
iLnsnrvTERjsiTnf oi? :s()UTHv\]v[PTr()}4 

LABOUR FORCE ESTIMATION FOR SMALL AREAS IN VENEZUELA 

By 

Felix Leonardo Seijas-Rodriguez 

Doctor of Philosophy 

Department of Social Statistics 

Faculty of Social Sciences 

July 2002 



%jNTyERsrrr(iFSC%rniA&anx%% 
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LABOUR FORCE ESTIMATION FOR SMALL AREAS IN VENEZUELA 

By Felix Leonardo Seijas-Rodriguez 

This thesis focuses on the problem of producing reliable estimates of Employment, 
Unemployment and Activity rates by Sex-age groups for Venezuelan States using the 
Population Census as auxiliary information. This is a common situation in the Latin-
America region. The SPREE approach to Small Area Estimation is suited to dealing 
with this sort of problem. Although the use of SPREE methods in the SAE context has 
been treated in the literature, its use for estimation of product multinomial variables as 
well as a general methodology for variance estimation was largely unexplored. 

There are some potential barriers to the convenient application of SPREE methods. To 
start, we note that SPREE involves application of the Iterative Proportional Fitting 
(IFF) algorithm which often requires the development of "domestic" computational 
algorithms. Besides this, the general computation of variance estimates for SPREE is 
not obvious. To address these issues, we established a link between SPREE methods. 
Log-linear models and Logistic models allowing the integration of complex sampling 
designs via the Pseudo-Likelihood approach to estimation. The main attraction of 
such a link is that it offers the possibility of implementing SPREE from a GLM 
perspective. We then show the equivalence of the Log-linear and Logistic versions of 
SPREE to the application of the well known "Exposure" technique from regression 
theory. This equivalence allows us to easily implement SPREE, computing parameter 
and variance estimates as well as goodness of fit measures and related diagnostic, 
using standard commercial statistical software. Overall, the approach to SPREE 
presented in this thesis makes this technique more flexible and accessible for practical 
application. 

The "exposure" approach to SPREE was used in an empirical analysis of the 

Venezuelan labour force, including a simulation study to examine the properties of the 

estimators considered in this thesis. Superiority of the SPREE method over design-

based estimators when the former is based on a good reference table was evident. 

However, conventional logistic model-based estimators can be regarded as favourable 

alternatives to SPREE-based estimators in situations when there is a reasonable doubt 

about the quality of the available reference information. 
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CHAPTER 1 

Small Area Estimation (SAE) is concerned with strategies and techniques to produce 

reliable estimates for small "groups" of units from a large universe. Different 

dimensions such as time (longitudinal), the characteristics of units (vertical), space 

(horizontal) or a combination of them commonly define these small "groups". 

Typically, however, SAE is related to the production of information for small 

geographic areas, that is, for groups defined by "space" (or the combination of space 

with any other dimension). This is mainly due to practical issues regarding the 

dynamics of the process defining information needs. At some point, it becomes more 

valuable to handle aggregate information for local areas than highly disaggregated 

information for a larger area like a country. 

1.1. FROM EXHAUSTIVE ENUMERATION TO SMALL AREA 

ESTIMATION 

Information needs have changed with the evolution of societies. Ever since organised 

civilisation started developing on earth, quantitative information has played an 

important role as an instrument for planning. Information regarding the size of 

organised human settlements has historically been of concern to their leaders. An 

early example of this can be found in the clay tables of the antique Babylon Circa 



3800 BC, showing population counts to predict the future imperial income from 

inhabitants' tax payments. Other early censuses were registered in the Chinese, 

Hebrew, Egyptian, Greek and Roman civilisations, the latter being the first to carry 

out censuses periodically. Those were mainly undertaken with military enrolment and 

tax imposition in mind. 

Societies have changed through the years becoming larger and consequently more 

complex. This has had an effect on information needs. However, the need for 

information at geographic levels defining the organisational structure of societies has 

remained a basic requirement for planning. In the modem era, democracies need 

population counts to establish representation in congresses or parliaments, the 1790 

US Census being the first one carried out with this purpose. Distributions of national 

revenues, planning public services as well as economic and demographic matters have 

increasingly motivated governments to produce information at local levels. The UK, 

for instance, carried out its first census in 1801 as a simple count of population. Later 

in the 1821 Census, ages were registered for first time and names, addresses and 

occupations in the 1841 Census. 

Nowadays, censuses are carried out all over the world, differing in periodicity, 

procedures and contents. Although factors influencing the differences between 

censuses can be related to a country's specific goals, the factor defining the ultimate 

structure of any census is the available budget. Censuses are complex operations and 

the available budget will dictate the sort of technology, human resources, and 

fieldwork complexity allowed and thus, the periodicity and content. However, 

censuses can not completely provide either the highly diverse information needed in a 

country or the periodicity with which this information is required. Even with 

respectable budgets, developed countries can not fully meet these needs by relying on 

censuses. 

Other important sources of information are administrative registers (AR). This sort of 

information is naturally generated mainly from legal procedures related to organised 

societies. Land and businesses transactions, and unemployment and social security 

registrations are just some examples where official lists or records have to be kept. 



Registers with an electoral purpose, for instance, appeared in Europe around the 

beginning of the 19"̂  century. Like censuses, AR characteristics depend mainly on 

specific goals, technology and human resources. Usually, registers are compiled by 

different organisations within a country, with the process of data capture designed to 

meet organization specific goals. National statistics offices can rarely influence these 

processes. As a consequence, it is not surprising to find poor linkages between most 

ARs. They are also highly dependent on institutional policies which, due to the lack of 

linkage between organisations, make them unstable over time. Although the 

usefulness of AR is limited by the issues mentioned above, registers have still proved 

to be valuable sources of information for planning in different situations, at different 

geographical and demographic levels. 

Sample surveys as a scientific method of information collection, originated in the 19^ 

century with the representative method described by Kiaer in 1895. In 1925 the 

International Statistics Institute officially accepted sampling surveys as a tool for 

scientific collection of statistical data. However, it was not until the nineteen forties 

that governmental offices started using them. Sample surveys are able to collect more 

comprehensive and more complex information than censuses and AR. The low cost 

and ease of execution of sample surveys quickly made them the main complement to 

what used to be the principal, if not the only, sources of statistical information at the 

time, censuses and administrative registers. A number of official survey programs 

were initiated in many countries and by the seventies there existed little doubt about 

their effectiveness and usefulness. However, these sample surveys were unable to 

produce reliable estimates at every geographic and demographic level of interest 

without becoming as logistically complex as censuses. Consequently, although these 

surveys were used to provide information at the national level and, in some cases also 

at large regional levels, information at local levels was still based on censuses and 

AR. 

However, the demands for detailed information at local areas were constantly 

growing. This need became more acute when it became clear that the complete 

coverage that censuses aim for is unfeasible, due, for example, to underenumeration. 

This problem becomes more evident when statistics at local levels are used for 



sensitive matters such as allocation of governmental funds. Consequently, researchers 

were motivated to look for alternative procedures to satisfy these requirements. 

The use of models in sampling theory provided a way of carrying out this task. The 

use of regression methods as a tool for improving estimation at local levels was first 

presented by Hansen, Hurwitz and Madow (1953) in their seminal text on sampling 

techniques. Regression methods were subsequently used by Madow (1956) and 

Woodruff (1966) in a report on the use of television in households and to produce 

monthly national estimates of retail trade respectively. Ericksen (1974) used 

regression methods to obtain postcensal estimates of population counts for local areas. 

Using 1970 census data, he showed how the proposed estimators performed better 

than traditional demographic procedures. Ericksen's paper significantly motivated the 

interest of researchers in the subject, and Fay and Herriot (1979), developed improved 

per capita income estimates at state and local government levels for the US Treasury 

Department. Their estimator was based on the Empirical Bayes method, combining 

direct and synthetic estimations via a weighted average. These estimates were used by 

the Treasury Department to allocate funds to local government units within the 

different states. 

Since Fay and Herriot's work, much theoretical and applied research on small area 

estimation has been carried out using different statistical techniques, with many 

national statistics offices investing resources on special programs to develop 

procedures to meet demands for local area estimates. For instance. Statistics Canada 

launched an ambitious program in 1983 to develop a small area database. This 

program was designed to take an integrated perspective covering areas such as the 

production of "new small areas data sets", the organisation of "small area data in 

geographically oriented data bases" and the conformation of "geographic, conceptual 

and methodological frameworks and tools needed to support continuing small area 

data development, dissemination and analysis" (Brackstone 1987). 

Several international conferences on the subject were also held. Statistics Canada 

hosted an International Symposium on Small Area Statistics in Ottawa in 1985 

producing two publications one for invited papers (Platek et al. 1987) and a second 



one for contributed papers (Platek and Singh 1986). A similar symposium was held 

in New Orleans in 1988 organised by the National Center for Health Statistics. An 

international conference on the topic took place in Warsaw, Poland in 1992. Invited 

and contributors papers presented in that conference were also published (Kalton, 

Kordos and Platek, 1993). Recently, the U.S. Census Bureau organised a Conference 

on Small Area Estimation held in Washington in 1998, the International Association 

of Surveys Statisticians held the International Satellite Conference on Small Area 

Estimation in Riga, Latvia, 1999 and the United States Postal Service in conjunction 

with the American Statistical Association and other organizations held the 

International Conference on Small Area Estimation and Related Topics, Potomac, 

Maryland 2001. A variety of international courses and other events have also been 

held in different countries, mainly in North America and Europe. For a 

comprehensive list of major events addressing small area estimation issues that have 

taken place in the last twenty years, see Gosh and Rao (1994) and Rao (1999). Some 

recent practical applications on Small Area Estimation can be found in Citro et al. 

(1997), Citro et al. (1998), Cohen (1999), Falorsi (1999), Wang et al. (1999), 

Knaub(1999), Wang, Fuller and Opsomer (1999) Larsen (2000), Olsen et al. (2000), 

Judkins and Liu (2000), Citro and Kalton (2000), Cohen (2000), You (2000). 

Small area estimators are commonly known as "model estimators" or "indirect 

estimators". They make use of data from outside the area of interest to produce 

estimates for that specific area, in contrast to traditional "design estimators" or "direct 

estimators", which use data from the area of interest only. 

