
UNIVERSITY OF SOUTHAMPTON

Open Hypermedia and Temporal Linking
with Audio Streams

by
Charles Neil Harwick Ridgway

A thesis submitted for the degree of

Doctor of Philosophy

in the

Faculty of Engineering and Applied Science,

Department of Electronics and Computer Science

January 2001

ABSTRACT

]F/U:tJTLTlf ()]? / I f j D

IB̂ LJEtZriTRjClfJItZIS j\]SrD (:()]\4])IJT1ER (SCZICÊ NCZE

Doctor of Philosophy

Open Hypermedia and Temporal Linking

with Audio Streams

by Charles Neil Harwick Ridgway

Advances in inexpensive computer systems and the development of the World Wide Web

(WWW) have revolutionised communication and information dissemination around the

world. This has resulted in a rapid increase in the amount of published information, to

the extent that many users find it difficult to navigate and retrieve this information over

the Web.

Research communities have recognised this problem and have developed Open Hy-

permedia Systems (OHSs), to help manage and organise this information. These systems

however have focused primarily on the visual domain, e.g. text and images, which is

easier to manipulate. Most OHSs also store the link data in proprietary linkbase formats,

which makes interoperability between systems difficult.

The WWW allows users to share and download different types of media, including

text, graphics, audio and video. Streaming protocols have also been developed, to deliver

media in real-time. This thesis describes the modifications that were made to an audio

tool, used in an open hypermedia system, to support streams.

The thesis examines this streaming protocol in more detail and describes how it was

extended to support temporal linking with audio streams, using the Fundamental Open

Hypermedia Model (FOHM). The system developed is the first application of FOHM to

stream media.

Contents

Acknowledgements viii

Chapter 1 Introduction 1

1.1 Research Overview 4

1.2 Research Contribution 5

1.3 Thesis Structure 6

1.4 Declaration 7

Chapter 2 The "Open" Approach 8

2.1 Introduction 8

2.2 Hypertext and Hypermedia 8

2.3 "Open" Hypermedia Systems 11

2.3.1 The World Wide Web 13

2.3.2 Microcosm 15

2.3.3 The Distributed Link Service 15

2.3.4 Mavis 16

2.3.5 HyperWave 17

2.4 Hypermedia Standards 18

2.4.1 The Multimedia and Hypermedia Experts Group 18

2.4.2 The Hypermedia/Time-based Structuring Language 23

2.5 The Open Hypermedia Protocol 27

2.6 Discussion 36

2.7 Summary 39

Chapter 3 The Audio Domain 41

3.1 Introduction 41

3.2 The Five Senses 42

3.3 Multimedia Authoring Tools 44

11

Ill

3.3.1 The Timeline authoring method 44

3.3.2 The Flowchart authoring method 45

3.3.3 The "Book" Metaphor 47

3.4 Existing standards 48

3.4.1 The Moving Pictures Expert Group 48

3.4.2 Digital Audio Broadcasting 59

3.5 "Open" Hypermedia Systems and Audio 62

3.5.1 The SoundViewer Tool for Microcosm 63

3.5.2 Mavis 63

3.5.3 The Harmony Audio Player for HyperWave 64

3.5.4 Streaming Audio and the WWW 64

3.5.5 SMIL for the WWW 65

3.6 Analysis 74

3.7 Summary 78

Chapter 4 Streaming Media Protocols 80

4.1 Introduction 80

4.2 The Traditional Protocols 80

4.3 The Real time Transport Protocol 82

4.4 The Real Time Streaming Protocol 84

4.5 IPv6: The next generation Internet Protocol 88

4.6 Summary 90

Chapter 5 The Design and Implementation of the Streaming SoundViewer Tool 92

5.1 Introduction 92

5.2 The original SoundViewer Tool 93

5.2.1 The Interface 95

5.2.2 The Implementation 98

5.2.3 The original SoundViewer case study 99

5.3 The development of the streaming SoundViewer 101

5.3.1 The Design 102

5.3.2 The Implementation and case study 107

5.4 Summary 109

Chapter 6 An Open Hypermedia tool for Temporal Linking with Audio Streams 112

6.1 Introduction 112

6.2 The Design ofthe new RTSP Framework 113

IV

6.2.1 The Socket++Library 115

6.2.2 The SDP++Library 118

6.2.3 The remaining RTSP Framework 119

6.3 The Temporal Linking mechanism 122

6.4 Extensions to RTSP to support FOHM 125

6.4.1 The AVAILABLEJjINKS method 126

6.4.2 The FOLLOWJjINK method 129

6.4.3 TheCREATEJjINKmethod 131

6.5 The Implementation of the Tool 135

6.6 Summary 137

Chapter 7 Case Study and Evaluation 139

7.1 Introduction 139

7.2 The Open Hypermedia Tool case study 139

7.3 Evaluation of the Research 144

7.3.1 Objective 1: The streaming SoundViewer Tool 145

7.3.2 Objective 2; Extending RTSP to support Open Hypermedia . . .147

7.3.3 Objective 3: A communication protocol for FOHM 149

7.4 Summary 151

Chapter 8 Conclusions and Future Work 152

8.1 Conclusions 152

8.2 Future Work 156

8.2.1 Improvements to the RTSP Implementation 156

8.2.2 Potential research for the RTSP Framework 158

8.2.3 FOHM Improvements 159

8.2.4 Possible research areas for FOHM 161

Appendix A Program and DTD Listings 163

A.l SMIL Program Listing 163

A.2 The FOHM Linkbase DTD 165

A.3 A Navigational Association in FOHM 167

Bibliography 169

List of Figures

2.1 The layers of the Dexter Hypertext Reference Model 13

2.2 The OHP Node Link model 30

2.3 A Navigational Link to a Spatial List 35

3.1 A screen-shot of a Macromedia Flash presentation 46

3.2 The design process for Macromedia's Authorware program 47

3.3 Match Ware's MediSor design process 48

3.4 A screen-shot of a SMIL presentation in RealPlayer 7 70

4.1 The RTSP client/server state diagram 86

4.2 The connections between three RTSP clients and a server. 87

5.1 The SoundViewer Interface

5.2 The Audio Device Layers

5.3 The original SoundViewer demonstration

5.4 The Audio Device Layers with RTSP.

5.5 Client / Server interaction for the RTSP open function

5.6 Client / Server interaction for the RTSP get function

5.7 Client / Server interaction for the RTSP get function (cont'd)

5.8 Client/Server interaction for the RTSP play function. . . .

5.9 The streaming SoundViewer

6.1 The main classes for the Socket++ library.

6.2 The classes for handling socket exceptions.

6.3 The classes for handling SDR

6.4 The classes for session management. . . .

6.5 The classes for handling streams

96

99

100

103

105

106

107

108

110

116

117

119

120

121

7.1 The RTSP client after opening a new presentation 141

7.2 The RTSP client after the AVAILABLEJLINKS request 142

VI

7.3 The command used to create a new link 143

7.4 The AVAILABLE-LINKS request, after creating a new link 143

7.5 The results of following " l ink4" 144

List of Tables

3.1 A sample of the Sinew's of Peace SMIL presentation 71

6.1 The container file for a simple RTSP presentation 126

6.2 An AVAILABLE-LINKS request 129

6.3 Examples of the FOLLOWJjINK request 131

6.4 The format of the user command to create a link 133

6.5 A CREATEJjINK request to a Web page and an image 134

6.6 A CREATE JLINK request to a new stream 135

6.7 A CREATE-LINK request to a point within the same presentation 135

vn

Acknowledgements

Trusf in (Ae Lord wzVA aJJ your Aearf,

And Jean not on your own undersfanding;

In ajy your ways acAnowJedge Hun,

And He shall direct your paths.

Proverbs 3:5-6, NKJV

I would like to thank my supervisor Professor David DeRoure, for his help in resolving

technical matters, his time and his guidance, especially when writing my thesis! I would

also like to thank Professor Wendy Hall for allowing me to work within the Intelligence,

Agents and Multimedia research group, Dr Paul Lewis for being my internal examiner

and Jon Ibbotson.

Thanks are also due to the guys in the lab for their friendship, encouragement and

frequent coffee breaks / discussions about hypermedia! I would especially like to thank

Stephen Blackburn, David Millard and John Griffiths for proof-reading sections of my

thesis and to Kevin Page, Mark Thompson and Danius Michaelides for their input.

I would also like to thank my friends at Portswood Church and Navigators for their

prayers, patience and general support; especially Gerrard and Alison Perry, Pieter and

Suzanne van Leeuwen, Steve Redstone, John White and Paul Dennis.

I must also thank my family for their support, love and encouragement during the last

few months of my thesis write-up.

Finally I would like to dedicate this thesis to my Lord and Saviour Jesus Christ, for

His strength and guidance He has given me, over the years.

Vlll

Chapter 1

Introduction

Towards the end of the twentieth century the development of advanced computer sys-

tems and distributed heterogeneous networks has steadily increased. It has become pos-

sible for the average user to obtain inexpensive f ersonai Computers (PCs) with powerful

graphical interfaces and network connections. These systems can be used to create, store,

manipulate and transmit large quantities of information to other users around the world;

for example users can now communicate with other users, in different countries, using a

mixture of video and audio. This is known as video conferencing and these systems use

small video cameras and microphones to transmit images of the users and their voices to

other machines.

The ability to obtain this type of equipment and to communicate with practically

anyone around the world has resulted in the rapid adoption and use of these systems. This

can be clearly seen in the growth of the Internet and more specifically the World Wide

Web (WWW), which uses open standards for communication and data representation.

The WWW allows users to author and publish their own web pages, to find information

and to transmit and receive different types of media such as audio and video. However as

the popularity of the WWW increases, the amount of information that is being published

is also increasing, at a significant rate. It is possible to be "lost in hyperspace", as users

can find it hard to find information and navigate their way around the Web. Search

engines such as Alta Vista and Google have been developed to help alleviate this problem,

but users can still be easily confiised and overwhelmed by the large amounts of available

information.

In 1945 a scientist named Vannevar Bush predicted that as time progressed, the

amount of scientiAc mfbrmation would steadily increase. His landmark paper "As We

May Think" [11] described a system that would allow users to easily browse and asso-

ciate interrelated pieces of information. Approximately 18 years later Douglas Englebart

created the NLS/Augment system to demonstrate this, see Engelbart and English [22].

As a result of this demonstration and as interest grew in this concept of handling infor-

mation, several research communities developed applications, to handle large amounts

of information in this way. These applications were called hypertext systems and they

ran on text-based computer terminals. As more advanced computers, that could handle

graphics and sound, were developed these hypertext systems were extended to support

different types of media. They were called hypermedia systems, see Conklin [15] and

Halasz [56].

These hypermedia systems allowed users to create and traverse associations or Jinks

between related pieces of information. However Fountain et al. [4], Dale [76] and Mal-

colm et al. [83] describe the limitations of these systems, including embedding the links

within documents and proprietary document formats. As a result, these systems were

known as "closed" systems because users could only create and follow links between

documents within the same environment; interoperability between systems was difficult.

To overcome these problems the research community developed Open Hypermedia Sys-

tems (OHSs), such as Microcosm and HyperWave, which stored the link information in

separate Gles or Jinjcbases.

As mentioned previously the first hypertext systems used text because of the limi-

tations of the computer terminals. As more advanced computers were developed the re-

search community extended the original text-based systems to form hypermedia systems.

However the majority of the research into these systems, both open and closed, focused

primarily on the visual domain; for example text, images and more recently video. There

has been very little support for the audio domain because the developers found it easier

to create graphical tools and applications to handle visual information.

Dix et al. [2] explain that the majority of interactive systems are completely visual

in nature, with very limited support for audio. This is mainly due to the fact that the

audio domain is considerably more complex and audio, by its very nature, does not have

a unique visual representation. There are many ways in which users can visualize audio

information; for example recording studios might use a waveform to represent the audio,

while an operating system might use a scroll bar to represent the length and current

position within an audio file. Goose and Hall [118] describe several techniques, that are

currently used, for visualising audio information in greater detail.

Originally the WWW had little support for audio. It was mainly a text-based system

that could also support graphics, see Berners-Lee et al. [132]. However with the devel-

opment of more powerful WWW applications or Web Browsers, users could download

audio files and then activate an external application to playback the file. For small low-

quality files this is fine, however as the quality of the audio increases so does the file size.

The process of downloading a larger, higher-quality file can take a long time, especially

if the network connection was poor.

To overcome this problem streaming media protocols, such as the Real time Transport

frofocoi (RTF) [8] and ± e ReaJ Time Streaming frotocoj (RTSP) [53], were developed.

These protocols are used by streaming media players and servers for communication and

data transfer. When a client-based player requests a media file, e.g. an audio or video

file, the server splits the file into more manageable packets and then transmits them to

the client. On receiving the packets the client will buffer enough of them, to ensure the

quality of the playback is reasonable.

Pizzi and Church [119] explain that these streaming media protocols were also devel-

oped to provide real-time services for the cuirent Internet Protocol (IPv4) [78] and the

previous version of the WWW protocol, the HyperText Transfer Protocol (HTTP/1.0).

HTTP/1.0 runs "on-top-of IPv4, however both protocols were not designed to handle

real-time data. The current HyperText Transfer Protocol (HTTP/1.1) does provide some

of the fiinctionality required for streaming media, however it still uses IPv4. To overcome

this limitation, the next generation of Internet Protocol (IPv6) [116] has been designed,

from the beginning, to support real-time services.

A relatively new standard called the Synchronized Multimedia Integration Language

(SMIL) [128] is currently using RTF and RTSP, to create and stream multimedia presen-

tations over the WWW. These presentations can stream audio, video, text and images.

Both SMIL and the Web however embed the link information within their respective

documents, which can result in the "dangling" link problem if the document is moved or

deleted.

Several existing standards can also be used to create and stream multimedia presenta-

tions to clients. These include the Multimedia and Hypermedia Experts Group (MHEG)

and the Moving Pictures Expert Group (MPEG). MHEG has been used for the creation

and delivery of multimedia presentations, while MPEG has been specifically designed

j(esearcA()ven%ew 4

to efificiently encode audio and video information for transmission. MHEG however is

used to develop systems of which audio is just a small part and MPEG has only recently

produced standards, that can manipulate the audio domain in more diverse ways, see

Chiariglione [14] andKoenen [85, 86].

Open hypermedia systems, such as Microcosm and HyperWave, do have limited sup-

port for the audio domain. The audio samples are usually stored on the same machine as

the OHS, which overcomes the problems of handling large media files. However as the

quality and quantity of the samples increase, there is no guarantee that these machines

will have enough space to store them.

One of the main problems of the current generation of OHSs, is their lack of inter-

operability, see Davis et al. [25] and Reich et al. [125]. The majority of these systems

use proprietary protocols between their clients and link servers. As a result clients from

different systems can not be used on different servers. Papers by Millard et al. [27] and

Davis et al. [49] explain how the Open Hypermedia research community overcame this

problem, by developing the Opea Hypermedia frofocoj (OHP).

Over time however OHP steadily grew in size until it was realised that a single pro-

tocol could not handle all of the functionality required. Therefore it was divided into

smaller components, specifically designed for particular hypertext domains. Further re-

search into these domains, by the Southampton members of this research community,

produced the Fundamental Open Hypermedia Model (FOHM), see Millard et al. [27].

This data model concentrates on the interoperability between three of the most common

hypertext domains: navigational, spatial and taxonomic hypertext.

1.1 Research Overview

The main aim of this research is to extend and enhance the Open Hypermedia paradigm to

support recent developments in the audio domain; specifically audio streams. Currently

authors can use SMIL to create multimedia presentations and then stream these presenta-

tions, to users on the Web, using streaming media protocols and dedicated servers. This

technology however has not been used with the current generation of Open Hypermedia

Systems (OHSs); only a few OHSs allow users to create links between audio and other

media types. All of this media has to be stored on the same machine as the OHS.

1.2 Research Contribution 5

OHSs on the other hand separate the link information from the actual data, while the

World Wide Web and SMIL embed this link information within their documents. By

combining the Open Hypermedia paradigm with audio streams, authors will be able to

create temporal links and store them separately from the actual data; overcoming the

problems associated with embedded links.

To obtain this research objective several existing standards and systems were investi-

gated and they include:

Standards for content creation - such as MHEG, MPEG and "ofT-the-sheir' multi-

media authoring tools.

Standards Ar deJive^y - such as the Internet Protocols (IPv4 and IPv6), RTP, RTSP

and Digital Audio Broadcasting (DAB). MPEG also provides protocols for content

delivery and these are examined as well.

Systems for AandJing Open Bypermedta - such as Microcosm, HyperWave, OHP

and FOHM.

1.2 Research Contribution

The work presented in this thesis contributes to the area of Open Hypermedia in three

ways:

1. By extending an existing Open Hypermedia tool to support audio streams - this

is achieved by modifying Microcosm's SoundViewer Tool, so that it can commu-

nicate with a streaming media server. The protocol used for this is RTSP and this

new tool allows the creation of links to and from audio streams, stored on a separate

machine.

2. By extending a streaming media protocol to support Open Hypermedia - this is

achieved by extending the functionality of RTSP to support FOHM, so that authors

can create, traverse and store temporal links. FOHM concentrates on the interop-

erability between three of the most common hypertext domains and therefore it

can be described as an interoperable exchange format for open hypermedia. As

mentioned previously however FOHM is just a data model; it does not provide a

protocol for communication, between OHS clients and servers.

j.3 7jbesis,S(rucfuTe 6

3. By ejiAaacing fOHM with a commumcafioa profocoV — this is achieved by com-

bining FOHM with RTSR This combination is mutually beneficial because FOHM

provides the Open Hypermedia paradigm and RTSP provides the protocol for com-

munication.

1.3 Thesis Structure

Chapter 2 describes the origins of hypertext and multimedia extensions to this form

of non-linear text; hypermedia. It explains the reasons why the first and second gener-

ation of hypertext and hypermedia systems were known as "closed" and "monolithic"

applications. This chapter gives an overview of several "open" hypermedia systems, that

have supported the audio domain and existing hypermedia and multimedia standards. It

closes by describing the development of a new high-level data structure, that can be used

across three of the most common hypertext domains; navigational, spatial and taxonomic

hypertext.

Chapter 3 talks about the audio domain and how it has been used in a number of

applications and systems. It describes the dominance of the visual domain and how audio,

when it is used in conjunction with the other four senses, can help in everyday situations.

Existing standards for audio encoding and multimedia authoring tools are discussed. The

chapter then explains how audio has been used in open hypermedia systems, including

the World Wide Web.

Chapter 4 concentrates on streaming protocols for the Internet. It briefly describes

the underlying Internet protocol suite, IPv4 and how these new streaming protocols in-

teract with lPv4. RTF and a new framework or application-level protocol, RTSP, are

discussed. Finally IPv6, the next generation of Internet protocol, is described.

Chapter 5 discusses the extensions that were made to an open hypermedia audio

tool to support streams. This chapter describes the development of Microcosm's Sound-

Viewer tool and a simple demonstration of this tool is then given. The design and imple-

mentation of the streaming SoundViewer is then discussed and another demonstration, of

the new streaming functionality, is given.

Chapter 6 describes a new implementation of the RTSP protocol, that supports open

hypermedia. It discusses the development of a new socket library, supporting both IPv4

and IPv6, which is used with this new implementation. This chapter then describes the

7

open hypermedia data model (FOHM), that is used to store and deliver link information.

Modifications made to the original RTSP methods, for communication and playback of

streams and the design of the new methods, for handling link creation and traversal, are

then described.

Chapter 7 presents a simple demonstration of the Open Hypermedia Tool and it then

examines how the work, carried out in this thesis, has achieved the original research

objectives.

Chapter 8 concludes this thesis by bringing together the various threads of research.

It also describes the possible future areas of research, that have arisen from the work

discussed in this thesis.

1.4 Declaration

This thesis is based upon the work undertaken by the author within a collaborative re-

search environment. It is all the original work of the author, except where explicitly

stated otherwise.

Chapter 2

The "Open" Approach

2.1 Introduction

The ability to associate two or more related pieces of information is a common practice,

that is used every day. Similarly the process of annotating and cross-referencing material,

to help in its understanding, has been traced back as far' as Aristotle, who constantly

referenced other authors' work. Supplementing material in this way has helped many

authors and eventually the readers of their works, to more thoroughly understand the

different aspects of their material.

This chapter briefly discusses several systems that have been used to help reference,

annotate and access information. It describes the origins of hypertext and hypermedia

and the development of "closed" hypermedia systems. It continues by describing sev-

eral "open" hypermedia systems, that have developed tools to handle audio information.

Existing hypermedia standards and the development of OHP and FOHM, a new associa-

tional structure for interoperability, are then discussed.

2.2 Hypertext and Hypermedia

The term "hypertext" has been used, over the last 40 years, to describe an extension to

the traditional form of "flat" or linear text. For example, a book can be described as being

linear because it is usually read from the beginning to the end. Recent developments in

computer systems, however, have allowed programmers to develop new ways in which

Approximately 384 B.C.

2.2 fjyperfexf and Hypermedia 9

traditional text can be viewed. Conklin [15] describes how these systems allow references

to be created between different chunks of text, which can be in the same or another

document. This type of text is called nonlinear text or hypertext because the path through

the document can branch-off to other documents via these references.

Three of the main contributors to the area of hypertext were Vannevar Bush, Douglas

Engelbart and Theodore Nelson. Their hypertext systems, discussed in Conklin [15], are

outlined below:

1. Bush's Memex system. In 1945 Vannevar Bush, President Roosevelt's science

advisor, predicted a rapid growth in the amount of scientific information and the

need to automate the way in which this information should be browsed. In his

article. Bush [11] describes how the human mind works by associating related

pieces of information. He applied this concept to a machine, called the Memex,

which allowed the user to tie two relevant pieces of information, from two separate

documents, together. This idea of association is credited as being the first attempt

to describe hypertext.

2. Engelbart's oNLine System (NLS/Augment). In 1963, Engelbart described a com-

puter system that would augment man's intellect, by allowing the user to interact

with the system using special cooperative devices". As a result of this coopera-

tion, the amount of information that a user could manipulate and understand would

steadily increase, effectively "amplifying" the native intelligence of the user. The

NLS system was implemented five years later at the Stanford Research Institute,

see Engelbart and English [22]. This system allowed users to create any number of

associations or links between interrelated elements within a document and between

the documents themselves.

3. Nelson's Xanadu System. During the development of the NLS, Ted Nelson was

also developing his own ideas about augmentation. Nelson's system [131] would

only allow the storage of documents in their original format and any modifications

made to these documents, e.g. a different paragraph. By using links between

these modifications and the original documents, previous versions could be easily

reconstructed. New links could be easily created between different bodies of text

and therefore new pathways could be formed through the material. It was from this

^One of the devices he invented was the mouse.

2.2 f^erfexfandHypGrmedia 10

system of linking large bodies of text together that Ted Nelson created the term

"hypertext".

Hypertext systems allow users to author, edit and follow links between different bod-

ies of text. With the introduction of more powerful digital computers, it has become

possible to create links within and between documents containing different types of me-

dia, including text; for example, creating a link between a speech sample and the text

representation of the speech. As Nelson [131] explains;

It should have been obvious to anyone that general interactive media would

appear and proliferate. Text, graphics, audio and video can now come alive

in unified, responding, explorable new works that present facts and ideas;

hypermedia. Unlimited new forms of connection and branching now offer

the chance to explore ideas - to follow different lines of thought, different

forms of exposition, different connections in a subject, in ways never before

possible. The sequential writings and media of the past have given us only

the dimmest precedents.

The term "hypermedia" can therefore be described as an extension to hypertext, to sup-

port multimedia information.

Halasz [56] describes how Engelbart's NLS/Augment system can be called a A-gf

generation system because it used workstations with little or no graphics capabilities and

it focused primarily on text. An overview of these systems can be found in Conklin [15].

Halasz also explains that in the early 1980's, second generation systems began to emerge,

which used workstations with more advanced user interfaces and graphics. These new

hypermedia systems allowed users to create references between different types of media,

e.g. text, pictures, video. Example hypermedia systems are NoteCards [56], Interme-

dia[101]and KMS[111].

Fountain et al. [4] and Dale [76] explain however, that these second generation hy-

permedia systems originally had a number of limitations including:

® Proprietary document formats - into which a document had to be converted before

it could be used. Second generation hypermedia systems had their own proprietary

document formats, which made it difficult to share information between systems.

Once converted, a document could not be used by the original application that

created it.

2 J "Open" Hypermedia Systems 11

Embedded mark-up - which involved inserting the start and end points of the links

or anchors into the documents themselves. This made the documents considerably

easier to transport. However this approach caused several problems, especially

with networks and distributed systems. For example, when a document is moved

from one computer on the network to another, all links pointing to this document

will have to be updated. Otherwise users will not be able to follow links to this

document. This is known as the dangling link problem. Similar problems will also

occur if documents are deleted and the links are not updated or removed.

lacjc of exfensj'MjYy - in supporting other types of media, links and applications.

External programs, that were not fully integrated into these systems, could be used

to overcome this problem.

As a result of these problems, these second generation systems were known as "mono-

lithic" or "closed" hypermedia applications. With these systems, users could only create

and view hypermedia information, within the environment provided by the application.

This information could not be shared with other hypermedia systems. Halasz [56], Beit-

ner [99] and Goose [117] describe these systems in more detail.

2.3 "Open '̂ Hypermedia Systems

Goose [117] explains that at the 1987 international hypertext conference, researchers

started to express their concerns about the limitations of these second generation hyper-

media systems, see Section 2.2. In his paper, Halasz [56] describes the ideas that were

discussed at this conference, including new search and query mechanisms, management

of dynamic information and more integration of existing applications. As a result of

these discussions, several American research groups defined, in 1989, a reference model

for hypermedia. It is called the Dexter Hypertext Reference Model [41] or usually just

Dexter and it was designed to:

Define both formally and informally the common abstractions found in a range of

existing hypertext systems, e.g. NoteCards [56], Intermedia [101] and KMS [111].

Serve as a standard, so that the functionality and characteristics of existing hyper-

text and non-hypertext systems could be compared.

2 J "Open" Hypermedia Systems 12

Serve as a template, for the development of standards. These would assist in the

interoperability and interchange between different hypertext systems.

The Dexter reference model, see Figure 2.1, is widely regarded as being one of the

most important developments in hypermedia research and it divides a hypermedia system

into three layers:

1. The Runtime Layer - which provides a basic model for hypermedia presentation

mechanisms and functionality to the user. This model will be used to access, view

and manipulate the underlying hypermedia network structure.

2. The Storage Layer - which is the focus of the Dexter model. It describes the mech-

anisms used to form a hypermedia network structure, from nodes or components

and the links used to connect them.

3. The VWtAin-component Layer - which is concerned with the content and structure

within the nodes and links of the hypermedia network. This layer of the model has

been purposely left unspecified because there are many different ways to represent

the content and structure of data.

In between the runtime and storage layer is the Presentation Specification interface. This

is used to manage the presentation of components within the storage layer to the user.

The form of this presentation can be a property of the component itself, a fimction of the

hypermedia system or the path taken to reach the component. The Anchoring interface

is between the storage and within-component layer. It is a mechanism that allows links

to apply to a selection within a component, whilst ensuring that the two layers are kept

separate.

A paper by Malcolm et al. [83] describes how hypermedia could be used in indus-

try to integrate large amounts of data from specialist tools and applications. Malcolm,

however, describes how the current (second) generation of hypermedia systems were in-

compatible with each other, as well as the tools and applications used in industry. As a

result, Malcolm et al. defined several issues that needed to be addressed, e.g the ability

to access and link across different platforms (interoperability), templates for common

hypermedia structures and interaction with operating systems and networks.

2 J "Ope;]" ffypermedja Systems 13

Run-t ime Layer

Presentation of the hypertext;
user interaction; dynamics

Presentation Specifications

Storage Layer

a 'database' containing a
network of nodes and lini<s

Anchoring

Within-Component Layer

the content/structure inside
the nodes

Figure 2.1: The layers of the Dexter Hypertext Reference Model.

Goose [117] describes that in 1991, at another hypertext conference, Halasz [56]

revisited his original ideas that he placed before the hypermedia community. Halasz re-

viewed the progress that had already been made and he also discussed the contribution

made by Malcolm et al. [83]. As a result of these discussions Halasz presented several

new areas of research, which focused primarily on the development of "open" hyper-

media systems with independent communicating processes and the way in which large

amounts of information could be managed and visualised on workstation screens. With

the development of these "open" systems, researchers would be able to overcome some

of the problems associated with the second generation of hypermedia systems, see Sec-

tion 2.2.

The following sections give an overview of several "open" hypermedia systems that

can handle different types of media, including the audio domain. Chapter 3 will discuss

these systems' audio tools in more detail.

2.3.1 The World Wide Web

The World Wide Web or WWW was originally designed in 1990 by Tim Berners-Lee

at CERN, the European Laboratory for Particle Physics. The aim of this project was

2.3 "Opei]"ji^ermedia Systems 14

to provide a unifonn way in which information could be shared over wide-area net-

works. Berners-Lee et al. [132] describe how most of the information at CERN, for

example technical reports, data from experiments, was already available on-line. How-

ever the ability to create references to this material required a reasonable knowledge of

host names, terminals, passwords and the CERN network itself. As a consequence it was

very difficult, if not impossible, to create and then "jump" to these references.

The WWW overcame these problems by defining three new platform independent

and network neutral components. These were:

1. The Uniform Resource fdend^ers (URIs) [133] - which are short strings used to

identify abstract or physical resources such as documents, images and files on the

WWW. A URI is actually a generic term for all types of resources on the Web.

It can be classified as a Uoifbrm Resource Locator (URL), a Uniform Resource

Name (URN) or both. A URL contains explicit instructions on how to access a

specific resource on the Internet. A URN is a globally unique name that is given to

a resource and it will remain unique, even when it ceases to exist.

The generic format of a URI is:

<prot:ocol>://<internet: host address>[:porl:]/<document: path>

The protocol, e.g. the File Transfer Protocol (FTP) and HTTP, is used to deter-

mine the type of communication between the user's machine and the Internet host

address, which is usually a Web server. The host address is a unique value for

a computer on the Internet. The port number is optional and it is used to de-

termine to which port on the server, the user's computer connects. The docu-

ment path is the location on the server to the required file. An example URI is

"h t tp : / /www.foo .com/bar .h tml" .

2. The HyperText Transfer Protocol (HTTP) [108] - which is the protocol used for

communication between WWW clients and servers. It is an Internet standard and

it runs "on-top-of' the traditional protocols used for the Internet, see Section 4.2.

This protocol was designed so that information could be efficiently retrieved, for

the purpose of making hypertext "jumps"; see Section 2.2 for a description of

hypertext.

3. The H}])er]ext Markup Language (HTML) [60] - which was originally defined

using a SGML DTD, see Section 2.4.2 and it is used to markup documents for the

http://www.foo.com/bar.html

2.3 "Opej]"ffypermed;aSysfems 15

WWW. The markup process allows authors to prepare and format their documents

using a mixture of text, pictures, sound, video and hypermedia links. See Sec-

tion 2.2 for a description of hypermedia. Users can click on these links to "jump"

to related items. By using this language, authors ensure that their documents will

look the same on different WWW browsers. A WWW browser or client is an ap-

plication that renders an HTML document into a form that can be displayed on the

user's screen. Netscape's Navigator and Microsoft's Internet Explorer are two of

the most common browsers.

These three components fonn the core architecture of the WWW.

2.3.2 Microcosm

Microcosm [5, 52, 143, 144] is an open hypermedia system that was developed by the

MultiMedia Research Group (MMRG)^ at the University of Southampton, to investigate

new areas of hypermedia research. Goose and Hall [118] describe it as being a set of

communicating processes which supplement the facilities of the native operating system.

Users interact with Microcosm using viewers which display different types of media, e.g.

text and video, and allow users to author and follow links to and from this media. Viewers

can be either specifically created for the system or existing third-party programs that have

had their functionality extended; for example by using Microsoft Word macros.

When a user performs an action in the viewer, messages are passed from this viewer

to Microcosm which then dispatches them through a chain of f i l ters . These filters process

the messages and then decide what sort of information should be returned to the user. The

filters might return a set of links, that the user can then follow. In this system, links are

stored in link databases or linkbases.

2.3.3 The Distributed Link Service

The Distributed Link Service (DLS) [48, 88, 89] was also developed by the MMRG at

the University of Southampton. As mentioned previously in Section 2.3.1, the World

Wide Web (WWW) uses open standards for the creation and delivery of hypermedia

documents. To navigate around the WWW however, users must activate hypermedia links

^This group has recently been renamed to the Intelligence, Agents and Multimedia (lAM) research

group.

2 J "Open" Jfypermedja Systems 16

which are embedded within the documents. These embedded links can cause problems

because only the authors of the original documents can modify them.

The DLS overcomes this problem by providing link management and delivery ser-

vices for the WWW. At the server side, a DLS j)roxy server is used in conjunction with

a Web server. A proxy is an intermediate server that sits between a client and a Web

server. It is allowed to modify the incoming and outgoing traffic and it is commonly used

as a cache"^. The DLS proxy server contains several linkbases; a default linkbase that is

always used and additional linkbases, from which the user may choose. Each linkbase

provides its own set of links or contexts and by selecting specific linkbases, users can

tailor their linking activities to their current requirements.

The client interface is usually a Web browser, that has had its proxy set to the URI

of a DLS-compliant server Linkbases are set via a configuration document, that can be

downloaded using a specific URL Any other URIs that are typed into the browser will

pass through the DLS to the intended WWW servers. The documents that are returned

will be checked by the DLS for any relevant information. This information is obtained

from the linkbases and if any is found, it is dynamically marked-up to form links. This

new document is then displayed in the browser and users can activate these new links to

obtain additional information.

The DLS also has another mode of operation, which allows users to statically compile

the links into documents. With this operation it is possible to generate entire sets of Web

pages, using the DLS's linkbases and these documents.

2.3.4 Mavis

The Microcosm Architecture for Video, Image and Sound (MAVIS), is an extension to

Microcosm and it was also developed at the University of Southampton by the Multime-

dia Research Group. Lewis et al. [105] describe the system as being a tool that allows

users to author ggMenc links^ between text and non-text based media. MAVIS achieves

this by using the content of the non-text media as the key to navigation and retrieval of

related information.

"̂ A cache is a data store, containing regularly visited documents. If a client requests a document, the

cache is checked to see if it already holds a copy of this document. It it does the local copy is immediately

delivered to the client; if it does not, then the cache passes the request onto the intended Web server. The

returned document is then stored for possible future requests,

^Microcosm supports the concept of generic links - links that can be fol lowed from any point within

any document.

23 "Open" Hypermedia Systems 17

To navigate and retrieve information related to text is relatively straight forward be-

cause algorithms already exist that can match strings or sentences. With Microcosm, a

user selects a piece of text within a document and then tells the system that this selection

is a generic link. The system will then create a representation of this text (a key) and

store this key in a linkbase. When users want to retrieve information relating to the orig-

inal selected text, this key will be used with the string matching algorithms to find other

occurrences of the text.

With MAVIS, however, exact matching with non-text media is clearly impossible; the

similarities between non-text media, for example images, have to be measured instead

and these values can then be used to determine the closest match. This is known as fuzzy

matching. To achieve this, MAVIS uses to represent the content of a selection.

Several signatures are often used since there are several different ways in which non-text

objects can be matched, e.g. colour, texture. Each description of a signature is stored in

a module and users can create their own signature modules, which MAVIS can then use.

2.3.5 HyperWave

Kappe and Maurer [44] describe HyperWave, which was originally called Hyper-G, as

being a large distributed open hypermedia system suitable for a wide range of appli-

cations. It was developed at the Graz University of Technology in Austria and it is a

multi-user system, allowing native clients to access objects from information servers.

The information servers, which are also known as the distributed link servers, are

complex object oriented databases. These databases contain descriptions of documents,

links, anchors and other higher level structures, such as collections and tours. A collec-

tion is a hierarchy of related objects and when users visit a collection, they are given an

overview of all the objects in this hierarchy. Users can then visit these objects. A tour

is a collection that allows users to visit the substructures in a certain order; there is a set

route through the information that the user has to follow.

HyperWave clients consist of several programs or viewers, which are used to author

links and search and browse through the information on the server. At the heart of each

viewer is a session manager which displays, in its main window, the structure of the data

on the server. When a user traverses or follows a link, the session manager will start

the relevant viewer to display any information related to this link. For example, a link

to a video clip will start the "Film Player" viewer, which will then connect to the server

and download the actual document. The session manager only provides information on

2.4 BypermediaSfajidards 18

the documents / structures stored on the server; it is up to the viewer to download the

document. More information on these viewers and the server can be found in [43, 44].

2.4 Hypermedia Standards

Currently there are two main international standards for the creation and delivery of mul-

timedia and hypermedia presentations. These two standards are described in more detail

in the following sections.

2.4.1 The Multimedia and Hypermedia Experts Group

The Multimedia and Hypermedia Experts Group^ (MHEG) was formed in 1989 by the

Joint ISO/IEC^ Technical Committee (JTC 1) on Information Technology. MHEG is a

working group (WGI2 of SC29), with the mandate to develop international standards for

the coded representation and interchange of multimedia and hypermedia presentations.

This interchange usually occurs across heterogeneous systems and networks. There are

currently eight parts to MHEG and these are discussed in more detail below.

MHEG-1 [65] is the first part of MHEG and it became an international standard in

1995. Rodriguez et al. [1] and Boudnik and Effelsberg [134] describe how it was the

first technical specification for the definition of robust multimedia objects, the actions

that can be applied to them, their behaviour and their interaction. MHEG-1 also de-

fines the interchange format for these objects, using the Abstract Syntax Notation One

(ASN.l) [72, 73] ISO standard. This notation is used to define software-neutral abstract

syntaxes, which ensures that applications conforming to this standard will be able to

communicate. For MHEG-1, it formally defines the syntax of all the multimedia data

structures or MHEG classes. By creating instances of these classes, which are known

as MHEG objects and by forming interrelationships between these objects, authors can

easily develop and distribute interactive presentations.

MHEG-1 defines several classes and these include:

® The MH-Object class ^ which is the root class inherited by all the other classes. It

contains a data structure for identification.

^Also known as the Multimedia and Hypermedia information coding Experts Group,

' international Organization for Standardization/International Electrotechnical Commission.

2.4 JH^̂ Derniedia jSf&Qckunis 19

The Confenf class - which contains either the audio-visual data itself or a reference

to this data, depending on its size. Only a small amount of AV material, such as

audio, video and text, can be included within this class. Referenced data, which

could be stored on another machine on the network, will be retrieved at runtime.

® The Link and Action classes ^ which are used to describe the actions that will

be performed on other objects, when a particular link object is activated. A link

object is activated by an event, such as clicking on a mouse and pressing a key on

a keyboard. A link object always defines a relationship between one source object

and one or more target objects.

The Muffjipjexed Coiifent class - which is derived from the Content class and either

contains or refers to the multiplexed stream data. It also assists in inter-stream

synchronization, such as lip synchronization.

Each object when it is created can contain extra information about its original size and

its play-out duration. This information is stored as virtual co-ordinates from a generic

space and a virtual timeline, respectively. At run-time this extra information is converted

into real-time requirements, such as screen co-ordinates and a particular type of timer,

depending on the type of hardware being used.

MHEG-2 is exactly the same as MHEG-1, except that the classes are defined using

the Standard Generic Markup Language (SGML), see Section 2.4.2, instead of ASN.l.

Due to a lack of resources however, the development of this part of the standard has been

stopped.

MHEG-3 [66] became an international standard in 1996 and Rodriguez et al. [1] and

Rutledge et al. [94] describe how it was designed to extend MHEG-1, by increasing the

interactivity between the multimedia objects and the environments that they run in. This

is achieved by using:

« Scripting languages^ - which are programs containing procedures that can be used

to monitor events generated by particular objects. For example, a user clicking on

a button object will generate an event. When an event has been detected, these

scripts will then execute certain actions, possibly on other objects. This allows

objects to interact with each other.

^These are also known as Scriptware.

2.4 Hypennedia Sfaadarck 20

A MacAme - which is used to create a mapping table between the run-time

services, provided by a particular platform or environment, and the interiace of

the scripting language. This mapping table increases the interactivity between the

scripts and the platform being used for the presentation.

MHEG-3 increases the functionality of MHEG-1 by allowing authors to develop presen-

tations, using platform-neutral external programs or scripts.

MHEG-4 [63] is the fourth part of the MHEG standard and it is used to register

objects and formats supported by MHEG; for example MPEG, see Section 3.4.1, JPEG^.

It became an international standard in 1995.

The fifth part of the MHEG standard is MHEG-5 [67] and it became an intema-

tional standard in 1996. Echiffre et al. [97] and Joseph and Rosengren [110] explain

that it was developed to encode interactive multimedia applications into an interopera-

ble format, that could be easily transmitted to terminals with limited resources. These

terminals or cJienk are usually distributed across heterogeneous networks and they are

simple devices, with a minimum amount of memory and processing power. Once cre-

ated, MHEG-5 applications are stored on servers and when portions of an application are

required, they are downloaded to the client. MHEG-5 clients contain an interpreter or

Runtime Engine (RTE), which is used to interpret the most recently received portion of

a presentation, present it to the user and then handle any local user interaction.

MHEG-5 defines several new classes, which are used to develop multimedia applica-

tions. These include;

« The Root class - which is inherited by all the other classes in MHEG-5. It pro-

vides a mechanism to identify objects and it also handles the semantics of object

construction/destruction and activation/deactivation. This class is similar to the

MH-Object class used in MHEG-1.

9 The Ingredient class which defines the common behaviour for all the objects that

can be used in an Application or a Scene.

a The Application class - which consists of one or more Scene objects. This class

can also contain objects derived from the Ingredient class, such as an Audio or

a Stream object, that can be shared between these scenes. An instance of this

^The Joint Photographic Experts Group, an ISO standard for encoding still images.

