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The research presented in this thesis addresses the issue of analytical and numerical aspects of the 

constitutive modelling of biological soft connective tissues. A general theoretical framework for the 

modelling of strongly anisotropic continuum fibre-reinforced composites at finite strain was first 

developed in order to provide solid theoretical bases for the formulation of a structurally-justified 

constitutive law describing the mechanical behaviour of ligaments. Then, a three-dimensional (3D) 

incompressible transversely isotropic hyperelastic law accounting for the key features of ligaments 

(incompressibility, anisotropy, nonlinear material, large deformations and rotations, very small 

bending stiffness, presence of residual stresses) was implemented into a commercial explicit finite 

element (FE) code. As applications of the material model, finite element analyses using experimental 

material data, were performed for simulating the behaviour of a human Anterior Cruciate Ligament 

(ACL) when the knee is subjected to a passive flexion. A second set of FE analyses was carried out in 

order to simulate the mechanical response of a 3D knee joint model (including the two collateral and 

the two cruciate ligaments) under anterior-posterior drawer forces. 

The originality of the theoretical framework for strongly anisotropic continuum fibre-reinforced 

composite at finite strain lie in the fact that the first and second derivatives of the strain energy 

function was performed without assuming any particular material symmetry or any kinematic 

constraints such as incompressibility. This provided the advantage of capturing all the possible mutual 

interactions of the matrix and the two families of fibres and encompassing all types of material 

symmetry. Describing material with particular symmetries or kinematic constraints or accounting for 

specific mechanical interactions is just a question of degenerating the equations involved. 

The incompressible transversely isotropic hyperelastic material implemented in the finite element 

code was properly validated against analytical solutions for homogeneous states of deformation and 

demonstrated robust and very good performance in the sensitivity analyses phase. 

The present research was motivated by the hypothesis that 3D isotropic models are not valid to 

represent the natural behaviour of ligaments. In fact, it was shown in a finite element model of the 

ACL, that highly unphysiological compressive and flexural stresses were generated as soon as a 

ligament undergoes compression in what should be the natural direction of the extended collagen 

fibres. The new anisotropic material model for the ACL was able to address successfully these severe 

limitations and by accounting for residual stress provided excellent agreement with quantitative 

experimental data such aa the resultant force developed in the ligament. 

The FE material model for soft tissue was also used to develop a global 3D model of the knee joint. 

For the first time, full 3D contact interactions between ligaments and bony structures was accounted 

for in simulated anterior-posterior drawer tests giving new insights in to the FE modelling of the knee. 

The FE model was sensitive enough to differentiate the mechanical response of an intact knee and 

that of an ACL-deficient knee. The primary restraining role of the ACL in anterior tibial drawer tests 

waa also confirmed. 
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T/ie ./VzcoZai' /amiZi/ /or (Aezr generoai% aî ppor̂  o/id e^ecioZZy /or aZZ (Ae 
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CONVENTIONS, NOTATIONS, OPERATORS, SYMBOLS & ABBREVIATIONS 

Conventions 

Cartesian coordinates are always assumed for vectors, matrices eind tensors whose components 

are designated by numerical indices ranging from 1 to 3. A repeated inde:: denotes summation 

over the range of the index. Vectors, vector Gelds, matric^ and tensors are defined by boldface 

characters. Material quantities are defined by upper case letters while spatial quantities are 

deSned by lower case letters. Components of a tensor are written in italic fonts. 

If a colon is set before an equally sign, as in :=, the right hand-side deSnes the left-hand side. 

The symbols => and mean respectively "implies" and "is equivalent to". 

Differentiation with respect to time is denoted by an over dotted symbol. Superscripts and 

subscripts added to symbols provide additional information, the meaning of which should be 

clear from the context. A bar symbol placed over a symbol generally meeins 'prescribed". A 

superscript "e" concerns a quantity deSned at the (finite) element level whereas a superscript "n" 

means that the quantity is deGned at the instant corresponding to the time step number n. 

Vectors, matrices, tensors and indices 

V 

M 

T 

vector V 

matrix M 

tensor T T, 

Cartesian components of v 

Cartesian components of M 

Cartesian components of T 

Operators 

A ^ T ^ 

A-\ T-̂  

(A) 

A' 

cof (A) 

a mapping; % : B % reads "% maps B into " 

scalar product of two vectors (i.e., u.v = u^vj or inner product of a second-

order tensor with a vector [i.e., (A.v)^ = A v̂̂ )] 

inner product of two second-order (or higher) tensors [i.e., (D:C)^ = 

dyadic product or outer product of two second-order tensors [i.e., 

(A 0 B) = A .By ] or dyadic product of two vectors [i.e., (u (g) v)̂ ^ = ] 

transpose of a matrix A or a tensor T 

inverse of a matrix A or a tensor T 

trace of A [i.e., (A) = 4- 4̂22 + 

square of A [i.e., (A )̂q -

cofactor of A [i.e., cof (A) = det (A)A'^ 
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det (A) determinant of A 

D , Vy) gradient of referred to the reference configuration 

V.y divergence of y;, referred to the reference conGguration 

push-forward operator 

y ' puH-back operator 

Greek symbols 

material parameter, angle between fibre vectors Hq and 

, CKj. dimensionless ratios 

^ material parameter 

% conGguration of B, dimensionless ratio 

Xg reference conSguration of B 

g Kronecker tensor 

g dimensionless ratio 

£ Lagrangean strain tensor 

volumetric strain ( + ^33) 

Eg transitional strain 

tp ultimate strain 

Y? deformation from the reference to the current configuration 

'Y shear strain 

bulk modulus, stiffness parameter in hourglass control 

extension modulus in the direction no 

extension modulus in the direction nio 

stretch in the fibre direction 

A, (i = 1..3) principal stretches 

initial stretch in the fibre direction 

stretch in the direction ng 

-̂ in„ stretch in the direction m^ 

^ Poisson's ratio 

rotational degrees of freedom around the axes X, Y and Z 

represents the assembly of elementary matrices 

p density in the current conGguration 

Pg density in the reference conGguration 

g. Cauchy stress tensor 

deviatoric Cauchy stress tensor defined as cr = a — pi 

stress tensor of the linear elasticity theory 
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(J von Mises Cauchy stress defined as <j „ = (CT , : cr ) 
^ ^ WW ^2 ™ ™ 

^ objective rate of Cauchy stress 

cr. (i = 1..3) principal Cauchy stresses 

ultimate stress 

spin tensor 

^ Helmholtz free energy function, strain energy function, strain energy density 

s t r E i i n energy function of an isotropic material 

strain energy function for the matrix 

strain energy function of a transversely isotropic material 

strain energy function for the fibres 

xp fi = 1..8) short-hand notation for 

(i, j = 1..8) short-hand notation for 

Latin symbols 

A material parameter for the incompressibility penalty function g 

elasticity tensor of the linear elasticity theory 

elasticity tensor in the material configuration 

components of the material elasticity tensors related only to the matrix 

components of the material elasticity tensors related only to the mechanical 

interactions between the matrix and the family of fibres Fi 

A^]_, A^^ components of the material elasticity tensors related only to the mechanical 

interactions between the matrix and the family of fibres F2 

A ^ , A^^^ components of the material elasticity tensors related to the mechanical 

interactions between the matrix and the family of fibres Fi and F2 

A ^ components of the material elasticity tensors related only to the mutual 

mechanical interactions between the two family of fibres and 

elasticity tensor in the spatial configuration 

B material parameter for the incompressibihty penalty function g 

g continuum medium (physical body) 

b left Cauchy-Green deformation tensor 

mapping representing B in the current conEguration 

mapping representing B in the reference conSguration 

frontier of 
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8 boundary of where displacements are prescribed 

g % boundary of where forces are prescribed 

C right Cauchy-Green deformation tensor 

C! (i = 1..6) material parameters 

c sound wave speed within element e 

e base of natural logarithms 

^ Young's modulus 

(g Euclidean space 

E Green-Lagrange strain tensor 

(e ,̂ 62, e,) orthonormal basis in the current conEguration 

(El, Ej, Eg) orthonormal basis in the reference configuration 

f function of the stretch in the fibre direction 

^ scalar function of the right Cauchy-Green deformation tensor C 

^ isotropic scalar function of the invariants of C 

f " residual forces vector 

f internal forces vector 

f ==* external forces vector 

^ function of symmetric tensors 

F deformation gradient tensor, assembled nodal forces vector 

deformation gradient tensor from stress-free to current configuration 

F deformation gradient tensor from pre-stressed to current con5guration 

F deformation gradient tensor from stress-free to pre-stressed configuration 

F deformation gradient tensor from stress-free to pre-stressed configuration in an 

orthonormal basis aligned with the fibre direction 

F (1=1 . .3 ) principal forces 

F tensile strength 

function of the invariants and 

g penalty function [g = g(j^)], 

g == 0, i = 1 to n^ (boundary conditions and constraints) 

g prescribed displacement vector 

G shear modulus 

symmetry group charEicterising isotropy in the reference conSguration 

eg symmetry group characterising treinsversely isotropy 
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^ (i = 1..11) invariants of the tensor C and its structural tensor agencies 

I fourth-order identity tensor 

*b ' fourth-order tensor defined as (l ] := (c/? l ) = - i f f e '6 ' 

I dC~^ 1 
C-' fourth-order tensor deSned ag := == - - ) 

J Jacobian of the deformation = determinant of F 

K stiffness matrix 

characteristic length of a finite element e 

vector space of all linear transformations from into 91'̂  

current unit vector field characterising the direction of the fibre family 

nig reference unit vector field characterising the direction of the fibre family F.j 

M structural tensor in the current configuration [ M ;= m ® m ] 

mass matrix 

M structural tensor in the reference conSguration := (g) m^] 

second-order tensor defined as := M^.C 4- C.M^ (reference configuration) 

second-order tensor defined as := M.b -t- M b (current configuration) 

number of constraints in the boundary value problem 

number of time steps 

^ current unit vector field characterising the direction of the fibre family Fĵ  

n reference unit vector field characterising the direction of the fibre family F^ 

N outward normal field perpendicular to the boundary of B in Xg 

structural tensor in the current configuration [ N ;= n 8) n ] 

N structural tensor in the reference configuration [ := n^ ® n^ ] 

Ng second-order tensor defined as := N^.C -|- C.N^ (reference configuration) 

N second-order tensor defined as := N.b -I- N.b (current configuration) 

' # + : = { T E ' ^ + / T ' " . T = 1 

p hydrostatic pressure, Lagrange multiplier 

p material point of B occupying the position X 

P First Piola-Kirchhoff stress tensor 

p ' (x) transform of P upon the deformation ip, occupying the position x 

q reaction stress to the inextensibility constraint in the direction n 
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T 
-̂nm 
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Ux, Au, 

Uy, AUy 

4:, Au, 
u 

orthogonal transformation 

reaction stress to the inextensibility constraint in the direction m 

resultant force 

maximum resultant force developed on the XY plane 

maximum resultant force developed on the XZ plane 

orthogonal trangformation, rotation matrix 

Second Piola-Kirchhoff stress tensor 

T e ' ^ + / T ^ = T } 

time, instant 

traction vector 

second-order tensor de&ned as := ig) m + m g) n) 

second-order tensor defined as T := i(n„.m„)(n„ 
2 Q/ \ 0 

displacement vector 

displacement along the positive X direction 

displacement along the positive Y direction 

displacement along the positive Z direction 

right stretch tensor 

I m„ m„ 

V left stretch tensor 

w work 

X position of the particle P of B in the current conGguration 

X position of the particle P of 8 in the reference configuration 

V . second-order tensor defined as := 4 ^ 0 + - ^ 4 ^ 0 

Zo second-order tensor defined as Z. := 

Zoo second-order tensor de&ned as ^oc := ^oc+^oc 

o the r symbols 

C subset Euclidean n-space 

G "is a member o f 0 empty set 

U union o composition of linear maps 

n intersection 1 second-order identity tensor 
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Abbreviations 

3D Three-dimensional LCL Lateral collateral ligament 

ACL Anterior cruciate ligament MCL Medial collateral ligament 

AMB Anteromedial band PA Posterior-anterior 

ANT Anterior PCL Posterior cruciate ligament 

AP Anterior-posterior PG Proteoglycan 
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FE Finite element POST Posterior 
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Chapter I 

a/zcf o^jec^zreg 

I.l The human knee joint: generalities 

The knee joint is one of the most heavily loaded joints in the body and this can be attributed to 

various mechanical factors. The knee is located below the centre of gravity of the body and its 

large range of flexion can generate significant lever arms. Due to this, the knee can be subjected 

to very high loads. The knee's functions and its position between some of the longest bones in the 

body, i.e. femur and tibia, subject it to high forces and torques, making it prone to injury. Also, 

the knee is a nonconforming joint, which accounts for its large range of mobility. With 

nonconforming surfaces, the load is distributed over relatively small areas and hence the stresses 

can be large. The stability of the knee joint depends upon: the congruency or fit of its articular 

surfaces, the Hgciments that cross the joint, and the muscles that cross the joint. The knee joint is 

a relatively mobile joint stabilised primarily by ligaments. Understanding the mechanical 

behaviour of the ligaments is therefore pivotal in understanding the mechanics of the whole knee. 

Damage to ligaments can lead to various orthopaedics problems tha t need to be managed using 

either non operative or surgical means. Obtaining a good understanding of the interactions 

between the bony structures and the ligaments can allow the investigation of pathological effects 

when certain components of the system lose their normal function. 



and oAjec^wea 

1.1.1 Role of ligaments in knee stability (clinical sense) 

An unstable knee joint (after ligament or joint capsule rupture) leads to abnormally high stresses 

on the articular cartilage and may lead to early osteoarthritis. Knee joint instability, as 

frequently seen in the knee following anterior cruciate ligament (ACL) injury, can lead to 

progressive cheinges in the articular cartilage, in the menisci, and in other ligaments attempting 

to restraint the increased joint mobility (Noyes et ai, 1985; Tamea and Henning, 1981). After 

menisco-ligamentous injury the kinematics of the knee is disturbed and the medial femoro- tibial 

compartment is overloaded especially when the meniscus has been resected and when the patient 

has a morphology in genu varum. Long-term follow up has shown that 15-20 % of patients go on 

to suffer arthritis of the knee following knee joint injuries (Aubriot, 1998). 

1.1.2 Role of ligaments in total knee joint replacement 

During the design process of total knee joint replacement, the kinematics and kinetic 

requirements of the joint must to be taken into account to restore normal function after 

prosthetic replacement. Furthermore, the estimated joint loading magnitude and its frequency 

applied to test the implant and its fixation to bone must be assessed to assure long term 

performance of the surgical implant under in vivo conditions. More and more studies emphasize 

the importance of the ligament imbalance on the success of total knee replacement and 

particularly for "condylar-type" knee prostheses (Sambatakakis et al, 1993). Soft tissue 

imbalance, defined in both flexion and extension, can be described as the resultant trapezoidal 

geometry, after the bony cuts have been mcide, and when the knee is tensed by equal medial and 

lateral forces. The imbalance is quantified by measuring the difference in length between the 

medial and the lateral sides of the trapezoid or by measuring the rotary deflection away from the 

parallel, or zero, position. Ligaments of the knee play a significant role in the success or the 

failure of knee replacement. In a TKA, the geometry of the prosthetic components is essential 

(Delp et oZ., 1995; Kocmond a/., 1995) but a better understanding of the ligament functions 

and their mechanical interaction with the surgical prostheses could oEer insight into clinical 

performance. 
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1.2 Computational models in biomechanics 

Today, it is almost a tautology to say that numerical models in biomechanics are of great 

importance for understanding biomechanical concepts and bring solutions to orthopaedic clinical 

problems. Biological tissues, are by essence, highly complex systems that host chemical, cellular, 

electrical and mechanical processes. Computational models have the ability to allow investigation 

into the complexity of diarthrodial joint mechanics by decomposing the physical reality into a 

collection of simpler problems for which solutions are achievable. Models of this nature can 

answer some of the essentiEil questions orthopaedics surgeons face during their practice: 

In the management of the intact and injured knee: 

" o//orcea m a junng o motion ? 

" Jfow ore Zigamenta damoged f 

" How does an injured ligament affects the kinematics of the knee joint during a gait cycle ? 

" /a zt nec&saary to oppZ?/ o prefenaton to a /or kgoment reconstruction F 

' Con otAer operotwe procec(urea restore normoZ y^nction f 

In the management of a replaced knee: 

" l-Miot is tAe optimoZ metfrnZ / /oteroZ fzgoTnent 6ofonce f 

' .Retention or resection 0/ tAe f (7L ^ 

" IFTzot is tAe optimoZ woy to constrain orticufor suT/oces f 

Due to the broad availability of computer workstations and their capacities, biomechanical 

computational models are a cheap way to perform studies in biomechanics, avoiding costly 

experiments and/or harmful experimental studies on animals or humans. 

It is worthy to note that experiments are necessary to obtain kinematic and material data as 

input into computational models. In fact, the material constitutive laws (mathematical laws 

relating stress and strain) used in Snite element codes rely on parameters derived from 

experimental tests performed on cadaveric tissue specimens. These test are therefore essential for 

implementing a hnite element constitutive law. Kinematic tests can be used for two distinct 

purposes. The Srst one is to obtain information regarding the physiological kinematic conditions 

a knee can be subjected to. These will constitute boundary conditions for the finite element 

model (boundary conditions prescribed in displacement). 
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The second purpose is to vahdate the Gnite element model by comparison of numerical results 

with experimental results. The displacements of the various knee structures (tibia, femur and 

ligaments) calculated in a finite element simulation must match (or, at least, get as close as 

possible to) the displacements obtained experimentally. In this particular case, the boundary 

conditions are not prescribed in displacement but in terms of force or stress. Once a numerical 

model is operational, any set of conditions (boundary, kinematics) can be simulated. 

Unlike "traditional" engineering materials, biological materials, especially soft tissues, exhibit 

mechanical behaviour extremely complex to characterise. Indeed, they are living, highly 

heterogeneous, anisotropic and strain rate dependent, have a very nonlinear behaviour, sustain 

very large deformations and have generally irregular geometries. Perhaps mainly due to the 

difGculties associated with these tissues, they have received minor attention on the constitutive 

modelling side and on the practical numerical implementation of their mechanical behaviour into 

Gnite element codes. Robust and realistic Gnite element material models for soft connective 

tissues are seriously lacking. A literature survey has shown that indeed very few three-

dimensional nonlinear finite element models have been developed. Weiss (1994) and Weiss et al. 

(1996) formulated a three-dimensional incompressible transversely isotropic hyperelastic 

constitutive law for soft tissues and implemented the model into a research Enite element code. 

The time dependence on the mechanical properties of soft tissue was further incorporated into a 

transversely isotropic hyperviscoelastic finite element model (Puso and Weiss, 1998). Material 

data Stting this model were later extracted for the human medial collateral hgament (Quapp and 

Weiss, 1998). Pioletti (1997, 1998a) formulated a three-dimensional isotropic hyperviscoelastic 

constitutive law, derived material data from experiments and implemented the purely elastic part 

of the law into a commercicil implicit finite element code. The approach adopted by Pioletti, 

(1997, 1998a) considers ligaments and tendons as isotropic materials and as will be shown this 

hypothesis is clearly untrue. Although Weiss (1994) implemented an anisotropic constitutive law 

for biological soft tissues, this was done within the framework of an implicit finite element code. 

No similar model wag ever implemented into an Rnite element code where the term 

ezy/zczf refers to the time integration numerical scheme used to solve the elastodynamic boundary 

value problem. This latter type of numerical code is particularly well suited to the study of 

dynamic mechanical systems involving highly nonlinear phenomena (materied, geometric, 

boundary and contact-impact nonlinearities) such as those occurring in human diarthrodial 

joints. 



Besides this, car manufacturers and other transport industries devote more eind more means into 

research concerning occupant seifety and craah impact simulations. Indeed, to have a better 

understanding of the injury mechanisms occurring during these crash events, it is essential to 

represent as accurately as possible not only the three-dimensional interactions between the 

occupants and the vehicle structure but also the biomechanical interactions within the human 

body. For example, the mechanical interaction between the bony and ligamentous structures are 

fundamental aspects in scenarios involving the so-called dash-board injury which accounts for 

rupture of the PCL within the knee joint. Computational biomechanical models are used more 

and more to carry out finite element analyses simulating impact scenarios. As these numerical 

simulations are performed within explicit finite element codes, it is essential to develop adequate 

three-dimensional material models which take into account the key features of soft tissues and 

provide a much better alternative to the existing simplified unidimensional models currently in 

use. These models have the major disadvantage of not being able to capture the three-

dimensional states of stress and strain within hgaments and tendons. 

1.3 Aim and objectives of the thesis 

The aim of the present work is to contribute to the field of constitutive modelling of biological 

soft connective tissues from an analytical and numerical point of view. This will be achieved by 

developing a general theoretical framework for the constitutive formulation of anisotropic 

biological materials. The task will be then to identify and implement a suitable constitutive law 

for ligaments into a commercial finite element code. Availability of experimental material data in 

literature will condition the choice of the mathematical formulation adopted. The implementation 

of a fully three-dimensional incompressible transversely isotropic hyperlastic material model for 

ligaments will extend the current possibilities of realistic numerical simulations in soft tissue 

mechanics. This will overcome a signiGcant shortage of reliable Enite element models for 

modelling the mechanical behaviour of ligaments and particularly, the collateral and cruciate 

ligaments of the human knee joint. Finite element analyses will be performed and in the hght of 

the results this will lead to the view that current isotropic models of ligaments are not valid 

and should not be used for peirticular simulated physiological conditions such as passive 

flexion of the knee. A fully dynamic model of the knee ligaments integrated into a knee joint 

model will also permit the simulation of physiological dynamic and static conditions. 



The aim of this research work will be achieved in the context of the existing body of knowledge 

in the field -at times building on this knowledge but also sometimes offering fundamental 

criticism of current opinion. 

The first specific objective is proposed in the context of a continuum theory of fibre-reinforced 

composites at finite strains to justify the theoretical bases adopted in this work for the 

constitutive modelling of biological soft connective tissues. An extension of the theory proposed 

by Spencer (1992) is developed in order to describe a more general theoretical framework suitable 

for the constitutive modelling of ligaments and tendons. Particular attention is paid to the 

symmetry groups because mechanical anisotropy is one of the essential characteristics of 

ligaments E i n d tendons. 

Entirely new explicit expressions, not previously reported in literature, for the elasticity tensors 

in the spatial and material descriptions are established. These expressions are developed and 

discussed in connection with their biological significance. The various terms of the elasticity 

tensors can be helpful in exploring and incorporating into the constitutive formulation complex 

interactions between the components of the 5bre-reinforced composite material that can be 

missed otherwise. Moreover, elasticity tensors are essential in investigating mathematical 

properties of the constitutive laws and their knowledge is fundamental in any finite element 

method. It is shown how typical mechanical features of soft connective tissues can be taken into 

account at the mathematical formulation stage. 

The second specific objective is to identify and implement a suitable three-dimensional 

constitutive law to represent the mechanical behaviour of ligaments into a commercial explicit 

Enite element code. As the model will be used to simulate ligaments operating in physiological 

conditions, the numerical implementation must be extremely robust to track accurately all the 

nonlinear phenomena involved. Since ligamentous structures are in a state of residual stress in 

VIVO, it is essential to implement numerically the capacity to pre-stretch the finite element soft 

tissue models. This will constitute another objective of the numerical developments done in the 

context of an explicit Gnite element code. 

The fourth speciEc objective is proposed in response to the view that isotropic constitutive 

laws can predict the natural mechanical behaviour of ligaments. 
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It is believed that at least the simplest class of anisotropic symmetry (transverse isotropy) ia 

crucial in the deSnition of a constitutive law in order to accurately represent and predict the 

natural behaviour of hgaments. By performing Gnite element analyses of the mechanical 

behaviour of a human ACL (for passive knee flexion) the severe deficiencies of isotropic 

models are highlighted and overcome by the signiEcant advantages offered by transversely 

isotropic models. Essentially an objective aimed at evaJuating an important concept, the 

residual stress hypothesis will also be tested in the same finite element model of the ACL and 

for the same boundary conditions. 

The sixth specific objective is to test the transversely isotropic hyperelastic model of the 

ligaments in the context of diarthrodial joint biomechanics. The new three-dimensional 

constitutive model will allow us to integrate the complex geometrical and mechanical 

properties of the four main knee Hgaments into a full three-dimensional anatomiceil model of 

this joint. The complex mutual contact interactions occurring between the ligaments and the 

bones will extend the current possibilities in biomechanical finite element analyses by 

providing more realistic boundary conditions. In fact, this will permit the capture of 

mechanical interactions that are absent in the existing finite element models of the knee joint 

and this will establish the possible role that they play in the kinematics of a knee subjected to 

drawer tests. 

1.4 Outl ine of t h e thesis 

As the thesis objectives are concerned with the finite element analyses of the ligaments of the 

knee in simulated physiological conditions, anatomy and mechanical characteristics of this joint 

(bony and ligamentous structures) wiU be reviewed as a preliminary step. This will be 

accomplished in Chapter II. 

Chapter HI reviews the structural and mechanical properties of hgaments. The knowledge of 

these features is fundamental in the formulation of a constitutive law and so will be essential to 

structurally justi^ the mechanical formulation that is adopted in this work. 

In addition to these physiological aspects, a critical review of previous material modelling 

approaches will be presented in Chapter IV. 
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In Chapter V, the theoretical basis of the constitutive modelling of soft connective tissues will be 

laid down. The theory of Ebre-reinforced composites at Gnite strain developed by Spencer (1992) 

will be further extended and discussed in relation with soft tissue mechanics. 

The numerical implementation of an incompressible transversely isotropic hyper elastic law into 

an explicit finite element code will be presented in Chapter VI. T h e correct implementation of 

the material model will be demonstrated by showing excellent agreement between numerical and 

analytical solutions for states of homogeneous deformations. 

Chapter VII will concentrate on the essential practical aspects related to the finite element 

analyses of ligamentous structures. Sensitivity finite element analyses will be performed in order 

to test the accuracy of the implemented material model with regards to the choice of the 

hourglass mode stabilisation methods for 8-noded hexahedral solid elements, the validity of the 

qnasi-static process, mesh density and bomidary conditions. 

In Chapter VIII, it is proposed to demonstrate the relevance and usefulness of the numerical 

implementation of the anisotropic constitutive law for biological soft connective tissues. The 

capacity to apply a residual stress to a FE model of a soft tissue structure wiU also be shown to 

be essential. The incompressible transversely isotropic hyperelastic FE model will be used to 

model the mechanical behaviour of the human ACL when the knee is subjected to passive 

flexion. 

Chapter IX is another illustration of the very promising potential brought by the Finite Element 

Method in the Geld of joint biomechanics. The mechanical response of an anatomicEil human knee 

joint model subjected to anterior-posterior drawer tests will be evaluated. The novelty of the 

proposed model consists in the simultaneous integration of realistic three-dimensional constitutive 

law for ligaments, anatomically accurate description of bones and ligaments and above all, 

accounting of all the potential three-dimensional contact interactions between bony and 

hgamentous structures. 

Finally, Chapter X will end with concluding remarks about the present research work and will 

offer recommendations for future work. 



Chapter II 

The primary function of the knee is to provide locomotion and in doing so to support the weight 

of the body, to aid in the conservation of momentum of the lower extremity and to transmit 

loads through the lower limbs. The knee joint consists of three joints: the femoral-tibial joint, the 

femoral-patellar joint and the tibio-fibular joint, and four bones: the femur, the tibia, the fibula 

and pafe/Za. 

The knee joint is a synovial joint which means that the opposite surfaces are covered by hyaline 

articular cartilage and are enclosed in a joint cavity containing a highly viscous synovial fluid 

formed from an inner synovial membrane, and the outer fibrous capsule. The additional fibrous 

bands both outside the joint capsule, and inside the joint cavity are known as the ligaments. 

Although the knee joint possesses six degrees of freedom, the dominant motions are: yZ&moM / 

mfermaZ / anterior / 

The following smaller motions are also allowed (although constrained by ligaments): / 

mecfiaZ / ZaferaZ and m/erzor / 

The mechanical complexity of the knee is outstemding in the sense that this joint must satisfy 

two antagonistic conditions: 

1. (o Adife an eiceKeiif eitezisioTi, lu/ien, t/ie Arnee is subjected to MgA streasea 

generated t/ie body wezgM and tAe m îac/e ybrceg; 

2. to Aore a good mobiZity o/ter a certom degree 0/ _/7ea:ion Ana been ocAiei'ed, tMa /eature 

being easentmZ /or running and tAe optima/ orientation 0/ tAe /bot re/atii;e to tAe ground, 

paT-ticuZarZ^ on uneuen suT/acea. 



Chapter II - Anatomy and physioiology of the human knee joint 

The stability of this highly complex engineering problem is achieved by the way of ingenious 

mechanical hnkages, namely the Ugaments (Kapandji, 1987). T h e knee joint has four main 

ligaments: the two collateral and the two cruciate ligaments (Figure 11.1). 
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Medial Condyle of Tibia 

Transverse Ligament 
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Figure II. 1 - Anatomy of a right knee in flexion (frontal view). The patella is not 

represented. The anterior part of the capsule has been removed in order to show 

the intracapsular components {Anonymous picturc found on the Internet). 

At this stage, it is also important to mention the menisci which are two dense fibrous semi-

circular soft structures with a wedge-shaped cross section. They are interposed on the tibial 

plateaux between tibia and femur, one medially and the other laterally. The medial meniscus, 

which is the larger of the two, is attached to the tibia at its anterior and posterior horns by 

fibrous tissues. Its outer circumference is connected through the capsule of the joint to the femur 

and tibia. Thus its capsular attachments to the tibia are lax whereas those to the femur are 

strong on the medial side and form the deep capsular ligament. T h e lateral meniscus is fixed to 

the tibia at both its horns and in addition, its posterior convexity is secured to the femur by the 

menisco-femoral ligaments. The anterior convex margin of the lateral meniscus is, connected to 

the anterior horn of the medial meniscus by the transverse ligament (Kapandji, 1987). 
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The main role of the menisci is to enhance the stability of the knee and to protect the articular 

cartilage from excessive concentration of force. Most of the direct tibiofemoral contact is 

eliminated while the surface contact of the joint is increaged thus reducing contact stress. Menisci 

are also considered as shock-absorbing structures that protect the ajrticular surfaces of the bone. 

II. 1 The collateral ligaments 

The medial collateral ligaments stiffen the articular capsule on its medial and lateral aspects 

(Kapandji, 1987). They are therefore responsible for the transverse stability of the knee during 

extension by preventing side to side movements of the tibia and the femur relative to one 

another. The stability of the knee is achieved when the external forces acting on the knee joint 

are correctly balanced by the internal forces provided by the capsular structures, ligaments, 

muscles and joint contact geometry They also prevent lift off of the femur in varus-valgus tilt. 

The two ligaments allow more movement during knee flexion t h a n extension because of their 

more posterior locations on the sides of the knee joint. Both ligaments are tight during extension 

and relatively loose during flexion. 

11.1.1 The medial (or tibial) collateral ligament (MCL) 

The MOL is a 8-10 cm long, broad, flat ligament that blends with the postero-medial aspect of 

the joint capsule (Pope, 1996). The ligament lies somewhat posteriorly on the medial side of the 

joint and is attached to the medial epicondyle of the femur superiorly and the medial tibial 

condyle, and medial surface of the tibial shaft. The MCL is composed of two parts: the superficial 

and the deep portions. The superficial MCL is attached proximally to the posterior aspect of the 

medial femoral condyle and distally to the metaphyseal region of the tibia, up to 4-5 cm distal to 

the joint, lying beneath the pes anserinus (Hughston aZ., 1976a; Hughston oZ., 1976b; Pope, 

1996). The superficial ligament can be further subdivided into anterior and posterior portions. 

The posterior fibres form the posterior oblique ligament. The anterior fibres of the ligament are 

separated from the joint capsule, often by one or more bursa, while the posterior Sbres blend 

with the medial meniscus and the joint capsule. The deep MCL is anatomically the third (deep) 

layer of the medial compartment, which in many cases will be separated from the superScial 

MCL by a bursa (which allows sliding of the tissues during flexion). Essentially, the MCL resists 

valgus stresses across the knee joint, being especially effective in the extended knee when the 

ligament is taut. 

11 
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Grood et oZ. (1981) showed that the MCL carried 57% of the valgus stress when the knee was at 

5 degrees of flexion but 78 % when the knee was flexed to 25 degrees. Harfe aZ. (1998), Nielsen 

(1987) and Nielsen e( aZ. (1984) found that the MCL made a major contribution throughout the 

knee joint range of motion to checking lateral rotation of the tibia combined with either anterior 

or posterior tibial displacement. A 3 degrees valgus rotation signiGcantly increases the strain in 

the MCL for Gexion angles ranging between 15 and 20 degrees. A 10 degrees external tibial axial 

rotation significantly reduces the strain in the MCL for flexion angles varying between 30 and 

120 degrees (Harfe et al, 1998). 

ILl.2 The lateral (or fibular) collateral ligament (LCL) 

The Sbular collateral ligament is a strong, rounded cord-like Hgament on the lateral side of the 

knee joint. This ligament is very distinct from the joint capsule and does not attach to it or to 

the lateral meniscus. The entire lateral collateral ligament is about 5 cm long. At full extension, 

the LCL is at 35 degrees relative to the MCL on a sagittal plane projection (Zuppinger, 1904). 

The LCL resists varus stresses across the knee. Given its alignment, it also appears to limit 

lateral rotation of the tibia, making its most substantial contribution at about 35 degrees of 

flexion, in conjonction with the posterolateral capsule (Nielsen and Helming, 1985; Nielsen et ai, 

1984). The LCL also resists combined lateral rotation with posterior displacement of the tibia in 

conjunction with the tendon of the popliteus muscle (Nicholas and Hershman, 1986). As shown 

by Harfe et al. (1998), a 3 degrees varus rotation significantly increases the strain in the LCL for 

flexion angles of 15-120 degrees. As opposed to the case of the MCL, internal or external tibial 

axial rotation does not seem to affect the strain response of the LCL. 

II.2 The cruciate ligaments 

These ligaments lie inside the joint capsule and for this reason are called intracapsular ligaments 

(like the transverse ligament, the anterior and posterior meniscofemoral ligaments). It is worth 

noting that they are intracapsular but extrasynovial. The cruciate hgeiments are essential 

ligaments that prevent anterior-posterior displacement of the tibia relative to the femur. They 

cross one another and form an "X" when viewed from the anterior-posterior and medial-lateral 

aspects of the knee joint. The ACL is attached to the intercondylar fossa and the PCL is 

attached to the intercondylar fossa on the tibia. The two cruciate ligaments are 

separated by a cul-de-sac of synovial membrane where they cross one another. 

12 
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They are both relatively tight in all movements of the knee and serve to limit translational 

shding movements between the tibia and femnr, the ACL limiting anterior sliding and the PCL 

preventing posterior sliding (Haines, 1941). They help to prevent lateral rotation of the femur on 

the tibia and tighten during lateral rotation (Haines, 1941). There is a controversy between 

various authors concerning this issue. According to Haines, the cruciate ligaments unwind to 

some extent during medial rotation of the femur upon the tibia and therefore allow this rotation 

to occur during the last few degrees of extension. WiHiams and Warwick (1980) consider that the 

two ligaments are most tense during extension of the knee when this medial rotation occurs and 

tightens the cruciate as they cross one another. Others authors like Hollinshead (1982) hold that 

the ACL is most tense during full extension, while the PCL is most tense during hyperextension 

of the knee. However, most anatomists agree that both cruciate ligaments are tense during 

hyperextension of the knee (Brantigan and Voshell, 1941). 

II.2.1 The anterior cruciate ligament (ACL) 

This ligament is made of multiple collagen fascicles and its length ranges from 25 to 41 mm 

(mean: 38 mm) with a width varying between 7 and 12 mm (mean: 10 mm). The ACL is 

attached to the medial aspect of the anterior intercondylar area of the tibia, between the 

attachment sites of the anterior horns of the lateral and medial menisci. It passes 

posterosuperiorly and laterally attaches to the lateral condyle of the femur on its posteromedial 

surface. The ACL is composed of two principal fibre bundles: a small anteromedial band (AMB) 

and a larger bulky posterolateral band (PLB). An intermediate bundle can also be identiSed 

(Amis and Dawkins, 1991). The different bundles of the ACL contribute to resisting anterior 

subluxation in flexion and extension. The AMB is tight in flexion (maximumly tensed at 70 

degrees of flexion) and the PLB is tight in extension (Jeffreys, 1963). This correlates with 

increased contributions to knee stability and the likehood of partial ruptures in these positions. 

At 5 degrees of hyperextension, the anterior cruciate ligament forces range between 50 and 240 N 

(mean: 118 N) (Markolf oZ., 1990). Markolf oZ. (1990) found that ACL load was maximum 

during iutemal tibicil rotation and was negligible during external tibial rotation. Hyperextension 

of the knee develops much higher forces in ACL than In PCL. During isometric quadriceps 

contraction, ACL strains at 30 degrees of knee flexion are signiScantly higher than at 90 degrees 

of flexion where the ligament remains unstrained with isometric quadriceps activity. The ACL is 

the predominant restraint to anterior tibial displacement and accepts 75 % of anterior force at 

fuU extension and approximately 85 % at 30 and 90 degrees of flexion (Cabaud, 1983). 

13 
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Piziaii et oA (1980a, 1980b) performed cadaveric studies and showed that the ACL carried 87% 

of the total load when an anterior translational force waa applied to an extended knee. Nicholas 

and Hershman (1986) and Torzilli et aZ. (1981) have found that the stresses on the ACL 

produced by an anterior translational force on the tibia create an internal rotation of the tibia. 

The ACL may also appear to make at least a minor contribution to restraining both varus and 

valgus str^ses across the knee joint (Grood ef oZ., 1981). During gait the ACL is taut at knee 

extension, and tends to externally rotate the tibia. Tension is minimal at 40 to 50 degrees of knee 

flexion. As the knee moves from flexion to extension, posterior displacement of the lateral 

condyle of the femur is checked by ACL. The larger and less curved medial femoral condyle 

continues to forward roll and skids backward, assisted by tightening of PCL (Feagin and 

Lambert, 1985). Towards full extension there is lateral rotation of tibia and the joint is "screwed 

home". 

11.2.2 The posterior cruciate ligament (PCL) 

The PCL is shorter and stronger than the ACL. This ligament is approximately 38 mm long with 

a width of 13 mm (Pope, 1996). It is attached to the posterior intercondylar fossa of the tibia 

posterior to the attachments of the posterior horns of both of the menisci. The PCL passes 

anterosuperiorly and medially to attach to the anterior aspect of the lateral surface of the medial 

femoral condyle. The PCL is less oblique in its course than the ACL and it broadens considerably 

as it nears its femoral attachment. Generally, as with the ACL, the PCL is separated into an 

AMB and a PLB named by the tibial origin. At 80 to 90 degrees of flexion the AMB is 

maximumly taut and the PLB is relaxed (France et al, 1983). The PCL is the primary restraint 

to posterior displacement of the tibia relative to the femur, with little or no displacement possible 

in full extension. The secondary restraints to posterior displacement of the tibia include 

posterolateral capsule, popliteus tendon and MCL. It appears that the PCL plays a role in 

restraining varus and valgus forces (Fukubayashi oZ., 1982; Grood a/., 1981; Nielsen aZ., 

1984) and, like the ACL, plays a role in both restraining and producing rotation of the tibia, with 

little or no rotation produced at the femur (Torzilli oZ., 1981). The PCL provides 93% of total 

restraining force to straight posterior translation of the tibia relative to the femur in the extended 

knee (Piziah a/., 1980b). At 75 to 80 degrees of flexion, the displacement of the tibia, 

accompanied with a posterior translational force, is maximum. However sectioning of the PCL 

increases posterior translation at all angles of flexion (Fukubayashi oA, 1982). 
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11.3 The kinematics of the normal knee joint 

The primary motions of the knee joint are flexion/extension, ajiterior-posterior displacements 

and, to a lesser extent, internal-external rotation. These motions occur about changing but 

definable axes and serve the weight-bearing functions of the lower extremity (Kapandji, 1987). 

An essential feature of the knee joint kinematics is represented by the complex combination of 

rotational gliding and roUing of the bony structures. It is now largely recognised that the basic 

kinematics of the knee joint can be represented by the mechanism of a crossed four-bar linkage 

deGned by the cruciate hgaments. In early flexion (0 to 25 degrees), rolling predominates while in 

deep flexion, most of the femoral motion is sliding on the tibia. T h e anterior glide of the femoral 

condyles results in part from the tension exerted by the ACL as the femur roUs posteriorly on the 

tibial condyle. The shape of the menisci constrains the femoral condyle to roll as the knee flexes. 

There is a progressive posterior translations! displacement of femoral-tibial contact which allows 

for the range of motion in deep flexion (M(iHer, 1983). In the normal knee, there is an initial 

internal tibial rotation during flexion and a constantly shifting centre of rotation which can be 

explained by femoral-tibial adduction and proximal tibial medial translation with increasing 

flexion. Also there is a proximal tibial migration towards the femur during flexion explained by 

rollback onto the posterior proximal tibial slope. The most signiGcant translation occurs in the 

sagital axis and is characterized in the normal knee by posterior translation or rollback. 

Extension of the knee from flexion occurs initially as a rolling of the femoral condyles on the 

tibial condyles, displacing the femoral condyles back to neutral position. After the initial forward 

rolling, the femoral condyles glide posteriorly just enough to continue extension of the femur as 

an almost pure spin (roll plus posterior glide) of the femoral condyles on the tibial condyles. The 

intra-articular movement of the femoral condyles is partly facilitated by the tension present in 

the PCL. The other contribution comes from the shape of the menisci. The asymmetry in the 

size of the medial and lateral condyles leads to a complex intra-articular motion pattern. As the 

femur extends to about 30 degrees of flexion, the shorter lateral femoral condyles completes its 

rolling-gliding motion. As extension continues, the longer medial femoral condyle has checked. 

This continued motion of the medial femoral condyle results in medial rotation of the femur on 

the tibia, pivoting about the fixed lateral condyle. Increasing tension in the knee joint ligaments 

as the knee approaches full extension may also contribute to the rotation within the joint. To 

initiate flexion, the knee must 5rst be unlocked. That is, the medially rotated femur cannot flex 

in the sagittal plane, but must laterally rotate before flexion can proceed. 
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11.3.1 Flexion / Extension 

The basic human gajt pattern requires approximately 60 degrees of knee flexion whereas stair 

climbing increases the necessary angle of flexion to 80 degree (Inman aZ., 1981). Sittnig down 

into a chair and rising from it require at least 90 degrees of flexion (Nicholas and Hershman, 

1986). For activities beyond simple mobility tasks, the requirement can increase to 115 degrees of 

knee flexion or more. Knee joint extension (or hyperexetension) of 5 to 10 degrees is considered 

within normal limits. During squatting knee flexion can reach 160 degrees (Kapandji, 1987) and 

this limit is due to the contact of soft tissues of the leg eind thigh. 

11.3.2 Internal / External Rotation 

The range of knee joint rotation varies according to the degree of knee flexion. At full extension, 

when the knee is in the closed-packed (locked) position and t h e ligaments are taut (state of 

maximum congruency of the knee joint), no rotation can occur. At 90 degrees of flexion, 

ligaments are lax, 60 to 70 degrees (30 degrees of internal rotation and 40 degree of external 

rotation) of either active or passive rotation were considered to be possible (Kapandji, 1987) 

although this has been proven to be not correct. The range for lateral rotation (0 to 40 degrees) 

is slightly greater than the range for medial rotation (0 to 30 degrees) (Kapandji, 1987). With 

maximum rotation available at 90 degrees of knee flexion, rotation diminishes as the knee 

approaches both fuH extension and fuU. flexion. 

11.3.3 Anterior / Posterior translations 

During knee extension, the tibia glides anteriorly on the femur. During the last 20 degrees of 

knee extension, anterior tibial glide persists on the tibia's medial condyle because its articular 

surface is longer in that dimension than that of the lateral condyle. 

When the knee begins to flex from a position of full extension, posterior tibial ghde begins Srst 

on the longer medial condyle. Between 0 and 20 degrees of flexion, posterior glide on the medial 

side produces relative tibial internal rotation, a reversal of the screw-home mechanism (Kapandji, 

1987). 

During external rotation of the tibia the lateral femoral condyle moves forward over the lateral 

tibial condyle while the medial femoral condyle moves backward over the medial tibial condyle. 

During internal rotation the reverse mechanism takes place (Kapajidji, 1987). 
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Chapter III 

5'^r?/c^'uro/ aTitf mecAaMica / proper^%eg o / /zpameM^g 

III.l Introduction 

Ligaments are dense connective soft tissues possessing a fibrous structure made of parallel 

arrangements of collagenous Sbres. These tissues are composed largely of coZZogem, a Gbrous 

protein constituting approximately one third of the total protein maas in the body (White of., 

1964). Also, collagen is not only found in bone and cartilage where it constitutes a large portion 

of the organic matrix but also in soft tissues such as blood vessels, muscle, ureters, intestines, the 

kidneys, skin and the liver where it provides a significant mechanical supportive function. 