Although small area estimators have been developed and their properties studied 

under both the randomisation and model-based approach to sample survey inference 

an underlying model is always present, either explicitly or implicitly. Bayesian ideas 

have also been used in the small area estimation context and they have proved useful 

particularly when estimator accuracy needs to be assessed. Many of these estimators 

make use of auxiliary data from censuses and/or AR. In such cases, the use of these 

estimators is limited by the existence of adequate auxiliary information. In other 

cases, estimators make use of information from just one source such as a survey, and 

some smoothing is carried out to decrease the variability in the estimates. In general, 



however, the basic idea behind all these procedures is to borrow "strength" in some 

dimension (space, characteristics of units or/and time) to "aid" estimation for 

"groups". An overview of these developments can be found below in Section 1.5. 

Most of the research carried out so far on SAE has focused of model-based 

approaches to estimation for local areas. However, such estimators should be used 

carefully. In particular, their dependency on hypothetical models does not appeal to 

many analysts. Model validation has to be carried out in some sensible way and 

estimators that are robust to model misspecification should be sought. Furthermore, 

stable estimates of the reliability of the small area estimators have to be computable, 

and when results are published, users have to be informed about the inherent 

characteristics of this kind of estimations. Some analyses, e.g. comparison between 

local areas, will be distorted when one area uses information from other areas 

(Schaible 1992; Kalton 1994). Singh, Gambio and Mantel (1994) argue that a model 

estimator should be preferred over a design estimator only if its mean square error is 

estimable and it is sufficient smaller than the corresponding variance of the design 

estimator'. 

An interesting issue that has not received much research attention so far is the 

investigation of sampling strategies for improved small area estimates. Key 

parameters in the sampling design can be modified and their impact on local area 

estimation measured. This can reveal considerations that should be taken into account 

when designing or redesigning sampling surveys with SAE in mind, thus reducing the 

need for model based estimators. As Kalton (1994) points out 'Where possible, 

samples should be designed to produce direct small area estimates of adequate 

precision, and sample design should be fashioned with this in mind'. Singh, Gambio 

and Mantel (1994) report significant improvements in Canadian LFS estimates for 

sub-provinces by reallocating the sample in two components: a first component 

designed to provide reliable national and provincial level estimates (42,000 

households) and a second component designed to provide improved sub-provincial 

level estimates (17,000 households). 



1.2. SMALL AREA ESTIMATION IN LATIN AMERICA' 

Despite the amount of attention SAE has received during the last twenty-five years, 

the official statistics offices in Latin America have remained largely unexposed to 

these ideas. Although several reasons can be advanced to explain this fact, there are 

three specific issues that we believe have been the main factors. 

The Latin American political landscape was largely made up of dictatorship regimes 

and intermittent unstable democratic governments until relatively recently. This factor 

explains the heavily centralised governmental structures present in these countries. 

Planning was completely centralised and little information at local levels was 

required. Therefore the "demand" for local information, which has been the main 

factor that has led other countries to move towards SAE, was not present. 

Secondly, we have to consider the depressed economies that have historically 

characterised many countries in Latin America. This fact has implied modest 

governmental allocation of funds for statistics programs. Although it is not true in 

general, it is possible to find national statistics offices from some countries struggling 

to set up a single household survey even for their capital or main cities. Countries that 

run continuing survey programs generally do it with surprisingly small budgets. 

Consequently, it is hard to imagine these countries investing money to set up 

programs like the one in Canada mentioned earlier. 

Finally, one of the most important factors explaining the disparity between Latin 

American countries and North American and European countries in terms of SAE 

development is the lack of linkage between academic researches and governmental 

statistics offices. A strengthening of this linkage could motivate changes in both the 

way statistical offices conceive the production of statistics and the way the academic 

research area direct its efforts. An integrated approach to the National Statistics 

System in these countries, could lead to a long overdue interaction between the 

governmental statistics offices and the academic area. 

' Although the term "Latin America" formally refers to American countries that were colonies of Spain, Portugal 
and France, in this work we will use this expression to denote Spanish-speaking countries only. 



Nevertheless, the need for statistical information at local level in Latin America is 

now on the increase. Many national and international aid programs with a regional 

focus have started to be implemented. The "maturity" of some democratic systems is 

now reflected in the continuing decentralisation process that these countries have been 

undergoing. To learn about the effect that these phenomena have had on SAE demand 

as well as to establish in general terms the "state of the art" concerning the production 

of information for local areas in Latin America, we contacted fifteen out of eighteen 

of the national statistics offices in the region. We got feedback from Argentina, Chile, 

Ecuador, Peru, Mexico and Venezuela. It is important to point out that these are the 

countries with the "strongest" statistics offices in Latin America, with INEGI from 

Mexico being the statistics office in Latin America that has historically had the largest 

budget. We therefore expect that these six countries give us an upper bound regarding 

the situation of Latin American statistics offices. For countries from which we did not 

get first-hand feedback, we have relied on information published in CIENES (1995). 

None of the offices contacted produces statistics at local levels from sources other 

than Censuses and special "ad-hoc" studies. However, all of them report pressure 

from users to produce information at these levels. They all run permanent businesses 

and labour force survey programs producing direct estimates up to levels of 

disaggregation consistent with the sample design. Ecuador, Mexico and Venezuela are 

the only countries where at least one survey covers both urban and rural areas. They 

all produce results for "regions" i.e. aggregations of provinces or states. Mexico 

produces some labour force indicators for states by combining sample from two 

consecutive years. The sample sizes of the Labour force surveys vary from 9,180 

households (Ecuador) up to 158,960 households (Mexico) per year. AR or any other 

kind of auxiliary information other than censuses is rare in these countries. 

Educational and formal employment registers are the most common AR but they are -

with the possible exception of Mexico- unreliable, usually published at the national 

level and not kept in any exploitable data base format. No unemployment register is 

available in any country. When questioned about the indicators that are the most 

demanded at local levels by users, the common answer was the set of basic rates 

describing labour force structure by sex and age groups. This is the main reason why 



this thesis will focus on estimation of those rates at local levels. In particular, we 

develop an approach for the specific case of Venezuela. 

1.3. THE VENEZUELAN CASE 

Although we focus on the Venezuelan case from now on, it should be noted that due 

to the similarity among Latin American countries this development can be regarded as 

generally applicable to the problem in Latin America. 

As a consequence of a long history of centralised government, official information 

sources in Venezuela are national level indicators. In the social context, several ARs 

are available. These are designed to produce figures at the national level in most 

cases. ARs of acceptable quality are compiled for births, deaths and educational 

enrolment. Other ARs are rare and their quality is poor for local areas. Thus, the use 

of statistics techniques based upon auxiliary information other than the Census'90 and 

its population projections does not seem feasible at least in the short term. 

The Labour Force Survey^ (LPS) is the instrument officially used in Venezuela to 

estimate Labour Force indicators related to the supply side of the Labour Market. This 

survey has been carried out by the Statistics and Informatics Central Office of 

Venezuela (OCEI)^ since 1967. 

The LFS produces six-monthly estimates at the national level based on a 12.000 

household sample. In 1977, this sample size was increased to 75.000 households to 

produce six-monthly estimates for nine regions. These regions consist of a group of 

neighbouring states with similar characteristics such as weather, geography, and 

predominant economic activity. In 1994 the LFS sample size was cut down to the 

original 12.000 households due to budget restrictions. 

^ "Encuesta de Hogares por Muestreo" (EHM) 
^ It became the National Statistic Institute (INE) in the year 2000. 



However, as a consequence of political reform, requirements for information at finer 

geographic levels have arisen in the country since the beginning of the nineties. In 

1989 the first democratic election for State Governors and County Mayors was held in 

Venezuela. This started a process within the country, which has progressively 

changed the levels at which social and economic planning is carried out in Venezuela. 

Several economic and social strategies have been designed and executed at state and 

county levels. Therefore, providing information for each of the 23 states and 353 

counties'* has become increasingly important. 

The current LPS sample size only allows the production of reliable estimates at the 

national level. Nevertheless, it is important to point out that through special 

agreements reached between governors and the OCEI, the LPS sample size has been 

increased within seven states and the Metropolitan Area of Caracas (AMC)^ (see table 

1) in order to obtain reliable estimates at those levels (though not with the same level 

of disaggregation as the national estimates). 

1.4. AIMS OF THE STUDY 

We base our study on the basic set of labour force indicators identified as essential by 

Latin American users, i.e. rates describing the labour force structure by sex-age 

groups for states. Although SAE is usually associated with spatial problems, it can be 

related to any other dimension of data disaggregation, hi our specific case, we shall 

focus on sub-populations that are defined by both spatial (states) and demographic 

(sex-age groups) dimensions. In what follows, we refer to such groups as "sub-

populations". We do not use the term "domains" to avoid conflict with the definition 

given by the United Nations and popularised by Kish (1965), which relates "domains" 

to sub-populations ^about which the enquiry is planned to supply numerical 

information of known precision' 1950). 

^ This is the total of Venezuelan counties for 1997. There have been some changes since that year. 
^ The AMC concern the Federal District (DF) and some counties from Miranda State. 

10 



We are therefore basically concerned with three indicators: Employment Rate (^R), 

Unemployment Rate ) and Non-active Rate {„R). The LFS conceptual definitions 

of Employee, Unemployed and Non-active agree with the International Labour 

Organization (ILO) definitions. The LFS operational definitions of these concepts 

(variables and rules used to classify people into these groups) are adjusted so that the 

particular socio-economic characteristics of Venezuela reflect the ILO conceptual 

definitions as closely as possible. Making use of the variables contained in the 

Summary Code, the LFS operational definitions of Employees, Unemployed and 

Non-actives are as follows: 

Employees: people over 14 years old who have received or will receive money due 

to any kind of work carried out during the survey reference period (the 

week previous to the interview). This category includes self-employed. 

Unemployed: people over 14 years old who have actively looked for a job and who 

have not received money due to any kind of work during the survey 

reference period (the week previous to the interview). 

Non-actives: people over 14 year old who have not actively looked for a job and who 

have not received money due to any kind of work during the survey 

reference period (the week previous to the interview). 

