UNIVERSITY OF SOUTHAMPTON

THE USE OF CLASSIFICATION TREE TECHNIQUES FOR MISSING ITEM

IMPUTATION

By

Dulce Maria Mesa-Avila

Doctor of Philosophy

Department of Social Statistics

Faculty of Social Sciences

July 2002



UNIVERSITY OF SOUTHAMPTON
ABSTRACT

FACULTY OF SOCIAL SCIENCES
SOCIAL STATISTICS

Doctor of Philosophy

THE USE OF CLASSIFICATION TREE TECHNIQUES FOR MISSING ITEM IMPUTATION

By Dulce Maria Mesa Avila

Censuses are the most important statistical demographic operation carried out by any country. The
fundamental attribute regarding censuses is that they allow governments, interested organisations
and researchers to handle key demographic information at any geographical level within a country.
As any statistical collection processes, censuses are susceptible to what is technically known as
*non-response”. Non-response occurs when any investigated variable for any unit within the
“universe of study” is missing in the final format for the analysis. Non-response can affect analysis,
leading to erroneous or invalid findings and consequent decision-making.

This thesis compares different methods for imputing item non-response present in census
information based on classification. The strategy for carrying out the imputation is divided in two
steps. First, the data set is classified using a Tree-Based Technique, and second, the imputation is
made using some of the known imputation methods.

The "Classification and Regression Tree” (CART) technique used for tree-based modelling is
basically a set of classification rules (recursive binary segmentation) that partition the data set into
mutually exhaustive and non-overlapping subsets (terminal nodes) based on the values of a group of
explanatory variables. These subsets are expected to be internally more homogeneous with respect
to the response variable (the variable for which the tree is generated) than the whole database.
Once the classification is made, each imputation method is applied independently within each
terminal node. Three common imputation methods for categorical data are used.

The combination of classification and imputation makes possible the assessment of the following
aspects: 1) the effect of using this classification technique on the imputation results (including the
use of different tree-sizes), and 2) the accuracy of the different imputation methods based on this

classification technique.

The analysis was carried out for two different settings: the univariate case where a single variable
is imputed, and the multivariate case where a composite variable is imputed. A composite variable
is defined by the cross-classification of two or more single variables. The use of the composite
variable allows for the imputation of two or more single variables at the same time.

The preservation of joint and individual marginal distributions as well as the preservation of
individual values are evaluated. Graphs and tests for those comparisons are presented.
Additionally, assessment of biases and variances, as well as variance estimation in some cases, are
presented.

The simulation was made using a subset of UK 1991 Census information. Only categorical variables
related to persons (except age, which was converted to categorical) were used for the analysis.
After deleting the records with missing information from the original database, artificial holes were
created using the real pattern of missing information present in the original database. This makes
possible the measurement of the accuracy of the imputation by comparing the real values and the
imputed values.

Some general conclusions are obtained from the simulations: 1) the use of the classification tree as
a method for creating imputation cells before the imputation is carried out does improve the
imputation results, although the size of the tree does not have a major impact on the results. 2)
most of the imputation procedures used in the simulation produce unbiased estimates for the total
and for the variance, additionally, they have a very high values for the coverage as well as low
values for the relative Mean Square Error, 3) in general, the best performing method is the
Frequency Distribution method (even when compared with Sequential Hot Deck imputation).
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CHAPTER 1

INTRODUCTION

1.1. CENSUS DATA AND NONRESPONSE

Census data are the most important source of statistical information for a country. This is the
basis of planning and decision-making by governmental offices. In addition, as an important
attribute, census information may be used in the sampling frame for many surveys carried

out by either government or any other official institute.

The collection process of census information requires much effort and some complex
procedures. These two factors, together with the magnitude of the data collected, make
census information susceptible to missing values. The missing information problem introduces

difficulties to the analysis.

Several factors can lead to missing information in a census (or survey in general).
Noncoverage, measurement errors and nonresponse are the most common sources of missing
information. No one solution exists to remedy all of these issues. Different problems require
different solutions. Despite this, some techniques are valid for more than one problem; for
example, imputation could be used not only for filling in missing values due to nonresponse,
but also for replacing items with measurement errors as these can be treated as missing

values in the final data once they have been detected by the editing process.

Even though we have said that missing information may arise from different sources,

nonresponse will be the main aspect considered in this thesis.

Nonresponse is caused by the incapacity to obtain complete measurements for any of the
units or variables in a census (survey). There are two different kinds of nonresponse: Unit

Nonresponse and Item Nonresponse. Unit nonresponse occurs when a unit fails to participate



in the study. In this case, none of the variables or information for that unit is collected. In
contrast, item nonresponse occurs when information for one or more items in an accessible
unit is not available. This means that only a part of the information for that unit is collected.
Different factors can generate nonresponse. Unit nonresponse can be caused by temporary or
permanent unavailability of the unit; because the unit refused to participate, or it might be
unable to answer the questions. On the other hand, causes for item nonresponse include
interviewee refusal or inability to answer a specific question; perhaps the interviewer omits
to ask the question or fails to record the answer for a specific item. Additionally, after the
editing process, records with invalid responses that cannot be fixed by this process are also
considered within the pool of nonresponse in order to be imputed.

This thesis considers the case of item nonresponse as the main problem to be investigated.

In order to illustrate the item nonresponse problem, Tables 1.1.1 show an example of the

percentages of item missing presented in a single county of the UK for 1991 census.

Tables 1.1.1
Missing information for a single County in the UK

Table A Table B

Household Individuals
Variable % missing Variable % missing
Bath and shower facility 0.12 Age 7.20
Brick building 1.55 Primary activity last week 5.83
Building type 3.82 Country of birth 7.26
Number of cars owned by the household 2.06 Ethnicity 16.24
Central heating facility 0.48 Long term illness 13.37
Number of rooms occupied by household 25.59 Marital status 7.05
Ownership/rental status 1.21 Sex 4.93
Type of accommodation 5.00 Ability with welsh 13.39
Toilet facility 0.13

These tables show an example of the percentage of item missing for single variables,
however, census information commonly has different missing items for the same person. That
is, combination of missing values between these variables may be also present. Therefore,
we can see that it is not a straightforward problem given the amount of missing information

present and the complexity of the missing pattern (all possible combinations missing).

There are several consequences of nonresponse for the analysis when the loss of information
is too high within persons or households. Reduction of the number of units composes one of
these consequences, generating some problems, which will be explained later in this
chapter, for analysing the results (including biased estimates), especially when the size of
the population is not too large (Lessler and Kalsbeek, 1992; Sande 1982; Madow, et al 1983).

Also, when more than one variable is missing at the same time, the size of the population



may change from one variable to another, making estimation, computation, and comparisons
more difficult.

Another crucial consequence of nonresponse is the possible presence of bias. This is an
important aspect to be taken into account since it could generate a completely misinformed
analysis. Bias is usually considered as the main measure of the nonresponse impact on the
results (Lessler and Kalsbeek, 1992). The bias quantifies the difference between the

expected value of an estimator over all possible samples and the population value.

Because of the progressive increase of the nonresponse problem over the years, many
solutions have been developed recently to address this problem (Lessler and Kalsbeek, 1992;
Kalton and Kasprzyk 1982; Sande 1982; Madow, et al 1983). One of the most important
attempts for reducing this problem is an endeavour to decrease or at least control the
nonresponse rates present by making some additional effort at the moment of interview or
post-interview. However, this is not enough to eliminate the problem. Sometimes, it is more
complicated or too expensive to go back to the interviewee in order to get the full answer;
maybe the interviewee simply does not know or is unwilling to give an answer. Consequently,
because of the incapacity of researchers to obtain complete data, different compensating
procedures have been developed to confront the problem. These compensating procedures
are commonly made by using weighting or imputation methods. In general, weighting
procedures are used in the case of unit nonresponse or noncoverage, while imputation
procedures are used in presence of item nonresponse (Lessler and Kalsbeek, 1992, Kalton,
1983, Madow et al 1983). However, in the case of census data, post-enumeration surveys are
generally used to deal with the noncoverage problem (e.g. Ericksen, Kadane and Turkey,
1989; Breiman,1994; Kearney, A. lkeda, M. 1999).

Our main concern is the item nonresponse problem in census data. Therefore, the objective

of this thesis is to consider compensating procedures for this specific problem.

1.2 COMPENSATING FOR ITEM NONRESPONSE

Given that item nonresponse is usually present in most data, different solutions can be used
in order to deal with this problem. One solution could be to analyse the data by either using
the available cases, which uses all the available values or deleting the cases with missing
values in order to use complete cases (Little and Rubin, 1987).

In the first case, available cases, there are several complications, starting with the fact that
sample sizes change from variable to variable creating complications for making tabulations
including many variables or when comparisons across variables are made. Also, some

procedures for analysing the data, as well as some computational programs, make use of only



complete cases. Additionally, unless the mechanism generating the missing information is
completely at random, the introduction of the bias could also be a considerable problem.

In the second case, complete cases, there are both advantages and disadvantages. The use of
a common sample (only complete cases) and therefore the use of standard methods make
the analysis simpler and easier. However, there could be a very high loss of information when
discarding incomplete cases, as well as a loss in the sample size. In addition, if the
information is not missing completely at random, the introduction of bias in the results may

represent an important aspect to consider when using the resultant information.

Another possible option could be to separate the units containing missing information to a
different category, which can be called "unknowns”. However, this procedure is still ignoring
information available for other variables within the same unit. In this case, analyst will
generally refer to the unknowns as a category without being able to use the micro data
(Sande, 1982).

Despite all the options mentioned before, it can be seen from the description of the methods

mentioned above that these have been insufficient in solving the item nonresponse problem.

As a result of this, the use of compensating methods in the presence of missing information

has increased over the last several years, making simpler analysis possible. In fact, the

multivariate nature of the information collected in census, where all the variables can be

subject to nonresponse, makes the use of compensating procedures for item nonresponse

more necessary and useful.

As mentioned before, item nonresponse problem is generally solved by the use of imputation

procedures.

In general, the use of imputation procedures implies certain pros and cons (Kalton, 1983;

Kalton and Kasprzyk, 1986; Sande 1982; Lessler and Kalsbeek, 1992).

Some important advantages to be mentioned include:

1. As any compensating procedure, imputation aims to reduce the biases in the estimates
arising from nonresponse;

2. Imputation makes the analysis easier and the results simpler to present, i.e. no complex
procedures for analysing incomplete data are required;

3. Results from different analyses are bound to be consistent;

4. Imputation assigns values at the micro-level, which allows for a more complex analysis
(taking into account the correspondent considerations or restrictions)

Important disadvantages of using imputation methods constitute the following:

1. Less bias is not guaranteed after the imputation has been done. In fact, bias can be
greater (depending on the suitability of the assumptions built into the method used);

2. Bias of univariate statistics can be reduced while the relationship between variables could

be distorted;



3. The data could be used as a complete set overstating the precision of the estimates;

There are also a number of problems to be dealt with when using an imputation procedure.

Sande (1982) describes some of them in the following manner:

1. The close relationship between editing and imputation. It is not easy to decide which
record(s) (or item(s)) has to be imputed when an edit fails. Additionally, the imputed
records must satisfy the edit constraints in order to produce consistent data. Fellegi and
Holt (1976) propose a methodology for dealing with this problem, which specifies that
the imputation must be done by changing as few items as possible (among other aspects)

(see Section 1.7).
2. Different records can have different patterns of missing information. This makes the

decision regarding selection of an imputation procedure more difficult.

3. The time constraints constitute very important factors to be taken into account.
Normally, there is no time for testing with the data until it is ready.

4. The use of imputation does not guarantee better results compared to using classical

estimation techniques for incomplete data. In fact, it could sometimes be considered

worse to use imputation.
5. Estimates from imputed data could be less reliable than when complete data are used.

Normally, the estimation of variances is inadequate, as they do not include error arising

from imputation.
6. The ethical problem of giving out the micro-data. Alternatives such as identifying the

imputed values or giving the edited but non-imputed data are options that have to be

decided upon.

1.3 NOTATION

Before starting on a description of imputation methods, let us begin with some notation that

will be employed throughout this thesis.

Let U be a finite population of N units U:{Ui;i=1,2,...,N}. Let Y=(y,) be a
(Nx1)—vector of response variable, where ), represents the ith element and let
X =(x,) be a (NxK)—matrix of auxiliary variables with x, as the k th variable for i th
the element. X <can be represented as X:(XI,XZ,...,Xk,...,)?K), where

- o
X, =(x,,%y,.... %y, ) is avector of N values x, .



Given that the aim of this research is to present an alternative solution for the missing
information problem in census data, sampling is not considered in this thesis. That is, all the

units in the population are included in the study.

Assuming that variable y, are subject to nonresponse and x; are fully observed, we also
define R = () as (Nxl)—vector of indicator variables for Y , which identifies whether or

. ) 1 if y, is observed
not y, is missing. That is, 7, = _ .
otherwise

Hence, the population can be represented as follows:

XH xlk le y1
xml 'xmk xmK ym
‘xm+1,1 xm+1,k xm+1,K 0
Xyi e Xy e X O

where m is the number of records for which Y is observed (measured) and the zeros

represent the missing values. That is, we take, without loss of generality,

r=t,=..=r,=landr,  =r. ,=.=1n=0.

This case corresponds to the univariate case in which only one variable is subject to
nonresponse. However, this can be extended to the case in which many variables can be
subject to nonresponse at the same time. In this case, Y and R will become a matrices of

variables and it is explained in Chapter 5.

1.4 MISSING DATA MECHANISMS

The process by which the missing data are generated represents an important aspect when
choosing a compensation procedure. Little and Rubin (1987) distinguish ignorable and non-

ignorable mechanisms. An ignorable missing data mechanism is such that the missing values



do not depend on the variable which is missing. On the other hand, in the case of the non-

ignorable mechanisms, the missing information depends on the values of the absent

variables.

There are two important ideas related to the concept of an ignorable missing data
mechanism. First, the missing data are Missing at Random (MAR) when the probability of the
variable being absent does not depend on the value of this variable conditional on observed
information; and second, Missing Completely at Random (MCAR) when this probability of
response does not depend either on the value of the missing variable or on the rest of the
variables. In these two cases, the missing data mechanism is ignorable.

When missingness depends on the values of the missing variable and possibly on the rest of

the variables, the missing data mechanism is non-ignorable.

Since most of the common imputation methods make assumptions about the probability of
nonresponse, it is important to understand the missing data process in order to carry out
imputation procedures. Therefore, these concepts will be explained in a more formal way

hereafter.

As assumed above, suppose that Y is subject to nonresponse and X is fully observed. Let
R be the response indicator for Y .

Since the model treats 7; as random variables, let us consider the model where y,, x, and

r; are all random variables. Then, we write the joint distribution as f(Y,X,R).

When R is independent of Y given X, that is f(y,|x,.r=1)= f(y,|x,.7 =0) the
data is called Missing at Random, MAR, where f(Y |X,R) denotes the probability function
of Y givenX and R.

When R is independent of Y, that is f(y,|r, =1)= f(y,|r, =0) the data are Missing
Completely at Random, MCAR, where f(Y|R) denotes the probability function of Y

givenR..
In these cases, the process that generates the missing data mechanism is ignorable as the

missing data mechanism is such that the missing values do not depend on the variable which

is missing.



1.5 IMPUTATION

Imputation is the process through which individual missing items are given a value in order to
produce complete data (i.e. "imputation ‘completes’ incomplete responses” (Sande, 1982)).
The information used to produce the imputed values normally comes from the respondents.
The broad idea of imputation methods is to pick a replacement value that is as similar as

possible to the missing item (Lessler and Kalsbeek, 1992).

Imputation procedures can be classified in different ways. A common way for grouping the
imputation methods indicates a division into three very general groups (GSS Methodology
Series, 1996):

Deductive methods, in which the values are deduced from known information, either from
complete records or other available information, with certainty or high probability. This
depends on some redundancy in the information collected; for example, if a member of a
family if under 16, deduce marital status as “single”.

Deterministic methods, when, under the same conditions, repeated imputations produce the
same answers. Examples of this kind of imputation are mean (or mode) imputation,
regression imputation, and nearest neighbour imputation.

Stochastic methods, when repeated imputations made under the same conditions can
produce different results. This indicates that there is a random element included. Examples
of this are imputing from randomly selected cases and regression imputation with a random

term.

Another way to classify imputation methods depends upon the use of internal or external
sources of information (Lessler and Kalsbeek, 1992; Kalton, 1983).

Cold-Deck procedures imply the use of external information (different from cases in the
survey or census) for the imputation process. This makes use of information from different
sources like, for example, past data sets from the same population. This method has the
disadvantage of a potential lack of comparability between past and present values, which
can be a problem when imputing (e.g. the use of different procedures for collecting the data
or different definitions for a variable).

On the other hand, Hot-Deck procedures make use of the data available in the survey or
census in order to create an imputation. Since the term Hot-Deck determines only whether
the imputations are derived (or not) from the same data set, different ways of selecting the
imputations can be used such as imputing from a randomly selected cases or nearest

neighbour imputation.



Before embarking upon a description of the different imputation procedures, it is important
to define some common concepts used in the area.

A Donor is the record from which the value to be assigned to the missing item is normally
taken. The records with the missing items (for which the imputation is done) are called
Recipients. It is important to point out that not all the imputation methods assign values to

recipients from a donor, e.g. mean imputation.
Imputation is the value used in order to fill in the missing item. In the case of donor

imputation this value comes from the same variable being imputed but from a complete

case.
Auxiliary variables (also called control variables, matching variables or assignment
variables) are those related to the variable with missing values. These are available for
respondents and non-respondents. They are not only used for defining imputation cells, but

also for defining regression models for imputing and quantifying how close donors and

recipients are.
Imputation classes define partitions of the population made according to similarities

generally based on the values of a set of auxiliary variables.

In order to describe a general imputation method, let f/l. be the imputed value, and
X, =(x,,X,,...X,) a K-dimensional vector of auxiliary variables for the itk unit with
actual value y;. A wide class of imputation methods can be written in the following way

v, =g(x)+e,
where g(-) is a function of the auxiliary variables, and e, are specified residuals. In this
case, the specification of the form of g(-) and whether the imputation is fixed or random

(depending on the use of e;) allow for the making of a distinction between the different

imputation methods (Lessler and Kalsbeek, 1992).

In the case of deterministic imputation, ¢, =0, different specifications of g(-) can be
written, for example,
Y, =g(x)=x,
or

JA’i =g(X) =x,%5 =X, -

In the case of linear regression imputation, the function of the auxiliary variables can be

written as



K
g(x)=b,+ Zbkxik
k=1

where b, and b,'s are estimated by standard methods such as least squares or maximum

likelihood. In the case of a categorical response variable, the regression can be done by using

logistic or log linear models.

in the case of stochastic imputation, the linear regression function can be written as
K
g(x)=0by+ Zbkxik te
k=1

in which a random term is used.

in the case of mean imputation, the definition of the imputed value has the form

JA’i =Y,
where y, represents the mean of the observed values for the variable (y;) to be imputed.
Here, the imputation does not depend on the auxiliary variables. However, the method can
be generalised by taking the mean within imputation classes, which are defined by the x,, .
This is a deterministic method, which does not make use of any random term.

In the case of categorical data, JA’,- may take the value of the modal category and moreover,

if the imputation is carried out within imputation classes, )31. may take the value of the

modal category of the specific class to which i belongs.

in the case of nearest neighbour imputation, the imputed value is obtained from a donor

which is selected according to a function of distance, which can be defined in many different

ways. For example,

j}i =Vp

K
where y, satisfies min [d,.,.'], with d. = Z[(xik # X ) -
H i

Some imputation methods are suitable for categorical variables while others are suitable for
continuous variables. There are some cases in which both kinds of variables can be used and
on some occasions, more than one method can be combined in order to determine a final
strategy for imputing.

Since this research is mainly concerned with the missing information problem in population

census data, the kind of variables used are principally categorical variables. Therefore, our
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interest will be imputation procedures for this particular kind of data. However, it is
important to point out that the method proposed in this thesis can be used when treating not
only categorical variables but also continuous variables or a mixture of them in any of the
cases, independent or dependent variables, by making certain adjustments especially to the

imputation methods.

An important method commonly used for imputation, especially in the case of census data, is
what is traditionally called hot deck imputation. The traditionally called hot deck imputation

is basically a sequential procedure in which given a set of imputation classes, within each
class the records are treated in a sequential way. If a record has a response in the y,
variable, this value is stored replacing the previous one in order to be used for imputation. If
a record has a missing value in the y, variable, the value currently stored is assigned to that

missing item. The starting value within each imputation class is normally assigned from
previous surveys (census).

One of the most important advantages of using a hot-deck procedure is the use of
information from the same census (survey), which can help maintaining relationships
between variables while completing the missing information. Also, utilising information from
the same investigation guarantees the use of the same theoretical context in terms of
definitions and concepts used.

If the method traditionally called hot-deck is used, where the sequential procedure is
involved, then, depending on the way in which the file is ordered, an additional degree of
matching is introduced (Kalton, 1983). However, an important disadvantage of this procedure
is that it may easily lead to the situation of multiple use of donors, which can contribute to a

lowering of the precision of estimates and underestimation of the variances in surveys.

1.6 EVALUATION OF IMPUTATION

In order to choose an imputation procedure it is necessary to evaluate its performance. This

section considers some ways in which this may be done.

The most common aspects to be taken into account when choosing the imputation procedure

are (Lessler and Kalsbeek, 1992):
1. The statistical repercussion of the method on the estimates. It would be desirable to find
a method that allows for doing the statistical inference intended while minimising the

effect of the nonresponse on that inference.
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2. The effect of the compensation procedure on the relationship between the variables.
Cross-tabulations, regressions and other analyses for investigating relationships between
variables can be affected by the method chosen.

3. The availability of the auxiliary data, if required. Some of the methods may require
auxiliary information, which must be available to allow for the use of the compensation
procedure selected.

4. Not only statistical effectiveness has to be considered, but also the practical
implications. Sometimes, the compensation procedure is statistically adequate but
extremely difficult (or even impossible) to implement because of the practical
requirements. A compromise between statistical and practical effectiveness is important.

5. A review of recent comparative studies can also be useful in the selection of
compensation procedure. The comparison can be made in the use of biases and variances

(analytical comparison) or comparing real vs. imputed values (empirical comparison).

All these are important aspects to be taken into account when a procedure for imputing is to
be chosen. However, many other factors can influence the decision. Despite knowledge
about a large number of aspects, there are no rules for combining all of them in order to
dictate how to establish the appropriate procedure for imputing. Nevertheless, the
imputation procedure will be more accurate when taking into account as much information

as possible within the decision process.

Some other criteria are also useful in choosing an imputation procedure as explained

hereafter.
Before defining some procedures for this task, let us introduce some useful notation.

Let © be the population parameter and 0 its estimator based upon the imputed dataset. Let

SE (é) be the standard error for © and © + 2SE(6) its 95% confidence interval.

The first measure of performance is bias. A good imputation method requires low bias, which

means E(0) close to O . As the bias itself may be difficult to interpret, there are two ways
of looking at it in order to get alternative information for the evaluation of the imputation

performance.

E@®)-6

First, relative bias can be defined in the following way, T This can also be

*100. These values are easier to

E@©)-6
6

expressed as a percentage of O . That is

interpret since they are relative measures.

12



A second way of using the bias for evaluation proposes is using a standardised bias, as a

E®)-6
percentage of standard error. This is ,S('E—)@?)*IOO . *Once this exceeds 30-40% it starts to

adversely affect coverage of confidence intervals” (Schafer 2001).

The second measure of performance is the variance. A good imputation method also requires
low variances for 6, V(0). However, low variance does not help very much when 0 is

biased.

Combining the two aspects mentioned before provides a measure of the accuracy. That is,
- A 2 A A 2 A
MSE®) = EHO -0 ] J = V(G )+[:E(6 )—6} . High values of MSE(©) are not desirable

since they imply either big variance or big bias (or both).

Confidence intervals for the estimator of the parameters, GAiZSE(OA) , can also be used for
evaluating the imputation procedure. They should be as narrow as possible, and include the

true value of O the specified proportion (e.g. 95%) of tries.

In this thesis, different ways of assessing the imputation procedures are used. One of them is
the assessment of the properties of the different method used, including biases and
variances. Additionally, the use of graphical methods and statistical tests for comparing

distributions are also used in order to verify the validity of the results.

1.7 SOME IMPUTATION EXPERIENCES WITH CENSUS DATA

The main focus of this thesis is the use of imputation for missing information in population
census data. Different approaches to imputation have been used by different organisations in
charge of the census programs. Most offices for statistics use similar methods for imputing
demographic categorical data, which is basically the kind of data obtained from a population
census. For example, most offices use decision tables, look-up tables or hot-deck methods
such as sequential hot deck, fixed-cell or nearest neighbour methods. In many cases, the use
of these methods arises from a lack of financial or technical resources. Additionally,

simplicity and time-saving are attributes highly important for governmental offices when
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treating census data given the amount of information involved and the urgency of the
results.
it can also be said that the solution to the missing information problem is reduced, in some

countries, to the use of editing and coding systems rather than imputation systems.

Editing is defined by Granquist (1997) as the procedure for identifying, by means of edit

rules, and for adjusting, manually or automatically, errors resulting from data collection or

data processing.

Granquist (1997) specifies in his article that there are three roles editing has, which are

mentioned here in priority order:

» Identify and collect data on problem areas, and error causes in data collection and
processing, producing the basics for the future improvement of the survey vehicle

»  Provide information about the quality of the data

= |dentify and handle concrete important errors and outliers in individual data

However, many countries use editing as a tool for cleaning up the data in order to have valid

information. Some countries integrate the editing process with the data entry procedure such

that the data is clean i.e. it passes all the edits, after the data entry routine is done.

It is important to mention that the editing process could be seen as imputation when codes
are changed due to inconsistencies. However, the term imputation in this work refers to the

use of any of the procedures known in the literature as imputation method.

Fellegi and Holt (1976) refer to the relationship between editing and imputation and the

importance of the creation of an edit and imputation system which allows for the following:

=  The data should be so that satisfy the edit rules by changing as fewer items as possible.
That is, maintaining as much original information as possible.

»  |mputation rules should be derived automatically from the edit rutes in order to ensure
the validity of the imputed records. That is, imputed records will continue to pass edit
rules.

» The imputed data should be such that the individual marginal and joint distributions are
maintained as far as possible.

Fellegi and Holt refer in this paper to topics like the application of logical edits to a record,

derivation of a complete set of logical edits, derivation of a complete set of arithmetic edits,

identification of the minimal set of fields for imputation and some procedures for

imputation.

Therefore, we can see the close relationship between editing and imputation, however, this

thesis is concern with the imputation aspect rather than the editing aspect of the census

data.
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Some examples of systems for imputation with census data developed by statistical offices in

the recent years are NIM, EDIS and SCIA.

NIM (New Imputation Methodology) is a system developed by Statistic Canada used for
population census data (Bankier, 1999; Poirier,1999; Bankier, Lachance & Poirier, 1999; Hill,
1976; Bankier, Houle, Luc & Newcombe, 1998). This system is essentially based on the
nearest neighbour methodology, selecting the donor randomly from the pool of possible
donors based on the minimum distance. The "feasible” donors are those that allow the
recipient to pass the edits. This also introduces the Fellegi and Holt idea of minimum change,
which comprises the use of as much of the information present in the data as possible (i.e. to
change as few items as possible in a record) as explained before in this section. This system
was used in the Canadian Census in 1996 and it has been reviewed during recent years

achieving some improvements.

DIS (Donor Imputation System) is a system developed by the Office for National Statistics in
the U.K {Anderson, F. and Whitfield K. 2000; Vickers, 1999; Vickers and Mochammed, 1998;
Richards, 1999). This system includes the editing and imputation processes of the census and
it is also based in the nearest neighbour methodology introducing the Fellegi and Holt idea of
minimum change. That is, given certain set of matching variables chosen a priori, the
methodology look for the closest donor to impute the missing item. The difference between
this methodology and the NIM system is the use of a set of matching variables, defined from
the start, which are employed to calculate the distance between the recipient and the
donor. Additionally, different measure distances are used to find the closest possible donor.
This methodology has been developed during the last few years and it is planned to be used

for the 2001 Census in the U.K.

SCIA (Automatic Control and Imputation System) is a software developed by the Population
and Housing Census and Territory Statistics Service (ISTAT) in Italy (Valente and Massimini,
1997). This methodology involves a mixture of deterministic and probabilistic corrections of
persons and housing units records and it also uses the Fellegi and Holt proposal. This
methodology was used in the 1991 ltalian census, however, new explorations have been
carried out in order to create a new system based on the NIM system, and it is also planned

to be used in the 2001 Census.

Additionally, the Methodological Department of the Instituto Brasileiro de Geografia e
Estadistica in Brasil has implemented a new approach based on regressions trees for imputing
income in the population census carried out in the year 2000 (Silva 2001, personal
communication).

This approach uses the features provided by the software package SPLUS, for creating the

regression trees mentioned, which are essentially binary segmentations based on the
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complete information as will be explained in successive chapters. After the final partition is
created, a random hot deck imputation method is applied independently within each group

(terminal nodes of the tree) in order to obtain the final results.

Of special interest is the new development made by National Statistical Office in Korea. The
National Statistical Office in Korea is studying the possibility of using CART for creating
imputation cells together with a nearest neighbour procedure for imputing missing items with
relatively high nonresponse rates in the census (Ryu, J.B. et al 2001).

The main idea of implementing this procedure is to avoid following (2" and 3") call-backs
after the census in order to get an answer, and instead, to replace the missing values after
the 1** call-back by imputed values.

This procedure has been tested using a pilot survey data for census 2000 for imputing two
variables for which nonresponse is higher (2.9% and 2,6%), comparing the results of the 2™
and 3 call-backs with the imputed values. Analyses show that imputation is strongly
recommended after the 1°** call-back. Unfortunately, no more information about this study

was found available.

Not many offices have published their work done in this area, however the tendency to use
donor imputation combined with the minimum change principal proposed by Fellegi and Holt
seems to be a common factor in their projects. The preservation of joint distributions is
becoming another important factor when doing imputation, which is basically another output

of the Fellegi and Holt proposal.

There are many other systems developed by different organisations to improve edit and
imputation procedures; however, these are not used for population census data due to their
specifications, that is, they were created to solve the missing data problem in specific
surveys. Examples of these are: GEIS (Generalised Edit and Imputation System) developed by
Statistic Canada; SPEER (Structured Program for Economic Editing and Referrals) developed
by U.S. Bureau of the Census; StEPS (Standard Economic Processing System) developed by
U.S. Bureau of the Census; Plain Vanilla (General-Purpose Edit and Imputation System for
Economic Censuses) developed by U.S. Bureau of the Census; AGGIES  (Agriculture
Generalised Imputation and Edit System) developed by U.S. Department of Agriculture
(Todaro, 1999); Macro View (Graphical Macro Editing System) developed by Statistics
Netherlands; CANEDIT developed by Statistic Canada (Bankier, Filliion, Luc & Nadeu, 1994)
and DISCRETE developed by U.S. Bureau of the Census.
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1.8 LIMITATIONS OF CURRENT METHODS

In general, different imputation methods, some of them used for imputing missing values in
census, have different disadvantages. For example, Look up Tables can affect the
distribution of the response, the suitability of the methods may be marginal and the use of
external data can adversely affect relationship between variables; Mean (or Mode)
imputation can distortion relationship between variables and it can modify original
distributions and contribute to lowering error estimation; Regression imputation can
distortion relationships between variables if they are not included in the model, compresses
distributions and lead to problems in estimating valid errors. However, even when these
methods can be used for imputing missing information in census data, they are not the most

common methods employed in this task.

As mentioned before, the most common method used for imputing census data is a hot deck
method, which is normally used in the way of sequential hot deck (Little and Rubin, 1987;
Kalton, 1983; Kalton and Kalsbeek, 1992; Madow, et al 1983). This method has the advantage
of being very simple and easy to implement, making efficient use of the computing resources
as each data file is read only once. Furthermore, when the data is ordered in a way that
creates autocorrelation, an additional degree of matching is introduced. However, this
method also has some drawbacks that make it a rather inefficient method. One of the
problems with the sequential hot deck is the use of very few variables for the classification.
This fact does not allow for a very good degree of matching between records, risking the
maintenance of relationships between variables. Another important drawback is the possible
multiple use of donors, which can contribute to a lowering of the precision of estimates and
underestimation of the variances in surveys (census).

Probably one of the most important drawbacks of using hot deck is the aspect related to the
preservation of joint distributions. The hot deck method does not necessarily aim for the
preservation of joint distributions since the imputation is not made jointly for all the missing
values in a record, and even more, the values for filling in the gaps in a specific recipient do
not come necessarily from the same donor. This can constitute a very important issue when
analysing the data. Sometimes it is not enough to preserve individual marginal distributions,
depending on the kind of analysis required.

In fact, one of the most important uses of census data is for examining relationships between
variables, for example, how many females for a specific age group who work in a specific
area, which makes the maintenance of the joint distributions a very important aspect to take

into account when using imputation procedures.
The other imputation method widely used is the Nearest Neighbour. It can be seen from the

new imputation development mentioned in the last section that nearest neighbour seems to

be a common factor in their projects. This imputation method has some advantages and
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drawbacks (Lessler and Kalsbeek, 1992; Chen and Shao, 2001; Little and Rubin, 1987). This
method identifies the donor that best matches the nonrespondent given a distant function
based on a set of auxiliary variables. That makes this method more efficient than other hot
deck methods that do not use auxiliary information. It also has the advantage that the data
used for imputation is chosen from the same database. However, Nearest Neighbour
imputation has also some drawbacks as it does requires considerable computing power since
for each recipient the method looks for the closest donor within the dataset. This represents
one of the most important drawbacks when imputing census data. it also requires a logical

(suitable) choice for measuring "nearness”.

1.9 AIMS AND OUTLINE OF THE THESIS

The deficiencies of the current methods described in the previous section, added to the
importance of the census data for the statistics in a country, are the main reasons why
research about improved methodology for imputing this kind of data has been undertaken
here.

The idea is to investigate an alternative method, which uses a different approach to the

current available methods, being also simple and efficient.

The method to be investigated in this research involves the use of classification as a first
step, followed by imputation within each imputation class. The main idea is to use a
classification techniques called CART, which is basically a classification tree technique based
on binary segmentation as will be explained in detail in Chapter 2, in order to form the
imputation classes. After the imputation classes are created, common methods for imputing
categorical data are used within each terminal node of the tree. The results of the tree as a
whole are compared in order to assess the use of this classification technique in imputation,

as well as to compare the different imputation methods used.

The analysis will be carried out for two different targets: the univariate case where a single
variable will be imputed, and the multivariate case where two or more single variables will
be imputed at the same time by the use of a composite variable. A composite variable is

defined by the cross-classification of two or more single variables.

A potential advantage of the proposed approach is the fact that it does not imply the use of
complicated procedures or sophisticated technical resources. An aim of the new method is
that it should be easy to implement and not require a large amount of time. Moreover, it

should not involve high costs.
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The use of as many variables as possible (as many as are involved in the relationship) in the
classification step is another important aspect of this proposal. The aim is to make the

selection of the donor easier and faster.

One of the main aims of the proposed approach is the maintenance of joint distributions,
which means upholding correlations between variables when working on the multivariate
missing case. The method tries to obtain all the imputations needed for a specific record

from the same donor.

Another important aim is for the method proposed to allow for the use of missing covariates

in the classification process or even in the imputation process. This is not normally the case.
That is, the aim is for the records containing missing information for the x, variables to be

included in the process of growing the tree or to be used as auxiliary information for the

imputation.

As this thesis investigates an alternative method for solving the item nonresponse problem in
census data, the classification is followed by an imputation procedure. Hence, three
different basic imputation methods for categorical data are implemented in this thesis in
order to compare the results given the classification. The selection of the methods includes
Probability Distribution imputation, Highest Probability (Modal) imputation as well as the use
of Nearest Neighbour procedure as it seems to be a common factor in most of the new

methodologies created for census data, as mentioned in Section 1.7.

This thesis is divided into two main parts, comprising four chapters. Before these two main
parts are presented, a description of the tree-based technique with emphasis in CART is
given in Chapter 2.

The first main part of the thesis is the development of the use of classification trees in the
univariate case (when there is only one variable subject to nonresponse). This univariate
case consist of two chapters, Chapter 3 where all the theoretical background and theoretical
considerations are explained, and Chapter 4 which includes the simulation procedures
employed and the results obtained for this univariate case.

The second main issue studied in this work is the multivariate case (where more than one
variable can be missing at the same time). This case is also divided into two chapters,
Chapter 5 where issues related to the theoretical aspect of the multivariate case are
approached, including a description of the different ways in which CART can be used for
imputation in the multivariate missing data, and Chapter 6 which describes the simulation
procedure undertaken and the results obtained for this case.

A final chapter, Chapter 7, summarises the results and some further work suggested is

presented.
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CHAPTER 2

TREE-BASED CLASSIFICATION

2.1 INTRODUCTION

The basic principle guiding this thesis is the introduction of a classification method during
the imputation process. The procedure to be followed involves classification and imputation,

with imputation as the last step within the groups formed by the classification.

Different alternatives that make use of auxiliary information such as Logistic Regression,
Linear/Loglinear Regression or Hot Deck within imputation classes can also be employed to
impute missing values. In some way, those methods also involve classification as the
imputation process control for auxiliary information. However, we refer to classification in
this thesis as the use of an auxiliary technique to form imputation classes. Therefore, the
approach presented in this thesis consists of two steps, i.e. firstly creating the imputation
cells by using a specific classification technique and secondly imputing missing values within

those cells using a specific imputation technique.

There are a huge number of methods for classifying elements Hand (1997). Some of them
require the estimation of certain parameters (parametric procedures) whilst others do not
require those estimations (non-parametric procedures). Some methods require more
sophisticated and complex procedures than others. In any case, classification procedures
structure the population in a certain way that is useful for researchers in solving specific
problems. This structure is constituted by a set of rules based on the values of the variables
used for the classification. These variables are measured on a set of units generally called

"the learning sample”.

The set of rules structuring the population (learning sample) plays two different roles (Hand

1997): one of which is to formulate the class structure, unsupervised classification, and the
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other operates as a strategy for classifying new elements into those groups already

determined, supervised classification.

Given that this thesis deals with the missing information problem, the aim of this research is
not only the generation of the classification groups (by the use of the learning sample),
which in our problem will be the imputation classes, but also the generation of that set of
rules that allows for the classification of units which are not part of the learning sample,
which in our case are the records subject to missing information and they are not included in
the generation of the original classification.

It has always been assumed that the more homogeneous the population is the better the
results of the imputation due to the donor selected. That is, if one can find a procedure that
classifies the population in very homogenous sub-groups, the imputation performance should

improve in terms of accuracy.

However, the selection of the classification method used is not only based on the accuracy of
the classification made. It is also important to say that the use of a procedure that allows the
researcher to do the classification without the utilisation of very sophisticated and complex
techniques is really convenient when too much information and a very limited time scale for

carrying out the task are requested.

Tree-based models have been used over the last several years as an important and useful
approach for classifying elements (Gordon, A.D., 1987; Loh, W.Y. and Vanichsetakul, 1988;
De Waal, T. 2000; Ryu, J.-B., Kim, Y.-W., Park, J.-W. & Lee, J.-W. 2001). The use of tree-
based models release researchers from problems like using complex procedures for
parameter estimations or searching for prior information. The power of this methodology in
working with large databases and creating accurate and quick classifications as well as some
practical factors such as ease of use, recent improvements and computational developments
constitute some of the influential factors on the decision for using tree-based models in this

analysis.

A tree-based model is a set of classification rules that partitions a data set into mutually
exhaustive and non-overlapping subsets (Breiman, L., et al 1984). The rules are defined in
terms of the values of a group of explanatory variables. The model is constructed by
progressively splitting the data set into smaller subsets that are increasingly more
homogeneous with respect to a response variable. This splitting process continues until a
stopping criterion is met. Then, the tree-based model is represented by a hierarchical set of

splits that eventually lead to the final subsets or “terminal nodes” of the tree.

The Automatic Interaction Detection (AID) program of Sonquist, Baker and Morgan (1971) is
one of the first methods for fitting a tree-based model to data. This is based on a recursive
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binary algorithm, which successively splits the original data set into two smaller subsets. As
mentioned above, these subsets are meant to be more homogeneous subsets than the
original one. The partition is made by a succession of sequential binary splits.

A similar recursive binary segmentation algorithm constitutes the bases of the CART
(Classification and Regression Tree) program developed by Breiman et al (1984). These ideas
have also been implemented in the regression and classification tree analysis modules in S-
Plus (Martin and Minardi, 1995). An alternative, non-binary, recursive splitting algorithm

underpins the CHAID program (Kass, 1980).

The literature usually refers to two types of tree-based models: Classification Tree models
and Regression Tree models. The basic difference between the two models is the scale of
measurement of the response variable. In a classification tree model the response variable is
assumed to be categorical. In this case, an appropriate measure of homogeneity for
categorical data is used in order to determine the splits. In the case of a regression tree,
since the response variable is assumed to be continuous, appropriate measures of
homogeneity relevant to continuous variables are used to determine the splits in the tree.