III. 2 Structure and chemical composition of ligaments 

Like other connective tissues, ligaments consist of relatively few cells (fibroblasts) and an 

abundant extracellular matrix. In general, the cellular material occupies about 20% of the total 

tissue volume, while the extracellular matrix accounts for the remaining 80%. About 70% of the 

matrix, also known aa grountf ai/bafance consists of water and approximately 30% as sohds. These 

solids are co/Zagen, a small amount of and other gZi/coprote%7w such as achm 

and (Frank and Shrive, 1999). Roughly, 70 to 80% of the dry weight of normal 

tendon or hgament is composed of Type I collagen, also found in skin and bone (Fung, 1981). 

The structure and chemical composition of hgaments (and tendons ag weU) are identical in 

humans and in other mammal species such as rats, rabbits, dogs and monkeys (Fung, 1981). 

Results of experimental studies on these animals can therefore be directly related to the 

physiology of humein hgaments and tendons. 
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Chapter III - Structural and mechanical properties of ligaments 

An essential feature of the hgaments (as well as tendons) is that, when observed under polarised 

hght microscopy, a periodic arrangement of wavy collagen appears (Figure III.l). This wavy 

pattern is known as the crimp pattern with a typical geometrical period of about 50 (xm (Frank 

and Shrive, 1999). The progressive uncrimping of the collagen fibres is the source of the 

increasing stiffness in the first phase of the uniaxial stress-strain curve. 

V 

Figure III.l - Photograph exhibiting the crimped pat tern of 

collagen in ligament, from (Frank and Shrive, 1999). The typical 

wavy pattern of the collagen fibres is clearly visible. 

III.2.1 Collagen 

Collagen is a fibrous protein possessing a structural hierarchy. T h e basic constituent of collagen 

is the tropocollagen molecule which is composed of three polypeptide chains (a chains), each 

coiled in a right-handed helix (Rich and Crick, 1955) giving to t he collagen molecule a rod-like 

shape (Figure III.2). The length of the molecule is about 280 nm, and its diameter is about 1.5 

nm (Diamant et ai, 1972; Rich and Crick, 1955; White et al, 1964). Five collagen molecules 

wrap one another to form a superhelix called a microfibril. Groups of collagen molecules, 

aggregated in a quaternary structure are called collagen fibrils. These structures, in which each 

molecule overlaps the other, are responsible for the repeating bands observed on the fibrils under 

the electron microscope. Their diameters range from 20 to 40 n m depending on the animal 

species and the tissue. The fibrils aggregate further to form collagen fibres, which are visible 

under the hght microscope. These fibres ranging from 0.2 to 20 p.m in diameter, do not branch 

and may be many centimetres long. 
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They reflect a 64 nm (in native fibrils) or 68 nm (in moistened fibrils) periodicity of the fibrils 

and have a characteristic undulated form. The Sbres aggregate further into pnmon/ (wndZea or 

fasciculi (Fung, 1981). Fibroblasts (cells synthesising the collagen molecule) are aligned in rows 

between these bundles and are elongated along the axis in the direction of ligament or tendon 

function. 

The arrangement of the coUagen Ebres differs somewhat in the tendons and ligaments and is 

suited to the function of each structure. The fibres composing the tendons have an orderly, 

parallel arrangement, which allows the tendons to handle the high unidirectional tensile loads to 

which they are subjected during activity. The hgaments generally sustain tensile loads in one 

preferred direction but may also bear smaller tensile loads in other directions; their fibres may 

not be completely parallel but are closely interlaced with one another. The specific orientation of 

the Ebre bundles varies to some extent among the ligaments Emd is dependent on the function of 

the ligament (Amiel et al, 1984; Kennedy et aL, 1976). It is worth noting that ligaments are also 

subjected to shear loading and compressive forces over bony structures allowing them to transfer 

load to the bone surface far from the insertion sites, A typical example concerns the warping of 

the collateral hgaments on the medial and the lateral sides of the knee joint. 

An important contribution to the collagenous tissue integrity and mechanical properties is 

provided by the existence of cross-links between collagen molecules. This also plays an essential 

role in the aggregation at the fibril level. Collagen has the ability to form covalent intramolecular 

(aldot) and intermolecular (Schiff base) cross-links which are the keys to its tensile stiffness and 

resistance to chemical or enzymatic breakdown (Bailey, 1968; Mechanic, 1974; Temzer, 1973). 

Within the fibrils, cross-links are characterised by "head-to-tail" interactions between the 

molecules. At the next superior level in the structural hierarchy, inter fibrillar cross-linking of a 

more complex nature may occur. 

COLLAGEN r4 280 nm 
MOLECULE ' n — ' 

TRIPLE .5 nm 
HELIX 

0 - 1 

Figure III.2 - Structure of the collagen molecule. From Carlstedt and Nordin (1989). 
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III. 2.2 Blast in 

This protein is a major constituent of the extracellular matrix of soft connective tissues but does 

not have a pronounced hierarchical organisation like collagen. Its highly elastic properties (up to 

250 % deformation) are believed to be responsible for the elastic recovery properties that it 

provides to connective tissues. The elastin is scarcely present in tendons and extremity ligaments, 

but in elastic ligaments such as the ligamentum flavum (ligament which connects the laminae of 

adjacent vertebrae) the proportion of elastic fibres is substantial. 

III.2.3 Ground substance 

Basically, the ground substance is a hydrophUic gel-like substance consisting of water, acid 

mucopolysaccharides, chondroitin sulfates A, B and C, keratosulfate and the heparins (Minns 

and Soden, 1973). The acid mucopolysaccharides are made of macromolecules, the proteoglycans 

(PGs), which bind to a long hyaluronic acid (HA) chain to form an extremely high-molecular 

weight PG aggregate. These PG aggregates bind most of the extracellular water of the ligament 

and tendon. 

The ground substance of tendons or ligaments make up only a small percentage of the total dry 

tissue weight but are nevertheless quite significant because of their association with water, which 

represent 60 to 80% of the total wet weight. The water content of the human ACL varies 

between 65 Eind 70% (Woo e/ oZ., 1986). The amount of ground substance depends on the tissue 

considered, as dense connective tissues possess a very small quantity of it as compared to loose 

connective tissues. The movement of water in the ground substance is of a very complex nature 

due to the numerous mechanical, biochemical and electrical interactions taking place. The study 

of these phenomena is a very challenging issue that requires the mobilisation of various 

disciplines such as biochemistry, cell biology and biomechanics. 

The PG aggregates are essential in providing matrix-like cohesion between the collagen 

microfibrils and, as composite structures, ligaments and tendons are strengthened by these 

satbilising structural arrangements. They therefore contribute important features to the collagen 

Sbre-ground substance interaction. The water and PGs provide lubrication and spacing crucial to 

the gliding function at intercept points where fibres cross in the tissue matrix. The PG molecules 

are highly negatively charged and possess a large number of hydroxyl groups which attract water 

through hydrogen bonding. 
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III.3 Physiological functions of l igaments 

Tendons and ligaments are well suited to the physiological functions they perform. Multiple 

tendons and ligaments serve a single joint, providing a mechanism for both locomotion and the 

maintenance of static and dynamic protection through a wide range of movement. In addition to 

their purely mechanical function, ligaments of the knee are innervated and play an important 

proprioceptive role during the various kinematic and kinetic conditions the joint can be subjected 

to (Brand, 1986). Ligaments and tendons assure the transmission of loads between, respectively, 

bony structures and bony structures and muscles and, in doing so, maintain the proper alignment 

of the skeleton and guide joint motions. 

n i . 4 Insertion of l igaments into bone 

Tendon and Hgament insertions to bone are functionally adapted to dissipate forces by passing 

through fibrocartilage to bone. As documented by Matyas et al. (1995), it appears that there is a 

correlation between the shape of the cells in the ligament-bone insertion zone and the mechanical 

stresses. The study, performed on rabbit MCLs, showed that the cells are the most rounded at 

the place where the highest compressive stresses occur and that the areas with the flattest cells 

correspond to the areaa with the lowest compressive stresses. 

The insertions of tendons and ligaments into bone are classified as either direct or indirect. 

The structure of the (iirect zTwe/fioM consists of four zones. At its extremity, the tendon has its 

collagen fibres (zone l) intermeshing with fibrocartilage (zone 2)- Then a gradual mineralisation 

of this fibrocartilage appears (zone 3) as the tissue merge more deeply into cortical bone (zone 4). 

The gradual alteration of the mechanical properties of the tissue is optimised in some way to 

distribute the stresses in the soft connective tissue. Indeed, as the tendon or ligaments inserts 

into bone, its stiffness progressively increases with the effect of reducing the stress concentration 

effect at the insertion into the stiffer bone. 

The indirect insertion consists of a superficial layer, which connects directly with the periosteum, 

with deeper layers that anchor to the bone via Sharpey's fibres. T h e medial collateral ligament is 

particular in the sense that it has a direct femoral insertion and an indirect tibial insertion 

(Matyas oZ., 1995; Woo a/., 1999). As noted by Frank and Shrive (1999), mtZzrecf 

occurs also during growth when the ligament inserts into the periosteum. 
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III. 5 M e c h a n i c a l b e h a v i o u r of l igaments 

Ligaments display time- and history-dependent viscoelastic properties that reflect the complex 

interactions of collagen and the surrounding proteins and the ground substance mechanical 

properties. The ligaments are capable of sustaining finite strains and rotations without causing 

damage to their structure and by doing so, provide important restraining and cohesive functions 

in various joints. An important feature of these soft tissues is that their loading, unloading curves 

do not follow the same path, thereby forming an hysteresis loop. This is due to the fact tha t 

there are internal energy losses. As viscoelastic tissues, hgaments are also subject to creep (an 

increase of deformation over time under a constant load) and stress relaxation (a decline in stress 

over a time under a constant deformation). Soft connective tissues are therefore sensitive to 

strain rate (rate at which a load is apphed). 

III.5.1 The stress-strain relationship 

A typical strain-stress curve for a tensile test of the hgament highlights several key 

characteristics of the soft tissues (Figure IIL3). 

Strain 

Figure III.3 - Stress-strain curve showing the pattern of deformation observed during a uniaxial tensile 

test on a ligament and the progressive modifications of the structural arrangement of the collgan fibres 

within the solid matrix of the tissue sample. Three principal regions are identified: (D, @ a n d (D. 
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In the relaxed state of the ligament, collagen fibres are also stress-free and are arranged in wavy 

and crimped-shaped patterns. 

In the first region of the elongation curve (® on Figure III.3), a very low force is required to 

achieve finite deformations of the individual fibres without stretching them. The collagen fibres 

are simply unfolded and this translates into an approximately linear stress-strain relationship for 

the soft tissue sample tested. 

The second region (@ on Figure III.3), generally called the toe region, of the load-elongation 

curve is upwardly concave. In this part of the curve, the tissue is elongated with a small increase 

in loads as the wavy collagen fibres are straightened out and align with the loading direction. 

The collagen fibres start to carry loads as they elongate and interact with the surrounding solid 

matrix. As loading continues, the stiffness of the tissue increases, and progressively greater force 

is required to produce equivalent amounts of elongation. The end of the toe region has been 

reported to have a strain value of between 1.5 E ind 4 % (Abrahams, 1967; Rigby oZ., 1959; 

Viidik, 1973). 

The third region (O on Figure III.3), which is more or less linear, corresponds to a phase where 

the coHagen Sbres are straightened and the stifEness of the tissue is roughly constant. 

Then if the elongation of the tissue sample is pursued until a critical value, sequential failure of 

the most stressed fibre bundles initiates (Butler et at, 1978). This phenomenon is accompanied 

by small force reductions that can sometimes be observed in the loading curves for both tendons 

and ligaments. When the ultimate tensile strength of the specimen is reached, complete failure 

occurs rapidly, and the tissue can carry less load untU fuH fedlure 
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5'ec<ion 

The constitutive modelling of soft tissues like ligaments or tendons can be described using three 

main approaches: 

1. Structural models. 

2. fAenomenoZogicaZmojek 

3. CONFMUUM MOCFEK. 

The structural models can, generally speaking, be subdivided in two categories: structural and 

mzcrog^rucfuroZ modek. These types of model take into account respectively the structure 

(observable under light microscopy) and the microstructure (observable under electronic 

microscopy) of the tissue to predict the mechanical behaviour of the tissue at the macroscopic 

level. Generally the distinction between microstructural and structural models is not made. 

The phenomenological models (often referred as empirical or rheologicat) are developed to 

describe the gross mechanical r^ponse of the tissue in the simplest possible terms. 

The continuum models are not supported by structural considerations but are described by 

purely mathematical parameters (Woo et al, 1993) which are directly related to the macroscopic 

behaviour of the whole structure. The coefficients are derived from experimental stress-strain 

curves during a process called identification (Lin et al, 1978), but do not have necessarily a 

physical interpretation. 
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These models can allow for a broader generalisation of the formulation of the mechanical 

response of soft tissues and are more suitable for independent tests. These can then be the basis 

for analytical models or finite element models exploiting the developed mathematical 

formulations. It is noteworthy that, in literature, phenomenological and continuum based models 

are very often confused. In fact, the difference between the two concepts is vague and lies at the 

scale where the phenomena are described and is linked to the mathematical formulation used. A 

continuum model is generally based on a more rigorous mechanical formulation which finds its 

roots in thermodynamic considerations and is described by the Continuum Mechanics. 

Continuum models can therefore be considered as a subcategory of phenomenological models. 

IV. 1 Structural models 

The genereil idea behind microatructural or structural models is to take into accomit the known 

(or assumed) structural geometry, the mechanical properties of the elemental constituents of the 

tissue (collagen, fibril, microfibril) and the way the constituents interact together to describe the 

gross continuum material behaviour. Once the scale upon the formulation is based is chosen 

(either microstructural or structural), an important assumption needs to be made: it must be 

assumed the existence of a representative unit volume inside which the material is supposed to be 

homogeneous. The structmral models aim to assess the influence of the structural geometry on 

the global mechanical properties of the soft tissue. There are two different organisational scales: 

for example, the wavyness pattern of the fibres (or crimp) is considered as a structural feature of 

the tissue while fibril organisation of the fibres is considered as a microstructural feature. 

IV. 1.1 Mechanical properties of the constituents of ligaments and tendons 

Morgan (1960) investigated the properties of the collagen fibres and found that those of the 

cowhide have nonlinear load-strain relations which can be represented by a power law. Kato et 

al. (1989) made direct measurements of fibre stiffness of rat tail tendon. Bovine Achilles tendon 

fibres were tested in tension by Sasaki and Odajima (1996a, 1996b). The aim was to investigate 

the elongation mechanisms of tendon collagen on the basis of the hierarchical structure of the 

tissue and the Hodge-Petruska model (model describing the arrangement of collagen molecules in 

a collagen Sbril) of the arrangement of collagen molecules in the collagenous tissue. Based on the 

triple helix of the coUagen molecule, Nestler et aZ. (1983) estimated the modulus of the coUagen 

fibril. 
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IV.1.2 Structural organisation of the collagenous tissues (2 levels) 

â TT/ctwaZ Zei/eZ, polarizing light microscopy have been used to observe changes in crimp 

patterns with deformation (Diamant et ai, 1972; Rigby et at, 1959; Viidik and Ekholm, 1968b). 

At the micro structural level, scanning electron microscopy and transmission electron microscopy 

have been used to characterize the fibril orientation, size, and volume fraction as well as fibre 

organisation in healing rat MCLs (Frank et al., 1991; Frank et al, 1992; Padgett and Dahners, 

1992). 

X-ray diffraction methods have bee used to quantify fibril orientation in tendons and ligaments 

(Kastelic et at, 1978; Sasaki and Odajima, 1996a; Sasaki and Odajima, 1996b). The organisation 

of the Sbrils inside the collagen Ebre is as important as the mechanical properties to describe the 

global mechanical behaviour of the tissue and, Frank et al. (1991) described the orientation of the 

Sbrils in various planes of the tissue. The type of wavyness pattern of the collagen Gbres is 

subject to discussion. An helical shape was described by Cruise (1958) and Comninou and 

Yannas (1976), whereas other authors (Diamant et al., 1972; Lanir, 1978) found that the 

structure of the collagen 5bre is planar and sinusoidal or planar zig-zag. However, to the best of 

our knowledge, no data is available concerning the full three-dimensional arrangement of the 

fibril. Another point raised in the literature concerns the shape of the isolated fibres. It was 

shown (Diamant aZ., 1972; Lanir, 1978) that the collagen Gbres conserve their wavy 

appearance when extracted from the matrix but Kastelic et al. (1978) found that the zig-zag 

configuration is no longer kept when the Gbres are isolated. An important aspect of the structural 

models is the understanding of the crosslinks that exist between different fibres and between the 

fibres and the matrix (Minns and Soden, 1973). The latter authors found that the ground 

substance has a significant role in the global mechanical properties of the tissue while Partington 

and Wood (1963) found that elastin (non collagenous fibre present in the ground substance) has 

a more signiScant contribution than that of the ground substance. According to Yannas (1972), 

the ground substance would have no effect. These crosslinks can take various forms such as 

covalent, ionic or hydrogen bonding and play a significant role in the mechanical properties. 
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IV.1.3 Integration of the nonlinear behaviour of ligament into structural models 

According to the general ideas developed in literature (Rigby et al., 1959), the wavy pattern of 

the collagen Ebres is responsible for the nonlinear behaviour observed during a typical uniaxieil 

tensile test. The toe region is a manifestation of the progressive recruitment of the collagen fibres 

(or uncnmpmg) that is accompanied by an increase in the overeill stiSness of the ligament 

sample. This feature is often integrated into the structural models by considering that during the 

recruitment of the collagen fibres they have a small linear modulus of elasticity and that when 

they recich a certain length, their modulus then increases (Kwan Eind Woo, 1989; Soong and 

Huang, 1973) leading to the observed toe-region. In their study, Hurschler et al. (1997) used the 

microstructural hierarchy described by Kastelic et al. (1978) to build a mathematical model 

which reproduces the features of the collagen fibres which are aggregated collagen fibrils 

(structural scale) embedded in an hydrated proteoglycan matrix. The collagen fibres (structural 

scale) further aggregate to form fascicles and finally, ligaments or tendons. In addition to this 

structural considerations the authors used a probabilistic distribution to model the various states 

of crimp in the undeformed configuration. Some models incorporate microstructural and 

structural features at the same time (Ault and Hoffman, 1992b; Hurschler et al., 1997). The later 

authors include the nonlinear behaviour of ligaments, including toe-in, the linear region, damage 

and Gnally failure. The last two criteria are related to the stretch and are Sbre and Sbril based. 

The model was capable of representing the nonlinear toe-in and failure response of healing 

ligaments even if the constitutive law for the collagen fibres was assumed to be linear elastic. The 

microstructural (Frank oA, 1991; Frank a/., 1992) and structural models (Frank aZ., 1991; 

Frank et al., 1992; Padgett and Dahners, 1992) of ligaments have been investigated in order to 

understand the differences in mechanical properties between immobilised (fixed for a period of 

time) and non-immobilised medial collateral ligaments. Review of this aspect of the mechanical 

properties of ligaments is out of the scope of the present study. However, fibril organisation is 

found to be superior in immobilised MCLs (Frank et al., 1991; 1992) in early healing but non 

immobilised MCLs are generally found to have superior mechanical and structural properties 

(Woo et al., 1987). There is a spatial variation in the crimp pattern as suggested by experimental 

observations (Noyes al, 1984). In fact, during failure tests on the bone-pateUar tendon-bone 

units, local strains in the proximity of the bone-attachment sites were much larger than in the 

central region of the specimen. The physical properties of the crimp are Eilso known to change 

systematically with development and age. With increasing age the wave length increases while 

the wave crimping angle decreases (Diamant et oA, 1972). 
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IV.1.4 Discussion concerning microstructural and structural models 

Structural models are generally aimed at describing the gross mechanical behaviour of soft tissue 

(ligament or tendon) by considering structural and mechanical properties of the constituents of 

the tissue. Their main weakness is that they rely on assumed structural geometry (for example, 

the way the collagen fibres are organised inside the ground substance), consider basic loading 

conditions (uniaxial tension) and are only applicable to idealised geometry of tendons or 

ligaments. However, this kind of model should be seen as a complementary approach to 

phenomenological models. In fact, structural models allow for the appreciation of the contribution 

of the structural geometry of the ligament to the global stress-strain curve obtained during 

tensile tests. Therefore, they give a clue to the interpretation and the understanding of the 

macroscopic mechanical behaviour of ligaments. The particular features observed can then be 

included in the mathematical formulation of continuum based models. In addition to the 

assumption of a particular microstructural or structural geometry chosen for a structural 

formulation, the mechanical properties of the elementeil constituents of the tissue need to be 

known. This is intimately linked to very delicate experimental processes that can go down to the 

molecular level (Sasaki and Odajima, 1996a). In structural models, in addition to the hypothesis 

concerning the structural properties, numerous assumptions usually need to be applied for the 

derivations of the equihbrium equations [state of stress, s ta te of strain (uniformity, 

orientation)...]. Due to their structural hierarchy, structural models can easily become intractable 

and their implementation into a finite element code is very often the only way to solve the 

equiiibrium equations when no reductive assumptions are meide (idealised geometry and ideailised 

loading conditions). Moreover, it is believed that, in the context of a macroscopic knee joint 

model, such a degree of structural hierarchy description is not necessary, difficult to integrate 

into a whole hgament model, and that phenomenological or continuum based models of soft 

tissue are more appropriate. Continuum based models, when coupled with the Finite Element 

Method, can cope more easily with spatial variations in the mechanical properties at the 

macroscopic level. 

In Appendix A, Table Al summarises the published structural and microstructural models of 

connective soft tissues encountered in literature. 
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IV.2 Phenomenological and continuum based models 

The accuracy of phenomenological models used to represent the mechanical behaviour of the soft 

tissue (by identification with the experimental stress-strain curves) is dictated by several 

assumptions. The mechanical behaviour can be considered as elastic or viscoelastic and linear or 

nonlinear. Table A2 (Appendix A) presents some phenomenological models encountered in 

literature. 

IV.2.1 Linear Elasticity 

When the identification of the experimental stress-strain curve (uniaxial tensile test) is done with 

a linear elastic law, only the linear part of the stress-strain curve is considered. The toe region is 

therefore not taken into account and this is a serious limitation. Indeed, Fung (1981) believes 

that this region usually includes the physiological range of normal tissue function. The linear 

elastic models overestimate the modulus of elasticity in the toe region. 

For sake of illustration, Table IV. 1 presents some values reported in literature regarding the 

mechanical properties of various knee ligaments. The large variabiliy of the values reported can 

be explained by the experimental protocols which affect significantly the results and it is well 

known that ligaments are of tissues very sensitive to the age of donors from which the specimens 

are extracted (Hollis et al, 1988; Noyes and Grood, 1976). Figure IV.1 illustrates results from a 

typical tensile test performed on bone-fascicle-bone units of several ligaments (Butler et al, 

1986). 
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Authors Htmaa Tissues %(MPa) OQ(MPa) ec(%) F c m : 

(Hollis et al., 1988) 

(Noyes and Grood, 1976) 
ACL 1725 ± 269 

(Trent et al., 1976) PCL 739 ± 368 

(Kennedy et al., 1976) PCL 24.2 ± 6.3 1051 ± 237 

MCL 467.46 ±33.32 

(Marinozzi et al., 1983) PCL 2 0 ± 5 856 ± 226 

(Prietto et al, 1988) PCL 109 ± 50 26.8 ±9.1 28.5 ± 9.1 1627 ± 491 

(Butler et al., 1986) ACL, PCL, LCL 

fascicle-bone units 
346 ± 22.4 36.4 ± 2.5 15.0 ± 0.8 

PT 643.1 d: 53.0 68.5 ± 6.0 13.5 ± 0.7 

(Butler et al., 1992) ACL (AMB) 283.1 ± 114.4 45.7 ± 19.5 19.1 ± 2.8 

ACL (ALB) 285.9 ±140.6 30.6 ± 11.0 16.1 ± 3.9 

ACL (PB) 154.9 ± 119.5 15.4 ± 9.5 15,2 ± 5.2 

(Race and Amis, 1994) PCL (ALB) 248 ± 119 35.9 ± 15.2 18.0 ± 5.3 258 ± 83 

PCL (PMB) 145 ± 69 24.4 ± 10.0 19.5 ± 5.4 1620 ± 500 

(Quapp and Weiss, 1998) MCL (long, test) 332.15 ± 58.27 38.56 ± 4.76 17.11 ± 1,53 

MCL (trans, test) 11.02 ± 3.57 1.69 ± 0.53 11.7 ± 0,93 

Table IV. 1 - Sample of the mechanical properties for various knee ligaments 

reported in literature .AMB: Anteromedial Band; ALB: Anterolateral Band; PB: 

Posterior Band; PMB: Posteromedial Band ; PT: Patellar Tendon. E: Young's 

modulus; CTg : ultimate stress; Eq : ultimate strain; Fg : tensile strength. 

Stress (MPa) 
S4 

1 Strain (%) 
0 5 10 15 20 2S ^ 

Figure IV. 1 - Stress-strain curves obtained for for bone-fascicle-bone units 

of human knee ligaments tested in uniaxial tension until failure. From 

Butler et al. (1986). For sake of clarity the portion sof the curves beyond 

maximum stress are not shown. 
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IV.2.2 Nonlinear Elasticity 

In the context of nonlinear elasticity, the elastic modulus is not longer a unique scalar but is a 

function of the strain. A general approach successfully used by various authors (Demiray, 1972; 

Fung, 1967; Haut and Little, 1972; Jenkins and Little, 1974; Veronda and Westmann, 1970) 

consists in postulating the existence of an elastic potential (usually taken as the strain energy 

function) which depends on the three strain invariants of the strain tensor. When the material is 

assumed to be incompressible, the third invariant is not integrated into the potential. Once the 

form of the elastic potential is chosen, a process of identification is performed between the 

parameters of the coefficients of the strain energy function and the characteristics of the 

experimental stress-strain tensile curve. The authors cited above made the assumption that the 

material possessed an isotropic symmetry and this is not true as tendons or ligaments have a 

preferred direction dictated by the orientation of the collagen fibres. These tissues are primarily 

orientated to resist tensile loads. Veronda and Westmann (1970) proposed the following form for 

the strain energy function: 

» = a - 3) + g ( l , ) [IV. 1] 

Ci, Q , material pEirameters, and are the Grst three invar iants of the Cauchy-Green 

deformation tensor, and g is a function which characterizes the degree of incompressibiUty (g is 

null when the material is fully incompressible, i.e. /, = 1). 

If the dependence on the second invariant is removed, the potential reduces to that of a neo-

Hookean material, similar to that proposed by Demiray (1972): 

[IV.2] 
2/3 

The form chosen showed a good agreement with the experimental curve. 

Using the strain energy function presented by Valanis and Landel (1967), Blatz et al. (1969) 

presented the following elastic potential 

^flnA.] = ( 7 f A " - l ) [IV.3] 

where A.represents the principal stretch in the i-th principal direction. The authors applied this 

function to the mechanical behaviour of the rabbit's mesentery and rubber. 
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For further expressions see Fung (1981). Fung (1973) modelled t he mechanical behaviour of soft 

tissue by assuming a linear form for the modulus of elasticity. In this case the stress-strain 

relation is given by an exponential law. 

Weiss (1994) developed an incompressible transversely isotropic hyperelastic model for the 

characterization of the mechanical behaviour of soft connective tissues. It is worth noting that 

this model was fully three-dimensional and was implemented into an implicit finite element code. 

In addition to the three classic strain invariants, a fourth strain invariant was introduced in order 

to capture the dependence of the fibre direction on the strain energy function (Spencer, 1992). 

IV.2.3 Viscoelasticity 

Viscoelasticity is an important feature of ligaments that is clearly exhibited during cyclic testing 

(hysteresis loop appearing on the classic tensile stress-strain curve). The stress-relaxation 

phenomenon is another significant aspect of the mechanical properties of soft tissues (Johnson 

a/., 1994). Therefore, the rheological behaviour of soft tissue is more accurately described by the 

form of the stress-strain-time relationships when the loading rates justify it. During mechanical 

testing of the specimen considered, the preconditioning of the sample is fundamental in order to 

achieve a reproducible pattern of loading (Rigby et al., 1959). The quasi-linear viscoelastic (QLV) 

theory developed by Fung (1981) has been largely used in the study of soft tissues and more 

especially for tendons and ligaments (Woo et al, 1981; Woo et al., 1982). The basic idea of the 

QLV is to assume that the stress at a fixed time can be represented by a convolution integral, 

separating the elastic response and the relaxation function. Moreover this latest function is 

supposed to have a continuous spectrum. This theory can represent accurately the long term 

memory effects (determined by stress relaxation or creep tests) but is unable to account for short 

term memory effects (related to the strain rate dependence on strain). Pioletti and co-workers 

(1997, 1998a) developed a general theoretical framework to encompass short term and long term 

memory effects in order to describe the mechanical behaviour of ligaments and tendons. The 

material parameters were identiEed with experimental coefScients and a very good agreement 

wag found between the theoretical and experimental tests. This theory can easily accommodate 

small or high strain rates to predict the mechanical response of the tissue. The study of the 

influence of the strain rate on the stress-strain relations showed a general trend for an increase in 

stress with a corresponding increasing in the strain rate (Haut and Little, 1972). 
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Johnson et al. (1996) proposed a constitutive model of soft tissue which can be applied to 

ligaments and tendons in a full three-dimensional and finite deformation context. It is based on a 

nonlinear viscoelastic integral representation. By linearisation, this constitutive law reduces to 

classic viscoelasticity and the QLV can be recovered with few assumptions. Material parameters 

were fitted from experimental curves of uniaxial tests for human patellar tendons and curve fit to 

the QLV model previously tested for canine medial collateral ligaments (Woo et al., 1981). The 

fading memory effects (this concept is based on the fact that events in the recent past have more 

influence on the current state of stress than those of the more distant past) were incorporated 

into the model. 

IV.3 Mathemat ica l and geometrical models 

At this stage of this review, it is necessary to bring some clarification to avoid unnecessary 

confusion regarding the terms "mathematical and geometrical models". This paragraph 

encompasses models describing the hgaments, generally Integrated in a whole knee joint model, 

as a collection of linear or nonlinear springs and/or daahpots. A ligament can be represented by a 

set of several springs or dashpots representing a fibre bundle. These analytical models can be 

dynamic or quasi-static but generally include basic mechanical properties under the form of a 

one-dimensional stress-strain relation and simplified geometry for ligaments and bony structures. 

Numerous authors have developed mathematical models of the knee and ligaments (Abdel-

Rahman and Hefzy, 1998; Andriacchi et aL, 1983; Blankevoort and Huiskes, 1991b; Imran and 

O'Connor, 1997; Loch et o/., 1992; MarteUi aZ., 1998; Shelburne and Pandy, 1997; Toutoungi ef 

al., 1997) and a complete literature review of these biomechanical studies is beyond the scope of 

the present work. For the region of the strain-stress curve corresponding to the uncrimping of the 

collagen fibres (the strain is supposed to be bounded superiorly by a transitional strain Sq) the 

stress is generally chosen as a quadratic function of the strain and as a linear function of the 

strain when the strain goes over Eg (Toutoungi et a/., 1997). A similar class of models describe the 

knee ligaments by a system of geometrical components [inextensible strings (isometric Sbres), bar 

linkage] (Chan and Seedhom, 1995; O'Connor and Zavatsky, 1993). The resultant equations 

encountered in both types of models can be solved numerically but, according to our own 

nomenclature, this type of model is not categorised aa "numericeil". Generally, these models 

intend to obtain information regarding the forces (intensity, line of action) developed in a knee 

joint in order to have a better understanding of the constraint interactions that occur. 
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Given the complexity of the knee joint, m-'uzno and m-mfro experimental measurements are a 

delicate process and mathematical models can therefore bring an interesting approach to give a 

Srst estimate of various mechanical and geometrical quantities. The aim of these models is also 

to study the influence of the position and the stiffness of ligaments on the kinematics of the joint. 

IV.4 Finite Element models 

This class of models refer to continuum mechanics based models whose the resultant equations 

(static or dynamic) are solved by the Finite Element Method (FEM). 

IV.4.1 The Finite Element Method 

Basically, the FEM consists in decomposing a (possibly very complex) continuous mechanical 

problem into a set of simpler discrete problems by defining a Snite number of state variables. In 

case of a static problem the discretisation (process of decomposing a domain into several simpHer 

ones) is applied to the geometry of the body which can be one-, bi- or three-dimensional. For 

dynamic problems the time domain is introduced as an additional region of interest that 

undergoes a discretisation and is associated with dynamical quantities such as velocities, 

accelerations and inertial forces. The space domain is decomposed into elemental subdomains 

(finite elements) which have an assumed simple geometry. The elements are connected to each 

other at points called nodes. Over each element, it is assumed that the functions appearing in the 

equations describing the phenomenon (in mechanics, these equations are the equilibrium 

equations), vary in a specific manner. These approximation functions are derived using the basic 

idea that any continuous function can be represented by a linear combination of algebraic 

polynomials. The algebraic relations among the undetermined coefficients (nodal values) are 

obtaining by satisfying the governing equations for each element. The approximation functions 

are often taken to be algebraic polynomials, and the undetermined parameters represent the 

values of the solution at a finite number of preselected points, the nodes, on the boundary and 

within the interior of the element. A set of algebraic equations is obtained for each element and 

the finite element technique requires that these sets be combined (this process is called assembly 

o/ gys^em) into a single set of equations which describe completely the governing equations of 

the whole discretised system. These equations, especially in the context of the modelling of soft 

tissues, are often nonlinear. 
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Solving these algebraic equations wiU determine the values of aU the state variables at 

equilibrium and therefore Eichieve the resolution of the initial complex continuous problem. The 

displacements of each element are found, from which strain values are derived. The stresses are 

computed thanks to the material constitutive equations that relate them to strains. The FEM 

has several significant advantages with respect to the other numerical methods. It allows the 

description of problems with complex geometry and complex boundary conditions. The technique 

is able to accommodate heterogeneous materials and arbitrary complex constitutive laws. It is 

not hard to realise why this method has been so commonplace in the field of biomechanics. 

Biological structures and tissues are the perfect candidates to give a " raison d'etre " to the 

FEM. 

IV.4.2 Finite Element models of ligaments 

Despite the fact that the FEM has been extensively used in the Eeld of bone mechanics and 

related problems, such as arthroplasty and surgical prosthesis design, hgaments have received less 

attention regarding the implementation of their material behaviour into finite element codes. 

This lack of attention is partly due to the fact that load transmission in the joint operates 

through the bony structures and the articular cartilage and therefore the state of stress in these 

regions is of particular relevance (Schreppers aZ., 1990). This is also due to the difEculty to 

extract material data from experimental testing. Indeed, the mechanical behaviour of soft tissues 

is far from fuUy understood and due to the variety of components (chemical composition and 

structure) and their interaction between each other, an accurate constitutive representation is 

difficult to obtain. The FEM is very promising in this matter as it allows to study stress 

distribution in ligaments for arbitrarily complex geometries but the existing models should be 

assessed in all simulated physiological conditions to check their validity. A literature survey 

showed that few authors have developed and implemented suitable constitutive laws for the knee 

ligaments within three-dimensional finite element models. Pioletti, (1997, 1998a) developed a full 

thermodynamic formulation of a constitutive law, based on an incompressible isotropic 

hyperelastic formulation, for the ACL and derived material data from experiments and 

implemented it into a commercial finite element code. Weiss (1994) and Weiss et al. (1996) 

developed a general finite element framework for soft tissue modelling. Weiss formulated an 

incompressible transversely isotropic hyperelastic constitutive law and performed, a parametric 

analysis to derive the material constants from experiments performed on fascia lata tendons. 
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Further experiments were later done in order to extract mechanical properties of human medial 

coUatereil ligaments (Quapp and Weiss, 1998) for identiEcation with the hyperelaatic potential 

proposed by Weiss (1994). The formulation used captures the key-features of soft tissues 

(uncrimping, large deformations and rotations, incompressible behaviour, preferred fibre direction 

accounting for the orthotropy of the material). The time dependence of the mechanical properties 

of soft tissue was further incorporated into a transversely isotropic hyperviscoelastic finite 

element model (Puso and Weiss, 1998). Hirokawa and Tsuruno (1997) developed a finite element 

model of the ACL in order to analyse the stress distribution and changes in shapes at the surface 

of the ACL when subjected to physiological kinematic conditions. This bi-dimensional mechanical 

model (the geometry of the ACL is idealised) is based on the Theory of Membranes made of a 

hyperelastic Mooney-Rivlin material and assumes that the material is incompressible. This latter 

assumption is often made in the context of soft tissue modelling because it allows the calculation 

of out-of-plane deformations which are extremely difficult to measure experimentally. Moreover, 

it simplifies the identification process established in the context of homogeneous deformations. 

The hypothesis of incompressibility is largely justified by the fact that soft tissues have a high 

water content. However, it has been shown that tissue volume may change with deformation due 

to the exudation of water (Thielke aZ., 1995). The incompressibility constraint leads to 

numerical difficulties in the context of finite element analyses and this aspect will be discussed in 

detail in section VI. 1. Simbeya et al. (1996) performed a parameter sensitivity analysis on a bi-

dimensional FE model of the rabbit medial collateral ligament and showed that, indeed, the 

experimental conditions and alignment of specimen are an important factor for the stress 

distribution. The ligament was modelled as a composite material where cable elements 

(supporting only tension) were embedded between isotropic homogeneous quadrilateral elements. 

This micromechanical formulation was first described by Simbeya et al. (1992) who implemented 

it into a FE model and was the basis of other models such as the one of Wilson et al. (1996) who 

studied the stress distribution within a three-dimensional FE model of rabbit medial collateral 

ligament. This model was validated against experimental data. The mechanical formulation 

includes the main features of hgaments: water, matrix and Ebres. The iuterRbriHar matrix was 

modelled using 8-noded-hexahedral solid elements, collagen fibres were represented by nonlinear 

spring elements and the water content of the tissue was incorpoorated by means of poroelastic 

solid elements. A good Stting of the FE model with the experimental data was possible and the 

numerical model reproduced closely enough the mechanical characteristics of hgaments under 

simulated tests. 
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A similar model waa used by Grassmann aJ. (1998) to simulate a lapiue MCL reconstruction 

with the semitendinosus tendon as graft tissue. Recently, Daniel (1999) developed and 

implemented a three-dimensional orthotropic viscoelastic finite element model of a human 

ligament. This composite approach considers the ligament as made of elastic fibres embedded in 

an elastic matrix undergoing finite strain deformation. Under 2% of strain the 6bre modulus 

increases exponentially from zero with an invariant that provides a measure of the stretch in the 

fibre direction. After 2% of strain the modulus of fibres is made constant. The strain rate 

dependence is included in the constitutive behaviour. The coding of the material was performed 

in an explicit finite element code. More recently, Hirokawa and Tsuruno (2000) proposed a 

structurally-based phenomenological model that encompasses the full three-dimensional and finite 

strain regimes. The model was implemented into an implicit finite element code and used to 

simulate the mechanical behaviour of the ACL during a passive flexion of the knee and a drawer 

test. This model, defined by means of a strain energy function, assumes that the ACL is a 

composite reinforced by two families of collagen fibres. Instead of identifying the constitutive law 

with experimental tensile tests on the ACL, the authors have mixed structural considerations to 

the phenomenological approach. In fact, they considered the tensile properties of collagen fibres 

and the elastic properties of the ground substance to define the hyperelastic strain energy 

function. The study of Hirokawa and Tsuruno (2000) was the first published attempt to develop 

a continuum anisotropic constitutive law for the ACL. 

In the context of the present research project, a preliminary study was performed to investigate 

the influence of the initial stress field present in the ACL (at full extension) on the stress 

distribution during a simulated passive knee flexion (see Appendix D). The model proposed by 

Pioletti (1997) was implemented into the commercial FE code ABAQUS Standard 5.8 ((g) 

Hibbit, Karlsson &: Sorensen Inc., Pawtucket, RI, USA) using a customised internal subroutine 

(UMAT). This study was used to highlight essential results concerning the formulation of an 

isotropic hyperelastic model. It has appeared that the model performs badly when the ligament is 

loaded in compression or flexion. In fact, the calculated resultant force within the ACL was in 

disagreement with experimental data for passive neutral knee flexions (Roberts et al., 1994: 

Wascher o/., 1993) as soon as the ligament undergoes compression or flexion in the direction of 

its orientated Sbres. This severe restriction was not mentioned by Pioletti (1997) ^ d Pioletti et 

aZ. (1998a, 1998b) and this has called in to question the vahdity of an isotropic hyperelastic 

model of hgament for representing the physiological mechanical behaviour of hgaments. 
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Commercial FE codes offer only continuum isotropic hyperelastic materials. Ligaments have a 

preferred mechanical direction that corresponds roughly to the orientation of the collagen fibres. 

The mechanical behaviour of connective soft tissue is largely conditioned by their anisotropic 

properties. For this reason, isotropic models of ligaments exclude such key features. Moreover, 

collagen Ebres do not support a signiGcant compressive load along their longitudinal direction 

and structures that are composed of mostly collagen are prone to buckle under very small 

compressive forces. This specific characteristic can be integrated when formulating a particular 

constitutive law. For example, when compressive stresses appear in the fibre direction within the 

soft tissue, no mechanical contribution of the collagen fibres is provided to the strain energy 

density. 

With regards to the advantages offered by continuum anisotropic hyperelastic model of ligaments 

over isotropic hyperelastic models which exhibit severe physical limitations, it appears 

fundamental to represent ligaments as anisotropic structures. Continuum mechanics of fibre-

reinforced composites (Spencer, 1992) is a promising theoretical tool that can describe accurately 

and account for the fundamental mechanical features of soft connective tissues. Theoretical soft 

tissue mechanics is a branch of continuum mechanics that still provides numerous opportunities 

for research developments. 
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In this chapter, a general theoretical framework for the constitutive modelling of biological soft 

connective tissues is developed. The approach is based on the theory of continuum fibre-

reinforced composites at finite strain. Biological soft connective tissues are assumed to be made of 

an isotropic hyperelastic matrix reinforced by up to two families of fibres acting in the finite 

strain regime. Expressions of the stress tensors in the material and spatial conGgurations are 

established m fAe general coae, without precluding any assumption regarding possible kinematics 

constraints or any particular mechanical symmetry of the material. Original expressions of the 

elasticity tensors in the material and spatial configurations are derived and new coupling terms, 

characterising the interactions between the constituents of the continuum composite material, are 

isolated and their biological significance is highlighted. This constitutes one of the important 

scientific contributions of the present research work to nonlinear elasticity. Conditions of 

existence of the hyperelastic potential and constitutive requirements are briefly discussed. To 

illustrate the theoretical developments on the constitutive modelling of soft connective tissues, a 

particular strain energy function is described. Later on, this strain energy function and the 

associated constitutive equations will be the object of a finite element implementation as detailed 

in the next chapter. Finally, the mechanical formulation of the constitutive equations is discussed 

with regards to its relevance and applicability. 
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V.l Structure of Chapter V 

The next section details the physiological and structural motivations behind the use of a 

continuum theory of fibre-reinforced composites at finite strain to model the mechanical 

behaviour of biological soft connective tissues. Objectives of the Chapter V are presented in the 

third section. The fourth section summarises the essential results of continuum mechanics with 

regards to the kinematics of a solid body at finite strain, material frame indifference and the 

characterisation of material symmetry groups. The Sfth section presents the theorems and 

definitions relative to a continuum theory of fibre-reinforced composites. Invariants of the right 

Cauchy-Green deformation tensor and stnictural tensors agencies are deSned in order to 

postulate the existence of a strain energy function from which stress and elasticity tensors are 

derived. The expressions of these tensors are established in the material and spatial descriptions 

for an isotropic material reinforced by two families of Gbres, i.e. a strongly anisotropic material. 

In section V.6, these results wiU serve as a basis to particularise expressions for special classes of 

material symmetries: ZocaZ fromai/eraeZi/ and igofropy. In the 

seventh section, kinematics constraints are briefly discussed and also constitutive inequalities in 

section V.8. The ninth section provides an example of a strain energy function likely to represent 

the mechanical behaviour of biological connective soft tissues whereas section V.IO ends with 

concluding remarks. 

V.2 Physiological and structural motivations 

Ligaments and tendons are dense connective tissues consisting primarily of parallel-fibred 

collagenous tissues embedded in a highly compliant solid matrix. The arrangement of the 

collagen fibres dictates the directional mechanical properties of tendons or ligaments and is suited 

to the particular mechanical function of each of these connective tissues. Tendons are subjected 

to high unidirectional tensile loads and therefore their (large) collagen fibres are aligned in an 

orderly parallel arrangement. Ligaments are mainly subjected to uniaxial tensile loads but can 

also undergo mechanical actions in other non-preferred directions and more complex loading 

conditions (shear at the insertion sites, contact interactions with bony structures). In 

consequence, and according to their physiological role, their Sbres are not necessarily completely 

parallel but can form a complex network of interlaced fibres leading to strongly anisotropic 

mechanical properties (Amiel a/., 1984; Kennedy aZ., 1976). 
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The collateral ligaments of the knee are made of collagen fibres mostly parallel whereas the 

cruciate ligaments are composed of more interwoven Sbres. The Sbrous architecture and 

properties are also dependent on the specific location within a ligament or a tendon, namely 

when one looks at the insertion into bone (Woo et aZ., 1988). 

