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In pipe vibration, the n = 2 (ovalling mode) flexural wave causes a large increase of 

strain in the pipe wall at the cut-on frequency of the wave when it starts to propagate. 

Hence from the fatigue perspective, this wave is a major concern. In this thesis, an 

active control system is designed to suppress this wave. Before the control strategy can 

be considered, however, the dynamic behaviour of the pipe mus t first be understood. For 

this reason, the wavenumbers of the pipe and the mobilities of an infinite and semi-

infinite pipe based on Flugge's shell theory are derived. Once the dynamic behaviour is 

known, the active control system can be modelled in a straightforward manner. An n = 

2 PVDF (polyvinylidene fluoride) modal sensor and PZT (lead zirconate titanate) modal 

actuator are designed to selectively sense and control this wave. Other types of control 

systems, passive and adaptive-passive control, have also been investigated for 

comparison with the active control system. 

For the infinite pipe, the mobility is derived using the method of residues and an 

analytical method with eight boundary conditions. Both methods are shown to give the 

same result. Analytical and wave methods are used to derive the mobility of the semi-

infinite pipe. Like the infinite pipe, numerical evaluation shows that both methods are 



identical. In addition, the mobilities of infinite and semi-infinite pipes are simplified for 

low frequencies, which facilitates physical insight, and allows explicit expressions for 

the circumferential wave amplitudes to be derived. 

For the modal sensor, PVDF elements are shaped in the form of sine and cosine 

functions similar to the n = 2 mode shape of the pipe. Since t h e orientation of the n = 2 

mode shape at some arbitrary point on the pipe is unknown, both of these elements are 

required to sense the wave. The relationship between the charge generated on the 

sensor to the combination of the axial and circumferential bending strains is 

established for the case of in-extensional deformation. It is found that a practical modal 

sensor is sensitive to higher order modes as well as the n = 2 mode, and this cross-

sensitivity is dependent upon the width of the modal sensor. However, provided that the 

width is small enough to keep the axial strain constant over i t s surface, the sensor will 

only be dominantly sensitive to the circumferential bending strain of the pipe and hence 

to the n = 2 mode. For this to occur, the width of the modal sensor has to be less than 

one third of the wavelength of the flexural wave at the ring frequency. 

A piezoelectric modal actuator for the n = 2 mode is also investigated. It is constructed 

from a set of piezoelectric elements bonded to the pipe. By ar ranging them in the form 

of the n = 2 mode, only the motion of that particular mode is generated, the amplitude 

of which is proportional to the applied voltage. With two PZT modal actuators, which 

are in the form of sine and cosine functions, the orientation of the wave can, in 

principle, be modified to any angle. 

In the active control system, the modal sensor is used as an error sensor and modal 

actuator is used for suppressing the disturbance. With both n = 2 modal sensor and 

modal actuator, the disturbance of the n = 2 can in principle be completely suppressed. 

Fully active control is then much effective than passive and adaptive-passive control. 

The theoretical models developed in this work are validated by some experimental 

work. 

Ill 



CONTENTS OF THESIS 

ACKNOWLEDGEMENT i 

ABSTRACT ii 

CONTENTS OF THESIS iv 

NOMENCLATURE x 

LIST OF FIGURES xix 

LISF OF TABLES xxx 

1 INTRODUCTION 1 

1.1 Introduct ion 1 

1.2 Literature Review 5 

1.2.1 Modelling Pipe Vibration 5 

1.2.2 Vibration Control 7 

1.2.2.1 Actuators for Active Control 7 

1.2.2.2 Sg/isors/brAc(zueCon(roZ 8 

1.2.2.3 Active Vibration Control of Pipe Vibration 9 

1.2.2.4 Passive Vibration Control 10 

1.2.2.5 11 

1.3 Contribution of this Thesis 12 

1.4 Thes i s Outline 13 

2 DISPERSION CHARACTERISTICS OF TN-VACC/O PIPES 15 

2.1 Introduct ion 15 



2.2 Simpli f ied Version of Flugge Shell Theory in vacuo 16 

2.3 Wavenumber Solutions of a Pipe in vacuo 22 

2.4 Numerica l Analysis to Evaluate the S impl i f i ed Version 30 

POINT AND TRANSFER MOBILITY OF INFINITE PIPES 37 

3.1 Introduct ion 37 

3.2 Res idue Method 38 

3.3 Analytical Method 49 

3.4 Evaluat ion of Mobility obtained from the Analyt ical 60 

Methods 

3.5 Approximate Mobility of Infinite Pipes at L o w 62 

Frequenc ies 

3.6 Evaluat ion of the Simplif ied Mobility of In f in i t e P ipes 68 

at Low Frequencies 

3.7 Experimental Validation 71 

3.7.1 Introduction 71 

3.7.2 Experimental Setup 72 

3.7.3 Experimental Results 73 

3.7.4 Discussion 84 

3.8 Conclus ions 85 

MOBILITY OF SEMI INFINITE PIPES 87 

4.1 Introduct ion 87 

4.2 Analyt ical Method for Semi-infinite P ipes 88 

4.3 Wave Method for Semi-infinite P ipes 92 

4.4 Numerica l Analysis to Evaluate the Mobil i ty of Semi- 97 

inf in i te Pipe 



4.5 Approximate Mobility of Semi-infinite P i p e s at Low 98 

Frequencies 

4.6 Evaluation of the Simplif ied Low F r e q u e n c y Mobility of 110 

Semi-infinite Pipes 

4.7 Experimental Validation 113 

4.7.1 Introduction 113 

4.7.2 Experimental Setup 114 

4.7.3 Experimental Results 115 

4.7.4 Discussion 122 

4.8 Conclusions 122 

MODAL SENSORS 124 

5.1 Introduction 124 

5.2 Modal Sensor for P ipes 125 

5.3 Experimental Work 135 

5.3.1 Introduction 135 

5.3.2 Experimental Setup and Procedure 135 

5.3.3 Experimental Results 136 

5.3.4 Discussion 142 

5.4 Conclusions 143 

MODAL ACTUATOR FOR IPfFINITE PIPES 145 

6.1 Introduction 145 

6.2 Static Model of Composite P ipes 146 

6.3 Transfer Funct ion of Inf inite P ipes Exc i ted by a PZT 152 

Element 

VI 



6.4 Modal Actuator for the n = 2 mode of In f in i t e Pipes 158 

6.5 Experiment Work 164 

6.5.1 Introduction 164 

6.5.2 Experimental Setup and Procedure 164 

6.5.3 Experimental Results 166 

6.5.4 Discussion 174 

6.6 Conclusions 175 

7 ACTIVE VIBRATION CONTROL OF PIPES 176 

7.1 Introduct ion 176 

7.2 Model of Controll ing n = 2 Flexural Wave of P ipes 177 

7.3 Experimental Validation 181 

7.3.1 Introduction 181 

7.3.2 Experimental Setup and Procedure 182 

7.3.3 Experimental Results 183 

7.3.4 Diseussion 187 

7.4 Conclus ions 187 

8 PASSIVE AND ADAPTIVE PASSIVE VIBRATION CONTROL OF 188 

INFINITE PIPES 

8.1 Introduct ion 188 

8.2 Pass ive Control of Infinite Pipes 189 

8.2.1 Equation of Motion for Composite Pipes 189 

8.2.2 Modification of Pipe Motion by a Composite Pipe 196 

Section 

8.2.2.1 Analytical Method 197 



8.2.2.2 Wave Method 205 

8.2.3 Numerical Validation ibr the Mobility of an Infinite 209 

Pipe Having a Composite Pipe Section 

8.2.4 Evaluation of Passive Control with a Damping 211 

Material 

8.3 Adaptive-pass ive Control for Infinite P i p e s by Tuning 218 

Piezoelectr ic Shunt 

8.3.1 Static Model of a Shunted PZT Element 218 

8.3.2 Adaptive-passive Control with a PZT Element 222 

Shunted with a Parallel L-R Circuit 

8.3.3 Evaluation of Adaptive-passive Control with a PZT 224 

Shunt 

8.4 Discuss ion 229 

8.4.2 Passive Control 229 

8.4.2 Adaptive-passive Control 230 

8.5 Conclus ions 230 

9 CONCLUSIONS 232 

9.1 General Conclus ions 232 

9.2 Recommendat ions for Further Work 236 

REFERENCES 238 

APPENDICES 

A Modal Decompos i t ion 247 

B Wave Decompos i t ion for Inf ini te Pipes 250 

C Effect of Mass Loading on P ipes 254 



D Experimental Apparatus 257 

D.l Experimental Equipment and Properties of Materials 257 

D.2 Measurement of Properties of the Pipe 259 

D.3 Experimental Configuration of the Active Control System for 260 

the n = 2 Flexural Wave 

IX 



NOMENCLATTJRE 

a Radius of the pipe 

a, b, and c Wave vector 

bs Ratio of a half of width of the sensor to the radius of the pipe 

bsi and baz Piezoelectric stress constants 

dai and dsz Piezoelectric strain constants 

es Axial strain 

eg Circumferential strain 

esB Shear strain 

fr Ring frequency of the pipe 

g's Polynomial coefficients of axial wavenumbers, , obtained from the 

simplified characteristic equation. 

gs" Polynomial coefficients of axial wavenumbers, , obtained from the 

Flugge's shell theory. 

h Thickness of the pipe 

hd Thickness of the damping material 

hpv Thickness of the PVDF sheet 

hz Thickness of the PZT element 

Non-dimensional branch axial wavenumber (the axial wavenumber is 

multiplied by the radius of the pipe) 

Non-dimensional branch axial wavenumber of the composite pipe 

Non-dimensional longitudinal wavenumber (the wavenumber is 

multiplied by the radius of the pipe) 

Non-dimensional torsional wavenumber (the wavenumber is multiplied 



by the radius of the pipe) 

Non-dimensional flexural wavenumber of a beam (the wavenumber is 

multiplied by the radius of the pipe) 

kai Electro-mechanical coupling coefficient of the PZT element 

mo Moment induced on the pipe by the PZT element 

n Mode number 

pe Circumferential position of the PZT elements used as the modal 

actuator 

pmq Ratio of the moment to the force induced on the pipe by the PZT 

element 

g Charge generated from the PVDF sheet 

qo Force induced on the pipe by the PZT element 

s Non-dimensional axial length 

Sc Non-dimensional axial location of centre of the modal sensor to the 

radius of the pipe 

u Axial component of the displacement 

u' Axial displacement of the infinite pipe excited by the point force 

u'z Axial displacement of the infinite pipe excited by the PZT element 

u" Axial displacement of the composite pipe 

u Tangential component of the displacement 

u' Tangential displacement of the infinite pipe excited by the point force 

o' Tangential displacement of the infinite pipe excited by the PZT element 

y'-' Tangential displacement of the composite pipe 

w Radial component of the displacement 

w' Radial displacement of the infinite pipe excited by the point force 

w' Radial displacement of the infinite pipe excited by the PZT element 

w" Radial displacement of the composite pipe 



Zo Distance from the mid-plane of the pipe to t h a t of the PVDF 

Az Surface area of the PZT element 

Cz Capacitance of the PZT element 

D Bending stiffness of the pipe 

Dc Bending stiffness of the composite pipe section 

Dd Bending stiffness of the damping material 

Ds Electric displacement across the electrodes of t h e piezoelectric material 

E Young's modulus of the pipe 

Ed Young's modulus of the damping material 

Epv Young's modulus of the PVDF sheet 

Ez Young's modulus of the PZT element 

Ezn Young's modulus of the shunted PZT element 

E3 Electric field across the electrodes of the piezoelectric material 

F • Point force intensity 

Fo Amplitude of the point force ' • 

Fs Static gain of the generated force 

H( ) Unit step function 

Hpe Measured frequency response of the pipe 

J( ) Bessel's function 

K Membrane stiffness of the pipe 

Kc Membrane stiffness of the composite pipe 

Kd Membrane stiffness of the damping material 

La A half of length of the PZT element normalised to the radius of the pipe 

Lz Inductance 

Ms and Mq Bending moment in axial and circumferential 

XII 



Mse and Mas Twisting moment 

Ns and Ng Normal in-plane force in axial and circumferential 

Nse and Nes In-plane shear force 

N Number of accelerometers for the modal decomposition 

Ne Number of PZT elements for the modal actuator 

Qs and Qe Transverse shear force in axial and circumferential 

g" Generated charge of the modal sensor shaped in the sine function 

g'' Generated charge of the modal sensor shaped in the cosine function 

Q' Total generated charge of the modal sensor 

Ri Reflection matrixes of waves in the pipe at t h e discontinuity 

R2 Reflection matrixes of waves in the composite pipe section at the 

discontinuity 

Rf Reflection matrix of waves 

Re,s„|, Residue term for the infinite pipe excited by t h e point force 

Re s Residue term for the infinite pipe excited by t h e PZT element 

Ti Transmission matrixes of waves in the pipe to the composite section 

T2 Transmission matrixes of waves in the composite section to the pipe 

Tf Transfer matrix of waves 

Tse Effective in-plane shear force 

and Transfer functions of the n = 2 cosine and sine modal sensors 

T'̂  Net transfer functions of the n = 2 modal sensor 

T.̂  and Transfer functions (velocity / supplied voltage) of the cosine, and the 

sine modal actuators 

T™ Net transfer functions (velocity / supplied voltage) of the modal 

actuators 

Xlll 



U„b 

u i]h 

V nb 

V, 

w, 

w, 

w nb 

w, 

Axial amplitude for the wave of the mode of the pipe 

Axial amplitude for the b"" wave of the mode of the composite pipe 

U „ Axial amplitude of the mode of the pipe in the wavenumber domain 

Axial displacement of the n^ mode of the infinite pipe in the frequency 

domain 

V Voltage supplied to the PZT element 

V' Voltage supplied to the cosine modal actuator 

V,"' Voltage required for each PZT element to form the cosine modal 

actuator 

V " Voltage supplied to the sine modal actuator 

V' Voltage required for each PZT element to form the sine modal actuator 

V'"' Total voltage supplied to the modal actuator 

Vs Effective transverse shear force 

Vz Equivalent voltage generated by the PZT element 

Circumferential amplitude for the b'^ wave of the n^ mode of the pipe 

Circumferential amplitude for the b'̂ '̂  wave of the n'̂ '̂  mode of the 

composite pipe 

V„ Circumferential amplitude of the mode of the pipe in the 

wavenumber domain 

V/j Circumferential displacement of the n^ mode of the infinite pipe in the 

frequency domain 

Radial amplitude for the b^ wave of the n*̂  mode of the pipe 

Radial amplitude for the b*̂^ wave of the n^ mode of the composite pipe 

Radial amplitude for the b^ wave of the n"^ mode of the infinite pipe 

Radial amplitude for the b^ wave of the n*^ mode of the semi-infinite 

XIV 



pipe 

Wi, Radial amplitude of the mode of the pipe in the wavenumber 

domain 

Wn Radial amplitude of the n'^ mode of t h e infinite pipe in the 

wavenumber domain, which is excited by the PZT element. 

Radial displacement of the mode of the infinite pipe in the 

frequency domain 

Radial displacement of the mode of the semi-infinite pipe in the 

frequency domain 

Radial displacement of the mode of the infinite pipe in the 

frequency domain, which is excited by the PZT element 

(V Radial displacement of the pipe excited by the cosine modal actuator 

Radial displacement of the pipe excited by the sine modal actuator 

1 4 / R a d i a l displacement of the pipe simultaneously excited by the sine and 

cosine modal actuators 

Radial displacement resulting from using the cosine modal actuator in 

active vibration control system 

Radial displacement resulting from using t h e sine modal actuator in 

active vibration control system 

Radial displacement resulting from using the modal actuator in active 

vibration control system 

yj Radial mobility of the n*̂ '̂  mode of the infinite pipe in the frequency 

domain 

Radial point mobility of the n"^ mode of the infinite pipe in the 

frequency domain 

Radial t ransfer mobility of the n"^ mode of the infinite pipe in the 

frequency domain 

Radial mobility of the n"* mode of the semi-infinite pipe in the 

frequency domain 



Radial point mobility of the mode of the semi-infinite pipe in the 

frequency domain 

Radial transfer mobility of the n"̂  mode of the semi-inHnite pipe in the 

frequency domain 

Coefficients of normal in-plane force, Na 

Zy nh Coefficients of effective in-plane shear force, Tse 

Coefficients of effective transverse shear force, Vs 

Z^ nb Coefficients of bending moment, Ms 

Zg Net impedance of the PZT element shunted 

Net impedance of the shunted PZT element normalised to its open-

circuit electrical impedance 

Z,, Open-circuit electrical impedance of the PZT element 

Z, External electrical circuit of impedance 

G r e e k L e t t e r s 

P Wall thickness ratio of the pipe 

j3c Wall thickness ratio of the composite pipe 

V Poisson's ratio of the pipe 

Vd Poisson's ratio of the damping material 

Vpv Poisson's ratio of the PVDF sheet 

Vz Poisson's ratio of the PZT material 

Vzn Poisson's ratio of the shunted PZT element 

p Density of the pipe 

pc Density of the composite pipe 

pd Density of the damping material 



00 Angular frequency 

(Or Angular ring frequency of the pipe 

corc Angular ring frequency of the composite pipe 

cOe Electrical resonant frequency 

n Normalised frequency to the ring frequency of the pipe 

Oc Normalised frequency to the ring frequency of the composite pipe 

Oco Cut-on frequency normalised to the ring frequency of the pipe 

8 Azimuthal angle of the pipe 

(|) Azimuthal orientation angle of the pipe with respect to the excitation 

force 

(|)c Orientation angle related to the cosine modal actuator 

(|)p Angle interval between the positions of the PZT elements 

tp Arc angle of the PZT element 

cos (n8) cos (n(|)) 

X2 sin (n8) sin (n(|)) 

E33 Permittivity at constant stress of the piezoelectric material 

En 1 for n = 0 mode 

2 for n > 1 modes 

e Stretching strain of the middle surface of the pipe 

Es and Eg Stretching strain of the middle surface of t h e pipe in the axial and 

circumferential direction, respectively 

Ese Shear strain of the middle surface of the pipe 

K Change of curvature of the middle surface of t h e pipe 

Ks and Ke Change of curvature of the middle surface of the pipe in the axial and 

circumferential direction, respectively 

Ksg Twist of the middle surface of the pipe 



cyP Stress in the pipe 

aj' and aj' Stresses in the pipe in the axial and circumferential direction 

(ji' and og; Shear stresses in the pipe 

Yse Shear strain in the pipe 

Unb Branch axial coefScient of the n*̂"̂  mode 

Ynb Branch circumferential coefficient of the n"^ mode 

r| Loss factor of the pipe 

rjd Loss factor of the damping material 

T|z Loss factor of the PZT material 

8( ) Delta function 

A Free piezoelectric strain 

XVIII 



I J [ S T r ( D I f ] ? I C l t n R ] 3 S 

F i g u r e N o . D e s c r i p t i o n s P a g e 

Figure 1.1 Diagram showing axial, circumferential and helical 1 

wavenumbers of an pipe 

Figure 1.2 Mode shapes of a pipe. 2 

Figure 1.3 Propagating waves of an infinitely long pipe 3 

Figure 2.1 Cylindrical co-ordinate system for a pipe 16 

Figure 2.2 Dispersion curve for the mode number n = 0 to n = 5; 35 

Simplified model, Flugge theory and Kennard theory. 

Figure 3.1 The cylindrical co-ordinate system for an in-vacuo pipe 38 

excited by a point force 

Figure 3.2 Contour integral for the residue method 42 

Figure 3.3 Notation and co-ordinate system for an element of pipes 50 

Figure 3.4 Notation and co-ordinate system for two connecting pipe 51 

elements 

XIX 



Figure 3.5 Wave mobility of the modes n = 0 to n = 3 of the infinite 61 

pipe; Analytical method and Simplification 

Figure 3.6 Point mobility of the n = 0 to n = 3 modes of an infinite 69 

pipe; Analytical method and Simplification at low-

frequencies 

Figure 3.7 Transfer mobility of the n = 0 to n = 3 modes of an infinite 70 

pipe; Analytical method and Simplification at low-

frequencies 

Figure 3.8 Expehmental setup for the infinite pipe 72 

Figure 3.9 Wave decomposition of an infinite pipe, in which 74 

measurements around the pipe are taken at the point 1 

and 2 

Figure 3.10 ' Amplitude of mobility of the n = 0 mode of the infinite pipe 77 

Figure 3.11 Amplitude of mobility of the n = 1 mode of the infinite pipe 77 

Figure 3.12 Amplitude of mobility of the n = 2 mode of the infinite pipe 78 

Figure 3.13 Amplitude of mobility of the n = 3 mode of t h e infinite pipe 78 

Figure 3.14 Orientation angle extracted from frequency response of the 79 

n = 1 mode 



Figure 3.15 Orientation angle extracted from frequency response of the 79 

n = 2 mode 

Figure 3.16 Orientation angle extracted from frequency response of the 80 

n = 3 mode 

Figure 3.17 Amplitude of mobility of the infinite pipe a t 6 = 0. 80 

Figure 3.18 Amplitude of mobility of the infinite pipe a t 9 = Ji/2 81 

Figure 3.19 Amplitude of mobility of the infinite pipe a t 6 = 7t 81 

Figure 3.20 Amplitude of mobility of the infinite pipe a t 6 = 3ji/2 82 

Figure 3.21 Wave decomposition for the n = 1 mode of the inGnite pipe. 82 

Figure 3.22 Wave decomposition for the n = 2 mode of the infinite pipe 83 

Figure 3.23 Wave decomposition for the n = 3 mode of the infinite pipe 83 

Figure 4.1 Notation and co-ordinate system of a semi-infinite pipe 88 

with a free end 

Figure 4.2 Diagram of wave propagating and reflected in a pipe 92 

Figure 4.3 Wave mobility of the mode n = 0 to n - 3 of a semi-infinite 98 

pipe; Analytical method and Wave method 

XXI 



F i g u r e 4.4 Point mobility of the n = 0 to n = 3 modes of a semi-infinite 111 

pipe; Analytical method and Simplification at low-

frequencies 

Figure 4.5 Transfer mobility of the n = 0 to n = 3 modes of a semi- 112 

infinite pipe, which is calculated at the distance of s = 100; 

Analytical method and Simplification at low frequencies 

Figure 4.6 Experimental setup for the semi-infinite pipe 114 

Figure 4.7 Amplitude of mobility of the n = 1 mode of the semi- 118 

infinite pipe 

Figure 4.8 Amplitude of mobility of the n = 2 mode of the semi- 118 

infinite pipe 

Figure 4.9 Amplitude of mobility of the n = 3 mode of the semi- 119 

infinite pipe 

Figure 4.10 Orientation angle extracted from frequency response of the 119 

n = 2 mode of the semi-infinite pipe 

Figure 4.11 Amplitude of mobility of the semi-infinite pipe at 6 = 0 120 

Figure 4.12 Amplitude of mobility of the semi-infinite pipe at G = 71/2 120 

Figure 4.13 Amplitude of mobility of the semi-infinite pipe at 0 = tc 121 

xxu 



Figure 4.14 Amplitude of mobility of the semi-infinite pipe at 9 = 37r/2 121 

Figure 5.1 Schematic of composite section of a pipe 125 

Figure 5.2 Forms of mode deformation of a pipe 127 

Figure 5.3 Cross sensitivities between the responses of the n = 6 and 132 

the n = 2 mode for various bs 

Figure 5.4 Dispersion curve of n - 2 mode 133 

Figure 5.5 Arrangement of modal sensor 136 

Figure 5.6 Experimental setup for evaluation of the modal sensor 136 

Figure 5.7 Amplitude of the total transfer function of the modal 140 

sensors obtained from the combination of the sine and 

cosine function shapes 

Figure 5.8 Orientation angle of the pipe with respect to the force 140 

position 

Figure 5.9 Comparison between the frequency response of the cosine 141 

function in terms of mobility for the n = 2 mode; Modal 

sensor output; Output of array of accelerometers; 

Predicted mobility 

XXIII 



Figure 5.10 Comparison between the frequency response of the sine 

function in terms of mobility for the n = 2 mode; Modal 

sensor output; Output of array of accelerometers; 

Predicted mobility 

141 

Figure 5.11 Comparison between the total response in terms of 142 

mobility for the n= 2 mode; Modal sensor output; Output of 

array of accelerometers; Predicted mobility 

Figure 6.1 Strain model of a composite pipe 146 

Figure 6.2 Distribution of Stress and Strain over the composite pipe 150 

Figure 6.3 A PZT actuator bonded to an infinite pipe 152 

Figure 6.4 Cross-sectional schematic of a modal actuator 159 

Figure 6.5 Experimental Setup for evaluation of the modal actuator 165 

for the n = 2 mode of the pipe 

Figure 6.6 Amplitude of Transfer function of the n = 0 mode of the 169 

pipe, which is excited by a single actuator 

Figure 6.7 Amplitude of Transfer function of the n = 1 mode of the 

pipe, which is excited by a single actuator 

169 

Figure 6.8 Amplitude of Transfer function of the n = 2 mode of the 

pipe, which is excited by a single actuator 

170 

XXIV 



Figure 6.9 Amplitude of Transfer function of the n = 3 mode of the 170 

pipe, which is excited by a single actuator 

Figure 6.10 Amplitude of Transfer function of the n = 4 mode of the 171 

pipe, which is excited by a single actuator 

Figure 6.11 Amplitude of Transfer function of the pipe for all modes, 171 

which is excited by a single actuator 

Figure 6.12 Amplitude of Transfer function of the pipe excited by the n 172 

= 2 cosine modal actuator 

Figure 6.13 Amplitude of Transfer function of the pipe excited by the n 172 

= 2 sine modal actuator 

Figure 6.14 Amplitude of Transfer function of the pipe excited by both 173 

n = 2 modal actuators 

Figure 6.15 Orientation angle of the pipe arising from the excitation of 173 

both modal actuators with the same ampli tude of the input 

voltage 

Figure 6.16 Orientation angle of the pipe arising from the excitation of 174 

both modal actuators with the input voltage of the sine 

modal actuator equal to half tha t of t h e cosine modal 

actuator 

Figure 7.1 Diagram of the active control system for t h e flexural wave 177 

of the n = 2 mode with the modal actuator 



Figure 7.2 Diagram of experimental setup to control the n = 2 183 

propagating flexural wave 

Figure 7.3 Transfer function of the n = 2 PVDF modal sensors excited 185 

by the point force. 

Figure 7.4 Orientation angle of the cosine modal actuator, (t)c, with 185 

respect to the primary force extracted from the sine and 

cosine modal sensors for the n = 2 mode 

Figure 7.5 Transfer function of the n = 2 PVDF modal sensors excited 186 

by the modal actuator. 

Figure 7.6 Amplitude of mobility of the infinite pipe measured at a 187 

position of 1610 mm from the primary force 

Figure 8.1 Diagram of a composite pipe with the damping material 190 

Figure 8.2 Diagram of a pipe with composite pipe section 196 

Figure 8.3 Model of the waves at the discontinuous pipe section 197 

Figure 8.4 Notation and co-ordinate system at the discontinuity 197 

Figure 8.5 Diagram of the reflection and transmission of waves at the 205 

discontinuity for any circumferential mode 

XXVI 



Figure 8.6 Amplitude of the mobility for the n = 0-3 modes of an 211 

infinite pipe having composite pipe section, whose 

boundaries from the excitation are si = 50 and S2 = 52 

Figure 8.7 Diagram of an infinite pipe where t h e composite pipe 212 

section is formed by attaching a damping material 

Figure 8.8 Amplitude of the mobility of the n = 0 mode of an infinite 214 

pipe with the attached material having s l = 2, T|d = 0.8; 

Ed/E= 0.01, Ed/E= 1, Ed/E= 100 a n d w i t h o u t t h e a t t a c h e d 

material 

Figure 8.9 Amplitude of the mobility of the n = 1 mode of an infinite 214 

pipe with the attached material having s l = 2, Tjd = 0.8; 

Ed/E=: 0.01, Ed/E= 1, Ed/E= 100 a n d w i t h o u t t h e a t t a c h e d 

material 

Figure 8.10 Amplitude of the mobility of the n = 2 mode of an infinite 215 

pipe with the attached material having s l = 2, T|d = 0.8; 

Ed/E= 0.01, Ed/E= 1, Ed/E= 100 a n d w i t h o u t t h e a t t a c h e d 

material 

Figure 8.11 Amplitude of the mobility of the n = 0 mode of an infinite 215 

pipe with the attached material having SL = 2, Ed/E = 0.83; 

T|d = 0.1, T|j = 1, 11 j = 10 and without the at tached material 

Figure 8.12 Amplitude of the mobility of the n = 1 mode of an infinite 216 

pipe with the attached material having SL = 2, EVE = 0.83; 

lid = 0.1, r|j = 1, T|j = 10 and without the at tached material 



Figure 8.13 Amplitude of the mobility of the n = 2 mode of an infinite 216 

pipe with the attached material having SL = 2, Ed/E. = 0.83; 

lid = 0.1, 11 j = 1, r|j = 10 and without the attached material 

Figure 8.14 Amplitude of the mobility of the n = 0 mode of an infinite 217 

pipe with the damping material having Ea/E = 0.83 and -qd 

= 0.8; SL = 2, SL = 5, sl = 20 and without the damping 

material 

Figure 8.15 Amplitude of the mobility of the n = 1 mode of an infinite 217 

pipe with the damping material having Ed/E - 0.83 and T|d 

= 0.8; SL = 2, SL = 5, SL = 20 and without the damping 

material 

Figure 8.16 Amplitude of the mobility of the n = 2 mode of an infinite 218 

pipe with the damping material having Ed/E = 0.83 and T|d 

= 0.8; SL = 2, SL = 5, SL = 20 and without the damping 

material 

Figure 8.17 Diagram of the composite pipe with a PZT element 219 

connected to a shunt circuit 

Figure 8.18 A PZT element shunted with the parallel L-R circuit 223 

Figure 8.19 PZT properties shunted with a parallel L-R circuit 226 

Figure 8.20 Transfer Mobility of the n = 0 mode of the infinite pipe 227 

with PZT shunt; Rz = 50, Rz = 500, Open circuit, and 

Without PZT 

XXVIII 



Figure 8.21 Transfer Mobility of the n = 1 mode of the infinite pipe 227 

with PZT shunt; Rz = 50, Rz = 500, Open circuit, and 

Without PZT 

Figure 8.22 Transfer Mobility of the n = 2 mode of the infinite pipe 228 

with PZT shunt; Rz = 50, Rz = 500, Open circuit, and 

Without PZT 

Figure 8.23 Non-dimensional wavenumber of the n = 2 mode of a 228 

composite infinite pipe with PZT mater ia l attached; In-

vacuo pipe and Composite pipe 

Figure B . l Decomposition of incoming and reflected waves 250 

Figure C.l General framework of the connection between pipe and 254 

rnass 

Figure D. l Picture of the n = 2 PVDF modal sensor for a pipe 260 

Figure D.2 Picture of the n = 2 PZT modal actuator for a pipe 260 

Figure D.3 Picture of the active control system for t h e n = 2 flexural 261 

wave 

xxw: 



LIST OF TABLES 

T a b l e N o . D e s c r i p t i o n s P a g e 

Table 2.1 PVC Pipe data 30 

Table 2.2 Cut-on frequency of the circumferential modes 32 

according to various versions of the frequency 

equations 

Table 3.1 Summary of the approximate mobility of an infinite 71 

pipe 

Table 4.1 Summary of the approximate mobility of a semi- 113 

infinite pipe 

Table 8.1 Nitrile Rubber data 210 

Table D. l Properties of a PVC pipe 257 

Table D.2 Properties of a PVDF sheet (Measurement Specialist) 257 

used for modal sensors 

Table D.3 Properties of a PZT element (Morgan Matroc) used for 257 

modal actuators 

Table D.4 Experimental equipment 258 

X X X 



Chapter I: Introduction. 

( J B L A J P T I S T t 1 

i ] s r r i t ( ) i ) U € T i ( X N 

1.1 Introduction 

In many processing and chemical industries, and in ships and aircraft, pipework is 

important for transporting fluids, for example gas, cooling water and hydraulic fluid. A 

piping system can be excited by many sources connected to the structure such as 

compressors, pumps, or valves. The resulting vibration, which is transmitted along the 

pipe in form of a propagating wave, can also excite other equipment attached to the 

structure. Excessive vibration may lead to fatigue and cause damage to the system. 

Hence, it is desirable to control the vibration of the pipe. 

Figure 1.1: Diagram showing axial, circumferential and helical wavenumbers of an i?i-

vacuo pipe 

It is well-known that the motion of a pipe is complicated since its structure is three 

dimensional. For a thin-walled pipe, structural waves propagate in a helical pattern, 
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and can be represented by the wavenumber, kca, as shown in the figure 1.1 (Fahy [1]). 

The wavenumber of the helical wave, kcs, is the vector combination of the wave 

components in the axial and circumferential directions, and is given by 

kw = k i + k 2 

where knb is the axial wavenumber and 

kc is the circumferential wavenumber. 

The axial wavenumber is thus given by 

^ nb •k; 

It can be seen that k»b is only real and hence propagating when kcŝ  > kĉ . Otherwise, the 

wave is evanescent. 

n = 0 

Figure 1.2; Mode shapes of a pipe. 

Due to the closure of the pipe in the circumferential direction, the wave propagation 

must be continuous in this direction and hence, the circumferential characteristic takes 

the form of sine or cosine functions of k c a 6 , where k c = n/a; n is the mode number, a is 

the radius of a pipe and 6 is the angle between the wavevectors. With the form of such a 

function in the circumferential direction, for the n = 0 mode (also known as the 

breathing mode) there is only stretching or contracting of t h e pipe wall. For the n = 1 

mode called the bending mode, the pipe cross section is undefbrmed, and at n = 2 or 
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higher mode the pipe changes in shapes as shown in figure 1.2. Once the mode shapes 

are formed around the pipe, they are conveyed along the pipe by the axial waveguide. 

With an pipe, there are eight axial waves that can potentially propagate along 

the pipe at any frequency for each circumferential mode as shown in figure 1.3. Four 

waves propagate in an upstream direction and another four waves propagate in a 

downstream direction. For the n = 2 mode, below the ring frequency (when the 

wavelength of a longitudinal wave is equal to the pipe circumference) in the 

downstream direction, there is a flexural propagating wave (b = 1), a near field wave (b 

= 2), and a decaying standing wave, which is a combination of two waves (b = 3 & 4), 

which are equal in amplitude but different in phase. Since t h e near field and standing 

near field waves are evanescent, only the flexural wave travels along the pipe. Because 

of this behaviour, the active control system considered in this thesis is designed to 

suppress this wave. 

Figure 1.3: Propagating waves of an infinitely long pipe. 

There are many shell theories based on the strain at a point to explain the motion of a 

pipe wall but none of these theories is universally accepted due to small differences 

between them. This arises from the different assumptions. Usually, most theories are 

based on the assumption of zero normal shear strain. Nowadays, the versions of shell 

theories generally used by researchers are Donnell-Mushtari, Love (Leissa [2]), 

Timoshenko [3], Kennard [4], and Flugge [5]. 

Most of the literature discusses pipes containing fluid, for example papers by Pavic [6], 

Pinnington and Briscoe [7] and Brennan et al [8]. The authors have concentrated on the 
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n = 0 mode (breathing mode) because of the coupling between the fluid and structure. 

Apart from the n = 0 mode, Fuller [9] has also considered higher order modes and 

showed that the fluid acts as a mass loading effect on these modes. 

Unlike fluid-filled pipes, there has been relatively little work concentrating on the 

active control of vibrations in i/i-uocMO pipes, which is the objective of this thesis. 

Without the fluid, the pipe motion is generally dominated by the n = 1 and n = 2 modes 

at low frequencies (normally below 1 kHz). The low frequency dynamic behaviour of the 

n = 1 mode is similar to that of the beam, and hence the active control of this wave is 

similar to that of controlling beam vibration, and this h a s seen much development 

(Mace [10] and Brennan et al [11]). Hence, the work in this thesis concentrates on the 

development of a control strategy for the n = 2 mode. 

In general, there are three established means used to suppress vibration. These are 

passive, semi-active (or adaptive-passive) and active control (Mead [12]). Passive control 

involves modification of the stiffness, mass and damping of the vibrating structure to 

make the structure less responsive to an excitation force. Semi-active control involves 

passively generating a secondary force, by actively changing the properties of the 

structure, such as the stiffness and damping. For a pipe, both approaches should be 

effective at the cut-on frequency of a wave where maximum vibration occurs, and the 

damping dominates (Hagood and von Flotow [13]). On t h e other hand, an active 

vibration control system requires an external energy source to supply or absorb energy 

from the structure as appropriate. This control approach is more effective in 

suppressing an unwanted disturbance because of its ability to control over a broadband 

frequency range, and this strategy is chosen in this thesis for cancelling the flexural 

wave of the n = 2 mode. However, this control strategy risks spillover due to unobserved 

modes excited by the control system (Fuller and Brevart [14]). To avoid this, a modal 

sensor and a modal actuator are used in the system to selectively sense and actuate a 

particular mode. 

The development of an active control system to control the pipe motion may be divided 

into two parts. The first part involves the analysis of the physical system. This includes 
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the way in which the modal sensor and the modal actuator couple into the dynamics of 

the structure and the determination of the behaviour of the system when the control 

system is implemented. The second part involves the development of the electronic 

control system, which needs to be designed to implement the theory. This thesis is 

primarily concerned with the first part; the analysis of the dynamic behaviour of the 

system. 

1.2 Literature Rev iew 

1.2.1 M o d e l l i n g P i p e V i b r a t i o n 

There have been many researchers working on the equations of motion for a cylindrical 

shell. In contrast to the classical equation of motion for a beam or a plate having a 

single fourth order differential equation, a number of equations for the pipe have been 

derived because of slightly different simplifying assumptions. Most theories are based 

on the assumption of zero normal shear strain. The well-known shell theories were 

collected and extensively summarised by Leissa [2]. In order to make a compaiison, he 

analysed various aspects such as a frequency parameter and the amplitude ratio of 

axial and circumferential displacements to radial displacement. He concluded that the 

theories are consistent to within a few percent. Similar to Leissa's work, Zhang et al 

[15] has recently compared a few shell theories using the frequency parameter. 

Nowadays, the versions of shell theories are generally referred to as Donnell-Mushtari 

(Leissa [2]), Love (Leissa [2]), Timoshenko [3], Kennard [4] and Flugge [5]. In this 

thesis, Flugge's shell theory is used in the analysis of the pipe behaviour. 

Probably, the most convenient way to investigate the dynamic behaviour of the pipe is 

to examine a wave propagating axially in the pipe, described by an axial wavenumber 

or wave speed. In order to explain the dynamic behaviour of the pipe in a simple way, 

Lin and Morgan [16] used the concept of a rigid tube and an infinitely flexible tube to 

construct a curve of phase velocity in the axial direction. With this curve, they 



Chapter I: Introduction 

concluded that all the modes except the first two modes have a minimum cut-on 

frequency and the first two modes exist at all frequencies. A more explicit explanation 

was provided by Cremer and Heckl [17], in which the curve of the phase velocity in the 

axial direction was calculated from Kennard's shell theory. By comparing this with the 

phase velocity of a simple structure, they explained the behaviour of the pipe in terms 

of a bar, a beam and a plate. However, both pieces of work were limited as they 

considered only real wave types. A complete set of dispersion curves was presented by 

Fuller and Fahy [IS] based on Donnell-Mushtari shell theory. All of the wave types 

were considered and discussed in their paper. They demonstrated that there are also 

complex wave types, which combine to give a standing near field wave. Nevertheless, 

the wavenumbers given in their work are complicated and difficult to interpret. In order 

to provide a simple physical interpretation, Brennan e( oZ [19] employed a complete set 

of dispersion curves along with Heckl's concept. They discussed the behaviour of 

individual waves propagating along the shell in terms of flexural beam-like, plate-like 

bending, longitudinal and shear waves. Recently, Finnveden [20] described the pipe as 

being equivalent to the model of Timoshenko beam on a Winkler foundation. With this 

analysis, the wavenumber for a propagating wave of the n > 1 modes of the pipe was 

established in a simple fbrm and it was shown to depend on an equivalent mass and a 

spring constant for the Winkler foundation. It was clearly illustrated that before the 

wave cuts on the stiffness dominates the pipe behaviour resulting the wave type being a 

standing near field arid &fter the wave cuts on the equivalent mass influences the 

resulting flexural wave. However, such a model is valid only at low frequencies and for 

a few circumferential modes. 