2.4 Hypermedia Sfandards 21

class, an Application object, will define the entry point to the first scene within a

multimedia presentation.

The Scene class - which consists of objects derived from the Ingredient class that

are temporally and spatially coordinated. A Scene object effectively describes a

portion of the entire multimedia presentation.

The f/inkEY^ect and the LinjcCondifion classes - which are derived from the Ingre-

dient class. A LinkCondition is triggered by an event, which if it matches certain

conditions will run a LinkEfleet. The LinkEffect contains a list of elementary ac-

tions to be carried out.

« The Stream class - which is derived from the Ingredient class. This class provides

the functionality to multiplex audio and video objects, present them in synchroniza-

tion and create links &om MHEG objects to speciGc points in the stream. Links

can also be created to specific user-defined events.

® The Audio and Video classes - which are used to encapsulate the audio and video

information, respectively. They are subclasses of Ingredient and can be used with

Stream objects.

The HyperJexf class - which allows users to associate objects with a link to, Ibr

instance, another page. Objects can be words, groups of words and pictures.

At any time during the presentation, only one Application and Scene object can be active.

When the presentation changes to a different scene, the current scene and hence its object

is deactivated. The Ingredient objects used within this scene, if they are not used by

another, are then deactivated and destroyed. When the presentation has finished, it is

closed down and all of its objects are destroyed. A new application can then be started.

Bitzer and Hofrichter [54] describe how MHEG-5 also defines two encoding formats

for the development and delivery of MHEG-5 applications. For the development of ap-

plications, an ASCII-based textual format is used. This is easier for authors to read and

edit. For delivery, a binary format based on ASN.l is used, which ensures interoperabil-

ity across conformant terminals. This format also optimises MHEG-5 objects, so that

they can be simply and efficiently parsed and validated by client engines. After the de-

velopment phase of a MHEG-5 application, the textual format is usually translated into

the binary format, for more efficient distribution.

2.4 Hypermedia Standards 22

MHEG-6 [68] became an international standard in 1997 and it extends MHEG-5

by defining an Application Programming Interface (API), written in the Java program-

ming language and a Java Virtual Machine (JVM). This API which is also known as the

MHEG-5 API, allows Java programs to access, manipulate and interact with MHEG-5

objects, within a multimedia application. It also allows these programs to access and con-

trol the basic services or functions of the MHEG-5 engine and the host terminal itself

The JVM is used in conjunction with the MHEG-5 engine, to interpret the Java programs.

Several organizations and consortiums are either using MHEG-5 or are considering

MHEG-5 and its API (MHEG-6) for their systems. They include the Digital Audio Vi-

sual Council (DAVIC) [135], the Digital Video Broadcasting (DVB) Project [39, 138],

the Digital Television Group (DTG) [136] and the Digital Terrestrial Television Action

Group (DigiTAG) [137].

DAVIC was established in 1994 by an international consortium of manufacturers,

companies and research organizations. Yasuda and Ryan [55] and Echiffre et al. [97] ex-

plain that the DAVIC specifications deAne the tools and the dynamic behaviour required,

by interactive digital audio-visual systems, for end-to-end interoperability across differ-

ent countries, applications and services. This is achieved by using existing international

standards, such as MHEG-5 and its API, to define open interfaces and protocols, for the

transfer of audio-visual information. The consortium has released several specifications,

versions 1.0 to 1.5, of which the most complete is DAVIC Version 1.4.1 [30]. In 1998,

the consortium also submitted DAVIC Version 1.3.1, as a Draft International Standard,

to ISO/IEC JTCl. This specification, which is known as the DAVIC Publicly Available

Specification or DAVIC PAS [69], became an international standard in 1999.

The DVB Project was established in 1993 by an international consortium of manufac-

turers, broadcasters, regulatory bodies and network operators, from a number of countries

worldwide. Bitzer and Hofrichter [54] and Echiffre et al. [97] explain that the project's

objective is to provide a complete solution for digital television and data broadcasting,

across a range of delivery systems; fbr example networks, cable, satellite.

Evain [77] describes how this consortium is currently considering several APIs, in-

cluding MHEG-5, for its Multimedia Home Platform (DVB-MHP) specification. This

specification consists of the home terminal, its peripherals and the In-Home Digital Net-

work (DVB-IHDN), which allows several terminals to communicate and share informa-

tion within the consumer's home. Terminals can be computers, set-top boxes or televi-

sions with an integrated set-top box. A set-top box is a device which is used to receive.

J?/* jy {̂pefrne%iwi;Skinckinjs :23

decode and then display digital broadcasts on a TV. Peripherals can be keyboards, joy-

sticks and other external devices. A non-proprietary and open API, such as MHEG-5,

will allow manufacturers to develop more advanced interactive multimedia applications,

that can easily access the resources of the host terminal itself. Once created, these ap-

plications can then be used, by consumers, to view and interact with enhanced services

such as the Internet, games, email, TV-banking and shopping.

The Digital Television Group and its sister organization, DigiTAG, were formed to

establish Digital Terrestrial Television (DTT) within the United Kingdom and Europe,

respectively. The DTG was founded in 1995 and consists of about 100 companies, whilst

DigiTAG was established in 1996 and consists of a number of organizations from the

broadcasting, networking and manufacturing domain. Both of these groups are using

the DVB Projects' specifications and standards, to create advanced digital broadcasting

systems. The specification for the DVB Multimedia Home Platform (DVB-MHP) how-

ever, is still under development and the API, for the home terminals, has not yet been

finalised. Due to tight deadlines and other time constraints, both groups had to examine

other APIs for their terminals and in 1997, they decided to use MHEG-5. They have also

combined their research to develop and support a European version of MHEG-5, called

EuroMHEG [17]. This extension is specifically designed to meet the requirements of the

European digital community, e.g. by supporting European fonts and colour encodings.

When the DVB-MHP specification finally becomes a standard, their existing APIs will

be extended or modified, so that they will be fully compliant.

The final two parts of the MHEG standard are currently under development and they

are MHEG-7 and MHEG-8. MHEG-7 will define a set of interoperability and confor-

mance tests for MHEG-5 engines and applications. MHEG-8 will create a new encoding

format for MHEG-5, using the Extensible Markup Language (XML), see Section 3.5,5.

2.4.2 The Hypermedia/Time-based Stnicturing Language

The Hypermedia / Time-based Structuring Language (HyTime) [70] became an Interna-

tional Standard in 1992 and uses the Standard Generic Markup Language (SGML) [61] to

describe document architectures. HyTime evolved from the work of the ANSI X3V1.8M

committee on the development of a Standard Music Description Language (SMDL) [7]

and to understand the concepts of HyTime, a brief description of SMDL and SGML will

also be given in this section.

2.4 H^ermedia Standards 24

A paper by Carr et al. [87] describes traditional markup and the equivalent logical

and physical markup techniques in use today. Markup can be described as the process of

inserting specific commands or codes into the original text which the compositor program

(or traditionally a human) uses to compose the final document. Physical markup requires

the user to explicitly place certain commands, such as 'bold' and 'centre', around the

text to be rendered; whereas logical markup requires the program to interpret and render

abstract commands, such as "this text is a heading", inserted by the user.

This paper describes the Standard Generic Markup Language as taking logical mark-

up to the extreme. SGML does not define default markup commands or tags; the user

creates these by using SGML's logical elements and physical entities. In ArborText's

SGML White Paper [6], logical elements are described as pieces of data that may contain

either text or other subelements such as chapters and paragraphs. Each element also

contains their own generic identifier (GI), which is used for the markup of documents.

Physical entities are described as self-contained pieces of data, e.g. a separate text file or

a separate graphic file, that can be referenced as a unit.

These elements and entities are then stored in a Document Type Definition (DTD)

file, which can be used as a template for the structure of other documents. The syntax of

DTDs is very strict which ensures that they will be understood by other SGML-compliant

applications. It is up to the application, however, to interpret the "meaning" of the docu-

ment structure.

Moimce [120] describes in his paper, how the Standard Music Descnpt/on Z/anguage

(SMDL) was initially defined using a SGML DTD in 1988. SMDL is defined as

An architecture for the representation of music information, either alone, or

in conjunction with text, graphics or other information needed for publishing

or business purposes.

SMDL basically divides a musical work into four domains and these are:

1. The Logical domain or cantus - which contains all the logical information about

a piece of music. The cantus can be described as an abstract timeline on which all

events can be scheduled, e.g. Eliens et al. [3] suggest that the cantus can contain

information to do with automated lighting.

2.4 Hypermedia Standards 25

2. The Vi'suai domain - which graphically represents the music in some form, e.g. a

link to an image file or to a coded music file.

3. The Gestural domain ^ which contains one or more links to the actual performance

of the musical work, e.g. a link to a MIDI file.

4. The Analytical domain ^ which contains commentaries or theoretical analyses of

all of the other domains.

A file written in SMDL would traditionally contain a cantus, links to one or more

graphical representations of the musical work and one or more links, again, to the actual

performance of the cantus. This initially provided enough information to create simple

presentations, but with the development of digital audio and multimedia, there was a need

to extend the functionality of the original SMDL DTD. With each subsequent develop-

ment of the DTD, more and more information was submitted imtil eventually a separate

standards activity was initiated in 1989. This research produced the jfypermedta/Tmie-

based Structuring Language (HyTime) which became an International Standard in 1991.

Newcomb et al. [123] describe how HyTime was originally defined using a SGML

DTD, which contained the HyTime-specific generic identifiers (GIs). The standards com-

mittee realised, however, that these identifiers could not be changed because Hy Time-

compliant applications needed them to recognise HyTime documents. This reduced the

expressiveness of SGML and as a result, the next draft of the HyTime standard replaced

the GIs with SGML architectural forms. In Newcomb's [121] paper, an architectural

form defines elements with a standard meaning, e.g. independent hyperlink, and syn-

tax for its associated data. An architectural form also defines an attribute type for the

element, which is used for identification purposes. Multimedia systems would then use

this identifier to access only the relevant elements and hence parts of HyTime that they

require. HyTime usually provides a standard set of forms to build hypermedia and mul-

timedia documents and therefore, is often referred to as a meta-DTD.

One of the main problems of the hypermedia and multimedia industry is its inability

to store, describe and transport media objects in an application-neutral manner. New-

comb [122] discusses how the HyTime / SGML paradigm addresses this problem, by

encapsulating the information using abstract semantics. This ensures that the infbrma-

tion can co-exist in a variety of applications and contexts.

2.4 Bypermedia Standards 26

HyTime consists of six main modules. Papers by Newcomb [121] and Newcomb et

al. [123] give a thorough description of each module. They are:

1. The Base module - which includes facilities to manage documents, handle name

collision between HyTime-speciAc and user-defined identiGers and an ability to

track certain activities e.g. the creation, modification and deletion of links between

objects. This module also contains SGML itself.

2. The Location Address module - which is an extension to the current method, used

by SGML, to reference elements within documents. SGML uses two tags to ref-

erence these elements; a unique "identifier" (#ID) and an "identifier reference"

(#IDREF). SGML can also create simple links to particular entities such as a graphic

file. These identiGers and links, however, can only be used within the local scope

of the document that defined them. HyTime, again, extends this by providing lo-

cation address, i.e. a pointer, architectural forms. These forms include methods to

address locations by name and by position using dimension(s) and axis, e.g. a sub-

string within a string, a word in a sentence, a node within a tree. HyTime uses this

address information to "resolve" the address and hence recover the information at

that location. This can be within the local document or in another document.

3. The Hyperlinks module - which consists of several methods to create active refer-

ences (or hyperlinks) to other documents and / or objects within those documents.

This includes the general purpose independent link (ilink) which can have any

number of link ends and ways to activate a traversal of a link, e.g. a push of a

button and the contextual link (clink) which always has two link ends, with one of

them being the clink's own location e.g. a footnote.

4. The Measurement module ^ which defines a way to address document objects

using abstract measurable domains such as space and time.

5. The Scheduling module - which uses finite co-ordinate spaces (FCSs) to define

any number of axes. These axes can represent anything that can be measured or

counted such as time, money and temperature. Objects within FCSs are called

events and these are used by the rendition module.

6. The Rendition module - which defines two constructs, the proscope and mod-

scope. The proscope can be used to project certain parts of events onto another

PCS e.g. show only this section of a map, whereas the modscope can be used to

2.5 The Open Hypermedia Protocol 27

modify an event e.g. change the colour. This module calls a schedule of proscopes

a baton and a schedule of modscopes a wand. A wand and then a baton can be

applied to a particular event, e.g. take this picture of a crowd, change the colour

and then only project a particular section of the crowd. Generally the resulting FCS

is in a form that the user can see and / or hear.

HyTime is a complex standard that is primarily used to express document architec-

tures in SGML. It is not an application and as a result of this and its complexity, very few

implementations of the HyTime standard actually exist.

2.5 The Open Hypermedia Protocol

Davis et al. [25] and Reich et al. [125] explain that in 1994, at the first International

Workshop on Open Hypermedia Systems [140], the open hypermedia research com-

munity discussed the problems of the current generation of open hypermedia systems

(OHSs). The community realised that these systems were "open" in the way that they

handled the link information, see Section 2.3 and how the client-side applications could

use this information, e.g. creation, manipulation and traversal. They also explain that the

majority of these systems stored the link information on separate link servers and that

they used their own proprietary protocols, for communication, between these servers and

the clients. As a result of this, different open hypermedia systems could not interoperate

because the client-side tools, used in one system, would not be able to communicate with

the link servers used in another.

The research community also noticed that the developers of these systems were spen-

ding a considerable amount of time re-implementing existing tools; to ensure that they

could communicate with their own OHSs. To support new data formats, either the ex-

isting tools would have to be modified again, or new client-side tools would have to be

created. The open hypermedia community came to the conclusion, that the developers

were wasting too much time on these tools, instead of concentrating on the main areas of

research, the link servers or services.

Millard et al. [27] and Davis et al. [49] describe how Antoine Rizk, at the first work-

shop in 1994, proposed that the open hypermedia community should concentrate on the

development of a new lightweight message-based protocol, to overcome these problems.

He described how each of the current generation of open hypermedia systems had sim-

ilar features and functionality; for example the communication protocols, used in these

2. J Tlhe Open Hypermedia frofocoj 28

systems, were confidential and proprietary in nature, but they all performed similar tasks.

With this in mind, he suggested that the most common features of these systems could be

combined to forni the Open Hypermedia Protocol (OHP). The OHP could then be used

to create a standard set of interoperable client-side tools.

In 1996, at the Second Workshop on Open Hypermedia Systems [141], two important

events occurred. The first was the formation of the Open Hypermedia Systems Working

Group (OHSWG), which meets every 6 months to coordinate the efforts of the OHS

research community. The second was the presentation of the first draft of the Open Hy-

permedia Protocol, by Davis et al. [49]. This draft introduced the concept of a protocol

shim^^, which would convert messages, delivered by the OHP, to the native format used

by the open hypermedia system. The protocol itself consists of text-based messages, con-

taining ASCII tags and values. It was heavily influenced by the authors' own experience

with hypermedia systems, e.g. Microcosm's message model, see Section 2.3.2. The

client-side tools would communicate with the shim using the OHP, which would then

communicate with the link servers, using the OHS's own proprietary protocol format.

The link servers would not have to be modified because the developers would only have

to create the shim. Once created any OHP-aware client would then be able to communi-

cate with any server, via these shims.

After several refinements, the draft was ready to be used and the OHSWG con-

centrated on developing systems, to demonstrate interoperability. However, Millard et

al. [26, 28] and Davis et al. [50] describe several of the problems that became evident,

with the scope of the draft proposal and hence the protocol itself, during the development

of these systems. These included:

The protocols' complexity and size. Originally the protocol was designed to pro-

vide a standard interface, between the clients and the servers. As the work pro-

gressed however, the complexity and size of the protocol steadily increased. For

example, the group could not agree on which type of on-the-wire protocol to use

and so several were included. Aspects of resource location and naming also caused

confusion. As a result, this "lightweight protocol" steadily grew to encompass

several different aspects of the hypermedia domain.

Problems with the text-based messages. The protocol consisted of a sequence of

tag / value pairs, which proved difficult to parse. Inconsistencies in the naming of

10 A "shim" is a thin piece of material, used in machinery, to make parts fit.

2.5 The Opej] Hypermecba frofocoJ 29

these tags and the handling of the objects, also caused problems.

The OHSWG soon realised that it was impossible for a single protocol to handle all of

the different aspects of the open hypermedia domain and so they decided to split the pro-

tocol into more manageable sub-domains. OHP was renamed to the OHP Navigational

Interface (OHP-Nav) and its functionality was reduced, so that it dealt with the more

traditional form of navigational hypertext exclusively.

Millard et al. [24, 27] and Reich et al. [125] describe navigational or associative hy-

pertext, as being the most widespread and common form of hypermedia in use today.

The World Wide Web, for example, has implemented its own form of navigational hy-

permedia, see Section 2.3.1. Vannevar Bush [11] and several other early pioneers, see

Section 2.2, originally defined the concept of navigational hypertext, as the process in

which humans "link" or "associate" related pieces of information together. By recalling

one item of information, it became possible for users to recall other related pieces of

information; in other words recalling the item or items "linked" to.

By concentrating on this domain, it became possible for the OHSWG to define the

main abstractions for this protocol as:

« A Node - which can be described as a "wrapper" for an arbitrary resource. It

contains information about a content specifier (ContentSpec). The ContentSpec

can contain URIs to data or the actual data itself, e.g. a picture and text.

9 An Anchor - which contains an identifier and an optional location specifier (Loc-

Spec), for the identified object. This LocSpec provides a handle to either the entire

object or an area within the object, e.g. a byte offset into a text file and the coordi-

nates for an area within an image.

An EndPoint - which consists of an anchor identifier and a link identifier. It is used

to bind exactly one anchor to one link. An anchor can be bound to more than one

endpoint.

» A Link - which is a relationship between zero or more endpoints.

Figure 2.2 is an example of two links in OHP-Nav. Link 1 contains two endpoints

(Endpoint 1 and Endpoint 2); both of which point into Node 1. With this link, one

of the anchors could point to an entire document and the other, point to an area within

2.5 The Open Hypermedia Protocol 30

this document. Link 2 again has two endpoints, however one is bound to Node 1 and

the other is bound to Node 2, which could be a URI to an image. Therefore if Link 2 is

followed, the user could go from an area within a document to an image.

Link 1

Endpoint 1

Anchor 1
(LocSpec)

Endpoint 2 Endpoint 3

Anchor 2
(LocSpec)

Link 2

Node 1
(ContentSpec)

Node 2
(ContentSpec)

Endpoint 4

Anchor 3
(LocSpec)

Figure 2.2; The OHP Node Link model.

Millard et al. [28] describe how in 1997, the interface definition for OHP-Nav [51]

was considered complete enough, for developers to begin initial implementations. The

proposal originally used the text-based message format for communication. However this

format, as mentioned previously, is difficult to parse and therefore the group decided to

use a new format. Two standards for handling this type of information were investigated

and they are outlined below:

1. The extensible Markup Language (XML) [152] - which has recently become a

standard. XML is derived from SGML, see Section 2.4.2 and it has been used

in a number of different tools and applications. For OHP-Nav, a XML Document

Type Definition (DTD) was defined. This is used to efficiently parse and verify

OHP-Nav objects, to ensure that they conform to the specification.

When using XML clients that are OHP-Nav aware, pass object identifiers to the

servers, which resolve them directly. These servers then send the relevant objects,

encoded in XML, back to the client. For a more detailed description of XML and

DTDs see Section 3.5.5.

2. J 77)6 Opezi Hypermedza frofocoj 31

2. The CommoD Ot^ecf j(eguesf Brojcer ArcMfecfure (CORBA) [19] - which is a

standard developed by the Object Management Group (OMG) [102]. The OMG

[16] describes CORBA as being an open, vendor-independent architecture and in-

frastructure, that allows applications to intemperate over heterogeneous networks.

By using CORBA and its protocols, vendors can communicate using different ma-

chines, operating systems and programming languages.

For OHP-Nav, the OHSWG decided to create a second definition of OHP-Nav us-

ing the CORBA Znfer&ce DeAution language (IDL); so that it would be possible

to transmit and receive OHP-Nav objects over different communication mecha-

nisms. The IDL, as the name suggests, specifically defines the interface for each

object being used. This interface contains strict declarations for each of the func-

tions and their parameters, used by the objects.

The XML DTD for OHP-Nav could be used immediately, for initial prototype imple-

mentations. The CORBA interface definition however, raised a few issues. For example,

each object that has an interface requires a name, which ensures that an application can

access that object by simply using its name. At this time however, there had been very few

discussions, within the OHSWG, about the naming of OHP-Nav objects. Other issues in-

volved how the OHP-Nav messages would be passed between CORBA-aware clients and

servers, e.g. as plain ASCII text or as IDL mapped methods in a new object. Millard et

al. [28] describe how a simple CORBA implementation was eventually developed. The

OHSWG decided however, that the issues mentioned above required further research.

Millard et al. [28] and Reich et al. [124,125] describe three open hypermedia systems,

that have implemented OHP-Nav;

1. The Southampton CSF system - which was developed by the Intelligence, Agents

and Multimedia (lAM) research group" at the University of Southampton. This

system consists of a picture viewer, a linkserver and the Client Side Foo (CSF)

communication mechanism.

The picture viewer is an application that supports link traversal and endpoint cre-

ation. The linkserver is a database that stores the link information and the CSF

handles the communication between the viewer and the server. The CSF contains

an engine that handles the OHP-Nav messages and it is designed to be easily mod-

ified, so that different networking protocols can be supported. Currently it uses

Formally known as the MultiMedia Research Group (MMRG).

2.5 The Open Hypennedia Protocol 32

TCP/IP for communication, see Section 4.2.

2. The Solent system - which was again developed by the lAM research group at

the University of Southampton. This system uses two servers, which provide navi-

gational and content-based retrieval services. Content-based retrieval allows users

to retrieve information, and possibly navigate to new pieces of information, based

on the content stored within hypermedia documents. An application might sup-

port navigation, by finding "similar" images based on their characteristics, such as

colour distribution, different shapes within the images.

Solent has four client applications and they include a wrapper for a word processor,

a picture-viewer and a "car stereo", which was used to play audio files.

3. The Construct system - which was developed at Aarhus and Aalborg Universities

in Denmark. This system has three main servers, which provide navigational and

spatial hypermedia services, as well as collaboration. Collaboration allows multi-

ple clients or users to share and interact with a particular environment, e.g. a shared

document, that allows different users to modify the content.

Construct has four client applications and they include wrappers for a word pro-

cessor, e.g. Microsoft's Word, and a Web browser.

At Hypertext 98, the Southampton CSF system and a simplified version of the Con-

struct system were both demonstrated. They showed, for the first time, client interoper-

ability between different OHSs. It was possible, for example, to create one endpoint in

the picture viewer and then another in one of the Construct clients. These links could

then be followed from either client. As a result of these demonstrations the amount of in-

terest, in the work of the OHSWG, increased. The group decided therefore, to do another

demonstration at the next Hypertext conference.

Millard et al. [26] explain, that for the next conference the group decided to demon-

strate different aspects of the OHP-Nav protocol. At Hypertext 99, the Solent system

and the current version of the Construct system, mentioned above, were demonstrated.

After this conference however, the OHSWG realised that the different hypertext domains

were not that different after all. The Solent system, for example, demonstrated a versa-

tile storage component that held arbitrary data structures in XML. This component does

not know anything about the data structures it stores; it only understands the structure of

the XML. As a result of this and further discussions within the group, the Southampton

2.5 The Open H^ermedia Protocol 33

members of the OHSWG focused on defining the highest level of structure, that would

work across all the domains.

To define this high level structure, three of the most common hypertext domains were

investigated. One of these is navigational hypertext, which has already been described in

this section. Millard et al. [24, 27] describe the other two domains and they are:

1. Spatial hypertext - which is also known as Information Triage. This domain allows

users to express relationships between different pieces of information or nodes, us-

ing visual characteristics such as proximity, colour and shape. It is possible to

combine similar nodes together, to form collections and to organise these collec-

tions using Abstract Data (ADTs), such as sets, lists and stacks. The visual

representation of these node are known as composites.

The relationships between these nodes and collections are implicit; defined by the

visual characteristics. Therefore to ensure that this information can be queried,

most spatial systems use a spatW parser, to convert these implicit relationships into

explicit associations. This parser is also used to decide on an appropriate structure

such as a set to store this information.

2. Taxonomic hypertext - which uses taxonomies to categorise items of information,

called artifacts. Taxonomy is the science of classification and it has been used

by biologists, for example, to classify living and extinct organisms. An artifact is

similar to a node.

Set theory is used to model taxonomic hypertext and users sort artifacts into cate-

gories, which are represented by sets, based on their characteristics. Different users

might view the information in different ways and therefore, users can have differ-

ent perspectives on the way the information is categorised. For example, one user

might categorise three artifacts as being similar. Another user might categorise

them completely differently and therefore, two different perspectives will be de-

fined, by the users, for these artifacts. Users can navigate the taxonomy by moving

between overlapping categories or perspectives.

All three domains have several similarities. For example, data is represented as a

node in navigational hypertext, as a visual entity in spatial hypertext and as an artifact

in taxonomic hypertext. However, each domain has its own unique features, e.g. nav-

igational hypertext allows users to define anchors that link to areas within documents

]Tbe 34

and taxonomic hypertext allows users to define perspective objects, which diverge the

relationships within the categories, according to different views.

To ensure that the new high level structure could work across all three domains, Mil-

lard et al. [27] decided to take the unique features of each one and create corresponding

features or data structures in the others. They describe how spatial hypertext provides

internal structure, using its ADTs. These structures could be used, in navigational hy-

pertext, to organise the different parts of large documents and provide more structured

movement through the information. For taxonomic hypertext, these structures would be

another feature of a category, which would allow perspectives to split over structure as

well as content.

Two other important areas are link traversal, the process of following a link and ar-

rival, the process of viewing a structure. For spatial hypertext, traversal and arrival will

depend on the ADT being used. For example, arrival in a set will display all of the ele-

ments in that set, while traversal will display all of the elements except the starting end-

point. A more thorough description, of the interoperability between domains, is given by

Millard et al. [27].

This work resulted in the creation of an abstract data model to represent the rela-

tionships between these domains. This data model was called the Fundamental Open

Hypermedia Model (FOHM) and it is used to map from one domain to another. This

ensures interoperability. FOHM is defined using an XML DTD, see Section 3.5.5 and it

introduces four new objects;

1. A Data object - which is a simple wrapper for information. It could represent a

document, file or any other type of information.

2. A DataRef object - which contains a feature vector. A feature vector is used to

determine how a dataref maps to the feature space. The dataref also contains an

optional LocSpec, which has been described previously.

3. A Binding object - which binds a dataref to an association, using the feature vector.

4. An Association object - which contains a list of features, known as a feature space.

All objects in the association must map to this feature space. It also contains a set

of bindings.

Figure 2.3 is an example of a FOHM structure, from a navigational link to a spatial

2.5 The Open Hypennedia Protocol 35

list. The feature space for both associations is shown, in brackets, after the Associat ion

tag. For links, it is d i rec t ion and for spatial lists, it is p o s i t i o n . The feature vector

is shown, again in brackets, in the Binding box. For navigational links, there are three

types; a source (src), a destination (dest) and a bi-directional (bi), which is not shown in

the figure. For spatial lists, the feature vector is just a number, representing the position

in the list. If the navigational link is followed, the user will go from an area within

a document to the spatial list. On arrival, all of the elements within this list will be

displayed.

Association (direction)

Binding

DataRef

Binding

DataRef

Association (position)

Binding
(0)

DataRef

Data

Binding
(1)

DataRef

Binding
(2)

DataRef

Figure 2.3; A Navigational Link to a Spatial List.

FOHM has been designed to support a number of different domains, not just the three

mentioned above. It is possible to extend FOHM with new data structures. However

at this stage, it will not be able to "understand" them. As a result, clients will not be

able to edit the associations because they will not understand the implications of their

modifications.

The development of FOHM has formed a new high-level, associational structure for

interoperability. FOHM-aware applications, for the SofAR [93] agent framework, have

2.6 jOKCuauon 36

already been developed, to demonstrate spatial and navigational browsing of the same

structures. The focus of the group however, has changed from a single all-encompassing

protocol, to the actual data structures themselves. As a result of this, the infrastructure

for a powerAil open hypermedia Aamework, is now being developed.

2.6 Discussion

In the twentieth century there has been a phenomenal growth, in the amount of scientific

and publicly available information. However systems that can be used to store and man-

age this information have only been developed towards the end of this century. This was

mainly due to the lack of technology, both hardware and sofitware, that could be used to

handle this information in a suitable way.

Several research communities and standards' organisations have approached this pro-

blem, using different techniques and systems. The hypermedia research community was

one of the earliest developers of hypertext systems, which could be used to augment the

traditional form of linear text within documents. These systems allowed users to create,

edit and manipulate links between related bodies of text; in effect mirroring the way the

human mind associates related pieces of information. As more advanced digital comput-

ers were introduced this community developed hypermedia systems, which allowed the

creation of links between documents containing different types of media, such as audio

and video.

These systems however, were known as "closed" second generation systems because

they had several limitations, including the use of proprietary document formats and the

embedded markup of links. As a result these systems could not share information. To

help overcome some of these problems the Dexter Hypertext Reference Model was de-

fined. It was designed to be used as a template for future standards and to define several

common layers to handle the presentation, storage and link management of hypermedia

information. This model was an important development in hypermedia research however,

it has been criticised. Certain parts of the model have incomplete specifications, such as

the composites and it does not address the dangling link problem.

After several conferences, the hypermedia research community concentrated on new

areas of research, specifically the development of Open Hypermedia Systems (OHSs).

These OHSs were designed to overcome the problems of "closed" hypermedia systems

and some of the most successful OHSs include:

2.6 jD^cusabn 37

e Microcosm - which was designed to extend the functionality of the native operat-

ing system by using a set of communicating processes and viewers. These viewers

are tools that allow users to interact with the system and they are either specif-

ically designed for Microcosm or are native applications, that have been made

Microcosm-aware. As a result, this OHS has the ability to cope with a large num-

ber of documents (10,000 and above) and it separates the links for different users.

When users log in, the linkbase(s) for each user are processed and the links will be

displayed in the relevant documents.

In Microcosm however, the editing and following of links can cause a few prob-

lems. Links are not embedded within the documents and therefore if the documents

are modified, outside of the Microcosm environment, then the links may no longer

be accurate. If the document is removed, then the dangling link problem will occur.

The developers of the system have attempted to solve this problem, by attaching

time stamps to each link and node. When these change, the system will attempt

to repair itself or notify the user with a warning. When following a link to a large

document, Microcosm-aware viewers will attempt to move the view to the exact

position of the link endpoint. Unaware viewers however can not do this.

• MAVIS - which is an extension to Microcosm and it allows users to create links

between text and non-text media. It achieves this by using fuzzy matching tech-

niques with signatures, to determine the closest match between similar types of

non-text media. These signatures are stored within Ales and represent the content

of a selection; for example the values of the colours used within an image. MAVIS

provides a good framework for testing different fuzzy matching algorithms, espe-

cially against each other. However at this stage of development, it can only handle

images and text. It has limited support for audio and this is discussed in more detail

in Chapter 3.

Hyperwave ^ which was originally known as Hyper-G. It is described as being

a large distributed open hypermedia system. This system consists of information

servers which contain descriptions of higher-level structures such as documents,

links, collections and tours. The Hyperwave clients consist of several purpose built

viewers, to handle different types of media and a session manager. It has sup-

port fbr multiple languages, so that links can be made available regardless of the

original language that was used for a selection. The design of the Hyperwave sys-

tem meets many of the requirements of open hypermedia, however the servers are

2.6 DYscussjon 38

not inherently extensible and therefore they are difBcult to customise for particular

users.

Another "open" hypermedia system is the World Wide Web (WWW), which has

steadily grown from being a research project at CERN laboratories, to the most widely

used mechanism, over the Internet, for information retrieval, delivery and exchange. The

WWW can be described as being "open" because it uses open standards for the markup of

documents (HTML) and the delivery of these documents, from the servers to the clients

(HTTP). However, it violates some of the most common principles of open hypermedia;

all documents have to be converted into HTML so that they can support embedded links,

only unidirectional (one-way) navigation is supported and links can be broken when doc-

uments are moved, which results in the dangling link problem.

The Distributed Link Service (DLS) was developed to help alleviate some of these

problems. It provides link management and delivery services for the WWW. A DLS

proxy server is used in conjunction with a Web server to dynamically markup HTML

documents, requested by the users, with extra link information. This information is pro-

vided by external linkbases, which are selected by the users via the proxy server. Carr

et al. [89] explains however, that even though the DLS separates some of the link infor-

mation from the Web pages, problems will occur with keeping track of the documents to

which each link points. Also the original software assumed that the linkbases would be

stored on the same machine that was running the server. Later versions of the software

used URLs to access linkbases, that are stored anywhere on the Web. As a result it could

be possible for the author to lose control of the source and destination documents, as well

as the links themselves.

Whilst these Open Hypermedia Systems were being developed, the International

Standards Organisation (ISO) was also developing two hypermedia standards; HyTime

and MHEG. HyTime was designed to overcome the problems of storing, describing and

transporting media objects in an application-neutral manner. It is usually described as a

meta-DTD, that uses SGML to construct the architecture of documents. However it is a

complex standard and as a result very few implementations actually exist. MHEG was

designed for the development and delivery of multimedia and hypermedia presentations,

across heterogeneous networks. It consists of eight parts of which the most popular are

MHEG-5 and MHEG-6. These two parts of the standard are being used in a number of

systems, to help in the delivery of digital television and data broadcasting. MHEG is far

2 7 Smnmay 39

simpler than HyTime and it can be used for applications that require real-time informa-

tion interchange. It is primarily used however, as a tool to develop visual, easy-to-use,

interoperable distributed systems, of which audio is just a small part.

The open hypermedia research community have discussed, at several conferences, the

problems of Open Hypermedia Systems. They realised that the vast majority of these sys-

tems were "open" in the way that they handled the link information, at the client and the

server. They also realised however, that these OHSs could not interoperate because each

system used its own proprietary protocols, for communication between the clients and

the server. As a result of this the Open Hypermedia Systems Working Group (OHSWG)

started the development of the Open Hypermedia Protocol (OHP), which focused primar-

ily on a protocol for interoperability.

As work continued, the protocol steadily grew in size until the group realised that a

single protocol could not be used, to handle all of the aspects of open hypermedia. The

functionality of OHP was reduced so that it handled the traditional form of navigational

hypertext and it was renamed to OHP Navigational (OHP-Nav). OHP-Nav defines a

protocol for communication and the data structures required to handle navigational hy-

pertext. It was successfiilly demonstrated at two conferences.

After these conferences the Southampton members of the group focused on the de-

velopment of a higher-level structure, that could work across the three main hypertext

domains; navigational, spatial and taxonomic hypertext. This structure was called the

Fundamental Open Hypermedia Model (FOHM). This model however, does not describe

an interoperable communication protocol. It just describes an associational structure

for interoperability. Therefore to use this model, over heterogeneous networks and dis-

tributed systems, an underlying transport protocol has to be used.

2.7 Summary

This chapter has discussed the origins of hypertext, hypermedia and the development of

"closed" hypermedia systems. Dexter, a hypermedia reference model, is described and

the concepts of "Open" Hypermedia Systems (OHSs) are discussed. Several OHSs that

have developed tools to handle multimedia documents, including the audio domain, are

described.

2 7 40

Existing hypermedia and multimedia standards, developed by the International Stan-

dards Organisation (ISO), are reviewed and they are MHEG and HyTime. The com-

plexity of HyTime has resulted in very few systems actually been developed. MHEG on

the other hand, is a far less complex standard and it can be used to create and deliver

multimedia presentations, although the audio domain is only a small part of this.

Finally this chapter describes the development of the Open Hypermedia Protocol

(OHP) and OHP-Navigational (OHP-Nav), which is a subset of OHP. The Fundamental

Open Hypermedia Model (FOHM), which is a higher-level interoperable associational

structure, is then discussed.

The next chapter describes the importance of the audio domain and how it has been

used in a number of systems, including the "Open" Hypermedia Systems discussed in

this chapter, multimedia authoring tools and existing International Standards.

Chapter 3

The Audio Domain

3.1 Introduction

This chapter describes the benefits of the audio domain and how it has been used in a

number of systems. Traditionally the sense of sight has always been regarded as the

primary sense for normally sighted people. It has been shown however, that sound is just

as important as sight. The human ear for instance can detect different types of sound,

their location and how far away they are.

Multimedia authoring tools use different types of media, including sound, to create

multimedia applications and three of the most common visual environments, fbr creating

these applications, are discussed in this chapter. Two existing standards for handling

audio information are also discussed and they are MPEG and Digital Audio Broadcasting.

The previous chapter describes the WWW and "Open" Hypermedia Systems (OHSs),

which are being used to handle large amounts of information in different ways. The

WWW uses embedded links to allow users to navigate around this information. OHSs on

the other hand, store the link information separately from the documents and allow users

to create, edit and follow links in this information space.

This chapter describes how the audio domain has been used in "Open" Hypermedia

Systems and the WWW. Finally the chapter draws to a close, by describing how a multi-

media presentation can be created, using a new declarative language, fbr the Web, called

SMIL.

41

3.2 TAe f ive Seiises 42

3.2 The Five Senses

Traditionally, vision has always been regarded as the primary sense for normally sighted

people. In general, however, humans interact with the outside world by receiving infor-

mation through a mixfure of sight, hearing, touch, taste and smell. This information is

then processed and depending on the results, humans will react or respond to it. For ex-

ample, the sense of smell and sight could be used to determine if a piece of food had gone

off. The user might react to this situation by disposing of the food. In the development

of graphical user interfaces, all of the other senses are regarded as being less important

than sight and therefore they do not receive as much attention. This is mainly due to their

complexity.

Dix et al. [2] describe how the majority of interactive computer systems are com-

pletely visual in nature, offering rudimentary audio support. As the complexity of these

systems increase, more and more visual information could be presented on the screen,

making it harder for the user to understand. The authors discuss how the other sensory

channels could be used to relieve the pressure of the visual channel and thus reduce the

information overload. With humans there are two types of channel, one for input and

another for output. An input channel represents one of the five senses, whilst an output

channel represents a response, e.g. moving a leg, walking, talking. By increasing the

number of sensory channels, users would be able to interact with their computers in the

same way that they would interact with their everyday environment.

Most commercial computer systems, however, provide limited support for two of the

other senses, hearing and touch. Systems that produce a hapfic response (the sense of

touch) are being used by the virtual reality (VR) community and joystick manufacturers.

For example, VR users can wear a special type of glove which contains small inflatable

pockets. As the user in the VR world picks up an object, these pockets fill with air giving

the impression that the user has actually picked up that object. Joystick manufacturers

have developed tactile feedback joysticks which have small motors that move the joystick

depending on the type of feedback required.

These interactive systems also support audio, although traditionally it is only used

to provide warnings, alarms and status information. Most modem operating systems

such as Microsoft's Windows also provide support for soundcards, which can be used to

record, edit and playback audio samples. The majority of the time, however, soundcards

are used for playing games. Dix et al. [2] describe how users, when playing a game, will

score more points when the sound is turned on rather than off. Users can detect vital

3.2 The Five Senses 43

information and clues via the changes in the sound, which can be used with the visual

information to increase their scores. The authors also describe how audio and visual

information can help increase the accuracy of speech recognition systems. For example

a camera can be used to video the lip movements of the speaker. The sounds will also be

analysed. By nsing the video footage and the sound information, words and phrases can

be more accurately resolved.

Overall these interactive systems use the visual channel as the main medium for trans-

ferring information. The auditory channel is rarely used, although the amount of informa-

tion that can be conveyed using audio is underestimated. The following section describes

the audio domain in more detail.

To understand the audio domain an overview of the human auditory system is re-

quired. Dix et al. [2] and Moore [9] both describe how the human ear consists of three

parts and these are:

1. The Outer Ear - which consists of the pinna (the visible part of the ear) and the

auditory channel. Both the pinna and the auditory channel amplify certain high fre-

quencies, whilst the channel itself secretes a waxy substance that prevents insects

and dirt from reaching the more sensitive middle ear.

2. The MiddJe Ear - which consists of a small cavity containing three of the smallest

bones in the human body, the ossicles. These connect the outer ear via the eardrum

or tympanic membrane to the cochlea in the inner ear.

3. The Inner Ear - which consists of the cochlea. This part of the ear has rigid bony

walls and is filled with a special type of fluid. It contains tiny hairs or cilia which

move when the fluid vibrates. This vibration causes small electrical impulses to be

passed up the auditory nerve to the brain.

Moore [9] describes how the process of hearing originates with the vibration of an ob-

ject. This vibration causes a pattern of changes to occur within the surrounding medium

(usually air), which results in the creation of a sound wave. This wave travels through

the air until it eventually reaches the outer ear, mentioned above. The sound wave will

then pass down the auditory channel to the ear drum, causing the drum to vibrate. The

vibrations of the ear drum are passed via the ossicles, in the middle ear, to the cochlea.

These vibrations change the pressure within the cochlea, which in turn moves the cilia.

3.3 MWdmedia AuAormg TboJs 44

This process of passing the sound waves from the outer to the inner ear, ensures the

efficient transfer of the actual sound information. Dix et al. [2] describe the different

characteristics of sound, such as the pitch and amplitude. If the pitch of the sound in-

creases, then the frequency will also increase. The human ear can hear frequencies from

about 20 Hz to 15 KHz. The amplitude of the sound is proportional to its loudness and

therefore, an increase in the amplitude will cause an increase in the volume of the sound.

The human ear can also identify the sound's location, since the two ears receive

slightly different sounds. If a sound occurs to the left of a user's head, then the left

ear will receive the sound wave first. It will take longer to reach the right ear due to its

location and the fact that the wave will also reflect off the listener's head.