Ligaments display time- and history-dependent viscoelastic properties that reflect the complex 

interactions between the mechanical properties of the collagen, the surrounding proteins and the 

ground substance. However, the inclusion of such features in a constitutive law are only relevant 

when the tissue is submitted to strain rates greater than those in a quasi-static state. 

In summary, due to their structural properties ligaments can be considered as composite 

materials where one or several families of fibres, namely collagen fibres, are embedded in a highly 

compliant solid matrix (i.e. the ground substance made of proteoglycans, water, collagen and 

glycoproteins). As mentioned previously, the structural arrangement of the collagen fibres 

characterise the macroscopic mechanical and directional properties of ligaments. Anisotropic 

mechanical properties arise directly from the presence of the collagen fibres and their orientation. 

The simplest case of anisotropic material is represented by an isotropic solid matrix containing 

one family of fibres possessing a single preferred principal direction (at least, locally). This 

represents transversely isotropic symmetry. This formulation is suitable to describe the 

constitutive behaviour of tendons and ligaments possessing mostly parallel collagen fibres. Weiss 

et al. (1996) successfully used this approach to describe and simulate the behaviour of fascia lata 

tendons and the medial collateral ligament. However, when the soft connective tissue considered 

is made with branching and interwoven collagen fibres (like the cruciate ligaments) that give rise 

to strongly anisotropic mechanical properties, it can prove relevant to consider two distinct 

families of fibres (Hirokawa and Tsuruno, 2000). However, this approach is limited by the lack of 

relevant experimental data. When two distinct families of Gbres are arranged in a way such that 

their principal directions are mutually orthogonal, the material is said to be oTf/iofropic. 
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V.3 Objectives of Chapter V 

" TTie yiiraf o6^ec(we of this chapter is to describe a general theoretical framework suitable 

for the constitutive modeling of biological soft connective tissues such as ligaments and 

tendons and presenting it in the most self-contained format as possible. 

This is achieved by looking at the necessary definitions, theorems and constitutive requirements 

used in the formulation of an objective constitutive law. The approach adopted here is based on 

the seminal work of Spencer (1992) who developed a continuum theory for fibre-reinforced 

composites. The basic idea is to provide a global description of t h e composite structure at the 

continuum level by postulating the existence of a strain energy function dependent on strain 

invariants and structural tensors from which the stress and elasticity tensors are derived. This 

approach has been successfully used by various authors, namely Hirokawa and Tsuruno (2000), 

Weiss oA (1996) for Snite element modelling of ligaments and tendons, by Holzapfel aZ. 

(1996), Humphrey (1990a, 1990b), Humphrey and Yin (1987) for Snite element modeling of 

cardiac tissue mechanics and by Klisch and Lotz (1999) in an experimental and analytical model 

of the annulns Sbrosus. 

" seconcf of our research is to extend the developments of Spencer (1992) by 

providing entirely new explicit expressions for the elasticity tensors in the spatial and 

material descriptions in the most general case, that is, when no assumption is made 

regarding the particular orientation of any of the two families of fibres or regarding any 

simplifying kinematics hypothesis such as incompressibility or inextensibility. 

To the best of our knowledge, this aspect is missing in the relevant literature. The full generality 

attached to the terms of the elasticity tensor can be helpful in exploring and incorporating into 

the constitutive formulation complex interactions between the components of the fibre-reinforced 

composite material that can be missed otherwise. Moreover, elasticity tensors are essential in 

investigating mathematical properties of the constitutive laws eind are a prerequisite in any 

incremental type nonlinear finite element method. 
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V.4 Basic results in continuum mechanics 

Before developing the constitutive model the basic notations and results relevant to the 

formulation of anisotropic hyperelasticity are given below. For further details please refer to 

Ogden (1984), Mardsen and Hughes (1994) and Spencer (1992). 

V.4.1 Kinematics 

Let B be a continum body which is a set of points, referred to as particles. Let us assume that 

there exists a one-to-one-mapping, called a of B, % : B = 9̂ ,̂ twice 

continuously differentiable (as its inverse x^) which puts into correspondence B with some 

region, referred as % , of the Euclidean point space = SR"̂. The reference configuration denoted 

by : B = 91̂  is assumed to be given. Let be: = %«(B) c 91̂  and % = %(B) c 9̂ '', 

respectively the re/erence and positions of B. A point P of B is labeled X = %o(B) in %(, 

and X = %(B) in %. Let 9%^ be the boundary of Lets make the assumption that 

U and ' where is the part of where 

conEguration is assumed prescribed as = g and is the part of where the 

traction vector is prescribed as P N = t . In the above, P is the first Piola-Kirchhoff stress tensor 

and N is the outward normal field perpendicular to the boundary of the body in the reference 

conGguration. The one-to-one mapping y; = c 9̂ ^ is the deformation from to 

(Figure V.l) . Upon deformation, the material point P(X) is mapped into a spatial position P'(x) 

by means of y?: 

x = y,(X) = X + u(X) [V.l] 

u is the displacement field and tp e 1/ , 9 / being the space of admissible motions defined as: 

j y) : % -+ 3%'̂  / Y? = g on 9%^ j [V.2] 

The deformation gradient F is the derivative of the deformation, using the notation: 

where "(%)" denotes the ou(er tenaor proji/cf. {Ei}i31,2,1 and {e;},^ ^ 2:1 6xed orthonormal bases 

in and % respectively. These bases are assumed to be coincident with the standard bases in 

91'̂ . However, for sake of clarity, the notation has been kept different between both bases. 
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Figure V . l - Deformation mapping between reference and current configuration. Upon 

the deformation ^ , the point P is mapped into P ' (x) and the ratio of any infinitesimal 

variation around their respective positions is represented by the deformation gradient F 

according to the following expression : F(X) = dx / dX.. 

The uppercase and lowercase letters used in indicial notation refer to the reference and the 

deformed (current) configuration respectively. For further developments, we also define " . " and 

" : ", respectively as the scalar product or contracted tensor product and the inner tensor product 

or double contracted tensor product. The local condition of impenetrability of matter requires that 

J(X) def [F(X)] =/9(X)/yO|j(X) > 0 where " det "represents the determinant of the linear 

transformation [F] and, /% and p, are the density of the material, respectively in the reference and 

deformed configurations. Following standard usage, one denotes Sg the vector space of 

linear transformations in 5R̂ . Then is defined as; 

[V.4] 

For fixed XG D^(X) C , one also defines S ^ and : 

{ T e - T } [V.5] 

<&+ T^.T = 1 }, [V.6] 

where the superscript " T " denotes the transpose of the linear transformation, and 1 is the 

second-order identity tensor. 
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The right and left Caucby-Green deformation tensors are respectively de&ned as: 

C = F^.F and b = F.F^ [V.7] 

C and b, respectively material and spatial quantities, possess the same eigenvalues. Under 

conditions of regularity for C and b, U and V, the right and left stretch tensors, can be defined 

as unique, symmetric, positive-definite square roots of C and b, respectively. From the Polar 

Decomposition TAeorem (Mardsen and Hughes, 1994), if y; is regular enough, it can be stated 

that; for each Xe there exists an orthogonal transformation R(X): such that: 

F = R.U = V.R [V.8] 

Each of these decompositions is unique. The deformation gradient includes the effects of both 

stretching and rotation. It is relevant to note that U and V operate on different spaces. 

V.4.2 Finite elasticity 

Materials for which the constitutive behaviour depends only on the current state of deformation 

are called eZostic (Ogden, 1984). The current state of deformation at a particle X being fuUy 

defined by the deformation gradient F associated with this particle and the fact that the first 

Piola-Kirchhoff stress tensor P is the conjugate of F (where an overdotted symbol means its 

material derivative with respect to the time), allows to define elasticity in the simple following 

form; 

P = P[X,F(X)] [V.9] 

Hyper elasticity extends this definition by requiring that the work done by the stresses during a 

deformation process be path-independent. As a consequence of the path-independent behaviour 

and the fact that P is work conjugate with the rate of deformation gradient F , a stored strain 

energy or eZas(zc potential per uncfe/brmecf i;oJif?7ze can be 

established as the work done by the stresses from the initial to the current position (time ^ to 

time t). This stored strain energy function is only a function of the initial position of the particle 

and the local deformation gradient, that is W = IF(X, F(X)). In the case of a non dissipative 

process (which corresponds to the hypothesis of the present developments), l-y correspond to a 

.ffeZmAoZtz ^ree energy/ 0/ (fe/ormation /unction ^ . The work deSned above is expressed as: 

[X,F(X)] = ^[X,F(X)]= rP[(X,F(X)]:Fdt [V.IO] 
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which implies: 

$ = P : F [V.ll] 

In the subsequent developments s(ram energ;/ /ree e?%ergy yitnc^zon, retfucecf aforec( 

energy function will be employed as synonyms. The rate of change of the potential $ can be 

expressed as: 

^ — A [V.12] ^ = 
V=i " 

To deSne an objective constitutive law, $ must satis^ the frzncip/e 0/ or Ma^enaZ 

Frame Indifference (Mardsen and Hughes, 1994). The Principle of Objectivity states that if we 

view the same configuration from a rotated point of view, then the stress transforms by the same 

rotation. In mathematical terms this condition is expressed as follows: 

% F ) = #(X,Q.F) V (F,Q) 6 ^ + [V.13] 

This means that the dependence of constitutive relations on F must only come through the part 

of F causing stretching, that is U. Thus, frame indifference is equivalent to the assertion that 

$ depends on F trough C. In summary, it exists a function ^ x 3? such that: 

^(X, F) = $(X, F^.F) = #(X,C) V C E J + [V.14] 

V.4.3 Material symmetry 

Extensive work has been done on the subject of material symmetry (Cohen and Wang, 1987; 

Coleman and Noll, 1964; Bricks en, 1978, 1979; Ericksen and Rivlin, 1954; Negahban and 

Wineman, 1989a, 1989b; Wineman and Pipkin, 1964; Zheng and Boehler, 1994). Before going 

further it is relevant to refer to an important principle, namely the Neumann's Principle (Hahn, 

1987), which states that: 

TAe a{/mmef7T/ group 0/ a moterzaZ muat mcZucfej m (Ae group 0/ oMi/ ^enaor 

/lAnchofi m OTig coTiafz^u^we Zawa 0/ ma^eriaZ. 

Boehler (1978) demonstrated that any scalar-, vector-, and second-order tensor-valued functions 

of vectors and second-order tensors relative to any anisotropy characterised in terms of vectors 

and second-order tensors can be expressed as an isotropic function of the original tensor agencies 

and the structural tensors as additional agencies. 
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This means that the strain energy function of an anisotropic material can be expressed as an 

isotropic function of its classical three principal strain invariants (as in the isotropic case) plus 

invariants relating the right Cauchy-Green deformation tensor and any combination of structural 

tensors characterising the anisotropy. 

Material symmetries are characterised by symmetry groups that impose restrictions on the form 

of the strain energy function (Ogden, 1984). Any orthogonal transformation member of the 

symmetry group of the material will leave the strain energy function unchanged when applied to 

the material in the natural state (prior to deformation). 

Lets call the symmetry group of a material at X e 

The isotropy group af X e is the set of proper orthogonal transformations that have 

the stored energy function unchanged and is deSned as follows: 

= V X E % J [V.15] 

If <4̂  = in the configuration the material is said to be isotropic (relative to and X 

e ^o), otherwise, the material is said to be amaotropzc. 

V.4.3.1 Isotropy 

A function 9 : % of symmetric tensors T e is isotropic if and only if: 

9(Q.T.Q^) = 9(T) V (T,q) G x »#+ [V.16] 

In the present context, T, the symmetric tensor, is the right Cauchy-Green tensor C. Then, if the 

strain energy function is an isotropic function of C and material frame indifference has already 

been satisSed, the following equality holds: 

»(X,C) = #(X,QCQ^) V (C,Q) E VX E [V l?] 
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V.4.3.2 Transversely isotropy 

A material is transversely isotropic if there exists a plane such tha t every plane perpendicular to 

it is a plane of material symmetry (Ogden, 1984). Transverse isotropy with respect to a preferred 

direction n, is characterised by a symmetry group, such that: 

:= | q G / Q.n = n j [V.18] 

The Representation Theorem for transversely isotropic scalar functions, states that a scalar 

function p (C) is transversely isotropic if and only if there exists a function p such that: 

= [V.19] 

where /j, Jj, Lj are the principal invariants of C. The invariants I4 and /, were first introduced by 

Ericksen and Rivlin (1954). They will be described in more detail in the next section, but 

basically they relate C and a unit vector n which corresponds to a preferred mechanical direction 

of the material. Then ^ becomes an isotropic function of the 5ve invariants considered above. 

This implies that f is invariant under any proper orthogonal transformation and if f is identified 

with the strain energy function then ^ is an objective quantity. 

V.5 Fibre-reinforced continuum 

To describe the constitutive behaviour of biological soft connective tissue in the most general 

case, we consider a material constructed from two families of fibres continuously distributed in a 

(highly) compliant solid isotropic matrix (Figure V.2). The result of the geometrical and 

mechanical interactions of the three constituents gives the material strongly anisotropic 

macroscopic properties (Spencer, 1992). 

The two family of fibres Fi and F2 are characterised by, respectively a unit vector %(%) and a 

unit vector mg(X), both defined in the reference configuration These two vectors define 

locally the preferred directions from which the anisotropy directly arises and then the fibre 

directions can vary within the material. For sake of clarity, the possible dependence on X of nq 

and mo will be omitted in the next developments. 
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The obvious way to ensure satisfaction of frame indifference without precluding anisotropic 

response is to formulate the constitutive response function in terms of objects associated with the 

reference state. For nonlinear elasticity this amounts to formulating response in terms of the 

right Cauchy-Green deformation tensor C and the second Piola-Kirchhoff stress tensor S. Given 

that the fibre directions are dependent on the position within the continuum body it is more 

convenient to formulate the constitutive law in a coordinate free system. This leads to the direct 

inclusion of the unit vectors Hg and in the constitutive equations. The existence of a strain 

energy function , isotropic function of its arguments, is postulated. The strain energy function 

is only a function of X, C, n, and and is therefore written as C , . It is 

relevant to note tha t the sense of the two unit vectors has no physical meaning and, in 

consequence, the strain energy function ^ must be an even function of these two vectors. 

Ho 

First family of fibres 

aligned along % 

% 

Second family of fibres 

aligned along 

Figure V.2 - Simplified representation of a continuum material made of an 

isotropic matrix reinforced by two families of fibres respectively associated with 

directions Hq and in the reference configuration. The particular arrangement of 

the fibres is defined locally and therefore depends on the position X of the 

material point. The angle a between the two vectors and HIq characterises the 

local degree of anisotropy. 

The two structural tensors n „ )Hg and ) have to be introduced. The invariance 

requirement of the strain energy function with respect to the material symmetry group can be 

stated as follows: V (X, Q, C) G x x 

^(X,C,n„ (g)ng,mg ( g m j = ^(X,Q.C.Q^,Q.ng [V.20] 
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A set of eight invariants 0=1..*) are necessary to form the zyretft̂ czZ'/e 6oaea of the 

tensors C, igjUg and nig iS)mg (Spencer, 1992). In other words, it must exist a strain energy 

function such that ^ cam be written in the 

following form: 

W(X,C,n„m,) = »[X,7XC),4(C),7,(C),/XC,nJ,7,(C,iiJ,7^(C,niJ,7XC,mJ,7,(C,n„mJ] 

[V.21] 

The latest form of the strain energy function satisSes the frznctpZe o/yrame mji^erence and the 

material symmetry arising from the anisotropy. The invariants defining ^ are the following: 

/ j = trace{C), - trace{C')], I,^ = det{C), [V.22] 

These latter invariants characterise the isotropic response of the material. 

The invariants characterising the anisotropic mechanical response of the material are given 

below: 

- N , :C, = N . :C' [V.23] 

= :C, [V.24] 

where Nq and Mq (equation [V.26]) denote structural tensors in the reference configuration. They 

reflect the local structural arrangement of the fibres and thus define local directional properties of 

the composite material. This theoretical aspect connects to the fact that connective tissues have 

different structural properties according to the location (Frank and Shrive, 1999) and shows that 

the theory presented can take into account this feature. 

Ng := Hg g) n ,̂ Mg := (g) |V.26] 

Observing that: 

/ . = n, .(Cn.) = (A„_)' (V.27] 

where A„ and denote respectively the stretch associated with the direction % and the 

stretch associated with the direction nig, allows an easy physical interpretation of the invariants 

and as shown on Equations [V.27] and [V.28]. These two invariants are directly related to 

the type of data one can obtain experimentally when performing tensile tests on a soft tissue 

specimen. 
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This makes straightforward the parameter identification for any constitutive law using and/or 

/(;. Upon deformation, the unit vectors % and mg (from the reference configuration) are 

transformed into a vector n and m (Equations [V.29] and [V.30])respectively where n and 

m represent the unit vectors associated with each family of fibres in the distorted configuration. 

= F.n, [V.29] 

V.5.1 Definition of stress tensors 

Given that the Green-Lagrange strain tensor E and C have proportional material derivatives and 

that E is work conjugate to the second Piola-Kirchhoff stress tensor S, it is straightforward to 

construct a totally Lagrangean constitutive equation as follows: 

$ = — : C = l s : C [V.31] 
a c 2 

In a convective representation of elasticity, and more especially for a hyperelastic material, the 

second Piola-Kirchhoff stress tensor is derived from the strain energy as: 

S[X.C(X).n..m.] = 2 | | = | i [V.32] 

It is worth noting that this equality is valid only in the case of a non dissipative process (which 

corresponds to the hypothesis of the present developments). Since 9/ is a function of the 

invariants /a. a = i....8> S is expressed as follows: 

[V.33] 

The first derivatives of the tensorial invariants with respect to C (Spencer, 1992) are: 

§ ^ - 1 , | ^ = V - - f . C + C ' = J , C - ' (V,341 

= N.. = N.C + CN. := N , , [VJ51 

| i = M„ : | ^ = M.,C + C M , : = M „ [V-36] 

^ 8 m . + m, ® n,) := |V,37| 
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From Equations [V.33], [V.34], [V.35], [V.36] ajid [V.37], the expression of the second Piola-

Kirchhoff stress tensor S is established: 

s = 2[(#^ + C 

+2f^4 ^0 + ^oc + 

or, in a more reduced form, using the inverse of C: 

S = 2 (9 , + C + 7,^, C-' + # , N, + M, + 

[V.38] 

[V.39] 

where the following notation haa been introduced: := .̂ 
o ft / ft; nr=i..8 

At this stage, it is convenient to introduce the notion of pu3A-/orwar(f and pi/ZZ-6acA of a tensor 

(Mardsen and Hughes, 1994). 

The push-forward of an arbitrary tensor T that is referred to the reference configuration to one 

that is referred to the spatial, or deformed, conSguration can be generalised as: 

= F F F~^ 
aA dD^ E..F ' Be" Fh 

rv.4oi 

The left hand-side of the above equation is the "push-forward of T by the deformation 9? ". In the 

same manner, the pull-back of an arbitrary tensor t that is referred to the deformed configuration 

to one that is referred to the reference conEguration CEin be de&ned as: 

fV.411 

S can be interpreted as the force per unit area in the undeformed configuration (if one considers a 

rigid motion) and a as the force per unit area in the deformed configuration. In hyper elasticity, 

the Cauchy stress tensor is typically calculated from the second Piola-Kirchhoff stress tensor by 

means of the f zoZa another name for the puaA-/oru;or j operation with or without 

the factor 1/ J : 

O" =y(Y) ,S ) 

=> (T = -F.S.F^ = - F — . F ^ 
J J a c 

[V.42] 

[V.431 
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The Cauchy stress tensor u is expressed as follows: 

(T = B' + 7̂ % 1 + N + M + [V.44] 

where: 

:= N.b + N.b, := M b + b.M, := ^n|^.ing(n ® m + m (g)n) [V.45] 

N and M are the spatial counterparts of Nq and Mq according to the following definition: 

N := n ® n, M := m ® m [V.46] 

Having reviewed the necessary theoretical background for strongly anisotropic fibre-reinforced 

composites (Spencer, 1992), I am now going to develop new generoZ expression of the 

tensors of elasticity (material and spatial versions) by considering all the possible mutual 

interactions between the matrix and the two families of fibres. 

V.5.2 Definition of the elasticity tensors 

In his work. Spencer (1992) did not develop general closed form expressions for the elasticity 

tensors of fibre-reinforced composites at finite strain. Weiss (1994) established closed form 

expressions of the elasticity tensors (material and spatial configurations) for a continuum 

composite but reinforced by a single family of fibres and by making the hypothesis of 

incompressible behaviour. This latest assumption excludes all the terms of the strain energy 

function involving the third invariant of the Cauchy-Green deformation tensors. In this 

section, the expressions of the elasticity tensors in the material and the spatial configurations are 

derived. Not only does the elastic tensor specify the response of a material to applied stresses, but 

it also gives criteria about the actual stability of the structure. However, the discussion of the 

later concept is out of the scope of this work. 

53 



C/iap(er y - moffeZZing 0/ (MoZogicaZ connec^ine aoyit fissuea 

V.5.2.1 Elasticity tensor in the material configuration 

The material elasticity tensor is obtained by differentiation of the second Piola Kirchhoff stress 

tensor S with respect to the deformation tensor C, as given in equation [V.47]: 

Combining equation [V.47] and the fact that S and C are symmetric tensors proves that 

possesses the so-called mmor 

The definition of the elasticity tensor given in equation [V.47] {AT"' is the second derivative of $ 

with respect to C), Implies the so-called mojor expressed as follows: 

In summary, A'^ possesses the following symmetries: 

In order to obtain a convenient form for A^ , the following notations are introduced (Mardsen 

and Hughes, 1994): 

^ + " A , . ) ••= d w [v-511 

1 
^ ( i c - . [ V . 5 2 ] 

I is the identity mapping on the six-dimensional space of symmetric second-order tensors and 5 is 

the Kronecker tensor (1$ = 1 if / = J, 0 otherwise). Differentiating [V.39] with respect to C 

leads to the following non-reduced form for A''"̂ : 
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A ' ^ = 4 

+ 4 

T ^ 

l ( g ) ^ + ^ 2 l ( g i - ^ + 7 , l ( g ) ^ - ^ - C ( a c a c a c ' a c 

^ ,c-
a c 

+ 4 ' ? 
+ 4 M , ( g 

+4 T n„m„ 

ac 

^ + ^,(Ng (gll + l ( g ) N j [V.53] 

For further developments, let us establish the following generic differential expression for 

a c [V.54] 

+ N, + M, + 

After introducing the following notation: := ^ , development of the second 

derivatives of application of the chain rule and lengthily algebraic manipulations, the material 

elasticity tensor is obteiined in the following form: 

A " : = A r + A : + A - + A - 4- A " + A " + A " ^ + A " ^ + A " [V.55] 

where A ^ has been split into several contributions which characterise specific interactions 

between the matrix and the Gbres and between the two families of Gbres (Equations [V.SG], 

[V.57], [V.58], [V.59], [V.60], [V.61], [V.62], [V.63] and [V.64]) and highlights the crossed 

contributions of the differential terms of the strain energy function with respect to the three 

constituents of the material (Table IV.l). 
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Interactions Matrix Family of fibres F^ Family of fibres F^ 

Matrix 

4) 9(A, 4, A) 4) Zt, -4) 9 ( 4 , 4 , 4 ) 5(41 4> 4i 4) 9(4, 4, 4) 

Matrix 
A : A : 

A^:„ A ; i A ^ . % Matrix 
A : A : 9(4, 4) 9(4, 4) d{I., I.) 

Matrix 
A : A : 

A"* 

Family of 

fibres Fj, 

/a, li, 4) 9(4, 4) 9(4, 4, 4i 4, 4) Family of 

fibres Fj, TW 
F^m. < A ; . 

Family of 

fibres 

9(A, 4, 4, 4) 5(4) 4i 4i 4) 4) 9(4, 4) Family of 

fibres A " . A ; : 

Table V. l - Table summarizing the various contributions to the material elasticity tensor by 

separating the various differential terms of the strain energy function. The symbol "5", 

placed before a bracket containing invariants means that the corresponding term of the 

elasticity tensor contains partial derivatives of the strain energy function $ with respect to 

the invariant(s) considered. 

+ 2 % + ^ 1 - % + (1 (g) C + C g) 1)] 
[V,56] 

The term is made of the isotropic components of the derivatives of the strain energy function 

with respect to the two first invariants, / j and Jj, of the Cauchy-Green deformation tensors. 

has an easy physical interpretation as it corresponds to the sum of the square of the principal 

stretches. Uniaxial, shear, biaxial and equibiaxial tension are examples of tests that are 

performed on a soft tissue sample in order to obtain this information. 

Compression tests may be required to compute out-of-plane stress if the material is not assumed 

to be incompressible or simply because different behaviours in compression and tension of the 

matrix are considered. If $2 is null, the matrix has a constant shear modulus. Thus if a variable 

shear modulus is to be accounted for in the constitutive law, one m u s t define at least function of 

I2 of degree one. 

Terms containing the derivatives of ^ with respect to ijj are isolated (Equation [V.57]) in order to 

highlight the terms of the elasticity tensor that are directly related to change of volume. 
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It is relevant to emphasize that this does not constitute the classic decomposition resulting from 

the split of the deformation gradient F into a volumetric and a deviatoric part, as often used in 

incompressible finite element analyses (Flory, 1961). Our decomposition concerns only the terms 

of the strain energy function and not those involving C. By examining the expression of , it 

appears that the hypothesis of incompressibility (/.^ = 1 A^' = 0) provides a significant 

simplification at least at the constitutive formulation level, not the numerical one. Soft tissues are 

very often assumed to have an isochoric behaviour because of their high water content. However, 

due to the improvement of experimental methods it appears that a fluid exudation can be 

observed when a ligament is subjected to a mechanical loading as reported by ThieUce et al. 

(1995). In consequence, it seems relevant to consider this aspect by using either using a 

porohyperelastic formulation or the present formulation that takes into account the 

corresponding volumetric terms that may generate non negligible coupled actions between the 

various constituents of the composite material. The compressibility can be dependent on the 

state of deformation within the matrix [ 0] and this could be captured by 

coupled terms of ^ including the invariants /j, ^ and 

K := + % ) C ' » c + + / . % + ® C + C ® 1)1 

+4 (C (g) C ' + C-' ® C)] 

Terms A^^ and A^^ (Equations [V.SS] and [V.59]) of the elasticity tensor characterise the 

interactions between the isotropic matrix and, respectively, the families of Sbres and 7 .̂ Some 

of the effects governed by and ^ are probably indentical despite the relative independence of 

and 4 as tensorial invariants. Naturally, similar remarks apply to 4 and ly. The most obvious 

kind of interactions between matrix and fibres in soft connective tissues is probably shear but one 

can imagine more complex interactions by using appropriate coupling functions. The 

experimental characterisation of these combined interactions is probably one of the biggest 

challenges when developing constitutive laws. Moreover, Z-, and do not have an immediate 

physical interpretation and this can be subject to further investigation. Deformation of the 

matrix can produce elongation of the fibres and the reverse effect can also be envisaged. As 

suggested by Minns and Soden (1973), an important function of the collagen fibres is to ensure a 

uniform distribution of deformation and thus avoiding excessive local deformations which are 

likely to induce early failure of the soft tissue. 
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A;,. := 4[(^,, + 0 N, + N, ® 1) + ® N, , + N, , ® 1)] 

+ 4 (C ® N, + N, 0 C) - (C ® N ^ + N ^ g) C)] [V.58] 

+ 4^44 (̂ 0̂ ® N j + (N, ® ® N j + ® N^ 

:= 4(^i« + -̂ 1̂ 26 + »7)( l 0 M , + M, ® 1) + ,gM, , + M^ g 

+ 4 (C ® M, + M, ® C) - (C ® ® C)] [V.59] 

+ 4 [^^(M, ® M j + (M, ® M,^ + M,, ® M j + ® M,J 

By forming a complex network surrounded by and, at the same time, entrapping water, 

proteoglycans, glycoproteins and elastin, collagen fibres can play a central role in the overall 

compressibility of the material by interacting with the isotropic matrix. When stretched, collagen 

Sbres squeeze the surrounding interSbrUlar matrix and have their diameters reduced. These 

coupled interactions can be included in the formulation by defining bilinear functions of I3 and 4, 

or 2; and .Zg, or and Jg, or and jy, exhibiting the possibility to have non zero second 

derivatives appearing in the elasticity tensor (Equations [V.60] and [V.61]): 

A " . 414». , (C-' 8 N. + N. 8 C") + ( C » N.„ + N „ ® C ) ] [V.BO] 

A". = (C > ® M, + M, ® C->) + / , . I„ (C-' 8 M „ + M.„ ® C->)| [V.61] 

The possible coupling between the tensorial invariants related to the fibres and that related to 

the volume ratio ( J = ) can help to characterise typical behaviours such as the fact that 

fluid exudation in soft tissues can be observed in particular directions (Armstrong et al, 1984). 

The fluid exudation that affects the global compressibility is probably (this remains to be 

proven) channeled by the fibre network. It was shown that water contributes significantly to the 

nonlinear viscoelastic behaviour of ligaments (Chimich et al., 1992). The water content may play 

a role in conditioning the distance at which collagen fibres can interact mechanically or 

biochemically. As proteoglycans are highly hydrophilic molecules, significant pressure gradients 

are likely to be generated within the tissue and hence producing redistribution of the water. 
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Several experimental studies have reported very interesting observations, namely the fact that 

the stiffness of connective soft tissues is much higher than that of a single collagen fibre (Hayashi 

et al, 2000; Minns and Soden, 1973). In addition to evident size effects as mentioned by the 

previous authors, obvious explanations could be put forward by considering that mechanical 

interactions between the ground substance and the collagen fibres play a major role in the 

signlGcant difference of stiffness observed (Hayashi aZ., 2000). At the atomic level, covalent 

liaisons between the components of the ground substance and the collagen Gbres are certainly 

responsible for a strengthening of the whole structure. Collagen Ebres, bonded together by an 

interfibrillar matrix, are arranged in bundles which in turn are structured in fascicles. This 

arrangement is likely to produce shear between the collagen fibres and the matrix when a 

ligament or a tendon is loaded in tension. This effect can explain the stronger stiffness of the 

connective tissue over a single collagen fibre. Others reasons include the presence of elastin fibres 

that provide the elastic recovery capabilities (storage of elastic energy) of a ligament and that are 

responsible for bringing back collagen Gbres in their crimped state. Their actions could be viewed 

as a resisting factor in the elongation of the collagen fibres. In connection with this, non-uniform 

pre-stretch of the collagen Sbres is probably present in an apparent relaxed soft connective tissue 

due to its strain and stress history. Rate effects such as viscoelasticity may be accountable for the 

experimental observations mentioned above (although they are supposed to be performed on 

conditioned specimens) because in em isolated collagen Ebre, viscosity interactions provided by 

the presence of the ground substance (water, glycoproteins, elastin) are missing and thus alter 

the appEurent stiffness. Some ligaments are encapsulated in a membrane, called the epiligament 

(Frank and Shrive, 1999), which contains randomly orientated collagen fibrils and a network of 

blood vessels branching and penetrating the intrasubstance of the ligament, running along and 

between the collagen fascicles. This is the kind of structural arrangement that can add significant 

stiffness to a connective tissue even thought its structural components have lower stiffnesses. 

The combined interactions of the two families of fibres with the isotropic matrix are governed by 

and A^^^ (Equations [V.62] and [V.63]). is a second-order tensor that reflects the 

relative orientation of the two family of fibres and disappears if the orientation is orthogonal. It is 

well known that fibres orient themselves according to the load they carry. If we consider a 

ligament in a relaxed state, at each local continuum location considered, probably 

nonzero, but as the ligament is submitted to multiaxial loading, fibres may align in a way such 

that becomes zero and thus modifying locally the stiffness and producing singularities in 

the stress distribution. 
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These phenomena could account partly for injuries when, in addition to high strain rates, 

ligaments are loaded in abnormal directions. 

K , ($, + ® T..,.. + T„... ® 1) - f , (C ® + T._., ® C)| [V,62] 

K , . 
:=4/,-P„(C-'®T._,._+T._._®C-") |VG3| 

(Equation [V.64]) exhibits the pure mutual interaction between the two families of fibres. 

Stretch of one family of fibres can produce stress in the other family of fibres under various forms 

such as shear, compression or tension if they are intermeshed with each other. However, the 

difficulty of the experimental measurement of these effects is a real practical limitation for now, 

in addition to the very demanding requirements of testing of biological tissues. 

A " := 4(4.,. (N. 8 M. + M. ® N j - f . , (N. ® M.„ + M „ ® N.)| 

+ " [*.» 8 M. + M. 8 N. J - (N.^ ® M „ + M „ «5 N,^)] 

+ + T , „ g N , ) + ( N „ ® T„„_ + ® N„) ] IV.641 

+ 4 j 4... (M. » ® M.) + * , . (M.^ ® + T,„._ ® M„)] 

To the best of my knowledge, the expressions of the various terms of the elasticity tensor, 

containing coupling contributions between the matrix and the two families of fibres, have not 

been previously reported in the literature. The explicit dependence of the elasticity tensor on the 

partial derivatives of the strain energy function can serve as a baais to derive in a straightforward 

manner the elasticity tensor for a particular strain energy function. This is helpful to investigate 

particular mechanical effects determined by carefully chosen strain energy functions. 

V.5.2.2 Elongation moduli in the material description 

From the expression of the elasticity tensor one can define elongation moduli K and , 

respectively associated with the fibre directions ng and m^. They characterise the stress response 

associated with the deformations in the fibre directions and are therefore directly related to the 

appropriate structural tensors by the following relationships: 

fV.65l 
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It is worthy to note that these extension moduli, particularly , when assessed in the linear 

phase (after recruitment of the collagen fibres) of the stress-strain curve (typically over 4 % of 

strain) represent the classical Young's modulus reported in experimental studies considering 

ligament as simple elastic material (Butler et al, 1986). 

V.5.2.3 Bulk modulus in the material description 

The bulk modulus k of the material can be defined as follows: 

K = l l : ( A ' ^ . l ) [V.66] 
9 

k characterises the volumetric stresses associated with volumetric deformations of the material. 

From Equations [V.65] and [V.66], it is straightforward to derive the elastic moduli of the linear 

elasticity theory by assuming a state of vanishing strains. If the hypothesis of smaU perturbations 

is made and if it is assumed that Sbres have no mechanical contribution in this strain regime, an 

equivalent isotropic bulk modulus can be deduced and used as a coefGcient characterising the 

initial compressibility of the material. 
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V.5.2.4 Elasticity tensor in the spatial configuration 

The spatial counterpart of the material elasticity tensor, A"̂ , is defined by the push-forward 

relation: 

A-' = i(C.A'»^C') « 4 , = [v,67| 

To avoid redundancy, the spatial elasticity tensor has not been split into various contributions as 

performed for the material elasticity tensor. The full general expression of A'̂  is given in Equation 

[V.68]. It appears that such a closed-form expression of the spatial version of the elasticity has 

never been reported in literature. 

A^ = ® b + (b' (» b')] 

+ 4 J — ® b" -|- b" 0 b) — ' 

-k ig) 1 + (»1 -H ig) b)] 

(b̂  (g) 1 + 1 ® b-)] 

-k4 (1 igi N + N ig) 1) 4- (1 igi igi 1)] 

- k 4 ( 1 (g)M-kM^ 1 ) - k ( 1 ( g ) 4 - I g ) 1)] 

+ 4 -k 7,$,̂  -t- $ J (b ® N + N ® b) + (g, ® b)] 

+ 4 ( b ' 0 N + N ^b ' ) - (b' ® (gb')] 

(N ® N) -7;^^^ (N ® N, + N, (gN) + ® N,] 

+ ^J(b ® M + M® b) + + A^27)(b ® (gi b)] 

+ 4[-/g»^ (b" (g) M + M (g b') - 7̂ 9,̂  (b" (g) Ig b')] 

+ 4 (M igi M) - (M Ig) Ig M) + igi ] 

-H 4 (N Ig) M -H M Ig) N) - (N ig) -k ig) N)] 

+ 4 ( N , (g M + M Ig N J - (N^ ® M, + ® N,)] 

+ 4 1 V ^ ( » , + J (b ® T_ + I L ® b) - (b' ® T _ + T_ ® b')] 

+ (1 ® +1 ® T_)] [V.68] 

+ 4^4, (N ® T_ + T_ ® N) 4- (N, ® T_ + ® N j ] 

+ 4 [»«, (M ® T_ + T_ ® M) + (M^ ® T_ + T_ ® M j ] 

where: 
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V.6 Mechanical symmetries for fibre-reinforced composites 

The previous expressions of the stress and elasticity tensors have been established in the general 

case of a fibre-reinforced composite material containing two distinct families of fibres Fi and F^. 

No assumption was made regarding the mutual orientation of the two families of fibres. 

Orthotropic, transversely isotropic and isotropic symmetries are special cases that will be derived, 

in the next section, in a straightforward manner from the general anisotropic formulation. For 

sake of illustration, the degenerated expressions of the spatial elasticity tensors and the second 

Piola-Kirchhoff stress tensors are presented for each material symmetry. 

V.6.1 Orthotropic symmetry and locally orthotropic symmetry 

When the principal preferred directions of the two families of fibres are mutually orthogonal in 

the reference configuration, the composite material possesses an orthotropic symmetry because 

there exist three orthogonal planes of symmetry: two normal to the Sbre directions and one 

parallel to the surface where the fibres lie. This symmetry group requires nine independent scalar 

coefficients to fully characterise the material. The scalar product of the two unit vector n, and nig 

is zero, as the eighth invariant 4 and its derivative with respect to C. and S are expressed by 

means of Equations [V.70] and [V.71] respectively. 

A » := a ; + A r + A » + A » + A - + + A » [VJO] 

S = 2[(®, + C ' + 4', N. + 4 , N „ + + t , M.^| [V.71| 

One can define a local orthotropy when the two families of fibres are mechanically equivalent, i.e. 

it is possible to interchange no and m, without affecting the properties of symmetry. In this case, 

the material is said to be locally orthotropic with respect to the mutually orthogonal planes 

which bisect the two families of fibres (with direction n,, and m^) and the plane in which the 

fibres lie. The dependence of n^ and on ^ is symmetric with respect to swap between n^ and 

nig. In this case, $ can be defined by means of /j, Ij, Z;, and three additional invariants /g, Iio 

and .7̂ 1 deGned aa follows (Spencer, 1992): 

A, = 4 + 4 

The second Piola-Kirchhoff stress tensor is deSned as: 

S = 2 ($ , + C-' + ^ [V.73] 
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where: 

Z , : = N , + M , , Y + % [V.74] 

To keep the present developments concise, the expression of the material elasticity tensor 

corresponding to local orthotropy is not presented. 

V.6.2 Transversely isotropic symmetry 

In this case, the material is assumed to be a solid isotropic matrix reinforced by a single family of 

fibres characterised by a fibre direction given by iig (Figure V.3). 

Five independent scalar coefficients are needed to define the constitutive law. Of course, Je, and 

Is are no longer arguments of the strain energy function and the spatial elasticity and stress 

tensor reduces to: 

S = 2[(#^ + C + C-' + N, + [V.76] 

This constitutive formulation was successfully used by Weiss et al. (1996) to describe the 

mechanical behaviour of fascia lata tendons and the collateral ligaments of the knee and was 

implemented into an implicit finite element code. This work brought a significant contribution to 

finite element modelling of ligaments and tendons by taking into account, for the first time in a 

three-dimensional continuum model, the directional properties of ligaments. The experimental 

validation of the mechanical formulation demonstrated the relevance of using the continuum 

theory of fibre-reinforced composites at finite strain. 

* -i. A A 
4̂  

Figure V.3 - Unit vector field carrying the preferred fibre direction, before (dq) and after 

deformation (n). Upon deformation Hq is mapped into A ^ n according to Equation [V.29]. 
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V.6.3 Isotropic symmetry 

The material is a solid isotropic matrix which is not reinforced by any family of fibres. The 

constitutive equations merely degenerate from the ones given for transversely isotropy by 

suppressing the terms involving and ig. In this case, only two scalar coefficients are necessary 

to define the constitutive law and the elasticity and stress tensors takes the following form: 

[V.77] 

S = + [V.78] 

Isotropic constitutive law are widely used in rubber elasticity and the most popular constitutive 

laws are: the neo-Hookean model, the Mooney-Rivlin model, the Ogden power law or the Blatz-

Ko model (Ogden, 1984). In the context of ligament modelling, Pioletti (1997) and Pioletti et al. 

(1998b) used an isotropic law based on the strain energy function proposed by Veronda and 

Westmann (1970) for skin modelling. However, isotropic models were shown to lead to unrealistic 

results (Limbert and Taylor, 2001a). 

V.7 Kinematics constraints 

In addition of being well justiSed for certain classes of problems, kinematics constraints can 

significantly simphiy the formulation of the constitutive equations. Incompressibility and 

inextensibility in the fibre directions are presented. For sake of illustration, the expression of the 

Cauchy stress tensor is given. 

V.7.1 Incompressibility 

The assumption of incompressibility is often made in finite elasticity because of the satisfactory 

results it gives and the simplification it brings in experimental measurements (allows to compute 

out-of-plane deformations for example). Moreover, from a physiological point of view, this 

assumption can be justified by the fact that soft tissues have a very high water content. It is 

worthy to note that this assumption increases considerably the difficulty in fmite element 

analyses because of various numerical singularities generated. As mentioned earlier, in this case, 

I ^ = all the derivatives of ^ with respect to ijj are zero and an arbitrary pressure p, determined 

only by the equations of equilibrium or motion and the boundary conditions (not the constitutive 

equations), enters the stress under the form of a Lagrange multiplier as a reaction to the 

kinematics constraint of incompressibility. 
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The stress pi does not work in any deformation compatible with the condition Jj = 1. The 

expression of the Cauchy stress tensor takes the following form: 

cr = b' + N + M + + Pl [^.79] 

V.7.2 Inextensibility 

In fibre-reinforced composite materials, the stiffness of the fibres is generally much higher than 

that of the matrix. This implies that the extension moduli of the material in the fibre directions 

are much more larger that their shear moduli. The material will be therefore more likely to 

deform in a deformation mode other than extension in the fibre directions. For some applications 

it can be convenient to consider that the material is inextensible in the fibre directions and this 

corresponds to one or two kinematics constraints, respectively for one and two families of Ebres 

reinforced-composites. This is a very relevant and interesting issue in soft tissue modelling as 

numerous studies have suggested and shown experimentally that a stressed fibre aligns to avoid a 

mechanical stimulus in the fibre direction under cyclic deformation (Yamada et al, 2000). In the 

particular case when the material is inextensible in the two fibre directions Dg and nig, the 

inextensibility condition means that 1̂  = 1 and /g = 1. In a similar manner as for the 

incompressible case, fibre reaction stresses q and r enter the stresses as reactions to the 

kinematics constraints of inextensibility. The expression of the Cauchy stress tensor takes the 

following form; 

a = b' + 1 + j + gN + rM [V.80] 

Obviously, incompressibihty and inextensibility can coexist in the same constitutive law. 