There has been much discussion in the literature regarding the way of describing the 

motion of a pipe. In the case of an infinitely long pipe, most researchers have dealt with 

the problem in a similar way. They have used the Fourier series to describe the axial, 

circumferential and radial displacements in the wavenumber domain and the use of the 

Residue method for Fourier inversion into the spatial domain. Such work has been done 

by Franken [21], Heckl [22], Fuller [9] and Brevart and Fuller [23]. Unlike the infinite 

pipe, the derivation for a semi-infinite pipe can analysed in a straight-forward manner 

using four boundary conditions. Such work has been done by Flugge [5] and Vinson [24]. 

Young [25] and Pan and Hansen [26] extended the solution into a general form for any 
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excitation position by adding the condition of motion continuity at the point of 

excitation. 

1.2.2 V i b r a t i o n C o n t r o l 

1.2.2.1 Actuators for Active Control 

In recent years, the application of piezoelectric actuators for active vibration control 

purposes has been increasing due to the attractive property of piezoelectric material in 

that it is able to convert electrical to mechanical energy. In addition, it is relatively 

lightweight, can be tailored into shapes (Morgan Martoc [27]), and can be readily 

integrated into a structure without changing the mechanical properties of the system. 

Nowadays, two commercially produced types of piezoelectric materials are PZT (lead 

zirconate titanate) and PVDF (polyvinylidene fluoride). Because it is easily shaped, 

much effort has been concentrated on developing PVDF as an actuator. Such 

applications on beams and plates have been reported by Burke and Hubbard, J r [28], 

Lee [29] and Lee and Moon[30], and on pipes by Tzou [31] and Sung ef al [32]. However, 

this type of piezoelectric material is not very suitable for actuator applications as stated 

by Brennan et al [33]. This is because it has relatively low stiffness, which does not 

facilitate effective mechanical coupling to the structure, and small dielectric constant 

(dsi), which implies that it needs a high applied voltage as reported by Tani et al [34] 

and Qiu and Tani [35]. Having high stiffness and high dielectric constant, PZT is more 

appropriate for actuator applications. The analysis of the coupling between PZT and a 

beam was first developed by Crawley and de Luis [36], and la ter Crawley and Lazarus 

[37] extended it to the plate. In their analysis, the assumptions of linear strain across 

the thickness of the structure and uniform strain across the PZT carried by a shear 

stress in the bonding layer to induce the bending of the structure 'surface. Another two 

important pieces of work on PZT/plate coupling were conducted by Dimitriadis et al [38] 

and Kim and Jones [39]. Dimitriadis et al made the assumption of a perfect bonding 
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(zero bonding layer thickness), linear strain distribution through the thickness of the 

composite and constant stress slope. However, Kim and Jones argued that the last 

assumption causes an underestimation of the effective moment. They also contested 

that the uniform strain across the piezoelectric layer assumed by Crawley and de Luis 

and Crawley and Lazarus, overestimates the effective moment. Therefore, they used the 

assumption of the constant strain slope over the thickness of the composite in their 

analysis. Actuator applications on a finite pipe such as the work done by Lester and 

Lefebvre [40] and Lalande at al [41] used a pair of PZT elements bonded on the opposite 

sides of the pipe (inside and outside) to generate a pure moment and a pure in-plane 

force. However in reality, it is difficult to locate the PZT elements on both sides (inside 

and outside) of the pipe. 

1.2.2.2 Sensors for Active Control 

The modal sensor was first introduced by Lee and Moon [30], who applied it to a beam, 

and included an analysis of the modal sensor for a plate as well. It was extended in 

theory and practice for a plate by Gu et al [42]. The analysis of a PVDF sensor bonded to 

a shell was developed by Tzou [31]. The effects of many factors to the output of the 

segmented PVDF, i.e. thickness of the PVDF and shell, the curvature of the shell, were 

investigated by Tzou and Bao [43]. However, the sensors in both pieces of work were not 

discussed in the context of a modal sensor. Since the circumferential mode shapes of a 

pipe are in the form of sine and cosine functions, then from the work by Lee and Moon 

[30], the shapes of the modal sensors should take the form of sine and cosine functions 

as well. The modal sensor for an infinitely long pipe following such shapes were used in 

the work of Fuller and Brevart [14]. Since the shapes of the modal sensors need to be 

accurate, otherwise they cannot be used in an active control system to completely cancel 

undesired modes, Callahan and Baruh [44] preferred to use segmented PVDF elements 

(rectangular shape) with a sensor output cancellation technique. By using a number of 

sensors and decreasing the magnitude of the real part of the observer gain, then the 

sensor output converges to the desired mode. However, this method risks the ill-

conditioning of the modal coordinate matrix and it takes some time to converge to the 

desired mode. Therefore, the modal sensor for the pipe in the work reported here still 
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uses PVDF in the form of sine and cosine functions. The m a i n aim of this work is to 

investigate the use of a distributed sensor to discriminate against the n = 2 

circumferential propagating mode in a pipe. 

1.2.2.3 Active Vibration Control of P ipe Vibration 

Nowadays, there is much research into active control. It uses a secondary source to 

suppress the unwanted disturbance. In active noise control, t h e secondary sources are 

generally loudspeakers, and in active vibration control, the actuator producing forces or 

moments is the secondary source. The active control of noise is possibly the earliest 

work in this Held suggested by Leug nearly sixty years ago (Guicking [45]). However, its 

implementation was far in advance of the technology available at the time. Recently, 

fast microprocessors have been developed, and this has resulted in the dramatic growth 

of research in this field, which has been reported by Nelson and Elliott [46]. Even 

though active noise control has been well developed, active vibration control had been 

less so until Bailey and Hubbard [47] introduced the piezoelectric actuator to this field. 

They used actuators bonded to a cantilever beam in a feedback control system. 

For a structure having infinite length, the dynamic behaviour of the system should be 

described by a wave model rather than a modal model. Normally, the control strategy is 

to suppress a wave propagating along the structure such as longitudinal, torsional and 

flexural. Much research has been conducted on the active control of waves on a beam 

such as Mace [10], Brennan et al [11], Scheuren ([48], and [49]). The strategy has been to 

use the secondary source to generate a force and moment to control the flexural wave. 

Apart from the flexural wave. Pan and Hansen [50] have also used an active system to 

control torsional and longitudinal waves travelling on a beam. 

For the infinite pipe, there has been some work using active vibration control of 

propagating waves. With a fluid-filled pipe, there is also a propagating acoustic wave. 

In this application, the researchers have normally used the active system to control the 
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vibration of the n = 0 mode because of the coupling between the fluid and the pipe, 

which causes most of the energy to be carried in the acoustic wave (Fuller [9]). The 

researchers working on this application have been Fuller a n d Jones [51], Harper and 

Leung [52], and Brennan et al [8]. Later, Brevart and Fuller [23] extended their work to 

control the vibration of the fluid-filled pipe and in-vacuo pipe for the n = 0 and n = 1 

modes. They numerically evaluated the effectiveness of control for individual modes in 

terms of the transmission loss. This work was extended again with more secondary 

sources, and more simultaneously controlled modes (n = 0 - 2 modes) by Fuller and 

Brevart [14]. Active control of the in-vacuo pipe has also been investigated by Hansen 

and Young [53], and Pan and Hansen [26]. 

1.2.2.4 Pass ive Vibration Control 

Passive vibration control techniques have been known for decades for their ability to 

suppress vibration. Many researchers prefer this approach because the system is 

normally simple and is always stable. Generally, it involves the addition or removal of 

mass, damping and stiffness. Damping is used to dissipate vibration energy, and mass 

and stiffness are used to change natural frequencies. For a finite structure, a modal 

point of view is generally adopted, while the wave point of view is appropriate for an 

infinite structure. There are many control techniques for finite structures such as 

damping treatment, adding of stiffeners etc as described by Mead [12]. For the control 

of the waves, stiffness is employed to reflect waves, reducing power transmission along 

the structure. To do this, a discontinuous section, whose stiffness is different from the 

main structure, is normally inserted. Cremer and Heckl [17] have investigated this 

control strategy for longitudinal waves on a bar and flexural waves on a beam. They 

conducted analysis for various geometries. Mace [54] has also analysed the beam for a 

change in section. The tunable absorber has been used by Brennan [55] to change the 

dynamic stiffness at the discontinuity. 

For passive control of an infinite pipe, Harari [56] has investigated the reflection and 

transmission of waves using stiffeners for the discontinuity. Fuller [57] has also 
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analysed the attenuation of waves by using a step discontinuity in wall thickness. These 

results have been used in later work done by Fuller and Brevart [14]. Munjal and 

Tliawani [58] have used a flexible hose as the discontinuous section and investigated 

the transmission loss with the different changes of the properties of this section. 

1.2.2.5 Semi-active Control Us ing a PZT Shunt 

Recently, semi-active control of vibration has been growing in interest. This is because 

it combines the advantage of passive and active control, which are a stable system and 

the ability to change its properties in real-time. 

Typical research using semi-active control has involved a hydraulic vibration absorber 

as described by Pat ter et al [59], and electrorheological fluids as described by Choi et al 

[60]. The use of a PZT element in a semi-active system h a s been considered after 

Hagood and von Flotow [13] provided the first analysis of a PZT element shunted with 

passive networks. They showed that the dynamic properties of a PZT element with a 

shunt such as the Young's modulus and the damping can be changed. Using a 

resistance, R, connected in series with an inductance, L (a series L-R circuit), and 

connected in parallel with a piezoelectric capacitance as a resonant circuit, they pointed 

out that the system is analogous to a tuned mass damper. In order to make an on-line 

change of the PZT properties, Hagood and Crawley [61] used a synthetic inductor in 

which the inductance can be adjusted by using a feedback system. The use of a series L-

R circuit rather than parallel L-R circuit for a shunt was argued by Wu [62], and Wu 

and Bicos [63] becuase the inherent resistance of the inductor should be taken account. 

Hence, they used a parallel L-R circuit in their work. Like Hagood and von Flotow, they 

analysed the optimum shunt resistance and tuning inductance based on the tuned mass 

damper. Other research based on this analogy is the work done by Hollkamp and 

Starchville [64], and Davis and Lesieutre [65]. Most of the research on shunted PZT 

elements has been reviewed and discussed by Tang et al [66], a n d Lesieutre [67]. 
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1.3 Contribution of this Thesis 

The main objective of this thesis is to suppress the vibration of the n = 2 mode of an in 

uocwo pipe by means of an active control system using a modal sensor and modal 

actuator. The sensor and actuator are designed to selectively sense and actuate this 

mode. Tliis application of using the n = 2 modal sensor and the n = 2 modal actuator for 

the active control of the pipe is new. Although the n = 2 modal sensor was used in the 

work done by Fuller and Brevart [14], its analysis is original. The design of the modal 

actuator for a pipe using discrete PZT elements is also a new concept. 

The work in this thesis on passive and semi-active control of an infinite pipe has been 

conducted so that their performance can be compared with that of active control. For 

passive control of an infinite pipe, the attenuation of a propagating wave can be 

achieved by reflection at a discontinuous section. Some prior work by Fuller [57], 

Munjal and Thawani [58] for example, have considered this section as a homogeneous 

section but in this thesis a composite section is used. 

The main contributions in this thesis are as follows: 

Derivation of a simplified characteristic equation of the pipe leading to the cut-on 

frequency and wavenumber 

Derivation of mobility expressions for an infinite pipe using an Analytical approach, 

while that analysed by the Residue method is extended from Fuller's work [9]. 

Derivation of mobility expressions for a semi-infinite pipe using the Wave method. 

Simplified mobility expressions for an infinite pipe 

Simplified mobility expressions for a semi-infinite pipe 

Analysis of a modal sensor for the circumferential mode of the pipe 

The predicted response of an infinite pipe excited by the PZT actuator 

Design and analysis of a PZT modal actuator. 

12 
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Analysis of the wave motion of an infinite pipe having a composite section. 

1.4 Thesis Outline 

The thesis is organised as follows. In chapter 2, the dispersion equation based on 

Flugge's shell theory is simplified. This is done with the assumption that the wall 

thickness is thin, the frequency range of interest is below the ring frequency and the 

axial wave with a very long wavelength is neglected. Fur the r analysis shows that the 

wavenumber of the pipe for the n = 0 and n = 1 mode can be represented by that of the 

simple structure such as a bar, a shaft and a beam. 

The mobility of an infinite pipe is developed in chapter 3. It is derived using two 

methods, the Residue and Analytical methods, which act as a check on each other. 

Simplification of the mobility expression at low frequencies is also conducted. 

Like the infinite pipe, the mobility of a semi-infinite pipe is also derived by using the 

two methods and is presented in chapter 4. These are the Analytical and Wave 

methods. The mobility expression is also simplified at low frequencies. 

In chapter 5, the modal sensor is introduced. It is shaped from PVDF sheet so that its 

area has the form of sine and cosine functions, which are the shapes of the desired mode 

of the pipe to sense. With these shapes, a general expression of a circumferential mode 

sensor is derived. 

The modal actuator, which consists of a set of PZT elements, is described in chapter 6. 

In this chapter, forces and moments generated from a single PZT element bonded on the 

pipe are derived, and are based on the assumptions made by Kim and Jones [39] with 

perfect bonding. The frequency response function of an infinite pipe excited by a single 

13 
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PZT actuator is formulated and finally four PZT elements are applied to form a modal 

actuator for the n = 2 circumferential mode of the pipe. 

With the combination of the modal sensor and the modal actuator, the active control 

system is established and is discussed in chapter 7. In this system, the n = 2 modal 

sensor is used as an error sensor and the n = 2 flexural wave is controlled by the n = 2 

modal actuator. 

Chapter 8 discusses passive and semi-active vibration control. For passive control, an 

infinite pipe with a composite pipe section formed by an unconstrained-layer damping is 

investigated. Its motion is predicted using the Analytical and Wave methods. For semi-

active control, a PZT element shunted with a parallel L-R circuit (L is inductance and R 

is resistance) is used to control the pipe motion. The aim of investigating these control 

strategies is only for comparison with the active control system developed. 

The three control strategies are summarised in chapter 9, and a comparison of passive, 

semi-active control and active control is presented. Some recommendations for further 

work are also suggested. 

14 
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DISPERSION CHARACTERISTICS 

OF Z2V.yAC[/0 PIPES 

2.1 Introduct ion 

It was mentioned in chapter 1 that the objective of the thesis is to control vibration of 

an in-vacuo pipe using an active control system. However, before the control system can 

be employed, a thorough understanding of the behaviour of t h e pipe is needed since it is 

critical in an investigation of active vibration control applied to the pipe. 

It is well-known that the dynamic behaviour of a pipe is complicated since its structure 

is three-dimensional. An investigation of its wavenumbers is a way to understand pipe 

behaviour, and has been conducted by Lin and Morgan [16], Cremer and Heckl [17], 

Fuller and Fahy [9], Brennan et al [19], and Finnveden [20]. 

In this chapter, a study of the dispersion characteristics of an in-vacuo pipe is 

conducted. To enable greater understanding, the wavenumbers are derived in terms of 

simple structural waves such as longitudinal, torsional, and flexural waves. However, 

before the wavenumber analysis can be done, the shell theory has to be simplified. A 

simplified theory is developed using Flugge's shell theory as a basis with some 

additional assumptions. 

15 
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2.2 Simpl i f ied Version of Flugge Shell T h e o r y gyi uacMO 

Due to the complicated form of shell theories, it is difficult to apply them to the 

vibration problem of an infinitely long pipe, i.e. it is difficult to derive simple 

expressions for the dispersion relationships and for the point/ transfer mobilities of a 

pipe. Thus, in this section the intention is to derive a simple form of the dispersion 

equation based on Flugge's shell theory. Once the simplified equation has been 

established, the relatively simple formula for the mobility of a pipe can be determined. 

In the derivation, it is assumed that the wall thickness is thin compared to the radius of 

the pipe, the frequency range of interest is below the r ing frequency (when the 

wavelength of a longitudinal wave is equal to the pipe circumference) and the 

increasing non-dimensional axial flexural wavenumber after the wave cuts on is much 

greater than the non-dimensional frequency, which is the frequency normalised to the 

ring frequency. 

L, 

v T i / A 
i 

V : y / 

1 
1 
1 
! 

Figure 2.1: Cylindrical coordinate system for a pipe. 

A schematic of the cylindrical coordinate system for the pipe of mid-surface radius a and 

wall thickness h is shown in figure 2.1. Since the circumferential reference position on a 

pipe is unknown, the orientation angle, (j), is defined. The equation of motion of free 

vibration of the pipe is given by (Flugge [5]) 
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A | | ^ 1 2 A ] 3 u 

A 2 1 A 22 A 2.1 V = 0 
. . . ( 2 . 1 ) 

A 3 , A 32 A .1.1 _ w 

where u is the axial component of the displacement, 

0 is the tangential component of the displacement, 

vr is the radial component of the displacement, 

All = 
as 2 '38^ E ar 

A I 2 
'̂ (l + v) c)̂  ^ 

2 3s39 

A I 3 = 

as as' 2 asae-

A21 = A12, 

A22 
2 as- 98- E 31̂  

A 2 3 
B2(3-v) a ' " 

38 2 35^98 

A 3 I — A I 3 , 

A 3 2 = A 2 3 , 

A33 

,4 a" a" a ' 
- + — - + -

as" 38" 35^38^ 

s = x/a is the non-dimensional axial distance along the pipe, 

B = — i s the wall thickness ratio of the pipe, 

aVl2 

a is the radius of the pipe, 

h is the thickness of the pipe, 
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E is the Young's modulus of the pipe, 

V is the Poisson's ratio of the pipe, and 

p is the density of the pipe. 

The solution of the equation of motion of an pipe may be written as (Variyart 

and Brennan [68]) 

11=0 b~I 

u(s,8, t) = Z i V»b sin [n(8-4)) ] . . . ( 2 . 2 ) 
n=Ob=l 

ir(.s,8,U= ^ ^ W n b cos[n(8-(|))]e 
11=0 b=l 

i(knhS-lO() 

where n is the mode number, 

b is the index for the waves, 

k is the non-dimensional branch axial wavenumber ( the axial 

wavenumber multiplied by the radius of the pipe), 

(0 is the angular frequency, 

Unb is the axial amplitude for the b^ wave of the n*^ mode of the pipe, 

Vnb is the circumferential amplitude for the b^ wave of the n*^ mode of 

the pipe, 

Wnb is the radial amplitude for the b^ wave of the n ^ mode of the pipe, 

dj) is the azimuthal orientation angle and 

6 is the azimuthal angle. 

Equation (2.2) is a general form of the displacements in a pipe wall, consisting of an 

infinite number of circumferential modes. Since a pipe has e ight propagating waves (b) 

for each mode (n), hence, the vibration of an individual mode is a combination of their 
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motion. In this equation, the orientation angle, $, is used as the reference angle of a 

pipe. 

Substitution of the displacements of equation (2.2) into the equation (2.1) yields 

L|i L|2 
L,! L22 L23 
Lj,| L_:,2 

U lib 

V . 

Wnb 

where Li i= knb+'^'—+ 

...(2.3) 

T (l+v) r 
L i 2 — n k nb 

L . 3 = v i : . , + p ' k ; „ - ^ i 5 = „ ' k . „ 

L2I = LI2 

L.2 = i i ^ ( i + 3 p = ) i ; ; , . + , r - f j = 

J (3 —v) 2 2 
L 2 3 = n + — ^ — p nk„b 

L31 = Lis 

L32 = L23 

L33= l + p -+p - (k -b+n- ) - -2p -n - -n -

n = (iVcOr is the frequency normalised to the ring frequency, where 

w, =-
E 

p(I-v-) 
is the ring frequency. 

The non-dimensional wavenumber, k , of the thin-walled m-uacuo pipe can be 

determined from 

I L I nb = 0 •. .(2.4) 
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The determinant of matrix [L]nb is arranged with terms involving |3 grouped together, 

and since for a thin pipe (32« 1, then the higher order t e rms of (3 (i.e. and (3̂ ) can be 

neglected. Thus, the determinant of the matrix [L]nb becomes 

j^4(l-v)(k"b+n")'(k"b + n " - l ) +8( l -v) ( n " - l ) j k^y+ l2 ( l -v )^ ( ]+v )knb j 

1^4(3-v)(knb + "")(knb + n" -1)" +4(1 - v)(k"|, + n")(k"b +n" 4-1) + 8(1 -v)(4knb + Uknbj 

2 
Q [(l-v)(knb + n )(knb + " +l) + 2 ( l - v )k"b + —(l-v)"(l + v)k^;,+ —(3-v)(knb+" 

- " 2 2 

...(2.5) 

Apart from the assumption of « 1, another assumption that can be made is that 

l/knb » P " . This is reasonable for a thin walled pipe since (3̂  = 2.1x10^ for h/a = 0.05 

while k 1,1, increases from zero to about 6 in the non-dimensional frequency range of zero 

to one (provided by the dispersion curve presented in the next section). Since k„h = 

27ra/A,nb, where Xnb is a branch axial wavelength, and P = a, the assumption can be 

expressed as, Xnb » 7rh/V3 = 2h. Physically, this implies that waves with an axial 

.wavelength smaller than about two times of the wall thickness are neglected. Since at 

higher frequencies the waves have smaller axial wavelengths, the above assumption 

also means that the very high frequency range is neglected. 

By applying this assumption in the frequency range below the r ing frequency, the terms 

containing the product of p^ QZ can be neglected in comparison with the terms tha t does 

not contain P .̂ Hence equation (2.5) becomes 

jp-}:i-v)(ki(b +n-)-(k^h+n^-l)-+2(l-v)-(k^b 

— |(l - v)(k + n" )(knb + " ' +1) + 2 (I - v ]+ —(I - v)' (I + v)k^y .. .(2.6) 
^ ^ ^ iiu ^ ^ iiu / ^ ^ iiu j ^ 
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Below the ring frequency, the above equation can be used to determine the frequency 

characteristics of the pipe for any circumferential mode. However, it is still complicated 

even though it has been simplified. 

Applying the assumption of k̂ b » as used by Heckl [22], equation (2.6) can be 

greatly simplified. This assumption physically means that t h e motion with very long 

axial wavelengths does not contribute greatly to the overall motion of the pipe. In 

reality, this assumption is not true around the cut-on frequencies since is zero, 

when O has a value between zero and one. The assumption requires the condition of 

> I just afker the wave has cut-on. Thus, it affects the longitudinal and torsional 3k nb 

do. 

waves (k̂ b is proportional to (1 for n = 0). So, this assumption can only be applied for 

the n > 2 modes below the ring frequency. It was pointed out by Cremer (Heckl [22]) 

that this assumption does not result in large errors. With no knowledge of the axial 

wavenumbers around the cut-on frequency, the last three te rms containing and Q® in 

equation (2.6) including the term of (l-v^)knbQ^can be neglected in comparison with 

k^bCan also be the term of -^(l-v)-(l4-v)k||b. The term of (l-v)^p-

neglected using the previous assumption of I/k^ » . Therefore, at the frequencies 

below the ring frequency (O < 1), for n > 2 equation (2.6) becomes 

— P"(1 -v)(k|";î  + n ) " + n" -1 )" - —£1"(1 - v ) ( k + n")(k;;i, + n" + l) + ~(1 -v) (l+v)kjj|, - 0 

...(2.7) 

This can be rearranged to give the relationship between the non-dimensional frequency 

and the axial wavenumber. 

( k n b + n ' ) ( k „ b + n " + 1 ) 

2 1 
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The Grst term on the right hand side of equation (2.8) is related to membrane strain 

energy and the second term is related to strain energy of the pipe-wall flexure (Fahy 

[1]). 

The cut-on frequencies of a circumferential mode of an infinitely long pipe, Qm, can be 

determined from the equation (2.8) by setting k̂ b = 0, which corresponds to an 

infinitely long axial wavelength. Therefore, 

. . ,2 .9, 
n +1 

The cut-on frequencies given in the above equation is similar to that reported by Pavic 

[6] and Finveden [20], and is compared with other formulae for cut-on frequencies found 

in the literature in section 2.4. 

2.3 Wavenumber Solutions of a Pipe in vacuo 

Many researchers such as Cremer and Heckl [17], Fuller and Fahy [9], and Brennan et 

al [19] have described the dynamic behaviour of a pipe at low frequencies to be similar 

to a membrane for the n = 0 mode and to be similar to a beam for the n = 1 mode. Such 

a statement comes from comparing the plot of the phase velocity or the wavenumber of 

the pipe with that of a bar, a shaft, and a beam. In this section, the axial wavenumbers 

for the n = 0 and n = 1 modes are derived in terms of the wavenumbers of those simple 

structures to explicitly support the above statement. 

As described in the previous section, the characteristic equation of the n = 0 and n = 1 

modes of a pipe is given by equation (2.6) and the characteristic equation of the n > 2 

modes is given by equation (2.7). In order to obtain the wavenumbers, the roots of the 

characteristic polynomial of both equations are found using a similar approach to that 

22 



Chapter 2: Dispersion Characteristics of in-vacuo Pipes 

taken by Young [25]. Even though the characteristic equation of the pipe has been 

simplified, the wavenumber solutions for each mode remain rather complicated. To 

obtain them in a similar form with more physical meaning, fur ther simplification is 

carried out using some additional assumptions; i.e. (a) can be neglected compared to 

unity because it is much less than one, (b) higher order wavenumbers can be neglected 

when considering the small wavenumbers such as the longitudinal and torsional 

wavenumbers for the n = 0 mode and vice versa (Flugge [5]). 

The characteristic equation of the pipe in vacuo, which is equation (2.6) for the n = 0 

and n = 1 modes, and equation (2.7) for the n > 2 modes, can be expressed as a 

polynomial of axial wavenumbers, k , as given by 

gskuh +^6^1 +g4knb +gQ - 0 ...(2.10) 

where the s's are coefficients. 

Solution of this equation leads to the eight-wavenumbers. However at low frequencies 

these can be divided into two groups. One group contains the four small wavenumbers 

known as the longitudinal and torsional wavenumbers for the n = 0 mode, flexural and 

near Geld wavenumbers for the n = 1 mode and the flexural plate-like propagate and 

near field for the n > 2 modes. The other group contains the four large wavenumbers 

known as standing near field wavenumbers. Since they are obviously distinctive, Flugge 

[5] suggested tha t the small wavenumbers could readily be determined by neglecting 

higher orders and the above equation becomes the quadratic equation: 

g4k»b+82kl+go=0 ...(2.11) 

which gives the following wavenumbers 

k»i, kn2 = 
2S4 

-S2-V&2 -"+00^4 . . . ( 2 . 1 2 ) 
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By ignoring the lower orders of equation (2.10), the large wavenumbers can also be 

determined from the resulting quadratic equation: 

oxkjlh +g4 - 0 ...(2.13) 

which gives the wavenumbers 

k- k-
2gs 

-8(1 i-Jsa ...(2.14) 

Since the above method depends on the distinction between the small and large 

wavenumbers, this method is useful for the first few circumferential modes of the pipe. 

However, for the higher modes, such a method can still be applied but is valid only just 

after the waves cut on where the flexural wavenumber is small. 

The polynomial coefficients of axial wavenumbers, , for the n = 0 and 1 modes can be 

obtained by expanding equation (2.6) into a polynomial with the form of equation (2.10) 

in which the terms containing (n" - l ) n ' are set to be equal to zero. These are given as 

follows. 

-
g6 = ( l -v)^n^ 

+ ...(2.15) 

, i )+2( l + v)]r^^ ' ;2 + l j + 2 ( l + v)|Q^ 4 

go = -[ (3-v)n^ +l)n^n^ +2( l -n^) ]n ' ' 
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Axial wavenumbers of the n = 0 mode of in-vacuo p i p e s 

For the n = 0 mode, the pipe behaves like a membrane, which supports longitudinal and 

torsional waves. To provide evidence for this argument, the axial wavenumber for this 

mode is derived in terms of these waves. The longitudinal (ki) and torsional 

wavenumbers (ks) are respectively given by (Fahy [1]) 

and ...(2.16 a, b) 
' E G 

2 
where G = is the shear modulus. 

2(l+v) 

To non-dimensionalise equation (2.16), the wavenumbers are normalised by the radius 

of the pipe, and are given by 

^ and ...(2.17 a, b) 
l - v " 1 - v 

By neglecting P" in comparison with unity, the coefficients for the n = 0 mode given in 

equation (2.15) can be written in terms of the longitudinal and torsional wavenumbers 

as: 

gg — -(1 - v)vp^ 

[(l _ kf )(kf + k j L v^kf 
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2 
l - ( l - v ^ ) k f j k f k f 

Solving for small wavenumbers using the quadratic equation (2.12) gi gives 

2^4 
r 2 _ r 2 , ^ k, 
k ni — k I + 

' l-k,' ...(2.19 a, b) I 
_ r,2 

02 = k : 

Because at low frequencies, Q? « 1, the longitudinal wavenumber is small. Hence, the 

second term in equation (2.19 a) containing a power of 4 can be neglected in comparison 

with the first term, which gives 

kg, =k,' 

...(2.20 a, b) 

k- - k -kQ2 -

as expected. 

The wavenumbers of standing near field waves, which are large, can be found from the 

polynomial coefficients of gs, ge and g4 by solving the quadra t ic equation given in 

equation (2.14) and they are 

koi .kl + -(l-v-)(l-k^]/ |3^ . . .(2.21a, b) 

At low frequencies, the second term in the square root containing (3̂  is much larger than 

the first term and hence, equation (2.21 a, b) becomes 

ko3,k^ =±J^(l-v^)(l-k^yp^ ...(2.22 a, b) 
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Axial wavenumbers of the n = 1 mode of in-vacuo p i p e s 

Using a similar approach to that used for the axial wavenumbers of the n = 0 mode, the 

wavenumbers of the n = 1 mode can be found. In this mode, t h e flexural wavenumber of 

the beam will be used to present the behaviour of the pipe, a n d is (Fahy [1]) 

...(2.23) 
EI 

w h e r e A = 2nah is t he cross-sect ional a r ea of t h e pipe, a n d 

h 
I Trah (a - +—) is the second moment of area of the pipe. 

Normalised to the radius of the pipe, the non-dimensional flexural wavenumber of the 

beam is 

...(2.24) 
n + 3p-)U-v2) 

By substituting k,, ic, and k^ into equation (2.15) and neglecting P" in comparison 

with unity, the polynomial coefficients for the n = 1 mode can be writ ten as 

gg - (1 - v)(2 - v)p^ 

( l - v X l - v ^ ) ( l - k f ) _X&25) 
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[{i - (i - )kf }kfk; + {kf + (1 - ) kf )kf - k j ] 
2 

Small wavenumber solutions of the n = 1 mode are obtained by solving the quadratic 

equation (2.12), which gives 

k 11, k 19 — 
( l - k f ) ( k f + k ~ ) + v ' k i ' + k j J J ± - J (1 — k j " ) ( k j " - k j ) + v " k i " + 4 k j | - { l — v ) k y 

2 ( l - k r ) 

...(2.26 a, b) 

Since at low frequencies k ,̂ k, and k̂  are less than unity, their higher order terms can 

be ignored and hence the wavenumbers may be approximated to 

kii.kfg = !^[(l-ki')(ki:+k^) + kg±2kg] ...(2.27 a, b) 
2 (1 — k I") 

It ean be seen that the wavenumbers, of the n = 1 mode of the pipe from the 

above equation is close to those of a Timoshenko beam (Brennan aZ [19]). 

When (1̂  « 1, equation (2.27) becomes 

k^i.kj'.^+kg ...(2.28 a, b) 

Thus, at very low frequencies, the pipe behaves like a beam. The large wavenumbers of 

the n = 1 mode can also be determined by the quadratic equation (2.13) and are given 

by: 
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kr,,kr, =- (2-v)±^(2-v)"- ( l -v"X'-ki yp' ...(2.29 a, b) 

Again, at low frequencies the second term in the square root containing (3̂  is much 

larger than the first term and therefore, equation (2.29) becomes 

k,-3.kf4=±jV(l-v')(l-k'yp' ...(2.30 a, b) 

which are the same as the wavenumbers obtained for the n = 0 mode. 

Axial wavenumbers of the n > 2 mode of in-vacuo p ipes 

For the n = 2 mode, the polynomial coefficients can be obtained from equation (2.7), and 

are expressed as: 

= 2p-(2n--v) 

= 6(n- -l)n^ +(l+P^ ...(2.31) 

:=2(2n- - l )n^- (2n^+l)+2(l+v) 

: | 3 - ( n - - l ) i / - ( n " + l ) n - Q -

After the waves cut on, the flexural wavenumber increases rapidly with increasing 

frequency. Thus the flexural wavenumbers obtained by the method discussed above are 

limited to very low frequencies where they are small. Even though the near-field 

wavenumbers can still be obtained using the method, they are difficult to simplify 

unlike the n = 0 and n = 1 modes. 
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Hence, the wavenumber solutions for the n > 2 modes are better taken from equation 

(2.7) using the roots of the polynomial as discussed by Young [25]. 

2.4 Numerical Analysis to Evaluate the S impl i f i ed Version 

To verify the simplified version of the characteristic equation of the m-uacwo pipe, it is 

compared in terms of cut-on frequencies from equation (2.9) wi th those obtained from 

Heckl [20], Kennard's shell theory (Leissa [21]), and Flugge's shell theory (Leissa [9]). 

The simplified model of the dispersion curve described in the previous section is also 

compared with that from Kennard's shell theory used by Brevart and Fuller [21], and 

from the original model based on Flugge's shell theory. The properties of the pipe used 

in the comparison are given in table 2.1. This is from the pipe used in the experimental 

work in this thesis which will be described later. 

Table 2.1: PVC Pipe data 

E (N/m2) p (kg/m^) V a (mm) h (mm) 1 

3.974*109 1460 0.33 33.2 2.2 1 

Comparison of cut-on frequencies of the c ircumferent ia l m o d e s 

The various frequency equations of the circumferential modes for infinitely long pipes 

are given as follows. 

The frequency equation developed by Heckl [20] is 
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1 r 1 
2 l - v 

4-v 2+v 
.2 _4 

..(2.32 a) 

by Kennard (Leissa [9]) is 

^co - ^ 1 + p- + n- ——p-R- + p-n"̂  
2 ( l - v ) 2 ( l - v ) 

I - V I - V 

.(2.32 b) 

by Flugge's theory given by Leissa [9] is 

j - + p " yi " — i -4P^n^(n^ -1)^ ...(2.32 c) 

and in this thesis is given in the equation (2.9) as: 

2 |3-n"(n"-l)" 
'̂̂ co - ^ 

n - + I 

Taking the data of the pipe from table 2.1, the ring frequency of the pipe is 

I E 

27ia y p(l -v ) ' 

= 8378 Hz. 

and the maximum number of circumferential modes below the ring frequency can 

approximately be determined by (Fahy [67]) 
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nr = 

= 7 

The cut-on frequencies of the modes below the ring frequency, which are calculated 

from the above frequency equations, are shown in table 2.2. 

Table 2.2: Cut-on frequency of the circumferential modes according to various versions 

of the frequency equations. 

Mode Number Heckl Kennard Flugge Equat ion (2.9) 

2 417.43 430.08 430.02 430.05 

1 3 1221.52 1216.67 1216.21 1216.36 

4 2344.09 2333.57 2331.92 2332.26 

5 3786.79 3775.41 3771.17 3771.76 

6 5549.90 5541.24 5532.18 5533.10 

7 7633.48 7631.43 7614.30 7615.60 

Note: the cut-on frequencies for n = 0 and 1 modes are zero and Heckl's frequency 

. equation is valid for n > 2. 

Since Heckl's expression is developed from Kennard's shell theory (Heckl [20]), it is 

reasonable to compare his expressions with those of Kennard ra ther than the others. 

From the numerical results in table 2.2, the cut-on frequency obtained from Heckl's 

expression is close to that obtained from Kennard's shell theory at the higher modes but 

there is some difference at the lower modes. It is also shown in the table tha t the 

simplified expression derived in this thesis (equation 2.7) is in good agreement with the 

original model, Flugge's shell theory. The different cut-on frequencies obtained from 

Kennard's and Flugge's theories are because of the different assumptions used to derive 

the shell theory; for example Flugge [13] ignored transverse normal and transverse 

shear stresses in the shell analysis but Kennard [12] included these stresses in his 
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analysis. However, below the ring frequency, the maximum difference of the cut-on 

frequency (n = 7) between both theories is only 0.22%. 

Comparison of dispersion curves 

In this section, a set of dispersion curves from the simplified model developed in the 

previous sections is compared with those obtained from some other versions of shell 

theory, namely from Kennard and Flugge. To verify the model, the comparisons are 

carried out for each mode number. This simplified model is calculated from equations 

(2.19) and (2.21) for the n = 0 mode, equations (2.27) and (2.29) for the n = 1 mode, and 

equation (2.7) for the n > 2 modes. The results from the simulations are shown in figure 

2.2. 

The simulations in figure 2.2 show clearly that Kennard's and Flugge's shell theories 

give a similar result. There are slight differences at the cut-on frequency for the higher 

modes due to the different assumption of both theories. 

The discussion for the simplified model of the wavenumber is separated into three 

groups, breathing, bending, and circumferential modes. For t h e n = 0 mode (breathing 

mode), the model is consistent with Kennard's and Flugge's shell theory up to about Q. = 

0.9 before the longitudinal wavenumber (k,) reaches unity leading the singularity of 

the term v -k f / ( l -k f ) (equation 2.29) resulting in kg, becoming infinite. When k," < 1, 

this term .is small so that the wavenumber kg, can be approximated by k, . The other 

wavenumbers, k,̂  represented by the torsional wave k,, and k̂ ,̂ k̂ ^ represented by 

the standing near field wave, are in good agreement with both referenced theories up to 

the ring frequency. 

The simplified model of the flexural and near field wavenumber of the n = 1 mode 

(equation 2.30) are valid up to about Q. = 0.7 and O = 0.5, respectively. For the pipe 

used for this thesis, these correspond to about 4 and 6 kHz. These frequencies are high 
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enough so that the model can be used for the n = 1 mode of the pipe. Moreover, the 

response of the pipe is no longer dominated by this mode a f t e r the higher modes cut on 

(430 Hz for the n = 2 mode). The departure occurs for t h e n = 1 mode due to the 

assumption that and ky are less than unity. Apart from this, the quadratic 

method relies on the fact that there is a large difference between the standing near field 

wavenumbers (icQ̂ , k̂ )̂ and the flexural and near field wavenumbers, km and kĝ , 

respectively. 

For the circumferential modes (n > 2), the simplified version of the wavenumbers 

(equation 2.7) are consistent with the referenced theories, except for the near field 

wavenumber. With the higher circumferential modes, however, the departure of this 

wavenumber is smaller. 
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Figure 2.2. Dispersion curves for the mode number n = 0 to n = 5; ... Simplified model, 

Flugge theory, — Kennard theory. 
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2.5 Conclusions 

In the derivations in this chapter, the characteristic equation of a pipe has been 

established using Flugge's shell theoiy as a basis together with some simplifying 

assumptions. The assumptions of a thin wall thickness, and the frequency of interest 

being below the ring frequency of a pipe are used for the n = 0 and n = 1 mode. In 

addition, the veiy long axial wavelength is neglected for the higher modes. The last 

assumption cannot be used for the n = 0 and n = 1 mode, which contains longitudinal 

and torsional waves because it requires > 1. With the simplified characteristic 

equation, the expression of the cut-on frequency can be found and it has been 

numerically validated. 

Even though the characteristic equation can give the wavenurnber solutions by finding 

the roots of the polynomial, a further derivation obtained by reducing the characteristic 

equation to a quadratic (the quadratic method), provides t hem in a simpler form. 