Notice that these categories are mutually exclusive and exhaustive for people over 14 

years old. We further define Actives as the combination of both groups Employees 

and Unemployed, this is, the complement of Non-actives category. 

We now define the basic LF rates ^R, ^^R and „R : 

_ Employees _ Unemployed 

Actives Actives 

Non - actives 
„R = • 

{Actives) + {Non - actives) 

In the same way we can also define an Activity Rate (^R) = (1 - „i?) . 
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Table 1.1 
Venezuela. Activity Rate and Unemployment Rate by States 

State 
Activity Unemployment 

State 
Rate s e % cv % Rate s e % cv % 

Venezuela 6&4 0 ^ 5 0.38 11.0 0 ^ 5 2 ^ 5 52,614 
Dtto. Federal 6&0 0.66 0.97 7.8 0.57 7.33 5 2 6 3 
Anzoategul 64.6 1.30 2.02 11.8 0.95 8.03 t 5 8 9 
Apure 6 7 ^ 3M6 4.67 10.5 2 ^ 2 2&96 226 
Aragua 69.4 1^3 1 7 7 7.9 0.84 10.72 1J39 
Barlnas 6 4 ^ 2 J 0 3 ^ 6 7.8 1.05 13.56 687 
Bolivar 6 t 4 0.62 1.02 12.3 0.70 5.68 5,699 
Carabobo 66.5 0.95 1 4 2 14.0 1 ^ 2 9 4 2 2,317 
Cojedes 63M 3.60 5.71 13.0 4.61 35^2 246 
Falcon 6 4 4 0.84 I^W 16.6 0 ^ # 5.33 4 7 M 
Guarico 6 2 J 1.19 1.90 18.8 1.79 9.54 798 
Lara 6 3 ^ 0.69 1.10 9.0 o ^ a 6.97 5 J 5 3 
Merida 64.1 1.32 2.05 5.2 1.04 19.77 1J68 
Miranda 6&2 0 ^ 9 1.36 7.6 0.65 8.54 3,567 
Monagas 64.4 1.56 2 4 2 1 8 4 1.79 9.69 1J42 
Nva. Esparta 59.5 2.68 4.51 4.1 1.21 2 9 7 2 453 
Portuguesa 6 t 4 0 ^ 2 1.34 14M 0.95 6.74 3,411 
Sucre 58.9 1.54 2.61 8 4 1.19 14.17 1429 
Tachira 64.6 1IW 1.60 7.7 1.05 13.55 1,677 
Trujillo 6 3 J 1 4 3 2.25 13.2 2.65 20.08 894 
Yaracuy 6&4 1.57 2.36 18.6 2 2 7 1 2 2 0 593 
Zulia 6&5 0.58 0 ^ 5 14.7 0.55 3.72 8,531 
Amazonas 6&0 2.32 3.41 5 4 1.47 27.05 483 
Amacuro 67.1 1.48 2.21 5.6 I^G 24.08 795 
Surce: Labour Force Survey, 1998 , OCEI 

Estimation of these rates disaggregation by sex and age for each of the 23 Venezuelan 

states will be our ultimate target. As ages are usually grouped into four groups (see 

table 2), we will have a total of 184 sub-populations for which estimates of these rates 

are required (736 estimates). These can be calculated by using the ratio estimators 

commonly used by the LFS (section 2.2.4). However, as the LPS was designed to 

produce reliable estimates at national level, the sample size within states is too small 

to provide estimates with adequate precision for sex-age groups within states. As an 

example. Table 1.1 shows these estimates along with sample sizes and precision 

indicators for the 23 Venezuelan states. In the same way. Table 1.2 shows examples 

of estimates for sub-populations defined by large sample size, medium sample size 

and small sample size states. 
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Table 1.2 
Venezuela. Activity Rate and Unemployment Rate 

by Sex and Age Groups 

Sex Age Activity Unemployment 
Rate se % cv % Rate se % cv % 

Dtto.Federal 

Male 15-•24 60.0 :&11 3.5 15.0 1^9 126 676 
2 5 - 34 9&0 0.90 0.9 5.9 1.02 17.3 601 
35- 44 97.5 0.72 0.7 3.4 0^2 23 9 504 
45 - -t- 76.5 1.66 2.2 4.5 0^9 1&7 691 

Female 15- 24 43.3 2.11 4.9 21.9 2 7 8 12.7 696 
25- 34 71.6 1.98 2.8 6.1 1U4 18,7 600 
35- 44 73.0 1.91 2.6 5.8 1.20 2&8 575 
45 - 41.9 1.65 3.9 5.5 1.24 22.8 920 

Anzoategul 

Male 1 5 - 24 63.7 3.34 5.2 2&6 2.88 14.0 252 
2 5 - 34 9&3 1 j# 1.3 15.9 2 51 1&8 199 
3 5 - 44 95.0 239 2.5 4.5 1.82 4&5 144 
45 - -t- 8&0 2.85 3.6 7.7 2.06 269 190 

Female 15- 24 346 3.63 10.5 21.5 6.18 2&8 223 
25- 34 56.7 4.42 7.8 13.1 323 24 7 200 
3 5 - 44 662 4.05 6,1 4.8 2.10 43.9 144 
45 - -f 4&1 2.95 7.4 3.4 1.85 55.0 237 

Apure 

Male 1 5 - 24 7&2 832 10.9 17.0 7.78 45.8 39 
2 5 - 34 95.5 328 3.4 6.4 5.86 9 i a 29 
3 5 - 44 9&9 4jW 4.5 20.5 12.71 62.0 18 
45-- -1- 74 1 8.43 11.4 3.6 3.34 92 5 29 

Female 1 5 - 24 426 8.84 207 2&4 10.49 41^ 35 
25- 34 68.3 10.24 1&0 4.7 4.70 100.2 27 
3 5 - 44 820 10.32 12.6 0.0 0.00 * 20 
4 5 - . + 27a 14.70 529 0.0 0.00 * 29 

Surce: Labour Force Survey, 1998 , OCEI 

It is important to point out that the Unemployment Rate is regarded as the most 

critical from the political point of view. Public opinion and analysis is extremely 

sensitive to the size of this indicator. Therefore, estimates of high precision are 

required before these indicators can be released. For instance, a Coefficient of 

Variation (CV) below 3% is required for the national Unemployment Rate estimate. 

For states, a CV of 6% is usually required. 

As can be seen from Table 1.1, the LFS estimation technique is not able to produce 

reliable estimates even for states as population groups. Fifteen states in this table have 

estimates with CV estimates larger than 9%. From these fifteen states, six exceed 

20% and one (Cojedes) is above 30%. CV estimates are calculated as the ratio of the 
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estimated standard error (se) to the estimated rate; for instance, the estimated CV for 

the estimate is designed as: 

From Table 1.2 it is clear that estimates for sub-groups related to states with medium 

sample sizes and small sample sizes are far from adequate in terms of precision. Even 

for states with a larger sample size, the CV values are not encouraging. 

It is worth noting that for some subgroups (e.g. the last two shown in the Table 1.2), 

the direct estimate is zero because no sample cases were observed for that category. 

This is more likely due to the small sample size in these sub-populations rather than to 

the non-existence of people in these categories. 

Achieving high levels of precision for the estimates we are concerned with in this 

study is a difficult task. We aim to produce improved estimates relative to the 

precision that design based estimators can currently offer for those sub-groups. We 

aim to do this by using simple procedures that can be accepted and applied with 

relative ease by OCEI. 

We approach the problem from an estimation point of view. As the main source (and 

the only one in many cases) of auxiliary information in Latin America countries is the 

census, any techniques employed in this study will be based only on the availability of 

population censuses and their population projections as auxiliary information. 

As mentioned in section 1.1, the basic idea behind SAE techniques is to "borrow 

strength" in some dimension (space, characteristics of units or/and time) to "aid" 

estimation for "small groups". This is achieved by using models either explicitly or 

implicitly. If we identify the structure of a model that adequately explains the 

distribution of the counts of interest, we can then estimate its parameters to obtain 

model estimates of these counts. These model estimates should be more precise than 
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direct estimations due to the fact that they are depend on the estimation of fewer 

parameters, thus, each of those parameters is estimated using a larger effective sample 

size. However, models are approximations to reality so they can lead to bias in 

inference. Consequently, the model in use should sufficiently explain reality for the 

reduction in variance due to the estimation of fewer parameters to offset the reduction 

in accuracy due to bias. 

The rates we want to estimate are computed from the three mutually exclusive and 

exhaustive categories for people over 14 years old specified above. The literature 

about SAE for labour force characteristics is mainly concerned with estimation of the 

total or the rate of the unemployed population (e.g. Gonzalez and Hoza 1978, Cassel 

et. al. 1987, Cronkhite 1987, Feeney 1987, Roberts et. al. 1987, Falorsi et. al. 1994, 

Harter 2000, You et al. 2000). This literature, with few exceptions, assumes the 

availability of auxiliary information highly correlated with unemployment figures 

such as unemployment administrative registers. In this study we deal with the task of 

obtaining simultaneous estimates for the four rates that fully define the basic structure 

of the labour force, which are based on the three labour force counts for each sub-

group. The aggregate of these counts at state levels as well as at the national sex-age 

groups have to agree with the LPS direct estimates. Finally, these estimates have to be 

calculated using only censuses as auxiliary information. These conditions constrain 

the spectrum of techniques that can be applied and the flexibility with which they can 

be handled. Multivariate techniques that make use of auxiliary information are not 

suitable in this case. 

The method of Structure Preserving Estimation (SPREE) for categorical variables 

(Purcell and Kish 1980) offers a possible answer to this situation. In this document, 

we concentrate our attention on the general definition of that method, the development 

of some variants and their application to our specific situation. Our intention is to 

explore the SPREE method as a potential method for addressing the problem 

described above, generalising it to make it more flexible in its application and 

practical implementation. 
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We start by describing the Venezuelan Census and Labour Force Survey (LFS) 

programs and data, focusing in particular on the characteristics of those programs and 

their resulting data that might have implication for the procedures to be considered in 

this study. In particular we emphasise the theoretical description of the LFS parameter 

and variance estimators since there is no document currently available with such a 

detailed description. 