Incompressibility is broadly used in finite element modelling of ligaments and tendons but 

inextensibility is only used in mathematical models describing ligaments as a collection of 

extensible and isometric Sbres (O'Connor and Zavatsky, 1993). The hypothesis of inextensibility 

is probably relevant for finite element analyses of ligaments for particular fibre bundles within a 

ligament and for particular ranges of motion. Its influence should be assessed in order to allow for 

possible simplification of constitutive laws but the drawback is tha t if such constraints have to be 

enforced in a Snite element context, they lead to extra computational cost and possible iH-

conditioniong of matrices in implicit methods based finite element codes when associated with 

penalty methods. 
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V.8 Constitutive restrictions 

Constitutive restrictions guiding the choice of the strain energy function have been largely 

investigated, especially for isotropic sohds at finite strain (Ciarlet, 1988; Mardsen and Hughes, 

1994; Oden and Reddy, 1978; Ogden, 1984; Truesdell and Noll, 1992). These restrictions can be 

divided into mathematical and physical restrictions. Mathematical restrictions are established in 

order to insure the existence and/or uniqueness of the solution of the initial/boundary value 

problem whilst physical restrictions impose constraints such tha t the material behaves in a 

physically acceptable manner, at least in the accessible experimental domain. It is worth 

emphasising that objectivity and material symmetry discussed previously are also mathematical 

restrictions put on the strain energy function. The consideration of these restrictive conditions 

can prevent introduction of non-physical behaviour or can put particular limits on the domain of 

validity of a constitutive law, at the formulation level. In the context of nonlinear Suite element 

analyses, the restrictions imposed on the strain energy function can give conSdence in the 

existence of a solution, or can explain particular results when, for example, the solution of a 

particular initial/boundary value problem is not unique. As there does not exist a general 

constitutive inequality encompassing all the required physical and mathematical properties, this 

leaves an open field for investigation. For further details about the notions of constitutive 

restrictions see Zee and Sternberg (1983) for the specific case of incompressible hyperelastic 

solids. For the question of existence and uniqueness in finite elasticity see Ball (1977, 1980), 

Gurtin (1980), Le Dret (1985), Valent (1980) and references given therein. For further details 

concerning some popular constitutive inequalities please see Appendix B. 
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V.9 A particular strain energy function for incompressible transversely 

isotropic hyperelasticity 

Simple modelling considerations can be used to define a strain energy function that encompasses 

the principal features observed in biological connective soft tissues. The elastic response of the 

tissue is dictated by the resistance of the collagen 5bre family, the ground substance matrix and 

their interaction. However, determining the exact nature of such interactions is intractable from 

an experimental point of view. This is the reason why, in the absence of relevant experimental 

material data, in the present study the mechanical behaviour of biological soft tissue is assumed 

to be governed by a function representing the contribution of the matrix (dependent on 

and I2) and by a function representing the mechanical contribution of the fibre (dependent on Zj). 

These two functions are not coupled but, with appropriate experimental protocols, it can be 

imagined to perform tests in order to characterise this coupling. Shear coupling is a good 

candidate for such an interaction. When the material is assumed to be incompressible, equals 1 

and the strain energy function $ is independent of this third invariant. The strain energy 

function characterising the mechanical behaviour of ligaments can therefore be assumed to be the 

sum of two strain energy functions: one representing the matrix contribution and the other one 

representing the fibre contribution. The dependence of # on can be replaced by an equivalent 

dependence on the stretch along the fibre direction, \ . This simplifies the identification process 

with experimental data. 

^ = ^2(^1,4)+ / W 

The preferred orientation of the collagen fibres induces the transversely isotropic symmetry of the 

ligament whereas the matrix (ground substance) is assumed to be isotropic. 

This leads to the following form of the strain energy function if the matrix is assumed to be a 

Mooney-Rivlin material that degenerates into a neo-Hookean material if Q = 0: 

$ = <7^/^-3)+ (7X7,-3) + / (A) IV.82] 

The collagen does not support a significant compressive load and structures that are composed of 

mostly collagen will tend to buckle under very small compressive forces. 

The tensile stress-stretch relation for collagenous tissues such as ligaments and tendons can be 

well approximated by an exponential toe region followed by a linear region. The transition is 

made when X = X'. These observations guide the choice of the following function / (X) (Weiss ef 

oZ., 1996): 
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/ ( ' ^ ) — y ^ such that 

df 
= 0, 

8A 

3f C, 

aA A 

aA A 

A < 1 a) 

A < A' b) 

A > A' c) 

fV.I 

X* represents the stretch in the fibre direction at which the collagen fibres are 

straightened. 

C, scales the stresses in the toe region. 

" C4 is the rate of uncrimping of the collagen fibres. 

= Cg is the linear modulus of the straightened collagen, 

" Cg is determined by assuming that / (X) is C-continuous at X = X'. 

V.9.1 Stress tensors 

From Equations [V.39], [V.44], [V.82] and [V.83], one can derive the stress tensors in the material 

and spatial descriptions. 

V.9.1.1 Second Piola-Kirchhoff stress tensor 

S = 2 1 - C + K) n^ 
aA 

+ pC-' 

V.9.1.2 Cauchy stress tensor 

u ~ 2 (Cj + /^CJb — C^b' + A — ^ ^ n 0 n pi 

[V.84] 

[V.85] 

69 



C%ap(er y - modeZZmg 0/ 6%oZog«caZ comnecfii'e ao/it tiaauca 

V.IO Concluding remarks 

The theory of fibre-reinforced composites developed by Spencer (1992) has been presented and 

extended in the context of the constitutive modelling of biological soft connective tissues. New 

closed-form expressions of the material and the spatial versions of the elasticity tensors have been 

derived for continuum fibre-reinforced composite material containing up to two families of fibres. 

The derivations have been performed without restricting the way the strain energy function 

depends on its arguments. The coupling terms appearing by successive differentiation of the 

strain energy function have been isolated and discussed in connection with the modelling of 

ligaments and tendons. It was described how particular mechanical effects observed in biological 

structures can be accounted for by choosing appropriate functional forms of the strain energy 

function with respect to its arguments, that is tensorial invariants of the strain and structural 

tensor agencies. 

The development of the expressions for the elasticity tensors in the material and spatial 

descriptions is of interest because, in addition of their relevance to predict and explore the 

mechanical behaviour of a given material, elasticity tensors hold fundamental mathematical 

properties of the constitutive law. Stability studies and constitutive restrictions generally rely on 

arguments based on these properties. The general expressions of the stress and elasticity tensors 

are also essential in the finite element implementation of constitutive laws for fibre-reinforced 

composites and it is hoped that they will be useful in this regard. 

In implicit scheme based finite element methods, the elasticity tensor is used to calculate the 

tangent matrix which governs the convergence of the system of nonlinear equations whereas, in 

explicit analyses, the various coefficients of the elasticity tensors are used to calculate the largest 

stable time step by the mean of the equivalent Lame's moduli. 

The present phenomenological formulation is fairly simple but its drawback lies in the fact that 

the tensorial invariants of the right Cauchy-Green deformation tensor and agencies of structural 

tensors considered do not have all an easy physical interpretation like L, and ly. This constitutes 

a possible limitation in the general applicability of the continuum theory of fibre-reinforced 

composites at finite strain. A particular research effort should be directed towards this important 

aspect of the constitutive formulation and especially for biological materials. 
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The presentation of the spatial elasticity tensor, in full generality, has allowed us to isolate terms 

which are representative of the mutual micromechanical interactions between the matrix and the 

two families of Gbres. Phenomenological models such as the present one are macroscopic but can 

be motivated by structural or microstructural considerations and some invariants and suitable 

associated strain energy functions may characterise particular microstructural features of the 

material. For example, the fact that biological soft tissues made of collagen fibres buckle under 

very small compressive forces in the fibre direction can be integrated into the mathematical form 

of the strain energy function by assuming a zero mechanical contribution from the fibres when 

they are submitted to compression along their long axis or /g <1) , in addition to their higher 

stiffness compared to the matrix. When a connective tissue undergoes a tensile load in the 

direction of the collagen Sbres, the gradual uncrimping of the Ebres produces a typical nonlinear 

response which is followed by a more or less linear response. This aspect can be put in equations 

by specifying appropriate functional forms in the expression of the strain energy function. The 

response arising from the tension of a particular family of fibres can be expressed by an 

exponential function of the stretch in the fibre direction followed by a linear function of the same 

argument like in the approach used by Weiss (1994) and Weiss et al. (1996). Instead of using a 

nonlinear and a linear function it can be advantageous to use a single multi-linear function 

(Hirokawa and Tsuruno, 2000). 

The terms of the elasticity tensors (and the stress tensors) involving the volume ratio are often 

removed from the constitutive equations by assuming incompressibility of the material. It is 

believed that their contributions are probably not negligible as deformations of ligaments and 

tendons involve fluid displacement and exudation. 

Experimental measurements performed on biological soft tissues are extremely delicate processes 

and the current experimental methods need to evolve in order to capture specific mechanical 

responses which may be missed otherwise. ApphcabUity of the general Sbre-reinforced composite 

model remains to be explored on experimental grounds but with suitable experimental material 

characterisation one can envisage to integrate complex Interactions between elemental 

constituents within a constitutive law. 
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An important issue in ligament modelling is the fact these structures are naturally in a state of 

residual stress, even at rest. Residual stress can be incorporated at the formulation level (Hoger, 

1996) but the applicability of such constitutive laws remains a difficult task given the difficulty of 

experimental testing on soft tissues, especially for initial stress measirrements. The state of pre-

stress within a ligament is probably highly inhomogeneous because ligaments are made of various 

fibre bundles that do not possess all the same lengths or the same mechanical properties (Butler 

et ai, 1992). In a three-dimensional finite element analysis of the anterior cruciate ligament, 

recently performed by Limbert and Taylor (2001b), it was demonstrated the necessity, not only 

to model the anterior cruciate ligament as an anisotropic hyperelastic material but, as 

importantly, to include pre-stress in order to obtain realistic results which agree with experimental 

observations. 

In conclusion, it seems essential to have a deep knowledge of the microstructural properties of a 

biological soft tissue when formulating macroscopic constitutive laws. Particular features of the 

microstructure or the structure of the material can be taken into account by using appropriate 

functions for the deSnition of the strain energy function. Special attention should be taken in the 

choice of the mathematical expression of the strain energy function by assuring that it complies 

with essential constitutive inequalities. The identification of material parameters from 

experimental data must be conducted with constitutive inequalities in mind because particular 

states of stretch and deformations can lead to violation of constitutive inequalities and then 

discard a particular choice of a strain energy function. Although the developments presented in 

this chapter are aimed at the constitutive modelling of biological soft connective tissues, there is 

no restriction in using them for the formulation of constitutive laws for other biological 

structures. Indeed, skin, intervertebral discs, arteries, among others, due to their fibrous 

structures and strong anisotropy are well suited candidates for the application of a continuum 

theory of fibre-reinforced composites. There is therefore plenty of room for investigative research 

work in the field of (continuum) fibre-reinforced composite materials would it be experimental, 

analytical or computational. 
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Equation Section SEquation Section 6 

In this chapter, the finite element implementation of a transversely isotropic hyperelastic 

constitutive law for modelling soft tissues is described and validated. The formulation of the 

elastodynamic boundary value problem is presented in the general case. Solving techniques for 

explicit dynamic problems are described. Prior to this, a quick survey of the treatment of the 

constraint of incompressibility in finite element analysis is presented. Given the importance of the 

incompressibility hypothesis in finite element analyses of soft tissues, the description of its 

numerical enforcement is made by paying special attention to the particular penalty function 

which was used, in the frame of explicit finite element analyses. Finally, the validity of the finite 

element model for transversely isotropic hyperelasticity is checked against analytical solutions for 

homogeneous states of deformation. 
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VI. 1 Incompressible behaviour and numerical singularities 

Total incompressibility literally means that the material exhibits zero volumetric change 

(isochoric behavior) under hydrostatic pressure. The pressure in the material is not related to the 

strain in the material: it is an indeterminate quantity as far as the stress-strain relationship is 

concerned. The Poisson's ratio is exactly 0.5, while the bulk modulus is infinite. Incompressibility 

was first considered in finite element analysis by Hermann (1965). Analytical difficulties arise 

when it is combined with nonlinearities such as large displacements, large strains and contact. In 

finite element elasticity, when the material response is almost incompressible, the pure 

displacement formulation, in which the strain invariants are computed from the kinematic 

variables of the finite element model, is not appropriate and generally prevents convergence to a 

solution. One difficulty is that, from a numerical point of view, the stiffness matrix is almost 

singular because the effective bulk modulus of the material is so large compared to its effective 

shear modulus, thus causing difficulties with the solution of the discretised equilibrium equations. 

Another pathological numerical behaviour known as mesh locking may also appear during an 

analysis of incompressible or nearly incompressible analysis. Mesh locking refers to the inability 

of an element to perform accurately in an incompressible analysis, regardless of how refined the 

mesh is, due to an over-constrained condition and insufficient active degrees of freedom. 

Specifically, if a standard element is distorted into an hourglass mode, it will lock as the bulk 

modulus becomes infinite. It must be noted that the element locks despite the fact that its area 

has remained constant, resulting in the prediction of too smaU a displacement and too large a 

stress. Hence the locking is a peculiarity of the Snite element discretisation, and speciEil 

techniques have been used to improve the behaviour of elements. Unless reduced integration 

techniques are used, the stresses calculated at the numerical integration points show large 

oscillations in the pressure stress values, because, in general, the element cannot respond 

accurately and still has smaU volume changes at all numerical points. 
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Modem aneilyticEil techniques used in treating incompressibility eSects in Gnite element codes are 

based on the .ffe/Zmger-7Ze%a57ier (Valid, 1981) and yarza^ionaZ frinctpka (Washizu, 

1974). Well known applications of these principles include assumed strain methods, such as the 

mixed method of Hermann (1965), the constant dilatational method of Nagtegaal et al. (1974), the 

related B-6ar mê AocZ of Hughes (1980) and Simo e( aZ. (1985), the Hu-Washizu methods of Simo 

and Taylor (1991), the mixed assumed strain methods used with incompatible modes by Simo 

and Rifai (1990) and selective-reduced integration methods (Hughes, 1980). 

Mixed methods usually have the stresses, strains, dilatation, or a combination of variables, as 

unknown. The earliest mixed method is the so-called Hermann formulation. A modified form of 

the frznczpZe is used to derive the stifEness equations. A pressure 

variable (energetically conjugate to the volume strain) is introduced in the form of a Lagrange 

multiplier. Hermann's approach has been used since the mid 1960s and 1970s in commercial finite 

element codes, and various in-house codes developed by leading solid rocket propellant 

manufacturers. The constant dilatation method of Nagtegaal et al. (1974) decouples the 

dilatational (volumetric) and distorsional (isochoric) deformations and interpolates them 

independently. Appropriate chosen functions will preclude mesh locking. The B-bar method of 

Hughes (1980) is a generalisation of this method for linearised kinematics. Selective-reduced 

integration under integrates the volumetric terms. However, all these methods can be shown to 

be equivalent under certain conditions (Malkus and Hughes, 1978). The separation of the 

volumetric and deviatoric deformations was Grst suggested in Flory (1961) and systematically 

exploited by Simo et al. (1985) among others. The uncoupling of the deviatoric and the 

dilatational response permits the formulation of the discrete problem in the variational form 

furnished by a three-field variational principle of the Hu- Washizu type. For alternative 

approaches see Glowinski and Le Tallec (1984). 
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VI.2 Implementation of the constitutive material model 

The implementation of the incompressible transversely isotropic hyperelastic material model 

described in section V.9 wag Grst done into the commercial FE code ABAQUS Standard 5.8 ( ® 

Hibbit, Karlsson &: Sorensen Inc., Pawtucket, RI, USA) using a customised internal subroutine 

(UMAT) programmed in Fortran 77. The Standard version of ABAQUS 5.8 is based on an 

implicit nonlinear solver (full Newton-Raphson method). The optional user subroutine UMAT 

allows the definition of customised material models by providing explicit definition of the stress 

and the tangent stiffness matrix. However, UMAT does not permit to control with enough 

flexibility the state variables during the solving of the nonlinear FE equations. This is 

particularly problematic when a well conditioned tangent matrix is needed. In fact, the only way 

to enforce the incompressibility constraint within UMAT, is t o use a penalty method. This 

method was not found to be sufficiently robust and too sensitive to the penalty parameter chosen 

to enforce the incompressibility constraint. When the penalty parameter is too high (in the order 

of 10^), some terms of the tangent matrix are too large compared to others (bulk modulus several 

order of magnitude bigger than shear moduli), and this matrix controls the convergence of the 

nonlinear algebraic equations. In the context of large deformation, an augmented Lagrangean 

method is preferable (Simo and Taylor, 1991). 

The model was tested with several types of 8-noded hexahedral elements. Finally, the first-order 

hybrid element (C3D8H) was the one that gave the best results in terms of convergence to a 

solution. In the formulation of this element, the pressure is treated as an independently 

interpolated basic solution variable, coupled to the displacement through the constitutive theory 

and the compatibility conditions. For further details concerning the formulation considered, 

please refer to "ABAQUS Theory Manual" (1997). The convergence of the model implemented 

was extremely difficult to achieve for very large deformations and, given its lack of robustness, it 

was decided to implement the constitutive material model into an explicit FE code which does 

not require the formation of a tangent stiffness matrix. The drawback of this, is that, when the 

material tends to be incompressible, in an explicit analysis, the stable time step tends to get 

closer to zero. 

The explicit FE code chosen was PAM-CRASH™ (PAM Systems International S.A., Rungis, 

France). The implicit codes (like ABAQUS Standard) and explicit codes (like PAM-CRASH) are 

named from the operator used for integration of the (nonlinear) FE equations in the time 

domain. 
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VI .3 Formulat ion of the elastodynamic initial b o u n d a r y value problem 

VI.3.1 Strong form of the equations 

Let B be a three-dimensional continuum body occupying % with boundary 593 at time t. The 

strong form of the initial boundary value problem consists of finding the displacement field: 

u: X [0,T] -> % such that the set of following relationships is satisfied: 

Eguahon o/TZiotzon: 

V.CT + b = jOii Vu on % x ]0,T[ [VI. 1] 

CoTweTfohoTi o/mosa: 

= /)J iy.2] 

2 

f reao ibe j diapZocemezit amcf (rac^zon on fAe 6oumiian/: 

CT = A'* : e or CT = A'' : e [VI.3] 

E = l ( V u + V'^u-HV^u.Vu) [VI.4] 

u = u on x ]0,T[ [VI.5] 

a.n = t on 9% x ]0,T[ [VI.6] 

fmtiak concfitioTW ('time = Oj: 

u(x, 0) = u" and u(x,0) = u°(x) Vx on % , or [VI.7] 

cr(x, 0) = cr° and u(x,0) = u°(x) Vx on 93 [VI.8] 

V is the divergence operator with respect to the current coordinates. 

o" is the Cauchy stress tensor. 

b represents the body forces (gravitational forces, electromagnetic forces, etc...). 

PQ and p are the initial and current material densities. J is the Jacobian of the deformation. 

u and t are the prescribed displacements tractions on and on , respectively. 

u",u°(x),CT° are, respectively, the initial displacement, velocity and stress fields. 

A'* is the spatial elasticity tensor. 

a is an objective rate of Cauchy stress. 
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Examples of objective rates of Cauchy stress are the Jaumann (Equation [VI.9]) or the Green-

Naghdi (Equation [VI.IO]) stress rates (Bonet and Wood, 1997): 

CT = d — (jJ.a + CT.w [VI. 9] 

CT = d + ct.R.R'^ - RR^.cr [VI.IO] 

where wis the spin tensor (Bonet and Wood, 1997), given by: 

w = ^(F.F-'-F-^.F^) [ V i n ] 

where R is the rotational part in the polar decomposition of the deformation gradient F. 

The use of an objective stress rate in the constitutive equation is justified by the requirement of 

objectivity (see section V.4.2) with respect to rigid body motion, i.e., a rigid body rotation or 

translation should not result in any material stress or strain rate. 

VI.3.2 Weak form of the equations and matrix form 

Complete derivation of the weak form of the initial elastodynamic boundary value problem and 

the finite element discretised equations are largely treated in literature (Bonet and Wood, 1997; 

Oden and Reddy, 1978; Reddy, 1984; Zienkiewicz and Taylor, 1989) and this aspect will not be 

developed in the present thesis. However, basic important results like the matrix form of the 

discretised equations, are presented here for illustrating the explicit central difference solving 

method. After substituting the approximations (Galerkin's method) for the various quantities 

developed in the weak form, integrating the analytical expressions of the shape functions and 

using the constitutive material equations, the following familiar form of the equations of motion 

(in absence of damping) is obtained aa: 

Mil + K(u)u = F(u) [VI.12] 

u(0) = Ug and u(0) = [VI. 13] 

where M is the assembled mass matrix, K the assembled stiffness matrix and F the assembled 

force vector on the nodes. The superscript " e " refers to the matrix at the element level. 

M = nM", K = nK", F = n F ' [VI M] 
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VI.4 The solution method for explicit time integration 

In explicit FE methods, the central difference method is among the most popular methods used. 

This method is named from the central difference operator used in the integration of the velocity 

and acceleration. The following developments will be presented in the context of rate-

independent materials and Lagrangean meshes. The time of the simulation t (0 < t < T) is 

subdivided into time intervals or time steps, At" (n= l to n^s, where n^s is the number of time 

steps). T is the time at the end of the simulation. Let u" be the matrix of nodal displacements at 

time step n. In general, the time step needs to be adjusted during the analysis. Let us define time 

increments n and n + i by the following relationships: 

A t 4 = - t", At" = t^+i _ t"-! and t"4 = l ( t - + t''+') [VI.15] 

The velocity is then expressed as: 

u 
At"""; 

- K + ' - u " ) or u''+' = u" + At"+2u 2 [VI.16] 

and the acceleration as: 

ii" = J-ru-'+i-u"-!) or = u 4 + At"ii" [VI.17] 
At" ^ 

The explicit solution process advances along the time axis, t, along which the velocities are 

discretised at half time intervals, and the displacements and accelerations are 

discretised at full time intervals t""\ t"+^ (Bathe, 1982). By combining Equations [VI.16] and 

[VI.17], the acceleration can be written in terms of displacement; 

_ _ At4(u"+Lu") _ At''4(u:'.u''-') 
u = 

AfAt^^At ' '^ 
[VI. 18] 

If equation [VI.12] is now considered at the time step n, and written in terms of internal f ""(u") 

and externeil forces the following expression is obtained: 

Mil" f" = f ) - r^u") [VI.19] 

subject to 

§.(11") = 0, i = 1 to n^ [VI.20] 
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where [VI.20] is a generahsed representation of the n̂  displacement boundary conditions and 

other constraints (Hnear and nonlinear algebraic functions of the nodal displacements) on the 

model. If the contraint involves integral or differential relationships, such as dependence on the 

velocities, it can be put in the above form by using difference equations or a numerical. 

approximation of the integral. The nodal displacements determine the strains, which in turn 

determine the stresses and hence the nodal internal forces. Substituting equation [VI. 19] into 

[VI. 17] leads to: 

+ [VI.21] 

which gives the updating expression for the velocity. At any time step n, the displacements are 

known. The inversion of the mass matrix M (time independent in the context of a Lagrangean 

mesh) is trivial if M is diagonal. Combining the second expresion of [VI.16] and equation [VI.21] 

allows the dermination of the displacement at the time step n+1, If M is diagonal (general 

case) the update of the nodal velocities and nodal displacements can be accomplished without 

solving ciny system of equations. This important characteristic constitutes a considerable 

advantage of explicit solution methods over implicit methods. However, the price to pay for the 

simplicity of the explicit method is the conditional requirement put on the size of the time step. 

In fact, if the time step exceeds a critical value At̂  , the solution may propagate unboundedly 

and will make the analysis diverge. At_., often called the " hme afep depends on the 

dimension of the elements and the mechanical properties assigned to these elements. For low 

order elements the critical time step for linear response is given by: 

At — min— [VI.22] 

where Ig is a characteristic length of element e and Cg is the sound wave speed within element e. 

Thus the critical time step decreases with mesh refinement and increasing stiffness of the 

material. For nonlinear analyses, the calculation of the wave speed is based on the values of the 

maximum tangent moduli. When a material is fully incompressible, the sound wave speed is 

infinite and the critical time step is theoretically equals to zero. This is the reason why full 

incompressibility (v = 0.5) is never enforced exactly. 

If the explicit computation is pursued to the point when steady-state conditions are reached, i.e. 

until: ii = li = 0 , the solution to a nonlinear static problem is obtained. This type of technique is 

frequently efficient and has been applied successfully in the context of finite differences under the 

name of dynamic relaxation (Zienkiewicz and Lhoner, 1985). 
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VI.5 Enforcement of the incompressibility constraint 

A penalty function g ( / ) is used to enforce the kinematic condition J = I3 =1. g is defined such 

that g{I.^) = 0 when I3 is equal to 1: 

' 1 g(7 ) = [VI.23] 

where 4̂ and B are scalar coefGcients to be determined. ^ provides equilibrium at zero strain and 

coefficient S is a penalty factor. If the material tends to be incompressible, the value of tends 

towards 1, and the penalty factor, B, tends towards infinity. Investigating equation [V.84] for a 

state of vanishing strains, reveals an explicit dependency of A on Q and Q as follows: 

. 4 - l c ^ + Ĉ  [VI.24] 

VI.5.1 Equivalent isotropic elastic constants 

For small strains the material can be considered isotropic linear elastic with equivalent Hooke's 

matrix coefGcients. Expanding equation [V.75] for and Aĵ ^̂  of zero strain leads to the 

equivalent Poisson's ratio; 

2 C , + 5 C , + 2 g 
z/ = fVI.25l 

5Cj +1IC, + 4 5 

The value of the equivalent Poisson's ratio tends towards 34 (incompressibility limit) as the value 

of the penalty factor, B, tends towards infinity. At zero strain, Equation [V.75] allows the 

determination of 

g _ (7X5z/-2) + C^(ll2/-5) 

2(1 - 2i/) 

The corresponding equivalent Young's modulus, E and bulk modulus, « at zero strain become: 

^ = 4(l + z/)(C^+(7j and E = forz/ = ^ [VI.27] 

K = —f ^ ^' (C + C ) and k = co for u = — [VI.28] 
3 U - 2 , J ^ ' 2 
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The corresponding equivalent Lamp's modulus, A + 2G , becomes at zero strain: 

/ l - , = A + 2 G = i M ( C , + C j and A " , = ex. tor f = i [VL29] 

and the equivalent shear modulus G at zero strain is: 

G = 2 ( C ^ + C j [VI.30] 

VI. 6 Numerical tests and analytical solutions 

Numerical tests were performed to ensure a proper finite element implementation of the 

incompressible transversely isotropic hyper elastic material model (described in section V.9) into 

PAM-CRASH™. An extension of the Mooney-Rivlin model was used under the form of the 

following strain energy function: 

^ (7̂  - 3) + C, (7, - 3) + C, ) [VI.31] 

This form has an exponential behaviour in the fibre direction, one of the characteristics seen in 

most soft tissues (Weiss et aL, 1996). The FE model was validated by comparing the results of 

one-element tests for uniaxial, strip biaxial, equibiaxial and shear tests to the analytical solutions 

obtained for homogeneous deformations. In each of these cases, the computations were performed 

with two types of 8-noded hexahedrEil element: AourgZaaa comfroZ and 

aeZeĉ we reduced formulations but as no difference was found in the results, a single 

graph is presented for each loading case. The same arbitrary matericil properties were used for 

the four analyses: Cj = 10 MPa, Q = 10 MPa, Q = 100 MPa and p = 1000 kg/m3. The finite 

element was a unit-edge cube aligned with the global coordinate system where the unit vector 

was coincident with the director vector of the direction z. The element was stretched to 75 % 

streiin for uniaxial and biaxial tests whereas it underwent shear loEiding to 50 % shear strain in 

the case of pure shear test. In all the tests the assumption of nearly incompressibility was made: 

i.e. I — 1. The Poisson's ratio chosen was v = 0.49999: "nearly incompressible". 
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VI.6.1 Uniaxial extension in the fibre direction 

The deformation gradient is: JP — 

1 

Va 

0 

0 

0 

1 

VA 
0 

[VI.32] 

VI.6.1.1 Cauchy stresses 

The Cauchy stresses versus the stretch in the fibre direction are plotted on Figure VI. 1. The 

analytical solutions are given by: 

= <7.. 0 

0"., = 2 A - + -
X) 

-c. + A'C 

[VI.33] 

[VI.34] 

— analytical, 

• finite element, 

lit 
0000 

1.0 1.2 1.4 1.6 1.8 

Stretch in the fibre direction 

Figure VI.1 - Uniaxial extension test in the fibre direction. Comparison 

between analytical and finite element solutions for stress in the fibre direction. 
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VI.6.2 Strip biaxial extension 

The deformation gradient is: 

1 
0 0 

A 
0 1 0 

0 0 A 

[VI.35] 

VI.6.2.1 Cauchy stresses 

The Cauchy stresses versus the stretch in the fibre direction are plotted on Figure VI.2. The 

analytical solutions are given by: 

o".,., = 0 rvi.361 

cr,. = 2 

cr^ = 2 A- + - + 1 

A' + — + 1 A' 

1 - -

a 

- a 

Â  + 
x\ 

+ A"C 

[V1.37] 

[VI.38] 

a 
PL, 

I 
o 

1 , 0 1.2 1.4 1.6 
Stretch in the fibre direction 

— analytical, CTw 

• finite element, 

B finite element, 

o o o o 

Figure VI.2 - Strip biaxial extension test in the fibre direction. 

Comparison between analytical and finite element solutions for stress 

in the fibre direction and in the the direction transverse to the fibre. 
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VI.6.3 Equibiaxial extension 

• 1 • 1 
0 0 

A' 
The deformation gradient is: F = 0 A 0 

0 0 A 

[VI.39] 

VI.6.3.1 Cauchy s tresses 

The Cauchy stresses versus the stretch in the fibre direction are plotted on Figure VI.3. The 

analytical solutions are given by: 

= 0 

% 
1 

2A^ + - r A'-4 1 2 A' 2 A'J 

[VI.40] 

[VI.41] 

2A' + - A' 
A' 

- c j y + 2^1 
A' 

+ A'a. fVI.42] 

C3 
Ph 

4 -

r 
o 

1 -

1,0 1.2 1.4 1.6 
Stretch in the fibre direction 

1.8 

— analytical, (T̂ , 0̂ ^ 

• finite element, CT^ 

Gnite element, 

t 

n n o o 

Figure VI.3- Equibiaxial extension test in the fibre direction. 

Comparison between analytical and finite element solutions for stress 

in the fibre direction and in the direction transverse to the fibre. 
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VI.6.4 Pure shear deformation y in the plane of isotropy 

The deformation gradient is: 

1 -y 0 

0 1 0 

0 0 1 

VI.6.4.1 Second Piola-Kirchhoff stresses 

The analytical solutions are calculated as below: 

[VI.431 

8 = 0 

= + 2)1 

S z , - 2 j [ C , + C X Y + l ) ] 

[VI.44] 

[VI.45] 

[VI.46] 

[VI.47] 

VI.6.4.2 Cauchy stresses 

The expressions of the Cauchy stresses are obtained from the second Piola-Kirchhoff stresses. 

+ 2'y 

<7 = S 
M/ 2/2/ 

[VE.48] 

[VI.49] 

fVI.501 

Finally, one obtains the following expressions for the Cauchy stresses (Figure VI.4): 

- 2 y 

= - 2 a 7 

- 2(C; 

[VI.51] 

[VI.52] 

[VI.53] 

It is worth outlining that, despite the fact that the material behaviour is nonlinear, the shear 

stress is a hnear function of the shear strain. 



0.025 

a 0.015 

0.005 

analytiCcil, cr̂ ĵ 

• finite element, o„ 

B finite element, 

O finite element, a.̂  

0000 

Shear strain 

Figure VI.4 - Pure shear test in the XY plane. Comparison 

between analytical and finite element solutions for nonzero stresses. 

VI. 7 Conc lud ing remarks 

In this chapter, the finite element implementation of an incompressible transversely isotropic 

hyperelastic constitutive law for soft connective tissues was presented. The material model was 

tested for a simple finite element model under four different loading conditions: uniaxial stretch 

in the direction of the fibres, strip biaxial extension, equibiaxial extension and pure shear. The 

excellent agreement between Snite element and aneilytical solutions for homogeneous states of 

deformation demonstrated the proper implementation of the finite element biological material 

model into the explicit code PAM-CRASH™ and the accurate enforcement of the constraint of 

incompressibility. This programming and numerical testing phase has provided a robust and 

efGcient numerical tool to study the biomechanics of soft tissues. 

Nota Bene 

The programming of the new material model into PAM-CRASH™ (in Fortran 77) has required, 

in addition to the development of a dedicated material subroutine, substantial modifications of 

other subroutines within the general code in order to accommodate speciSc state variables and 

especially those related to the definition of the fibre direction at the element level. 
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Egi^otion ^ec^ion 7 

Chapter VI discussed the FE implementation of an incompressible transversely isotropic 

hyperelastic constitutive law into an explicit FE code. An excellent match between results of the 

FE analyses and analytical solutions for homogeneous deformation modes demonstrated the 

correct FE implementation of the material model. Although an essential prerequisite, this aspect 

is not sufficient to have confidence in the validity of the results obtained from FE analyses 

performed under other conditions. Other parameters may have a significant influence on the 

results: this includes the choice of element formulation, the density of the mesh and the type of 

boundary conditions. In this chapter, a series of Snite element aneilyses wag performed in order to 

test the accuracy of implemented material model in terms of the choice of the hourglass mode 

stabilisation methods for 8-noded hexahedral solid elements (reduced integration scheme with 

stiffness or viscosity hourglass control), validity of the quasi-static process hypothesis which is 

made when a physical process is simulated for a time scale much lower than its natural time 

scale, mesh density and boundary conditions. Computational time is an important aspect to 

consider in any FE computation. Indeed, in explicit FE analyses, there is conditional stability put 

on the size of the time step which is itself directly related to the characteristic dimension of the 

smallest element of the mesh. Refining the mesh and keeping the same number of elements has 

the effect of reducing element sizes and so the time step. This aspect is also investigated in this 

chapter. As is relevant for the analysis of biological soft tissues, influence of an initial stress field 

on stress and strain patterns is also studied for various loading conditions. Prior to this, a 

description of the methodology used for the FE implementation of the pre-stressing capability is 

presented. 
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VII. 1 Object ives and structure of Chapter VII 

The main objective of this chapter is to examine the major sources of error that can arise in the 

explicit FE computations involving the incompressible transversely isotropic FE material model. 

The choice of the preferred hourglass stabilisation method is made and discussed in section VII.2. 

Section VII.3 briefly discusses the conditions necessary to obtain a quasi-static solution of a 

mechanical problem simulated dynamically through an explicit F E code and presents numerical 

results regarding the convergence of a dynamic solution towards a quasi-static one. In section 

VII.4, influence of mesh density on the calculated displa^cements, stresses Eind resultant forces is 

evaluated for four different loading conditions. As residual stresses are an important issue in soft 

tissue modelling, influence of this factor on displacements, stresses and resultant forces is 

determined for three sets of boundary conditions (section VII.5). Finally, conclusions and 

recommendations to this chapter are drawn in section VII.6. 

VII.2 Uni form reduced integrat ion (URI) and hourglass m o d e stabilisation 

The incompressible transversely isotropic hyperelastic material model discussed in Chapters V 

and VI, has been implemented into the explicit finite element code PAM-CRASH™ for 8-noded 

hexahedral solid elements, often called "brick elements". For this element, two integration 

formulations are available: um/orm recfuced and generoZiaecf retfucecf 

Wegratzon. 

In the URI formulation, the various integral quantities of the finite element equations are 

integrated using a single Gauss point within the element. This is advantageous as a single 

integration point reduces considerably the computational cost when compared to a selective 

reduced integration scheme (one-point integration for volumetric stresses and two-point 

quadrature in each direction for the deviatoric stresses) because it involves a single evaluation of 

the equation of state instead of eight (for three-dimensional problems). In incompressible finite 

element analyses, the use of uniform reduced integrated solid elements prevents, in the general 

case, the appearance of the so-called "locking" resulting for overconstrained conditions (see 

Chapter VI). However, the drawback of the URI is that it can lead to spurious deformation 

modes which can be stressless and then produce zero energy modes. If uncontrolled, these 

hourglass modes can propagate unboundedly within the solution process, leading to failure of 

convergence or pollution of the displacement Seld. 
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Flanagan and Belytschko (Belytschko, 1983; Flanagan and Belytschko, 1981) proposed two 

different methods to control hourglass modes. The first one is based on a viscous control scheme 

and the other one is based on a stiffness control scheme. 

The hourglass effect is controlled by adding artificial stiffness (stiffness method) or damping 

(viscous method) along the hourglass modes which, in return, produce anti-hourglass forces that 

resist hourglass modes. The implementation of either of the two methods leads to orthogonality 

of the hourglass modes to the linear velocity field for arbitrary solid element shapes. 

Characteristics of the two methods are compared in Table VII. 1. 

Several tests were performed in order to assess the two methods of hourglass control. As outlined 

by Flanagan and Belystchko (Belytschko, 1983; Flanagan and Belytschko, 1981), the stiffness 

method leads to better results in terms of mesh stability and accuracy of the solution, provided 

that a small stiffness parameter is used (typically K = 0,01). T h e sensitivity of the stiffness 

parameter K on the mesh stability was also evaluated and small values of K were found sufficient 

to preserve the solution Eiccuracy whilst achieving mesh stability. For the sake of brevity and to 

concentrate on the essential aspects of the present research work, these sensitivity analyses are 

not reported in the present thesis. 

VISCOUS Control 

Advantages 
• Heavy damping affects slightly low frequency modes. 

• No history variables need to be stored (i.e.: less memory per element). 

• Stability is not guaranteed by damping a stress-free global mode. 

Disadvantages 
Anti-hourglass viscosity slows down distortion but does not stabilize the solution. 

• Mesh distortion is permanent in the absence of restoring forces. 

" The explicit time step staility is lowered substantially by damping. 

STIFFNESS Control 

• Mesh distortion is controlled by restoring forces. Stability of the mesh is 

Advantages controlled. 

• The explicit stable time step is not affected if K (stiffness) remains lower than 1. 

Disadvantages 
• Large ratio K affects the solution ("element locking"). 

• History variables are required (i.e.: more memory per element). 

Table VII. 1 - Comparison of the principal features of the 

viscosity and stifhess based hourglass control methods. 
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Theoretically, for a hyperelastic material, the work done during a closed path must be zero. 

However, it is not the case when using URI elements with hourglass control because this 

numerical procedure introduces residual forces at each time step that can accumulate 

significantly in the most severe cases of explicit analyses (excessive number of time steps). This is 

the reason why it is important to ensure that the hourglass energy (work produced by 

antihourglass mode forces) remains smaU when compared to the internal energy of the system. 

VII. 3 Quasi-static processes s imulated by d y n a m i c s analyses. Practical 

considerations 

The explicit base FE method was originally designed to simulate high-speed impact events where 

highly nonlinear transient phenomena occur (crash analysis, high-speed impact on aerospace 

structures to name a few). The method solves equations for a state of dynamic equilibrium and 

out-of-balance forces are propagated as stress waves between neighbouring elements. In general, 

time steps required for a stable analysis are quite small (order of the jos). Using explicit dynamic 

analyses to model quasi-static or low frequency events requires special considerations. Modelling 

a quasi-static process in its whole temporal period would require generally millions of cycles and 

so, is computationally expensive. Artificially increasing the speed of the process for an explicit 

simulation is necessary in order to obtain a computationally viable solution. As the speed of the 

process is increased, a state of static equilibrium evolves into a state of dynamic equilibrium and 

inertia forces become more dominant. The objective is therefore to obtain a solution in the 

shortest time possible with inertial forces remaining negligible. To obtain a quasi-static solution it 

is important to apply loads as gradually as possible in order to avoid undesirable effects, such as 

propagation of stress waves. The energy balance of the modelled system gives information about 

the accuracy of the quasi-static hypothesis. As a general rule, the kinetic energy of the body 

considered should not exceed a small fraction of its internal energy throughout the majority of 

the quasi-static event, typically in the order of 5 - 10 %. Moreover, in a quasi-static non-

dissipative simulation involving a hyperelastic material, the work applied by the external forces 

to deform the hyperelastic body equals its internal energy. Special care should be taken if the 

materia] is rate-sensitive (not the case of the incompressible transversely isotropic hypereleastic 

material described in Chapters V-VI). In fact, as the speed of the event simulated increases, the 

material strain rates are artiScially higher by the same factor ag that applied to increase the 

loading rate. This can lead to erroneous solutions. 
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In order to verify the quasi-static hypothesis that was made for the explicit FE computations, a 

series of seven FE analyses was devised. All the characteristics of the computations (model, 

mesh, mechanical properties, boundary conditions are defined later in section VII.4.2) were 

identical with the exception of the physical time scale of the analysis. The physical time scales 

chosen were 1 s, 500 ms, 100 ms, 50 ms, 10 ms, 5 ms and 1 ms. The loading case consisted of a 

15 % extension in the fibre direction. The first analysis (1 s) was assumed to have a quasi-static 

mechanical response and chosen as a reference to compare the other ones. In addition to a global 

inspection concerning the deformed shape and the stress distribution in order to perform a 

qualitative check of the solutions, quantitative data were output. 

Figure VII.l presents the relative errors in the three calculated maximum principal stresses when 

the solutions are compared to those of the 1 s analysis. The mesh chosen was that of model 5 

defined in Table VII.3. Figure VII.l shows clearly that a physical time of 10 ms (adopted for the 

FE analyses described in the next sections) for the explicit FE analyses provides results of a 

quasi-static solution with an accuracy greater than 99.5 %. It is worthy to note that a 5ms 

analysis still provides acceptable results with an error lower than 3 %. 

3.5 

3.0 

2.5 

& 2.0 

§ 
k 1.5 

1.0 

0,5 

0.0 

Figure VII.l - The bar chart reprsents the 

relative error made in the FE calculations of the 

three maximum principal stresses by varying the 

time of the analysis, The reference values for 

stresses correspond to those obtained for a total 

analysis time of 1000 ms when the model 

undergoes 15 % extension. For the 1 ms analysis 

the relative errors for the three maximum 

principal stresses were respectively 23.75, 23.41 

and 31.29 %. 

500 ms 100 ms 50 ms 10 ms 5 ms 
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VII .4 Influence of the mesh density 

VII.4.1 Effects of mesh refinement in explicit FE analyses 

For a three-dimensional problem, reGning the mesh by a fâ ctor of two in each direction, increases 

the run time by a factor of 16 (explicit analysis). In fact, the refinement generates eight times the 

number of elements whilst the stable time step is approximately halved (decreasing the element 

dimension reduces the stable time step). It is worthwhile to note that in the case of an implicit 

analysis, the implicit run time is increased by a factor of 128 which corresponds to the degrees of 

freedom ratio (2 )̂ times the square of the wavefront ratio [(2^)^. Exphcit FE analyses have 

signiGcant economic advantages as the model size grows. ReEning the mesh whilst keeping the 

same number of elements typically occurs when it is needed to analyse localised mechanical 

responses (stress states around a hole or a notch, contact...). In this case, the cost of an implicit 

analysis is exactly the same as prior to re&nement whereas the run time of an exphcit aneilysis is 

increased due to a decrease in time step size. 

VII.4.2 Geometric model and finite element meshes 

A series of finite element tests was designed in order to assess the convergence of a particular 

solid model when meshed with different sized elements. The solid model was assumed to 

represent an idealised geometry which could correspond to a long and flat human ligament (eg a 

collateral ligament) (Figure VII.2). The dimension of the model and its mechanical properties are 

given in Table VII.2. The constitutive law chosen for the material model was derived from a 

strain energy function ^ of the following form (Equation |y.82]): 

= Cj (/j — 3j + C,, — 3) + /(A) [VII.1] 

a / . af c", - 1 ) 
such that: i r r = 0 if A < 1 ; — = — if A > 1 [VII.2] 

oA oA A 

Dimensions length: 40 mm width: 8 mm depth: 2 mm 

Mechanical 

properties 
Cj = 1 MPa Ci — 1 MPa C, = 100 M P a density: 900 kg/m'' 

Table VII.2 - Dimensions and mechanical properties of the finite element model. 
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Chapter VII - Sensitivity analyses of the incompressible t. isotropic hyperelastic FE material model 

The mechanical properties were chosen to represent the typical stiffer mechanical response of soft 

connective tissues when loaded along their fibre directions. As Q scales the stress for the 

nonlinear response of the fibres and Q and Cj characterise t h e stiffness of the matrix, an 

arbitrary factor of 100 (C3/CJ,, a = 1, 2) was thought to be appropriate. Please note that the 

material coefficients are arbitrary and that , in order to restrict possible numerical singularities, 

the linear response of the fibre (Equation V,83.c) after a certain value of stretch (X*) has been 

removed. Eight mesh densities were chosen and created by varying the size of the elements. 

Characteristics of the various meshes are listed in Table VII.3. 

• Y 

Figure VII.2 - Geometrical 

model used for the F E analyses. 

The principal directions of the 

model are aligned with the 

orthonormal axes (X, Y, Z) of 

the reference coordinate frame. 

The unit vector defining the fibre 

orientation is the one defining 

the third Cartesian direction (Z). 

Dimensions are given in mm. 

MESH (1 X w X d) [mm] NE NN 

model 1 1 0 x 8 x 2 4 20 

model 2 5 x 4 x 1 32 81 

model 3 5 x 2 x 1 128 225 

model 4 2.5 x 2 X 1 256 425 

model 5 2,5 X 1 X 1 512 765 

model 6 1.25 X 1 X 1 928 1350 

model 7 1.25 X 0.5 X 1 1856 2550 

model 8 1.053 X 0.5 X 1 2368 3230 

Table VII.3 - Characteristics of the eight meshes used in the 

mesh density analyses. [1, w, d stand respectively for the 

length, the width and the depth of the element while NE and 

NN represent respectively the number of elements and the 

number of nodes]. 
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VII.4.3 Loading conditions 

For each of the eight FE models built, four loading conditions were considered. Before going 

further, it is convenient to introduce additional notations to make easier the characterisation of 

the boundary conditions. Five faces have been defined on the model by specifying a fixed 

coordinate (X, Y or Z) as shown in Figure VII.2. All the nodes belonging to a face will be 

submitted to a peirticular set of boundary conditions. Here are the deSnitions of the faces: 

Face T (Z = 40) Face B (Z = 0) Face L (Y = 0) Face R (Y = 8) Face F (X = 0) 

Stretching, compression in the fibre directions, shearing in the plane of isotropy of the material 

are conditions that are likely to be found in the natural physiological conditions a knee ligament 

can be subjected to. An additional equibiaxial test is performed in order to assess the response of 

the material in its plane of isotropy and along its preferred mechanical direction (fibre direction). 