In both cases, the explanatory variables can be either categorical or continuos variables.

2.2 CART: THE METHODOLOGY

Classification and Regression Trees (CART) is a segmentation algorithm developed by Breiman
et al in the 1980’s. This algorithm is known as a binary recursive partition that represents its
results in the form of decision trees. It is binary because parent nodes are always split into
two subsets (children), and it is recursive because each child could also be treated as a
parent and therefore it could also be split. The tree starts with a root node, which is the
complete data set of units (universe in our case). This universe is split into two subsets (child
nodes) using yes/no questions. Some of the nodes are terminal, which means they are not

split any more, while others are not terminal being split until a terminal node is reached.

The main idea behind this classification method is to find decision points for partitioning the
universe into mutually exhaustive non-overlapping subsets, given a target or dependent
variable (variable for which the classification is done) and given a set of explanatory or
independent variables (variables in which the classification is based). These decision points
simply represent a set of rules defined in terms of the values of a group of explanatory
variables (independent variables), with the model constructed by successively splitting the
universe into subsets that are increasingly more homogeneous with respect to a response

variable of interest. This splitting process continues until a stopping criterion is met. The
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tree model is then represented by the hierarchy of splits that eventually lead to the final

subsets (terminal nodes) of the tree.

As previously mentioned, the decision points are such the classification is as homogeneous as
possible within the terminal nodes created. This means that some categories of the target
variable go to one child node and the rest go to the other child node, depending on the
values of the independent variable used in order to form groups in which most of the
elements come from the same category of the target variable. However, these similarities
are not only related to the target variable, but also to the independent variables used in the

analysis since the classification is based on their values.

In a classification tree model the response variable is assumed to be categorical, and
measures of homogeneity appropriate to categorical data are used to determine the splits in

the tree. The independent variables can be either categorical or numerical.

Figure 4.5.3.1 shows an example of a tree that classifies a sample of census records using a
variable Primary Activity Last Week as the response and the variables Age, Ethnic Origin and

Limiting Long-Term Illness as explanators.

2.3 THEORETICAL FORMULATION

In a more formal way, CART involves specifying the conditional distribution of a dependent
variable given a measurement vector X; of independent variables. The binary tree gives a

partition of the predictor space in different subgroups for which the distribution of the
independent variable is more homogeneous. Each terminal node of the tree corresponds to a
region of this partition, and these are determined by splitting rules. At the end, each
element of the population is assigned to only one terminal node generating the conditional

distribution of the dependent variable at each node.

There are three key elements in CART analysis:

v splitting each node in a tree

v deciding when a tree is complete

v assigning each terminal node to a class outcome (or predicted value for regression)

Each of these elements involves different rules that can be followed in order to obtain the

final and optimal tree and they will be explained later.
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2.3.1. Definitions

There are some important notation and definitions to be reviewed before starting on a

description of CART features.

v Response (Dependent variable) is the variable for which the analysis is being made
(variable subject to nonresponse), that is, the variable for which the tree is grown.
Auxiliary variables (Independent variables) are the set of variable used to grow the

tree, that is, those variables used as splits.

v' A measurement vector )“c,.=(xn,xi2,...,xﬂ{) is a vector containing a number of

measurements of variables made on a unit ;. The collection of all possible measurement

vectors in the population U defines the measurement space ¥y, .

v C= {1,....,]} is the set of classes of the response variable in which each unit may fall

into.

v A classifier is a function d()?l.) of X, defined on % which gives a value between

L......,J to every measurement vector X, .

v A, is the subset of y for which d(fi):j. So, ¥ =4, . Then, a classifier can be
J

defined as a partition of y into J disjoint subsets 4,,......4; for which every element

X, EAI. has j as the predicted class. These disjoint subsets are denominated nodes.

These nodes can be terminal (if they are not split anymore) or non-terminal (if they are

further split by the process).

v A Learning Sample is defined by L={(5cl,j1), ........ ,()?M,jM )} , where X is a
measurement vector with X, e ¥ J; € {1, ..... J} , i=1,..,M ,and j, is the true class for

ith unit. M is a subset of the population. In some cases, M can be equal to N

(population size).
v' The test sample is a subsample of the learning sample used for estimating the

misclassification rate via test sample estimation or cross-validation estimation (see

Section 2.3.6.). Frequently, this subsample is taken as a 1/3 of the cases. In a 10-fold
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cross-validation, the total of cases are divided in 10 parts, using a different 1/10 each

time as a test sample to estimate the misclassification rate.

v C(j1 !jz) is the cost of misclassifying a class j, element as a class j,. C(j1 Ijz)
satisfies:

(@) C(j1lj2)20a Ji # J,, and

(b) C(j1]j2)=O: h=I-

v Asplit s is defined by a question of the form IsX, € 4?, A c y that sends unit i to the

left or right child node depending on the answer of the question.

v m(j) is the set of prior probabilities, that is, the prior probabilities that y, = j,
j=1,...,J . These probabilities are either estimated by {Mj /M} or pre-specified (i.e.

a particular prior distribution for the dependent variable can be specified), with Mj as
the number of units in class j in the learning sample. Thus, for a given set of prior

n()), p(U,t)=n(j)M;()/M; is taken as the resubstitution estimate for the
probability that a unit will both be in class j and fall into node ¢, where M ,(¢)/ M ; is

the proportion of class j cases in L falling into ¢.

v p(t) is the resubstitution estimate of the probability that any case falls into node ¢,

and is defined by p(t)=Zp(j,t), with p(j,t) defined as before. Then, the
J

resubstitution estimate of the probability that a case is in class j given that it falls into

node 7 is given by p(j | t)z p(j,t)/p(t) and satisfies ij(j ) =1.

v oIf {n(j)}:{Mj/M}, then p(j,1)=M ,(1)/M(t), thus {p(j]t)} are the relative

proportions of class j cases in node ¢.
v T is the set of terminal nodes

v 'fl is the tree complexity (number of terminal nodes)
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v Cost complexity measure is defined by RQ(T)zR(T)+oc!]~“l, where R(T) is the

misclassification rate (see Section 2.3.6) and o is the complexity parameter, o > 0.
This cost complexity is then a combination between the misclassification cost of the tree

plus a cost penalty for complexity.

(@ p; 20 and

b) > p;=1.

and it has the following properties:

1
(i) @ is a maximum only at the point [-1—_,1_,...,—.)
J J J
(i) @ achieves its minimum only at the points (1,0,...,0),(0,1,...,0),...,(0,0,...,1)

(iii) @ is a symmetric function of Dys-D; -

2.3.2, Splitting Rules

As mentioned before, CART is known as a binary recursive partitioning. It means that each

node is split into two child nodes based on a splitting criterion.

Aset § of splits s is generated by a set O of binary questions in which every value of X, in
a node ¢ for which the answer "yes” goes to the descendant left node ¢, and every value of

X, answering “no” goes to the descendant right node #,. In general, if the question is {ls

X,€A? ,thent, =t A and t, =t N A°.

Two different criteria can be found for splitting, Gini criterion and Twoing criterion.

= Gini criterion
This splitting criterion is based on a node impurity measure. The idea is to find the split that

reduce the tree impurity defined by I(T) = Z[(t), with 1(2)=3 (¢) p() , where:

tel
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- 38(¢) is a node impurity function defined as ®(p(l]¢)..c..., p(J|2)) (relative
proportion of class j units in node ¢},

- p(j12) isdefined by p(j|)= p(j.2)/ p(t),

- and p(t) is the probability that any case falls into node ¢ where p(t)=zj p(j,1)

Another way for defining the impurity function is minimising I(T), which is the same as
maximising Al(s,t)z [(t)—[(ZL)—](tR) where Al(s,t) represents the decrease in
impurity. In other words, to maximise Ad (s,t) =0 (t)—pLS (IL)—pRB (tR) , Where p, is
the proportion of units which go from ¢ to ¢, and p, the proportion of units which go from
t to t,. Hence, the best split will be that such as reduce more the misclassification rate
R(r).

If & (t) is defined as r(t) where r(t) is the misclassification rate for the node ¢, thus,
reducing [ (T ) could be seen as a reducing the misclassification rate R(T ), where

r(t)=mjan(i|j)p(_j|t). Therefore, the best split would be that for which
J

r(t)—er(tL)—pRr(tR) is maximum. This is equivalent to say that R(t)—R(tL)—R(tR) is
maximum.

There are different criteria for generating the impurity function & (t) These are:

Gini Impurity Function

This impurity function has the form & (t) =1-S80Q in which S§Q is the sum of squares of the
estimated class probabilities p(j | t). That is, 0 (t) =I—Zp2 (j | t).

J
Given the form of the impurity function, it can be noticed that this function takes values in

the interval [O,l). The function reaches the minimum (zero) when the node consists only of

a single class, in which case, the node is considered perfectly pure. The function takes the
. 1 :
maximum {1-— -1 when the node contains equal number of cases for each class.

In this case, it is assumed that all the costs for misclassifying class j, as a class j, are equal

to1forall j, # j,.
Sometimes, the problem requires defining different misclassification costs for different types

of misclassification since some of these actions imply more risk than others.
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If an unknown element is assigned to a class j with estimated probability p(j]t), the

expected cost is ZC(]’l |j2)p(jl [t)p(j2 [t) where C(j1 ljz) is the misclassification
Jah
cost. This is the expression used as a Gini node impurity for variable misclassification costs,

which is an extension of the original one.

Symmetric Gini Impurity Function

The use of this index assumes symmetry of the misclassification cost matrix. The criterion

used is exactly the same used in Gini with the variable cost term. Consequently, the impurity

function is ZC(]’1 | 7, )p(jl lt)p(j2 It) as above, where C(j1 !jz) is a variable
JasJi

misclassification cost but coming from a symmetric matrix.

e Twoing Criterion

The second criterion uses a different strategy. This criterion is based on class separation

instead of node homogeneity.

Twoing
The basic idea in this method is maximise the difference between the probability that a class

j element goes to the left from the probability that the same element goes to the right

node.
This criterion defines the towing criterion function as follows:

Q(s,t)=%e-{§1p(jltL)—p(J‘lfR)I}

where, in a two-class criterion for a given split s and a class
Ci(s)={j:p(jlt,) = p(jlt,)} that maximises AS (s,1,C}), mCaXAS (s,2,C)=Q(s,1).
Then, the best towing split s*(Cl*) is given by the split s~ which maximises Q(s,t), with

C as C.l* ={j:p(j]t:).>_p(j[t:)}. t: and t: are given by the split s .
This criterion does not work on the overall impurity measurement of the node maximising

Ad (s,t). So, it is not possible to obtain a tree impurity measurement I(T).
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Ordered Twoing
Sometimes the categorical variables used are ordered, and it may be desirable to take this

characteristic into account. In this case, the twoing criterion can be used but with an
additional condition.

The ordered twoing criterion considers a new partition {CI,CZ} of the class C = {1,....,J}

using the following restriction: C, = {1,...,j1 } , G, = {j1 +1,..... ,J}. It means that there will
be a cut-point for which all the classes below this point go to one node and the rest go to the
other node. For example, a split can separate classes 1 and 2 from the classes 3 and 4, but

cannot separate classes 1 and 3 from the classes 2 and 4.

Therefore, the criterion is given by Q(s,?) = max A8 (s,¢,C,) as for twoing but using the

restriction mentioned.

2.3.3. Class Probability Trees

This method is used when it is important to estimate the probability that a unit goes to a
specific class instead of assigning a class to this element. The probability results are obtained
from the within-node distributions of the terminal nodes for the response variable. The tree
is always grown using the Gini splitting rule and it is not possible to specify misclassification
costs because this tree is not for classifying elements.

The main goal is to estimate the probability distribution of the target variable. It allows

specifying prior probabilities. In other words, the basic idea is to estimate
P(j [ .)?,.) = P(y,. =jlX =X ’) , j=L..,J, where X, is a measurement vector. This
means, to estimate the probability that a case is in class j given an observed vector X,' of

measurements.

2.3.4. Class Assignment Rule

The main objective of the tree is to classify all of the units. This implies the assignment of a
class (category) to every unit. This assignment depends on the distribution of the categories
of the response variable within each terminal node. Then, once all the elements are
allocated to a terminal node, they are assigned a class depending on the node they end up
in. Since a single class is allocated to all of the units of each terminal node, these units are
treated as they really are from the class assigned. When a tree is finally created, the class

assigned to a node identifies all the elements in that particular terminal node.

Thus, each terminal node # € T has an assigned class j € {1, ..... ,J} that is denoted by j(¢).
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There are two different ways for assigning a class to the units:

v'If the prior probabilities are {n (])} = {MJ/M} , then class assignment is basically the
plurality rule for assigning the class. This means ¢ is classified as that class for which

M, (t) is largest.

v For any other set of priors, z p(j|t) is the resubstitution estimate of the probability
J=j(t)

of misclassification given that a case falls into node ¢. The class assignment rule j(z) is

that rule that minimises this estimate. That is, if p(j|?) =max p(i|?) then j(t)=j.

2.3.5. Surrogates

One of the important issues related to surrogates is the fact that they allow for the
classifying of elements with missing information in the auxiliary variables. This makes
possible the use of the whole data set even when missing values are present in the auxiliary

variables.
The importance of the surrogate and their uses in the imputation process are explained later

in this work.

A surrogate is defined as the alternative split which divides the same set of units in the most
similar way to the best split. This similarity is not only related to the number of units in each
child node and their internal distributions, but it is also related to which units go to each

child node. Surrogates closely mimic the action of the primary split.

In a more formal way, let us take the best split s at node t, which divides a set of

elements of a node into two different child nodes ¢, and #,. Let us also take any variable
x, with a set of splits S, and set of complementary splits §k. Then, for any split
84 eSkugk that divides node ¢ into #,' and #;', we have M].(LL) as the number of
units in ¢ sent to left by both s~ and S, . That is, number of units sent to #, Nz, '. Similarly
we have Mj.(RR) as the number of units in # sent to right by both s  and s, . That is,

number of units sent to 7, Nz, ".
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The estimated probability that a case falls into 7, N¢,' is defined by

: M;(LL) . . " .
pt, Nt )= Zn (])————A—Z———. Additionally, the estimated probability that both s and s,
F .

J

)=————————p(tL N4) . These

p(t)

probabilities are defined in a similar way for the right node. Additionally,

sent a case into ¢ to the left, p,, (s",s,) is defined by p,,(s,s,

p(S*>Sk) :pLL(S*’Sk)+pRR(S*>Sk)'

Thus, a split §, € S, U S, is defined as surrogate split on x, if p(s,§,)=max p(s,s,)
Sk

over §, u§k . This surrogate split can be interpreted as the split on x,, that predicts in the

. *
most accurate way the action of s .

Another important aspect related to the use of surrogates is to give a ranking of the auxiliary
variables according to their importance in classifying the units. Sometimes, these variables

offer trees as accurate as the trees constructed with the original splits.

A measure of the importance of variable x, is given by 6(x,.k):ZAI(sk,t), where
tel

A[(sk,t) is the decrease in impurity mentioned in the splitting rules. The quantity used for
ranking the importance of the variables is a relative magnitude based on the last equation

defined by 100*6()@,c )/m;::lxa(x,.k), giving a value 100 to the most important variable, and

a value between 0 and 100 to the rest.

2.3.6. Estimation of the Misclassification Rate

The misclassification rate is a measure of how accurate the classification is. Given a class
structure, the misclassification rate determines the percentage of units misclassified once a
class is assigned to each terminal node. These rates could be used for determining, in a way,

the predictive power of the tree.

Thus, given a classifier d(x, ), its "true misclassification rate” can be denoted by R'(d),

which is defined as the proportion of cases misclassified by d(x,, ). There are three different

ways for estimating the misclassification rate in this method.
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First, it is necessary to define a function X(), which is 1 if the condition inside the

parentheses is true and 0 otherwise. The ways for calculating the misclassification rate are

based on this function.

v" Method 1: The first way for estimating the misclassification rate, R(d), is called the
1 M
resubstitution estimate and is defined by R(d)-—-HZX (d ()?i);&ji). This method

uses the data used to construct the classifier, that is, the learning sample L.

v Method 2: The second way is called test sample estimation, R” (d) In this case, L is
divided into two groups, L, with M, elements and L, with M, elements,
L=L UL,. L (learning sample) is used for constructing the classifiers, and L, (test
sample) is used for  estimating R" (d) , which is  defined by

1 _ . .
R°(d)=— Z % (d (%)= ]i). L, and L, should be considered independent and
2 (%.4)el,

coming from the same distribution. L, is generally 1/3 of L ’s size.

v Method 3: The third way for estimating the misclassification rate is called cross-
validation and it is denoted by R“. In this option, the learning sample L is divided in

V' subsets of equal size (approximately) denoted by L,,........... ,L,. The classifiers
d®” (f,) , v=1,.....,M , are constructed with all the elements present in L but not in
1
L,, (L—L,). An estimation of R” is given by R" (d(V)):Il— Z X (d(v) (%)= J})
v (fisji)ELv

where M, =M/V and none of the elements in L, are used in the construction of

d™. Then, the final estimation of misclassification rates via cross-validation is

1 vV
R”(d)z ;ZR’S (d(v)). All of the V classifiers are constructed using M (1-1/V). In

v=1

this case, every element is used to construct d and is also used once in the test sample.

The importance of misclassification rates is related to their uses in the generation and

pruning processes and other issues about predictive power of the tree.
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2.3.7. Pruning Trees

Since CART does not use any procedure to stop growing a tree, a procedure for pruning it is
used to obtain the optimal tree. That is, after the maximal tree is grown, the pruning
process starts cutting branches based on misclassification rates and a penalty for complex

trees.
The purpose in the pruning process is to find the tree from the sequence that minimises

R, (T), where R (T)= R(T)+alf|. In this equation I]N"‘ is the complexity of the tree

(with m as the number of terminal nodes), and o is the complexity parameter. Thus, the

last term of the equation can be seen as a cost penalty for complexity, assuming that o is

the penalty imposed per additional terminal node.
Then, the process finds the tree that minimises R, (T) for a specified value of o .
The values of & can be either specified by the analyst or automatically obtained by an

iterative process carried out by the Software, in which a function of the misclassification

rate is minimised (See Breiman, L., et al 1984 for details).

2.3.8. Some Properties
Some of the important attributes that can be mentioned about CART technique are:

»  CART does not require the user to make a prior selection of the auxiliary variables. They
will be selected from the complete list of variables depending on their power in

classifying the units in the population treated.

»  Fach auxiliary variable can be used in different parts of the tree to detect important
interactions between their different combinations. That is, one variable can be used

more than once during the growing process.
= CART is invariani with respect to transformations of the auxiliary variables. The use of

any transformation will result in the same conclusion.

= Linear combinations of non-categorical auxiliary variables can be used. Also, continuous
auxiliary variables can be converted to categorical ones and categorical variables can be

collapsed.

= The selection of the variables made by CART can be used for further analyses with linear
or logistic regression models, managing a smaller list of variables and prior information

about these variables.
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= |t is nonparametric procedure, which means that does not require any prior specification

of the model relating y, and x, .

= Missing values for the predictors can be handled by using surrogate splits.
Surrogates are alternative splits generated when the primary splitting variable is
missing. This option permits working with more cases.
By the use of surrogates, low-cost predictors can be selected. Satisfactory surrogates
can generate similar predictions to the original variables. Surrogates can be also useful

when the values of some variables are difficult to obtain.

2.4 CART: THE SOFTWARE

CART software was created based on the technique proposed by Breiman, Friedman, Olshen
and Stone (1984). This software is a computational version of the original CART methodology,
which allows for the rapid growth of trees following all the theoretical processes. It was
created in order to simplify the practice of the generation of tree-based models.

There are different versions of this software. The first version was created in 1990. The
current version (1999 version, used in this work) introduces new aspects that were not
included in previous versions facilitating the use of the original concepts of the technique. In
addition, the capacities of data handling have increased from the original version.

This software contains many different options in the growing-tree process; however, not
many of them need to be specified during the process since they are specified as default. A

brief explanation of some of the most important options follows hereafter:

= The first aspect to be decided is whether a classification or regression tree will be
grown. In our application we are only concerned with categorical response variables and
so, a classification tree is grown. For growing a classification tree, the labels of the

target variable have to be specified.

s The independent variables have to be also defined as categorical or continuous. In the
first case, the labels of the categories do not need to be specified but they have to be

continuous numbers.

= There are different splitting criteria for growing the tree as explained before. The

default method used by CART is the Gini index. However, this could be changed to any
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of the others above mentioned. The selection of the splitting criterion depends on the
kind of variables used for the analysis, both response and auxiliary variables. Depending
on the methods used for splitting, the auxiliary variables will be treated as a

categorical, ordinal or continuous.

When continuous variables are used as auxiliary variables, it is possible to use
combination of them as splits. in this case, one must specify to the software that a
combination of variables is wanted, then, the software decides which linear

combinations, if any, are the best splits.

As explained before, there are also different ways for testing the tree. CART uses Cross-
Validation as default considering 10 groups (10-fold cross-validation). It could be

changed to any of the other options mentioned in previous sections.

If any of the variables has any value that should not be included in the analysis for any
reason, CART allows the exclusion of specific values from the database used. It is

possible to select a subset of values for any of the variables used in the analysis.

The minimum number of units in each parent node and each terminal node can be
specified using an option included in the software; as well as the minimum complexity
required (number of terminal nodes required). It is also necessary to specify the

maximum number of units used in the learning sample since CART uses 3000 records as

default.

Costs and prior probabilities for the response variable can also be changed. There is a
matrix of costs that uses cost 1 for any kind of misclassification as default. This can be
changed and symmetrized. In terms of the prior probabilities, equal probabilities are
used as default, but this can be changed to the proportion present in the learning
sample, test sample, the data, a mixture of them or another specified distribution.

In terms of surrogates, it is possible to select how many surrogates are wanted to appear
and to decide whether or not all of them have the same weight for the variable

importance.

Sometimes, the data set used is too large for using any determined version of the
software. In these cases, there are a number of options to solve this problem. Test
sample sizes and learning sample sizes can be modified. The depth of the tree, the
number and size of the nodes can also be changed. Also, a subsampling of the data set

can be used for the analysis.
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CHAPTER 3

UNIVARIATE CASE
THEORETICAL FRAMEWORK

3.1. INTRODUCTION

This chapter contains the theoretical formulation of the univariate work undertaken in this
thesis. Here, the univariate case is explained including modelling description, the use of
classification trees, imputation methods used and estimation of population gquantities.

Additionally, properties of the estimators are studied.

It is important to specify that in this work the terms univariate and multivariate refer to the
number of variables subject to nonresponse, no matter how many variables are fully
observed. This is, the univariate case refers to the situation where only one variable is
subject to nonresponse and the multivariate case refers to the situation where more than

one variable are subject to nonresponse. The theoretical formulation for the multivariate

case is presented in Chapter 5.

3.2 NOTATION

Using the notation defined in Chapter 1, let U be a finite population of N elements

U= {Ui; i=1 2,...,N} . Let Y =(y,) be a (Nxl)—vector of response variable, where y,
represents the 7tk element and let X =(x,) be a (NxK)—matrix of auxiliary variables

where x, represents the k t/i variable for i th the element.
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In this case, Y can be represented as a vector of N values y,, Y =(¥,Vysees ¥, rees V)

X can be represented as X =(X,, X,,..., X;,..., X ), where X, = (x,,%,;,...,X,,)" is a
vector of N values x, .
Assuming that Y is subject to nonresponse and X is fully observed, we have R =(r,) as

(Nx1) —vector of indicator variables for Y identifying whether or not y, is missing. That

is, = can be represented as a vector of N values 7,

{l if v, is observed

0 otherwise

R=(5,70sFypens iy )

It is also assumed the population is fully enumerated (no sample is taken).

The data take the form

X, X, Xy Y R
X X5 Xix »n 1
xml ‘xm2 xmK ym 1
Xoal]  Fme1,2 Xpmx 0 0
Xy Xn2 Xk 0 0

where the zeros represent the missing values in the population and x, and y, are
specific values for a specific realisation of the model, with m the number of records for

which Y is observed (measured), the zeros represent the missing values and N is the

number of elements in the population. That is, we take without loss of generality

7

-=..=r,=land 7, ,=...=7, =0.
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3.3 MODEL DESCRIPTION

Under the model-based approach, x, and y;, are considered random variables with

distribution f(X,Y|0) indexed by the parameter (sets of parameters) 0 .

As the response process can be seen as a random process, the response outcome R is also
included as a random variable with distribution f(R|X,Y,o).
Providing that X is fully observed and Y is subject to nonresponse, the full form of the

distribution can be written as f(X,Y,R|0,¢) indexed by the parameters (sets of

parameters) @ and ¢, with R as a response indicator.

The joint distribution of X, Y and R, f(X,Y,R|0,¢), can be decomposed as the

product of the probability distribution of X and Y indexed by the parameter (set of
parameters) 8 and the conditional distribution of R given X and Y (the distribution for

the missing data mechanism) indexed by the parameter (set of parameters) ¢ . That is,
SXY,R[0,0) = f(XY[|0) f(RIXY,0)

Since Y is subject to nonresponse, we can write Y =(Y,,,,Y,,), where Y, which is a

vector of size mxl, represents the observed values of Y and Ymis , which is a vector of size

(N —m)x1, represents the missing values of Y .

Therefore, the distribution f(X,Y,R|0,¢) can be writtenas f(X,Y,,,.Y....R[0,0).
Furthermore, equation (1) can be written as

f(X7Y bs’Ymis’R l 9’ (P) = f(X’Yobs’Ymis l O)f(R } X’ Yobs’Ymis’q)) *

)

The distribution of the observed data can be obtained by integrating Y _, out of the joint
distribution of X, YandR. That is, f(X,Y,,R)= [f(X,Y,R)dY,,. More

specifically, f(X, Yy, R[0,0)= [£(X,Y,5,, Vi, |0) f(R|X,Y,,. Y, 0) Y, -

Assumptions about the model are normally made in order to obtain valid estimation. One of
the most common assumptions is that the missing values are "missing at random”, MAR (Little

and Rubin 1987).
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As explained in Chapter 1, the data is said to be missing at random if the response indicator

R does not depend on the missing values of Y, Y_,. That is, MAR holds if

f(R l X’Yobs’Ymis’(P) = f(R l X’Yobs’q)) *
Then, assuming that MAR holds, and given that the actual observed data is (X,Y,, ,R), we

now have

J(X, Yo, R10,0) = (X, Y, [0) f(R]X, Y, 0) .
In this case, the common maximum likelihood procedure used for fully observed data can be
used for estimating the parameter 0 required when the data is incomplete (data with
missing values). That is, 0 can be estimated by maximising f(X,Y,, |0) the observed
data. Hence, the missing data mechanism is ignorable, that is the second part of the right

hand side of the last equation can be ignored in the estimation of 0.

Thus, if MAR holds, inferences for @ are based on the likelihood function L(0|X,Y,,.),

which is a function of @ proportional to f(X,Y,,, |0).

3.4 USING CLASSIFICATION TREES

One of the important issues underlying this work is the use of classification as a first step for
imputation. Here, the classification is employed to form the classes in which the imputation

will be carried out.
As described in Chapter 2, the classification method used is called CART (Classification and

Regression Trees) and consists of grouping records depending on a set of values of the
variables x, , independent or explanatory variables, which are assumed to be fully observed

in this chapter. These groups are called terminal nodes or classification groups and they are
used as imputation classes. Additionally, these terminal nodes are expected to be exclusive

and exhaustive groups.

In practice, the explanatory variables can alsc be subject to nonresponse. However, let us

assume fully observed explanatory variables in this section.

As in Chapter 2, let t represent the node, which is defined by a set of values of the

explanatory variables identifying the classification groups. In this case we will use ¢ as a
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subscript for representing only terminal nodes, with ¢ € {l, 2,...,t,...,T} , and 1" equal to the
total number of terminal nodes for a specific tree.
As also defined in Chapter 2, a measurement vector X, = (x“,x,.z,...,xl.K) is a vector

containing a number of measurements made on unit i, where X =(x,) is the matrix

containing the values of these variables fully observed defined at the beginning of the

chapter. The collection of all possible measurement vectors defines the measurement space

¥, with ¢ = {)?i ;i=1, 2,...,N} . We define 7, as the set of measurement vectors belonging

to a specific terminal node with ¥ =y, Uy, Y...U Y.

Under the model-based assumption, we also write the probability function of Y, which is
subject to nonresponse, given the terminal node defined by %, as f(Y|X, €%,). That is,

the probability function of Y given a set of values of the explanatory variables identifying

that terminal node (classification group). To simplify the notation we write

JX % ex)=f(Y]).

Since all the \variables used in this work are categorical, we write

Jy(Ulty=P(y,=j|X% €y,) as the probability that y, takes the value j in a terminal

node f. Here, j= {l,...,J} represent different categories of the variable y,.

Example
To illustrate this, let y, be the dependent variables taking values 0 or 1, and X = {)?1,)?2}

two independent vector of variables with x; taking values 1 or 2 and x,, taking values 1, 2

or 3. Then, the measurement space X is defined by

% ={(1.1),(1,2),(1.3),(2.1),(2.2).(2.3)}

Suppose that the classification tree divides the group of elements in three terminal nodes,
with, the space 7Y consisting of y =7y, YUy, VY, defined by y,= {J?i > X =1};
X, ={%;x,=2and x, =1} and Y, ={% ;x, =2and (x, =2o0r x, =3)}. As it can be

seen in the following picture, these groups are exclusive and exhaustive groups.

40



1 2 s Terminal node 1

2 : Terminal node 2

. Terminal node 3

Providing the set of classification rules defining the three terminal nodes, these terminal
nodes can be written as y, ={(1,1),(1,2),(1,3)}, Ao ={(2,1)}, and y, = {(2,2),(2,3)}.

Then, the probability that y, takes value j given the terminal node y,, or equivalent ¢,

can be written as fy(jlt)=Pr(y'_=j|t)=Pf, with  j=0,1, ¢=12,3 and

_ P(yi =j’55,‘ E)(t)
P()—CI E/’L’t)

Jt

The inclusion of the classification groups introduces a new factor to the distributions

mentioned so far. That s, given a specific classification, let us write

f(Y|%,,0)=f(Y|t,0) as the probability function of Y given the terminal node

indexed by set of parameters 8 =(0,,0,,...,6,) .

Now, the joint distribution of Y and R given a terminal node ¢ can be written as
f(Y,R|£,0,9) and as in equation (1), this can be decomposed as
F(Y.R[£,0,9)=f(Y|1,0) f(R]|Y,1,0).

As before, if MAR holds and assuming independence between units, then

f(;|n=0,t,0,9)= f(y; |1, =1,¢,0,9) = f(y,|2,0) (Little and Rubin, 1987).

We have been holding the assumption of MAR given the x, variables. However, since we are

using classification trees for forming the imputation classes, that is, the imputation is made

within terminal nodes, we now want to assume MAR within terminal nodes.

We define the distribution of Y given X as f,(j|x) with f,(j|x)=Pr(y,=j|X=x),

x € ; and the distribution of X as fy(x) with f,(x)=Pr(X=x),xey .
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Then, by definition of terminal nodes we have Pr(y,=j|t)=Pr(y, =j|lxey,) where

S Py, =i, X=x) Y f(10)f®)

Xey, XE€X,

Pr(yizjl-XEXz) = ZPI-(sz) B ‘fo(x)

xey, Xeg,

If Y depends upon X only via the terminal node so that f,(j|x)= f,(j|t) for all

Z S U1 fx(x)

xey,, then, Pr(y,=jlxey,) = Zf(x) = fy(jlt). That is,
X

Xex,

Pr(y,=jlxey,)=fy(j|t), which implies assuming MAR within terminal nodes. That is

what we will assume from now on.

3.5 IMPUTATION METHODS

Once the classification tree is constructed, each imputation method is applied at each
terminal node. Three different imputation methods are considered. These methods are
common for categorical data, which is the kind of data used in the analysis. A description of

those methods follows.

Before describing the imputation methods used, let us remember some important concepts
defined in Chapter 1 that are also used in this section.

The independent (explanatory) variables are those used for the classification (variables x,, ).
They are normally fully observed, while the dependent (response) vector of variables is that

vector for which the classification is done (Y ) and it is subject to nonresponse.
Additionally, recipients are those records containing missing values (records to be imputed),
while donors are those records which information is completely observed (records from which

values to be imputed are taken) and used to impute missing values.

Only one vector of variable is subject to nonresponse in the univariate case while many

vectors of variables can be used as explanatory variables. As before, the explanatory
variables x, are considered fully observed in this section. Different approaches for imputing

missing values using donors with missing items in some of the exploratory variables will be

explained later in this work.
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Given the response indicator R, we define » as the set of observed elements, » = {i;rl. = 1}
with 7, = {i;r,. =1|x; e xt} and r=7'U...uUr". The same for the unobserved elements,
nr={i;r, = 0} with nr, ={i;n=0|% € xt} and nr=nr' u..unr’.

Additionally, we define N, as the number of records in terminal node ¢ and m, as the

T
number of observed records in terminal node ¢, with m = Zm, total of observed elements
t=1

T
in the population and N = ZN, total of elements in the population.

t=1

1. Probability Distribution Method

As in any case with missing values, we want to impute the missing value of y, when this is

missing from f(y,|# =0,£,0).

Assuming that MAR holds and assuming independence between the units, we can write

f(Ymis l X’ Yobs’ R) = f(Ymis I X’ Yobs) = f (Ymis I X) » SO that

f(yilr;.=0,fi)=f(yi|}}=1,)?i).

For a tree model it is supposed that f(y, |r=0,£,8)=f(y.|r,=11¢0) where
f(y; | =11¢,0) is the probability distribution of the observed values given the terminal

node ¢, f(y,|r,=0,t,0) is the probability distribution of the missing values given the

terminal node ¢. Then, the probability distribution method works as follows: given a specific

tree, and for each terminal node, the probability distribution of the observed values of the

response variable f(y; |7 =1,¢,0) determines the values to be imputed.

Since variables y, are categorical, we write Pr(y, = j |7 =1,¢,0) :':ff; , Where j represents
the categories of the variable y, with jz{l, 2,...,.]}. We estimate Pft by the observed
proportion of cases with category j for the variable y, in terminal node ¢ in the

population, p,, .

In summary, the probability distribution of Y for the missing data is assumed to be equal to

the probability distribution of Y for the observed data, which is estimated by j}j, .
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Example
To illustrate this method, suppose that a particular terminal node ¢ of the tree used has the

following observed distribution for the variable to be imputed

108, j=1
_ 596 =2
Pi=) 042, j=3
054, j=4

This is, for that specific terminal node, 10.8% of the records of the observed variable have
category 1, 59.6% of the records have category 2, 24.2% of the records have category 3 and
only 5.4% of the records have category 4.

Then, records with missing values for the variable to be imputed that end up in that terminal

node will be imputed with category j =1 with probability 0.108, with category j=2 with
probability 0.596, and so on.

2. Highest Probability Method (or Modal Imputation)

Under the same assumptions made for the probability distribution method, that is, MAR holds
and independence between units, and given a specific tree, this method imputes the value

that is "most likely” in that specific terminal node (i.e. has the highest probability) to all of

the records with missing values. Thus, the value to be imputed will be j*, satisfying

A

Dy 2 p,, , for all categories j of the response variable.

Then, in this case, the imputation takes the value y, = j*

It could be more than one j* value satisfying this condition. In this case, the method selects

one of the categories randomly with equal probabilities.

Example
An illustration of this method can be given by the following example. Suppose that the

results for the variable to be imputed at one specific terminal node ¢ of the tree has the

same distribution as in the last example, that is,

108; j=1
_ |s96; j=2
Pi=) 242, j=3
054; j=4
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Then, all the records with missing values for Y that end up in that specific terminal node
will be imputed as category 2, given that this category has the highest probability in that

node.

3. Nearest Neighbour Method

Given a specific tree and for each terminal node individually, distances between the
recipient and each possible donor are calculated and the “nearest” donor defines the
imputed value for that particular recipient. The nearest donor is determined by the set of
independent variables. That is, the distance between the two records (recipient and possible
donor) is calculated by adding one to the distance function every time different values are

found between them for the independent variables.

Then, given a recipient ' with values x,, , £=1,2,...,K for the vector )?i., a donor i with

value y, for Y and values x,, k=12,..,K for the vector )?l. is that record which
K

satisfies miin[dl..,.] with i'enr’ and ier', and d,; = > I(x,, #x;)
k=1

Then, the missing value y, will be imputed with the observed value y; from the donor i,

5=y

In this case we define A; as the number of times unit i is used as donor, therefore,

4= 1, <d, foralller,).

ienr,

It is important to point out that in this case a record can be used more than once as a donor.
This means that if a specific record has the least distance to two different recipients, this
record could be used as a donor to fill in the missing values for both of the recipients.

Moreover, when a recipient has the same distance to two different donors, one of the donors

is randomly selected with equal probabilities.

Example
An example of this method can be given by the following situation. Suppose that there are

six units in a specific terminal node, one of them have variable y, missing. Each unit

contains five values for the five different independent variables as follows:
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Units Vi
U1
U2
U3
u4
us
ué

%9
o

N N U1 D =

C - 0O 2ol
AUl OO = O
W N W W NN
o N A O

In this case, the distances are calculated between unit 1 (recipient) and the rest of the units

(possible donors).
In the first comparison, it can be seen that the difference between units 1 and 2 is equal to

four. This is because four of the five variables x, used for the comparison have different
values from units 1 to 2, i.e. the recipient and the first possible donor have different values
between variables x,, x,,, X, and x; and equal values for variable x;. The same can be

applied to the rest of the possible donors.
A table containing the distances between the recipient and all the possible donors is

hereafter

Comparison ut-uz U1-U3 U1-U4 U1T-U5 U1-U6
Distance value 4 5 2 3 4

Given the distances shown in the last table, we can say that the donor used for imputing the

recipient will be the unit number 4 (U4) since it produces the smallest distance to the

5

recipient. It means, I(x,, #x. i=2,...,0 is minimum for U4. Then, since the value

1k ik
k=1

for the y, variable in U4 is five, the imputation value will be 5.

3.6 ESTIMATION OF POPULATION QUANTITIES

Inferences can be done for finite population quantities or for superpopulation parameters
depending on the kind of analysis required.

It is more commonly the case for census data, that researchers are interested in making
inferences about the quantities that characterise the population, rather than the
superpopulation underlying that population. Both cases are important, however. Since the
aim of this work is more a descriptive analysis than an analytic analysis, the estimation will

be concentrated on population quantities.
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Given a finite population U = {Ul.;i =1, 2,...,N} of N elements and vector Y of interest,
taking values y,;i=1,2,..., N, the aim is to estimate a population quantity, for example,

the total ¥ = Zyi .

A population quantity can be represented as a function of the population values, for

example, g(¥,,-.,Vy)-

Suppose that the quantity of interest is the number of cases i with category j for Y,

which in our case is a categorical variable taking values ;j from j={l,...,J}. Here, the

number of cases in category j of Y can be writtenas g, = ZI(% =J).
u

Since not all the data is observed, this population quantity can be estimated as follows

g;=>1n=N+>.13=))

mn N
which is the same as g, = ZI(yi =+ Z I(y; = j), where y, is the value of Y for the

i=1 i=m+1

unit { if present and }A’; is the imputed value of Y for the unit i if missing.

The first part of the expression, ZI (¥; =j), can be calculated from the observed data,

r

while the second part of the expression, Z[(f;l. = j), depends on the imputation method

nr

used, since the imputed values fzi are determined by the imputation method used.

3.7 PROPERTIES OF THE ESTIMATORS

Let us examine the properties of the estimator of the total defined in the last section. in this

work, we refer to bias and variance as properties of the estimator.

In order to examine these properties, let us assume the following statements:

f(YIX) represents the probability distribution of the Y given X, where X is fully

observed. Both, ¥ and X, are categorical variables.
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We are assuming model-based approach, where P° (y; =Jj|x,) represents the probability

that y, takes the value j in a specific terminal node ¢ given by the model ¢ .

We are also assuming that Y is missing at random within terminal nodes, that means,
Pr(y, =jlt,r;, =1) =Pr(y, = j|t,r,=0) as defined in Section 3.4, and holding 7, and x;

fixed.

Notation
Let us summarise some notation used in the assessment of expectation and variance

y; imputation or imputed value

Jj= {1,...,]} categories of the Y variable
= {1,...,T} terminal nodes

¥ respondents, ¥ = {1,...,m}

v, respondents in node ¢, 7, ={l,...,mt}
nur nonrespondents, nr = {m + 1,...,N}

nr, nonrespondents in node ¢, nr, = {mt +1,...,Nt}

T
m= th total of observed elements in the population
t=1

T
N = ZNt total of elements in the population

t=1

& represents the model under the assumption mentioned above

f}f’ probability that variable ¥ takes the value j in terminal node ¢ given the model, that
is, P° (3; =Jj|t), or equivalently Pé(yl. = j| x,) . This probability is assumed the same
for all y, within a terminal node ¢.

ij, proportion of cases in category j in node ¢ using the observed data

Eé expectation with respect to the model

E, expectation with respect to the imputation process

As said at the beginning of the section, we refer to bias and variance as properties of the

estimators.
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Since the estimator of interest is the total of units i with category j for a specific

categorical variable, which we define as g; =Z](y,. = j), we want to examine the bias
U

and variance of the different between the real total and its estimator. That is, we will be

looking at the expected value and variance of that difference, Ei! [gj—gj] and

V(grj —g;) - Additionally, we will search for an estimator of the variance obtained for each
method and determine if this is unbiased by looking at the difference between

V.E,(g;-g,)+E.V,(g;—g,) and the actual variance.

in our case, we can have two different sources of random variation, one is the model and the
other is a stochastic random variation coming from some imputation methods. Therefore, we
take the expected value not only with respect to the model, but also with respect to the
imputation process. Later in this chapter, we will examine a model free approach in which
the random variation will come from the response mechanism and the imputation methods.
in this latest case, no assumptions about the response mechanism are made as in the case

presented hereafter.