We then give a theoretical definition of the SPREE method and specify some natural 

variants, describing how they can be used in our specific case. An issue that we pay 

particular attention to is the practical complexity associated with the implementation 

of these methods. The SPREE method requires the application of iterative procedures 

to compute estimates (see Chapter 3). In our case, it also involves the use of complex 

design-based estimation techniques. These procedures require the development of 

computational algorithms that are not found in the standard statistical software. 

Additionally, the computation of variance estimates for the SPREE method is 

essentially an unexplored area, reflecting the fact that SPREE has not been 

investigated to any great extent in the SAE literature. 

A primary result developed in this thesis is the formal specification of the SPREE 

method as a particular application of Generalized Linear Model (GLM) theory 

(McCullagh and Nelder 1983), specifically constrained Log-linear and Logistic 

models. This link is expanded further in this thesis to allow for complex samples. 

We then propose a new procedure to compute SPREE estimates that makes use of 

standard statistical tools found in commonly used statistical software. This approach 

allows the computation not only of the traditional SPREE estimates but also of all the 

variants proposed in this document taking into account the sample design. An obvious 

consequence is that the SPREE method then has all the advantages that flow fi-om 

working under the GLM fi-amework, so that the estimation of variances is possible as 

well as the computation of different goodness of fit measures and measures relating to 

the identification of outlying cells and influential points. A critical evaluation of the 

SPREE estimation procedure is then possible. Equally important is the fact that the 

practical implementation of this procedure is then a simple and straightforward 

application of commonly used statistical software. 
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Following on from this theoretical development, we use the Venezuelan 1990 Census 

to explore different model structures relevant to our specific LFS problem. In 

particular, we design and carry out a simulation study replicating the LFS sample 

design in order to examine the properties of a number of the estimators proposed for 

this problem. In doing so we study the gains that SPREE methods can offer over the 

traditional LFS direct estimates as well as compare the impact of applying SPREE 

methods given census data from different periods. These data define the reference 

information used by SPREE, and an investigation of the sensitivity of these methods 

to the quality of this information is of some interest. 

The final aim of this work is to extend the SPREE method to incorporate time as an 

extra dimension within the estimation process. This is particularly useful when recent 

reference information is not available but previous runs of the survey are available. 

Although data limitations preclude any empirical investigation of the behaviour of 

this extension, theoretical considerations indicates that this "borrowing of strength 

over time" should substantially improve the performance of SPREE within the 

Venezuelan context. Further research using this idea looks promising. 

1.5. OVERVIEW OF SYNTHETIC ESTIMATORS AND OTHER SMALL 

AREA ESTIMATION TECHNIQUES 

The SPREE methods belong to the class of synthetic estimators. In an attempt to put 

the SPREE method in context, we therefore describe in this section the ideas behind 

this class of estimators. Before doing this, however, we feel that a brief discussion of 

survey design issues concerning SAE as well as an overview of the demographic 

methods that pioneered the work on SAE might be useful. Also, since the ideas that 

are developed in this thesis can be expanded to cover another class of SAE, i.e. those 

based on the inclusion of specific-area level random effects, we briefly discuss this 

approach at the end of the section. 
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Relevant references are given throughout this section. Comprehensive overviews of 

SAE can be found in Gosh and Rao (1994), Marker (1999), Rao(1999), Pfeffermann 

(1999) and Rao (2000). 

1.5.1. Survey Design Issues 

Apart from institutional related issues such as data development, infrastructure, policy 

and management (for details on these issues see Brackstone 1987), the SAE problem 

can be approached from two main technical points of views, survey design and 

estimation techniques. Although surveys specifically designed to produce reliable 

direct estimates for small areas are in general infeasible, different issues regarding 

survey design can be considered in order to minimize the need for indirect estimators. 

However, since the estimation approach to SAE has received the most attention in the 

literature, research addressing survey design issues in the context of SAE is scarce. 

The two main references addressing these issues are Singh et al. (1994) and Marker 

(1999). 

Singh et al. (1994) describes different ways in which sampling designs can be adapted 

to increase the reliability of direct estimates for small areas without a significant 

impact on the estimates for larger areas. They stress the need for an overall strategy at 

planning, sampling design and estimation stages. 

At the planning stage, they point out the importance of anticipating small areas for 

which estimates might be required. Such anticipation allows survey designers to 

consider different strategies whose feasibility can be studied in term of budget and 

operational capabilities. 

Once the data needs have been defined, they discuss how sampling designers should 

ponder those requirements so that the sampling design reflects a compromise between 

the requirements for small areas and the requirements for larger areas. They identify 

two ways of working out that compromise, based on sample allocation and clustering. 

They argue that disproportionate allocation of the sample in favour of small areas can 
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have an appreciable impact on the precision of small areas estimates without 

significantly affecting the reliability of estimates for larger areas. Regarding 

clustering, they suggest that attempts to reduce the level of clustering in the sampling 

design should be made in order to increase the chances of having sample in as many 

small areas as possible. 

Finally they acknowledge that, no matter what the anticipation at the planning stage 

and the compromise reflected in the sampling design, there will always be small area 

information requirements for which direct estimates will not be satisfactory. It is in 

such cases that the work on small area estimation plays an important role. 

Marker (1999) also argues that one should concentrate efforts at the survey design 

stage in order to increase the possibilities of producing direct estimates for as many 

domains as possible. He suggests stratification and oversampling as strategies worth 

considering. For small areas for which reliable direct estimates are not attainable after 

stratification and oversampling have been considered, he suggests other strategies 

such as the use of dual-frame estimation to "combine the national survey with 

supplements in specific areas to produce direct estimates". Finally Marker also 

acknowledges the importance of special indirect estimation techniques to deal with 

small areas for which suitable direct estimates are not possible. 

1.5.2. Estimation Techniques 

The first techniques developed to deal with estimation for small areas have their roots 

in demographic projection and synthetic methods. They all are based on implicit 

models that are assumed to be valid, producing indirect estimators with low 

variability thanks to the "borrowing of strength" across areas. That is, these methods 

assume that all the areas of interest behave similarly with respect to the variable of 

interest and consequently one can "borrow strength" for any one small area by 

capitalising on the similar behaviour of many small areas. This similar behaviour is 

usually represented in terms of a common model for the distribution of the variable of 

interest. By definition, these methods do not take into account area specific 
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variability. Therefore, we can find situations in which the validity of the assumed 

model fails leading to biased estimators. This fact has motivated researchers to 

develop techniques based on models that include area specific effects; although these 

methods are commonly referred in the SAE literature as model-based methods, we 

shall refer to them in this chapter as '^specific area-level random effect model 

estimators". 

1.5.2.a. Demographic Methods 

Demographic methods that use "symptomatic" data to produce demographic 

projections for inter-censal years are commonly used in national statistics offices and 

international organizations. Sieguel et. al. (1954), for instance, gives a comprehensive 

overview of methods used in the 1940s and early 1950s for making estimates of 

population below the State level. Some of those methods are still being used with 

minor adjustments. Development has focussed on the improvement of mechanisms 

and techniques to obtain the symptomatic data used in those demographic methods. 

The principal demographic methods found in the literature are the Vital Rates, 

Arithmetic, Geometric, and Component methods. We now briefly describe the Vital 

Rates and Components methods. 

The Vital Rates (VR) method was first described by Bogue (1950). It uses 

Administrative Registers (AR) of births and deaths for the period t for small areas, say 

b, and d̂  and for larger areas containing the small areas, say B,, as well as AR or 

any other reliable estimate for the larger area population counts ^ . We also assume 

that corresponding figures for the last population census, say b^, d^, and , 

are available. If we define =bjp^ and =djp^ we can write the population 

count of interest for time t for the target small area as. 

1 
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The method consists of estimating the unknown rates and assuming the large 

area ratios where and 

= Dq//^ , are the same as the small area ratios and r^Jr^Q, so that, 

The VR estimate for the population count of interest for time t for the target small 

area is then. 

. 1 

^ ' = 2 ' 
— + — 

The Component method uses AR of immigration, emigration and net interstate 

migration to compute net migration. It basically "updates" the census population 

count for a small area by adding to it the net migration as well as the difference in 

number of births and number of deaths since the census year. That is, 

where and are respectively the number of births, deaths and net migration 

since the census year. 

1.5.2.b. Synthetic Estimators 

Synthetic estimators use direct estimates for larger areas to produce indirect estimates 

for small areas. The implicit model of synthetic estimators assumes that the 

characteristics of a large area are similar to the local characteristics of its smaller 

areas. Several estimators that fall into this category have been developed in the last 45 

years. 
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The earhest formal publication recording the use of synthetic estimators in the context 

of SAE is due to the U.S. National Center for Health Statistics (NCHS) (1968). They 

used the National Health Interview Survey (NHIS) to obtain direct estimates of 

National rates of disability R j =N' ! j /N, j for J = 78 population subgroups defined 

in terms of socio-economic characteristics. Then, they use the 1960 census population 

counts for the same population subgroups N^j with ^ to compute 

synthetic State estimates of disability =Y„/Na., where , using 

the following expression, 

(1.1) 
> 1 

This estimator has been used in different applications. The assumption here is that 

R,j = R^j. Note that an equivalent expression for totals is obtained eliminating 

from (1.1). 

The variance of (1.1) is small because that estimator depends on reliable direct 

estimates for national subgroups. On the other hand, the bias of this estimator might 

be important if the assumption ^ ^ . does not hold. However, this kind of 

estimator is simple to implement and can perform better than direct estimators when 

sample sizes for small areas are small, as Gonzalez et al. (1996) reports. Other 

examples of the use of estimators like (1.1) can be found in different US. Bureau of the 

Census methodological reports as well as in Gonzalez and Hoza (1978) and Haskey 

(1991). 

Holt et al. (1979) formulate explicit analysis of variance models for different 

population structures implicitly assumed in different synthetic estimators, so that 

those assumptions can be tested using the available data. They obtain Best Linear 

Unbiased (BLU) estimators for small area totals and derive the bias under alternative 
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models. For instance, an appropriate model for the synthetic estimator (l.l) assuming 

Simple Random Sampling with sample size n = is. 