In the subsequent paragraphs, the expressions " face i " and " nodes belonging to face i " will be 

used synonymously. For each of the analyses corresponding to the four loading cases the time of 

the analysis was fixed at t = 10 ms (see section VII.3). This duration was used because it 

generates negligible inertia! effects in the model and offers a good compromise in terms of 

computational time and accuracy of the quasi-static solution. This was also verified by checking 

ratio of kinetic energy over internal energy which was found to be extremely low (lower than 1 

VII.4.3.1 Extension in the fibre directions (Case 1) 

Face B is restrained in the three directions whilst face T is restrained in the X and Y directions 

and undergoes a displacement corresponding to a stretch of 15 % along the Z direction. The 

nodes in both faces were restrained in the X and Y directions because it corresponds to the 

physical case of a ligament inserted into bone, where no significant deformation is allowed at the 

insertion site. 
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VII.4.3.2 Compression in the fibre directions (Case 2) 

Face B is restrained in the three directions whilst face T is restrained in the X and Y directions 

and undergoes a displacement corresponding to a compression of 15 % along the Z direction. This 

condition is likely to occur when the two insertions sites of a ligament get closer in, for example, 

a flexion of the knee. As a simple analogy one can consider a piece of string held tight at its two 

extremities. When the two extremities are moved towards each other, buckling of the piece of 

string will be produced. 

YII.4.3.3 Pure shear in the plane of isotropy of the material (Case 3) 

Face L is restrained in the three directions whilst face R is restrained in the Y direction. Faces B 

and T are not allowed to displace in the Z direction. Pure shear is produced when face R 

undergoes a positive displacement of 4 mm in the X direction. Shearing forces within a ligament 

can be produced when the insertion areas of the ligament undergo a relative rotational motion or 

when a ligament warps aronnd a bony structure and slides over it. 

VII.4.3.4 Equibiaxial extension in the fibre and Y directions (Case 4) 

Face L is restrained in the Y directions whilst face B is restrained in the Z direction and face F is 

fixed in the X direction. Face T and R undergo a displacement corresponding, respectively, to a 

stretch of 15 % along the Z direction and Y directions. A pure equibiaxial extension of a 

ligamentous structure is not very likely to occur in normal conditions but could be produced in 

severe Injury cases (particularly motor vehicle accidents). 
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VIL4.4 Finite element analyses and results 

Finite element analyses were performed on a PC built around a Pentium® III (600 MHz) 

processor and 512 Megabytes of RAM. A series of tests waa performed for the eight meshes by 

using URI solid elements with stiffness hourglass control (K = 0.01). As it is often the case in FE 

analyses, a large amount of data was produced from the computations and it is the task of the 

analyst to choose the most relevant for the problems considered. Resultant forces within 

ligaments are very important when considering clinical aspects. A surgeon generally needs to 

apply a specific tension when performing ligament reconstruction. Moreover, and more 

importantly, the knee joint is essentially a force-driven mechanical system where the motions of 

bony structures are primarily constrained by the ligamentous tissues. The knowledge of the forces 

present within the knee hgaments is essential for understanding the genereil kinematics of joints. 

Majdmum stresses give an idea concerning the tolerance of a ligament to speciGc loading 

conditions. As the FE analyses were performed with using URI solid elements with hourglass 

control, hourglass energy is an Important parameter to assess. However, given that this quantity 

was negligible in all cases it was decided not to present it in the results. Duration of explicit 

analyses is conditioned by the biggest stable time step, which is directly linked to the size of the 

smallest element of the mesh. The stable time step is therefore affected by mesh refinement and 

its variation during an analysis is important to consider. 

VII.4.4.1 Time related aspects of the FE analysis 

These basic aspects of the FE analyses, namely the range of variation of the stable time step, the 

number of time iterations and the total duration of the computation are given in Appendix C. 

These quantities are obviously of particular importance because they dictate the applicability of 

an explicit FE model with regards to the computational cost. Associated relevant ratios between 

these quantities also give an immediate overview of the characteristics of the FE analyses. As 

mentioned earlier in section VII.2, for all the FE analyses the hourglass energy was monitored in 

order to ensure that its proportion with respect to the total energy was sufficiently low (in the 

order of 0.5 %). Otherwise, an important error (of the same magnitude as the ratio discussed 

above) affects directly the results. The ratios of the CPU time used for the analysis of Model 2 to 

Model 8 as compared to Model 1 were comparable in the four different loading conditions. The 

variations of the total time of the analyses are easily explained by the fluctuations of the stable 

time step along the computations, themselves dictated by the deformations of the elements of the 

mesh. 
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VII.4 .4 .2 Resu l t s of interest 

For each of the loading conditions and meshes tested, it was decided to record the maximum 

values of the components of the stress tensor at equilibrium. The locations of these extrema were 

appropriately checked to insure reliable comparisons between t h e different mesh densities. A 

result of interest is also the amount of contraction appearing at t h e middle section of the model 

(Z = 20) when it is stretched at its both ends. It is worth emphasising that the contraction in the 

X and Y planes is linked to the extension in the Z direction by the incompressibility constraint 

(the mutual product of the principal stretches, X 2 X 3, is equal to one). Reaction forces were 

assessed for each case at the nodes where displacements are constrained in one direction (X, Y or 

Z). For case 1 and 2 , the reaction force is evaluated on face B (Z = 0) and face L for case 3. For 

equibiaxial extension conditions, two reaction forces were considered: the one on face B generated 

by stretch along Z and the other one on face L, produced by extension in the Y direction. 

4 
mesh 

Figure VII.3 - Percentage error 

variation for the maximum deflection 

obtained at the central section (Z = 20) 

of the model in the X and Y directions 

in CASE 1 (15 % extension along the 

fibre direction). For mesh 8, maximum 

deflection along X = 0.17 mm, along Y 

= 0.27mm. 

- (leQcctiou along X 

- (loQection along Y 

4 
mesh 

Figure VII.4 - Percentage error for the 

maximum deflection obtained at the 

central section (Z = 20) of the model 

in the X and Y directions in CASE 2 

(15 % compression along the fibre 

direction). For mesh 8, maximum 

deflection along X = 8.22 mm, along Y 

= 0.25mm. 



Chapter VII - Sensitivity analyses of the incompressible t. isotropic hyperelastic FE material model 

35 -
M mesh 1 

30 -
n mesh 2 

25 -
n mesh 3 

E 20 -
D mesh 4 y 

15 -
B mesh 5 

10 -
D mesh 6 

5 j 

CH mesh 7 1 
0 -L 
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Figure VII.5 - Extension test in the fibre direction (15%). Error variations 

for maximum values of , the pressure P and the reaction force R,^ to 

the face B (Z = 0), according to the mesh. For mesh 8 : 

( 7 ^ = 36.06MPa , = -9 .94MPa and = 548.59N . 
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• mesh 4 
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Figure VII.6 - Compression test in the fibre direction (15%). Error 

variations for maximum values of (7 , the pressure P and the reaction 

force the face B (Z = 0), according to the mesh. For mesh 8 : 

( 7 ^ = 6.59MPa , = 2.97MPa and = 4.03N . NB: In 

comparison with tensile tests, the values are significantly lower. 
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Figure VII.7 - Shear test in the XY plane (50%). Error variations for 

maximum values of , the pressure P and the reaction force to the 

face B (Z = 0), according to the mesh. For mesh 8 : = 3.10 MP a , 

= 2.30MPa and = 120.94N. 
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Figure VII.8 - Equibiaxial extension test in the fibre and Y direction 

(15%). Error variations for maximum values of (7^ , <7 , the pressure 

P and the reaction forces and to the face B (Z = 0), according to 

the mesh. For mesh : cr™™ = 40.72MPa . = 3.49 MPa 

^max ^ = 566.03N and = 242.81N . 
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VII.4.5 Analysis of results 

VII.4.5.1 Case 1 

When applying a 15 % extension in the fibre direction to the model, convergence of the mesh was 

quickly obtained for the deflection along the Y axis but the rate of convergence is smaller for the 

deflection along X (Figure VII.3). This can be easily explained by the fact that the first mesh 

density possesses only one element in the X direction and two elements thereafter. However, 

error between mesh 7 and mesh 8 is only 3 % when considering t h e deflection along the Y axis 

(Figure VII.3). For the eight mesh densities comparison was made for maximum uniaxial 

stresses (7^, maximum pressures f and the reEiction force ^^^at face B. Convergence was 

quickly obtained for maximum values of stress in the fibre direction and resultant force (error 

lower than 1 % from mesh 1) whereas for the error started a t around 32 % from mesh 1 

and decreased to 0.16 % for mesh 7. One can explained this result by the fact that the 

constraints put on the nodes of faces B and T produce artificially higher stress at these locations 

and that a reasonable number of elements (in the XY plane) must be used to capture the high 

stress gradients. This is directly reflected in the maximum value of pressure by the way of the 

two principal stresses in the XY plane. Maximum stresses are located at the middle section of the 

model (Z = 20). 

Vn.4.5.2 Case 2 

Compression of the model along the fibre direction produced buckling as soon as compression has 

reached a certain magnitude. This magnitude varies according to the mesh density and 

appearance of buckling is likely to occur earlier for the finest mesh densities. For mesh 2 and 8, 

the critical magnitudes of compression are respectively 6.3 % a n d 3 % of compressive strain. 

Obviously a large error is produced for the deflection along the Y axis for the first two meshes (1 

and 2) because of the very large displacement of the structure compared to the size of element 

(Figure VII.4). From mesh 3 to 7, similar rates of convergence are observed for deflections along 

both directions X and Y (Figure VII.4) as the buckling process is ra ther uniform. The minimal 

error reaches 3.13 % for the deflection along the X axis and disappears (0 %) for the deflection 

along the Y axis. Errors for the maximum stresses (7^ , pressure P and resultant force 

begins quite high from mesh 1 (respectively, 137.43 %, 45 % and 1093.23 %) and decrease 

monotonically (at the exception of f for mesh 2) till 22.29 %, 13.23 % and 3.63 % respectively. 

These significant errors can be accounted for the small magni tude of these three quantities 

considered, particularly with respect to the tensile load case. 
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Due to the characteristics of the material law, as soon as compression is developed in the fibre 

direction the mechanical response from the material is provided only by the matrix where small 

compressive stresses are generated. Buckling of the modelled structure is a highly nonlinear 

phenomenon and the mathematical properties of the equations describing the behaviour of the 

structure can lead to bifurcations of the solutions. It is therefore important to ensure that the 

mesh is dense enough in the directions of the fibres when compression is likely to occur along 

them. 

VII.4.5.3 Case 3 

A very good rate of convergence is obtained for the maximum pressure and resultant forces (error 

lower than 1% for mesh 7) whereas the convergence for the maximum shear strain is not 

perfectly monotonic. This is probably due to the small number of elements along the depth that 

can easily produce instabilities which in turn affect the possible non unique solution. 

Vn.4.5.4 Case4 

Equibiaxial extension in the fibre and Y directions was performed respecting loading conditions 

leading to a state of homogeneous deformation. For all the seven meshes, errors for the maximum 

uniajdal stresses , pressure f and the resultant force .R at face B, were lower than 1 % (). 

To achieve the same level of accuracy for the resultant force at face L, a mesh density 

corresponding at least to mesh 5 was necessary. This shows clearly that the absence of highly 

constrained boundary conditions allows the achievement of a very high rate of convergence with 

an excellent accuracy. This is also confirmed by noting that the maximum and minimal stresses 

are identical (error lower than 0.8 %). 
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VII.4.6 Concluding remarks to section VII.4 

In light of these results for the four cases, it appears that highly constrained boundary conditions 

at the extremities of the model affect significantly the results by introducing numericEil artefacts. 

This is obvious since the maximum stress occur at these particular locations and, in vertu of 

what led to the formulation of the well-known frznctpk (Ogden, 1984), edges 

effects pollute the solution of the boundary value problem expected for a state of homogeneous 

deformation. The characteristics of the stress field must be considered at a reasonable distance 

from the edges. However, it was shown that a good convergence of results could be achieved, in 

various types of loading conditions, by selecting a proper element density. It is essential to have a 

sufficient number of elements in the regions where the maximum strain gradients are likely to be 

found in order to capture accurately stress and strain variations. In a structure having 

approximately the same aspect ratio as the FE model tested (rectangular long and flat shape), it 

is very important to insure that enough elements are disposed across the thickness (referred as d: 

depth, in Table VII.2), especially for compressive loading along the fibre direction. This is obvious 

when one considers that when buckling occurs (accompanied by small flexural stresses within the 

matrix of the fibre-reinforced composite), one face of the structure is under tension whereas the 

opposite face is under a compressive state. A reasonable number of elements is required along the 

major characteristic length of the model (referred as 1: length, in Table VII.2) for the deformation 

modes that solicit the structure in directions not parallel to the longitudinal principal direction of 

the model (Z direction). Moreover, the constraint of incompressibility puts high constraints on 

the nodes of the model that are not allowed to move. In fact, the elements formed by these nodes 

must simultaneously maintain a constant volume while deforming and while maintaining one of 

their faces as rigid. Increasing the number of elements at the extremity faces of the structure has 

the effect to diminish the constraints on each nodes belonging to these rigid faces and by doing 

so, reducing the local stress values. 
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VII. 5 Inf luence of an initial stress field 

An important issue in ligament modelling is the fact that these structures are naturally in a state 

of residual stress, even at rest. This can be simply demonstrated by cutting a ligament belonging, 

for example, to the knee joint. The shape of the ligament after sectioning demonstrates a 

reduction in the length, establishing the existence of a pre-stretched state. In a three-dimensional 

finite element analysis of the anterior cruciate ligament, recently performed by Limbert and 

Taylor (2001a) - Appendix D, it was demonstrated the necessity to include pre-stress in order to 

obtain realistic results which agree with experimental observations (Roberts et al., 1994; Wascher 

et al., 1993). In a FE context, application of an initial stretch to a mesh corresponding to a 

ligament in its already pre-stretched state is a challenging task. In fact, this amounts to 

generating stretch, and therefore stress without displacing the nodes of the ligament that is 

already in its initial pre-stressed configuration. At the insertion sites where the meshes 

corresponding respectively to bone and ligaments connect, the nodes representing the insertion 

surfaces of the ligament are rigidly Gxed to the mesh of the bony structures. 

A simple way to implement the capacity to apply initial stretch to a FE model consists in 

applying a multiplicative decomposition of the deformation gradient based on three different 

states (Weiss o7., 1995). It is assumed the existence of a conSguration, at which the 

ligament is stress free, a state, % at which the ligament is pre stressed but in the reference 

configuration (point of departure of the FE analysis) and the current state, or deformed state, 

X,, • The total deformation gradient, , from the stress-free to the current configuration is 

expressed as follows: 

F. = F,F., [Vn,31 

where and F̂ ^ , are respectively the deformation gradients f rom the initial configuration to 

the current configuration and from the stress free configuration to the initial configuration. 

By assuming a special form of F̂ ^ , it is possible to calculate the to ta l deformation at any time of 

the FE analysis. It is noteworthy to emphasise that F̂ ^ is defined as an input material parameter 

and is constant throughout the whole computation. 

If we assume that an incompressible ligament has a initial pre-stretch X; in the direction Z (its 

fibre direction) and that the two other principal directions of the ligament lie in a plane 

perpendicular to the direction Z, then the deformation gradient, F̂ ^ , in the material (or local) 

reference frame, takes the following form: 
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F.o = 

/A. 

/A. 
0 

A, 

[VII.4] 

If R represents the rotation matrix from the local coordinate frame to the global coordinate 

frame, is calculated as: 

[VII.5] 

Based on these considerations, the capacity to apply initial stretch, and by consequence, initial 

stress, was implemented into PAM-CRASH™. 

A series of FE tests was designed in order to study the influence of an initial stress field on the 

deformation patterns of a geometrically idealised ligament (same model as used in section VII.4), 

the stress distributions and the reaction forces present in the ligament. To assess the influence of 

the initial stress field present in a ligament-like model, three different loading conditions cases 

were considered: 15 % extension and 15 % compression in the fibre direction and an additional 

case which encompasses a combination of compression, shear and extension. Within each of these 

three cases, ten FE analyses were run with a different value of initial stretch Xi ranging from 0 

till 1.10, in increments of 1% of stretch. The same geometric model as described in section VII.4 

was used but with a different FE mesh. The mesh was constituted of 1846 nodes and 1280 

elements (Figure VII. 9). The initial stretch was assumed to be uniform within the ligament and 

within each element of the mesh. 

Figure VII.9 - Finite element 

mesh used to study the influence 

of the initial stress field on the 

mechanical behaviour of a 

ligament-like solid body. The 

two axis represented define the 

plane of mechanical isotropy of 

the material. The fibre direction 

is perpendicular to it. 
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Mechanical properties of the FE model were derived from literature (Pioletti et al, 1998a). In his 

study of the human ACL, Pioletti et al. (1998a), identified experimental uniaxial testing data 

with an isotropic hyperelastic strain potential (Veronda and Westmann, 1970) (see paragraphs 

IV.2.2 and IV.4.2). In the present study, the uniaxial tensile values were identified with the 

nominal stresses in the fibre direction corresponding to a transversely isotropic hyperelastic 

material. This was steadily performed using a nonlinear regression computation. For the 

anisotropic hyperelastic material, the strain energy function ^ was defined by Equations [VII.1] 

and [VII.2]. The following mechanical properties were used: Q = 1.698 MPa, Q = 0, C3 = 0.299 

MPa, C4 — 1, Cg = 0 MPa, X* = 2, density = 900 kg/m3. An analysis time of 10 ms was found 

to provide an excellent compromise between computational cost and quasi-static hypotheses (see 

section VII.3). 

As the initial stretch increases and the later buckling of the model is likely to appear during the 

course of the compression in the fibre direction. This shows that initial stress affects significantly 

the pattern of deformation for the incompressible transversely isotropic hyperelastic model 

considered. 

Figure VII. 10 shows the fringe plotting of the mean volumetric deformation developed in the 

model during a compression of the structure along its axis of anisotropy. Maximum deformations 

occur in the regions were the buckling is initiated and this is clearly visible on the concave parts 

of the structure. Convex parts are essentially loaded in tension. 

HI 
Figure VII. 10 - Deformed shape 

0.004679 

0.009135 

0.0136 

0.018 

of the ligament model when no 
0.027 • — 

..... initial stretch is taken into 
0.0359 _ _ _ _ _ 

O.M03 ^ 0 0 ^ account. The fringe plot 

corresponds to the mean 

volumetric strain contours at the 

end of the FE analysis. 
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VII.5.1 Analysis of results 

To assess the influence of an initial stress over the FE model considered, several quantities were 

defined (Equations [VII.6]). As mentioned earlier, maximum principal stresses and resultant 

forces within ligaments are essential in the understanding of the mechanics of the knee joint and 

its physiological loading conditions. 

^max (j"'™ pmax ^ 

(Jj, a, , (T.J and P are the principal stresses and the pressure respectively. R is the resultant 

force in the structure at the end of the analysis. Quantities covered with a bar symbol represent 

values obtained (at the end of the analysis) when no initial stretch is applied to the FE model (Xj 

= 1.00). 

The deformation of the structure is affected by the pre-stretch and hence it was decided to define 

the following parameter % that relate deflections of the structure to its original characteristics 

dimension (length): 

% = ioorL^L__ 

The value 40 corresponds to the length (in mm) of the solid model whilst |Au |̂"'"'"is the 

maximum absolute deflection of the mesh along the X axis. The volumetric strain is a 

combination of the principal strains and therefore provides a global mean to assess the strains in 

the model. The parameter 6 , defined in Equation [VII.8], is an indicator of the effects of an 

initial stretch on the volumetric strain in the deformed configuration. 

S = _ , where 6 ^ represents the maximal volumetric strain [VII.8] 
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VII.5.1.1 Extension in the fibre direction 

As expected, increasing the value of the initial stretch in the case of a 15 % extension in the fibre 

direction increases the principal stress cr (and so the pressure) according to the nonlinear elastic 

constitutive law chosen for the mechanical contribution of the fibre (Figure VII.ll) . There is a 

slight shift between the ratio of the maximum principal stresses cr̂  (parameter ) and the ratio 

of the resultant forces (parameter a ) that, theoretically, should be identical. This could be 

explained by the errors made in the numerical assessment of nodal forces when compared to 

stress calculated by Gauss integration). The two other ratios a , and oi , corresponding 

respectively to the principal stresses in the plane of material isotropy <7̂  and increase mostly 

linearly (Figure VII.11). In a state of homogeneous deformations (uniaxial extension along the 

fibre direction), these two principal stresses should be zero. In the present case they are not 

because of the boundary conditions that constrain the extreme faces of the structure (Z = 0 and 

Z = 40). The consequence of these observations mean that an initial tensile pre-stress in a 

hgament loaded in tension is likely to affect its stress state mainly along the directions of it 

coUagen Gbres as compared to the stress state in the plane of material isotropy where the initial 

stretch has a more moderate (linear variation of a , and a: ) effect on cr and cr^. 

1 1 . 0 1 1 . 0 2 1,0.3 1 . 0 4 1 . 0 5 1 . 0 0 1 . 0 7 1 . 0 8 1 . 0 9 1 . 1 1 . 1 1 

Initial strecth A ^ 

Figure VII.H - Evolution of the stress based 

ratios a . (Equation [VII,6]) according to the 

value of the initial stretch for the case of an 

extension of 15 % in the fibre direction. 
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The influence of an initial stretch is obvious: having an initial strain of around 3 % is sufficient to 

produce an increase of 100 % in the principal stress whereas this can reach up to 1350 % for an 

initial strain of 10 %. This is worth mentioning as knee ligaments can bear this kind of pre-strain 

in vivo (3 %) according to the particular configuration of the joint (Bach et al., 1997). 

As represents the ratios of the maximum pressure and as the pressure is a linear combination 

of the principal stresses, the nonlinear variation of a induces a nonlinear variation of . A 

residual stress in a ligament loaded in tension along its fibres therefore affects the global 

hydrostatic state of stress. The fact that a ligament loaded in tension is fixed at its extremities 

produces forces reacting to these displacement constraints, generating hydrostatic stresses within 

the ligament. This effect is amplified as the intensity of the residual tensile stress increases. 

VII.5.1.2 Compression in the fibre direction 

The amplitude of variations of a (order of magnitude: 1.5) is much larger than that of the 

others a. along the variation of the initial stretch A . However, similar trends of evolution are 

observed for the five parameters a , , especially when A goes beyond 1.07. It appears that pre-

stretching the body has a moderate influence on the resultant force and the principal stresses cr̂  

and (jg (maximum variation of 100 %) whilst this is more significant on the first principal stress. 

When compressed, the body buckles according to the value of the initial stretch. This highly 

nonlinear behaviour induces deformations that are very sensitive to any perturbation (peak in a. 

for Xj — 1.01, see Figure VII.12). At the very beginning of the buckling, the compressive load is 

carried by the extremely compliant matrix (fibres do not provide any contribution) and 

progressively redistributed in the fibres as the buckling develops and produces very large 

displacements in addition to the very large deformations. 

The ratio % is an indicator of the model characteristics related to the large displacements regime. 

It means that when % increases the deflection along the X axis becomes significant with respect 

to the initial major characteristic length of the structure (L = 40 mm). This is directly related to 

the way the soft tissue structure buckles under compressive load along the fibre directions. When 

there is no initial stretch within the model the maximum defelection along the X axis represents 

about 10.5 % of the initial length of the structure (Figure VII.14). At 1.01 of initial stretch this 

value reaches 22.5 % (maximmn for A varying between 1.0 and 1.10) and then decreases to less 

than 1 % from A^=1.07. 
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The correlation between residual stretch and deflection/buckling is quite clear but it is as well 

believced to be intrinsincally linked to the loading conditions, the geometrical and the mechanical 

properties of the structure. 

a 

-4— 

1.01 1.02 1 . 0 3 1 . 0 4 1 . 0 5 1.06 1 . 0 7 L O S l . O D 1.1 1.11 

Initial strecth A, 

Figure VII.12 - Evolution of the stress based 

ratios a . (Equation [VII.6]) according t o the 

value of the initial stretch A for the case of a 15 

compression in the fibre direction. 

1 1 . 0 1 1 . 0 2 1 . 0 3 1 . 0 4 1 . 0 5 1 . 0 0 1 . 0 7 l .ON 1 . 0 0 1 . 1 1 . 1 1 

Initial strecth A ^ 

Figure VII.13 - Evolution of the strain based 

ratios 6 (Equation [VII.8]) according to the 

value of the initial stretch Â  for the case of a 15 

% compression in the fibre direction. 

1 1 . 0 1 1 . 0 2 1 . 0 3 1 . 0 4 1 . 0 5 1 . 0 G 1 . 0 7 l.OM 1 . 0 0 1 . 1 1 . 1 1 

Initial strecth A ^ 

Figure VII. 14 - Evolution of the percentage 

deformation based ratios % (Equation [VII.7]) 

according to the value of the initial stretch Â  for 

the case of a 15 % compression in the fibre 

direction. 
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Fina] deformed shapes of the mesh are presented for the compressive load when making varying 

the initial stretch from 1 to 1.1 (Figure VII.15-a-h). In Figure VII. 15, it is clearly demonstrated 

the influence of an existing pre-stress on the deformation history of the FE model of an 

incompressible transversely isotropic hyperelastic material. Buckling of the solid structure 

appears at different steps of the analysis according to the initial stress field (Figure VII. 15). 

Higher the initial stretch and later bucking is likely to occur for a compressive displacement 

during the FE analysis. Deformed shapes for the analyses with an initial stretch value of 1.08, 

1.09 and 1.10 are not represented as the model is in a state of pure axial compression with no 

budding produced, and therefore the distorted mesh are similar to that of the mesh 

corresponding to an initial stretch value of 1.07. Additional F E analyses (not presented here) 

have shown that by relieving rotational degrees of freedom of the top surface of the mesh 

(defined as a rigid surface) perturbs the solution in a way such tha t buckling is produced even for 

values of initial stretch over going 1.07. 

Given that, in a FE model of a complete joint (bones and Hgaments), ligaments are unlikely to 

be loaded in pure compression (with degrees of freedom of t he extremities only free in the 

translational direction of compression) along the fibre directions, buckling is likely to occur. 

1.00 1.01 1.02 1.03 1.04 1.05 1.06 1.07 1.08 1.09 1.10 

% 8.40 9.15 10.5 11.40 12.00 12.90 13.80 14.25 

3.36 3.66 4.20 4.56 4.80 5.16 5.52 5.70 

Table VII.4 - Table relating the initial stretch and the displacement of the top 

nodes (face T) of the FE model, Au^ , at which buckhng of the structure is 

initiated. Percentage of compressive strain (" % " in the table) is also given in 

order to relate more explicitly initial stretch to the boundary conditions (15 % of 

compressive strain). 

Figure VII. 15 shows clearly that the structure undergoing pure compression in the fibre direction 

wiU behave in a particular way according to the value of the pre-stretch and the magnitude of 

compression. Characteristic quantities associated with this phenomenon are gathered in Table 

VII.4. Figure VII.15-b-d illustrate buckling instabilities. Indeed, t he deformed shapes of the mesh 

point towards opposite directions as for the other cases (Figure VII.15-a-b-e-f). A small 

perturbation (sensitive to the mesh density) caused for example by the motion of a single or 

several nodes is sufficient to alter significantly the deformation history of the structure. 

XQf A 
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This gives rise to very large deflections that modify the stress distribution and thus some parts of 

the body are loaded in tension and some others are loaded in compression (in the direction of the 

fibres) (Figure VII.15). As the fibres loaded in tension provide much more larger stiffness that 

the matrix loaded in compression, a large deflection of the body means a greater volume of the 

body loaded in tension and thus a greater value of principal stress. This is clearly shown by 

comparing the variations of a (Figure VII. 12) with the variation of % (Figure VII.14) which 

have approximately identical shapes. 

The evolution of the ratio 6 shows that the maximum volumetric strains (representing the 

weighted sum of the principal strains) at the end of the analysis increases and decreases 

respectively to up to 40 % ( = 1.04 ) and 55 % ( = 1.07 —1.09 ) by comparison with the case 

when there is no initial stretch, with respect to the initial stretch.. Volumetric stress characterises 

the bulk response of the material when submitted to volumetric load (pressure). The nonlinear 

variation of 6 becomes linear after A — 1.07 where 8 keeps almost constant as the initial 

stretch increases. This means that after locking of the structure in compression there is no 

signiGcant volumetric cheinge. However, it is believed that this (pure compression in the initial 

direction of the collagen Ebres) is a situation tmlikely to occur in a ligament m MW. 
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a) A ^= 1.00 b) A =1.01 

c) A ^ 1.02 d) A ^=1.03 

e) A — 1.04 

g) A = 1.06 

f) A ^=1.05 

h) A ^=1.07 

Figure VII. 15 - (a-h) Deformed shapes of the mesh at the end of the FE analysis 

(lateral view) for various initial stretches A . Plot a) corresponds to the deformed 

model subjected to no initial tension. Compressive load was applied at the top nodes 

of the model. 
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VII.5.1.3 Mixed boundary conditions 

The maximum first principal stress (and the pressure) increases monotonically by up to 140 

% as the value of the initial stretch increases (Figure VII. 16). The principal stresses o", and 

decrease monotonically by up to 50 % when the initial stretch is lower than 1.04 and then have 

an almost monotonic linear increase as cr and the pressure. The ratio a has a nonlinear 

variation and the final resultant force when A =1.10 was 260 % greater than when = 1.00 . 

1 1 . 0 1 1 . 0 2 1 . 0 3 1 . 0 4 1 . 0 5 l .OG 1 . 0 7 1 . 0 * 1 . 0 0 1 . 1 1 . 1 

Initial strecth A, 

Figure VII. 16 - Evolution of the stress based 

ratios a . (defined by equation [VII.6]) according 

to the value of the initial stretch A for the case 

of mixed boundary conditions. 

From Aj, — 1.04 till Â  = 1 . 1 0 , the slopes of the linear curves representing the variations of 

are almost identical meaning that an initial pre-stretch affects the three principal 

stresses in the same way (proportionality). 

Overall, it seems that the influence of a residual stress on the stresses and resultant force is more 

moderate for the case of mixed boundary conditions than for the cases of uniaxial tensile and 

compressive loads. 

At this stage it is convenient to introduce a stress invariant, the von Mises stress, because it is a 

quadratic combination of the principal stresses and so represents a scalar stress state at a given 

location. If we deEne cr , the deviatoric stress by: 

(vn.9i CT , <T — J)1 

the von Mises stress, a , is given by: 

114 



Chapter VII - Sensitivity analyses of the incompressible t. isotropic hyperelastic FE material model 

[VII. 10] 

Figure VII. 17 shows the deformed shapes of the model for the mixed boundary conditions 

(A = 1.0 ) at various stages of the FE analyses in combination with a fringe plot representation 

of the von Mises stresses. 

The typical buckling of the structure is clearly visible under the large deformations and 

displacements conditions. As expected, maximum von Mises stresses are located at the edge of 

the model that undergoes the biggest displacement and this effect is amplified by the rigid nature 

of the top face of the model (the one that is applied the displacement boundary condition). 

5: 

t = 0 ms t = 2 ms t = 4 ms 

S z 1:; 

6 ms t = 8 ms 10 ms 

Figure VII. 17 - Multistate representation of the ligament model for 

the third loading case (mixed boundary conditions) when no residual 

stress exists in the structure at the begining of the analysis. Fringe 

plots correspond to the von Mises stresses. 
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VII.5.2 Concluding remarks to section VII.5 

The influence of a residual stress on the stress and strain history of an incompressible 

transversely isotropic hyperelastic body has been shown to be signiGcant when considering 

particular sensitivity quantities. For the tensile load case, the stresses and the resultant force 

increase uniformly with the initial stretch whilst, in the case of compression, non uniform and 

smaller variations are observed. The major result for this particular loading case is that initial 

tensile pre-stress in the undeformed configuration will condition the deformation history and so 

the stress history of the soft tissue structure. Appearance of buckling will be conditioned by this 

factor and the constraining conditions at the extremities of the structure. 

The third case encompassing a mixture of finite shear, compression and extension, seems very 

sensitive to the value of the initial stretch (up to 240 % of increase in the maximum first 

principal stress). For the compression case there exists a value of initial stretch (1.07) beyond 

which the ratios a. become constant. This is certainly directly related to the particular enforced 

boundary conditions in association with mechanical properties used for the simulations. As 

hgaments are structures that are likely to be loaded non uniformly, the third case is probably the 

one that reflects the most real physiological conditions (perhaps at the difference that the 

magnitudes of displacement may be lower) and thus, pre-stretch, if identified from biological 

data, is highly relevant to include in FE analysis of soft connective tissues. 

VII. 6 Conclusions and recommendat ions 

In this chapter, sensitivity analyses were performed in order to test the incompressible 

transversely isotropic hyperelastic finite element material model by looking at the influence of 

various parameters characterising the finite element analyses: hourglass control methods for 

uniform reduced integration eight-noded hexahedral elements, physical time chosen for the finite 

element simulations, mesh density and residual stress. All these tests were performed for different 

cases of boundary conditions as the loading conditions were thought to be crucial in the type of 

solutions to be found. 
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It appears tha t the stiffness method to control and stabilise the hourglass modes is the one tha t 

gave the best results in terms of accuracy of the results and shape stability of the mesh providing 

that a small stiffness parameter ic is used, typically K = 0.01. It is important to ensure that the 

ration of the hourglass energy over the internal energy of the system is small (lower than few 

percents). 

In order to simulate a particular mechanical phenomenon in a physical time scale much smaller 

than its natural time scale, it proved essential to take particular precautions. Indeed, the 

objectives are to diminish the physical time of a finite element analysis, for obvious 

computational efficiency reasons, while preserving the quasi-static nature of the solution. This 

was achieved by increasing the loading rate in a way such tha t inertia forces remain negligible 

and that stress waves do not pollute the solution. Within an explicit code, this is possible by 

defining very smooth loading curves such that their first and second derivatives are zero at the 

initial and Enal times of the analysis. Using this strategy, negligible or no stress waves are 

produced. For further details please see section VIII.3.3. Sometimes, it is necessary to run several 

analyses of the same problem by varying the physical time of t h e finite element computation. A 

global inspection of the deformed shape of the structure and values of strains and stresses gave a 

good indication of the nature of the solution. By reducing progressively the loading rate, the 

solution tends towards a quasi-static solution. The idea was to find the highest loading rate that 

achieves this sort of convergence. It was also important to make sure that the kinetic energy does 

not exceed a small fraction of the internal energy of the system throughout the majority of the 

quasi-static event, typically in the order of 5 - 10 %. 

Mesh density sensitivity analyses have shown that a special care should be taken when designing 

the mesh for a particular problem. The key is to appreciate the na ture of the problem and build 

the mesh accordingly, especially when large deformations and displacements are involved. Highly 

nonlinear phenomena such as buckling requires a sufficient mesh density to capture them 

properly. It is difficult to give a particular optimal mesh density as it is very problem-dependent. 

Regions of high stress gradients, such as the zones departing from the end of the structure where 

the load is applied or where the structure is embedded, should be descretised Snely, i.e. having a 

fine mesh density, to allow for good tracking of the stress and strain variations. In the highly 

constrained regions (embedding of nodes + incompressibility constraints) this will have the effect 

of signiGcantly reducing the peak stresses that are artiSciaUy created in these particular locations. 
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In the light of results from section VII.5, its is evident that residual stresses present in an 

incompressible transversely isotropic hyperelastic soft tissue structure made of a highly compliant 

matrix reinforced by stiff fibres have a major influence on the deformed shape and the continuous 

mechanical response of the whole structure. As residual stresses are present in ligaments in vivo, 

their inclusion in a finite element model are believed to be crucial. The influence of tensile 

residual stresses may be particularly important in soft tissue structures loaded in compression 

along their fibre directions. This affects the particular resulting deformation modes but this is 

largely dictated by the magnitude of the loads. 

To finally conclude this chapter, the implemented finite element material model has been 

extensively tested under various boundary conditions and the influence of several relevant 

parameters of the finite element analyses was also extensively investigated. The outcome of these 

studies haa provided indications for the best modelling strategy in order to perform accurate 

finite element analyses of ligamentous structures. This stage was absolutely essential for having 

confidence in the results of the finite element analyses that will be described and carried out in 

Chapters VIII and IX. 
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Chapter VIII 
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In the present chapter, as in the next chapter, it is proposed to demonstrate the relevance and 

usefulness of the numerical implementation of the anisotropic constitutive law for biological soft 

connective tissues. The capacity to apply a residual stress to a FE model of a soft tissue structure 

will also be shown to be essential. The incompressible transversely isotropic hyperelastic FE 

model is used to model the mechanical behaviour of the human ACL when the knee is subjected 

to a passive flexion. 
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VIII. 1 Object ives and structure of Chapter VIII 

Before going further, a brief description of the core aims of the present chapter is presented: 

' The Grst objective is to prove that the implemented FE constitutive model 

(described in Chapters V and VI) is capable of reproducing the key mechanical 

features of the ACL in simulated physiological conditions and particular emphasis 

is put on the necessity to use a constitutive law of an anisotropic material. It is 

hypothesized that a transversely isotropic model, accounting for the structural 

features of the collagen fibres, will provide a much better mechanical model to 

represent the physiology of the ACL. 

" The second objective is to assess the influence of a residual stress field within the 

ACL on the resultant force, strain and stress patterns within the ligament for a 

simulated passive knee flexion. 

• Finally, the third aim is to provide a validation of the F E model of the ACL by 

comparing numerical and experimental results obtained for specific conditions, i.e., 

passive flexion of the knee. 

The background to this research is first given in section VIII. 2 where the importance of ACL 

injury is presented and provides a solid justification for studying the biomechanics of the ACL. 

Following standard usage in scientific publishing, there are separate sections for material and 

methods, results, discussion and conclusion. 

VIII .2 T h e anterior cruciate l igament: generalit ies 

The ACL is the most commonly injured ligament of the body (Fetto and Marshall, 1980: 

Johnson, 1982), especially during sport (Speer et al, 1995) and motor vehicle accidents because 

of excessive loading and/or high strain rates (up to 500 %.8-l) (Crowninshield and Pope, 1976). 

According to Hirsham et al. (1990), in a study following five hundred patients over a three-year 

period, it was found that AOL ligament only injuries accounted for 48 % of the total number of 

knee-ligament injuries. MCL injuries were the next most frequent at 29 % of the total. ACL tears 

most often occur during football and basketball in younger patients, and occur most often from 

skiing injuries in older patients. Approximately 75% of ACL injuries are non-contact in origin. 

120 



chapter MZf - finite element aimifWtona o/ Âe mec/iamcaZ Ae/iawottr o/ (Ae Aumon v4 (7L 

ACL tears frequently occur when an athlete plants one foot and attempts a sudden change in 

direction (Simmons, 1998). Internal torque of the tibia was found to be an injury mechanism for 

the ACL (Ryder e( aZ., 1997). The pattern of reciprocal tension between the AMB and the PLB 

is such that the PLB checks and, therefore, tends to be injured with excessive knee 

hyperextension, while the AMB would tend to be injured with trauma to the flexed knee 

(Cabaud, 1983). 

From this brief review, it is evident that the biomechanics of the ACL is of high interest. 

Although numerous clinical and mathematical modelling studies have focused on the mechanical 

characteristics of the ACL, very few full three-dimensional FE models of the ACL were developed 

(Daniel, 1999; Hirokawa and Tsuruno, 2000; Pioletti, 1997). Moreover, in these numerical 

studies, the authors only looked at the strain and stress distribution patterns obtained for 

simulated passive knee flexion or drawer tests. They did not consider the total resultant force 

present in the AOL during the various stages of the motion simulated. This quantity is essential 

in ACL reconstruction when the knowledge of the ideal initial pretension of the graft is required 

(Amis, 1989). This mechanical characteristic will condition not only the laxity of the repaired 

knee but also, in the case of a graft made of a biological material (generally, the patellar tendon), 

the healing and remodelling process (Beynnon et at, 1993b; Hayashi et ai, 1996). Knowing the 

biomechanics of the ACL for particular physiological motion of the knee is another crucial aspect 

in knee rehabilitation after occurrence of an ACL disruption (Beynnon and Fleming, 1998; 

Beynnon et al, 1995). In fact, in order to design efficient and harmless rehabilitation protocols 

for the disrupted knee after ACL injury, one must ensure tha t the ACL is not strained in 

unreasonable proportions during these exercises. Failure to protect the ACL from excessive 

mechanical loading would inexorably lead to a delayed healing and, in the worst case, to a 

complete failure of the surgical repair. Also, results concerning the force in the ACL are easily 

related to experimental studies (Roberts of., 1994; Wascher aA, 1993) unlike stress and 

strain that are much more sensitive to the location and type of the measurement. A more 

accurate knowledge of the biomechanics of the ACL is fundamental in understanding the 

complexity of the knee joint global stabihty. 
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Prior to the present research work, no study has assessed the influence of a residual stress in the 

ACL at full extension on its mechanical behaviour. A preliminary FE study by Limbert and 

Taylor (2001a) (see Appendix D), was performed in order to circumvent this lack in the relevant 

literature. It was the occasion to call in to question the validity of the assumption of mechanical 

isotropy of the ACL. In the next sections, several three-dimensional FE analyses of the ACL are 

conducted with the new Implemented transversely isotropic constitutive model described in 

Chapters V and VI. 

VIII .3 F E analys is of a h u m a n A C L u n d e r pass ive f l e x i o n of t h e knee 

VIII.3.1 Geometrical model of the ACL 

The three-dimensional geometry of the insertion sites of an ACL was obtained &om an 

experiment performed on a non pathological intact cadaveric right knee specimen from a male 

donor of unknown age. Using a direct measurement technique (Martelli et al, 2000), it was 

possible to record the three-dimensional motions of the tibia relative to the femur (rigidly fixed in 

a horizontal position) during kinematic acquisitions made by a trained orthopaedic surgeon. After 

completion of repeated acquisitions of the knee kinematics, the knee was dismantled and cleared 

from its surrounding soft tissue structures (flesh, muscle, capsular structures) in order to allow 

easy access to the ACL and its insertion sites. Using an electrogoniometer, discrete points 

defining the contours of the ACL at its femoral and tibial insertions were acquired by the 

surgeon. In order to account for the orientation of the fibres composing the ACL, the same 

number of points (22) was used for defining the tibial and femoral contours of the ACL. The first 

point acquired on the tibia was put into correspondence with the first point acquired on the 

femur, the imaginary direct line joining them defined the local fibre orientation. Two additional 

points were acquired after sectioning the ACL at its top ends. These points corresponded to the 

approximate centre of the insertion areag of the tibia and of the femur respectively. A 61e 

containing the point numbers and their three-dimensional coordinates was then imported into the 

FE pre and post-processor Patran v8.0 ( © The MacNeal Schwendler Corporation, Los Angeles, 

CA, USA). Prior to this, the coordinates of the points defining the tibial insertion area were 

transformed (Mcirtelli aA, 2000) in order to obtEiin their position when the knee is at fuU 

extension and not at the position where the anatomical acquisition was made. 
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For each set of points (one for the tibial insertion, one for the femoral insertion), a surface 

interpolation was performed in the pre-processor software. The geometrical model includes the 

non planar insertion areas and respects the natural orientation of the fibres. Given that the full 

three-dimensional shape of the ACL was not available and that a "reasonable" ACL shape does 

not affect significantly the results of the finite element analysis (Pioletti, 1997), the ligament was 

reconstructed by connecting the two insertion surfaces. The solid volume reconstructed was that 

of the ACL when the knee is at full extension (as shown in Figure VIIL2). 

Vin.3 .2 Finite element model of the ACL 

The solid volume representing the ACL was meshed with 8-noded hexahedron elements using 

Patran v8.0. Special care was taken in order to optimise the performance of the mesh for the 

large displacement and large strain analysis. In fact, due to its initial distorted shape, the ACL 

mesh can undergo severe distortions during the early stages of the analysis and can lead to 

premature convergence failure in the computation. The mesh consisted of 3297 elements and 

3784 nodes. Reduced integration was used for the element formulation. 