3.7.1.Probability Distribution Imputation Case

Let us define the estimator of the total of Y when using probability distribution method for

imputing. As explained in Section 3.5, this method sets f/l.zj with probability D

estimated by p .« - Then, the estimator of the total for the Y can be written as follows
8 =210 =N+ 2 AG == 2 A0 = N+ 221G = J)
r nr t o tom

which can be approximated by using the expression
Zzl(yx =j)+2ﬁjt(Nt -mt)
t t
since f’j; is the observed proportion of cases for category j of Y in terminal node ¢ in the

Z](yi =J)

population, that is, f?j, =1 —, with m, equal to the number of observed cases for

m,

Y in terminal node ¢.

That is, J, = j with estimated probability p,, if i€ and y, is missing.
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Bias with respect to the model

To assess the bias of g ; as an estimator of g, let us calculate the expected value of

éj_gj'

Eg[l:éj"gj:] = Eg/liZi](yizj)"'z Z ](j;l.:j)—zzl](yizj):l

t il t i=m+ t o=l

- E, ZZ](y,—J)+ZZ LG = )] Zzl(y, ])}

t =l t i=m+1 t 0=l

= Eg Zil(yi:j)-!_z Z ﬁjt"ZZI(J’i=j):|

= ti=m ] toi=l

BT 0,- DEDYOE m)z“y' D331, = 1)}

| ¢ =l t i=1

ny

_E Z[il(yi P =m)). (y;fj)—z_‘jﬂyi:j)ﬂ

t

S ($ 0= ) w5100 (100

:Zi[gEg(l(y,:j))] (uv m>[ZWB S0 ’”H

1

t t t

£
Z{(m,P,,) ((N,—m,)m,%}—(N,Pf)} - Y[ mBF NP -mPF NP ] =0

Hence, éj is an unbiased estimator of g, under the model assumptions.

Variance with respect to the model

The variance of the difference between the estimator of g, and the parameter can be

expressed as follows

V(gj“gj) = VéEl(éj_gj)'i'Eng(éj—gj) = A+B
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t i=m+1 t

A = VE ZZI(y, J)+ZZ]()’, - ZZI(}’,“J)}

-7, Zzz(y, DY Y E1G, =D~ E 310, = J)}

t i=1 t i=m A+l t =1

AN ﬁerZ'I(y,-:j)}

Lt ti=ny+l =

=7 ZZJ(y, ])+Z(N m)zj(y' /) Zzl(y, ])}

t i=l t

t

= V; Z (1+£Mm_—mjij(yi=j)_zj(yi:j):l}

-7, Z %Zl(y,:j)—z’ll(yfj)ﬂ

240 —Zl(y =j)- Zl(y,—J)— Z I(y; = J)ﬂ

, =l t=m, +1

-7, Z:(—wljzl(y, =))- Z 103, —J)H

t i=m,+1

2
= Zli(ﬂ - 1J thjf (1- ij )+(N, —m, )ij’ (1- ij )} (assuming independence

t

between y;)

2 2
=Z (Nt -2m,§Vt+mt ]mt—i—(Nt—mt)

m,

£ £
Pjt (1_13_/7 ):I

=Z_ UEJP (1-P, )} = Z[ MJN,IJ,-,&(PP;})J
m

t mt t

B - ng,[sz(y,:mz Zl(&,:j)—ZZI(y,-:j)J

t =1 t o i=m+1 t =1

- Eéy{z i 16, =j)J - E, [Z i V,[I(J?,:j)]}

t i=m,+1 t i=m+l

ME[Z(N —m,) b, (1 p,,] 2. (N, ~m) P/)



Thus, V(g,-g,) = PF(A-P5)+(N,—m)P (1-P; )}

(e
th(N m)( t+1JP (1—13.,@)}

3|2 e

L\

Hence, the variance is given by the expression

R N2 _ t2
V(8- =2H—mi"—)1° (-7 )} @

3.7.2.Some variations in the Probability Distribution Imputation Case

This section introduces a different approach to the model based. in order to compare with
the model based approach, the *Finite Population” approach is used in this section. The
finite population approach corresponds to the case where no model is used. That is, given a
finite population, values are treated as fixed and inferences are based on the distribution of
the observed data. This approach is similar to what is known in the literature as
*Randomisation Approach” (Little and Rubin, 1987) or “Frequentist Approach” (Rao, 2001) in
the sense that they do not require model assistance. However, the finite population

approach in this thesis does not make use of sample selection as the other two mentioned.

Additionally to the comparison between the model base and finite population, this approach
represents an important aspect in this thesis as simulations in Chapter 4 and Chapter 6 are
carried out without the use of model, that is, assuming a finite fixed population as in this

case.

A difference between this approach and the model based approach presented in previous
section is basically that no assumptions are made about the response mechanism. Therefore,
bias, variance and variance estimation are assessed with respect to the response mechanism

as well as to the imputation methods.
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3.7.2.1 Probability Distribution Imputation Case under Finite Population Approach

Let us consider the properties of the estimator proposed for the probability distribution
imputation method under the finite population approach. It is important to point out that in
this case there are not probabilities involved as the population is fixed. We use the frequency

distribution of the observed data to estimate missing quantities.

Bias with respect to the response mechanism

{ZZI(y, )+221<y, - ZZI(y, /)}

n, t om+l

- E, ZZI(y, ])+ZZE(I(y, N)- ZZI(y, J)}

m, t m+l

> I(y=))
- E YY1, _])+Z(N ) [ — —Zzl(y, 7

tom

- E, z LIy =)= ZZI(Y,—J)}

t m,

= Eg Z'};N;LZRJ(J’;’ :j)"zzj(yi :]):I
= Z%ZER (Ri)](yi =j)_zz](yi =7)
= Zi%zj(yi :j)_zzj(yi =j) =0

tm;

Therefore, we can see that éj is an unbiased estimator of g, under the finite population

approach.

Variance with respect to the response mechanism

VRE](éj —gj)+ERVI(<éj "‘gj)zA"‘B

A= {ZZM DX D16 =) ZZf(y,—ﬂJ

t om+l
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zzuy, J>+zzE (16, =) zzuyi:»J

Ve
I S Iy, =)
V| 222400 = N+ 2 (N, =m) e D 105, = )
<V, . .
Vi Z?ZI(%:J)_ZZI(%:])J
< W, . .
Ve Z;ZRI'](J’I':])"ZZ[(%‘:]):‘
Vi Zm ZRI(y, J)J
Z [Z([(J’,“])) V(R)+Z Zf(y, DIy, = HCOV, (R, R)}
T {5 - |
Nt2 t |1 : ;
Z | N (]n\;t 3 (1—%) ZN: ZN, I(y, = DLy, = 1)}
N, —-m, | 2 -
Z[ | 0i=7) ( Yo }ZZ I(y; = N = ])}
Nt_mt — A\ _ -
Z - ;(I(y,-—J)) @ —1),;,; 1, = DI, = 1)}
Nt_mt’ I Nt'l)jt(Nt})jt )
Z m, y _N?IJJ'T (N _1) }
N,—m \| N(N,-DP, -~ NP, +N,P,
Z,: m, (N,-1)
N, —m | N’ N —m,
2\~ oy e t>~§tj( o ]NP@ P
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B = EV[ZZI(J’ —J)+sz(y,—J) ZZI(y, J)}

t om t m+l

= ERV] !:ZZ’[()A/, zj)jl = ER i:Z(N; _mt)ﬁjt(l_ﬁjt):l

t m+l

=Z(Nt—m,)m%z["]3 Zf(y,:J)—%ZI(y,:J‘)}

t N t N

1| (m-1) _
T N 1;};& = Dy, =J)

14
i’

_Z(Nr - t)

m,(m, —1)

Z(N m) l:m (m Ijjt_m t jl( 1):,

_ N, —-m, _ WP D (N, —m,)(m, —1)N,
~Z[ - )(m, 1)11,[1 WD JZ[ (N =1) ] . (1-P,)

t t t -

~ Z(Nz _mt)sz(l

t t

[ N,-m )\ N2  (m-DN, ~
B

S (R S

~ Z(Nt_mf](zv,+m,)at(1—13j,) = Z(M]&G—f},)
m, ’ m, A

t t

N, —m, N? N,—m, )(m,~1)N,
AvB= Z[ p )Ntl (1= Z(( (3\;——1)) J"’(l_P"‘)

Then, the variance of the difference (Ql —gj.) is given by the approximation

V(2 -g,)= Z(——A—f——;——} (1-P,) 3)

It can be noticed that the results of the variance obtained in this section (which is an
approximation) is the same as the results of the variance obtained in the case of model-

based approach (equation 2). Therefore, we can say that the variance of the estimator of
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the total under the model-based is approximately equal to the variance of the same

estimator under the finite population approach.

3.7.2.2 Frequency Distribution Method, another approach to Probability Distribution
Imputation Method

Sometimes it is not easy or there is not enough time to implement all the theoretical
material explained before in practice. Therefore, an easier way of implementing the
probability distribution imputation method in practice is proposed hereafter. This new
approach involves certain changes in the way in which values are given to the recipients. We
call the new version “Frequency Distribution Method”.

In contrast to the probability distribution method, the frequency distribution method does
not give probabilities to the recipient to be imputed with a certain category depending on
the probability distribution obtained in a specific terminal node. The frequency distribution
method imputes all the missing records present in a terminal node by using the frequency
distribution of the observed values in that terminal node. That means, the number of records

imputed with a specific category j will depend on the percentage of observed records with

that category present in that specific terminal node. This new approach makes the
application of the procedure easier and faster, facilitating and optimising the use of
computational resources.

It can be noticed that the main difference between the Probability Distribution and the
Frequency Distribution imputation methods is that, in the Frequency Distribution, the
number of records to be imputed in a specific category is fixed as it is based of the
frequencies of the response variable in a specific terminal node, while in the Probability
Distribution case, the expected value of the number of records to be imputed in a specific

category depends on the probability for that category in that specific terminal node, that is,

m.P*.
t

To illustrate this method, suppose that we have the results, used before in this chapter, of a
particular terminal node ¢ of a tree. This terminal node has the following frequency

distribution for the variable to be imputed

108; j=1
|59 j=2
Pi=Y 042, ;=3

.054; j=4
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This is, for that specific terminal node, 10.8% of the records of the observed variable have
category 1; 59.6% of the records have category 2; 24.2% of the records have category 3; and

only 5.4% of the records have category 4.
Then, for the frequency distribution method all the records with missing values for the

variable to be imputed that end up in this specific terminal node will be imputed as follows:

10,8% of the records will be imputed as category j=1; 59,6% will be imputed as category
j =2, and so on. The selection of the records for the class assignment is carried out by

using a simple random selection procedure without replacement for each category to be
imputed.

As this new approach makes the application of the procedure easier and faster, the
simulations presented in the next chapter are carried out using this methodology. Therefore,

its properties are reviewed hereafter.

Bias with respect to model

Let us calculate the expected value of the difference between the estimator of g, and the
parameter

E§1|:£'j”gj] = Eéll:ZiI(yi:j)+z Z I()A’i:j)_zzl](yizj)}

t =l t i=m 4l t =l

S ADNN TSI ﬁj,—zz'jf(yi=j)}

r o=l ¢ i=m, 41 r =1

= E, ZZI(y =)+~ m)f“" D53 10y, = Jﬂ

t i=l t i=l

m,

E, Z(:‘_'jf(y,:m(zv, my =D Zl(y,—J)H

=Zi (Zj(y _]))u; ((N m)Z I(y,= J)j é(g[(yi=f)ﬂ

t

=Zm(gEg(I(yi=J)))+[(Nt~mt)(z—€—(—f-(-n“:’—]))n (ZE I(y, = J)))

i=1 t

13
( tjt )+( r My t};l’lt] (NtPjt‘f)

4 jt 4 jt

> [mBf+ NP —mPf-NP}] -

*M

t t
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Hence, éj is an unbiased estimator of g, under the model assumptions.

Variance with respect to model

We have V(éj_gj) = VzEl(éj“gj)‘*‘EgV](éj“gj) =A+B

[zmz'ay,—mzzuy, D=3, = 1)}

t i=l t i=m+1 t =l

=K’_Z,le(y “])+Z(N )Z](y’ =/ Zt:lzlf(y,w)}
=, ”Z(H@n%m—’ljgl(yi =j)—§f(y,» =j)ﬂ
QZ;—ZI()/ =)= Zf(y, J)H
=V§-Z,:_~f§](y‘_]) Zl(y, J)‘“I;II(J’, J)ﬂ
=Vg_Zt:-(——t—l]Zl(y N~ MZ:HI(J/, J):”

2
= Z{[.]YL — 1] m,P, (1 f )+ (Ni -m, )F}f - ij )i! (assuming independence

t

between y,)
I N>—2mN +m’ ]
-y [ , L T Jm,+(N,—mt) Pi(1-PS)
tL m, ]
I NtZ_Ntmt 13 g N_m
= 4L pc(1-P, = 4 N, 1-
Zn mt Jt ( Jt ) Zt: mt jl (

V,[Ziay,- =N+ > 16, =n-3 D10, =1>J -0

= toi=m 41 =
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Then, the variance of the difference between the estimator of g ; and the parameter is

given by the expression

V(&g - Z(N

t

) N-szté a- Pjté ) (4)

m,

Bias with respect to the response mechanism

E{Zzl(y,- )+Zzl(y, N- Zzl(y, J)}

tom t m+1

S Iy, =))
= E, ZZ[(yl —])—i-Z(N -m)— —ZZI()’, =)

t m

tm,

- E, Z LIy, =j)- ZZI(% 1)}

= E,; Z%ZRil(yi :j)‘“zzj(yz' :])jl

= Z%ZER(R:')](J’:' =J')*ZZ](% =7)
N, m, . ,

=2 2 A= N2 2 (=) =0

tthtN

Thus, we can see that éj is an unbiased estimator of g, under the finite population

approach.

Variance with respect to the response mechanism

Let us calculate V;E,(g; —gj)-;-ERV](grj ~g;)=A+B

A= [sz(y, mZZI(y,—J) Zzl(y, ﬂ}

t m t om+1
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=Z]n\; L\C (1—"]\7)2(1(% =) }

t

t

Zl(y, 7
sz(yl—JHZ(N —m,) —Zzl(y,—~1)

YIS JERE 300 :,-)}

Z%ZRI‘](J’I' :j)_zz](J’i :]):!

[
zﬂsz‘[(yi ZJ)}

t

ieN, i'eN,
i#i'

i

- z.]g_[;(f(y =) Ve (R)+ 2. D 1y, = N (v, = YCOV (R, R, )}

t JieN, i'eN,
i#i

N? m, _m, iy .
-2 Z[N(N_D(l NJZZ[(}’;~J)](J’,~v—])J

ieN, i'eN,
=i’

( )Z(I(y, Y ( - 1)]22 (y,—j)](yl_])}

N,—m,

p ;(I(y, =))- - 1)%% 1y, = NI, —1)}
Nt_mt NtP't NtPjt(NtPjt 1):!

m, L / (N_l)

(N—mrJ_N,(N ~1)P, - NP, +NP}

(N, -1

(N;”mz N ( ]t) ~ Z(N,n;mthtPjt(l_l)jt)

(N —-l) 4 ¢ t

ERV,[ZZM,- )+221(y,—]) Zzﬂy,—ﬂ}

t m+1

60



N -
A+B~ Z[ : mtJNtPjr(l__sz)
m

t t

Then, the variance of (éj —gj) is approximated by the expression

n N, —
VF(gj_gj) = Z( tm mt]NtPjt(l_ij) (5)

t t

Again, given the results of the variance obtained for the estimator of the total under model-
based in the case of frequency distribution (equation 4), we can see that this is

approximately equal to the variance of the same estimator under the finite population

approach (equation 5).

3.7.3. Highest Probability Imputation Case

As explained before, the second imputation method applies the same value to all the records
with Y missing using the value with highest probability for Y in the observed data.

Again, the estimator of the total for Y can be written as follows

g,=2 10 =N+ I3 =)= 2. 2.1 =N+Y. > 1(j, = J)

nn

with jt* equal to the modal category in node ¢.

That is, all the (V, —m,) missing values will be replaced by the modal category of that

specific terminal node ¢, j:.

Thus, &;-g; =Zil(3’i =)+ 2N, =m ) 1G; =J)—sz(yi =J)

t =l t =l

Bias

The expectation of the difference between the estimator of g and the parameter is given
7

by

E[8,-g,] - E {ng=j>+Z(N,—m,)I(J;*=j)—‘;§1(yi=j>}
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'Ei[Z:Z;[(”:”}E{Z(N -m)1(j; —J)} {sz(y, 1)}

t =l

For simplicity, we will consider the case when y, can take only two categories

e The first term of the last equation is

E [Zzl(yfj)} = ZZEé [1(v: = 1] th I

t =1

e The second term can be obtained as follows
E, [Z(N, —m )1, = j)} - X (N-m)E |10 = D]
Where
E[1G =)] =BG =0 =R(by2p,)forI+]
=k (f?,-t Zl—faj,) -k (ﬁj, 20'5)

> Iy, =) m,
-P _~——__Z n >0.5 | = Z}(:‘J(Pﬁ)a(l—P.i)m’_"

Jt Jt
m, a=[m,/2

since »1(y, = j)~ Bin(m, ,P," )

i=1

e The third term is

E, {ZZI(%:]‘)} - XY E[10=0)] = ZNE

t =l

We finally have,
af[gj gJ:] th . +Z N, - m)a;ﬂ( J( ) (1{_“13;)'”:-”_21\/!13];
= > |mP+(N,-m,) Z Kmt](ij’) (1-PF)" J thlf}
t a=[m 12]| \ @

3| em) 5[ 0o (N,—m)zﬂ

t a=[mf /2] a
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t a=[m, /2

-2 v-m) 3 [y 0y o

Hence, in general, éj is not an unbiased estimator of g, under the model assumptions.
However, we can see that when m, is large and ij is much larger than 0.5 (close to 1),

then F ( p a2 0.5) is approximately 1 and the bias become small. That means, the “purer”

the terminal nodes are the smaller the bias.
Therefore, the Highest Probability Distribution seems to be a good low biased method when

the classification is accurate, otherwise the bias could be very large.

Finally, an expression for estimating the bias in the case in which y, takes only two different

categories can be 3| (I, _m,){ 5 H’"]( b,) (15, )'"""} pﬂ

¢ a=[m, /2

Variance

In order to obtain an expression for the variance, we write

V[éj‘gj] = K’E,[éj—-gj}rE&V,[gj—gj] = Va[é’j_gj]

v.[¢-g] - Vg[Zgjf(y,.=j>+Z(N,—m,)f(ji=j>-—22'1<yi=j)}

t =l

= Ié I:Z(Nt—mt)l(jt* :j)—-z Z’ ](yz zj)jl

£ i=m 4+l

= Y (N=m) V[ 1G] = D]+ 2N, =m )V, [1(5, = )]

e The first expression can be obtained as follows

VG = 0] BGuz p)[1-B (B, 2 b))

e The second expression is

V1, = 7] = BF(A-P})
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Then, we finally have,

V[é.j _gj:{ = Z(Nt _mt)zpé(ﬁjt Zﬁlt)l:l”Bg(ﬁjt Zﬁlt)]+2[(Nt _mt)Pjté(l_Pjté):l

=Z(Nt —mt)[(Nt __mt)Pé(ﬁjt Zﬁlt)[l_Pg(ﬁjt Zﬁlt)]'}'Pjt&(l—Pjré):l

7y

n=[m, /

3.7.4. Nearest Neighbour Imputation Case

In the case of the nearest neighbour imputation method where the missing value is imputed

using the closest donor available, the estimator of the total has the form

éj :ZZ](J’I' :.j)+ZZAi](yi =J)

where A; is the number of times ¥;, Ler, is used for imputing a missing record, that is

A=Y I(d, <d,) forall Ier,, with d,, = > I(x,, #x,)
k

ienr,

This, &, —g,= 3 310 = )+ X 3 AL, = D= 31, = )

t =l t =1 t =l

E,g [éj“”gj] = Eg Zi](yi :j)+ZiAi](yi :j)"zzll(yi =J):l

= ti=l t =l

= E{; Zi](yi =j):'+E§ "ZiAi](yi =JI)}“E§ ,:Zzll(yi :])}

Lt =l t =l ¢oi=l
e the first term is

E@ [sz(yi :J)J = thpjf

=
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e the second term is

E, [Zi/ﬂ(y,- - j)J DO WIAVETIED ) WEIAED Yoy

t =l t =l t =l
since 4, is a fixed quantity given its definition and the assumption of the model, and

each donor is only used for imputing cases within the same terminal node ¢.

e the third term is

Ef; l:zz[(yl :-]):l = ZNtPjti

t =l

Then, we finally have

Eé’; I:éj _gj:l = thpjté +Z(Nt ‘mt)Pjtg _ZNtPjté
m, t m,

= Z(Nt —mt)Pjtg _(Nt _mt)})jté =0
t

Therefore, éj is an unbiased estimator of g;-

Variance

In order to obtain an expression for the variance we have

v[g-g] =VE[&-g]+EV,[8-5] = V.[& 5]

Ve [éj_gj] = Vg {:Zi](yi =j)+ZZAiI(yi :j)_zzll(yz‘ :])}

t =l t =l t =1

= %[Zi/ﬂ(yfj)—z Z f(y,:j)}

¢t =l ti=my+]

= Zi(Ai)zVé [[(y,. =j)]+Z(Nt -m,)V, [[(y,. =j)] since 4, is a fixed

t =1 t

guantity

-3 (4 YRS =B+ TN, =m)Bf (=)

t i=1
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= Z[Nt o +.§_;(Ai)2 jta (I—ij)

> (4 -4y 2
Let us define S,”=+1——— as the variability of 4, where A== =t
mt mt mt

given that ZAi =(N,—-m,), as explained before. Then, Ve [gj——gj:[ can be written as

i=1

2
N, —m
Z Nt_mt+mt SAt2+( t tj jtg(l_Pjtg)'
t mt
It can be noticed that the size of the variance of éj — g, depends on how big the variability

of A,. is, that is, on how donors are used. Therefore, V{; [gl —gj] is smallest when SA,2 is

smallest.

3.7.5. Comparison of the Variance expressions

Given that we have obtained an expression for the variance in most of the cases (i.e. for the
different imputation methods), it could be useful to compare these expressions in order to
find out which of the methods produces larger values. In order to do this, a comparison of

the expressions for the variances presented in previous sections in made hereafter.

3.7.5.1. Comparison between Probability Distribution and Frequency Distribution

imputation methods

In this case, we have that the variance for the Probability Distribution method has the form

Vf(gAJ _gj):Z!:[“]Yl—’;:—’n_tijté(l_Pjté)}

while the variance for the Frequency Distribution case has the form

N, -m

> _ : 4 g

Vi(g,—g)) = Z( t ']szﬂ (1-P;)
t mt

Therefore, we can see that Probability Distribution will always produce larger variances that

N?-m} >(N,—mt)N[‘

t

Frequency Distribution as

m, m,

66



3.7.5.2. Comparison between Probability Distribution and Nearest Neighbour

imputation methods

In this case, we have that the expression for the variance for the Probability Distribution

; 5 N -m’ ), 3
method is Vg(gj—gj):z — P (1-P)
t

t
On the other hand, the variance for the Nearest Neighbour imputation can be expressed in

the following way (as in Section 3.7.4)

2
n N —m
Vi[gj_gj] =Z N,—=m, +m, SAt2+( tm t} jti(]'_])jté)
t

t

Then, if these two formulas are compared, we can see the Nearest Neighbour variance

—m
produces larger values than the Probability Distribution only if Sfu > L L for every

t
terminal node ¢. If this condition is presented in just some of the terminal nodes but not all

of them, the results do not seem to be that obvious. The same applies to the case in which

N,—m
—L—— and in the case in which §7, <
m, m,

Nt —m,

2
SAt_

3.7.5.3. Comparison between Frequency Distribution and Nearest Neighbour

imputation methods

In this case, we have that the expression for the variance in the case of Frequency

. . N . ~ N —m
Distribution method is V, (g, —g,) = Z(;thij (1”‘ij)-

t t

On the other hand we have the following expression for the Nearest Neighbour imputation
N 2
N —m
Vé[gj—gj] B Z N, =m, +m, SAf*‘(#] jté(l_‘Pjté)
t t

Then, if these two expressions are compared, we can see the Nearest Neighbour variance will

always produce larger values than the Frequency Distribution variance, unless the variability

of Al. s Sj, , is equal to zero, in which case the two variarices are equal.
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3.8 VARIANCE ESTIMATION

3.8.1 Probability Distribution Imputation Case

Variance estimation with respect to the model

A N2 _ 2 ) )
Consider V(g,- _gj) = Z[[_mefjpﬂ(l—pﬂ)J as an estimator of the variance of
t

t

(gj —gj). In this case ﬁjt is obtained using only the observed data.

In order to assess the bias of this variance estimator, we want to examine

EE,(V(8;-g)=E,E, {Z[(E — )iaﬁ (1-13,,)ﬂ

t t

Then, EJJ{ZKM n;m, J,aj,(l-—ﬁj,)ﬂ - E, {Z{(N,n;mt .,]fajt(l——ﬁﬁ)ﬂ
i 2 2 2 2
N —-m |. N =m" |/, \2
= E& Z[[ mm ]pjt_{ mm J(p_/t) }}

e )

t_ mt

The first term of the last equation is

10 =) :
.\ E ; P,
B, (by) = F’[Z m, ):m-—’-ﬁ—=P.§

i=1

The second term of the last equation can be solved as follows

E, [(ﬁﬁ)z} - E, (Z-{MT =mi (Zl(y, J)j2

— Z(!(y; ) +221(y, NI, =))

mt tem, i em
l#l
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S DA MUY

iem iem,
i

m 2 1 2
thjté +2[2t](Pjt§) } = ——E—[thﬁi +mt(mt'_1)(Pjt£> :I

- Llpt o (pe]

t

el

Then, we finally have

. i NZ—m? X N2 _m? X
EE((E-g) -/~ Eg(pﬁ)—(—%]@[(pﬁ)zﬂ
I Ntz_mtz 4 ]\'/vtz_n’lt2 1 g 2
2 T ) “[TJZZ[PJ" +m=D(R/) ﬂ
I N -m’ 1
=27 [%f——[l’jf—(m,—n(zﬂ)m

t

- er—mtz (mt-‘l)P.é(l—P.g)
- m m s’ ’

\ N'-m’). . .
Therefore, an unbiased estimator of ¥, (g, —g;) is Z[ —;n-tnl?—thﬂ (l—pjt):!
¢ \ t

Variance estimation with respect to the response mechanism

Nt_—mt
m

Let us consider ¥, ~ Z( ](Ni +m,) p,(1-p,) as an approximate estimator of the
t

t
V. Then, in order to assess the bias of this variance estimator we want to examine the

expected value given the response mechanism and the imputation process of

EE,(V,-V,).

69



Using previous results, we have that £, [ﬁﬂ @ —f)ﬁ)] ~ P,(1-P,). That makes

E{Z[Mn;—m,}(zvt+mt)‘aj,(1—faﬁ)} “ Z(Nt];mtJ(Ntert)%(l__m

t t t t

Then, we have proof that £, [I}F]—VF ~ (0, that is, I}F is an approximately unbiased

estimator of V..

It can be noticed that the variances, and therefore the estimator for the variances, are
approximately equal in both approaches, model-based and finite population approach.
Therefore, we can say that the estimator obtained under the model-based approach is

unbiased under the finite population approach and vice-versa.

3.8.2 Frequency Distribution Imputation Case

Estimation of the variance with respect to model

t t

5 A N, - A A
Consider V(g;—g;) = ZK tm m’thpjt(l—pﬁ)} as an estimator of the variance of

(gj -g; ) In this case p,, is obtained using only the observed data.

In order to assess the bias of this variance estimator, we want to examine

EE(V(&-2)=E, {ZH L )N,ﬁﬁ (I"ﬁf’)ﬂ

t t

BEEYEE

1l
S

e The first term of the last equation is

m,_](iz__‘];)_ P.i
Ei(f’f')zEé(Z m J=mt~——”—-=1>?

i=] t
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s The second term of the last equation can be solved as follows

E, (ﬁj,)2 =E, HZMJZJ - _.1.2_Ei [Zl(y,. =j)j2

"7 | 2U0i=0) +221<y,-m(y =)
1
e DNRD N/
t lem,iem,
1] 1
- ;;27 thth" +2[th)(Pjt£ )Zjl = ;n_l:mf})jt +m,(m, _1)(f)jt§ )zj]
t L

Then, we finally have

EWV(E-g)) = ZHNf "”’jN,Eg (ﬁﬁ)—[N"”’f)NtEé (13,,)2}
- [ Nt_mt & Nt~mt Er_ . 2
Z( - ]N,Pﬁ ( . Jm[ijJr(m, 1)(13-;&)]}

A N, - A A
Therefore, an unbiased estimator of ¥, (g; —g;) is given by Z[[—f—:’?)Npﬂ @ —pjt)}
¢ t
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Variance estimation with respect to the response mechanism

N—m,

- ]N,Pj, (I-P,), let us consider

Given that V. = Z[
t

t

n N, —m n n n
Ve~ Z[ tm ’jN,pj,(l —PD ;) as an estimator of the variance of (g;—g;).

t t

Using previous results we have E, [ﬁjt a —p?j,)] = P,(1- P,), therefore,

A N, — . N N, - A n
Ey I:VF] = ERI:Z( tm mtJNrpjz(l”pjt):! ~ Z( tm mt]thjt(l“‘pjt) =V

t t ¢ t

Then, we have proof that V. is an approximate unbiased estimator of V.

As in the case of probability distribution method, it can be noticed that the variances, and
therefore the estimator for the variances, are approximately equal in both approaches,
model-based and finite population. Therefore, we can say that the estimator obtained under

the model-based approach is unbiased under the finite population approach and vice-versa.

3.8.3 Highest Probability Imputation Case

In the estimation of the variance of the difference between the estimator and the parameter

we could substitute ij by the observed proportion of cases with category j in the data,

f)ﬂ , in order to obtain a value for that estimation, however, since this method is not an

unbiased procedure and the bias appear to be not ignorable, an estimation of the variance

seems not to be of major interest.

3.8.4 Nearest Neighbour Imputation Case

Consider I}(éj ~g;) = Z[Nt —m, +Z(Ai)2 p.(1-p;) as an estimator of the variance
t i=1
of (gl —-gj).
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In order to assess the bias of this va

EOG =5 Z[N-m 34y

m,

N,—-m, +Z(A)

riance estimator, we want to examine

ﬁjt(l—ﬁjf):l

Then, E, [Z(

= Eﬁ !:Z(Nf -m, +i(141)2 Ajt(l_ﬁjt)}

Ajt(l——ﬁjt)

DI LAY FATA AV A
= Z Nt—mt+i(A ? pjf __},[}Djf —-(m,—l)(ij )ZH using previous results
t i=1 L m,
< -1
=Z,: Nt—m,+;(,4,.) =D p (1 P'Z)

t

Then, an unbiased estimator of V(gj —-g;) is Z[N -m, +Z(A) J

_1) pﬂ(l_ﬁﬂ)

Several papers have been published in the last years about Nearest Neighbour imputation.

Many of these publications include the assessment of bias, variance and variance estimation
for this case. Rao 2001; Steel and Fay 1995; Fay 1999; Chen and Shao 1999, 2000 and 2001

and Rancourt 1999 are some of the most recent works published in the area of variance

estimation.

Rancourt 1999, for example, presents in his paper an estimator for the variance using model
based approach. He starts by defining GEIS (Generalised Edit and Imputation System), which

is an imputation system for economics surveys

developed by Statistics Canada. This system

includes the use of nearest neighbour as one of the imputation procedures.

After explaining different surveys in which this

for the nearest neighbour imputation method. F

system is used, he presents some properties

irst, the imputation procedure is represented

by a model. Then bias and variance are estimated.

In this paper, Rancourt denotes the imputation value as follows

i

=Yy = BZI(k) + ‘bi(k)

where y,, is the donor [ for unit k& and z,,, is the auxiliary information defining the

nearest donor, B is the parameter of the mode
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The paper follows the decomposition in Sarndal (1992) where
()A’.S -Y,)= ()i —-Y,)+ ()A’,X —)i) with ¥, as the population total, )A’X the estimation of the
total given the sample and )A’.S the estimator of the total given the sample in presence of

nonresponse. Therefore, he represents the total variance as V,,, =V, + Vo +V, 0y -

In this paper, Rancourt presents the imputation variance component obtained in Forget

(1999) using the same model presented before. This component has the form

[Zt z, +sz]c +B ZA

IMP

2

where —- is the sampling weight, f, represents the number of times each donor is used, z,
n

represents auxiliary information, BZZAk is the conditional bias of the estimator of the

o

total.

After exposing that the second component of the variance is small and of lower magnitude
than the left component, he ends up with an estimator for the variance for the imputation

part as follows

7 Nz 2 2
Viwp ——-7 Zt, z, +sz o

We can see that the estimator of the variance obtained in this thesis in the case of nearest

neighbour imputation Z(N —m, +Z(A)j

estimator of the variance presented in this paper by Rancourt.

D pﬁ(l—pﬂ) corresponds to the

t

2

The term —- does not apply to our formula since we do not use sampling, Zt,zz, is the

n r

number of times the same donors are used multiply by a variable which in our case would be
m,

variable that indicates if the records belongs to a specific terminal node ZZ(A ) in our

t =1

case), sz would be the number of missing cases (Z(Nl, —mt)in our case) and G °, in
] t

our case, is the variance of a binomial given that we are estimating the total of cases which

belong to a specific category.
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CHAPTER 4

UNIVARIATE CASE
SIMULATION

4.1. INTRODUCTION

The aim of this chapter is to assess the performance of using classification trees to form
imputation classes, using a specific methodology called CART, which includes the use of a
software package especially created for this technique. In order to assess this performance,
several simulations were carried out using a database that contains synthetic missing values.
In these simulations different classification tree sizes as well as different imputation
methods were used in order to compare their effect on results.

Moreover, biases and variances (and expected variance estimators for some cases) were

calculated in order to evaluate the properties of the estimators used as explained in Section

3.7 in Chapter 3.

4.2. SIMULATION PROCEDURE

A brief description of all the steps taken in these simulations will be given in this section.
This includes the use of the trees, imputation and more general material as, for example,
the generation of the synthetic database. A more extended description of each step will be

given in the following sections.

4.2.1. Generation of the synthetic database. A synthetic database was created as shown in

Figure 4.3.2.1. This contains artificial holes for which the real values are known. The
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holes were created by an ignorable missing mechanism. In this case, the data is
considered at least as missing at random.

The generation of the database includes several steps:

a) The first step was to get the database ready for the simulation. As will be
explained in the data description, the information used corresponded to the UK
1991 Census. This database was given in an ASCIl format and it had to be
converted into a readable format such as FOXPRO or SAS for carrying out the
simulation. A process in SAS was followed to match the structure of the database
(dictionary) with the data itself. The resulting database is called an "original

database”.

b) Second, once the original database was in a readable format, personal information
was separated from household information in order to treat the two sets of

variables at different times.

¢) The third stage was to find the pattern of missing information in order to create
the artificial holes for the comparison. This stage included the elaboration of a
SAS routine for finding all the possible combinations of missing information in the
database and how much of the total they represented. The output of the routine
was a complete list of all possible combinations of missing variables with their

corresponding percentage with respect to the total, as shown in Appendix 1.

d) Fourth, all the records with missing information were deleted from the database
in order to create a “complete database”, which is a database with only fully
observed records. Only 10.82% of the records were deleted due to the percentage
of missing information present in the original database as explained in Section

4.3.2.

e) Fifth, after the complete database had been constructed, the pattern of missing
information found in c¢) was used for creating artificial holes. Then, a “synthetic
database” was generated by replicating the pattern of missing information
randomly on the complete database. This synthetic database therefore contains
holes for which the real values are known in order to measure the accuracy of the

imputation results.

4.2.2, Growing trees. Different trees were grown for each target variable using the

complete database.
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a) For each target variable, three different tree-sizes were used in the analysis in
order to compare the effect of the size on the imputation results. The selection

of the sizes is explained in Section 4.5.2.

b) After all the trees had been grown, the records with missing values in the target
variables were dropped into each tree to find out which terminal node they will
end up in for the imputation. This was made for each different tree-sizes. The

complete process is explained in Section 4.5.3.

4.2.3. Imputing. After the different trees were grown, imputation was carried out

independently for each of the trees.

a) The three different imputation methods described in Section 3.4 were combined
with the three different tree sizes to obtain 9 different imputation results for
each target variable. This was made using trees grown with the complete

database.

b) For each of the trees, the imputations were produced independently into each
terminal node. Then, the results were summarised in order to be compared with

the results from other trees.

4.2.4. Evaluation. Different graphs, tests, biases and variances were used for the evaluation

of the imputation.

a) Cross-tabulations between the imputed values and the real values were made for

all of the possible combinations of tree sizes and imputation methods.

b) Different graphs were made for all of the above tables in order to compare
preservation of joint and marginal distributions and preservation of individual

values.

c) Tests were also run for each of the cross-tabulations in order to confirm the

preservation of joint and marginal distributions and of individual values.
d) Biases and variances were estimated for imputed variables in order to assess the

properties of the estimators used. Additionally, estimation for the variances in the

case of Frequency Distribution and Nearest Neighbour were also obtained.
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4. 3. DATA

4.3.1. Data description

The database used for the analysis consists of a group of variables measured for one single
County of England in the 1991 UK Census. The variables used refer to persons in households.

Neither the household variables nor identification variables were included in the analysis.

Because the database was not edited completely for all of the variables and all of the
persons, the information used in the analysis is only composed of the variables for which all
the records were 100% edited in the database. That is, for all of the persons in the database,
all the variables were 100% corrected by the editing process. This is important at the
imputation stage as it implies that one can be practically sure that the data do not contain

inconsistencies.

Different stages were followed in order to get the database ready for the analysis.

As mentioned before, the first stage was to transform the ASCIl database into a readable
format as DBASE or SAS file. This included matching the structure of the database (the
dictionary) with the database itself, identifying all the variables for all of the records.

The size of the database used (original database) is 222872 records with 23 variables.
Because not all of the variables were useful for the analysis, all the identification variables

were dropped as well as the variables for which the information was not relevant.

Table 4.3.1.1 shows the final list of variables used for the analysis and their descriptions.

Table 4.3.1.1
List of variables included in the analysis

Variable Definition

AGE Age of the person, calculated from date of birth
ALWPRIM Primary activity last week

coB Country of birth

ETHNIC Ethnic origin

LTILL Long term illness

MARCON Marital status

SEX Sex

WELSH Welsh language abilities

As can be seen, all of the variables are categorical, except for the variable AGE, which is

numerical. This variable was converted to a categorical one by grouping it for the analysis.
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Because some of the variables originally had too many categories for growing trees, they
were collapsed. Then, the criterion was to collapse all the variables with more than ten
categories. A complete list of variables with their original categories as well as new ones is
Tables 4.3.1.2.

Tables 4.3.1.2

Single Variable Definitions

Table A
AGE AGE
Group 1 Group 2
Group | New Code Group |New Code Group | New Code Group New Code
0-4 1 30-34 8 65-69 15 0-4 7
5-9 2 35-39 9 70-74 16 5-15 6
10-15 3 40-44 10 75-79 17 16-24 5
16-18 4 45-49 11 80-84 18 25-34 4
19-21 5 50-54 12 85 + 19 35-54 3
22-24 6 55-59 13 55-64 2
25-29 7 60-64 14 65 + 1
Table B
ETHNIC
Group Codes New Code
White 00 1
Any black including mixed 01702/ 70-80 2
Asian 03-05 3
China / Other including other mixed | 06 / 81-97 4
Table C
COUNTRY OF BIRTH
Countries Codes New Code
UK 601-609 1
Europe / USA 610-612 / 639-641 / 645-671 / 679 2
Indian Sub-continent 632-635 3
Africa / Caribbean 613-631 / 642-644 / 672-678 / 680 4
Asia / Central and South America / Other | 636-638 / 681-702 5
Table D
PRIMARY ACTIVITY LAST WEEK
Primary Activity Codes New Codes
Employee working full time / 01/
Employee working part time / 02/
Self employed, employing others / 037/ 1
Self employed, not employing others / 04/
Government employment or training scheme 05
Waiting to take/start a job / 06/ 2
Unemployed / looking for a work / 07
At school or in full time education / 08/
Unable to work because of long term disability / 09/
Retired from paid work / 10/ 3
Looking after home/family / 1/
Other economically inactive 12
No code required S 4
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Table E Table G

SEX LONG TERM ILLNESS
Male 1 Has a health problem 1
Female 2 Does not have a health problem
Table F Table H
WELSH MARITAL STATUS
Does not know Welsh 0 Single 1
Can speak Welsh 1 Married {(first marriage) 2
Can read Welsh 2 Remarried 3
Divorced 4
Widowed 5

It is important to point out that new versions of CART are available, handling much more
categories for the variables used. However, using too many variables with too many
categories can make the process of growing a tree very slow and make the analysis more
difficult.