- Py (1-2) 

The BLU estimator of p̂ . is R,j and the BLU estimator of is given by, 

J 
t r ( 1 - 3 ) 

^4 

Estimator like (1.1) can be seen as special cases of the following general synthetic 

estimator ox Individual-level Synthetic Regression Estimator (Skinner 1991), 

J 
(1.4) 

7=1 

Here we assume we have individual level information about J auxiliary variables for 

the entire population, so that we can compute their population means ^ .. Applying 

traditional regression methods to the sample data we estimate the coefficients (3̂ .. The 

implicit assumption behind (1.4) is that the following model is a reasonable one for 

every individual i=J, ...,Nin the population. 

ya 
(J \ 

y + (15) 

The random error E .̂ is assumed to have mean zero for all individuals belonging to 

area a and uncorrelated with the X variables. Skinner (1991) points out two possible 

departures from this model, misspecification of the systematic component and 

misspecifications of the random (error) term. The former can be dealt with applying 

traditional diagnostic techniques. The latter is a more complex issue and it is the key 

focus for SAE. The error structure in the implicit model might not have mean zero for 
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area a bu t , tha t is, wi th v ,̂. h a v i n g m e a n zero across ind iv idua ls in the 

same area. In th is case , (1.4) will have a b i a s equa l to but a lower va r i ance than the 

direct es t imates . 

A s s u m i n g a d i rec t es t imator can b e cons ide red unbiased and its covar i ance wi th 

7/^"' is a p p r o x i m a t e l y zero, the M e a n S q u a r e d E r ro r (MSB) of (1.4) is, 

- i l ) 

- i l ) 

Therefore, an estimator of MSEiYf"') is given by, 

J~v{t) (1.6) 

The direct estimators and its variance for areas with small sample size can be unstable 

and consequently so can be (1.6). Gonzalez (1973) suggests to use the average of the 

MSE{Y^^"'') over a as a global stable indicator of the MSB. However, this indicator 

might be misleading as it does not represent an area-level specific measure of the 

MSB. 

If individual-level information is not available, area-level variables can be used 

instead to produce Area-level Synthetic Regression Estimates (Skinner 1991), 

described by Ericksen (1974). Let , k=l, ...K , he a set of K area-level auxiliary 

variables. The Area-level Synthetic Regression Estimator is given by, 

(17) 
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where is t he es t imated regress ion coef f i c ien t fo r t he m o d e l under ly ing (1.7), that is, 

+ G. 
y 

with the mean of s„ equal to zero. 

Various improvements to (1.4) have been proposed. For instance, Nichol (1977) 

suggested including the synthetic estimator as an extra independent variable in a 

conventional regression estimator. Another approach was suggested by Battese et al. 

(1988) in which the sample area-mean of the random component E .̂, is used as an 

estimate of the area specific effect . That estimate is added to (1.4) multiplied by a 

suitable proportion ; that is, 

(1.8) 

If we define the conventional regression estimator (Skinner 1991) as, 

7=1 

and knowing that 

to to rewrite (1.8) as. 

, we just have to add 

(ISO 

These estimators are commonly referred to as Composite Estimators (CE). In 

general, different combinations of indirect and direct estimators can be used in a CE. 

Purcell et al. (1980) suggest the use of the National mean direct estimator Y or some 
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other larger area mean Y, instead of the indirect estimator in expressions like (1.9), as 

a convenient alternative in situations where auxiliary data is lacking or not sufficiently 

reliable. They also suggest the use of a multifactor classification as an alternative in 

specific situations, leading to an expression of the form, 

9:~''p.t ( i- 'o) 
( = 1 

where represents a direct estimator, Y^^ i=l,represents / different predictors 

for 7 and 
f I A 

V '=1 y 
= 1. 

Different methods of computing the weights have been proposed in the literature 

based on design-based arguments. Let Ŷ  be the direct estimator used in (1.9); 

assuming Cov{Y^^"'' ,Y^) = 0 , we obtain optimal weights minimising MSE{Y^°'"), 

with respect to , so that, 

pT- (i.n) 

These optimal weights can be estimated using (1.6) but they have the same instability 

problem as (1.6). However, empirical studies have suggested that composite estimators 

tend to be insensitive to deviations from the optimal weights (see e.g. Lundstrom 

1987). 
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Purcell and Kish (1979) propose the use of a single weight Pa= p Va. An optimal 

estimator for the common weight p is obtained by minimising 

with respect to p, resulting in the following expression, 

Y.LMSE(Yr) 

V{Y,) 

Thompson (1968) considers the case of shrinking a direct estimator 9 towards a 

"natural origin" Gg using a shrinking factor c. Let 6 = }̂  , 9q = 7̂  and c = p^. This 

estimator, called a "Shrinkage" estimator (Thompson, 1968), also has the form of a 

composite estimator, 

it'*' (1.12) 

Following Thompson (1968), an optimal estimator for p^ is, 

p T = . (1.13) 

Note that (1.13) is a special case of (1.11) where . 

Another approach that uses the idea of shrinking a direct estimator towards a 

conjecture is the James-Stein estimator (James and Stein, 1961), 

where 9^ is the direct estimator of the function =f(Y^) , with values that are 

independently N(B^,V) distributed and pf =\-[{A-2)V IS} with 

H=ree.° is our guess. Finally, f / = / - ' ( e " f ) . 
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Efron and Morris (1972) noted that 7/'^ may perform poorly when the guessed values 

0 ° are not close to 9^. They proposed a "restricting" rule to avoid estimates that 

differ from 8, more than ± c times the value of Vf . That is, the final estimate is 

9/"̂  if that value is between 9^ ±c \ Iv and either 0^ +cV f or 9^ - c - J v depending 

whether Qf exceeds the upper or lower bound of 9^ ±cV f . Denoting the resulting 

estimator as , we have the Restricted JS estimator = /~'(9j^'®) . 

Other approaches to defining the weights lead to another kind of composite 

estimator called a Sample-size dependent estimator. In this case the weight depends 

on the estimator of the size of the small area population . Drew et al. (1982) 

suggest using just the direct estimator, i.e. p ' f = 1, if is higher or equal to 5 

and p'^'' - (N^ /8#^) otherwise. Here, 6 is a suitable factor that needs to be chosen. 

Hidiroglou et al. (1985) propose the use of p^"'^ = (7V„ /-^„) ("modified regression" 

factor). Later, Sarndal et al. (1989) proposed that be modified by imposing a 

"dampening" factor (N^ I i n order to avoid "extreme" estimates for very small 

areas. They suggest the following rule. 

DMRE 

{N^ / )^~' if otherwise 

Holt and Holmes (1994) propose an estimator for unequal probability designs in 

situations in which borrowing information across small domains is not feasible. Let 

the target of inference , k=l, ...,K be the unknown population total of units with a 

specific characteristic k. Let be the sample count of units with 

characteristic k in sampling design stratum h, where is a Bernoulli 

variable with Pr(j; = !/&) = 7^/^. Also let and be the population total and the 
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sample size for the design stratum h so that . The maximum likelihood 

(ML) estimator for Y k i s the stratified direct estimator 

, which is unreliable if the sample sizes within strata are small. 

Now suppose we can define a new stratification / f=l,...,F, so that / cuts the 

population across the original strata h and so that = 1) = can be 

considered constant across h, i.e. = 7%/y.. The expected value for the population 

total can now be rewritten as = , where is the 

probability of belonging to stratum / given the unit belongs to the original stratum h. 

The ML estimator for this expected value is finally, 

n = i t A ' A ^ = (115) 
h=\ f=\ h=i yf 

where is the sample total of units belonging to stratum h and stratum/at the same 

time, is the sample total of units in stratum / and Yj- is the stratified direct 

estimator of the population total of units in stratum f . The resulting estimator (1.15) 

borrows strength across the design strata h and Holt and Holmes (1994) shows that it 

is more accurate than the traditional stratified estimator provided the assumption 

holds. 

The Structure Preserving Esimation (SPREE) method also belongs to the class of 

synthetic methods of estimation. Purcell and Kish (1980) describe this method which 

is based on application of the Iterative Proportional Fitting algorithm (IPF) (Deming 

and Stephan., 1940). SPREE requires the specification of an association structure 

linking the distribution of the target variable and some covariates at small area level 

and an allocation structure characterising the current relationship between these 

variables at a larger area level. The information necessary for specifying the 

association structure is typically obtained fi"om recent censuses or administrative 

records. The current information required for the allocation structure is typically 
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obtained from national surveys or any other reliable source. The basic idea behind the 

SPREE method is: "(i) to conform to the current information in the allocation 

structure; and to (ii) preserve somehow the earlier relationships present in the 

association structure without interfering with aim (i) above." (Purcell and Kish, 1980). 

These authors describe different situations that might arise, depending on the 

available information, for the specific case of a categorical target variable required for 

certain small domains and one categorical auxiliary variable. Let N^y be a set of 

counts from a cross-tabulation defining the association structure from, say, the last 

census. Here a and j refer to area and category of auxiliary variable whilst i, i=l,...,/, 

represents the category of the target variable. Let m̂ y be the set of "unknown" counts 

of which we only know or have reliable estimates of certain aggregates corresponding 

to the allocation structure. They consider situations where the information available 

is: (a) (6) (c) ((f) 

( 4 ( / ) ^ and/represent special 

situations in which a full association structure is not available. They use a weighted 

least squares approach and minimize the loss function. 

n=] y=I c=I 

where c=l,...,C, denote the cth constraining equation in the Lagrangian 

f{m^y), corresponding to the marginal constraints specified by the allocation 

structure. For case (a), for instance, there is only one constraint, i.e. 

the estimate of the target count m .̂, is given by 

For cases {b) and (c) they apply the IPF algorithm to obtain maximum likelihood 

estimates of . For cases {d), (e) and (J), where a full association structure N ŷ is 
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not available, they define a "dummy association structure" by assuming 

proportionality across the i categories, so that a full set of estimated counts is 

used in the analysis. 

