are evaluated (comparing imputed values against real values). Graphs and 

tests for those comparisons are presented. Additionally, assessment of biases and variances, 

as well as variance estimation in some cases, are also presented. 

The simulation was made using a subset of UK 1991 Census information. Only categorical 

variables related to persons (except age, which was converted to categorical) were used for 

the analysis. After deleting the records with missing information from the original database, 

artificial holes were created using the real pattern of missing Information present in the 

original database. This allowed for the measure of the accuracy of the imputation by 

comparing the real and the imputed values. 

7.2. general conclusions 

Some important conclusion can be obtained from the research presented in this thesis. We 

divide the conclusion in different sections, as follows: 
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7.2.1 Using Classification Trees 

We conclude that , in general, the use of classification trees does improve the performance of 

the imputation. As seen on the results this improvement cannot be seen from the point of 

viev/ of the maintenance of marginal distributions (either individual marginal or joint 

distributions) in most of the cases but from the point of view of percentage of records 

correctly imputed. 

A comparison between the percentage of records correctly imputed show that there are 

considerable differences from the case where trees are not used, specially in for the 

Frequency Distribution method. 

In the case of Highest Probability method, even when using trees does not allow for the 

maintenance of the marginal distributions, it does improve the actual distribution as it 

imputes values depending on the modal category of the terminal nodes while in the case 

where trees are not used, the imputation is carried out using the modal category of the 

whole database. That is, using trees produce a closer shape to the real distribution than no 

using trees. Therefore, we can say that using t ree does improve the recreation of marginal 

distributions even when the values of the Wald statistic show that they are not preserved. 

Additionally, the use of the tree also increases most of the times the percentage of the 

number of records correctly imputed when using this imputation method. 

7.2,2. Comparing Different Tree Sizes 

It has been demonstrated that, even when there are differences in the results when using or 

not trees (i.e. trees improve the performance of the imputation results), the use of different 

tree sizes does not have a major impact on those results. The simulations carried out show a 

stable behaviour across the different t ree sizes, even in terms of misclassification rates 

obtained from the tree process. 

Moreover, the optimal tree given by CART is meant to be optimal in terms of complexity 

(number of terminal nodes) and misclassification rate. In this sense, the use of the optimal 

tree could be expected to give the best performance, however, it can be observed from the 

results that this hypothesis is not necessarily correct. Using the optimal tree given by CART 

does not make much difference on the results. 

7.2.3. Comparing Imputation Methods 

In terms of comparisons between imputation methods, we have shown that both Frequency 

Distribution and Nearest Neighbour methods preserve marginal distributions while Highest 

Probability does not. However, the results from the simulations show that in terms of 
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preservation of individual values, Highest Probability is the best performing imputation 

method with a minimum of almost 60% of individual values preserved in the worst case and a 

maximum of almost 90%. 

The simulations carried out also show that in the case of Nearest Neighbour, the results are 

very similar in both cases (when using and not trees). That is, in general, the use of trees 

does not seem to have a major impact on the results when using Nearest Neighbour 

procedure. One of the reasons why this happened could be the fact that by definition 

Nearest Neighbour procedure look for the closest donor, which should be found with or 

without the use of classification. 

As a general conclusion we can say that Frequency Distribution is the best performing 

method overall as it preserves marginal distributions, has a reasonable level of preservation 

of individual values, produces unbiased estimates for the total and has the lowest variability 

between all the methods. 

7.2.4. Bias and Variance 

It has been shown that both Frequency Distribution and Nearest Neighbour methods produce 

unbiased estimates for the total number of records in a specific category. In contrast. 

Highest Probability method does not lead to unbiased estimates as shown in the theoretical 

results. This bias in the case of Highest Probability method is always positive for the major 

categories and negative for the minor ones, overestimating the categories with more units 

and underestimating the categories with less number of units. 

In terms of variability, we can see that the values for the variances in the case of Frequency 

Distribution and Highest Probability methods are very similar. However, the case of Nearest 

Neighbour does not present the same results. It can be seen that this last method produces 

larger variances than the rest of the methods. 

If the results for the mean square error obtained from the different methods are compared, 

we can see that the lowest values are always found for Frequency Distribution followed by 

Nearest Neighbour and Highest Probability (due to the bias) respectively. 
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7.2.5. Variance Estimation 

The simulations for the estimation of the variance, as well as the theoretical formulation, 

were carried out for Frequency Distribution and Nearest Neighbour methods and not for 

Highest Probability method. 

The results of the estimation confirm the theoretical result that the estimator of the 

variance proposed for the Frequency Distribution case is an unbiased estimator. However, 

even when in theory the estimator of the variance for the Nearest Neighbour seems to be 

unbiased, some differences between the real variance (value assumed as real in the 

simulations) and the expected values over the 1000 samples of the estimator of the variance 

can be found in few cases. It has to be said that these differences are probably big when 

estimating the variance but they are not very important in terms of the values of the point 

estimates as they are very small with respect to these values. 