VIII.3.3 Boundary conditions 

The passive flexion-extension kinematics tests, described in VIII.3.1, were performed with the 

knee in the neutral position (no internal or external rotation) for flexion angles of 0, 10, 30, 45, 

90, 110 and 125 degrees that corresponds to full flexion of the knee. Although in the physical 

kinematic tests, the femur was rigidly embedded while the tibia was free to move in the flexion 

plane, these conditions were reversed in the FE analyses. The successive discrete positions of the 

femoral insertion of the ligament were used as displacement boundary conditions and the nodes 

of the tibial insertion area were considered as rigidly fixed. The displacement amplitude curves 

were smoothed by the way of a Efth-order polynomial (using a customised Fortran program) in 

order to avoid singularities associated with linear ramp displacement curves where velocity is 

piecewise constant and acceleration may be infinite (represented by a Dirac distribution). These 

phenomena pollute the solution by generating stress waves that prevent a quasi-static solution to 

be obtained. Smoothing of the amplitude curve ensures that the velocity varies continuously 

during the time period of the amplitude deGnition and that the acceleration no longer has 

singularities points. When the velocity time history is defined by a piecewise linear amplitude 

variation, the acceleration is piecewise constant. 
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VIIL3.4 Computational aspects 

The FE analyses were performed for a total physical time of 14 ms. Inertial effects were found 

negligible at this loading rate. The computations were ran on a bi-processor Pentium® III PC 

clocked at 933 MHz (equipped with 1024 Mbytes of RAM) and t h e CPU time required for each 

FE analysis was about one hour and twenty seven minutes. This is extremely economic compared 

to implicit FE analyses which have a higher cost per time step and no mention is even made 

about the stronger robustness of explicit analyses involving finite deformations. 

VIII.3.5 Constitutive law and mechanical properties 

Pioletti (1997) performed uniaxial tensile tests on human ACL specimens and identified the 

material data to fit an incompressible isotropic hyperelastic law ^ (Equation [VIII.1]) firstly 

proposed by Veronda and Westmann (1970). 

= a / ' - - ' ) 

It is now proposed to use the experimental data of Pioletti in order to identify the experimental 

curves with an incompressible transversely isotropic hyperelastic strain energy function. It was 

assumed that the strain energy function characterising the mechanical behaviour of the ACL. 

can be split into the sum of a strain energy function representing the mechanical response of the 

ground substance and a strain energy function encompassing the anisotropic behaviour 

introduced by the coUagen Ebres (Spencer, 1992): 

[vin.2] 

is chosen as being a neo-Hookean isotropic hyperelastic potential which is a simple extension 

of the classical linear isotropic elasticity for the finite strain regime; 

= c , (A - 3) [VIIL31 

In order to reproduce the stiffening features of the tissue constituting the ACL and its 

mechanical behaviour during large deformation, a transversely isotropic hyperelastic potential 

with an exponential law wag used for representing the mechanical contribution of the coUagen 

fibres. The inability of the collagen fibres to sustain compressive load in along their axis was 

taken into account: 
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r o i # , 
= j -dX such that 

' J OA 

A _ 

aA 
i f A < l 

[VIII.41 

aA 
^ = i f A > l 

As described in Chapter V, X is a tensorial invariant representing the stretch in the Gbre 

direction. The material parameters of the constitutive law were identified with the mean 

stress-strain curve obtained by Pioletti (1997) for human ACLs by mean of a nonlinear regression 

analysis (Bates and Watts, 1998) producing then a first set of material parametsrs SO. The 

coefBcient governs the isotropic mechanical response of the ground substance and was 

assumed to be 1 MPa as obtained experimentally by Ault and Hoffman (1992a). 

From the mean experimental stress-strain curve obtained by Pioletti (1997), two other stress-

strain curves were generated by adding an o&et of ± 10 % of the initial curve. Then, the 

material coefGcients of the incompressible transversely isotropic hyperelastic law described by 

equation [VIII.4], were identified with these two curves producing two additional sets of 

mechanical properties S+ and S- (Table VIII. 1). These two sets of mechanical properties will be 

used in the study d^cribed in section Vni.4.6. 

Mechanical formulation Transversely isotropic 

Mechanical properties a (MPa) P q (MPa) (MPa) c. 
SO - (Pioletti, 1997) 0.33 14.19 1 0.4247 22.2548 

S-l- - (Pioletti, 1997) * 1.1 - - 1 0.3236 22.6696 

S- - (Pioletti, 1997) * 0.9 - - 1 0.3750 22.4199 

Table VIII. 1 - Mechanical properties used for the finite element analyses of the 

ACL when the knee is submitted to a passive flexion. 

[ - : not computed]. (S+) = (SO) 4- 10 % (SO), (S-) = (SO) - 10 % (SO). 

The three stress-stretch curves obtained by identlGcation of the incompressible transversely 

isotropic hyperelastic potential are represented on Figure VIII. 1. 
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Figure VIII. 1 - Analytical stress-stetch curves deriving from the potential 

$27 after identification with the three material sets SO, S + and S-. 

VIII.3.6 Initial stress field within the ACL at full extension 

The ACL has no stress-free state at any of the knee flexion angles (Diirselen et al, 1996). The 

stress distribution within the ACL when the knee is at full extension is unknown and has yet to 

be experimentally characterised. Concerning the resultant force generated by the ACL, there 

appears to be a large variability in the values reported in the literature. Wascher et al. (1993) 

performed an in-vitro study and reported a resultant force at full extension varying from 10 to 

135 N. Roberts (1994) performed an in-vivo study and reported a resultant force at full extension 

of 104 N (d: 14). Using a direct meaaurement technique ( s t r E i i n gages), Bach oZ. (1997) 

measured in vitro the strains in the anteromedial and posterolateral bands of the ACL from 10 

degrees of hyperextension to fuU flexion. On a sample of ten cadaveric knee specimens, the range 

of strains at full knee extension was: 3.2-5.2 % for the AMB and 6-8.8 % for the PLB. 

This shows that an initial stretch of 1.043 (about 4.4 % of strain) fits in this range of strain 

values even though the ranges considered concern only separate fibre bundles and not a complete 

ACL. 

In a preliminary FE study related to the present research report (presented in Appendix D), 

Limbert and Taylor (2001a) examined the influence of the initial stress field on the stress 

distribution within the ACL. This parameter was shown to have non negligible effects. However, 

the constitutive model adopted for the ACL in this earlier work was that of an incompressible 

isotropic hyperelastic material. 
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As the incompressible transversely isotropic model (described in sections V.9 and VIII.3.5) is 

promising in avoiding appearance of excessive compressive stresses and in matching more closely 

the natural mechanical behaviour of the ACL, the hypothesis tha t the influence of the initial 

stress field at full knee extension is significant, need to be tested again. A residual force in the 

ACL at 0 degree of flexion can affect not only the behaviour of the ACL, but also the general 

stability of the knee joint. However, this latter feature could not be captured in an isolated FE 

analysis of a single ACL but Chapter IX will explore this in more detail. 
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VIII.3.7 FE analyses of the mechanical behaviour of the human ACL during a passive 

knee flexion 

Here, it is proposed to simulate the mechanical behaviour of the ACL during a passive knee 

flexion. Using the boundary conditions described in the section VIII.3.3 and the mechanical 

properties (set SO) described in section VIII.3.5, two series of analyses were performed. 

1. A first FE analysis was carried out with a stress-free ACL at full extension. 

2. A second FE analysis, using exactly the same material properties and boundary 

conditions with the exception of an additional initial stress field within the ACL. 

The apphcation of a uniform initial stretch was performed by using the numerical 

technique described in section VII.S. The value of the uniform initial stretch (X, = 

1.043) was chosen such that the initial resultant force was equal to 135 N [upper 

value obtained experiment ally by Wascher et al. (1993)] (see Figure VIIL2). 

1.55 M P a 

2.59 MPa 

Anterior view Posterior view 

Figure VIII.2 - von Mises stresses within the ACL after application of an initial 

stretch Xj = 1.043. This corresponds to the state of the ACL at full extension. 

Figure VIIL2 shows the pattern of von Mises stresses at the surface of the ACL (at full 

extension) and highlights the fact that the maximum values are found at the anterior part of the 

tibial insertion whilst the minimal values occur in the middle section of the ACL. It is worthy to 

note that this does not contradict the fact that the posterior par t of the ACL is taut at full 

extension (Jeffreys, 1963). 
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VIII .4 Resul t s of t h e t w o F E analyses 

Fringe plot of the von Mises stresses in the ACL throughout the flexion for the first FE analysis 

are reported in Figure VIE.3. 

VIII.4.1 First FE analysis (no initial stretch) 

In the first 10 degrees of flexion the maximum stresses are located in the anterolateral portion of 

the ACL near the femoral insertion zone. As flexion progresses, t h e anteromedial part of the ACL 

becomes the most stressed part with the maximum stress region migrating from the lateral side 

towards the medial side of the ACL (Table Vin.2). At 30 degrees of flexion the stresses are 

maximum in the midsubstance of the anteromedial band of the ACL. 

Vin.4 .2 Second FE analysis (initial stretch Aj = 1.043) 

At full extension of the knee, the maximum von Mises stresses are found at the anterior part of 

the tibial insertion of the ACL and clearly shows that the anterolateral band of the ACL is the 

most stretched part of the hgament. Between 0 and 10 degrees of flexion the zone of maximmn 

stresses displaces quickly towards the femoral insertion of the ACL. At 30 degrees of flexion the 

stresses are still maximum in this location unlike for the first FE analysis. 

VIII.4.3 Common results to the two FE analyses 

The general results show that the stress distribution within the ACL is highly inhomogeneous 

throughout the knee flexion. From 30" of flexion, no significant difference in the general stress 

distribution is found between the pre-stressed ACL and the non pre-stressed one. However, this 

not the case for the magnitude of stress which can vary between 9 and 97 % (Table VIII.2). 

Despite the fact that the posterior part of the ACL at the femoral insertion site undergoes the 

largest displacement from full extension to full flexion, the maximum stresses are not located in 

this region. High stress values were found at full flexion, essentially due to the large sagittal plane 

rotation of the femoral insertion area. After 30° of flexion, the maximum stresses are found at the 

femoral insertion site of the antero-medial band of the ACL but it is worthy to note that this 

does not contradict the fact that the anteromedial band tightens along the flexion. If the ACL is 

loaded in cross-fibre directions, strains are higher at the insertion sites than in the midsubstance. 

This was also observed experimentally by Yamamoto et al. (1998) in a study using a 

photoelasticity methodology to track strain at the surface of the ACL. 
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As aimed in the formulation of the constitutive model, buckling of the ligament occurs as soon as 

compression or bending is developed with respect to the Gbre orientation in the ACL. After 90 

degrees of flexion, as reported experimentally (Girgis aZ., 1975), the typical necking/buckling of 

the ACL in the region close to the femoral insertion is also observed on both the FE analyses. 

Angle of knee 

flexion (degrees) 
X; = 1.00 Location Xj = 1.043 Location Relative difference (%} 

0 0 AM M 2.59 A M M -

10 1.90 A M M 3.75 AM M 97.37 

30 2.24 AM M 3.97 A M M 77.23 

45 3.23 AMFI 4.83 A M F I 49.54 

60 3.46 A M F I 4.23 A M F I 22.61 

90 5.04 AMFI 5.49 AM FI 8.93 

110 11.43 AMFI 10.34 A M F I 9.54 

125 21.08 AMFI 34.46 AM FI 63.47 

Table VIII.2 - Maximum von Mises stresses in the ACL recorded at various angles of 

knee flexion for the two FE analyses performed: Xj = 1.00 : the ACL is stress free at full 

knee extension; Xj = 1.043: a 135 N residual force is present in the ACL at full knee 

extension. [AM M: Anteromedial part in the mid-substance; A M FL Anteromedial part 

at the femoral insertion site]. 
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Chapter VIII - Finite element simulations of the mechanical behaviour of the human ACL 

Full extension 
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Figure VIII.3 - Contour plot of the von Mises stresses developed in the ACL during the 

various stages of the passive knee flexion. Results are presented in a posterior view of the 

ligament. In order to visualise more clearly the zones of maximum stress, the scale of the 

coloured fringe plots were kept different for each view of the ACL throughout the flexion. 
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VIII.4.4 Influence of a residual stress in the ACL at full extension of the knee 

VIII.4.4.1 Evolution of ot and /3 

In order to track the evolution of the resultant force within the ACL throughout the flexion and 

to compare the values obtained for the two FE analyses, a parameter a was defined as follows: 

=1.0) 
a = = 1.043) 

[Vin.5] 

= 1.0)and7Z(A = 1.043) represent respectively the current values of the resultant force in 

the ACL for the FE analysis with no pre-stretch at full knee extension and for the FE analysis 

accounting for a pre-stretch = 1.043 at full extension. 

Similarly, an additional coefficient jS (Equation [VIII.6]) was defined to follow the relative 

evolution of the maximum von Mises stresses for the two different FE analyses. 

= 1.043) 
[vin.6] 

The evolution of a and is graphically represented on Figure Vin.4. 

Figure VIII.4 - Evolution of 

the ratios a and P according 

to the angle of knee flexion 

(degrees). These 

dimensionless quantities are 

defined by Equations 

[Vin.5] and [Vin.6]. 

10 30 45 60 90 
Angle of flexion (degrees) 

110 125 

From full extension to 10 degrees of flexion, a increases nonlinearly to reach a value of 0.5 which 

means that the existence of a resultant force in the ACL at fuU extension generates a force at 10 

degrees twice as much bigger in comparison with the case of an ACL stress-free at zero degree of 

flexion (first FE analysis). The variation of a is positively monotonic, mostly linear, from 10 

degrees tiU 110 degrees of knee flexion. This is a very interesting point because it could suggest 

that what affects the value of the resultant force for this range of flexion considered, is a Hnear 

phenomenon. 
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The transversely isotropic hyperelastic model has a nonlinear behaviour in tension but, the 

particularity of the neo-Hookean constitutive law chosen for the matrix, is that the shear 

modulus is a constant and does not depend on strain. Therefore it could be hypothesized that 

shear behaviour at the insertion sites of the ACL is what differentiate the mechanical response of 

the ACL in the two FE analyses and that shear could be a dominant loading mode at these 

particular locations. 

At 100 degrees, the resultant force is identical in the two FE models ( a = 1). Beyond 110 

degrees of flexion the effect of a pre-stretched state at full extension is significant because it has a 

negative variation of approximately 42 % (from 1.2 to 0.7). 

The amplitude of variation of /3 is more important than that of a (about 96 % bigger) and (3 

evolves nonlinear ly. One can distinguish four major phases in the evolution of /? : 1/ from 0 to 20 

degrees of flexion the increase is very steep (from 0 to 2.45), 2 / between 2 and 45 degrees, f3 

drops from 51 %, 3/ from 45 to 90 degrees of flexion, a slight increase of 8 % is observed, 4/ 

between 90 degrees and full flexion decreases by around 48 % (from 1.35 to 0.7). von Mises 

stresses are a positive definite combination of the principal stresses (see Chapter VII for a 

definition of von Mises stresses) and thus encompass the global state of stress in a material. The 

important nonlinear variation of (3 throughout the flexion shows that applying a pre-stretch to 

the FE model of the ACL at the beginning of the analysis has a significant effect on the 

magnitude of the maximum von Mises calculated. Interestingly, the four evolution stages 

observed for j3 are also found from the upper bound curves obtained experimentally for the 

resultant force within the ACL by Wascher ef aZ. (1993). Again, this would tend to prove that 

our FE models is able to reproduce particular types of behaviour observed experimentally. 

VIII.4.4.2 Resultant force within the ACL along a passive knee flexion 

For sake of comparison, in addition to the results in resultant force obtained from the two FE 

analyses, three other sets of data were reported and combined in to a single graph (Figure 

VIII.5). An initial study performed by Limbert and Taylor (2001a) was performed using the 

implicit FE code ABAQUS/Standard. The FE model of the ACL and the boundary conditions 

were identical to those used in the two present FE analyses. However, the constitutive law was 

defined by an incompressible isotropic hyperelastic potential as desribed in equation [Vni.6]. The 

material parameters used were the same as in the study of Pioletti (1997). The analysis was run 

from 0 to 60 degrees of knee flexion. 
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The second and third sets of data represent the upper and lower bounds of the envelop of the 

resultant force curves obtained experimentally by Wascher et al. (1993). A signiGcant variability 

was found among the eighteen cadaveric knee specimens tested. 

As shown in Figure VIII.5, the qualitative and quantitative results for the resultant force in 

Limbert and Taylor (2001a) were not following the trend recorded experimentally by Wascher et 

al. (1993). In this isotropic FE model, very high compressive and flexural stresses were generated 

at the posterior side of the insertion zone of the ACL into the tibia, accounting for the high non 

physiological values for the total force in the ligament. This highlights the severe limitation of a 

phenomenological isotropic model when subject to bending and compressive loading. 

• - Isotropic model without initial stretch (Limbert et al. , 2001a) 

— No initial stretch within the ACL 

— Initial stretch within the ACL (135 N) 

— Wascher et al. (1993) MIN 

~ Wascher et al. (1993) MAX 

150 

125 

100 

I 
(2 

10 30 45 GO 90 
Angle of knee flexion (degrees) 

110 125 

Figure VIII.5 - Graph comparing the resultant force within the ACL for three FE 

analyses and one experimental study performed by Wascher ct al. (1993) on 18 

cadaveric specimens. The resultant force (N) is given as a function of the angle of 

knee flexion. 

The new constitutive model of the ACL proposed in the present work exhibits clearly a much 

better mechanical response when the knee is subjected to a passive flexion as the resultant force 

curves can testify on Figure VIII.5. 
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Indeed, for the first FE analysis (no initial pre-stretch at 0 degrees of flexion), after around 15 

degrees of flexion, the trend of the curve follows closely that of the experimental upper bound 

curve of Wascher et al. (1993); the calculated force for the FE model is however slightly greater 

than that of the experimental curve. 

Similar remarks apply for the second FE model curve (initial stretch Xj = 1.043 at full extension) 

with the additional significant characteristic that between 0 and 20 degrees the calculated curve 

follows very well the trend of the upper bound of the experimental data. In this range of flexion, 

the typical steep drop in the value of the resultant force within the ACL (Wascher et aL, 1993) is 

also exhibited by the predicted reaction force of the pre-stressed ACL model. Calculated values of 

the resultant force are underestimated by comparison with the experimental curve from full 

extension towards 25 degrees of knee flexion. 

From 8 degrees the resultant force of the un-pre-stressed ACL model bounds superiorly the force 

calculated in the pre-stressed ACL model. Beyond 110 degrees of flexion the two FE curves 

(with/without initial stretch) merge together as already observed through Figure VIII.4 ( a —̂  1) 

and this is observed simultaneously with an upper shift from the upper bound experimental 

curve. 

In light of these results concerning the resultant force within the ACL during a passive flexion of 

the knee, it is clear that the incompressible transversely isotropic hyperelastic constitutive law 

proposed for the ACL provides an excellent answer to the shortcomings of the existing three-

dimensional FE isotropic models of the ACL found in literature (Limbert and Taylor, 2001a; 

Pioletti, 1997). Our initial hypothesis is therefore verified. 

Moreover, our FE models not only reproduce qualitative mechanical behaviour of the ACL 

(buckling under very small compressive or flexural stresses, zone of maximum stress...) but also 

generate quantitative data comparable and in good agreement with experimental data obtained 

from physical cadaveric specimens. This latter issue is particularly important as no previous FE 

studies concerning the ACL has even reported the value of the resultant force in the ligament 

throughout the flexion cycle. Here, not only the values are reported but also, in the second FE 

model (initial stretch Xj = 1.043 at full knee extension), they match closely the experimental 

data. By an inverse approach point of view, the FE results confirm that the ACL is in a pre-

stressed state at full extension of the knee. 
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VIII.4.5 Comparisons of results with existing data 

Given the small amount of three-dimensional FE studies of the ACL reported in literature 

(Hirokawa and Tsuruno, 2000; Limbert and Taylor, 2001a; Pioletti, 1997), comparisons with the 

new transversely isotropic hyperelastic FE model is rather quick to perform. Quantitative 

numerical results from Hirokawa and Tsuruno (2000) are difficult to compare with our results 

because these authors report results in terms of second Piola-Kirchhoff stresses and this measure 

of stress is radically different from the Cauchy stress at the finite strain regime (for further 

details please see section V.5.1). However, the general mechanical behaviour of their ACL model 

is very similar to that of our model: necking/buckling of the ACL appearing in the region near 

the femoral insertion, high stress values observed in the regions close to the femoral insertion. At 

0 degree of knee flexion maximum stresses are found in the same zone but more specifically on 

the medial side. This conflicts with our findings for the pre-stressed ligament analysis (existence 

of a residual stress field at full extension of the knee) (see Figure VIII.2) and this could be 

explained by several factors: the initial geometry of the ACL is rather different between the two 

models, the boundary conditions are different and the way the FE analyses are performed is not 

the same. In this analysis, the simulation is started by assuming the existence of a residual stress 

within the ACL at full extension of the knee (enforced by the procedure described in section 

VII.5). The boundary conditions enforcing the flexion motions are then applied till full flexion. 

Hirokawa and Tsuruno (2000) deduced the geometry of the ACL from measurements made on an 

isolated ACL (not connected to bones and thus in a stress free state). The geometry was then 

idealised and deformations corresponding to an ACL attached to the bones at full extension were 

applied giving thus the state of stress and strain in this configuration (0 degree of flexion). It is 

believed that the sensitivity of the results to this procedure is quite high. Although the pre-

stretch applied in our model is larger (resultant force = 135 N) than that of the model in Pioletti 

(1997) and Limbert and Taylor (2001a) (resultant force = 100 N), our results exhibit much lower 

values for the stress: 3.75, 3.97, 4.83, 4.23 MPa against 4.8, 8.1, 11.4 and 13.1 MPa found by 

Limbert and Taylor (2001a) for the following values of flexion angle: 10, 30, 45 and 60 degrees. 

The results of the two present FE analyses have shown that the maximum von Mises stresses 

were never located at the posterior part of the tibial insertion site aa reported for isotropic models 

(Pioletti et al., 1998a; Limbert and Taylor, 2001a). This is easily explained by the fact that the 

new proposed anisotropic constitutive model of the ACL does not generate high non physiological 

compressive stresses when the ligament is loaded in compression or flexion along its fibre 

directions. 
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Chapter VIII - Finite element simulations of the mechanical behaviour of the human A CL 

This is an important issue as it proves the advantage and the relevance of using a transversely 

isotropic constitutive law which accounts for the structural properties of the collagen Gbres 

embedded in the solid matrix made of hydrophilic proteoglycans. 

Since flexion-extension motions can produce different lengths and hence tension patterns in the 

ACL, it was found experimentally that the anteromedial band was taut throughout the entire 

flexion-extension cycle (Brantigan and Voshell, 1941; Pick, 1904), or at least to lengthen as the 

knee is extended (Arms et al, 1984; Beynnon et al, 1989). However, various studies have shown 

that the posterior band was slack in flexion and became taut only as the knee was brought to full 

extension (Amis and Dawkins, 1991; Bach et al., 1997; Brantigan and Voshell, 1941; Pick, 1904; 

Girgis et al., 1975). As reported in these studies, it was found in the present numerical simulation 

that the posterolateral part of the ACL slackens during flexion whilst the anteromedial part 

tightens. For the first FE analysis, between 0 and 5 degrees of flexion the highest stress gradients 

are found near the femoral insertion zone; after 10 degrees, the maximum strains are located in 

the middle part of the anteromedial band of the ACL and from around 38 degrees, the highest 

strain gradients are found at the femoral insertion site to reach their maxima for deep flexion 

angles (>110 degrees). Generally in our model, the highest strain gradients are produced at the 

insertion sites of the ligament into the bone and this is also supported by the statements of 

Beynnon et al.'s (1993b). Our model also corroborates the experimental observations of Butler et 

al. (1992) i.e., the anteromedial band of the ACL carries the maximum load during the passive 

flexion. In another study, Butler e( aZ. (1990) demonstrated experimentally that the strains in the 

longitudinal direction, near the insertion sites are larger than those of the mid-portion of the 

ACL. The present FE model also reproduces these characteristics. 

The methodology adopted to apply a pre-stretch to the FE mesh is based on the assumption that 

the initial stretch is uniform (i.e. identical for each element of the mesh) within the ACL. It is 

now widely accepted that the ACL is made of two main Gbre bundles having different lengths 

and mechanical properties (Amis and Dawkins, 1991). From a modelling point of view, it would 

be a very complex mechanical system to describe. Indeed, a reasonably accurate geometry of the 

two fibre bundles would be necessary, with relevant mechanical properties for each bundle, and 

maybe, more difGcult, contact interaction zones should be deSned between the AMB and PLB of 

the ACL. The nature of these contact interactions would be equally challenging to describe. In a 

real ACL, at full knee extension, the strain and hence the stress distribution is unlikely to be 

uniform but rather heterogeneous according to the fibre bundle considered and the location 

within the bundle. 
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Chapter VIII - Finite element simulations of the mechanical behaviour of the human A CL 

In the FE model, the direction of the initial stretch in each element is given by the local element 

geometry and a state of homogeneous deformation is assumed for the pre-stressed state. A local 

strain at a particular location of the ACL does not influence necessarily the strain pattern at 

another location. So, the resultant force within the ACL at full extension found experimentally 

(Roberts et al, 1994; Wascher et al, 1993) may be the result of a pre-stretched state existing 

only in few fibre bundles of the ACL. This aspect is not captured by the present model. 

Muscle activity increases the level of stress in the ACL (Beynnon et at, 1995; Diirselen et al., 

1996). There is strong evidence that a passive flexion of the knee does not strain the ACL in 

great proportions, except for high values of knee flexion (> 110 degrees). It would therefore be 

certainly relevant to study the influence of a residual stress within the ACL during other kinds of 

physiological motion such as active flexion, squatting (with the important aspect of weight-

bearing introduced) rotational motions of the knee joint, especially for extreme conditions (during 

sporting activities or injury scenarii), combined or not with anterior-posterior motions of the tibia 

relative to the femur. 

In addition to the relevance in a better understanding of the biomechanics of the knee joint, 

there is a special interest of knowing the stress and strain states within an ACL graft as it is an 

important issue in rehabilitation after ACL reconstruction (Beynnon and Fleming, 1998). It 

seems essential to appreciate what effects particular rehabilitations exercises can have on the 

biomechanics of the ACL graft (which is indeed a controversial issue). Some exercises may be 

found inappropriate or even dangerous if they produce excessive strain in the ACL graft. 

The three-dimensional geometry of the non planar insertion areas of the ACL in to the bone Eire 

subject to various errors: first, when the points are acquired on the cadaveric knee specimen by 

using an electrogoniometer. This introduces an error (the precision of the apparatus is in the 

order of 0.1 mm) which may be amplified by the action of the human operator. A second error is 

introduced during the geometrical reconstruction when performing an interpolation in order to 

define a surface from a cloud of points. These errors are difficult to quantify and, although this 

quantitative estimation was not developed in the present work, their existence was always kept 

in mind in order to have a cautious interpretation of the numerical results. 
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Chapter VIII - Finite element simulations of the mechanical behaviour of the human A CL 

This chapter has concentrated on an isolated ACL and that implies that no possible interaction 

between tha ACL and the bony structures (tibia, femur) or between the ACL and the PCL 

(Hefzy and Grood, 1983) was taken into account. However, this effect is believed to be negligible 

for the particular motion analysed (passive knee flexion). 

It is relevant to note that the hypothesis of incompressibility pu t high constraints on the nodes 

defining the insertion areas and therefore is Hkely to introduce numerical artefacts at these 

locations under the form of overestimated stress concentration. This effect is reinforced by the 

fact that nodes defining the tibial insertions are rigidly fixed and this introduces additional 

constraint relationships. This would recommend to be cautious when interpreting quantitative 

values of stress in these zones of high constraints. 

VIII.4.6 Influence of the mechanical properties of the ACL on its mechanical behavioiu-

during a passive knee flexion 

In order to assess the influence of the mechanical properties of the ACL on its behaviour during a 

passive knee flexion, the pre-stressed ligament analysis presented in section VIII.3.7 was 

replicated for two different sets of material coefficients (S+ and S- defined in section VIII.3.5). 

The pat tern of deformation, stress and strain values were carefully compared between these two 

models and the model studied in section VIII.3.6 (model with mechanical properties SO) but no 

significant difference was found. The resultant force within the ACL along the passive knee 

flexion was also calculated and the relative errors between the values for extremal properties and 

for the reference mechanical properties were checked. The result are summarised in Table VIII.3. 

No initial stress Initial stress 

Mechanical Properties set S+ S- S + S-

Maximum relative error (%) 1.04 0.77 2J5 2.52 

Table VIII.3 - Absolute relative difference in the resultant force within the ACL when 

considering two different sets of mechanical properties (for the whole flexion range). The 

reference values are those obtained for the mechanical properties belonging to the set SO. For 

each set of mechanical properties, the relative errors are calculated in two cases : 1/ when 

the ACL is stress-free at full knee extension. 2/ when the ACL is submitted to a uniform 

pre-stretch (X, = 1.043 for S + / \ = 1.046 for S- model). 
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A difference of 10 % in the mechanical properties conld be considered ag an important one. 

However, at the light of the two last series of FE simulations, it appears that for the particular 

simulated motion (passive knee flexion), the influence of the mechanical properties is not 

particularly significant. This has two possible explanations. The first one is that, although the 

two sets of mechanical properties S+ and S- correspond to different stress-strain curves (see 

Figure V m . l ) , it was assumed in both cases that the neo-Hookeaji coefGcient was the same 

(i.e. 1 MP a as for the set SO). That means that the mechanical properties were modified only for 

the mechanical contribution of the collagen fibres. In this formulation, the fibres do not provide 

any stiffness to the ligament structure when they are loaded in compression along their long axis. 

This shows that during a passive flexion of the knee (at least for the range of flexion studied, i.e. 

0-125 degrees), the mechanical load on the ACL is mainly carried by the ground substance. The 

second explanation could be that a paasive flexion of the knee does not produce a signiEcant load 

on the ACL no matter if one looks at the ground substance or at the collagen fibres mechanical 

response. 

The kinematic tests were performed on a single cadaveric knee specimen whose mechanical 

properties for the ACL are probably distinct from the ones measured by Pioletti (1997). 

However, as it was found that their influence on the resultant force within the ACL and on the 

magnitude and distribution of stress and strain, were negligible this gives us confidence on the 

present FE results and legitimates the choice made for the mechanical properties 

The importance of the inter-subject variability in mechanical properties, kinematic characteristics 

remain to be determined for the particular FE analyses performed. 

At this stage an important remark must be made regarding the influence of the mechanical 

properties. In the current study these properties were varied but the kinematic conditions were 

kept identical. It could be hypothesized that the mechanical properties of the ACL affect the 

global response of the knee joint and thus its kinematics. However, in the author's opinion this 

effect can be considered as negligible for the particular conditions simulated. 
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VIII. 5 Concluding remarks 

VIII.5.1 Summary of findings 

In this chapter, a three-dimensional finite element model of the human ACL was built and tested 

for a simulated passive knee flexion. For the first time, a transversely isotropic hyperelastic 

constitutive law was used to represent the anisotropic mechanical behaviour of this ligament. It 

was discovered later on that similar work had been conducted independently by two other groups 

(Daniel, 1999; Hirokawa and Tsuruno, 2000). However, these authors implemented 

phenomenological anisotropic constitutive equations in to FE codes but did not take into account 

any residual stress (Daniel, 1999) or used a highly idealised geometry for the ACL (Hirokawa and 

Tsuruno, 2000). In the present study, it was shown that a residual stress field affects significantly 

the magnitude of stress and the resultant force within the ACL. Moreover, the authors 

mentioned above did not veri^ that their model produced resultant force values in agreement 

with experimental observations and did not perform sensitivity analyses in order to assess the 

influence of the mesh density. In addition, in this study, the influence of the mechanical 

properties was also assessed. The relative simplicity of our phenomenological model describing 

the constitutive law for the ACL has been proven successful in the finite analyses of this 

ligament. The model exhibited the key characteristics of connective soft tissues: anisotropy, 

nonlinear behaviour, large strains, very high compliance for compressive or bending loading along 

the collagen fibres and incompressibility. The collagen fibre interactions, inexistent in isotropic 

models, were accounted for and their role was particularly significant when the ACL is twisted 

and flexed around its insertion sites. 

The geometry of the FE model was based on anatomical measurements performed on an intact 

normal cadaveric knee joint specimen whilst the boundary conditions were obtained from 

physical kinematic tests performed on the same specimen. The mechanical properties used for the 

anisotropic constitutive model were derived from experimental da ta obtained independently by 

Pioletti (1997). 

It was shown that the new constitutive model offers the significant advantage over the previous 

existing isotropic FE models (Limbert and Taylor, 2001a; Pioletti, 1997) to mimic more closely 

the natural behaviour of the ACL. Like other ligaments, the ACL is a mechanical structure that 

can carry an important load in extension along its Gbres but offers a very small resistance in 

flexion or compression along its preferred mechanical direction. 
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In the present FE model, these features were integrated in the mechanical formulation (as 

discussed in Vin.3.5). As expected for a real ACL, the FE mesh of the ACL model deformed in a 

way such that buckling was produced as soon as compressive stresses developed in the direction 

of its axis of anisotropy. This qualitative behaviour was completed by very good quantitative 

results: no excessive compressive stresses appeared at the posterior side of the ACL where it 

inserts into the tibia. Globally, during the whole flexion cycle the posterior part of the ACL was 

the least stressed region in comparison with the anteromedial band. The developed FE model 

was able to reproduce typical stress distribution observed experimentally. This is a good 

quahtative indication of the relevance and usefulness of the numerical model. 

An experimental validation of the FE model was obtained by comparison between the 

experimental and numerical results for the resultant force generated within the ACL during a 

passive knee flexion. 

Qualitative results obtained for the FE model (stress and strain distribution, resultant force in 

the ligament, general mechanical behaviour) that correlate well with experimental observations 

bring a certain amount of confidence in the results gathered from numerical analyses. 

VIII. 5.2 Conclusions 

To conclude this application chapter, the following conclusions are drawn: 

" The new incompressible transversely isotropic constitutive law developed for the 

ACL and implemented numerically into an explicit FE code has been shown to be 

successful in representing the natural mechanical behaviour of the ACL in 

simulated physiological conditions. Severe limitations of previously reported three-

dimensional incompressible isotropic hyperelastic models have thus been 

overcome. 

' Numerical results from the FE simulations have shown good agreement with 

qualitative experimental observations in terms of stress and strain locations. 
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The influence of an initial stress existing at full extension of the knee has been 

found significant on the magnitude of the maximum stresses but not on their 

distribution beyond 30 degrees of knee flexion. 

Accounting for the residual stress in the FE model simulating the mechanical 

behaviour of the ACL during a passive knee flexion has allowed for a close match 

between numerical results and experimental data in terms of the total force 

developed in the ACL. This can be considered as a validation of our numerical 

model, at least for the simulated physiological range of motions considered, i.e., a 

passive knee flexion. This presents a real novelty among the very few FE models of 

the ACL available as it provides quantitative information easily related to 

experimental data. 

The explicit FE implementation has been proven extremely robust to track 

accurately the highly nonlinear behaviour of soft tissue in the finite strains domain. 

The computational cost efSciency is another strong point of the explicit 

implementation. 
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The previous chapter dealt with Suite element simulations of the mechanical behaviour of an 

isolated ACL subjected to various loading conditions. In Chapter IX, it is proposed to study the 

mechanical response of a simplified human knee joint subjected to anterior-posterior drawer tests. 

The chapter describes the development of an idealised model that represents the complex 

mechanical system of the knee. The three bony structures are modelled as rigid bodies interacting 

with each other by the way of highly deformable three-dimensional links of different variable 

stiffness, i.e., the ligaments (ACL, POL, LCL, MCL). Contact Interactions are allowed to occur 

between articular cartilage of the femur and the tibia, ligament and bone and ligament and 

ligament during the FE analyses. The influence of residual stress within the ACL was also 

assessed in order to highlight its effects on the global mechanical response of the knee joint. The 

developed FE model provides new (in FE literature) information regarding the resultant forces 

developed in the ligaments during drawer tests as well as insight into the complexity of the 

mechanical response of the knee joint even for simple boundary conditions. 
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IX. 1 B ackgr ound 

Extensive experimental work has been performed to study the knee biomechanics, particularly 

related to drawer tests (Brantigan and Voshell, 1941; Butler et aL, 1980; Fukubayashi et aL, 

1982; Girgis et al, 1975; Gollehon et aL, 1987; Levy et al, 1982; Markolf et al, 1976, 1984, 1995, 

1990, 1993; Nielsen and Helming, 1985; Piziali et al., 1980a, 1980b; Sullivan et al., 1984). A 

drawer test is a clinical examination protocol used to assess the existence and the degree of 

severity of either an ACL or a PCL injury. It consists of applying a translational load to the tibia 

while maintaining the femur fixed, either at full knee extension or 90 degreees of flexion with 

respect to the tibia. While stabilising the femur with one hand, the examiner alternately draws 

the tibia forward and backward with the other hand. The amplitude of displacement recorded 

represents what is called the laxity of the joint. A positive anterior drawer test occurs when there 

is abnormal translation of the tibia anteriorly on the femur and no firm endpoint of an intact 

ACL is felt and is indicative of ACL injury. Similar findings for P C L in posterior drawer test 

apply. In the present study the strict definition of a drawer test (knee flexed at 90 degrees of 

flexion) is extended to define similar tests with the knee fully extended (0 degree of flexion) or at 

other angles of flexion of the knee. Although mainly focused on the biomechanical response of the 

knee joint subjected to drawer tests, all of the studies mentioned above are different in terms of 

the experimental methodology adopted and the boundary conditions applied. For example, 

Butler et al. (1980) and Race and Amis (1996) considered tha t accurate qualitative and 

quantitative evaluation of knee motions could only be provided by applying a fixed displacement 

and measuring the resistive load. On the other hand, other authors like Fukubayashi et al. 

(1982), Markolf et af. (1976, 1978) and TorziHi a/. (1981) have exEimiaed ligament function by 

measuring the joint displacement resulting from application of a known load. This relates to the 

usual clinical practice in which the surgeon assesses the degree and type of injury from the 

observed laxities (drawer and Lachman tests). A Lachman test is a clinical test performed to 

assess the anterior-posterior stability of the knee in the same way as a drawer test except that 

the knee should be in 30 degrees of flexion. Nevertheless, its is essential to keep in mind that the 

observed laxity depends on the magnitude of the applied load and that it is conditioned by the 

complex force interactions developed by the ligaments of the joint. 
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When a ligament is cut or damaged, these interactions are modiEed eind lead to an increase in 

the laxity not only because of the missing action of the cut ligajnent but also because of the 

redistributed pattern of forces within the remaining ligaments (Fukubayashi aZ., 1982; 

GoUehon et aZ., 1987; Piziali et aZ., 1980a; Piziah ef aZ., 1980b). 

It is now widely accepted that the ACL is the primary restraint to anterior tibial translation 

(Bendjaballah et al., 1998; Butler et ai, 1980; Gollehon et al, 1987; Markolf et al., 1995, 1990, 

1993; Piziali et al., 1980a, 1980b). This was demonstrated by the isolated resection of the ACL. 

However, the role of the PCL in posterior tibial translation is not well defined and is a 

controversial issue. For example Gollehon ef oZ. (1987) and BendjabaUah ef oZ. (1998) found that 

the PCL is the primary restraint to posterior displacement while Markolf et al. (1976) and Race 

and Amis (1996) found its restraining action moderate. In another study, Markolf et al. (1996) 

reported a minor contribution of the PCL in resisting posterior drawer forces. It was shown by 

Gollehon et al. (1987) and Fukubayashi et al. (1982), among others, that when an anterior force 

was applied to the tibia of an intact knee, an internal rotation of the tibia was produced whereas 

external rotation occurred in the case of a posterior force. Cutting the ACL had the effect of 

eliminating these coupled rotations. Mathematical models of the knee have also been helpful in 

investigating the stiffness characteristics of the knee joint (Andriacchi et oZ., 1983). The 

references given above are cited for sake of illustration but the list is far from being exhaustive. 

FE models are useful in studying complex mechanical systems because they can provide deep 

insights into mechanical characteristics (e.g. resultant force, contact force and the stress 

distribution within the ligaments) which are very difficult or impossible to assess experimentally. 

To the best of my knowledge, no FE model of the knee joint with ligaments modelled as three-

dimensional transversely isotropic hyperelastic structures, has been built in order to carry out 

these particular studies. Pioletti (1997) performed a three-dimensional FE analysis of the ACL 

when the knee is subjected to drawer tests. As this study did not include the PCL, LCL and 

MCL, no attempt was made to quantify the relative restraining functions of the ligaments when 

the knee undergoes anterior-posterior drawer forces. Knowing how each ligament contributes to 

the resisting forces to a particular motion of the knee joint is a key issue in the general 

understanding of knee biomechanics. Moreover, drawer tests are essential in clinical practice to 

assess the existence/severity of a hgament-injured knee (Torg oZ., 1976). In a FE study, 

Bendjaballah oZ. (1998) assessed the passive mechanical response of the knee subjected to 

anterior-posterior forces. Although their three-dimensional knee model included the menisci, the 

modelling of the cruciate and collateral hgaments was shnpliGed. 
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Each ligament was represented by five bundles, modelled as 2-noded uniaxial elements and a one-

dimenaional constitutive law was used. This representation was im likely to capture the complex 

interactions between the bony structures and the ligaments that lead to particular redistribution 

of the stress within the ligaments especially since the model did not include the full geometry of 

the femur and that of the tibia. This had the potential to prevent some contact interactions 

between ligaments and bones to occur and consequently to alter the resultant forces in ligaments. 

Recently, Li et al. (1999) developed a more bio-fidelic three-dimensional finite model of the knee 

that was validated against experimental measurements (anterior-posterior loads at 0 and 30 

degrees of knee flexion) by means of a parametric optimisation procedure. Ligaments were 

modelled as elastic springs obeying a piecewise function as used by Blankevoort and Huiskes 

(1991b). There was therefore no full three-dimensional modelling of the ligaments and their 

interactions with bony structures were not taken into account. 

IX.2 Objectives of Chapter IX 

In the light of the previous literature review concerning three-dimensional finite element models 

of the knee joint, it is clear that there is a definite space for investigative research. Indeed, no 

published Enite element model of the knee joint represents the ligaments as three-dimensional 

continuum anisotropic hyperelastic structures and the bony structures as fuU three-dimensional 

solid bodies. The effect of the three-dimensional contact interactions between the bony and 

ligamentous structures on the mechanical response of the knee subjected to drawer forces has 

therefore never been captured. It appears that a mathematical model of the knee joint which does 

not account for the menisci is capable of reproducing "reasonably well" the laxity of the knee 

joint in anterior-posterior translations performed on a comparable experimental model (i.e, knee 

without menisci) (Mommersteeg et al., 1996a). As the role of menisci was not believed to be 

essential in anterior-posterior drawer tests of the non-load bearing knee joint and because of the 

added complexity, these substructures of the knee were not accounted for in the present 

numerical model. This may restrict the validity of the model to in-vitro conditions. It has been 

hypothesized that the complex contact interactions between ligaments and bony structures of the 

knee may have a significant influence on the effective load-bearing characteristics of the 

ligaments by providing a mechanism partially responsible for the relative distribution of force 

within the ligaments of the knee. 
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The geometry of the insertion sites of ligaments into bones (relative angle between bone surface 

and line of action of the ligament) may also be an important factor because of the anisotropic 

characteristics of the ligaments. Modelling ligaments as three-dimensional transversely isotropic 

hyperelastic structures can therefore highlight particular behaviour missed by considering only 

isotropic mechanical properties. 

Any computational biomechanical model requires experimental validation for obvious reasons. A 

Srst step towards achieving this goal is to make sure that the nmnerical model predicts the 

typical behaviour observed experimentally, firstly in the qualitative domain and secondly in the 

quantitative one. To this effect the main objectives of this chapter are: 

" To confirm that the ACL is the primary restraint to anterior tibial translation. 

" To assess the restraining function of the POL to posterior tibial translation. 

" To confirm that the LCL and MCL are secondary restraints to anterior-posterior 

motions of the knee joint. 

" To demonstrate that the FE model of the knee joint is sensitive enough to pick up and 

simulate reliably an ACL-deficient knee. 

" To investigate the influence of a residual stress present in the ACL with the knee at full 

extension on the anterior-posterior drawer motions when one applies drawer 

displacements to the tibia. 