However, this method is based on their being a large difference between the large and 

small wavenumber groups so that it can only be applied to the n = 0 and n = 1 modes 

because the longitudinal, torsional, flexural and near field wavenumbers are 

comparatively smaller than the standing near field waves. In reality, this method can 

also be used for the higher modes but it is valid just after the wave cuts on, where the 

flexural wavenumber is still small. Using the quadratic method, the wavenumber of the 

n = 0 mode at low frequencies {Q < 0.9) can be presented in te rms of the longitudinal 

and torsional wavenumbers, and of the n = 1 mode at low frequencies (O < 0.7) can be 

represented in terms of the flexural and near field waves of a Timoshenko beam. 
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CHAPTER 3 

POINT AND TRANSFER MOBILITY 

OF INFINITE PIPES 

3.1 Introduct ion 

As mentioned in the previous chapter, for each circumferential mode eight waves can 

potentially propagate in the pipe wall. Generally, all these waves are generated by an 

excitation force. For an infinite pipe, four waves propagate in the positive direction, and 

the other four waves propagate in the negative direction. Even though there are four 

positive-going waves for each mode, only the longitudinal and torsional waves for the n 

= 0 mode, and the flexural propagating wave for the higher order modes can propagate 

along the pipe because the near field and standing near field waves are evanescent. At 

the excitation point, however, all waves contribute to the motion of the pipe. Apart from 

the characteristic equation discussed in the previous chapter, the pipe motion due to an 

excitation force can be used to describe the dynamic behaviour of the infinite pipe, and 

is presented in terms of the mobility frequency response function in this chapter. 

The analysis of the mobility (radial velocity/applied force) of an infinite pipe requires 

eight boundary conditions at the excitation point. To avoid the boundary condition 

problem, most researchers have adopted the Residue method to develop the mobility of 

the infinite pipe. This method does not require boundary conditions as the analysis uses 

wavenumber solutions of the pipe. Such work using this method has been done by 

Franken [21], Heckl [22], Fuller [9], and Brevart and Fuller [23]. 
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In this chapter, the mobility of the infinite pipe is derived by using two methods, which 

are called the Residue and Analytical methods. The Residue method employs the 

Fourier transform to convert vibration in the spatial domain to the wavenumber 

domain, and uses the residue theory to analyse the pipe motion. Conversely, the 

Analytical method involves a vibration analysis in the spatial domain. This requires 

eight boundary conditions at the excitation position. The reason for doing this is to 

cross-check the results of each method. Once the mobility expression is established, it is 

simplified for low frequency behaviour to compare the dynamics of a pipe with that of a 

simple structure like a membrane and a beam. Finally, the mobility expressions are 

validated by some experiment work. 

3.2 Res idue Method 

The dynamic response of an infinite pipe due to a point force normal to the surface of 

the pipe is of interest in this section. One useful method to derive the response of a pipe 

is to analyse the force mobility (the mobility due to a point force) in the wavenumber 

domain by using the spatial Fourier transform. Using residue theory and the simplified 

shell theory, the point force mobility of the pipe can be established in a simple form. 

F 

// 

Figure 3.1: The cylindrical co-ordinate system for an in-uacuo pipe excited by a point 

force. 
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The cylindrical coordinate system of a pipe with an excitation point force, Fo, is 

schematically shown in figure 3,1. As discussed in the previous chapter, an orientation 

angle, (|), is used to define the circumferential reference position on the pipe. The point 

force, Fo, in Newtons can be expressed as a distributed force intensity, F(s,9, t), in 

Newtons per square metre, (Soedel [69]) 

F(s.8,t)= —F,8(s)6(8-(t))e- ..(3.1) 

where Fo is the amplitude of the point force. 

The equation of motion of the pipe when excited by a point force in the radial direction 

may be written as the same form as equation (2.1), but with an external force loading as 

(Leissa [2]): 

1 A | 2 A13 

A 22 ^^^23 

A.12 A 33 

0 

0 

a" (1-v') 
E h 

F(s,8,0 

..(3.2) 

The superscript i of the displacements used in equation (3.2) denotes an infinite pipe. 

The Fourier transform is used to analyse the vibration response of a pipe due to a point 

force and the pipe displacements may be written as (Fuller [9]) 

w'(s,8,i) = — j %E,U,(kJcos(n8)ej(''-'-'''"-'^)dk, 
11=0 

u'(s.8,l)=;^ j %E,V,(kJsin(n8)ej(''"'-'^)dL 
7̂̂  n=0 

...(3.3) 

,/(s,8,l) = — j ^E,W,(kJcos(n8)ej(''"'-'^)dk, 
2^ 11=0 

where (k^) is the axial amplitude of the n"̂  mode in the wavenumber domain, 
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V„ (k ̂ ) is the circumferential amplitude of the mode in the 

wavenumber domain 

W„ (k „) is the radial amplitude of the nth mode in the wavenumber domain 

En - 1 for n = 0 and 

En = 2 for n > 1. 

Because axial wavenumbers are continuous and the mode number is discrete, the delta 

functions of 6(s) and 6(8 - (()) in equation (3.1) may be expressed as 

8(s) = — jê ''"''dkn 
271 

6(8-4)) = — 
2%: ,,=^ 

...(3.4) 

So, the force intensity in equation (3.1) can be written in the wavenumber domain as 

F(s,8^l) = — ^ j lE„F,cos[n(8-(|))]ej'""'-""dk, 
471"̂ "' -«u=0 

...(3.5) 

By substituting for the displacements and force given in equations (3.3) and (3.5) 

respectively into equation (3.2), the spectral response of the pipe to the applied force is 

given by 

Lii Lj2 Lis U n ( k J 

L21 L22 ^23 Vn(kn) 

L31 L32 L33 _ Wn(kJ 

0 

0 

Fg cos[n(8 - (j)] 

27tpha^(i)r cos(n8) 

where the matrix Ln is given by equation (2.3) where k̂ b is set to 

...(3.6) 
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By inversion of the matrix Ln, the amplitudes of the displacements in the wavenumber 

domain for each circumferential mode n can be written as 

U J k J 
r i l l I 12 I l 3 

V ^ ( k ^ ) = I 2 1 122 1 2 3 

W , ( k J 
J 3 1 I 3 2 I 3 3 

0 

0 

cos(n(8 - (|))) 

cos(n8) 

...(3.7) 

The radial displacement for the mode in the wavenumber domain is thus given by 

W»(kJ = 
cos [n(8- (|))] 

where I:,3(kJ 

27ipha^m^ cos(n8) 

(L11L22 -^12^21 )ii 

l33(kn) ...(3.8) 

...(3.9) 

The radial displacement for a particular mode in the frequency domain is obtained by 

substituting equation (3.8) into equation (3.3) where te rms e'"'" are omitted for 

simplification to give 

M//(s,8) = - ê Fo cos [n(8 - <|))] 
2. ,2 471 pha co; 

...(3.10) 

As shown in figure 2.2 in chapter 2, the wavenumbers of the pipe are frequency 

dependent. So, for each frequency, | L | n in equation (3.9) gives eight poles to the 

integral in equation (3.10) at k„ equal to the wavenumber solution, k,,^, of the pipe. The 

integral can be evaluated using residue theory, which is the method of contour 

integration as shown in figure 3.2. With this method, only the upper half plane of the 

complex plane needs to be analysed, so that only four poles are evaluated. Physically, 

this means that only the waves in the positive direction are taken into account. 

However, because of the symmetry of an infinite pipe in the positive and negative 
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directions, the solutions for the waves in the negative direction are the same. The 

solution to equation (3.10) can be expressed as (Arfken [70]) 

Im(k . 

ReaK k 

Figure 3.2: Contour integral for the residue method where kH,,kn2'k»3 and k̂ ^ are the 

wavenumber solutions of the pipe for the n*-'̂  circumferential mode. 

27[pha (0̂  b=i 
._(3.11) 

where Re s (L||L22 L|2L2])|-
nb 

I L nb 

' L l„b — -
D I L I nb 

3k nb 

.(3.12) 

The mobility of the forced response for the n*^ mode is given by 

y;(s,8) = -jw 
. Wj(s,8) Enmcos[n(8-(|))] 

][Res 
_ , 9 1 
2npha-w- b=i 

...(3.13) 
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Equation (3.13) is a general form of the mobility of an infinite pipe. It cannot be 

obtained in a simple form unless a simplified shell theory is used. This has been done by 

Fuller [9], who used Donnell-Mustari's theory, and by Brevart and Fuller [23], who used 

Kennard's theory. With an approximated shell theory, Franken [21] using the 

membrane equation, and Heckl [22], using the simplified shell theory of Cremer and 

Kennard [17], gave the mobility of an infinite pipe in a relatively simple form. 

In chapter 2, the characteristic equation was simplified, and it is employed here in the 

derivation of an approximate mobility expression. However, the analysis is separated 

into two parts because of the different assumptions being used. The first part is the 

analysis for the n = 0 and n = 1 modes, for which the assumption of » O", which 

requires the condition of > 1 does not hold. It cannot be applied to the longitudinal 

and torsional waves, whose characteristic equation is presented in equation (2.6). The 

other part is for the n > 2 modes, for which the assumption can be used because the 

wavenumber of the flexural wave dramatically increases a f te r the wave cuts on, and 

whose characteristic equation is given in equation (2.7). 

Simpli f ied mobil i ty for the n = 0 and n = 1 modes 

The derivative of |L |nb with respect to k„y given in equation (3.12), which is the 

characteristic equation obtained from equation (2.6), is given by 

d k, ' nb 
2(k»b +"')(knb + ~l)(knb +n" 

...(3.14) 

- 0 ' ( k ^ t , +11 " + v + - ) + — 
2 2 

/ 3 _ v \ 

With the assumption of (3̂  « 1, the term ( L 1 1 L 2 2 - Li2L2i)nb is given by 
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( L - i i L j i - L 1 2 L 2 1 ) „ i , - — ( 1 - v j c k , " ; ! , + n ) - — ( 3 - v ) ( k | , | , + 1 1 " ) ^ ' + Q ...(3.15) 

By substituting for the derivative of |L|nb from equation (3.14) and for 

(LuLi] -LizL;, )nb given in equation (3.15) into equations (3.12) and (3.13), the mobihty 

of the n = 0 and n = 1 modes can be predicted. 

At this point, it should be noted that, with the given residue term and the wavenumbers 

described in chapter 2, the mobility of each axial wave for t h e n = 0 mode is not zero. 

However, this is not correct for the radial motion of a torsional wave. It is zero in reality 

because torsional motion is not excited by a radial force due to symmetry (Vinson [24]). 

For this to occur in the model, the correct torsional wavenumber has to be determined 

which can be found from the | L | ob = 0. Without simplification, the term of | L | ou for the 

n = 0 mode is given by 

1̂1 0 L,3 

I 1 — ^ ' Oh - 0 L22 0 - [ L22 (L| 1L33 L| jL-, 1 ) ]y|̂  - 0 ...(3.16) 

L3I 0 L,, 

The above equation yields (L22)ob = 0, which leads to the torsional wavenumber given by 

k: 
( l + 3|3-) 

...(3.17) 

It can be seen that the difference between the exact torsional wavenumber of the pipe 

obtained from equation (3.17) and the simplifed torsional wavenumber described in 

chapter 2 (equation 2.20 b) is only in the term , which is very small. 

Because L12 and L21 are zero for the n = 0 mode and L22 is also zero when the correct 

torsional wavenumber of the pipe given in equation (3.17) is used, the numerator of the 
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residue term of this wavenumber (equation 3.12) becomes zero (Ln L22 -L12 L21 = 0) 

resulting in no radial motion for the torsional wave. 

Simplif ied mobi l i ty for the n > 2 modes 

The derivative of |L |nb with respect to (the characteristic equation) obtained from 

equation (2.7), is given by 

a i L i nb 

ak 
: 2 ( I - V ) k . 

nb 

' ( k n b + n ) ( k „ | , + 1 1 " - I ) ( k | , | j + n ) + ( l - v " ' ) k ^ | , - 0 ^ ( k ^ ^ + n " + — ) 

...(3.18) 

The term (L11L22 - Li2L2i)nb is given by 

(L||L22 -LitLJI )nb - —0-\')(k;;b +1')" (3-v)(k,* +n")D" + —P '^9 9 5 * ^ 7 1 

k;;b(knb+n-)--knbn' 

...(3.19) 

By assuming that (3̂  « 1 and k̂ y » then the second and the last term can be 

neglected and equation (3.19) becomes 

(L , ,L22 - L , 2 L 2 i ) n b 0 - \ ' ) ( k n b + n " ) ' ...(3.20) 

So, the residue term is 

^ lib - " 
4 k, 2P"(k^b + n')(knb ~l)(knb + "" - —) + (l-v")ki|y -0"(k"b +" ' 

" 2 ' 

( 3 . 2 1 ) 
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Once the residue term is determined, the mobility of the infinite pipe can be obtained by 

substituting for this term into equation (3.13). 

Residue method wi th Laurent expans ion 

In the above discussion, the mobility of the pipe is determined using the residue method 

with Maclaurin's expansion. Instead of using this, the mobility can be derived by using 

Laurent's theory to expand the residue terms. To explicitly demonstrate this method, 

the radial displacement of the infinite pipe given in equation (3.10) is repeated here for 

convenience. 

= I ...(3.22) 

where - ...(3.23) 

From the above equation, it can be seen that l33( ) is a function of the wavenumbers. 

This is also the case for | L | n, which may be expressed in polynomial form (described in 

section 2.3) as: 

ILIn=g8k||+g6kn +§4^0 + 82^0+80 ...(3.24) 

It can be seen from section 2.3 tha t the polynomial coefficients (g) depend on the shell 

theory used. When the simplified model described in chapter 2 is used, these coefficients 

are given by equation (2.15) for the n = 0 and n = 1 modes, and equation 2.31 for the n > 

2 modes. 

46 



Chapter 3: Point and Transfer Mobility of Infinite Pipes 

The eight wavenumbers of the pipe are determined from the characteristic equation, 

|L |n = 0, and are given by ±kn,. ±kn2. ±^3 ±kn4- From these wavenumbers, the 

polynomial function in equation (3.24) can be rearranged to give 

IL L= g'Ckn - (kn - kL)(k^ - k ^ ) - k ^ ) ...(3.25) 

It was mentioned that the coefGcient gg given in chapter 2 and equation (3.24) is 

obtained from the simplified version of the shell theory. However, to make a theoretical 

comparison between the mobility obtained by the Residue method and that obtained by 

the Analytical method (described in section 3.3), the coefficient gs should be determined 

from the original Flugge's shell theory. By arranging the characteristic equation ( | L | n 

- 0 where L is given in equation (2.3)) of the original model into a polynomial of axial 

wavenumbers as expressed in equation (3.24), the coefficient gg'' (superscript or is to 

denote the original Flugge's shell theory) is given by 

gg' ——(l-v)(l + 3|3^)(l-|3^)P^ 

With |L |n given by equation (3.25), the term I^gdc )̂ from equation (3.23) can be 

written as 

W L ) - I ...(3.26) 
(kn - k^b ) 

In equation (3.26), the unknown term Resnb can be determined relatively easily. For 

example, by multiplying by (k„-k„,) , the term Resni, can be determined when 

k„ approaches the value k,,,, which makes the other residue terms relatively very 

small. Equation (3.26) then becomes 
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Res^i = _Iim (k^-k^i ) l33(k j ...(3.27) 
kn 

The other Residue terms can be obtained the same way as Resni. By substituting for 

from equation (3.23) into equation (3.27), the residue term in general form is 

written as 

Res, , = _Iim (k, ___(3.28) 
I -L' Inb 

Even though the integral in equation (3.22) has eight poles, only the upper half plane of 

the complex plane shown in figure 3.2 is analysed so that the solution of equation (3.22) 

can be expressed as 

M/,i(s,8)= Zw'nbC0s[n(8-(|))]c '̂'"'' ...(3.29) 
b=l 

= i jg p 
where Wnb = ' is the b"̂^ wave amplitude of the mode...(3.30) 

2npha-a); 

Substituting the residue term, Resnb, from equation (3.28) into equation (3.29) gives the 

radial wave amplitudes for the mode as 

Y y ' Ĵ iiFq (L|[L22 LjgLii 

27ipha^p-W^ (l-v)(l + 3p^)(l-p-)(k^, -kn2)(kn] -kL)(kn, - k L ) k n 

j£,iFo (L11L22 L,2L2|)|,2 _ (3 31) 
2npha-p^a)^ (l-v)(l + 3P^)(l-p-)(k^2-knJ(kL-kn:,)(kn2-kL)kn2 

-jEnFo(LnL22-L|2L2|)n3 

2iipha"P''(o;: ( l-v)(l + 3P")(l-P")(knj, -kHi)(kn_i -k;;2)(kn3 "^^4)^^^ 
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Ty/ _ -jE»Fo(LiiL22-Li2L2i)^^ 
n4 — — 27[pha''P^(o^ (1-V)(l + 3P^)(1-P'')(k^4 -k^2)(k^^ -k^2)(kn4 

Like the case of the polynomial coefGcients (g), the terms of , wher; e 

b is 1, 2, 3, and 4, in equation (3.31) depend on the shell theory used. For the simplified 

model, these terms are given in equation 3.15 for the n = 0 and n = 1 modes, and 

equation 3.21 for the n > 2 modes. Without simplification, they are determined from 

equation (3.19). 

By comparing the radial wave amplitudes given in equation (3.31) with those obtained 

from equation (3.11), it can be seen that different theories used for expanding the 

residue term give the different forms of the solutions. With the Macluarin's expansion, 

the radial wave amplitude of each wave depends on its wavenumber, while it depends 

on all wavenumbers when Laurent's theory used. 

The mobility of the infinite pipe obtained using the residue theory with the Laurent 

expansion is given by 

y,i (s. 8) = - i CO = -j CO— I w L cos[n(8-<|))]ej'="''' ...(3.32) 
Fo b=l 

3.3 Analytical Method 

As shown in the previous section, the residue method can be used to determine the 

mobility of an infinite pipe. However, it does not give detailed information of what 

happens to the pipe when subjected to a point harmonic load. Unlike the residue 

method, the analytical method, which can also be used to derive the dynamic response 

of an infinite pipe, can give this information, and is of interest of this section. 
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(a) 

Ns |Q= M N « , + - ^ d 8 

(b) 

ae 

\ 
M s e + : ^ d s 

ds 

Mm +—-!i-ds 

Figure 3.3: Notation and co-ordinate system for an element of a pipe. 

Figure 3.3 shows an element of an infinite pipe together with the co-ordinate system. By 

summing radial forces (expressed in units of force per unit mid-surface length of the 

pipe), the following equation results: (Soedel [69]) 

- N « + ̂ - pah ^ 8(s)6(8 - (|))e -j"' ...(3.33) 
Ss 38 ' a 

where Ne is the in-plane circumferential force per unit length (Newton/metre) 

is the transverse shear force in the axial direction per unit Q s 
a 3s 9 8 

Q 8 — + 
38 9s 

length (Newton/metre), 

is the transverse shear force in the circumferential direction 

per unit length (Newton/metre). 

Integi-ating equation (3.33) in the axial direction from -e to e , where e tends to zero 
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V. = —FQ8(8-(|)) 
s = 0 a 

...(3.34) 

where V, = Qs 
I aM, 
a 3 8 

is called the effective transverse shear force per unit length. 

Since 6(8-(]))=:— cos[n(8-i|))] (given in equation 3.4), the applied force term on the 

271 11=0 

right-hand side of equation (3.34) corresponds to the generalised force at any particular 

angle, 8. 

If the pipe is split at s = 0 (excitation position), the resultant forces and moments react 

at the edges of the split pipe as shown schematically in figure 3.4. 

M c o M 

Nc N 

Figure 3.4: Notation and co-ordinate system for two connecting pipe elements; 

a) Force, b) Moment 

The work done at the boundaries of the split pipe from angle 8i to 62 must equal and 

may be expressed as (Liessa [2] and Soedel [69]) 

I (N+,/ - Nrw-)+ k ) + ((Fo / 2a - V/ -(Fg / 2a + V; )-

...(3.35) 

d8 
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Where = N ^ 4 - — i s called the effective in-plane shear force. 
a 

Equation (3.35) is satisfied if the integral and the second term are both zero. Hence, it 

leads to the boundary conditions on the edges which are joined. For equilibrium of 

forces and moments, they are 

N : = N ; , T + = T , 8 , V ; = - V r and M : = M ; ...(3.36) 

and for continuity of motion, the boundary conditions are 

and 
3% c)s 

...(3.37) 

Based on Flugge's shell theory, the resultant forces and moments in equation (3.36) 

may be written in the term of displacements as 

N T = -
K 

— — + v — — + 
3s 38 as- ^ 

( l - v ) K 

2 a 
3^ 
M l i e 

...(3.38 a, b, c, d) 

v; D f -.1 3 - ( l - v ) 3 2 A 

3s- 2 38-

( 3 - v ) 3 -0 ' ' 

2 3s38-

3' 3^ 
— + ( 2 - v ) ^ 
3s ̂  3s38^ 

m : = 4 
a ' 

3,,+ 3u' 
V-

3s 38 

^ 3 ' 3 ' ^ 

3s- 38-
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where K = Eh 

l - v ' 
is the membrane stiffness, 

D : 
Eh 

I 2 ( l - v - ) 
is the bending stiffness, 

Since the boundary conditions at the edges of the spht pipe involve displacements in all 

directions, axial, circumferential and radial, to determine their amplitudes the 

relationships among them should be established. The displacements of an infinite pipe 

in the positive direction are given by (equation 2.2) 

w + K 8 , t ) = 

n=Ob=i 

u" (s ,8 , [) = V„b sin[n(8-( |)) ]e^ 
n-Ob-l 

M,+ ( s , 8 . t ) = cos[n(8-( | )) ]e j( ' ' ° ' ' - '^) 
n=Ob=l 

...(3.39) 

The amplitudes of axial motion, Unb, and circumferential motion, Vnh, can be found in 

terms of the radial motion, Wnb, as (Flugge [5] and Young [25]) 

Li I L 12 
"21 ^22 /nb 

Unb 

Vnh 

-13 Wnb 

/lib 

... (3.40) 

Inverting the 2x2 matrix gives 

U nb — o. W nb and ...(3.41 a, b) 

V nb — V nb ^ I 

Where «„b = 
^ L12L21 -L22L,] 

L11L 91 ~ L! 9 L 71 
is the axial coefficient and ...(3.41 c) 
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Vnb 
^L2IL[3 L[,L23 ^ 

L11L22 -LjiL?! 
is the circumferential coefficient. ...(3.41 d) 

In the infinite pipe, there are four positive-going waves, which are represented by the 

wavenumbers kni,kn2,kn3 and and another four negative-going waves, which are 

represented by the wavenumbers k^s-kne-L? k îj. Because the wavenumbers in 

both directions are associated each other (details are described in chapter 2), the axial 

and circumferential displacement factors in both directions a r e also related and can be 

determined by substituting k̂ y =-kn,b+4) where b = 1,2,3 and 4, into equation (3.41 c, d) 

giving 

anb = -an(b+4) and where b = 1,2,3 and 4 ...(3.42 a, b) 

Omitting the term e"'"' for simplification, a set of the boundary conditions at the edges 

of the split pipe (s = 0) can be rewritten as a function of the radial motion by 

substituting the displacements of the pipe obtained from equation (3.39) and the 

relationship of their amplitudes obtained from equation (3.41 a, b) into equation (3.38) 

for the resultant forces and moments, and into equation (3.37) for continuity of motion, 

which for a particular mode n gives 

( N : ) » = - ZZ^ .nb w l b co.s[n(8-(t))J 
U h=:| 

F I — V) K. ^ — ' 
(T«8)n =J^-l^ZZT,nbW»bSin[n(8-(|))] 

2a b=i 

(Vs')n=j-^ZZv;ibWnbC0s[n(8-({))] 
^ b=l 

( M + ) » nb w'nb cos[n(8-( | ) ) ] . . . ( 3 . 4 3 ) 
U" b=l 

(s == 0 ,8) = - j 1 a^b Wnb cos[n(8-(()) ] 
h=l 
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y,|^(s = 0 , 8 ) = ZVnb W„b sin[n(8-( t)) ] 

M / , r ( s = 0 , 8 ) = i w l b cos[n(8-<t))] 
b=l 

DW, (s cos[n(8-4)) ] 
OS h=l 

where Wnb is the radial amplitude of the wave of the circumferential mode, 

are the axial, circumferential and I'adial displacements of the n"̂^ 

circumferential mode, respectively, and the Z's are given by: 

-'N.nb 

-"T̂ b 

-'M.nb 

"V.nb 

+VnYnb +P''knb 

IKXnb + (l + jknbVnb +3P"'nk nb 

knbanb +\'nv^b +k^b +vn^ 

k»b Pnb + 
3 — V 

• 9 

...(3.44 a, b, c, d) 

^^knbVnb +knb(kMb + ( 2 - v ) n ' 

The relationships between the radial displacement amplitudes in the positive and 

negative directions are determined by applying the boundary conditions at the edges of 

the split pipe such as N^=N;'. and In vector form, 

they are given by 

" j 
Wnl Wn5 

wli Wn6 

wL win 

wL wL 

...(3.45) 
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It should be noted that = is used instead of This is because Yob in 

equation (3.41 d) can be written as Ynb =nVnb (where y",, is not equal to zero for any 

mode number), which gives =0 for the n = 0 mode. However, the boundaiy 

condition should hold for any mode. 

As expected the result obtained from the above equation shows the continuous motion of 

the pipe in the radial direction. In order to investigate the rest of the boundary 

conditions, the same relationships, which are =-kn(b+4), ocnu = -0(n(b+4), = Y"tb+4,, 

where b = 1,2,3 and 4, are again applied to equation (3.43), which results in 

- - ( T ^ g ) , , ( v ; ) „ - - ( V ; ) , . 6 / r - - ( / . r and — ^ . . . ( 3 . 4 6 ) 

By comparing the boundary conditions obtained from equation (3.46) with those in 

equations (3.36) and (3.37), it clearly shows the conflict except that of (V̂ )̂,, =-(V;")„. 

This means that in order to satisfy both equations the axial displacement, , the axial 

rotation, , and the effective in-plane shear force, (T,^),,, must be equal to zero at 

the excitation point. Thus the boundary conditions at the edges of the split pipe are 

given by: 

( N : ) » = ( N r ) , , ( v n , = - ( V r ) „ , ( M + ) , = ( M r ) „ a n d ( T + ) „ = ( T + ) , = 0 

and ...(3.47) 

3s 3s 3s 

Since (T,:^)„=0, with zero slope and no axial displacement it implies that at the 

excitation there is no twist. 
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ay,: _ a c _ay j -
as as as 

...(3.48) 

Prom the conditions, L/,' =0, -^-^ = 0, ^ - ^ = 0, the effective transverse shear force, Vs, 
ds ds 

given in equation (3.38.c) becomes 

v: D a % j 

as- as^ 
= J - ^ Z Zlk;^ba»b+k;UWnbCos[n(8-(|))] 

a' n=0 b=l 
...(3.49) 

So, the wave amphtudes can easily be determined by using equation (3.34), in which 

half of the excitation force is applied as follows. 

v; « - —^0^(8-4)) 
s = 0 2a 

...(3.50) 

Substituting for from equation (3.49) and 6(8-<t)) = — cos[n(8-(|))] obtained from 

2n n=0 

equation (3.3) into equation (3.50) yields the relationship between the radial amplitude 

and excitation force for a particular mode as given by 

z(knbC(nb+knb)Wnb --j——FgE„ 
b=i 4nD 

...(3.51) 

where En = 1 for n = 0 and 

En = 2 for n > 1. 

Once the boundary conditions at the position of the force are established, the wave 

aw ' I a y 
amplitudes can be determined by applying the conditions, U'„ = 0, " - 0 , —^ = 0, 

OS n ds 
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and by using force equilibrium, -Fo6(e-(j)). Expressing the conditions and the 
s = 0 2a 

force equilibrium in terms of the radial displacement, which are given in equation (3.43) 

and (3.51), respectively, and constructing them in matrix form yields 

a„i 

k 111 

k,,iV, 

a 1,2 a » 4 W n l 

k „ 2 kn4 
w L 

i^n2 V n 2 k k „ 4 Y n 4 

n n n W n 3 

2(^n2 n.1 kM4(^n4 w L 

0 

0 

0 

jEna-Fp 
4KD 

...(3.52) 

where a„h and Vnb given in equation 3.41 c, d respectively. 

For the same reason as previously mentioned, — = 0, is used instead of 0. 
n 3s 3s 

For the convenience of determining the radial wave amplitudes, the terms of Okb and 

given in equations (3.41.c) and (3.41.d) are rearranged in the following form: 

Knk = -
k nh (^1 ii4 k III, + a n2 k "y + a ) 

(dn4kHh +^,,2^;;^ +d„o) 
...(3.53 a, b) 

— V „h -
P,i4knb +PH2k-h +P„u 

('̂ n4knh 

w h e r e n „ ^ = - - ( l - v ) ( l + 3P^)| 

a»2 =^( l -v )^P ' ' n" -^ ( l -v )v( l + 3p-) + P^O^ 

ĤU = - ( 1 - ^ ) ^ - 1 / + - ( l - \ ' ) ( l - P " 0 - ) n - + \ ' n -

P „ 4 - " (1 - V ) P " 
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Pii2 |2(2-(l+v)v) + P^t:'-v)(4 + (3-v)p^)n--2(3-v)^:-^ 

P»o- 2 |(l-v)(l + p - ) n - - 2 n - ] 

d„4 = —(l-v)(l + 3|3") 

dn2 =^ | ( l - v )^ + (l-v)(4 + 3|3-)|3-}n^-2^ + (l-v)(l + 3p-)]Q-] 

cl 1,0 = — (n " ) [(I — v) (I + P~) n " — 2D.~ ] 

Replacing equation (3.52) yields the wave amplitudes for a particular 

mode in simple form as 

= ' -jEna^Fo(dn4kl+dn2knl+dno) 
Wn! = :— 

2jlD (1 — v) (1+3P" ) ( 1 - p" ) (k „| — k n2 ) (̂ nl ~k„3)(k,'| - k n4 ) k , 

jE,a-Fo(d,,k;(,+d,2k»,4.do) y . . . (3.54a,b,c,d) 
27rD(l-v)(l + 3p ) ( l -p )(kn2-k;;i)(k'2-k^3)(kn2"k„^)kn2 

-jE„a^Fo +dn2k»:, +d,o) 
27iD(I-v)(I+ 3P')(I — P")(k;]i -k,^i)(k^j, — k||2) (kn; -kil^) k 1,1 

g ' ^ -jEna-Fp (d^4k;|^+d»2k»4+dno) 

2KD (I - V) (1 + 3p") (! - P") {k|̂ 4 - k "i ) (k 1̂4 - k;;2) (kn4 - k,';̂ ) k,,4 

Since — = , the wave amplitudes given in the above equation are similar to 
D pha-p-w; 

those obtained from the residue method expressed in equation (3.31). 
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For the n = 0 mode, W02 = 0 because the wavenumber of this branch is torsional as 

discussed in the previous section. 

The positive-going mobility by this method is given by 

Xj (s, 8) = - j = -j(0-!- I wL cos [ n ( 8 - ( | , ) ] e . . .(3.55) 
F(i Fo b=i 

3.4 Evaluat ion of Mobility obtained from t h e Analytical 

Method 

Numerical evaluation of the residue method described in the section (3.2) together with 

the simplifications made by the assumptions in that section is conducted and compared 

with the analytical method. Taking the pipe data from table 2.1 (page 30), the 

numerical results of the simplified point mobility for circumferential modes n = 0, 1, 2, 

and 3 obtained using the residue method (equation 3.13), in which the residue term for 

the n = 0 and n = 1 modes are determined from equations (3.14) and (3.15), and for the 

n > 2 modes is given in equation (3.21), are presented in figure 3.5. The mobilities are 

plotted against non-dimensional frequencies from 0.0012 to 0.8, which corresponds to 10 

Hz to 6.7 kHz for the pipe used in this thesis. The predictions calculated using the 

analytical method using equation (3.55) are also shown in this figure. 
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n = 0 

J] % 
w > 
(0 

N o n - d i m e n s i o n a l F r e q u e n c y (O) 
1̂ " 10" 

N o n - d i m e n s i o n a l F r e q u e n c y (O) 

n = 2 n = 3 

J] 
2 

N o n - d i m e n s i o n a l F r e q u e n c y (O) 

1 0 " 1 0 ' 

N o n - d i m e n s i o n a l F r e q u e n c y (O) 

Figure 3.5: Wave mobility of the modes n = 0 to n = 3 of the infinite pipe; Analytical 

method, ... Simplification obtained from equations (3.14), (3.15), and (3.21) for the n = 0, 

1 and > 2 modes, respectively. 

The simplified formulae show good agreement with the original formulae. It can be seen 

for the n = 0 mode that the standing near field waves, b = 3 and 4, dominate the motion 

of the pipe. However, these waves rapidly decay away from the excitation point. So, in 

the far field, where there are no effects of evanescent waves generated by the point 

force, only the longitudinal wave, b = 1, propagates along the infinite pipe. Due to the 

small amplitude of the longitudinal wave, it should be noted tha t the scale used in the 

figure for this mode is different from that for the other modes. For the n = 1 mode, the 

flexural (b = 1) and the near field (b = 2) waves dominate the response of the infinite 

pipe, especially at low frequencies. The effect of the standing near field waves, b = 3 and 
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4, increases with increasing frequency. For the n = 2 mode, before the waves cut on, all 

waves are standing near Geld waves. These waves can be separated into two groups, 

which have small (b = 1 and 2) and large (b = 3 and 4) wavenumbers as shown in the 

dispersion curve (figure 2.3). Those with small wavenumbers have a larger wavelength 

resulting in larger motion. After the waves cut on, the standing near field waves with 

small wavenumbers disappear and the flexural (b = 1) and near field (b = 2) waves start 

to propagate. Both waves dominate the pipe motion. Like the n = 1 mode, the standing 

near field waves influence the response of the n = 2 mode at high frequencies. The 

dynamic behaviour of the n = 3 mode is similar to that of the n = 2 mode except it has a 

higher cut-on frequency. 

3.5 Approximate Mobility of Infinite Pipes at Low 

Frequenc ies 

In this section, the expressions for the wave amplitudes derived in the previous section 

are simplified by making low frequency approximations. The n = 0 and higher modes 

are considered separately because of their distinguishable behaviour, and the simplified 

expressions are compared with the original form using point and transfer mobilities. It 

should be noted that the term called transfer mobility here is the mobility in the far 

field, where there are negligible effects of evanescent waves generated by the point 

force. 

At veiy low frequencies « 1), k„, and k,,; are much smaller than and k,,̂ , 

which are the standing near field wavenumbers, and can be ignored. Also neglecting 

in comparison with unity, the wave amplitudes obtained from equation (.3.54) become 

Fq +d,12̂ ,11 +dno) 

2 7 i D ( 1 - v ) k „ | k ; ; 3 k ~ 4 ( k ~ i 
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W,, : = 
- F q (dn4kn2 +'̂ ri2k^2 +^,,0) 

27iD(l-v)k,2k^^k^4(k^2-k^,) 
...(3.56 a, b, c, d) 

Wn3 = 
~ ĵ iî '̂Po ((In4k»3 +d|i2kn3 + d nO ) 

27tD(l-v)k^,(k^,-k^,) 

= ' - jE,a-Fo (cl,4k,4+d,2k;4+d„o) 
w„4 = r;— ri; 

27rD(l-v)k;,4 

Mobility of the n = 0 mode of an infinite pipe 

From the previous discussion in section 3.4, the standing nea r field waves dominate the 

response of the pipe at the excitation point and only the longitudinal propagating wave 

dominates the response in the far field. Hence, the point mobility of the n = 0 mode of 

an infinite pipe is the combination of both standing near field waves and the transfer 

mobility consists only of the longitudinal propagating wave. 

For convenience, the wavenumbers of the n = 0 mode obtained in chapter 2 are written 

down here with the negative sign denoting a real wave type and the positive sign of the 

imaginary part of complex wave types denoting wave motion in the positive direction. 

They are 

koi — —k| ' 0 2 and ko:̂ .ko4 
1 - V O(i-t) ') ' 

4p-

1/4 

(±l + j) ...(3.57 a, b ,c ,d) 

The term (d̂ k̂g,, +dn2kob the n = 0 mode is given by 
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('̂ n4'̂ 0b + d„2k()5 + — (k()|j Q. ) — ( l - v ) ( I + 3P ) ...(3.58) 

The analysis is for low frequencies, in which is very small, and so can be neglected in 

pi 3 
comparison with unity. Substituting for the bending stiffness, D = —— , and the 

wavenumbers into equation (3.56.a) gives the amplitude of the Wo, radial wave as 

Woi 
Jv'k,Fo 

47iK(l-v^) 
...(3.59 a) 

In addition to the assumption of a very small longitudinal wave amplitude at low 

frequencies, for the standing near field waves, k^^,k^»ri- can also be assumed. 

Hence, the standing near field radial wave amplitudes becomes 

Wo3 
-jFo 

STip-Kkil, 

W0:| 04 
-jFo ...(3.59 b, c) 

The relationship of both wave amplitudes is readily established by substituting their 

wavenumbers and is 

W o 4 = ^ W o 3 = j W o 3 . (3 .60) 
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It should be noted here that the radial wave amplitude of the torsional wave, W02, is 

not simplified because it is equal to zero as described in section 3.2. 

As previously discussed, the standing near field waves dominate the motion of the 

infinite pipe at the excitation point. Hence, the approximate point mobility is given by 

0̂ 

The approximate transfer mobility is dominated by the longitudinal propagating wave 

and is thus given by 

x j T . . . ( 3 . 6 2 ) 
Fo 4nK(l-v^) 

Mobility of the n > 1 mode of an infinite pipe 

Unlike the n = 0 mode, for the n > 1 modes the radial wave amplitude due to the 

standing near field waves is much smaller than that caused by the flexural and near 

field waves at low frequencies as discussed in the previous section. Therefore the 

response of the pipe at the excitation is dominated by the flexural and near field waves. 

However, in the far field only the flexural propagating wave dominates the motion of 

the infinite pipe. 

In order to simplify the mobility of the n > 1 mode at low frequencies, the same 

assumptions are employed as in the analysis for the n = 0 mode. That is « 1, kr « 

1 and Th^ last assumption is because the flexural wavenumber rapidly 
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increases after the wave cuts on. By applying these assumptions, the term 

+d„2k»b +d»o) may be approximated to: 

(̂ n-|k»h +d^2knh = + 3 . r 2 .2 ..(3.63) 

Substituting this into equation (3.56 a, b) gives 

Will =-
-j^rF(,(n-+k^,)-

2mk,„k i ,kL(k^ | -kL) 

vv II2 
-j\rFo(n-+k-,) ' 

2nDk„2k^^k^4(k^2-k^j) 
...(3.64 a, b) 

So, the point mobility can be formulated as 

yj" =• . ( W , „ + W n 2 ) -j« 

27:Dk,i,k,;,(k,^,-k,^2) 

(n-+k^,)^ (n-+k^2)^ 

'III :^il2 

...(3.65) 

and the transfer mobility is given by: 

y,r(s,8)._jw.'^"' a^(n^+kL)' 
Fo . 27iDk„k-ik-4(k-,-k-;) 

— C O S [n(8-(|))]G^^'*^ .(3.66) 
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For the n = 1 mode, the axial wavenumbers of the n = 1 mode are given in section 2.3 

and are repeated here for convenience. 

" " 2 - 7 7 5 

- V 

4p' 
...(3.67 a, b, c, d) 

1 ,'4 ZD' 
where ku s 1 - V " 

When 02 « k^»k^,k,-,k^, so the flexural and near field wavenumbers can be 

approximated as k,, ^-k^ and k,2 = jk^ - Using these assumptions and setting k̂  « 1, 

the radial wave amplitudes of the flexural and near field waves are given by 

w j(l + 2k;;)Fo 

47rhEk 

Wl2 = 
(l-2k;;)Fo 

47ihEk2 
...(3.68 a, b) 

Thus, the point mobility for the n - 1 mode is given by 

,p _ co[(l-j) + 2kb(l + 
/ — r 

M ' ) . 