7.2,6. Coverage 

It has been shown in the results that the coverage, i.e. the proportion of confidence intervals 

that contain the parameter, is over 94% all the time in the univariate case for both 

Frequency Distribution and Nearest Neighbour and very high most of the times in the 

multivariate case for the Frequency Distribution case. 

7.2.7. Comparison with Hot Deck Imputation 

The simulations for the Sequential Hot Deck were carried out only for the univariate case. 

Comparisons between the proposed method and the method proposed in this thesis show that 

in terms of the point estimates any of the Frequency Distribution, Nearest Neighbour and Hot 

Deck produces unbiased estimators. In terms of variability, the sequential Hot Deck method 

produces larger variances than any of the imputation procedures investigated in this 

research. 

However, if a comparison between the mean square errors is made, we can see that 

sequential Hot Deck performs better than the Highest Probability procedure, producing 

smaller MSE. 

Thus, Frequency Distribution is still the best performing imputation methods in this research, 

followed by Nearest Neighbour, Sequential Hot Deck and Highest Probability respectively. 
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7 .3 . pros and cons of the proposed methodology 

There are some advantages of the proposed methodology: 

" The proposed method involves the use of classification as a first step. The aim of 

classification is to ensure the selection of the best possible donor, since both the donor 

and the recipient come from the same imputation class, which guarantees same 

characteristics (same values) for the observed variables for both of the records. 

• One of the main aspects concerning the proposed approach is the maintenance of joint 

distributions, which means upholding correlations between variables when working on 

the multivariate missing case. The method proposed allows for this aspect since the 

imputation will be made jointly for all the missing variables belonging to a specific 

record trying to obtain those imputations from the same donor. 

• Another advantage of the proposed approach is the fact that it does not imply the use of 

complicated procedures or sophisticated technical resources. This new method Is easy to 

implement and does not require a large amount of time. 

" The use of as many variables as possible (as many as are involved in the relationship) in 

the classification step is another advantage of this proposal. They guarantee upholding 

relationships between variables as well as defining very well the groups from which the 

donors are going to be taken. This also makes the selection of the donor easier and 

faster, since this is sought in that specific class and not In any other. 

• The method proposed allows for the use of missing covarlates in the classification 

process, which is not normally the case when using other procedures. That is, the records 

containing missing information for the auxiliary variables can be included in the process 

of growing the tree. The inclusion of those records permits the use of as much 

information as available, which could be crucial at times when the information present is 

not sufficient. 

The classification, of records with missing values for the auxiliary variables, is made by 

using alternative classifiers called surrogates, which is basically another x.,. variable 

(which value is present in that record) correlated with the one missing one that classifies 

the records in the same way (or very similar way) as the original classifier. 

" Besides the use of surrogates as classifiers, another potential advantage of their use is 

the possibility of imputing several missing values present in a single record in a 
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sequential way. This represents a significant issue about using classification techniques 

together with imputation procedures. However, this aspect was not study in this work. 

There are also some disadvantages in the proposed methodology that can be mentioned. 

= As explained in Chapter 2, 4 and 6, the classification tree is created for a single variable 

(or composite variable in the multivariate case). That implies, in a very strict sense, that 

each combination of missing information requires its own classification tree for the 

imputation process. This is a very difficult task to achieve since, as shown in Appendix 1, 

only with 8 variables we have 168 combinations of missing values. Therefore, in order to 

reduce time consuming and complexity, imputations are carried out with just few 

classification trees (sometimes even just one). That is, a classification tree created for a 

specific missing combination has to be also used for other variables. 

This can be seen as a disadvantage since the classification is not specially created for the 

variable to be imputed, and somehow, it could be not the best classification for that 

specific variable. However, when variables are highly correlated, a classification tree 

created for a composite variable can be perfectly used for the single variables involved 

in that combination. A solution for choosing a combination for generating the tree to be 

used could be the use the largest combination in term of percentage of missing 

information. 

• Another disadvantage of the proposal is the fact that the results are not generated 

Instantaneously (directly) from a software. That is, CART (software) creates the 

classification tree. After the tree is generated, the set of rules defining the terminal 

nodes are used to create a computing program for dividing the population and carrying 

out with the imputation process using a different software (FoxPro in this case). 

Therefore, programming can be one of the biggest disadvantages of the proposed 

approach. 

= As well as for the classification and imputation process, the bias and variance assessment 

have to be programmed, including the estimation of the variance, if wanted. 

7.4. further research 

This thesis represents just the first stage on the research of the use of classification trees for 

missing item imputation. Further research should be done in order to assess more aspects 
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about this subject. The work can be divided into two different parts, univariate case and 

multivariate case. 

In terms of the univariate case, there are basically three points that can be done. These are: 

" The estimation of the variance in the case of the Highest Probability imputation 

methods, although this is not of great importance since it was shown that this method 

does not lead to unbiased estimation. 

" A comparison between the proposed methods and other new imputation methodology 

such as DIS (from the Office for National Statistics in the UK). 

" A comparison using alternative imputation methods like Logistic or Log-linear regression. 