Overall, sound can convey a remarkable amount of information. The human ear can

use this information to detect different types of sounds, where they are coming from

and how far away they are. However, the sense of hearing has always been regarded as

secondary to that of sight and this can be clearly seen in the development of computer

systems. By combining this sound information with visual information, users would be

able to interact with computers in a more natural way, see Section 1.

3.3 Multimedia Authoring Tools

This section describes some of the most popular multimedia authoring tools that are

available today. Multimedia authoring allows users to combine text, hypertext, pictures,

animation, sound and video into a single application that can be distributed on and over a

variety of media, for example the Internet, CD-ROMs and floppy disks. Users can design

anything from an interactive Web site to an electronic product catalogue.

Designing a multimedia presentation, however, can take a lot of time and effort.

Therefore the majority of multimedia packages tiy to reduce this by using a range of

authoring techniques. These include the timeline and fowchart methods and the book

metaphor. The following sections give a brief overview of these methods and the products

that use them (a more detailed description of the products are in [104]).

3.3.1 The Timeline authoring method

The leading products in this area of authoring are developed by Macromedia and they are

called Director and Flash. In these applications a timeline consists of layers which span

3.3 Multimedia Authoring Tools 45

over several Aames. Each layer contains one or more elements (cast members), which

exist in either one &ame or they can span over several. For example a simple presentation

could contain three layers; layer one could contain a picture of blue sky, layer two could

contain a picture of a beach and layer three a picture of a palm tree. If each of the layers

span 10 &ames and the user presses the "play" button, then the presentation will show a

picture containing all of the elements in the layers e.g. blue sky, a beach and a palm tree.

If layer one however only spans 5 frames &om the beginning, then the blue sky would

only show for 5 frames and then disappear for the remaining 5. Users can also modify a

cast member in each frame of a single layer which will result in a simple animation, e.g.

modifying a bird's wings so that in one frame they are up and in another they are down,

giving the impression of flight.

Both of these packages support audio. The Flash application allows users to import

audio files directly into a layer, whereas Director uses a separate digital audio layer.

Figure 3.1 shows a section of a simple presentation in the Flash program. A section of

the timeline that contains audio samples, the "speaker flashes" layer, can be seen at the

top of the screen. Director has support for up to 10 digital audio channels depending on

the hardware used. Audio files can be played in the background of a presentation or they

can be activated by several other types of event, e.g. a mouse click, the transition from

one scene to another.

Links can not be followed from within an audio event. Audio can be placed on one

layer and at a certain time / frame an event can occur, such as a screen transition or a

video started, on another layer. Everything, however, is followed when the "play head"

touches the beginning of a cast member in the timeline. So sound again is just another

element used within a presentation.

3.3.2 The Flowchart authoring method

Several products use this method and they include Macromedia's Authorware, Asym-

etrix's IconAuthor and Linotype's Dazzler. All of these applications use "drag and drop"

to pick-up and place icons on the presentation page. These icons represent:

evenfs such as mouse clicks and key presses,

» actions to be performed after an event such as a transition or a sound,

routines to perform branches such as loops, decisions and interactions.

3.3 Multimedia Authoring Tools 46

^ Flash 2 - [Theater]

7,i File Edit View Insert Modify Control Xtras Window Help

D s a l i l f e l + $ | + (| a It 100% zl '

[V A \ % \ [V A
jenhanced bitmap te: B

[V A

!spe

[rigli

aker flashes fi llf*o

[V A

!spe

[rigli tspeaker fi

'left speaker S

jstage top fli

68 1 12fps 1 5,Gs J

sound

Figure 3.1: A screen-shot of a Macromedia Flash presentation.

The flow of control within the flowchart is usually from the top to the bottom. Branches

such as a loop or a conditional branch, are allowed and users can also insert smaller

flowcharts within the main flowchart. Figure 3.2 is a screen-shot of Macromedia's Au-

thorware program, displaying specific icons and decision branches.

Clicking on each icon usually brings up the icon's properties, which can be easily

changed. A presentation is built by inserting one object after another e.g. a simple

application could contain just three icons; the first could be a picture, the second a sound

icon and the third a text icon. When the presentation is started the user would see and

hear all three icons together.

An audio icon can be inserted directly onto the author's development page. The

properties of this icon, however, are usually quite limited; it only allows the audio file

to be located and imported. Again there is no functionality to create anchors within the

audio and therefore, links to and from the audio.

3.3 Multimedia Authoring Tools 47

* Authorware
File Edit View Insert Modify Text

% % B U i-O Iml li=]

Level 1

^ _ n i x

Run to View Documentation

o

a

BE

•v

i

I

^ Select your motion
O O—p-

Rotating Gauge
Progress Bar
Scrolling Graphic

EZ Scrolling Graphic

I p Interface Graphics

[S Black Backdrop

(p Scroll Knob

Graphicto Scroll

iSJ Move Scroll Knob

Level 2

, Scroll Controls
Close
Scroll Up

Dragging@"Scroll Knob"
Click on Scroll Bar

r i - r XT5ira

& Reset vertical variable

repeat while mou..

Level 3

Scroll Down

Figure 3.2: The design process for Macromedia's Authorware program.

3.3.3 The "Book" Metaphor

Asymetrix's ToolBook, Digital Workshop's Illuminatus, Scala Computer Television's

MM200 and Match Ware's MediSor all use this method of authoring. Basically when

the application is started, the user is shown a page in which certain objects can be placed

e.g. text, pictures and buttons. By inserting objects into several pages, a multimedia

"book" is eventually created. The author can create transitions between pages and on the

objects themselves; e.g. to zoom text in and out and to cause a picture to flow onto the

page. Figure 3.3 is a screen-shot of the design process used in Match Ware's MediSor

program.

Several of the applications allow a sound object to be placed directly onto the page.

Other objects can then be inserted into the page and arranged in such away that they will

appear or do something at a certain time, during the audio playback. The audio, however,

is not directly controlling these objects and therefore it can be described as being just

another entity or object used within the presentation. The majority of the time audio

output is caused by an event, such as a button being pressed or the mouse cursor moving

3.4 Existing standards 48

Match Ware MediSor 3.0 Demo
File Edit View Arrange Page Project Test Options

Click the nose of the baby, thisareais a

HotSpot

Figure 3.3: MatchWare's MediSor design process.

over a hotspot.

3.4 Existing standards

Several international standards have been created in the hypermedia and multimedia com-

munity. These are described in more detail in the following sections.

3.4.1 The Moving Pictures Expert Group

The Moving Pictures Expert Group (MPEG)' was formed in 1988 by the ISO/IEC Joint

Technical Committee (JTC 1) on Information Technology. Nack and Lindsay [45] de-

scribe MPEG as a working group (WGl 1 of SC29), with the mandate to:

Also known as the Moving Picture coding Experts Group.

3.4 jBdsdagskmdank 49

.. develop international standards for the compression, decompression,

processing and coded representation of moving pictures, audio and their

combination."

There are five versions or phases of MPEG and these are described in more detail below.

MPEG-1 [62] is the first phase of MPEG and it became an international standard in

1993. Chiariglione [12] describes how it consists of five parts and they are:

1. Systems - which addresses the problems of combining one or more data streams,

from the audio and video parts of the MPEG-1 standard, with timing information to

form a single stream. Once formed, this single stream can then be used for digital

storage or transmission.

2. Video - which addresses the algorithms required to compress video sequences into

bitrates, that can be efficiently delivered over networks or played back from CD-

ROMs. Originally CD-ROMs transferred information at about 1.2Mbps and the

quality of a video at this bitrate, without sound, is equivalent to a VHS recording.

3. Audio - which addresses the algorithms required to compress audio sequences

(both mono and stereo) into bitrates, that again can be efficiently delivered over

networks or played back Aom CD-ROMS. One of the most popular audio formats

currently used today is MPEG-1 layer 3 (MPS). MP3 files are relatively small in

size and the quality of the encoded audio is comparable to compact discs. They can

be easily stored on local machines, e.g. on CD-ROMs or hard-drives, or streamed

over networks, see Section 2.3.1.

4. Conformance Testing - which addresses the design of tests to ensure that manu-

facturers comply with parts 1-3 of the MPEG-1 standard.

5. Software simulation - which is the initial software implementation of the first three

parts of the MPEG-1 standard.

In his paper, Chiariglione [14] describes how MPEG-1 was the first integrated audio-

visual coding standard ever produced. Traditionally, in industry and standard bodies

alike, audio and video data were handled in separate departments with very little interac-

tion between the two. With the development of this standard however, audio and video

3 ^ 50

data can be easily combined, into a form that can be stored or transmitted over the Inter-

net.

The second version of MPEG is MPEG-2 [64] and papers by Nack and Lindsay [45]

and Chiariglione [14] describe how it was designed to overcome the problems of the

multiple standards used within the television broadcasting industry. Originally these stan-

dards used analogue signals for the transmission of the audio-visual information. With

the development of MPEG-2 however digital techniques could be used instead, which

improved the quality and performance of the television.

MPEG-2 became a standard in 1996 and originally consisted of nine parts. Chiarigl-

ione [13, 14], Thorn et al. [29], Nack and Lindsay[45] and Balabanian et al. [142] de-

scribe the diHerent parts of the standard in reasonable detail. They are:

1. Systems - which extends MPEG-1 part 1 by creating two new types of stream, the

Program Stream and the Transport Stream. The Program Stream combines one

or more Packetised Elementary Streams (PESs)^ with a common time base, into a

single stream. It is designed for relatively error-free environments and consists of

variable length stream packets. The Transport Stream however, uses one or more

independent time bases and is designed for environments where errors are more

likely to occur, e.g. networks. Transport Stream packets are 188 bytes long.

2. Video - which extends MPEG-1 by offering a wide variety of coding tools, higher

resolutions, improved scalability and efficient interlacing.

3. Audio - which extends MPEG-1 by increasing the number of available audio chan-

nels from 2 (stereo) to 5 main channels and a low frequency enhancement (LFE)

channel. Lower sampling rates and higher bitrates are also supported.

4. Compliance Testing - which corresponds to MPEG-1 conformance testing.

5. Software Simulation - which corresponds to MPEG-1 part 5.

6. Extensions for Digital Storage Media Command and Control (DSM-CC) - which

is the specification for a set of protocols that provide a range of multimedia services

over broadband networks. Clients and servers, in the DSM-CC network, are known

PES is a packetised version of an audio or video stream.

3.4 51

as users and there are two types of information transfer between these users; user-

fo-user (U-U) and user-to-network (U-N). U-U transfer is between the client and

the server, whilst U-N transfer is between the network and the client or the server.

User-to-network messages are exchanged via a U-N connection and are used to

configure clients, control network resources and manage the sessions, created be-

tween users. User-to-user communication occurs via a separate connection and the

information exchanged is used for stream control, file manipulation and directory

access. A U-U connection is usually created for each of the resources, e.g. audio

and video streams, used within a DSM-CC session. DSM-CC also contains a pro-

tocol to download a complete operating environment to the client, which results in

low-cost client devices e.g. set-top boxes.

7. Advanced Audio Coding (AAC) - which uses a very high-quality audio coding

algorithm with multichannel, multilingual and multiprogram capabilities. It can

handle up to 48 channels with a wide variety of bit rates, from monophonic speech

at 8 kbit/s to very high quality coding at 160kbits/s per channel. This algorithm

encodes audio data into a form that is indistinguishable from the original source

and it is not backwards compatible with MPEG-1 audio.

8. Video Coding using 10 bit samples - which was a technique for encoding video at

10 bits per input sample. However due to insufBcient interest from industry, this

part of the standard was discontinued.

9. Extension for real time interface for systems decoders - which is the specification

of the Real-time Interface (RTI) to Transport Stream decoders.

MPEG-2 is being used by a number of organizations, including the Digital Audio Visual

Council (DAVIC) and the Digital Video Broadcasting (DVB) Project, see Section 2.4.1,

for the encoding and transmission of digital audio and video information. It is also being

used to encode video information on Digital Versatile Disks (DVDs)^.

MPEG-1 and MPEG-2 were developed to provide efficient algorithms and tools for

the storage and transmission of high quality digital audio and video data. They are Emmy

award-winning standards and they have been used in several different systems, from dig-

ital storage on CD-ROMs to digital television. In 1993, MPEG realised that these two

standards alone would not be sufficient for the creation, manipulation and distribution of

^These are also known as Digital Video Disks.

3.4 Existing standards 52

multimedia content. Sikora and Chiariglione [127] explain that the MPEG group also

realised that the telecommunication, computer and TV/film industries were rapidly con-

verging and that a common core standard would have to be developed, to overcome the

multiple standards used within these industries. With these requirements in mind, the

group started to develop MPEG-4 which is the third phase of the MPEG standard.

Koenen [86] explains how MPEG-4 became an international standard in April 1999

(ISO/IEC 14496) and that it focuses on multimedia production, content-based access,

user interaction and distribution. MPEG however, are currently extending this standard

to support more advanced tools. MPEG-4 Version 2 will have multi-user interaction, a

file format for storing content (MP4s) and a programming system using the Java language

(MPEG-J).

Chiariglione [14] and Koenen [85, 86] describe how MPEG-4 introduces a new parad-

igm for the representation of audio and video data. In the two previous standards, this

data is represented by tightly packaged "bitstreams", which are created by encoding au-

dio and video signals from internal and/or external devices, e.g. soundcards, microphones

and video recorders. MPEG-4 however, uses Audio-Video Objects (AVOs)"^ to encapsu-

late the audio and video data. These objects can be independent entities or they can be

combined to form compound media objects.

In MPEG-4, Video Objects (VOs) are used to represent atomic units of visual infor-

mation, e.g. an image or a video. There are two main types of VO and they are:

1. Natural video objects - which use advanced tools to efficiently create and ma-

nipulate images and video of arbitrary shape and size. The algorithms from the

previous standards can also be used, to create natural VOs in their more traditional

rectangular form.

2. Synthetic video objects - which are computer generated and can be used to create

and animate realistic 2D objects. Koenen [85, 86] and Battista et al. [115] describe

how MPEG-4 Version 1 provides tools to create 2D meshes, which are formed

from partitioning 2D regions or images into triangular polygonal patches. These

meshes can be static objects or they can be easily animated by combining them

with geometry and motion information.

' 'These are also known as Media Objects.

3.4 JSMSkqgskMdaRk 53

It is possible to create hybrid visual objects, by combining both natural and synthetic

VOs together. For example mapping an image of a Hag onto an animated rippling mesh,

will give the impression of the flag moving in the wind. This simple animation technique

could be used to provide a more efficient method of transmitting moving images over the

Internet. Only the image, the mesh and the direction of motion needs to be downloaded,

which is considerably more efficient than downloading a video or the individual images.

Videos and textures can also be mapped onto animated meshes, providing the ability to

create more complex hybrid objects.

Originally the Moving Pictures Expert Group concentrated primarily on the visual

domain; audio was regarded as being just another signal to be associated with video. With

the development of MPEG-4, the group realised that audio was just as important as video

and so they developed more advanced audio tools. Scheirer et al. [33], Koenen [85],

Battista et al. [115] and Scheirer [126] describe how these tools can be used to create

natural and synthetic Audio Ot^'eck (AOs).

Natural AOs in MPEG-4, are created by three audio coding tools; two for speech and

one for General Audio (GA). The speech tools use advanced algorithms for the coding of

toll-quality speech at 6kb/s to high-quality, highly compressed speech at 24kb/s. The GA

coder is an enhanced version of the MPEG-2 advanced audio coding (AAC) algorithm

and creates audio objects of very high quality.

To create synthetic audio objects, two types of audio coding tools are used; the Text-

To-Speech (TTS) interface and the Structured Audio (SA) tool. Thorn et al. [29] and

Scheirer et al. [34] describe how TTS systems convert text input to speech using a se-

quence of phonetic symbols and prosody. A phonetic symbol or phoneme corresponds

to one sound in human speech and prosody is used to add human characteristics, e.g.

pitch, duration and timbre, to a phoneme sequence. The MPEG-4 TTS tool provides this

functionality and it also supports various languages, as well as the International Phonetic

Alphabet (IPA).

The Structured Audio tool is used to describe different methods of musical synthesis.

It consists of two languages that create and control a musical score and they are:

1. The Structured Audio Orchestra Language (SAOL) - which is derived from the

"Music-V" family of computer music languages. These languages create audio

waveforms through functional construction or through dynamically reading sam-

pled sounds, stored in wavetables. These sampled sounds can be combined or

3.4 Exisfing standards 54

used directly to generate the actual sounds. SAOL defines an orchestra of musi-

cal instruments and then downloads them to the user's terminal. The terminal will

then generate the sounds based on the definitions of the instruments. Using the

Sfrucfured AudYo Sound Formaf (SASBF) additional wavetables can also be

downloaded. This will ensure that the synthesized sounds will be identical on each

terminal.

2. The Structured Audio Score Language (SASL) - which uses a set of time-sequen-

ced commands, to invoke various instruments at specific times. As a result, each

instrument contributes to the overall composition of the music.

The Structured Audio tool also supports the popular Musical Instrument Digital Interface

(MIDI) standard, as an alternative for the delivery of musical scores. MIDI can be de-

scribed as a protocol that provides a method of communication between musical devices

and the computers that control them. The control "stream" from the computers can be

easily packaged into MIDI files, which provide an easy way to exchange musical con-

tent. These files can be used on terminals that contain soundcards or other MIDI devices.

By supporting MIDI, sound designers can easily create new SAOL orchestras for their

existing MIDI files. For more sophisticated content and tighter control, composers must

use the structured audio score language.

Koenen [85, 86] describes how multimedia applications can be created in MPEG-

4 by combining audio, video and compound media objects with spatial and temporal

information. This is called composition and the result is an audiovisual "scene". Users

can interact with these scenes and they can also be modified, possibly as a result of the

interaction.

To describe and dynamically change scenes, MPEG-4 defined a new language for

scene description; the Binary Format for Scenes (BIFS). Originally the MPEG group was

going to use the Web3D Consortium's Virtual Reality Modeling Language (VRML) [71],

which allows users to describe and interact with 3-D objects over the World Wide Web

(WWW), see Section 2,3.1. VRML creates 3-D scenes using a text-based language, that

must be downloaded in full before it can be used to render^ a scene. This however, is not

an efficient method of transmission and so the group developed BIFS to overcome this

problem. BIFS is used to encode scene descriptions into a binary form which is easier

^The process of turning non-graphical information into a form that can be represented in a graphical

way e.g. a printer renders information into a form that can be printed.

3 ^ 55

to compress, transmit and execute. It can also be used for real-time streaming, so that

scenes can be created and animated on the fly.

BIFS provides the functionality to modify and then position video objects in 2-D or 3-

D space. Modifications include rotation and scaling transformations, as well as changing

the properties of a VO such as its colour. Audio objects however, are more complex

than VOs and require more advanced composition techniques. Scheirer et al. [33, 126]

explain how the AudioBIFS part of the BIFS standard uses these techniques to control

the composition of "sound" scenes. These scenes can then be used with other visual

scenes to form a complete multimedia application.

AudioBIFS supports two main "modes of operation" and they are known as:

1. Virtual Reality compositing - which uses 3-D spatialization techniques to recreate,

as accurately as possible, particular acoustic environments. For example, sounds

can be positioned in a scene to give the impression that they are coming from

behind the listener. Other techniques can also be used to give the impression of

sounds moving around within a scene.

2. Abs(racf-E^ck compositing - which provides authors with a rich set of sound

processing tools, to create the right effects for a particular environment. For exam-

ple, adding specific effects such as air absorption, propagation and reverberation to

a piece of music, can give the impression that the listener is sitting in front of an

orchestra, in a particular type of hall.

Audio-video objects are only defined once in BIFS and any changes made to the

scene, for example a change in the viewing angle, a change in the acoustic properties of

an object, are carried out locally at the user's terminal. This allows users to modify a

scene reasonably quickly without having to wait for extra information to be downloaded

first, over the network.

Koenen [85, 86] describes how MPEG-4 has a new paradigm for the preparation of

multimedia content for transmission or storage. This involves creating separate Elemen-

tary Streams (ESs) for:

1. Media Of:̂ 'ecfs - which usually have only one ES, for a particular type of object

in a scene. Other scalable objects however will have several; one for basic-quality

information plus one or more ESs for different types of enhancements, e.g. higher

3 ^ 56

quality audio or video with Aner detail. When an object has multiple ESs, the one

that is actually used depends on the Quality of Service (QoS) and the available

network bandwidth.

2. Scene Descriptions - which ensures that the scenes can be modified, without hav-

ing to change the objects and that the objects can be easily reused in other scenes.

Again, multiple ESs might be used for a single description, depending upon the

bandwidth and the QoS.

3. Ob/ect Descriptors (ODs) - which consist of pointers to elementary streams. These

are used to inform encoding or decoding systems as to which elementary streams

belong to a certain object.

Once the elementary streams have been formed, they are split into smaller "packets"

ready for transmission or storage. Timing information is then added to the payload of

these packets, so that multimedia applications can easily synchronize and bufCer the com-

pressed media.

The Delivery Multimedia Integration Framework (DMIF) protocol is then used to

send the packetised streams to the remote application. Huard et al. [81], Koenen [86]

and Chiariglione [90] describe DMIF as a protocol framework that uses existing protocol

standards to manage the delivery of multimedia streams. Existing protocols from the

Internet, satellite and cable industries are used for transmission, whilst CD and DVD

technology is used for storage. DMIF however, was designed to separate the development

of multimedia applications from the delivery details. This allows users to develop a

single multimedia application for different types of "delivery technology" and it will also

ensure that applications will not need to be modiGed if any new or enhanced protocols

are developed.

DMIF defines two interfaces for this "layer of abstraction" and they are the DMIF

Application Interface (DAI) and the DMIF Network Interface (DNI). DAI provides a

common interface between the multimedia software and the delivery mechanism. It also

handles the QoS requirements. The DNI handles the communication between the DMIF

peers and the network itself, by mapping its own semantics to the relevant protocol stan-

dard, used on the network.

3.4 JBwsdhgskmdaMk 57

MPEG-4 is the first international standard to provide a set of advanced tools for the

creation and delivery of digital multimedia content. It is designed to replace the propri-

etary formats already in use for audio, video and multimedia. It can also use existing

protocol standards for the delivery of content over the Internet and cable. Authors can

easily create interactive scenes with high-quality audio and video and then deliver it to

users, who can interact with the scene in real-time. MPEG-4 however, has only just be-

come an international standard and only a few encoding and decoding systems actually

exist. Koenen [85] describes how audio broadcasters and mobile equipment manufactur-

ers have expressed an interest in the technology, but very few have actually implemented

or used the standard.

With the development of the Internet, the World Wide Web and digital techniques

for the creation, manipulation and storage of audio-visual information, it has become

relatively easy to develop and exchange multimedia content. Traditionally users would

create this information, e.g. videos, speech, 3-D models and still pictures, for specific

applications. However more advanced processing systems, such as image recognition

systems for surveillance, have also been created which automatically generate and ex-

change AV material in real-time. As a result, the amount of audio-visual information

is steadily increasing, which makes it much more difficult for users to identify, find, re-

trieve and manage this AV data efficiently. Several tools already exist that allow users to

manipulate text in this way, for example Web-based search engines such as Alta Vista,

Excite and Google. However very few tools exist^ that allow this type of manipulation

on audio-visual content.

To overcome this problem, the MPEG Requirements Group [113, 114] in October

1996 decided to develop MPEG-7; the fourth phase of the MPEG standard. It is formally

known as the "Multimedia Content Description Interface" (MCDI) and it provides a set

of standardized tools for the description of multimedia content. These tools can be used

to generate descriptions in real-time, whilst the content is being captured, or after. The

descriptions and their associated content can be located within the same data stream or

on the same storage device. MPEG-7 can also store the descriptions separately, which

ensures that the relevant material can be easily retrieved, exchanged and re-used. When

kept separately, tools can be used to form bi-directional links between the AV data and

its description. Whichever method is used for storage, humans as well as machines will

^Specialised tools do exist to find and retrieve AV data in professional databases and digital libraries,
although they are usually proprietary solutions.

3.4 58

be able to use the description and its content, to efficiently search for related material.

MPEG-7 will become an international standard in September 2001.

Nack and Lindsay [46] and the MPEG Requirements Group [113, 114] describe how

MPEG-7 will generate descriptions, by identifying the components of the audio-visual

content. This is achieved by defining:

e A set of Descnpfors (Ds) - which can be used to describe the diAerent types of

audio-visual information regardless of storage, transmission, coding and display.

Descriptors define the syntax and semantics of Features, which represent the dis-

tinctive characteristics of the AV information. For example a feature could be the

title of a movie, whilst the descriptor for this feature would be the text of the title.

A feature can also have multiple descriptors, to represent different requirements

e.g. a movie feature could have descriptors for motion and colour information.

a A set of Description Schemes (DSs) - which specify the structure and semantics

of the relationships between pre-defined descriptors and possibly other description

schemes. An example of a DS is a movie, consisting of several scene structures

and textual descriptors for those scenes.

» A language called the Description Definition Language (DDL) - which can be

used to create new description schemes and descriptors, as well as modify and

extend existing descriptors and DSs. This language can also be used to express

the relationships between the DSs and among the individual components of the

scheme itself. The DDL is still under development and it will use a mixture of

the Extensible Markup Language (XML) syntax, see Section 3.5.5 and MPEG-7

terminology.

® One or more methods for encoding descriptors ^ which will be used for efficient

compression, storage or transmission and fast access and retrieval.

The MCDI is still under development and MPEG is currently examining the different

proposals, that have been contributed by the participating members of the standard. Nack

and Lindsay [46] and the MPEG Requirements Group [114] describe these proposals^

and they include tools and descriptors for audio and visual information and multime-

dia description schemes. Audio descriptors will describe instrument definitions, speech

The details of these proposals have not been finalised and therefore they could change.

3.4 ExYsfing sfaodards 59

recognition and sound effects, whilst visual descriptors will handle motion activity, tex-

tiires and shapes. The multimedia DSs will handle different types of descriptors and

information, including the physical structures of an AV document or image, the descrip-

tors that carry author-generated information and the descriptors that are specific to the

storage media.

MPEG-7 will provide the tools to effectively describe the different types of audio-

visual content used today, in multimedia applications. Nack and Lindsay [45] describe

how this standard will eventually be used, for information retrieval and interaction, in

various professional and consumer oriented applications. These include education, jour-

nalism, biomedical research and digital libraries.

Work on the fifth phase of the MPEG standard, MPEG-21, has only just begun. It will

be used to created multimedia frameworks and at the moment the group are gathering

information on this area.

3.4.2 Digital Audio Broadcasting

The Digital Audio Broadcasting (DAB) system was developed by the EUREKA-147

Project, which is a European consortium of several organizations from the broadcasting,

networking and telecommunication domains. The project was established in 1987, to de-

velop a digital radio system that could deliver high-quality digital audio programmes and

data services to mobile, portable and fixed receivers. In 1997 the European Broadcasfing

Union (EBU), the European Committee for Electrotechnical Standardization (CENELE-

C) and the European Telecommunications Standards Institute (ETSI)^, released DAB as

a European Standard [35] and it has also been adopted by the International Telecommu-

nication Union (ITU) as an International Recommendation [74, 75].

The WorldDAB Forum [149] explains that the system itself can be used with existing

analogue Frequency Modulation (FM) and Amplitude Modulation (AM) radio broad-

casting systems. Analogue receivers, however suHer from interference caused by the

surrounding environment, e.g. hills, trees and buildings. Signals from analogue transmit-

ters "bounce" of these objects and can be received at totally different times, distorting the

main signal. This is known as multipath interference. DAB receivers are intelligent and

use advanced digital techniques to sort through the multiple signals received, so that the

More formally known as the EBU/CENELEC/ETSI Joint Technical Committee - Broadcast.

60

main signal which the user hears, is interference free. As a result these receivers produce

CD-quality sound and eventually they will replace existing FM and AM radio receivers.

rhe EJ3lJ/C33}4I«Li;(:43TrSI JTC: [35] arid the IiURJEIC/L-1'47 IProject [40] ctescrilbe

how the DAB transmission signal consists of several digital services multiplexed to-

gether, to form an ensemWe. Multiplexing is the process of combining several signals

into one for easier transmission. Once received, this signal is then passed through a

de-multiplexer or demux to retrieve the individual signals. The overall bit-rate of an

ensemble is about 1.5 Mb/s and it contains audio programmes, data related to these pro-

grammes and optionally other data services. Receivers usually decode several of these

services simultaneously and to ensure that the multiplexed signal is decoded properly,

DAB defines:

HexjWe audio k'f-rafes - from 8 kb/s to 384 kb/s using MPEG-1 Layer 2 and

MPEG-2 Layer 2 audio compression techniques, see Section 3.4.1, This provides

up to 6 high-quality stereo channels or up to 20 lower-quality mono channels.

® Data services - for the streamed or packet-based delivery of the actual services.

This is achieved by using either the sfream or pacicef mode of transport, respec-

tively. The stream mode transparently delivers the data from the source to the des-

tination. The packet mode splits the data into smaller addressable blocks, which it

then delivers. By adding the address of the destination to these packets, transmit-

ters can use the same broadcasting channel to deliver different services.

@ Programme Associated Data (PAD) - for data that is associated with the pro-

gramme, e.g. lyrics or phone-in telephone numbers. It is usually synchronized

with the audio and therefore, it is embedded into the audio bit-stream. The use of

PAD is optional.

• Service Information (SI) - for the control and operation of receivers. This pro-

vides information about the audio programmes and the data, including programme

service labels e.g. the name of the station, programme types e.g. news, sports,

classical, programme language based on the country and the ability to switch to

trafBc reports, news flashes and announcements on other ensembles, including FM

and AM radio. To select a radio station, with traditional analogue systems, users

have to either remember the frequency of the desired station or search the fi-equency

range, until a strong enough signal is found. With DAB receivers however, users

3.4 Existing standards 61

select a station 6om a text-based menu of programme service labels. This menu is

displayed on a small screen on the receiver.

* Conditioiiaj Access - for individual services or packets of data, if packet

mode transmission is required. This is similar to "pay-per-view" systems, that

allow users to view a movie or a specific TV channel, once they have subscribed

to the service provider e.g. a TV broadcaster. With CA, services are scrambled

so that unauthorised users can not listen to them until they have subscribed. Once

subscribed, users receive (from the service provider) encrypted codes that can be

used to de-scramble the service.

DAB also provides an advanced transmission protocol and interface, for the delivery

and decoding of radio programmes containing other types of media; for example text,

graphics and pictures. The EUREKA-147 Project [40] describes how the system uses

the Muj(imed[!a Ot^ecf Transfer (MOT) [38] protocol for the streamed or packet-based

transmission of "multimedia objects" and the Receiver Data Interface (RDI) [37] for

the interface. Each multimedia object consists of a file containing the data, such as the

data for an image and extra information for object classification and presentation. These

objects can be created using MHEG, see Section 2.4.1, or Java. The MOT protocol

supports several formats for the data files including ASCII text, HTML see Section 2.3.1

and MPEG-1, 2 and 4, see Section 3.4.1. The RDI is used to connect DAB receivers to

dedicated decoders, e.g. a computer, so that the multimedia information can be decoded,

processed and then displayed. The transfer rate between the receiver and the decoder is

about 1.8 Mb/s.

Digital radio programmes, that have been supplemented with multimedia informa-

tion, will be used to provide enhanced data services for listeners. This Multimedia Radio

will include:

Traffic and Travel Information (TTI) - which will provide up-to-date information

about traffic problems, e.g. congestion, traffic navigation and route planning us-

ing digitised maps and general travel information, e.g. restaurant locations, hotel

vacancies, room prices and pictures of rooms. TTI services will be language-

independent and will allow international roaming, using portable or mobile re-

ceivers.

» Picture Transmission - which will be used for the transmission of still pictures.

These pictures could be displayed in a slide-show, synchronized with the audio

3.5 "Opea"H)/pefmedyaSysfems and Audio 62

programme, e.g. photographs of scenes or individuals during a news bulletin.

e Text Transmission - which will provide simple dynamic labels, limited to about

128 characters in length, for station names, programme types. This is similar to

the text service supplied by the FM-i^adio Data System (RDS) [36]. This system

displays the same type of information, on simple alpha-numeric screens, over FM

radio. A more sophisticated text service, which is known as the Interactive Text

Transmission System (ITTS), could also be used. It can transmit textual infor-

mation at different rates and it can process several streams of text simultaneously.

ITTS supports different display formats, e.g. 12-character displays and colour dis-

plays.

@ TV Transmission - which will be used to transmit digital television signals to por-

table and mobile receivers. Trial systems have shown that DAB is a suitable system

for this. MPEG-1 and MPEG-2, see Section 3.4.1, will be used to compress and

combine both audio and video information, into a DAB signal.

The EUREKA-147 Digital Audio Broadcasting system has gone through extensive

trials in a number of countries, including Australia, the United Kingdom, Singapore and

Canada. It has been adopted by the International Telecommunications Union as the de

facto standard for digital radio and several countries are now using this system, to broad-

cast digital radio programmes and data services; from classical music and jazz, to news

and weather information with pictures. Eventually DAB will replace traditional analogue

systems.

3.5 "Open" Hypermedia Systems and Audio

Traditionally, the audio domain has been neglected in the development of hypermedia

systems. There are several reasons for this and they include:

® The lack of technology. The first generation of hypermedia systems did not have

the computer technology to manipulate audio data. Engelbart's NLS/Augment sys-

tem used a computer with a small amount of memory and a very simple display.

Over time this technology has improved, e.g. the second generation systems could

manipulate pictures and text using advanced workstations. The audio domain how-

ever, is quite complex and it requires more advanced technology, which is still

being developed.

3. J "Open"f^ermedia Systems and Audio 63

The proWem of visua7isjag audio mfbrmafio;]. Audio, by its very nature, can not

be seen. As a result, the ability to develop an intuitive graphical user interface, that

will allow users to manipulate audio information, is quite difficult.

e TTie dominance of (6e visual sense. Vision has always been regarded as the primary

sense for normally sighted people. Section 3.2 describes this in more detail.

» The problems of the audio Hie formats. Currently there are several file formats

which can be used to store audio data; for example Microsoft's WAV format,

MPEG-1 layer 3 (MP3's) and Sun's AU format. Each format has its own advan-

tages and disadvantages. With each format, however, the file size tends to increase

as the quality of the audio recording increases. As a result, high quality recordings

can rapidly consume large amounts of disk space. The amount of memory and the

processing power of a computer can also affect the size of an audio file.

These problems have caused the majority of hypermedia systems to concentrate main-

ly on the authoring of links between text, images and video; the visuaJ domain. With the

development of more powerful computers, sound cards and "open" hypermedia however,

it has become possible to develop applications that can be used in conjunction with these

systems, to manipulate the audio domain.

Audio tools have been developed for several hypermedia systems and they are de-

scribed in more detail below.

3.5.1 The Sound Viewer Tool for Microcosm

Originally Microcosm, see Section 2.3.2, had little support for sound. When a user

traversed a link to an audio file, a native application would be invoked to play this sample

from the beginning to the end. Users could not create links from the application or to

an area within the audio sample. As a result of this problem the SoundViewer tool was

developed and this tool is discussed in more detail in Section 5.2.

3.5.2 Mavis

MAVIS, see Section 2.3.4, has a prototype signature module that supports links in sound.

It is called the Sound FT module and it uses the Fourier Transform (FT) on a selected

portion of a digital sound. The resulting sample can then be used as the key for matching.

Lewis et al. [105] describe how single words can be articulated into the MAVIS system.

3.5 "Open"Hxperme<ifaSysfems and Audio 64

which then displays the word as a sound wave. A section of this sound wave, representing

the word, can then be chosen as a source anchor of a generic link. The Sound FT module

will process this selection and generate the key. This key can then be used to navigate

and / or retrieve inibrmation, e.g. text and images, related to the original audio sample.

3.5.3 The Harmony Audio Player for Hyper Wave

The HyperWave client consists of several viewers and Geiger [47] describes how the

Unix version of this client, Harmony^, has been extended to support digital audio. The

tool is called the Harmony Audio Player and it can be used with HyperWave or it can be

used as a standalone application. When used with HyperWave, the tool will be executed

when a user selects an audio document from the session manager. This will create a

connection to the server and download the audio Ale. The audio sample is then displayed

in the viewer as a waveform, with a scrollbar representing the current position in the

audio file; see Section 5.2 for a description of each of these. The player contains the

normal controls to playback, stop and pause the audio sample. Users can author links

to other documents by selecting the sample or a portion of the sample. These areas will

then be marked as links, which users can then follow by simply clicking on these areas.

3.5.4 Streaming Audio and the WWW

Originally the WWW was only designed to be used on wide-area networks (WANs).

With the growth of the Internet however, see Section 4.2, WWW browsers are now being

used to read and retrieve information off the Internet. As a result the WWW has steadily '

grown in size (due to the number of hosts and web pages) and popularity.

The Grst Web browsers could only be used to display text and pictures. Hypertext

links were displayed in a different colour and users could "click" on these, with a mouse,

to follow the link. With the development of more sophisticated browsers however, users

could click on an "audio" or "video" link, which would make the browser download

the file to the users' machine. Once downloaded some browsers, for example Netscape's

Navigator, would automatically start an application to play the file. Older browsers would

require the user to execute an external program. The process of downloading this file

however, could take a long time especially if the file was large and / or the network

connection was poor.

' T h e Window's version of this client is called Amadeus.

3.5 "Opez!"Hypermedya Systems and Audio 65

To overcome this problem several companies, such as RealNetworks, Microsoft and

Xing Technology, have developed "streamingmed/a" servers and players. The streaming

servers, which are usually located on different machines on the Internet, store the actual

audio and video information. The players are used to retrieve and play this information.

A streaming media link is represented on a web page in exactly the same way as a normal

link, however it will contain information about the server and the file to be streamed from

the server. For example, if a user clicks upon a streaming audio link on a web page, three

events occur and they are:

1. The browser activates the relevant streaming audio player e.g. RealNetwork's Re-

alPlayer or Microsoft's MediaPlayer. This player will then send a message, con-

taining the name of the audio file to be streamed, to the audio server.

2. The audio server splits the audio file into smaller packets and transmits them to the

player.

3. The player buffers these packets until enough have been received, so that they can

be played.

On a reasonably fast network connection the audio file is played almost immediately,

giving the impression that the audio file is stored on the local machine. Otherwise it

could take a long time for enough information to be received, so that it can be played.

The current Internet protocol, which the WWW uses, was not designed to handle

streaming media. This protocol is called the Transmission Control Protocol / Internet

Protocol (TCP/IP) and is described in more detail in Section 4.2. To overcome this prob-

lem several streaming protocols have been developed and they are the Real-time Trans-

port Protocol (RTF) and the Real Time Streaming Protocol (RTSP). These protocols are

discussed in more detail in Sections 4.3 and 4.4, respectively.

3.5.5 SMIL for the WWW

The Synchronized Multimedia Integration Language (SMIL)^° was developed by the

synchronized MultiMedia (SYMM) Working Group of the World Wide Web Consor-

tium (W3C). This group was formed to develop a language that could combine indepen-

dent media objects into a synchronized multimedia presentation, over the WWW. SMIL

'^Pronounced "smile".

"Open^f^ermedya Systems and Audio 66

Version 1.0 [128] became a W3C Recommendation in June 1998 and it uses an Exfensi-

bJe Markup Language (XML) [152] DTD to deGne the syntax of SMIL documents. This

section will describe SMIL and it will also give a brief description of XML.

The Hypertext Markup Language (HTML), see Section 2.3.1, is currently the de facto

standard for document markup on the Web. It provides a set of generic markup tags,

e.g. for headings, paragraphs and images, that can be used to define simple documents.

Garshol [92] and Flynn [103] explain however, that this language only provides one

way to describe information and that this information can not be described precisely.

Different organizations require different types of markup, to describe their documents

effectively. For example a chemical engineering firm will probably use specific markup

tags, to describe chemical formulas in their documents. HTML was not designed to

handle this type of information; it is a simple generic language. This limitation has caused

many organizations to extend the language, with their own proprietary markup. In some

cases this "new" markup will only work with a specific version of a specific browser,

which defeats one of the main goals of HTML; to be an non-proprietary, interoperable

language.

Ossenbruggen et al. [80] also explains that HTML has limited support for hypertext

linking. HTML provides a very simple linking mechanism; links are created and stored

within the documents themselves, using specific markup tags. These links are known

as embedded links and Section 2.2 describes the problems of using this type of link

in hypertext systems. This section also describes Open Hypermedia Systems (OHSs),

which have far more advanced tools for link creation, storage, manipulation and delivery.

Many developers and organizations, including the W3C, are aware of these problems

and believe that HTML has reached the limits of its usefulness. In 1996 the W3C started

work on a new standard, that would allow users to define their own markup for the Web.

Initially they looked at SGML, see Section 2.4.2, the international standard for defining

document markup. SGML however, is a complex language that is hard to implement and

it also contains a lot of rarely used features. Eventually the W3C formed a new working

group, the XML Working Group, to develop a new language for this standard and in

February 1998 the Extensible Markup Language [152] became a W3C Recommendation.

Garshol [92] and Flynn [103] explain that XML is an abbreviated form of SGML,

which makes it easier for users to define their own markup for different types of doc-

uments. Programmers will also find it easier to develop tools to process these docu-

ments. By themselves however, SGML and XML do not have any elements to define

3. J ''Opefz^jHypefmedja Systems and Audio 67

links. With SGML, HyTime and other advanced standards can be used to add these ele-

ments to SGML DTDs, see Section 2.4.2, For XML two new languages, that are derived

from HyTime and other similar standards, are being developed. These languages will

be used in conjunction with XML to provide advanced linking capabilities and they are

known as the XML Pointer Language (XPointer) [150] and the XML Linking Language

(XLink) [151]. XPointer will be used to reference resources within XML documents,

whilst XLink will be used to define the actual link elements themselves. These elements

can then be used in XML documents to create and describe the links between resources.