IX.3 Three-dimensional finite element modelling of the knee joint 

IX.3.1 Geometrical and finite element model of the simplified knee joint 

A solid model of an average human knee was built from a surface description (Viewpoint Digital, 

Draper, UT, USA). The geometry used to create this surface description was taken from a solid 

plastic model of a knee used for medical training. The original file format was DXF, widely used 

in CAD of consumer products and consisted of a collection of quadrilateral surfaces. Using a 

customised program, the file was converted into a format suitable to pass to a structured block 

mesh generator (TrueGrid™, XYZ ScientijSc Applications, Inc., Livermore, CA, USA). 
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Although the initial Viewpoint model included all the substructures within the knee (patella, 

patellar tendon, muscles, menisci...), it was decided to consider only the femur, the tibia, the 

fibula for the bones, the anterior and posterior cruciate ligaments (ACL, PCL) and the lateral 

and medial collateral ligaments (LCL, MCL). Bone surfaces were meshed with 4-noded shell 

elements and described as rigid surfaces whilst the four Hgaments were meshed using 8-noded 

hexahedral elements. Each substructure was meshed independently from the others and a merge 

process was performed within TrueGrid^'^ for building the complete FE model. The FE model 

consisted of 15584 nodes, 2354 sohd elements and 10589 shell elements (Figure IX. 1, Figure 

IX .2 ) . 

a) Femur b) Tibia c) Fibula 

Figure IX.l - Finite element meshes representing the bony structures of the knee joint 

model. The elements constituting the meshes are linear shell elements and are modelled as 

rigid structures. Characteristics of these three FE meshes : a) femur : 4704 nodes and 4663 

elements, b) tibia: 4393 nodes and 4320 elements, c) fibula: 1608 nodes and 1606 

elements. 

As the FE meshes representing the three-dimensional ligament structures were meshed separately 

from the bony structures, it was necessary to use a special approach to connect these non 

congruent meshes together. The last rows of elements composing the ligaments (at the two 

extremities) were assumed to be made of the same rigid material as the bony structures to which 

they attach and also assumed to be part of the same rigid body. This also prevented singularities 

caused by the attachment of a soft deformable structure with sharp edges to a rigid structure. 

The fibula was rigidly attached to the tibia by making it part of the same rigid body as the tibia. 
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Figure IX.2 - Finite element model of the 

complete simplified knee joint. Bony 

structures (femur, tibia, fibula), represented 

with a Gouraud shading rendering, are 

modelled as rigid shell elements whilst the 

four ligaments (ACL, POL, MCL, LCL) are 

meshed with 8-noded deformable hexahedraJ 

elements. The characteristics of the four 

solid meshes are the following : 

ligament nodes elements 

ACL 1406 640 

PCL 1350 792 

LCL 1232 550 

MCL 882 372 

A rigid body, defined as a collection of nodes, is a single body with global inertia properties. The 

distance between nodes belonging to the same rigid body are constant no matter what the 

loading conditions are. A rigid body is defined by a reference point (generally its centre of 

gravity) and its inertia properties that governs its global motions. A nonlinear FE analysis 

involving rigid bodies is computationally cost effective because internal forces of the nodes 

composing the rigid body are not computed although enforcement of kinematic constraints 

require additional computations. 

In PAM-CRASH™, boundary conditions can only be applied to a rigid body at its centre of 

gravity. For this reason, in the various F E simulations performed, the prescribed translational 

conditions were applied to the centres of gravity of the tibia. 
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CAap êr - FE o/ mecAamcoZ beAaviour o/ f/ze AwmoTi /[Tiee jom^ 

IX.3.2 Constitutive models and mechanical properties of knee ligaments 

The incompressible transversely isotropic hyperelastic model described in Chapter V (Equations 

[V.82] and [V.83]) was adopted for the mechanical formulation of the behaviour of the two 

collateral ligaments of the knee. As no data was available for the tensile properties of the LCL, it 

was decided to use instead the data provided by Quapp and Weiss (1998) for the MCL as a Srst 

approximation. In their studies, Quapp and Weiss (1998) performed biaxial testing on MCL 

specimens and their experimental data were fitted to an incompressible transversely isotropic 

hyperelastic law. To describe the mechanical behaviour of the A C L and PCL, the constitutive 

formulation described in section VIII.3.5 was adopted. In this latter section the mechanical 

properties of the ACL were derived in order to fit the incompressible transversely isotropic 

hyperelastic law (Equations [VIII.2], [VIIL3] and [VIII.4]). In a similar manner, not presented 

here, the mechEinicEil properties of the PCL (Pioletti, 1997) were derived to St the same 

constitutive law as the ACL. 

Ligament Data source Ci (MPa) C; (MPa) c, (MPa) C4 C, (MPa) X* 

ACL Pioletti (1997) 1 0 0.3750 22.4198 - -

PCL Pioletti (1997) 1 0 0.1177 40.6023 - -

MCL 
Quapp and 

Weiss (1998) 
4.6 0 2.4 30.6 323.7 1.055 

Table IX. 1 - Material coefficients for the constitutive law defining the 

mechanical behaviour of the ACL and PCL (Equations [Vin.2], [VIIL3] and 

[VIIL4]) and for the constitutive law defining that of the MCL (Equations [V.82] 

and [V.83]). 
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IX.3.3 Contact conditions 

The knee joint is a complex mechanical system where numerous structures interact between each 

other. Examples of these interactioiis are: direct contact between the femur and the tibia through 

the articular cartilage, sliding and warping of ligaments around bones and contact interactions 

between the two cruciate ligaments. In any FE simulation involving contact it is required to 

define, prior to the beginning of the analysis, all potential contact regions. Generally one defines 

a master and a slave zone, the latter being subjected to the action of the former. These two 

zones, forming a contact pair, can be a set of nodes, a set of element edges, a set of element faces 

or any combination of these according to the contact algorithm used. 

Contact algorithms, according to their degree of sophistication, detect all contact zones in the 

predefined spaces where the contacts are assumed to occur. In the present FE model, the 

following contact pairs were considered: 

' tibial platean-femoral condyles: (algorithm: 33) 

" ACL-PCL: (algorithm: 44) 

• ACL-tibial plateau / ACL-intercondylar femoral groove: (algorithm: 44) 

• FCL-tibial plateau / PCL-femoral condyle: (algorithm: 44) 

" LCL-lateral femoral condyle: (algorithm; 33) 

• MCL-medial femoral condyle / MCL-lateral side of the tibia: (algorithm: 44) 

Contact algorithm 33 is a segment-to-segment contact: symmetric contact pairs are defined by 

faces of shell or solid elements. Contact algorithm 44 is a node-to-segment contact with smooth 

contact surface: the master surface is defined by faces of shell or solid elements while the slave 

surface is a set of nodes. In all the FE simulations performed, frictionless contact interactions 

were assumed. As the FE model of the knee joint did not include cartilage surfaces a simple trick 

was used to take into account cartilage thickness at the surfaces of the bones. Bony surfaces were 

defined by rigid shell elements which require the definition of a shell thickness. By playing with 

this parameter it was possible to adjust the uniform cartilage thickness to the desired value 

which was eventually chosen as 2 mm (Walker and Hajek, 1972). 
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IX.4 Simulations of drawer tests at full knee extension 

The objective of this study is to assess the mechanical response of the knee joint when subjected 

to passive anterior-posterior drawer tests. The results of interest are the total resisting force 

developed by the tibia and the resultant forces within the four ligaments of the joint: ACL, PCL, 

LCL, MCL. In order to preserve the joint's natural function during the application of a drawer 

force, the constraints applied to the degrees of freedom characterising the rigid bodies were 

carefully chosen. 

IX.4.1 Case l a - Caselb: intact knee 

It was shown by Andriacchi et al. (1983), using a three-dimensional model of the knee joint, that 

constraining coupled degrees of freedom strongly influenced the force-displacement relationship of 

the knee. An experimental study by Fukubayashi et al. (1982) also highlighted this characteristic. 

Two series of numerical analyses were performed: Case la and Case lb (Figure IX,3). A 

posterior-anterior displacement of 16 mm (Case la) was applied to the tibia with the femur 

completely fixed whilst medial-lateral, proximal-distal coupled displacements, varus-valgus and 

internal-external coupled rotations were set free for the tibia. The test was performed again with 

an anterior-posterior displacement of 16 mm (Case lb) applied to the tibia. Minimal constraining 

conditions were chosen in order to minimise the influence that the point of application of the 

applied displacement may have on the mecheinical response of the knee joint. 

IX.4.2 Case 2a - Case 2b: ACL resected knee 

The analyses for Case l a and Case lb were repeated by simulating a total ACL resection. This 

was easily done by removing the ACL and all its associated contact pairs from the FE model. 

These tests were performed to conSrm the primary role of the AOL in resisting anterior motion 

of the tibia relative to the femur and to assess its function in posterior motion of the tibia. 

IX.4.3 Case 3a - Case 3b: influence of residual stress the ACL during simulated 

drawer tests of the knee at full extension 

As suggested in the previous chapter concerning the ACL, it is relevant and certainly worthwhile 

to investigate the role of residual stress in knee ligaments when the knee is subjected to other 

motions than passive flexion, i.e., drawer tests at full extension. 
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A series of two numerical tests was designed in order to study the way residual stresses in the 

ACL (with the knee fully extended) can affect the displacement of the tibia relative to the femur 

and how the forces are redistributed within each of the four knee ligaments when the ACL is pre-

stressed. Cases 3a and 3b are identical to cases la and lb at the exception of an additional 

condition concerning pre-tension in the ACL at the beginning of the analysis. The equivalent 

force generated by this pre-tension was 135 N as described in the previous chapter (section 

vm.3 .6y 
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Case z(a) - (i = 1, 2, 3) Case i(b) - (i = 1, 2, 3) 

Figure IX.3 - Schematic representation of the two types of drawer tests performed on 

the F E model of the knee joint (viewed from the medial side). X,y, axe 

respectively the translational and rotational degrees of freedom of the centres of 

gravity of either the tibia or either the femur. Convention for the degrees of freedom 

axe: fixed / a bar symbol: prescribed / no symbol: free. Each loading case is 

subdivided in to three subcases : 1 = intact knee; 2 = ACL-deficient knee and 3 = 

intact knee with an initial stress present within the ACL at full knee extension. 
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Y direction O 
Z direction 

X direction 

Anterior 

Posterior side 

Figure IX.4 - Top view 

of the FE knee joint 

model. The first structure 

on the foreground is the 

femur. The X, Y and Z 

axis are respectively 

defined as the lateral-

medial, distal-proximal 

and posterior-anterior 

axes. Rotations around X, 

Y, Z define respectively 

the flexion-extension, 

external-internal and 

varus-valgus rotation 

axes. 

Z direction O 

Y direction 

Proximal side 

X direction 
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Figure IX.5 - Anterior view of the 

FE knee joint model. The X, Y and Z 

axis are respectively defined as the 

lateral-medial, distal-proximal and 

posterior-anterior axes. Rotations 

around X, Y, Z define respectively 

the flexion-extension, external-

internal and varus-valgus rotation 

IX.4.4 Computational aspects 

The F E simulations were performed over a total physical time of 100 ms. Displacement curves 

were smoothed by a fifth order polynomial form in order to obtain a quahty quasi-static solution 

as discussed in section VIII.3.3. The simulations were ran on a dual-processor Pentium® III PC 

clocked at 933 MHz (equipped with 1024 Mbytes of RAM) and the CPU time required for each 

FE analysis was about six hours. This is extremely economic compared to implicit FE analyses 

which have a higher cost per time step. The explicit analyses involving finite deformations and 

complex contact interactions are also more robust than implicit solving techniques. The average 

time step for the F E analysis was in the order of 0.49 pa. 
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Table IX.2 presents a breakdown of the characteristics of a typical FE analysis simulating 

anterior-posterior motions of the knee joint at full extension. 

CPU(SEC) SYS(SEC) PCT 

INITIALIZATION PHASE 5 .156E-01 3, .125E-02 0 .00 
INTERNAL FORCES 1 .066E+04 3, .547E+00 50 .38 
TIME INTEGR, FRAME UPD 7 , .313E+03 4 , .906E+00 34 .56 
I/O TO TAPES 2,4,5 7 , .908E+01 6. .662E+01 0 . 69 
CONTACT ALGORITHM 9, .842E+02 3. ,078E+00 4 . 66 
DISPLCT AND VELOCITY BC 3. ,919E+01 3. ,281E-01 0 .19 
NODAL CSTR, RB, RW 2. ,014E+03 2. ,828E+00 9 .52 

TOTALS 2 .109E+04 8 .134E+01 100.00 

ELAPSED TIME 2. .148E+04 
RATIO CPU/ELAPSED TIME 9. 820E-01 

IX.5 

Table IX.2 - Computational aspects of a 100 ms (physical time) explicit finite 

element analysis simulating the mechanical behaviour of the knee joint under 

anterior-posterior forces. PCT means percentage of the total computational effort. 

Results and discussion 

For each FE analysis anterior-posterior displacements of the tibia (defined by its centre of 

gravity) were plotted versus the variation of the reaction load: Figure IX.6 and Figure IX. 10 for 

Cases 1-2 and 1-3. Resultant forces within each single ligament at special drawer displacements 

(4, 8, 12 and 16 mm) are represented on Figure IX,8, Figure IX.9 and 

Figure IX.ll respectively for Cases 1-a-b, 2-a-b and 3-a-b. 

To ascertain the validity of the computations, equilibrium of forces and moments (ligament 

forces, contact forces and force applied) were checked and were found to be satisfactory. 

IX.5.1 Results for Cases la , lb , 2a and 2b. Effects of ACL resection 

The forces show a general nonlinear response of the knee when subjected to anterior-posterior 

displacement as reported in other studies (Bendjaballah et al., 1998; Fukubayashi et al, 1982). 

This shows that there is a progressive recruitment of the ligamentous structures as the structure 

is drawn anteriorly and posteriorly. The nonlinear mechanical properties of ligaments are 

responsible for this but also the initial geometry of each of the ligaments in the FE model of the 

knee and the geometry of the femoral/tibial articular surfaces. 

156 



Chapter IX - FE simulation of the mechanical behaviour of the human knee joint 

IX.5.1.1 Force-displacement results 

The anterior and posterior forces acting on the tibia (intact and ACL-deficient knee) exhibit the 

typical nonlinear stiffening response of the knee subjected to anterior-posterior displacement 

(Figure IX.6). This is explained Srstly by the initial geometry of the ligaments as they are not 

necessarily tense prior to the application of the drawer load and secondly by the nonlinear 

mechanical characteristic of ligaments whose stiffness increases with deformation. At the 

beginning of the application of the tibial displacement there is virtually no resistance (the current 

model does not include menisci or capsular structures) in the free motion of the tibia. As the 

displacement of the tibia increases and so the reaction load, the ligamentous structures get 

recruited and develop resisting forces which tend to increase with the stiffness of the joint. 

It appears that the quantitative response of the tibia to drawer force is sensitive to the direction 

of the drawer force: applying the load in the anterior-posterior direction is different from applying 

in the posterior-anterior direction as reported in Bendjaballah et al. (1998) and implicitly implied 

by the experimental results from Fukubayashi aZ. (1982). In this FE model, the mechanical 

response of the knee is much stiffer in the anterior direction than in the posterior direction. This 

is primarily due to the initial geometry of the PCL which, unlike the ACL, has its (collagen) 

fibres running in a direction less aligned with the orientation of the drawer load. This geometrical 

conGguration is such that the PCL coUagen Gbres are not stretched along their natural axis and 

thus provide a low resisting force. Although the tibial insertion site of the PCL displaces 

significantly with the tibia, the PCL is not stretched sufficiently to produce a large resisting 

force. 

At 50, 100, 150, 200, 300 and 400 N anterior tibial drawer load the displacement of the tibia are 

respectively 4.5, 7.65, 9.5, 10.98, 13 and 15 mm whilst a 16 mm posterior displacement of the 

tibia generates a resisting force of only 73 N. 

Due to the numerous differences existing in the experimental or numerical protocols reported in 

literature, a large variability is found regarding the magnitude of the tibial displacements at a 

given load. It appears that constraining coupled motions during drawer tests leads to a much 

stiffer response of the knee joint (Butler et al., 1980; Fukubayashi et al., 1982; Markolf et al., 

1976; Piziali et al., 1980b). Piziali et al. (1980b) reported anterior tibial displacements varying 

between 4.7 and 7.7 mm under forces ranging from 500 to 590 N. Fukubayashi et al. (1982) 

noted an increase of 30 % of tibial laxity when the tibia was free from rotational constraints 

along its principal axis. 
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Figure IX.6 - Force-displacement curves for Cases la, lb (intact knee), 2a and 2b (ACL-

deficient knee). A 16 mm displacement is applied to the tibia in the posterior-anterior 

direction (Case ia) and in the anterior-posterior direction (Case tb). The femur is 

constrained in all degrees of freedom whilst the tibia is constrained only in the rotational 

degree of freedom around the X axis (axis of flexion of the knee). The resisting force is the 

absolute magnitude of force measured at the centre of gravity of the tibia. 

This was implicitly confirmed by Bendjaballah et al. (1998) who observed a 35 % decrease in 

tibial laxity when the tibia was prevented from rotating zilong the internal-external rotation axis. 

Using comparable boundary conditions to the present model, for the various drawer tests, 

Bendjaballah et al. (1998) found the following values respectively for an anterior and a posterior 

drawer test applied to the tibia (400 N force): approximately 5 and 4.2 mm for tibial 

displacements. When considering femoral drawer forces, these authors found displacements of 

approximately 4.1 and 5 mm, respectively for anterior and posterior forces. Results from an 

experimental study performed by Fukubayashi et al. (1982) showed that, at full extension, a 100 

N force applied anteriorly to the tibia produces a 5 mm displacement while this displacement 

increased to 6 mm when the force is applied in the posterior direction. Butler et al. (1980) and 

Race and Amis (1996) applied drawer displacements to the tibia and measured the restraining 

forces generated. With the knee at 30 degrees of flexion, Bntler oZ. (1980) found that 5 mm 

displacements applied to the tibia in the anterior and posterior directions developed forc^ of 

respectively 333 and 331 N. It is worthy noting that the coupled motions were not allowed to 

occur. 
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Allowing for coupled motions of the tibia, Race and Amis (1996) reported displacements of about 

2, 4 and 6 mm when the tibia is subjected to posterior drawer forces of respectively 40, 100 and 

210 N with the knee at 0 degree of flexion. Bendjaballah et al. (1998), Fukubayashi et al. (1982), 

Gollehon et al. (1987) and Levy et al. (1982) reported tibial displacement values of about 2.1, 5, 

4.5, 3.4 mm at 100 N tibial anterior drawer force and 1.7, 4, 5, 3.6 mm at 100 N tibial posterior 

force, respectively, with the knee at full extension. At 100 N of tibial drawer forces, the FE model 

produces much higher values, 7.65 (at 100 N of tibial drawer force) and 16 mm (at 73 N of tibial 

drawer force) respectively for anterior and posterior motions. For 200 and 300 N drawer forces, 

values of anterior tibial displacement were found to be 10.9 and 13 mm [3.1 and 4.1 mm in 

Bendjaballah et al. (1998)] for anterior motions. A 16 mm posterior displacement of the tibia in 

the model used in the present study produced a 73 N knee resisiting force and therefore it is not 

possible to compare our results with Bendjaballah et al. (1998) who found posterior displacement 

of 2.6 and 3.6 mm respectively at 200 and 300 N tibial loads. T h e high values of displacement 

found in our F E model are largely explained by the fact that the F E model did not include the 

postero-lateral capsules and the menisci. The geometry of the ligaments is essential as it 

conditions the laxity of ligaments and the orientation of the stiff collagen fibres. The mechanical 

response of a transversely isotropic structure whose anisotropic direction offers a much stiffer 

response that in the plane of isotropy, will vary significantly according to the direction of load. In 

consequence, it is essential to keep in mind all of these factors play an important role. 

Cutting the ACL clearly decreases the stiffness of the joint in the anterior drawer test as 

demonstrated on Figure IX.6. For a given amount of anterior displacement, the resisting force 

developed by the tibia was much lower in the case of the ACL resected knee because the normal 

major resisting contribution from the ACL is no longer available. A clear illustration of this is 

given in Table IX.3 where one can see that resection of the ACL leads to an over three times 

bigger displacement for a given 50 N anterior drawer load (reaction load). 

Displacement (mm) Variation (%) 

50 N tibial load Intact knee ACL resected -

PA force to the tibia 4.5 15.1 235.5 

AP force to the tibia 13 11.4 -12.39 

Table IX.3 - Anterior-posterior (AP) and posterior-anterior (PA) displacements 

of the tibia under a 50 N drawer load at full extension of the knee. Results are 

given for an intact and ACL-deficient knee. The percentage of variation of 

displacement between the two models is also presented. 
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In posterior motion, for the same reaction load (50 N), the tibial displacement decreases by 12.4 

% when the ACL is resected. As a consequence of ACL resection, the stiffness of the knee joint 

increases in posterior drawer test. At 16 mm of posterior tibial displacement, the corresponding 

tibial force is 185 N whilst for the intact knee this value is only 73 N. This observation is 

explained by the fact that after ACL resection, the proximal-distal and medial-lateral motions of 

the tibia are altered aa shown on Figure IX.7. From 0 to 2 mm and from 8 to 16 mm of posterior 

tibial displacement, the tibia is pulled apart from the femur in t h e vertical direction (Y axis) 

whilst from 2 to 8 mm displacement the trend is reversed. As the two bony structures are pulled 

away from each other, this has the effect of stretching the P C L and the LCL in greater 

proportions than for the case of the intact knee where the magnitudes of displacement are 

smaller and where the shifts of proximal-distal displacement directions appear at different values 

of posterior tibial displacement. From 0 to 8 mm of posterior tibial displacement, the tibia 

displaces laterally about 3 mm where it remains in this lateral position until 13 mm of posterior 

tibial displacement and then displaces back in the medial direction. For the intact knee, the 

maximum lateral displacement reached only 2.5 mm. 

I 

& .a 

o 
O 

• Lateral -medial (intact knee) 
• Proximal-distal (intact knee) 
• Lateral -medial (ACL deficient knee) 
• Proximal-distal (ACL deficient knee) 

Medial (X>0) 

Proximal (Y>0) 

Lateral (X<0) 

Distal (Y<0) 

Anterior-posterior displacement of the tibia (mm) 

Figure IX.7 - Coupled displacements of the tibia with respect to the posterior tibial 

displacement for Cases lb and 2b (intact and ACL resected knee). T h e femur is constrained 

in all degrees of freedom whilst the tibia is constrained only in the rotational degree of 

freedom around the X axis (axis of flexion of the knee). 
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These observations clearly exhibit the fundamental mechanical interactions played by the 

hgaments within a knee joint. Removal of the ACL suffices to reorganize the force balance in the 

other ligaments and by doing so alter the coupled motions of the tibia. In the case of the intact 

knee subjected to posterior motion (Case lb), the ACL buckles and is in a state of compression 

along its collagen fibre directions as will be discussed later in section IX.5.L2. This particular 

mechanical configuration appears to restrict the range of proximal-distal displacement of the tibia 

during the posterior drawer test. From these results it is clear tha t complex interactions occur 

and produce some non intuitive phenomena. This is a good example of the advantage offered by 

a three-dimensional finite element model of the knee joint over, for example, a two-dimensional 

finite element model. In fact, it can capture some particular effects that would be missed 

otherwise. 

IX.5.1.2 Results for Cases la, lb, 2a and 2b. Forces in ligaments 

Figure IX.8 presents the resultant force within each of the knee ligaments for Cases la and l b 

(intact knee) while Figure IX.9 presents the resultant forces within the PCL, LCL and MCL for 

Cases 2a and 2b (ACL resected knee). 
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Figure IX.8 - Total resultant forces within the four ligaments of the knee (PCL, MCL, LCL, 

ACL) with respect to the drawer displacement applied to the tibia (Cases 1-a-b). 
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Figure IX.9 - Total resultant forces within the three Hgaments of the knee (PCL, MCL, LCL) 

with respect to the drawer displacement applied to the tibia when the ACL has been resected 

(Cases 2-a-b). 

Figure IX.8 and Figure IX.9 show a large disparity for the values of resultant force in the 

hgaments according to the type of drawer motions performed and the magnitude of displacement 

applied. As expected, applying an anterior displacement to the tibia develops forces in the ACL 

such that this hgament carries the largest force (respectively 458, 241, 123 and 46 N at 

respectively 4 , 8 , 1 2 and 16 mm of anterior tibial drawer displacement). The MCL appears to be 

the major restraining hgament after the ACL, carrying up to 53 N of the drawer load at 12 and 

16 mm of tibial anterior displacement. The distinct mechanical properties of the ligaments 

probably play an important role in this fact and it is believed that this is amphfied by size 

effects; the MCL is the largest ligament. For the range of displacement considered it is interesting 

to note that the resisting forces in the MCL, LCL and PCL are bounded superiorly (about 53 N) 

after a certain degree of tibial displacement has been reached (12 mm). The ACL is then the only 

ligamentous structure that has its total force increasing. It is worthy to note that the total 

resultant force in a hgament accounts for its stretch, shear and compression and its contact 

interactions with the other substructures of the knee. During the anterior tibial drawer test, the 

ACL bears the maximum force compared to the other knee ligaments. At 16 mm displacement 

the ACL provides 84 % of the resisting action. This confirms t h e largely accepted view of the 

primary restraining function of the ACL (Bendjaballah et al., 1998; Butler et al, 1980; Gollehon 

et al., 1987; Markolf et al., 1995, 1990, 1984, 1976, 1993; Nielsen et al., 1984; Piziali et al., 1980a, 

1980b). 
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At 100 and 200 N anterior tibial forces, the total resultant force in the ACL was found to be 

respectively 162 and 293 N by Bendjaballah et al. (1998) in their FE model, 150 and 210 N in 

experimental studies by Markolf et al. (1995, 1990). These values contrast with the ones obtained 

in the present FE model (respectively 109 and 200 N) that could be explained by the initial 

configuration of the knee joint, the initial geometry and mechanical properties of the ligaments as 

well as the contact interactions between ligamentous and bony structures. Although lower, these 

values are of a similar order of magnitude aa those reported in the literature. Moreover, the FE 

analyses were carried out by assuming no residual stresses in ligaments. As shown and discussed 

in Chapter VII and Chapter VIII, this could affect the results. As expected, the action of the 

PCL was minor in anterior drawer of the tibia and the action of the LCL was also minor 

compared to that the MCL at 8 and 16 mm displacement. 

However, the expected effect for the primary action of the PCL in resisting anterior-posterior 

tibial force was observed only in the case of a posterior tibial displacement exceeding 20 mm. 

This was conducted on another analysis not reported here. The initial geometrical configuration 

of the ligaments and that of the bony structures can offer a valid explanation for the high laxity 

of the joint in the posterior direction as discussed in the previous section. This means that the 

tibia is relatively free to move in the posterior direction before significant forces are generated 

within the knee ligaments. The maximum resultant force was found in the ACL. Although 

counterintuitive, this result may be explained by the fact that as the posterior drawer load 

progresses the ACL buckles in a way that the collagen fibres undergo compression along their 

axis, becoming lax, and thus do not contribute to the stiffness of this ligament. The load taken 

by the ACL is therefore generated only by the deformation of the highly compliant solid matrix 

and not by stretch of the collagen fibres as would happen during anterior motion of the tibia. 

This was verified by running another FE analysis and considering the material of the ACL was 

made only of the matrix without the anisotropic characteristics introduced by a fibre 

contribution. The results of the analysis were virtually identical to those of the first FE analysis 

and thus confirmed this finding. The high values observed for the force in the ACL are simply 

due to the particular mechanical properties assumed for the matrix combined with the geometry 

of the model. The ratio of the size (volume) of the two cruciate ligaments probably plays a 

significant role in the observations. 
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For the posterior tibial motions, the MCL and LCL appear to offer comparable restraint of up to 

23 N for a total tibial load of 73 N. The minor action of the PCL (9.8 % of the total resisting 

force at 4 mm tibial displacement) steadily increases as compared to the action of the other 

ligaments and represent about 22 % of the resisting action at 16 mm. If the displacement is 

increased (as performed in another FE analysis not reported here) the action of the PCL becomes 

the major restraint as would be intuitively expected. However, this magnitude of displacement is 

unphysiological and the response to this finding is again a question of initial geometry and 

mechanical properties assigned to the current FE model. The 17 N resultant force within the 

PCL under 73 N drawer force in posterior tibial motion is in line with the results of Markolf et 

al. (1996) who measured a 16 N force within the PCL under a 100 N drawer tibial load. 

In the ACL-deficient knee, as described in the previous section, the resisting tibial force 

developed in anterior motion is significantly lower than for the intact knee for the same given 

amount of displacement. The absence of the ACL redistributes the load in the remaining 

ligaments while also increasing the knee laxity. These two phenomena are interrelated. For 

example, during anterior drawer tests the LCL bears the maximum force (28 N) at 16 mm 

drawer displacement that contrasts with the same boundary conditions in the case of the intact 

knee (Figure IX.8-a) where the maximum load (after the ACL) is taken by the MCL (53 N) 

while the LCL bears a force of only 14 N. The general results of the FE computations highlight 

again the complex mutual interactions operating between ligaments and bones within a knee 

joint. 

It is worthy to note that the magnitude of force in any single ligament does not exceed 28 N for 

the whole displacement range (0-16 mm). Although much less bulky than the MCL (MCL and 

LCL were also assigned identical mechanical properties in the FE model), the LCL bears similar 

loads as the MCL. The natural initial conSguration of the knee joint at full extension (see Figure 

IX.4) and the particular orientation of the LCL where it inserts into bone make it prone to 

produce high shear forces at these locations. 

When compared to Case lb (intact knee), the resection of the ACL for posterior motion of the 

tibia (Case 2b) significantly altered the resultant force in the collateral ligaments and in the 

PCL. At 16 mm posterior tibial displacement the forces in the MCL, LCL and PCL have 

increased respectively from 13 to 19, from 23 to 104 and from 18 to 67 N. 
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The mechanism observed is probably due to the way the missing ligament affects the natural 

balance of forces in the remaining ligaments. Prior to 10 mm of posterior tibial displacement, the 

force in the PCL, MCL and LCL are not significantly different when one compares the intact and 

ACL-deficient knee but beyond this value the ACL-deficient knee seems to have a stiffer response 

in the posterior direction as the forces in the PCL and LCL increase significantly. The absence of 

the buckling (compressive) force of the ACL relieves significantly the constraint put on the femur 

and the tibia, leaving room to the PCL to extend in larger proportions. 

IX.5.2 Results concerning the influence of initial stress within the ACL. 

IX.5.2.1 Force-displacement results 

The significant influence of a residual stress in the ACL at full knee extension is clearly exhibited 

on Figure DC. 10 when the developed forces are compared with Cases 1-arb (no initial stress at full 

knee extension). As the pre-stretch of the ACL is performed along its fibre directions at full knee 

extension, the component of the force (135 N) along the anterior-posterior axis is not equal to 

135 and has indeed a lower value. The contribution of the initial force within the ACL to the 

global stiffness of the joint in anterior-posterior motion is therefore reduced. For a given anterior 

displacement of the tibia, the resisting force developed by the tibia is greater when the ACL is 

pre-stressed. This is of no real surprise along with a comparable shape of the curves means that 

the stiffness of the joint are not significantly different in both cases. 

As a result of the existence of a pre-stressed state within the ACL the posterior motion of the 

tibia is altered in a such way that the restraint force of the knee initially decreases until 4 mm of 

displacement where the resisting force starts to increase again. As described in sections IX.5,1.1 

and IX.5.1.2, during posterior motion, the ACL buckles and no mechanical contribution is 

provided by its fibres. As shown in section VII.5.1.2, the behaviour of the soft tissue structure in 

these particular conditions is a highly nonlinear phenomenon tha t may affect erratically the 

deformed shape of the structure and so its stress field and ultimately the forces it transmits to 

the bony structures. This provides an explanation for the irregular variations of the reaction 

forced developed by the tibia in posterior motion. 

The existence of a residual stress within the ACL induces smaller anterior displacements. For 

example at 100 N anterior drawer load the tibia displaces of 5.32 m m whereas this value reaches 

7.65 mm when the knee is completely stress-free at fuU extension (see -Table IX.4). 
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Figure IX.10 - Force-displacement curves for Cases la, lb, 3a and 3b. A 400 N force is 

applied to the tibia in the posterior-anterior direction (Case ia) and in the anterior-

posterior direction (Case ib). The femur is constrained in all degrees of freedom whilst 

the tibia is constrained only in the rotational degree of freeom around the X axis (axis of 

flexion of the knee). Cases 3a and 3b correpsond to a knee where there is 135 N force 

present in the ACL at full knee extension The resisting force is t he absolute magnitude of 

force measured at the centre of gravity of the tibia. 

This compares well with the results obtained by Fukubayashi et al. (1982) who found an anterior 

displacement of 5 mm when the tibia is subjected to a 100 N load. Once again, this highhghts the 

relevance of including the initial stress in ligament models. As explained above, the effect of the 

pre-stretch in the ACL for posterior motion is not as straightforward as that on the anterior 

motion. At the particular value of 50 N posterior drawer load the stress-free ACL knee displaces 

of 13 mm while it only displaces of 12.4 mm for the other case (Case 3b). 

Displacement (mm) Variation (%) 

Case 1 Case 3 -

100 N PA force to the tibia 7.65 5.32 -30.5 

50 N AP force to the tibia -13 -12.4 4.6 

Table IX.4 - Anterior-posterior (AP) and posterior-anterior (PA) displacements 

of the tibia under 400 N drawer loads at full extension of t he knee. Results are 

given for Cases 1-a-b and Case 3-a-b as well as their relative variations. 
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Pre-stressing the PCL would probably have a particular effect on the mechanical response of t h e 

knee subjected to posterior motion, not only by redistributing the load in the other hgaments b u t 

also by stiffening the PCL. Similarly, considering pre-stress in t he collateral ligaments would be 

likely to alter their behaviour. 

IX.5.2.2 Results for Cases 3a and 3b. Forces in ligaments 

Resultant forces developed in the four knee ligaments are represented on 

Figure IX.ll. Although the initial force in the ACL equals 135 N at the beginning of the F E 

analysis, several iterations are required to make the whole mechanical system (bony and 

ligamentous structures) reach a state of equilibrium. This has the effect of rebalancing the forces 

in the other ligaments. Moreover, the direction of the pre-stress force within the ACL is not 

directed along the anterior-posterior direction and this explains why the resisting force to drawer 

displacement does not equal 135 N at the origin of the tibial drawer displacements (Figure 

DC.IO). 
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Figure IX. l l - Total resultant forces within the four ligaments of the kne (PCL, MCL, LCL, 

ACL) with respect to the drawer displacement applied to the tibia when a residual stress field 

(equivalent to a force of 135 N) is present within the ACL at full knee extension 

The existence of a residual stress in the ACL at full extension clearly increases the total force in 

this ligament for anterior tibial drawer test. When, for Case la , the forces in the ACL were 45, 

123, 241 and 458 N, respectively at 4, 8, 12 and 16mm tibial displacement (Figure IX.8-a), these 

values are 92, 163, 361 and 498 N for Case 3a. 
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The difference in force magnitude between the two cases appear to reduce as the tibial 

displacement progresses because the load borne by the ACL is progressively "shared" with the 

other ligaments. The particular geometrical characteristics of the ACL at its femoral insertion 

combined with the application of an initial pre-stretch at full extension place specific restraining 

constraints on the femur and modify consequently the load balance within the knee joint. In the 

posterior tibial drawer simulations the forces developed in the ACL are lower than Case lb (no 

residual stress in the ACL) as well as the force within the PCL. This effect has again to be 

considered in the light of multi-body coupled mechanical system where force in one ligament may 

affect significantly load in another and so the global response of the system. Application of a pre-

stretch to the ACL has the effect to close the joint leading to a slackening of the collateral. 

IX. 6 Discussion 

A three-dimensional nonlinear FE model of the knee joint including a full three-dimensional 

representation of the ligaments hag been proposed. The novelty of the model lies in a more 

accurate and realistic geometry of the ligaments and the bony structures (femur, tibia and fibula) 

coupled with a realistic three-dimensional constitutive law for soft connective tissue structures 

based on an incompressible transversely isotropic hyperelastic strain energy density and the 

capability to enforce all potential three-dimensional contact interactions. No similar model has 

been previously reported in literature. The FE model has aUowed for the examination of the 

restraining functions of each of the ligaments when the knee is submitted to anterior-posterior 

drawer displacements. 

The influence of residual stresses existing in the ACL on the biomechanical response of the joint 

was also assessed. The simulation of an ACL resection was helpful in identifying its effects on the 

global stability of the knee joint and thus in assessing the functional role of the ACL as a 

substructure of the knee in anterior-posterior drawer displacements. The F E model presented is 

therefore a very promising tool that grants access to some data unavailable by other methods. 

Among numerous authors, Cabaud (1983) established that the ACL is the predominant restraint 

to anterior tibial displacement and reported 75 % of anterior force at full extension and 

approximately 85 % at 30 and 90 degrees of flexion. Piziali aZ. (1980a, 1980b) performed 

cadaveric studies and showed that the AOL carried 87% of the total load when an anterior 

translational force was applied to an extended knee. In the present F E study, this percentage is 

variable, tending to increase as the magnitude of the anterior displacement increases. 
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In this study, it was found that at 400 N and 440 N applied anterior tibial force the ACL carried 

respectively 73 and 84 % of the applied load. In general, the results agree with the observations 

of these authors. 

Given the much higher stiffness of bony structures over ligamentous tissues, the femur, tibia and 

fibula have been modelled as rigid bodies, thus speeding up the FE computations. Articular 

cartilage layers were intrinsically defined by specifying an appropriate shell thickness for the rigid 

bodies surfaces. However, due to this modelling strategy, these layers were assumed to be 

undeformable. It is believed that for non load-bearing motions of the knee joint, deformations of 

the cartilage are negligible with regards to their influence on the kinematics of the knee joint and 

therefore the cEirtilage layers can be considered as rigid for the present study. 

The menisci have not been included in the FE model because it was thought that their influence 

was negligible in relation to the anterior-posterior motions of the passive knee. This is indeed a 

controversial issue as, for example, the work of Levy et al. (1982) and Markolf et al. (1976) 

testify. The former authors have found no effect on the primary laxity of a knee having 

undergone a medial meniscectomy while the latter authors observed a 43 % increase in Einterior-

posterior laxity of the knee. However some studies have hypothesized that menisci become a 

significant resisting factor in posterior-anterior drawer of the tibia in ACL-deficient knee (Levy et 

al., 1982; Schoemaker and Markolf, 1986). The assumed negligible role of the menisci in the FE 

model was consistent as long as the forces in ligament remained small because the action of the 

ligaments would have generated minimal compressive loading of the femur relative to the tibia. 

However, as shown in the results concerning the resultant force within the ligaments, the high 

values found have invalidated the initial assumption putting therefore a limitation to the present 

model. 

Capsular structures were not modelled due to the lack of geometrical and material data. 

Limitations of the multi-contaict capability of PAM-CRASH^^ associated with numerous 

kinematic constraints (rigid body) would have also been an issue in modelling these structures. 

The inclusion of menisci and capsular structures would have most probably rendered the FE 

model of the knee joint much stiffer in the anterior-posterior direction. 

The general results of the different FE analyses (Cases 1, 2, 3) have shown that the multi-parts 

nature of the knee joint makes it prone to very complex mechanical interactions the 

interpretation of which is sometimes difGcult to appreciate. 
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The results of the FE analyses are very dependent on the boundary conditions and the 

mechanical properties of each substructure of the model. This may explain the difference of some 

of the results with data available in the experimental or mathematical modelling literature such 

as the fact that the PCL is not found to be the primary restraint in posterior motions of the tibia 

as discussed in section IX. 1. High buckling forces have been found in the ACL during posterior 

motion. This result could be explained by the fact that the mechanical properties of ligaments 

used were extracted from different studies and hence different specimens. In section IX.5.1.1, it 

was shown how the deformation of the ACL generated stresses only in the matrix part of the 

continuum. High stresses in the matrix were due to the particular possibly too high mechanical 

properties used (Ault and Hoffman, 1992a) combined to a possible too large geometry of the 

ACL. The high stress values in the matrix were responsible for the high resultant force within the 

ACL. 

The mechanical properties used for the ACL may have created a mismatch with the geometry of 

the ACL used in the FE analyses where size effects could result in the observations described 

above. In the model used in the present study, the definition of the anterior-posterior axis (Z 

axis) corresponds to the true anterior-posterior axis of the tibia but is not perpendicular to the 

transepicondylar axis of the femur. The orientation of this axis and the length and tensile 

properties of ligEiments is the mechanism primarily conditioning the rotation of the tibia. A slight 

shift in this direction may have significant impact on the resultant rotations and so the anterior-

posterior displacements. More importantly, the FE model of the knee joint has accounted for the 

arbitrary complex interactions occurring between the ligaments and the bony structures, thus 

capturing mechanical features unavailable when using simplified models for the ligaments. 

Although not investigated in the present study, the extent of these mechanical features and the 

influence that the contact interactions may have on the kinematic characteristics of the knee can 

be readily studied within the framework of the developed FE model. 

The mix of mechanical properties for ligaments obtained from different experimental acquisitions 

performed on different specimens may not reflect the natural balance of the properties of each 

ligament within the same knee joint. It could be hypothesized that , for a given knee joint, there 

exists a relationship between the relative mechanical properties of the ACL, PCL, MCL and 

LCL. This is an issue worth investigating in the future. Interdependence of the ligaments is 

essential in knee stability and may be linked to remodelling phenomena (Hayashi et at, 1996). 

However, a question remains: remodelling, cause or consequence? 
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Rigid bodies are only allowed to rotate around their centre of gravity and this could be the major 

factor influencing the results obtained from the FE analyses. Although not reported in detail in 

the present work, coupled rotations of the tibia were observed. For example, when an anterior 

force is applied to the tibia, by reaction to the kinematic constraints of the ligaments and those 

at the centre of gravity of the tibia, an internal rotation of the tibia is generated. Displacing the 

centre of gravity of the tibia will definitely modify the mechanical response and especially the 

rotational response of the knee joint. The relative positions of the centre of gravity of the tibia 

and that of the femur also dictate the characteristics of the coupled torques produced. In the FE 

model, the ACL inserts anteromedially in the tibia with respect to the axial tibial axis (collinear 

to the Y axis and passing by the centre of gravity of the tibia). Due to this configuration, the line 

of action of the force exerted by the ACL during an anterior motion of the tibia is likely to 

generate the observed internal rotation of the tibia. 

Similarly, the PCL inserts posterolateral^ with respect to the axial tibial axis leading to an 

external rotation of the tibia during a posterior displacement of the tibia. 

It is also important to keep in mind that, in some circumstances, the motion of the knee joint 

may be driven more by surface constraints (articular surfaces) than by ligaments restraints. 

Although realistic, the geometric model of the knee used for the F E analyses had some possible 

limitations such as the geometry of the ligaments at full knee extension. In fact, this 

configuration probably does not represent the natural anatomical state (shapes and so residual 

stresses, and orientation at the insertion sites) at full extension. 

Moreover, the model has also been shown to be too lax in anterior-posterior drawer test, 

particularly for posterior displacements. The geometrical characteristics of the knee joint model 

are believed to be the major factor that explains these observations. 

The present computational study has highlighted the sensitivity of the knee joint model to the 

boundary conditions applied and it is therefore important to interpret the various results 

obtained within a set of specific conditions. However, the FE model built was a first step toward 

more accurate models and was helpful in the development of a robust modelling tool that carries 

promising prospects for the future. 
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IX.7 Concluding remarks 

The study presented in this chapter has shown that a simphfied three-dimensional nonlinear 

Gnite element knee joint model can represent some essential mechanical characteristics of the 

joint subjected to anterior-posterior displacements. The inclusion of accurate three-dimensional 

constitutive modelling of ligaments has allowed us to integrate their physiological mechanical 

behaviour in combination with arbitrary complex contact bomidary conditions developed with 

the bony structures. The objectives defined in section IX.2 were fulfilled. Results obtained in 

section IX.5.1 have led to the following conclusions: 

• The ACL is effectively the primary restraint to anterior tibial translation. 

• The PCL was not shown to be the primary restraint to posterior tibial translation 

except for extreme value of drawer displacement (over 16 mm) which unfortunately are 

not physiological. These findings are directly related to the geometry of the finite 

element model and the set of mechanical properties used. 

• In all the drawer tests considered, the LCL and MCL provide secondary restraints to 

anterior-posterior motions of the knee joint. 

The effects of ACL resection have been clearly exhibited in the finite element analyses and this 

has again highlighted the potential of computational methods to simulate orthopaedic 

pathologies. 

Influence of residual stresses present in the ligaments of the knee at full extension on the 

anterior-posterior drawer motions when one applies drawer forces to the tibia or to the femur has 

been investigated in sections IX.5.2 and be proven to be signihcant. 

The relative proportion of residual stress in each ligament is probably a major factor in the 

ligament balance of the knee in various configurations and is critical for the stability of the knee 

for specific motions. The present study has been done in the context of simple anterior-posterior 

drawer forces and it is imperative to be cautious and not to extrapolate the results when 

considering other types of motions when the various effects observed may be reduced or 

emphasised. 
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The FE model developed here is a first step towards more sophisticated models which will be 

more bio-fidelic (inclusion of capsular structures, non uniform thickness of cartilage layers...) and 

will be used to simulate other kinds of motions such as gait in normeil, pathological and repaired 

(after partial or total knee replacement) conditions, stair-climbing, active or passive flexions. The 

numerical model would equally be a valuable tool in simulating various injury scenarios and 

surgical procedures like the ACL reconstruction. Also, FE models should be viewed not only as 

attractive and promising research tools but also appealing educational tools. The fact that the 

modelling methodology takes place within the framework of an explicit FE code is particularly 

relevant because this type of FE code is extremely well suited to simulate highly nonlinear 

dynamic events involving multi-body dynamics, complex impact-contact interactions, nonlinear 

materials, large displacements and rotations. 