In the multivariate case, the research presented in this thesis does not cover some important 

aspects related to the subject. There are certain points that should be studied further. These 

include: 

• Formulation of an estimator for the variance in the Frequency Distribution case when 

using classification trees. In the case of Nearest Neighbour, the estimation of the 

variance does not seem very important since the use of the classification trees does not 

have a major impact on the results. 

• Even when this thesis defines a way in which surrogates can be used for imputation, no 

further research (neither theoretical nor empirical) was made about this matter. A 

separate study is recommended in order to assess the viability and properties of this 

procedure. 

• Since this research does not investigate any existing method in the multivariate case, 

comparisons between the proposed method and different methods have to be done in 

order to evaluate the relative merits of the proposed method. The most reasonable 

comparisons would be the use of Hot Deck imputation in multivariate missing data and 

new methodologies such as DIS (from the Office for National Statistics in the UK) as in 

the univariate case. 
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APPENDIX 



Appendix 1 Missing Information Pattern 
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32 0.13 

2 0.01 
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Appendix 2 

Bias and Variance of t h e est imator of the total depending on the number 

of terminal used for the variable Ethnic by categories 

2 Terminal Nodes 10 Terminal Nodes 

Categories Categories 

1 2 3 4 1 2 3 4 

Y 142189 39724 7047 9796 Y 142189 3m%4 7047 9796 

142189 39724 7047 9796 E ( y ) 142189 7046 9797 

^ ( y ) - y 0.00 0.00 0.00 0.00 2 ( 7 ) - y 0.00 0.00 -1.00 1.00 

22 20 10 12 2 ( f ) 22 19 9 12 

F ( y ) 465 403 97 151 r ( y ) 464 366 80 136 

3 Terminal Nodes 13 Terminal Nodes 

Categories Categories 

1 2 3 4 1 2 3 4 

Y 142189 39724 7047 9796 y 142189 3?%4 7047 9796 

E(y ) 142189 39725 7047 9796 E(y ) 142189 3974 7046 9797 

2 ( y ) - y 0.00 1.00 0.00 0.00 E ( y ) - y 0.00 0.00 -1.00 1.00 

^ ( y ) 22 19 10 12 ^ ( y ) 22 19 9 12 

F(y) 463 365 96 141 K(y) 464 366 80 136 

4 Terminal Nodes 

Categories 

1 2 3 4 

Y 142189 39724 7047 9796 

2 ( y ) 1#189 39724 7047 9796 

2 ( y ) - y 0.00 0.00 0.00 0.00 

^ ( y ) 22 19 9 12 

K(y) 465 366 80 133 



Appendix 3 

Estimator Properties and Performance Indicators 

Frequency Distribution Method 

ETHNIC COUNTRY OF BIRTH LONG-TERM ILLNESS 

Categories Categories Categories 

1 2 3 4 1 2 3 4 5 1 2 

Y 142189 39724 7047 9796 154760 13046 4060 21015 5875 23217 175539 

2 ( f ) 142189 39724 7046 9797 154760 13046 4060 21015 5876 23217 175539 

f ( y ) - y -0.34 0.03 -1.07 1.37 0.36 -0.36 -0.40 -0.47 0.87 0.16 -0.16 

( ( # ) - y ) / y ) * i o o 0.000 0.000 -0.015 0.013 0.000 -0.002 -0.009 -0.002 0.014 0.000 0.000 

22.13 20.49 11.72 12.96 4.51 6.09 15.25 15.25 

S ( f ) 21.54 19.13 8.93 11.67 12.68 9.71 4J9 8.02 6.17 15.06 15.06 

E ( f ) - s ( y ) 0.59 1.36 0.30 0.05 0.28 0.02 0.12 0.29 -0.08 0.19 0.19 

489.58 419.79 85.17 137.27 167.97 94.63 2&34 69J4 37.11 232.55 232.55 

K(y) 463.76 365.97 136.23 160.80 94.27 19.25 64.30 38.11 226.69 226.69 

E ( n - K ( y ) 25.82 53.82 5.34 1.04 7.17 0.36 1.09 4.84 -1.00 5.86 5.86 

Coverage 94.90 95.60 94.80 95.00 95.80 95.50 95.10 96.60 95.10 95.40 95.40 

M&E(y) 463.88 365.97 138.11 160.93 94.40 19.41 64.52 38.87 226.72 226.72 

21.54 19.13 9.00 11.75 12.69 9.72 4.41 8.03 6.23 15.06 15.06 

0.02 0.05 0.13 0.12 0.01 0.07 0.11 0.04 0.11 0.06 0.01 

( m E ( y ) / y ) * i o o 0.33 0.92 1.15 1.41 0.10 0.72 0.48 0.31 0.66 0.98 0.13 

( ( E ( K ) - K ( y ) ) / K ( y ) ) * ] 0 0 5.567 14.706 6.689 0.763 4.458 0.381 5.662 7.527 -2.623 2.585 2.585 

( ( E ( n - K ( y ) ) / y ) ' i o o 0.018 0.135 0.075 0.010 0.004 0.002 0.026 0.023 -0.017 0.025 0.003 