Hoschka [57, 58] explains that in October 1996 the (W3C) also had a workshop on

"Real-Time Multimedia and the Web". Representatives from different communities and

organizations, including the streaming media and international standards communities,

participated in this event. From the discussions and presentations during the workshop

and the feedback received after the event, Hoschka observed that:

® The World Wide Web is rapidly becoming a multimedia environment, that can

handle many different types of media.

The Web is a relatively inexpensive medium for the distribution and updating of

multimedia information.

• Many organizations and industry analysts believe that the Web will become a dis-

tribution system for synchronized multimedia content.

® Current Web technology can not effectively describe the spatial and temporal re-

lationships between the different media elements, in a synchronized multimedia

presentation. Complex scripting languages, e.g. Netscape's JavaScript and Mi-

crosoft's VBScript, or multimedia authoring tools, see Section 3.3, can be used to

create these presentations. However, authoring tools use non-interoperable propri-

etary formats to store the data and script-based content is difficult to produce and

maintain.

« Declarative languages and open standards are required for the creation and real-

time delivery of continuous multimedia presentations. Declarative formats are eas-

ier to understand, edit and maintain. They are also more durable, so that a single

company can not control or modify the format.

As a result of this meeting the W3C formed the SYMM Working Group, to develop the

3. J ''Open^Hypermedia Systems and Audio 68

Synchronized Multimedia Integration Language (SMIL) and in 1998 they released SMIL

Version LO [128].

Bulterman etal. [21], Hoschka [58], Hardman and Wilson [91] and the SYMM Work-

ing Group [128] describe how SMIL was designed to be a simple, easy-to-use declarative

language. It effectively describes how different media objects can be combined, both

spatially and temporally, into a multimedia presentation. SMIL consists of five main

components or elements and they are:

1. The Media Object Elements - which are used to include media objects into a SMIL

presentation. Each element has a name, which is a simple text description of the

media and a UaiYbm] Resource Indicator (URI), see Section 2.3.1. These names,

e.g. "audio" for audio and "img" for images, are only used for readability, they are

not used to define the type of the media. This information is either derived from the

operating system itself or from other reliable sources. The URIs are used to locate

the media on the Web and also describe how it is to be delivered, e.g. by using a

streaming protocol or a text transfer protocol.

Media elements also contain extra attributes to define their temporal characteristics.

For example a user can explicitly deEne when an audio sample starts to play and

its duration.

2. The Spatial Layout Elements - which are used to control the spatial layout of the

media elements within a SMIL presentation. There are two main elements for

this and they are the r o o t - l a y o u t and the region. The r o o t - l a y o u t element

defines the size of the main window, or viewport, in which the entire presentation

is visually rendered. The region element controls the position, size and scaling of

the media elements, within this viewport. A presentation can have several regions,

e.g. one for text, one for images and another for video.

3. The Synchronization Elements - which are used to synchronize the playback of

the different media elements, in a presentation. The seq and the pa r elements are

used for this and they both group together media elements, that can be played back

in sequence or in parallel, respectively. These elements can also be nested together,

to form more complex relationships.

4. The Hyperlinking Elements - which are used to create uni-directional links, to

media elements within the same document and also separate documents. The

3.5 "Open" f^ermediaSysfems and Audio 69

SMIL linking mechanism is very similar to the HTML linking mechanism, see

Section 2.3.1. However SMIL also provides the anchor element, which is used

to create links to and from spatial and temporal subparts of a visual media object.

These subparts are usually rectangular regions or "hotspots" within an image or

video. By clicking on these regions, users are taken to another part of the presen-

tation.

5. The Alternate Content Element - which is used to select an "acceptable" element

from a predefined set of alternate elements, based on the capabilities and settings of

a user's system. Authors use the switich element to create this set and it can contain

media, synchronization and hyperlinking elements. An element is "acceptable" if

it conforms to the SMIL specification, its media type can be decoded and all of its

test attnbutes evaluate to "true". These attributes are used to test the capabilities

of a system and they can be added to any element within this set. They include

tests for caption control, screen size, language settings, colour support and network

bandwidth. If an element is "acceptable" it is selected. However an element is not

selected, if any of its attributes evaluate to "false".

Presentations are created in SMIL by combining the elements, mentioned above, into

SMIL documents. These documents thoroughly describe the layout, the temporal be-

haviour and the relationships between the media objects, within the presentation. Schmitz

et al. [106] and Rein [112] explain however, that very few Web browsers have the func-

tionality to process a SMIL document and then play the resulting presentation. To over-

come this problem, several companies have developed new tools or modified existing

programs, to provide this functionality. These programs, for example RealNetworks Re-

alPlayer 7, Apple QuickTime 4.1 and Oratix Grins, are usually activated by the browser,

whenever a user clicks on a link to a SMIL document. A screen-shot of a simple SMIL

presentation, in RealPlayer 7, is shown in Figure 3.4.

This presentation contains five media elements; one for streaming audio, another for

text and three more for images. Four region elements are also used to set the position

and size of the visual objects, e.g. the text and the images. A brief example of the SMIL

code, used for this presentation, is shown in Table 3.1 and a complete listing of the code

is in Appendix A.l.

The root-layout element has attributes to define the title, the background colour

and the size, using the width and height attributes, of the main presentation window. It

3.5 "Open" Hypermedia Systems and Audio 70

n RealPlayer: Ctiumtatt .Smew s of (V-ace iteHKi

File Play View Content Help

B # G: O # ' -atr

T t e President has told you that it is his wish, as I am
sure it is jfours, (hat I should have M liberty to give
my tTLK ^ faithful coursd in ttese aredoLB and
b^fling times.

[Q] 88.7 Kbps • 06.8/15.5

Figure 3.4; A screen-shot of a SMIL presentation in RealPlayer 7.

also has an unique identifier, using the id element. The r e g i o n elements have attributes

to define their position in the viewport, using the top and l e f t attributes and their size.

Again both regions have identifiers. The "Transcript" region also has a z - index attribute,

which is used to determine if another region can be placed or "stacked" on top of another.

A low value for this attribute ensures that other regions can not be stacked on top of this

one.

The audio, t e x t s t r e a m and ref elements are media elements and they are played

in parallel, using the pa r synchronization element. This element also has an identifier,

which allows other elements to link or "jump" to this part of the presentation. These

media elements have attributes to define the location of the actual media, using the s r c

attribute and they also define the explicit duration of this media, using the dur attribute.

The t e x t s t r e a m and the ref media objects will be displayed in the "Transcript" and

the "LeftArrow" regions of the viewport, respectively. Finally, the ref media element

3.5 "Ope;]" H)/permedia Systems and Audio 71

<root-layout id="Main-Window" background-color="white"

title="Winston Churchill - Sinew's of Peace"

width="600" height="400"/>

<region id="Transcript:" left="2%" top="2%" width="52%"

height="40%" z-index="l"/>

<region id="Left:Arrow" left:="5%" t:op="50%" widLh="62"

height="63"/>

<par id="part2">

oudio src="sinew02.rm" dur="15.6s"/>

<textstream id="text2" region="Transcript"

src="sinew02.rt" dur="15.6s"/>

<ref region="Left:Arrow" src="purpwood_left.rp"

dur=''15. 6s">

<anchor href="#part:l" dur="15.6s"/>

</ref>

</par>

Table 3.1: A sample of the Sinew's of Peace SMIL presentation

defines itself to be a link, using the anchor element, to another part of the presentation.

It uses the href attribute to define the destination of the link; in this case "parti". If users

click on this media element, they will be taken back to the first part of this presentation.

The Synchronized Multimedia Integration Language is steadily growing in popular-

ity and an increasing number of tools are being developed to help create and play SMIL

presentations. Schmitz et al. [106] and Rein [112] explain however, that the language

itself has several limitations. As mentioned previously, most Web browsers can only pro-

cess and render HTML documents; they do not have the functionality to process and then

play SMIL documents. Separate programs provide this extra functionality and as a con-

sequence, several organizations^ ^ describe SMIL as being a stand-alone data interchange

format, for multimedia authoring tools and players.

Hoschka [59] and Rutledge et al. [95, 96] describe how authors have found some of

the encoding mechanisms, in SMIL Version 1.0, to be ine&cient and cumbersome. For

example, no mechanisms exist for the relative positioning of region elements; authors

have to explicitly define the position of each region element in the viewport window. If

"Microsof t , Compaq and Macromedia.

3.5 "Open"Hypermedia Systems and Audio 72

there are many regions in a presentation, this process can be very tedious and the resulting

code very ineflScient. Authors have also found the code to be too repetitive, e.g. when a

user clicks on a link to another part of the presentation. In some situations, the authors

only want a small part of the presentation to change; the rest stays the same. To achieve

this in SMIL, authors have to repeat the code for the static part of the presentation, which

can result in excessively large programs.

Since the release of SMIL Version 1.0 as a W3C Recommendation, the SYMM Work-

ing Group has received numerous proposals and contributions, from individuals and orga-

nizations, to improve and extend the language. Hoschka [59] describes these extensions

and improvements in more detail and they include:

A proposal to extend and enhance HTML documents and Web browsers with SMIL

functionality. This proposal was called the Timed fnferacdve Multimedia Exten-

sions for HTML (HTML+TIME) and it was defined by Schmitz et al. [106] in

1998. HTML+TIME consists of a set of extensions which are derived from the

elements used in SMIL. These extensions have a similar syntax to the SMIL el-

ements and they would be used to add timing, interaction, synchronization and

delivery capabilities to HTML.

» A proposal to create a Document Object Model (DOM) for SMIL. This proposal

was originally defined in the HTML+TIME specification. A DOM [31, 32] pro-

vides a standard set of objects for representing HTML and XML documents, a

model to describe the relationships between these objects and an Application Pro-

gramming Interface (API), which allows programs and scripts to dynamically ac-

cess and modify these documents. This interface is language and platform neutral

and it can be used to access and change the structure, the content and the style of a

document. The DOM for SMIL would allow programs or scripts to easily manip-

ulate synchronized multimedia documents. For example, a program could be used

to play a media object after a certain amount of time or when a user clicks on a

particular part of the document.

A proposal to extend timing and synchronization functionality. This proposal

would allow authors to select the type of synchronization to use, e.g. hard or soft,

and it would provide more control over the synchronization behaviour. If a pre-

sentation has two streams, for example an audio and video stream and the video

is delayed by the network, hard synchronization will either drop parts of the video

3.5 ''C^en"Hypermedia Systems and Audio 73

stream or pause ± e audio until video delivery resumes. Soft synchronization, in

this situation, will just continue to play the audio. This proposal also provides sev-

eral new synchronization elements and time attributes. These new elements could

be used, in SMIL documents, to reduce the amount of repetitive code and the at-

tributes would assist in the timing and synchronization of media elements.

e A proposal to extend the hyperlinking functionality. This proposal would allow

authors to create both inline and out-of-line links and reference resources within

SMIL documents, using the XLink and XPointer recommendations respectively.

Originally SMIL Version 1.0 was going to use XLink. Before SMIL became a

W3C Recommendation however, all references to XLink had to be removed be-

cause it was a working draft, subject to change. The SYMM Working Group mod-

elled the hyperlinking mechanism after HTML instead. This proposal would also

allow authors to define the shape of the "hot-spot" used for the anchor element,

e.g. a circle or polygon instead of a rectangle, and which parts of a document are

activated when a user clicks on a link. This activation functionality would also

reduce repetitive code.

A proposal to extend the layout and presentation functionality. This proposal would

extend the original layout language, used in SMIL Version 1.0, to support more of

the properties and values used in the Cascading SfyJe SAeefs VeveJ 2 (CSS2) [145]

specification. CSS2 is known as a style sheet language and it is used to attach

different styles, e.g. fonts and colours, to structured documents, such as HTML

and XML. The layout language, used in SMIL Version 1.0, is actually derived

from a small subset of CSS2 and therefore, it can be easily replaced with a CSS2

style sheet. This proposal would allow authors to more effectively describe the

layout and the visual and acoustic properties of the media objects used within a

SMIL presentation. For example, authors would be able to change the colours of

anchors, centre media objects in regions, position audio is space and control the

audio volume.

The W3C has also received several other contributions, which would be used to control

the delivery of media objects, to create transition effects, to improve accessibility and to

extend intemationalisation support.

In Febmary 1999, the SYMM Working Group decided to combine all of these pro-

posals and contributions into a new version of SMIL, code named "Boston" [129]. This

^ 6 74

new version is currently under development and it will be fully backwards compatible

with SMIL Version 1.0. The syntax of SMIL "Boston" documents will be defined, again,

using a XML DTD and it will be specifically designed to be reused in other XML-based

languages, that require timing and synchronization support. The language itself will con-

sist of semantically related modules, e.g. a linking module, a media object module, that

can be combined to form These proxies will be used to solve particular prob-

lems, e.g. to handle simple presentations and to integrate SMIL functionality into HTML.

SMIL Version 2.0 is currently a W3C Public Working Draft.

3.6 Analysis

The visual domain has always been regarded as the primaiy sense for normally sighted

people and this has been shown in the development of interactive computer systems. The

majority of these systems are usually completely visual in nature and as the complexity of

these systems increase, more and more visual information will be displayed on screens.

This will eventually overwhelm the users, making it harder for them to understand the

actual information being presented.

Humans interact with the outside world using a mixture of the Ave senses; sight, hear-

ing, touch, taste and smell. Modem operating systems (OSs) currently support the visual

and the audio domain, although audio is primarily used for warnings, alarms and status

information. Recent developments in soundcard technology however, have improved the

audio capabilities of these systems. It is now possible to "place" the audio in 3-D space;

for example to the left or behind the user. This is achieved by applying specific effects to

the audio information. The human ear is designed to receive this information but it can

also identify the sound's location, by the length of time taken for the sound wave to reach

both ears. This type of effect is mainly used in computer games and it has been shown

that users will score more points in a game with the sound turned-on, rather than off

The audio domain has been used in many different ways, by multimedia authoring

companies, standards' organisations and "open" hypermedia research groups. Multime-

dia authoring companies have developed tools, that can be used to combine different

types of media into a single application. These tools also allow the distribution of these

applications over a variety of media, including the Internet and CD-ROMS.

There are three main types of multimedia authoring environment; the Timeline and

the Flowchart authoring methods and the "Book" metaphor. The Timeline method uses

3.6 75

layers to create a multimedia presentation, with each layer representing different types

of media. The Flowchart method uses icons to represent the data, particular events and

routines such as loops. The "Book" metaphor presents the user with blank pages, in

which multimedia objects can be placed. Each environment allows the user to place

audio at a specific point within the presentation. However audio is just another part of the

presentation to be played back. It is not possible to create a link to and from an audio layer

or icon. The "book" metaphor allows users to place objects within a page, that appear

or do something during the audio playback. This audio however, is not controlling these

objects, the underlying timing mechanism in the "page" is used to do this. Therefore the

audio objects, in the "book" metaphor, are just another entity to be played back.

The standards' organisations have developed several standards to handle audio in-

formation and they include MPEG and Digital Audio Broadcasting (DAB). MPEG is

an extensive standard, developed by ISO and it currently consists of five main phases;

MPEG-1, MPEG-2, MPEG-4, MPEG-7 and MPEG-21. MPEG-1 and MPEG-2 were de-

veloped to provide algorithms and tools fbr the transmission and storage of high quality

digital audio and video data. They have been used in CD-ROMS, Digital Video Disks

(DVDs) and digital television. MPEG-2 also has an Advanced Audio Coding (AAC)

algorithm, with support for upto 48 channels. This format encodes data into a form

which is indistinguishable from the original source. These two formats however, were

mainly designed to handle the algorithms and tools to encode audio and video informa-

tion. MPEG-2 can use DSM-CC to create multimedia services over broadband networks.

However it was realised that these two standards alone would not be suflficent to handle

multimedia content.

MPEG-4 was specifically designed to provide an advanced set of tools for the creation

and delivery of multimedia content. MPEG-1 and MPEG-2 originally encoded the audio

and video data into tightly packaged bitstreams. MPEG-4 however, encodes this data

into Audio-Video Objects (AVOs), which can be independent entities or combined to

form compound media objects. A considerable amount of work has been carried out on

the audio domain, including the Text-To-Speech (TTS) interface and Structured Audio

(SA), for the delivery and playback of musical scores. MPEG-4 can create multimedia

applications by using scene descriptions, which use AVOs and the Binary Format fbr

Scenes (BIFS), which translates the scenes into a binary format, for easier transmission

and execution. The AudioBIFS tool is used to apply specific algorithms, to the audio

information, so that it can be placed in 3-D space. MPEG-4 however, has only just

become an international standard and at the moment, an interest has been shown in this

3.6 76

standard but very few implementations actually exist.

MPEG-7 and MPEG-21 are new phases of the MPEG process and they are currently

under development. MPEG-7 has been designed to provide a set of standardised tools for

the description of multimedia content. These tools will help overcome the problems of

finding, identifying and retrieving the large amounts of available audio-visual material.

MPEG-21 will be used to create multimedia frameworks and at the moment however, the

MPEG group is obtaining more information on how this can be done.

DAB is a digital radio system that delivers high-quality audio programmes and data

services to mobile, portable and fixed receivers. It was designed to eventually replace the

analogue radio systems used throughout Britain and Europe. Other countries including

Canada and Singapore, are also considering this standard. A DAB transmission consists

of several services multiplexed together to form an ensemble. These services provide

information for the control and operation of the receivers, on the programme itself and

on conditional access, which is similar to "pay-per-view" systems. DAB also uses the

Multimedia Object Transfer (MOT) protocol, for the streamed or packet-based delivery of

multimedia objects and the Receiver Data Interface (RDI) for the interface. Programmes

that have been extended with MOT will include traffic and travel information, picture and

text transmission.

DAB is a relatively new medium for the delivery of audio and only a few digital

radio stations, that support MOT and RDI, actually exist within Britain. Currently digital

receivers are far more expensive than their analogue counterparts, which has resulted in

a slow uptake of the technology. Programme Associated Data (PAD) can be considered

a form of hypertext because the data is usually synchronized with the audio. To achieve

this however, the data is usually embedded within the audio stream. On the receiver, this

information will be displayed at the relevant time. Users will be able to scroll through

this information, but they will not be able to request more information on a particular

item.

Radio by default is a unidirectional system, in which radio signals are constantly

transmitted and received on either a mobile or fixed device; there is no return channel.

The consortium that developed DAB however, are also developing a return channel to

be used with interactive receivers. This will allow users to select and retrieve relevant

information.

Traditionally hypermedia systems have neglected the audio domain. This was due to

^ 6 77

a lack of technology, the complexity of the audio itself and the problem of visualising

audio information. Several "Open" Hypermedia Systems (OHSs) however, have devel-

oped audio tools and these are Microcosm's Sound Viewer tool, the Sound FT module for

Mavis and the Harmony Audio Player for HyperWave.

The Sound Viewer tool and the Harmony Audio Player both use a scrollbar to repre-

sent the current position within an audio file and the length of this scrollbar represents

the duration. Both tools can be used as standalone applications, however when they are

combined with their respective OHSs, they allow users to create links to and from the

audio domain. These links are displayed within the tools and users can follow them, by

simply clicking on the link. With Harmony however when a user selects an audio doc-

ument, the audio file is downloaded, from a HyperWave server, to the client's machine.

The SoundViewer tool can use the audio files stored on the same computer that is running

Microcosm and it can also share the audio files on another computer, that is connected by

a local network. However if there is a problem with the network and / or the computer,

then these shared files will not be accessible.

The Sound FT module uses a Fourier Transform on a selected portion of a digital

sound, such as speech. This sample can then be used as a key for fuzzy matching. How-

ever this module and the Harmony Audio Player both used audio waveforms, to display

the audio samples. This can be hard, for the "average" user to understand.

The World Wide Web (WWW) can also be used with audio. Originally when a user

follows a link to a sound file, it would be downloaded to the client's machine and then

played back, using a native audio application. Downloading this file could take a long

time, especially if the network connection was slow and / or the file is large. With the

development of streaming technology however, it has become possible to split these large

files into smaller packets and then stream these packets to the clients. Each client would

contain a streaming tool, that would buffer enough of these packets so that they could

be played back to the user. The Web however, can not be used to create links to and

from audio files. Audio is viewed as being just another media format that can either be

downloaded or streamed to the clients.

This streaming technology and the development of the Synchronized Multimedia In-

tegration Language (SMIL), allows users to create synchronized multimedia presenta-

tions over the Web. SMIL can be used to combine different types of media, such as

audio, video, text and images, with synchronization elements into a presentation. Hyper-

linking elements can also be used to create hotspots and links from a SMIL presentation

^ 7 78

to other documents, including SMIL, on the Web. These links however are embedded

within the SMIL documents and therefore, all of the problems associated with this type

of link arise; for example link management and the dangling link problem. It is possible

to create advanced presentations in SMIL, but there are very few SMIL editors and so

these presentations have to be coded by hand. This can be a very tedious process. A so-

lution would be for multimedia authoring companies, to have an "Export t:o SMIL.."

function in their tools. This would reduce the complexity and the time required to pro-

duce SMIL documents.

Audio in SMIL is just another media element, that can be used in conjunction with

other types of media. It is possible to create a link to and from an audio element however,

the link information would have to be stored within the document. Also this type of

link would have to be supported by the implementations of the standard. Several of

these exist but they all implement a specific subset of the language, which can reduce the

functionality of SMIL presentations.

3.7 Summary

This chapter has focused on the audio domain and how traditionally it has been neglected,

in favour of the visual domain. This can be clearly seen in the development of interactive

computer systems, which are completely visual in nature. Sound however, can convey an

enormous amount of information and the human ear can use this to detect many different

types of sound and where they are located.

In this chapter, the most popular techniques for creating multimedia applications and

the way in which they handle audio information are discussed. The different parts of the

MPEG standard are also described and they include MPEG-1 and MPEG-2 for the coded

representation, storage and delivery of high-quality audio and video data. The MPEG

group realised that audio was just as important as video and therefore with MPEG-4 more

advanced audio tools were developed. These include tools to handle musical scores,

audio scenes and special effects for 3-D audio placement. As a result MPEG-4 is the

most up-to-date standard for handling audio information, however at this stage very few

implementations exist.

Digital Audio Broadcasting has also been described and at the moment it provides

high-quality digital radio and data broadcasting services. These services can provide

3.7 Summary 79

information about individual programmes and with the development of a return channel,

it will become possible for users to request more information about these programmes.

Finally this chapter describes how the audio domain has been used in several "Open"

Hypermedia Systems (OHSs) and the WWW. Several OHSs support the creation of links

to and from audio files. However with the Harmony Audio Player these files are down-

loaded to the client for use and with the SoundViewer tool, the files are usually stored

on the same machine that is using Microcosm. The World Wide Web traditionally down-

loaded temporal media files, such as audio and video, to the client's machine for play-

back. However as the quality and quantity of these files increases and as the Internet

becomes more congested, it is becoming impossible to download these large files.

To help overcome this problem streaming protocols were developed. These are used

to split large temporal media files into smaller packets, which are then streamed to the

clients. The next chapter will describe these protocols and the underlying network proto-

cols in more detail.

Chapter 4

Streaming Media Protocols

4.1 Introduction

This chapter describes the current version of the Internet Protocol (IPv4), that is being

used over the Internet today. The previous chapter describes how the quality and quantity

of temporal media files is steadily increasing. Traditionally these files would be down-

loaded, over the Internet, to the client and then played back. This can however, take a

considerable amount of time, due to poor network connections and congestion.

To overcome this problem the IETF have developed two new protocols, which can

be used to stream the media over the Internet. These streaming protocols use IPv4, for

the control and delivery of the media data. They are called the Real-time Transport

Protocol (RTP) and the Real Time Streaming Protocol (RTSP) and they are described in

this chapter.

Several limitations of the current Internet Protocol, have caused the IETF to develop

the next generation of this protocol, IPv6. These limitations and the five main changes to

IPv4 are discussed, in more detail, within this chapter.

4.2 The Traditional Protocols

The Transmission Control Protocol / Internet Protocol (TCP/IP) is the main protocol

suite used with the internet. Halsall [42] describes how originally locaf Area Networks

(LANs) were used to connect different computers on a local site, e.g. computers within

80

4.2 TAeTjraditzonayfrofocoJs 81

an ofRce or building. This allows users to share and distribute information across the

local network. Large enterprises, however, usually have several sites situated in different

areas of the same country and more recently, different countries as well. To connect sites

that are situated within the same country, companies lease transmission lines between

those sites, from the public carriers such as British Telecom. This forms a Wide Area

Network (WAN). To connect sites that are situated in other countries, companies use

different types of communication, for example satellites, optic fibres across land and /

or sea etc. The networks that are formed from this type of communication are called

Internetworks or just Internets.

TCP/IP consists of a suite or a layered sfact of two core protocols and they are the

Internet and transport protocols. The Internet Protocol (IP) provides a number of core

functions that assist the process of internetworking across dissimilar networks. These

are:

1. Addressing - which handles three different types of address, over the current In-

temet protocol IPv4 [78]. They are uojcasf, broadcasf and mu7tzcasf addresses.

Unicast addressing is used when a packet of information or datagram is to be sent

to a single destination. Broadcast addressing is used when a message is to be de-

livered to every host on a destination LAN. A multicast address is used to deliver a

datagram to a specific set of hosts, called a multicast group. This type of address-

ing is called IP Multicast. Hosts can join a multicast group at anytime and receive

the datagrams, that are sent to this group. An IPv4 address is 32 bits in length and

it is made up of four 8 bit numbers; for example 124 .35 .67 .8 .

2. Fragmentation and reassembly - which handles the way in which the data is trans-

mitted, across different parts of the Internet. If the datagrams, sent by a host, are

larger than the packet sizes, used by a particular part of the Internet, then they will

have to be fragmented into smaller chunks, so that they can be transmitted. When

these smaller packets are received, they have to be reassembled into the original

sized packet, so that they can be used.

3. Routing - which is used to determine which subnets, within the Internet, the data-

grams must travel over, to get to the destination host. This could involve travelling

over several difkrent LANs or WANs.

4. Error reporting - which consists of several functions, that will detect and report er-

rors back to the IP used in the source host. For example, the process of reassembly

4.3 The Real time Transport Protocol 82

could cause several packets to be discarded, which will result in an error being sent

back to the source's IP. Halsall [42] describes these functions in more detail.

The transport protocols are designed to sit on "top o f the Internet protocol mentioned

above. They provide two modes of operation, connecbon-orzecfed or connecb'onJess. A

connection-oriented protocol creates a connection between the transmitter and the re-

ceiver before the data is actually transmitted. This is also known as a reliable transport

service since the data is guaranteed to get to the destination. The Transmission Control

frofocoV (TCP) is an example of this type of service.

A cormectionless protocol, as the name suggests, does not form a connection and

therefore can not guarantee that the data will be delivered. This mode of operation re-

duces the overhead associated with each message transfer because no network connection

is established prior to the transmission. TCP/IP provides a connectionless protocol called

the User Datagram frofocoJ (UDP).

When users want to transmit information over the Internet, using an Internet-aware

application, the information is first passed to the transport protocol layer. This layer will

determine the type of delivery mechanism, e.g. TCP or UDP, to use. The information is

then passed to the Internet protocol layer, which attaches extra information, for example

the destination host address etc.

When a host receives information from the Internet, the Internet protocol will carry

out several tests on the packets of information received. For example error reporting,

which could result in the re-transmission of particular packets, reassembly of packets

etc. The information is then passed to the transport protocol layer which strips off any

information to do with the delivery mechanism. The resulting information can be used

by the Internet-aware application. A more thorough description of this can be found in

Halsall [42].

4.3 The Real time Transport Protocol

The Real-time Transport Protocol (RTP) was developed by the "Audio-Video Transport

Working Group" of the Thfemef Engineenng Task force (IETF) and it has recently be-

come an Internet standard. The lETF's RFC 1889 [8] specification describes RTP as

being a protocol providing end-to-end delivery services, such as payload type identifica-

tion, timestamping and sequence numbering, for data with real-time characteristics, e.g.

The ReaJ fime Diansporf Profoco7 83

interactive audio and video. It can be used over unicast or multicast networks. RTP itself

however, does not provide all of the functionality required for the transport of data and

therefore applications usually run it "on top" of a transport protocol such as UDP, which

is discussed in the previous section. It can also be used with other transport or underlying

network protocols.

RTP usually works in conjunction with another protocol called the Real Time Control

Protocol (RTCP)', which provides minimal control over the delivery and quality of the

data. It performs four main functions and these are:

1. Feedback Information - which is used to check the quality of the data distribution.

During an RTP session, RTCP control packets are periodically sent by each partic-

ipant to all the other participants. These packets contain information such as the

number of RTP packets sent and the number of packets lost, which the receiving

application or any other third party program can use to monitor network problems.

The application might then change the transmission rate of the RTP packets to help

reduce any problems.

2. Transport-level identification - which is used to keep track of each of the partici-

pants in a session. It is also used to associate multiple data streams from a given

participant in a set of related RTP sessions, e.g. the synchronisation of audio and

video.

3. Tyansmission fofervaj Control - which ensures that the control trafBc will not over-

whelm network resources. Control traffic is limited to at most 5% of the overall

session traffic.

4. Minimal Session Control ^ which is an optional function, that can be used to con-

vey a minimal amount of information to all session participants, e.g. to display the

name of a new user joining an informal session.

When an RTP session is initiated, an application defines one network address and

two ports for RTP and RTCP. If there are several media formats such as video and au-

dio, a separate RTP session with its own RTCP packets is required for each one. Other

participants can then decide which particular session and hence medium they want to

receive.

' i t is also known as the RTP Control Protocol.

4.4 The Real Time Streaming Protocol 84

Overall RTP provides a way in which real-time information can be transmitted over

existing transport and underlying network protocols. With the use of a control protocol,

RTCP, it provides a minimal amount of control over the delivery of the data. To ensure

however, that the real-time data will be delivered on-time, if at all, RTP must be used in

conjunction with other mechanisms and / or protocols that will provide a reliable service.

4.4 The Real Time Streaming Protocol

The Real Time Streaming Protocol (RTSP) is a proposed Internet standard which was de-

veloped by Netscape Communications Corporation, RealNetworks^ and Columbia Uni-

versity. The current RFC [53] describes it as being an application-level protocol, which

controls the delivery of streaming media with real-time properties. This media can be

streamed over unicast or multicast networks. RTSP itself does not actually deliver the

media data; this is handled by a separate protocol such as RTP, see Section 4.3. There-

fbre RTSP can be described as a "network remote control", to the server that is streaming

the media.

The underlying protocol, that is used to control the delivery of the media, is deter-

mined by the scheme used in the RTSP URL; see RFC 2327 [53], Section 3.2. URLs are

described in Section 2.3.1. RTSP supports three schemes and they are:

1. " r t s p " - which identifies a reliable protocol, such as TCP, for the delivery of the

commands. This is the most commonly used scheme.

2. " r t s p u " - which identifies an unreliable protocol, such as UDP, for the delivery of

the commands.

3. " r t s p s " - which requires a TCP connection, secured by the Transport Layer Se-

curity (TLS) [130] protocol.

Therefore a valid RTSP URL could be " r t s p u : //too. b a r . com: 5150", which requests

that the commands be delivered, by an unreliable protocol, to the server " f o e . b a r . com"

on port 5150.

"Formerly known as Progressive Networks.

4.4 The Real Time Streaming Protocol 85

RTSP is intentionally similar, in syntax and operation, to the HyperTexf Trans/er

Protocol (HTTP/1.1) [108], see Section 2.3.1, which is an Internet draft standard. There

are several reasons for this and they include:

8 Any future extensions to HTTP/1.1 can also be added to RTSP, with little or no

modification.

RTSP can be easily parsed by standard HTTP or MIME parsers.

It can adopt HTTP's work on web security mechanisms, caches and proxies.

Pizzi and Church [119], however, describe one of the fundamental reasons why RTSP

is based upon HTTP/1.1. The previous version of HTTP, which is currently being used

by most web servers and browsers, was not designed to cope with the transmission of

real-time data over the Internet. What limited capabilities HTTP/1.0 has in this area have

already been exhausted. By making RTSP similar in operation and syntax to HTTP/1.1,

the designers have essentially provided HTTP-level services to the real-time delivery of

streaming data.

Although RTSP is similar to HTTP/1.1, there are several areas in which it differs.

One of these is RTSP's need to maintain "session state" in almost all situations. In RTSP

a session represents a complete transaction, between a client and a server. For exam-

ple, the creation and setup of the streams, play back and then the closing down of the

streams. To handle this type of transaction, RTSP may use the Session Description Pro-

tocol (SDP) [98], to create session descriptions. These contain all of the information

required for a multimedia session.

A SDP message consists of three main sections;

1. The Session Description - which contains general information about the session

such as the protocol version, the session name, the creator and session identifier.

2. The Time Description - which contains time information.

3. The Media Description - which contains information about the actual media such

as bandwidth information, media title and media name and transport address. It

can also contain extra media attributes.

A session description can have more than one time and media description, depending on

4.4 The Rea7 Time Sfreaming frofocoJ

the number of media streams. When a SDP message is received, clients will use it to

handle the streams in a session. RFC 2326 [53] Appendix C, describes how RTSP could

use SDP, in more detail.

As mentioned previously however, the data in RTSP is streamed via a separate pro-

tocol which is independent of the control channel. For example, TCP could be used for

the control of the stream, whilst UDP is used for the actual delivery^. Thus the data will

still be delivered, by the media server, even if it receives no RTSP control commands.

Since most servers are designed to handle multiple users, the server needs to be able to

maintain the "session state" for each client. For example, one client might be setting up

several streams and therefore the session, for this client, will be in the "SETUP" state. For

another client, the session might be in the "PLAY" state. By maintaining the session state,

the server will ensure that it can correlate the RTSP requests, from each client, to the

relevant session. FITTP/1.1, however, is a stateless protocol; there is no need to save the

state of each session for each client. The RTSP state diagram is shown in Figure 4.1.

SETUP

TEARDOWN

PLAY

TEARDOWN

Playing

PLAY

PAUSE

Ready

TEARDOWN

PAUSE

RECORD

TEARDOWN f Recording

SETUP

RECORD

Figure 4.1: The RTSP client/server state diagram.

^RTP over UDP can also be used, although RTSP is not tied to RTF.

4.4 The Real Time Streaming Protocol 87

Another area in which HTTP/1.1 and RTSP differ is in the way the client and the

server interact. With HTTP/1.1 the interaction is one-way; the client issues a request

for a document and the server responds. With RTSP both the client and the server can

issue requests. This is shown in Figure 4.2, which is a simple diagram showing how

three RTSP clients, have connected to a RTSP server. Each of the clients (A, B and C)

have a single control channel, which could be either reliable or unreliable, e.g. TCP or

UDP, respectively. As mentioned previously, both the clients and the server can send and

receive messages, over this channel. Clients A and C however, only have one data stream

which is used to transmit the media data, e.g. packets of audio, video etc., from the server

to the client. Client B has two data streams, possibly one for audio and another for video.

There is no communication, on the data streams, between the client and the server. The

server can only use these streams to send packets of data to the client.

Control
Channel

Data
Stream

Control
Channel

File
Storage

Data Stream

Data Stream

File
Storage Control Channel

Data Stream

RTSP Client

RTSP Client

RTSP Client

RTSP
Server

Figure 4.2: The connections between three RTSP clients and a server.

RTSP is really a protocol framework rather than a protocol itself because it provides:

A way to control the delivery of multiple data streams.

4.J IPy6. 7V]eaexfgei]efat!oninferneffrofoco7 88

A means for choosing the actual delivery channels such as UDP, multicast UDP

and TCP

@ A way to choose a delivery mechanism such as RTF.

RTSP URLs, which are described earlier in this section, are used to control the delivery

of the multiple data streams. The type of delivery channel and delivery mechanism,

however, are usually implementation specific, e.g. coded into the implementation of the

RTSP server itself. Early implementations of these servers support UDP, multicast UDP,

TCP and RTP.

To create a presentation which could be a live videoconference or the simple transmis-

sion of stored data, a presenfafjon descrzpfion is used. This contains a common time axis

and information about one or more media streams, e.g. RTSP URLs, duration, start time

etc. A simple presentation description could, therefore, contain just one audio stream,

whilst a more complex example could contain an audio, video and text stream, running

in parallel.

The World Wide Web Consortium (W3C), see Section 2.3.1, and several other com-

panies, e.g. RealNetworks, are currently using RTSP. The W3C has developed a declara-

tive language called SMIL, see Section 3.5.5, which can be used to combine independent

multimedia objects into a synchronised multimedia presentation. These media objects

are usually streamed to the clients and therefore, SMIL uses RTSP to control the delivery

of these streams. Once created, these presentations can be easily transmitted over the

WWW. When a Web browser receives a SMIL presentation, it usually executes an appli-

cation, e.g. RealNetworks RealPlayer etc., which buffers and then plays the streams.

4.5 IPv6: The next generation Internet Protocol

Sun Microsystems [20] describes how IPv4 became an Internet standard in 1981 and

at that time, the Internet was a community of approximately one thousand systems. In

1999 this number had grown to approximately 100 million and it has been estimated that

an increasing number of devices will become "Intemet-aware". These include mobile

phones, pagers and Personal DjgiW Assistants (PDAs). As the number of these devices

grow, so will the demand for more addresses.

As mentioned previously in Section 4.2, IPv4 has an address length of 32 bits made

up of four 8 bit numbers. This provides about four billion possible addresses. However

4.J 7Pv6. TAenexfgeiiefafionjhfernefProfoco7 89

this is a theoretical limit and the actual number is constrained, by several factors, to a

few hundred million. With the current rate of growth it has been estimated that these

addresses will ran out between 2002 and 2012.

Temporary solutions to this problem have already been developed and one of these

is the Network Address Translator (NAT) [107]. This device sits between the Internet

and private communities of users. It uses one IPv4 address to communicate with the

Internet and several other private addresses for each of the users. AH requests from this

community appear to come from a single machine, hosting the NAT, on the Internet. On

receiving information the NAT forwards it to the correct user. This device works well for

small private networks. However as the size of the network increases, it can restrict the

flow of the data. It also undermines Internet security.

To help solve this problem and several other limitations of IPv4, the jhtemef Eagi-

neering Task Force (IETF) decided to develop the next generation of the Internet Proto-

col; called IPng or IPv6 [116]. The protocol itself became an Internet standard in 1998

and it consists of five main changes to IPv4:

1. Expanded addressing capabilities - which increases the address size firom 32 bits

to 128 bits (usually represented as eight 16 bit numbers.) This provides roughly

6*10^^ addresses per square meter over the entire face of the earth. Unicast and

multicast addresses are supported, with broadcast addresses being phased out in

favour of a special form of multicast. A new anycast addressing scheme is defined

which is similar to multicast, except that the packets are only sent to one node

within the anycast group.

2. Header format simplification - which reduces the overhead of processing the "co-

mmon case" headers, used within packets. This process also limits the bandwidth

cost of the IPv6 header.

3. Improved support /or exfensioos and options - which changes the way IP header

options are encoded. This improves the forwarding of packets, reduces the strin-

gent requirements for the length of options and provides greater flexibility for in-

troducing new options.

4. Flow label capability - which introduces a new 20 bit Flow Label field within the

header. This Geld is used to label specific sequences of imicast or multicast packets,

that require special handling by IPv6 routers. The routers use this label to provide a

4.6 Summaiy 90

non-default quality-of-service (QoS) or a real-time service, possibly for streaming

media. It ensures that the packets "Aow", from the source to the destination, with

a minimum amount of processing overhead at the routers. This part of the IPv6

protocol is experimental and is still under development.

5. Authentication and privacy capabilities - which provides greater support for au-

thentication and data integrity. Optional support for data confidentiality is also

provided.

There is no doubt within many organisations and research communities that IPv6

will eventually replace IPv4. Sun Microsystems [20] explain however that the transition

phase, between these two protocols, will take a reasonable amount of time and as a result

the Internet will be made up of both IPv4 and IPv6 hosts. To assist and accelerate this

transition, the basic socket APIs for IPv6 [109], supports both protocols. These APIs

provide the fimctionality for users to develop IPv6-aware applications and since they

also support IPv4, these applications will be able to communicate, over the Internet,

using either protocol.

Several implementations of this protocol already exist and an experimental backbone

network, the 6bone, has already been created. This is mainly being used to assist in the

development and testing of different aspects of the protocol.

4.6 Summary

The Internet is one of the most popular mediums for communication and information

exchange in use today. At its inception, the Internet consisted of about 1000 users, how-

ever this has grown to approximately 100 million. The reasons for its popularity was the

development and eventual use of the current Internet Protocol (IPv4). This allowed many

systems to communicate using a suite of core protocols.

Another factor in the Internet's popularity, was the development of the WWW. The

Web uses its own protocol (HTTP) "on-top-of' the current Internet Protocol and as the

popularity of the Web increases, so does the use of the Internet. The Web can handle

different types of media, including streaming media. Media streams are used to overcome

the problems of downloading large audio and video files fbr playback.

IPv4 however, was not designed for this type of media and therefore the IETF de-

veloped two streaming media protocols; the Real-time Transport Protocol (RTP) and the

^ 6 Swnmmy 91

Real Time Streaming Protocol (RTSP). These protocols use IPv4 for the control and de-

livery of media streams. RTP is an Internet Standard and has been used in a number of

systems, including video conferencing. RTSP is a proposed Internet Standard and it is

being used for the delivery of media in SMIL presentations.

An increasing number of devices are becoming Internet-aware. However, the current

protocol is slowly running out of Internet addresses. To overcome this problem and sev-

eral other limitations with IPv4, the IETF has developed the next generation of Internet

Protocol (IPv6). This protocol extends the address space and introduces a new field, the

flow label, which is used in IPv6 headers. This label can be used to provide a real-time

service, possibly for streaming media.