47thEki: 
...(3.69) 

and the transfer mobility for this mode is given by 

47i:hEkb 
cos [n(8-(|))]e '̂̂  ki.5 ..(3.70) 
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When the flexural wavenumber tends to zero and thus the term containing 

in the numerator of equations (3.69) and (3.70) can be neglected in comparison with 

unity and therefore the mobility of the n = 1 mode of the infinite pipe becomes that of an 

Euler-Bernoulli beam. 

3.6 Evaluation of the Simplif ied Mobility of In f in i t e P ipes at 

Low Frequencies 

In this section, the low frequency point and transfer mobilities discussed in the previous 

section, are validated by comparing them with the mobilities calculated using the 

original model. The point mobilities of the first four circumferential modes are shown in 

figure 3.6. So that the evanescent wave is sufficiently small in the far field, the transfer 

mobility is calculated at the non-dimensional distance s = 100 and is shown in figure 

3.7. 

It should be noted that the scale for the n = 0 mode in figure 3.7 is different to that for 

the other modes. From figures 3.6 and 3.7, the simplification of the mobility expressions 

clearly depends on there being a negligible contribution to the motion from other waves. 

For example, the radial wave amplitude for the n = 0 mode, which is dominated by the 

standing near field wave, is much higher than the longitudinal wave up to high 

frequencies resulting in a simplified mobility, which is valid at high frequencies as well. 

Unlike the n = 0 mode, the mobility of the n = 1 mode is only valid at relatively low 

frequencies where the flexural and near field waves dominate. For the same reason as 

for the n = 0 mode, the simplified mobility of the n > 2 mode is also valid at high 

frequencies. The table 3.1 gives a summary of the approximate mobility formulae 

derived in this section. 
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z 
E 
0) 
Li 
m 

Non-dimensional Frequency (O) 

m 73 

Non-dimensional Frequency (̂ 1̂) 

n = 2 n = 3 

la: . 10 ' 
Non-dimensional Frequency (H) Non-dimensional Frequency (O) 

Figure 3.6: Point mobility of the n = 0 to n = 3 modes of an infinite pipe; Analytical 

method (equation 3.55), ... Simplification at low frequencies (equation 3.61, 3.69, and 

3.65 for the n = 0, 1, > 2 modes, respectively). 
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- 2 0 0 ^ -
1 0 ' 

n = 0 (s " 100) 

1 0 " 10'" 

Non-dimensional Frequency (O) 

'O 

n = 1 (s 100) 

Non-dimensional Frequency (O) 

a 
o 
2 -80 

n = 2 (s = 100) 

Non-dimensional Frequency (O) 

'O 

J] 
S 

3 (s 100) 

Non-dimensional Frequency (O) 

Figure 3.7; Transfer mobility of the n = 0 to n = 3 modes of an infinite pipe, which is 

calculated at the distance of s = 100; Analytical method (equation 3.55), ... 

Simplification at low frequencies (equation 3.62, 3.70, and 3.66 for the n = 0, 1, and > 2 

modes, respectively). 
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Table 3.1: Summary of the approximate mobility of an infinite pipe (K = Eh/(l-v^) is 

the membrane stiffness, D = EhYl2(l -v") is the bending stiffness, equations 3.61, 3.69, 

3.65 give the point mobility of the n = 0, 1, 2, and equations 3.62, 3.70, 3.66 give the 

transfer mobility of the n = 0, 1, 2, respectively). 

Mode Mobility 

Point Transfer 

covk, 

47iK(l-v-) 

> 2 

a)[(l-j) + 2kb(l + j 

47ihEk^ 

27iDki,kL(kL-kL) 

(n-+k-,)- (n'+k-o)-

k, 

oj{l + 2k (,) 

47ihEk̂  

a-(n-+k-,) ' 

27rD kn,k;;:;k;;4(k-| -k^z) 

3.7 E x p e r i m e n t a l Val ida t ion 

3.7.1 I n t r o d u c t i o n 

In the previous sections, expressions for the mobility of infinite pipes were derived 

using two methods. Even though the theory obtained from both methods is consistent, it 

is worthwhile verifying them by conducting some experiments. In this section, the 

experiment, which is set up to validate the theoretical model, is described. 
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3.7.2 E x p e r i m e n t a l S e t u p 

Before the experiments were carried out, the sensitivity of the PZT element, which was 

used as a force gauge, and the properties of the pipe, had to be determined. The PZT 

sensitivity in terms of charge per Newton was calibrated with a known mass of 4.357 kg 

and was found to be 341.7 pC/N. 

Acce lerometer 

A n e c h o i c 

Terminat ion 

1 = 300 mm 

6 

Shaker 

. P i ezo -

e lement 

Amplifier 

L j 

Anechoic 

Termination 

H P A n a l y z e r 

f j 

Conditioning 

Amplif ier 

Figure 3.8: Experimental setup for the infinite pipe 

Schematically, the diagram of the experimental setup for an infinite pipe is shown in 

figure 3.8. The 4.6 m PVC pipe, whose properties are given in table D.l (appendix D), 

was suspended by cords and was fitted with anechoic terminations at both free ends in 

order to make the finite pipe behave as if it had infinite length. These terminations 

were wooden boxes containing sand. However, they do not perfectly absorb vibration so 

that some reflection from them still remains and interferes wi th the incident waves. To 

ensure that they had a reasonable performance so that the reflected waves could be 

ignored in comparison with the incident waves, a method of wave decomposition as 

described in appendix B was applied. A random signal from an HP 3566A Signal 

Analyzer was supplied to the shaker exciting the pipe at the mid-point between the 

anechoic terminations and the measurements were taken at a distance of 300 mm from 

the shaker by using two Bruel & IQaer accelerometers type 4374, which were located at 
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a 180° circumferential angle to each other on the pipe. Once these two measurements 

were taken, both accelerometers were moved to the next circumferential angles (the 

interval angle is 7[/32) until a set of thirty-two measurements around the pipe was 

completed. This set of frequency response functions was used to verify the theory. In 

order to separate the incident and reflected waves by means of the wave decomposition, 

another two sets of thirty-two measurements were carried out at the distances of 975 

and 1025 mm from the shaker. Since two accelerometers were used for this method, 

phase matching and cross sensitivity between them had to be determined prior to 

applying such a technique to avoid ill-conditioning. To do this both were Axed on the 

shaker and their measured responses were compared. 

3.7.3 E x p e r i m e n t a l R e s u l t s 

In this section, the experimental results for the infinite pipe are presented and 

compared with predictions obtained from the theoretical models described in the 

previous sections. Comparisons between practice and theory are carried out with regard 

to two aspects, which are for each mode and for the total response for various angles of 

measurements. To make the comparison with the experimental results the complex 

elastic modulus of the pipe, E =E(l + jrt) where r| is the loss factor, was used in the 

predictions because of structural damping in the pipe. Wave decomposition of the 

motion of the infinite pipe is also presented. 

Accelerometers used in the experiments detect the responses of all pipe modes. Thus to 

make a comparison for a particular mode between experimental results and predictions, 

the modal decomposition technique, described in appendix A, has to be applied to 

extract the modes from the total response. Before comparisons can be made, the 

orientation angle of the pipe has also to be determined, and the way in which this is 

obtained is also described in appendix A. For convenience, t he formulae of the radial 

amplitude, Am, and the orientation angle, (|), to be extracted from the experimental 

results, are repeated here 
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A,„ =-
N 

N-l 
I Hp^cos( 

2 ^ 
N m) l ' s i n ( ^ ^ m ) 

N 

I = — tan' 
m 

N 
m) 

N;l iTipg 
^ Hp. c o s ( ^ m ) 

ru=o 

where m is the desired mode to be decomposed, 

Pe is the position of the measurement and 

N is the number of measurements around the pipe. 

H is the frequency response at the position pe (Mobihty). 

Because in the experiment a finite pipe was used with anechoic terminations attached 

at both free ends, an incident wave generated by a point force was reflected at these 

terminations. To investigate the performance of the anechoic terminations on absorbing 

the reflected waves, all waves, which were incident and reflected, are decomposed. The 

method of decomposing waves is described in appendix B and shown in figure 3.9. 

(b) 

— ^ o © 

S ( ) :) / 

A (Incoming Wave) 

C (Reflected Wave) 

l „d '2 L . , / 2 
1 • 
1 

S = Swd 
B (Reflected Wave) 

Figure 3.9: Wave decomposition of an infinite pipe, in which measurements around the 

pipe are taken at the point 1 and 2. 
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The waves (B) and (C) arise from the reflection of the incident waves at the anechoic 

terminations where both reflected waves are assumed to have the same radial 

amplitude. The expressions for Incoming wave (A) and both reflected waves (B) and (C) 

at the position s = Swd are given in appendix B. 

It was shown in previous sections that the radial velocity of the pipe increases with 

increasing frequency. This implies that the sensor used in the experiment should be 

massless; otherwise it is difficult to move at high frequencies resulting in lower motion 

detected by the sensor. Unfortunately, the smallest accelerometer available for the 

experiment had a mass of 0.65 gram. Apart from the mass of the sensor, another factor, 

which affects the experimental results, is the tip mass of the PZT force sensor. It has 

the effect of reducing the excitation force. To reduce this effect, it was designed to have 

a very small mass of 0.08 gi am. Both effects are described in appendix C. 

The expeiimental results presented are as follows. 

Frequency responses of each mode of the infinite pipe measured at a distance of 300 

mm from the excitation position. 

Figure 3.10 Amplitude of mobility of the n = 0 mode of the infinite pipe 

Figure 3.11 Amplitude of mobility of the n = 1 mode of the infinite pipe 

Figure 3.12 Amplitude of mobility of the n = 2 mode of the infinite pipe 

Figure 3.13 Amplitude of mobility of the n = 3 mode of the infinite pipe 

Orientation angle, (j), of the infinite pipe with respect to the force position extracted from 

the frequency response of each mode. 

Figure 3.14 Orientation angle extracted from frequency response of the n = 1 

mode 
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Figure 3.15 Orientation angle extracted from frequency response of the n = 2 

mode 

Figure 3.16 Orientation angle extracted from frequency response of the n = 3 

mode 

Frequency responses of the infinite pipe for various angles, 6, of measurements taken at 

distance 300 mm from the excitation position. 

Figure 3.17 Amplitude of mobility of the infinite pipe at 8 = 0 

Figure 3.18 Amplitude of mobility of the infinite pipe at 8 = 7i/2 

Figure 3.19 Amplitude of mobility of the infinite pipe at 8 = Tt 

Figure 3.20 Amplitude of mobility of the infinite pipe at 8 = 37i/2 

Wave decomposition for each mode of the infinite pipe measured at distance 975 mm 

and 1025 mm fi'om the excitation position. 

Figure 3.21 Wave decomposition for the n = 1 mode of the infinite pipe 

Figure 3.22 Wave decomposition for the n = 2 mode of the infinite pipe 

Figure 3.23 Wave decomposition for the n = 3 mode of the infinite pipe 

In figures 3.21, 3.22 and 3.23, the predicted mobility of the incident waves is calculated 

from equation (3.55) at the axial distance of 1000 mm, while t h a t of the reflected waves 

is obtained by multiplying equation (3.55) with some values t h a t give the approximate 

curve fitting to experimental results. 
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- 2 0 

n = 0 

-100 

- 1 1 0 

Frequency (Hz) 

Figure 3.10: Amplitude of mobility of the n = 0 mode of the infinite pipe: Measured 

result; Prediction; ... Prediction with mass effect accounted for. 

n = 1 

E 

§ 

3 

- 9 0 

- 1 0 0 

- 8 0 r 

Frequency (Hz) 

Figure 3.11: Amplitude of mobility of the n = 1 mode of the infinite pipe: Measured 

result; Prediction; ... Prediction with mass effect accounted for. 
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n = 2 

Frequency (Hz) 

Figure 3.12: Amplitude of mobility of the n = 2 mode of the infinite pipe: 

result; Prediction; ... Prediction with mass effect accounted for. 

Measured 

Frequency (Hz) 

Figure 3.13: Amplitude of mobility of the n = 3 mode of the infinite pipe: 

result; Prediction; ... Prediction with mass effect accounted for. 

Measured 

78 



Chapter 3: Point and Traii.sfer Mobility of Infinite Pipes 

n = 1 

Frequency (Hz) 

Figure 3.14: Orientation angle extracted from frequency response of the n = 1 mode. 

430 Hz 

c 
I" - 2 0 

Frequency (Hz) 

Figure 3.15: Orientation angle extracted from frequency response of the n = 2 mode. 
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n = 3 

(1216 Hz) 

(U 
% 20 & 
0) 
Q 

Frequency (Hz) 

Figure 3.16: Orientation angle extracted from frequency response of the n = 3 mode. 

Angle = 0 Degree 

10 
Frequency (Hz) 

Figure 3.17: Amplitude of mobility of the pipe at 8 = 0 and (|)= -5: Measured result; _ 

_ Prediction; ... Prediction with mass effect accounted for. 
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Angle = 90 Degree 

Frequency (Hz! 

Figure 3.18: Amplitude of mobility of the pipe at 8 = 90 and 

Prediction; ... Prediction with mass effect accounted for. 

Measured result; 

Angle = 180 Degree 

10" 10' 10' 

Frequency (Hz) 

Figure 3.19: Amplitude of mobility of the pipe at 8 =180 and $= -5: Measured result; 

Prediction; ... Prediction with mass effect accounted for. 



Chapler 3: Paint and Transfer Mobility oj InjuutL' Pipes 

Angle = 27 0 Degree 
- 2 0 

Frequency (Hz) 

Figure 3.20: Amplitude of mobility of the pipe at 6 = 270 and (j)= -5: 

Prediction; ... Prediction with mass effect accounted for. 

Measured result; 

n = 1 

Incident: Wave (A) 

' l5 dB 

8 dB 

Reflected Wave (B) 

Reflected Wave (C 

(D 
5 -100 

Frequency (Hz) 

Figure 3.21: Wave decomposition for the n = 1 mode of the infinite pipe; Prediction. 
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- 2 0 

Incident Wave (A) 

Reflected Wave (C 

120 dB-

8 dB 

Frequency (Hz) 

Figure 3.22; Wave decomposition for the n = 2 mode of the infinite pipe; Prediction. 

I 
(U 

i 

Incident: Wave (A) 

Reflected Wave (B) 

Reflected Wave (C) 

23 dB 

15 dB 

Frequency (Hz) 

Figure 3.23: Wave decomposition for the n = 3 mode of the infinite pipe; Prediction. 
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3.7.4 D i s c u s s i o n 

Because a PVC pipe is a light structure, it tends to be affected by the mass loading of 

accelerometers and from the reduction of the excitation force due to the tip mass of the 

PZT force gauge as described in appendix C. In order to reduce such effects, those 

masses were set to be small in the experimental design stage, and were 0.65 grams for 

the accelerometer and 0.08 grams for the tip of the PZT. Even though small masses 

were used, however, their effect, especially at high frequencies, was still present in the 

experimental results as shown in figures 3.10-3.13 and 3.17-3.20. For the n = 0 mode, 

the mobility is very small, especially at low frequencies. So, it is difficult to detect this 

using accelerometers leading to a poor signal to noise ratio and an inaccurate result as 

shown in figure 3.10. Another way to detect this mode is to use PVDF wire, which 

senses strain proportional to the radial displacement of the pipe (Pinnington and 

Briscoe [7] and Brennan aZ [8]). Unlike the n = 0 mode, the experimental results of 

the modes, n = 1, 2 and 3, were consistent with the predictions except at the cut-on 

frequencies of n > 4 modes as shown in figure 3.11-3.13. This might be because of the 

inaccurate positioning of the accelerometers around the pipe or the high wave 

reflections from the anechoic terminations of the higher modes at their cut-on 

frequencies as shown in figures 3.21-3.23. In order to reduce such high wave reflections. 

Fuller and Brevart [9] used damping material wrapped around a pipe but the effect of 

reflected higher order modes still remained in their experiment results. This implies 

that it is difficult to suppress the reflected waves of the higher order modes unless the 

pipe is long enough or has a high loss factor. The orientation angle, (]), of the pipe with 

respect to the force position was illustrated in figures 3.14-3.16. This angle is constant 

for all modes and should be taken into account after the wave of the considered mode 

cuts on and before the higher modes cut on. Since, before the mode of interest cuts on, 

the pipe motion of this mode is very small, it is difficult to detect using the 

accelerometers. After the higher modes cut on there is some interference due to the 

reflected waves from the anechoic terminations and inaccurate positions of the 

acccelerometers. Once the orientation angle of the pipe had been determined, the total 

mobility obtained from the experiment results could be compared with the predictions. 

They are in good agreement up to high frequencies where the strong reflected waves 

occurred as shown in figures 3.17-3.20 for various measurement angles of the 
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accelerometers. In order to be sure that the pipe behaves like an infinite pipe the 

reflected waves, which arise from both anechoic terminations, were investigated by 

means of wave decomposition and are shown in figures 3.21-3.23 for the modes n = 1, 2 

and 3. The n = 0 mode was not considered because of the small mobility of this mode as 

previously discussed. Moreover, the anechoic terminations used in this work have little 

effect on the longitudinal wave, which dominates the response of the n = 0 mode. A 

suitable method of reducing the longitudinal wave is to use a plate attached at the end 

of the pipe as described by Brennan et al [72]. From the f igures of wave decomposition, 

it is clearly demonstrated that the anechoic terminations are good enough to ignore the 

effect of the reflected waves except at the cut-on frequencies of higher order modes, n > 

4. The figures also show the reduction of the response due to the damping of the pipe 

itself, which is the difference between the reflected waves from both anechoic 

terminations. 

3.8 Conclus ions 

Expressions for the mobility of infinite pipes have been derived using two methods, the 

Residue and the Analytical methods. Even though the Residue method has a certain 

mathematical elegance, the Analytical method gives additional physical information, 

such as there is no slope, no twist and no axial displacement a t the excitation position. 

Theoretical evaluation illustrates that the mobility obtained from both methods is 

exactly the same. 

In addition, the simplification of the expressions at low frequencies, Q?- « 1, for the 

point and transfer mobilities is also developed. Good agreement with the original 

expressions is achieved. By numerical evaluation, it is clearly shown tha t the simplified 

mobility for the n = 0 mode is valid up to high frequencies. Excluding the n = 1 mode, 

the simplification of the higher modes are also valid up to high frequencies. 
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Experimental validation for the theoretical models of infinite pipes has been achieved. 

Even though an accelerometer with a small mass was selected, the effect of its mass 

was still apparent, especially at high frequencies. This is because the pipe is highly 

mobile at high frequencies, which is in contrast with the accelerometer. To compare the 

theoretical predictions and the experimental results the mass loading of the 

accelerometers and the force gauge had to be accounted for. 
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MOBILITY OF SEMI-INFINITE P I P E S 

4.1 Introduct ion 

In the previous chapter, the dynamic behaviour of an infinite pipe in terms of the 

mobility has been investigated. A further study of the mobility is carried out in this 

chapter, but the application is on a semi-infinite pipe. Unlike the infinite pipe, the 

derivation for a semi-infinite pipe can be analysed in a s traight forward manner using 

four boundary conditions. Such work using the Analytical method has been done by 

Flugge [5], Vinson [24], Young [25], and Pan and Hansen [26]. 

Apart from the Analytical method, the Wave method, in which the analysis is based on 

a wave point of view rather than a mode point of view, is also employed to analyse the 

mobility of a semi-infinite pipe in this chapter. This method has been used for a beam 

before as described by Mace [54], Mead [12], Brennan [73]. However to the author's 

knowledge, it has never been applied to a semi-infinite pipe. 

With the mobility obtained from the Wave method, simplification at low frequencies can 

be carried out. Like the infinite pipe, the analysis of the approximate mobility is 

conducted so that the behaviour of a semi-infinite pipe can be compared with that of a 

simple structure. At the end of the chapter, the theoretical model is verified by 

experiment work. 
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4.2 Analytical Method for Semi-infii i ite P i p e s 

The analytical method is used to analyse the mobility of a semi-infinite pipe. Four 

boundary conditions are needed to give four wave amplitudes. Considering that zero 

work is done by the reaction forces at the free-end boundary as schematically shown in 

figure 4.1, the condition at the boundary can be established. 

\ " , 
(a) (b) 

9 ^ / r / 

" • f i \ 
. 3 ; \ 

1 
J 

Figure 4.1: Notation and co-ordinate system of a semi-infinite pipe with a free end; a) 

Force, b) Moment 

For a free edge, a set of the boundary conditions is given by (Leissa [2] and Soedel [69]) 

N. =0 

M 
a 

M. =0 ...(4.1 a, b, c) 

This means there is no reaction force and moment at the edge of the pipe. For the radial 

direction, equilibrium due to the point force is obtained from equation (3.34), which is 

V, = —Fo6(8-(|)) 
s = 0 a 

...(4.2) 
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All forces and moments are given by equation (3.43) and are repeated here for 

convenience. 

N, XZisi ni, Wnb C0s[n(6 —(j))] 
S=0 b=l 

n-V)K 4 ==: 
= j — ZZr .nb Wnb sin[n(8-4»)] 

^ 2a b=i 
..X4%3a, b, c, d) 

v.. = ZZv .nb Wnb cos[n(8-()))] 
=0 a' b=i 

M . = ^ ZZM,nb W,u, c o s [ n ( 8 - $ ) ] 
s=o a' h=i 

where Wnu is the radial amplitude for the b*̂ '̂  wave of the n"̂"̂  mode of a semi-

inGnite pipe (the superscript s denotes semi-infinite in a similar 

way to i denoting infinite), 

N̂.iib knbanb +vnYnb +v 

-"T̂ b ...(4.4 a, b, c, d) 

- 'M.nb knbanb +vnVnb +knb +vn^ 

-'V^b 
1̂ 2 I 1 - V L2 
^nb a. nb 

3 - V 
+ — p k ^ b V n b + + (2 - v ) in 

The wave amplitudes can be determined by subst i tut ing for Vs from equation (4.3 c) and 

5(8-(|)) from equation (3.4) into equation (4.2), which gives 

4 = s p a" 
I Z y , „ h W « b = _ j ^ F , 
b=i 2kD 

.(4.5) 
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Because of the orthogonal property of the pipe modes, the boundary conditions should 

also hold for any modes. So, the equation of motion for a par t icular mode of a semi-

infinite pipe can easily be established in matr ix form as 

^ N.iil ZN.n.1 ZN.n4 Wnl 

Zr.nl ZT..,2 ZT.».l ZT.n4 Wlo 

Zv.nl 

Zm,II2 

Zv.n2 

Zw.n.l 

Zv.1,3 

^M,n4 

Zv.n4 _ 
Wn.1 

Wl4 

0 

0 

0 

2%D 

Inverting the 4x4 matrix [Z], the wave amplitudes are given by 

W 

W 

w 

w 

"N,nl 

-T.nl 

-"M.nl 
Zv.n. 

"N,n2 

"T,n2 

M̂,n2 

"V.n2 

"N,n3 

-T,n3 

M̂,n3 

-N,n4 

"T,n4 

M̂,n4 
V , n 4 - J -

0 

0 

0 

.E,a-Fo 

27tD 

.(4.7) 

The mobility by this method is given by 

(s,8) = - j (0 .(4.8) 

However, for the n = 0 mode, the radial wave amplitude due to the torsional wave 

should be zero due to the symmetric load. This specific case for the n = 0 mode of the 

semi-infinite pipe is similar to tha t of the infinite pipe, which is discussed in the section 

3.2. To verify this some mathematical analysis is carried out. Arranging terms, the force 

and moment coeGicients become 
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_ Zn.oi, _ Zr.ob „ _ Zivi.ob t _ Zv,ob 
-N.Oh J T̂.Ob - ; M̂.Ob -

Yob Yob Yob 
' V , O b 

Yob 

where Zl KLOb Ôb̂ Ôb + (P̂ ^Ob + Yob 

z; ' T , O b 

z; M . O b 

(̂ ob + + SP jko,)Yob + (SP kgy) Yob 

îOb̂ Ôb + ̂ ObYob 

V̂.Ob - koyCXo,) + 

(̂ ob —L2|L,̂ )Qb 

Yub = (l + v)(v + |3''kgb)k%-(1+ ^ P"kQy)(koh ) 

Yob - (^11^22 LjjLji) Ob 

...(4.9 a, b, c, d) 

It should be noted here tha t for the same reason as V,J / n r a t h e r than V,' was used in 

the section on the infinite pipe, the condition of Ts/n = 0 is applied instead of Tsg = 0. 

Subst i tu t ing the coefficients obtained from equation (4.9) into equation (4.7) gives 

Woi 

W02 

W(M 

Wo4 

Yol 0 0 0 

0 Yoi 0 0 

0 0 Yo, 0 

0 0 0 Yo4 

N̂.OI z;,02 ZN.04 

z;,o, ^7,02 ZT.03 ^7.04 

Zw.oi ^^.02 Zw.O] 7* 
^M,04 

Zy.OI 7* 
^V,02 

7* Zv,04 

0 

0 

0 

Fq 

27[D 

...(4.10) 

As mentioned in section 3.2, Y02 = 0 for the torsional wave. Hence, there is no radial 

motion associated with the torsional wave. So, the formula for determining the radial 

wave amplitudes for the n = 0 mode is given by 
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Woi 

Wo3 
N̂.OI ZN,03 ZN.04 

Woi 

Wo3 = ^M.04 

Wo4 _Zv,0l Zv.0.1 Zv,04 
- J -

0 

0 

Epa-Fo 
27iD 

...(4.11) 

4.3 Wave Method for Semi-infinite Pipes 

In this section, the point mobility of a semi-infinite pipe is derived by the wave 

approach similar to that used for an infinite beam by Mace [54] and for a finite beam by 

Brennan [73]. This method applied on the beam was also described in a textbook 

written by Mead [12]. 

1 
i 

a* 
s, 

I 

Force 

Figure 4.2: Diagram of wave propagating and reflected in a pipe. 

Schematically, propagating and reflected waves in a semi-infinite pipe due to a point 

force excitation are shown in figure 4.2. From the wave point of view, the excitation 

generates the wave vectors, and aj", whose amplitudes a re equal to those of the 

positive-going and negative-going waves of the infinite pipe respectively and they are 

given for a particular circumferential mode as 
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Wnl 

Wn2 

WnJ 

wlw 

Wn3 

Wn6 

Wn7 

w L 

...(4.12 a, b) 

The incident waves propagate along the pipe until the negative-going waves, a, , strike 

the boundary resulting in wave reflection. For the pipe application, every single wave 

produces four reflected waves. Having four negative-going propagating waves, the 

incident and reflected waves are related to the 4x4 matrix reflection matrix as given 

below (Mace [54]) 

RfU .(4.13) 

where Rf i s the reflection matrix at the end of the pipe, a''=a;'(so-S|) = Tra[(so) is the 

incident negative-going wave at the edge, and Tf is the transfer matrix of the vector a[ 

from the position so to si and is given by 

T,. = 

0 0 0 

0 g jk|,2S| 0 0 

0 0 0 

0 0 0 

where s, = — is the non-dimensional distance between the force and the end of 

the pipe. 

The reflection matr ix can be obtained by considering the boundary conditions at the 

edge of the pipe, at which all forces and moments are zero because in the case 

considered in this thesis the end is free. Prom the discussion in the previous section, 

these boundary conditions can be given as 



Ns(s = -s , ) 
(s - -s I) 

M,(s =-s , ) 
VJs = -s , ) 

T#here 

Z^a++Z_a 
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...(4.14) 

^ N . n l ZN,ii2 ZN,n.1 ZN.n4 

ZT.Hl ZT,i,2 ZT.,,3 ZT.»4 
z * = 

ZT.Hl 

ZM,„I Z w . n ] ZM.II.I ZM.,,4 

Zv . n l Zv,i ,2 Zv,n3 Zv.n4 

^N,i)5 Zhl.,!? Zx.nS ' 

ZT.n, Zy.ne Zy.,,? Z T . „ S z = Zy.ne 

ZM.n6 Z l̂n? Z M . n S 

Zv.»5 Z V , n 6 Zv,n7 Zv ,n8 

As described in section 3.3, ^ nb — ' 1, 

and 

, anb = -an(b+4) and \)fnb = \|fn(b+4) where b = 1,2,3 

and 4. The relationships between the positive-going and negative-going waves lead to 

ZN.nb = ZN,n(b+4), 

ZT.nb = -ZT,n(b+4), 

ZM,nb — ZM,n(b+4) a n d 

Zv ,nb ~ "Zv,n(b+4) 

...(4.15 a, b, c, d) 

So, the mat r ix of Z_ can be rewritten in terms of the first four waves as 

ZN.nl ZN,„2 ZN,,,.l ZxiW 

-Zy -ZT.»2 -Zy -Zy 

ZM,nl Zw.iC Zlvl.n.i ZM.n4 

- Z y „| -Zv,„2 - Z y -Zy 

...(4.16) 
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Substituting for the vector a+ from equation (4.13) into equation (4.14) and inverting the 

matr ix Z+ give the reflection matrix 

R r . . . ( 4 . 1 7 ) 

The waves reflected at the boundary are proportional to the incident waves related by 

the reflection matrix as =R^a (equation 4.13). 

The vector of wave amplitudes at the excitation position in the positive direction is the 

combination of the vector of incident positive-going waves and the vector of reflected 

waves and is given by 

a ; =a;+Tra+ 

:=a;-+TrRfa- ...(4.18) 

= a;+TrRrTrar 

Since as described in the previous chapter, the net wave amplitude at s = so in 

the positive direction becomes 

a + = ( l + TrRfTja; ...(4.19) 

where I is the identity matrix. 

Because the total vector of wave amplitudes is the combination of the vector of incident 

positive-going waves and the vector of reflected waves, the vector of reflected waves at s 

= so, BgJ, can be determined by subtracting the vector of incident waves from the vector 

of all the waves, and is given by 
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^s,! - ^s„ - ( T f R f T f ) a j ...(4.20) 

In the case of a pipe excited at the end, the transfer matrix, Tf, is equal to the identity 

matrix. Since I = Z;'Z+, substituting the reflection matrix obtained from equation (4.17) 

into equation (4.19) gives: 

W n l 

w L 

W»3 

w L 

= 2 2 " 

0 0 0 0 Wnl 

Zr.nl 7̂,112 Zy.n.l ZT.n4 w l i 

0 

Zv.nl 

0 

Zv,n2 

0 

Zv,„3 

0 

Zv.n4 
w L 

w L 

...(4.21 a) 

However, for the n = 0 mode, the radial motion does not couple to the torsional wave. 

Hence, the solution for this mode becomes 

Wol 'o 0 
Wol 'o 0 0 

Wo3 =2(Z: 'LO 0 0 0 W03 

Ŵ 4 _Zv_oi Zv,03 V̂,04 Wo4 

ZNOI Zx.o:! ZN.W 
where (Z+ = ZM.oi 

Zy.OI Zv.ua Zv,04 

. . .(4.21b) 
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4.4 Numerical Analysis to Evaluate the Mobility of Semi-

infinite Pipes 

In the previous sections, the force mobility of a semi-infinite pipe was derived using two 

methods, analytical and wave methods. Because both methods are different, the 

theoretical results also appear to be different. Hence, it is worthwhile evaluating them. 

Due to the complexity of the expressions for the radial wave amplitudes, a numerical 

comparison between them is conducted in this section. The comparison is carried out for 

every single wave mobility of the circumferential modes n = 0 to 3, which is calculated 

by using the pipe data given in table 2.1 (page 30) and the results are shown in figure 

4.3. 

From the numerical results shown in figure 4.3, it can be seen that both methods are 

identical even though they are obtained using a different approach. By comparing the 

point mobility of the infinite pipe shown in figure 3.5, the semi-infinite pipe with the 

free end seems to give a similar point mobility to the infinite pipe except that it is 

higher for most wave types. However, for the n = 0 mode, the point mobility of the semi-

infinite pipe for the longitudinal propagating wave is much smal ler than that of the 

infinite pipe. 
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-lUO 

n = 1 

N o n - d i m e n s i o n a l F r e q u e n c y (O) 

N o n - d i m e n s i o n a l F r e q u e n c y (H) 

'O 

> - 1 0 0 

a 
2 
> .̂0( 

10̂  lû  
N o n - d i m e n s i o n a l F r e q u e n c y (O) 

n = 3 

N o n - d i m e n s i o n a l F r e q u e n c y 

Figure 4 

the end 

3: Wave mobility of the mode n = 0 t o n = 3 o f a semi-infinite pipe excited at 

Analytical method, Wave method. 

4.5 Approximate Mobility of Semi-infinite Pipes at Low 

Frequencies 

In sections 4.2 and 4.3, the wave amplitudes of a semi-infinite pipe with a free end have 

been derived. Clearly, the results of the analysis are more complicated than those 

obtained from an infinite pipe due to the reflected waves at the boundary. It is thus 

difficult to get a simple form for the radial wave amplitudes. In order to achieve this, 

the motion of a semi-infinite pipe is analysed at low frequencies {OP- « 1). Because of 
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the distinguishable behaviour between the n = 0 and the h i g h e r modes, the analysis is 

carried out in the same way as for the infinite pipe at low frequencies. 

At the free end, the forces and moments given in equations (4.1) and (4.2) are functions 

of the components of axial, circumferential and radial displacements, making their 

coefficients more complicated. Making some assumptions for low frequency behaviour 

such as p- « 1 and « 1, the analysis is conducted more easily and is carried out 

for each wave. Rearranging equations (4.21.a) and (4.21.b), the expression for the n = 0 

mode becomes 

N̂.OI ^N.U] 
Wol 

Wo3 

Wol 

Wo3 

V̂.OI Zv.03 Zv.U4 Wo4 V.OI 

Wol 
0 0 

Wol 

0 0 Wo.1 

V,03 
W o 4 

...(4.22) 

and for the n > 1 modes becomes 

N̂.nl 

^ M. n 1 

"V .n l 

^N.n2 

"M.n2 

ZT.n.l 

"V.n.1 

N̂.i,4 

Z'riM 

W n l 

Wn2 

w L 

- T , n l ZT.».l 

v,ni 

0 

7̂,114 
0 

Z\/,„4 

W n l 

w l ] 

w'„.i 

W'n4 

...(4.23) 

Mobi l i ty of the n = 0 m o d e of a semi- inf in i te p ipe 

In this part, the mobility of the n = 0 mode of a semi-infinite pipe at low frequencies is 

simplified and is compared with the original formulation. To achieve this the 

coefficients of the forces and moments for each type of waves are first simplified. 
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The coefficients of the forces and moments for the n = 0 mode are given in equation 

(4.4). To reduce them to a simple form, it is assumed that « 1 and |3-knb« 1 at low 

frequencies. This results in the coefficient for axial displacement given in equation (3.41 

c) as 

(̂ Ob - " ...(4.24) 

Substituting for aobfrom equation (4.24) and the wavenumbers of the n = 0 mode, which 

are given in chapter 2, into equation (4.4) yields the coefficients of the normal force, Ns, 

from equation (4.4 a), which are 

^N.oi --(P'kj' +v) 

ZN.03 (P 
\ 

...(4.25 a, b, c) 

Ẑ N.04 — (P + V) 1 - -

k nj 

When « 1, « 1, so the coefficient Z^ o, is given by: 

-N,OI ...(4.26) 

With the same assumptions as above, the coefficients of axial moment, Ms, become 

A. ^ } 

ZM.OI = k , - — 
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...(4.27 a, b, c) 

2M,04 — '̂ 04 ^ 

As described in chapter 2, the standing near field wavenumbers at low frequencies are 

given by (equations 2.22 a, b) 

With these assumptions, the axial moment coefficients are given by 

Zw.oi --Zw.w - j-J ...(4.28 a, b. c) 

Substitution of the wavenumbers for the n = 0 mode into equat ion (4.4 d) gives the 

coefficients of Vs, which are 

Zv.oi -

1 - V 
3/4 

(- i+j) ...(4.29 a, b, c) 

l - v N !-k? 

4P̂  

3/4 

0+j) 

From the analysis for the n = 0 mode, most of the normal force, Ns, is due to the 

longitudinal wave. Conversely, .the standing near field waves a r e the dominant cause of 

the axial moment, Ms, and effective transverse shear force. Vs. Neglecting the small 

influence of the longitudinal wave for Ms and Vs, the wave ampl i tudes of the standing 

near field waves can be determined from equation (4.22) and a re given by 
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Zv.()3 Zv,04 

Wo3 

w L "V.0.1 

0 

Zv.04 

W03 

W04 

...(4.30) 

By substituting for the coefficients of Ms and Vs (the Z's), in equation (4.30) and 

rearranging, the wave amphtudes of the standing near field waves can be expressed as 

Wo3 

w L 

: ( ! + j ) ( W 0 3 - j W o 4 ) ...(4.31) 

Substitution of Woi and Ww given in equation (2.43 b, c) yields 

...(4.32 a, b) 

From equation (4.22), the radial component of the longitudinal wave is easily 

determined from its simple relationship with the standing near field waves: 

Woi =-
"N.OI 

"N.OI 

Z N .03 ^ "3 + Z N Q4 W 04 

) 

' ( Z N , 0 3 + Z N , 0 4 ) W 0 3 

...(4.33) 

Subst i tu t ing for the wavenumbers of the n = 0 mode gives 

W( 
2v|3-n-[ i - ( i + v ) n - 1 Wo3 ...(4.34) 
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Because at low frequencies, « 1, this becomes 

.,.(4.35) 
( l -v - ) -

Substituting for the term Woi from equation (4.32 a) and noting that kĵ  gives: 
l - v -

w L . - ...(4.36) 
271(1—V JKKG-^ 

Once the radial wave amplitudes are known, the mobility of the n = 0 of the semi-

infinite pipe is readily established. Like the infinite pipe, the point mobility of the semi-

infinite pipe is dominated by the standing near field waves and is given by: 

...(4.37) 
F() 

Equation (4.37) shows clearly that the point mobility of the n = 0 mode of the semi-

infinite pipe is in phase with and four times larger than that of the infinite pipe, Xj''. 

Dominated by the longitudinal propagating wave, the t r ans fe r mobility of the semi-

infinite pipe is given by 

Fo 27i(l-v-)Kk^ 03 

...(4.38) 
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In contrast with the point mobility, the t ransfer mobility of the semi-infinite pipe is 

much smaller than tha t of the infinite pipe, (equation 3.62). 

Mobil i ty of the n > 1 modes of a semi- inf in i te p ipe 

The mobility of the n > Imode of a semi-infinite pipe is analysed in the same manner as 

t ha t of the n = 0 mode. Before the wave amplitudes are obtained, the coefficients of 

forces and moments are first determined. Employing the assumptions used for the n = 0 

mode including (the flexural wavenumber rapidly increases with increasing 

frequencies), the coefficients can be written in a simple form. 

For convenience, the coefficients for the forces and moments given in equation (4.4) are 

repeated here and are given by: 

•^N.nb ^nb^^nb +VnYnb 4-V 

Z T , n b ]:i0̂ nb + 11 + ...(4.39 a, b, c, d) 

-"M.nb knbanb +k^b +̂ 1%^ 

" V . n b nb n • 
J J 

<3-v^ 
nknbVnb 

Applying the assumptions, the coefficients of the axial and circumferential 

displacements are given by 

(̂ i,b = 
n - vk nb 
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Vnb = -n 
(24-v)k-b +n 

( n - + k ^ J -
...(4.40 a, b) 

Substituting for anb and ij/nb into the force and moment coefficients given in equation 

(4.39) results in 

"N.iih 

(n " + knb) 

(l-v2)n2k2 
nb 

(n-+k^b)^ 

2(l + v)k;;,, + 3 r k " +(2 + v)k 12 
n̂b nk nb 

-'T.nb ( n ' + k i ) ' 
- + 3P^nkny 

2(l + v)nknb 

(n"+k^b)" 

^Mjib - Z x „b +(I-P )knb +v(n" -1) 

= nb + k y +v(n" - I) 

...(4.41 a, b, c, d) 

^ V Jib ^ fib (n'+k;;b) + ( l -v) 
n" +k nb 

n -V 

Since at low frequencies the wavenumbers of the standing n ea r field waves are much 

larger than those of the flexural and near field waves, the coefficients of the axial 

moment, 2^,53 and ^4, and the effective transverse shear force, Zv,b3 and Zy , are 

dominated by the standing near field waves. This gives s imilar resul ts to the n = 0 

mode. To make the simplification, equation (4.23) is rewrit ten as 
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Zw.!,! W„| +ZM,n2 +^^,03 ^"3 +ZM,n4 Wn4 - 0 

Zv.nl Wil l + Z y 1,2 W n 2 + Z y ,,3 W n 3 + Z v j , 4 W n 4 - 2 ^V.iil W n l + Z v 1,2 W „ 2 + Z v i i jWn. l + Z y ,,4 W n 4 

...(4.42 a, b) 

From the above discussion of equation (4.41), it can be seen that the standing near field 

waves dominate the axial moment, Ms and the effective transverse shear force Vs. 