Appendix 3 

Estimator Properties and Performance Indicators 

Highest Probability Method 

ETHNIC COUNTRY OF BIRTH LONG-TERM ILLNESS 

Categories Categories Categories 

1 2 3 4 1 2 3 4 5 1 2 

r 142189 39724 7047 9796 154760 13046 4060 21015 5875 23217 175539 

2 ( f ) 142653 39496 6993 9714 154915 12944 4058 20975 5864 22950 175806 

E ( y ) - y 464.00 -328.00 -54.00 -82.00 155.00 -102.00 -2.00 -40.00 -11.00 -267.00 267.00 

( ( E ( y ) - y ) / y ) ' i o o 0.326 -0.825 -0.766 -0.837 0.100 -0.781 -0.049 -0.190 -0.187 -1.150 0.152 

g(y ) 22.32 19^95 9^7 12.25 13.08 9.70 4.90 8.54 6.86 17.06 17.06 

K(y) 498.00 398.00 86.00 150.00 171.00 94.00 24.00 73.00 47.00 291.00 291.00 

Coverage 0.00 0.00 0.00 0.00 0.00 0.00 92.20 0.10 66.20 0.00 0.00 

MSE(y) 215794.00 107982.00 3002.00 6874.00 24196.00 10498.00 28.00 1673.00 168.00 71580.00 71580.00 

464.54 328.61 54.79 82.91 155.55 102.46 5.29 40.90 12.96 267.54 267.54 

0.33 0.83 0.78 0.85 0.10 0.79 0.13 0.19 0.22 1.15 0.15 

(MS'5(y) /y)* ioo 151.77 271.83 42.60 70.17 15.63 80.47 0.69 7.96 2.86 308.31 40.78 



Appendix 3 

Estimator Properties and Performance Indicators 

Nearest Neighbour Method 

r 

E(y) 

E (y ) - y 

E(^) 

g(y) 

f (K) 

K(y) 

E ( K ) - K ( y ) 

Coverage 

MSE(y) 

'\yMSE(y) 

(:/M5'E(y)/y)*]00 

(M&E(y)/y)*ioo 

((f(K)-K(y))/K(y))*]oo 

((E(K)-y(y))/y)*ioo 

ETHNIC COUNTRY OF BIRTH LONG-TERM ILLNESS 

Categories Categories Categories 

1 2 3 4 1 2 3 4 5 1 2 

142189 39724 7047 9796 154760 13046 4060 21015 5875 23217 175539 

142190 39724 7047 9795 154760 13046 4060 21015 5874 23217 175539 

0.64 -0.35 0.30 -0.58 0.21 0.36 -0.15 0.09 -0.50 0.10 -0.10 

0.000 0.000 0.004 -0.005 0.000 0.002 -0.003 0.000 -0.008 0.000 0.000 

31.16 28.84 12.99 16.49 18.23 13.73 6.36 11.65 8.60 21.49 21.49 

28.25 25.92 12.55 16.38 17.87 13.47 5.97 11.05 8.11 21.26 21.26 

2.91 2^% 0.44 0.11 0.36 0J& ojm 0.60 0X9 0.23 0.23 

970.78 831.78 168.75 271.95 332.16 188.50 40.48 135.87 73.94 461.94 461.94 

797.95 671.59 157.61 268.23 319.22 181.47 35.70 122.06 65.80 451.90 451.90 

172.83 160.19 11.14 3.72 12.94 7.03 4.78 13.81 8.14 10.04 10.04 

95.30 94.40 96.40 95.40 96.00 95.00 95.20 95.50 96.10 95.30 95.30 

798.36 671.71 157.70 268.57 319.26 181.60 35.72 122.07 66.05 451.91 451.91 

28.26 25.92 12.56 16.39 17.87 13.48 5.98 11.05 8.13 21.26 21.26 

0.02 0.07 0.18 0.17 0.01 0.10 0.15 0.05 0.14 0.09 0.01 

0.56 1.69 2.24 2J4 0.21 1.39 0.88 0.58 1.12 1.95 OJW 

21^5 23.85 7 1 ^ 1.38 4.05 3^7 13.38 11.31 1:L37 2.22 222 

(X121 0.403 0.158 0.037 0.008 0.053 0.117 0.065 (X138 0,043 0.005 



Appendix 3 

Estimator Properties and Performance Indicators 

Hot Deck Method (Using 2 Variables for Classification) 

ETHNIC COUNTRY OF BIRTH LONG-TERM ILLNESS 

Categories Categories Categories 

1 2 3 4 1 2 3 4 5 1 2 

Y 142189 39724 7047 9796 154760 13046 4060 21015 5875 23217 175539 

2 ( f ) 142189 39724 7046 9797 154760 13046 4060 21015 5875 23217 175539 

E ( y ) - y 0.00 0.00 -1.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

0.000 0.000 -0.014 0.010 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

s ( y ) 31.00 27.00 15.00 17.00 21.00 13.00 7.00 16.00 9.00 22.00 22.00 

r ( y ) 961.00 729.00 225.00 289.00 441.00 169.00 49.00 256.00 81.00 484.00 484.00 

MSE(y) 961.00 729.00 226.00 290.00 441.00 169.00 49.00 256.00 81.00 484.00 484.00 