This chapter has discussed two of the most commonly used protocols, for streaming

media over the Internet and the WWW today. However "Open" Hypermedia Systems

(OHSs) are not using these protocols, for handling audio information. By using a stream-

ing protocol the open hypermedia tools, described in the previous chapter, would be able

to store the audio files on separate streaming servers. These servers would then stream

the audio to the tools. This would overcome the problems of downloading these files to

the client's machine or storing them on the same machine that is running the OHS.

The next chapter describes how the original SoundViewer tool, for Microcosm, was

extended using RTSP, thus overcoming the problems mentioned above.

Chapter 5

The Design and Implementation of the

Streaming SoundViewer Tool

5.1 Introduction

In this chapter the original SoundViewer tool for Microcosm is discussed. There are

several ways in which audio information can be visually displayed and they include the

scrollbar and waveform method. Each of these graphical metaphors are reviewed and the

interface, that was eventually chosen for the SoundViewer, is discussed. The implemen-

tation of this tool is described and finally a simple demonstration, showing how links can

be created to and from the audio domain, is given.

Chapter 3 however, describes how this open hypermedia audio tool stores the audio

files on the same machine that runs Microcosm. These files can be quite large, especially

if they are high-quality samples. It is possible to store the files on a separate computer

on the local network. A permanent connection to this computer, would allow Microcosm

and hence the SoundViewer to access the audio. If there is a problem however, with the

network and / or the computer, then the SoundViewer will not be able to access these

files.

The previous chapter describes two of the most popular streaming media protocols

that are being used today. The WWW is already using them to stream temporal media,

such as audio and video files, from servers to Web browsers. By using a streaming

protocol, to handle audio files, the SoundViewer tool would be able to overcome the

problems mentioned above.

92

^.2 The ofzgznaj SoundVzewer Tboj 93

This chapter describes the design and implementation of the streaming SoundViewer

tool for Microcosm. It explains how the original SoundViewer was extended using the

final draft of the Real Time Streaming Protocol. Finally a demonstration of this new tool

is given.

5.2 The original SoundViewer Tool

The SoundViewer tool was developed by Stuart Goose at the University of Southampton,

to provide

"... a generic and meaningful visual representation of audio within a hyper-

media context".

A paper by Goose and Hall [118] describes the development of the SoundViewer tool

and discusses some of the unique properties of the audio domain, which is described in

more detail in Chapter 3.

This paper discusses how audio has helped in many applications; for example audio

confirmation of particular types of action possibly reduces the number of errors and non-

speech sounds have been successfully used in the navigation of a screen interface for

blind users. The human voice, however, is the main medium in which we communicate

with each other and so it is natural to assume that it would form an integral part of

multimedia and hypermedia systems. As shown in Sections 3.3, 3.5 and 3.5.4 most

systems support a variety of media such as text, animations, video and pictures. Audio is

supported but with many systems it is just associated with a particular event e.g. a button

being clicked upon or the system shutting down.

The main reason why audio has not attracted as much attention as other media is

due to its lack of vzsuaJ Mendfy. \^sual media such as text, pictures and videos all have

specigc graphical applications to create and modify them e.g. word processors, graphics

programs etc. With the SoundViewer a suitable graphical metaphor for sound had to be

found and so existing methods were reviewed. They are:

1. The Scrollbar method. This uses a graphical scrollbar, to represent the length of an

audio file. By moving the position indicator, the user can seek to a different posi-

tion in the file. Microsoft's Media Player, RealNetwork's RealPlayer and Apple's

Quicktime player use the scrollbar approach.

5.2 The ofzgina7 SoimdVzewef 7bo7 94

2. The M^veArm me(Aod. Several samples of the audio file are taken at a given rate

and the results are then drawn, forming a waveform, onto the screen. This seems

to be one of the most popular ways of representing sound. Microsoft's Sound

Recorder uses this method.

3. The Piano RoJl This displays a single octave of a piano keyboard, drawn vertically,

on the left hand side of the display. A single line representing the "play" head

scrolls from left to right, at regular time intervals, over markers representing a

key depression. This method is most commonly used in programs that manipulate

Musical Instrument Digital Interface (MIDI) files e.g. Cakewalk's Pro Audio.

4. The Manuscnpf / "Score"me(hod. This represents audio using a musical score, e.g.

five horizontal parallel lines (the stave) represent pitch and musical notes drawn on

this stave produce the music. Again this is used with MIDI files.

5. No visuaJisatio;] (Sound Giigineers .̂ The m^ority of sound editing by studio en-

gineers is performed manually without any visual tools. The equipment used pro-

vides fine control over the start and stop positions within the audio recording and

playback facilities for further refinements of these positions. Time and position

indicators are used for noting and re-locating specific sequences.

Different sound formats have different ways in which they can be rendered on a display.

For example MIDI can be expressed well using the manuscript and piano roll method,

whilst it can not be displayed using waveforms. Also MIDI can not be used for speech.

Microsoft's proprietary WAV format is usually displayed using waveforms and can be

used for both music and speech. However, the waveform itself is of little use to the

average user who can not relate the sound to its corresponding waveform. The scrollbar

method is really just a means to move within the audio file itself and therefore, it can be

used for all of the sound formats e.g. WAV, CD-Audio, MIDI etc.

Each of these methods have their own advantages and disadvantages and the Sound-

Viewer tool was designed to represent WAV, MIDI and CD-Audio in a uniform way. It

would be very confusing if the tool displayed a waveform for a WAV file and something

completely different for a MIDI file. Therefore it was decided that more priority would

be given to the visual authoring of the anchors, rather than how the audio was displayed.

Goose and Hall [118] describe several other objectives required for the manipulation of

audio by a hypermedia author / user and they are:

J.2 The ofzginaJ SoundViewer TboJ 95

To have full control over the audio device.

9 To discern the current position and duration of the sound sequence.

To have the ability to select a portion of the sequence, playback and reGne that

selection in preparation for creating an anchor.

To identify any links present in the sequence.

To traverse links to and from the sequence in an intuitive maimer.

The host hypermedia system that manages the link information created to and from

the SoundViewer, is called Microcosm. This "open" system is discussed in more detail

in Section 2.3.2.

5.2.1 The Interface

The user interface of the SoundViewer consists of several components and these are the

audio controls, the windows that represent the audio and are used to view the links, two

position counters and two seiecfion indicators. Each of these components are shown in

Figure 5.1.

The audio controls are similar to the ones used with cassette decks and compact disc

machines and consist of buttons with the labels Play, Pause and Repeat. There are

also two extra buttons; the Memory In which stores the current position / time within

the file and the Memory Out button which, if pressed, displays a list box of all the stored

positions. The user can double-click on any of these, to move to that position in the file.

The SoundViewer has two white windows which span the width of the main applica-

tion window. The larger of the two windows is called the detail window and the smaller,

the overview window. The overview window represents the length of the audio file and

within this window is a highlighted rectangle, which represents the exploded view seen in

the detail window above. Users can change the width of this rectangle, so that the smaller

the rectangle the higher the zoom factor and vice versa. The middle of this rectangle is

represented in the detail window as a thin vertical line.

When an audio file is played, the highlighted rectangle moves from left to right, which

gives a visual clue to the current position in the audio sequence. The vertical line also

moves to the middle of the detail window and when the end of the audio sample has been

5.2 The original SoundViewer Tool 96

S1NEW0U0U
l # l File Units Action Controls Help

Audio Sequence

BTTWAP: Sioow to J j

• Position Counters

Elapsed : 0:03

Duration ; 0:34

- Selection

Start 0:00

Stop 0 : 3 4 -

-Audio Sequence Controls

Play I Pause Repeat

Memory [n Memory Out

Figure 5.1: The SoundViewer Interface.

reached, it will scroll off to the right. If the highlighted rectangle passes over any links,

the links scroll horizontally across the detail window as well. The links are displayed in

the overview window as horizontal lines and in the detail window as shaded rectangles

with simple text descriptions of the link. The overview window is really just an enhanced

scrollbar and by moving the rectangle or the position indicator the user can seek to a

position within the file.

There are two position counters and two selection indicators underneath these win-

dows. The two counters represent the duration of the file and the elapsed time since the

start of the track. The indicators are used to select a portion of the sound file which is

conventionally highlighted in black. This selection can then be used to create an anchor.

When the SoundViewer is executed, outside of the Microcosm environment, all of the

components mentioned above are shown, apart from the detail window. This is displayed

when an audio file is loaded. The position counters and selection indicators are all set

to zero and the audio sequence controls are dimmed, since they can not be used at this

stage. To load an audio file, the SoundViewer uses a project file which has a ".sou"

extension. This file contains the type of audio format e.g. MIDI, WAV etc., the audio

sample's filename, the start and stop time of the sample and a simple description of the

file. There is also an option to automatically play the file when it is loaded. After a project

file has been parsed and the audio file has been loaded, the detail window is shown and

J.2 TAe ongmaf SoundVi'ewef TboJ 97

the position counters are updated. The audio sequence controls are also updated e.g. the

Play button is undimmed so that the file can be played.

Within the Microcosm environment, the application is usually executed when the

user follows a link to a ".sou" Sle or when the user explicitly uses Microcosm to open an

".sou" file. In both cases the SoundViewer automatically loads the project file.

To create and traverse links to and from the SoundViewer tool, the Microcosm system

which manages all of this link information, must be running in the background. With this

system running, a user must follow several steps to create a link:

1. Using the selection indicators, a user selects a portion of an audio file to be the start

point of a link.

2. The user selects the St:art: Link option from the Act ion menu. This starts the

creation of a link and a Start Link dialog box is displayed.

3. The user then selects End Link from the Action menu of a Microcosm-aware

application or Microcosm's own universal viewer. This ends the link and the End

Link dialog box is displayed.

4. The user then clicks on the Complete. . . button, in either of the two dialog boxes.

This brings up the Linker window which allows the user to type in a brief text

description of the link and choose the type of link to be created. At the moment

the SoundViewer only supports specific links (from one point to another) because

intensive sound processing would be required for the generation of generic or local

links.

5. By clicking on the Ok button, in the Linker window, the link is forged and a mes-

sage is sent by Microcosm to the SoundViewer to show the link information in its

windows, e.g. a horizontal line in the overview window and a shaded rectangle,

with the text description of the link, in the detail window.

To follow / traverse a link, from the SoundViewer, a user can either double-click on

the shaded rectangle (the link) in the detail window or press the Play button. By pressing

this button, the highlighted rectangle in the overview window will move from left to right,

which will cause the shaded rectangles (the links) in the detail window to do the same.

As these links pass under the vertical line, in the detail window, they are automatically

5.2 The original SoundViewer Tool 98

traversed. This is shown in Figure 5.3. In this picture an audio file is being played and it

contains two links; one to a window containing a picture and the other to a text window.

These links are immediately followed as the vertical line passes over them.

5.2.2 The Implementation

The original SoundViewer was implemented using Microsoft's Visual C++ for Windows

vl.52. The graphical interface to the viewer was created using one of the components of

this application; the Resource Edjfor. This editor allows the user to create dialog boxes,

icons, fonts, menus and other resources, which can then be used in the main application.

For the SoundViewer, this editor was used to create a dialog box with a menu, two text

boxes for the counters, two list boxes for the selection indicators and 6ve buttons for the

audio controls. The detail and overview window were created using specific functions in

the Visual C-H- language. The dialog box was then used as the graphical user interface

(GUI) to the program, see Figure 5.1.

Goose and Hall [118] describe in their paper how the SoundViewer tool was divided

into a number of modules. For example one of the modules would handle the graphics,

whilst another would handle the audio (see Figure 6 in [118]). This helped to reduce the

complexity of the programming task.

This paper also describes how the audio module consists of two layers. The first layer

is a suite of audio device independent functions, that separate the user from the lower

layer audio device controls. The second layer consists of a suite of functions for each

of the audio formats supported by the SoundViewer. These are specific audio functions

that are called by the first layer and rely heavily on Microsoft's Media Control Inter-

face (MCI). MCI provides several functions that allow users to control different types of

media, e.g. opening, playing, stopping and closing a WAV audio or AVI video file.

A simple visual representation of these two layers is shown in Figure 5.2. Each of the

in this diagram can be replaced with a specific audio control command, e.g. Open,

Close, Play, Stop etc. Therefore if a user clicks on the Play button, the PlayAudioD-

evice function is called. This function will then call GetAudioDeviceType, which will

return the format of the audio file. If the file is a WAV file, the Pi ay WAV function is called,

which in turn calls the relevant MCI function.

The modular design of the SoundViewer and the creation of an abstract layer, between

the user interface and the audio controls (MCI), ensures that any new and emerging audio

5.2 The onginai SouadVzewer 7bo7 99

/s CO?

? CD

Audio Device
Independent Functions

? AudioDevice

GetAudioD(3viceType()

/s M/0/? Is Wav?

? MIDI ? WAV

Specific Audio
Functions

Figure 5.2: The Audio Device Layers,

formats can be easily supported.

5.2.3 The original SoundViewer case study

To test the original SoundViewer tool, a simple demonstration had to be developed. It

was decided that certain items from the Churchill archives, stored at the University of

Southampton, could be used. The archives contain several movie clips and text tran-

scripts of Winston Churchill's Sinews of Peace speech at Westminster College. For the

demonstration it was decided that the audio from the movie clips would be used, in con-

junction with pictures and the text transcript of the speech.

To create the demonstration, links were created between the relevant pieces of the

media, e.g. between the text transcript and the relevant portion of the audio sample,

between the audio and JPEG pictures etc. These links were created using Microcosm,

see Sections 2.3.2 and 5.2.1.

Once the links had been created between each of the media objects, the demonstration

could then be used. A user could bring up the text transcript of the speech and click on

5.2 The original SoundViewer Tool 100

a highlighted link. This would cause the SoundViewer tool to be displayed and the user

could then play the audio sample. Figure 5.3 shows a small sample of a demonstration.

sou
^ File Units Action Controls Help

-||~|X

Audio Sequence

SiSiian-- WwldJiS

- Position Counters

Etapsed : 0:04

Duration : 0:34

'Selection

Stall I

Slop I Z!3±l

Audio Sequence Controls

Play 1 Pause Repeat

Memory in Memory Out

0 , File Edit

Action Options

Help

R. ^ % if "b

inbtvsS : Imported on 10 /03 /97

p) File Edit Action Options Help

1̂ 1 ^1 M t i
complimented that you should give me a degree. The name

"Westminster" is somehow familiar to me. I seem to have heard of it

before. Indeed, it was at Westminster that I received a very large part

of my education in polities, dialectic, rhetoric, and one or two other

things. In fact we have both been educated at the same, or similar, or,

at any rate, kindred establishments.

It is also an honour, perhaps almost unique, for a private visitor

to be introduced to an academic audience by the President of the

United States. Amid his heavy burdens, duties and responsibilities —
nnor̂ noVif Kiit not frr>m -- fnac q

I'

Figure 5.3: The original SoundViewer demonstration.

i100%:NoSel

In this screen-shot, the SoundViewer tool has been activated. Within the viewer's

detail window there are two links (represented as two rectangles). When the user presses

the Play button, the audio sample is played and the highlighted rectangle in the overview

window moves from left to right. This causes the links to move and pass under the

thin black line in the detail window above. As the links pass under this line they are

automatically followed and in the diagram. Figure 5.3, one of the links displays a picture

of Winston Churchill and the other, the text transcript of his speech.

5.3 TAedeveJopmenfoftbesfreamingSound^^ewer 101

5.3 The development of the streaming SoundViewer

Over the last few years the World Wide Web, see Sections 2.3.1 and 3.5.4, has steadily

grown from being a simple hypertext system to a more sophisticated hypGfmed[!a system,

that supports moving pictures, audio and video. Traditionally when a user clicks on a

link to a page that contains a sound and / or a video sequence, the user had to wait

until the entire media file had been downloaded, before it could be played. If the network

connection was slow and / or the 61e was veiy large, this could take a considerable amount

of time. Therefore software and hardware manufacturers started to develop protocols

that could stream the media over the networks. These are discussed in more detail in

Chapter 4.

If a user clicks on a link to a streaming audio Gle, a request is sent to a streaming audio

server which splits the appropriate file into smaller packets. These packets are then sent

to the client (user's computer) using the new protocols. A client-side streaming media

application then buffers the incoming packets until a certain amount has been received.

It can then play the contents of the buffer. If the network connection is good, there is

no perceivable delay in the delivery of the data. Otherwise there is a slight delay as the

application waits for the packets.

The SoundViewer tool was developed as a hypermedia application to visually create

and traverse links to and from the audio domain. Audio files can be loaded into this

tool and then the Microcosm link creation mechanism can be used to create the links.

These audio files, however, can be quite large e.g. 31.5 seconds of stereo sound can

generate a 347.7 kilobyte WAV file. Audio and video sequences, which contain far more

information, can consume copious amounts of hard disk space. With the streaming audio

techniques mentioned previously in this section, it is possible to store this information on

a separate streaming media server. Users can then access the audio by using a streaming

media protocol, which would save valuable amounts of disk space.

To implement this concept, the functionality of the SoundViewer was extended so that

streaming audio could be supported. This was achieved by changing the tool from a sim-

ple application to a streaming audio client, that could communicate with the media server.

Several protocols exist that provide suitable methods for a media server to communicate

with a client and vice-versa. Sections 4.3 and 4.4 discusses two of these protocols and

they are the Real-time Transport Protocol (RTP) and the Real Time Streaming Protocol

(RTSP). RTP is an Internet standard whilst RTSP is a proposed Internet standard. Before

it can become a standard, however, it has to go through several refinements and at least

5.3 The development of the streaming SoundViewer 102

two basic implementations of the client and the server have to be written. This is a re-

quirement of the Internet Engineering Task Force (IETF), which is a part of the Internet

standards committee. The RTSP drafts and implementations are publicly available and

allow prospective users to comment on any area of the protocol. This ensures that the

protocol remains an "open" standard.

Since RTSP provides most of the functionality required to create a streaming version

of the SoundViewer and an initial implementation of the protocol is already available for

public use, it was decided that this protocol would be used with the SoundViewer. The

following sections describe the design and implementation of this streaming audio tool.

5.3.1 The Design

As described in the previous section. Section 5.3, IETF requires at least two implemen-

tations of a proposed Internet standard before it can become an actual standard. As a

result the developers of RTSP, see Section 4.4, have created a simple client and a server,

that will stream WAV audio Ales over the Internet. This code is available for Microsoft

Windows (both 95 and NT) and UNIX machines. By combining a modified version of

this client with the original SoundViewer, a streaming SoundViewer client was created.

The RTSP server, however, was not modified since its functionality does not need to be

changed.

To integrate the RTSP client into the SoundViewer, the viewer's audio module was

extended. The audio module consists of two layers, see Section 5.2.2; an abstract audio

device independent layer and a suite of lower-layer functions for each of the supported

audio formats. For RTSP, a new set of these functions were created. A small modification

was also made to the abstract layer so that it could detect a new audio device type, e.g.

RTSP. A simple diagram showing how RTSP is integrated into these layers is shown in

Figure 5.4.

Each of the in this diagram can be replaced with a specific audio control com-

mand, such as Open, Play, Stop etc. If RTSP is the audio format being used and the user

clicks on the Play button, the PlayRTSP function will be called.

One of the fundamental design decisions, for the streaming SoundViewer, was that

the interface would look exactly the same as the original tool. As far as the end user is

concerned the viewer looks the same and can be used in exactly the same way. A few

changes were made to the project file, which is described in Section 5.2.1, but apart from

5.3 The development of the streaming SoundViewer 103

Audio Device
Independent Functions

kCO? /s M/0/? Is Wav?

Specific Audio
Functions

? AudioDevice

GetAudioD 3viceType()

Is RTSP?

? CD ? MIDI ? WAV ?RTSP

Figure 5.4: The Audio Device Layers with RTSP.

this, however, all of the underlying network connections to the RTSP server and the actual

delivery of the audio data will be transparent. For example a fast network connection gave

the impression that the sample being streamed &om the server was actually on the local

machine. Network congestion, however, can cause the viewer to pause playback until

enough data had been received.

With the original SoundViewer, a project file is used to store information about the

audio sample, e.g. the filename, start and stop times etc. This file is then loaded into the

tool. The contents of this file for the streaming version of the viewer, however, had to be

changed. For example:

® A new audio format type would need to be supported, e.g. RTSP. The original

viewer only recognised three types of audio in the project file: CD, MIDI and

WAV.

® The location of the audio file would have to be changed from a local path to an

RTSP URL. This URL would be used to locate the media server.

® The start and stop times of the audio sample would have to be removed because

the file is stored on a separate media server. The length of the file would only be

5.3 The development of the streaming SoundViewer 104

known when this information is retrieved from the server.

When this new project file is loaded into the streaming viewer, the URL (which includes

the Glename of the audio sample on the server) is read in and a connection is then formed

between the viewer and the media server. At this stage the SoundViewer has effectively

become an RTSP client. Figure 5.5 shows the interaction between the streaming Sound-

Viewer and the media server, when the viewer requests a connection to be formed.

The connection that is formed between the viewer and the server is called the control

channel. The type of channel used will depend on the RTSP URL, see Section 4.4. The

viewer uses this channel to send commands to the server. Initially a get command is

sent, with the filename of the audio sample, to the server. Figures 5.6 and 5.7 show the

interaction between the viewer and the server, when the RTSP g e t command is issued.

The media server processes this command and returns information about that audio

file, e.g. the file length in bytes, the duration in milliseconds etc., to the viewer. This in-

formation is used to update the duration counter and initialise certain components within

the SoundViewer tool.

When the Play button is pressed in the viewer, the p command is sent to the server.

This command can also contain a range to play, which is described in more detail in the

RTSP standards track, see RFC 2326 [53]. The server will process this command, divide

the audio sample into packets and then stream these to the viewer. The delivery mecha-

nism for this audio data is separate from the control channel and it might be reliable or

unreliable', e.g. TCP or UDP respectively. The developers initial implementation of the

RTSP server uses UDP and therefore, there is no guarantee that the packets will be deliv-

ered to the viewer. Figure 5.8 shows the interaction between the streaming SoundViewer

and the media server, when the play command is sent to the server.

With the original SoundViewer two events occur when the audio file is played:

1. The highlighted rectangle in the overview window moves from left to right. This

graphically represents the current position in the audio file.

2. The Elapsed position counter also changes to display the current position. This

is usually in milliseconds or minutes and seconds, depending on the user's prefer-

ences.

This is usually implementation specific.

The deveJopmenf of fAe sfreammg SoundViewer 105

Client Server

open "rtsp://..."

I
ParseURl

I
server_connect (start TCP)

I
handle_event(CMD_OPEN)

I
SEND_HELLO_REQ

HANDLE_HELLO_REPLY
(discard)

I
HANDLE„HELLO_REQ

I
interface_hello(...)

(initialises dialog box)

I
SEND_REPLY (200 if OK)

TCP

TCP

TCP

HANDLE_HELLO_REQ

I
SEND_REPLY (200 if OK)

I
SEND_HELLO

HANDLE_HELLO_REPLY
(discard)

Figure 5.5: Client / Server interaction for the RTSP open function

Both of these components use a Media Control Interface (MCI) function to obtain this

position. MCI, however, will only work with Ales stored on the local machine. With

the streaming SoundViewer, the audio sample is stored on a media server which is an-

other machine connected to the Internet. Therefore this function can not be used with

the streaming viewer. To overcome this problem a virtual time unit (VTU) was created.

J J The devejopmecf of (6e sfreaoung SoundVi'ewer 106

Client Server

get "filename"

I
handle_event(CMD„.GET)

I
SEND_GET_REQ

HANDLE_GET_REPLY
(handles the information
sent e.g. file size etc.)

i
set_stream_settings(...)

I
SEND_SETUP_REQ

(creates a UDP stream)

TCP

TCP

TCP

HANDLE_GET_REO

(check that "filename"
exists)

i
setup_stream(...)

(read in information

about the file)

I
SEND_GET_REPLY

(contains file size, samples

per sec, bits per sec etc.)

Figure 5.6: Client / Server interaction for the RTSP ge t function

This calculates the current position within the file, based on the number of packets re-

ceived from the RTSP server, the length of the Ble in bytes and the duration of the Gle in

milliseconds. The VTU was then used to move the highlighted rectangle and change the

Elapsed position counter.

TTie deveVopmenf of (Ae sfreanujig SoundV^ewer 107

Client Server

TCP

HANDLE_SETUP_REPLY

I
interface_new_session(...)

(enables the "Play" and

"Pause" buttons on the

dialog box)

TCP

HANDLE_SETUP_REQ

(sets up the UDP / RTP

port)

I
SEND_SETUP_REPLY

I
SEND_REPLY (200 if OK)

Figure 5.7: Client / Server interaction for the RTSP get: function (cont'd)

As mentioned previously, MCI can only be used with media files stored on the local

machine. Therefore MCI will not work with RTSP, since the audio files are stored on

other machines (media servers). The developers of the RTSP client, however, overcame

this problem by using Microsoft's lower-level audio specific functions. These functions

were incorporated into the lower-layer of the SoundViewer's audio module. There was

no need to modify the MCI controls for the other supported audio formats, since their

functionality has not changed.

5.3.2 The Implementation and case study

The main problem that was encountered in the implementation of the streaming Sound-

Viewer tool, was that the original viewer was designed for a 16 bit open hypermedia

system (Microcosm), see Sections 3.5 and 5.2. Therefore the original SoundViewer code

had to be compiled using a 16 bit compiler, e.g. Microsoft Visual C++ for Windows

1.52. Both the RTSP client and server, however, were designed to be 32 Wf applications;

requiring a 32 bit compiler, for example Microsoft Visual C-H- v4 for Windows 95 or

Zhe deveiopmezif o f (he streaming SoundViewef 108

Client Server

("Play" button pressed)

I
handle_event(CMD_PLAY)

I
SEND_PLAY_RANGE_REQ

I
add_play_range(...)
(if there is a range)

OR

end_of_streams(...)
(start from the beginning)

HANDLE_PLAY_REPLY

I
interface__start_piay(...)

(initialises the "Play" dialog
box, receives the UDP
data stream and plays)

TCP

TCP

UDP

HANDLE_PLAY_REQ
(check for errors)

I
start_stream(...)

(if there is a play range
seek to the start position

and prepare the UDP
socket for transmission)

I
stream_event(...)

(stream the file over UDP)

SEND_PLAY_REPLY

Figure 5.8: Client / Server interaction for the RTSP p l a y function

NT. As a result, the s treaming viewer could not be created by s imply "insert ing" the rele-

vant RTSP client code into the original Sound Viewer code. T h e result ing program would

5.4 Summary 109

contain 16 and 32 bit code, which would not compile.

To overcome this problem, the RTSP client was converted into a 16 bit applica-

tion. This new code was then integrated into the original SoundViewer code to form the

streaming viewer application. For example the functions in the RTSP client that handle

the streaming audio were inserted into the lower layer of the audio module, see Sections

5.2.2, 5.3.1 and Figure 5.2.

Another possible solution would have been to convert the SoundViewer into a 32 bit

application. However, there is no 32 bit implementation of Microcosm and so the func-

tionality required to create, modify and follow links would have been lost; the tool would

have effectively become a standalone application that could play local and streaming

audio files.

Overall the process of integrating the RTSP client into the original SoundViewer tool

was relatively straight forward. New code had to be created to handle the virtual time

unit (VTU), see Section 5.3.1 and the interface between the RTSP client and the Sound-

Viewer's graphical user interface (GUI). This new code, to handle the interface, was de-

signed to ensure that all of the network connections to the RTSP server were transparent

to the user.

To test the streaming SoundViewer, a demonstration similar to the original case

study, see Section 5.2.3, was created. Again the Churchill archives, at the University

of Southampton, were used. Links were created between the audio samples (which are

now stored on a separate media server) and the relevant pieces of the archive. This is

shown in the diagram Figure 5.9.

In this screenshot, when the Play button has been pressed, a command is sent to the

media server to stream the audio to the SoundViewer. When the Sound Viewer receives

enough information, the audio is played and the virtual time unit is updated. As the VTU

is updated, the highlighted rectangle in the overview window moves from left to right,

which causes the links to pass under the thin black line in the detail window. This results

in the links being automatically followed.

5.4 Summary

In this chapter, the design and implementation of the streaming SoundViewer tool for

Microcosm has been described. The design rationale of the original SoundViewer tool is

5.4 Summary 110

Streaming fioro sewer "ralbi^^

1=^ File Units Action Controls Help

Audio Sequence

iBfTŴ Siiay - Waftojpg 1
Sliwn i«(g SiicMrs - W w la J

pTBCT: Si ram (fg Simew* - VV w k

Position Counters

Elapsed ; 0:02

Duration : 0:34

Selection Audio Sequence Controls

Play I Pause R.epeat

Memory In Memory 0,ut

- In tx ImnaAed on 10/09/97 i - l a t x
0 1 File Edit Action

Options Help

File Edit Action Options Help

R" & CT "b (

Diurchill Speakscit
Westmlnsfer, 1946

|100%;NoSel ^

prOÔ lNoSel A

Figure 5.9: The streaming SoundViewer.

also discussed, especially the graphical metaphor used for the interface. The implemen-

tation of the original tool and the streaming version are reviewed and demonstrations of

both tools are given.

This chapter has shown that it is possible to extend an existing "open" hypermedia

audio tool, to support streaming media protocols; specifically the Real Time Streaming

5 ^ Sununay 111

Protocol (RTSP). The streaming Sound Viewer has effectively solved the original prob-

lem, of storing the audio files on the same computer that is running Microcosm.

However, Chapter 2 describes the reasons why the Open Hypermedia Protocol (O-

HP) was developed. The open hypermedia research community realised in 1994, how

the current generation of "Open" Hypermedia Systems (OHSs) could not interoperate.

The majority of these systems stored their link information on separate link servers and

used proprietary protocols for communication. As a result of this, the clients developed

for one system could only be used on that system. Whenever a new data format needed

to be supported, the developers would have to either extend an existing client or create a

new application. If another OHS had already developed a tool for this format, the other

OHSs would not be able to use it. This resulted in the developers wasting a considerable

amount of time on the clients, instead of the main area of research, the link servers.

The Open Hypermedia Systems Working Group (OHSWG) decided therefore to de-

velop the Open Hypermedia Protocol. It would be used for communication between the

OHS clients and the link servers. An OHP-aware client would then be able to commu-

nicate with an OHP-aware server. Over time however, this protocol grew in size until

the OHSWG realised, that a single protocol would not be able to handle all of the func-

tionality required. As a result the protocol was divided into specific hypertext domains,

including the traditional form of navigational hypertext. OHP-Navigational (OHP-Nav)

was successfLilly demonstrated at two conferences.

The Southampton members of the OHSWG realised however, that a higher-level

structure could be created, to work across three of the most common hypertext domains;

navigational, spatial and taxonomic hypertext. As a result the Fundamental Open Hyper-

media Model (FOHM) was created. This model concentrates on the way in which associ-

ations can be shared across these domains. It does not use a protocol for communication,

between an OHS client and server. Therefore it can be described as an interoperable

exchange format, for the three hypertext domains mentioned above.

The next chapter describes how the RTSP protocol itself, can be extended to support

open hypermedia. To ensure that this new protocol uses an interoperable exchange for-

mat, FOHM is used. This combination will complement both the protocol and the model

itself, because RTSP will be able to handle open hypermedia and FOHM will be able to

use this protocol for communication.

Chapter 6

An Open Hypermedia tool for

Temporal Linking with Audio Streams

6.1 Introduction

This chapter describes the development of an Open Hypermedia tool that allows users

to create, display and follow temporal links with audio streams. This is achieved by

implementing a new version of the RTSP framework and extending it with new methods,

that support open hypermedia.

The previous chapter describes how an existing open hypermedia audio tool, for Mi-

crocosm, was extended to support audio streams. It was possible, using this tool, to create

links to and from streaming audio. This functionality however, to create temporal links,

could only be used with this "Open" Hypermedia System (OHS).

The majority of OHSs exhibit similar behaviour, because they use proprietary proto-

cols for the communication between their clients and servers. Clients developed for one

system will not be able to communicate with another and as a result, these systems can

not interoperate. Section 2.5 describes this in more detail and the development of the

Fundamental Open Hypermedia Model (FOHM).

FOHM is a higher-level structure that is designed to work across hypermedia do-

mains. Therefore it can be described as an interoperable exchange format for open hyper-

media. However, this model only describes the structure of the interoperable associations

between these domains; it does not describe a protocol for communication.

112

6.2 The Design of the new RTSP framework 113

This chapter describes how the new RTSP framework uses FOHM, as an interopera-

ble exchange format, for storing link information. The benefits of this are twofold. This

new protocol can use FOHM to handle the open hypermedia information and FOHM can

use RTSP, as a communication mechanism. The new methods, mentioned previously,

will be used with FOHM to create, display and follow temporal links.

The RTSP framework has also been designed to work with IPv6 and therefore an

IPv6-aware server will be able to communicate with both IPv4 and IPv6-aware clients.

6.2 The Design of the new RTSP Framework

As described in Section 5.3 an implementation of the RTSP framework, see Section 4.4,

was used to develop the streaming SoundViewer tool, for the open hypermedia system

Microcosm. This section also explains that the IETF require at least two reference im-

plementations of a protocol, before it can even be considered to be a proposed standard.

The version of the protocol that was used for this tool however, was based on the final

draft of the specification and its reference implementation. This final draft was modified

before it became the actual proposed standard, RFC 2326 [53] and the implementation

was very basic; it had enough functionality to handle simple streams. No reference im-

plementation, of the proposed standard, was ever released. This was mainly due to two

reasons; the protocol had already been tested on a number of systems and a substantial

amount of feedback had already been received. This proved the viability of the protocol

and therefore, no further implementations were required.

To ensure that the new framework was compliant with the current specification, it

was decided that a new implementation would be required. When designing this new

implementation, several factors had to be considered and these were:

@ The underlying transport protocols. RTSP runs "on-top-of' the current Internet

Protocol, IPv4 see Section 4.2. During the design of the framework however, the

IETF were also developing the next version of the Internet Protocol, IPv6 see Sec-

tion 4.5. IPv6 will eventually replace IPv4 and to ensure backwards compatibility,

during the eventual transition, it also supports IPv4. As a result of this, it was de-

cided that the new RTSP implementation would support IPv6. This ensures that

the RTSP client and server will be able to communicate, over the Internet, using

either protocol.

6.2 The Design of the new RTSP Framework 114

RTSP's underlying delivery mechanism is usually the Real-time Transport Protocol

(RTP), see Section 4.3, although developers are free to use different protocols. For

this implementation, it was decided that RTP would be used because it is the de-

facto Internet standard for the real-time delivery of continuous media.

The Operating System. The previous item described the reasons why the underly-

ing protocols were chosen. At the time of development however, only a few oper-

ating systems had limited support for IPv6 and the majority of these were UNIX-

based. These included Linux, Sun Microsystems Solaris, FreeBSD and other BSD

derivatives. Microsoft Windows, the most prevalent operating system, at this time

had very little support' for this new protocol. Therefore it was decided that one of

the UNIX-based systems would be used for development.

• The Programming Language. The original reference implementations of RTSP

used the C programming language for development. This was mainly due to the

fact that C is a portable language and most operating systems have at least one C

compiler at their disposal. These implementations could then be easily used and

tested on a number of different systems, by simply re-compiling the source code.

Stroustrup [10] describes how C was originally designed to replace the large amo-

unts of assembler code, used in the most demanding of system programs. It achi-

eves this by providing types, operators and structures that simply and efficiently

handle the low-level objects used within the system; for example characters, num-

bers and addresses. It has been used to develop advanced applications, including

the UNIX operating system and its derivatives.

C however does have several limitations. It was designed to be "close to the ma-

chine" and as a result it is sometimes called a lower-level language. It is still

possible, for instance, to include assembly language within C programs. For the

development of more advanced programs, users require a reasonable amount of

knowledge of the underlying hardware, especially for memory management and

access. It is very easy for inexperienced and experienced developers to create pro-

grams that cause memory leaks, which can eventually result in the system crashing.

To help reduce this type of problem, it was decided that a higher-level, object-

oriented language would be used. Object-oriented languages provide a much more

structured approach to program design and development.

'Microsoft has recently released advanced libraries and tools, for IPv6 development on Windows 2000.

6.2]lbe j[)es(gn cwFthe ZKrwfjt]lSf'jRnan]eiyof&: 115

During the design process, it was decided that a couple of libraries would be devel-

oped; to handle the underlying transport protocols and the Session Description Protocol

(SDP), see Section 4.4. These two libraries would reduce the amount of code used within

the RTSP implementation and once developed, they could also be used in other applica-

tions. The following sections describe the design of these two libraries and the design of

the remaining RTSP framework.

6.2.1 The Socket++ Library

The Socket++ library is specifically designed to handle the creation, manipulation and

deletion of IPv4 or IPv6 sockets. A socket is an endpoint for communication and in most

operating systems, the socket function is used to create this endpoint. The function itself

usually takes three parameters:

1. The domain parameter ^ which is used to specify a communication domain such

as IPv4 or IPv6.

2. The type parameter - which is used to determine the type of socket to create such

as TCP or UDP, see Section 4.2.

3. The protocol parameter - which specifies the type of protocol to be used with the

socket. Normally only a single protocol exists for a particular type of socket and

protocol family.

The function returns a descriptor which is an integer used for any subsequent calls to the

socket; for example for reading and writing.

RTSP uses two protocols. The first is the communication channel and it is used for

communication between the client and the server. The second is the data channel which is

used for the actual delivery of the data, from the server to the client. The communication

channel requires a reliable protocol to ensure that the messages are delivered. From the

specification, see RFC 2326 [53], this is usually TCP. The data channel does not require

a reliable protocol and therefore, UDP will be used.

The library will contain several classes for handling the socket addresses, the sockets

themselves and exceptions, which will be used to handle errors. There are two types of

address; one is 32 bits in length for IPv4 and another is 128 bits in length for IPv6, see

Section 4.5. In future only the data structures, used to hold the IPv6 addresses, will be

6.2 TTie Design of tbe new framework 116

required because as mentioned previously, IPv6 also supports IPv4. Exceptions transfer

control, from where an error occurred, to a designated piece of code. Users can explicitly

define what this code will do and as a result they have a lot more control over the handling

of errors.

The design of this library uses a specific object oriented modelling technique known

as inheritance. Rumbaugh et al. [79] describe inheritance as the process of building

hierarchical relationships between classes, by sharing attributes and operations. Usually

a single class is defined broadly and then refined into more specialised subclasses. Each

subclass incorporates or inberzk the properties of the superclass and it can also add its

own unique properties.

SocketAddress

IPv4SocketAddress IPv6SocketAddress

SocketBase

DGramSocket StreamSocket StreamServer

Figure 6.1: The main classes for the Socket-H- library.

Figure 6.1 is the class diagram for the two superclasses that will be used in this li-

brary; the SocketiAddress and the SocketBase classes. This diagram shows that the

IPv4Socket:Address class and the IPv6Socket:Address class are derived (denoted by

the upside-down 'v') from the superclass SocketAddress and they will be used to han-

dle IPv4 and IPv6 addresses respectively. The DGramSocket class is derived from the

SocketBase class and it will be used to define UDP sockets. The StreamSocket and the

6.2 The Design of the new RTSf framework 117

StreamServer classes are also derived from the SocketBase class and they will be used

to define TCP sockets for a client and a server respectively. A server usually has a socket

for listening for new connections and when a client attempts to connect, the server will

create a new socket to handle this connection. The original socket will continue to listen

for new connections. In this way a server can handle multiple clients.

Inheritance is used in this design because the derived classes all share common at-

tributes and operations; for example the SocketAddress class will have similar struc-

tures to handle addresses and the SocketBase class will contain the descriptor, returned

from the socket function. There is no need to duplicate this functionality in each of the

derived classes; it can be handled in the superclass.

The DGramSocket: class also has a connection to the SocketAddress class because

UDP sockets do not maintain a connection; they are connectionless. Therefore UDP

sockets use specific functions to get the address of the connected peer. This address will

be stored in the SocketAddress object, within the DGramSocket class.

Sock
Exception

Bind
Exception

Listen
Exception

Accept
Exception

Connect
Exception

Figure 6.2: The classes for handling socket exceptions.

The exceptions that will be used within this library are shown in Figure 6.2. The

superclass is called SockException and it will have four derived classes, that are called

or thrown when a particular error occurs. They are:

® The BindException class - which will be thrown when an address, either IPv4 or

IPv6, can not be bound to a socket.

a The ListenException class - which will be thrown when a TCP socket can not be

used, by a server, for listening.

6.2 T&e Design of (Ae aew Framework 118

The AcceptExceptzon class - which will be thrown when a TCP socket, on the

server, can not accept a connection.

The ConnecfExcepfioa class - which will be thrown when a TCP socket, on the

client, can not be connected to the server.

These classes will be used to handle the communication between the RTSP client and

server.

6.2.2 The SDP++ Library

The Sessioa Descnpb'oj] frofocoJ (SDP) [98] can be used with RTSP to handle the de-

scription of sessions. As described in Section 4.4, a session description contains all of

the information required for a multimedia session or presentation. With SDP a message

consists of three main sections; the Session description, the Time description and the

Media description. A session description can also contain more than one time and media

description, depending on the number of media streams.

Since SDP can contain multiple instances of Time and Media descriptions, the design

of this library is slightly more complicated than the Socket++ library described in the

previous section. Each of the descriptions can be modelled using an individual class,

however they must all be used together, to form a complete session description. Therefore

to assist in this design, an aggregate class is used. Aggregation is the process of forming

a composite object from other (possibly smaller) objects.

Figure 6.3 shows the class diagram for the design of the SDP++ library. It will

consist of two main superclasses, the SDPCommonDesc class and the SDPCommon class.

The SDPCommonDesc will be inherited by two classes; the SDPSessDesc class which will

handle the Session description and the SDPMediaDesc class which will handle the Media

description. The Time description will be handled by the SDPTimeDesc class.