The assumption behind the use of SPREE in (a) and (b) is that the interactions from 

the association structure of higher order than the one defined by the allocation 

structure is the same as the corresponding interactions of same order for the target 

counts. Using again case (a) as example, the assumption behind (1.16) is 

^ai j /^- i j -^ai j /^- i j • For SPREE estimates in cases (d), (e) and ( f ) , an additional 

assumption is that the missing interactions from the association structure are not 

relevant i.e. the association structure (odd ratio) for that specific missing component 

equals one, for the set or for the set so that in case (J), for instance, 

Note that the gains in precision from using SPREE are due to the fact that, thanks to 

the information from the past used in the SPREE process, we only use present data to 

estimate the marginal given by the allocation structure. That is, if the information 

regarding the allocation structure comes from a national survey that leads to poor 

direct estimates for m̂ y and , then it might be possible that reliable direct 

estimates of an aggregate like m_y can be identified so that (1.16) produces estimates 

with a lower variance than direct estimators. Here again, the superiority of the SPREE 

estimator over the direct estimator depends on the trade off between gains in precision 

and increases in bias due to departures from the assumptions behind the method. 

A more detailed description of the SPREE method and some of its variants is set out 

in Chapter 3, where it is also put into the context of the specific LPS problem of 

interest in this thesis. 

Feeney (1987) carried out an evaluation study of the use of the SPREE method to 

produce estimates of total unemployed for Local Government Areas in four states of 

Australia. He used information from the Department of Social Security (DSS) related 
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to unemployment benefits to construct the association structure and the 1981 

Population Census to obtain the allocation structure. He compared his results with the 

"real" values from the Census and argued that, should this evaluation show SPREE 

methods work well using the Census data, it should also work well using the Monthly 

Labour Force Survey (MLFS). Two variables. Sex-marital status and Age group, were 

used in the analysis. The target set of counts were , where 

represents the total of unemployed for the small area a, sex-marital status i and age 

group j. The allocation structure was defined by the marginals m,., and m„j taken 

from the Census. To compare the SPREE estimates with MLFS direct estimates, 

Feeney derived estimates of the standard error of the SPREE estimates by assuming 

these estimates had the same error structure as the MLFS estimates. The results 

showed that in general, the SPREE methods provide improved estimates compared 

with MLFS direct estimates. 

Lundstrom (1987) carried out an evaluation study comparing two direct estimators, 

three SPREE estimators and a three composite estimator using as indirect estimators 

each of the SPREE estimators to estimate the number of nonmarried cohabiting 

persons in Swedish municipalities. He found that SPREE methods were superior to 

the direct estimators. Apparent differences were found between SPREE estimators 

and composite estimator. 

Griffiths (1996) used SPREE estimates within a composite estimator to produce 

employment and household income estimates for Congressional Districts in Iowa 

State, U.S.A. He used the estimator (1.16) to compute the SPREE estimates. The 

allocation structure was obtained from the 1994 Current Population Survey (CPS) and 

the association structure was produced using the 1990 US Decennial Census. 

1.5.2. c. Specific Area-level Random Effects Model Estimators 

Synthetic estimators have the advantage of being simple to implement. They 

commonly lead to estimates that are more precise than comparable direct estimators 
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for small areas. If good auxiliary information is available and an appropriate model 

can be formulated so that the error specification in the implicit (or explicit) model 

behind the estimator, i.e. £'(s^.) = 0 in (1.5), is reasonable, synthetic estimators are 

highly accurate; in these cases they are certainly the appropriate choice for producing 

estimates for small areas. However, in the presence of an important misspecification 

of the error structure, e.g. E(s^.) = u^ with large, synthetic 

estimators lose accuracy; if the gains in precision do not offset the bias caused by 

synthetic estimators can be even less accurate than traditional direct estimators. 

In those situations, specific area-level random effect model methods provide a better 

approach to small area estimation; in particular, since they take into account local 

variation they can be more efficient than synthetic estimators in situations like the one 

described above. Another advantage of those methods is that they offer the possibility 

of obtaining "stable area specific measures of variability associated with the 

estimates" (Rao, 2000). 

Specific area-level random effect models also offer the flexibility to formulate and 

handle complex cases. In this sense, traditional random effect models has been 

extended to more complex situations such as multivariate models (see e.g. Datta et al. 

1999, Datta et al. 1996, Cressie 1992, Freedman et al 1992), time series models (see 

e.g. Datta et al. 1999, Pfeffermann et al. 1998, Tiller 1992, Pfeffermann et al. 1990), 

multilevel models (see e.g. Moura et al. 1999, You et al. 1999) and logistic models 

(see e.g. Jian et al. 1999, Malec et al. 1999, Booth et al. 1998, Malec et al. 1997, 

Parrel et al. 1997a, Parrel et al. 1997b). 

For comprehensive reviews and appraisals of specific area-level random effects 

model-based methods of SAE see Gosh and Rao (1994), Rao (1999), Pfeffermann 

(1999) and Rao (2000). 
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CHAPTER 2 

Two main sources of data are used in this study: the last Venezuelan Population 

Census (1990) and the Labour Force Survey. In the following sections, we describe 

these sources in more detail. We focus particularly on the LFS parameter and variance 

estimation methodology since a detailed description of this does not currently exist. 

2.1. THE VENEZUELAN 1990 CENSUS 

The Venezuelan Population Census carried out in 1990 (Census'90)\ is the most 

important source of local level information in the country. Its information is not only 

used for descriptive and analytical purposes but also as the base for sampling designs 

and field operations and as auxiliary information for survey estimation. The LFS 

sampling design is based on the cartographic and demographic database of the 

Census'90. Sex-age population projections based on this census are used by the LFS 

as auxiliary information for Post-stratification estimators. It is also the basis for the 

simulation analysis reported later in this thesis. Consequently it is appropriate that we 

now describe some aspects of this census that are relevant. 

' XII Censo de Poblacion y Viviendas. 
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The Census'90 was carried out via face to face household level interviews. On the 

21st of October 1990 about 80% of the country was interviewed. The remaining 20% 

were interviewed within the next 30 days, keeping the same reference date i.e. 20-10-

1990. 

2.1.1. General Format, Field Organisation and Sampling Design 

The Census'90 was a "mixed" operation in which a set of basic demographic 

variables was obtained for the whole population (Basic Questionnaire) whilst a 

supplementary set of variables was additionally obtained from a sample (Expanded 

Questionnaire). The sample consisted of the whole population in the rural areas and 

approximately 20% of the population in the urban areas as explained below. 

For this Census, private addresses (PA) in Venezuela were partitioned into physical 

groups called ''Segments'" (urban areas) of approximately 200 PA each and "Sectors'' 

(rural areas) of sizes around 100 PA. These Segments and Sectors are mutually 

exclusive and exhaustive for PA. In the urban areas, each Segment was partitioned 

into approximately 10 "Sections'" of 20 PA. Finally, these Sections were partitioned 

into 2 "Subsections" of 10 PA each. This hierarchical structure reflects the logistics of 

the execution of the census. A Segment contains the quantity of PA that one 

supervisor was able to handle with ease in one day. In the same way, the amount of 

work assigned to one interviewer consisted of either one Section if he/she was 

applying the Basic Questionnaire or one Subsection if he/she was applying the 

Expanded Questionnaire. In the rural areas each Sector corresponded to a population 

settlement (towns). Each Segment and Sector was identified in the official maps 

produced by "National Cartography"^ whilst sketches were drawn for each Section 

and Subsection; a written description for each of those units (Segments/Sectors, 

Sections and Subsections) was recorded. A code system was used to link the 

information registered for each address in the Census database and the respective 

^ Cartografia Nacional. This is the official body of the Venezuelan government responsible for building 
and maintaining the cartography of the country. 

35 



units to which it belonged. This cartographic and demographic database is now used 

for the design and implementation of the household surveys carried out by OCEI. 

The expanded questionnaire sample in the urban areas was selected using a stratified 

cluster sampling design. The strata and the clusters were Segments and Sections 

respectively. Around 20% of the Sections were selected within each Segment with 

equal probability, i.e. 2 out of 10 Sections in most of the cases. Finally, the Expanded 

Questionnaire was applied to all households within the selected Sections. 

2.1.2. The 1990 Census Variables and Their Correspondence with The LFS 

Variables 

The variables needed to construct the basic labour force indicators were collected in 

the Basic Questionnaire. Two databases were built from these questionnaires, one 

containing the first set of variables for the whole population (Basic Database) and the 

other containing the second set of variables obtained using the expanded questionnaire 

(Expanded Database). Since it was not possible to obtain the Basic Database from 

OCEI, the one used in this thesis is the Expanded Database. 

An important aspect of the Census'90 is the fact that all the labour force variables 

collected in the census have the same conceptual definitions as the ones collected in 

the LFS. Therefore, any difference between these sources is mainly related to 

practical issues such as non-sampling errors, which are expected to be larger in an 

exhaustive enumeration like the census than in a sampling survey situation like the 

LFS. 

Another important practical difference between these sources is found in the process 

used to classify people over 15 years old into activity/non-activity and 

employee/unemployed groups. The LFS uses an algorithm based on a set of additional 

questions to carry out this classification process (Summary Code). The Census'90 in 

contrast used a single question to classify people. Thus, although both sources follow 

the same conceptual definitions, the LFS is expected to get a better measurement. The 
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Tabia 2.1 
Venezuela. Clasification of the Labour Force 

with and without Summary Code (SC) 
and Employment, Unemployment and Activity Rates 

(Cells are percentages calculated for rows) 

Cateory 
Cateory with SC 

without SC 
Employee Unemployed Non-Active Total 

Employee 99.91 OIG 0.04 48.08 

Unemployed 4^8 93.90 1.22 4U6 

Non-Active 4^1 5.11 9&88 47.76 

Total 50.15 &37 43.47 100 

Rates 88.73 11.27 43.47 

Rates 

92IW 

7^6 

47.76 

impact of the summary code on the classification outcomes can be seen from the 

difference in the LFS estimates with and without using the code. Table 2.1 shows 

examples of these differences for the second semester of the 1998 LFS. In this table, 

the columns and the rows represent the LFS classification taking and without taking 

into account the Summary Code. 