YMSE(y) 31^0 27.00 15^3 17.03 21.00 13.00 7.00 16.00 9.00 22.00 22.00 

( ^ m E ( y ) / y ) * i o o 0.021 0.067 0.213 0.173 0.013 0.099 0.172 0.076 0.153 0.094 0.012 

(M5'E(y) /y )* ioo 0.675 1.835 3.207 2.960 0.284 1.295 1.206 1.218 1.378 2.084 0.275 



Appendix 3 

Estimator Properties and Performance Indicators 

Hot Deck Method (Using 3 Variables for Classification) 

ETHNIC COUNTRY OF BIRTH LONG-TERM ILLNESS 

Categories Categories Categories 

1 1 1 

Y 

jscf) 

E (y ) - y 

( ( E ( y ) - y ) / y ) * i o o 
^(y) 

K(y) 

M&E(y) 

(-jM5'E(y)/y)*ioo 

(M5E(f)/r)'100 

142189 

142190 

1.00 

0.000 

32.00 

1024.00 

1025.00 

32.02 

0.022 

0.720 

39:%4 

39724 

0.00 

0.000 

28.00 

784.00 

784.00 

28.00 

0.070 

1.973 

7047 

7046 

-1.00 

-0.014 

14.00 

196.00 

197.00 

14.04 

0.199 

2.795 

9796 

9796 

0.00 

0.000 

17.00 

289.00 

289.00 

17.00 

0.173 

2.950 

154760 

154759 

-1.00 

0.000 

21.00 

441.00 

442.00 

21.02 

0.013 

0.285 

13046 

13046 

0.00 

0.000 

13.00 

169.00 

169.00 

13.00 

0.099 

1.295 

4060 

4060 

0.00 

0.000 

7.00 

49.00 

49.00 

7.00 

0J72 

1.206 

21015 

21015 

0.00 

0.000 

16.00 

256.00 

256.00 

16.00 

0.076 

1.218 

5875 

5875 

0.00 

0.000 

9.00 

81.00 

81.00 

9.00 

0.153 

1.378 

23217 

23217 

0.00 

0.000 

20.00 

400.00 

400.00 

20.00 

0.086 

1.722 

175539 

175539 

0.00 

0.000 

20.00 

400.00 

400.00 

20.00 

0.011 

0.227 



Appendix 3 

Estimator Properties and Performance Indicators 

Frequency Distribution Method 

Country of Birth - Ethnic 

Categories 

1 2 3 4 5 6 7 8 9 10 

Y 126363 21848 2363 4186 12010 297 26 713 489 123 

2 ( f ) 126363 2i:M7 2363 4185 12009 297 26 712 489 123 

E ( y ) - y 0.00 -1.00 0.00 -1.00 -1.00 0.00 0.00 -1.00 0.00 0.00 

( ( E ( y ) - y ) / y ) * i o o 0.000 -0.004 0.000 -0.023 -0.008 0.000 0.000 -0.140 0.000 0.000 

6.00 4.00 1.00 2.00 3.00 0.00 0.00 1.00 1.00 0.00 

a ( f ) 6.00 3.87 1X1 2.00 3.16 0.00 0.00 1.00 0.00 0.00 

E ( s ) - s ( y ) 0.00 0.13 -0.41 0.00 -0.16 0.00 0.00 0.00 1.00 0.00 

2 ( f ) 35.00 14.00 2.00 3.00 9.00 0.00 0.00 1.00 0.00 0.00 

r ( y ) 36.00 15.00 2.00 4.00 10.00 0.00 0.00 1.00 0.00 0.00 

f ( n - K ( y ) -1.00 -1.00 0.00 -1.00 -1.00 0.00 0.00 0.00 0.00 0.00 

Coverage 94.80 94M0 9430 9 1 ^ 0 90.90 79.20 98.20 BWJO 95.50 91.40 

A ^ ( y ) 6.00 4.00 1.41 2.24 3.32 0.00 0.00 1.41 0.00 0.00 

0.00 0.02 0.06 0.05 0.03 0.00 0.00 0.20 0.00 0.00 

36.00 16.00 2.00 5.00 11,00 0.00 0.00 2.00 0.00 0.00 

(M5 'g (y ) /y )* ioo 0.03 0.07 0.08 0.12 0.09 0.00 0.00 0.28 0.00 0.00 



Appendix 3 

Estimator Properties and Performance Indicators 

Frequency Distribution Method 

Country of Birth - Ethnic 

Categories 

11 12 13 14 15 16 17 18 19 20 

Y 2923 525 1730 16674 1509 1102 1597 782 226 3270 

E (y ) 2922 525 1730 16673 1509 1101 1597 781 226 3277 

-1.00 0.00 0.00 -1.00 0.00 -1.00 0.00 -1.00 0.00 7.00 

( ( E ( y ) - y ) / y ) * i o o -0.034 0.000 0.000 -0.006 0.000 -0.090 0.000 0.127 0.000 0.214 