4.3.2. Pattern of missing information

The second stage in the process involved looking at the pattern of missing information
present in the data. This stage included the elaboration of a SAS routine for finding all the
possible combinations of missing information in the database and how much of the total they
represented. The output of this routine was a complete list of all possible combinations of
missing variables with their correspondent percentages with respect to the total, as shown in

Appendix 1.

As can be seen in Appendix 1 the pattern of missing information was not a straightforward
one. This included a large number of combinations (168 combinations in total), with up to 6
different variables missing at the same time. This fact made the possibility of creating a tree
for every single combination of missing variables very difficult.

Table 4.3.2.1 shows an example of the missing combinations used in the simulations carried

out in this thesis
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Table 4.3.2.1
Missing combinations used for the simulations

(original database)

COB |[ETHNIC| LTILL | Total [Percentage.
16.24
13.37
7.26
0.74
1.04
2.16
2.16

It can be seen from this table that with only three variables involved we have seven different

combinations of missing information.

The total number of records with missing information is 24116, which represents 10.82 % of

the original database (222872 records).

To generate the synthetic database, firstly, all records with at least one missing value were
deleted from the original database, obtaining a new “complete database” which contains
198756 records ( 222872 - 24116 ). Secondly, the pattern of missing information found at the
beginning was randomly reproduced on the complete database. This procedure was carried
out using a SAS routine for generating the artificial holes using a simple random sample
without replacement. That is, for each combination of variable with missing information, a
simple random sample without replacement was selected from the complete database in
order to delete their values. The size of each random sample depended on the size of the
combination missing, as presented in the last table. In this way, the synthetic database was
created, containing 198756 records of which 21520 have missing values (10.827% out of
198756).

Table 4.3.2.2 shows the combinations and their totals used in this analysis after creating the

synthetic database

Table 4.3.2.2
Missing combinations used for the simulations

(synthetic database)

COB |ETHNIC| LTILL | Total |Percentage.
3492 16.24
1561 13.37
2875 7.26
159 0.74
465 1.04
225 2.16
464 2.16
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The sizes of all these databases are shown in Table 4.3.2.3

Table 4.3.2.3

Databases sizes and Percentages of missing information

Database Size Complete Information Missing Information
Original Database 222872 198756 10.820%
Complete Database 198756 198756 None
Synthetic Database 198756 177236 10.827%

The whole procedure of the generation of the database used for the analysis is shown in
Figure 4.3.2.1.
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Figure 4.3.2.1: SYNTHETIC DATABASE GENERATION
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4.3.3. Databases used in the analysis

Every time a combination of variables with missing information is chosen to define a target
variable, the remaining information changes as well since different variables are left as
covariates (auxiliary variables). Therefore, depending on the combination used as a target,
the databases used for the analysis (growing trees, etc.) are different.

The sizes of the three databases depending on the target combination studied for the

univariate case are shown in the next table

Table 4.3.3.1
Databases sizes for the Univariate Case
Variable Database Size Missing Information
Any 198756 (observed records) None
Ethnic 198756 - 3916 (Records with Ethnic missing) independent variables
Cob 198756 - 1751 (Records with Cob missing) independent variables
Leill 198756 - 3224 (Records with Ltill missing) Independent variables

It is important to point out that, for simplicity, only one database is used for growing the
tree independently of the missing combination study. The database used is the one
containing only fully observed records for all the variables and it is the “complete database”

shown in Table 4.3.2.3.

It is also important to point out that the analysis could be done including missing information
for the covariates, however, for simplicity, only complete information is included in the
generation of the tree. A previous study by Mesa, Tsai and Chambers (2000) shows that the
inclusion of missing information for growing the tree seems to have no impact on the results
when using the same imputation procedures used in this thesis. This study presents the case
in which missing information for the auxiliary variables is used in the growing-tree process. In
this case, trees were created using and not using missing information for the auxitiary
variables in order to compare the impact of the use of missing covariates on the imputation
results. The results showed that the use of variables with missing information when creating
the classification tree by using CART does not have a major impact on the imputation results.

That is, the results obtained for all of the imputation methods are very similar in both cases.
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4.4. CLASSIFICATION

The first step of the process is the classification of the units (persons) into the terminal
nodes of the tree. This classification was made using the CART methodology described in

Chapter 2. The specific features of this methodology used for this simulation are now

described.

4.4.1. Splitting criterion

Since the variables used are categorical, the criterion based on the Gini index used to

classify categorical variables was selected to split the elements in this study.

The impurity function defined by Gini has the form & (t) =1-S8Q in which SQ is the sum

of squared probabilities p(j]t). That is, o (t)=l—~2p2 (j]t), where & (t) is a node
J

impurity function defined as q)(p(l | t), ....... ,p(J | t)) (relative proportion of class j cases in
node ¢), and p(j | t) is defined by p(j [ t)= p(j,t)/p(t), with p(t) is the probability that
any case falls into node ¢ where p(t) = ij(j,t)

In this analysis the misclassification cost remained constant. In this way, it was assumed that

all the costs for misclassifying class j, as a class j,are equal to 1 forall j, # j,.

4.4.2. Class assignment rule

Given that one of the imputation methods used involves the use of the class assignment, it is

important to define how this assignation was made.

Each terminal node fe7 has an assigned class je{l, ..... ,J}, denoted by j(¢). This
depends on how the prior probabilities are set. In this analysis, the prior probabilities were

assumed to be equal, then the class assignment rule j(¢) is defined by the plurality rule.
That is, node ¢ is classified as the class for which Mj. () (number of elements with category

J innode ¢ in the learning sample) is largest. (See Section 2.3.4. for details).
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4.5. TREE PROCESS

4.5.1. Growing the tree

Once the variable to be imputed is selected, a tree for that variable is grown. The process of
growing a tree is very straightforward. The only necessary requirement for growing a tree
using the CART software is the specification of the set of explanatory variables and
identification of the response variable. Then, all the software instructions were followed in
order to obtain the tree.

When missing values are present in the target variable (variable for which the tree is grown),
all the cases are automatically deleted by the software. A case cannot be classified if it does
not have its respective class. However, when missing values are present in the auxiliary
variables, the cases are still usable for the process of growing the tree. This is possible by
the use of surrogates defined by the explanatory variables with non-missing values as
explained in Section 2.3.5 in Chapter 2. However, due time constraints, and since including
missing information in the auxiliary variable does not seem to have any major impact on the
results, databases using missing information in the auxiliary variables are not used in this
simulation. An example of using surrogates for classifying missing information in the auxiliary

variables is presented by Mesa, Tsai and Chambers (2000).

4.5.2. Selection of the tree size

On occasion, trees can have a very large number of terminal nodes. When the size of the
tree is very large, the imputation process becomes a very long and time consuming one.
Hence, a decision about the size of the tree used for the analysis is an important aspect to
consider in this chapter in order to perform all the simulations required for the analysis.
However, the use of different sizes of trees is also desirable in order to compare the
effectiveness of the imputation procedures when different numbers of terminal nodes
(imputation classes) are used. The process followed for making those decisions is given

hereafter.

When a tree is very large, it is usually necessary to find ways to “prune” it without
compromising its effectiveness. One of the most common ways to prune a classification tree
is by the use of its misclassification rate. As explained in Section 2.3.6 in Chapter 2, this rate
is a measure of the percentage of cases misclassified by the class assignment rule used in any
terminal node. As noted before, each terminal node is given a class, in this case, depending

on the modal category for that node.
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Figure 4.5.2.1 plots the change in the misclassification rate calculated by the cross-
validation method of a CART tree mentioned in Section 2.3.6 for the variable Primary

Activity Last Week by the number of terminal nodes.

Misclassification Rate
ALWPRIM

Percentage Misclassified

No. of Terminal Nodes —&— Cross-Validation

Figure 4.5.2.1 Misclassification Rate Plot

It can be seen that the misclassification rate clearly decreases until the tree has 7 terminal
nodes and then it remains relatively constant. Similar patterns were observed in the

misclassification rate figures of all other trees investigated in this analysis.

The three different sizes chosen were based on a compromise between the misclassification
rate and the number of terminal nodes. This implied the use of misclassification rates, which
were as small as possible with a manageable number of terminal nodes. Then, a “small” tree
was defined as having around 7 terminal nodes, a “medium” tree with around 15 terminal
nodes and a "large” tree with around 30 terminal nodes.

Since the misclassification rate is very stable after certain point as shown in Figure 4.5.2.1,
large trees (larger that 30 terminal nodes) were not used due to time consuming in the

imputation process.

CART software allows for an “optimal” tree to be built. As explained in Chapter 2, this is
done by initially growing the largest possible tree and then pruning it back until a specified
criterion is reached. This criterion is based on a compromise between the cost complexity of
the tree (based on the number of terminal nodes) and its misclassification rate as shown in
Section 2.3.7. Occasionally, the optimal tree could be the largest possible tree.

Whenever possible, the performance of the optimal tree was compared against the rest of
those selected in order to evaluate differences between the optimal tree performance and

other trees.
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The next table present the results of the expected values of the point estimates and their
variances for the four categories of the variable Ethnic when using different tree sizes. More

information such as bias and standard deviations for this case can be seen in the Appendix 2.

Table 4.5.2.1
Expected values of the point estimates for the total and their variances depending

on the number of terminal nodes used for the variable Ethnic

Categories
1 2 3 4
Nodes  E(Y) S(¥Y) EX) ST) EX) S¥) ET) ST)
2 142189 465 39724 403 7047 97 9796 151
3 142189 463 39725 365 7047 96 9796 141
4 142189 465 39724 366 7047 80 9796 133
10 142189 464 39724 366 7046 80 9797 136
13 142189 464 39724 366 7046 80 9797 136

In general, it can be seen from last table that neither the expected values of the point
estimates nor their variances change very much when using different number of terminal
nodes, however, we will see later in this chapter that using trees for forming the imputation
classes does improve the imputations results. In this sense, we could say that there are not
real differences between choosing a big or a small tree but only when taking into account

computational and time resources.

4.5.3. Classifying the records for imputation

After the tree is grown using the observed cases for the auxiliary variable, the records with
missing information in the response variable were “dropped down” the tree. This involved
the identification of the terminal nodes (imputation classes) in which those records end up in
the tree. The discovery of these terminal nodes also defines the pool of records from which
imputed values will be obtained (pool of donors).

The process of dropping the records with missing information down the tree uses the set of
rules (classification structure) that generate the tree. These rules categorise the records
with missing information in the response variable depending on the values of the auxiliary
variables. This requires each case to have sufficient information, in terms of the explanatory
variables to allow for the classification to be done.

Then, the final result will be two different groups of records in each terminal node of the

tree. One group is the pool of donors and the other group is the pool of recipients.

Figure 4.5.3.1 shows an example of a classification tree generated by CART
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Figure 4.5.3.1

Example of a Classification Tree Generated by CART
(Variable: Primary Activity Last Week)
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The tree shown in the last figure is a classification tree for the variable Primary Activity Last
Week (ALWPRIM). There is a set of conditions associated with each terminal node, which
define that node, and these are given by the classifiers as explained in Section 2.3.1 in
Chapter 2. For example, to reach terminal node 1, the record has to have values 3,4,5,6,0r 7
in the variable AGE to be located in node 2 (instead of node 7) and then value 7 for the same
variable AGE to be located in terminal node 1 (instead of node 3). After the whole tree is
done, records with ALWPRIM missing but observed values for the rest of the variables can be
dropped down the tree in order to be classified. The values of ALWPRIM missing can then be
imputed from the range of values of AWLPRIM of those “observed” cases present in the
specific terminal node where the records with missing values end up, using any of the

imputation methods employed in the analysis.

After classifying all the records with missing information by the tree structure, the
imputation was carried out independently at each terminal node. The imputation methods

used for the analysis are explained in the next section.

4.6. IMPUTATION METHODS

Three different imputation methods were used in this research as described in Chapter 3. A

brief reminder of those methods.

Frequency Distribution Method

As described in Section 3.4 in Chapter 3, the probability distribution method can be applied
in practice in two different ways, the way in which probability of having an specific class is
given to the recipients depending on the probability distribution obtained in that terminal
node, Probability Distribution imputation method itself; or the way in which the frequency
distribution of the terminal node defines how many records will have an specific class
assigned, Frequency Distribution imputation method.

This thesis uses the Frequency Distribution method instead of the Probability Distribution

method due to its computational simplicity.

In the Frequency Distribution case the response distribution of the terminal node determines
the values to be imputed. It means that the imputations will depend on the frequencies of

the response variable in each terminal node.
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Highest Probability Method (or Modal Imputation)

This method imputes the value that is "most likely” (i.e. has the highest probability) to all of

the records with missing values in a specific terminal node as explained in Section 3.4.

Nearest Neighbour Method

As also described in Section 3.4, in this case, distances between the recipient and each
possible donor within the node are calculated and the “nearest” donor defines the imputed
value for that particular recipient. The nearest donor is then determined by the set of
auxiliary variables. That is, the distance between the two records (recipient and possible

donor) is calculated by the differences between their values for each of the auxiliary

variables.

It is important to point out that a record can be used more than once as a donor. This means
that if a record has the less distance to two different recipients it could be used as a donor

to fill in the missing values for both of the recipients.
Moreover, when a recipient has the same distance to two different donors, one of the donors

is selected randomly with equal probabilities.

All the imputation methods were applied to all of the tree sizes in order to obtain
information about the relationship between the different imputation methods and the

different tree sizes. The comparison is made in the results section.

4.7. EVALUATION OF IMPUTATION PERFORMANCE

4.7.1.Introduction

The evaluation should depend on the aims of the study and the information available for
testing the results. This must be decided before the simutation is carried out and all the key

aspects of the investigation must be taken into account.

In this work, we evaluate the imputation procedure as a whole, including the classification

tree used. Different aspects are taken into account for carrying out the evaluation:
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If a single variable is being imputed, as in this case, the evaluation of the performance of the
imputation is based on:

v'a comparison of marginal distributions (real and imputed values),

v a comparison of the individual values (real and imputed values for each single record)

v assessment of the properties of the estimator used

The results obtained from the simulations carried out can be analysed from different

perspectives.

In general, different comparisons can be done depending on the area to be evaluated.

1. to assess the impact of using a classification tree for imputation, comparisons of the
results of imputation using trees and not using trees can be done.

2. to evaluate the performance of the different imputation methods when using
classification trees, comparisons between the results obtained using  different
imputation methods can be done.

3. to evaluate the properties of the estimators used in the analysis, bias and variances can
be estimated.

4. in addition, if more details want to be given, comparisons can be made between the

different categories of the variable being imputed.

In this thesis, the main aspect to be analysed are the differences in the imputation

performance regarding the use of classification trees for forming the imputation classes.

In any case, the evaluation can be made by comparing marginal distributions and individual
values before and after the imputation. For some authors, preservation of the distributions
(both individual marginal distributions and joint distributions) and the preservations of
individual values are the most important aspects to be evaluated when doing imputation. For
others, bias and variances of the estimator used are more important. in this thesis, we try to

cover as much as possible given the available resources.

The preservation of marginal distributions is essential to be assessed when the imputed data
is going to be used for estimating aggregates or totals. In this case, preserving marginal
distributions guarantee an accurate estimation of these aggregates, since individual values
are not needed separately, such as in descriptive studies wherein only calculations of
parameter as totals and proportions are needed. However, there are some cases where the
micro data is required, as for example analytical analysis at individual levels, where it is
important to maintain relationship between variables for the subjects. In these cases, where
single cases can be needed, the preservation of individual values is a crucial aspect to be

assessed when using imputation procedures.
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In order to evaluate the three aspects mentioned at the beginning of this section, three
different criteria were used. These are:

v Graphical comparison

v" Test of agreement

v Bias and variance

All these include comparisons between real and imputed values.

The first two components of the evaluation are based on a comparison of the performance of
the different combinations of classification trees and imputation methods. As can be seen,
there are a very large number of possible combinations to analyse. For this reason, a
description of the different methods used for evaluating these aspects will be given next and

results of those, for all of the possible combinations, will be given in Section 4.8.

4.7.2. Graphical comparison

This evaluation consists of a comparison of the real and the imputed marginal distributions
and individual values of the variables used in the analysis. The aim of this evaluation is to
compare the real against the imputed marginal distribution in order to assess how the

imputation preserves the original marginal distributions.

In order to carry out the comparisons mentioned above, two steps were followed. First, a
cross-tabulation of the imputed values against the real values was produced. An example of

this cross-tabulation is shown in the next table.

Table 4.7.2
Cross-Tabulation between real and imputed values for variable Primary Activity Last Week

2819 cases in table

N

|N/RowTotal]

|N/ColTotal}

|N/Total |

B +

Alwprim| Alwprim (real values)

imputed|1 |2 |3 4 |RowTot 1]
——————— B e e e it T
1 787 142 306 aQ 1235

0.6372 |{0.1150 |0.2478 [0.0000 [0.438
0.6542 |0.5703 {0.3579 |0.0000
0.2792 |0.0504 |0.1085 |0.0000

.
|1203
10.427

.

249 {855 |512 {2819
0.08¢ |0.303 |0.182 | |

F o &
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In this case, the imputation was made for the variable Primary Activity Last Week (records

for which variable ALWPRIM is missing), and using a specific tree size and a specific method

for imputation.

All the tables were produced using the software S-Plus.

Second, two different types of graphs were made. The first kind of graph is for comparing

marginal distributions. An example of this graph is next.

Figure 4.7.2.1
Comparison of Marginal Distributions

Software: CART Variable: ALWPRIM
Marginals

Probability Distribution

a
8

g

2
8

g

Total of Records
g 8

N
o 8

Categories ElTa"l“""’

Here, the blue columns represent the distribution of the imputed values for all of the
categories of the variable used (ALWPRIM), and the red columns represent the distribution of
the real values for the same categories of the variable. On the top of the figure, the name of
the variable and the method used for imputation can be seen. Information about the size of
the tree used is also included in the results section.

The second kind of graph is shown below and is used to compare how accurate the
preservation of the individual values is. It compares each value of the variable before and

after the imputation.
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Figure 4.7.2.2
Comparison of Individual Values

Software: CART Variable: ALPRIM
Diagonals

Probability Distribution

1 2 3 4

Categories B ted

In this figure, the blue part of the column represents the percentage of cases belong that
category whose values were recovered by the imputation. On the other hand, the red part of
the column represents the percentage of records that belong that category whose records
were incorrectly imputed. It can be seen that all together represent the percentage of
original records that belong to a specific category.

In this example, the percentage of records belonging to category 1 is 42.67%. After
imputation, the percentage of records imputed correctly as a category 1 is 27.46% out of the
total number of records in the database. This means, 64.35% of category 1 records were
correctly imputed (27.46 out of 42.67) and the remaining 35.65% were imputed in any other

category.

4.7.3. Test of Agreement

The aim of this evaluation is to determine whether or not marginal distributions, or even
more individual values, are preserved after the imputation process is carried out.

Two different statistics were used for comparing marginal distributions and individual values.
The first comparison was between marginal distributions (imputed versus real) using a Wald
Statistic proposed by Chambers (2000). This statistic tests how similar the two distributions

are. Therefore, our null hypothesis is that both marginal distributions, imputed and real

distributions, are equal versus the hypothesis that they are different.

The statistic has the form:

4 2[%2()’\)1 _yi)t:":n%i(j;i -y, —y,-)r:l Ii%i(j}‘ _y"):l
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where j}i represents the imputed value and y, the real values of Y for the 7/ unit and #

is the number of records in the cross-tabulation across the categories of the variable being
imputed.

Under the hypothesis that the two marginal distributions (real and imputed) are equal, W
should has an approximate chi-square distribution with p-1 degrees of freedom, where p is

the order of the actual vs. imputed cross-tabulation mentioned before.

The second statistic proposed by Chambers (2000) is used for testing whether or not the

individual values were maintained after the imputation was carried out. Therefore, our null

hypothesis is the preservation of individual values of Y by the imputation. For

simplification, the statistic is called *Diagonal” in this work and has the form:

D

JP(D)

where D is the proportion of incorrectly imputed cases

Zp =

D=1-n"3 1(3; =)
=1
with estimated variance

I}(D)Zl‘ 2}112 lt{i[diag(f/i _yixj}i _J’i)t _(-)’}i _yixj}i "yi)t]}l

n i=1

Then, provided one cannot reject the hypothesis that the imputation method preserves the

marginal distribution using the Wald statistic mentioned before, the preservation of

individual values can be tested by using the confidence interval for D. In this case,
D —2./V (D) should be less than zero in order to have some evidences that the individual

values are preserved. In other words, if z,—2< 0, then, the individual values can be said

to be preserved.

Both statistics are described in detail in Chambers (2000). All the values for the both

statistics and their p-values are shown in the results section.

An example of the table containing these results follows:
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Table 4.7.3.1
Wald statistic for Primary Activity Last Week by imputation method and number

of terminal nodes

Terminal Nodes Frequency Distribution Highest Probability Nearest Neighbour

7 3.37 361.17 0.37
14 4.30 336.06 3.66
29 7.03 309.32 7.01

In this table, the columns represent the different imputation methods used and the rows the
different tree sizes used. The numbers in the table are the values for the Wald statistic.
Similar tables are presented for the p-values of the Wald statistic and for the values of the
Diagonal statistics for all the variables, imputation methods and tree sizes.

This example was made using the same information used for the graphs shown before.

4.7.4. Bias and Variance

In order to study the properties of the estimators obtained by the imputation methods,
biases and variances were estimated. These properties were studied in theory in Chapter 3.

In this chapter, we assess their properties by simulation.

Simulation study

In order to obtain the bias and the variances of the estimators as well as estimates for the
variance in some cases, a simulation was carried out. The simulation involved several steps,

which are explained hereafter

1. Generation of the databases. First, 1000 databases were created. Each database is a
simple random sample of 9241 units of the complete database (which contains 198756
records). These 1000 databases, which are called sample databases in this work, contain
fully observed information. The size of the sample databases is such that it takes into
account all the possible missing combinations used in the simulation study. The number

of cases missing for each combination is shown in Table 4.3.2.2 in Section 4.3.2.

2. Generation of the synthetic holes. The original percentages of missing information for
the variables involved in the study were replicated on each of the sample databases
using a simple random procedure without replacement. That is, for each combination

missing, a simple random sample of records was selected without replacement from the
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4,

sample database in order to delete their values. The size of this selection depended on
the number of cases missing for that specific combination. The variables for which the
distributions are to be estimated in the univariate case are the same variables involved
in the imputation process, these are Ethnic, Country of birth and Long-term illness. The
total number of records missing in each variable is shown in Table 4.3.2.2. Thus, 7928

records were missing in each sample database for the univariate case.

Classifying the records for imputation. In order to carry out the imputation, each
record within each sample database was classified using the set of rules generated by the
tree used. All the records (including those for which 'Y was missing) were classified into
specific terminal nodes depending on the values of the auxiliary variables. Since the size
of the tree does not seem to have an effect on the imputation results (see Section 4.8.1
for the univariate results), only one tree size was used for the simulation.
Then, each sample was divided into the number of groups required depending on the size

of the tree chosen for each specific variable to be imputed.

Imputation. After each record was classified into its correspondent group, the
imputation was carried out independently within those groups and then totalled in order
to obtain the estimator required for the analysis. That is, 1000 estimates were obtained

(each from each sample database)

Calculation of the biases and variances. Once the 1000 estimates were obtained the
bias, variance for the simulation and estimation of the variance (this was calculated only
for two of the three imputation methods) were obtained. These calculations were based

on the 1000 samples as follows

1000

Z )}(s)
+ Bias =
1000

= Variance is the variability obtained from the 1000 estimates for the total. It is

important to point out that the true variance can be calculated by using the
formulas obtained in Chapter 3. However, given that in some cases only the
model-based approach was used, we do not have the probabilities for each
category of the response variable given by the model. Therefore, the value
taken as a true variance is the variability of the 1000 estimates obtained from

the simulations.

1000

Z I}(s)

= Variance = =L—— . Each estimation of the variance (for each sample) was

calculated by using the respective formula for the variance estimator obtained

for each method.
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Results and comments are shown in the results section.

it is important to point out that the approach undertaken for the generation of the sample
databases (including the generation of the missing values) was essentially design-based. That
is, the original database was used as a given population, and 1000 simple random samples
were drawn from it (no model was used). This approach was used in order to simplify the

simulation process.

4.7.5. Implementation of a Hot Deck procedure

As a basis for comparison a Hot Deck procedure was also implemented, since this is one of
the most common imputation procedure employed in census data, as explained in Section 1.7
in Chapter 1.

The procedure employed for the comparison is a Sequential Hot Deck (Little and Rubin, 1987;
Kalton, 1983; Kalton and Kalsbeek, 1992; Madow, et al 1983) using two different cases, 1)
two variables totally observed for creating the imputation cells and 2) three variables totally
observed for creating the imputation cells. For example, in case 1, two fully observed
variables were cross-classified in order to form the imputation groups in which imputation is
carried out. Within each cell, the procedure imputes each missing record with the value of
the previous record on the list. If the previous record has also missing information for the
variable to be imputed, the previous of that one was used to impute both records missing.
The variables used for classifying the records before doing the imputation were AGE and SEX
in the 2 classification variables case, and Age, Sex and Primary Activity Last Week in the case

where 3 variables were used for classifying the records for the imputation.

There are some significant differences between the hot deck approach and the approach
proposed in this thesis. First, in the case of hot deck, the classification is created by a simple
cross-tabulation between the different categories of the variables involved, while in the
procedure proposed in this thesis, the classification is created by classification tree which
looks for the best way in which this classification can be done based on a learning sample
and taking into account misclassification costs and complexity of the classification.

Second, the approach proposed in the thesis uses as many variable as it considers necessary
for a more accurate classification, which can include not only two but more (even all of
them) depending on the case, while the hot deck procedure uses only the variables that the
analyst consider necessary based on experience and resources, which are normally not more
than three.

Third, depending on the variables to be imputed, the proposed approach can create a new
classification according to that specific variable, while hot deck procedure uses the same

classification for most of the variables.
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Four, the imputation procedure is different in both cases. In the hot deck case, the
imputation is carried out in a sequential way as explained before, while the method
proposed in this thesis uses three different imputation methods which are different from the

sequential imputation.

4.8 RESULTS

4.8.1.Using trees

Table 4.8.1.1 shows the results of the values of the Wald statistic described in Section 4.7.3

and their corresponding p-values.

Table 4.8.1.1
Wald statistic and p-values for the univariate case

Wald Statistic P-values
Variable Tree Size d.f. Freq. Dist. High. Prob. Near. Neig. Freq. Dist. High. Prob. Near. Neig.
CcoB 6 4 2.90 168.25 5.67 0.57 0.00 0.22
15 4 2.81 158.47 8.62 0.58 0.00 0.07
18 4 3.38 163.32 3.97 0.49 0.00 0.40
No Tree 4 3.04 369.00 2.76 0.55 0.00 0.59
ETHNIC 4 3 0.67 364.32 1.56 0.87 0.00 0.66
10 3 0.77 379.97 0.13 0.85 0.00 0.98
13 3 0.85 382.52 1.32 0.83 0.00 0.72
No Tree 3 0.08 1006.00 2.88 0.99 0.00 0.40
LTILL 14 1 0.25 218.38 0.98 0.61 0.00 0.32
21 1 0.29 202.24 0.82 0.58 0.00 0.36
29 1 0.31 203.20 1.03 0.57 0.00 0.30
No Tree 1 0.05 343.00 0.14 0.80 0.00 0.70

In this table, small values of the Wald statistics (or equivalently, big values for the p-value)
suggest no evidence to reject the hypothesis that marginal distributions are maintained and
vice versa. Since the degree of freedom for each variable varies depending on the number of
categories (i.e. each variable has a different critical value for the test), we simplify the

analysis by using p-valueé.

It can be noticed from this table that some variations can be found for the Wald Statistic,
depending on the variable being imputed. However, given that all the p-values of the Wald
statistic presented in Table 4.8.1.1 for the Frequency Distribution and Nearest Neighbour,
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are bigger than 0.05, one can say that marginal distributions are preserved even when no
trees are used.

in the case of Highest Probability methods, we can see that marginal distributions are never
preserved, even when classification trees are used. Therefore, the first conclusion is that it
seems to be no improvement in the preservation of marginal distribution with the inclusion

of classification tree in the imputation process.

Table 4.8.1.2 contains the number of records imputed for each category for the variable

ETHNIC using Highest Probability method.

Table 4.8.1.2
Number of records imputed by category and tree size for variable ETHNIC

using Highest Probability method

Category 4 Term. nodes 10 Term. nodes 13 Term. nodes No Tree
1 2961 2972 2974 3492
2 351 351 351
3 71 68 68
4 109 101 99

As mentioned before, in the case of Highest Probability, there is not preservation of marginal
distribution in any of the different tree sizes, as observed in Table 4.8.1.1. However, it can
be seen that some of the categories of the variable being imputed are represented in the
imputed marginal distribution when using a tree, which does not happen in the case where
classification trees are not used.

In this case, the use of the tree ensure the use of different categories when imputing,
depending on the class assignment that define the terminal nodes class, while when trees are
not used, the imputation will be made employing the category with highest probability in the
whole database, which is just one as shown in Tables 4.8.1.2.

Similar patterns were found for the rest of the variables

Moreover, even when the use of a tree does not guarantee the preservation of the marginal
distributions when using Highest Probability, an improvement in the value of the Wald
statistic can be observed. There is a big gap between the values obtained when using trees
and the value when trees are not used, as shown in Table 4.8.1.1. That means, there is a
slight improvement in the preservation of marginal distributions when using trees. This
improvement is because, even when there are some differences in the shape of the
distribution, most of the categories of the imputed variable (sometimes all of them) are

represented in the imputed distribution. In contrast, in the case where trees are not used,
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the imputed distribution is formed by only one single category, as explained in the last point.

This can also be seen from the graphs in Appendix 4 and Appendix 5.

Table 4.8.1.3 contains the values of the Diagonal Statistic for the variables Country of Birth,
Ethnic and Long Term Illness for the combination between different imputation methods and

different tree sizes.

Table 4.8.1.3
Diagonal Statistic values for the univariate case

Variable Tree Size  Freq. Dist. High. Prob. Near. Neig.

COoB 6 12.22 6.72 11.09

15 11.84 6.75 10.52

18 11.56 6.78 11.22

No Tree 19.95 10.68 11.60

ETHNIC 4 24,22 13.37 19.50
10 23.63 13.33 20.32

13 23.53 13.33 19.17

No Tree 34.66 20.17 19.67

LTILL 14 9.56 6.41 9.07
21 9.85 6.20 8.85

29 9.22 6.22 8.58

No Tree 12.72 6.81 9.13

Provided one cannot reject the hypothesis that the imputation method preserves the
marginal distribution using the Wald statistic as pointed out before, the preservation of
individual values can be tested by using the confidence interval for D (proportion of
incorrectly imputed cases) as explained in Section 4.7.3. In this case, D —2./V (D) must
be less than zero in order to have some evidences that the individual values are preserved. In

other words, if z,~2<0, then, the individual values can be said to be preserved, with

;= D

D m
Then, if a confidence interval is calculated using the information provided by Table 4.8.1.3,
we can observed that z, —2 is closer to zero when trees are used than in the case of not

using trees. This improvement can be observed from the point of view of percentage of

records correctly imputed and it will be explained later.
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In the case of Nearest Neighbour method, the values of z, are very similar in both cases,

when using or not trees. Then, it cannot be said the method performs better when using

trees than when trees are not used.

It can also be noted from Table 4.8.1.3 that there is a difference between the values of the
statistic when using trees and the values when trees are not used for the first two methods
Frequency Distribution and Highest Probability imputation. Then, in these cases, even when
the diagonal statistics results indicate that the individual values are not preserved, the
values of this statistic in the case of using trees are lower than the values when trees are not

used.

Therefore, another general conclusion for the univariate case is that the use of the tree
improves the performance of the imputation results in terms of preservation of individual

values depending on the method used.

Tables 4.8.1.4 (as well as Appendix 7) present the “"improvement" for the different
combinations between tree sizes and imputation methods for the variables used in the

univariate case.

Table 4.8.1.4
Improvement by variable, tree size and imputation method

for the univariate case

Variable Tree Size Freq. Distrb. High. Prob. Near. Neigh.

coB 6 21.11 10.48 1.28
15 22.28 10.40 2.74

18 23.12 10.31 0.94

No Tree 0.00 0.00 0.00

ETHNIC 4 18.69 12.06 0.27
10 19.86 12.14 -1.07

13 20.07 12.14 0.83

No Tree 0.00 0.00 0.00

LTILL 4 6.03 0.75 0.12
21 5.46 1.14 0.53

29 6.69 1.10 1.03

No Tree 0.00 0.00 0.00

This measure of improvement is calculated based on the percentage of records correctly
imputed when trees are not used and their differences with the percentage of records
correctly imputed when trees are used. For example, the percentage of records correctly

imputed for Country of birth when using a tree with 6 terminal nodes and Frequency
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Distribution as imputation method is 73.48%, and the same percentage but in the case when
trees are not used is 60.67%. Then, the improvement when using trees with respect to the
case where trees are not used is 21.12%, which correspond to (73.48 - 60.67) / 60.67.
Therefore, it can be said that there is an improvement in the performance of the imputation

method when using a classification tree in about 21% compared to the case where trees are

not used.

if a comparison between the results from the case where trees are used and the case where
trees are not used is made, we will notice that there is always an improvement in terms of
records correctly imputed when using trees for the Frequency Distribution and almost always
for the Highest Probability method. This improvement can reach more than 20% in some

cases for the univariate case.

it is clear that the highest improvement is always for Frequency Distribution method,
followed by Highest Probability and Nearest Neighbour as the last one with almost no

improvement.

Therefore, we can say that even when the values of the diagonal statistic in the case of using
tree reveal that individual values are not preserved, we can confirm that there is an

improvement on the percentage of records correctly imputed when using trees.

4.8.2.Comparing Tree-Sizes

Table 4.8.1.1 and Table 4.8.1.3 show that there are some differences between the values for
both Wald and Diagonal statistics when the tree size is changed. However, since the p-values
for the Wald statistic are over 0.05, there is not enough evidence to reject the hypothesis
that the individual marginal distributions are preserved in any of the cases. Similar
conclusion can be drawn in the case of the Diagonal Statistic, where all the values, even
when there are some differences, are big enough to confirm that individual values are not
maintained.

Therefore, the main conclusion about using different sizes for the tree is that increasing the
size does not necessarily improve the imputation performance. The results obtained from the
analysis show that the changes on the Wald statistic and the Diagonal statistic are not big
enough to alter the conclusion that the imputation performance is not affected by the size of
the tree.

Additionally, the changes on both statistics do not follow similar pattern for all of the cases.
Sometimes the best results are obtained from the smallest trees and sometimes from the

biggest trees or even from the medium size trees.
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Then, an important conclusion is that using complex trees does not necessarily lead to better

imputation results.

Moreover, Table 4.8.1.1 and Table 4.8.1.3 include the Wald statistic and the Diagonal
statistic for the variable COB. In this case, three different tree sizes were used, in which the
biggest is also the optimal tree given by CART. It is clear from the results that even when this
optimal tree is used, there are not considerable differences in the results when comparing
both marginal distributions and individual values.

Therefore, we can say that the use of the optimal tree given by CART does not make major
improvement in the performance of the imputation. The optimal tree given by CART is meant
to be optimal in terms of complexity and misclassification rate. In this sense, the use of the
optimal tree could be expected to give the best performance, however, it can be observed

from the results that this hypothesis is not necessarily correct.

Table 4.8.2.1 contains the percentage of missing data for each variable, the percentage of
records incorrectly imputed for the different imputation methods as well as the

misclassification rate for each specific tree.

Table 4.8.2.1
Percentage of missing data, Percentage of records incorrectly imputed and

misclassification rate by variable, imputation method and tree size for the univariate

case.

Variable % Miss. data Tree Size  Freq. Dist. High. Prob. Near. Neig. Miscl. Rate

Cob 7.26 6 26.52 15.63 24.40 14.99
15 25.81 15.69 23.31 14.60

18 25.30 15.75 24.66 14.57

No tree 39.33 23.63 25.36 eeee-

Ethnic 16.24 4 33.44 20.21 28 18.87
10 32.78 20.16 28.98 18.82

13 32.67 20.16 27.6 18.81

No tree 43.92 28.80 28.20 -eeee-

Ltill 13.37 4 16.31 11.26 15.54 11.05
21 16.76 10.92 15.20 10.99

29 15.79 10.95 14.78 10.97

No tree 21.07 11.93 15.65  -e-ee-

There seems to be a relationship between the misclassification rate and the percentage of

records incorrectly imputed for each variable. It can be seen from this table (and from the
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set of graphs in Appendix 8) that the percentage of records incorrectly imputed increases
when the misclassification rates increases and even more when trees are not used.
Additionally, the percentage of records incorrectly imputed look stable as well as the
misclassification rate within each variable for each imputation method.

Also, we can see that these results are not related to the size of the tree, that is, percentage

of records incorrectly imputed and misclassification rate look very stable across the different

tree sizes.

4.8.3.Comparing Imputation Methods

Table 4.8.1.1 and Table 4.8.1.3 include the p-value for the Wald statistic and the Diagonal
statistic for the case of the variable Country of birth. The values for this value illustrate how
the individual marginal distribution for this variable is maintained and how individual values
are not preserved.

However, on the other hand, Table 4.8.3.1 shows the total of records correctly imputed
(including values for variable COB) depending on the size of the tree when using Frequency
Distribution method for imputation. It is clear that the use of the tree increases this numbers
with respect to the case where trees are not used. Similar patterns can be observed for

ETHNIC and LTILL even when the differences are smaller in the last case.

Table 4.8.3.1
Total of records correctly imputed by variable, tree size and

imputation method for the univariate case

Variable Tree Size Freq. Distrb. High. Prob. Near. Neigh.

COB 6 1147 1317 1180
15 1158 1316 1197
18 1166 1315 1176

No Tree 947 1192 1165 (total of cases: 1561)
ETHNIC 4 2324 2786 2514
10 2347 2788 2480
13 2351 2788 2528

No Tree 1958 2486 2507 (total of cases: 3492)
LTILL 4 2406 2551 2428
21 2393 2561 2438
29 2421 2560 2450

No Tree 2269 2532 2425 (total of cases: 2875)

Table 4.8.3.2 shows these results in term of percentages. Appendix 6 shows a graphical

representation of this table by variable.
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Table 4.8.3.2

Percentage of records correctly imputed by variable, tree size

and imputation method for the univariate case

Variable Tree Size Freq. Distrb.

High. Prob. Nera. Neigh.

coB 6 73.47 84.36 75.59
15 74.18 84.30 76.68

18 74.69 84.24 75.33

No Tree 60.66 76.36 74.63

ETHNIC 4 66.55 79.78 71.99
10 67.21 79.83 71.01

13 67.32 79.83 72.39

No Tree 56.07 71.19 71.79

LTILL 4 83.68 88.73 84.45
21 83.23 89.07 84.80

29 84.20 89.04 85.21

No Tree 78.92 88.06 84.34

Therefore, in the case of Frequency Distribution, there is always an improvement when using

tree. This improvement is not evident when comparing marginal distributions but it can be

observed when comparing individual values.

Next example contains the values for the Wald statistic (p-value) and the Diagonal statistic

for the variable Ethnic.

Tables 4.8.3.3

Wald Statistic, p-value and diagonal statistic for the variable Ethnic

Wald Statistic

Diagonal Statistic

Tree Size Prob. Distrb. High. Prob. Near. Neigh.

Tree Size Prob. Distrb. High. Prob. Near. Neigh.

4 0.67 364.32 1.56 4 24.22 13.37 19.50
10 0.77 379.97 0.13 10 23.63 13.33 20.32
13 0.85 382.52 1.32 13 23.53 13.33 19.17
No Tree 0.08 1006.00 2.88 No Tree 34.66 20.17 19.67

Wald Statistics P-value

Tree Size Prob. Distrb. High. Prob. Near. Neigh.

4 0.87 0.00 0.66
10 0.85 0.00 0.98
13 0.83 0.00 0.72
No Tree 0.99 0.00 0.40

These tables show that there are not big changes neither when the size of the tree is altered
nor when trees are not used when using Nearest Neighbour method. The behaviour of the

Nearest Neighbour method remains relatively constant in this sense.
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It is important to point out that, in general, the use of trees does not make any improvement
in the results when using Nearest Neighbour, probably because the nearest neighbour donor
will be found either using or not classification. We can see that the results remain the same
when comparing both marginal distributions and individual values. Additionally, the
percentage of records correctly imputed remains fairly stable when using Nearest Neighbour
as showed in Table 4.8.3.2. The use of the tree will probably improve the time consumed in
the imputation process given that donors will be only sought in the corresponding terminal

node.
More examples of this point can be found in Table 4.8.1.1 and Table 4.8.1.3 in Section 4.8.1.