As it can be seen fj-om the table, use of the Summary Code increases the percentage of 

people classified as Unemployed and Employed, due mainly to a reclassification of 

people initially classified as Non-Active (4.01% reclassified as Employed and 5.11% 

reclassified as Unemployed). The category Unemployed rises from 4.16 to 6.37, that 

is, a relative increment of 53%, whilst Employed increases from 48.08 to 50.15, a 

relative increment of 4.3%. Consequently, the Employment Rate and the 

Unemployment Rate decrease (from 92.04 to 88.73) and increase (from 7.96 to 11.27) 

3.31 units respectively, whilst the Non-Activity Rate decreases 4.19 units, from 

47.76% to 43.47%. Therefore, if we assume the classification produced by using the 

Summary Code is the "correct" one, we can expect both the Unemployment Rates and 

the Activity Rates produced by the Census to underestimate the real figures. 
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This information can be used to adjust Census values is an attempt to make them 

comparable to LPS outcomes. This adjustment can be carried out as a simple 

multiplication of the Census rates by the variation adjustment estimated from the LPS. 

Given the characteristics of our study, such adjustment would require a set of tables 

like table 2.1 at sub-population levels, preferably for the Census year. These sub-

populations, as described in Chapter 1, consist of combination of both spatial (states) 

and demographic (sex-age groups) dimensions. Although the estimates set out in these 

tables would then be based on small sample sizes, the adjustments we are interested in 

are the differences between two highly correlated variables and therefore should be 

reliable enough for our purpose. 

The adjustment described above is useful when applying methods that involve the use 

of labour force indicators from both the Census and the LPS. Obviously, it is 

unnecessary when the information required from the Census does not consist of 

labour force indicators, for instance sex-age population totals. In this thesis we study 

SPREE methods for producing reliable sub-groups estimates. SPREE methods are 

explained in the next chapter and they involve the use of labour force indicators from 

both databases. However, our study of SPREE is mainly based on simulations from 

the Census data and does not involve the use of the LPS database. Therefore, no 

adjustments were necessary in our study. Nevertheless, we emphasize that such 

adjustment would be necessary if this technique was apply in a real life situation. 

2.2. THE LABOUR FORCE SURVEY 

The LPS is the oldest continuous survey run in Venezuela. This survey has supplied 

the country with valuable information related to households since 1967. Despite the 

fact that the LPS mainly aims to produce information regarding the Labour Force, this 

survey has always been an important general source of social information related to 

households. 
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2.2.1. General Format of the LFS 

This survey is run twice a year, 22 weeks during the first six months of the year and 

22 weeks during the last six months. The sample of the survey is distributed randomly 

across the 22 weeks in such a way that each week can be considered as a sub-sample 

of the country. The information is collected using direct interviews in which a 

''interviewer" fills out a questionnaire with the information provided by an 

'HnterviewecT' on behalf of every member of the household. The person interviewed 

can be any member of the household older than eighteen years. The current 

questionnaire contains 13 questions about the characteristics of the house, 9 questions 

about the household and 62 about the inhabitants of the households, including the 10 

questions that comprise the Summary Code referred to in the previous section. 

2.2.2. LFS Sampling Design 

Although the sampling design has changed three times since 1967, its main features 

have remained the same, i.e. a stratified three-stage sampling design. We now 

describe this design pointing out the differences, where relevant, between the 1985-

1993 design and the current design. 

From 1985 to 1993 the strata were the nine regions described in section 1.3. 

Currently, the strata consist of spatial areas within states (see table 2.2). These areas 

are made up of neighbouring counties with similar characteristics. In particular, each 

area is expected to be internally homogeneous with respect to economic activities and 

services. 

The first stage of selection is a random selection of segments and sectors (Primary 

Sampling Units, PSU) from the census database. In the 1985-1993 design, selection 

was made with probabilities proportional to the number of private properties 

registered within each PSU following the 1981 census. A geographically ordered 

systematic procedure was used for this selection. In the current design, this selection 

was carried out in two phases. In the first phase, a group of PSUs were independently 
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Table 2.2 

Venezuela. Labour Force Survey (LPS) 

Sample Size (PSU) by Se lec t ion Strata, Current Design, 98-11 

1/2 

SEGMENTS (PSU) 
STATES SELEC. NAMES 

14 STRATA (h) 
NAMES 

Census 
Master 
Sample 

LFS 

VENEZUELA 21854 6078 1833 

1 DTTO. FEDERAL 2734 400 261 

ST.1 A.IVI. DE CARACAS 2319 250 221 
ST.2 MUNICIPIO VARGAS 415 150 40 

2 ANZOATEGUI 1156 450 66 

S T ^ A.M. DE BARCELONA-PTO. LA CRUZ 484 200 28 
ST4 TRS 672 250 38 

3 APURE 386 83 24 

ST.5 A.M. DESAN FERNANDO 151 28 12 
ST6 MUNICIPIO PAEZ 86 42 6 
ST.7 TRS 149 13 6 

4 ARAGUA 1335 310 7-4 

ST8 A.M. DE MARACAY 901 160 56 

ST,9 TRS 434 150 18 

5 BARINAS 598 220 28 

ST.10 A.M. DE BARINAS 191 90 9 
ST.11 TRS 407 130 19 

6 BOLIVAR (a) 1149 330 115 

ST .46 MUNICIPIO CARONI 167 61 
ST,47 MUNICIPIO HERES 83 26 
ST. 48 LOCALIDAD UP AT A 15 4 
ST 49 MUNICIPIO CEDENO, ELCALLAO, GRAN 

SABANA, PIAR, MUNICIPIO PIAR, RAUL LEONI 
65 24 

7 CARABOBO 1713 500 81 

ST\ 12 A.M. DE VALENCIA 1327 300 63 
ST.13 TRS 386 200 18 

8 COJEDES 240 120 11 

9 FALCON (a) 920 350 50 

ST\15 MCP : ZAMORA, COLINA, MIRANDA 195 94 11 

ST\16 MCP : CARIRUBANA, LOS TAOUE, FALCON 191 100 10 

ST\17 T ^ 534 156 29 

10 GUARICO 704 300 34 

ST\18 A.M. DE CALABOZO 124 60 6 

ST 19 TRS 580 240 28 

11 LARA (a) 1602 300 231 

ST.20 A.M. DE BAROUISIMETO 869 150 126 
ST.21 TRS 733 150 105 

12 MERIDA 767 310 44 

ST.22 A.M. DE MERIDA 265 140 15 

ST.23 TRS 502 170 29 
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Table 2.2 

Venezuela. Labour Force Survey (LPS) 

Sample Size (PSU) by Se lect ion Strata, Current Design, 98-11 

2/2 

SELEC. 
STRATA (h) 

SELEC. 
STRATA (h) NAMES 

SEGMENTS (PSU) 
SELEC. 

STRATA (h) 
SELEC. 

STRATA (h) NAMES 

Census 
Master 
Sample 

LPS 

13 MIRANDA 2629 565 212 

ST.24 REGION LOS TEQUES 347 120 28 

ST.25 REGION BARLOVENTO 313 65 25 

ST.26 VALLES DELTUY 467 80 38 

ST .27 EJE GUARENAS GUATIRE 274 100 22 

ST.28 ^ETROPOUTANA 1228 200 99 

14 MONAGAS 646 200 34 

ST.29 A.M. DE MATURIN 315 80 16 

.31.30...... TRS 331 120 18 

15 ST. 31 NVA. ESPARTA 357 170 16 

A.M. DE PORLAMAR - PAMPATAR 166 80 7 

TRS 191 90 9 

16 PORTUGUESA (a) 704 250 150 

ST.32 A.M. DE ANAGUA-ARAURE 222 60 38 

ST. 33 TRS <^2 190 112 

17 SUCRE 862 330 52 

ST.34 A.M. DE CUMANA 241 110 14 

ST.35 TRS 621 38 

18 TACHIRA 447 185 58 

ST.36 A.M. DE SAN CRISTOBAL 376 150 25 

ST.37 SAN ANTONIO DEL TACHIRA - PEDRO 71 35 11 

ST.38 TRS 615 100 22 

19 TRUJILLO 731 200 31 

ST.39 A.M. DE VALERA 193 80 8 

ST .M TRS 538 1 ^ 23 

20 YARACUY 513 175 26 

ST 41 A.M. DESAN FELIPE 112 55 6 

ST.42 TRS 401 120 20 

21 ZULIA (a) 2581 590 315 

ST.43 A.M. MARACAIBO 1501 300 195 

ST.44 ZONA ORIENTAL DEL LAGO 577 170 68 

ST.45 TRS 503 120 52 

22 ST.50 T.F. AMAZONAS 95 30 15 

23 ST.51 DELTA AMACURO 134 40 20 

' TRS = The rest of the state 

' A.M. = Metropolitan Areas 

' (a) = Sample size extended on OCEI-Governors agreements 
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Table 2.3 

VENEZUELA. LABOUR FORCE SURVEY (LPS) 
SAMPLE SIZE - DESIGN 1985-1993 

Resiiuii.i 
l.FN Siiinnii' Si/L' il 'Sl ) 

X'ENEZUELA 3,794 

Capital 
- Metropolitan Area of Caracas 
- Rest 

613 
371 
242 

Central 414 

Centro-Occidental 485 

Guayana 734 

Los Llanos 100 

Los Andes 471 

Nor-Oriental 489 

Zulia 488 

selected within each stratum for the MMSV . A total of 6,078 PSUs were selected in 

this phase with probabilities proportional to the number of PA registered within each 

PSU following the 1990 census. The systematic procedure used in this case followed 

a geographical order in the rural areas and a combined socio-economic order and a 

geographical order in the urban areas. The socio-economic order was defined by a 

classification of segments made by OCEI according to a special method. For the 

second phase, a sub-sample of PSUs from the first phase was selected using the same 

procedure explained above, but with equal probabilities. This sub-sample is the set of 

PSUs used by the LPS 

The second stage of selection was a random selection of sub-segments (Secondary 

Sampling Units, SSU). These sub-segments are spatial divisions of the segments 

made for sampling purposes. Each segment was divided into four sub-segments of 

^ Master Sample. This is a sample of primary units used as the base for the design of any survey in 
which the observation units are houses, households and/or persons. 
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Table 2.4 

VENEZUELA. LABOUR FORCE SURVEY (LFS) 
STATES AND PERIODS FOR WHICH AGREEMENTS WERE SIGNED 

90-1 - 98-11 

Stete 
[ 
90 

n 
90 

t 
91 

I I 
91 

r 
92 

11 I 
93 

a [ n 
94 

[ 
95 

n 
95 

1 
96 

U 
96 

I 
97 

I I 
97 

I 
9« 

II 
98 

Metropolitan Area of 
Caracas 1 

Aragua 

Falcon 

Bolivar-D.A.-T.F.A. 