2 ( 3 ) 2.00 1.00 1.00 3.00 1.00 1.00 1.00 1.00 0.00 2.00 

s ( y ) 1.73 0.00 1.00 3.46 1.00 1.00 1.00 1.00 0.00 2.65 

E ( s ) - s ( y ) 0.27 1.00 0.00 -0.46 0.00 0.00 0.00 0.00 0.00 -0.65 

E ( f ) 2.00 0.00 1.00 12.00 1.00 1.00 1.00 1.00 0.00 3.00 

K(y ) 3.00 0.00 1.00 12.00 1.00 1.00 1.00 1.00 0.00 7.00 

# ) - K ( y ) -1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 -4.00 

Coverage 88.90 95 JO 95.00 94.10 96.30 79.30 95.70 88.40 82.80 6.00 

MSE(y) 2.00 0.00 1.00 3.61 1.00 1.41 1.00 1X1 0.00 7.48 

0.07 0.00 0.06 0.02 0.07 0.13 0.06 0.18 0.00 0.23 

4.00 0.00 1.00 13.00 1.00 2.00 1.00 2.00 0.00 56.00 

(MS'g(y) /y )* ioo 0.14 0.00 0.06 0.08 0.07 0.18 0.06 0.26 0.00 1.71 



Appendix 3 

Estimator Properties and Performance Indicators 

Frequency Distribution Method 

Ethnic - Long Term Illness 

Categories 

1 2 3 4 5 6 7 8 

r 17921 124268 3744 35980 740 6307 812 8984 

17920 124268 3743 35979 739 6307 811 8989 

E ( y ) - y -1.00 0.00 -1.00 -1.00 -1.00 0.00 -1.00 5.00 

-0.005 0.000 -0.026 -0.002 -0.135 0.000 -0.123 0.055 

E(S) 5.00 9.00 3.00 7.00 1.00 3.00 1.00 4.00 

s ( f ) 5.57 8.89 2.83 7.00 1.41 3.32 1.41 4.58 

2(3)-s(y) -0.57 0.11 0.17 0.00 -0.41 -0.32 -0.41 -0.58 

2(f) 29.00 78.00 7.00 51.00 2.00 11.00 2.00 17.00 

K(y) 31.00 79.00 8.00 49.00 2.00 11.00 2.00 21.00 

E(n-K(y) -2.00 -1.00 -1.00 2.00 0.00 0.00 0.00 -4.00 

Coverage 94.00 95.00 93.90 95.30 91.80 93.80 86.00 77.00 

MSE(y) 5.66 8.89 3.00 7.07 1.73 3.32 6.78 

0.03 0.01 0.08 0.02 0^3 0.05 0.21 0.08 

(^M&E(y)/y)*]oo 32.00 79.00 9.00 50.00 3.00 11.00 3.00 46.00 

(MSE(y)/y)*ioo 0.18 0.06 0.24 0.14 0.41 0.17 0.37 0.51 



Appendix 3 

Estimator Properties and Performance Indicators 

Frequency Distribution Method 

Country of Birth - Long Term Illness 

Categories 

1 2 3 4 5 6 7 8 9 10 

7 17553 137207 1454 11592 694 3366 3015 18000 501 5374 

E ( f ) 17553 137207 1452 11591 694 3365 3014 17999 500 5380 

0.00 0.00 -2.00 -1.00 0.00 -1.00 -1.00 -1.00 -1.00 6.00 

((f(y)-y)/y)*ioo 0.000 0.000 -0.137 -0.008 0.000 -0.029 -0.033 -0.005 -0.199 0.111 

4.00 6.00 1.00 3.00 1.00 2.00 2.00 3.00 1.00 2.00 

S(f) 3.74 5.92 1.41 1.00 1V3 1.73 3.46 1.00 2.65 

f(s)-s(y) 0.26 0.08 -0.41 -0.61 0.00 0.27 0.27 -0.46 0.00 -0.65 

14.00 34.00 2.00 12.00 1.00 3.00 3.00 11.00 1.00 5.00 

r(y) 14.00 35.00 2.00 13.00 1.00 3.00 3.00 12.00 1.00 7.00 

W)-K(y) 0.00 -1.00 0.00 -1.00 0.00 0.00 0.00 -1.00 0.00 -2.00 

Coverage 95.00 94^0 79.00 93.70 90.80 91.40 91.50 92.60 88.60 24.70 

MSECn 3.74 5.92 2.45 3J4 1.00 2.00 2.00 3.61 1X1 6.56 

-\/MgE(y) 0.02 0.00 0.17 0.03 0.14 0.06 0.07 0.02 OjW 0.12 

(̂ MSE(y)/y)*](X) 14.00 35.00 6.00 14.00 1.00 4.00 4.00 13.00 2.00 43.00 

(MS'E(y)/y)*ioo 0.08 0.03 0.41 0.12 0.14 0.12 0.13 0.07 0.40 0.80 



Appendix 3 

Estimator Properties and Performance Indicators 

Highest Probability Method 

Country of Birth - Ethnic 

Categories 

1 2 3 4 5 6 7 8 9 10 

Y 126363 21848 2363 4186 12010 297 26 713 489 123 

2 ( f ) 126420 21830 2361 4183 12001 297 26 712 489 123 

2 ( y ) - y 57.00 -18.00 -2.00 -3.00 -9.00 0.00 0.00 -1.00 0.00 0.00 

( ( E ( y ) - r ) / y ) * i o o 0.045 -0.082 -0.084 -0.071 -0.074 0.000 0.000 -0.140 0.000 0.000 