Hence, the effect of the flexural and near field waves for Ms and Vs can be neglected. 

The wave ampli tudes of the s tanding near field waves can be wr i t ten as 

Zm.H T Zf̂ ^ 

Zv.iii z V.n4 

W„] 

w L 

= 9 
0 

z . 
W,u 

w L 
...(4.43) 

The coefficients of the normal force, Ns, and of effective in-plane shear force, Tse, are 

very small for all wave types. However, the amplitudes of flexural and near field waves 

of the semi-infinite and infinite pipes are much larger than those of standing near field 

waves as shown in figures 3.5 in section 3.4 and figures 4.3 in section 4.4. Hence, the 

effect of the standing near field waves on the normal force, Ns, and on the effective in-

plane shear force, Tse, may be ignored. With the same approach taken for the s tanding 

near field waves, the wave amplitudes of the flexural and nea r field waves are given by 

Z N . I I I ZN,I ,2 

-T,nl - T , n 2 

w„, 
= 2 

-T.I,I ZT.,a 

W n l 

w l i 

...(4.44) 

Because the motion of the semi-infinite pipe due to the large wavenumbers of the 

s tanding near field waves is very small at low frequencies, t hey can be neglected when 

calculating the pipe mobility. Hence, analysis is conducted to find out the radial wave 

ampli tudes of the small wavenumbers of the standing near field waves arising before 

the waves cut on and of the flexural and near field waves ar is ing af ter the waves cut on. 
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Substituting ibr the coefficients of normal force, Z^ nb, effective in-plane shear 

force, , where b = 1 and 2, into equation (4.44) gives the radial wave amplitudes as 

w, 

Wn 

W», + 

I 

'"n^+k: 

n-+k-2 

k;!, !=' 'n2 
k::, 

W n 2 

n-+k-2 

n- +k; 

9 r ^ 

'n2 

...(4.45) 

In section 3.5, it was found that the wave amplitudes of flexural and near field waves of 

the infinite pipe are related by 

Wn2 = -
T r 2 ^ " +k^;, 
9 r ^ 

n- +k:, 
-Wr ...(4.46) 

'112 

Substitution of this relationship into equation (4.45) yields 

W,„ 

w L 

- 9 1 + - w,„ n '+k:2 

n-+k^, 
M l 2 

...(4.47) 

For the n = 1 mode of the semi-infinite pipe, the flexural and nea r field wavenumbers at 

low frequencies may be presented by those of the beam as -ky and jk^, respectively. 

Because k,, « 1 at low frequencies, the wave amplitudes of t h e flexural and near field 

wave of the n = 1 mode of the semi-infinite pipe can be approximated as 

Wii 

W 12 

= 2 ( l - j ) W , , -2k h 
l + 2ki : b 

...(4.48) 
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Substituting Wn obtained from equation (3.68 a) into the above equation yields 

wL _ (l + j) Fo l+2kg 

w,2 27i:hEky l-2kg 
...(4.49) 

At very low frequencies (O^ « 1), where ky « 1, these results of the semi-infinite pipe 

are the same as for a semi-infinite beam (Brennan [73]). The point mobility of the n = 1 

mode of the semi-infinite pipe is dominated by the flexural and near field waves as 

discussed in the previous section and is given by 

j)w 

KhEk; 
...(4.50) 

It was shown in section 3.5 that when « 1, where can be ignored in comparison 

with unity, the point mobility of the n = 1 mode of the infinite pipe can be presented as 

yiP _ ( l -J ) W 

47thEk"b 
...(4.51) 

Therefore, at very low frequencies, the relationship between the semi-infinite and 

infinite pipe in terms of point mobility for the n = 1 mode is given by 

...(4.52) 

In the far field, only the flexural wave propagates along the p ipe and hence the t ransfer 

mobility is given by 
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Y - ' . , , ( 4 . 6 3 ) 
Fo 2nhEkC 

Comparing this with the infinite pipe, the t ransfer mobiHty for the n = 1 mode of the 

semi-infinite pipe can be written as 

(s, 8) = 2 (I - j) (s. 8) .. .(4.54) 

The relationship between the semi-infinite and infinite pipe for the point and transfer 

mobility given in equation (4.52) and (4.54) is similar to that of the Euler-Bernoulli 

beam. 

Like the n = 1 mode, the point mobility of the n> 2, which is dominated by the flexural 

and near field waves, can be expressed as 

...(4.55) 
Fo 

Subst i tu t ing for W„i and Wni obtained from equation (4.47) and W„i obtained from 

equation (3.64) into equation (4.55) gives 

y/sP 03(k,,|+k,,2)(k„|k„2 n ) 

In the far field, the t ransfer mobility is given by 
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Fo knik-jk-^Ckn, -kn2) 
...(4.57) 

= 2 
k Ĥi ; 

4.6 Evaluation of the Simplified Low Frequency Mobilities of 

Semi-infinite Pipes 

111 this section, the simpliHed point and transfer mobility of the semi-infinite pipe at lo— 

frequencies, which have been described in the previous section, are examined ky 

comparing them with the predicted mobility calculated f rom the original expressions 

given in the section 4.3. Using the pipe data in table 2.1 (page 30) in the calculations, 

the point mobility for circumferential modes n = 0-3 are shown in figure 4.4. In order to 

reduce the effect of the evanescent wave in the far field, the transfer mobility is 

calculated at the non-dimensional distance s = 100 and is shown in figure 4.5. 

Like the infinite pipe, the simplification of the mobilities for the semi-infinite pip = 

depends on their being a negligible contribution from other waves. That is for the n = 0 

mode the simplified mobility is valid up to high frequencies because of the large 

difference in wavenumber between the s tanding near field waves and the longitudina. 

wave. At the excitation position, the s tanding near field waves dominate the response c: 

this mode. However, in the far field region, the pipe is dominated by the longitudina. 

propagating wave. For the n = 1 mode it is valid at low firequencies where the flexur&: 

and near field waves dominate over the s tanding near field waves, and for the higher 

modes it is also valid to high frequencies except at the cut-on frequencies for the n > 3 

modes. A summary of the approximate mobilities derived in the previous section is 

given in table 4.1. 

110 



Chapter 4: Mobility oj Senii-iiifinite Pipes 

n = 1 

"O 
> 

N o n - d i m e n s i o n a l F r e q u e n c y (O) N o n - d i m e n s i o n a l F r e q u e n c y (0> 

N o n - d i m e n s i o n a l F r e q u e n c y (O) N o n - d i m e n s i o n a l F r e q u e n c y (O) 

Figure 4.4: Point mobility of the n = 0 to n = 3 modes of a semi-infinite pipe; 

Analytical method, ... Simplification at low frequencies. 
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z 

0 (8 = 100) 1 (s = 100) 

- I G O 

-180 

m 

N o n - d i m e n s i o n a l F r e q u e n c y (O) N o n - d i m e n s i o n a l F r e q u e n c y (^2) 

n = 2 (s 100) 

a 
2 

1 0 " 

N o n - d i m e n s i o n a l F r e q u e n c y (O) 

I 

N o n - d i m e n s i o n a l F r e q u e n c y (O) 

Figure 4.5; Transfer mobility of the n = 0 to n = 3 modes of a semi-infinite pipe, which is 

calculated at the distance of s = 100; Analytical method, ... Simplification at low 

frequencies (note tha t the scale of the n = 0 mode is different from that of the other 

modes). 
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Table 4.1: Summary of the approximate mobility of a semi-infinite pipe. 

Mode Mobility 

Point Transfer 

(1 + j) vci) k I 

2%(|.-v-)Kkc 

( l - j )w 

nhEkb 
( l - J ) a + 2 k g ) w 

27rhEk ̂  

> 2 (kni +kn2)(kLkL a'co (n^+k^yz 

nD TtD k-]k-^k-4(k^,-k^,) 

Note that Wni is the radial amplitude of the flexural wave for the mode of the 

infinite pipe and is given in equation (3.64 a). 

4.7 Experimental Validation 

4.7 .1 I n t r o d u c t i o n 

In the previous sections, expressions for the mobility of semi-infinite pipes were derived 

using the Analytical and the Wave methods. Even though the numerical results 

obtained from both methods are consistent, it is worthwhile verifying them by 
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conducting some experiments. In this section, the experiments, which are set up to 

validate the theoretical model, are described. 

4.7.2 E x p e r i m e n t a l S e t u p 

<— 1 = 0 . 3 1 m—> 

S h a k e r 

IPiezo-

e l e m e n t 

A m p h H e r 

A c c e l e r o m e t e r 

V, y 

Anechoic 

T e r m i n a t i o n 

H P A n a l y z e r 

Q O O P ? 

Cond i t ion ing 

A m p l i f i e r 

Figure 4.6; Experimental setup for the semi-infinite pipe 

The properties of the pipe given in table D. l (appendix D) and the sensitivity of 341.7 

pC/N of the PZT force gauge were determined by the exper iment in the previous 

chapter, and they are used in this section. 

Since the pipe discussed in the previous section was assumed to be semi-infinite, which 

has no reflected waves from one end of the pipe, an anechoic terminat ion was used for 

this purpose. However, this does not perfectly absorb vibration so t ha t some reflection 

from the anechoic termination still remains which interferes wi th the incident waves. 

In the previous chapter, the experimental results of the wave decomposition (figures 

3.17-3.20) showed clearly that the reflected waves were small in comparison with the 

incident waves, and can be ignored. 
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The configuration for a semi-infinite pipe shown in figure 4.6 was similar to that of the 

infinite pipe (described in the section 3.7) except only a single anechoic termination was 

attached to one end and the shaker excited the pipe at the other end. The 5 m PVC pipe 

was suspended by cords and was attached by a wooden box containing sand as an 

anechoic terminations at the one free end in order to make the finite pipe being a semi-

infinite pipe. The pipe was excited at the free end by a shaker. A random signal from an 

HP 3566A Signal Analyzer was supplied to the shaker, and a set of thirty-two 

measurements around the pipe with equal angle was carried out at a distance of 310 

mm from the shaker by using two Bruel & IQaer accelerometers type 4374, which were 

located at a 180° circumfisrential angle to each other on the pipe.. This set of frequency 

responses was used to verify the theory. 

4 .7 .3 E x p e r i m e n t a l R e s u l t s 

In this section, the experimental results for the semi-infinite pipe are presented and 

compared with predictions obtained from the theoretical models described in section 4.3 

(Wave method). Comparisons between practice and theory a re carried out with regard 

to two aspects, which are for each mode and for the total response for various angles of 

measurements. 

Accelerometers used in the experiments detect the responses of all pipe modes. Thus to 

make a comparison for a particular mode between experimental resul ts and predictions, 

the modal decomposition technique, described in appendix A, and used in the previous 

chapter, has to be applied to extract the modes from the total response. Before 

comparisons can be made, the orientation angle of the pipe h a s also to be determined, 

and the way in which this is obtained is also described in appendix A. For convenience, 

the formulae of the radial amplitude, Am, and the .orientation angle, $, required to 

extract them from the experimental results, are repeated here 
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N 

N-l 

PH = N 

N - l 

Z H,. sinC 
Pu = 

2 ^ 
N 

in) 

(|) — — icin 
m 

Z Hp^ sin ( 
. Znpe 

rw= N 
m) 

N - l 

Z cos( 
|,u=0 N 

m) 

where m is the desired mode to be decomposed, 

Pe is the position of the measurement and 

N is the number of measurements around the pipe. 

is the frequency response at the position pe. 

It was shown in the previous sections that the radial velocity of the pipe increases with 

increasing frequency. This implies that the sensor used in t h e experiment should be 

massless; otherwise it is difficult to move at high frequencies result ing lower motion 

detected by the sensor. Unfortunately, the smallest accelerometer available for the 

experiment has a mass of 0.65 gram. Apart from the mass of t h e sensor, another factor, 

which affects the experimental results, is the tip mass of the PZT element used as a 

force gauge. It has the effect of reducing the excitation force. To reduce this effect, it 

was designed to have a very small mass of 0.08 gram. Both effects are described in 

appendix C. 

The experimental resul ts presented are as follows. 

Frequency responses of each mode of the semi-infinite pipe measured at a distance of 

310 mm from the excitation position. 

Figure 4.7 Amplitude of mobility of the n = 1 mode of t h e semi-infinite pipe 

Figure 4.8 Amplitude of mobility of the n = 2 mode of the semi-infinite pipe 
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Figure 4.9 Amplitude of mobility of the n = 3 mode of t h e semi-infinite pipe 

Orientation angle, (}), of the semi-infinite pipe with respect to t h e force position. 

Figure 4.10 Orientation angle extracted from frequency response of the n = 2 

mode of the semi-infinite pipe 

Frequency responses of the semi-infinite pipe for various angles, 8, of measurements 

taken at distance 310 mm from the excitation position. 

Figure 4.11 Amplitude of mobility of the semi-infinite pipe at 6 = 0 

Figure 4.12 Amplitude of mobility of the semi-infinite pipe at 8 = 71/2 

Figure 4.13 Amplitude of mobility of the semi-infinite pipe at 6 = 71 

Figure 4.14 Amplitude of mobility of the semi-infinite pipe at 8 = 371/2 
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Frequency (Hz) 

Figure 4.7; Amplitude of mobility of the n = 1 mode of the semi-infinite pipe: 

Measured result; Prediction; ... Prediction with mass effect accounted for. 

W-30 

F r e q u e n c y (Hz) 

Figure 4.8: Amplitude of mobility of the n = 2 mode of the semi-infinite pipe: 

Measured result; Prediction; ... Prediction with mass effect accounted for. 
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Frequency (Hz) 

Figure 4.9; Amplitude of mobility of the n = 3 mode of t h e semi-infinite pipe: 

Measured result; Prediction; ... Prediction with mass effect accounted for.Figure 

4 0 

3 0 

d) 
% 20 
Cn 
(D 

(U 

- 1 0 

c 
9! -20 
w o 

- 3 0 

- 4 0 

- 5 0 

n = 2 
(430 Hz) 

1 0 ' 10" 

Frequency (Hz) 

Figure 4.10: Orientation angle extracted from frequency response of the n = 2 mode of 

the semi-infinite pipe. 
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Angle = 0 Degree 
- 2 0 

Frequency (Hz) 

Figure 4.11: Amplitude of mobility of the pipe at 6 = 0 and $= -11: 

Prediction; ... Prediction with mass effect accounted for. 

Measured result; 

Angle = 9 0 Degree 

5-30 

Frequency (Hz) 

Figure 4.12: Amplitude of mobility of the pipe at 6 = 90 and 

Prediction; ... Prediction with mass effect accounted for. 

)= -11: Measured result; 
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Angle 18 0 Degree 

Frequency (Hz, 

Figure 4.13: Amplitude of mobility of the pipe at 9 = 180 and (j)= -11: Measured 

result; Prediction; ... Prediction with mass effect accounted for. 

Angle 270 Degree 

§ 

3 

Frequency (Hz) 

Figure 4.14; Amplitude of mobility of the pipe at 9 = 270 and (()= -11: 

result: Prediction; ... Prediction with mass effect accounted for. 

Measured 

1 2 1 
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4.7.4 D i s c u s s i o n 

Using a similar experimental setup as the infinite pipe, the anechoic termination 

should be as effective except at the higher modes. Such effects caused the experimental 

results to depart from the predictions at high frequencies as shown in figure 4.7-4.9 and 

4.11-4.14. Unlike the infinite pipe, the semi-infinite pipe is more subject to the mass 

loading from the mass of the accelerometers and the reduction of the excitation force 

due to the tip mass of the PZT element used as the force gauge. Even though the masses 

are small, a large effect is still observed, especially at high frequencies whereas this 

effect is insignificant with the infinite pipe with similar masses. This is because the 

motion of a semi-infinite pipe are much larger than the infinite pipe. As discussed in the 

previous section the orientation angle of the pipe with respect to the force is constant, so 

it can be determined from any mode. This angle (|), which was extracted from the n = 2 

mode, is shown in figure 4.10. 

4.8 Conclusions 

Expressions for the mobility of a semi-infinite pipe have been derived using analytical 

and wave methods. Unlike the infinite pipe, for the semi-infinite pipe with a free end, 

there are no theoretical comparisons for wave amplitudes due to the complexity of the 

pipe. However, the numerical simulations show that both methods give the same result. 

In addition, the mobilities at low frequencies, QP- « 1 are simplified. Good agreement 

with the original expressions is achieved. By numerical evaluation, it clearly shows that 

the simplified mobility for the n = 0 mode is valid up to high frequencies. Excluding the 

n = 1 mode, the simplification of the higher modes are also valid up to high frequencies 

except at the cut-on frequencies. 
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Experimental validation for the theoretical models of semi-inAnite pipes has been 

achieved. Even though an accelerometer with a small mass v/as selected, the effect of its 

mass was still apparent, especially at high frequencies. This is because the pipe is 

highly mobile at high frequencies but it is difRcult for the accelerometer to move. To 

compare the theoretical predictions and the experimental results the mass loading of 

the accelerometers and the force gauge had to be accounted for. 
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CHAPTER 5 

MODAL SENSORS 

5.1 Introduction 

Both the mass effect and the number of point measurements required for modal 

decomposition are disadvantages in using an accelerometer to sense the radial motion 

of a pipe. It was expected that a shaped polyvinylidene fluoride (PVDF) sensor would 

overcome some of these problems. Since PVDF is lightweight, it will not change the 

mechanical property of the pipe. Because it has a distributed surface for sensing the 

motion of the pipe and can be cut into the shapes of sine and cosine functions, it can 

measure the response of a particular circumferential mode without any processing of 

the measurements. 

In this chapter, a theoretical model for a modal sensor for a circumferential mode of a 

pipe, especially the n = 2 mode, is developed. Some experiments are carried out to verify 

this theory. In addition, the performance of the modal sensor is compared with that of 

an accelerometer in sensing the n = 2 mode of the pipe. 

124 



Chapter 5: Modu! Sensor.s 

5.2 Modal Sensor for Pipes 

PVDF 

Figure 5.1: Schematic of composite section of a pipe 

A schematic of a composite section of a pipe, which consists of an inner pipe layer and 

an outer sensor layer, is shown in figure 5.1. Generally, the mid-surface (neutral axis) of 

the composite pipe section is different to the mid-surface of the pipe section due to 

addition of the sensor layer but since the distributed PVDF sensor is very thin, it is 

assumed that the mid-surface of the pipe is unchanged. The assumption that the sensor 

is completely bonded on the pipe is also made so that the strain is continuously 

distributed through the composite pipe. It is well known t h a t PVDF uses the direct 

piezoelectric effect, which converts mechanical strain to an electrical charge (Lee [29]). 

Without a skew angle, which is the angle between axes of the sensor and of the pipe, 

this phenomenon may be represented (Lee [29] and Lee and Moon [30]) as 

Da = E33E3 + baiee + bszes 

where 

D3 is the electric displacement (C/m^), 

Bs and eg are the axial and circumferential strains, respectively, 

E33 is the permittivity at constant stress (F/m), 

...(5.1) 
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Es is the electric field (V/m), 

bsi and bsz are the piezoelectric stress constants (C/m^). 

The relationship between the piezoelectric stress and strain constants is given by (Lee 

[29]) 

_̂ 32_ 

Epv/a-v^v) VpyEpv /(1-Vpy) 

^pv^pv /(I ' E p v A l - v ^ ) 
3̂1 

3̂2 
...(5.2) 

where Epv is Young's modulus of PVDF (N/m^), 

Vpv is Poisson's ratio of PVDF (no unit), 

dsi and d32 are the piezoelectric strain constants (C/N). 

Following Flugge's shell theory (Liessa [2], Flugge [5]), the axial (es) and circumferential 

(ee) strains at an arbitrary distance z from the mid-surface of a pipe may be expressed 

in terms of the pipe strain combination between stretching (extensional deformation) 

and bending (in-extensional deformation) strains as 

Gg = Eg +zKa and 

1 

1 + z/a 
+ ZKe) ...(5.3 a, b) 

du 
where e. = is the stretching strain of the mid-surface of the pipe in the axial 

a3s 

direction, 

Z K . 

\-w 
,98 , 

is the bending strain in the axial direction, 

is the stretching strain of the mid-surface of the pipe in the 

circumferential direction, and 
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r^2 

ZKr 
3 w dv 

is the bending strain in the circumferential direction, 

Ks is the circumferential change of curvature of the mid-surface of the pipe, and 

Ke is the axial change of curvature of the mid-surface of the pipe. 
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Figure 5.2: Forms of mode deformation of a pipe. 

It is well known that the extensional deformation dominates the motion of the pipe for 

the n = 0 mode, while the deformation of n = 1 or higher modes is in-extensional as 

shown in figure 5.2 (Flugge [5] and Timoshenko [3]). Since the main aim of this work is 

to develop a modal sensor for the n = 2 mode of the pipe, in which the stretching strains 

(Es and Ee) equal to zero, only the bending strains (zK̂  and zKg) represent the motion of 

the pipe. One of the conditions for in-extensional deformation (Timoshenko [3]) is 

dv 

38 
then ZKn = • 

38̂  
- + H' . For simplification, the term z/a may also be neglected 

in comparison with unity so that equation (5.3) becomes 

e. = -
z 

a ' 

z r a ' x . 

7 3 8 ' 

and 

+ \v for n > 1 .. .(5.4 a, b) 

With the strains discussed above for the n > 1 modes, the electric displacement given in 

equation (5.1) becomes 
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D3 - E33E3 
, z 1 bo, 

. , . (6 .6) 
y 

In order to measure the charge generated from the PVDF sensor, a closed-circuit 

arrangement (Lee [29] and Callahan and Baruh [44]), in which the surface electrodes of 

both sides of the sensor are short-circuited, is employed so that the electric field Es is 

zero. By such an arrangement, the generated charge, g(t), is approximately the average 

of the electric displacement integrated over the area of both sides of the effective surface 

electrodes. So 

II. D:n"dsd8 + D^a dsdG . . . (5 .6) 
(̂%=7.„ + ĥ ./2) ' JJAp(z=z„-lY''2) 

where Ap is the effective surface area of the PVDF, 

hpv is the thickness of the PVDF, and 

Zo = (h + hpv)/2 is the distance from the mid-plane of the pipe to that of the 

PVDF. 

By substituting the electric displacement from equation (5.5), equation (5.6) becomes 

v(t) = -Zob3jj^ 
38^ bsi 

isdG . . . (5 .7 ) 

The radial shell displacement for an infinite pipe has already been discussed in chapter 

2 (equation 2.2) and is given here for clarity. By writing the term cos[n(6 - $)] in 

equation (2.2) in terms of sine and cosine functions, the radial displacement with 

superscript i for denoting the infinite pipe can be rewritten as 

4 ==i 
ti''(s,8,t)= %^Wnb[ î cos(n8) + l2 sin(n8)]ê '̂̂ "''° 

n=lb=l 
. . . (5 .8 ) 

128 



Chapter 5: Modal Sensors 

where = cos(n(|)), 

X2 = sin(n(|)) and 

(|) is the orientation angle. 

It can be seen from equation (5.8) that the radial displacement consists of sine and 

cosine components. It should also be noted that the displacement of the n = 0 mode is 

not included in the above expression since the extensional deformation is not taken into 

account in this work. Actually, for an (7%-uacz/o pipe the motion of the n = 0 mode is veiy 

small compared with that of the n > 1 modes as presented in figures 3.6 and 3.7 so that 

it can be neglected. 

Substituting equation (5.8) into equation (5.7) gives 

[ îCos(n8)4-X2sin(n8)]e^^^"''°'̂ ^ysd8 ...(5.9) 
= l b = l 

1 . ( 9 ^ '̂ 9 9 

where n + - — 

Since the total charge generated, g'(t), is the sum of the response over the surface of the 

PVDF sensor, it may be expressed as (Gu g( aZ [42]) 

V(t) - Z cos(n8) + 9L2 sin(n8)]e^"'"'''-''''dsd8 ... (5.10) 
n = l b = l ' " 

where Sc is the non-dimensional axial location of centre of the sensor to the radius of the 

pipe, 

bs is the ratio of a half of width of the sensor to the radius of the pipe, 

Sp(8) is the shape of the sensor. 

By omitting the terms of for simplification, evaluating the integral gives 
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^ 4 Op-' ̂ nÛc 1 2_ 1 
Q = [XiCos(n8) + %2sin(n8)]sm^nbbB8p(8)jde ...(5.11) 

11=1 b=l k „ b 

In equation (5.11), Q is the generated charge in the frequency domain. If the sensor is 

shaped in the form of Sp(8) = cos (pv8) , where pv is the desired mode number, equation 

(5.11) becomes 

Q"" = cos(n8) + ?L2 sin(n8)]sin^nbbs cos(py8)}d8 ... (5.12) 
n=lb=l 

where Q": is the charge generated by a cosine modal sensor. 

The term of sin [k̂ b̂g cos(py8)] can be expressed in terms of Bessel functions as follows 

(Arfken [70]) 

sm^nbbsCos(py8)j=2 %(-l)'^''^J2^ _i(k^kbs)cos|(2m^ -DPvG] 
111,. =1 

Substituting it into equation (5.12), and using the property of orthogonality gives 

Q' = Z i ( - l ) " ' - ' J 2 m , . i ( k n b b J 6 m n , (5-13) 
n = l b = l 

where mp = (2mv - l)pv. 

5„„, = 1 ; for n = mp and 
"i. 

= 0 ; for n mp. 

Equation (5.13) is a general expression for the total charge generated by the modal 

sensor for any modes with the form of the cosine function. It is clear that the sensor 

detects a series of mode displacements. In a specific case, in which p = 2, then the modal 

sensor will detect the displacements of modes of n = 2, 6, 10 and so on, which 
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correspond to the Bessel function of order 1, 3, 5 and so on, respectively. The result of 

which the modal sensor is sensitive to the higher modes is because of the non-constant 

axial and circumferential strains, over the width of the sensor. 

Below the ring frequency, only the responses of the n = 2 and n = 6 modes are sensed by 

the n = 2 cosine modal sensor, which produces the total charge as given by 

b=l k2b b=l kgy 
...(5.14) 

Because the responses of the n = 2 and n = 6 modes depend upon bs, the ratio of a half of 

width of the sensor to the radius of the pipe, it is of interest to evaluate the cross 

sensit ivity, which is the ratio between the response of the n = 6 and the n = 2 mode, for 

various bs. Using the pipe data and the PVDF properties given from appendix D, 

numerical assessments of the cross sensitivity in near and far fields are shown in figure 

5.4. As expected, the cross sensitivity in the near field shown in figure 5.4 largely 

reduces at Q = 0.05 where the waves of the n = 2 mode cut on. This does not occur in the 

far field because there is no motion of the n = 6 mode before it cuts on. Figure 5.4.b 

clearly shows that the cross sensitivity increases with increasing bs. Using a criteria of 

-20 dB cross sensitivity, it is illustrated in figure 5.3.c and 5.3.d that, with a value of bs 

up to 0.4 in the near field of the vibration source and to 0.2 at the far field, the 

responses of the n = 6 modes are insignificant up to Q. = 0.66. So, equation (5.14) can be 

reduced to the first term, which is the response of the n - 2 mode. Therefore, the 

expression of the generated charge becomes 

Q''=47t^i^-T^A2bW2bJi(k2bbg)e-'^"'^' forn = 2 a n d b s < 0 . 2 ...(5.15) 
b=lk2b 

The Bessel function can be expanded as (Arfken [70]) 
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JI )' 

where ! is the factorial. 
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Figure 5.3: Cross sensitivities between the responses of the n = 6 and the n = 2 mode for 

various bs. 

If the product of kg^b^ is less than unity, then higher orders can be ignored. Having the 

maximum wavenumber kgy of the flexural propagating wave of the n = 2 mode at the 

ring frequency shown in figure 5.4 equal to approximately 6, bs should be less than 0.16 

to satisfy the above requirement that the cross sensitivity is less than -20 dB. Hence, 

the generated charge becomes 
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b=l 

:27;:A.ibgZob3i]̂ (n^ -1) W2bê ''̂ ''̂ ' ; for n = 2 and be < 0.16 ...(5.16) 
b=i bq -"31 

Since the maximum value of ba above is less than that obtained from the numerical 

assessment shown in figure 5.3, it can be used as the criteria for determination of the 

ratio of a half of width of the sensor to the radius of the pipe and is 

b; < l/k2b at the ring frequency. 

n = 2 

(1) (0 Z) 0) 
E og 

Z H 

0.2 0.3 0.4 0.5 0.6 0.7 O.c 0. 

Non-dimensional Frequency (O) 

Figure 5.4: Dispersion curve of n = 2 mode calculated from equation (2.8) by using the 

pipe data given from Table 2.1. 

Since bs = bw /2a, where bw is the width of the modal sensor, and the non-dimensional 

wavenumber of the n = 2 mode at the ring frequency kgy = 2Tca/A,2r , where A,2r ,is the 

wavelength of the n = 2 wave at the ring frequency, the criterion for determination of 

the width of the sensor is thus given by 

bw < - "7̂ 2,-
7[ 3 
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Since only the flexural wave can potentially propagate, it means that, if the width of the 

modal sensor is less than one third of the wavelength of the flexural wave at the ring 

frequency, it dominantly senses the response of the n = 2 mode. 

For the modal sensor having the shape of a sine function, the same procedure to obtain 

the expression of the generated charge for the cosine function shape is applied. Since 

sin(knbbg sin (p^ 8)) 2 ^ J ( k ^ y b J sin [(2m,, - Dp^o] 
m „ = l 

the charge generated by a sensor shaped as a sine function is 

-1) ; fbr n = 2 and bs < 0.16 
b=l b q 

...(5.17) 
-'SI 

The total generated charge, Qf, for a mode with arbitrary orientation can be obtained by 

a combination of both sine and cosine function shapes of the modal sensors in terms of 

the square root of the sum of the squares and it is 

- 27ibgZ(,b3J 2 (n^ + kgy -1) Wgye 
b=l 

forn = 2andbs<0 .16 ...(5.18) 

The orientation angle can be determined as 

I = — tan 
2 y 

I ^1 = — tan 
9 

...(5.19). 
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5.3 Experimental Work 

5.3.1 I n t r o d u c t i o n 

In this section, the experiments that were carried out to validate the modal sensor 

equation for the infinite pipe are described. The results are also compared with those 

obtained when using an accelerometer to evaluate the performance of the sensor for 

active vibration control purposes. 

5.3.2 E x p e r i m e n t a l S e t u p a n d P r o c e d u r e 

Modal sensors for the n = 2 mode were fabricated by cutting 52 pm thick PVDF in the 

shape of a sine function with the width of 6 mm or bs = 0.09 approximately (both sine 

and cosine function modal sensors are the same but there are placed at a 45° 

circumferential angle to each other on the pipe). This was done by generating the 

required shape of the PVDF on the computer and transferring it to the sensor material 

before cutting it out with the scissors to give four patches, whose poling is arranged as 

shown in Agure 5.5 and figure D.i (appendix D). The sections of the sensors were 

electrically connected with copper tape. Since the PVDF sheet manufactured from 

Measurement Specialties, Inc, has piezoelectric strain constants, dsi = d32 = 23*10-̂ ^ 

m/V, with Epv = 2*10® N/m^ and Vpv = 1/3, then the piezoelectric stress constants are bsi 

= b32 = 69*10-3 c/ni2. The schematic of the experimental setup is shown in figure 5.6. 

The 4.6 m plastic pipe, whose properties are given in Table D.I (appendix D), was 

suspended by cords, and attached to wooden boxes being anechoic terminations at the 

both free ends in order to make the finite pipe behave as an infinite pipe. Both modal 

sensors shaped in sine and cosine functions were placed close together, 1200 mm and 

1210 mm respectively from the excitation point. Driven by a random signal supplied by 

an HP 3566A Signal Analyzer, a shaker excited the pipe at the mid-point between the 

anechoic terminations. The arrangement of the modal sensors of n = 2 mode was such 

that individual elements were expected to detect the in-phase response of the n = 2 
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mode and out-of-phase response of other modes. Because the modal sensors were 

expected to detect only the motion of the n = 2 mode after they were electrically 

connected together, an experiment was conducted to verify th is and the results were 

used to compare with those obtained from accelerometer measurements at the same 

position. 

(bi2) 

(bli) Patch 1 P a t c h 2 P a t c h 3 P a t c h 4 

Figure 5.5: Arrangement of modal sensor. 
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Figure 5.6: Experimental setup for evaluation of the modal sensor. 

5.3.3 E x p e r i m e n t a l R e s u l t s 

In this section, experimental results are presented and compared with predictions in 

the form of the transfer function (Coulomb/ Newton) calculated using the theory 

described in the previous section. The results obtained from the modal sensors are also 
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compared with those obtained from the array of accelerometers described in the 

previous chapter. 

The transfer functions of the n = 2 modal sensors are obtained by dividing equation 

(5.16) for the cosine modal sensor, and equation (5.17) for the sine modal sensor by the 

force amplitude, Fo, and are given as 

r;" = ^ = 2nA.,b;Z^b3, Y(n- , ...(5.20 a, b) 
F( ) b = i b ; , , p Q 

r j = , respectively. 
Fo h=i b;,, Fo 

= i i £ -1 F 
where Wob = ' ^ is the amphtude of the n = 2 mode (equation 3.30) 

2npha"w" 

...(5.20 c) 

Hence, the total transfer function is 

T; = - .. (5-21) 

In order to compare the response of the modal sensors to t h a t of the n = 2 mode 

decomposed by an array of accelerometers, the generated charge has to be converted 

into a mobility. 

At s = Sc, which is assumed as the position in a far field region where the pipe has only a 

flexural wave propagating, the transfer function of the cosine modal actuator given in 

equation (5.20 a) becomes 
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r ; = z ^ = 2 7 : : i , b , z , b i , ( n - 4 . ^ k ^ , . . . ( 5 .22 ) 
pQ Fo 

Equation (5.22) can be rearranged to give the amphtude of the n = 2 propagating wave, 

W21 

w L = ...(5.23) 
27[;iib,z^b3i(n^ 

Dc -'SI 

To transform the response sensed by the modal sensor to the mobility of the pipe, the 

expression for the mobility of the n = 2 mode for the cosine function, which is obtained 

from the decomposition method (described in appendix A), is repeated here for 

convenience. 

(Y^), =)LiA2 . . . ( 5 . 2 4 ) 

where Ag = % YResgyeJ'''''" 
27:pha-(0^ b=i 

With the modal amplitude, W2b, given in equation (5.20 c), the cosine function mobility 

can be rewritten as 

(y^) . . . . ( 5 . 2 5 ) 
^ 0 b=l 

At the position of s = Sc, which is in a far field, equation (5.25) becomes 

( Y ^ ) , . . . ( 5 . 2 6 ) 
-Tn 

Substituting for W21 from equation (5.23) into equation (5.26) gives 
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27rbgZ,b3i(n + 2 , 3̂2 ^2 
.(5.27) 

2 b 
•1) 

-"31 

Similar to the sine function modal sensor for the n = 2 mode, the mobility of the pipe 

detected by this sensor is given by 

2n:bgZgb3i(n^ +-^ 
...(5.28) 

31 

Hence, the total mobility of the pipe sensed by the modal sensor is given by 

...(5.29) 
32 I'Z 2T[bgZgb3i(n + - ^ k 

be 2 b 
-1) 

31 

The experimental results presented are as follows. 

Figure 5.7 

Figure 5.8 

Figure 5.9 

Figure 5.10 

Figure 5.11 

Total amplitude of modal sensor obtaining from the root sum square of 

the modals sensor shaped in sine and cosine function. 

Orientation angle of pipe determined from modal sensor. 

Comparison between the frequency response of the cosine function of 

the modal sensor and of the accelerometer a r ray for n= 2 mode. 

Comparison between the frequency response of the sine function of the 

modal sensor and of the accelerometer array for n= 2 mode. 

Comparison between total response of the modal sensor and of the 

accelerometer array for 11= 2 mode. 
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Total Response of the n = 2 mode 
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Figure 5.7: Amplitude of the total transfer function of the modal sensors obtained from 

the combination of the sine and cosine function shapes; Measured result; 

Equation (5.18) 
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Figure 5.8: Orientation angle of the pipe with respect to the force position. 
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Figure 5.9: Comparison between the frequency response of the cosine function in terms 

of mobility for the n = 2 mode; Modal sensor output from equation (5.27) ; ...Output 

of array of accelerometers; Predicted mobility (equation 3.13) . 
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Figure 5.10: Comparison between the frequency response of t h e sine function in terms 

of mobility for the n = 2 mode; Modal sensor output from equation (5.28) ; ... Output 

of array of accelerometers; Predicted mobility (equation 3.13) . 
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Total Response of the n = 2 mode 
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Figure 5.11; Comparison between the total response in terms of mobility for the n= 2 

mode; Modal sensor output from equation (5.29); ...Output of array of 

accelerometers; Predicted mobility (equation 3.13) . 

5.3.4 D i s c u s s i o n 

Before the flexural wave of the n = 2 mode cuts on, all waves are evanescent. So the 

response of the pipe is very small resulting in a negligible generated charge from the 

modal sensor. However, due to the limit of the analyzer and instrumentation, there is a 

noise floor and this is evident in the experimental results presented. At high 

frequencies where the pipe motion is small, the noise floor also exists. Away from these 

frequencies, the total response of the n = 2;modal sensor, which was shown in figure 5.7, 

agrees reasonably well with the theory. Some small departure from the theory model 

occurs at the cut-on frequencies of other modes. This disagreement may be due to 

inaccuracy in the shapes of the modal sensors. 
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Before the waves cut on, the pipe has very small displacements, so the orientation angle 

of the pipe was determined after the wave cut on (430 Hz). 

Good performance of the modal sensor was shown in figures 5.8-5.11 in which the 

response of the modal sensor and that of the accelerometer array are compared. It 

illustrates that the modal sensor has a better performance than the accelerometer due 

to a negligible mass effect even at high frequencies. Moreover, the inaccurate shape of 

the modal sensor has less of an effect than the inaccurate positioning of the array of 

accelerometers. 

5.4 Conclusions 

The work presented in this chapter has been an evaluation of the modal sensor for the 

n = 2 mode of the pipe. Based on Flugge's shell theory, the relationship between the 

charge generated from a PVDF sensor and the combination of the axial and 

circumferential bending strains has been established for the case of in-extensional 

deformation. By using the Bessel function to describe the pipe strains induced on the 

surface of a modal sensor, it is found that the modal sensor is sensitive to higher order 

modes as well as the n = 2 mode. This is because the circumferential strain is coupled 

with the axial strain via the Poisson's ratio of the pipe. If the s t ra in over the width of 

the modal sensor is not constant, the higher order modes contribute to the output of the 

sensor. The cross-sensitivity is dependent upon the ratio of one half of the modal sensor 

width to the radius of the pipe (bs). However, if bs is small enough to keep the strain 

constant over its surface, the modal sensor will only be sensitive to the n = 2 mode. This 

means that the performance of the modal sensor in detecting only the n = 2 mode 

increases with the decrease of its sensitivity because of its surface area reduced. It is 

found that to keep the strain of n = 2 mode constant over the frequency range of 

interest, the width of the modal sensor has to be less than one third of the wavelength 

of the flexural wave at the ring frequency and hence it only senses the response of the n 

= 2 mode. 
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The analytical model for a modal sensor has been successfully validated by 

experimental results. It was also compared with an accelerometer array in terms of the 

mobility of the pipe. Clearly, the modal sensor provides a better performance than an 

accelerometer array since it does not change the mechanical properties of the structure 

as an accelerometer does. As described in the previous chapter, the motion of the pipe 

can be dramatically changed, especially at high frequencies, even if the mass of the 

accelerometer is small. Because the modal sensor is constructed from PVDF, it has very 

little mass and it does not affect the motion of the pipe. In addition, to measure the 

response of a particular mode by means of modal decomposition, an array of 

accelerometers has to be used and the outputs from these accelerometers has to be 

processed. Therefore in an active control system, a modal sensor, which only has two 

leads, is much more suitable than an accelerometer as a sensor for a particular mode. 
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i r c r R i r f i r r N n r i T E p i p i s e ; 

6.1 Introduction 

In this chapter, the derivation of a model that couples a PZT modal actuator into the 

dynamic behaviour of an infinitely long pipe is described. However, some important 

expressions, which are the basis for the analysis, have to be determined first. They are 

for a static model of a composite PZT-pipe structure and for the transfer function of a 

pipe excited by a single PZT element. 