It can be seen from Table 4.8.3.2 that the best method in preserving individual values is the
Highest Probability with up to almost 90% of the cases correctly imputed in some situations.
The percentage of records correctly imputed with this method depends, in a way, on the

shape of the distribution when using trees and of course on the accuracy of the classification

tree.

Thus, in general, the best methods for preserving marginal distributions are Frequency
Distribution and Nearest Neighbour. These two methods perform very well even when trees
are not used, which is not the case of the Highest Probability method. Exampte can be found
in Appendix 4, which are graphical representations of the Wald statistic from Table 4.8.7.1.

However, in terms of preservation of individual values, Highest Probability seems to be the

best performing method.

4.8.4.Comparing Categories

Tables 4.8.4.1 contain the percentage of records incorrectly imputed by imputation methods
tree sizes and categories, as well as the misclassification rates obtained from the different

tree sizes by categories of the different target variables.
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Tables 4.8.4.1
Misclassification rates by tree sizes and categories and percentage of records incorrectly

imputed by imputation method, tree size and categories for the univariate case

Table A
Variable: COUNTRY OF BIRTH

Percentage of Records Incorrectly imputed

Misclass. Rate Freq. Dist. High. Porb. Near. Neigh.

Cat. Records 8TN 15TN 27TN 8TN 15TN 27TN NTRE 8TN 15TN 277N NTRE 8TN 15TN 277N NTRE

1 137958 1.47 1.68 1.61 1418 13.59  13.26  22.48 1.34 1.59 1.51 0.00 13.59  11.24  13.09 14.35
2 11608 100.00  100.00 100.00 94.21 90.91  90.91 95.04 100.00 100.00 100.00 100.00 8595 90.91 91.74 92.56
3 3648 57.15 4375 43.01 7250 70.00 62,50 97.50 57.50 42.50 40.00 100.00 70.00 65.00 52.50 60.00
4 18735 36.94 3759 37.97 4311 4311 4192 91.62 3473 38.32  40.12  100.00 35.33 37.13 40.72 34.13

5 5287 7448  62.74 62.74 73.17 8293 7805 9512 63.41 58.54 58.54 100.00 68.29 78.05 70.73 78.05

Table B
Variable: ETHNIC

Percentage of Records Incorrectly Imputed

Misclass. Rate Freq. Dist. High. Porb. Near. Neigh.

Cat. Records 4TN 10TN 13TN 4TN 10TN 13TN NTRE 4TN 10TN 13TN NTRE 4TN 10TN 13TN NTRE

1 126733 2,68 2.47 240 1995 1955 19.47 2820 3.14 2.90 2.86 0.00 16.25 17.06 15.33 16,37
2 35416 58.03 58.03 58.03 63.03 60.9 60.76  77.76 60.34 60.34 60.34 100.00 51.56 53.26 51.56 52.27
3 6286 58.10 58.38 5838 69.84 71.43 69.05 9444 63.49 63.49 63.49 100.00 61.90 65.87 69.84 6587

4 8801 66.41  68.34 69.19 79.89 79.89 81.03 9483 7011 7241 7299 100.00 7586 7414 7529 72.41

Table C
Variable: LONG TERM ILLNESS

Percentage of Records incorrectly Imputed

Misclass. Rate Freq. Dist. High. Porb. Near. Neigh.

Cat. Records 14TN 21TN 29TN 14TN 21TN 29TN NTRE 14TN 21TN 29TN NTRE 14TN 21TN 29TN NTRE

1 20753 86.99 84.16 84.54 69.97 72.01 67.93 89.21 86.01 82.51 82.80 100.00 68.22 66.47 6501 66.76

2 156483 0.98 1.30 1.22 9.04 9.28 8.73 11.85 1.15 1.22 1.22 0.00 8.41 8.25 7.98 8.73

It can be noticed from these tables that there seems to be a relationship between the
misclassification rates obtained from the tree and the percentage of records incorrectly
imputed by categories. Both the misclassification rate and the percentage of records
incorrectly imputed by categories tend to follow similar patterns most of the time. It can
also be observed that this relationship is not necessarily the same for the case where trees

are not used.
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Another interesting finding obtained from this table is that in the case when trees are not
used, the percentage of records incorrectly imputed by categories is usually higher (or at
least equal) than the percentage of records incorrectly imputed when trees are used for the
Frequency distribution and Highest Probability methods.

Moreover, depending on the imputation method used, the percentage of records incorrectly
imputed obtained from the case where trees are not used can be near to 100% for most of
the categories as is the case of Highest Probability method where only one category is used
for imputation. This corroborates the statement made previously that the use of trees
improves the performance of the imputation results depending on the method used.

In the case of Nearest Neighbour method, all the information, percentage of records
incorrectly imputed using trees, percentage of records incorrectly imputed when trees are
not used and misclassification rate, have more similar results across categories than the rest
of the methods. As said before, this implies that there is not an impact on the imputation
results when Nearest Neighbour method together with classification trees is used for

imputation.

A set of graphs obtained from Tables 4.8.4.1 can be found in the Appendix 9. These graphs
show the percentage of records incorrectly imputed using and not using trees and the
misclassification rate by categories for the different imputation methods and different tree
sizes.

Figure 4.8.4.1 is an example of the set of graph presented in Appendix 9. This figure shows
the percentage of records incorrectly imputed using and not using trees and the
misclassification rate by categories for the variable Ethnic, using the Highest Probability

method and a tree with 4 terminal nodes.

Figure 4.8.4.1
Misclassification rate versus percentage of records incorrectly imputed

by categories for variable Ethnic (Appendix 9)
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It can be seen from the figure how the lines for the percentage of records incorrectly
imputed obtained using trees (red line) and the misclassification rates for the same
categories (blue line) follow the same pattern. Alternatively, the line representing the
percentage of records incorrectly imputed in the case where trees are not used (yellow line)

is different from the two lines mentioned before.

There seems to be a relationship between the misclassification rate (blue lines) and the
percentage of records incorrectly imputed (red line) for each category when trees are used.
It means that both the misclassification rate and the percentage of records incorrectly
imputed by categories tend to have the same values or at least follow similar patterns most
of the time.

It can also be observed that this relationship with the percentage of records incorrectly
imputed (red line in the graph) is not necessarily the same for the case where trees are not

used (yellow lines in the graph).

This is an important finding from the point of view of accuracy. It could be predicted from
the tree, by using the misclassification rate by categories, which categories of the variable

being imputed will be more accurate than others after the imputation is done.

4.8.5. Bias and Variance Results

Given the results obtained from the previous analysis that the size of tree is not directly
related to the imputations results, the simulations for the bias and variances were carried
out using only one tree size. The size chosen for this analysis was the medium tree size
(about 15 nodes) which represent a reasonable number of groups to work with, as the time
consuming for the variance simulations is in fact very long, specially in the case of the
Nearest Neighbour imputation.

Each section presents a set of summary tables, more detailed information can be seen in

Appendix 3.

4.8.5.1. Bias

Tables 4.8.5.1.1 contain the bias results obtained from the simulations described in Section

4.7.4 for all the variables and imputation methods used in the univariate case.
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Tables 4.8.5.1.1
Biases estimation for the univariate case

Table A
Variable: Country of birth

Highest Probability

Nearest Neighbour

Frequency Distribution
Categories Categories Categories
1 2 3 4 5 1 2 3 4 5 1 2 3 4 5
E()Q) 154760 13046 4060 21015 154760 154915 12944 4058 20975 5864 154760 13046 4060 21015 5874
E()})_y 0.36 -0.36 -0.40 -0.47 0.36 155.00 -102.00 -2.00 -40.00 -11.00 0.21 036 -0.15 0.09 -0.50
((ech-r)/r)10 0.000 -0.002 -0.009 -0.002 0.014 0.100 -0.781 -0.049 -0.190 -0.187 0.000 0.002 -0.003 0.000 -0.008
Hot Deck (clas.: 2 var.) Hot Deck (clas.: 3 var.)
Categories Categories

1 2 3 4 5 1 2 3 4 5

E(f/) 154760 13046 4060 21015 5875 154759 13046 4060 21015 5875

E(Yy-Yy 000 000 000 000 000 -1.00 000 000 000 0.0

((ech-r)/r)=10 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Table B
Variable: Ethnic

Frequency Distribution Highest Probability

Nearest Neighbour

Categories Categories Categories
1 2 3 4 1 2 3 4 1 2 3 4
E(f/) 142189 39724 7046 9797 142653 39496 6993 9714 142190 39724 7047 9795
E();) ~Y -0.34  0.03 -1.07  1.37 464.00 -328.00 -54.00 -82.00 0.64 -0.35 0.30 -0.58
((eth-r)/r)*0 0.000 0.000 -0.015 0.013 0.326 -0.825 -0.766 -0.837 0.000 0.000 0.004 -0.005
Hot Deck (clas.: 2 var.) Hot Deck (clas.: 3 var.)
Categories Categories
1 2 3 4 1 2 3 4
E( f/) 142189 39724 7046 9797 142190 39724 7046 9796
E(¥)-Y 000 000 -1.00 1.00 100 000 -1.00 0.00
((E();)AY)/Y)‘WO 0.000 0.000 -0.014 0.010 0.000 0.000 -0.014 0.000
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Table C
Variable: Long term illness

Frequency Distribution Highest Probability Nearest Neighbour
Categories Categories Categories
1 2 1 2 1 2
E();) 23217 175539 22950 175806 23217 175539
EX)-Y 0.16 -0.16 -267.00 267.00 0.10 -0.10
((E(i)— y)/y)*loo 0.000 0.000 -1.150 0.152 0.000 0.000
Hot Deck (clas.: 2 var.) Hot Deck (clas.: 3 var.)
Categories Categories
1 2 1 2
E(};) 23217 175539 23217 175539
E(Y)-Y 0.00 0.00 0.00 0.00
((echy-r)fr)*100 0.000 0.000 0.000 0.000

It can be seen from these tables that the Frequency Distribution and Nearest Neighbour
methods lead to essentially unbiased estimates. That is, the difference between the real
total and its expected value obtained from the simulations are basically zero. However, that
difference is increased when the Highest Probability imputation method is used, as expected
from the theoretical results. It can be noticed that even when some of the bias results for

this method are about 400, the relative bias results show that these values are not big with

respect to the real total.

Additionally, Tables 4.8.5.1.1 show that the bias is positive for the major category of the
variable and negative for the rest in the case of Highest Probability method. That means, the
category containing more information is always overestimated and the rest are always
underestimated. This occurs because the method imputes all the records with missing
information using the major frequency in the node, which is the category containing most

records.

In terms of the Hot Deck imputation, we can see that the estimator of the total is unbiased
as well as in the case of Frequency Distribution and Nearest Neighbour imputation methods.
Therefore, there are not major differences in terms of using any of the imputation methods
(including Hot Deck) for estimating the total of cases in each category of the variables used

for the analysis, except for the case of Highest Probability method.

113



4.8.5.2 Variance

Tables 4.8.5.2.1 contains the information related to the variances and variances estimation

(in some cases) for the different variables when using different imputation methods.

Tables 4.8.5.2.1
Variances and Expected Variances Estimators for the univariate case

Table A

Variable: Country of birth

Frequency Distribution Highest Probability Nearest Neighbour
Categories Categories Categories
1 2 3 4 5 1 2 3 4 5 1 2 3 4 5
E(I;) 167.97 94.63 20.34 69.14 37.11 - - - - - 33216 188.50 40.48 135.87 332.16

V();) 160.80 94.27 19.25 64.30 38.11 171.00 94.00 24.00 73.00 171.00 319.22 181.47 3570 122.06 319.22

MSE(};) 160.93 94.40 19.41  64.52 38.87 24196.0 10498.0 28.00 1673.00 168.00 319.26 181.60 35.72 122.07 66.05

Hot Deck (clas.: 2 var.) Hot Deck (clas.: 3 var.)
Categories Categories
1 2 3 4 5 1 2 3 4 5

E(W)
V(F)  441.00 169.00 49.00 256.00 81.00 441.00 169.00 49.00 256.00 81.00

MSE(Y) 441.00 169.00 49.00 256.00 81.00 442.00 169.00 49.00 256.00 81.00

Table B
Variable: Ethnic

Frequency Distribution Highest Probability Nearest Neighbour
Categories Categories Categories
1 2 3 4 1 2 3 4 1 2 3 4
E(y}) 489.58 419.79 85.17 137.27 - - - - 970.78 831.78 168.75 271.95

V();) 463.76 365.97 79.83 136.23 498.00 398.00 86.00 150.00 797.95 671.59 157.61 268.23

MSE(}‘;) 463.88 365.97 80.97 138.11 215794 107982 3002.00 6874.00 798.36 671.71 157.70 268.57

Hot Deck (clas.: 2 var.) Hot Deck (clas.: 3 var.
Categories Categories
1 2 3 4 1 2 3 4

EW)
V(¥) ~ 961.00 729.00 225.00 289.00 1024.00 784.00 196.00 289.00

MSE();) 961.00 729.00 226.00 2%0.00 1025.00 784.00 197.00 289.00
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Table C
Variable: Long term illness

Frequency Distribution Highest Probability Nearest Neighbour
Categories Categories Categories
1 2 1 2 1 2
E(V) 232.55 232.55 - - 461.94 461.94
V(f/) 226.69 226.69 291.00 291.00 451.90 451.90
MSE();) 226.72 226.72 71580.0 71580.0 451.91 451.91

Hot Deck (clas.: 2 var.) Hot Deck (clas.: 3 var.)

Categories Categories
1 2 1 2
E()
V( y ) 484.00 484.00 400.00 400.00
MSE( )3) 484.00 484.00 400.00 400.00

It can be noticed from last tables that there are not big differences in the values of the
variances between Frequency Distribution and Highest Probability methods; however, there
are more notable differences between these two methods and the Nearest Neighbour

method. The Nearest Neighbour method produces bigger variances than the other two

methods.

In term of Hot Deck imputation we can see that there is a difference between the variance
obtained by this method and variance obtained by any of the rest of the imputation methods
employed in this analysis. We can see that the variance obtained by Hot Deck is always
higher than the variance obtained by any of the methods, even for Nearest Neighbour
method, which produces the biggest variances among all of the three imputation methods

used in the proposed approach.

Even when a third variable was included in the classification prior to the imputation when

using Hot Deck, the results were still very similar.

However, in terms of mean square errors, Hot Deck provides smaller MSE than Highest
probability method given the bias of the latest. Therefore, it can be said that any of the
imputation methods proposed in this thesis perform better than the normal sequential Hot

Deck imputation method except for the case of Highest Probability imputation method.
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4.8.5.3. Variance Estimation

in terms of the variability, we can see from Tables 4.8.5.2.1 that the estimator of the
variance in the case of Frequency Distribution is basically unbiased as demonstrated in the
theory in Chapter 3. Some small bias can be found depending on the variable used, however,
these bias are very small compared with the size of the point estimator. The variable with
less bias for the variance estimation is LTILL followed by COB and ETHNIC respectively. The

same pattern can be found for the Nearest Neighbour imputation method.

On the other hand, even when we have proof that the estimator of the variance is unbiased
in theory in the case of Nearest Neighbour imputation method, we can notice some
differences between the real value and the expected values of the estimator over the 1000

simulations.
it can be seen from Tables 4.8.5.2.1 that these bias can reach up to over 20% in few cases.

However, these biases are present only in few cases. It is important to point out that these
differences are considered high for estimating the variance but they are low in relation to

the size of the point estimator.

Another important issue about the estimator of the variance in the case of Nearest
Neighbour, and also in any small difference found for the Frequency Distribution method, is

the fact that the variance is always overestimated.

Finally, we can confirm that in terms of variance estimation that, given the results of the
simulations carried out, Frequency Distribution is in general the best performing imputation

methods.

4.8.5.4. Coverage

Tables 4.8.5.4.1 show the results for the coverage for the different variables and imputation

methods given by the simulations.
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Tables 4.8.5.4.1
Coverage for the univariate case

Table A
Variable: Country of birth
Frequency Distribution Highest Probability Nearest Neighbour
Categories Categories Categories
1 2 3 4 5 1 2 3 4 5 1 2 3 4 5

Coverage 95.8 9550 95.10 96.60 95.10 0.00 0.00 92.20 0.10 66.20 96.00 95.00 9520 9550 96.10

Table B
Variable: Ethnic
Frequency Distribution Highest Probability Nearest Neighbour
Categories Categories Categories
1 2 3 4 1 2 3 4 1 2 3 4

Coverage 9490 95.60 94.80 95.00 0.00 0.00 0.00 0.00 9530 9440 96.40 95.40

Table C
Variable: Long term illness
Frequency Distribution Highest Probability Nearest Neighbour
Categories Categories Categories
1 2 1 2 1 2
Coverage 95.40 95.40 0.00 0.00 95.30 95.30

Tables 4.8.5.4.1 show how the coverage, that is the proportion of intervals for the estimator
that include the parameter, is over 94% all the time in both Frequency Distribution and
Nearest Neighbour. However, in the case of Highest Probability methods, only two cases are
not 0% coverage. It can be seen from Tables 4.8.5.1.1 that these two cases contain very few
units (about 3% of the population).

It is important to point out that the confidence intervals in the case of Highest Probability
were estimated using the values of the variance instead of the variance estimates given that

the latest were not obtained in the simulations carried out in this thesis.

A reason for this coverage problem in the Highest Probability case is that even when the
variance seems to be as big as the variance in the case of Frequency Distribution imputation
method (method which has over 94% coverage), the bias is big enough to produce these
results. In this case, we can see that the size of the bias is as big as the size of the variance
{or sometimes bigger), which does not occur in the Frequency Distribution case, making the

coverage very poor.
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Additionally, there is not visible pattern in the case of coverage neither by imputation
methods nor by variables. That is, not all the small categories have the less coverage or vice-

versa.

In conclusion, there are some general findings we can summarise in terms of the analysis for

the univariate case.

In general, the use of classification trees does improve the performance of the imputation.
As seen in the results this improvement cannot be seen from the point of view of the
maintenance of marginal distributions in most of the cases but from the point of view of

percentage of records correctly imputed.

Even when there are differences in the results when using or not trees (i.e. when trees
improve the performance of the imputation results), the use of different tree sizes does not
have a major impact on those results. Moreover, the use of the optimal tree given by CART

does not make much difference on the results.

Frequency Distribution and Nearest Neighbour methods preserve marginal distributions while
Highest Probability does not. However, Highest Probability is the best performing imputation
method.

In the case of Nearest Neighbour, the use of trees does not seem to have a major impact on
the results when using Nearest Neighbour procedure. Therefore, as a general conclusion we
can say that Frequency Distribution is the best performing method overall as it preserves
marginal distributions, has a reasonable level of preservation of individual values, produces

unbiased estimates for the total and has the lowest variability between all the methods.

Frequency Distribution and Nearest Neighbour methods produce unbiased estimates for the
total number of records in a specific category. In contrast, the Highest Probability method
does not lead to unbiased estimates as shown in the theoretical results.

In terms of variability, we can see that the values for the variances in the case of Frequency
Distribution and Highest Probability methods are very similar. In contrast, Nearest Neighbour
produces larger variances than the rest of the methods.

Comparisons between MSEs show that the lowest values are always found for Frequency
Distribution followed by Nearest Neighbour and Highest Probability (due to the bias)

respectively.

The results of the simulation confirm the theoretical result that the estimator of the
variance proposed for the Frequency Distribution case is an unbiased estimator. However,

even when in theory the estimator of the variance for the Nearest Neighbour seems to be
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unbiased, some differences between the real value and the estimator were found. However,
these differences are probably big when estimating the variance but they are not very

important in terms of the values of the point estimates as they are very small with respect to

these values.

It has been shown in the results that the coverage, is over 94% all the time in the univariate

case for both Frequency Distribution and Nearest Neighbour.

Comparisons between the proposed method and a Sequential Hot Deck method show that in
terms of the point estimates any of the Frequency Distribution, Nearest Neighbour and Hot
Deck produces unbiased estimators. In terms of variability, the sequential Hot Deck method
produces larger variances than any of the imputation procedures investigated in this
research. However, if a comparison between the mean square errors is made, we can see
that sequential Hot Deck performs better than the Highest Probability procedure, producing
smaller MSE.

Thus, Frequency Distribution is still the best performing imputation methods in this research,
followed by Nearest Neighbour, Sequential Hot Deck and Highest Probability respectively.
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CHAPTER 5

MULTIVARIATE CASE
THEORETICAL FRAMEWORK

5.1. INTRODUCTION

This chapter extends Chapter 3 by considering the case where more than one variable is

subject to nonresponse.

Here, the multivariate case is explained including modelling description, the use of
classification trees, imputation methods used and estimation of population quantities.

Additionally, biases for the proposed estimator are studied.

5.2. NOTATION

Using the notation employed in Chapter 3, let U be a finite population of N elements
Uz{Ui;izl,Z,...,N}. Let Y=(y,) be a (NxH)-matrix of variables, where y,
represents the / th variable for the i th element and let X =(x,) be a (NxK)—matrix of
auxiliary variables where x, represents the k thvariable for the i th element.

As also defined in Chapter 3, we now have R=(7,) as the (NxH)—matrix of indicator

1 if y, is observed

variables identifying whether or not y,, is missing. That is, 7, = )
0 otherwise
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In this case, Y can be represented as Y=(2,)72,...,I7,1,...,}7H), where
Y, = (> Vanser V) is the vector of N values y,; X can be represented as
Xz(Xl,Xg,...,Xk,...,XK), where )?k :(xlk,xzk,...,xNk)’ is the vector of N values x,;
and R can be represented as Rz(ﬁl,ﬁz,...,ﬁh,...,]@,), where Eh =(r1h,r2h,...,rN,,)t is a
vector of N values 7, .

It is assumed that each vector )7;7 may be subject to nonresponse but that each vector )?k is

fully observed. It is also assumed that the population is fully enumerated (no sample is

taken).
The data takes the form:

X, X, Xk L 5 Y R R, Ry
1 Xy Xy e Xg yo 0 o Y 1 0 .. 1
Xy Xy e Xy 0 Yy . O 0o 1 .. O

3 Xy Xyp o e Xy Yo 0 o vy 1 0
Vs oo Yom o 1 .. 1

0 - 0

0 0

N Xyi Xyg o Xpg 2 RN OO PR 1 0

where the zeros represent the missing values in the population and x, and y, are
specific values for a specific realisation of the model. It is important to point out that in this

case, the number of missing values can be different for each vector of variables }7,, .

Additionally, we also define J, as the number of categories for the variable y, . That is,
variable y, has categories j, = {1, 2,...,J1}; variable y,, has categories j, ={1,2,,..,J2}

and so on. In general we can say that variable y, has categories j, = {1,2,...,Jh} .
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5.3. MODEL DESCRIPTION

Under the model-based approach assumption, we consider x, and y, random variables with

joint distribution f(X,Y |0) indexed by the vector of parameters 0.

As in the univariate case, the response process can be seen as a random process; therefore,

the response outcome R is also included as matrix of random variables with distribution

FRIXY,0).
Given that X is fully observed and Y is subject to nonresponse, we can now write the joint

distribution as f(X,Y,R|0,0) indexed by the vectors of parameters 6 and @ .

The joint distribution of X, Y and R, f(X,Y,R|0,9), can be decomposed as the

product of the probability distribution of X and Y indexed by vector of parameters 6 and

the conditional distribution of R given X and Y indexed by ¢ . That is,
SXY,R|0,0) = f(X,Y[0) f(R[X)Y,9)

Since Y is subject to nonresponse, we can write Y =(Y,,.,Y . ), where Y, , represents

the observed part of Y and ijis , represents the missing part of Y .

Therefore, the distribution f(X,Y,R|0,9) canbe writtenas f(X,Y,,..Y,.. R|0,0).
Furthermore, equation (1) can be written as

f(X>Ybszmis'R I e’q)) = f(X’Yobs’Ymis le)f(R | X’Yobs’Ymis’(P) .

0!

The distribution of the observed data can be obtained by integrating Y_, out of the joint

distribution of X, Yand R. That is, f(X Y, R)= jf(X,Y,R) dY_.. More

specifically, f(X,Y,.,R|0,¢)= If(X, Y, Y. 10 fRI|IXY, Y. .0)dY,.

Assumptions about the model are normally made in order to obtain valid estimation. One of
the most common assumptions is that the missing values are "missing at random”, MAR (Little
and Rubin, 1987).

As in Chapter 3, the data is said to be missing at random if the response indicator R does

not depend on the missing values of Y, Y_. . That is, MAR holds if

f(R ! X,Yobs)Ymissq)) = f(R ! X’Yobwq)) .
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Then, assuming that MAR holds, and given that the actual observed data is (X,Y, ,R), we

now have
FXY,,.R|0,0)= (XY, [0) f(R|X,Y,,,0).

Again, as in Chapter 3, the common maximum likelihood procedure used for fully observed
data can be used for estimating the parameter 0 required when the data is incomplete (data

with missing values). That is, 8 can be estimated using the maximum likelihood procedure
over the observed data given that the missing data mechanism is ignorable, which means

ignoring the second part of the right hand side of the last equation.

5.4. USING CLASSIFICATION TREES

As explained in Chapter 3, the use of classification trees for generating the imputation
classes represents an important part of this research.
Also, as described in Chapter 2 and 3, CART consists of grouping records depending on a set

of values of the explanatory variables x,. The terminal nodes obtained from this

classification are expected to be exclusive and exhaustive groups.

In practice, the explanatory variables can also be subject to nonresponse. However, we

assume fully observed explanatory variables in this thesis.

As in Section 3.3, t represent the terminal nodes with ¢ e {L2,...,t,...,T} , and T equal to

the total number of terminal nodes for a specific tree. We also have a measurement vector

)

; =(xi1,xi2,...,xiK) containing a number of measurements made on unit . The collection
of all possible measurement vectors defines the measurement space 7%, with

X :{fc,. ;i=1,2,...,N}. We define %, as the set of measurement vectors belonging to a

specific terminal node with o =7y, Uy, V..U Y, .

Under the model-based assumption, we have the probability function of y, given the

terminal node defined by ¥, as f,(y, =Jj|X €,). That is, the probability function of Y

given a set of values of the explanatory variables identifying that terminal node. For

simplicity, we write f,(y, =j|X, ey,)=f,(y, =Jjl1).
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Since all the variables used in this work are categorical, we denote

S, U, 1) =P(y, = j| X, €y,) as the probability that y,, takes the value j in the terminal

node ¢, with j = {l,...,J,,} . Refer to Section 3.3 in Chapter 3 for an example.

The inclusion of the classification groups introduces a new factor to the distributions

mentioned so far. Then, for a specific classification, we have f, (v, |%,) = f,(», |t) as the

probability function of ; given the terminal node ¢, and f,(y,.%,|t) as the joint

distribution of y, and r, given the terminal node ¢. As in the model description (equation

1), the last equation can be decomposed as f, (¥,,.7%, |2) =/, (Vi 18) £, (7 | Y52) - Then, if

MAR holds and assuming independence between units,

5l =0,0) = £,y | 1 =L,0) = £, |1)-

As in Chapter 3, since the imputation is done within terminal nodes we now assume MAR
within terminal nodes. That is, P(y, =j,) = f,(J,|t). See Section 3.3 in Chapter 3 for

details.

5.5. COMPOSITE VARIABLE

In this work, the imputation process requires the generation of a classification tree as a first
step. That classification tree is generally constructed for a single categorical variable.
Therefore, as all the variables used in this work are basically categorical variables, one way
to undertake joint imputation in the multivariate case is to create a variable that combines
all the possible categories of the variables that are subject to nonresponse. This variable is

called a "composite variable”.

Then, a composite variable, denoted by y,°, is a variable that combines the values of all the
possible variables subject to nonresponse, that is, y,° has categories j= {1, 2,...,jc,....]“}
with J =JxJ,x..xJ, .

Example
To illustrate the construction of a composite variable let us suppose that we have three

variables subject to missing information, y,, ¥,, and y,. Suppose also that variable y, has
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two different categories, 1 and 2; and variables y,, and y,, have three different categories,

1, 2 and 3. Then, the composite variable will be a variable that contains 18 categories, as

specified hereafter

Table 5.5.1
Example of categories of a composite variable

Categories
Vi Tt 111 1 1 1 1 1 2 2 2 2 2 2 2 2 2
Yir t 11t 2 2 211 1t 2 2 2 1 11 2 2 2
Vi 1t 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3

CompositeVar. (¥,') 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

It can be seen from Table 5.5.1 that the composite variable is also a categorical variable
containing 18 categories, which are the combinations of all possible categories of the

variables subject to missing values. Then, a record with category 10 in the composite
variable means a record with categories 2, 2 and 1 for the original variables y,, y,, and y,

respectively.

5.6. DIFFERENT APPROACHES TO IMPUTATION IN THE MULTIVARIATE
CASE WHEN USING CLASSIFICATION TREES

Before embarking on a description of the different ways of using classification trees for
imputing in a multivariate case, it is important to specify the different kind of situations that

can be present in a multivariate case.

For simplicity, suppose from now on that we have just two vectors of random variables
subject to nonresponse, )71, }72 where each y, can take categories {l,2,...,j1,...,Jl} and
each y,, categories {1,2,...,]’25“‘,,J2} , and K fully observed vector of auxiliary variables
X’k. In this case, our composite variable y,° is a variable with categories {1, 2,...,j”,...,J”}
where j¢ corresponds to combination (j;,j,) and J°=JxJ, is the number of categories
for variable y°.

There are three different combinations of missing information depending on which variable is

missing at the time as shown in the next table
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Table 5.6.1

Missing combinations for two variables

Missing Variable

Missing Combination

Combination 1

Combination 2

Combination 3

It can be seen from the last table that combination 1 is the case in which only y,, is missing,
combination 2 the case where only y,, is missing and combination 3 the case where both y,

and y,, are missing at the same time. This is a typical multivariate case, which involves

missing values for more than one variable at the same time in the same database.

Let m be the number of records in the population for which both y, and y,, are observed
and N the size of that population. Let a—m be the number of records with y, missing
only, b—a the number of records with y,, missing only and N —b the number of records

with y, and y,, missing at the same time. In this case, N >b > a = m. Then, the last table

can be now written as follows

Table 5.6.2

Missing combinations and their respective total of cases within a tree

Missing Variable

Missing Combination

Number of Cases

Combination 1 a—m
Combination 2 b—qa
Combination 3 N-b

Additionally, as mentioned in Section 5.4, this research includes the use of classification

trees as a first step within the imputation process, therefore, these combinations can be also

found within terminal nodes. That is, for each terminal node we now have

Table 5.6.3

Missing combinations and their respective total of cases within terminal nodes

Missing Variable

Missing Combination

Number of Cases

Combination 1 a, —m,
Combination 2 bt —-a,
Combination 3 N -b
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where a, —m, is the number of records with y, missing only within a specific terminal node

t; b,—a, is the number of records with y,, missing only in terminal node ¢; and N, —b, is

the number of records with y, and y,, missing at the same time in terminal node . Again,

we have N, 2b, >a, 2m,.

There are different ways in which tree-based methods could be used for imputing values in a

multivariate case. The imputation can be made using individual imputation, joint imputation

or in a sequential imputation.

v

in the first case, individual imputation, the imputation is done separately for each
variable using separate trees. This would thus involve one tree for each variable missing
in the analysis, without taking into account that they could be missing at the same time
(see option 1 below). This approach would imply the use of different donors to impute
different variables missing in the same record. Additionally, it could be very time

consuming since many trees need to be generated and imputations are done separately.

The second approach, a joint imputation approach, involves the imputation of all the
missing values in a single record at the same time. Normally, these imputations are
obtained from the same donor, that is, all the values missing in a specific recipient will
be filled in using values coming from the same donor (see options 2, 3 and 4 below). In
any of these options the imputation is done separately for each of the combinations
described in Table 5.6.3. That means, either a classification tree is done for each
combination in Table 5.6.3 to be imputed (see options 2 and 3) or the imputations are
carried out separately for those combinations but using the same tree (see option 4).

The main purpose of using joint imputation procedure is to preserve relationships
between variables, that is, preserve joint distributions. This approach may also be faster

since the donor is sought only once for each specific record.

The last approach, a sequential approach, consists of imputing one variable at a time,
but using that imputed information for the next step of the process. In this case, if two
variables are missing at the same time for the same record, one of them is imputed first
and then that imputed value is used as cbserved information either for growing a new
tree for the other variable (see option 5) or for being used within the same tree for
imputing the missing values of the other variable (see Section 5.7).

The sequential approach may also use different donors for filling in missing values in the
same record and it can also be time consuming.

The difference between individual imputation and sequential imputation is that in the

first case the imputations are done without taking into account extra information, while
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in the second case the imputed values are used as observed information for the next

imputation.

It is important to point out that in any case, either individual, joint or sequential imputation,
the classification trees employed in the process can allow for missing covariates by the use of
surrogates. However, we assume them to be fully observed in this thesis. An option in which

missing information for the auxiliary variables can be used is presented in Section 5.7.
Additionally, these approaches take into account all the combinations of missing information
present in the data, that is, all of the combinations 1, 2 or 3 mentioned in the two variables
example presented in Table 5.6.3 are assumed to occur at the same time.

Table 5.6.4 describes the possible options:

Table 5.6.4
Different options using tree models for imputing in the multivariate missing case

Option Tree used Action
] individual tree for y, v !mpute each va.riable Yy and J_’iz
individual tree for y,, lr:g:Pendently using the corresponding
joint tree for y;), ¥;, together. ¥ Impute missing values of Y., ¥, or
2 individual tree for y; (¥:,¥;,) independently using the
individual tree for y,, corresponding tree.

Impute (y,,, ¥;,) using the joint tree
Impute ), and y,, using an extension

3 joint tree for y.,, y,, together. of the joint tree.
v" Repeat the process for the other

variable, say y;, using now y,, for
expanding the tree.

v . . . . i
4 joint tree for y,, y;, together. Impute all ¥y, Vi, and (Y Vi) using
the same tree

Impute Y, using the corresponding tree

individual tree for y, v Impute ,,using the correspondent tree,
5 . . .

individual tree for y;, including y, as a which includes the values of Y, already

complete variable imputed

A more detailed description of these options is now given.
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Option 1

In this case imputations are carried out individually using one tree for each variable

missing. For example, if two variables y, and y., are missing separately and together
as explained before, all the records with y, missing will be imputed using the tree
grown for that variable (y,) and all records with variable y,, missing will be also
imputed using the tree created for y,,. The records for which the two variables are
missing at the same time will be imputed in the same way, all y, using the tree for y,

and all the y,, missing using the tree for y,,. Since, this approach uses different donors

to impute different variables missing in the same record, joint distributions may not be
preserved. Additionally, it is more time consuming than other options since the
imputations are done separately using different trees, and records are imputed one at

the time.

Option 2

This option implies the use of a different imputation tree for each missing combination in

Table 5.6.3. That means, three different trees for imputation will be used. One tree for

imputing y, alone, one tree for imputing y,, alone and one tree for imputing the
combination of two of them, (y,,»,,). In the last case, the imputation is done
throughout a composite variable formed by the all possible combinations between y;,

and y,, as explained in Section 5.5.

This option has the advantage that the classification is especially created for the
combination missing (either for a single variable or for a combination of many variables).
This allows for the use of more accurate classification for each combination missing.
However, this procedure can be computer intensive since the number of trees required

increases with the number of missing variables (or combinations).

Option 3

This option comprises the use of one classification tree for imputing all the missing
combinations but expanding the terminal nodes depending on the variable being missing.
For example, in the case of two variables subject to missing information shown in Table

5.6.3, the process followed is,
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1. grow a tree for the combination missing, joint tree for ( y,;, ¥;,)
2. use that tree impute the combination ( y,, ¥;,) missing
3. using the observed information for y, expand the tree further to a new set of

terminal nodes for the other variable missing y,, and then impute that variable y,,
using the new set of terminal nodes obtained

4. as above, using the original tree generated for the combination ( y,, ¥,,) and using
the observed information for y,, expand that original tree further to a new set of

terminal nodes for the other variable missing y, and then impute that variable y,

using the new set of terminal nodes
This option has the advantage that only one tree is used, even when this is expanded.

However, the extension made implies a new procedure that can be more time consuming
than others since each terminal node of the original tree (tree for ( y,,, ¥,,)) is now used

as a new database for expanding it.

Option 4

Sometimes it may be a very difficult task to grow trees for each combination of missing
variables because of complexity or the time taken. Additionally, combinations
(composite variables) involving many variables may require the use of too many
categories making the analysis also more complex and more time consuming as well. An
option to solve this problem can be the use of one tree to impute all the possible
combinations missing in a data set. The selection of the tree to be used will depend on
which combinations are missing. One possibility is to use the combination with the
largest percentage of missing information.

This option has the advantage of using joint imputation since all the missing values in a
recipient are filled in using values from the same donor. However, the classification used
for imputation may be right for some combinations but not for others. It will depend on

how related the variables are.

Example
To illustrate this point, suppose that we have four different variables with three

different combination of missing values, say: 1) y, and y,,, 2) y,;, ¥;,, and y,;, and 3)
Yas» Yn, and y,. Suppose also that the percentage of missing information is as follows:

10% for the first combination, 3% for the second combination and 2% for the last

combination. In this case, it could be complicated and time consuming to grow trees for
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all of the three combinations. Instead, it may be easier to grow a tree for the
combination number 1 (y, and y,,) as this combination has the largest percentage of
missing information and is also present on the rest of the missing combinations, and then
use this tree for imputing. The imputation can be made either jointly for y, and y,, in
all the records in combinations 1, 2 and 3 and then individually for the rest of variables

not imputed yet y,, and y,,; or for all the variables missing in all the combinations, say
¥y, and y,, for the first combination; y,, y;,, and y,, for the second combination; and

Yiu» Y, and y,, for the last one; but using the same classification tree generated at
the beginning.
Additionally, any value missing individually (e.g. y, alone or y,,) can be imputed using

the same tree.
In any case, the task of growing trees is reduced from three trees to one tree. This

option can be useful for combinations with very small percentage of missing information

that involve very large number of variables or categories.

Option 5

One way of using a sequential procedure in the case of two missing variables is to grow a
tree for a single missing variable (say y;,) and impute that variable. Once that variable is
imputed, its value may be used as a complete covariate for growing the tree for the
other single missing variable, y,, and then impute that variable. In this case, the process

may become slow since many trees have to be created (as many as missing variables
are). Another disadvantage of this method is again the fact that the imputations for the
same record come from different donors, which can make the preservation of joint

distributions a more difficult task.
Additionally, there should be a pre-established order for the variables to be imputed,

that is, which variable is imputed first, which is imputed second and so on.

5.7. SPECIAL CASE, USING AUXILIARY VARIABLES WITH MISSING VALUES

Up to this point, we have been assuming that all auxiliary variables are fully observed,

however, sometimes that is not necessarily true. The case where missing information is
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present not only for the target variable but also for the auxiliary information is very
common. In this sense, the following procedure represents an alternative when using

classification trees for imputing in this kind of cases.

A way to use CART for imputation in the presence of missing covariates is, once a missing
value in a covariate is found, use a surrogate to classify it, impute it and keep going down
the tree. That is, once a tree is created using fully observed records, if the variable for
classification (variable x, ) is missing in a specific recipient, that record is classified by using
a surrogate variable and imputed immediately using information from the node in which this
is. Then, after imputing that value, the classification process continues, following the same
procedure. Once the tree has reached the terminal nodes, the imputation for the target
variable is carried out as in any of the cases mentioned in the last section.

The definition and selection of surrogates is explained in Section 2.3.5 in Chapter 2.

Example
To illustrate this approach, let us consider the following example. Suppose there is one

target variable »° of interest (for which estimation is required) which is a composite
variable created by the combination of two different variables y, and y,, missing at the

same time and four different independent explanatory variables x, with the following

categories
Table 5.7.1
Categories for an example of a set of variables

Variable Categories

v 1,2,3,4,5,6
X, 1,2

X, 1,2,3
X 1,2,3,4
X 0,1

Additionally, suppose that the records with variable y,° missing are as follows

Table 5.7.2
Example of a database with missing values

Records v X, X X3 Xy
1 missing 1 missing 4 0
2 missing 2 1 3 missing
3 missing  missing 3 2 1
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It can be noticed from the last table that missing values are present not only at the target

variable y,° but also in some of the independent variables used in the analysis for generating

the tree.

Suppose also that the corresponding classification tree generated using only observed x,, is

as follows

Figure 5.7.1
Example of a Classification Tree for its use in a Sequential Imputation

X2=(1,3)
N1
S-Xit=(1)
1
Xi4=(0) TP
N2 Nd
SXit=(1) 5X1=(2)
S-Xi3=(1,4)
XZ=(1) X1=13) Xi4=(1)
N3 ™ N5 N6
S-Xi3=(1,4) S-Xi4=(0)
S-Xi3=(2)
™ ™ TN ™S ™G ™7

It is important to point out that the tree can be generated using also incomplete covariates,

however, only observed information was used in this example in order to simplify the

process.