s (y ) 6.08 4.00 1.41 1.73 0.00 0.00 1.00 0.00 0.00 

K(y) 37.00 16.00 2.00 3.00 10.00 0.00 0.00 1.00 0.00 0.00 

Coverage 0 0 71.3 58.3 18.7 79.3 9&2 8&1 68.7 91.4 

MSE(y) 57.32 18.44 2.45 3.46 9.54 0.00 0.00 1.41 0.00 0.00 

0.05 0.08 0.10 0.08 0.08 0.00 0.00 0.20 0.00 0.00 

( ^ M & E ( y ) / y ) * ] o o 3286.00 340.00 6.00 12.00 91.00 0.00 0.00 2.00 0.00 0.00 

(Ma'E(y) /y)* ioo 2.60 1.56 0.25 0.29 0.76 0.00 0.00 0.28 0.00 0.00 



Appendix 3 

Estimator Properties and Performance Indicators 

Highest Probability Method 

Country of Birth - Ethnic 

Categories 

11 12 13 14 15 16 17 18 19 20 

Y 

( ( E ( y ) - y ) / y ) ' ] o o 

s(y) 

K(y) 

Coverage 

M$E(y) 

(M&E(y)/y)*ioo 

2923 

2921 

-2.00 

-0.068 

1.41 

2.00 

59.1 

2X5 

0.08 

6.00 

0.21 

525 

525 

0.00 

0.000 

0.00 

0.00 

65.8 

0.00 

0.00 

0.00 

0.00 

1730 

1729 

-1.00 

-0.057 

1.00 

1.00 

59.7 

1.41 

0.08 

2.00 

0.12 

16674 

16661 

-13.00 

-0.077 

3.46 

12.00 

2.7 

13.45 

0.08 

181.00 

1.09 

1509 

1508 

-1.00 

-0.066 

1.00 

1.00 

64.3 

1.41 

0.09 

2.00 

0.13 

1102 

1101 

-1.00 

-0.090 

1.00 

1.00 

78.7 

1.41 

0.13 

2.00 

0.18 

1597 

1596 

-1.00 

-0.062 

1.00 

1.00 

66.4 

1.41 

0.09 

2.00 

0.13 

782 

781 

-1.00 

-0.127 

1.00 

1.00 

88.4 

1.41 

0.18 

2.00 

0.26 

226 

226 

0.00 

0.000 

0.00 

0.00 

8^8 

0.00 

0.00 

0.00 

0.00 

3270 

3267 

-3.00 

-0.091 

1.73 

3.00 

74^ 

3.46 

0.11 

12.00 

0.37 



Appendix 3 

Estimator Properties and Performance Indicators 

Highest Probability Method 

Ethnic - Long Term Illness 

Categories 

1 3 4 5 6 7 8 

3744 35980 740 6307 812 8984 

3738 35941 738 6302 810 8977 

-6.00 -39.00 -2.00 -5.00 -2.00 -7.00 

-0.160 -0.108 -0.270 -0.079 -0.246 -0.077 

3.00 8.06 1.41 3.46 1.41 4.58 

9.00 65.00 2.00 12.00 2.00 21.00 

51.9 0.3 77.1 63.9 71.7 61.4 

6.71 39.82 2.45 6.08 2.45 8.37 

0.18 0.11 0.33 0.10 0.30 0.09 

45.00 1586.00 6.00 37.00 6.00 70.00 

1.20 4.41 0.81 0.59 0.74 0.78 

Y 

E(y) 

E (y ) - y 

s(y) 

r(y) 

Coverage 

AGE(y) 

(^M&E(y)/y)*ioo 

(MSE(y)/y)'ioo 

17921 

17885 

-36.00 

-0.200 

6.40 

41.00 

0 

36.57 

0.20 

1337.00 

7.46 

124268 

124364 

96.00 

0.077 

10.00 

100.00 

0 

96.52 

0.08 

9316.00 

7.50 
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Estimator Properties and Performance Indicators 

Highest Probability Method 

Count ry o f B i r th - Long T e r m Illness 

Categories 

1 8 10 

Y 

2( f ) 

( ( & ( / ) - r ) / r ) * 100 

S(f) 

K(y) 

Coverage 

MSE(y) 

