The University of Southampton
University of Southampton Institutional Repository

The dynamical controls on the antarctic circumpolar current with the use of general circulation models

The dynamical controls on the antarctic circumpolar current with the use of general circulation models
The dynamical controls on the antarctic circumpolar current with the use of general circulation models

Three general circulation models (FRAM, OCCAM and POP) are used in order to investigate the dynamics of the Antarctic Circumpolar Current (ACC) at the Drake Passage latitudes (ACCB) where the ACC is unbounded. In these models bottom form stress balances the wind stress in the momentum budgets. In the vorticity budgets the main balance is between wind curl and bottom pressure torque in FRAM and OCCAM. In the higher resolution model (POP) the non linear advection is one of the main terms. Whereas standing eddies mainly decelerate the flow in the ACCB, transient eddies play a different role in the three models. In the upper levels transient eddies accelerate the flow in POP and FRAM, but decelerate the flow in OCCAM. The behaviour of standing and transient eddies changes throughout the water column in the ACCB and eddies have a dragging effect on the flow below the levels where the topography starts to obstruct the flow. The crucial role of topography is investigated using a set of numerical experiments. In the coarse version of OCCAM Kerguelen Plateau is lowered and the Drake Passage Region and the Antarctic-Pacific Ridge are removed. Results from the analysis in the ACCB indicate that changing topography has a local effect. The complete investigation of the ACC dynamics is extended to the ACC Path (ACCP). The vorticity budgets show that the Drake Passage Region affects all of the ACC flow. Removing Drake Passage reduces the contributions of the bottom pressure torque to the vorticity balance and the region of Sverdrup-like balance is extended. The key role for all the ACC is played by Drake Passage but not from other topographic features.

University of Southampton
Grezio, Anita
fc7514ec-dd2d-43d9-ae83-da57df8ef555
Grezio, Anita
fc7514ec-dd2d-43d9-ae83-da57df8ef555

Grezio, Anita (2002) The dynamical controls on the antarctic circumpolar current with the use of general circulation models. University of Southampton, Doctoral Thesis.

Record type: Thesis (Doctoral)

Abstract

Three general circulation models (FRAM, OCCAM and POP) are used in order to investigate the dynamics of the Antarctic Circumpolar Current (ACC) at the Drake Passage latitudes (ACCB) where the ACC is unbounded. In these models bottom form stress balances the wind stress in the momentum budgets. In the vorticity budgets the main balance is between wind curl and bottom pressure torque in FRAM and OCCAM. In the higher resolution model (POP) the non linear advection is one of the main terms. Whereas standing eddies mainly decelerate the flow in the ACCB, transient eddies play a different role in the three models. In the upper levels transient eddies accelerate the flow in POP and FRAM, but decelerate the flow in OCCAM. The behaviour of standing and transient eddies changes throughout the water column in the ACCB and eddies have a dragging effect on the flow below the levels where the topography starts to obstruct the flow. The crucial role of topography is investigated using a set of numerical experiments. In the coarse version of OCCAM Kerguelen Plateau is lowered and the Drake Passage Region and the Antarctic-Pacific Ridge are removed. Results from the analysis in the ACCB indicate that changing topography has a local effect. The complete investigation of the ACC dynamics is extended to the ACC Path (ACCP). The vorticity budgets show that the Drake Passage Region affects all of the ACC flow. Removing Drake Passage reduces the contributions of the bottom pressure torque to the vorticity balance and the region of Sverdrup-like balance is extended. The key role for all the ACC is played by Drake Passage but not from other topographic features.

Text
843443.pdf - Version of Record
Available under License University of Southampton Thesis Licence.
Download (17MB)

More information

Published date: 2002

Identifiers

Local EPrints ID: 464679
URI: http://eprints.soton.ac.uk/id/eprint/464679
PURE UUID: 26365fc5-825f-4456-9444-6e9c9ce98ed2

Catalogue record

Date deposited: 04 Jul 2022 23:56
Last modified: 16 Mar 2024 19:41

Export record

Contributors

Author: Anita Grezio

Download statistics

Downloads from ePrints over the past year. Other digital versions may also be available to download e.g. from the publisher's website.

View more statistics

Atom RSS 1.0 RSS 2.0

Contact ePrints Soton: eprints@soton.ac.uk

ePrints Soton supports OAI 2.0 with a base URL of http://eprints.soton.ac.uk/cgi/oai2

This repository has been built using EPrints software, developed at the University of Southampton, but available to everyone to use.

We use cookies to ensure that we give you the best experience on our website. If you continue without changing your settings, we will assume that you are happy to receive cookies on the University of Southampton website.

×