Unlike a plate, strain over the thickness of a pipe is not linear. Nevertheless, for a thin 

pipe, in which the ratio of the thickness to the radius of the pipe is less than 0.1 (Leissa 

[2]), it can be assumed to be linear. With this assumption, the static model of a 

composite pipe can be treated like that of a composite plate. This is described in the 

nextsecdon 

Based on the Flugge's shell theory [5], the motion of an infinite pipe excited by a single 

PZT element is derived and described in section 6.3. The derivation is conducted using 

the Residue method and the dynamic model of a composite pipe. Once the pipe motion is 

obtained, its transfer function can be determined in a straightforward manner. 

Using the transfer function of a single PZT actuator and the radial vibration of the pipe, 

a modal actuator for the n = 2 mode can be analysed and is discussed in section 6.4. The 
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modal actuator is constructed from, a set of PZT elements. By arranging them in the 

form of the n = 2 mode, the modal actuator can generate only the response of that mode. 

Experiment work is carried out to validate the assumptions made and expressions for 

the transfer function of a single PZT actuator and of the modal actuator derived in this 

chapter. 

6.2 Static Model of Composite Pipes 

(a) 

'am 

Circumferent ia 
Stra in 

Figure 6.1: Strain model of a composite pipe: a) Schematic section of a pipe with axial 

and circumferential strain, b) Calculated ratio of circumferential strain, e@, to the 

product of circumferential curvature. Kg, and pipe thickness, h, at h/a = 0.1, ; using 

exact strain model (equation 6.3.a), using linear strain model (equation 6.3.b). 

In this section, a composite section of a pipe as shown in figure 6.1.a, where a PZT 

actuator is bonded on the outer surface of the pipe, is examined. Due to the inverse 

piezoelectric effect (Morgan Matroc [27]), the PZT element is extended/contracted in 

proportion to the applied voltage. If the element is not bonded to the structure, the 

extension/contraction of the PZT is called the free strain, A = where V is the 
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applied voltage, dsi is the piezoelectric strain constant and hz is the thickness of the 

PZT element. Coupled to the structure, the PZT induces stress/strain resulting in an 

effective moment and an effective in-plane force in the pipe. 

Stresses in the pipe in the axial and circumferential direction at any position z from the 

mid-surface of the pipe, are given by (Leissa [2]) 

— ? [sg + V Gg ] 
1 - V " 

e. +v e, ,] . . .(6.1a, b) 

where = Eg + is the axial strain at radial position z, ...(6.2 a, b) 

= (Eg +zKe) is the circumferential strain at radial position z. 
i + z/a 

In the case of a thin pipe, its radius is much larger than its thickness and hence the 

thickness-radius ratio of the pipe, li/a, is very small. If this ratio can be ignored in 

comparison with unity, the strain of the pipe given in equation (6.2) can be treated as 

those of a plate, which are linear. So, it is worthwhile investigating the circumferential 

strain, e@, comparing with a linear strain. The circumferential s train given in equation 

(6.2) is a combination of an extensional strain. Eg /(1 + z/a) and in-extensional strain, 

zKg /(l4-z/a) (Timoshenko [3] and Flugge [5]). For the n = 1 mode the pipe behaves like 

a rigid body (the cross-section remains undeformed), and for the n > 2 modes it changes 

shape. This means there is no extensional strain in the pipe for the n > 1 modes. 

Dividing equation (6.2.b) by (htcg /2) gives 

2eg 2z/h 
hKg 

n > 1 modes. ' ...(6.3 a) 

h a 
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The non-dimensional parameter (2eg/hK:0) in equation (6.3.a) is the ratio of the 

circumferential strain of the pipe at position z (eg) to the outer circumferential strain 

(hKg / 2) when it is modelled as a flat plate (z/a = 0). The reason for using this parameter 

is to compare with that of a plate, (2ept /hXp^), which is given by (Dimitriadis oZ [38]) 

— ^ = : 2 z / h ; n > l modes. ...(6.3 b) 
hKpt 

where h is the thickness of the pipe, 

e „ is the strain in the plate and 

K , is the change of curvature of the plate. 

Since there is no significant difference between the exact and the linear strain as shown 

in figure 6.1.b, some authors such as Love (Leissa [2]) and Timoshenko [3], ignore the 

term z/a in comparison with unity. Hence, the strains induced in the pipe can be 

modelled as that induced in a plate and become 

Co =&. +zKo ...(6.4 a, b) 

With the assumption of linear strain distribution across the thickness of the composite 

structure, pipe and PZT element, Dimitriadis et al [38] have shown that when the PZT 

element is activated, the .change of curvature and the s trains in both circumferential 

and axial directions over the entire pipe within a PZT element bonded are equal and are 

given by 

Bg = Gg = e ...(6.5 a, b) 
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Substituting equation (6.5) into equation (6.4) gives 

Equation (6.6) shows that the axial and the circumferential strains of the mid-surface of 

the pipe are equal. This is because the strains in the PZT element are similar in the 

axial and circumferetial directions when the voltage is applied resulting in the same 

extension in both directions. 

Substituting for e, , Cg, iCg, Kg from equation (6.5) and e,, from equation l6.6) into 

equation (6.1) gives the normal stresses in a pipe, which are equal in both axial and 

circumferential directions, and are given by 

E 
(e+zx;) ...(6.7 a) 

Due to the assumption of linear strain, the strain in a PZT element is given by (Kim 

and Jones [39]) 

^ ^ ( e + zK-A) ...(6.7 b) 
1-Vz 

where Ez is the Young's modulus of the PZT element, 

Vz is the poisson's ratio of the PZT element, 

For simplification, the assumption of no change to the mid-surface of the pipe (called 

the neutral axis for a beam and a plate) due to the at tachment of a single PZT element 

is established (i.e. the neutral axis remains the same). Also perfect bonding and 

constant strain slope as shown in Agure 6.2.a are assumed. 
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Unlike a pair of PZT elements Bonded on both sides of the structure, a single PZT 

element gives a non-zero normal stress in the pipe as illustrated in Figure 6.2.b. With 

this result, the single PZT element induces both a moment and a normal force 

(perpendicular to the cross-section of the pipe). In order to determine them, the terms of 

e and K should first be found and can be obtained from the force and moment 

equilibiium about the mid surface of the pipe as given by 

h/2 l i / 2 + l i , 

- I 1 / 2 h / 2 

h / 2 + l , . 

ja''zdz+ jG^zdz = 0 
- h / 2 h / 2 

...(6.8 a, b) 

\ 
(a) Strain Distribution Surface Stress Distr ibut ion 

Figure 6.2: Distribution of Stress and Strain over the composite pipe (generally the 

term "Mid-surface" is used for a pipe, and the term "Neutral axis" is used for a beam 

and a plate). 

Substituting equation (6.7) into equation (6.8) and evaluating the integrals gives 

(l + aT|j)e + —aT | i ( l + a)hK = axjiA 

aTp(l + a)E + ̂ [ l + aTp(3 + 6a + 4a-)]hK = aT î(l + a)A 

1 1/1 1 — v~E, 1 — V where a = IWn, y = — - , |i 
1 - v ; E 1-v, 

...(6.9 a, b) 

and Y: 
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Equation (6.9) can be rewritten in matrix form as 

(l + aT:|i) y ocT̂ i(l + a)h e i y ocT̂ i(l + a)h 

= aiK 
ainCl + a) -j- [ 1 + + 6a+4a- )]h K _(t + a) 

. . . ( € . 1 0 ) 

Inverting the matrix gives 

I + + 6a + 4(x- + ) 

I + UTOC" 

'l + a) 

A ...(6.11 a, b) 

The integral of the stress over the cross-sectional area (Lpdz where Lp is the entire 

length of the plane perpendicular to the considered force, a n d dz is the infinitesimal 

thickness) gives the normal forces, and these forces (per un i t length, i.e. axial and 

circumferential forces) induced on the pipe by the PZT element are given by 

li/2 
qo=qs()=qHo= 

- I , / 2 

Eh 
- £ = • 

a ( l + | i T a ^ ) 

1 - v l + HTa(4 + 6a + 4a +p.'cc( ) 
hyA ...(6.12) 

The moments per unit length induced on the pipe by the.PZT element are determined 

as 

mo 
' Eh^ = jo^'zdz = a (l + a) 

-h/2 12 1-v 2[ l + ̂ Ta(4 + 6a + 4a'+)j,Ta")] 
h-yA ...(6.13) 

Comparing equation (6.12) with (6.13), the relationship between both force and moment 

can be obtained in the simple form as 
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Pmq -
mg _ I h(l + (x) 

Qo 2 l+pTa' 
...(6.14) 

6.3 Transfer Function of Infinite Pipes Excited by a PZT 

Element 

-oô— 

(s) 

Force 

Momeni 

s = 0 

(b) 

k 

/ / V 

— P i p e 

Figure 6.3: A PZT actuator bonded to an infinite pipe; a) Axial direction, b) Cross-

section of the structure showing the co-ordinate. 

In this section, the motion of a pipe excited by forces, q̂ o and qeo, and moments, mso and 

meo, generated by a PZT element bonded to the pipe as shown in figure 6.3 is formulated 
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before its transfer function is determined. This can be achieved by using the pair of 

Fourier and Inverse Fourier transforms and applying the Residue theory to obtain the 

pipe motion. 

The equations of motion of the pipe excited by the PZT element can be formulated by 

consideiing the force and moment equilibrium of the pipe element as follows (Leissa 

[2]) 

as ae dv 

98 3s -
...(6.15 a, b, c, d, e) 

Ds 98 Or 

d (M 5 - 111 s ) 9 M 9s 

ds do 

9(Mg -iiig) ()M;@ 
98 9s 

- a Q , = 0 

aQ@ = 0 

where Ne, Ng, Nes, Nse, Qs, Qg.and Ms, Mg, Mgs, Msg are internal forces and moments, 

The superscript iz is used for the displacements excited by a PZT element. 

Based on Flugge's shell theory (Flugge [5]), the equations of pipe motion can be written 

in matrix form as follows 

^11 A|2 
A 2, A 22 

A i; I A T? 

A|3 

A 23 

A V, 

w " (s ,8 , t ) 

u'" (s .e , t ) 

w'" (s .8 , t ) 

9s' 

9m g 9q8 
a 39 96 

I 9"m I 9^m0 
qe — a 9s- a 98' 

. . . ( 6 . 1 6 ) 

where the matrix A is given in equation (2.1). 
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Similar to the approach taken in section 3.2, the displacements in equation (6.16) can be 

derived using the Residue theory. To do this, these displacements, forces (q, and qg), 

and moments (m, and mg) have to be transformed from the spatial domain to the 

wavenumber domain. Using the Fourier transform, the displacements of a pipe due to a 

point force can be written as (equation 3.3) 

2)1 n=0 

o''(s,e,t) = — j ZEnVr(kn)sin ...(6.17 a, b,c) 
-co 11=0 

,v '"(.s,8,i) = — j ^ E , w ^ ' ( k j cos (n8 )e ' ' ( ' ' " ' - ' ' ' ) dk , 
27: n=0 

where En = 1 for n = 0 and 

Eu = 2 for n > 1. 

The dynamic model of the forces, qs and qe, and moments, nis and me, are assumed to be 

uniform over the PZT surface (Dimitriadis e( aZ [38]) and can be represented by the unit 

step function as follows (omitting terms of for simplicity). 

q S ^ q so [H(s - L J - H(s + )lH(8 - cp) - H(8 + cp)] 

AE = q 8 0 [ H ( s - L . J - H( s + L., ) % H ( 8 - c p ) - H ( 9 + (p)] 

M5 = 111JQ [H(.S — L . , ) — H(.s + L. | )][H(9 — (p) — H ( 6 + cp)] . . . ( 6 . 1 8 a , b , c , d ) 

m 0 = m00 [H(S - L., ) - H(s + L., ) J h ( 6 —cp) — H ( 8 + cp)] 

where La = L/2a is the non-dimensional length of the PZT, 

L is the length of the PZT and 

H( ) is the unit step function. 
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As discussed in section 3.2, the spatial forces and moments can be transformed into the 

wavenumber domain using the Fourier transform of the del ta function, 5(), which is 

related to the unit step function as given (Arfken [70]) 

H(s-So)= j8(sjdsi. ...(6.19) 

Following section 3.2, the delta functions of 6(s -La) and 6(6 - cp) may be expressed as 

6(8-0) = J -
271 

...(6.20) 

By substituting for the delta function from equation (6.20) into equation (6.19), the 

differences of unit step functions at the edges of the PZT in the axial and 

circumferential directions can be written as 

H ( 8 - (p) - H ( 8 + (p) = — ^ % — sin (ncp) cos (n8) 
71 n=0 n 

...(6.21 a) 

1 . 
H(s - L.| ) -H( s + L.,) j -—sin e ...(6.21 b) 

Substituting for the displacements given in equation (6.17), and for the forces and 

moments given in equation (6.1&j with the unit step function from equation (6.21) into 

equation (6.16) yields 

L., L|2 u : ( k j 

Li; L22 vr(k,,) 

^3) 1-32 L,, _ 
w r ( k j 

K 
sin (n(p)sin ( k ^ L J 

nn "9:0 

2 m BO 

k^n a 

— ( 4 - q 8 0 + — 
an n k „ " 

-Qeo) 

mgo) 

..(6.22) 
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where the matrix L is given in equation (2.3). 

Inverting the matrix L, the amphtudes of the displacements can be written as 

W,r(kJ 

-2 sin (n(p)sin (k „L.,) 
7IK 

In In I 12 
122 I] I2I 

I31 132 133 

"Qso 

m 
+q8o) 

kn 

1 / 3 kn 
— (—T—Qeo + — 

nk^ n 
so —rngo) 

k„ 

...(6.23) 

The radial displacement in the wavenumber domain is given by 

W|'^(k„) - (n(p)sin (k„L,^) 
7iK 

1 sO T , Qeo T , A 80 T 
hi + - 3̂2 +—7—133 

n k̂  nk„ 

where 

1,2 ^(LiiL;,, -L,jL^2)/ILI and 

j k 
: (I32 +'1133)^60 ^ -133^:0 

ak^ an 

...(6.24) 

...(6.25 a, b, c) 

133 — (I'l |Î 22 )/l L I • 

As described in the previous section, the relationship between induced force and 

induced moment in the pipe by the PZT are qso = qeo = qo, mso = meo = mo, and mo = pmqqo 

(equation 6.14). Substituting these relations into equation (6.24) gives 

w r ( k j = . 
2a sin (n(p)sin (knL,)qo 

nL 
(knl31 +"l32 +l33)+(n I32 +(" )I33) !- ...(6.26) 
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Omitting terms of for simplicity, the radial displacement for a particular mode in 

the frequency domain is obtained by substituting equation (6.26) into equation (6.17 c) 

as 

(s,8) = -A^cos (n8) j 
TT-K JL 

sin (n(p)sin (k^ LJqg 

n k , . 

(k^I î +nl^2 + 

...(6.27) 

P mq 

a 
dk. 

Because the sine function can be expanded as 

sin (A) — A A ^ 4 A +. 
3! 5! 

by having the conditions n(|) « 1 and k̂  L, « 1, then sin(n(()) 5 n(|) and sin(kn L^) 

k„ L„ .respectively. Hence, the amplitude of the radial displacement becomes 

Tt'K J 
(knkii +133)+^ I]! +(n" +k-) —L dk,, ...(6.28) 

In a similar way to that in section 3.2, the integral in equation (6.28) can be evaluated 

using residue theory. With this method, only the upper half plane of the complex plane 

of the wavenumbers is analysed by running above the negative real axis and running 

below the positive real axis so that only four poles are analysed (see the contour integral 

in figure 3.2). 80, the solution of equation (6.28) can be expressed as (Arfken [70]) 

<Xs,8) = - j 

where Reŝ h -

.2aE^(pL,qo 
nK 

:os (n8)^Re 

knb^I I32 + 3̂3 )+'(" ̂ 32 + k [jy ) I 2 , ,"2 \Tr 

I3I - (L.21L32 - L22L3I )„b I I L IjjIJ 

...(6.29) 
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132 - ^ L j 2 L 3 1 - L 1 1 L 3 2 ) n b 1 L Inb 

133 - ( L 1 1 L 2 2 - L 1 2 L 2 1 ) n b / I L Inb • 

DILI 

From the above equation, it should be noted that the analysis of the radial displacement 

has been taken with zero orientation for simplicity, and for the mode with a small 

PZT element. The radial motion of the pipe in general form can be written by 

substituting for 8 with , where i|) is the orientation of the pipe, and is given by 

8) = . . . ( 6 . 30 ) 
n = O b = l 

Finally, the transfer function for the PZT element in terms of radial velocity can be 

easily determined using the static force, qo, obtained from equation (6.12) to give: 

= . . . ( 6 . 3 1 ) 
^ n = 0 b - 1 

where F, = (l+^-ca ) — d ,̂y is the static gain of the generated force, and 
l+HTa(4 + 6a + 4a-+|iTa-) 

V is the voltage applied to the PZT element. 

6.4 Modal Actuator for the n = 2 mode of Infinite Pipes 

Generally, a PZT element generates radial motion of all modes as shown in equation 

(6.30). To generate only the radial displacement of the desired mode, a set of PZT 

elements is required. Arranged in the form of such a mode, it can force the pipe to 

vibrate only in the desired mode. With this arrangement, a set of PZT elements may be 

called modal actuator. 
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Excited by a single PZT element, the radial motion obtained from equation (6.31) is a 

function of three separate parameters, (|), 8 and s. The radial motion, IV , activated by 

the PZT element located at the angle (|)p may be rewritten in a simple form as 

) = v2A^,cos[n(8-<|)p)] ...(6.32) 
n=f) 

where A ^ - j 
. 2a(pL,E^ 

F^ZRes nb ^ 
b = l 

PZT e l e m e n t 

Figure 6.4: Cross-sectional schematic of a modal actuator 

The sine and cosine functions have the property of orthogonality over a series of 

discrete, equally spaced points (Arfken [70]). By applying this property to the above 

expression, the radial motion of a particular mode can be derived. The schematic of a 

cosine function modal actuator, in which a set of PZT elements is arranged to satisfy the 

discrete orthogonality condition, is shown in figure 6.4. The PZT elements are 

positioned around the pipe with equal angle of 
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N, N, 

where Ne is the number of circumferential positions or the number of PZT elements. 

The angle interval between the positions of the PZT elements is 

N,. 
...(6.33) 

where pe is the circumferential position of the PZT element on the pipe. 

Multiplying the radial motion, = given in equation (6.32), by cos(2T[mzpe/Ne) 

where mz is the desired mode to be activated by a modal actuator yields the product of 

cos (27cm; - ^ ) . Substituting fbr the discrete angle, (|)p, into equation (6.32) and 

summing the product over all of the PZT elements give the radia l response of the cosine 

modal actuator, , for the mz"̂  mode as 

N,-

W" = 2 M/'^((|)=:(t)p)cos(2nm^—) 
i),=0 

N^. -"I oo 

= 0 n = 0 

N.. 

cos(n6) cos (2Tin - ^ ) + sin(n6) sin (27in - ^ ) 
N, N, 

...(6.34) 

cos (27im ̂  ——) 
" n / 

With the assumption of Ne tending to infinity, applying the property of orthogonality 

gives 

=0 n=0 
n (8-2nn-!^) 

N, 

N,. 
— N g V A ^ cos (m;8 ) , # 0 o r ^ 

...(6.35) 

NgV^Am cos (m;6 ) , == 0 or 
N, 

where = V cos (2nm; - ^ ) is the required voltage for the cosine modal actuator. 
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However, when Ne is finite, there is spillover for the modes greater than Ne/2. 

It can be clearly seen in equation (6.35) that the required voltage for the cosine modal 

actuator has to be varied as the cosine function of the position of the PZT elements and 

the desired mode. 

For the sine function, the positions of the PZT elements around the pipe are given by 

n 371 (2Ne -1) 
-71 . 

The angle of interval between the positions of the PZT for a sine modal actuator is 

27t I 
> , = ^ i p . + 7 ) . . . ( 6 . 3 6 ) 

Similar to the analysis of the cosine modal actuator, the radial response of the sine 

modal actuator for the mz*̂  mode can be obtained by multiplying equation (6.32) with 

sin and summing it over the discrete angles and is given by; 

W'' = ^ V'"(<|) = (|)p)sin 
i\-=o 

N,-l _ 

|\.=0 11=0 

L 

cos(n9) cos (Inn + sin(n6) sin (2jtn 
N / N / 

sin 

...(6.37) 

Again, applying the property of orthogonality gives 
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p.=0 n=0 
n(8-27m - ^ ) 

N, 

sin (m^8) , /O or 

NgV''Aj'„^ sin (m^6) , m, 

0 , 111 =0 

N. 
...(6.38) 

w h e r e = V sin is the required voltage for the sine modal actuator. 

Equations (6.35) and (6.38) imply that the minimum number of the PZT elements 

required to form the cosine or sine modal actuator as Ne = 2mz. However, in practice, 

one has to be careful to avoid spillover due to an insufficient number of PZT elements 

used. To avoid this, the number of PZT elements should be at least twice the maximum 

mode number of the pipe. Since the mode number of interest in this work is below the 

ring frequency of the pipe, whose maximum mode number is 7, the number of PZT 

elements for any desired mode is at least 14. 

Having Ne > 2mz, where mz > 1, the total radial response obtained from both sine and 

cosine modal actuator is given by 

W"" IV'sin(m^8) + V' cos(m: ...(6.39) 

By letting 

y s _ y 101 j.j„ ) and 

V ' = V ' » ' cos (m,< | )_ ) 

...(6.40 a, b, c, d) 

where V = -^(v')" +(v'-")~ is the total voltage supplied to the modal actuator, and 

(j)„o = —!— tan ' (v'V V ) is the orientation angle relative to the cosine modal 
m, 

actuator. 
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equation (6.39) becomes 

M/'"' cos[m,(8-(|)no)] ...(6.41) 

For the niz = 2 mode, the minimum number of the PZT elements required for either the 

cosine or the sine modal actuator is 4 (Ne = 2mz). Substituting for Ne into equation (6.35) 

gives 

tV'' = ^ cos(n8)cos(7:p^-^)[cos(7ipg)] 
|\.=0 n=0 z 

...(6.42) 

Using the property of orthogonality, the above equation becomes 

W " = N „ V ' An, cos ( m ^ 8 ) + A ' n , cos ( 3 m ^ 8 ) + A;n,^ cos ( 5 m ; 6 ) + ... ...(6.43) 

This shows clearly that for the desired mode of m = 2 with eight PZT elements the 

cosine modal actuator excites the pipe modes n = 2, 6 and so on. The sine modal 

actuator for the m = 2 mode is also obtained by similar analysis and is given by: 

A^ , sin ( m ^ 8 ) + A^„ , sin ( 3 m ^ 8 ) + A;^n, sin ( 5 m ; G ) + ... ...(6.44) 

With the minimum number of PZT elements (Ne = 2mz), the total radial response, which 

is the combination of equations (6.42) and (6.43), is determined by substi tuting V and 

V" given in equation (6.40 a, b) yielding 
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H/"" =N,V '" ' jAm, cos[m^ (8-'|)no)]+/^L, cos[m^ (38-(|)no)]+A^^, cos[m^ (58-(t)no)]+.. j . . .(6.45) 

6.5. E x p e r i m e n t a l Work 

6.5.1 I n t r o d u c t i o n 

In this section, several experiments are described that were set up in order to validate 

the expressions developed in the previous section. An experiment was carried out to 

validate the transfer function of a single PZT element and subsequent experiments 

were conducted to validate the theoretical model of the modal actuator. 

In the present work, the objective is to develop the modal actuator for the n = 2 mode 

and the need is to use the smallest number of PZT elements as possible without causing 

significant spillover to the higher modes of the pipe. To satisfy this requirement, the 

minimum number of PZT elements for the modal actuator is used and its effectiveness 

is evaluated. 

6.5.2 E x p e r i m e n t a l Se t -up a n d P r o c e d u r e 

The schematic of the experimental setup for investigating the transfer function of a 

single PZT element is shown in figure 6.5.a. Since the 5.5 m long pipe, whose properties 

are given in Table D.l (appendix D), was assumed to have infinite length (which means 

there are no reflected waves from the ends of the pipe), anechoic terminations were 

fixed at both ends of the pipe. The PZT elements were manufactured by Morgan Matroc 

Limited in the shape of a rectangular plate of 4x8x0.25 mm^. Some important properties 

of the element are listed in Table D.3 (appendix D), and are used to predict the pipe 

response. The PZT element was bonded on the pipe at a position equidistant from both 

anechoic terminations. A random signal voltage from the HP 3566A Signal Analyzer 
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was supplied to the PZT element via a power amplifier. The resulting motion of the pipe 

was measured at the distance of 300 mm from the position of the PZT element by a set 

of the accelerometers located around the pipe. With the arrangement as shown in figure 

6.5.a, the radial motion can be decomposed into each mode of the pipe by using the 

method of modal decomposition, which is described in appendix A. Hence, the 

expression for the transfisr function of a single PZT element bonded to the pipe can 

easily be evaluated by comparing it with the experimental results for each mode. 

A n e c h o i c 

Termination 

(a) 

Modal Actuator ! 

_300_ 
m m 

i i 

Amplif ier 

0 P 

Conditioning 
Amplifier 

HP Ana lyze r 

A c c e l e r o m e t e r 

Anechoic 
Termination 

Figure 6.5: Experimental Setup for evaluation of the modal actuator for the n = 2 mode 

of the pipe; a) arrangement of the instruments, b) ar rangement of the modal actuators 

where cosine function, sine function. 
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The next experiment was carried out to validate the model for the n = 2 modal actuator. 

Eight PZT elements were bonded on the pipe as shown in figure 6.5.b and figure D.2 in 

appendix D (four elements for the sine modal actuator and other four elements for the 

cosine modal actuator). As described in the previous section, for the cosine modal 

actuator the voltage supplied to the PZT elements has to be varied as the cosine 

function of = V,. cos (27in . Hence, only the PZT elements at the positions of p = 0, 2, 

4 and 6 were activated with +Vc, -Vc, +Vc, -Vc, respectively, vyhile those at the other 

positions had zero input voltage. Similar to the cosine modal actuator, the sine modal 

actuator required the voltage to be supplied to the elements a t positions of p = 1, 3, 5 

and 7 with +VB, -Vs, +Vs, -Vs, respectively, while those at the other positions had zero 

input voltage. The radial motion of the pipe was excited by t he cosine modal actuator 

and the measurement method was similar to that of the transfer function of the single 

PZT. Finally, both sine and cosine modal actuators were simultaneously actuated first 

with the same magnitude of input voltage and secondly with the input voltage of the 

sine modal actuator equal to half of that of the cosine modal actuator. This was to 

explore the change of the orientation angle. 

6.5.3 E x p e r i m e n t a l R e s u l t s 

Several experimental results, i.e. the transfer function of the single PZT element, of the 

cosine modal actuator and total transfer function of the modal actuator for the n = 2 

mode, are presented. Where applicable predictions obtained from the theory described 

in the previous section are overlaid. The results of the orientation angle arising from 

the use of both modal actuators are also presented. 

As discussed in the previous section, the minimum number of PZT elements for a modal 

actuator to prevent spillover for any of the desired modes below the ring frequency is 

14. With the four PZT elements for cosine and sine modal actuators, the problem of 

spillover as described in the previous section can not be avoided. So, they also produce 

the pipe motion of the n = 6 mode. 
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With the expressions of the radial displacement generated by the modal actuator for the 

n = 2 mode and described in equations (6.43) and (6.44), the transfer functions (velocity 

/ supplied voltage) of the cosine, and the sine modal actuators are respectively given by 

cos ( n 8 ) + A ] n cos (3n8) + A^n cos (5n8) + ... ...(6.46) 

A I; sill (n9) + A5„sin (3n0 ) + A sin (5n0) + . ...(6.47) 

where Ne = 2n and 

A. = 
.2a(pL,E^ 

TiK 
FsZRes nb 

l+UTa' 

1 + |ixa(4 + 6a + 4a" + )j.xa') 
—d ,̂y is the static gain of the actuator. 

In the case of both modal actuators simultaneously exciting the pipe, the transfer 

function is given by 

C = - j 
ylO, 

- j c o N j A ^ c o s [ n ( 8 - i | ) „ g ) ] + A i „ cos[n ( 3 8 - i t i ^ g ) ] + A ) „ cos [n ( 5 8 - ( | ) ^ ) ] + . . . i . . . ( 6 . 4 8 ) 

where tv™ is obtained A'om equation (6.45). 

The experimental results presented are as follows. 

Transfer function of the pipe, which was excited by a single PZT actuator, and 

measured with the accelerometer array at 300 mm distance from the actuator. 
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Figure 6.6 

Figure 6.7 

Figure 6.8 

Figure 6.9 

Figure 6.10 

Figure 6.11 

Transfer function of the n = 0 mode of the pipe 

Transfer function of the n = 1 mode of the pipe 

Transfer function of the n = 2 mode of the pipe 

Transfer function of the n = 3 mode of the pipe 

Transfer function of the n = 4 mode of the pipe 

Transfer function of the pipe for all modes 

Transfer function of the pipe, which was excited by the PZT modal actuators for the n 

2 mode, and measured at 300 mm distance from the actuator. 

Figure 6.12 Transfer function of the pipe excited by the cosine modal actuator 

Figure 6.13 Transfer function of the pipe excited by the sine modal actuator 

Figure 6.14 Transfer function of the pipe simultaneously excited by the sine 

and cosine modal actuators 

Orientation angle of the pipe, which was concurrently excited by both sine and cosine 

modal actuators for the n - 2 mode and measured at 300 mm distance from the 

actuator. 

Figure 6.15 Orientation angle of the pipe, excited with the same input voltage 

of both modal actuators 

Figure 6.16 Orientation angle of the pipe, excited with the input voltage of the 

sine modal actuator equal a half of that of the cosine modal 

actuator 
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F r e q u e n c y ( H z ) 

Figure 6.6: Amplitude of Transfer function of the n = 0 mode of the pipe, which is 

excited by a single actuator; — prediction (equation 6.31), measurement. 

n = 1 
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F r e q u e n c y ( H z ) 

Figure 6.7: Amplitude of Transfer function of the n = 1 mode of the pipe, which is 

excited by a single actuator;— prediction (equation 6.31), measurement. 
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n = 2 

- ± 2 0 

a -130 

10' 

F r e q u e n c y ( H z ) 

Figure 6.8: Amplitude of Transfer function of the n = 2 mode of the pipe, which is 

excited by a single actuator; — prediction (equation 6.31), measurement . 
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Figure 6.9: Amplitude of Transfer function of the n = 3 mode of the pipe, which is 

excited by a single actuator; — prediction (equation 6.31), measurement . 
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n = 4 
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Frequency (Hz) 

Figure 6.10: Amplitude of Transfer function of the n = 4 mode of the pipe, which is 

excited by a single actuator; — prediction (equation 6.31), measurement. 

Total Response 

Frequency (Hz) 

Figure 6.11: Amplitude of Transfer function of the pipe for all modes, which is excited 

by a single actuator; — prediction (equation 6.31), measurement. 
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C o s i n e Modal Actuator for the n = 2 m o d e 
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Figure 6.12: Amplitude of Transfer function of the pipe excited by the n = 2 cosine 

modal actuator; Measurement, Equation 6.46 considering only the n = 2 mode; ... 

Equation 6.46; _ . _ Response of decomposing the n = 4 mode 

sine Modal Actuator for the n = 2 m o d e 

•H -110 

Frequency (Hz) 

Figure 6.13: Amplitude ofTransfer function of the pipe excited by the n = 2 sine modal 

actuator; Measurement, Equation 6.47) considering only the n = 2 mode; ... 

Equation 6.47. 
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Modal Actuator for the n = 2 m o d e 

Frequency (Hz) 

Figure 6.14: Amplitude of Transfer function of the pipe excited by both n = 2 modal 

actuators; measurement, prediction (equation 6.48) considering only the n = 2 

mode; ...prediction (equation 6.48). 

Mode Shape of the P ipe Excited by Modal Actuaors 
(Measured at the cut-on frequency of the n = 2 mode, 430 Hz) 

Transfer funct ion 
(UITL/VS) 

31 RO 

Pos i t ions on 
the pipe 

Figure 6.15: Orientation angle of the pipe arising from the excitation of both modal 

actuators with the same amplitude of the input voltage;...cosine, _ _ sine, both. 

173 



Chapter 6: Modal Actuator for Infinite Pipes 

Mode S h a p e of t h e P i p e Exci ted b y Modal A c t u a o r s 
(Measured at t h e cut -on f r e q u e n c y of t h e n = 2 mode, 4 3 0 Hz) 

T r a n s f e r f u n c t i o n 
(um/Vs) 

3L4G 

P o s i t i o n s o n 
t h e p i p e 

Figure 6.16: Orientation angle of the pipe arising from the excitation of both modal 

actuators with the input voltage of the sine modal actuator equal to half that of the 

cosine modal actuator; ...cosine, sine, both. 

6.5.4 D i s c u s s i o n 

Examination of figures 6.7-6.11 show that the predictions of the behaviour of the pipe 

excited from the single actuator are consistent with practice except at low frequencies, 

where the motion of the pipe is very small and difficult to effectively detect by the 

accelerometers. In addition, it is also limited by the ability of the analyzer. 

As previously stated the elements of the cosine modal actuator require the input voltage 

as +Vc, -Vc, +Vc, -Vc, at an angle of 0 , 3 7 c / 2 , respectively. With such input voltage, 

the response of the n = 2 mode of the pipe is strengthened and tha t of the other modes is 

cancelled when they work together in form of the modal actuator as shown in figures 

6.12-6.14. The cancellation of the n = 4 mode can be seen clearly in figure 6.12 when the 
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response of the n = 4 mode is decomposed from the measurement . Excitation of the n = 

6 mode, which is spillover due to there being insuHicient elements in the modal 

actuator, was also expected to be excited, and appears in figures 6.12-6.14, but the 

response measured is less than that predicted. This is probably because of the effect of 

the mass loading from the accelerometers as previously discussed in chapters 3 and 4. 

Nevertheless, the effect of this spillover occurs at the relatively high frequency of 5532 

Hz for the n = 6 mode, and so may be ignored. The graphs also show the good agreement 

between practice and theory. 

Using both sine and cosine modal actuators, the changes of t h e orientation angle with 

respect to the cosine modal actuator are clearly demonstrated in figures 6.15 and 6.16. 

With the same voltage supplied to both modal actuators, the angle calculated from 

equation (6.40. d) is (|) = 22.5 degree, while it is (|) - 13.3 when the input voltage of the 

cosine modal actuator is twice of that of the sine modal actuator. Therefore, the 

orientation angle of the pipe can be readily controlled by both modal actuators. 

6.6 C o n c l u s i o n s 

Expressions for the radial motion of a pipe excited by a single PZT actuator and modal 

actuators for the n = 2 mode have been derived. They have also been successfully 

validated by experiment. This work clearly shows that a sine or cosine modal actuator 

for this can be created by using only four PZT elements, which is the minimum number 

for such an actuator. With this number of PZT elements, spillover of the n = 6 mode is 

introduced into the system. However, it has been shown t h a t this may be neglected 

because it occurs at a high frequency. 

When both modal actuators are used, the orientation angle of the response with respect 

to the cosine modal actuator can be controlled. By exploring the mode shape of the pipe 

generated by both actuators simultaneously, it can clearly be seen that the orientation 

angle of the pipe can be readily adjusted by controlling their input voltage. 
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jAjCrOTT/lE VrijEKtjaLTriOiSf ( ) i r 

7.1 I n t r o d u c t i o n 

In the problem of pipe vibration, the flexural wave of the n = 2 mode can cause large 

strain in the pipe wall after the wave cuts on, which may lead to the damage of the 

structure. From the fatigue aspect, an active control system is one way of suppressing 

this wave. Generally for single-channel control systems, the main problem is spillover 

(Balas [74]), which is the effect of the unobserved an-d uncontrolled modes. This effect 

will degrade the performance of the system. To avoid this problem, an n = 2 modal 

sensor described in chapter 5 and a reciprocal actuator described in chapter 6 are 

employed to selectively sense and actuate the vibration of this particular mode. 

In this chapter, an active control system to minimise the n = 2 flexural wave is 

analysed. In practice, the orientation angle of the excitation load with respect to the 

actuator and the sensor is not known. However, the disturbance can be separated into 

sine and cosine components. Hence, a pair of sensors and actuators, which have the 

form of sine and cosine function, are used to suppress each component of the 

disturbance. 

Once the theory of this control system has been developed, experimental work is carried 

out to validate it. 
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7.2 Model of Controlling n = 2 Flexural Wave of Pipes 

b; (all modes) b j (n = 2 mode) 

f 
bg & b^ (all modes) I b , & b, (n = 2 mode) 

b, (all modes) b; (n = 2 mode) 
(all modes) 

_a Sensor 

s - 0 P o i n t force 

s — 

Moda l a c t u a t o r s M o d a l s e n s o r s 

Figure 7.1: Diagram of the active control system for the flexural wave of the n = 2 mode 

with the modal actuator (showing only positive-going waves); bi = the flexural wave, bz 

= the near field wave, bs and b4 = the standing near field waves. 

A schematic diagram for control of the n = 2 mode of a pipe is shown in figure 7.1. The 

radial velocity at any position is the combination of the vibration excited by a point 

force and by PZT modal actuators for the n = 2 mode and is given by 

W(s, 8) = (s, 6) + (s, 8) + (s. 8) ...(7.1) 

The first term in the right hand side of equation (7.1) is the radial velocity caused by 

the point force, where Fo is the primary point force, and }"(s, 9) is the primary force 

mobility, which is given as (equation 3.13) 

r ( s . 8 ) = - Z 
enG)cos[n(8-(|)c)] 

n=0 2.Kp hti Op b=i 
%Re SnbG ...(7.2) 

where i|)̂ . is the orientation angle related to the cosine modal actuator and 
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Resnb is the residue term given in the chapter 3. 

The second and the third terms on the right hand side of equation (7.1) are the radial 

velocity generated by the cosine and sine modal actuators, respectively, where V is the 

applied voltage to the cosine modal actuator, V is the applied voltage to the sine modal 

actuator, 7̂ " and are the transfer functions (velocity / applied voltage) of the pipe 

excited by the cosine and sine modal actuators for the n = 2 mode, respectively, which 

are given by (equations 6.46 and 6.47, respectively) 

2 e?(0 7;"(s,8) = - ^ ^ a , c o s (28) ...(7.3 a) 
b=l 

7;'(s,8) = - ^ - ^ a , s i n (28)^Res^be^'':'''-''') ...(7.3b) 

whei-e a^=:a(pL^F;N, 

Fs is the static gain of the force generated by the PZT element (see 

equation 6.31.b), 

Res2b is the residue term obtained from the excitation by the PZT and 

given in the previous chapter. 

At the position, Sp, where the n = 2 modal sensors are located, only the radial motion of 

the n = 2 mode is detected. For the cosine modal sensor used, the radial velocity from 

equation (7.1) becomes 

w/2(s = sp,8) = ^,)<'(s = sp,8) + v'7;=(s = sp,8) ...(7.4) 

where (_8)cos is the cosine component of the mobility 
27ip ha-m;: b=i 

I7S 
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_.(7.5) 

It should be noted that the radial motion generated by the s ine modal actuator and the 

sine component provided by the point force are not detected by the cosine modal sensor. 