(MSE(y)/y)*]oo 

100 

17553 

17H7 

•16.00 

-0.091 

4.24 

18.00 

2.5 

16.55 

0.09 

274.00 

1.56 

137207 

137247 

40.00 

0.029 

6.40 

41.00 

0 

40.51 

0.03 

1641.00 

1.20 

1454 

1452 

-2.00 

-0.137 

1.41 

2.00 

77.6 

2.45 

0.17 

6.00 

0.41 

11592 

11579 

-13.00 

-0.112 

3.61 

13.00 

5.8 

13.49 

0.12 

182.00 

1^^ 

694 

693 

-1.00 

-0.144 

1.00 

1.00 

8^5 

1.41 

0.20 

2.00 

0^9 

3366 

3366 

0.00 

0.000 

2.00 

4.00 

91.8 

2.00 

0.06 

4.00 

0.12 

3015 

3012 

-3.00 

-0.099 

1.73 

3.00 

54.7 

3.46 

0.11 

12.00 

0.40 

18000 

17997 

-3.00 

-0.016 

3.61 

13.00 

88.2 

4.69 

0.03 

22.00 

0.12 

501 

500 

-1.00 

-0.199 

1.00 

1.00 

88.2 

1.41 

0.28 

2.00 

0.40 

5374 

5373 

-1.00 

-0.018 

2.45 

6.00 

90.3 

2.65 

0.05 

7.00 

0.13 



Appendix 4 Variable: Country of Birth 

AAarginal Distributions 
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Marginal Distributions 
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Appendix 4 Variable: Long Term Illness 

Marginal Distributions 
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Marginal Distributions 
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Marginal Distributions 

4 
terminal 
nodes 

Frequency Distribution 

Categories • imputed 

Breal 

Highest Probability 

3 100 

CI . _ r-n — 

• imputed 

• real 

Nearest Neighbour 

CategoriM • imputed 
Breal 

15 
terminal 
nodes 

Frequency Distribution 

CategorlM • imputed 
I r e a i 

Highest Probability 

_ l - l - . . cO , , , _ . __ . 

CatBOorlM • imputed 
Oreal 

Nearest Neighbour 

r a r n m 

CategoriM • imputed 
• real 

27 
terminal 
nodes g 300 

U 290 

K WO 

Frequency Distribution 

CatBooriM • imputed 
• real 

I *» 
•s m 
1 "» 

Highest Probability 

1 
, r f l — — , - ; 

Catogortm • imputed 
Breal 

Nearest Neighbour 

Categohe* • imputed 
Oreal 

No 
Tree 

Frequency Distribution 

T T T " — m — ^ ^ 

CatBQorfM • imputed 
Breal 

Highest Probability 

1-1 

CI , _ n , 

• imputed 
• real 

Nearest Neighbour 

. . Q J . _ , , _ , l-E. 

Catagoriea • Imputed 
Breal 



Appendix 4 Variable: Country of Birth - Ethnic - Long Term Illness 

Marginal Distributions 
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Appendix 5 Variable: Ethnic - Long Term Illness 
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Appendix 5 Variable: Country of Birth - Ethnic - Long Term Illness 
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Appendix 6 
Variable: Country of Birth 

Accuracy of the imputation procedure 
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Appendix 6 
Variable: Ethnic 
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Appendix 6 
Variable: Long Term Illness 

Accuracy of the imputation procedure 
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Appendix 6 
Variable: Country of Birth - Ethnic 

Accuracy of the imputation procedure 
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Appendix 6 
Variable: Country of Birth - Long Term Illness 

Accuracy of the imputation procedure 
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A p p e n d i x 6 
Variable: Ethnic - Long Term Illness 
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Appendix 6 
Variable: Country of Birth - Ethnic - Long Term Illness 

Accuracy of the imputation procedure 
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Appendix 7 

Improvement of the Percentage of Records Correctly Imputed with Respect to 
the Case of Not Using Trees (by variable, imputation method, and tree size) 
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Appendix 8 

Relationship Between Misclassification Rates and Percentage of Records 

Incorrectly Imputed (by Variable, Tree Size and Imputation Methods) 
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A p p e n d i x 9 Variable: Country of Birtli 
Misclassification rates against percentage of records incorrectly imputed (by tree size and imputation method) 
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A p p e n d i x 9 Variable: Ethnic 
Misclassification rates against percentage of records incorrectly imputed (by tree size and imputation method) 

FREQUENCY DISTRIBUTION HIGHEST PROBABILITY NEAREST NEIGHBOUR 

4 
Terminal 
Nodes 

100 
90 

0) 80 
? 70 

80 
C 
0) 
0) 
Q. 

Categories -misdass M tree 

nc 
rmsdaas 
tree Categories Categories 

10 
Terminal 
Nodes V 

O) 70 

misdass 
nc 

misctaM 
nc 

ft) 
O) 70 

Categories - miftdass • 
nc 

-tree 

13 
Terminal 
Nodes 

misdafts 
nc Categories misdass 



A p p e n d i x 9 Variable: Long Term Illness 
Misclassification rates against percentage of records incorrectly imputed (by tree size and imputation method) 
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Appendix 9 Variable: Country of Birth - Ethnic 
Misclassification rates against percentage of records incorrectly imputed (by tree size and imputation method) 
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Appendix 9 Variable: Country of Birth - Long Term Illness 
Misclassification rates against percentage of records incorrectly imputed (by tree size and imputation method) 
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Appendix 9 Variable: Ethnic - Long term Illness 
Misclassification rates against percentage of records incorrectly imputed (by tree size and imputation method) 
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