In this case, the classification tree is grown for the variable y,” based only on fully observed
variables x, . Once the tree is generated, the first node, N1, is defined by values 1 and 2 of
variable x,,, that is, all the records with values 1 or 2 for variable x;, go to the left node,
N2, and records with any other values for variable x,, (X, =3 in this case) go to the right
node, N4. If variable x, is missing, which is the case of record one of this example, that

record will be classified using the surrogate available in this case, which is s-x, = (1) (see
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Section 2.3.5 in Chapter 2 for definition and selection of surrogates). That means, if x,, is
missing, the record will go to the left node, N2, if x; =(1) and to the right node, N4
otherwise (x; =2). Once the record with missing values for x,, is classified, the value of
x., will be imputed using a value from a donor chosen from the node where that record ends
up (N2 in this case, as its value for x, is missing and x, =(1)). That is, the imputation will

be one of the values of x,, present in node 2 depending on the modal category of that node.
Following the same line, for the next classification step on the same record is to look at the

value of x,,. In this example x,, =0, then record one will go to N3 and then, depending on
the imputed value for x;,, , record one will end up either in TN1 or TN2.

Once the record is successfully classified, the donor for imputing the y.° variable missing

will be chosen from the correspondent terminal node where the recipient ends up, which are

TN1 or TN2 in this case. The same procedure is followed for each of the recipients.

The disadvantage of this approach is again the fact of using different donors to impute
different missing items in the same recipient, risking the maintenance of the joint
distribution, which is an important aspect to be considered when analysing census (or any)

data.

5.8. OPTION CONSIDERED IN THIS RESEARCH

As mentioned in Section 1.8 in Chapter 1, one of the aims of this thesis is to develop a joint
imputation procedure, which maintains the joint distribution as much as possible. In order to
achieve that, a good imputation procedure to implement could be a joint imputation process
with the imputated values coming from the same donor, guaranteeing the preservation of the
joint distribution since the relationship between variables is not distorted.

Additionally, since most of the variables used in this thesis are categorical variables, the use

of composite variables seems to be reasonable and easy to implement.

The approach undertaken in this work is then the use of classification trees in conjunction
with joint imputation using composite variables since it seems to be reasonable good in
efficiency, that is, in time consumed and precision of the results. Therefore, the option
implemented in this work is Option 4 where a joint tree is used for imputing the variables

missing together.
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Additionally, in cases where the pattern of missing information is very large and complex,
the approach in this thesis will tend to be the construction of classification trees for the
most important combinations in order to use these trees for imputing combinations with low
percentages of missing information and large number of variables, as described in Option 4 as
well. In practice, this represents a feasible and good option since the classification can be
carried out in the presence of missing covariates by the use of surrogates and only one tree is
required. However, due to time constraints, this option is not further investigated in this

research.

Option 4 can be divided into two different alternatives: when many variables are missing at
the same time but not individually (each of them separately) and when the variables are

missing at the same time and also individually.

In a two missing variables case, the first alternative is carried out using a composite variable
for the combination of the missing variables (combination 3 in Table 5.6.3) as is shown in the
example presented in Section 5.5. After this variable is created, a classification tree is grown
as if it was a single variable with number of categories equal to the number of possible
combinations of the single variables involved in the process. Since the imputation is carried
out for individual categories of a variable (composite variable), the properties of the
estimators proposed when using single imputation approach together with classification trees
shown in the univariate case are still valid when using a composite variable (see Section

5.11).

The second alternative uses the joint tree for imputing not only the combination of the
missing variables, but also the individual variables missing alone (combinations 1,2 and 3 in
Table 5.6.3). In this case, the process is carried out using the same tree for every

imputation, as in the last case, but as many times as there are missing combinations. For
example, in the case presented in Table 5.6.3, the joint tree for the combination (y;, ¥;,)

will be used for imputing the records with that combination missing at the same time as well

as for imputing the records with the individual variables missing alone.

5.9 IMPUTATION METHODS

As in the univariate case, each imputation method is applied at each terminal node. The

same three different imputation methods used in the univariate case are considered here.
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In order to explain the imputation methods used, let us assume that the variable of interest
is a composite variable. That is, in a two variables case, we can have combinations 1,2 and 3

presented in Table 5.6.3 as explained in Section 5.6.

In this case, we have that category j of variable y,” correspond to combination (j,,J,)

for variables y, and y,, respectively. Additionally, we define y to be the imputed value
of variables y,° obtained by any of the imputation methods. That is, »,° can be (}1,j2) for
combination 1 where only variable y, is missing, (jl,}z) for combination 2 where only

variable y;, is missing and (}1,}2) for combination 3 where both variables y, and y,, are

missing at the same time, as shown in Table 5.6.3.

The explanatory variables x, are still considered fully observed in this section.

1. Probability Distribution Method

As in any case with missing values, we want to impute y,° when this is missing from

S Ir =0,00).
Assuming that MAR holds and assuming independence between the units, we can write
F( 1 =0,5)= 1 (15 =1,%).
For a tree model it is supposed that f(y |r"=0,2,0)= f(y°|r", =112,0), where
S |r° =1,1,0) is the probability distribution of the observed values given the terminal

H

node ¢, f(y|rf, =0,2,0) is the probability distribution of the missing values given the

terminal node ¢. Then, the probability distribution method works as follows: given a specific

tree, and for each terminal node we use the estimated distribution of the observed variables

S =L1,0),i.e. P(y"|r =1¢) for imputing the missing values.

Since variable y° is categorical, we write P(yiczjc]nczl,t,()):pjct, where J°

represents the categories of the variable y° with j° e {1,2,...,J ‘} .
The probability Dy, can be estimated in three different ways depending on the missing

combination. That is,
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If the missing combination is combination 1 in Table 5.6.3, pjct is estimated by the

observed proportion of cases with category j of variable y»° given ¥y, =j,,

Pl = m

S (AT R ; o
—=———=, with m, , as the number of observed records with y,, = j, .
Jat

If the missing combination is combination 2 in Table 5.6.3, Py, is estimated by the

observed proportion of cases with category j° of variable y° given y,=j,

R m, I ¢ _ ;¢ )
o = ZM , with m_, as the number of observed records with y, = j,.
J /]lt = m,, Ji i

1= Ji

If the missing combination is combination 3 in Table 5.6.3, pﬂ is estimated by the
R my 7 c_. ;¢
observed proportion of cases with category j of variable y., Pe = Z_(_y—]),

i=1 mt

with m, as the number of observed records.

In other words, the probability distribution of y,° for the missing data is assumed to be equal

to the probability distribution of y.° for the observed data, which is estimated by any of the

options mentioned before depending on the combination missing.

2. Highest Probability Method (or Modal Imputation)

Under the same assumptions made for the probability distribution method, that is, MAR holds

and independence between units, and given a specific tree, this method imputes the value

that is "most likely” in that specific terminal node (i.e. has the highest probability) to all of

the records with missing values. Thus, the value to be imputed will be j“* and can be

divided in three cases

1.

If the missing combination is combination 1 in Table 5.6.3, the value to be imputed will
be ;< satisfying f’jc“, > f)jc i for all categories j¢ of the response variable.
If the missing combination is combination 2 in Table 5.6.3, the value to be imputed will
be j”* satisfying ﬁjc’, = j}jc i for all categories j° of the response variable.
Finally, if the missing combination is combination 3 in Table 5.6.3, the value to be
imputed will be j”* satisfying ﬁf‘; = f’j”t , for all categories j° of the response

variable.
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c*

Then, in this case, the imputation takes the value f/f =7

it could be more than one jc* value satisfying this condition. In this case, the method

selects one of the categories randomly with equal probabilities.

3. Nearest Neighbour Method

Given a specific tree and for each terminal node individually, distances between the
recipient and each possible donor are calculated and the “nearest” donor defines the
imputed value for that particular recipient. The nearest donor is determined by the set of
independent variables. That is, the distance between the two records (recipient and possible
donor) is calculated by adding one to the distance function every time different values are

found between them for the independent variables.

Then, given a recipient i' with values x,,, k=1,2,...,K for the variables x, , a donor i

with value y,° for the variable y, and values x,, k=1,2,...,K for the variables x, is
K
that record which satisfies min[d,,;| with i'enr,* and ie7, and d,, = Z[(xi.k # Xy )
! £=1

Then, the missing value v, will be imputed with the observed value y,° from the donor i,
7.5 =y¢. As explained before, 7,° can be (J,,,) for combination 1 as only variable y, is

missing, (j,,/,) for combination 2 as only variable y,, is missing and (j,,/,) for

combination 3 as both variables y,, and y,, are missing at the same time.

In this case we define A4, as the number of times unit i is used as donor, therefore,
A,=Y I(d, <d, foraller’).

ienr’
It is important to point out that in this case a record can be used more than once as a donor.
This means that if a specific record has the least distance to two different recipients, this
record could be used as a donor to fill in the missing values for both of the recipients.
Moreover, when a recipient has the same distance to two different donors, one of the donors

is randomly selected with equal probabilities.
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5.10 ESTIMATION OF POPULATION QUANTITIES

As in the univariate case, the estimation will be concentrated in population quantities rather

than superpopulation parameters.

As mentioned in Section 5.6 we will concentrate in the two missing variables case, that is,
only two target variables are subject to nonresponse and the rest of the variables, which are

auxiliary variables, are assumed to be fully observed.

In order to simplify the estimation procedure, we divide combinations in Table 5.6.3 into two
different cases. We call Case 1 the case where the two variables are missing at the same
time and they are not missing on their own, combination 3 in Table 5.6.3. This is a simple
case to treat since it can be seen as a univariate case where a composite variable is used. In
the same context, we call Case 2 the case where any of the three combinations mentioned
before can be present in the data, that is, the two variables can be missing individually and
together. This case requires a more complex formulation since we need to include all the

possible missing combinations in the estimation procedure.

Since we have two variables involved in the missing process, we may be interested in two

different estimators. First, we may want to estimate the total of cases with category j, of
the variable y, or equivalently, total of cases with category j, of the variable y,,. Second,
we can consider the estimator of the total of cases with category j, of variable y, and
category j, of variable y,, together, that is, the total of cases with category J¢ of the
variable »,°. However, we will concentrate in the second option, where the parameter of
interest is the total of cases with category j, of variable y, and category j, of the variable

y;, together.

5.10.1. CASE 1 - Variables missing at the same time only

Using the notation described in Section 5.2, we have a finite population

U:{U,.;i=1, 2,...,N} of N elements and a variable of interest y.°, i=12,..,N. The

aim is to estimate a population quantity, for example, the total ¥Y* = zyl.“ .
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It can be noticed that in this case the number of missing cases for some combinations in

Table 5.6.3 are zero, that is, @, —m, =0, b,—a, =0 and N,—-b, #0, in which case we

have a, = b, = m,.

Given that the quantity of interest is the total of cases [ with category j° for the variable

¥,°, which in our case is a categorical variable taking values j = {1,...,.]6} , this total can

be written as 8, =ZU:](yi = Jj).

Since not all the data is observed, this population quantity can be estimated as follows
m, W,

g}_c =Zl(yic =Jj)+ Z I(p=j°), where 3 is the imputed value of the variable y.°
i=1 i=m, +1

for the unit 7 if missing.

my

The first part of the expression, Z](yl.c = j°), can be obtained from the observed data,

i=1

: N,
while the second part of the expression, Z I(y = j°) is determined by the imputation

=, +1

method used.

5.10.2. CASE 2 - Variables missing individually and together

As before, the aim is to estimate the same population quantity, total of cases i with
category j¢ for the variable y, . In this case, all the records imputed either individually

(only one variable missing at the time) or jointly (two variables missing at the same time)

must be included in the total calculation.

It can be noticed that in this case the number of missing cases for all of the combinations in

Table 5.6.3 are different from zero, that is, a,—m, 20, b,—a, #0 and N,-b, #0, in
which case we have a, #m, and a, #b,. That is, the total of records imputed as category
J¢ will include records with category j, imputed and category j, observed, the records

with category j, observed and category j, imputed, and records with categories j, and j,

imputed.
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The number of cases in category j° of y»° can be represented as

g ::ZI((y“,yiz):(j],jz)), where  (j,/,)=j° or in a similar way,
U

8y =Z](y,‘ =(j1ajz)) where 3, = (1, ) -
U

As before, we distinguish between the three different combinations mentioned in Table

5.6.3. That is, given that ¥, =(¥,,¥,)=(j,,j,) We then have three different kinds of
imputed records. The first is when only y, is missing, in which case )i/l. =PV =Uis Jy),
the second case is when only y,, is missing, in which case )i/,- =(¥u>312) =i J,) and the

third case is when both variables y, and y,, are missing at the same time, in which case

y,’ = (.)’>i195}i2) = (jlﬂjz) .

Since not all the data is observed, this population quantity can be estimated as follows

gjc =Z’_n:](yi =(j1>j2))+ i ](.):}i :(jlajz))+i I(f’i :(jl’jz))+ i ](i‘ =(j17j2))

i=m+1 i=a+1 i=b+1

K N,
or in a similar way, g?jc =Zl(yic =)+ Z I(yS =Jj°), where p° is the imputed value

i=1 i=m+1

of the variable y,° for the unit i if missing.

Again, the first part of the expression, Z[ (¥, =Jj°), is based on the observed data, while

i=1

Nl
the second part of the expression, Z I( f/ic = j) is determined by the imputation method

i=mg+1

used.

5.11 PROPERTIES OF THE ESTIMATORS

Let us examine the bias properties of the total estimator presented in the last section.

To avoid complexity, we shall not attempt to consider variance properties as in Chapter 3.
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We are assuming model-based approach, where P*(y=j|%,), P (y,=J|x,) and
P*(y, =J,| ) represents the probability that y° takes the value ;¢ in a specific
terminal node ¢ given by the model & , probability that y, takes the value j, in a specific
terminal node ¢ given by the model £ and probability that y,, takes the value j, in a
specific terminal node ¢ given by the model & respectively.

We are also assuming that variable y,°, y, and y,, are missing at random within terminal
nodes, that means, P (yf =j|t,rf =) =P (y} = j |t,rf =0),
Pé(yil = ji |67, =1):P§()’n = ji |t,r, =0) and

P (y, = j, |t,r, =1)=P°(y, = j, |t,7, = 0) and holding 7, 7, and 7, and x, as fixed.

5.11.1. Probability Distribution Imputation Case

Case 1
In this case, y, and y,, are missing at the same time and not individually, that is,

combination 3 in Table 5.6.3.

Our interest is to obtain an estimator for the total 8 of cases with category j, of y, and

category j, of y,, . In this case, we can use the estimator g‘jc defined in Section 5.10.1.
The bias of the estimator is given by

Eg[ [éjc '“gjc]:Ef,l [Zl:il(yic =j)+ Z’ I(yf ZJC)J_ZZ[]()’,‘C =]'C)}

f=m, +1 t =l
It can be noticed that this case can be treated as univariate case where the missing variable
is a single variable yf with categories {l, 2,...,]’6,...5.]‘} . Therefore, the results are the

same as in the univariate case (see Section 3.6.1 in Chapter 3).

Case 2
In this case, variables y, and y,, can be missing at the same time and also individually.

That is, combination 1, combination 2 and combination 3 together.
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As in case 1, we want to estimate the total of cases with categories j, and j, of variables
Y, and y,, respectively, that is, the number 8 of cases with category j of y. We use

the estimator defined in Section 5.10.2. The bias of this estimator is given by the expected

value of the difference between the estimator and the parameter.

Let us define category (J,,,/,,) @s the specific category to be estimated. So, we would like

to estimate the number of records for which 3. = (j,,, /,,)

r ] =l i=m, +1 t =l

Eﬁ][éjc "gjc] = Eg]{Z[Zl](yic =j)+ 2 ]()A)ic :jc):l"'zzl(yic :jc)jl

i=m, +1 i=a,+1

=E§1 !:Z[ZIO}, =V Y )+ Z I(i‘ = (J’}myiz))"' z [(j}i = (yn:j’iz))j”

+E§1 {Z{ Z I(f)i = (.)A}ilh)/}iz))_zj(j;i = (%‘15%‘2){”

t | i=b+1

a, . b, R N, R
=E§1 [Z': z ](5;, :'(}A)il’yiz))"' z I(y; ‘_‘(y,-pj}iz))'}‘ z [(.)7, Z(y“’j}iZ)):H

t | i=m+1 i=a,+1 i=b+1

—Ey IZZ[ Z I(y, = (yil’yiz))jl:l

t | i=m+]
b,

=E<=,1 {Z{ Z I(jil = J1 (Ui, = Joo) + Z 1(j, =j10)1(.}i2 =J'20)jH

t | i=m+1 i=q,+1

+E§1 I:Z[ Z [(}n =j10)[(}i2 = Ja) Z 1y = Jio) 1 zjzo)ﬂ

t | i=h+1 i=m, +1

=E

{Z{ > E[1G, =) [FUn = 1)+ 3 10, = 30)E, [ 1 =j20)]ﬂ

t | i=m+ i=a,+1

+E§ ’:Z[ Z E, [I(}il = le)I(.}iQ = jzo)]_ Z 1y = jo) U = jzo):‘J

t | i=b+1 i=m, +1

assuming independence between units

t i=m,+1 i=a,+1

q, b,
- Ef: [Z[ Z p(]|03./30)/fzo!j(ji2 =j20)+ Z *p(jm,J'zo)/fmf](jit :j10)+(N’ _bf)pfw’pf:of:):l

—Eé ,:Z Z I(jy = i) (p = jzo)}

t i=m+l
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= E [Zl:p(ho 2J20) Jagt Z [(]’2 ]20) p(!]o]o)/,’m’ Z I(‘]‘] ]]0)+Z[(N b)pho’p/,o :@}

i=m,+1 i=a,+1

_E& I:Z Z 1(jy = j1)1(in = ]‘20)}

t i=m+1

i=a, +1

a, b,
- [Z ':Ea [ﬁ(jw’jzo)/j:of:lEi [ Z 1, :jzo)}rEa [ﬁ(jm,jm)/jmr]Eé { Z 1(Jy :jlo)]ﬂ
t i=m, +1

+Z[[(N, S)AVHIAVIE Z E, [1y = jiM (i = jm)]}

i=m, +1

- Z[leo/jzo'é (a' —_m’)})jzoé Jzo/!oté (b —a )P : +(N =b )Pm’éP : _._(N —m )me Jaot :I

t

Jot

= Z[ijé (a’ —m, )13!'20é _’-P./Ami (bf -_(/I’)‘mei + (]vt _b )P é})J : (N -m ) St Jzof :l =0

It can be noticed that the estimator of the total of cases with combination (j,,j,) of

variables y, and y,, is an unbiased estimator in the case where the three of missing

combinations mentioned before are present in the data and only one tree (the joint tree) is

used for imputing all the missing records.

5.11.2. Highest Probability Imputation Case

Case 1

Since the missing information is present only for the combination 3 and we are interested in

an estimator of the total of cases with category j, of y, and category j, of y,,, we use

the composite variable . to estimate that total. In order to assess if this estimator is

unbiased, we have to calculate

E,|%. -2, |=E [Z[Zi(y, O >J—Z§1(yf=f)}

t i=m;+1 t =l
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As in the Probability Distribution case, this case can be treated as univariate case where the
missing variable is a single variable y,° with categories {1,2,...,jc,...,Jc} . Therefore, the

results are the same as in the univariate case (see Section 3.6.3 in Chapter 3).

Case 2

in this second case, we can be in the presence of Combination 1, Combination 2 and
Combination 3 together, that is, variables y, and y,, can be missing at the same time and

also individually.

As before, we want to calculate the expected value of the difference between the estimator

and the parameter. That is,

m, N, N,
E|&.-g, ] B [Z[Zl(y =i+ 2 1Gf =f>}§,3§“yf =j”>}
i=m, +1 i=a,+1

- K, [Z{Zl(ﬁ =)t X IG =Gy )+ Y16, =<y,-wﬁiz)>ﬂ

t | i=h i=1

+E€ [:Z!: Z [(i' = (j\}ilﬂj\}iZ))_Z’](.)—}i = (ymy,'z))ﬂ

t | i=m+l =a,+1 i=b,+1

a, . b, . N, .
=E§ {Z'ﬁ Z ](j}i =(.i>i1’yi2))+ Z ](5}1‘ = (yilr.f’iz))"‘ Z I(j}i 2(5’,'1»)’},'2))]'

t | i=m+1

_Eé I:Zl: Z I(y, = (yil’yiz))}}

t | i=m o+l i=a,+1

a, bl
=E§ [Z{ Z I(ju/j20 = JiwH U = Jao) + Z I1(j, = jxo)l(jzr/jw zjzo)ﬂ

t | i=h+1 i=m, +1

N, N,
+E§ [Zl: 2 I(jlt/jzo :jlo)l(th/jm = Jao)~ Z 1(jy = 1) =j20)}:‘

t i=m, +1 i=aq,+1

a; b{
:Eg l:Z}:[(jl*t/jzo = Jio) Z 1(j;, :j20)+](j2t/j10 = J20) Z 1(j, :jlo)}}

+E§ [Z[(Nt -“b’)l(jl*f/,izo = j}O)[(j;t/jm = jzo)]:]

t
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_Eé [Z{ Z 1(jy = J1o) U :jzo)j”

t | i=m+1

t i=m, +1 i=a,+1

=ZI:Eg !:](jl*t/jzo :jlo) Z [(jiz zjzo):""Eg [I(j;t/jm :jzo) Z’ [(jil =j10):H

H X[, =)E [ 1G5, = )1y, = jzo)]ﬂ

— ZE ':Z I1(j, = J'lo)[(jizzjzo)]:H

=nt +1

=Z{E£ l: i I(jiz =jzo)]Eg I:I(J';/jm =j10):]}

i=m, +1

Z[ l:Z 10y = Jm)J §[I(j;t/jm :jzo):]:'

i=a, +1

H Y W =BYE [ 1y, = ) g, = jzo)]ﬂ

- ZE !:Z I(jy = Sk U, :jzo)]:u

i=m, +1

assuming independence between units,

=Y [(@,=m)P, 2P (i, = jio)+ (b, = a )P, P (i = o) |

t

+Z[(N b)Pé(jlt JIO)Pi(.]Zt JZO) (N m) Jao JIO]

Given the results for the assessment of bias in the univariate case (i.e. the estimator of the

total of cases in category j is not an unbiased estimator), there is not reason why we would
think that the quantity presented above as the estimation of the bias in the multivariate case

is zero. Therefore, we can say that the estimator of the total of cases with y, = j, and

Vi = J, 1s not an unbiased estimator in the case where the three missing combinations
mentioned in Table 5.6.3 are present in the data and only one tree (the joint tree for
¥, and y,, together) is used for imputing all the missing records. In this case, the bias will

depend on probability of the modal category in each specific terminal node given by the

model and also on the number of records missing within each category.
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5.11.3. Nearest Neighbour Imputation Case

Case 1

Since this case correspond to Combination 3 only, for the total of cases with category j¢ of

the variable y.° we have

E§1 [éj_gj]zEél[Zi:i](yi =)+ Z I(3, :j):’_zzj()’i :J)J

i=m,+1 t =1
Therefore, we are again in presence of a univariate case, which was considered in Section

3.6.4 in Chapter 3.

Case 2

Since this case includes y, and y,, missing at the same time and also individually, we have

E[8,-2,]-E [Z[Zf(y =)+ Y16, =j>}}jz'1<y,. =j)}

i=m,+1 t =1

=E§ 1:2[21(371 = Vs Y D+ Z ](i‘ = P> Y )+ Z I(.f)i :(ynaj’iz)):H

i=m,+1 i=a,+1

+E§ [Zl: Z I(J%i = (Jﬂ’mf’iz)) "Zl(yi = (yz'l’yl'z)):”

t | i=h+1

t | i=m41 i=q,+1 i=b+1

-E, [Z{ S IG =Gy Y 16, = I+ Y. 16, =(&,.1,&,.2>)ﬂ

mEE, {Zl: Z 1y, = (J’ilsyiz))J:'

t | i=m+1

Z [(.}il = 1 (in = Joo) + Z I(J, =j10)](.}i2 zjzo)}J

i=m, +1 i=a,+1

e

2

+E, [Z[ > IGy = 5l G = Ju) = 3. 13 = (jw,jzo))ﬂ

t | i=p,+1 i=m, +1

=E, {Z [Z ATy = S0 Uiz = Jao) + Z BI(ji = i)z = J'zo)ﬂ

t i'=1 i'=1
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t i'=1 i=m, +1

+E§ [Z!:Zi Cod(Jin = 1)Ly = Joo) = Zl 1(, :j10)1(ji2 :jzo)}}

= Z[i Ai'Eé; [I(jm = le)I(ji'Z = jzo)] +Z Bi'Ei [](jm = le)I(-ji'Z = jzo)]:i

i'=1

+Z {Z[ Ci'EE; [](ji'l = j]O)](ji'Z = jzo)] - Z Eg [I(jil = jl())](jiZ = jzo)]:l

¢ i=m, +1

given the definition of 4., B, and C,, number of times unit 7 is used as specified below,

A= > I(d,<d, forallle(,m,)).

ie(m,+1,a,)

B.= Y I(d,<d, forallle(,m,)).

ie(a,+1,b)

C.= > I(d,<d, foralle(,m)).

ie(b,+1,N,)
and since each donor is used only for imputing cases within the same terminal node

- Z [(a’ —m, )'ijofé 'Pl'zofé + (b’ —4, )szofé P,

Jiot
t

*+(N,~b)P, ‘Pt —(N,—m)P, P *]=0

10of © Jaof Jiot T Jaof

It can be noticed that in this case, the estimator of the total of cases with y, = j, and

¥;» = J, is an unbiased estimator even when only the joint tree for (y,,y,,) is used for

imputing the three different combinations of missing information presented in Table 5.6.3.
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CHAPTER 6

MULTIVARIATE CASE
SIMULATION

6.1 INTRODUCTION

As in Chapter 4, the aim of this chapter is to describe the simulation procedure followed
when evaluating the imputation performance given the use of classification trees but
imputing more than one variable at the same time. Several simulations were carried out
using the same database used in the univariate case, which contains synthetic missing values.
As well as in the univariate case, in the multivariate simulations different classification trees
and imputation methods were used in order to compare the effect of these on the final
results. Additionally, different ways of evaluation were applied in order to compare the
different procedures.

Moreover, biases and variances were estimated in order to evaluate the properties of the

estimators used.

6.2 SIMULATION PROCEDURE

The simulation procedure carried out for the multivariate case is basically the same
procedure employed in the univariate case but imputing more than one variable at the same
time. Therefore, since most of the features were described in Chapter 4, a review of the

most important aspects and description of new ones will be shown in this section.

149



1. Generation of the synthetic database. The database used in the multivariate case is the

same used in the univariate case.

2. Growing trees. As in the univariate case, different trees were grown for each target

variable, but in this case using composite variables describe in Section 5.5 in Chapter 5.

2.1 For each target variable (composite variables), three different tree-sizes were used
in the analysis in order to compare the effect of the size of the tree on the
imputation results. The selection of the sizes was the same procedure explained in

Section 4.5.2 in the simulation chapter for the univariate case.

2.2 After all the trees had been grown, the records with missing values in the target
variables were dropped into each tree to find out which terminal node they will end
up in order to carry out with the imputation. This procedure was followed for the

different tree-sizes.

3. Imputing. After the different trees were generated, imputation was carried out

independently for each of the trees for the composite variables used.

3.1 The three different imputation methods were combined with the three different
tree sizes to obtain 9 different imputation results for each target variable. This was

made using trees grown with the complete database.
3.2 For each of the trees, the imputation was carried out independently into each

terminal node. Then, the results were summarised in order to compare them with

the results from other trees.

4. Evaluation Different graphs, tests, biases and variances were used for evaluation of the

imputation.

4.1 Cross-tabulations between the imputed values and the real values were obtained for

all of the possible combinations of tree sizes and imputation methods.

4.2 Graphs were created for any of the above tables in order to compare preservation of

individual marginal and joint distributions and preservation of individual values.
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4.3 Tests were also used for each of the cross-tabulations in order to confirm the
preservation of individual marginal and joint distributions and preservation of

individual values.

4.4 Biases and variances were estimated for most of the composite variables imputed in

order to assess the properties of the estimators used.

6.3 DATA

6.3.1 Data Description

The database used for the analysis of the multivariate case consists basically of the same
database used for the univariate case (see Section 4.3.1). The only difference with respect to
the univariate case is the variables used as target variables in the analysis.

in the multivariate case, many variables can be missing at the same time. Therefore, the
target variables used in these multivariate simulations are basically combinations of two or

more single variables.

Because the imputation process in this work requires the generation of a tree for the target
variable as a first step, and since those trees are grown for single variables, composite

variables were created.
As explained in Section 5.5 in Chapter 5, a composite variable is defined by the cross-
classification of two or more single variables with categories defined by the combination of

the categories of each of the variables involved.
Since all variables on the database are categorical, combinations of these variables also

correspond to categorical variables.

A list of the composite variables used in this thesis for the multivariate analysis is shown in

Table 6.3.1, including a description of the combinations and the definition of their new

categories.
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Tables 6.3.1

Composite Variable Definitions

Table A
Country of Birth - Ethnic (COB - ETHNIC)
Cob Ethnic Cob Ethnic New Code
1 1 UK White 1
1 2 UK Any black including mixed 2
1 3 UK Asian 3
1 4 UK China / Other including other mixed 4
2 1 Europe / USA White 5
2 2 Europe / USA Any black including mixed 6
2 3 Europe / USA Asian 7
2 4 Europe / USA China / Other inctuding other mixed 8
3 1 Indian Sub-continent White 9
3 2 Indian Sub-continent Any black including mixed 10
3 3 indian Sub-continent Asian 11
3 4 Indian Sub-continent China / Other including other mixed 12
4 1 Africa / Caribbean White 13
4 2 Africa / Caribbean Any black including mixed 14
4 3 Africa / Caribbean Asian 15
4 4 Africa / Caribbean China / Other including other mixed 16
5 1 Asia / Central and South America / Other White 17
5 2 Asia / Central and South America / Other Any black including mixed 18
5 3 Asia / Central and South America / Other Asian 19
5 4 Asia / Central and South America / Other China / Other including other mixed 20
Table B
Country of Birth - Long term lllness (COB - LTILL)
Cob Ltitl Cob Ltiil New Code
1 1 UK Has a health problem 1
1 2 UK Does not have a health problem 2
2 1 Europe / USA Has a health problem 3
2 2 Europe / USA Does not have a health problem 4
3 1 Indian Sub-continent Has a health problem 5
3 2 Indian Sub-continent Does not have a health problem 6
4 1 Africa / Caribbean Has a health problem 7
4 2 Africa / Caribbean Does not have a health problem 8
5 1 Asia / Central and South America / Other Has a health problem 9
5 2 Asia / Central and South America / Other Does not have a health problem 10
Table C
Ethnic - Long Term lllness (ETHNIC - LTILL)
Ethnic Ltill Ethnic Ltill New Code
1 1 White Has a health problem 1
1 2 White Does not have a health problem 2
2 1 Any black including mixed Has a health problem 3
2 2 Any black including mixed Does not have a health probtem 4
3 1 Asian Has a health problem 5
3 2 Asian Does not have a health problem 6
4 1 China / Other including other mixed Has a health problem 7
4 2 China / Other including other mixed Does not have a health problem 8
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Table D

Country of Birth - Ethnic - Long Term Hiness (COB - ETHNIC - LTILL)

America / Other

; : . : New
Cob Ethnic Leill Cob Ethnic Ltill Code

1 1 1 UK White Has a health problem 1

1 1 2 UK White Does not have a health problem 2

1 2 1 UK Any black including mixed Has a health problem 3
1 2 2 UK Any black including mixed Does not have a health problem 4
1 3 1 UK Asian Has a health problem 5
1 3 2 UK Asian Does not have a health problem 6
1 4 1 UK China / Other including other mixed Has a health problem 7
1 4 2 UK China / Other including other mixed Does not have a health problem 8
2 1 1 Europe / USA White Has a health problem 9
2 1 2 Europe / USA White Does not have a health problem 10
2 2 1 Europe / USA Any black including mixed Has a health problem 11
2 2 2 Europe / USA Any black including mixed Does not have a health problem 12
2 3 1 Europe / USA Asian Has a health problem 13
2 3 2 Europe / USA Asian Does not have a health problem 14
2 4 1 Europe / USA China / Other including other mixed Has a health problem 15
2 4 2 Europe / USA China / Other including other mixed Does not have a health problem 16
3 1 1 indian Sub-continent White Has a health problem 17
3 1 2 Indian Sub-continent White Does not have a health problem 18
3 2 1 Indian Sub-continent Any black including mixed Has a health problem 19
3 2 2 Indian Sub-continent Any black including mixed Does not have a health problem 20
3 3 1 Indian Sub-continent Asian Has a health problem 21
3 3 2 Indian Sub-continent Asian Does not have a health problem 22
3 4 1 Indian Sub-continent China / Other including other mixed Has a health problem 23
3 4 2 Indian Sub-continent China / Other including other mixed Does not have a health problem 24
4 1 1 Africa / Caribbean White Has a health problem 25
4 1 2 Africa / Caribbean White Does not have a health problem 26
4 2 1 Africa / Caribbean Any black including mixed Has a health problem 27
4 2 2 Africa / Caribbean Any black including mixed Does not have a health problem 28
4 3 1 Africa / Caribbean Asian Has a health problem 29
4 3 2 Africa / Caribbean Asian Does not have a health problem 30
4 4 1 Afnca / Caribbean China / Other including other mixed Has a health problem 31
4 4 2 Africa / Caribbean China / Other including other mixed Does not have a health problem 32
5 1 1 ﬁxaer/icge?t(;itl'.::d >outh White Has a health probtem 33
5 1 2 :::,‘Zéccae?tor:;::d South White Does not have a health problem 34
5 2 1 ﬁ::‘?eécge?tc;i:\::d South Any black including mixed Has a health problem 35
5 2 2 ::rlmaer/iccae?t(')'?tl'.::d South Any black including mixed Does not have a health problem 36
5 3 1 ::r]uir/icge;“(;:tl'.::d South Asian Has a health problem 37
5 3 2 :;Zécge;\%:r:::d south Asian Does not have a health problem 38
5 4 1 :fr‘}aer/ic(;e;]t(gilg::d South China / Other including other mixed Has a health problem 39
5 4 2 Asia / Central and South China / Other including other mixed Does not have a health problem 40

6.3.2 Pattern of missing information

The second stage involved finding the pattern of missing information present in the data in

order to create artificial holes for evaluating the imputation process. Since the database

used in this chapter is the same used in the univariate case, the pattern of missing

information is still valid as it includes all the possible combinations of missing information,

i.e. two, three and more variables missing at the same time.

As mentioned in Section 4.3.2 in Chapter 4, the size of the database used (original database)
is 222872 records with 23 variables. The total number of records with missing information is

24116, which represents 10.82 % of the original database (222872 records).
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Table 6.3.2.1 includes the combinations of variables, the total numbers of missing cases and
percentages of missingness used in the multivariate simulations. The complete list of

combinations of missing variable with their respective percentages can be see in Appendix 1.

Table 6.3.2.1
Combinations and percentages of missing information

used for the simulations in the multivariate case

Variable
g?%?:g Ethnic Loﬂﬁ‘ l’:srm Total Perc.
465 0.74
225 1.04
159 2.16
464 2.16

6.3.3. Databases used in the analysis

Table 6.3.3.1 shows the different sizes of the databases (original, complete and synthetic)

and percentages of missing information as also explained in Chapter 4.

Table 6.3.3.1
Databases sizes and Percentages of missing information

Database Size Complete Information  Missing Information
Original Database 222872 198756 10.820%
Complete Database 198756 198756 None
Synthetic Database 198756 177236 10.827%

It is important to point out that the analysis could be done including missing information for
the covariates, however, for simplicity, only complete information is included in the
generation of the tree. Additionally, a previous study by Mesa, Tsai and Chambers (2000)
shows that the inclusion of missing information for growing the tree seems to have no impact

on the results when using the same imputation procedures used in this thesis.

Every time a combination of variables with missing information is chosen to define a target
variable, the remaining information also changes since different variables are left as
covariates (auxiliary variables). Therefore, depending on the combination used as a target,
the databases used for the analysis (growing trees, etc.) are different.

The sizes of the four databases used, depending on the target combination studied, are

shown in the next table
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Table 6.3.3.2

Databases sizes for the multivariate case

Variable Database Size Missing Information
Any 198756 (complete records) None
Ethnic - Ltill 198756 - 465 = 198291 (Records with Ethnic and Ltill missing) Rest of the variable
Cob - Ltilt 198756 - 225 = 198531 (Records with Cob and Ltill missing) Rest of the variable
Ethnic - Cob 198756 - 159 = 198597 (Records with Ethnic and Cob missing) Rest of the variable

Ethnic - Cob - Ltill 198756 - 464 = 198292 (Records with Ethnic, Ltill and Cob missing) Rest of the variable

It is important to point out that for simplicity, only one database is used for growing the tree
independently of the missing combination studied. The database used is the one containing
only fully observed records for all the variables and it is the "complete database” shown in

Table 6.3.3.1.

6.4 CLASSIFICATION

Once the database is ready, the first step of the process is the classification of the units into
terminal nodes using CART. In this case, all features related to classification are exactly the
same as used in the univariate case with the difference that the target variable is now a

composite variable especially created for this task.

6.4.1 Splitting Criterion

The composite variable used as a target variable is basically treated as a single categorical
variable as it is a product of the combination of two or more single variables, therefore, the
procedure followed for generating the tree was exactly the same as in the univariate case.

That is, the splitting criterion used consists on an impurity function defined by the Gini

index. Again, costs for misclassifying any class j, as a class j, are taken equal to 1 for all

S # Ty

6.4.2 Class Assignment Rule
In the multivariate case, when a composite variable is classified, two or more variables are

classified at the same time. Thus, each terminal node is assigned a specific category of the

composite variable, which is a combination of categories of two or more variables. For
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example, if a terminal node has been assigned category 5 of the composite variable Ethnic-
Long term illness in Table 6.3.1 C in Section 6.3.1, that means, the individual variables
Ethnic and Long term illness are assigned categories 3 and category 1 respectively. The class
assignment rule used in the multivariate case is the same used in the univariate case,

plurality rule, see Section 4.4.2.

6.4.3 Surrogates

As mentioned in Chapters 2 and 5, surrogates could be very useful tools for classification for
imputation. They can be used for classifying elements with missing information in the
auxiliary variables, allowing for the use of as much information as possible; and also, they
can be used for imputing in a sequential way.

The use of surrogates for imputation is explained in Section 5.7 in Chapter 5, however,

simulations for this aspect are not carried out due to time constraints.

6.5. TREE PROCESS

6.5.1 Growing the tree

Once the variable to be imputed is selected, a tree for that variable is generated. The
process of growing a tree is as explained in Section 4.5.1 in the univariate case. The only
difference is that the target variable is now a composite variable, which includes two or

more single variables.

6.5.2. Selection of the tree size

The tree size selection was carried out following the same procedure explained in Section
4.5.2 in Chapter 4, finding a kind of compromise between misclassification rate and number
of terminal nodes. Thus, three different tree-sizes were selected for each target variable
(small, medium and large). These sizes depend on the output obtained for each variable from
the software. In many cases, the optimal tree given by CART was included as one of the trees
used for that target variable. In the cases where the optimal tree was too large (with too
many terminal nodes), this was not included because of processing time. The tree sizes for

the different target variables used in the multivariate case are as follows:

156



Table 6.5.2.1

Tree sizes for the multivariate case

Size of the trees

Target variable Name (number of terminal nodes)
COB-ETHNIC COBETH 10 - 18 (optimal)
COB-LTILL COBLTI 8 - 15 - 28
ETHNIC-LTILL ETHLTI 4 - 15 - 27

COB-ETHNIC-LTILL COETLT 5-12 - 23

Since the optimal tree given by CART is considered to be "the optimal” in terms of complexity

and misclassification rates, trees larger than the optimal size were not used.

6.5.3. Classifying the records for imputation

After the tree is generated, the records with missing information in the response variable
were dropped down the tree in order to identify the terminal nodes (imputation classes) in

which those records end up. This procedure is explained in Section 4.5.3.

6.6. IMPUTATION METHODS

Once the classification tree is constructed, each imputation method is applied independently
within each terminal node of the tree. The final imputation results are evaluated for the tree

as a whole by totalling the imputation results obtained at each terminal node.

The three different imputation methods used in the univariate case were also used in these
simulations for the multivariate case. These are Frequency Distribution method, Highest
Probability method and Nearest Neighbour method and they are recalled in Section 5.9 in

Chapter 5 as well.

6.7. EVALUATION OF THE IMPUTATION PERFORMANCE

As described in Section 4.7 in Chapter 4, the imputation procedure can be evaluated from
different perspectives. Since in this case the imputation is done for more than one variable

at the same time, the evaluation of the performance of the imputation must take into

account the following aspects,
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v' A comparison of the joint distributions for the combination of variables
v" A comparison of the individual values

v' Assessment of the properties of the estimator used

In general, different comparisons can be done depending on the area to be evaluated.