From equation (7.4), it can be seen that the total radial motion generated by the 

primary force and the modal actuators can be minimised by driving the actuators until 

no radial motion is detected by the modal sensor (error sensor). To obtain zero radial 

motion at the sensor position, the voltage supplied to the cosine modal actuator has to 

be 

V" 
2̂ (s—Sp,8)^ 

...(7.6) 

Since K = pha-(i)r, substituting for y2(̂  = *p.8) equation (7.5) and 7̂ " from equation 

(7.3 a) gives 

V = -
cos (2( | )J 

4a., 

b=l 

% Res 2^6 

...(7.7) 

With the optimal applied voltage, the mobility of the infinite pipe at a location, Sw 

(figure 7.1) given in equation (7.1), becomes 

(s = s^,8) CO 

2nK 
cos(ni|)Jcos(n8)]^ReSnbG^ 

n = 0 b=l 

- E l COS (2i|),.)cos (28) 

^Res ; 2b*-
b=I 

Z Res 2b e b=l 

...(7.8) 
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Instead of W, is used in the above equation for the radial velocity that results 

from using the cosine modal actuator. 

By considering the flexural propagating wave only, the optimal applied voltage obtained 

from equation (7.7) becomes 

cos(2(|)JRes2, 

4o'.„ Res 21 
...(7.9) 

and the mobility given in equation (7.8) becomes 

27tK 
cos(n(|)c)cos(n8)]^RGS^eJ''""''' 

n=0 b=l n;e2 
...(7.10) 

It can be seen from equation (7.10) that the cosine component of the n = 2 radial motion 

can completely be suppressed when the n = 2 cosine modal actuator is supplied by the 

optimal voltage (equation 7.9). 

To suppress the sine component of the primary point force, the sine modal 

sensor/actuator is employed. Using this sensor, the radial velocity from equation (7.1) 

becomes 

^2 (s = Sp, 8) = (s = s,. 8) + (s = s„6) Z\" "P' 
...(7.11) 

where = -
EgCOsin (28)sin (2(|)c) 

27rp b=i 
^Res2i,e-' is the sine component of the mobility 

for the n = 2 mode. ...(7.12) 
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By using the same analysis as the cosine component of the primary point force, the 

optimal voltage supplied to the sine modal actuator and the mobility at a location, Sw, 

are given by 

4o(a Res 2 1 

. . .(7.13) 

CO 

27CK 
sin (n{|)g )sin (n8)^ Res nb̂  

n=0 b=l 11̂2 
. . . (7.14) 

where W , is the radial velocity resulting from using the sine modal actuator. 

The total mobility of the pipe when controlled by both the sine and the cosine modal 

actuators is the combination of the mobility when the n = 2 wave is suppressed by each 

modal actuator and is given by: 

^ CO.,, (s - X W ' 8) I 
Fn 

- — [M/ com (s = S ̂ , 8) +M/ (s = s , 8)] 
^ 0 
0) 

27rK n=0 
cos[n (8-(t)J]^Res^beJ''°''' 

b=l H#2 

. . . (7.15) 

7.3 Expe r imen ta l Val ida t ion 

7.3.1 I n t r o d u c t i o n 

In this section, the experimental procedure is described. Experiments were conducted to 

verify the control model described in the previous section and to evaluate the 

effectiveness of the active control system of an infinite pipe. 
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Since the objective of this work is to suppress the flexural propagating wave of the n = 2 

mode of an infinite pipe, PVDF modal sensors and PZT modal actuators for the n = 2 

mode are used for this purpose. As described in chapter 3, the vibration of the pipe 

excited by a point force (primary force) has two components, which can be expressed in 

terms of sine and cosine functions. Hence, both the sensors and the actuators have to be 

constructed in the form of both configurations. 

7.3.2 E x p e r i m e n t a l S e t u p a n d P r o c e d u r e 

A diagram showing the experimental set up is given in figure 7.2 and the picture of the 

active vibration control system of an infinite pipe is shown in figure D.3 (appendix D). 

The 5.5 m long pipe, whose properties are given in Table D.l (appendix D), was 

suspended by cords, and had anechoic terminations fixed a t both ends of the pipe. A 

shaker was used as the primary force, and was fixed on the pipe at a distance of 610 

mm from the left hand side of the modal actuators located at the central position 

axially. A pair of sine and cosine modal actuators for the n = 2 mode described in the 

previous chapter was constructed from PZT elements manufactured by Morgan Matroc 

Limited [27] in the shape of a rectangular patch of 4x8x0.25 mm^. Some properties of 

the element used for calculating the response of the pipe are listed in Table D.3 

(appendix D). The n = 2 sine and cosine modal sensors, being the error sensors, were 

fixed close together at a position of 1210 mm from the shaker, while an accelerometer 

was located at a distance of 1610 mm from the shaker. 

At discrete frequencies from 422 Hz (just before the n = 2 waves cut on) to 1466 Hz, the 

magnitude and phase of the modal actuators was manually adjusted accordingly to the 

primary force in order to suppress the flexural propagating waves excited by the 

primary force. Following equations (7.9) and (7.13), the optimal voltages supplied to the 

actuators are required, and are adjusted using the power amplifiers. From these 

equations, the phase shift ) occurs due to different positions between the point 

force and the actuator. Hence, a phase control box was used to adjust the phase of the 

actuator. With control implemented using the actuators, the radial motion of the n = 2 
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mode was sensed by the modal sensor, which was inonitored using the oscilloscope. The 

resultant downstream motion in the radial direction was measured using an 

accelerometer. 
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Figure 7.2: Diagram of experimental setup to control the n = 2 propagating flexural 

wave. 

7.3.3 E x p e r i m e n t a l R e s u l t s 

In this section, the experimental results of the active control system for the infinite pipe 

using the modal sensors and actuators for the n = 2 mode are presented. The 

effectiveness was evaluated by comparing the downstream radial motion before and 

after control. A comparison is also made between the experiment and prediction from 

the theoretical model. However, before the motion can be predicted, the orientation 

angle, (|)c, with respect to the cosine modal sensor/actuator has to be determined. This 

angle can be calculated from the response of the sine and cosine modal sensors before 

control. For convenience, its expression is repeated here as given by (equation 5.19) 
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— tan 
9 

...(7.16) 

where g' is the generated charge of the sine modal sensor for the n = 2 mode and 

O" is the generated charge of the cosine modal sensor for the n = 2 mode. 

Even though the active control system in this experiment is for discrete frequencies, the 

measured mobility of the pipe with control can be constructed for the continuous 

frequencies. To do this, equations (7.6) and (7.13) are substituted into equation (1) to 

give the mobility with control at the accelerometer position as 

ft) 7;(s = s_,8) 7;(s = s.,8) 

As described in chapter 5, the relationship between the generated charge of the modal 

sensors and the pipe motion is linear. For only the flexural wave considered, the 

generated chai'ges of the cosine and sine modal sensors are written as 

— 2 T c X j I ( n H—^kgy — 1) WibC"' , ...(7.18 a, b) 

=2nA.9bgZob ĵ(n^ + — " U Wibe^ , respectively. 
b], -

Where W2b= ^Res^y 
27tp 

Using equation (7.18), equation (7.17) becomes 

W/lS 

0 • 'qz ^qz 

O' I 
where 7̂ ,̂ =^^|v =\/=0 is the transfer function of the cosine modal sensor excited by the 
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primary force, 

Q' 
= — | v =v'=o transfer function of the sine modal sensor excited by the 

T, 
c G' 
qz yC 

r-s _ 6 ' 

primary force, 

pr is the transfer function of the cosine modal sensor excited by the 

cosine modal actuator, 

pr =v'=o transfer function of the sine modal sensor excited by the 

sine modal actuator. 

It can be seen from equation (7.19) that the measured mobility of the pipe with control 

for continuous frequencies can be constructed by measuring all parameters in that 

equation. 

Experimental results presented are as follows: 

Figure 7.3 

Figure 7.4 

Figure 7.5 

Figure 7.6 

Transfer function of the n = 2 PVDF modal sensors excited by 

the point force and measured at the distance of 1210 mm from 

the shaker before applying the active control. 

Orientation angle, (|)c, extracted from the response of the n = 2 

modal sensors. 

Transfer function of the n = 2 PVDF modal sensor excited by 

the n = 2 modal actuator 

Amplitude of mobility of the infinite pipe measured at a 

position of 1610 mm from the primary force. 

185 



Chapter 7: Active Vibration Control of Pipes 

u A 

U 
c 3 k 

C (0 
Eh 

0) 

C 
I 

60 

50 

40 

30 

20 

10 

Cosine 

I 

I 

1 #1 

10-

Frequency (Hz) 

Figure 7.3: Transfer function (generated charge/primary force) of the n = 2 PVDF modal 

sensors without the active control; the cosine modal sensor, the sine modal 

sensor. 
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Figure 7.4: Orientation angle of the cosine modal actuator, (|)c, with respect to the 

primary force extracted from the sine and cosine modal sensors for the n = 2 mode. 
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Frequency (Hz) requency (Hz) 

P 

Frequency (Hz) Frequency (Hz) 

Figure 7.5: Transfer function of the n = 2 PVDF modal sensor (generated 

charge/voltage) excited by the n = 2 modal actuator; 

a) Cosine modal sensor excited by the cosine modal actuator 

b) Sine modal sensor excited by the cosine modal actuator 

c) Cosine modal sensor excited by the sine modal actuator 

d) Sine modal sensor excited by the sine modal actuator 
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Frequency (Hz) 
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Frequency (Hz) 

Figure 7.6: Amplitude of mobility of the infinite pipe measured a t a position of 1610 mm 

from the primary force; a) Prediction, b) Measurement; without control, with 

control for continuous frequencies, o o with control for discrete frequencies. 

188 



Chapter 7: Active Vibration Control of Pipes 

7.3.4 D i s c u s s i o n 

In the experiment, (j)c, the orientation angle of the cosine modal actuator with respect to 

the primary force is required to predict the radial motion of the pipe at any position 

after control. It was found to be about 7 degrees as shown in figure 7.4. Because the 

angle is only 7 degrees, the dominant radial motion is the cosine component as shown in 

figure 7.3. Thus, the sine component was very small, and was difficult to monitor using 

the oscilloscope. Hence, only the cosine modal actuator was used to control the 

disturbance. To control the disturbance, good alignment between the cosine modal 

sensor and cosine modal actuator, and between the sine modal sensor and the sine 

modal actuator are required. This is evident in figure 7.5, in which the transfer 

functions of the sine modal sensor/cosine modal actuator and the cosine modal 

sensor/sine modal actuator are very small. The predicted and measured mobility of the 

pipe before and after control can be seen in figure 7.6. Comparing figures 7.6.a with 

7.6.b, it can be seen that theory and practice are consistent. The discrepancies might be 

because of the inaccurate shape of the modal sensors so that the sensors still detect a 

response from other modes even if the radial motion of the n = 2 mode is completely 

suppressed. 

7.4 Conclus ions 

Feedforward vibration control is the strategy that has been used in this work to 

suppress a flexural propagating wave of the n = 2 mode. The theoretical model for this 

type of control has used the n = 2 modal sensors/actuators described in chapters 5 and 

6, respectively. Since the disturbance produced from the primary force can be separated 

into sine and cosine components, a pair of reciprocal sine and cosine • modal 

sensors/actuators are applied in order to counteract each component of the disturbance. 

Within this framework, it is theoretically shown that the disturbance of the n = 2 mode 

of the infinite pipe can completely be suppressed. This principle has also been validated 

by experiment. 
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CHAPTER 8 
I 
! 

PASSIVE AND ADAPTIVE-PASSIVE 

VIBRATION CONTROL OF INFINITE PIPES 

8.1 Introduction 

The pipe vibration control systems discussed in this chapter a re passive and adaptive-

passive. The performances of both control systems are investigated in order to compare 

their effectiveness with the active control system discussed in the previous chapter. In 

order to make a comparison with active control, the same pipe used in the previous 

chapter is also considered in this chapter. Some vibration control measures are applied 

such as damping material for passive vibration control and a PZT element shunted with 

an electrical circuit for adaptive-passive vibration control. This is restricted to a 

theoretical study. 

Generally, passive control involves system modification such as changing the mass, 

stiffness and damping to reduce the response of a structure. These passive 

modifications can be done by adding elements to the system, such as masses, springs or 

damping materials. The addition of an unconstrained layer of damping material to a 

section of an infinite pipe is considered in this thesis. This can be considered as a 

discontinuous section of a composite pipe. As described by Mace [54], Brennan et al [72], 

Cremer and Heckl [17] and Fuller [57], a propagating wave incident on a discontinuity 

is reflected so that less vibration would be transmitted along the pipe. Since the 

discontinuous section is as a result of modifying the pipe, the attenuation gained from 
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the discontinuity is investigated with respect to its Young's modulus and the damping 

properties of the material attached to the pipe. 

An advantage of the passive system is that it is simple and stable. However, its 

performance is limited because the properties of the passive elements are fixed. This is 

quite different to an active system, in which vibration control can occur in real-time. 

Adaptive-passive control, which is where the passive properties of a system can be 

changed as a function of time, combines the advantages of both passive and active 

systems. In this thesis, an adaptive-passive system is established from PZT elements 

shunted with a parallel L-R circuit, in which the inductance (L) and the resistance (R) 

can be adjusted. With the shunt, the properties of the PZT element such as stiffness and 

damping (loss factor) can be changed as reported by Hagood and von Flotow [13]. Large 

attenuation of vibration may be obtained by tuning the inductance and resistance of the 

parallel L-R circuit. 

8.2 Pass ive Control of In f in i te P ipes 

8.2.1 E q u a t i o n of M o t i o n f o r C o m p o s i t e P i p e s 

By bonding unconstrained layer damping material to the pipe, a composite pipe section 

is formed. Since the composite section can be considered as a s t ructural discontinuity, 

determination of the pipe motion with a composite section requires some boundary 

conditions at the discontinuity (described in detail later). In this section, the necessary 

parameters at the ends of the composite pipe such as forces, moments and 

displacements used to analyse the pipe motion are considered and are based on Flugge's 

shell theory. 
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ZZZZZZZZ 

M i d d l e 

Surface 

^ z z z z z z 

Figure 8.1: Diagram of a composite pipe with the damping mater ia l 

For simplicity, the damping material is assumed to be bonded on both sides of a pipe as 

shown in figure 8.1. With this configuration, the composite pipe is symmetrical. Axial, 

circumferential and shear stresses in a pipe are respectively given by (Flugge [5]) 

oi' = — + v e 8 ] 
I - V " 

= rlGe+VCs. 
1 - V " 

...(8.2.1 a, b, c, d) 

'se 2(l + v) Y.,8 

fr'' -rr ' ' 

and those in a damping material are 

a. 
E 

1 -vg 
+ v^eg] 

1-v; 
...(8.2.2 a, b, c, d) 
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T 

'8.S - ^ s G 

where e, = e, + zK, is the axial strain at radial position z, 

Cg = (Eg H-zKg) is the circumferential strain at radial position z, 
l + z /a 

7,8 
1 

l + z /a 
E;g +z| 1 + 

I 2a 
K„ s9 is the shear strain at radial position z, 

E; is the axial strain at the mid-surface, 
a 3s 

38 
is the circumferential strain at the mid-surface. 

3 9 3s 
is the shear strain at the mid-surface. 

I 3-H,' 

" a- 3s-
is the axial change of curvature of the mid-surface, 

Ko =-
3u' 3- , , ' 
38 38' 

is the circumferential change of curvature of mid-surface 

3o" 3",t 2 c \ 

3s dsdO 
is the mid-surface twist, 

Ed is the Young's modulus of the damping material, 

Vd is the Poisson's ratio of the damping material, and 

the superscript c denotes the composite pipe section. 

Forces and moments in the composite pipe can be determined by integrating the 

stresses over its thickness as given by 
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h/2 
- f 

N^g 
- J 

-h /2 < e _ 

' 
h / 2 

= f 
(^8 

J 
- h / 2 

M . : " h/2 
- r 

Cs 

- J 
- h / 2 oi'g 

h / 2 

= f 
J 

- h / 2 

- h / 2 

( l + z / a ) d z + J 

-(h^+h/2) a se 

h , , + l i / 2 

( l + z / a ) d z + J 

h / 2 s8 

( l + z / a ) d z 

- h / 2 

d z - f 
-(h^+h/2) a 8s 

dz4 
hj + h/2 

J 
h / 2 a Bs 

dz ...(8.2.3) 

-li/2 
( l + z / a ) z d z + j 

- ( h , | + h / 2 ) (̂ s8 

h,,+h/2 

( l + z / a ) z d z 4 - j 

h / 2 's8 
( l + z / a ) z d z 

- h / 2 
z d z + j 

- ( h j + h / 2 ) 

Oa 
a Bs 

h,,+h/2 

z d z + J 

h/2 a 6s 

zdz 

where hd is the thickness of the damping material. 

Substituting for the stresses from equations (8.2.1) and (8.2.2) gives 

N" = K,(E, +V,E8) + ̂ 1 C ; 

+— Dc(l-VKj) K;g 

28 
Ng; K;.(|-V^)E;g D,.(|-V^j)(K:;g 

2 4 a a 
...(8.2.4) 

M:'=D, K, +V;_.̂ ,Kg + 
e. 

M a = D,, 

M;g =-^(l-Vcd)'<:s8 

Mg; -^^(l-\ 'cd)(Kse 
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where K .̂=K(I + 2K), 0^=0(1 + 0) , ''l + 2vK ^ I' l + vD 1 

I I + 2 K J ^l + 2 D j 

K = 

K = -

K 

Eh 

D - % - , 
D V 

K, 

- V " 

E.,h 

2 ' 

h, = h + 2h d ' 

D: 
Eh 

Dd = 

I 2 ( l - v - ) 

E,(h^-h-) 

Following the work done by Leissa [2], the equation of motion for the composite pipe is 

given by 

an" DNl 
ahp. = 0 

Ds 38 " 9t 

an : 3NL i i aM" a ' - ' 
38 3s a 38 a 3s 3r 

a 3s" a 38^ n 3s38 a 3s38 3;-

where p,. =p(l + 2ph) 

p = ^ 
P 

pa is the density of the damping material, and 

h = li J / h . 

...(8.2.5) 

Substituting for the forces and moments from equation (8.2.4) into equation (8.2.5) and 

arranging them in matrix form gives 
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An A 1̂2 Au ,(C(s,8, t) 

Ai, AL A 23 u^(s,8, t) = 0 (8.2.6) 

A:,i A 32 A 33 t) 

- V , , 
where Al", =1— ^l l + Vo|3 

2 \ 

l _ ^ 

38- w ^ a r 

A | 2 -
^U + Vc) 3" ^ 

2 3s38 

Au = 

A ,̂ =Af2, 

A%3 = 

A 23 
3 n2 (3-Vcd) 3^ 

A,, =Af 

A 32 - A 23 , 

i + p ; + 2 p : : ^ + p j v ' + 4 - ^ 
38- m - 3 r 

^ 34 34 3* 

3s'* ^38^" ^3s^38^ 
and 

' c d 

1-v, 

Pc=p: l + D 

I + 2K 

12a' 

' ^ + 2K^ 
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w: = 
a- p(l-v-) 

— is the ring frequency of the pipe. 

The displacements can be written as (equation 2.2 in chapter 2) 

/ / ' (s. 0, t) = ^ Unb c o . s [ n ( 6 - ( t ) ) ] e 
11=0 b=l 

u'(s,8,l)= 
n=Ob=l 

(s, 8,1) = % % w L cos[n(8 -(|,)] ejC'""'-™) 
n=Oh=l 

...(8.2.7 a, b, c) 

By substituting for the displacements from equation (8.2.7 a, b, c), equation (8.2.6) 

becomes 

L u L I , " 
U n b 

L '22 L^23 v L = 0 . . . ( 8 . 2 . 8 ) 

L 3 2 L r , _ 
W n b 

L i i = (k»b r / ' 
- V c ) 

2 
( l + V ( ) P c ) n -D-l 

"nb 

T ^ - T ^21 - 1̂2 

0 - v J 
(i+3voP^)(k:J + n - - n ^ 

= n + 
( 3 - v , J 
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- "-n 

L32 - L 23 

=I+P^+Pc 

Q,, = co/ 03,,. 

k^J +n' 2(3^n--rig and 

Similar to a homogeneous pipe, the wavenumber solutions of the composite pipe can be 

found by setting 

|L= 1 = 0 ...(8.2.9) 

8.2.2 M o d i f i c a t i o n of P i p e M o t i o n b y a C o m p o s i t e P i p e S e c t i o n 

Composite Pipe 
Section . 

t 

r Pipe 

S = S; S = Sg 

Figure 8.2; Diagram of a pipe with composite pipe section. 

Considering the composite pipe section shown in figure 8.2, the motion of the pipe can 

be determined from boundary conditions at the interface between the composite section 

and the pipe. These involve the continuity of motion across the discontinuity and the 

equilibrium of forces and moments at the discontinuity. In this section, two methods, 

which are analytical and wave methods, are used to analyse the motion of the pipe. Two 

methods are used as a check on each other. 
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8.2.2.1 Analytical Method 

The schematic of an infinite pipe having a discontinuous section is shown in figure 8.3. 

From the figure, the incident wave vector for any circumferential mode n a+, which is 

generated by a point force, produces the reflected wave vector a-, at s = si, and b at s = 

S2, and the transmitted wave vector b+ at s = si, and c+ at s = sg. From this model, the 

pipe motion for an axial position s < si can be calculated by the superposition of the 

incident wave vector a+, and the reflected wave vector a". It can be seen that at s > sz 

the displacement only depends on the transmitted wave vector c+. The motion of the 

pipe in the composite part of the pipe is the summation of the transmitted wave vector 

b+ and reflected wave vector b". Hence, to determine the pipe motion, all of these waves 

have to be found and they can be obtained from the boundary conditions at the 

discontinuities at s = si and s = sz. 

s = s„ 

P i p e Composite pipe 

a+ 

a ^ b 

Force 
s = s, s = 

Figure 8.3: Model of the waves at the discontinuous pipe section. 

I C o m p o s i t e 
C o m p o s i t e 

Figure 8.4: Notation and co-ordinate system at the discontinuity; a) Forces, b) Moment 
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At the discontinuity, the action of forces and moments is schematically shown in figure 

8.4. The boundary conditions can be considered from motion continuity and, force and 

moment equilibrium as given by (Harari [56] and Fuller [57]) 

, 8 , t ) [) 

, 6,0 

n/(s , 8 , t ) ti''''(s,.8. t) 

3n'( 3tv'^(S|.8, t) 

-
3s ^ _ 3s J 

and 

N ; ( S | , 8 , t ) , 8 , 0 ' 

( S j , 8 , 0 T s ' b ( s , , 8 , t ) 

M ; ( s , , 8 , t ) M ^ V s , • 8 , t ) 

_ V ; ( S | , 8 , 1 ) 
. 8 , t ) 

where V. =-

...(8.2.10) 

3s 39 3 6 
is called the effective transverse shear force. 

Tse = +—M,g is called the effective in-plane shear. 
a 

The conditions given in the above equation all involve displacements. This makes the 

analysis complicated. However, they are related to each other as discussed in section 

3.3. Both axial and circumferential displacements can be written in terms of the radial 

displacement as (equation 3.41) 

Unb=aHbWnh and 

V lib = V „b W lib 

Where L 9? ̂  I 1 

V » b 

^ L|IL22 LjiLi, J 

^ L 21L11 L|,L23 

is the axial coefficient and 
nb 

L11L22 
is the circumferential coefficient 

...(8.2.11 a, b) 

. . . ( 8 . 2 . 1 1 c ) 

...(8.2.11 d) 
Vnb 

These relationships for a composite pipe can be determined in the same manner given 

by 
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Uiu,=a;ibWnb and ...(8.2.12 a, b) 

V nb — V lib ^ "b 

Where (x»b = 
1,1.22 ^12^21 

is the axial coefficient and ...(8.2.12 c) 
/lib 

V » b is the circumferential coefRcient. ...(8.2.12 d) 

Omitting the term of e for convenience, the displacements, forces and moments of 

the pipe can be written in the form of the radial displacement as (equation 3.43) 

N Js. 8) = - Z W»b cos[n(8-4))1 
a b=i 

CI—v)K 4 = 
Tse (s. 8) = j ^ Z Zy Wnb sin[n(8 -(|))] 

2a b=i 

M J. (s, 6) — —— Z Zfy] nb ^ 'lb cos[n(9 — <j))] e ' "" 
a - b=i 

V;(s,8) = ZZvnbW"b cos[n(8-(|))]e^^" '̂' 
a b=i 

...(8.2.13) 

(/n(s,8) = -jZanbWnb cos[n(8-(|))]e 
b=I 

jkw,: (s.8)= ZVnb Wnb sin[n(8-(|))]e '̂'':^ 
b=l 

(s,8) = E Wnb cos[n(8-(t))]e pjk,*s 

aw (s,8) = cos[n(8-(|))]e^^""' 
as b=i 

where W„b is the radial amplitude of the b*'' wave of the circumferential mode, 

the axial, circumferential and radial displacement in the frequency 

domain, respectively, and the Z's are given by: 
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C//o/)/p,- 8.- W6r«f,o/; Co/ifm/ P,/)e.Y 

-'N^b knbanb +vn\|fnb +P^k^b +v 

-'T̂ ib no(nb +|1 + 3P jk^bVnb +3P'nk^b 

M ,nb knbKnb +vn\(/^b +k^b +vn^ ..(8.2.14 a, b, c, d) 

-V.nU k: nb { — V i a 
I 2 J ; 

/ 3 - v 
"knbVnb +l̂ nblknb +(2-v)n^ 

With the forces and moments obtained from equation (8.2.13), a set of boundary 

conditions for the composite pipe section can also be written in terms of the radial 

displacement as given by 

K 
N: (s, 8) = W »b cos[n(8 - 4,)] e 

b=l 

Tse (s. 8) = j f wL sin[n(8 -4))] e 
2a b=! 

M^K8)=:%%Z;^,yWL cos[n(8-(|))]cj"° 
a" b=i 

D 
V," (s, 8) = Wnb cos[n(8 -(|))] e 

a b=i 
...(8.2.15) 

X * ' 8 ) = - j E a%b W nb cos[n(8 -1)))] e 
b=l 

y^(s,8)= lYnb Wnb sin[n(8-(|))]e 
b=I 

M/̂ '(s,8)= EWnb cos[n(8-i|))]e^ 
b=l 

ik«i,s 

£ls b=! 

where -N^g+-M^8, 
a 
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V' =-
3s do do 

W,,h is the radial amplitude of the composite pipe for the wave of the 

circumferential mode, are the axial, circumferential and radial displacements 

of the composite pipe in the frequency domain, respectively, and the Z's are given by: 

Z' N , n b knbanb +V,nYnb+PKknb)"+V, 

^T.nb +(l + 3voPj)k^bY»b +3voP^nk^b 

k%bC(nh+^cunVl,b+(kMb) +Vcjn -"M-iih 

"V,nb -
l - V , . , , 

P̂ nb + 
"3-Vcd " 

/ J 

...(8.2.16 a, b, c, d) 

"k|;bVnb+knbf(knb) +(2-Vcd)n^ 

Equating forces (N, =Ng) and moments (M, = M,), and applying continuity of motion 

of u and lu, gives the boundary conditions at s = si as 

"N,(s,,8)" "N:(s,.8)' 

M;(K,,8) M^(s,,6) 

l/n(s,,8) C(s , ,8) 
_M/n(s,.8) W,Xs,.8)_ 

.(8.2.17) 

By sett ing si = 0, the conditions from the above equation yield 

Djjb^ +Di2b' =D^ga^ +D^^a . (8 .2 .18) 

where 
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Djj -

'N,nl 

" M , n l 

V„1 

"N.n2 

Vn2 
I 

y C y C y C 

Y»3 Vw4 
I 

D 12 

^N,n5 
7^ 
^N.n6 ZN,n7 7'^ 

-^N.nS 

7"" ZM,„6 
yC 
^M.n7 •^M.nS 

vis Vn7 

...(8.2.19 a, b) 

Di3 and Di4 are similar to Dh, Dig respectively, except t h a t the coefficients, Z's and 

\|/„h, used for the pipe. 

The other boundary conditions, which are 

T,8 (X,,8) 
y, (S|,8) 

(S|,8) 

a.s 

V,'(s,,8) 

aw;(s,,8) 

as 

produce another equation of motion 

.(8.2.20) 

D2ib^+D.„b" =D,qa^ +D,^a 22 23' 2 4 ' . ( 8 .2 .21 ) 

where 

^21 -

ZT.nl Z4.n2 Z .̂n4 Z .̂n, Zin6 Z ,̂n7 Z .̂nS 

Zv,u Z^.nl ^V,n3 Zv,n4 
, ^22 -

Zv.n.5 Zv.»6 y C 
^V.n7 

^V.ng 

a»i a»2 GnS ®a7 KnS 

kn. kL . .kn5 kL 

...(8.2.22 c, d) 

The matrices D23, and D24 are similar to D21, and D22, respectively, except t ha t the 

coefficients are for the pipe. 
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Because the wavenumbers of the pipe in the positive and t h e negative directions are 

related, i.e., k̂ b =-k„(b+4) and k|;b =-kn(b+4) where b = 1, 2, 3 and 4, the relationships for 

the pipe are: 

\|/nb = \|/n(b+4), Okb = -an(b+4), 

ZN,nb = ZN,iHb+4], ZT,nb = -ZT.n(b+4), ZM.nb = ZMXb+4) and Zv,nb = -Zv,n(b+4), 

and for a composite pipe as 

V nh " Vn(hi-4l ; ^ iih ~~"̂ 'n{b+4)5 

Zw.iib - Zx n(b+4) , '^T.nb - 2̂ T.n(b+4) J '^M.nb " ZM,n{b+4) and Zy.nb - Zy n(b+4)' 

This leads to 

Dii = Di2, Di3 = Di4, D21 =-D22 and D23 =-D24 ...(8.2.23) 

Substituting for the relationships given in equation (8.2.23) into equations (8.2.18) and 

(8.2.21), and arranging terms gives 

b++b-=Di^Di3(a++a-) ...(8.2.24 a) 

b+ - b = - a - ) ...(8.2.24 b) 

The boundary conditions at s = sg are similar to that at s = si, and give 
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Tfb++T^ib =Di^Di3C+ ...(8.2.25 a) 

Tfb+ -Tf^^b =D2^D23c' ...(8.2.25 b) 

where Tf = 

e" 0 0 

0 0 0 

0 0 e p 0 

0 0 0 

is the transfer matrix , and ...(8.2.25 c) 

Sep = S2 - Si is the length of the composite section normalised to the radius of 

the pipe. 

From equation (8.2.25), the relationships between the vectors b+ and b- to the vector c+ 

are found to be 

b+ :=-T;^G+c' 
2 * 

b+ = - T , G . c -

...(8.2.26 a) 

...(8.2.26 b) 

where G+=D,jD,3+D2ID23 and 

G_=Dn'D,3-D;}Dz3 ..(8.2.26 c, d) 

By substituting the vectors b+ and b from equation (8.2.26) into equation (8.2.24), the 

vector a and c+ can be determined in terms of the incident vector a+ as given by 

a- = G:^ G_ -G+G:^Tfr^G+ ]-^[G_ -G+G:^G+ ]-G+ |a' ...(8.2.27 a) 

c+ =[TG_ -G+G: 'T- 'G+r ' [G_ -G+G:'G+]a+ ...(8.2.27 b) 
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Once the all vectors are established, the pipe motion at any position can be obtained, 

and is given by: 

W s i - = a + + a ; s < s i . 

W s i + = b + + b " Sl+< S < S2- ...(8.2.28 a, b, c) 

W s 2 + = C+ S < S ^ 

8.2.2.2 Wave M e t h o d 

s = 0 

a , -4-
P i p e Composite pipe 

T 
F o r c e 

a i l b 'n 

1 2 

^22 

8 = 8, S = S„ 

Figure 8.5: Diagram of the reflection and transmission of waves at the discontinuity for 

any circumferential mode n. 

The analysis for the motion of an infinite pipe from the wave point of view is presented 

in this section. As discussed by Cremer and Heckl [17], and Mace [54], the reflected and 

transmitted waves for any circumferential mode n are in proportion to the incident 

wave at the discontinuity. These constants of proportionality are determined from the 

reflection and transmission matrices. The configuration shown in figure 8.5 represents 

the transmitted and reflected waves at the discontinuous section of composite pipe. The 

reflected wave aj'i and the transmitted wave arise at position s = si from the 
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incident wave . Tlie reflected wave bgi and transmitted wave are the result of the 

wave bĝ  striking the boundary at s = 82, while the wave produces the reflected wave 

bi2 and the transmitted wave a^g the boundary s = si. 

The relationships of the reflected and transmitted waves to the incident wave are given 

by: 

= R i a \ b+i = T i a \ = % ! , b+g ^Rgb^^, c+ =T2(b; i+b;2) , 

bgi = Rg (bgi +b22), >̂21 = Tj-bjj, bj j = Tj-bgj, b22 = Tfbj2 .. .(8.2.29) 

where Ri and Rs are the reflection matrixes of waves in the pipe and in the composite 

pipe section at the discontinuity, respectively, 

Ti is the transmission matrixes of waves in the pipe to the composite section 

Tg is the transmission matrixes of waves in the composite section to the pipe, 

Tf is the transfer matrix given in equation (8.2.25 c). 

With a set of the boundary conditions obtained from equations (8.2.17) and (8.2.20), the 

equation of motion at s = S2 can be established as 

Dji(b2i +b|2) + Di2b2i =D^gC+ ...(8.2.30 a) 

D21 (bgi+b22) + D22b2i =D23C"̂  ...(8.2.30 b) 

where the all matrices are given in equations (8.2.19) and (8.2.22). 

Substituting for b̂ ^ and c^from equation (8.2.29) into equation (8.2.30) yields 
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D j i + D j j R 2 = Dĵ gTg ...(8.2.31 a) 

D21 —1̂ 21̂ 2 ~ ̂ 23^^2 ...(8.2.31b) 

The transmission matrix, Tg, is found by solving the above equation and the reflection 

matrix, Rg, is obtained by substituting Tg back into equation (8.2.31 a). Doing this gives: 

...(8.2.32 a) 

R2=2Dr:Di3|Dj-^Di3+Dg:D23j - I ...(8.2.32 b) 

where I is the identity matrix. 

At s = si, a set of the boundary conditions from equations (8.2.17) and (8.2.20) gives 

Djj(bj j +bj2)+ Di2l'ii — ^13^ +Di^(^11 + ̂ 12) ...(8.2.33 a) 

^21^^11 +1^12^+^22^11 = +D24(&11 +&12) ...(8.2.33 b) 

Substituting for a j j , ajg, and from equation (8.2.29) into equation (8.2.33), and 

arranging the terms yields 

[DjjRg +D12 — ]bjj = [—DjjTj +Dj3 +Dj^Rj]a^ ...(8.2.34 a) 

[D21R2 +D22 ^1^24X2]bjj = [-DgjTj +D23 +D24R1 ja'*' ...(8.2.34 b) 
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In equation (8.2.23), it was shown that Dn = Dig, Dis = D14, D21 = -D22 and D23 = -D24. 

Substituting these relationships into equation (8.2.34) and noting the relationship given 

in equation (8.2.31) shows that the left-hand sides of equations (8.2.34 a) and (8.2.34 b) 

are equal to zero. Thus: 

DiiTj^+Dj^g+Dj3Rj - 0 . . . (8.2.35 a) 

"^^23 ~®23^1 — 0 ...(8.2.35 b) 

Using a similar method as used to determine T2 and R2, Ti and Ri are found to be: 

t i ...(8.2.36 a) 

r i = 2 - i .. .(8.2.36 b) 

Once the reflection and transmission matrixes are determined, the wave vectors; i.e. 

^11, ^12, and can be found as follows. 

b n 

- T^Rg (bg^ H-bgg) 

= t fr2tf (b+i+b;2) ...(8.2.37) 

= TfR2Tf(Tia++R2bii) 

= [l-TfR2TfR2MTfR2TfT,a+ 

The wave vector is 

C + = T 2 ( b + i + b ; 2 ) 

= t2tf(b;^i+b+2) ...(8.2.38) 

= T2Tf(Tia++R2bii) 
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Substituting obtained from equation (8.2.37) into equation (8.2.38) and arranging 

the terms give 

c+ =T2Tf{l+Rjl-TfR2TfR2MTfR2Tfka+ ...(8.2.39) 

With all vectors obtained, the pipe motion at any position can be determined by the 

vectors of total wave motion given by 

W,,_ =a^ +a,, +a,2 

= a^ +R,a^ +T2b[, 

= {l+Ri+T2[l-TfR2TfR2rTfR2TfTja+ ...(8.2.40 a) 

"̂51+ -
= T|a^ + R lb ]] + b]i 

= {l+[l+Rjl-TfR2T(R2MTfR2Tf }Tia+ ...(8.2.40 b) 

Ws2+=c+ ...(8.2.40 c) 

8.2.3 N u m e r i c a l V a l i d a t i o n f o r t h e M o b i l i t y of a n I n f i n i t e P i p e H a v i n g a 

C o m p o s i t e P i p e S e c t i o n 

In the previous section, two methods have been used to analysis the motion of an 

infinite pipe, in which the composite pipe section is considered as a discontinuity. Both 

analysis and wave methods are used as a check on each other. Since their formulae are 

complex, it is difficult to compare them theoretically. Hence, in this section, the 

comparison is carried out numerically. The numerical predictions of both methods 
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calculated using the pipe data given in table D.l (appendix D) and the Nitrile rubber 

data in table 8.1 for the composite pipe section. The reason for choosing the Nitrile 

rubber in the composite part of the pipe is because of i ts high young's modulus in 

comparison with other damping materials (Cremer and Heckl [17]). This means the 

composite section should have more effect on the incident wave and thus give 

distinction of the mobilities at both ends of the section. The mobilities are predicted at 

the positions of discontinuities, which are si = 50 and S2 = 52. The predicted mobilities 

obtained from both methods are compared for each circumferential mode and are shown 

in figure 8.6. 

Table 8.1: Nitrile Rubber data 

Ed (N/m2) Pel (kg/m^) V d t (mm) l i d 

3.31=109 1100 0.4 0.25 0.8 

The numerical results show clearly that both methods give the same results. However, 

the wave method seems to provide more physical information on the dynamic behaviour 

of an infinite pipe with a composite pipe section. This information such as the reflection 

of the incident wave and the wave motion in the composite par t is expressed by the 

reflection matrixes, Ri and R2, and the transmission matrixes, Ti and T2. In the rest of 

this chapter, this method will be used for the simulation presented. 
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Figure 8.6: Amplitude of the mobility for the n = 0-3 modes of ah infinite pipe having a 

composite pipe section, whose boundaries from the excitation are si = 50 and S2 = 52; ... 

Analytical method, Wave method. 

8.2.4 E v a l u a t i o n o f P a s s i v e C o n t r o l w i t h a D a m p i n g M a t e r i a l 

Damping can be used to reduce vibration by means of energy dissipation. A damping 

material can be used to increase the damping of the structure for this purpose. Apart 

from damping, the Young's modulus of a material is also an important property used to 

control vibration. In this section, the effects of stiffness and damping of an attached 

layer on vibration transmission along the pipe is investigated. 
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\< Sj >• 
•=w 

A 

t > .pe 

Force 

\ 
\ Damping \ 

Material Sensor 

Figure 8.7: Diagram of an infinite pipe where the composite pipe section is formed by 

attaching a damping material. 

An unconstrained-layer of damping material is attached to an infinite pipe to form a 

composite pipe section as shown in figure 8.7. With such a composite section, the 

analysis of the pipe motion is similar to that described in section 8.2 where the complex 

modulus of the damping material is given by Ej = E^d + j ) where T|̂  is the loss factor 

of the damping material. 