The SDPCommon class will be the aggregate class and it will be "made-up" (denoted

by the diamond shape) of three classes; the SDPSessDesc class, the SDPMediaDesc class

and the SDPTimeDesc class. The class diagram also shows, using the black dots with the

"1+" next to them, that the SDPGommon class will have one or more SDPMediaDesc and

SDPTimeDesc classes. This will again depend on the number of media streams.

The SDPMessage and the SDPParser classes will be derived from the aggregate

6.2 The Design of the new RTSP Framework 119

SDPCommonDesc

SDPSessDesc SDPMediaDesc SDPTimeDesc

1 +

i
SDPCommon

1 +

SDPMessage SDPParser

Figure 6.3: The classes for handling SDR

class and they will be used to create and parse session descriptions respectively. The

SDPMessage class will be used on the server and it will have functions to dynamically

create the messages. The SDPParser will be used by the clients, to obtain information

on the individual media streams.

6.2.3 The remaining RTSP Framework

The principles used, in the design of the two libraries, were also applied to the design of

the remaining framework. Inheritance was used again in a number of different classes,

including:

® The IpMsgHand superclass and its two derived classes, the ClientlpMsgHand and

the Server IpMsgHand. These subclasses will be used to handle the parsing of

input messages, from the communication channel, on the client and the server re-

spectively.

6.2 The Design of (he Jiew framework 120

@ The Eventloop superclass and its two derived classes, the ClientEventloop and

the ServerEventloop. These subclasses will be used to handle the event loop in

the client and the server respectively. These event loops will use specific functions

to determine when data is to be read-in or written-out, on the communication and /

or data channels.

® The RTSPSession superclass and its two derived classes, the RTSPClientSession

and the RTSPServerSession. Clients can only have a single session, with possibly

more than one stream. The RTSPClientSession class will be used to manage this

session, on the client. A server can handle multiple clients and therefore, must be

able to handle multiple sessions. As its name suggests, the RTSPServerSession

will be used to handle each of these sessions, on the server.

Each of the classes mentioned above all have similar class diagrams and Figure 6.4 is

the class diagram for the session management classes.

RTSPServerSession RTSPClientSession

Figure 6.4: The classes for session management.

Another type of class that was used in the design of the RTSP framework was the

abstract class. Abstraction is the process of focusing on what an entity is and ignoring

the implementation details. Therefore an abstract class is used to describe the "look" or

the interface of a particular object. It has no implementation and therefore an instance

of this class can not be created. Abstract classes are used with inheritance to define the

interface for the superclass, which can then be refined in the subclasses. It is possible to

build an implementation in stages, by using this technique.

6.2 The Design of the Dew framework 121

For RTSP an abstract class will be used to create a common interface to handle the

media streams. There are many different file formats to store media infonnation and

each one requires specific data structures and functions to open, read and eventually

play this information. A common interface will ensure that each function will have the

same declaration and by using inheritance, the function deSnitions can be implemented

in subclasses. If a new media format is created users can define new function definitions,

in a subclass, to handle the information.

Stream I ntf

WavFile Stream

WavStream

Figure 6.5: The classes for handling streams.

The class diagram for handling the streams is shown in Figure 6.5. The Streamlntf

is the abstract class and it will be used to define the interface for the Stream superclass.

The WavStream subclass will be derived from this superclass and it will be used to handle

WAV audio streams. The functionality to handle this audio format, is defined in another

class; the WavFile class. For handling streams however, the user will only use the func-

tions defined in the WavStream subclass, which will in turn call the functions from the

WavFile class. The ellipses in the diagram are used to show that other possible subclasses

exist, although they have not been defined yet. It is possible to add new subclasses to the

diagram and hence the implementation, to support different streaming formats.

6.3 The Temporal Linking mechanism 122

Abstract classes have been used in the design of several other components for the

framework, including:

The Streamer component - which provides the Streamerlntf abstract class for

the Stzreamer superclass. Two subclasses are derived from this superclass; the

ClientStreamer and the ServerStreamer, which will be used on the client and

server respectively. These classes will be used to handle the lower-level function-

ality of the streams; for example starting and stopping the streams, obtaining the

socket and port information for each stream.

The ControiBuf component - which provides the ControlBuf Intf abstract class

for the ControlBuf superclass. Two subclasses are derived &om this superclass;

the ClientContirolBuf and the ServerConbrolBuf, which will be used on the

client and server respectively. These classes will be used to handle the input and

output buffers of both the client and the server.

The RTSP design also contains several other individual classes that could not be mod-

elled using inheritance. These include the Interface class, which will provide a simple

interface for the client and the Client and Server classes which will be used, in con-

junction with the other classes, to define the RTSP client and the server.

6.3 The Temporal Linking mechanism

Several systems already exist, see Chapter 2, that can be used to author and manipulate

links between different types of media. These include the World Wide Web (WWW) and

other Open Hypermedia Systems (OHSs). These systems however, have several limita-

tions. The WWW for instance, embeds the link information into the actual documents,

which reduces the transmission time. Users however can not modify these documents;

only the original author is allowed to do this. Another problem is link maintenance,

especially when the destination point, of a link, is either moved to another location or

removed entirely.

Open Hypermedia Systems have also been developed to create, edit and follow links.

These systems separate the link information from the documents and usually store this

information in link databases or linkbases. The authoring or resolving of a link involves

creating a new entry in the database or finding and then retrieving the relevant informa-

tion, respectively. These linkbases however, are usually on separate servers and the OHSs

6 J The Temporal I/inting mechanism 123

use their own proprietary protocols, to communicate with these servers. As a result, the

majority of these systems can not interoperate.

The Open Hypermedia Systems Working Group (OHSWG), see Section 2.5, have

been developing the Open Hypermedia Protocol (OHP) to address this specific problem.

A subset of this protocol, which was designed to handle navigational links, has been suc-

cessfully demonstrated at two conferences. It was during the second conference however,

that the Southampton members of the group, decided to concentrate on the development

of a higher-level structure for interoperability. This structure eventually became the Fun-

damental Open Hypermedia Model (FOHM) and it is designed to work across three of

the most common hypertext domains; spatial, navigational and taxonomic hypertext.

With the new RTSP framework, it was decided that the link information would be

kept separate from the audio data. Embedding links within audio streams would require

a detailed analysis of the different audio formats. Advanced techniques would have to

be used to encode the links into the audio streams, so that they would not affect the

acoustic properties of the media. This could be achieved by analysing the audio and

replacing specific areas, that contain frequencies beyond the range of the human ear,

with the link information. However certain audio formats such as MPEG-1 layer 3 or

MP3s, see Section 3.4.1, filter out these areas to reduce the size of the files. Further

research into this area is beyond the scope of this Ph.D.

If the link information is kept separate from the audio data, it would have to be stored

in a linkbase and these linkbases could be on different servers. To ensure that the link in-

formation is stored in a non-proprietary interoperable format, it was decided that FOHM

would be used to handle the creation, storage and delivery of temporal links. Both FOHM

and RTSP also complement each other. FOHM can use RTSP for communication and the

protocol can use FOHM for handling open hypermedia information.

FOHM has already been defined using an open standard, the extensible Markup Lan-

guage (XML), see Section 3.5.5. XML uses Document Type Definitions (DTDs) to de-

fine the structure of documents and the FOHM DTD, with a small modification, will be

used to create link databases. The DTD can also be used, with a XML parser, to validate

these linkbases. By using FOHM, the RTSP framework will ensure that it will be able to

communicate with other FOHM-compliant linkbases.

The original FOHM DTD was designed to describe the elements for a single associ-

ation. An association can also be called a link. A linkbase however will contain several

6 J nieTempofajlmkifigmecAar»'sm 124

associations and therefore the DTD was modified, so that multiple associations could

be created within a single XML document; effectively creating a FOHM linkbase. The

modification was the addition of the linkbase element, < ! ELEMENT l inkbase (assoc-

i a t i o n) + >, to the DTD. This element describes how a linkbase contains one or more

associations (the after the associat:ion tag). A complete Hsting of the new FOHM

linkbase DTD is in Appendix A.2.

As explained previously, FOHM was designed to work across three hypertext do-

mains; navigational, spatial and taxonomic hypertext. For temporal linking in RTSP

however, only the traditional form of navigational hypertext is required. Navigational

hypertext allows users to "associate" or "link" related pieces of information together and

Appendix A.3 contains an example of a navigational association in FOHM. This example

consists of four main sections and they are:

1. The id section - which contains an identifier for the link. This is used to reference

this particular association.

2. The bindingvector section - which contains the actual link information. It con-

sists of two binding elements, one for each end of the link. The first binding

element contains a data, an AXISLOC and a f eaturevector element. The data el-

ement holds the actual data, within a content element and in this case it is a RTSP

URL to a WAV audio file; rtsp://ratbert: 3048/sinew01/sinew22-01. wav.

The AXISLOC element contains several elements, which are used to describe the

temporal aspects of this part of the link. In this situation the RTSP URL will be

active from 1000ms to 2000ms. The f eaturevector element is used to describe

the direction of this binding and in this case it is the source.

The second binding element contains the same elements. The dat:a element con-

tains another URL, r t s p : / / r a t b e r t :3048/rtsp.wav and the AXISLOC element

describes how it will be active from 500ms to 2500ms. The f e a t u r e v e c t o r ele-

ment describes how this binding is the destination.

3. The r e l a t i o n t y p e section - which describes the relationship between the two

binding elements mentioned above. The name element is used to give the rela-

tionship a name and in this case it is called a "link". The f e a t u r e s p a c e element

contains a value, which is used to determine the values of each f e a t u r e v e c t o r

in this association. For navigational links, the f e a t u r e s p a c e value will be "direc-

tion" and as explained in Section 2.5, this value can be used to define three types

fbohensjojisfofuZl&Pfo supygoffJFOfZAf 1:25

of f eaturevector; source, destination or bi-directional.

4. The s t r u c t u r e t y p e section - which describes the Abstract Data Type (ADT) for

this type of association. For navigational hypertext the ADT is predefined to be a

set.

This association effectively describes a temporal link between two different audio files.

6.4 Extensions to RTSP to support FOHM

RTSP can be used to control the delivery of a single stream or a presentation, containing

several streams. Clients control a single stream by using a RTSP URL, see Section 4.4,

which consists of the location and the filename, on the RTSP server, of the actual media

file. When a client opens this URL, a communication channel is formed between the

client and the server. When the client issues a request to setup a stream, using the SETUP

method, the server will create a new stream and a session. The URL and the session

identifier will then be used to correlate all subsequent requests, over this channel, with

the appropriate session.

With a presentation, RTSP has to control the delivery of several streams, each with its

own unique RTSP URL. These URLs are usually stored within a container or presentation

file, which is located on the RTSP server. These URLs can point to files on the same

server or to files situated on different machines on the Internet. Depending on the type of

control users can either access individual streams, using the stream's URL, or the entire

presentation, using the URL to the container file. The URL to the container file is also

known as an aggregate URL.

To handle temporal linking with audio streams in RTSP, a presentation file will be

used. It will contain a URL to an audio file and possibly several URLs to FOHM

linkbases, depending on the number being used. An example of a presentation file

is shown in Table 6.1 and it contains a RTSP URL to a WAV audio file, " r t s p : / / -

r a t b e r t . ecs . so ton . ac .uk; 3048/sinew02/sinew01-22 . wav" and a URL to a FO-

HM linkbase, "rtsp:/ /ratbert: .ecs .sot ion.ac.uk:304 8 /s inew02/s inew02- lb .x-

ml".

RTSP maintains "session state" in almost all situations, see Section 4.4. This ensures

that a server will be able to correlate the RTSP requests, from individual clients, to the

relevant session. RTSP has four states, see Figure 4.1 and they are the INIT state, the

6.4 Extensions to RTSP to support FOHM 126

sinew02: A simple presentation file in RTSP

rtsp://ratbert.ecs.soton.ac.uk:3048/sinew02/sinew02-22.wav

rtsp://ratbert.ecs.soton.ac.uk:3048/sinew02/sinew02-lb.xml

Table 6.1: The container file for a simple RTSP presentation.

SETUP state, the PLAY state and the RECORD state. For the new RTSP framework, the

RECORD State has not been defined and no new states have been added. This ensures that

the new framework conforms to the specification.

As mentioned above, when a client opens a RTSP URL a communication channel

is formed between the client and the server. Requests or methods, such as DESCRIBE

and SETUP, are sent over this channel to control the delivery of multimedia streams.

For temporal linking these methods will have to be modified, so that they can describe

FOHM linkbase files and create linkbase streams. The framework will also be extended

to support several new methods, for the creation, display and traversal of links. These are

described in more detail, in the following sections.

6.4.1 The AVAILABLE JLINKS method

FOHM linkbases will be too large to stream down, from the server to the client, at the

same time as the audio. Each association in the linkbase will be similar in size, to the

FOHM navigational association shown in Appendix A.3. Therefore the AVAILABLEJLI-

NKS method will be used to download the linkbase(s) before the actual audio stream. The

number of linkbases streamed down will depend on the number of RTSP URLs, to these

linkbases, in the presentation file.

When a client calls this method, each linkbase will be streamed down to the client

and stored in a temporary file. This file will then be validated using the FOHM linkbase

DTD and a XML parser. XML defines several ways in which a DTD can be used with a

XML document. A DTD can be embedded within the document itself, so that it can be

downloaded at the same time as the document. It can also be stored on a separate WWW

server and in this situation a URI, see Section 2.3.1, to this DTD is embedded into the

document instead. To help reduce the size of the FOHM linkbase, its DTD is stored on a

separate server.

Once validated, the linkbase(s) will then be parsed by the FOHMLinkbaseReader

class, which is designed to retrieve all of the required values from the FOHM linkbase(s).

6.4 Extensions fo RTSP fo support FOHM 127

These values will include the source and destination URIs and any of the time values for

these URIs, if they exist. This class will also check the format of the linkbase(s) to ensure,

for instance, that a source URI will be followed by a destination URI and not another

source URI. These values will be stored within a FOHMCache data structure, which will

have eight elements:

1. The id element - which will be used to identify a link, stored in this structure. This

element is required.

2. The sURI element - which will contain the source URI of a link. For temporal link-

ing with audio streams, this URI will reference the audio stream in the presentation

Ale. This element is required.

3. The sBeg element - which will contain the begin time (in milliseconds) of the

source URI. It will be used, by the client, to determine when a link is active; for

example a source URI begin time of 3000ms means that this link is not available

for use until after 3000ms. This element is optional and if it is not given, then the

link will be available throughout the entire presentation.

4. The sEnd element - which will contain the end time (in milliseconds) of the source

URI. If this value is given, it will be used to determine the length of time (sEnd —

sBeg) a link is active. If the current position of the stream is not between these two

values, then this link will not be available for use. This element is optional.

5. The dURI element - which will contain the destination URI of the link. See Sec-

tion 6.4.2 for more information on this type of URI. This element is required.

6. The dBeg element - which will contain the begin time (in milliseconds) of the

destination URI. It will be used, by the client, to determine when this URI will be

active; for example if this value equals 3000ms and the destination URI is another

audio file, then the client will send a message to the server to start streaming this

new audio file from 3000ms in. This element is optional and it is only useful for

temporal media.

7. The dEnd element - which will contain the end time (in milliseconds) of the

destination URI. It will be used, by the client, to determine the length of time

(dEnd — dBeg) that this URI is active. If the destination URI begin and end times

are 3000ms and 5000ms respectively, then this URI will only be active for 2000ms.

6.4 ExfejisioiisfoRTSffo support FOHM 128

For audio streams, this means that the link will be played back for 2000ms. Again

this element is optional and it is only useful for temporal media.

8. The found element - which will be used when the client plays the presentation.

When a presentation is played, the current position of the stream is checked, to see

if it lies in-between the source URI begin and end times. If it does the destination

URI and its begin and end times, if they exist, are printed out. The found value

is then set to "true" because the value of the current position will only change by

a small amount (the size of the received packet). It is possible that the duration

between the source URI begin and end times will be quite large and therefore, the

current position will fall again between these two values. This will result in the

link information, for the same source URI, getting printed out time and time again.

By checking to see if found element is "true", the client will only print out the link

once.

Normal Play Time (NPT), see RFC 2326 [53] section 3.6, will be used to set the time

information for both the source and destination URIs. A FOHMCache structure can be

created with just four of its elements; the identifier, the source and destination URI and

the found element. When this type of link is followed, the "flow-of-control" will pass

from the current audio stream (the source URI) to the destination URI.

After the FOHMCache structure has been created and initialised, with the values from

the linkbase, users will then be able to play the presentation. Users will also be able to

play this presentation before the link information has been downloaded. In this situation,

the client will call the AVAILABLE_LINKS method and initialise the cache, before playing

the presentation. Either way, the FOHM linkbase(s) will only be streamed down once. All

subsequent requests, to playback the presentation, will use the FOHMCache data structure.

During playback, this cache will be searched for relevant links. This only occurs

when:

e The URI, of the stream being played, matches one or more of the source URIs in

the cache.

• The current position of the presentation is in-between the source URI begin and

end times.

a The found element of each FOHMCache object is set to "false".

6.4 Extensions fo RTSP fo support FOHM 129

If all of these values return true, then the link information will be printed out. After this

the Aund element for this object will be set to "true", which ensure that this link is not

printed out again.

To get the available links for a presentation, a user would type in a specific command;

for example "a sinew02". This command will generate the AVAILABLEJjINKS request

shown in Table 6.2. The RTSP URL, in this request, is the aggregate URL to the pre-

sentation file "sinew02", which is stored on the server. On the server this file will be

searched to see if it contains any linkbases and if found, they will then be streamed down

to the client.

AVAILABLEJjINKS rt:sp://rat:bert:3048/sinew02 RTSP/l.O

CSeq: 3

Session: 215369823

Table 6.2: An AVAILABLE_LINKS request.

6.4.2 The FOLLOW_LINK method

This method can only be used after all of the link information, from the linkbase(s), have

been streamed down to the client and the FOHMCache has been initialised, e.g. after an

AVAILABLE-LINKS request, see Section 6.4.1. After the cache has been initialised, users

will then be able to follow these links by using their link identifiers, which are stored

in the cache. The AVAILABLE-LINKS request will have automatically displayed these

identifiers upon completion.

When users issue a command to follow a link, using its identifier, the client will

search for this link within the cache. Once found, all of the relevant information for this

link, e.g. the destination URI and the begin and end times for this URI, will then be used

by the client, to decide how to handle the link.

The client can handle three different types of link:

1. A link to non-continuous media, such as text, images and graphics. In this sce-

nario, the link will contain a destination URI that uses the Hyper Text Transfer

Protocol (HTTP), see [108], for the delivery of the media. Since the RTSP server

only handles streaming media, the client will handle this type of URI by activating

an external browser, e.g. Netscape's Communicator This Web browser, see Sec-

tion 2.3.1, will use the destination URI to download and then display the media.

6.4 Exfensjons fo RTSf fo support f OHM 130

There will be no communication between the client and server, when this type of

link is followed. Also the begin and end time for the destination URI will not be

relevant, since this URI will only be used to reference non-continuous media.

2. A link to a different part or portion of the same presentation. This is analogous to

the forward and rewind buttons of a CD player. When a user issues a command

to resolve this type of link, a FOLLOW_LINK request will be sent to the server. This

request will contain the destination URI and if relevant a destination range, which

represents both the begin and end time for this URI. On receiving the message the

server will immediately pause the presentation and then change the current posi-

tion, of each of the streams within the presentation, to the new range. When this

has occurred, the server will then play the presentation from its new start position,

which was obtained from the range value. If no range value is given, then the

presentation will be played back from the beginning.

3. A link to a new presentation or stream. With this scenario the existing presentation

will be closed down because a new presentation or a session, Ibr a new stream, can

not be created within an existing presentation. When a user issues a command to

follow this type of link, the client will send a TEARDOWN request to the server. The

server, on receiving this request, will then close down the streams and free all of the

resources associated with the current presentation. After this the client will use the

destination URI, from the link, to start a new RTSP session with the server. Several

messages will be passed between the client and server, including the DESCRIBE and

SETUP requests. This will ensure that the session is initialised properly and all of

the required resources are created and setup. When this is complete, the client will

send a PLAY request to the server, which causes it to stream the new presentation to

the client.

The FOLLOW .LINK request can not be used to resolve a link to another linkbase within the

same presentation or a new presentation.

Table 6.3 shows two possible examples of this type of request. In both examples,

a user would have already typed in the command to follow a link, e.g. "f l ink20 l" .

The link identifier, "link201", will be used to find the link in the FOHMCache data struc-

ture. Once found the destination URI, for this link, will be used to form a FOLLOW_LINK

request. For the first example, this will result in a request to move the current position

6.4 Extensions to RTSP to support FOHM 131

of the WAV audio stream, r t s p : //ratbert: 3 048/sinew02/sinew22_01. wav, to 4 sec-

onds in from the beginning. This will either "rewind" or "forward" the stream, depending

on the current position.

The second example ibllows alink to anew audio stream, rksp: //ratibert:: 3048/-

sinew22_02 .wav. This will cause the original presentation to be closed down and the

new stream to be setup and initialised. This link also contains a destination range from 3

to 5 seconds, which will result in this stream being played back from 3 seconds in, for a

duration of 2 seconds (5s - 3s).

// Following a link within the same presentation.
FOLLOMLLINK rtsp://ratbert:3048/sinew02/sinew22j01.wav RTSP/1.0

CSeq: 4

Session: 215369823

Range: npt=4-

// Following a link f:o a new stream.
FOLLOMLLINK rtsp://ratbert:3048/sinew22_02.wav RTSP/1.0

CSeg: 5

Session: 215369823

Range: npt=3-5

Table 6.3: Examples of the FOLLOW_LINK request.

6.4.3 The CREATE_LINK method

This method will be used to create links from an audio stream within a presentation. It

can only be used when the client and the server are in the READY state. Links can not be

created whilst the presentation is being played back; in this situation the client and server

will be in the PLAY state.

When a user wants to create a link, the client will check to see if the current session

contains either a single stream or a presentation. If the session contains a single stream,

then the client will return an error because temporal linking in RTSP will require more

than one stream; to handle the audio and the FOHM linkbases. Therefore a single stream

can not be used to display, follow and create links. A presentation however, can be used

to control multiple streams, see Section 6.4.

If the session contains a presentation then the client will check to see if:

6.4 ExfeWonsfoRTSffosupporffOHM 132

The presentation already contains a linkbase. In this scenario, the client will check

to see if a link, with the user's new link identiSer, already exists in the FOHMCache.

If it does, the client will inform the user that this link already exists and no fiirther

action will be taken. Otherwise, a CREATEJjINK request will be sent to the server.

This request will contain the link idendGer, the source URI, the destination URI

and any range, i.e. the begin and end time values, for these URIs.

Once received, the server will find the first linkbase within the presentation and

seek to the end of this file. The server will then create a new FOHM association,

with the URIs and the values from the request, and append it to the end of this

linkbase. When this is complete, a reply will be sent to the client.

The client, on receiving the reply, creates a new FOHMCache object and adds the

URIs and the values, from the original request, to the object. This object is then

inserted in to the original cache of links. This ensures that the user can see and

use the link immediately, without having to call the AVAILABLEJjINKS method,

see Section 6.4.1 first. However if this command is used then the current cache is

removed, a new cache is created and then all of the links, including the new ones,

are streamed down to the client. The cache is created in the normal way and it will

now contain all of the new links.

The display of the link information during the playback of the presentation, is

unaffected by the CREATE_LINK method because it relies on the cache. As described

in the previous paragraph, any new links are immediately inserted into the cache,

when the client receives CREATEJjINK reply.

® The presentation does not contain a linkbase. In this scenario, a CREATE_LINK

request, with the source and destination URIs and their range values, will be sent to

the server. The server, when it has received this request, will create a new linkbase

file. The URI to this linkbase will be appended to the presentation's container file,

which consists of all of the URIs to the files and hence the streams, used within

this presentation. After this, the new linkbase will be opened and a new FOHM

association, containing the source and destination URIs and their ranges, will be

inserted. The server will then send a reply to the client.

At this stage however, the server will have only modified the container file, created

the linkbase and inserted the new link information. A stream for downloading

this information, to the client, will not have been created. In fact the server will

stiU be dealing with the original presentation, which does not contain a linkbase.

6.4 Extensions to RTSf to support fOHM 133

Therefore this presentation will have to be closed down and re-opened, so that a

new stream for the linkbase will be created and initialised.

On receiving the reply, from the server, the client will close the presentation by

sending a TEARDOWN request. After the server has notified the client that this request

has succeeded, the client will then send several other requests, e.g. DESCRIBE,

SETUP etc., to re-open the presentation. These requests will return information, to

the client, about all of the streams in the presentation, including the new linkbase

stream. The client will use this information to create and initialise all of the re-

quired resources. When this is complete, the client will then send an AVAILA-

BLEJjINKS request, see Section 6.4.1, to download all of the link information. The

cache will then set up in the normal way.

If the user decides to create more links, then the link information will be inserted

into the new linkbase, which has just been created. The previous item, in this list,

describes this in more detail.

To create a link from an audio stream a user must type-in a specific command and the

format of this command is shown in Table 6.4. It has four parameters and they are the link

identifier (linkid), the source URI (source_URI), the source range (source_range), the

destination URI (dest_URI) and the destination range (dest^range). The source range

and the destination range are optional.

// The user command for creating a link.
c linkid source-URI [source^range] dest.URI [dest_range]

Table 6.4: The format of the user command to create a link.

There are four different types of CREATE _L INK request and an example of each of

these is shown in Tables 6.5 - 6.7. Each table contains the user command to create the

link and the resulting CREATE-LINK request, that will be sent from the client to the server.

Each of these links has a specific source URI and they all point to a WAV audio stream

(sinew22_01 .wav) within the presentation. The presentation file is the first part of the

file name for the source URI, e.g. sinewOl. Therefore the URI to this presentation will

be r t s p : / / r a t b e r t : 3 0 4 8 / s i n e w 0 1 .

In Table 6.5, l i n k] and link4 have a destination URI to a Web page (sinew.html)

and an image (churchl. jpg), respectively. If either of these two links were followed,

see Section 6.4.2, then a Web browser would be activated and the Web page or the image

would be displayed. Since l ink] does not have any ranges, source or destination, then

6.4 Extensions to RTSP to support FOHM 134

the link is available throughout the entire presentation. Iink4 however, has a source

range from 1000ms to the end of the audio file. Therefore this link will be available from

1000ms in to the presentation, to the end.

// The user command to create a link to a Web page.
c link] rt:sp://rat:bert:3048/sinew0l/sinew22_01.wav

http://www.ecs.sobon.ac.uk/"cnhr/sinew.html

// The resulting CREATE.LINK request.

CREATEJjINK rtsp://ratbert::3048/sinew01/sinew22_01.wav RTSP/1.0

CSeg: 3

Session: 215369823

Linkid: link]

Destzination-URI: httip://www.ecs.soton.ac.uk/^cnhr/sinew.html

// The user command to create a link to an image.
c link4 rt:sp://rat:bert::3048/sinew01/sinew22_01.wav npt:=l-

ht:t:p: //www. ecs. sotzon. ac. uk/^cnhr/chur chl. jpg

// The resulting request.
CREATEJLINK rt:sp://rat:bert::3048/sinew0l/sinew22_01.wav RTSP/1.0

CSeq: 4

Session: 215369823

Linkid: link4

Source-Range: npt:=l-

Destinatiion-URI: http://www.ecs.soton.ac.uk/^cnhr/churchl.jpg

Table 6.5: A CREATEJjINK request to a Web page and an image.

The third CREATE_LINK example, l inks , is shown in Table 6.6 and it contains a

destination URI to a single stream (s inew2 2-1. wav). This stream is not part of the same

presentation because it does not have the container file name in its URI. Therefore if this

link is followed, the original presentation will be closed down and the single stream will

be setup and initialised. This link also has a destination range, from 2500ms to 4000ms.

When the user issues a PLAY command, the stream will be played back from 2500ms in,

for a duration of 1500ms (4000ms - 2500ms).

The fourth link example, l inks , is shown in Table 6.7 and it contains a destination

URI which is the same as the source URI. When this link is followed, it will move the

current position for playback, within the presentation. This is similar to the forward

and rewind buttons on a CD player. This link can be followed from a 1000ms in to the

presentation; the begin value of the source range. If the link is followed, the playback

http://www.ecs.sobon.ac.uk/%22cnhr/sinew.html
http://www.ecs.soton.ac.uk/%5ecnhr/sinew.html
http://www.ecs.soton.ac.uk/%5ecnhr/churchl.jpg

6.5 Jibe j[n%p7erD(%]&atwin of the IcHzf 135

// The user command to create a link to a new stream.
c links rtsp://ratbert:3048/sinew0l/sinew22_01.wav

rtsp://ratbert:3048/sinew22-l.wav npt=2.5-4

// The resulting CREATE^LINK request.

CREATE-LIMK rtsp://ratbert:3048/sinew01/sinew22_01.wav RTSP/1.0

CSeq: 5

Session: 215369823

Linkid; links

Destination-URI: rtsp://ratbert:3 048/sinew22-l.wav

Destination-Range: npt=2.5-4

Table 6.6: A CREATEJjINK request to a new stream.

of the presentation is paused, the current position is moved to the begin time of the

destination range (2500ms) and the play back is resumed, from this new position. In

this example, the destination range also has an end time of 4000ms and therefore the

presentation is only played back for 1500ms (4000ms - 2500ms).

// The user command to create a link to a point
// within the same presentation.
c links rksp://ratbert:3048/sinew01/sinew22J]lJM^f npb=l-

rtsp://ratbert:3048/sinew0l/sinew22-01.wav npt=2 .5-4

// The resulting CREATE^LINK request.
CREATE_LINK rtsp://ratbert:3048/sinew01/sinew22_01.wav RTSP/l.O

CSeq: 6

Session: 215369823

Linkid: link6

Source-Range: npt=l-

Destination-URI: rtsp://ratbert:3048/sinew0l/sinew22-01.wav

Destination-Range: npt=2.5-4

Table 6.7: A CREATE_LINK request to a point within the same presentation.

6.5 The Implementation of the Tool

The original reference implementations of the RTSP framework were created using the C

programming language. As described in Section 6.2, this language was chosen because

of its portability and its popularity; most operating systems have at least one C com-

piler. For the new RTSP implementation however, it was decided that an object-oriented

language would be used instead.

6.5 The Implementation of the Tool 136

Several object-oriented languages exist inclnding C++, Eiffel and Smalltalk. C-H-

however, is one of the most popular object-oriented programming languages available

and Stroustrup [10] explains how it was originally designed to extend C by supporting

data abstraction, object-oriented programming and generic programming. It has recently

become an ISO standard and code written in C-H- is more Aexible, modular and it can be

easily re-used, using a mixture of techniques including inheritance, see Section 6.2,1.

During the ISO standardisation process more advanced features were also developed

for C++, including the Standard Template Library (STL). The STL provides generic

container classes such as strings, linked lists (single and double), vectors (similar to ar-

rays) and queues. This library is specifically designed so that the implementations of

these classes will be fast and efBcient. It also assists in program development because it

reduces the time required to create and debug code; for example all of the memory man-

agement is contained within these classes, so that users do not have to look for memory

leaks or related problems.

C-H- is also portable and it has been used on a number of operating systems. As a

result of this and the details mentioned above, it was decided that this language would be

used, to implement the new RTSP framework.

Section 6.2 also describes how during the design of the RTSP framework, the IETF

were also developing the next version of the Internet Protocol; IPv6, see Section 4.5.

As more operating systems started to implement this protocol, it was decided that the

framework would also support IPv6. At this time, the Linux operating system was readily

available and it already had basic support for this new protocol. Therefore Linux was used

for the development of this new tool. This system not only provides a decent working

environment, it also provides the source for the IPv6 libraries. These were used, when

needed, for debugging.

Linux supports several programming languages including C, C-H- and Java. In most

Linux distributions, compilers for these languages are provided by the GNU Compiler

Co77ecb'on (GCC) developed by the free So/hvare foundation (FSF). The GCC also

contains an implementation of the STL which was used, in conjunction with the GCC

C-H- compiler (g++), for the development of the temporal linking tool.

Section 6.3 describes the temporal linking mechanism for the new RTSP framework.

It explains how the original FOHM DTD was modified, so that it could be used to create

Swnmay 137

link databases. To ensure that these link databases conform to the FOHM DTD, a val-

idating XML parser is used. Several XML parsers and their Application Programming

Interfaces (APIs) have already been developed, for different languages including C, C-H-

and Java. For the new RTSP framework however, it was decided that a C++ XML parser

and its API would be used. This ensures that the same language would be used through-

out the RTSP implementation.

IBM's XML for C-H- Parser (XML4C++) [18] provides an API and a shared library

to parse, generate, validate and manipulate XML documents. XML4C++ is a high per-

formance parser and it is used specifically, with this framework, to validate the linkbases

used within presentations. On the RTSP server, these linkbases will be validated each

time the streams, in a presentation, are created and initialised. This ensures that they

conform to the FOHM DTD. On the client however, the XML4C++ parser is only used

to validate the linkbases, after an AVAILABLE-LINKS request, see Section 6.4.1. This re-

quest downloads the linkbases, from the server to the client, to temporary 61es and the

parser will be used to ensure that these files were downloaded correctly. An error will

occur if these temporary linkbase files are invalid.

The XML4C++ parser can be used to retrieve specific elements and their data from

XML documents. This parser therefore, could be used to retrieve the information from

the FOHM linkbases, such as the source and destination URIs. It was discovered how-

ever, that this can be a complicated process, especially if the XML document is large

and if it has a complex structure. Therefore it was decided that a new class would

be developed, to handle the retrieval of this link information. This class is called the

FOHMLinkbaseReader class and it is described in more detail in Section 6.4.1.

6.6 Summary

This chapter has described the development of an Open Hypermedia tool for temporal

linking with audio streams. A new implementation of the RTSP framework has been

used to handle these audio streams, whilst FOHM has been used to handle the storage

of the link information. This new framework has also been extended with several new

methods, which use FOHM, for the display, following and creation of temporal links.

The Fundamental Open Hypermedia Model (FOHM), as mentioned previously, is an

abstract structure that can be used across three main hypertext domains; navigational,

spatial and taxonomic hypertext. The model itself however, is not restricted to these

Summmuy 138

domains. The FOHM structure was the result of research into interoperability between

"Open" Hypermedia Systems (OHSs). Originally this research produced the Open Hy-

pennedia Protocol (OHP) that could be used, with these systems, to improve interoper-

ability between the clients and the servers. FOHM however, concentrates on the higher-

level structure that could be used across the domains mentioned above. As a result it does

not provide a communication protocol, it just provides an abstract structure for interop-

erability.

For the new RTSP framework, the traditional form of navigational hypertext (a link

containing two endpoints), was used. By modifying the FOHM structure, it was possible

to develop interoperable linkbases that could be used, to store navigational links with

temporal information.

The underlying network protocols, that RTSP uses, were also changed. Traditionally

IPv4, see Section 4.2, was used. However, the IETF have also developed the next gen-

eration of Internet Protocol; IPv6, see Section 4.5. This protocol will eventually replace

IPv4 and it also backwards compatible with IPv4. Therefore, the new RTSP framework

supports both protocols, so that the clients will be able to communicate with the servers,

using either one.

The previous chapter has shown how an existing OHS, Microcosm, can be modified

so that it supports audio streams. This was achieved by modifying its audio tool, the

SoundViewer, to support an existing implementation of RTSP. This chapter however, has

shown how RTSP can be extended to support open hypermedia, using an interoperable

linkbase format called FOHM. In fact, as mentioned previously, FOHM and RTSP com-

plement each other. RTSP provides a communication protocol for FOHM and FOHM

provides an interoperable linkbase format for RTSP Therefore RTSP and FOHM have

both been extended. A demonstration of this new framework is shown in Section 7.2.

Chapter 7

Case Study and Evaluation

7.1 Introduction

The previous chapter discussed the development of a new Open Hypermedia Tool that

allows users to display, traverse and create temporal links with audio streams. This was

achieved by developing a new version of RTSP and then extending this protocol to sup-

port FOHM.

To demonstrate this new system a simple case study was developed, using audio, text

and images from archives stored at the University of Southampton. This chapter describes

this case study in more detail and it also provides an analysis of the research carried out

in this thesis; specifically how the two applications, the streaming SoundViewer tool and

the Open Hypermedia tool, have achieved the research objectives.

7.2 The Open Hypermedia Tool case study

To test the new Open Hypermedia tool for temporal linking with audio streams, a sim-

ple demonstration was developed. As explained in Section 5.2.3, the University of

Southampton stores the Winston Churchill archives and it was decided that several audio

files, from this archive, would be used. These files are stored on the new RTSP server.

The server itself is activated by calling the "r t: sp - server" executable, with a specific

confgurad'on file. As its name suggests, this file contains information to configure the

server and it includes:

139

7.2 The Open Hypermedia Tool case study 140

The controi stream type - which defines the delivery mechanism for the control

channel, such as TCP or UDP. By default it is set to TCP.

® The protocol family - which defines the protocol family to use, such as IPv4 or

IPv6. By default it is set to IPv6.

® The port number - which defines the port number for connection. For RTSP there

is a predefined number 554. The Linux operating system however, requires user-

defined applications to allocate port numbers above 1024. This maintains secu-

rity and ensures that these user-defined applications will not interfere with other

system-dependent applications. By default it is set to 3048.

The stream type - which defines the delivery mechanism for the data

channel(s), for example unicast, multicast or both. By default this is set to unicast.

The basepatb value - which defines the location of the actual data, such as the

audio files and the presentation files.

During execution the server will only output requests that it receives, the responses to

these requests and any errors. This information is usually redirected to a log file.

To activate the RTSP client, the " r t s p - c l i e n t " executable is called. This file has

two command line options and they are the protocol family which is described above and

a RTSP URL. By default, if no protocol family is defined, the client will revert back to

IPv4. The URL is used to immediately open a connection to the server and describe a

particular stream or a presentation file. If this URL is not given, then the client will just

execute. To connect to the server, after the client is running, the user will have to type in

the command to open a RTSP URL.

For this demonstration a simple presentation file, containing the streams shown in Ta-

ble 6.1, was created. As described in Section 6.4, one of these streams is an RTSP URL

to an audio file and the other is a URL to a FOHM linkbase. When the user either types

in the RTSP URL to the presentation file (r t s p : / / r a t b e r t . e c s . so ton . ac .uk: 3048/-

sinew02) on the command line or uses the built-in open command (the 'o ' command), a

connection will be formed between the client and the server (r a t b e r t . e c s . so ton . ac -

.uk:3048). The presentation file sinew02 will then be described, using the Session

Description Protocol (SDP), see Section 4.4. This is shown in Figure 7.1.

This RTSP client is using the IPv6 protocol family. This is shown by the "IP6"

7.2 The Open Hypermedia Tool case study 141

Opening a presentation
to "sinew02"

wienn
|o rtsp://ratbert.ecs.soton.ac.uk:3048/sinew02) —
Iciient::SendDescribeRequest: sending a DESCRIBE request
BClient::SendDescribeRequ8st: DESCRIBE request sent,
|Client::HandleDescribeReply: handling DESCRIBE reply...
gCIlent::HandieDescribeReolu: the session description:
iv=0
;o=cnhr 322013914 322014242 IN IPG ratbert
gs=A RTSP presentation
8c=IN IPG ::
Bt=0 0
#a=controi:rtsp://ratbert.ecs.soton.3c.uk:3048/sinew02
B Bm=0Udlo 0 RTP/AVP 101
#a=control:rtsp://r0tbert.ecs.soton.ac.uk:3048/sinew02/sinGw22-01.wav
ga=rtpmap:101 X-RTSP/22050
|a=fnitp:TypeSpecificData AAEAAQAAVilAAFYiAAEACAAAAA
ma=fmtp:MaxBitRate 176400
qa=ptime:50
|m=text u kip/hvi-' lui

y|a=controi:rtsp://r8tbert .ecs.soton.8c.ij<:3048/sinew02/sinew02-lb.xMl
|a=rtpmap:101 X-RTSP/0
ja=fmtp:TwpeSpecificData "1.0, no, linkbase,/hom8/cnhr/rtsp++-beta/data/fohm.dtcr
'^=fmtp:MaxBitRate 128000
%=fmtp:MaxP8CkSiz8 800

The Session
Description

The Media Description
for "sinew22-01 .wav"

The IVledia Description
for "sinew02-lb.xml"

Figure 7.1: The RTSP client after opening a new presentation.

symbol used in the session description. Two media descriptions are used to describe both

the audio stream (sinew22-01. wav)andthe FOHM linkbase stream (sinew02-lb.xral).

The extra information in these media descriptions, such as the "TypeSpecif icData" and

the "MaxBitRate", are used to help create and initialise the streams. This occurs when

the user types in the command to setup the presentation (the ' s ' command), which results

in the SETUP request being sent to the server.

When the presentation has been setup, the user can ask the server to either dis-

play the available links for this presentation, create new links or just play the presen-

tation. If the user types in the command to display the links (the 'a' command), the

AVAILABLE_LINKS request is sent to the server, see Section 6.4.1. This will download

the linkbase (sinew02-lb .xml) to the client, retrieve and store the relevant information

in the FOHMCache and then display the links. The links stored in this linkbase, are shown

in Figure 7.2.

The linkbase contains three links from the audio stream (sinew22-01.wav) to an

image via " l i n k l " , to a point within the same presentation via " l i n k 2 " and to a new

audio stream via " l ink3" . The first link is available from 500ms to 1000ms, the second

link is available from 1000ms to 3000ms and the third link is available from 1500ms to

2000ms. On playback of this presentation each of these links will be displayed, when

the current position within the audio stream (the source URI) falls in between these two

7.2 The Open Hypermedia Tool case study 142

User command to
get available links

f^dAvailableLlnksRequest: sending an AVAILABLE_LINKS request...
Client::SendflvailabieLinksRequest: AVAILABLE_LINKS request sent.
ClientxHandleAvaiiableLinksRepiy: handling AVAILABLE_LINKS reply...
Interface:zIAlertMsg: Playing str«* for session id: 326162498
Client::HandleAvailableLinksReply: AVAILABLE_LINKS reply handled.