1. To assess the impact of using a classification tree for imputation, comparisons of the
results of imputation using trees and not using trees can be done.

2. To evaluate the performance of the different imputation methods when using
classification trees, comparisons between the results obtained using different imputation
methods can be done.

3. To evaluate the properties of the estimators used in the analysis, bias and variance can
be estimated.

4. In addition, if more details want to be given, comparisons can be made between the
different categories of the variable being imputed.

It is important to point out that in this thesis, the main aspect to be analysed is the

differences in the imputation performance regarding the use of classification trees for

forming the imputation classes.

In order to evaluate these aspects, three different methods were used:
v Graphical comparison
v' Test of agreement

v"  Biases and variances

6.7.1. Graphical Comparison

Both kind of graphs, for comparing joint distributions and individual values, used in the
univariate case (see Section 4.7.2) were also employed in the multivariate case. Then, a
group of graphs, for each combination between the different tree sizes and the different
imputation methods were obtained in the multivariate case. They were used to compare the
imputation performance when imputing more than one variable at the time using different
tree-sizes and different imputation methods.

Cross-tabulations between the real and the imputed values were previously obtained for

producing the graphs.

6.7.2. Test of agreement

In order to confirm the results obtained from the graphs described in the last section, both

statistics Wald statistics and Diagonal statistics described in Section 4.7.3 were also
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employed in the multivariate case. The Wald statistics was used for comparing joint
distributions while the Diagonal statistics for comparing individual values.

The outcomes are presented in the results section.

6.7.3.Biases and variances

In order to assess the properties of the estimators used, bias and variance were estimated.
As mentioned in Chapter 5, in this case, estimators of the variance were not obtained (not

even in theory).

Simulation for the biases and variances
The use of simulation to estimate the biases and variances in the multivariate case were
carried out in the same way as the simulations explained in the univariate case (see Section

4.7.4 for more details).

1. Generation of the databases. The databases used in the multivariate case were the
same databases (sample databases) generated in the univariate case. The 1000 sample
databases created in the univariate case were big enough to include the multivariate

missing cases studied in this thesis.

2. Generation of the synthetic holes. As in the univariate case, the patterns of missing
information for the multivariate missing case studied in this thesis were replicated on the
1000 sample databases at random as explained in Section 4.7.4 in Chapter 4. The

composite variables used and their missing percentages are shown in Table 6.3.2.1.

3. Classifying the records for imputation. After a classification tree was created for each
composite variable used in the study, each database was divided in the corresponding
number of terminal nodes depending on the size of the tree used. Records with missing
information for the target variable were classified in order to generate the pool of
recipients to carry out the imputation procedure. As in the univariate case, since the size
of the tree does not seem to have a major impact on the imputation results, only one

tree size was used for the simulations of biases and variances described in this chapter.

4. Imputation. After having the set of donors generated by the tree and recipients
generated in point 3 before for each database classified into two different groups, the
imputation procedures were applied in order to obtain estimates for the biases and
variances. The results for each group (terminal nodes) were totalled and comparisons for
trees as wholes were obtained. Then, 1000 estimates were calculated (each for each

sample database) in order to measure biases and variances.
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It is important to point out that since Nearest Neighbour procedure is very much time
consuming, for this part of the simulations only two imputation methods, Frequency

Distribution and Highest Probability, were used.

5. Calculation of the biases and variances. Once the 1000 imputations were obtained for
the two different imputation methods used in the multivariate case, biases and variances
as described in Section 4.7.4 were obtained. Results and the correspondent comments

are presented in the results.

6.8.RESULTS

This section introduces the most notable findings obtained from the analysis regarding the
use of tree-based models for imputation in the multivariate case. As in Chapter 4, we divide

it in different sections as follows

6.8.1 Using trees

Table 6.8.1.1 shows the values of the Wald statistic for the different target variables,

different imputation methods and different tree sizes

Table 6.8.1.1
Wald Statistic and P-values for the multivariate case
Wald Statistic P-values
Variable  Tree Size d.f. Freq. Dist. High. Prob. Near. Neig. Freq. Dist. High. Prob. Near. Neig.
cobeth 10 19 3.49 26.00 4.00 0.99 0.13 0.99
18 19 3.54 26.00 2.83 0.99 0.13 0.99
No Tree 19 4,07 26.00 5.18 0.99 0.13 0.99
coblti 8 9 4.01 52.75 2.78 0.91 0.00 0.97
15 9 6.86 50.75 8.15 0.65 0.00 0.51
28 9 7.90 48.32 8.58 0.54 0.00 0.47
No Tree 9 2.17 73.00 10.19 0.98 0.00 0.33
ethiti 4 7 3.43 108.28 10.16 0.84 0.00 0.17
15 7 4.66 86.52 10.55 0.70 0.00 0.15
27 7 7.80 87.66 3.83 0.34 0.00 0.79
No Tree 7 2.58 170.00 8.04 0.92 0.00 0.32
coetlt 5 39 24.98 184.90 29.58 0.96 0.00 0.86
12 39 23.08 183.90 32.70 0.97 0.00 0.75
23 39 26.40 181.56 24.44 0.93 0.00 0.96
No Tree 39 17.87 193.00 25.03 0.99 0.00 0.95
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As explained in Section 4.8.1, small values of the Wald statistics (or equivalently, big values
for the p-value) suggest no evidence to reject the hypothesis that marginal distributions are
maintained and vice versa. Since the degree of freedom for each variable varies depending

on the number of categories (i.e. each variable has a different critical value), we simplify

the analysis by using p-values.

in terms of preservation of marginal distribution (joint marginal distributions in this case), it
can be seen from this table there is not major impact when using trees. The values of the
Wald statistics (p-values) indicate that the marginal distributions are maintained even when
trees are not used, except for the cases in the Highest Probability method. That is, in the
Highest Probability method, none of the distributions is preserved in any of the cases (using
or not trees). However, it can be said that the use of trees in the case of Highest Probability
method improves the performance of the imputation in term of preservation of distributions,
as it will be explained in the next example.

Graphical representation of comparisons between real and imputed distributions can be seen

in Appendix 4.

In the next example, Tables 6.8.1.2 show a cross tabulation between real and imputed values
for the variable Ethnic - Long term illness using Highest Probability imputation method, two
different tree sizes and no tree. In all the tables, the rows represent the values of the

imputed variable and the columns represent the real values of the variable. In this case, 465

records were imputed

Tables 6.8.1.2
Cross-tabulation between Real and Imputed Values for the variable Ethnic-Ltill

Table A
4 Terminal Nodes
Real
Imputed 1 2 3 4 5 6 7 8 Total
2 45 289 0 48 1 4 0 12 399
4 1 2 6 37 0 2 2 0 50
6 0 0 0 0 0 4 0 0 4
8 0 4 0 4 0 0 0 4 12
Total 46 295 6 89 1 10 2 16 465

161



Table B
15 Terminal Nodes

Real
Imputed 1 2 3 5 6 7 8 Total
1 5 4 0 0 0 0 9
2 4 28 O 48 1 4 0 12 390
3 0 0 2 3 0 0 ¢ 0 5
4 1 2 4 34 0 2 2 0 45
6 0 0 0 0 0 4 0 0 4
8 0 4 0 4 0 0 0 4 12
Total 46 295 6 89 1 10 2 16 465
Table C
No Trees
Real
Imputed 1 2 3 4 5 6 7 8 Total
2 46 295 6 89 1 10 2 16 465
Total 46 295 6 89 1 10 2 16 465

From Table 6.8.1.2 C we have that this variable contains eight different categories. Most of
them are used for imputation in the case where a classification tree is used Table 6.8.1.2 A
and Table 6.8.1.2 B, depending on which terminal node each recipient ends up. In this
example, the trees used have 4 and 15 terminal nodes, which even when it has very few
number of terminal nodes for the first one, allows for the use of many categories for
imputing. However, in the case where a classification tree is not used (Table 6.8.1.2 C), only

the category with highest probability was used for imputing, which is category 2.

This example shows that employing a classification tree ensure the use of most of the
categories of the variable for imputation, even when the tree does not have a large number
of terminal nodes. However, when trees are not used, only one category is used for
imputation. That is because the imputation when using trees is made at each terminal node
and categories for imputing will depend on the class assignment that define the terminal
nodes class, while when trees are not used, the imputation will be made employing the

category with highest probability in the whole database, which will be just one.

Therefore, we can say that even when none of the distributions are preserved for the Highest
Probability method, in this case, the use of the tree improve the distributions obtained after

imputation. This aspect can also be seen in a graphical way in Appendix 4 and Appendix 5.

There is an important aspect to point out in this analysis in terms of preservation of marginal
distributions. In most of the cases (almost all of them) the marginal individual distribution in

the case of single variables and joint distributions in the case of composite variables are
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maintained. A previous analysis made by Mesa, Tsai and Chambers (2000) shows that when
imputation is done for a composite variable using this procedure not only joint distributions
are preserved but the individual marginal distributions of the single variables involved in that
composite variable are also preserved. The work made by Mesa, Tsai and Chambers presents
an example when two variables, Primary activity last week (ALWPRIM) and Long term illness
(LTILL) were imputed at the same time. In this case, the joint distribution Primary activity
last week - Long term illness was maintained, as well as the individual marginal distributions
for Primary activity last week and Long term illness separately.

This is a really valuable achievement since it is important to uphold relationships between
variables without loosing the shape of the distribution of the individual variables.

Simitar simulations have not been done for the variables used in this analysis because of time

constraints.

Table 6.8.1.3 show the results of the Diagonal Statistic for the multivariate case.

Table 6.8.1.3

Diagonal Statistic ( z, ) for the multivariate case

Diagonal Statistic

Variable  Tree Size Freq. Dist. High. Prob. Near. Neig.

cobeth 10 5.26 2.25 5.393
18 4.10 2.25 3.349

No Tree 5.90 2.25 5.02

coblti 8 8.33 4,57 7.63
15 7.74 4.39 6.96

28 8.09 4,39 7.51

No Tree 11.86 5.92 6.96

ethlti 4 13.87 7.16 12.11
15 11.86 7.16 11.13

27 11.78 6.90 11.13

No Tree 18.50 9.89 11.21

coetlt 5 23.27 11.72 20.51
12 22.98 11.64 20.00
23 22.83 11.72 20.00
No Tree 22.98 11.72 20.90

As explained in Section 4.7.3 in Chapter 4, provided one cannot reject the hypothesis that
the imputation method preserves the marginal distribution using the Wald statistic, the

preservation of individual values can be tested by using the confidence interval for D

(proportion of incorrectly imputed cases). In this case, D —2,/V (D) should be less than

zero in order to have some evidences that the individual values are preserved. in other
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words, if z,—2<0, then, the individual values can be said to be preserved, with

D

Zp =\/—I}(—“‘——1)—‘)".

It can be noticed that if a confidence interval is calculated as explained before, z,—2 is

closer to zero when trees are used than in the case of not using trees in many cases. This
improvement can be observed from the point of view of percentage of records correctly

imputed and it will be explained later.

In the case of Nearest Neighbour method, the values of z, are very similar in both cases,

when using and not trees. Then, it cannot be said the method performs better when using

trees than when trees are not used.
A graphical representation of the preservation of individual values is shown in Appendix 5.

It is important to point out that even when the values of the diagonal statistic in the case of
using tree are also large (compared with not using trees) as shown in Table 6.8.1.7 (i.e.
individual values are not preserved), the percentages of records correctly imputed obtained
from these results show an improvement on the imputation performance with respect to the
results of the cases where trees are not used in many cases (or at least remain equal). This

can be seen in the next table.

Table 6.8.1.4 presents the "improvement” for the different combinations between tree sizes
and imputation methods for the different variables. This measure of improvement is based
on the percentage of records correctly imputed when trees are not used and their
differences with the percentage of records correctly imputed when trees are used as

explained in Section 4.8.3 in Chapter 4. See Appendix 7 for graphical representation.

If a comparison between the results from the case where trees are used and that where trees
are not used is made, we will notice that there is always an improvement in terms of records
correctly imputed when using trees for the Frequency Distribution except for the variable
Cob-Ethnic-Ltill and in many cases for the Highest Probability method. However, in the case
of Nearest Neighbour, the improvement seems to be more variable since some of them have
more correctly imputed records when using trees and some have more correctly imputed

records when trees are not used.

It is clear that the highest improvement is always for Frequency Distribution method and this

improvement can reach more than 30% in some cases for the multivariate case.
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Table 6.8.1.4
Improvement by variable, tree size and imputation method for the multivariate case

Variable Tree-size Freq. Distrib. High. Prob. Near. Neigh.

Cobeth 10 5.00 0.00 -2.80
18 15.00 0.00 14.02

No Tree 0.00 0.00 0.00

Coblti 8 25.00 9.21 3.82

15 29.81 10.53 8.40

28 26.92 10.53 4.58

No Tree 0.00 0.00 0.00

Ethlti 4 22.28 13.22 -3.96

15 33.66 13.22 0.36

27 34.16 14.58 0.36

No Tree 0.00 0.00 0.00

Coetlit 5 -1.20 0.00 1.65
12 0.00 0.37 3.85

23 0.60 0.00 3.85

No Tree 0.00 0.00 0.00

Table 6.8.1.5 shows the percentage of records incorrectly imputed by variable, tree size and
imputation method, the misclassification rate by tree size and variables as well as the

percentage of missing information by variable

Table 6.8.1.5
Percentage of missing data, percentage of records incorrectly imputed and

misclassification rate by variable, imputation method and tree size for the multivariate

case.

bl Tree S P e o

Cob_eth 0.74 10 33.96 16.35 34.59 36.41

18 27.67 16.35 23.27 36.40

No tree 37.10 16.35 32.70 e

Cob_lti 1.24 8 42.22 26.22 39.55 25.00

15 40.00 25.33 36.88 24.53

28 41.33 25.33 39.11 24.29

No tree 53.77 32.44 41.77 e

Eth_lti 2.16 4 46.88 28.17 42.58 29.38

15 41.93 28.17 40.00 28.80

27 41.72 27.31 40.00 28.71

No tree 56.55 36.55 40.21  meeee

Co_et_lIt 2.16 5 64.43 41.59 60.12 44,18

12 64.00 41.37 59.26 44,14

23 63.79 41.59 59.26 44,12

No tree 64.00 41.59 60.77 e
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It can be noticed that the relationship between the percentage of records incorrectly
imputed and the misclassification rate when using trees is not as obvious as in the univariate
case.

Another interesting point to notice from this table is the fact that the lowest percentage of
records incorrectly imputed is for the Highest Probability method, even when trees are not
used. That is because the majority of the population is always concentrated in one category
{or two), which is the one used for imputation by this method. Probability Distribution and
Nearest Neighbour present similar percentages of records incorrectly imputed most of the
time.

Additionally, we can see that the highest misclassification rates are for the variables with
more categories as CO-ET-LT and COB-ETH.

6.8.2 Comparing Tree-Sizes

It can be seen from Table 6.8.1.1 and Table 6.8.1.3 in the last section that the changes in
the Wald statistic and the Diagonal statistic are not big enough to alter the conclusion that
the imputation performance is not affected by the size of the tree. Additionally, the changes
on both statistics do not follow similar pattern for all of the cases. Sometimes the best
results are obtained from the smallest trees and sometimes from the biggest trees or even
from the medium size trees. However, since all of the values of the Wald statistics are small
enough to not reject the hypothesis that marginal distributions are maintained, and the
values of the Diagonal statistics are big enough to reject the hypothesis that individual values
are preserved, it can be said that there are not considerable changes on the results when
using different sizes of trees.

Therefore, the main conclusion about using different sizes for the tree is that increasing the
size does not necessarily improve the imputation performance. That is, using complex trees

does not necessary lead to better imputation results.

Moreover, looking at Tables 6.8.1.1 and 6.8.1.3 it can be noticed that there are no major
differences between using 10 or 18 terminal nodes for the variable Country of birth - Ethnic
(COB-ETHNIC) in terms of the values of the Wald statistics and Diagonal statistics, even when
the tree with 18 terminal nodes is the optimal tree given by CART. Then, we can say that the
use of the optimal tree given by CART does not seem to make significant improvement in the
performance of the imputation. The optimal tree given by CART is meant to be optimal in
terms of complexity and misclassification rate. In this sense, the use of the optimal tree
could be expected to give the best performance, however, it can be observed from the
results that this hypothesis is not necessarily correct. More results about this aspect, leading

to the same conclusions, can be found in Mesa, Tsai and Chambers (2000).
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As shown in Table 6.8.1.5, there seems to be no relationship between the misclassification
rate and the percentage of records correctly imputed for each composite variable. The
percentage of records correctly imputed look stable as well as the misclassification rate

within each variable for the different tree sizes.

6.8.3 Comparing Imputation Methods

As said in Section 6.8.1, it can be seen from Table 6.8.1.1 that Frequency Distribution and
Nearest Neighbour perform very well in term of preservation of marginal distributions given
the P-values for the Wald statistics when using trees, which is not the case of Highest
Probability method.

In the case of Highest Probability, there is not preservation of marginal distribution in any of
the cases, as observed in Table 6.8.1.1, however, there is an improvement on the

distribution of the imputed values when trees are used as explained in Section 6.8.1.

In terms of preservation of individual values we can see that none of the imputation
procedures used in this research achieve this aim. However, we can see some differences in
the values of the Highest Probability and the rest of the imputation methods. Highest
Probability method has always lower values in the diagonal statistics. This fact can also be

seen in the next table.

Table 6.8.3.1, as well as Appendix 6 (in graphical terms), shows the percentages of records
correctly imputed when using or not tree for the different imputation methods and different

tree sizes.

Table 6.8.3.1
Percentage of Cases Correctly Imputed for the multivariate case

Variable Tree-size Freq. Distrb. High. Prob. Near. Neigh.

cobeth 10 66.04 83.65 65.41
18 72.33 83.65 76.73

No Tree 62.89 83.65 67.30

cotlti 8 57.78 73.78 60.44

15 60.00 74.67 63.11

28 58.67 74.67 60.89

No Tree 46.22 67.56 58.22

ethiti 4 53.12 71.83 57.42

15 58.06 71.83 60.00

27 58.28 72.69 60.00

No Tree 43.44 63.44 59.78

coetlt 5 35.56 58.41 39.87
12 35.99 58.62 40.73

23 36.21 58.41 40.73

No Tree 35.99 58.41 39.22
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It can be seen that always, the higher percentage is obtained when using Highest Probability

method.

Even for the strangest cases (Country of birth-Ethnic-Long term illness, COETLT, and Country
of birth- Ethnic, COBETH), the lowest percentage of records correctly imputed obtained with
the Highest Probability method is over 58%.

Thus, we can say that the best method in preserving individual values is the Highest
Probability with over 80% of the cases correctly imputed in some situations.

The percentage of records correctly imputed with this method depends, in a way, on the

shape of the distribution when using trees and of course on the accuracy of the classification

tree.

In the case of Frequency Distribution, there is always an improvement when using tree. This
improvement is not evident when comparing marginal distributions but it can be observed

when comparing individual values.

Table 6.8.1.5, as well as Appendix 8, show the relationship between the percentage of
misclassification rate and the percentage of records correctly imputed. 1t can be seen that
the higher the misclassification rate, the lower the number of records correctly imputed.
This applies to all the methods with some exceptions in the Nearest Neighbour.

It can also be noticed from Table 6.8.1.5 that as in the univariate case, the highest
percentages of records incorrectly imputed always corresponds to the Frequency Distribution

methods, followed by Nearest Neighbour and Highest Probability respectively.

It can be noticed from the Wald statistic values in Table 6.8.1.1, Diagonal values in Table
6.8.1.3 and in the percentage of records correctly imputed in Table 6.8.3.1 that in the case
of Nearest Neighbour, the use of the tree does not have very much impact on the results.
The results remain the same when comparing both marginal distributions and individual
values. Additionally, the percentage of records correctly imputed remains fairly stable when
using Nearest Neighbour. Therefore, we can say that, in general, the use of trees does not
make any improvement in the results when using Nearest Neighbour, probably because the
nearest neighbour donor will be found either using or not classification. The use of the tree

will probably improve the time consumed in the imputation process.
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6.8.4 Comparing Categories

Tables 6.8.4.1 contain the percentage of records incorrectly imputed by imputation
methods, tree sizes and categories, as well as the misclassification rates obtained from the

different tree sizes by categories of the target variables

Tables 6.8.4.1
Misclassification rates by tree sizes and categories and percentage of records incorrectly

imputed by imputation method, tree size and categories for the multivariate case

Table A
Variable: ETH_LTILL

Percentage of Records Incorrectly Imputed

Misclass. Rate Frequency Distribution Highest Probability Nearest Neighbour

Cat. Records 8TN 15TN 27TN 8TN 15TN 27TN NTRE 8TN 15TN 27TN NTRE 8TN 15TN 27TN NTRE

1 16006 100.00 90.42 89.10 95.65 67.39  67.39 86.96 100.00 89.13 86.96 100.00 67.39 73.91 63.04 71.74
2 110727 2.78 3.41 3.36 30.17 27.46 27.46 38.98 2.03 3.39 2.7 0.00 31.53 22.711 28.47 24.75
3 3352 100.00 81.00 74.67 66.67 66.67 83.33 100.00 100.00 66.67 50.00 100.00 50.00 83.33 50.00 66.67
4 32064 60.81 62.17 62.75 62.92 61.80 61.80 82.02 58.43 61.80 61.80 100.00 53.93 61.80 52.81 60.67
5 677 100.00 100.00 85.67 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00
6 5609 60.35 60.35 61.76 80.00 70.00 60.00 100.00 60.00 60.00 60.00 100.00 80.00 80.00 70.00 70.00
7 718 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00
8 8083 66.31 66.31 68.29 87.50 87.50 81.25 100.00 75.00 75.00 75.00 100.00 75.00 87.50 81.25 81.25
Table B

Variable: Country of birth - Long term illness

Percentage of records incorrectly imputed

Misclass. Rate Frequency Distribution Highest Probability Nearest Neighbour

Cat. Records 8TN 15TN 28TN 8TN 15TN 28TN NTRE 8TN 15TN 28TN NTRE 8TN 15TN 28TN NTRE
15687  100.00 89.59 89.59 100.00 70.00 75.00 95.00 100.00 90.00 90.00 100.00 70.00 65.00 70.00 75.00
122271 1.51 2.18 2.36 2434 25.00 25.66 3421 1.32 1.32 1.32 0.00  23.68 22.37 2697 21.05
1271 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00
10337  100.00 100.00 100.00 82.35 88.24 100.00 94.12 100.00 100.00 100.00 100.00 88.24 9412 82.35 94.12
629 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00
3019 44.85 44.85 4415  33.33  66.67 66.67 100.00 33.33 33.33 33.33 100.00 33.33 100.00 33.33 33.33
2709 100.00 100.00 68.66 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 50.00 50.00 50.00 100.00
16026 42.64 42.64 4471 65.00 55.00 55.00 90.00 45.00 4500 4500 100.00 65.00 35.00 40.00 45.00
457 100.00 100.00 100.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0 4830 65.94 65.94 63.66 62.50 62.50 50.00 100.00 62.50 62.50 62.50 i00.00 75.00 75.00 75.00 62.50

V0N N WM A W R =

-

169



Table C
Variable: Country of birth - ethnic

Percentage of Records Incorrectly Imputed

Misclass. Rate Frequency Distribution Highest Probability Nearest Neighbour

Cat. Records 10TN 18TN 10TN 18TN NTRE 10TN 18TN NTRE 10TN 18TN NTRE
112643 0.1 0.12 22.56 18.80  24.81 0.00 0.00 0.00 24.06 11.28 21.80
19484 100.00 100.00 88.24 64.71 100.00 100.00 100.00 100.00 82.35 83.24 88.24
2091 100.00 100.00  0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
3740 100.00  100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00
10693 100.00 100.00 100.00 85.71 100.00 100.00 100.00 100.00 100.00 71.43 85.7%
257 100.00  100.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
22 100.00  100.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
636 100.00 100.00  0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
431 100.00  100.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
10 109 100.00 100.00  0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
1 2634 100.00  100.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
12 474 100.00  100.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
13 1538 100.00 100.00  0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
14 14863 98.79 98.53 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
15 1339 100.00 100.00  0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
16 995 100.00  100.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
17 1428 100.00 100.00  0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
18 703 100.00  100.00  0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
19 200 100.00  100.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
20 2956 100.00 100.00  0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

o0 NN B W N .

It can be noticed from these tables that there seems to be a relationship between the
misclassification rates obtained from the tree and the percentage of records incorrectly
imputed by categories. Both the misclassification rate and the percentage of records
incorrectly imputed by categories tend to follow similar patterns most of the time. However,
this relationship does not seem to be as strong as in the univariate case. It can also be
observed that this relationship will not apply for the case where trees are not used.

This could be an important finding from the point of view of accuracy. It could be predicted
from the tree by using the misclassification rate by categories, which categories of the

variable being imputed will be more accurate than others after the imputation is done.

Another interesting finding obtained from this table is that in the case when trees are not
used, the percentage of records incorrectly imputed by categories is usually higher (or at
least equal) than the percentage of records incorrectly imputed when trees are used for the
Frequency Distribution and Highest Probability methods.

Moreover, depending on the imputation method used, the percentage of records incorrectly
imputed obtained from the case where trees are not used can be near to 100% for most of
the categories as in the case of Highest Probability method where only one category is used
for imputation. This corroborates the statement made previously that the use of trees

improves the performance of the imputation depending on the method used.
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in the case of Nearest Neighbour method, all the information, percentage of records
incorrectly imputed using trees, percentage of records incorrectly imputed when trees are
not used and misclassification rate, have more similar results than the rest of the methods
when comparing different variables.

Again, this implies that there is not an impact on the imputation results when Nearest

Neighbour method together with classification trees is used for imputation.

A set of graphs obtained from Tables 6.8.4.1 can be found in the Appendix 9.

These graphs present the percentage of records incorrectly imputed using and not using trees
and the misclassification rate by categories for the different imputation methods and
different tree sizes. These graphs show how the lines for the percentage of records
incorrectly imputed obtained using trees (red line) and the misclassification rates for the
same categories (blue line) follow similar patterns. Alternatively, the line representing the
percentage of records incorrectly imputed in the case where trees are not used (yellow line)

is different from the two lines mentioned before.

6.8.5 Assessment of Biases and Variances

Since the variables used in the multivariate case are composite variables (which are treated
as a simple categorical variable) and since the imputation for these simulations was carried
out only for the case where the variables are missing at the same time and not individually,
the estimator for the variance in the case of Frequency Distribution and Nearest Neighbour
imputation methods presented in Section 3.7 in Chapter 3 is still valid. In the case where the
missing information is present not only for the combination of variable but also for the
individual variables forming that combinations (combination 1 and 2 in Table 5.6.3 in
Chapter 5), the estimator of the variance will need to be reformulated. This case is not
assessed in this thesis.

Additionally, due to time constraints, the estimator of the variance in this chapter is only
obtained for the Frequency Distribution method and combination of two variables missing at

the same time only.

This section presents a set of summary tables; more detailed information can be seen in
Appendix 3. It is important to point out that in here, as well as in the univariate case, the
simulations were carried out using only one tree size for each combination of variables, since
we had said before (in Section 6.8.1) that it seems to be no considerable differences on the

results when using different tree sizes.
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Tables 6.8.5.1 contain the information related to the simulations carried out for the biases,
variances and variance estimation in the multivariate case for the case of Frequency

Distribution imputation method.

Tables 6.8.5.1
Biases, Variances, Expected Variance Estimators and Coverage for the Frequency

Distribution Imputation Method for the multivariate case

Table A

Composite variable: Ethnic - Country of birth

Categories
1 2 3 4 5 6 7 8 9 10
E();) 126363 21847 2363 4185 12009 297 26 712 489 123
E();)»Y 0.00 -1.00 0.00 -1.00 -1.00 0.00 0.00 -1.00 0.00 0.00

((¢%-v)/r)*100 0.000 -0.004 0.000 -0.023 -0.008 0.000 0.000 -0.140 0.000 0.000

E(Y) 35.00 14.00 2.00 3.00 9.00 0.00 0.00 1.00 0.00 0.00
V(P 36.00 15.00 2.00 4.00 10.00 0.00 0.00 1.00 0.00 0.00
MSE(T) 36.00 16.00 2.00 5.00 11.00 0.00 0.00 2.00 0.00 0.00
Coverage 94.80 94.10 94.30 91.80 90.90 79.20 98.20 88.10 95.50 91.40

11 12 13 14 15 16 17 18 19 20

E() 2922 525 1730 16673 1509 1101 1597 781 226 3277
E() -1 -1.00 0.00 0.00 -1.00 0.00 -1.00 0.00 -1.00 0.00 7.00
((s¢y-v)/r)*100 -0.034 0.000 0.000 -0.006 0.000 -0.090 0.000 -0.127 0.000 0.214

E() 2.00 0.00 1.00 12.00 1.00 1.00 1.00 1.00 0.00 3.00

V(¥) 3.00 0.00 1.00 12.00 1.00 1.00 1.00 1.00 0.00 7.00

MSE(Y) 400 0.00 1.00 13.00 1.00 2.00 1.00 2.00 0.00 56.00

Coverage 88.90 95.30 95.00 94.10 96.30 79.30 95.70 88.40 82.80 6.00
Table B

Composite variable: Ethnic - Long Term Hlness

Categories
1 2 3 4 5 6 7 8
E();) 17920 124268 3743 35979 739 6307 811 8989
E(F)-Y -1.00 0.00 -1.00 -1.00 -1.00 0.00 -1.00 5.00

((s»-v)/r)*100 -0.005 0.000 -0.026 -0.002 -0.135 0.000 -0.123 0.055

E(P) 29.00 78.00 7.00 51.00 2.00 11.00 2.00 17.00
%) 31.00 79.00 8.00 49.00 2.00 11.00 2.00 21.00
MSE(Y) 32.00 79.00 9.00 50.00 3.00 11.00 3.00 46.00
Coverage 94.00 95.00 93.90 95.30 91.80 93.80 86.00 77.00
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Table C

Composite variable: Country of birth - Long term illness

Categories
1 2 3 4 5 6 7 8 9 10
E(f’) 17553 137207 1452 11591 694 3365 3014 17999 500 5380
E(f’)—Y 0.00 0.00 -2.00 -1.00 0.00 -1.00 -1.00 -1.00 -1.00 6.00

((z¢%-r)/¥)*100 0.000 0.000 -0.137 -0.008 0.000 -0.029 -0.033 -0.005 -0.199 0.111

E() 14.00 34.00 2.00 12.00 1.00 3.00 3.00 11.00 1.00 5.00
v(7) 14.00 35.00 2.00 13.00 1.00 3.00 3.00 12.00 1.00 7.0
MSE(Y) 14.00 35.00 6.00 14.00 1.00 4.00 4.00 13.00 2.00 43.00
Coverage 95.00 94.70 79.00 93.70 90.80 91.40 91.50 92.60 88.60 24.70

It can be seen from these tables that the estimator of the total is approximately unbiased for
all the categories of the target variables. That is, the difference between the real values of
the total of records in this case and the expected values of the estimator of that total
obtained by the simulations are very close to zero in the case of Frequency Distribution
method. These results correspond to the findings obtained in the theoretical formulation.

Only few cases, category 20 for the composite variable Ethnic-Country of Birth, category 8
for composite variable Ethnic-Long term Illness and category 10 for composite variable
Country of Birth-Long Term Illness, show slightly higher bias than the rest. However, these
biases do not seem to be of major importance compared to the size of the values of the point

estimates.

In terms of variability, we can see some differences in the values of the variance depending
on the different categories of the target variables. Smaller variances are always for the
smaller categories and bigger variances are always for the larger categories. However, even
for the largest values we can see that the sizes of those variances are very small compared to

the sizes of the point estimates.

In terms of estimation of the variance, we can see that this estimator basically lead to
unbiased estimates. That is, there are not major differences between the expected value of

the estimator of the variance and the actual variance.

The coverage, as in the univariate case, was estimated using a 95% nominal coverage level.
This seems to be very stable in general, except for some cases with lower coverage, e.g.
77.00 the lowest.

Also, there are only few cases for which the coverage does not seem to be at the same level
as the rest. In these cases, category 20 for the composite variable Ethnic-Country of Birth
and category 10 for composite variable Country of Birth-Long Term Iiiness, we can see that

the bias is bigger than the variance, which makes the coverage lower. That is, the fact the
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confidence intervals are moved to one side (right side in this cases) given the values of the
bias and the variances are small, make the coverage poor.

However, if we take the value of the Mean Square Error for these categories and divide them
by their respective totals in each case, we can see that the estimator is very accurate since

the value of the relative Mean Square Errors are very smalls.

Tables 6.8.5.2 contain the information for the bias, variance and coverage for the case of
Highest Probability imputation method. In the case of the coverage, this was estimated using
a 95% nominal coverage level and the variance obtained from the simulations given that

estimates for these variances were not obtained.

Tables 6.8.5.2
Biases, Variances and Coverage for the Highest Probability iImputation Method for the

multivariate case

Table A
Composite variable: Ethnic - Country of birth

Categories
1 2 3 4 5 6 7 8 9 10
E(f/) 126420 21830 2361 4183 12001 297 26 712 489 123
E(f/) -y 57.00 -18.00 -2.00 -3.00 -9.00 0.00 0.00 -1.00 0.00 0.00

((2)-7)/r)=100  0.045 -0.082 -0.084 -0.071 -0.074 0.000 0.000 -0.140 0.000 0.000

14¢2) 37.00 16.00 2.00 3.00 10.00 0.00 0.00 1.00 0.00 0.00
MSE(Y) 3286.00 340.00 6.00 12.00 91.00 000 000 200 0.00 0.00
Coverage 0.00  0.00 71.3 58.3 187 79.3 98.2 88.1 68.7 914

11 12 13 14 15 16 17 18 19 20

E(P) 2921 525 1729 16661 1508 1101 1596 781 226 3267
EF)-v 2.00 0.0 -1.00 -13.00 -1.00 -1.00 -1.00 -1.00 0.00 -3.00
((z»-r)[r)=100 -0.068 0.000 -0.057 -0.077 -0.066 -0.090 -0.062 -0.127 0.000 -0.091

V5 200 000 100 12.00 100 1.00 1.00 1.00 0.00 3.00
MSE(Y) 6.00 0.00 2.00 181.00 2.00 2.00 2.00 2.00 0.00 12.00
Coverage 59.1  65.8 59.7 2.7 643 787 66.4 88.4 828 748
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Table B
Composite variable: ETHNIC -LTILL

Categories
1 2 3 4 5 6 7 8
E( f') 17885 124364 3738 35941 738 6302 810 8977
E(f/) -Y -36.00 96.00 -6.00 -39.00 -2.00 -5.00 -2.00 -7.00

((z»-v)/r)*100  -0.200 0.077 -0.160 -0.108 -0.270 -0.079 -0.246 -0.077

v (¥) 41.00 100.00 9.00 65.00 2.00 12.00 2.00 21.00
MSE();) 1337.00 9316.00 45.00 1586.00 6.00 37.00 6.00 70.00
Coverage 0 0 51.9 0.3 77.1 63.9 71.7 61.4

Table C

Composite variable: Country of birth - Long term illness

Categories
1 2 3 4 5 6 7 8 9 10
E();) 17537 137247 1452 11579 693 3366 3012 17997 500 5373
E(f/)_ Y -16.00 40.00 -2.00 -13.00 -1.00 0.00 -3.00 -3.00 -1.00 -1.00

((zy-r)/r)=100  -0.091 0.029 -0.137 -0.112 -0.144 0.000 -0.099 -0.016 -0.199 -0.018

v (¥) 18.00 41.00 2.00 13.00 1.00 4.00 3.00 13.00 1.00 6.00
MSE(Y) 274.00 1641.00 6.00 182.00 2.00 4.00 12.00 22.00 2.00 7.00
Coverage 2.5 0 77.6 5.8 825 918 547 832 882 903

It can be noticed from these tables that the Highest Probability imputation method is not an
unbiased procedure as demonstrated in theory in Chapter 5. However, the biased introduced
by the method does not seem to be very high with respect to the values of the totals.
Moreover, some of the bias are close to or even zero.

it can also be seen that the bias are always positive for the major category and negative for
the others as would be expected since the method uses the value with highest frequency to

impute the missing records.

In terms of variability we can see that the values of the variances are larger than the values
of the variances obtained in the Frequency Distribution case. Additionally, it can be noticed
that the bigger variances are always for the larger categories. Estimates for those variances

were not obtained in this case.

The coverage values obtained in this case do not seem to be as good as in the Frequency

Distribution case. it can be noticed from the tables that some of the variable have zero
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coverage while some others have better results, for example 98% coverage. There seems to
be a much larger variation on the coverage values than in the Frequency Distribution case.

As explained in the univariate case, a reason for this coverage problem in the Highest
Probébility case is that this method is not an unbiased procedure. We can see that the size of
the bias is as big as the size of the variance, which does not occur in the Frequency
Distribution case.

Additionally, it can be seen that the smaller coverage is always present in the categories
with bigger number of records. As explained before, that occurs because of the size of the

bias in those categories.

As in the univariate case, there are some general findings we summarise hereafter in terms

of the analysis

The use of classification trees does improve the performance of the imputation. This
improvement can be noticed from the point of view of the maintenance of marginal
distributions (either individual marginal or joint distributions) in most of the cases but from

the point of view of percentage of records correctly imputed.

As in the univariate case, the use of different tree sizes does not have a major impact on
those results. Moreover, the use of the optimal tree given by CART does not make much

difference on the results.

Frequency Distribution and Nearest Neighbour methods preserve marginal distributions while
Highest Probability does not. However, Highest Probability is the best performing imputation
method in terms of preservation of individual values.

In the case of Nearest Neighbour, the results are very similar in both cases (when using and
not trees). That is, in general, the use of trees does not seem to have a major impact on the
results when using Nearest Neighbour procedure.

As a general conclusion we can say that Frequency Distribution is the best performing
method overall as it preserves marginal distributions, has a reasonable level of preservation
of individual values, produces unbiased estimates for the total and has the lowest variability

between all the methods.

Frequency Distribution and Nearest Neighbour methods produce unbiased estimates for the
total number of records in a specific category. In contrast, Highest Probability method does
not lead to unbiased estimates as shown in the theoretical results.

In terms of variability, Frequency Distribution and Highest Probability methods produce very
similar variances. However, the case of Nearest Neighbour does not present the same results.

It can be seen that this last method produces larger variances than the rest of the methods.
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If the results for the mean square error obtained from the different methods are compared,
we can see that the lowest values are atways found for Frequency Distribution followed by

Nearest Neighbour and Highest Probability (due to the bias) respectively.

As the estimation of the variance in the multivariate case was only carried out for the
Frequency Distribution methods, no comparison can be made. However, the simulations
presented for this case show that this method basically leads to unbiased estimates for the

variance confirming the theoretical results.

It has been shown in the results that the coverage, is more variable that in the univariate

case. However, the values are very high in most of the cases.
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CHAPTER 7

SUMMARY AND CONCLUSIONS

7.1. SUMMARY

Censuses are the most important statistical demographic operation carried out by any
country. As any statistical collection processes, censuses are susceptible to “nonresponse”.
Nonresponse occurs when any investigated variable for any element within the “universe of
study” is missing in the final format for the analysis. Nonresponse can affect analysis, leading

to erroneous or invalid findings and consequent decision-making.

The deficiencies of the current methods actually used for solving the problem of missing
information in census (described in Chapter 1), added to the importance of the census data
for the statistics in a country, are the main reasons why research about improved
methodology for imputing this kind of data has been undertaken.

The main idea was to investigate an alternative method, which uses a different approach to

the current methods available, being also simple and efficient.

The method investigated in this research involved the use of classification trees as a first
step, followed by imputation using common methods for categorical data within each

imputation class (terminal nodes of the tree).

The classification technique used in this research is called “Classification and Regression
Trees” (CART). CART technique is basically a set of classification rules (recursive binary
segmentation) that partition the data set into mutually exhaustive and non-overlapping
subsets (terminal nodes) based on the values of a group of explanatory variables. These
subsets are expected to be internally more homogeneous with respect to response variable
{variable for which the tree is generated) than the whole database.

Once the classification is made, each imputation method is applied independently within

each terminal node. Three different basic imputation methods for categorical data are
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implemented in this thesis in order to compare their results given the classification. The
selection of the methods included Probability Distribution imputation, Highest Probability
(Modal) imputation as well as the use of Nearest Neighbour procedure as it seems to be a
common factor in most of the new methodologies created for census data, as mentioned in

Chapter 1.

The combination of classification and imputation allow for the measure of: 1) the effect of
using this classification technique on the imputation results (including the use of different
tree-sizes), and 2) the accuracy of the different imputation methods based on this

classification technique.

The analysis was carried out for two different targets: the univariate case where a single
variable is imputed, and the multivariate case where a composite variable is imputed. A
composite variable is defined by the cross-classification of two or more single variables. The
use of the composite variable allows for the imputation of two or more single variables at the

same time.

Preservation of joint and individual marginal distributions as well as preservation of
individual values are evaluated (comparing imputed values against real values). Graphs and
tests for those comparisons are presented. Additionally, assessment of biases and variances,

as well as variance estimation in some cases, are also presented.