From equation (8.2.40 c), the vector of waves downstream of the composite section at 

position Sw is given by 

w(s = s^,8) 
0 

• 0 

• 0 

0 

0 

0 

0 

0 

0 

0 

3ik„3(S„-Si-SL) Q 
...(8.2.41) 

where vector c+ is obtained from equation (8.2.39). 

Since the transmission of propagating flexural waves is of concern in this thesis, the 

composite section and sensor position are set so that si = 50, Sw = 100 and SL is varied. 

This means that they are in the far field of the excitation force, where there are no 

standing near field and near field waves. The effects of the Young's modulus and the 
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loss factor of the attached material (Nitrile rubber) to the pipe motion are examined and 

shown for the n = 0-2 modes in figure 8.8-8.10 and 8.11-8.13, respectively. The 

investigation is also carried out for the several lengths (sL) of the damping material 

(Nitrile rubber), the results of which are presented in figures 8.14-8.16. 

Figures 8.8, 8.9, 8.11 and 8.12 show that the changes of the Young's modulus and the 

loss factor of the attached material have a negligible effect on the pipe motion for the n 

= 0 and n = 1 modes, especially at low frequencies. This is because at low frequencies 

the longitudinal wave for the n = 0 mode (extensional mode), and flexural wave for the n 

= 1 modes (bending mode) have long wavelengths compared wi th the composite section. 

At high frequencies where the wavelengths are shorter, an axial mode can be formed in 

the composite section due to the interference of the transmitted and reflected waves at 

the boundary of this section so that the attenuation of the incident wave for both modes 

can be obtained (although not shown in this thesis). 

Unlike the n = 0 and n = 1 mode, the Young's modulus and the loss factor of the 

attached material have a greater affect on the pipe motion for the n = 2 mode. Figures 

8.10 and 8.13 show that the attenuation increases with increasing Young's modulus and 

loss factor. The higher stiffness gives greater attenuation because the high stiffness of 

the composite section resists the changing shape of the pipe in the circumferential 

direction. 

As discussed above, it clearly shows that for effective passive control using an 

unconstrained-layer material bonded to the pipe a high Young's modulus or high 

damping of such material is required. Even though the damping materials such as 

Polyvinylchloride, Polystyrene and Nitrile rubber normally have a low Young's modulus 

about 0.3*10^ - 3.3*10^ Nm- ,̂ they have a high loss factor about 0.8-2 (Cremer and 

Heckl [17]). Since the loss factor of the damping material is added to the system, the 

effective loss factor of the system can be increased by increasing the length of such 

materials giving a larger attenuation as shown in figures 8.14-8.16 when the Nitrile 

rumber is used as the damping material. 
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Figure 8.8: Amplitude of the mobility of the n = 0 mode of an infinite pipe with the 

attached material having SL = 2, T|d = 0.8; E d / E = 0.01, E d / E = 1, E d / E = 100, 

.. .without the attached material. 

n = 1 (Various E /E) 

z 
E 

-§ 
s 

N o n - d i m e n s i o n a l F r e q u e n c y (O) 

Figure 8.9: Amplitude of the mobility of the n = 1 mode of an infinite pipe with the 

attached material having SL = 2, T|D = 0.8; Ed /E= 0.01, Ed /E= 1, _ . _ E d / E = 100, 

.. . without the attached material. 
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n = 2 (Various E /E) 

I 

- 1 2 0 
10 10 - 10 " 

N o n - d i m e n s i o n a l F r e q u e n c y (O) 

Figure 8.10: Amplitude of the mobility of the n = 2 mode of an infinite pipe with the 

attached material having SL = 2, rid = 0.8; Eci/E= 0.01, Ed/E= 1, _ . _Ed/E= 100, 

.. .without the attached material. 

n " 0 (Various Loss Factor) 

- 1 2 0 

jj -160 

N o n - d i m e n s i o n a l F r e q u e n c y (O) 

Figure 8.11: Amplitude of the mobility of the n = 0 mode of an infinite pipe with the 

attached material having SL = 2, Ed/E = 0.83; iid = 0 1, T|d = 1, - •• -'Hd = 10, 

.. .without the attached material. 
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Figure 8.12: Amplitude of the mobility of the n = 1 mode of an infinite pipe with the 

attached material having SL = 2, Ed/E = 0.83; 11̂ = 0.1, 11̂ = 1, _ .. _iid= 10, 

.. .without the attached material. 
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Figure 8.13: Amplitude of the mobility of the n = 2 mode of an infinite pipe with the 

attached material having SL = 2, Ed/E = 0.83; 1]̂  = 0.1, 

...without the attached material. 

-Tld = 10, 
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n = 0 (Various Length) 

N o n - d i m e n s i o n a l F r e q u e n c y (O) 

Figure 8.14: Amplitude of the mobility of the n = 0 mode of an infinite pipe with the 

damping material having E(i/E = 0.83 and Tid = 0.8; SL = 2, SL = 5, _ _ SL = 20, 

.. .without the damping material. 

n = 1 (Various Length) 

N o n - d i m e n s i o n a l F r e q u e n c y ( O ) 

Figure 8.15: Amplitude of the mobility of the n = 1 mode of an infinite pipe with the 

damping material having Ed/E = 0.83 and T|d = 0.8; SL = 2, SL = 5, _ _ SL = 20, 

.. .without the damping material. 
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2 (Various Length) 
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Figure 8.16: Amplitude of the mobility of the n = 2 mode of an infinite pipe with the 

damping material having Ea/E = 0.83 and rid = 0.8; SL = 2, SL = 5, _ _ SL = 20, 

.. .without the damping material. 

8.3 Adaptive-passive Control fo r Infinite P ipes by Tuning 

Piezoelec t r ic S h u n t 

8.3.1 S t a t i c M o d e l of a S h u n t e d PZT E l e m e n t 

The configuration of a composite pipe section with a PZT element shunted by an 

external circuit is shown in figure 8.17.a. It is well known tha t a piezoelectric material 

has the ability of converting a mechanical strain to an electrical charge called the direct 

piezoelectric effect (Morgan Matroc [27]). From the electrical point of view, this material 

is equivalent as the current source shown in figure 8.17.b or the voltage source in figure 

8.17.C where qz is the electrical charge generated by the PZT element, Vz is the open 

circuit voltage generated by the PZT element, and Cz is the capacitance of the PZT 

element . 
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Figure 8.17: Diagram of the composite pipe with a PZT element connected to a shunt 

circuit; a) the PZT element shunted with the electrical impedance Ze, b) An electrical 

equivalent of the PZT element as the current source, c) An electrical equivalent of the 

PZT element as the voltage source. 

The electro-mechanical equation for piezoelectric plates or pipes can be given by (Lee 

[29]) 

" a f 
"" "l" \ 

(?8 ee - ^3^31 1 

Gse \ 
Gge 0 y 

. . ( 8 . 3 .1 ) 

where [c] = 

E z 
0 

1 - V z i - v ; 
VzE, 
1-v; 

V z E z 
0 

VzE, 
1-v; i - v ; 

9 R 
0 0 

1 + v. 

. . . ( 8 . 3 . 2 ) 

Es is the electric field, and 

Ez is the Young's modulus of the short-circuit PZT. 

The electrical displacement on the surface of the PZT element is given by 
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D3=E33E3+d3i(o^+o|) ...(8.3.3) 

Substituting for the stresses from equation (8.3.1) gives 

D g = EgyEg + b g j (Gg + e g ) . . . ( 8 . 3 . 4 ) 

where b,, =——-

From Maxwell's equation, the electric field, Es, is related to t h e electric potential by 

Vy =- jE^dz = — ( C ; +eg)-Di;] ...(8.3.5) 

where hz is the thickness of the PZT element, 

Az is the surface area of the PZT element, and 

Cz = ^ is the capacitance of the PZT element. 

For the open circuit condition, when Da = 0, the generated voltage from the PZT element 

is 

V, = j coA^Zpbji (e, +eg) • • .(8.3.6) 

where Z = —-—is the open-circuit electrical impedance of the PZT element. 
jwC; 

Shunted with the external electrical circuit of impedance Zs, the PZT element produces 

the voltage, which is given as 

V^=j(oAzZ^.bi|(e;+eg) ...(8.3.7) 
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where 2 ^ = 2 , + Ẑ  is the net impedance of the PZT element shunted. 

Because the electric field across the PZT element, Es, is equal to Vz/t, by substituting for 

Vz from equation (8.3.7) into equation (8.3.1), the stresses in the PZT shunted with the 

external circuit is given by 

e, +jwA^Zgb^,d^ (G; +ee) 

(̂ 8 = [c] e8+j(0A,Zgb;,jdi (G; +eQ) ...(8.3.8) 

-

Ezdi, Substitution for k̂ , = ^ , which is the electro-mechnical coupling factor (Morgan 

Matroc [27]), gives 

Os Gg + k3iZg(eg + eg)/(I - Vg) 

= [c] eg + k3̂ Zg(eg + eg) /(I - Vg) ...(8.3.9) 

Os8 Gs8 

where Z. = — 
' Z„ 

Since a^e is not changed by the shunted circuit, this term is omitted in the following 

analysis. By substituting for the matrix C obtained from equation (8.3.2) into equation 

(8.3.9) and arranging the terms, the stresses in the shunted PZT can be rewritten as 

a f _ Ezn Gg + V̂ gBg 

. 4 . 1 - C _VznGB + Gg 
...(8.3.10) 

w h e r e E„, = 
Pz V 

...(8.3.11 a) 

223 



Chapter 8: Passive and Adaptive-passive Vibration Control of Infinite Pipes 

...(8.3.11b) 
Pz+VcQz 

I 2 y 

P = l + l 2 l 6 . a n d 
l - v . 

1-v, 

Equation (8.3.11) shows clearly that the Young's modulus and the Poisson's ratio of the 

PZT material can be changed with the change of the impedance of the external circuit. 

8.3.2 A d a p t i v e - p a s s i v e C o n t r o l w i t h a P Z T E l e m e n t S h u n t e d w i t h a 

P a r a l l e l L-R C i r c u i t 

It was pointed out by Wu [62], Wu and Bicos [63] that the inherent resistance of the 

inductor should be considered when a series L-R circuit (L is the inductance and R is 

the resistance) is used for shunting a PZT element. This can make the tuning of the 

electrical resonant frequency complex. In this section, however, a parallel L-R circuit is 

used for a shunt where the resistance of the inductor is neglected for simplicity, and the 

properties of a PZT element modified by this circuit are investigated. 

As discussed in section 8.2.6, the requirement for the large at tenuation of a propagating 

wave is a high stiffness or high damping of a PZT element attached to an infinite pipe. 

This can be done by tuning inductance and resistance in a parallel L-R circuit (external 

circuit) shunting to the PZT element as shown in figure 8.17. 

With the parallel L-R circuit and with the piezoelectric's capacitance, the non-

dimensional electrical impedance is given by 
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Z = -
(o'L,C,R, 

R̂  - CO L^CgRz + j (oLg 
...(8.3.12) 

Figure 8.18; A PZT element shunted with the parallel L-R circuit. 

By setting non-dimensional parameters, equation (8.3.12) becomes 

Z„ = - a,:T. 
6; : , 

...(8.3.13) 

where = R^C^Wn, 

a 
CO 

(o„ ' 
...(8.3.14 a, b, c, d) 

CO,, 

(0„ 

(Dg = , is the electrical resonant frequency and 
V ^ z ^ z 

0),, is the cut-on frequency of the n = 2 mode of the pipe. 

Substituting for Zg from equation (8.3.13) into equation (8.3.11) and arranging the 

terms gives 

E ^ ^ E . t l + Z^+jZr) ...(8.3.15 a) 
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1 + 
1 + V, 

Z f + j 1 + v, Zf 

where Z}' = k̂ . 

I + -
l+v. 

and 

a: + 

ZT=k^ (Xete 

Oe-Se 

a: + l + -
l + v. 

cx ~ — 51 

...(8.3.15 b) 

Equation (8.3.15 a) yields the complex elastic modulus of the PZT element. By 

comparing this with the mathematical notation as E ^ = E n ( l + jT|g), the Young's 

modulus, En, and the loss factor, Tiz, of the parallel L-R shunted PZT are found as 

E. =E, 1 + ZP 

11 z 

l + ZP 

...(8.3.16 a) 

...(8.3.16 b) 

The properties of the PZT element, E^ , iiz, &od Vg,, can be changed at any frequency 

via the inductance L resulting in a change of the electrical resonant frequency. Their 

values can also be adjusted by changing the resistance. 

8.3.3 E v a l u a t i o n of A d a p t i v e - p a s s i v e C o n t r o l w i t h a P Z T S h u n t 

In this section, the effectiveness of adaptive-passive control for suppressing the motion 

of an infinite pipe is investigated. As described in the previous section, a high Young's 

modulus and a high damping are required. So, before the control strategy is evaluated, 

a change of the mechanical properties of the PZT material by tuning the shunt 
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inductance (Lz) and resistance (Rz) is first investigated. Using the data for the PZT 

element in table D.3 (appendix D) and a length of SL = 5, its properties shunted with the 

parallel L-R circuit are calculated and are shown in figure 8.19. With the shunt, its 

properties are frequency dependent and sharply change around the resonance 

frequency of the electrical system. Figure 8.19.a shows the h igh loss factor and the high 

Young's modulus do not occur at the same frequency, and is not at the electrical 

resonance frequency (tuned fi'equency). As expressed in equation (8.3.15), the Young's 

modulus and the loss factor depend on the inductance and resistance of the shunt 

circuit so that their value changes with increasing resistance. Figure 8.19.b illustrates 

the change of the Poisson's ratio with the phase shift, Im( v VReCv^n ). This phase shift 

arises because the delay of the lateral contraction due to the inertia of the PZT 

material. Generally, Poisson's ratio has a positive value giving the phenomenon of 

Poisson contraction. However, it shows an inverse phenomenon at some frequencies 

where it has a negative value. This means that the lateral sides are expanded rather 

than contracted. 

Under the tuning of Lz (set so that the electrical resonance frequency is equal to the cut-

on frequency of the n = 2 mode) and Rz, the mobility of the pipe for the n = 0-2 modes is 

shown in figure 8.20-8.22. As expected, it is difficult to obtain attenuation for the n = 0 

mode at the tuning frequency due to the long wavelength of the longitudinal wave. Only 

a small attenuation of the n 1 mode is obtained at the tuning frequency. The increase 

in Young's modulus of the shunted PZT also means there is some attenuation of this 

mode at the tuning frequency. At high frequencies where the wavelength of the 

longitudinal and bending waves are shorter, both modes are a t tenuated slightly due to 

the increased Young's modulus of the PZT element. As discussed in the previous 

section, an increase in Young's modulus and the loss factor of the material bonded to 

the pipe have a greater affect on the n = 2 mode, and this is demonstrated in figure 

8.22. In this figure, the mobility of the infinite pipe with the PZT element attached and 

shunted with Rz = 500 reduces by about 8 dB compared with tha t of the open circuit. 

This figure also shows the response of the n = 2 wave in the composite section cutting 

on at higher frequency because of its higher stiffness. It can be seen more clearly in the 

dispersion curve shown in figure 8.23. 
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8.4 Discussion 

8.4.1 P a s s i v e C o n t r o l 

The effectiveness of one type of passive vibration control treatment has been 

numerically evaluated by comparing the motion of an infinite pipe before and after 

applying a damping material over a section of the pipe. With the simulations in section 

8.2.4, it has been found that for control of the pipe motion, a high stiffness and a highly 

damped material bonded on the pipe is required to reduce an incident wave 

downstream. The incident wave is reflected at the composite section by the stiffness of 

the attached material resulting in less transmitted waves, while its energy is dissipated 

by the damping of the attached material. A small attenuation is obtained at high 

frequencies for the n = 0 and n = 1 modes, where the longitudinal waves of the n = 0 

mode and the flexural wave of the n = 1 mode have a small wavelength compared with 

the length of the attached material. For the circumferential mode (n > 2), both the high 

stiffness and the high damping of the attached material can give a large attenuation. 

Passive control of the n = 2 mode by using a very high stiffness such as steel is possible 

for a PVC pipe, whose stiffness is relatively small. However, in the case of a pipe with 

high stiffness such as steel or aluminium, it is difficult to reduce vibration. For passive 

vibration control by increasing the damping of the system, a material with high loss 

factor is required. Nevertheless, commercial damping mater ials have loss factor about 

0.8-2 (Cramer and Heckl [17]), which is not effective for a t tenuat ing vibration of the 

pipe. 

Compared with the active vibration control system discussed in chapter 7, it can be seen 

that the passive vibration control strategy investigated is much less effective. 
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8.4.2 A d a p t i v e - p a s s i v e C o n t r o l 

According to the investigation for passive control, a high loss factor and a high Young's 

modulus of the PZT material is required for reducing the transmission of the n = 2 

incident flexural wave. These can be obtained by tuning an inductance and a resistance 

of the shunt circuit. However, appreciable attenuation for the n = 0 and n = 1 modes 

cannot be achieved at the tuning frequency, as described in the passive case, which is 

due to the long axial wavelengths of these modes. This is not t h e case for the n = 2 mode 

so that greater attenuation can be achieved for this mode. 

Even though, adaptive-passive vibration control has the ability to attenuate vibration of 

the n = 2 mode, its performance is limited to about 6 dB at the cut-on frequency (figure 

8.22). Thus it is less effective than the active control system. 

8.5 Conclusions 

Based on the analysis of the composite pipe, an expression for the pipe motion has been 

established using two methods, an analytical and a wave method. With this expression, 

the performance of passive and adaptive-passive control system is investigated. 

For passive control, a material with high stiffness and high damping is required to 

reduce vibration of the pipe. It is found that the at tachment of this material to a pipe 

can give greater attenuation a disturbance of the n = 2 mode than the modes n = 0 and 

n = 1. However, with damping materials available, it is difficult to make this control 

strategy effective. 

Properties of a PZT element such as Young's modulus, Poisson's ratio, and loss factor, 

can be changed with a shunt of a parallel L-R circuit and they are frequency dependent. 

Based on the analysis for the passive control, the motion of an infinite pipe having a 
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shunted PZT material bonded to it can be predicted. As mentioned in the passive case, 

even though the high damping and high stiffness of the PZT element is obtained by 

adjusting the values of inductance and resistance, the adaptive-passive control system 

is only effective in at tenuating vibration of the n = 2 mode. However, this attenuation is 

not much greater than simply adding the PZT element without a shunt circuit. 

Compared with active vibration control of the n = 2 flexural propagating wave described 

in chapter 7, the performance of passive and adaptive-passive vibration control seems to 

be less effective. 
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CHAPTER 9 

CONCLUSIONS 

9.1 General Conclusions 

This chapter contains general conclusions of the whole thesis. The detailed conclusions 

have been given at the end of each chapter. Even though th is work contains three 

control strategies, which are the passive, adaptive-passive and active control for an m-

uacwo pipe, the main objective in this thesis has been to use active control to suppress 

the vibration of the n = 2 flexural propagating wave. Hence, most details in the thesis 

are dedicated to the development of an active vibration control system for this 

particular wave. The other control systems, passive and adaptive-passive control, have 

only been investigated for comparison with the active control system. 

The development of the active control system for the n = 2 flexural wave involved three 

elements; (a) the analysis of the behaviour of the pipe to be controlled, (b) the analysis 

of the n = 2 modal sensor and the n = 2 modal actuator coupling with the pipe and, (c) 

the analysis of the behaviour of the system when the active control is implemented. The 

dynamic behaviour of the pipe was analysed and presented into two ways. The first 

involved an investigation of the waves propagating in the pipe wall and was 

characterised by the wavenumber, and the other involved t h e forced vibration of the 

pipe characterised by the mobility. 
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In chapter 2, the wave characteristics of an pipe were discussed. The dynamic 

behaviour of the pipe is complex due to its curvature, but Flugge's shell theory is used 

to make the interpretation of the wavenumbers easier. This simplification was based on 

the following assumptions; the thickness of the pipe wall is much smaller than the 

radius of the pipe, the frequency range of interest is below t h e ring frequency, and the 

product of the wavenumber and the radius of the pipe (except for the longitudinal and 

the torsional waves) is much larger than the non-dimensional frequency. With these 

assumptions, it was shown that the pipe behaves like a membrane for the n = 0 mode 

and like a beam for the n = 1 mode. Moreover, at very low frequencies it behaves like an 

Euler-Bernoulli beam for the n = 1 mode. A simplified expression for the cut-on 

frequency of the n > 2 modes was also obtained using the assumptions. 

The mobility of an infinite pipe was discussed in chapter 3, and was derived using the 

residue and analytical methods. Even though both methods are different, the resultant 

mobility was found to be the same. The advantage of the analytical method is that it 

provides additional, physical information; i.e. no slope, no twist and no axial 

displacement at the point force excitation position. Once the mobility of the infinite pipe 

had been established, it was simplified. This was done for very low frequencies on the 

basis of the assumptions used for simplifying the wavenumber in chapter 2. With the 

approximate mobility expression, it was shown that the pipe behaves like a membrane 

for the n = 0 mode and like an Euler-Bernoulli beam for the n = 1 mode. 

In a similar manner to the infinite pipe, the mobility of a semi-infinite pipe described in 

chapter 4 was derived using two methods, which are the analytical and the wave 

methods. Even though there was no theoretical comparison for wave amplitudes due to 

the complexity of the pipe, the simulations showed that both methods gave the same 

result. The mobility expression in this case was simplified for very low frequencies by 

applying the assumptions used for simplifying the wavenumbers in chapter 2. The 

simplified mobility of the semi-infinite pipe was found to be similar to that of the 

membrane and the Euler-Bernoulli beam for the n = 0 and n = 1 mode, respectively. 
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Chapter 5 involved an analysis of sine and cosine modal sensors for the n = 2 mode of a 

pipe. Based on Flugge's shell theory, the relationship between the charge generated 

from a PVDF sensor and the combination of the axial and circumferential bending 

strains has been established for the case of an in-extensional deformation. From the 

analysis, it was found that the higher order modes can be detected by the sensor, 

because the axial strain over the surface of the modal sensor is not constant. In order to 

minimise the cross-sensitivity, which is the ratio of the response of the higher mode to 

that of the n = 2 mode, the width of the sensor should be small. For a cross-sensitivity of 

-20 dB between modes n = 6 and n = 2, the width of the sensor should be about one 

third of the wavelength of the n = 2 flexural wave at the ring frequency. By using both 

sine and cosine modal sensors, the orientation of the wave in the pipe can be detected. 

The design of the sine and cosine modal actuators for the n = 2 mode were described in 

chapter 6. Each type of modal actuator was created using four PZT elements, which are 

the minimum number to form such an actuator. Using the minimum elements, spillover 

into the n = 6 mode occurs. However, it may be neglected because it occurs at a high 

frequency. From the analysis and experiment, it was found tha t the orientation of the 

wave can be changed to any angle when both sine and cosine modal actuators are 

simultaneously used. The orientation angle depends on the voltages supplying to the 

actuators. Thus the modal actuator can be used for suppressing disturbances, which 

have any orientation. 

For an infinite pipe, only flexural waves can propagate along the pipe, while other 

waves, near field and standing near field waves, have negligible amplitude at some 

distance from the point of excitation. Hence, the control system was focused on 

suppressing this wave. The control strategy used in this thesis was an active control 

system. The others, which are passive and adaptive-passive control, were also 

investigated in order to compare the performance of the active control system. 

Having established the dynamic behaviour of the pipe in terms of the mobility, the 

active control system to suppress the flexural wave of the n = 2 circumferential mode 

was modelled. A PVDF modal sensor and a PZT modal actuator for the n = 2 mode were 
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developed to sense and actuate this wave. Since the disturbance caused by the 

excitation load consisted of sine and cosine components, the modal sensor/actuator was 

also designed in the form of a pair of sine and cosine functions to counteract each 

component. It was shown that the disturbance of the n = 2 flexural wave can in 

principle be completely suppressed. Generally, this wave is dominant in the pipe 

response after it cuts on and before the higher order modes cut on. Hence, the 

performance of the active control system is over a limited frequency range. However, 

spillover into the n = 6 mode occurs with this control s t rategy because the modal 

sensor/actuator also detect and actuate the pipe response of th is mode. It occurs because 

the strains are not constant over the width of the modal sensor and for the actuator 

because the minimum number of PZT elements to form the modal actuator was used. 

The effect of this spillover can be reduced by decreasing the width of the sensor and 

increasing the number of PZT elements for the actuator. Nevertheless, this effect can be 

regarded as being insignificant since it occurs at high frequencies compared to the cut-

on frequency of the n = 2 mode. 

For the passive control system, an expression for the pipe motion with an unconstrained 

material bonded to it has been established. This was done by considering a composite 

pipe section. With the boundary conditions at the ends of the composite section, the 

motion of the infinite pipe was determined. In this control strategy, the loss factor plays 

a role on dissipating energy, while the stiffness plays a role in resisting the change in 

circumferential shape of the pipe. Both are effective for the circumferential n = 2 mode 

but not for the n = 0 and n = 1 modes. In order to achieve high vibration attenuation 

with this strategy, high stiffness and high loss factor of the material attached to the 

pipe in the composite section are required. However, damping material normally has a 

high loss factor but low stiffness so that it is difficult to achieve good performance with 

this control strategy. 

For adaptive-passive control, an expression of the pipe motion was found to be similar 

to that for passive control except that the properties of the PZT element (attached 

material) can be changed with a shunt of a parallel L-R circuit (an external circuit). 

These properties are Young's modulus, Poisson's ratio, and loss factor, which can be 

increased by tuning the inductance (L) and the resistance (R). Like passive control, the 

237 



Chapter 9: Conciitsians 

increase of the stiffness and loss factor of the PZT element can significantly attenuate 

vibration of the n = 2 mode, but not that of the modes n = 0 and n = 1. 

Even though both strategies, passive and adaptive-passive control, can reduce vibration 

of the n = 2 mode, they are less effective than fully active control. With the length of a 

composite section SL = 5, the attenuation obtained from the passive approach using the 

Nitrile rubber (damping material) attached to the pipe is approximately 6 dB at the cut-

on frequency, while the attenuation obtained from the adaptive-passive system using a 

PZT shunt is about 6 dB greater than that using a simple PZT element without 

shunting. Unlike both approaches, the active vibration control system can in-principle 

completely suppress the vibration of the n = 2 mode (with a 15 dB reduction in the 

overall vibration at the cut-on frequency measured in practice) with the PZT modal 

actuator having the length of SL = 0.24. 

9.2 Recommenda t ions fo r F u r t h e r Work 

The analysis of modal sensors/actuators described in chapters 5 and 6, respectively, is 

general for the n > 2 modes of an infinite pipe before concentrating on the n = 2 mode. 

However, fur ther experimental work on the higher modes could be carried out. 

In chapter 7, the work concentrates on the active control of the n = 2 flexural wave of an 

infinite pipe. It could be extended to suppress the n = 2 near field wave by using two 

sets of sine and cosine modal actuators. 

The work in chapter 8 is an investigation in some aspects of passive and adaptive-

passive vibration control of an infinite pipe. For passive control, further investigation 

could be continued on the effective ratio of the length of damping materials to the 

flexural wavelength of circumferential mode of an infinite pipe. This could be useful for 

evaluating the attenuation of an incident wave. For adaptive-passive control, an 
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investigation into the optimum tuning frequency and the stability of the control system 

could be conducted. 
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/Appendix A: Modal Decomposition 

APPENDIX A 

To investigate the reduction of each circumferential structural mode amplitude that is 

achieved by applying active vibration control, modal decomposition of the measured 

response should be carried out so that a comparison of the response before and after 

control applied to each mode can easily be undertaken. Moreover, the modal 

decomposition technique may be used to measure the effectiveness of a distributed 

PVDF modal sensor. This technique is based on the principle of discrete orthogonality 

(Arfken [20]). To illustrate this technique, equation (3.13) is considered. By expanding 

the term cos[n(6 - (j)}] into sine and consine functions, this equation is written as 

2npha^mr b=i 

where = cos(n(|)), 

X2 = sin(n(|)) and 

(j) is the orientation angle. 

Since the term on the right hand side of this equation consists of two separate 

parameters, 6 and s , the total mobility may be written as 
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Appendix A: Modal Decomposition 

y ' = ^A;,[A,iCos(n8) + A.2sm(n8)] ...(A.2) 
n = 0 

where = Resbê '̂ ''''̂  
2npha o),. b=i 

Assuming the measurement is made using a point sensor (i.e. accelerometer) at N 

points around a pipe with equal angle. Then, 

o 271 

where p is the position of the measurement. 

To decompose pipe modes in terms of the cosine function, both sides of equation (A.2) 

are multiplied by cosC "̂"̂ ^ m) and all responses measured around the pipe are 
e^N N 

summed to give 

where m is the desired mode to be decomposed. 

cos( ^m) ...(A.3) 
N 

By assuming N is equal to infinity, the response of the desired mode for the cosine 

function can be determined using the property of orthogonality and is 

N-l 
X V ' c o s ( 2 ^ m ) . . . (A .4 ) 

N ,S-„ " N 

In practice, N is finite and hence an alising error arises. To avoid this for any particular 

mode, N has to be at least twice of the mode number (N > 2*m). 
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Appendix A: Modal Decoinposition 

To decompose pipe modes in terms of the sine function, the same procedure is applied 

except that both sides are multiplied by — m ) instead of — cos(""*^° m). Hence, 
n n 

the response of the desired mode for the sine function is 

n n 

Sil l (-^^m) = k 1 = ^2^, 
N p = 0 N 

...(A.5) 

The total response, Am, of the desire mode can be obtained by combining equation (A.4) 

and (A.5) as follows to give 

A.„ = j k l + k l ...(A.6) 

and the orientation angle is obtained from 

I -I 

(p = — lan 
m 

- tan' ...(A. 7) 
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Appendix B: IVc/ve Decomposition for Infinite Pipes 

APPENDIX B 

WAVE DECOMPOSITION FOR INFINITE PIPES 

Reflected Wave (C +1 

Anechoic 
T e r m i n a t i o n 

Incident Waves 

Excitation (s = 0) 

Reflected Wave (B .) 

Anechoic 
T e r m i n a t i o n 

(b) 

o © 

A (Incoming Wave) 

Lw/2 L ^ / 2 

B (Reflected Wave) 
s = s wd 

C (Reflected Wave) 

Figure B.l: Decomposition of incoming and reflected waves. 

Brennan et al [29] proposed a method to decompose flexural propagating waves of a 

beam by using an array of two sensors, and method of wave decomposition was 

extended for a semi-infinite pipe by Variyart and Brennan [68]. In this section, the 

wave decomposition method is applied for an infinite pipe. In this method shown in 

2 5 2 



Appendix B: Wave Deconipasaion for Infinite Pipes 

figure B.l , two sets of measurements around the pipe are t aken in the far field where 

there are no evanescent waves. Before the method is applied, the modal decomposition 

technique described in the next section is used to separate the measurement results 

into each mode, which may be expressed in the form of separated waves as 

where Ao is the amplitude of the incoming wave and 

B- is the amplitude of the reflected wave arose at the right termination 

C+ is the amplitude of the reflected wave arose at the left termination. 

Lo is the half length of the pipe normalised to the radius of the pipe. 

In this method, two sets of measurements around the pipe are taken at the far field 

where there are no evanescent waves. Prior to decomposition of the waves, the modal 

decomposition technique is applied to separate the measurement results into each 

mode. Since = -kn(b+4) the expression of radial motion in which only the 

propagating wave is present, may be expressed as 

W, (s) = (Ag + Co) e .. .(B.2) 

where Cq = C+ and Bg = B_ . 

Then the displacement at points 1 and 2 are 

. ...(B.3) 

where Xwd is the centre location between the point 1 and point 2, 
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Appendix B: Wave Decomposition for Infinite Pipes 

Swd " Xwd/cL cind. 

Lwd is the non-dimensional distance between the point 1 and point 2, which 

is normalised to the radius of the pipe. 

Equation (B.3) may be written in the form of a matrix as 

g~J k„I.vvd /2 

where D;^=(Ao4-Co)e^^'*''^ and 

Therefore, the amplitudes of Dsc and Bsc are 

..(B.4) 

D,," j 

.Bsc_ 2sin g i / - g "j ^ -
.(B.5) 

It was pointed out by Brennan et al [29] that equation (B.5) tends to ill-conditioning at 

frequencies where integer numbers of half wavelengths a re equal to the distance 

between the two sensors. It also is ill-conditioning at cut-on frequencies. 

In order to separate the positive-going incident wave and reflected positive-going waves, 

the same radial amplitude of the reflected waves from both sides of anechoic 

terminations is assumed and is given as B. = C+. Hence, replacing this assumption into 

equation (B.5) gives the incident wave and reflected positive-going wave at the s = Sc as 

given by 

...(B.6 a, b) 
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Appendix C: Ejfect of Mass Loading on Pipes 

j A J P I > E N D I 3 [ < ] 

(:%? i .c )v \ j [ ) ] [pfG (iHsr ]p][,3]E;g 

With accelerometers attached, a motion of a pipe itself is changed. In this appendix, the 

effect of two accelerometer masses is analysed in order to obtain the actual motion of a 

pipe. 

Shaker 

o~ 
1 

->-0-

Tip 

Piezo-
element 

(b) 

Pipe 

Tip 
Mass 

Accelerometers 

-o o 
3 

-o o 
2 

Acc'sMass 

Acc'sMass 

Figure C.l: General framework of the connection between pipe and mass 
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Attached masses such as accelerometers change the dynamic behaviour of the pipe 

structure. To predict the motion of the pipe with masses attached, the effect of mass 

loading has to be considered. The mobility method is applied for analysis of this effect 

and it is schematically shown in figure C.l in which a force, Fi, excites a pipe at the 

location (1) and a response of the pipe is measured by two accelerometers (Masses) at 

the locations (2) and (3). 

' F ...(C.l) 
1 . ^ 

Where Yn is the point mobility of pipe for which the force and velocity are taken 

at the position 1 

Yr is the mobility of tip mass. 

Following the work done by Mead [24], the velocities at t he interface between the 

accelerometers and the pipe at the locations (2) and (3) in figure C.l are respectively as 

follows. 

^2 = Y? I ^1 ^22^2 "I" ^23^1 

v̂  = X , , F , + ...(C.2a, b) 

where Yij is the mobility of pipe for which the force is taken at the position j and 

velocity is measured at the position i. 

The continuity of motion and force equilibrium at the connection of the accelerometers 

give V2 = VA2, V3 = VA3, F2 = -FA2, and Fa = -FAS. This leads to 

and ...(C.3a, b) 

where YAI and YAzare the mobilitis of the accelerometers' mass. 
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Solving equations (C.l), (C.2) and (C.3) gives 

F 

[/2,0 + / l3 /} 'A2)-W, /yA2] 

Kr ' A1 'A2 

[y„(i + y22/)'Ai)-/2i}:i2//Ai] 

y.n 1 r, y;; ^ 2̂3)32 i + — 1 f - — 1 + —^ 2̂3)32 

1 I >Ai J I ÂÎ AT _ 

...(C.4 a, b) 

Since Xr=-l/jGomT, ) \ |=- l / jmmAi and )A2--l/j(^"iA2, the transfer mobility with 

taking account of mass loading becomes 

F (I - jmrnyy, j)[(! - jmmAi )^2)(1 - J0)^^2133) + 0)̂ mA,mA2)23^2 ] 

V3 D3I (I ~ j'̂ '''1^1^22) +j'j '̂""AI ̂ 21 ̂ ^2] 

F (I - jmmTy,, ){̂ (1 - jmmA|y22 )(l - jo]mA2^3) + 01^2)23)32 ] 
...(C.5 a, b) 

For the application of an infinite pipe, the transfer mobility taking mass loading is more 

easy to solve because Yn = Y22 = Y33 and Y23 = Y32. It is more complicated on a semi-

infinite pipe because the forces for Y22 and Y33 are considered to excited at the position 

of accelerometers, not at the edge of the pipe. However, the point mobility Fgz and Y33 

can be determined from the radial amplitude, as described in section 2.4. 
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Appendix D: Experimental Apparatus 

APPENDIX D 

EXPERIMENTAL APPARATUS 

Details of the experimental equipment and materials used in the thesis are described in 

this appendix. 

D . l E x p e r i m e n t a l E q u i p m e n t a n d P r o p e r t i e s of M a t e r i a l s 

Table D.l: Properties of a PVC pipe 

E (N/m2) p (kg/m^) V a (mm) h (mm) n 

3.974*109 1460 0.33 33.2 2.2 0.035 

Table D.2; Properties of a PVDF sheet (Measurement Specialist) used for modal sensors 

1 Epv (N/m2) Ppv (kg/m^) Vpv d3i(mA0 kai hpv (mm) 

12*109 1780 0.33 23*10-12 0.12 0.052 

Table D.3: Properties of a PZT element (Morgan Matroc) used for modal actuators 

Ez (N/m2) pz (kg/m^) Vz . dai (nW) ksi t (mm) 

61*109 7450 0.31 274*10-12 -0.39 0.25 

Note: The magnitude of dsz is equal to dsi for the PVDF sheet and the PZT element. 
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Appendix D: Experimental Apparatus 

Table D.4: Experimental equipment 

Supplier Type Serial No Sensitivity 

Accelerometers Bruel&IQael 4374 1265993 0.094 pC/ms'^ Accelerometers Bruel&IQael 

4374 1341877 0.105 pC/ms2 

Force transducer 

(PZT) 

341.7 pC/N 

Conditioning 

Amplifiers 

Bruel&Kjael 

2635 1278233 

Conditioning 

Amplifiers 

Bruel&Kjael 

2635 1318160 

Conditioning 

Amplifiers 

Bruel&Kjael 2635 1827830 Conditioning 

Amplifiers 

Bruel&Kjael 

2635 777627 

Conditioning 

Amplifiers 

Bruel&Kjael 

2635 814962 

Power amplifiers H||H Electronic TPAIOO-

D 

15397 

Ariston AX-910 747-AX910-

0700-0259 

Ariston AX-910 777-AX910-

1197-0223 

Shaker Ling Dynamic 

Systems 

VlOl 55586-33 

Oscilloscope Hameg HM203-7 60574 

Phaser 

Analyzer Hewlett-Packard 3566A 2911A00263 

Personal computer Hi-Grade PV2 007341701003 

Note; 1) a PZT element is used as a force transducer, whose sensitivity is calibrated 

with a known mass of 4.357 kg, and 2) a phaser (phase controller) has been developed 

byIDay[77L 
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D.2 M e a s u r e m e n t o f P r o p e r t i e s o f t h e P i p e 

In order to determine the Young's modulus, the cut-on frequencies of a slice of pipe of 60 

mm long were measured. Since the slice of pipe is short in length compared to a 

wavelength, it can be considered as a ring, whose cut-on frequencies are given by 

(Soedel [69]) 

l ) j E 
27m y p ( n - + l ) 

By taking a least mean square fit to the natural frequencies of modes n = 2, 3 and 4, its 

young's modulus could be determined. The loss factor of the pipe was easily determined 

using the half power point method (Harris [71]). The same method of obtaining the 

Young's modulus was utilised to define the Poisson's ratio except that the cut-on 

frequencies of the pipe, f,f, are measured at a distance of 300 mm from the excitation 

force and are given by (equation 2.9) 

rf =- I ^ ...(D.2) 
27ta ^p(n-+l ) ( l -v- ) 

The difference between the cut-on frequencies of a pipe (equation D.2) and of a ring 

(equation D.l) is due to Poisson's ratio because, for the ring, waves are only propagating 

in the circumferential direction, while they are also propagating in the axial direction 

for the pipe resulting in coupled strains in both directions via t h e Poisson's ratio. 

With the method described above, the pipe properties were obtained and are given in 

Table D.l . 
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D.3 E x p e r i m e n t a l C o n f i g u r a t i o n of t h e A c t i v e C o n t r o l S y s t e m f o r t h e n 

= 2 F l e x u r a l Wave 

rrAW t. 

Figure D.l: Picture of the n = 2 PVDF modal sensor for a pipe. 

- •• 

Figure D.2: Picture of the n = 2 PZT modal actuator for a pipe. 
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Actua 

Figure D.3: Picture of the active control system for the n = 2 flexural wave. 
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