Link Id = linkl
Source URI = rtsp://ratbert,ecs.soton.8c.uk:3048/sinew02/sinew22-01.wav
Destination URI = file:/home/cnhr/rtsp++-bet8/data/churchl.jpg
Availble from 500ms to lOOOms

Link Id = link2

[Source URI = rtsp://ratb8rt.ecs.soton.ac.iA:3048/sinew02/sinew22-01.wav Destination URI = rtsp://ratbert.8cs.soton.ac.Lk:3048/sinew02
Availble from 1000ms to 3000ms

''iLlnk Id = links
Jgource URI = rtsp;//ratbert.ecs.soton.ac.uk:3048/sinew02/sinew22-01.wav
Testination URI = rtsp://r8tbert.ecs.soton.ac.uk:3048/rtsp.wav
^vailble from 1500ms to 2000ms

Link 1 to an image
"churchl.jpg"

Link 2 to a point
within the same
presentation

Link 3 to a new
audio stream
"rtsp.wav"

Figure 7.2: The RTSP client after the AVAILABLE_LINKS request.

values (the source URI begin and end times); e.g. " l i n k l " will be displayed when the

current position is in between 500ms and 1000ms.

After displaying the available links, the user can either create a new link, follow

an existing link or playback the presentation. To create a new link the user will type

in the create link command (the 'c' command) with the relevant values such as the

link identifier, the source and destination URIs and optionally a begin and end time

for each URI. This will generate a CREATE_LINK request, see Section 6.4.3, which is

sent to the server. Figure 7.3 shows the user creating a new link from the audio stream

(s i n e w 2 2 - 0 1 . wav) to a HTML page (http: //ernie .ecs. soton. ac.uk/data/inco-

ming/cnhr/Churchill/sinew.html). This link has a source URI begin and end time

of 2s to 4.5s (2000ms to 4500ms) and therefore it will be available from 2000ms in to the

presentation for a duration of 2500ms (4500ms - 2000ms).

Once this new link ("1 ink4") has been created, the user can then type in the command

to get the available links again. This will only be used, by the user, to ensure that the

link has been created properly. By calling this command, the FOHM linkbase will not

be downloaded again because this new link information will be automatically stored in

the FOHMCache, see Section 6.4.1. The FOHM linkbase will be updated on the server

but there is no need to download it again. Figure 7.4 displays the results of using this

command again.

7.2 The Open Hypermedia Tool case study 143

O wtenn
F T

•jLink Id = llnkS
^Source URI = ptsp://natbert,ecs,soton,ac.uk:3048/sinew02/sinew22-01.wav
MBestination URI = rtsp://ratbert.ecs,soton.ac.uk;3048/rtsp.wav
jRvailble from 1500ms to 2000ms

jInterface:;IStreamDone: plaMing "sineM02-lb.xnil"... done.
•|c llnk4 rtsp://natbert.ecs.soton,ac,uk:3048/sineui02/sineui22-01,wav npt=2-4.5 htt ^
;p://ernie.ecs.soton.ac.uk/data/incom ing/cnhr/Church ill/sinew.html i

^Ulient: tbendUreateLinkKequest: sending a UKtHI t_LiN^ request . .1
—jClient::SendCreateLinkRequest: CREATE_LINK request sent,
^Client;:HandleCreateLinkReply: handling CREATE_LINK reply...

The user command to
create a link

Figure 7.3: The command used to create a new link.

, . .p sinewOZ
{^ClientxSencPlsy^angeRequest: sending a PLAY request...
'.̂ Client::SendPi2%^^0ngeRequest: PLAY request sent.
[̂ Client:tHandlePlayRangeReply: handling PLAY reply...
IInterface::IftiertHsg: Playing stream for session id: 326162498

Link Id = linkl
&]irce URI = rtsp://rabbert.ecs,soton.0C.Lk:3O48/sinewO2/sinew22-Ol.wav
Destination URI = fiiB:/h(*B/cnhr/rtsp++-beta/d0ta/chLrchl.Jpg
flvailble from 500ms to 1000ms

Link Id = link2
Source URI = rtsp://ratbert.ecs.sot(]n.ac.uk:3048/sinew02/sinew22-01j<av
Destination URI = rtsp://ratbert.ecs.soton.ac.ij(:3048/sinew02
Avallble from 1000ms to SOOOws

Link Id = iink3
Source URI = rtsp://ratbert.ecs.soton.ac.uk:3048/slnew02/sinew22-01.wav
Destination URI = rtsp://ratbert.ecs.soton.ac.Lk:3()48/rtsp.w8v
Availbls from 1500ms to 2000ms

a

The newly created link,
displayed by sending
another available links
request

Link Id = linkA
Source URI = rt^://ratbert.ecs.soton.ac.uk:3048/sinew02/sinew22-01,wav
Destination URI = http://ernie.ecs.soton.ac.JVdata/incoming/crfr/Churchill/slnew
.html
Availble from 2000ms to 4500ms

ainterface::IStreanDene: playing "sinew22-01.wav"... done.

Figure 7.4: The AVAILABLE JLINKS request, after creating a new link.

To follow a link the user types in the follow link command (the ' f ' command) with

the link identifier. This will be handled either by the client or by the server, depending

on the type of link. In this presentation, " l i n k l " and " l i n k 4 " are links to an image

and a HTML page respectively. Therefore the client will be used to handle these links,

by executing an external program to display them. " I ink2" and " l i n k 3 " are links to a

position within the presentation and to a new RTSP stream respectively. In this situation

a FOLLOWED INK request, see Section 6.4.2, will be sent to the server, to handle the streams

http://ernie.ecs.soton.ac.JVdata/incoming/crfr/Churchill/slnew

7.3 Evaluation of the Research 144

in the required way.

Figure 7.5 displays the results of following "l ink4". In this situation the client

executes an external program (the Netscape Web browser) and displays the Web page.

O Netscape: V/instoii Quirchill - SMIL DemonstraUon mm
File Edit View Go Communicator Help

^ A ^ lA m

Bookmarlcs Location: [iittp ://ernie. ecs. soton. ac. uk/data/incoming/cnhr/C /[̂ P " What's Related

Christian (rj[Linux Neil's Stuff | r j [Networks / Java irjj' News £ j [Research Sci Fi | r j [Search [j } Soton

SMIL Demonstration - Winston Churchill's Sinews of Peace

This is a demonstration of how a simple multimedia presentation can be created using the W3C Sjnchmmsed
Muttimedia Integration Language (SMIL, pronounced "smile") and RealNetworks Basic Server Plus GZ and the
RealPlayer G2. All of the information in this demonstration is actually streamed from the server and therefore, this is
a streaming multimedia presentation. The Bea! Time Streamina Protocol (RTSP - RFC 2326) is used to control the
streams.

The Sinews of Peace demo, using archives from the University of Southampton.
The SMIL code.

a?

• wterm

pLink Id = link2
iSource URI = rtsp://ratbert.ecs.soton.ac.uk:3048/sinew02/sinew22-01.wav
aDestination URI = rtsp://ratbert.ecs,soton.ac,uk:3048/sineu02
iflvailble from 1000ms to 3000ms

JLink Id = linkS
gSource URI = rtsp;//ratbert.ecs.soton.ac.uk:3048/sineui02/sinew22-01.ii)av
3Destination URI = rtsp://ratbert.ecs.soton,ac.uk:3048/rtsp.uiav
SRvaiible from 1500ms to 2000ms

ILink Id = link4
(Source URI = rtsp://ratbert.ecs.soton.ac,uk:3048/sinew02/sineiii22-01,wav
(Destination URI = http://ernie.ecs,soton,ac.uk/data/incoming/cnhr/Churchill/sin
.html

Ifivailble from 2000ms to 4500ms

ZlD

Interface::IStreamDone: playing "sinew22-01.wav",,. done,
f linkl
f link4

100% ^ m m

Figure 7.5: The results of following " l i n k 4 " .

7.3 Evaluation of the Research

There were three main objectives of this research, see Chapter 1, and they were:

1. To extend an existing Open Hypermedia tool to support audio streams,

7.3 EvaJuafioa of (6e Research 145

2. To extend a streaming media protocol to support Open Hypermedia and

3. To enhance the Open Hypermedia mechanism, FOHM, with a communication pro-

tocol.

These objectives have all been achieved and an analysis of each objective is discussed in

the following sections.

7.3.1 Objective 1: The streaming SoundViewer Tool

During the initial stages of the research, it was realised that the majority of Open Hyper-

media Systems (OHSs) had very little support for the audio domain. Some systems such

as Microcosm and HyperWave did have support for audio, see Sections 3.5.1 and 3.5.3

respectively. However these tools could only create links to and &om audio 61es stored

on the same machine as the OHS. The World Wide Web (WWW) on the other hand was

already using streaming protocols, see Chapter 4, to stream different types of media to

users on the Internet.

Therefore it was decided that the first objective of the research was to develop an

initial "proof-of-concept" tool, that could combine an existing Open Hypermedia appli-

cation with a streaming media protocol. The code for the SoundViewer tool was readily

available and the IETF had already released a reference implementation of the Real Time

Streaming Protocol (RTSP), see Section 4.4. By combining this protocol with the Sound-

Viewer, the first objective was achieved.

When developing the original implementation of the SoundViewer, see Section 5.2,

Goose and Hall [118] describe some of the complications that arose; specifically how to

create a tool that allows users to graphically author links to and from audio. The audio

domain by its very nature can not be seen and therefore it does not have a unique visual

representation. As a result developers have created different "visual metaphors" for audio

and they include the scrollbar method, waveforms and musical scores.

For Microcosm's SoundViewer tool an enhanced scrollbar, see Section 5.2.1, was

developed. Although the interface to this tool is dated, it uses the Windows 3.1 "look-

and-feel", this graphical metaphor is ideal. It allows users to visually create, display and

traverse links to and from an audio file. Links are displayed as shaded rectangles in the

detail window, which is a zoomed-in view of a particular section of the audio. Users can

follow links by clicking on these rectangles.

7.3 EvafuationoftheResearch 146

To create the streaming SoundViewer, the tool had to be extended to support RTSP,

so that it could receive audio streams from a RTSP server. The SoundViewer effectively

becomes a RTSP client, see Section 5.3. When a user opens a SoundViewer project,

that contains a RTSP URL to an audio file stored on a server, the tool creates a network

connection with that server. The server then sends information about the file to the client.

The SoundViewer uses this information to initialise its enhanced scrollbar, so that the

length of the scrollbar represents the length of the audio file. Playback of the file and

hence the delivery of the audio stream, can then begin.

The original SoundViewer has a modular design and an abstract layer, that separates

the user from the lower layer audio device commands, see Section 5.2.2. The user selects

the type of audio to playback and the tool decides which lower layer audio functions

are used. This approach was used to reduce the complexity of developing the original

program and it also helped when the tool was extended to support RTSP. A new module

was developed to handle all of the RTSP functionality and this was then "inserted" into

the relevant section of the code. When users select an audio stream to playback, the tool

will use the new RTSP module to handle the stream, see Section 5.3.1.

To demonstrate the original tool and the new streaming version, two case studies were

developed, see Sections 5.2.3 and 5.3.2 respectively. It was decided, during the devel-

opment of the streaming SoundViewer, that the interface would not be changed; only the

underlying functionality was modified to support audio streams. This also ensured that

the streaming SoundViewer had a consistent "look-and-feel" and that the same tool could

be used to playback local audio files, as well as audio streams. As a result both versions

look exactly the same. However the streaming version displays, in its title bar, the name

of the RTSP server it is using, see Figure 5.9.

The streaming SoundViewer tool has proved that it is possible to combine streaming

media protocols, made popular by the World Wide Web (WWW), with Open Hypermedia

Systems. A brief demonstration of this tool was given at HyperText 98, see DeRoure

et al. [23] and the concepts, behind the development of this tool, have recently been

mentioned in a paper by Page et al. [84].

This first objective however, has focused on extending an existing Open Hypermedia

tool to support a streaming media protocol. The next stage of the research was to see if

the streaming media protocol could be extended to support Open Hypermedia; in effect

turning the first objective around. This second objective is discussed and evaluated in the

next section.

7J Eva7uatzonoffhej(esearc6 147

7.3.2 Objective 2: Extending RTSP to support Open Hypermedia

The next stage of the research focused on the streaming media protocol itself; to see if

could support the concepts of Open Hypermedia. Again the Real Time Streaming Proto-

col (RTSP) was used because a reference implementation already existed and it provided

all of the functionality required to handle audio streams. However the reference im-

plementation, developed by the Internet Engineering Task Force (IETF), was based on

an earlier version of the standard and it only had enough functionality to handle simple

streams. Therefore to support the actual standard, it was decided that a new implementa-

tion of the protocol was required, see Section 6.2.

During the development of this new implementation or framework, the IETF were

also creating the next generation of Internet Protocol (IPv6). This protocol will replace

IPv4, the current Internet Protocol and it provides several new enhancements including

expanded addressing capabilities and more importantly a ffow jaW. This label can be

used to improve the real-time delivery of streaming media, see Section 4.5. Since RTSP

runs "on-top-of' the current Internet Protocol and IPv6 is also backwards compatible

with IPv4, it was decided that the new framework would use IPv6. However the flow label

is still under development and therefore it could not be used in the new implementation.

After the framework had been developed, the next stage of the research was to extend

the protocol to support Open Hypermedia and temporal linking. To complete this portion

of the work and hence achieve the second objective, two important decisions had to be

made:

1. How to modify the protocol ^ so that the resultant implementation would still be

compliant with the RTSP specification.

2. The type of Open Hypermedia System to use - so that users could create, follow

and display the available links.

To conform to the RTSP specification, new implementations of the protocol must

contain a state machine, to maintain the session state and predefined methods, to handle

the communication between the client and the server. Section 4.4. These methods are

also used to control the delivery of the streams. Developers however are not allowed to

change the state machine; to add new functionality they can include new methods and /

or modify the existing ones. Therefore to ensure that the new framework was compliant.

7.3 EvaJuadon of (he Research 148

it was decided that the existing methods would be modiAed and several new methods

would be created, to support temporal linking, see Section 6.4.

As described in Section 6.3, a number of systems already exist that can be used to au-

thor and manipulate links between different media types. However several systems, such

as the WWW, either embed the link information within the documents or use proprietary

protocols to communicate with separate links servers. Embedding the link information

within the audio was not a viable solution; separating the links from the audio ensures that

the framework maintains "openness". Therefore to avoid embedded links and proprietary

protocol formats, it was decided that a different mechanism would be used.

Initially two systems were considered, the Open Hypermedia Protocol (OHP) and the

Fundamental Open Hypermedia Model (FOHM), see Section 2.5. OHP however already

provides a mechanism for communication and it is quite large. FOHM on the other hand

is just a data model for representing different types of hypermedia. Currently it supports

navigational, spatial and taxononmic hypertext and it has the functionality to support

more. For the new RTSP framework, it was decided that FOHM would be used because

it can effectively describe and store the temporal link information.

FOHM was also used for another reason; it is defined using an XML DTD. XML

[152] is a W3C standard and it is steadily growing in popularity. It is a versatile markup

language and it will eventually replace HTML as the markup language for the Web.

Several XML parsers already exist and one of these is IBM's XML4C++ parser, which

was used by the new framework to validate FOHM linkbases.

To demonstrate the new Open Hypermedia tool, a case study was developed, see Sec-

tion 7.2. This study shows how users can display, follow and create temporal links,

using the new methods created for the framework. These methods were called the

AVAILABLEJjINKS method, the FOLLOWJjINK method and the CREATEJjINK method, re-

spectively and they are described in more detail in Sections 6.4.1, 6.4,2 and 6.4.3.

By extending RTSP to support FOHM the second objective has been achieved. The

new methods, mentioned above, allow users to manipulate temporal links and FOHM

provides the fimctionality to effectively describe and store the link information. The most

important aspects of this objective however, are that the links can be stored separately

from the media and that they are streamed to the client. Although they are not streamed

at the same time as the audio, see Section 6.4.1, they are still streamed to the client and

stored ready for use. Several systems already exist that allow users to create and stream

7.3 EvajuafJonoffAeJ^esearcA 149

multimedia presentations to users. These include MPEG and SMIL, see 3.4.1 and 3.5.5,

respectively. However any link information is usually embedded or encoded into the

documents or file formats.

This research has been presented at 0HS7' in Arhus, Denmark and PGNET 2001^

in Liverpool. The research has also been published, see Ridgway and DeRoure [100].

Page et al. [84] have taken the concepts of this research a stage further by examining

how metadata, which contains link information, can be streamed with different types of

media. This technique is called continuous mefadafa.

7.3.3 Objective 3: A communication protocol for FOHM

The 6nal stage of the research focused on extending the Fundamental Open Hypermedia

Model (FOHM) with a communication protocol. By itself FOHM can be described as

an interoperable linkbase format for diHerent hypertext domains. It does not provide a

protocol for communication.

FOHM is a derivative work of the Open Hypermedia Protocol (OHP), which was

designed to overcome the problems of proprietary protocols used between OHSs and their

linkbases, see Section 2.5. When OHP is used, instead of these proprietary protocols,

different OHSs can communicate with different linkbases. However this protocol has

steadily grown in size, to accommodate different hypertext domains. As a result it was

realised that one protocol can not handle all of the functionality required. Therefore

the protocol was separated into smaller components, each designed to handle a specific

domain, e.g. OHP-Nav for navigational hypertext and OHP-Space for spatial hypertext.

A number of researchers realised however that it was possible to separate the hyper-

text domains from the communication protocol. A model was developed, FOHM, that

encompasses these domains and the way in which they interact. It can also be extended

to support new domains when they are developed.

The second objective of the research was to develop an Open Hypermedia tool for

temporal linking with audio streams. This objective was achieved, see Chapter 6 and

Section 7.3.2, by extending RTSP to support FOHM. As mentioned previously FOHM

by itself, does not provide any form of communication mechanism. The new RTSP

' In conjunction with Hypertext 2001.

"The 2"'' Annual PostGraduate Symposium on the Convergence of Telecommunications, Networking

& Broadcasting.

7.3 EvaJuahon of the Research 150

&amework however does provide this mechanism; it uses IPv4 or IPv6 as the underlying

communication protocol and the Real-time Transport Protocol (RTF), see Section 4.3,

for delivery of the streams. Therefore by combining RTSP with FOHM the third objec-

tive has been achieved. In fact the combination is mutually beneficial; FOHM provides

the Open Hypermedia functionality for RTSP and RTSP provides the communication

mechanism for FOHM.

FOHM is defined using a XML DTD, which is used to describe the link information.

With the new RTSP framework this information and hence the XML is streamed to the

client, parsed and then stored ready for use, see Section 6.4.1. This technique for deliver-

ing XML is similar to another method, which has recently been developed by the World

Wide Web Consortium (W3C): the SimpJe Ot '̂ect Access Protocol (SOAP) [146, 147,

148].

SOAP is described as being a lightweight XML protocol for the exchange of infor-

mation in distributed environments. It consists of two firameworks:

1. The envelope framework ^ which is used for describing what is in a message and

how to process it. Envelopes consist of an optional SOAP header and a body.

Headers can contain zero or more blocks of information which can be processed

by intermediate receivers or nodes. The body must contain information which will

be processed by the final recipient of the message.

2. The transport binding framework - which uses an underlying protocol for the ex-

change of messages. Fundamentally SOAP messages are one-way, from a sender

to a receiver, although they can be combined to form two-way communication.

The SOAP header is designed to extend the message without affecting the processing

of the body. The client can specify which of the intermediate nodes can process specific

blocks of information in the header. For example a SOAP message might contain a digital

signature, in the header, for information stored in the body. An intermediate node could

use this signature to validate the information, which would then be passed to the recipient

for processing.

The ebXML [139] initiative is currently extending SOAP, to provide better interop-

erability in the electronic business (e-business) environment, see Ibbotson [82]. These

extensions can be used by companies, to define electronic collaboration proxies and

agreements, which improve the way in which they integrate their businesses.

74 Summmy 151

Overall SOAP is a message passing framework. It provides a mechanism fbr a sender

and a receiver to communicate. This communication however is only one-way, unless

several SOAP messages are combined. Also the real-time delivery of data is beyond its

scope. The new Open Hypermedia tool for temporal linking, on the other hand, requires

two-way communication from the beginning. The client and the server must communi-

cate with each other, to set-up, deliver and control the streaming media (audio or links).

7.4 Summary

In this chapter a case study of the Open Hypermedia tool for temporal linking with audio

streams has been described. The initialisation of the new RTSP framework, both the

client and the server, is discussed and a demonstration of the three new methods for

the display, traversal and creation of temporal links is given. Each of these methods

are described in more detail in the previous chapter, see Sections 6.4.1, 6.4.2 and 6.4.3

respectively.

This chapter then reiterates the original objectives, see Section 1.2, for this research

and evaluates how each objective was achieved. The first objective was reached with

the development of the streaming SoundViewer, see Section 5.3. The second objective

was achieved by creating a new implementation of RTSP and then extending this new

framework to support FOHM, see Chapter 6. The final objective was reached as a result

of combining RTSP with FOHM; FOHM provides the Open Hypermedia functionality

for RTSP and RTSP provides the communicdon protocol for FOHM.

The next chapter brings the thesis to a close by drawing together the various threads

of research. It also describes how FOHM and the new RTSP implementation can be

improved and it then discusses several possible areas for future research.

Chapter 8

Conclusions and Future Work

8.1 Conclusions

This thesis has discussed how audio has been used in a variety of multimedia, hypermedia

and "open" hypermedia systems. With most of these systems however, audio is used as

just another part of a presentation or as a side-effect when the user clicks on a button or

a link. This is not synonymous to the way sound is used in everyday situations. Humans

generally use a mixture of the Ave senses, such as sight, hearing, touch, taste and smell,

to interact with the outside world, whilst the majority of the systems mentioned above

use the sense of sight, as the primary means to convey information. This is mainly due to

the complexity of the other senses.

The research consisted of three main objectives:

1. The extension of an existing Open Hypermedia tool, the SoundViewer tool for

Microcosm, that would allow users to create links to and from streaming audio.

2. The development of a new Open Hypermedia tool, that extends a streaming pro-

tocol to support an interoperable linkbase format, so that users can display, follow

and create temporal links to audio streams.

3. The extension of the Open Hypermedia mechanism, used in the previous objective,

to support a communication protocol.

There are several existing standards, MHEG and HyTime, that could have been used

152

Coac^usj'oas 153

to do this. MHEG however, was primarily designed to help create visual easy-to-use

distributed systems and audio is just a small part of this. The audio domain has been

supported by earlier versions of HyTime (SMDL), however it is a complex standard with

few implementations. Both of these standards have focused specifically on the visual

domain.

The audio domain is also being used by two other international standards; MPEG and

DAB. MPEG consists of five phases with the first two (MPEG-1 and MPEG-2) concen-

trating on algorithms and tools for the efficient encoding, storage and delivery of high-

quality digital audio and video media. MPEG-1 and MPEG-2 however, can not handle

multimedia content by themselves. MPEG-4 was developed to overcome this problem

and it is the most recent phase to become a standard. During its development the group

realised that the audio domain was just as important as video. Therefore they developed

more advanced audio tools, for 3-D spatialization effects, audio "scene" creation and the

handling of musical scores. MPEG-4 could be used for the development of these Open

Hypermedia tools, mentioned above, however it has only recently become a standard and

very few implementations actually exist. MPEG-7 and MPEG-21 are still under devel-

opment and they will be used to describe multimedia content and to develop multimedia

frameworks, respectively.

Digital Audio Broadcasting (DAB) is a digital radio system that transmits digital

audio and data services to mobile, portable and fixed receivers. These services are mul-

tiplexed together, with the audio, to form ensembles. Some of the data services are

actually embedded into the audio itself, to assist in synchronisation. These embedded

services provide extra information to do with the programme, including lyrics for songs.

DAB is a relatively new medium for the delivery of digital audio and it could be used

for a portable or mobile version of these Open Hypermedia tools. However digital radio

transmits an infinite stream of audio and this is a potential area for future research, see

Section 8.2.4.

Streaming audio is being used quite extensively on the World Wide Web (WWW).

On older web browsers, a user would click on an "audio" link to play an audio file. The

browser would then download the entire file to the user's PC and then activate a local

sound tool to play the sample. This process of downloading the file could take a consider-

able amount of time especially if the audio file was large and / or the network connection

was poor. Streaming the audio can take considerably less time because the file does not

have to be downloaded first. The WWW however, is known as a "closed" hypermedia

8.1 Conclusions 154

system because all of the link information is embedded within the documents. Also, there

are no mechanisms within the HyperText Markup Language (HTML), the language used

to markup documents for the WWW, to create links from within an audio file or stream.

Multimedia authoring tools and the WWW can be used to create links to audio. These

systems however, can not create links from within an audio file or stream. Therefore to

overcome this problem existing hypermedia systems were examined. Originally these

systems only allowed the creation of links to and from text. Over time, as technology

improved, new systems were developed that could support different types of media as

well as text. These systems however, used proprietary document formats with embedded

links, which made them very difficult to extend for different media types. At this time,

these systems had limited support for audio.

In 1987 researchers realised that they needed to develop more "open" systems, which

could share data and store link information separately from the actual content. Several

"Open" Hypermedia Systems (OHSs) have been developed and they include Intermedia,

Microcosm and Hyper-G. The majority of these systems have, again, used the sense of

sight as the primary means to convey information.

In 1994, however, an audio tool was developed for the Microcosm system. It is called

the SoundViewer tool and it allows users to easily create links, from within an audio file,

to different types of media. Microcosm also allows the creation of links to this tool and

hence the audio, as well. The SoundViewer, however, only allows users to load files that

are stored on the local machine. To create links to and from streaming audio, the tool

was modified, so that it could communicate with a streaming audio server.

To create this new streaming SoundViewer client, the functionality of the tool was

enhanced using a new streaming protocol; the Real Time Streaming Protocol (RTSP).

RTSP has just recently become a proposed standard and it is described as being a "net-

work remote control", e.g. it allows users to play, pause, stop or move to any position

within the audio stream. This protocol is used by the tool to communicate with the server

and buffer any incoming audio streams. The streaming SoundViewer can still be used

with local audio files.

This new streaming SoundViewer tool could be used to create links to and from audio

streams, using the Microcosm OHS. However in 1994 the open hypermedia research

community realised that the current generation of these OHSs could not interoperate.

The majority of these systems use proprietary protocols for communication between their

155

clients and link servers. In some cases the link servers also used proprietary formats to

actually store the links. As a result of this a client developed for one system could not be

used, with the servers, on another.

To overcome this problem the Open Hypermedia Systems Working Group (OHSWG)

decided to develop the Open Hypermedia Protocol (OHP). This protocol would be used

as the communication mechanism between the clients and the servers. An OHP-aware

client therefore, would be able to communicate with an OHP-aware server. However the

size of the protocol slowly grew and the group realised that a single protocol would not be

able to handle all of the functionality. As a result, OHP was divided into specific hyper-

text domains, including the traditional form of navigational hypertext. OHP-Navigational

(OHP-Nav) was demonstrated at two conferences.

At this stage the focus of these protocols was on the communication between the

clients and the servers. The Southampton members of the OHSWG realised however that

a higher-level structure could be created, to work across the three most common hyper-

text domains; navigational, spatial and taxonomic hypertext. Therefore they created the

Fundamental Open Hypermedia Model (FOHM), which is an abstract model for describ-

ing interoperable associational structures. FOHM is defined using a XML DTD, which

uses specific elements to describe these structures. The model itself however, provides

no communication mechanism.

For the second area of research, it was decided that the RTSP protocol would be

extended, to support Open Hypermedia. This new tool would allow users to display,

follow and create temporal links with audio streams. As mentioned previously however,

the traditional OHSs can not interoperate and so it was decided that FOHM would be

used to handle the link information. In fact, the combination of RTSP and FOHM is a

mutual relationship. RTSP provides a communication protocol for FOHM and FOHM

provides an interoperable open hypermedia format for RTSP.

The original FOHM DTD can be used to describe a single association. With a small

modification this DTD can be used to describe multiple associations in a single XML

document; in effect creating an interoperable linkbase format. For the new tool, the

traditional form of navigational hypertext was used, since it provides the functionality to

create links to and from audio streams.

A new version of RTSP was also created because the original implementation, used

&2 156

with the SoundViewer tool, was based on a draft standard and it only had enough func-

tionality to handle simple streams. This new implementation, of the RTSP framework,

was then extended to support several new methods and user commands. These could then

be used to display, follow and create temporal links.

This new framework was also extended to handle the next generation of Internet

Protocol (IPv6). The current Internet Protocol (IPv4) will eventually be phased out, in

favour of IPv6. This new protocol also supports the original protocol, so that during the

transition phase between IPv4 and IPv6, clients will be able communicate using either

protocol. By default the RTSP framework uses IPv6.

To conclude, the sense of sight has always been regarded as the primary means to

convey information, for normally sighted people. As a result the other senses have not

really been used; although this is slowly changing as technology improves. The research,

carried out in this thesis, has shown that it is possible to extend an existing open hyper-

media audio tool to support streams. It has also shown that an existing streaming protocol

can be extended to support open hypermedia, by using an interoperable exchange format

and several new methods for link creation, display and traversal.

8.2 Future Work

The Open Hypermedia tool for Temporal Linking with Audio Streams was developed to

show how an existing streaming protocol could be extended, to support open hypermedia.

This new tool can be used to display, follow and create links to and from audio streams.

This section describes several improvements that can be made to this tool and a number

of new areas for future research.

8.2.1 Improvements to the RTSP Implementation

Improvements can be made to the RTSP Framework and they are a threading Socket++

library, improved support for audio formats and the implementation of the "RECORD"

method and its state, for the RTSP protocol.

The new Open Hypermedia tool uses the Real Time Streaming Protocol (RTSP), see

Section 4.4, for the delivery of the audio streams. This protocol runs "on-top-of the

underlying network protocols, which are used over the Internet. The current Internet

8.2 Future Work 157

Protocol (IPv4), see Section 4.2, will be slowly phased out, in favour of the next genera-

tion of protocol (IPv6), see Section 4.5. IPv6 extends and enhances the current protocol

and it is also backwards compatible with IPv4.

To ensure that the RTSP framework could be used with either protocol, a new library

(Socket++) was developed, see Section 6.2.1. This library was written in C++ and it

can be used to create TCP or UDP sockets, for connection-oriented or connectionless

communication respectively. These sockets can use either IPv4 or IPv6 addresses.

This library however does not use threads. A thread is similar to a process which

are used to execute pieces of code together, at the same time. On a single processor

machine, a technique known as time-slicing is used for this. This is where the kernel,

of the operating system, allocates a small amount of time to each process. For the new

framework, a process is used to execute a Web browser, whenever a link is followed to

a non-RTSP URL, see Section 6.4.2. However processes take up more system resources

than threads and they can also increase the complexity of the code. Threads are usually

called lightweight processes.

To create a multiuser server, processes are usually created for each user. This occurs

at the socket level, whenever the server accepts a connection from a client. As mentioned

previously however, processes can consume a lot of the system's resources. Therefore

threads can be used instead, to reduce this system overload. In eHect the server will be

a single process, containing multiple threads; one for each user. This would increase the

efficiency of the new RTSP server.

Currently the RTSP framework only supports the WAV audio format, for streaming

audio. Another improvement would be the support of more audio formats, such as MP3s

(see Section 3.4.1), MIDI, AIFF, raw audio and possibly speech formats. By creating

new classes to handle each of these formats and by using the Streamlntf and Stream

classes, see Section 6.2.3, it would be possible to integrate these audio formats into the

framework.

Another improvement would be the implementation of the "RECORD" method and

hence its appropriate state, see RFC 2326 [53]. This would allow clients to record audio

to a URI, which could be the server to which it is connected or another. As mentioned

in Section 4.4 RTSP needs to maintain "session state", so that the server can correlate

RTSP requests, firom the clients, to the correct session. A session can be in one of four

states, see Figure 4.1 and these are, the INIT, SETUP, PLAY and RECORD states. For the

&2 future Wbfk 158

new RTSP framework, only the first three have been implemented. The RECORD state was

not needed for proof of concept.

The WavFile and WavStream classes however, see Section 6.2.3, already have the

functionality to write the stream and hence the file to disk. Therefore to enable users to

record audio streams to WAV 61es, the firamework would only have to be extended to

support the "RECORD" method and its equivalent state.

However, there are issues with copyright. Most streaming tools that are available

for the Web, such as RealNetworks RealPlayer and Apple's Quicktime Viewer, do not

provide the functionality to record audio. If they provided a "Record" button for their

tools, then most users would be able to record music of the Internet. These companies

would then be liable fbr breaching the copyright agreements.

8.2.2 Potential research fbr the RTSP Framework

There are a number of potential areas of research for the Aamework and they include the

Socket++ library again and the development of a Graphical User Interface (GUI).

The Socket++ library, see Section 6.2.1, is designed to work with both IPv4 and IPv6.

This library however, can be used as a testbed fbr further research, especially fbr the IPv6

protocol. Two possible areas of interest are:

» IP Multicast - which is a particular type of addressing, see Section 4.2, that allows

datagram packets to be sent to a specific set of hosts. This set is known as a mul-

ticast group and users can join or leave it at any time. IP multicast has been used

at conferences, to stream live sessions over the Internet. To view these sessions

clients simply join the group, which has been setup by the conference organisers.

IP multicast can also be used to stream live radio broadcasts, over the Internet.

A possible area of research here, is how a client can create links to and from the

audio streams. The server, that is hosting the group, might only allow the clients

to view and then follow the available links. Obviously a client will not be able to

interrupt the flow of the multicast stream, if a link for instance points back to a

previous section of the presentation.

• The IPv6 Flow Label ^ which is used to provide a non-default Quality-of-Service

(QoS) or a real-time service, see Section 4.5. This flow label could be used to han-

dle streaming media, such as audio and video streams. It ensures that the packets

&2 159

"flow", from the source to the client, with a minimum amount of processing over-

head, at the IPv6 routers. At the moment however, this part of the protocol is still

under development and once this is complete, it will require further research.

Another area of research is the investigation of a GUI, that could help the user in

displaying, following and creating links. The RTSP framework currently uses a command

line interface which can be difficult to use, especially when displaying multiple links and

creating new links; see the CREATE_LINK user command in Section 6.4.3.

The majority of the streaming audio tools, that are used with the WWW, use a scroll-

bar to represent the position within the audio stream. The length of the scrollbar is also

used to represent the duration of the stream. This is a common graphical metaphor for

visualising audio, see Section 5.2. However this metaphor can not be used, by itself, to

visually represent both the audio and the links. It can be used, in a limited way, to create

links but these again will not be seen. Therefore in this situation a new window would

have to be used, to display the links. By double-clicking on these links, users will be to

follow them.

The SoundViewer Tool for Microcosm however, uses a different visualisation tech-

nique. Its interface, see Section 5.2.1, consists of two windows; an overview window,

which represents the duration of the audio file or stream and a detail window. The

overview window is similar to a scrollbar and it contains a highlighted rectangle, which

represents a zoomed-in view in the detail window. This rectangle can be resized and

moved. During playback this rectangle will also move to represent the current position

within the audio. All of the links are visually displayed, as rectangles, in the detail win-

dow and users can click on these links to follow them. Links can be created to and from

the entire file or stream. The detail window can also be used to highlight a portion of the

audio, which can then be used to create more links. The highlighted portion will then

became a link, visually represented as a smaller rectangle of the same length.

Although this interface is slightly dated, it does represent a good metaphor for vi-

sually handling both the links and the audio. Possibly a similar representation could be

used with the new Open Hypermedia tool for temporal linking.

8.2.3 FOHM Improvements

The FOHM linkbase format is defined using a XML DTD, see Section 6.3. This de-

fines the structure of FOHM associations by using specific elements. As a result, this

160

fbrmat does not know anything about the associations it describes; it only knows about

the structure of the XML document. Therefore when describing an association, all of

the information has to be provided; for example, the Abstract Data Type (ADT) that this

association uses, the feature space and feature vectors it uses, see Section 2.5 and the

binding values.

For the RTSP framework this DTD was modified, so that the FOHM XML doc-

uments can contain multiple instances of associations; in effect creating interoperable

FOHM linkbases. Associational structures in FOHM are designed to work across three

main hypertext domains and for the FOHM linkbases only one of these was used; the tra-

ditional form of navigational hypertext. Therefore a FOHM linkbase, in this framework,

will contain multiple instances of navigational associations.

However all of the information, for each association, has to be provided and as a

result, there is a lot of redundant data; for example the values for the relationtzype and

s t r u c t u r e t y p e elements will be the same for each navigational association. This also

increases the size of the FOHM linkbases, see Appendix A.3 for an example of a single

association.

It is possible to overcome this problem by extending FOHM to support either:

1. A default associational structure. The majority of "Open" Hypermedia Systems

(OHS) and the WWW use the traditional form of navigational hypertext. Therefore

by default each association could support this type of hypertext, unless the client

redefines it.

2. New elements in the XML DTD. These elements would be used to define the de-

fault associational structure for the entire linkbase. It would be defined only once,

at the beginning of the FOHM linkbase and it would apply to each of the associa-

tions. There would be no need to use the r e l a t i o n t y p e and the s t r u c t u r e t y p e

elements.

Both of these methods could actually be used to overcome this problem, although defin-

ing navigational hypertext as the default structure to use, seems the obvious solution.

If in the future however, the new RTSP framework supports the other two hypertext

domains (spatial and taxonomic), linkbases might contain a mixture of all three associa-

tional structures. As a result the information for each structure would have to be provided

161

again. A possible solution would be to store each type of associational structure in its own

linkbase; e.g. a linkbase for spatial links and another for navigational.

8.2.4 Possible research areas for FOHM

A possible area of research is to reduce the size of the actual linkbases, so that they

could be streamed down at the same time as the audio. Currently the framework uses

the AVAILABLE-LINKS method, see Section 6.4.1, to stream down the link information

before streaming down the audio. This ensures that the links are available for display,

when the audio is played back.

The link information is also streamed down before the audio because of the size of

the linkbases and the need to process this information, to obtain the relevant data; e.g. the

source and destination URIs from the conten t elements, see Section 6.3. By reducing

the size of the linkbases and by sending the link information, just before the relevant

points in the audio, it might be possible to stream down the linkbases at the same time

as the audio. However the link information will still need to be processed and if there

are multiple linkbases, there could be long delays before the links would actually be

displayed.

Another possible area of research is the use of temporally infinite streams, such as

a live TV broadcast and context. Currently the Open Hypermedia tool uses finite audio

streams for temporal linking; for example audio files of a specific length stored on a

RTSP server. The framework can be extended to support streams of infinite length but

this could impose a few problems.

The RTSP framework would be able to play this continuous media, however clients

would not be able to display, create or follow links. The framework for instance allows

users to create links from say 1000ms into the presentation, for a duration of 2000ms.

Users would not be able to do this with temporally infinite media because by its very

definition, there is no start point and therefore no fixed duration.

Digital Audio Broadcasting (DAB), see Section 3.4.2, is used to transmit, in real-

time, an infinite stream of digital audio. In DAB, Programme Associated Data (PAD) is

used to provide extra information about the current programme; for example lyrics for

songs and phone-in telephone numbers. This information is synchronised with the audio

and therefore it is embedded into the audio. A return channel, from a user's receiver to

&2 162

the nearest digital radio station, is also under development and it might allow users to

request extra information on a particular programme or possibly follow a link.

For the framework it might be possible to use a similar technique to DAB, in which

the link information is embedded within the audio. However this is synonymous to

embedding links into documents and this approach has many drawbacks; specifically

the dangling link problem. For embedding PAD information into the continuous audio

stream however, DAB transmitters must also use dedicated hardware, especially if it is

done in real-time. The RTSP framework is just a software tool to demonstrate Open Hy-

permedia and temporal linking with audio streams. At this stage dedicated hardware for

temporal linking has not even been considered.

Another issue is how FOHM would handle infinite audio streams and this is where

the concept of context might be used. FOHM can already handle finite streams by using

the AXISLOC, see Section 6.3, and specific time values. This element however, can not

be used with temporally infinite streams; there are no durations or start and end times.

Context has been used in hypermedia to reduce the complexity of navigation. It can

be used, in one sense, to assist users in finding specific information, by filtering out

irrelevant data. Some systems actually adapt, to the users' requirements, so that only the

relevant material will be shown. In another sense context is the view that the source and

destination of a link should not be a node but rather a point (or context) within a node;

for example linking to the fourth minute in a sound file.

For temporally infinite audio streams, context would have to be used to determine

what information the users would want to see; for example a user could request for all

of the information to do with a particular artist on a radio station. However the amount

of information required to handle all cases for all users could also be infinite, which

complicates this area even more. This area requires further research.