The next generation of three-dimensional FE models of ligaments should include multi-bundle 

representation with appropriate mechanical properties and recruitment parameters (residual 

stretch, zero force length) for each bundle (Mommersteeg nZ., 1996b). This will require a 

considerable effort not only in experimental acquisitions of the geometrical and mechanical 

features of each isolated bundle, but also in a robust and efficient way to build FE models from 

these data. 
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X . l Synthes i s of the outcome of the present research project 

The objectives of this thesis have been to develop and improve current state of the art 

computational models of ligaments in order to provide the necessary modelling tools that will be 

used more and more in biomechanics research. 

Firstly, the aim was to propose a rigorous general theoretical framework in which the formulation 

of three-dimensional constitutive laws could be developed. The main idea wag to start from a 

continuum mechanics basis from which constitutive equations could be derived. The full 

generality of the formulation has allowed us to isolate particular terms of the constitutive 

equations and it was shown how particular structural mechanical interactions within the 

composite material could be taken into account by selecting the right coupling terms. Specific 

mechanical behaviour can then be described by selecting and degenerating the relevant 

equations. However, it is worth outlining that the inclusion of particular structural features is 

limited by the availability of experimental material data determined in corresponding 

characterising experimental protocols. The theory of continuum fibre-reinforced composite at 

finite strain developed by Spencer (1992) has been extended with regards to the elasticity tensors 

in the material and spatial configurations. Explicit first and second derivation of a general 

anisotropic hyperelastic strain energy function have been performed for the first time and it is 

hoped that these expressions will be useful to other researchers working in the field of nonlinear 

elasticity and finite element modelling. This constitutes one of the important scientific 

contributions of the present work. 
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An incompressible transversely isotropic hyperelastic constitutive law was identified and 

implemented into an explicit finite element code. The robust implementation was demonstrated 

in Chapters VI, VII, VIII and IX. To the best of our knowledge, it is the first successful finite 

element implementation of a transversely isotropic hyperelastic continuum material model into a 

commercial explicit FE code. The model was validated against analytical solutions for 

homogeneous states of deformation. The subroutine defining the strain energy function is easily 

modifiable to account for new transversely isotropic constitutive laws. The explicit model has 

been shown to be extremely efficient not only to track highly nonlinear phenomena much better 

than an implicit code but also in terms of computational cost. By taking special precautions (see 

section VII.3) a quasi-static response can be obtained in a physical time scale much lower than 

the natural time scale of the phenomenon considered. This proves very advantageous for 

computational efficiency as explicit finite element analyses do not have the demanding 

requirements of implicit codes in terms of temporary storage (on hard disk), memory (RAM) and 

mathematical operations. In implicit Suite element analyses the computational effort is 

dominated by the inversion of the Jacobian matrix while in explicit finite element analyses the 

major effort is represented by the calculation of internal forces, requiring only basic algebraic 

operations. Explicit finite element codes are also very efficient at dealing with multibody contact 

interactions and rigid body handling. 

Continuum three-dimensional isotropic finite element models of ligaments should not be used for 

simulating their mechanical behaviour in physiological conditions. Accounting of the anisotropy 

of ligaments was shown to be crucial in order to represent accurately the natural mechanical 

behaviour of ligaments under simulated physiological conditions. This was done by performing 

finite element analyses of an ACL model under a simulated passive flexion of the knee. The 

anisotropic model was successful in overcoming the signiGcant limitations featured by three-

dimensional isotropic finite element models of ligaments. Instead of producing unrealistically 

excessive compressive and flexural stresses when the ACL is loaded along the natural direction of 

the collagen fibres, the new finite element model behaves in a way such that buckling of the 

structure is produced as soon as compressive stresses are generated in the 5bre direction. The 

finite element model of the ACL exhibited numerous qualitative characteristics observed 

experimentally on cadaveric ACL models (Wascher et al., 1993). 
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Moreover, the Suite element model was validated by comparing the computed resultant force in 

the ligament during a passive flexion and the published one, recorded experimentally, which were 

in very close agreement. This was achieved by considering the existence of a residual stress 

present in the ACL at full knee extension. Its influence was significant on the resultant force in 

the Grst 30 degrees of knee flexion. 

In Chapter X, a full three-dimensional model of the knee joint including the bones and the four 

main ligamentous structures (ACL, PCL, LCL and MCL) was built. Unlike previous published 

finite element models, the model presented here took into account all of the arbitary complex 

contact interactions between bone and ligaments of the knee. This presented a real novelty as 

contact interactions between bones and ligaments have been shown to be essential because a 

complex load redistribution occurred in each substructure of the knee during anterior-posterior 

translational motions. This contrasts with the previous studies that , by hypothesis, found that 

the sum of the total resultant force components in a particular direction (X, Y or Z) in each 

ligament is equal to the drawer load applied to the tibia or the femur in that particular direction. 

The inclusion of three-dimensional contact interactions and mechanical properties of ligaments in 

the finite element model of the knee joint has therefore highlighted specific effects that were not 

captured in the previous published mathematical and finite element models of the knee. 

The finite element model has confirmed that the ACL is the primary restraint in resisting 

anterior tibial translation of the knee. The PCL has not been found to be the primary restraint of 

the joint in resisting posterior tibial motions except for extreme value of drawer displacement. 

The MCL and the LCL have been found to be secondary restraints in anterior-posterior 

translations of the knee. As shown experimentally, the finite element model of the joint exhibited 

the typical behaviour in which anterior-posterior translational motions of the tibia produce 

internal or external rotations. 

Finite element analyses have also been proven to be successful in simulating reliably an ACL-

deficient knee. Removal of the ACL leads to a significant increase in the tibia or femur 

displacement under anterior or posterior horizontal drawer forces as shown experimentally or 

routinely by clinicians. This has showed that the Gnite element model of the knee joint was 

sensitive enough to simulate particular pathological conditions. This a good example of the vast 

potential computational biomechanical models can offer in investigating consequences of injuries 

on the global knee joint or on each of its bony and ligamentous structures. 
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The inclusion of three-dimensional material and geometrical properties into the finite element 

model of the knee joint has highlighted the extreme complexity of this joint when subjected to 

even simple motions. Basic translational anterior-posterior motions suffice to produce very 

sophisticated mutual interaction between ligaments and bony structures. Ligaments put 

kinematic constraints on bones not only at their insertion sites but also by the way of direct 

contact interactions which redistribute the loads in the ligaments. 

Residual tension in the ACL has also been shown to be important as it may condition the way 

particular displacements are produced. It affects the mechanical behaviour of ligaments (stress 

and deformation) which in turn alter the constraints put on the bony structures. This modifies 

the mutual kinematic constraints put by the bones on the other ligaments and modifies the 

balance existing between the ligaments and the whole knee structure by redistribution of loads 

within the ligaments. It appears highly relevant not only to consider three-dimensional 

geometrical and mechamcal properties of all the substructures composing the knee joint but also 

the complex initial and general boundary conditions. 

In Chapter X, the motions of the knee under anterior-posterior forces has been investigated. This 

type of passive motions is simple but, by relieving particular degrees of freedom of the tibia, 

coupled motions were produced. It would be certainly very interesting and useful to investigate 

the mechanical response of the knee under other type of motions such as varu-valgus, internal-

external rotations, combined or not and active motions like walking, running, etc. This would 

probably highlight more complex three-dimensional mechanical behaviour where other knee 

substructures such as menisci, cartilage and capsula may play a major role. Influence of residula 

stresses could be magnified or diminished. 

X.2 Concluding remarks - Contributions 

Originality and novelty of the present research are represented by various aspects. Entirely new 

theoretical developments in the field of the nonlinear mechanics of fibre-reinforced composites 

were proposed (Chapter V). Their relevance to describe the constitutive behaviour of soft 

connective tissues has been emphasised despite the fact that the applicability of the theory is 

limited by the availability of experimental data. It is hoped that the analytical results reported 

will be used in the near future by the biomechanics research community in order to refine the 

existing constitutive models. 

The three-dimensional incompressible transversely isotropic continuum finite element model of 

soft connective tissues has brought several signiEcant improvements in comparison with the 

previous published models of ligaments or those of the knee joint. Concerning ligament 

modelling, it has been demonstrated that continuum isotropic models should not be used to 

simulate the natural complex mechanical behaviour of ligaments as proposed by (Pioletti, 1997; 

Pioletti o/., 1998b) and (Limbert and Taylor, 2001a). 
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By integrating anisotropic properties, the new proposed finite element model of the ACL has 

been shown to offer a very promising answer for simulating realistically the behaviour of this 

ligament (and other ligaments) in physiological conditions. Very good quantitative agreement 

between the numerical results and experimental data concerning the resultant force within the 

ACL during a passive knee flexion supports the usefulness and the validation of the finite 

element model. Previous finite element studies did not consider this aspect at all (Daniel, 1999; 

Hirokawa and Tsuruno, 1997, 2000; Pioletti, 1997; Pioletti et al, 1998b), reporting only values of 

stresses or strains and general qualitative behaviour. General precautions such as checking that 

during finite element analyses the ligament model does not go over its physiological range of 

stress and strain must be observed. It is a very essential first step in assessing whether a finite 

element model makes sense. The proposed model satisfied these basic requirements. 

By comparison with mathematical models of the knee and ligaments (Abdel-Rahman and Hefzy, 

1998; Andriacchi et al., 1983; Blankevoort and Huiskes, 1991b; Chan and Seedhom, 1995; Imran 

and O'Connor, 1997; Loch et al., 1992; Martelli et al., 1998; O'Connor and Zavatsky, 1993; 

Shelbume and Pandy, 1997; Toutoimgi e( oZ., 1997), in addition to the realistic constitutive 

model, the proposed finite element model of ligament integrated a three-dimensional knee joint 

model brought new features. Obvious benefits of finite element models are their capacity to 

output data (stress and strain distribution, energy density...) for arbitrary complex geometries 

and loading conditions that are unavailable from mathematical models, especially when they are 

two-dimensional. Realistic anatomical geometries (bones and ligaments) and the good 

performance of the explicit finite element code for multi-body contact analysis have allowed for 

the accounting of full three-dimensional contact interactions. This capacity has not been included 

and considered in previous published finite element models of the knee joint like those proposed 

by Bendjaballab aZ. (1998) or Li aZ. (1999). This novel approEich has been proven to be 

relevant as discussed in the previous section. Validation is em essential stage in the development 

of any computational model. However, the finite element knee joint model has exhibited 

numerous qualitative features observed experimentally and the corresponding quantitative results 

have been found to lie in the same range of magnitude. 
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X.3 Recommendations for fur ther research 

This thesis work has only unravelled a few points in this vast research field that is the (finite 

element) constitutive modelling of biological soft connective tissues. During the course of this 

research, numerous difficulties have arisen. Worth mentioning is the fact that the highly 

nonlinear behaviour of ligamentous structures was challenging to simulate in an implicit FE code. 

The explicit code was found to be extremely robust and always achieved convergence where the 

implicit code failed. The formulation of a constitutive law was limited by the shortage of 

experimental material data necessary to characterise specific mechanical behaviours. 

Experimental measurements performed on biological soft tissues are extremely delicate processes 

and the current experimental methods need to evolve in order to capture specific mechanical 

responses that may be missed otherwise. Applicability of the general fibre-reinforced composite 

model (two families of fibres) remains to be explored on experimental grounds but with suitable 

experimental material characterisation, one can envisage the integration of complex interactions 

between elemental constituents within a constitutive law. Another major difficulty concerned the 

geometrical acquisition of the three-dimensional shape of ligaments. Perhaps medical imaging 

techniques such as MRI are the best way to go. Proper hexahedral elements meshing of biological 

structures was also a challenging and time-consuming task. 

Improvements and developments of the techniques mentioned above are an obvious line for 

further research. However, other parts of the research effort should be directed towards 

investigating new issues. Some possible directions would be the following: 

' An obvious extension of the present research would be to build a finite element model of 

the knee from anatomical measurements (MRI, direct 3D measurements). The ideal 

would be to acquire the geometry of all the knee structures (bones, ligaments, menisci...). 

Then (before, if the anatomical acquisition of the knee geometry was invasive) kinematic 

and kinetic tests would be performed. A robotic system capable of applying specific 

displacements, forces and moments under accurate control would probably be the best 

choice. At the end of these acquisitions, testing of ligaments and possibly other structures 

(cartilage, menisci, capsula...) would provide material data associated with the knee 

under study. All the information collected from the various tests (geometry, mechanical 

properties, displacements and forces) would then be used to build an accurate three-

dimensional model of the knee joint. 
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Specific boundary conditions in force or displacement would be used to test the model 

and hopefully validate it. Although the principle behind this further research is 

straightforward its practical implementation is not. This is a very ambitious project that 

is likely to be tractable only within a collaborative work group possessing all the various 

expertises required (medical imaging, image processing, experimental testing and 

computational techniques). 

Developing new constitutive models taking into account viscoelasticity, fluid motions, 

remodeling, fatigue, damage, and failure of ligaments. These developments would be 

limited by the availability of appropriate experimental procedures and relevant material 

data. 

Studying the interface problems between bone and ligaments. There is a gradation of 

mechanical properties of ligament where its inserts into bone. The integration of this 

characteristic will give more accurate information about the state of stress at these 

locations. The numerical artefact produced in finite element models (excessive stress) will 

then be reduced. There is a lot of research to be done in finding an optimal way to model 

the ligament-bone connection. It is believed that this aspect is somehow limiting in the 

existing Snite element models of joints. 

The ultimate goal of the present research is to perform studies to assess the performance 

of total joint replacement, using advanced computational procedure to provide a 

scientific platform upon which risk analysis of implants could be based. The development 

of a three-dimensional virtual model of a knee will enable the production of virtual 

prototypes, realistically simulating the full-motion behaviour of complex biological 

systems and will allow to quickly analyse multiple design variations. This will reduce the 

number of costly physical prototypes and improve design quality, and will contribute to 

the improvement of implants with a longer useful life. An implant is intended to replace 

a living part of the human body. Therefore, it should be capable of performing the same 

functions as the living part. 
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It is strongly believed that the next trend in computational biomechanics research will be to use 

a dynamic approach and by doing so, more and more finite element analyses will be performed 

using explicit codes. At present, in 2001, explicit FE codes are mainly used by the automotive 

industry (and other transport industries) for crash and occupant safety simulations. However, the 

human body with all its complex joints, materials and physical phenomenon associated (flow, 

diffusion, heat exchange, electric conduction...), is essentially a complex dynamical system. 

Considering the never ending increase in computational power tha t has taken place over the last 

ten years, its seems not unreasonable to think that, in a near future, complex biomechanical 

systems with several millions of degrees of freedom could be simulated in their natural time scale. 
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A p p e n d i x A - P u b l i s h e d mode l s of sof t connec t i ve t i s s u e s 

Table Al presents a description of the structural models of ligaments and tendons reported in 

literature. 

Authors (/;t)-structaral models Results 

(Viidik, 1968a) Visoelastic parallel-filjered t issue consisting 

of a spr ing and dashpot combinat ion. 

Kelvin e lements in paral lel wi th a 

nonlinear a r r a y of elastic springs (fibres) 

(sequential loading of s t ruc tu ra l elements), 

Model able to describe 

qual i ta t ive ly the mechanical 

behaviour of a rabbi t ' s ACL. Good 

insight into the s t ructural 

proper t ies of collagenous tissues. 

(Frisen et al., 1969) Viidik et al . 's model modif ied to account 

for the nonl inear i ty of t h e elastic response. 

Model consisting of springs, dashpo ts and 

friction elements. 

Qua l i t a t ive mechanical behaviour 

of r abb i t ' s ACL reproduced. 

C o m p l e m e n t a r y model of Viidik et 

al . ' s . 

(Diamant et al., 1972) Collagen fibres modelled as zig-zag shaped. 

Hinged rods wi th springs connect ing 

ad jacen t rods. T h e cr imped collagen fibres 

were modelled as having elastic segments 

joined by rigid hinges, p roduc ing a stress-

s t ra in curve wi th the app rop r i a t e shape. 

Good predict ion of experimental 

resul ts (only for the older donors' 

specimens) and fibril character but 

t he re is no reproduct ion of the 

d i sappearance of cr imp apices . 

(Comninou and Yannas, 1976) Collagen fibres modelled as p lanar sinusoid 

shape and represented as long elastic 

beams. T e n d o n represented as an 

aggregat ion of fibre and m a t r i x layers. 

T h i s model qual i ta t ively exhibited 

behav iour similar to ra t tail 

t e n d o n . Reproduc t ion of the 

s t i f fening effect of t h e mat r ix in 

nonl inear pa r t of t h e stress-strain 

curve, Stress too high at low 

s t r a i n level. 

(Lanir, 1980) T h e collagen fibres are assumed to be 

linearly viscoelastic wi th negligible bending 

s t r eng th and to be nonuniformly 

undula ted . T w o cases considered: high and 

low densi ty of cross-links between collagen 

and elastin fibres. 

T h e model predicted well the toe 

region. T h e nonuni tbrmi ty of the 

col lagen fibre s t ruc tu re is shown 

t o accoun t for the toe region as 

well as for the nonlinear 

viscoelast ic behaviour of the 

t e n d o n . 

(Kastelic et al., 1980) Model based on sequent ia l s t ra ightening 

and loading of the fibres. Cr imp angles in 

the undeformed t endon are assinned to 

vary among fibrils. 

G o o d agreement with 

expe r imen ta l s tress-strain curves 

for t h e ra t ta i l t endon and good 

pred ic t ions for var ious ages of 

spec imen. 
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(Decraemer et al, 1980a) Extension of the Frisen's and Viidik's 

models by incorporating internal friction 

between fibres and between fibres and t he 

.matrix Damping was introduced into t h e 

model by assuming tha t all fibres have 

identical linear viscoelastic properties 

Model able to reproduce the 

mechanical behaviour of various 

soft tissues (human vein, fascia, 

tympanic membrane and rabbit 

papil lary muscle). 

(Lanir, 1983) Extension of the Lanir 's model (1980) t o 

incorporate a full three-dimensional 

formulation. Strain energy method (energy 

of deformation due only to the fibril 

stetching) and kinematics taken into 

account. Matr ix mechanical contr ibut ion 

under the form of a pressure term. 

Extension to viscoelasticity. 

Complex mathematical 

formulat ion which gave similar 

results to those observed 

experimentally. The models offer a 

good insight into the tissue's 

funct ion and response to 

mechanical loading. 

(Stouffer et al., 1985) Kinematic chain of short elements 

connected by pins and torsional springs. 

This model takes into account the spat ial 

variation in the crimp pat tern. Model 

applied to simulation of the h u m a n 

patellar tendon bone units. 

It was shown, analytically and 

experimentally tha t local strain in 

the proximity of the a t tachment 

site is significantly larger than the 

s train in the central region of the 

tendon 

(Kwon and Woo, 1989) Discrete model based on different group of 

bilinear collagen fibres each possessing a 

straightening strain or a failure strain. 

Very good agreement was found 

between theoretical and 

experimental values (anteroniedial 

par t of the rabbi t ACL and canine 

MCL) for uniaxial tensile tests 

(Belkoff and Hau t , 1991) 

(Belkoff and Hau t , 1992) 

Similar approach to Kwan and Woo. 

Linear elastic law and no kinematics t aken 

into account. Collagen fibres s t ra ightening 

modelled by a Gaussian probability 

distribution function. 

Good representat ion of the 

behaviour of the rat dorsal skin. 

Fibre stiffness increasing during 

matura t ion . Model not suitable for 

some flat, featureless heel region of 

the stress-strain curve. 

(Ault and Hoffman, 1992a) 

(Ault and Hoffman, 1992b) 

Composite-materials approach. The ma t r ix 

and the fibril are supposed to be linearly 

elastic. Three-dimensional fibril or ientat ion 

taken into account. 

Good fit of experimental curves 

(rat tail tendon) with theoretical 

values but not as good for the 

ca t ' s knee capsule (crimp pat tern 

more complex). Restrictive 

cissumptions concerning the 

uniformity of s t rain or stress. 

(Hurschler et al., 1997) Strain energy formulation for t h e 

consti tutive law of the collagen fibres. 

Three-dimensional orientation of collagen 

fibrils taken into account. The matr ix is 

assumed to contr ibute to stre.ss only by a n 

hydrostat ic pressure. Combinat ion of 

s t ructural (fibre) and microstructural 

(fibril) approach. 

Model reproduces the nonlinear 

behaviour of l igaments well, 

including toe-in region, damage 

and eventual failure (healing 

rabbi t medial collateral ligament). 

Table Al - Brief description of the various microstructural and structural models found in literature. 
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Appendix A 

Table A2 presents a description of the phenomenological models of ligaments and tendons 

reported in literature. 

Authors Phenomenological Models Main limitations 

(Beskos and Jenkins, 1975) A mammalian tendon is modelled as an 

incompressible fiber reinforced composite 

material. Collagen fibres modelled as helical 

shaped inextensible cords embedded in an 

incompressible hollow right circular cylinder. 

Formulation of a boundary-value problem. A 

form of the deformation is first assumed and 

then checked to see wether it satisfies the 

constraints (incompressibility, fibre 

inextensibility) and the equilibrium equations. 

• Model valid for a particular 

geometry and a particular load. The 

cylinder need to be hollow. 

• assumed shape of the pattern of the 

fibres (helical). 

• Model developed independently of 

any real biological mechanical 

properties 

• when the fibres are straightened the 

modulus of elasticity is infinite 

(Fung, 1968) Quasi-Linear Viscoelasticity (QLV). 

Combination of elastic and time-dependent 

response using an integi-al fornnilation. 

Exponential form of the stress-shain relation for 

uniaxial tension. 

Material assumed to be isotropic 

(Haut and Little, 1972) Quasilinear viscoelasticity • Material assumed to be isotropic 

(Fung, 19T2) Quasilinear viscoelasticity • Material assumed to be isotropic 

(Barbenel et al, 1973) Generalisation of the combination of spring and 

dashpot. The relaxation spectrum is assumed to 

have a logarithmic expansion. 

• Material assmned to be isotropic 

(Woo et al, 1981) Quasilinear viscoelasticity • Material assumed to be isotropic 

(Woo et al., 1982) Quasilinear viscoelasticity • Material assumed to Ije isotropic 

(Sanjeevi et al., 1982) Viscoelasticity • Material assumed to be isotropic 

(Lyon et a.l., 1988) Quasilinear viscoelasticity • Material assumed to lie isotropic 

(Woo et al., 1993) Quasilinear viscoelasticity • Material assumed to be isotropic 

(Johnson et al., 1998) Single integral finite strain viscoelasticity. • Material assumed to be isotropic 

(Johnson et al, 1992) Formulation offering a general fi-amework for 

(Woo et al., 1993) nonlinear and thi'ee-dimensional mechanical 

behaviour 

Table A2 - Sample of the various phenomenological models of soft connective 

tissues (tendons and ligaments) encountered in the literature. 
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Appendix B - Constitutive restrictions 

This appendix is an extension of section V.8. and presents briefly some of the most popular 

constitutive restrictions. Please note that the terminology of Truesdell and Noll (1992) is 

adopted. 

Equation Section iCCoerciveness condition 

(Ciarlet, 1988) describes this condition by stating that the strain energy function # must 

approach +00 when any of the eigenvalues of F approach 0 or +00 : 

lim ^(F) = + 0 0 and lim ^(F) = + 0 0 [B.l] 

B2 Existence of a natural reference state 

This condition assumes the existence of a reference state, in the undeformed conGguration, at 

which the strain energy function vanishes and so the stress: 

/ ^(Xo) = 0 [B.2] 

B3 Reduction to the linear elasticity theory at small strains 

The free energy function must reduce to the quadratic function of strains of the linear theory 

when the body is considered at infinitesimal deformations: 

^ A " ^ ( F ) = ^ A ^ ( F ) = A^ and ^ S ( F ) = ^ ( T ( F ) = (T"' [B.3] 

B4 Tension-Extension condition 

Lets consider a solid material given in two distinct reference states % and . Lets denote F. , 

a. and A. respectively as the principal forces, stresses and stretches in the i-th direction of a 

Cartesian referential such that: 

If two principal stretches are maintained fixed whilst one increases the third, the necessity of 

applying a tension is quite obvious. In the other hand, if we decrease the third stretch, one might 

expect to have to apply a pressure. The tension-extension condition is expressed as follows: 

( y - F ) | A ' - A . ] > 0 , if and A i [B.5] 
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B5 Extension-Tension condition 

If we hold two principal forces, increasing the third one should produce an increase in the 

corresponding stretch. This condition is expressed as follows: 

(F' - - A. j > 0 , if F ' = F, when j i 

B6 Invertibillity of the force-stretch relationship 

The force-stretch relationship given in equation [B.4] must be uniquely invertible. 

B7 Pressure-compression inequality 

The volume of a compressible material must decrease when the body is subjected to a 

hydrostatic compression and must increase when it is subjected to a hydrostatic tension. 

B8 Baker-Ericksen inequality 

For isotropic solids only, the maximum principal stress should occur in the direction of the 

maximum principal stretch (Baker and Bricks en, 1954) as expressed as follows: 

(cr. — c r , — A, j > 0, if A. A. [B.7] 

B9 Ordered forces inequality 

It is worth mentioning that this condition is not equivalent to the Baker-Ericksen inequality 

although it has a comparable structure given aa follows: 

( f - F ) { A - A . ) > 0 , if A^;.A. [B.8] 

BIO Generalized Colleman-Noll inequality 

This inequality requires that the transformation from the deformation gradient F to the Piola 

stress P be monotonic: 

(F' - F): (P' - P) > 0 if F' ^ F [B.9] 

This inequality violates the principle of material frame indifference in some cases, like for 

example a state of pure rotation. To overcome this, CoUeman and Noll have weakened the 

condition by excluding rotational terms in F. Then F and F* must differ only by a state of pure 

stretch. This led them to formulate the Colleman-Noll inequality. 
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B l l Colleman-Noll inequality 

This inequEility apply to the free energy function # and is given aa: 

» ( F ' ) - ^ ( F ) - ( F ' - F ) : ^ ^ ^ > 0 i fF' ;z^F [B.IO] 

In the case of isotropic solids, the conditions given by equations [B.9] and [B.IO] imply strict 

convexity of the free energy function, condition discussed in the next paragraph. 

B12 Convexity of the free energy function 

T : ^ ^ : T > 0 VT (second order tensor) ^ 0 [B.lll 
8FaF ^ ^ 

Convexity is unacceptable because it implies uniqueness of the solution of the initial/boundary 

value problem and this is in disagreement with experimental observations (buckling, bifurcations 

of equihbrium). The convexity constraint conflicts with material frame indifference and prevents 

the strain energy to become infinite aa the deformation gradient approaches zero. 

B13 Polyconvexity 

To weaken the convexity condition. Ball (1977) was the first to introduce the notion of 

polyconvexity. This concept was able to bring existence theorems in nonlinear elastostatics and is 

regarded as a very promising route in the constitutive modeling of nonlinear materials. 

Polyconvexity can be defined by stating that a function # is polyconvex if there exists a convex 

function ^'(F, cofactors (F), J) such that: 

^(F) = ^'[F, cofactors(F), J] VF [B.12] 

Polyconvexity implies strong ellipticity which is also considered as an attractive constitutive 

requirement (Mardsen and Hughes, 1994). 

B14 Hadamard 's condition 

This condition is linked to the concept of strong ellipticity. A necessary condition for material 

is that the speeds of all plane waves, propagated in a body of the material filling three-

dimensional spa.ce, be positive. 
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A p p e n d i x C - T e m p o r a l a spec t s of t h e F E ana lyses p e r f o r m e d in C h a p t e r V I I 

The times reported below are based on calculations performed in a PC built around a Pentium® 

III (600 MHz) processor with 512 Megabytes of RAM. 

C A S E l 

MESH A t - ^ (ms) (ma) N. TT (s) A t j ^ / A t ™ N i / N ^ T T . / T T ^ 

M O D E l 0.1112E-02 0.9703E-03 95600 G.200E-H)1 1.00 1.00 1.00 

MODEi) g 0.5646E-03 0.4868E-03 190883 3.890E+02 0.50 2.00 6.27 

0.2823E-03 0.2430E-03 38217G 2.511E-M)3 0.25 4.00 40.50 

MODEi 0.2824E-03 0.2393E.03 384580 4.923E-t-03 0.25 4.02 79.40 

J 0.2823E-03 0.2399E-03 383829 9.747E4-03 0.25 4.01 157.21 

M O D a e 0.2824E-03 0.2351E-03 387G01 1.785E+04 0.24 4.05 287.90 

MODEZ 7 0.2737E-03 0.2281E-03 399G27 3.643E4-04 0.24 4.18 587.58 

M O D f i a 0.2737E-03 0.22G7E-03 400956 4.G8GE4-04 0.23 4.19 755.81 

Table CI - Tab le summariz ing the temporal aspects of the first serie of F E analyses for CASE 1. At™" , At™" , N,,, T T 

are respectively, the maximum and the minimal stable t ime step, the number of cycles performed during the analysis and 

the total t ime of the analysis. The super- or subscript "i" corresponds to a quan t i ty a t t ached to the i-"' model. 

CASE 2 

MESH A t " " (m«) A t - ^ (ma) N. TT (s) A t ; ^ / A t ; - ^ N i / N : T T . / T T ^ 

MOD.B'Z .f 0.1358E-02 0.1129E-02 77276 5.200E-H01 1.00 1.00 1.00 

MODEL 2 0.5647E-03 0.5501E-03 166936 3.190E+02 0.49 2.16 6.13 

MOD.BZ 3 0.2593E-03 0.2556E-03 3G4852 2.342E-^03 0.23 4.72 45.04 

0.2593E-03 0.2477E-03 382933 4.772E-t-03 0.22 4.96 91.77 

MODfZ, J 0.2824E-03 0.2630E-03 350353 8.G82E4-03 0.23 4.53 166.96 

MODEZ 6' 0.2824E-03 0.2G85E)-03 357638 1.602E4-04 0.24 4.63 308.08 

7 0.2737E-03 0.2G07E-03 3G948G 3.807E4-04 0.23 4.78 577.31 

MODE./; a 0.2503E-03 0.2465E-03 388789 2.482E-t-04 0.22 5.03 732.12 

Table C2 - Tab le summariz ing the temporal aspects of the first serie of F E analyses for CASE 2. At™ , A t , N,,, T T 

are respectively, the maximum and the minimal stable t ime step, the number of cycles performed during the analysis and 

the total t ime of the analysis. The super- or subscript "i" corresponds to a quant i ty a t t ached to the i-"' model. 

CI 



C A S E 3 

MESH At"" (ms) A t ™ W N. TT(s) At;-̂  / A t ™ K / N ; TT./TT, 

MODEi ) 0.1129E-02 0.8079E-03 97007 G.600E4-01 1.00 1.00 LOO 

MODEZ 2 0.G185E-03 0.4084E-03 187988 3.G20E+02 0.51 1.94 5.48 

a 0.2824E-03 0.2243E-03 375387 2.714E+03 0.28 3.87 4L12 

0.2824E-03 0.2242E-03 375741 4.701E-H)3 (128 3^7 71.23 

MODgi a 0.2824E-03 0.2099E-03 385452 9.502E-K)3 0.26 3.97 143.97 

0.2824E-03 0.2100E-03 385779 1.721E-t-04 0.2G 3iW 2G0J6 

0.2824E-03 0.1911E-03 404815 3.G05E-t-04 0.24 4^7 546.21 

MODEf a 0.2824E-03 0.1914E-03 4Mnw 4.GOOE+04 0.24 4U7 696.97 

Table C3 - Table summarizing the temporal aspects of the First serie of FE analyses for CASE 3. At"°* , At™" , N„, T T 

are respectively, the maximum and the minimal stable time step, the number of cycles performed during the analysis and 

the total time of the analysis. The super- or subscript "i" corresponds to a quantity at tached to the i-"' model. 

MESH A t ™ (ma) A t ™ (ms) N. TT (a) A t ™ / A t ™ Nl/N^ TT./TT, 

0.1129E-02 0.8183EX)3 104682 7.300E+01 1.00 1.00 LOO 

MODEL 2 0.5628E-03 0.4091E-03 209358 4.190E-H)2 (150 2.00 5.74 

MODEI 0.2824E-03 0.2046E-03 418783 2.7G9E4-03 (125 4.00 37.93 

0.2824E-03 0.2046E-03 418793 5.404E-t-03 (125 4.00 74.03 

0.2824E-03 0.2046E-03 41879G 1.249E4-04 (125 4.00 17L10 

MODgt 6' 0.2824E-03 0.2046E-03 418801 1.032E-I-04 0.25 4.00 264.66 

7 0.2737E-03 0.1983E-03 432078 4.052E+04 024 4U3 55&07 

a 0.2737E-03 0.1983E-03 432080 5.061E-M)4 0.24 4A3 693.29 

Table C4 - Table summarizing the temporal aspects of the first serie of FE analyses for CASE 4. At"™', A t , N,., TT 

are respectively, the maximum and the minimal stable time step, the number of cycles performed during the analysis and 

the total time of the analysis. The super- or .subscript "i" corresponds to a quantity at tached to the i-"' model. 
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Appendix D - Three-dimensional finite element modelling of the anterior 

cruciate ligament: influence of the initial stress field. 

Georges Limbert and Mark Taylor 

This research was published as a referred book section (see PREFACE) and was given as an oral 

presentation at the occasion of the Fourth International Symposium in Computer Methods in 

Biomechanics and Biomedical Engineering, October 13-16, 1999, Lisbon, Portugal. 

1. A B S T R A C T 

This study was based on a three-dimensional finite element analysis of the human Anterior Cruciate 
Ligament (ACL). The objective was to assess the influence of the initial stress field within the ACL on the 
distribution and magnitudes of the stresses during flexion extension. The resultant force within the ACL 
was determined during various simulated kinematic conditions. The constitutive law was based on a 
incompressible isotropic hyperelastic strain energy function. The initial stress field within the ACL at full 
extension of the knee has a significant influence on the distribution and magnitude of the stresses at the 
various angles of flexion. Moreover it appears that this observation depends on which part of the ACL is 
considered. Increasing the initial stress field by 25 % leads to a reduction in the von Mises stresses of up to 
80 % in the anterior and lateral part of the ACL. Also there is an increase in the von Mises stresses by up to 
33 % in the posterior and lateral part of the ACL during a passive knee flexion ranging from 0° to 60°. 
However, significant compressive stresses were observed in the various models. Therefore, the results 
obtained concerning the resultant force and the principal stress directions call in question the validity of the 
isotropic hyperelastic formulation for anatomical models. 

2. I N T R O D U C T I O N 

The Anterior Cruciate Ligament (ACL) is essential for the stability of the knee by preventing anterior 
displacement of the tibia relative to the femur and hyperextension of the joint. Some authors also argue that 
the ACL, like other ligaments, has a proprioceptive function in addition to its mechanical role. The ACL is 
the most commonly injured ligament of the body [Fetto et al, 1980] especially during sport [Speer et al, 
1995] and motor vehicle accidents because of excessive loading and/or high strain rate (up to 500 %.s ) 
[Crowninshielde?a/., 1976]. 
The ACL has no free stress state at any of the knee flexion angles [Durselen et al., 1996]. The stress 
distribution within the ACL when the knee is at full extension is unknown. Concerning the resultant force 
generated by the ACL, there appears to be a large variability in the values reported in the literature. 
Wascher [Wascher et al., 1993] performed an in-vitro study and reported resultant forces at full extension 
of ranging between 5 and 135 N. Roberts [Roberts et al., 1994] performed a in-vivo study and reported a 
resultant force at full extension of 104 N (± 14). 
In order to gain a better understanding of the mechanisms of injury within the ACL it is necessary to assess 
the magnitude and the distribution of stresses within this ligament and therefore a three dimensional 
continuum model of the ACL is required. A literature survey showed that few authors have developed and 
implemented suitable constitutive laws for the ACL within three-dimensional finite element models. 
Recently, Pioletti (1997) developed a full thermodynamic formulation of a constitutive law, based on an 
incompressible isotropic hyperelastic formulation, for the ACL and derived material data from experiments 
and implemented it into the commercial code ABAQUS (® Hibbit, Karlsson & Sorensen Inc., Pawtucket, 
RI, USA). Weiss (1994) developed a general finite element framework for soft tissue modelling. Weiss 
formulated an incompressible transversely isotropic hyperelastic constitutive law and performed a 
parametric analysis to derive the material constants from experiments performed on fascia lata tendons. To 
the best of our knowledge, no study has examined the influence of the initial stress field on the stress 
distribution in the ACL. This study intends to assess the importance of this parameter during various ranges 
of motion. 
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3. MATERIALS A M ) M E T H O D S 
3.1 Geometrical model of the ACL 

The three-dimensional geometry of the insertion sites of the ACL were obtained from an experiment 
performed on a cadaveric knee specimen. Several markers were placed along the contours of the ACL at 
the tibial and femoral insertion sites in order to track their three-dimensional location during the passive 
knee flexion tests. The geometrical model includes the non planar insertion areas and respects the natural 
orientation of the fibres. Given that the full three-dimensional shape of the ACL was not available and that 
a "reasonable" ACL shape does not affect significantly the results of the finite element analysis (Pioletti, 
1997), the ligament was reconstructed by connecting the two insertion surfaces. This operation was 
performed in the pre and post-processor Patran v8.0 (® The MacNeal Schwendler Corporation, Los 
Angeles, CA, USA). The solid volume reconstructed was that of the ACL when the knee is at full 
extension. 

3.2 Finite element model of the ACL 

In order to carry out a finite element analysis it is necessary to discretize the domain of interest with finite 
elements. The solid volume was meshed with 8-noded hexahedron elements using Patran v8.0. Special care 
was taken in order to optimize the performance of the mesh for the large displacement and large strain 
analysis. In fact, due to its initial distorted shape, the ACL mesh can undergo severe distortions during the 
analysis and can lead to premature convergence failure in the computation. The mesh consisted of 3297 
elements and 3784 nodes. 

3.3 Constitutive law and material properties 

In order to reproduce the stiffening features of the tissue constituting the ACL and its mechanical 
behaviour during large deformation, a hyperelastic potential with an exponential law was used. The strain 
energy function W proposed by Pioletti (1997) was used, which depends on the first and second invariants 
of the right Cauchy-Green deformation tensor C. The behaviour is isochoric (incompressible material) and 
therefore has no dependence on the third invariant which is the square of the Jacobian of the deformation. 
Therefore, 

Pioletti (1997) performed mechanical tests on cadaveric ACL in order to derive the material constants a 
and p. From this work we extracted: a = 0.74 [MPa]; P = 15.2. 
The material model was implemented within ABAQUS 5.8 via a customised subroutine. 

3.4 Element formulation 

Standard ABAQUS isoparametric hybrid incompressible elements, C3D8H, were used which are capable 
of sustaining large deformations. The formulation was based on a linear displacement field associated with 
an additional variable, the hydrostatic pressure. This independent interpolated basic variable was coupled to 
the displacement solution through the constitutive theory and the compatibility conditions. The pressure 
was assumed to be constant within the element. The formulation described above prevents the appearance 
of the "locking phenomenon" which is a degenerative behaviour appearing when the element is unable to 
distort while simultaneously meeting the incompressibility requirement at all the points of the element 
[BonetefaZ., 1997]. 
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Appendix D 

3.5 Boundary conditions 

The passive flexion-extension kinematics tests, described in 3.1, were performed with the knee in the 
neutral position (no internal or external rotation) for flexion angles of 0, 10, 30, 45 and 60 degrees. The 
tibia was fixed and the femur was free to move in the flexion plane. The resulting positions of the femoral 
insertion of the ligament were used as displacement boundary conditions and the nodes of the tibial 
insertion area were rigidly fixed. 

3.6 Initial stress field: methodology 

The finite element analysis was performed in two steps. 
STEPl: The FE model of the ACL was prestressed using the Abaqus subroutine SIGINI. During this 
procedure the equilibrium of the initial stress field with the applied forces and distributed loads was 
checked. No translation was allowed for the femoral nodes and a uniform stress was applied to the femoral 
insertion elements in the direction of the mean axis of the ACL. Four cases were considered: a uniform 
stress corresponding to a initial force at full extension of 50 N, 75 N and 100 N. These initial forces 
correspond to the upper and lower bounds reported in the literature [Wascher et al., 1993; Roberts et al., 
1994]. The fourth case assumed no initial stress within the ACL at full extension (no STEPl). 
STEP2: A finite deformation analysis was performed using the standard Abaqus nonlinear solver (iterative 
Newton-Raphson method) where boundary conditions were prescribed in displacement and corresponded 
to the flexion angle considered. 

4. R E S U L T S 

Results were postprocessed using Patran v8.0 and a customised Abaqus subroutine. The von Mises (VM) 
stresses and the resultant force within the ACL have been reported. The VM stresses at the anterior, 
posterior, medial and lateral aspects of a section mid way along the length of the ACL have been reported 
in detail. 

11 MPa 11 MPa 

0 M P a 

Figure la. von Mises stresses at 30° of neutral 
flexion(no initial stress field) 

0 M P a 

Figure lb. von Mises stresses at 30° of neutral 
flexion (lOON equivalent forct, 

The distribution and magnitude of VM stresses are in accordance with those found in literature (Pioletti, 
1997) between 0 and 30° degrees of flexion. During knee flexion, in the anterior part of the ACL, there was 
an increase in the VM stresses. For sake of space VM contour plots (Figures la, b) were presented only in 
the case of no initial stress field and for a equivalent stress field of 100 N at full extension. Prestressing the 
ligament seems to reduce the VM stresses in the antero-middle part of the ACL and has a significant effect 
on the resulting stress distribution. Increasing the initial stress by 25 % leads to 80 % of increase in VM 
stresses when considering the anterior and the lateral side of a middle cross section of the ligament and up 
to 33 % increase for the medial and posterior sides (see Figures 2a, b, c, d). At 30° of flexion compressive 
stresses appears at the posterior side of the ACL at the tibial insertion site. This is clearly shown on Figures 
2b, c through the peak in VM stresses which are a result of a dominant compressive principal stress. 
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Figure 2c. Figure 2d. 

Figure 2. von Mises stresses within the ACL (a): anterior side; b): lateral side; c): posterior side; d): medial side. 

120 
" No initial stress 

Initial stresses (50 N) 
Initial stresses (75 N) 
Initial stresses (100 N) 

" Wascher et al. (1993) =- 100 

0 20 4 0 6 0 

Flexion Angle (degree) 
Figure 3. Resultant force in the ACL versus flexion angle for various initial conditions. 

Wascher [Wascher et al., 1993] showed that the resultant force within the ACL decreases monotonically 
from full extension till 60° degrees of flexion. The FE predictions of the resultant force do not follow the 
same trends as reported by Wascher et al. in their experiments. As the flexion angle increases, the predicted 
resultant force tends to fluctuate significantly, regardless of the magnitude of the initial stress field rather 
than decreasing to zero as observed in Wascher's experiments. This was due to the ligament taking 
compressive loads. 

D4 



5. DISCUSSION 
The initial stress field present within the ACL at full extension appears to have a significant effect on the 
stress distribution during the knee flexion. This raises the question of the care that has to be taken when 
pretensioning the graft in the ACL reconstruction even if the material is fundamentally different from that 
of a real ACL. Also, the ACL acts as a constraint for the movement of the tibia relative to the femur and 
therefore a realistic force/pre-stress must be used when performing global FE analyses of the knee. 
However, this study has raised concerns regarding the validity of using an isotropic hyperelastic 
constitutive law when performing anatomical finite element modelling of the ACL. Pioletti (1997) 
developed an incompressible isotropic hyperelastic constitutive model of the ACL and implemented it 
within a FE code. The material parameters were derived from tensile tests and, in consequence, may not 
reflect the material behaviour of the ligament. Pioletti modelled the ACL subjected to physiological 
motions and reported a calculated resultant force in agreement with the experimental results of Wascher et 
al. [5] and Roberts et al. [6], only when considering the posterior part of the ACL. No mention of 
unrealistic compressive loads in the remaining portion of the ACL was made. Our study has shown that 
using the proposed constitutive law for physiological conditions, significant compressive stresses can be 
generated within the ligament which adversely affects the resultant forces (figure 3). These compressive 
stresses are not physiological and do not fit the mechanical behaviour of the ACL. The feasibility of 
implementing a "NO-COMPRESSION" option within the finite element model is currently under 
investigation. The other alternative would be to derive a transversely isotropic hyperelastic law where the 
energy function will avoid the compression in the fibre direction. However, the extreme difficulty to test 
the ACL in tension and in the transverse direction prevents us from using such an approach. The ACL is 
made of two major fibre bundles, an anteromedial band and a posterolateral bulk (Pick, 1904) that are 
probably loaded differently and this feature may affect significantly the results of the present work. The 
mechanical interaction between bundles need to be considered as well. The inclusion of these features is 
the next step of our investigation. 
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