The simulation was made using a subset of UK 1991 Census information. Only categorical
variables related to persons (except age, which was converted to categorical) were used for
the analysis. After deleting the records with missing information from the original database,
artificial holes were created using the real pattern of missing information present in the
original database. This allowed for the measure of the accuracy of the imputation by

comparing the real and the imputed values.

7.2. GENERAL CONCLUSIONS

Some important conclusion can be obtained from the research presented in this thesis. We

divide the conclusion in different sections, as follows:
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7.2.1 Using Classification Trees

We conclude that, in general, the use of classification trees does improve the performance of
the imputation. As seen on the results this improvement cannot be seen from the point of
view of the maintenance of marginal distributions (either individual marginal or joint
distributions) in most of the cases but from the point of view of percentage of records
correctly imputed.

A comparison between the percentage of records correctly imputed show that there are
considerable differences from the case where trees are not used, specially in for the
Frequency Distribution method.

In the case of Highest Probability method, even when using trees does not allow for the
maintenance of the marginal distributions, it does improve the actual distribution as it
imputes values depending on the modal category of the terminal nodes while in the case
where trees are not used, the imputation is carried out using the modal category of the
whole database. That is, using trees produce a closer shape to the real distribution than no
using trees. Therefore, we can say that using tree does improve the recreation of marginal
distributions even when the values of the Wald statistic show that they are not preserved.
Additionally, the use of the tree also increases most of the times the percentage of the

number of records correctly imputed when using this imputation method.

7.2.2. Comparing Different Tree Sizes

It has been demonstrated that, even when there are differences in the results when using or
not trees (i.e. trees improve the performance of the imputation results), the use of different
{ree sizes does not have a major impact on those results. The simulations carried out show a
stable behaviour across the different tree sizes, even in terms of misclassification rates
obtained from the tree process.

Moreover, the optimal tree given by CART is meant to be optimal in terms of complexity
(number of terminal nodes) and misclassification rate. In this sense, the use of the optimal
tree could be expected to give the best performance, however, it can be observed from the
results that this hypothesis is not necessarily correct. Using the optimal tree given by CART

does not make much difference on the results.

7.2.3. Comparing Imputation Methods
In terms of comparisons between imputation methods, we have shown that both Frequency

Distribution and Nearest Neighbour methods preserve marginal distributions while Highest

Probability does not. However, the results from the simulations show that in terms of
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preservation of individual values, Highest Probability is the best performing imputation
method with a minimum of almost 60% of individual values preserved in the worst case and a

maximum of almost 90%.

The simulations carried out also show that in the case of Nearest Neighbour, the results are
very similar in both cases (when using and not trees). That is, in general, the use of trees
does not seem to have a major impact on the results when using Nearest Neighbour
procedure. One of the reasons why this happened could be the fact that by definition
Nearest Neighbour procedure look for the closest donor, which should be found with or

without the use of classification.

As a general conclusion we can say that Frequency Distribution is the best performing
method overall as it preserves marginal distributions, has a reasonable level of preservation
of individual values, produces unbiased estimates for the total and has the lowest variability

between all the methods.

7.2.4. Bias and Variance

It has been shown that both Frequency Distribution and Nearest Neighbour methods produce
unbiased estimates for the total number of records in a specific category. In contrast,
Highest Probability method does not lead to unbiased estimates as shown in the theoretical
results. This bias in the case of Highest Probability method is always positive for the major
categories and negative for the minor ones, overestimating the categories with more units

and underestimating the categories with less number of units.

In terms of variability, we can see that the values for the variances in the case of Frequency
Distribution and Highest Probability methods are very similar. However, the case of Nearest
Neighbour does not present the same results. It can be seen that this last method produces

larger variances than the rest of the methods.

If the results for the mean square error obtained from the different methods are compared,
we can see that the lowest values are always found for Frequency Distribution followed by

Nearest Neighbour and Highest Probabitity (due to the bias) respectively.

181



7.2.5. Variance Estimation

The simulations for the estimation of the variance, as well as the theoretical formulation,
were carried out for Frequency Distribution and Nearest Neighbour methods and not for
Highest Probability method.

The results of the estimation confirm the theoretical result that the estimator of the
variance proposed for the Frequency Distribution case is an unbiased estimator. However,
even when in theory the estimator of the variance for the Nearest Neighbour seems to be
unbiased, some differences between the real variance (value assumed as real in the
simulations) and the expected values over the 1000 samples of the estimator of the variance
can be found in few cases. It has to be said that these differences are probably big when
estimating the variance but they are not very important in terms of the values of the point

estimates as they are very small with respect to these values.

7.2.6. Coverage

[t has been shown in the results that the coverage, i.e. the proportion of confidence intervals
that contain the parameter, is over 94% all the time in the univariate case for both
Frequency Distribution and Nearest Neighbour and very high most of the times in the

multivariate case for the Frequency Distribution case.

7.2.7. Comparison with Hot Deck imputation

The simulations for the Seqguential Hot Deck were carried out only for the univariate case.
Comparisons between the proposed method and the method proposed in this thesis show that
in terms of the point estimates any of the Frequency Distribution, Nearest Neighbour and Hot
Deck produces unbiased estimators. In terms of variability, the sequential Hot Deck method
produces larger variances than any of the imputation procedures investigated in this
research.

However, if a comparison between the mean square errors is made, we can see that
sequential Hot Deck performs better than the Highest Probability procedure, producing
smaller MSE.

Thus, Frequency Distribution is still the best performing imputation methods in this research,
followed by Nearest Neighbour, Sequential Hot Deck and Highest Probability respectively.
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7.3. PROS AND CONS OF THE PROPOSED METHODOLOGY

There are some advantages of the proposed methodology:

* The proposed method involves the use of classification as a first step. The aim of
classification is to ensure the selection of the best possible donor, since both the donor
and the recipient come from the same imputation class, which guarantees same

characteristics (same values) for the observed variables for both of the records.

= One of the main aspects concerning the proposed approach is the maintenance of joint
distributions, which means upholding correlations between variables when working on
the multivariate missing case. The method proposed allows for this aspect since the
imputation will be made jointly for all the missing variables belonging to a specific

record trying to obtain those imputations from the same donor.

= Another advantage of the proposed approach is the fact that it does not imply the use of
complicated procedures or sophisticated technical resources. This new method is easy to

implement and does not require a large amount of time.

» The use of as many variables as possible (as many as are involved in the relationship) in
the classification step is another advantage of this proposal. They guarantee upholding
relationships between variables as well as defining very well the groups from which the
donors are going to be taken. This also makes the selection of the donor easier and

faster, since this is sought in that specific class and not in any other.

= The method proposed allows for the use of missing covariates in the classification
process, which is not normally the case when using other procedures. That is, the records
containing missing information for the auxiliary variables can be included in the process
of growing the tree. The inclusion of those records permits the use of as much
information as available, which could be crucial at times when the information present is
not sufficient.
The classification, of records with missing values for the auxiliary variables, is made by

using alternative classifiers called surrogates, which is basically another x, variable

(which value is present in that record) correlated with the one missing one that classifies

the records in the same way (or very similar way) as the original classifier.

»  Besides the use of surrogates as classifiers, another potential advantage of their use is

the possibility of imputing several missing values present in a single record in a
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sequential way. This represents a significant issue about using classification techniques

together with imputation procedures. However, this aspect was not study in this work.

There are also some disadvantages in the proposed methodology that can be mentioned.

= As explained in Chapter 2, 4 and 6, the classification tree is created for a single variable
(or composite variable in the multivariate case). That implies, in a very strict sense, that
each combination of missing information requires its own classification tree for the
imputation process. This is a very difficult task to achieve since, as shown in Appendix 1,
only with 8 variables we have 168 combinations of missing values. Therefore, in order to
reduce time consuming and complexity, imputations are carried out with just few
classification trees (sometimes even just one). That is, a classification tree created for a
specific missing combination has to be also used for other variables.
This can be seen as a disadvantage since the classification is not specially created for the
variable to be imputed, and somehow, it could be not the best classification for that
specific variable. However, when variables are highly correlated, a classification tree
created for a composite variable can be perfectly used for the single variables involved
in that combination. A solution for choosing a combination for generating the tree to be
used could be the use the largest combination in term of percentage of missing

information.

= Another disadvantage of the proposal is the fact that the results are not generated
instantaneously (directly} from a software. That is, CART (software) creates the
classification tree. After the tree is generated, the set of rules defining the terminal
nodes are used to create a computing program for dividing the population and carrying
out with the imputation process using a different software (FoxPro in this case).
Therefore, programming can be one of the biggest disadvantages of the propdsed

approach.

= As well as for the classification and imputation process, the bias and variance assessment

have to be programmed, including the estimation of the variance, if wanted.

7.4. FURTHER RESEARCH

This thesis represents just the first stage on the research of the use of classification trees for

missing item imputation. Further research should be done in order to assess more aspects
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about this subject. The work can be divided into two different parts, univariate case and

multivariate case.
In terms of the univariate case, there are basically three points that can be done. These are:

= The estimation of the variance in the case of the Highest Probability imputation
methods, although this is not of great importance since it was shown that this method

does not lead to unbiased estimation.

= A comparison between the proposed methods and other new imputation methodology
such as DIS (from the Office for National Statistics in the UK).

= A comparison using alternative imputation methods like Logistic or Log-linear regression.

In the multivariate case, the research presented in this thesis does not cover some important
aspects related to the subject. There are certain points that should be studied further. These

include:

=  Formulation of an estimator for the variance in the Frequency Distribution case when
using classification trees. In the case of Nearest Neighbour, the estimation of the
variance does not seem very important since the use of the classification trees does not

have a major impact on the results.

= Even when this thesis defines a way in which surrogates can be used for imputation, no
further research (neither theoretical nor empirical) was made about this matter. A
separate study is recommended in order to assess the viability and properties of this

procedure.

= Since this research does not investigate any existing method in the multivariate case,
comparisons between the proposed method and different methods have to be done in
order to evaluate the relative merits of the proposed method. The most reasonable
comparisons would be the use of Hot Deck imputation in multivariate missing data and
new methodologies such as DIS (from the Office for National Statistics in the UK) as in

the univariate case.
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APPENDIX



Appendix 1

Missing Information Pattern

age |alwprim{ cob | ethnic| Itill mnrconl sex | welsh ITonl perct age |alwpri cob ethnicl Itill |marcon| sex | welsh |Total perct
3230] 13.39] 2 0.01
1190 4.93 33 0.14
38 0.16 21 0.09)
1701 7.05 2 0.01
116 0.48’ 1 0.00)
32 0.13 10 0.04
2 0.01 4 0.02|
3224] 13.37] 1 0.00
347] 1.4 | 23] 0.10
39 0.16/ 2 0.01
4 0.02 2 0.01
106 0.44 5 0.02
13 0.05 399] 1.65
1 0.00 100 0.41

1 0.00 7 0.03
3916] 16.24] 1 0.00
156 0.65 77 0.32
45 0.19 78 0.32
2 0.01 2 0.01
76 0.32 1737| 7.20
11 0.05/ 47 0.19
2 0.01 83 0.34

| 521 2.16] 10]  0.04
88 0.36 91 0.38
12 0.05 11 0.05
1 0.00] 18 0.07
22 0.09 3 0.01
1 0.00 63 0.26

3 0.01 U 0.03
1751 7.26 9 0.04
128 0.53 4 0.02
23 0.10 14 0.06
1 0.00 3 0.01
52 0.22 68 0.28
9 0.04 3 0.01

1 0.00 1 0.00

| 252] 1.04 2| 0.0
7 0.29 6 0.02
1 0.00 1 0.00)

1 0.00] 3 0.01
11 0.05 20| 0.08
2 0.01 6 0.02
178 0.74 1 0.00
23 0.10 2 0.01
7 0.03 3 0.01
2 0.01 1 0.00
7 0.03 67 0.28

1 0.00 8 0.03
520 2.16 5 0.02
190 0.79 8 0.03
22| 0.09 1 0.00
3 0.01 29 0.12
24 0.10 10 0.04)
1 0.05 8| 0.03
1 0.00 2 0.01

1 0.00 3 0.01
1406 5.83 13 0.05]
101 0.42 1 0.00
15 0.06 2 0.01
2 0.01 116 0.48
78 0.32 77| 0.32
16 0.07 30| 0.12
3 0.01 9 0.04]

1 0.00 3 0.01
203 0.84 3 0.01
72 0.30 2 0.01
2 0.01 176 0.73
19 0.08 55 0.23
8 0.03 1 0.00

1 0.00 1 0.00|
75 0.31 4 0.02
18 0.07| 1 0.00
3 0.01 8 0.03

1 0.00 1 0.00
10 0.04 2| 0.01
3 0.01 2, 0.01
64 0.27 6 0.02
35 0.15 2 0.01
17 0.07 1 0.00
4 0.02 1 0.00
77 0.32 1 0.00
12| 0.05 12 0.05
1 0.00 8 0.03
7 0.03 3 0.01

| 24116] 100.00




Appendix 2

Bias and Variance of the estimator of the total depending on the number

of terminal used for the variable Ethnic by categories

2 Terminal Nodes

10 Terminal Nodes

Categories
1 2 3 4
Y 142189 39724 7047 979
E(Y) 142189 39724 7046 9797
E(Y)-Y 000 0.00 -1.00 1.00
S(7) 2 19 9 12
1462 464 366 80 136
13 Terminal Nodes
Categories
1 2 3 4
Y 142189 39724 7047  979%
E(Y) 142189 3974 7046 9797
E(Y)-Y 0.00 000 -1.00 1.00
S(Y) 22 19 9 12
V(Y) 464 366 80 136

Categories
1 2 3 4
Y 142189 39724 7047 979
E(V) 142189 39724 7047  979%
E(f)-Y 0.00 0.00 0.0 0.00
S) 2 20 10 12
1404 465 403 97 151
3 Terminal Nodes
Categories
1 2 3 4
Y 142189 39724 7047  979%
E(P) 142189 39725 7047 979
E(F)-Y 000 1.00 0.0 0.00
S(Y) 2 19 10 12
() 463 365 96 141
4 Terminal Nodes
Categories
1 2 3 4
Y 142189 39724 7047  97%
E(Y) 142189 39724 7047  97%
E(f)-Y 000 000 0.00 0.00
S@) 22 19 9 12
V(Y) 465 366 80 133




Appendix 3

Estimator Properties and Performance Indicators

Frequency Distribution Method

ETHNIC COUNTRY OF BIRTH LONG-TERM ILLNESS
Categories Categories Categories
1 2 3 4 1 2 3 4 5 1 2

Y 142189 39724 7047 9796 154760 13046 4060 21015 5875 23217 175539

E(Y) 142189 39724 7046 9797 154760 13046 4060 21015 5876 23217 175539
E(Y)-Y -0.34 0.03 -1.07 1.37 0.36 -0.36 -0.40 -0.47 0.87 0.16 -0.16
((E(f’) - Y) / Y) *100 0.000 0.000 -0.015 0.013 0.000 -0.002 -0.009 -0.002 0.014 0.000 0.000
E(S) 22.13 20.49 9.23 11.72 12.96 9.73 4,51 8.31 6.09 15.25 15.25
S(F) 21.54 19.13 8.93 11.67 12.68 9.71 4,39 8.02 6.17 15.06 15.06
E(S)-S(Y) 0.59 1.36 0.30 0.05 0.28 0.02 0.12 0.29 -0.08 0.19 0.19
E() 489,58 419.79 85.17 137.27 167.97 94.63 20.34 69.14 37.11 232.55 232.55

V(1) 463.76 365.97 79.83 136.23 160.80 94.27 19.25 64.30 38.11 226.69 226.69
E(V)-V(¥) 25.82 53.82 5.34 1.04 7.17 0.36 1.09 4.84 -1.00 5.86 5.86
Coverage 94.90 95.60 94.80 95.00 95.80 95.50 95.10 96.60 95.10 95.40 95.40

MSE(Y) 463.88 365.97 80.97 138.11 160.93 94.40 19.41 64.52 38.87 226.72 226.72
Juse) 21.54 19.13 9.00 1.75 12.69 9.72 4.41 8.03 6.23 15.06 15.06
(Jmsec) [¥) 100 0.02 0.05 0.13 0.12 0.01 0.07 0.11 0.04 0.11 0.06 0.01
(MSE(?)/y) *100 0.33 0.92 1.15 1.41 0.10 0.72 0.48 0.31 0.66 0.98 0.13
(E@)-v )y ())*100 5.567 14.706 6.689 0.763 4.458 0.381 5.662 7.527 -2.623 2.585 2.585

((Ew)- V(f))/y) *100 0.018 0.135 0.075 0.010 0.004 0.002 0.026 0.023 -0.017 0.025 0.003




Appendix 3

Estimator Properties and Performance Indicators

Highest Probability Method

ETHNIC COUNTRY OF BIRTH LONG-TERM ILLNESS
Categories Categories Categories
1 2 3 4 1 2 3 4 5 1 2
Y 142189 39724 7047 9796 154760 13046 4060 21015 5875 23217 175539
E( % ) 142653 39496 6993 9714 154915 12944 4058 20975 5864 22950 175806
E(ff) ~Y 464.00 -328.00 -54.00 -82.00 155.00 -102.00 -2.00 -40.00 -11.00 -267.00 267.00
((E(?) - Y) / Y) *100 0.326 -0.825 -0.766 -0.837 0.100 -0.781 -0.049 -0.190 -0.187 -1.150 0.152
S(f) 22.32 19.95 9.27 12.25 13.08 9.70 4.90 8.54 6.86 17.06 17.06
V();) 498.00 398.00 86.00 150.00 171.00 94.00 24.00 73.00 47.00 291.00 291.00
Coverage 0.00 0.00 0.00 0.00 0.00 0.00 92.20 0.10 66.20 0.00 0.00
MSE()7) 215794.00  107982.00 3002.00 6874.00 24196.00 10498.00 28.00 1673.00 168.00 71580.00 71580.00
m 464.54 328.61 54.79 82.91 155.55 102.46 5.29 40.90 12.96 267.54 267.54
(w/MSE(}“/)/Y)*loo 0.33 0.83 0.78 0.85 0.10 0.79 0.13 0.19 0.22 1.15 0.15
(MSE(D)/Y)*100 151.77 271.83 42.60 70.17 15.63 80.47 0.69 7.96 2.86 308.31 40.78




Appendix 3

Estimator Properties and Performance Indicators
Nearest Neighbour Method

ETHNIC COUNTRY OF BIRTH LONG-TERM ILLNESS
Categories Categories Categories
1 2 3 4 1 2 3 4 5 1 2
Y 142189 39724 7047 9796 154760 13046 4060 21015 5875 23217 175539
E() 142190 39724 7047 9795 154760 13046 4060 21015 5874 23217 175539
E¥)-Y 0.64 -0.35 0.30 -0.58 0.21 0.36 -0.15 0.09 -0.50 0.10 -0.10
((E(f) - Y) / Y) *100 0.000 0.000 0.004 -0.005 0.000 0.002 -0.003 0.000 -0.008 0.000 0.000
E(S) 31.16 28.84 12.99 16.49 18.23 13.73 6.36 11.65 8.60 21.49 21.49
S(7) 28.25 25.92 12.55 16.38 17.87 13.47 5.97 11.05 8.11 21.26 21.26
E(S)-S(¥) 2.91 2.92 0.44 0.11 0.36 0.26 0.39 0.60 0.49 0.23 0.23
E(V) 970.78 831.78 168.75 271.95 332.16 188.50 40.48 135.87 73.94 461.94 461.94
1400 797.95 671.59 157.61 268.23 319.22 181.47 35.70 122.06 65.80 451.90 451.90
E(V) -V () 172.83 160.19 11.14 3.72 12.94 7.03 4.78 13.81 8.14 10.04 10.04
Coverage 95.30 94.40 96.40 95.40 96.00 95.00 95.20 95.50 96.10 95.30 95.30
MSE(Y) 798.36 671.71 157.70 268.57 319.26 181.60 35.72 122.07 66.05 451.91 451.91
N 28.26 25.92 12.56 16.39 17.87 13.48 5.98 11.05 8.13 21.26 21.26
(+ /MSE(Q)/y) %100 0.02 0.07 0.18 0.17 0.01 0.10 0.15 0.05 0.14 0.09 0.01
(MSE@)/¥)*100 0.56 1.69 2.24 2.74 0.21 1.39 0.88 0.58 1.12 1.95 0.26
((E@)-v @/ vy *100 21.65 23.85 7.06 1.38 4.05 3.87 13.38 11.34 12.37 2.22 2.22
((E@)-vy/r)*100 0.121 0.403 0.158 0.037 0.008 0.053 0.117 0.065 0.138 0.043 0.005




Appendix 3

Estimator Properties and Performance Indicators

Hot Deck Method (Using 2 Variables for Classification)

LONG-TERM ILLNESS

ETHNIC COUNTRY OF BIRTH
Categories Categories Categories
1 2 3 4 1 2 3 4 5 1 2

Y 142189 39724 7047 9796 154760 13046 4060 21015 5875 23217 175539
E(F) 142189 39724 7046 9797 154760 13046 4060 21015 5875 23217 175539

EG)-Y 0.00 0.00 -1.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
(e -v)/7)*100 0.000 0.000 -0.014 0.010 0.000 0.000 0.000 0.000 0.000 0.000 0.000
S(9) 31.00 27.00 15.00 17.00 21.00 13.00 7.00 16.00 9.00 22.00 22.00
V() 961.00  729.00  225.00  289.00  441.00  169.00 49.00 256.00 81.00 484.00 484.00
MSE(F) 961.00  729.00 22600  290.00  441.00  169.00 49.00 256.00 81.00 484.00 484.00
NI 31.00 27.00 15.03 17.03 21.00 13.00 7.00 16.00 9.00 22.00 22.00
(Vmse [r) *100 0.021 0.067 0.213 0.173 0.013 0.099 0.172 0.076 0.153 0.094 0.012
(MSE(P)]¥) *100 0.675 1.835 3.207 2.960 0.284 1.295 1.206 1.218 1.378 2.084 0.275




Appendix 3

Estimator Properties and Performance Indicators
Hot Deck Method (Using 3 Variables for Classification)

ETHNIC COUNTRY OF BIRTH LONG-TERM ILLNESS
Categories Categories Categories
1 2 3 4 1 2 3 4 5 1 2
Y 142189 39724 7047 9796 154760 13046 4060 21015 5875 23217 175539
E(Y) 142190 39724 7046 9796 154759 13046 4060 21015 5875 23217 175539
E(V)-Y 1.00 0.00 -1.00 0.00 -1.00 0.00 0.00 0.00 0.00 0.00 0.00
((E(f’ ) - Y) / Y) *100 0.000 0.000 -0.014 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
S(¥) 32.00 28.00 14.00 17.00 21.00 13.00 7.00 16.00 9.00 20.00 20.00
V(Y) 1024.00 784.00 196.00 289.00 441.00 169.00 49.00 256.00 81.00 400.00 400.00
MSE(Y) 1025.00 784.00 197.00 289.00 442.00 169.00 49.00 256.00 81.00 400.00 400.00
Juse 32.02 28.00 14.04 17.00 21.02 13.00 7.00 16.00 9.00 20.00 20.00
(W/MSE(}A/)/}') *100 0.022 0.070 0.199 0.173 0.013 0.099 0.172 0.076 0.153 0.086 0.011
(MSE(T)/Y) *100 0.720 1.973 2.795 2.950 0.285 1.295 1.206 1.218 1.378 1.722 0.227




Appendix 3

Estimator Properties and Performance Indicators

Frequency Distribution Method

Country of Birth - Ethnic

Categories

1 2 3 4 5 6 7 8 9 10

Y 126363 21848 2363 4186 12010 297 2 713 489 123

E(F) 126363 21847 2363 4185 12009 297 26 712 489 123
EF)-v 0.00 -1.00 0.00 -1.00 -1.00 0.00 0.00 -1.00 0.00 0.00
((e@y-v)/¥)*100 0.000 -0.004 0.000 -0.023 -0.008 0.000 0.000 -0.140 0.000 0.000
EES) 6.00 4.00 1.00 2.00 3.00 0.00 0.00 1.00 1.00 0.00

S(7) 6.00 3.87 1.41 2.00 3.16 0.00 0.00 1.00 0.00 0.00
E(S)-S(Y) 0.00 0.13 -0.41 0.00 -0.16 0.00 0.00 0.00 1.00 0.00
E(P) 35.00 14.00 2.00 3.00 9.00 0.00 0.00 1.00 0.00 0.00

V() 36.00 15.00 2.00 4.00 10.00 0.00 0.00 1.00 0.00 0.00

E(P) -V (P) -1.00 -1.00 0.00 -1.00 41,00 0.00 0.00 0.00 0.00 0.00
Coverage 94.80 94.10 94.30 91.80 90.90 79.20 98.20 88.10 95.50 91.40
MSE(Y) 6.00 4.00 1.41 2.24 3.32 0.00 0.00 1.41 0.00 0.00
Jmsed) 0.00 0.02 0.06 0.05 0.03 0.00 0.00 0.20 0.00 0.00
(Vmsec) / v)*100 36.00 16.00 2.00 5.00 11,00 0.00 0.00 2.00 0.00 0.00
(MSE(D)/¥) *100 0.03 0.07 0.08 0.12 0.09 0.00 0.00 0.28 0.00 0.00




Appendix 3

Estimator Properties and Performance Indicators

Frequency Distribution Method

Country of Birth - Ethnic

Categories

11 12 13 14 15 16 17 18 19 20

Y 2923 525 1730 16674 1509 1102 1597 782 226 3270

E() 2922 525 1730 16673 1509 1101 1597 781 226 3277
E(P)-¥ -1.00 0.00 0.00 -1.00 0.00 -1.00 0.00 -1.00 0.00 7.00
((E(?) -Y) / Y) *100 -0.034 0.000 0.000 -0.006 0.000 -0.090 0.000 -0.127 0.000 0.214
E(S) 2.00 1.00 1.00 3.00 1.00 1.00 1.00 1.00 0.00 2.00

S(9) 1.73 0.00 1.00 3.46 1.00 1.00 1.00 1.00 0.00 2.65
E(S)-5() 0.27 1.00 0.00 -0.46 0.00 0.00 0.00 0.00 0.00 -0.65
E() 2.00 0.00 1.00 12.00 1.00 1.00 1.00 1.00 0.00 3.00

V() 3.00 0.00 1.00 12.00 1.00 1.00 1.00 1.00 0.00 7.00
EP)-V(P) -1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 -4.00
Coverage 88.90 95.30 95.00 94.10 96.30 79.30 95.70 88.40 82.80 6.00
MSE(Y) 2.00 0.00 1.00 3.61 1.00 1.41 1.00 1.41 0.00 7.48
N 0.07 0.00 0.06 0.02 0.07 0.13 0.06 0.18 0.00 0.23
(W/Y)*IOO 4.00 0.00 1.00 13.00 1.00 2.00 1.00 2.00 0.00 56.00
(MsE/¥) *100 0.14 0.00 0.06 0.08 0.07 0.18 0.06 0.26 0.00 1.71




Appendix 3

Estimator Properties and Performance Indicators

Frequency Distribution Method

Ethnic - Long Term lllness

Categories
1 2 3 4 5 6 7 8
Y 17921 124268 3744 35980 740 6307 812 8984
E(Y) 17920 124268 3743 35979 739 6307 81 8989
EY)-Y -1.00 0.00 -1.00 -1.00 -1.00 0.00 -1.00 5.00
((E(?) - Y)/Y) %100 -0.005 0.000 -0.026 -0.002 -0.135 0.000 -0.123 0.055
E(S) 5.00 9.00 3.00 7.00 1.00 3.00 1.00 4.00
S(Y) 5.57 8.89 2.83 7.00 1.41 3.32 1.41 4,58
E(S)-S(Y) -0.57 0.11 0.17 0.00 -0.41 -0.32 -0.41 -0.58
E(V) 29.00 78.00 7.00 51.00 2.00 11.00 2.00 17.00
V() 31.00 79.00 8.00 49.00 2.00 11.00 2.00 21.00
EW)-V () -2.00 -1.00 -1.00 2.00 0.00 0.00 0.00 -4.00
Coverage 94.00 95.00 93.90 95.30 91.80 93.80 86.00 77.00
MSE(Y) 5.66 8.89 3.00 7.07 1.73 3.32 1.73 6.78
m 0.03 0.01 0.08 0.02 0.23 0.05 0.21 0.08
(, /MSE(§)/Y) *100 32.00 79.00 9.00 50.00 3.00 11.00 3.00 46.00
(Msg(i)/y)* 100 0.18 0.06 0.24 0.14 0.41 0.17 0.37 0.51




Appendix 3

Estimator Properties and Performance Indicators

Frequency Distribution Method

Country of Birth - Long Term lliness

Categories

1 2 3 4 5 6 7 8 9 10

y 17553 137207 1454 11592 694 3366 3015 18000 501 5374

E(P) 17553 137207 1452 11591 694 3365 3014 17999 500 5380
E(Py-Y 0.00 0.00 -2.00 -1.00 0.00 -1.00 -1.00 -1.00 -1.00 6.00
((2)-r)/r)*100 0.000 0.000 0.137 -0.008 0.000 -0.029 -0.033 -0.005 10.199 0.111
E($) 4.00 6.00 1.00 3.00 1.00 2.00 2.00 3.00 1.00 2.00

S(P) 3.74 5.92 1.41 3.61 1.00 1.73 1.73 3.46 1.00 2.65
E§) - S(P) 0.26 0.08 -0.41 -0.61 0.00 0.27 0.27 -0.46 0.00 -0.65
E(P) 14.00 34.00 2.00 12.00 1.00 3.00 3.00 11.00 1.00 5.00

V() 14.00 35.00 2.00 13.00 1.00 3.00 3.00 12.00 1.00 7.00
E(F) -V (¥) 0.00 -1.00 0.00 -1.00 0.00 0.00 0.00 -1.00 0.00 -2.00
Coverage 95.00 94,70 79.00 93.70 90.80 91.40 91.50 92.60 88.60 24.70
MSE(P) 3.74 5.92 2.45 3.74 1.00 2.00 2.00 3.61 1.41 6.56
Juse) 0.02 0.00 0.17 0.03 0.14 0.06 0.07 0.02 0.28 0.12
(w /MSE();)/Y) *100 14.00 35.00 6.00 14.00 1.00 4.00 4.00 13.00 2.00 43.00
(MSE(Y‘)/ ¥)*100 0.08 0.03 0.41 0.12 0.14 0.12 0.13 0.07 0.40 0.80




Appendix 3

Estimator Properties and Performance Indicators
Highest Probability Method

Country of Birth - Ethnic

Categories

1 2 3 4 5 6 7 8 9 10

Y 126363 21848 2363 4186 12010 297 2 713 489 123

EX) 126420 21830 2361 4183 12001 297 2 712 489 123
E()-v 57.00 18.00 2.00 3.00 9.00 0.00 0.00 -1.00 0.00 0.00
((ec)-r)/r)*100 0.045 0.082 0.084 0.071 0.074 0.000 0.000 -0.140 0.000 0.000
s 6.08 4.00 1.41 1.73 3.16 0.00 0.00 1.00 0.00 0.00

V() 37.00 16.00 2.00 3.00 10.00 0.00 0.00 1.00 0.00 0.00
Coverage 0 0 71.3 58.3 18.7 79.3 98.2 88.1 68.7 91.4
MSE(P) 57.32 18.44 2.45 3.46 9.54 0.00 0.00 1.41 0.00 0.00
Juseh 0.05 0.08 0.10 0.08 0.08 0.00 0.00 0.20 0.00 0.00

(W msech) / Y)*100 3286.00  340.00 6.00 12.00 91.00 0.00 0.00 2.00 0.00 0.00
(MSE(P)] ) *100 2.60 1.56 0.25 0.29 0.76 0.00 0.00 0.28 0.00 0.00




Appendix 3

Estimator Properties and Performance Indicators
Highest Probability Method

Country of Birth - Ethnic

Categories

11 12 13 14 15 16 17 18 19 20

Y 2923 525 1730 16674 1509 1102 1597 782 226 3270

E) 2921 525 1729 16661 1508 1101 1596 781 226 3267
EX)-Y -2.00 0.00 -1.00 -13.00 -1.00 -1.00 -1.00 -1.00 0.00 -3.00
((E(f’) - Y) / Y) *100 -0.068 0.000 -0.057 -0.077 -0.066 -0.090 -0.062 -0.127 0.000 -0.091
S(Y) 1.41 0.00 1.00 3.46 1.00 1.00 1.00 1.00 0.00 1.73

v(T) 2.00 0.00 1.00 12.00 1.00 1.00 1.00 1.00 0.00 3.00
Coverage 59.1 65.8 59.7 2.7 64.3 78.7 66.4 88.4 82.8 74.8
MSE(Y) 2.45 0.00 1.41 13.45 1.41 1.41 1.41 1.41 0.00 3.46
Jusedy 0.08 0.00 0.08 0.08 0.09 0.13 0.09 0.18 0.00 0.11
(\ | MSE(T) / y) 100 6.00 0.00 2.00 181.00 2.00 2.00 2.00 2.00 0.00 12.00
(MSE(?)/Y) *100 0.21 0.00 0.12 1.09 0.13 0.18 0.13 0.26 0.00 0.37




Appendix 3

Estimator Properties and Performance Indicators
Highest Probability Method

Ethnic - Long Term Illness

Categories
1 2 3 4 5 6 7 8
Y 17921 124268 3744 35980 740 6307 812 8984
E(Y) 17885 124364 3738 35941 738 6302 810 8977
E(P)-Y -36.00 96.00 -6.00 -39.00 -2.00 -5.00 -2.00 -7.00
((E(?) -v)/ Y) *100 -0.200 0.077 -0.160 -0.108 -0.270 -0.079 -0.246 -0.077
S(7) 6.40 10.00 3.00 8.06 1.41 3.46 1.41 4.58
265 41.00 100.00 9.00 65.00 2.00 12.00 2.00 21.00
Coverage 0 0 51.9 0.3 77.4 63.9 7.7 61.4
MSE(Y) 36.57 96.52 6.71 39.82 2.45 6.08 2.45 8.37
NI 0.20 0.08 0.18 0.11 0.33 0.10 0.30 0.09
(Vmse) / r)*100 1337.00  9316.00 45.00 1586.00 6.00 37.00 6.00 70.00
(MSE(i)/y) *100 7.46 7.50 1.20 4.41 0.81 0.59 0.74 0.78




Appendix 3

Estimator Properties and Performance Indicators
Highest Probability Method

Country of Birth - Long Term Illness

Categories
1 2 3 4 5 6 7 8 9 10
Y 17553 137207 1454 11592 694 3366 3015 18000 501 5374
EP) 17537 137247 1452 11579 693 3366 3012 17997 500 5373
£y -7 -16.00 40.00 2.00 -13.00 -1.00 0.00 3.00 -3.00 1.00 1.00
((ecy-1)/r)*100 0.091 0.029 0437 012 -0.144 0.000 0.09  -0.016  -0.199 0.018
S(P) 4.24 6.40 1.41 3.61 1.00 2.00 1.73 3.61 1.00 2.45
V() 18.00 41.00 2.00 13.00 1.00 4.00 3.00 13.00 1.00 6.00
Coverage 2.5 0 77.6 5.8 82.5 91.8 54.7 88.2 88.2 90.3
MSE(Y) 16.55 40.51 2.45 13.49 1.41 2.00 3.46 4.69 1.41 2.65
Jmseh) 0.09 0.03 0.17 0.12 0.20 0.06 0.11 0.03 0.28 0.05
(Vmsa)/r) 100 27400 1641.00 6.00 182.00 2.00 4.00 12.00 22.00 2.00 7.00

(MSE@)]/ ¥)*100

1.56 1.20 0.41 1.57 0.29 0.12 0.40 0.12 0.40 0.13




Appendix 4 Variable: Country of Birth
Marginal Distributions
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Variable: Country of Birth - Ethnic
Marginal Distributions
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Variable: Country of Birth - Long Term Illness
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Variable: Ethnic - Long Term lliness
Marginal Distributions
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Appendix 5 Variable: Country of Birth - Ethnic
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Variable: Country of Birth - Long Term lllness
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Accuracy of the imputation procedure
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Appendix 7

Improvement of the Percentage of Records Correctly Imputed with Respect to
the Case of Not Using Trees (by variable, imputation method, and tree size)
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Appendix 8

Relationship Between Misclassification Rates and Percentage of Records
Incorrectly Imputed (by Variable, Tree Size and Imputation Methods)

cob ethnic
[ — T — 80 —— O
40 45
o 3 P o //'
9 4 - o = — o
£ = A % ~ — g 5 a——0
8 20 = 8 ::
g T ——— 5 o e
Q. 10 Qo 10
5 [
o = [}
] 15 18 nc 4 10 13 nc
categories —o— dis —&—mod —eo—dis
9 nn —3¢—misclass categories = mod
Itil cob_eth
= — e «:( T )
H——————(
0 ?® ,—i M : 2 Vé—{
=4 Q——M =
3 ®il———— = g _: 8 o e 1
G [ 3¢ = —a S
O . © = - .|
@ @
Q. Q 10
&
[
i
[ (]
4 2 2 nc 10 1 nc
—o—dis —&—mod —o—dis
categories e N isciade categories &—moi
cob_lIti eth_lIti
80 — - 80 - - - o
o _» ‘ 0 /'
) i o .h\_"__/
- — —a gor—— —
- i
E 0 —a g » i e ]
[ Mﬁ/ | o |
i : g ® ‘
o Q.
10 : 10 i
0 [} —
8 15 - nc 4 185 7 nc
—o—dis categories —o—dis J
categories ‘ dy eg o —rod
—
co_et_lIt
04~ = =
.——-—.—.——.Q
e +—— —_—— —&——
)
o 50
‘g © ——¥: i: — . -
8w
£
L=
10
0
1] 12 23 nc
—o—dis —@—mod
tree size nn —>¢—misclass




Appendix 9 Variable: Country of Birth
Misclassification rates against percentage of records incorrectly imputed (by tree size and imputation method)
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Appendix 9

Variable: Ethnic

Misclassification rates against percentage of records incorrectly imputed (by tree size and imputation method)
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Appendix 9

FREQUENCY DISTRIBUTION

Variable: Long Term lliness
Misclassification rates against percentage of records incorrectly imputed (by tree size and imputation method)
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Appendix 9

Variable: Country of Birth - Ethnic

Misclassification rates against percentage of records incorrectly imputed (by tree size and imputation method)
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Appendix 9

Variable: Country of Birth - Long Term lliness

Misclassification rates against percentage of records incorrectly imputed (by tree size and imputation method)

FREQUENCY DISTRIBUTION

NEAREST NEIGHBOUR

....
83

8
Terminal g
Nodes ]
c
[N
p
e m |
1 2 3 4 5 6 7 8 9 10
Categories —o— migclass —l—tree
nc
15 ]
. ol
Terminal @ o
Nodes 2
S ]
50
S ]
a %1
20
10
° > G .
1 2 3 4 5 ] 7 8 ] 10
Categories | ¢ :‘;“"‘“ S=tree
110 e
Terminal o ¥ = N N »
2 91 1 \ NS/
Nodes g —: \\(/—A A 5
Rl R T /(3 ¥ h =)
D 5] Ui |
a 20
10
o \xﬁ T

e S === T T

1 2 3 4 5 66 7 8 98 10

';O—mindau — —tree
nc

HIGHEST PROBABILITY
110 - s
wln—m0mn n n n —a—-
= S aaa=
g nl= \ Y /o i ‘c
g % Y —Y ;
o= |
a 30 : :“ jf
32 \J
0 -, b . - — .
1 2 3 a4 5 8 7 8 9 10
Categories \ e
110
remm e e e
g % :5 Nosjahe 7o
- 70
E o\ — ey
O 50 ;
Sw i,
[T \ T
- .
10
o — A o
1 2 3 4 5 6 7 8 8 10
Categories r' :'d"' e
110
jrEem e s
g °“j\ e o A
g o) Y /X7 §
o \
p % ‘ t
4 ; \ T i
20 ) /7 j
10 £
0 -*u T T T T T T 1
1 2 3 4 5 6 7 8 95 10
—~&— misclass

80 ! N / *
b [\l (50 0| iy £ S
o 70 1wy J A\
P e
R «
o T i
20 W
10 ‘XI !
0 L L |
1 2 3 4 5 (-] 7 8 9 10
—<&— misclass
Categories r i
110 - —
100 ]
o0 - q———— \ ,
[ NGNS JEN
2 5 Ty / 7
S 33_3\\ 7 = Z
8 o\ &
[Y 30 ) W/ | ‘ H
o 20 |
10 [ |
0 T T T T T T T T T ]
1 2 3 4 5 6 7 8 8 10
Categories —o— misclass —— tree \
nc
110 - o o
100 , 2
ggér%———xg /%
Eiew, T —
¢ SN A |
?‘,} \/ |
0 ) i e S R

1 2 3 4 5 6 7 8 8 10

—&— misclass —@— tree
nc




Appendix 9

Variable: Ethnic - Long term lliness

Misclassification rates against percentage of records incorrectly imputed (by tree size and imputation method)
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