Appendix A

Program and DTD Listings

A.l SMIL Program Listing

<smil>

<head>

<meta name="title"

content="Winston Churchill - Sinew's of Peace

Demo"/>

<meta name="author" content="Neil Ridgway"/>

<meta name="copyright"

content="Copyright (c) University of

Southampton"/>

<meta name="base"

content="rtsp://ernie.ecs.soton.ac.uk:554/data/-

incoming/cnhr/Churchill/"/>

<layout>

<root-layout id="Main-Window" background-color="white"

title="Winston Churchill - Sinew's of

Peace"

width="600" height="400"/>

<region id="Transcript" left="2%" top="2%" width="52%"

height="40%" z-index="l"/>

<region id="LeftArrow" left="5%" top="50%" width="62"

height="63"/>

163

A.j 164

<region id="RightArrow" left="20%" top="50%" width="62"

height="63"/>

<region id="Imagel" left="38%" bop="22%" width="360"

height="304" z-index="2"/>

<region id="Image2" l.ef:t="45%" top="25%" width="288"

height="266" z-index="2"/>

<region id="Image3" left="65%" top="25%" width="144"

height="204"/>

</layout>

</head>

<body>

<seg>

<par id="partl">

<audio src="sinew01.rm" dur="34.9s"/>

<textstream id="textl" region="Transcript"

src="8inew01.rt" dur="34.9s"/>

<ref region="Imagel" src="church2r.rp" begin="2s"

end="34.9s"/>

<ref region="RightArrow" src="purpwood_right.rp"

dur="34.9s">

<anchor href="#part2" dur="34.9s"/>

</ref>

</par>

<par id="part2">

<audio src="sinew02.rm" dur="15.6s"/>

<tex±stream id="text2" region="Transcript"

src="sinew02.rt" dur="15.6s"/>

<ref region="Image2" src="church3r.rp" begin="2s"

end="15.6s"/>

<ref region="LeftArrow" src="purpwood_left.rp"

dur="15.6s">

<anchor href="#partl" dur="15.6s"/>

</ref>

<ref region="RightArrow" src="purpwood_right.rp"

dur="15.6s">

/ L 2 T%efl3H%41jnkbaseD]rD 165

<anchor href="#part3" dur="15.6s"/>

</ref>

</par>

<par id="part3">

<audio src="sinew03.rm" dur="37.9s"/>

<textstream id="text3" region="Transcript"

src="sinew03.rt" dur="37.9s"/>

<ref region="Image3" src="churchlr.rp" begin="2s"

end="37.9s"/>

<ref region="LeftArrow" src="purpwood_left.rp"

dur="37.9s">

<anchor href="#part2" dur="37.9s"/>

</ref>

</par>

</seg>

</body>

</smil>

<?xml encoding="IS08859-l"?>

<!-- The linkbase root element / document type

<'ELEMENT linkbase (association)+>

<!-- Association -->

<!ELEMENT association (id, bindingvector, relationtype,

structuretype)>

<!ELEMENT id (#PCDATA)>

<!ELEMENT relationtype (name, featurespace)>

<!ELEMENT name (#PCDATA)>

<!ELEMENT featurespace (feature)*>

<!ELEMENT feature (#PCDATA)>

<!ELEMENT structuretype (#PCDATA)>

/L2 T%ef%)HA41JntbaseIXrD 166

<!-- Binding -->

<!ELEMENT bindingvector (binding)*>

<!ELEMENT binding ((refid|dataref), featurevector)>

<'ELEMENT refid (#PCDATA)>

<'ELEMENT featurevector (featurevalue)*>

<'ELEMENT Eeaturevalue (#PCDATA)>

<!-- DataRef -->

<'ELEMENT dataref (refid?, (dataidjdata), (NALOC|AXISLOC)?)>

<'ELEMENT dataid (#PCDATA)>

<!-- Data

<!ELEMENT data (id?, contentspec)>

<!ELEMENT contentspec (version, content)>

<!ELEMENT version (#PCDATA)>

<'ELEMENT content (#PCDATA)>

<!-- LocSpecs -->

<'ENTITY % locSpecInfo "SELECTION?, SELECTIONCONTEXT?,

SELECTIONTYPE?">

<!ELEMENT SELECTION (#PCDATA)>

<!ELEMENT SELECTIONCONTEXT (#PCDATA)>

<!ELEMENT SELECTIONTYPE (#PCDATA)>

< ! — NALOC — >

<!ELEMENT NALOC ((llocSpecInfo;)?, spec)>

<'ELEMENT spec (#PCDATA)>

<!-- AXISLOC

<!ELEMENT AXISLOC ((%locSpecInfo;)?, fwdaxisset?, revaxisset?)>

<!ELEMENT fwdaxisset (axis)*>

<!ELEMENT revaxisset (axis)*>

<!ELEMENT axis (name?, type, valueset)>

<!ELEMENT type (#PCDATA)>

<!ELEMENT valueset (value)*>

<'ELEMENT value (#PCDATA)>

A J A NaWgafjonaV Association in f OHM 167

A.3 A Navigational Association in FOHM

<association>

<id>link3</id>

<bindingvector>

<binding>

<dataref>

<data>

<contentspec>

<version>l</version>

<content>

rtsp://ratbert:3048/sinew01/sinew22-01.wav

</content>

</contentspec>

</data>

<AXISLOC>

<fwdaxi8set>

<axis>

<name>time</name>

<type>ms</type>

<valueset>

<value>1000,2000</value>

</valueset>

</axis>

</fwdaxisset>

</AXISLOC>

</dataref>

<Eeaturevector>

<featurevalue>source</featurevalue>

</featureveckor>

</binding>

<binding>

<dataref>

<data>

<contentspec>

<version>l</version>

A.3 A Navzgadona7 Association in fOHM 168

<content>rtsp: / /ratbert:3048/rtsp.wav</conter±>

</contentspec>

</data>

<AXISLOC>

<fwdaxisset>

<axi8>

<name>time</name>

<type>ms</type>

<valueset>

<value>500,2500</value>

</valueset>

</axis>

</fwdaxisset>

</AXISLOC>

</dataref>

<featurevector>

<feaburevalue>destinabion</featurevalue>

</featurevector>

</binding>

</bindingvector>

<relationtype>

<name>link</name>

<featurespace>

<feature>direction</feabure>

</featurespace>

</relat iontype>

<structuretype>set</structuretype>

</associat ion>

Bibliography

[1] A. A. Rodriguez, M. Fisher and B. Markey. Scripting Languages Emerge in Stan-

dards Bodies. TEEE pages 88-92, Winter 1995.

[2] A. Dix, J. Finlay, G. Abowd and R. Beale. Prentice

Hall Europe, 2nd edition, 1998.

[3] A. Eliens, M. V. Welie, J. V. Ossenbruggen and B. Schonhage. Jamming (on) the

Web. In 7%e (f * Santa Clara, Cal-

ifornia, USA, April 1997. International World Wide Web Conference Committee

(IW3C2).

[4] A. M. Fountain, W. Hall, 1. Heath and H. C. Davis. MICROCOSM: An Open

Model for Hypermedia with Dynamic Linking. In ACM European Conference on

pages 298-311, Paris, France, November 1990. Association for Com-

puting Machinery (ACM), Cambridge University Press.

[5] A. M. Fountain, W. Hall, I. Heath and H. C. Davis. MICROCOSM: An Open

Model fbr Hypermedia with Dynamic Linking. In

and Applications. INRIA, Cambridge University Press, November 1990.

[6] An ArborText Inc. SGML White Paper. SGML: Getting Started. Technical report,

ArborText, Inc., http://www.arbortext.com/wp.html, ©1992, 1995.

[7] ANSI X3V1.8M Committee. ISO/IEC CD 10743, Information Technology - Stan-

dard Music Description Language. International Organization for Standardization

(ISO), Geneva, Switzerland, 1991.

[8] Audio-Video Transport Working Group. RFC 1889, RTF: A Transport Fro-

focoZ ybr Internet Engineering Task Force (IETF),

169

http://www.arbortext.com/wp.html

170

http://www.ietf.org/rfc/rfcl889.txt7numbeFl889, January 1996.

[9] B. C. J. Moore. Ww To f jycAo/ogy //eaz-zMg. Academic Press,

4th edition, 1997.

[10] Bjarne Stroustmp. The C++ Programming Language. Addison Wesley, 3rd edi-

tion, October 1997.

[11] V. Bush. As we may think. pages 101—108, July 1945.

[12] L. Chiariglione. Short MPEG-1 description. ISO, http://drogo.cselt.stet.it/mpeg/-

standards/mpeg-l/mpeg-l.htm, June 1996.

[13] L. Chiariglione. Short MPEG-2 description. ISO, http://drogo.cselt.stet.it/mpeg/-

standards/mpeg-2/mpeg-2.htm, July 1996.

[14] L. Chiariglione. Impact of MPEG Standards on Multimedia Industry. Proceedings

q/'rAe/EEE, 86(6): 1222-1227, June 1998.

[15] J. Conklin. Hypertext: An Introduction and Survey. IEEE Computer, 1(9): 17-40,

September 1987.

[16] Copyright (c) 1997-2000 Object Management Group (OMG) Inc. .8a-

f zc.y. Object Management Group (OMG), http://www.omg.org/gettingstarted/corb-

afaq.htm, December 2000.

[17] Copyright (c) Digital Television Group (DTG). Systems and MHEG-5: Exten-

gzoMjybr EwmMHEG 7. Digital Television Group (DTG), http://www.dtg.org.uk/-

mheg/euromhegl.pdf, March 1999.

[18] Copyright (c) International Business Machines Corp.

fbge. International Business Machines Corp., http://www.alphaworks.ibm.com,

2000.

[19] Copyright @ Object Management Group, Inc. The Common Object Request Bro-

Aer." 2.^. Object Management Group,

http://www.omg.org/technology/documents/formal/corbaiiop.htm, October 2000.

http://www.ietf.org/rfc/rfcl889.txt7numbeFl889
http://drogo.cselt.stet.it/mpeg/-
http://drogo.cselt.stet.it/mpeg/-
http://www.omg.org/gettingstarted/corb-
http://www.dtg.org.uk/-
http://www.alphaworks.ibm.com
http://www.omg.org/technology/documents/formal/corbaiiop.htm

171

[20] Copyright © Sun Microsystems Inc. IPv6 and the Future of the Internet. Sun Mi-

crosystems Inc., http://www.sun.com/software/white-papers/wp-ipv6/index.html,

1999. A Technical White Paper.

[21] D. C. A. Bulterman, L. Hardman, J. Jansen, K. S. Mullender and L. Rutledge.

GRiNS: A GRaphical INterface for creating and playing SMIL documents. In

TMfgmaAoMa/ volume 30, pages 519-

529, Brisbane, Australia, April 1998. International World Wide Web Conference

Committee (IW3C2).

[22] D. C. Engelbart and W. K. English. A Research Center for Augmenting Human

Intellect. CoM/ereMcgfrocegcfzMgj, 33(1), 1968.

[23] D. DeRoure, S. Blackburn, L. Oades, J. Read, N. Ridgway. Applying Open Hy-

permedia to Audio. In q/ fAe OM

pages 285-286, Pittsburgh PA, USA, June 1998. Association

for Computing Machinery (ACM).

[24] D. E. Millard and H. C. Davis. Navigating Space: The Semantics of Cross Domain

Interoperability. In f q / o / z

Computing, Hypertext 2000, pages 129-139, San Antonio, Texas, USA, May-June

2000. Association for Computing Machinery (ACM).

[25] D. E. Millard and S. Reich. OHP ^ Communicating between Hypermedia Aware

Applications. In A Workshop on Global Hypermedia Infrastructure, Brisbane,

Australia, April 1998. Association for Computing Machinery (ACM), Interna-

tional World Wide Web Conference Committee (IW3C2). Held in conjunction

with the 7''' International WWW Conference.

[26] D. E. Millard, H. C. Davis and L. Moreau. Standardizing Hypertext: Where next

for OHP? In f f f b r A y / z q p OM OpgM 7i(%pgr7Mg(ffa

pages 3-12, San Antonio, Texas, USA, May-June 2000.

Association for Computing Machinery (ACM).

[27] D. E. Millard, L. Moreau, H. C. Davis and S. Reich. FOHM: A Fundamental

Open Hypertext Model for Investigating Interoperability between Hypertext Do-

mains. In f rocgg(/fMg^ q/^/zg *)%7- /̂zq^ OM OpgM //)̂ gA7Mg(/za .̂ .yrgm ŷ, Tî xpgr-

rgx^2000, pages 93-102, San Antonio, Texas, USA, May-June 2000. Association

http://www.sun.com/software/white-papers/wp-ipv6/index.html

172

for Computing Machinery (ACM).

[28] D. E. Millard, S. Reich and H. C. Davis. Reworking OHP: the Road to OHP-Nav.

In on pages 48-53,

Pittsburgh, Pennsylvania, USA, June 1998. Association for Computing Machinery

(ACM).

[29] D. Thorn, H. Pumhagen and the MPEG Audio Subgroup. MPEG Audio

International Organization for Standardization (ISO), http://www.tnt.uni-

harmover.de/project/mpeg/audio/faq/, December 1999.

[30] Digital Audio Visual Council (DAVIC). 7.'̂ . 7 7-7̂ .̂

Digital Audio Visual Council (DAVIC), ftp://ftp.davic.org/davic/pub/Specl_4_l/,

December 1999.

[31] DOM Working Group. 7 Ptr-

sion 1.0. World Wide Web Consortium (W3C), http://www.w3.org/TR/1998/REC-

DOM-Level-1-19981001, October 1998.

[32] DOM Working Group. Docwmgrn̂ OZygc/ (DOA/) ZeveZ 2

World Wide Web Consortium (W3C), http://www.w3.org/TR/WD-DOM-Level-2,

October 1999.

[33] E. D. Scheirer, R. Vaananen and J. Huopaniemi. AudioBIFS: Describing Audio

Scenes with the MPEG-4 Multimedia Standard. IEEE Transactions on Multime-

dia, l(3):237-250, September 1999.

[34] E. D. Scheirer, Y. Lee and JW. Yang. Synthetic and SNHC Audio in MPEG-

4. Technical report, Massachusetts Institute of Technology, Machine Listening

Group, MIT Media Laboratory, 1999.

[35] EBU/CENELEC/ETSI JTC Broadcast. jOO ^̂ 07, 6)/̂ -

DfgzYaZ fo moAz/g, /)OAfa6/g ^g6^ rgcgfvgry.

European Telecommunications Standards Institute (ETSI), http://www.etsi.org/-

broadcast/dab.htm, 2nd edition, May 1997.

[36] EBU/CENELEC/ETSI JTC Broadcast. EAT j^gc^carzoM /̂zg

(/afa yb/" KHTvfW m fAg /rggugMcy roMggyrom

http://www.w3.org/TR/1998/REC-
http://www.w3.org/TR/WD-DOM-Level-2
http://www.etsi.org/-

173

,$7.J 70&0 MHz. European Telecommunications Standards Institute (ETSI),

http://www.rds.org.uk, October 1998.

[37] EBU/CENELEC/ETSI JTC Broadcast.

f/zg j^gcg/ver Da^a /M^g/yace European Telecom-

munications Standards Institute (ETSI), http://www.etsi.org/broadcast/dab.htm,

June 1998.

[38] EBU/CENELEC/ETSI JTC Broadcast. 7.2.7;,

(/zo (MOT) jgrn̂ ocoZ. Euro-

pean Telecommunications Standards Institute (ETSI), http://www.etsi.org/broad-

cast/dab.htm, February 1999.

[39] EBU/CENELEC/ETSI Technical Committee. DKB AoMcfardiy.

Digital Video Broadcasting (DVB) Project, http://www.etsi.org/broadcast/dvb.h-

tm,1995-1999.

[40] (c)EUREKA-147 Project. World

DAB Forum (WorldDAB), http://www.worlddab.org/pubIic_-documents/eureka_b-

rochure.pdf, August 1997.

[41] F. HalaszandM. Schwartz. The Dexter Hypertext Reference Model. CoTMmwMf-

q/"rAev4CM, 37(2):30-39, February 1994.

[42] F. Halsall. Data Communications, Computer Networks and Open Systems. Addi-

son Wesley, 3rd edition, 1992.

[43] F. Kappe. Hyper-G: A Distributed Hypermedia System. In Barry Leiner, editor,

San Francisco, California, August 1993. Internet Society.

[44] F. Kappe and H. Maurer. Hyper-G: A large Universal Hypermedia System and

some spin-offs. In Computer Graphics - online, ftp://ftp.siggraph.org/public-

ations/misc/May_93_online/Kappe.Maurer/Kappe.Maurer.PS, May 1993.

[45] F. Nack and A. T. Lindsay. Everything you wanted to know about MPEG-7: Part

1. 6(3):65-77, Jul-Sep 1999.

[46] F. Nack and A. T. Lindsay. Everything you wanted to know about MPEG-7: Part

http://www.rds.org.uk
http://www.etsi.org/broadcast/dab.htm
http://www.etsi.org/broad-
http://www.etsi.org/broadcast/dvb.h-
http://www.worlddab.org/pubIic_-documents/eureka_b-
ftp://ftp.siggraph.org/public-

174

2. 6(4):64-73, Oct-Dec 1999.

[47] G. Geiger. A Digital Audio Player for the HyperWave Internet Server. Master's

thesis, Graz University of Technology, January 1997.

[48] G. Hill, L. Carr, D. DeRoure and W. Hall. The Distributed Link Service: Multiple

Views on the WWW. In The 7''^ ACM Conference on Hypertext, Washington DC,

USA, 16'*-2(y^ March 1996. Technical briefing for Hypertext '96.

[49] H. C. Davis, A. Rizk and A. Lewis. OHP: A draft proposal for a standard open

hypermedia protocol. In f O M OpgM

pages 27-53, Washington, D.C., March 1996. Association for Computing

Machinery (ACM), Technical Report No. ICS-TR-96-10, University of CaHfomia.

Eds, U. K. Will and S. Demeyer.

[50] H. C. Davis, D. E. Millard, S. Reich, N. Bouvin, K. Gronbaek, P. J. Niimberg, L.

Sloth, U. K. Will and K. Anderson. Interoperability between Hypermedia Sys-

tems: The Standardisation Work of the OHSWG. In Proceedings of the ACM

OM pages 201—202, Darmstadt, Germany,

February 1999. Association for Computing Machinery (ACM).

[51] H. C. Davis, S. Reich and D. E. Millard. A proposal for a common Navigational

Hypertext Protocol. Technical report. Presented at 3.5 Open Hypermedia System

Working Group Meeting, Aarhus University, Denmark, September 1997.

[52] H. C. Davis, W. Hall, I. Heath, G. J. Hill and R. J. Wilkins. Towards an Integrated

Environment with Open Hypermedia Systems. In Proceedings of the ACM Con-

ference on Hypertext, pages 181-190, Milan, Italy, December 1992. Association

for Computing Machinery (ACM).

[53] H. Schulzrinne, A. Rao and R. Lanphier. RFC 2326, Real Time Streaming Pro-

rocoZ Internet Engineering Task Force (IETF), http://www.ietf.org/rfc/-

rfc2326.txt?number=2326, April 1998.

[54] H. W. Bitzer and K. Hofrichter. MHEG-J - ybr DzgfYa/ Te/e-

vzlyfoM. The MHEG Centre, http://www.mhegcenter.com/mheg/mheg5-ibc.pdf,

September 1998.

http://www.ietf.org/rfc/-
http://www.mhegcenter.com/mheg/mheg5-ibc.pdf

175

[55] H. Yasuda and H. J. F. Ryan. DAVIC and Interactive Multimedia Services. IEEE

36(9): 137-143, September 1998.

[56] F. G. Halasz. Reflections on NoteCards: Seven issues for the next generation of

Hypermedia Systems. CommwrnzcarzoMf q / " 3 1 (7) : 8 3 6 - 8 5 2 , July 1988.

[57] P. Hoschka. Towards Synchronized Multimedia on the Web. World Wide Web

JburMo/, 2(2), Spring 1997.

[58] R Hoschka. An Introduction to the Synchronized Multimedia Integration Lan-

guage. 5(4):84-88, Oct-Dec 1998.

[59] R Hoschka. "Synchronized Multimedia " Working Group Charter. World Wide

Web Consortium (W3C), http://www.w3.org/AudioVideo/Group/symm-wg-chart-

er, January 2000.

[60] HTML Working Group. .ffTML -̂ .07 World Wide Web Consortium

(W3C), http://www.w3.org/TR/1999/REC-html401-19991224, December 1999.

[61] ISO JTC1/SC34. ZS'O ̂ (979, — Tktf aW -

Ge/zgnc Z/OMgwage. International Organization for Standardiza-

tion (ISO), Geneva, Switzerland, August 1986.

[62] ISO/IEC JTC1/SC29. /yO/TEC 77772 (Parff 7 - j / TgcAmo/ogy- Co(/-

f/zg TMOvfMg aWfo of

about 1.5Mbps. International Organization for Standardization (ISO), Geneva,

Switzerland, 1993-1999.

[63] ISO/IEC JTC1/SC29. 7 j 7 / ^ r m a ^ W M fgcA»okgy - Co(/fMg

timedia and hypermedia information - Part 4: MHEG registration procedure. In-

temational Organization for Standardization (ISO), Geneva, Switzerland, Novem-

ber1996.

[64] ISO/IEC JTC1/SC29. 7^0//EC 7jg7g 7-̂ ,̂ Tec/zMo/ogy -

GeMgrzc co(7zMg q/"movrng International Organi-

zation for Standardization (ISO), Geneva, Switzerland, 1996-2000.

http://www.w3.org/AudioVideo/Group/symm-wg-chart-
http://www.w3.org/TR/1999/REC-html401-19991224

176

[65] ISO/IEC JTC1/SC29. 73^22-7, fec/zMokgy- Coafzng q/mw/-

A/Mg(//a A}per7MgJ;a 7/ MHEG o^'ec^ r̂ rê gM â̂ zom -

Mô â 'oM (W6'7Vi7/ International Organization for Standardization (ISO), Geneva,

Switzerland, May 1997.

[66] ISO/IEC JTC1/SC29. 7W/K'C 7 jJ22.j, 77̂ f7Mar(0M fecAMo/ogy- Co(7mg qy/MwZ-

A'TMeafm A};per7Mg<3f;a j/ MHEG zM̂ grcAaMgg r̂ z-ĝ yeM-

ôA'oM. International Organization for Standardization (ISO), Geneva, Switzerland,

May 1997.

[67] ISO/IEC JTC1/SC29. ISO/IEC 13522-5, Information Technology - Coding of

fMwZrffMe(7(a aM(7 /M/br/MoAoM - fa/f J." ybr TM êrac-

f̂ve yj/:y)/;caAbM.y. International Organization for Standardization (ISO), Geneva,

Switzerland, April 1997.

[68] ISO/IEC JTC1/SC29. 7^0/KC 7jJ22-6, TecAMo/ogy - Cô ^Mg q/"

7Mw/̂ ;7Hg(7(a a/zâ Aj%pgnMg(7fa 6." 5'w^o/^^/zAaMCgcf 7M êfac-

ffve International Organization for Standardization (ISO), Geneva,

Switzerland, October 1998.

[69] ISO/IEC JTC1/SC29. ISO/IEC 16500 (Parts 1-9), Information technology -

GeMgnc (7fgzYaZ aw(/;o-W.ywa/ - D^KZC ^ec^ca^/o/zj. International Or-

ganization for Standardization (ISO), Geneva, Switzerland, December 1999.

[70] ISO/IEC JTC1/SC34. ISO/IEC 10744, Information technology - Hypermedia-

/Time-based Structuring Language (Hylime). International Organization for Stan-

dardization (ISO), Geneva, Switzerland, May 1997.

[71] ISO/IEC JTC1/SC34. 7^^772-7, 77^rmaffOM ^gcAno/ogy - Compufer

graphics and image processing - The Virtual Reality Modeling Language - Part

I: Functional specification and UTF-8 encoding. International Organization for

Standardization (ISO), Geneva, Switzerland, Jnne 1998.

[72] ISO/IEC JTC1/SC6. 7W//EC 8&24 7-^, 7?̂ r7Mâ zom ^ecAmo/ogy - 4̂6-

O/ze (W.W.7̂ 6^gc^cafzo«.y. International Organization for

Standardization (ISO), Geneva, Switzerland, December 1998.

[73] ISO/IEC JTC1/SC6. 7^0/KC gg2J 7 & 2 / 7,̂ r/Ma^zoM ZgcA/zo/ogy 7

177

International Organization for Standardization (ISO, Geneva,

Switzerland, December 1998.

[74] ITU-R Recommendation. BO 1130-2: System description and selection for dig-

oZ/ocaW fo m yz-ggweMC); roMge 7-^00—2700 MHz. International

Telecommunication Union (ITU), Geneva, Switzerland, December 1994.

[75] ITU-R Recommendation. .85' 777-̂ -7.' ybr (/;g%7aẐ owM(7

ca.ŷ !Mg veAfcw/a?; receive/-^ m ^Ae^egwemcy roMge jO-JOOO

MHz. International Telecommunication Union (ITU), Geneva, Switzerland, De-

cember 1994.

[76] J. Dale. 4̂ Mo6;7e yjgeMf ŷ rcAî gĉ wre ybr MaMoggTMgMf.

PhD thesis, University of Sou±ampton, Faculty of Engineering and Applied Sci-

ence, Department of Electronics and Computer Science, September 1997.

[77] J. R Evain. The Multimedia Home Platform - An Overview. EBU Technical

Review, Spring 1998. http://www.dvb.org/dvb_articles/dvb_mhp98.pdf

[78] J. Postel. RFC 791, Internet Protocol: DARPA Internet Program Protocol Speci-

Information Sciences Institute, http://www.ietf.org/rfc/rfc0791.txt7num-

ber=0791, September 1981.

[79] J. Rumbaugh, M. Blaha, W. Premerlani, F. Eddy and W. Lorensen. Object-

Oriented Modeling and Design. Prentice-Hall International Inc., Simon & Schus-

ter,Englewood Cliffs, New Jersey 07632, 1991. ISBN 0-13-630054-5.

[80] J. V Ossenbruggen, A. Eliens and L. Rutledge. The Role of XML in Open Hyper-

media Systems. In f o n Opgm /7%pgy?Mg<5ffa

Pittsburgh, USA, June 1998. Association for Computing Machinery (ACM).

[81] JF. Huard, A. A. Lazar, KS. Lim and G. S. Tselikis. Realizing the MPEG-4 Mul-

timedia Delivery Framework. TEEf pages 35—45, November/December

1998.

[82] John Ibbotson. g6AML 6pgc^caffo/z. Internationales Congress

http://www.dvb.org/dvb_articles/dvb_mhp98.pdf
http://www.ietf.org/rfc/rfc0791.txt7num-

178

Centrum (ICC) / Graphic Communications Association (GPA), http://www.-

gcs.org/papers/xmleurope2001/papers/html/S09-2.html, May 2001.

[83] K. C. Malcolm, S. E. Poltrock and D. Schuler. Industrial Strength Hypermedia:

The Requirements for a Large Engineering Enterprise. In

pages 13-25, San Antonio, Texas, USA, December

1991.

[84] K. R. Page, D. Cruickshank and D. DeRoure. It's About Time: Link Streams as

Continuous Metadata. In H. Davis, Y. Douglas and D. G. Durand, editor, f mceeaf-

q/" OM a/zcf pages 93-102,

University of Aarhus, Arhus, Denmark, August 2001. Association for Computing

Machinery (ACM).

[85] R. Koenen. MPEG-4: Multimedia for our time. TEEE 36(2):26-33,

February 1999.

[86] R. Koenen. Ovgrvfmv - ISO, http://drogo.-

cselt.stet.it/mpeg/standards/mpeg-4/mpeg-4.htm, October 1999.

[87] L. A. Carr, D. W. Barron, H. C. Davis and W. Hall. Why use HyTime? Electronic

Publishing, 7(3): 163-178, September 1994.

[88] L. Carr, D. DeRoure, W. Hall and G. Hill. The Distributed Link Service: A tool for

Publishers, Authors and Readers. In Proceedings of the 4''^ International World

Wide Web Conference, volume 1, pages 647-656, Boston, USA, December 1995.

International World Wide Web Conference Committee (IW3C2), O'Reilly and As-

sociates.

[89] L. Carr, G. Hill, D. DeRoure, W. Hall and H. Davis. Open Information Services.

28:1027-1036, November 1996.

[90] L. Chiariglione. M P f I S O , http://drogo.cselt.stet.it/mpeg/standards/-

mpeg-4/faq.htm, July 1997.

[91] L. Hardman and M. Wilson. SMIL Hands on Tutorial. World Wide Web Consor-

tium (W3C), http://www.cwi.nl/mmpapers/SMIL/Tutorial.ps.gz, September 1998.

http://drogo.cselt.stet.it/mpeg/standards/-
http://www.cwi.nl/mmpapers/SMIL/Tutorial.ps.gz

179

[92] L. M. Garshol. AiMZ,. http://www.stud.iG.uio.norimariusg/-

download/xml/xml^ng.html, August 1999.

[93] L. Moreau, N. Gibbins, D. DeRoure, S. El-Beltagy, W. Hall, G. Hughes, D. Joyce,

S. Kim, D. Michaelides, D. Millard, S. Reich, R. Tansley and M. Weal. SoFAR

with DIM Agents. In Proceedings of the 5''^ International Conference on the

TecA/zoZogy, pages 369-

389, Manchester, UK, April 2000.

[94] L. Rutledge, J. Buford and R. Price. Mobile Objects and the Hyoctane Distributed

Hyperdocument Server. 20(5):633-639, 1996.

[95] L. Rutledge, J. V. Ossenbruggen, L. Hardman and D. C. A. Bultemian. Anticipat-

ing SMIL 2.0: The Developing Cooperative Infrastructure for Multimedia on the

Web. In CoT^rencg, pages 343-353,

Toronto, Canada, May 1999. International World Wide Web Conference Commit-

tee (IW3C2).

[96] L. Rutledge, L. Hardman and J. V. Ossenbruggen. Evaluating SMIL: Three User

Case Studies. In f Com/greMce

(Part 2), pages 171-174, Orlando, Florida, USA, October 1999. Association for

Computing Machinery (ACM).

[97] M. Echiffre, C. Marchisio, R Marchisio, R Panicciari and S. D. Rossi. MHEG-

5 - Aims, Concepts and Implementation Issues. IEEE Multimedia, 1(5):84-91,

January/March 1998.

[98] M. Handley and V. Jacobson. 2^27,

Internet Engineering Task Force (IETF), http://www.ietf.org/rfc/rfb2327.txt7num-

ber=2327, April 1998.

[99] N. D. Beitner. Mzcmco^m++.' (feWqpmgM/ a cowp/g(/ oZyecf

architecture for open hypermedia systems. PhD thesis. University of Southamp-

ton, Faculty of Engineering and Applied Science, Department of Electronics and

Computer Science, September 1995.

[100] N. Ridgway and D. DeRoure. FOHM+RTSP: Applying Open Hypermedia and

Temporal Linking to Audio Streams. In S. Reich and K. M. Anderson, editor.

http://www.stud.iG.uio.norimariusg/-
http://www.ietf.org/rfc/rfb2327.txt7num-

180

m j'cze/zce, University of Aarhus, Arhus, Denmark, Au-

gust 2001. Springer Verlag, Heidelberg (ISSN 0302-9743).

[101] N. Yankelovich, B. J. Haan, N. K. Meyrowitz and S. M. Drucker. Intermedia:

The Concept and the Construction of a Seamless Information Environment. IEEE

l(l):81-96, January 1988.

[102] Object Management Group (OMG) Home Page, http://www.omg.org, December

2000.

[103] P. Flynn. rAe Zamgwage.

World Wide Web Consortium (W3C), http://www.ucc.ie/xml, June 1999.

[104] P. Georghiades and G. Jacobs. Mixed Media,

20(11):225-242, November 1997.

[105] P H. Lewis, H. C. Davis, S. R. GriSths, W. Hall and R. J. Wilkins. Media-based

Navigation with Generic Links. In Hypertext '96, pages 215-223, Washington

DC, USA, 16^*-20'* March 1996.

[106] P. Schmitz, J. Yu and P. Santangeli. Tz/Mgaf

for HTML (HTML+TIME). World Wide Web Consortium (W3C), http://www.-

w3.oig/TR/1998/NOTE-HTMLplusTIME-19980918, September 1998. Note for

discussion only.

[107] P. Srisuresh and M. Holdrege. ./(FC TP

(7\W7).' Tgrmmo/ogy Internet Engineering Task Force (IETF),

http://www.ietf.org/rfc/rfc2663.txt?number=2663, August 1999.

[108] R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masinter, P. Leach and T. Berners-

Lee. (%FC267<^. Copyright (c) The

Internet Society, http;//www.w3.org/Protocols/rfc2616/rfc2616.html, June 1999.

[109] R. Gilligan, S. Thomson, J. Bound and W. Stevens. 7(FC

Interface Extensions for IPv6. Internet Engineering Task Force (IETF), http://-

www.ietf.org/rfc/rfc2553.txt?number=2553, March 1999.

http://www.omg.org
http://www.ucc.ie/xml
http://www.ietf.org/rfc/rfc2663.txt?number=2663
http://www.w3.org/Protocols/rfc2616/rfc2616.html
http://www.ietf.org/rfc/rfc2553.txt?number=2553

181

[110] R.Joseph and J. Rosengren. MHEG-5: An Overview.

(fg/ovfMa//Mwg/̂ rcA!va;/4/oc/7MAeg-rea(fg7'/y(f7206.A(7MZ, December 1995.

[111] R. M. Akscyn, D. L. McCracken and E. A. Yoder. KMS: A distributed hypermedia

system for managing knowledge in oiganizations. q/ v4CM,

31(7):820-835, July 1988.

[112] L. Rein. Is HTML+Time Out-of-Sync With SMIL? Copyright © Seybold

Publications and O'Reilly & Associates, Inc., http://xml.com/xml/pub/98/10/-

htmltime.html, October 1998.

[113] Requirements Group. MPEG-7: Context, Objectives and Technical Roadmap,

V.12. Technical report, ISO, http://www.darmstadt.gmd.de/mobile/MPEG7/Docu-

ments/W2861.htm, July 1999.

[114] Requirements Group. MPEG-7 Overview (version 2.0). International Organization

for Standardization (ISO), http://drogo.cselt.stet.it/mpeg/standards/mpeg-7/mpeg-

7.htm, March 2000.

[115] S. Battista, F. Casalino and C. Lande. MPEG-4: A Multimedia Standard for the

Third Millennium, Part 1. TEEEMw/AVMec/za, 6(4):74-83, Oct-Dec 1999.

[116] S. Deering and R. Hinden. RFC 2460, Internet Protocol, Version 6 (IPv6)

Specification. Internet Engineering Task Force (IETF), http://www.ietf.org/rfc/-

rfc2460.txt?number=2460, December 1998.

[117] S. Goose. A Framework for Distributed Open Hypermedia. PhD thesis, Univer-

sity of Southampton, Faculty of Engineering and Applied Science, Department of

Electronics and Computer Science, June 1997.

[118] S. Goose and W. Hall. The Development of a Sound Viewer for an Open Hyper-

media System. In volume 1,

pages 213-231,1995.

[119] S. Pizzi and S. Church. Audio Webcasting Demystified. pages

55-60, August 1997.

[120] S. R. Mounce. A Brief Discussion of the Standard Music Description Language.

http://xml.com/xml/pub/98/10/-
http://www.darmstadt.gmd.de/mobile/MPEG7/Docu-
http://drogo.cselt.stet.it/mpeg/standards/mpeg-7/mpeg-
http://www.ietf.org/rfc/-

182

A /̂/ywM/vyVecAMO.co/M/5'MOZ,.A(7n/, 1990.

[121] S. R. Newcomb. Multimedia Interchange Using SGML / HyTime (Part 1: Stnic-

tures). pages 86-89, Summer 1995.

[122] S. R. Newcomb. Multimedia Interchange Using SGML / HyTime (Part 2: Princi-

ples and Applications). pages 60-64, Fall 1995.

[123] S. R. Newcomb, N. A. Kipp and V. T. Newcomb. The "HyTime" Hypermedia

/ Time-based Document Structuring Language. Communications of the ACM,

34(11):67-83, November 1991.

[124] S. Reich, J. Griffiths, D. E. Millard and H. C. Davis. Solent - a Platform for

Distributed Open Hypermedia Applications. In Proceeding of the 10''^ Interna-

Co/z/ergMce OM Florence, Italy, Au-

gust 1999. (Berlin/Heidelberg/New York), LNCS, Springer.

[125] S. Reich, U. K. Wiil, P. J. Niimberg, H. C. Davis, K. Grenbask, K. M. Anderson,

D. E. Millard, J. M. Haake. Addressing interoperability in open hypermedia: the

design of the open hypermedia protocol. A/ew /(evzew

5:207-248, 1999.

[126] E. D. Scheirer. Structured Audio and effects processing in the MPEG-4 multime-

dia standard. Midtimedia Systems, 7:11-22, July 1999.

[127] T. Sikora and L. Chiariglione. MPEG-4 Video and its potential for future Multime-

dia Services. InProc. of IEEE - ISCAS Conference, http://wwwam.HHI.DE/mpeg-

video/papers/sikora/iscas.htm, June 1997.

[128] Synchronised Multimedia Working Group (SYMM-WG).

dia Integration Language (SMIL) 1.0 Specification. World Wide Web Consortium

(W3C), http://www.w3.org/TR/1998/REC-smil-19980615, June 1998.

[129] Synchronised Multimedia Working Group (SYMM-WG). Synchronized Multime-

(/ia ThrggraAoM /.OMgwage (SMZL 2.0) World Wide Web Consortium

(W3C), http://www.w3.org/TR/smil20, September 2000. Last-Call public Work-

ing Draft.

http://wwwam.HHI.DE/mpeg-
http://www.w3.org/TR/1998/REC-smil-19980615
http://www.w3.org/TR/smil20

183

[130] T. Dierks and C. Allen. The TLS Protocol Version 1.0. Technical report, In-

ternet Engineering Task Force (IETF), ftp://ftp.nordu.net/internet-drafts/draft-ietf-

tls-protocol-05.txt, November 1997.

[131] T. H. Nelson. Literaiy Machines. 1987.

[132] T. J. Berners-Lee, R. Cailliau, J. F. Groff and B. Pollerman. World Wide Web:

An Information Infrastructure for High-Energy Physics. In

.ffigA .EMgfgy M/c/ear f La Londe-les-Maures, France, January 1992.

CERN, World ScientiGc.

[133] T. J. Berners-Lee, R. Fielding and L. Masinter. Uniform Resource Identifiers

(URI): Generic Syntax. Internet Engineering Task Force (IETF), http://www.-

ietf.org/rfc/rfc2396.txt?number=2396, August 1998.

[134] T. Meyer-Boudnik and W. Effelsberg. MHEG Explained. IEEE Multimedia, pages

26-38, Spring 1995.

[135] The Digital Audio-Visual Council (DAVIC) Home Page, http://www.davic.org.

May 2000.

[136] The Digital Television Group (DTG) Home Page, http://www.dtg.org.uk, May

2000.

[137] The Digital Terrestrial Television Action Group (DigiTAG) Home Page, http://-

www.digitag.org. May 2000. ^

[138] The Digital Video Broadcasting (DVB) Home Page. http://www.dvb.org/dvbJra-

mer.htm, May 2000.

[139] The exXML Initiative, http://www.ebxml.org, March 2002.

[140] U. K. Will and K. 0sterbye, Eds. Proceedings of the ECHT '94 Workshop on Open

Hypermedia Systems. Technical Report R-94-2038, Association for Computing

Machinery (ACM), Dept. of Computer Science, Aalborg University, September

1994.

ftp://ftp.nordu.net/internet-drafts/draft-ietf-
http://www.davic.org
http://www.dtg.org.uk
http://www.digitag.org
http://www.dvb.org/dvbJra-
http://www.ebxml.org

184

[141] U. K. Will and S. Demeyer, Eds. Proceedings of the Workshop on Open Hy-

permedia Systems, Hypertext '96. Technical Report ICS-TR-96-10, Association

for Computing Machinery (ACM), Department of Information and Computer Sci-

ence, University of California, Irvine, March 1996.

[142] V. Balabanian, L. Casey, N. Greene and C. Adams. An Introduction to Digi-

tal Storage Media — Command and Control. 7EEE CommwMzcaA'o/w Mzgazmg,

pages 122-127, November 1996.

[143] W Hall. Ending the Tyranny of the Button. IEEE Multimedia, l(l):60-68, Spring

1994.

[144] W. Hall, I. Heath, G. J. Hill, H. C. Davis and R. J. Wilkins. The Design and Imple-

mentation of an Open Hypermedia System. Computer Science Technical Report

92-19, University of Southampton, Department of Electronics and Computer Sci-

ence, UK, 1992.

[145] W3C Working Group on Cascading Style Sheets and Formatting Properties. Cas-

cac/mg /eve/ 2 World Wide Web Consortium

(W3C), http://www.w3.org/rR/1998/REC-CSS2-19980512, May 1998.

[146] W3C XML Protocol Working Group. SOAP Version 1.2 Part 0: Primer. The

World Wide Web Consortium (W3C), http://www.w3.org/TR/2001/WD-soapl2-

partO-20011217, December 2001.

[147] W3C XML Protocol Working Group. SOAP Version 1.2 Part 1: Messaging

Framework. The World Wide Web Consortium (W3C), http://www.w3.org/TR/-

2001/WD-soap 12-part1 -20011217, December 2001.

[148] W3C XML Protocol Working Group. SOAP Version 1.2 Part 2: Adjuncts. The

World Wide Web Consortium (W3C), http://www.w3.org/TR/2001/WD-soapl2-

part2-20011217, December 2001.

[149] World DAB Forum (WorldDAB). DAB - Frequently Asked Questions. World DAB

Forum (WorldDAB), http://www.worlddab.org/dab/whatis.htm, 1998.

[150] XML Linking Working Group. XML Pointer Language (XPointer). World Wide

http://www.w3.org/rR/1998/REC-CSS2-19980512
http://www.w3.org/TR/2001/WD-soapl2-
http://www.w3.org/TR/-
http://www.w3.org/TR/2001/WD-soapl2-
http://www.worlddab.org/dab/whatis.htm

185

Web Consortium (W3C), http://www.w3.org/TR/1999/WD-xptr-I9991206, De-

cember 1999.

[151] XML Linking Working Group. .YMI . World Wide Web

Consortium (W3C), http://www.w3.org/TR/2000/WD-xlink-20000221, February

2000.

[152] XML Working Group. Extensible Markup Language (XML). World Wide Web

Consortium (W3C), http://www.w3.org/TR/1998/REC-xml-19980210, February

1998.

http://www.w3.org/TR/1999/WD-xptr-I9991206
http://www.w3.org/TR/2000/WD-xlink-20000221
http://www.w3.org/TR/1998/REC-xml-19980210