Lara 

Portuguesa 

Tachira 

Zulia 

1 It is comprised by Dtto.Federal and 4 Miranda State counties (Metopolitan Area) 

approximately 50 private properties. Two sub-segments were independently selected 

within each segment. The selection was made with probabilities proportional to the 

number of PA within each area determined by a "reference count" carried out after the 

sub-segments had been created. A systematic procedure was used for this selection. 

In rural sectors only one sub-segment was selected. 

The third stage of selection was a random selection of PA (Tertiary Sampling Units, 

TSU). Approximately five PA were independently selected within each sub-segment 

with equal probabilities. A systematic procedure was used for this selection from an 

updated list of PA constructed for each sub-segment. In rural sectors approximately 

ten PA per sub-segment were selected. 

In the 1985-1993 design, the 3,794 PSU roughly yield a sample size of 190,000 

people of which approximately 120,000 are over fourteen years old. In the current 

design, for the second 1998 LFS run (98-11), the 1,833 PSU yield a sample size of 

approximately 110,000 people of which about 70,000 are over fourteen years old. The 
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sample sizes for both designs are shown in the tables 2.2 and 2.3. It is important to 

point out that agreements between OCEI and the governors of same States have been 

signed in order to increase the sampling size for these states. The states involved in 

such agreements as well as the periods for which these agreements have been signed 

are shown in table 2.4. The sample sizes comprising these agreements for the 98-11 

LPS run are reflected in table 2.2. 

The survey has a rotation system in which each PA selected remains in the sample for 

six runs (three years) and then is permanently dropped from the sample. Each 

Segment in the sample belongs to one of six ''rotation panels'", each panel being a 

sub-sample of the country. At every new run of the survey, one panel is "rotated"; i.e. 

the PA in the sample within the Segments belonging to those panels are replaced with 

other PA from the same segment. 

2.2.3. Selection Probabilities 

The LPS technical reports (OCEI 1987 and OCEI 1997) contain general details 

concerning the main characteristics of the survey. We now describe the estimation 

methodology used in the LPS. 

The selection probability of any PA -and consequently any person who lives in this 

PA- is given by; 

= (2.1) 

where 7̂  is the total of PA (Census) in the hth stratum {h=l,...,H). is the total 

(Census) of PA in the zth PSU, in the Ath stratum VV̂ ). 7 ,̂ is the total of PA 

after the reference count, in the zth PSU, in the Ath stratum. T̂ y is the total of PA 

after the reference count, in theyth SSU, in the zth PSU, in the Ath stratum (/=1,..., 

is the total of PA after the exhaustive list, in the yth SSU, in the zth PSU, in 
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the hth stratum. is total of PSU in the MMS V in the hih stratum, is the total 

of PSU in the LPS sample in the Ath stratum, is the total of PA in the LPS sample 

in the j th SSU, in the z'th PSU, in the Ath stratum, b is the number of SSU in the LPS, 

which equals 2 for segments and 1 for sectors. 

The sampling design is self-weighting within each stratum: 

'^hi 'T'hii 

in which case (3.1) reduces to: 

-h-l 

Tn 

where /=5 and 6=2 for urban areas and /=10 and 6=1 for rural areas, so, 6 / = 10 in 

both cases. 

The design weight attached to the Ath PA in the sample in theyth SSU, in the /th PSU, 

in the hth stratum (A=l,..., T^y) is then given by: 

^hijk ~ PiP-^hijk) ~ ''in (2-2) 
• lu 

Noting that (2.2) only depends on h, we have that V i,j,k: 

"4%* (2 3) 
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2.2.4. Par am eter Estimators 

The LPS estimator of total is the standard Horwitz-Thompson estimator but adjusted 

for non-response and for post-stratification. 

The non-response adjustment is made for E socio-economic groups. The segments 

within a stratum are grouped into socio-economic classes using the information on the 

census database. However, the original census classification for a specific segment is 

sometimes updated when significant changes of the standard of living in the area are 

observed. The weight of each PA is then "inflated" by the factor I { e = l , ...,E) 

where the numerator is the total of PA in the sample in the eth socio-economic group 

^th stratum and the denominator is the total of PA successfully interviewed in the 

same group in the same stratum. In the LPS technical documentation there is no 

formal justification for this adjustment. However, it is clear that the imphcit model 

assisting this procedure is a group mean model as in Samdal et al. (1992, p.264), in 

which it is assumed that a common mean and variance 

^({yheijk)-^lhe is shared by all PA within the same socio-economic group. The 

weight attached to the Ath PA in the sample in theyth SSU, in the rth PSU, in the hth 

stratum after non-response adjustment then: 

Che 

The post-stratification adjustment is made using the projected state level census sex-

age distribution at the reference time of the survey. 

Let a=l,2,3,...,A denote the A=22 sex-age sub-strata. Let be the projected 

census population of the Mh stratum in the a sex-age group and let 

be the aggregate projected census population of the a sex-age group for the strata 
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comprising the 5th state. The estimator of the total for a specific variable y is then 

given by; 

a = \ fl=l 

A f Y 

E 
a=I 

Aej v=] v 
'a f (2 5) 

where ^ = 1 if the vth element belongs to the sex-age group a and zero otherwise. 

This is a form of combined Post-stratification estimator. Note that 

= ^ and = are the 

Horwitz-Thompson estimators of ^ and ^ respectively. 

Since ^ = 1 for e a, the implicit model assisting this procedure can also be 

regarded as a group mean model, in which it is assumed that a common mean 

(o )=a P J and variance )=^ a ^ is shared by all the individuals within the 

same sex-age group within a specific stratum. 

The final weight attached to the vth person in the sample within the Ath stratum and 

the eth soci-economic is: 

(2.6) 

Therefore, (2.5) can be written as: 

r = E E E Z ( . - ; . - . r , „ ) 
a=l Aej e=l v=] 

(2.7) 
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Finally, the national level estimate is obtained as the sum of f f for all the 

s ^ 
Venezuelan States: ^ 7 / . 

J=1 

Let y be a dichotomous variable (0 and 1) indicating the membership to a specific 

group defined by a characteristic of interest. The proportion of people that belong to 

that group is estimated by: 

fT (2.8) 

Indicators such as the unemployment rate are estimated as the ratio of two Post-

stratification estimators. For instance, let ^ 7,,̂ ^ be equal to one if the vth person in 

(ahe) is over 14 year old and unemployed and zero otherwise. Let also be equal 

to one if the vth person in (ahe) is over 14 year old and active (employed or 

unemployed) and zero otherwise. The Unemployment Rate as defined in section 1.4 is 

then estimated at state level as follows: 

^ ^ 

^ ^ ^ '' ̂  j ( a ̂ he a ) 

(2.9) 

0=1 AGJ e=l v=I 

At the national level this rate is estimated as: 

- -

p ' 

Estimates of a specific for any sex-age group can be obtained by taking into 

account just the people who belong to this specific group in (2.9). 
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2.2.5. Variance Estimators 

The variance of the LFS estimators is complicated by the fact that without 

replacement sampling is used to select PSUs. However, assuming that the PSUs were 

sampled with replacement within each stratum, we can estimate the variance and 

covariance of the Horwitz-Thompson estimators by using the ultimate cluster 

technique (see e.g. Kish 1965, Wolter 1985, Skinner et al. 1989, Samdal et al. 1992): 

cov(7, , z , ) = - j ; ) ( 4 - 4 , ) p i o 
h&s y'-h /=i 

where ^/,/= Xy=iX!v=i is the Horwitz-Thompson estimators of and, 

^ ^ ^ ' Similar deGnitions apply to Z ,̂., f;,, and 

Zj . The assumption that the PSUs were sampled with replacement leads to a 

conservative variance estimator (e.g. Skinner et al. 1989, p.49). 

To get the variance and covariance estimators of a total such as 7 / in (2.7), we 

replace and Z ,̂. with Dl- and respectively in (2.10) where Dl- (and similarly 

for b l - ) is the estimated sum of the residuals - a^s ' a^htp weighted by 

for the zth segment in the Ath stratum: 

^ 
/V I «i m II m ^ " .1— , 

0=1 y=i v=i 

y 
where and noting that: 

„ x, 
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4 ' . X , , . ) 
f=] f=] o=i y=i v=] 

= z 
o=l 

A "v 
y —_s_i_ y 

Thus \Dl- - D / I takes the form: 

A ; - a ' = Z 

I 

y 
v y 

a hi *' 

A I Y 
y —" ^ V 

ah a h • I 
fl=l V a s / V a^"- s J 

^ /\ — \ y i ^ ^ 

I 
a J / 

(2 12) 

Substituting (2.12) (and its corresponding expression for z) in (2.10) we obtain the 

expression for the covariance of two estimators of totals; 

cov(y/ ,z , ' ' ) = - D j ] [ k , - D l ) (2.13) 

The estimator of the covariance of two proportions like the one in (2.8) is given by: 

c o v ( F / ' , P , " ) = ^ c o v < , r ( f / , Z , ' ) 

in order to estimate the covariance of two estimators of ratios like (2.9) we use in 

C2 11): 

( H hijv a ̂ hijv ) 
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It is important to point out that the LFS database does not contain the weights but 

the weights after sex-age adjustment „ for each person in the sample. 

If we use ^ in (2.11), and noting that: 

f _/ V 
•yj, Mf/V 'Wf/V 

f ; y 
X,. 

• X 

j , 

' -̂Aai/v a 
' j " 

we obtain: 

^ 6 
a : = E E E . w, Ae 

8=1 y=] v=l 

E E E n , - - i 
0=1 y=I v=] 

a ybii 

f/V 

a ̂ hijv 

a ̂ hijv (2.14) 

"=1 a ̂ s 

y 
y — " ^ y 

a hi ^ a hi 
a s 

And D / in this case is: 

a y 
A ' = Z " 

JL y JL ^ V » ^ y 

0=1 /, 
A ^ a ̂  A 

V « 5 y 

Thus \pi. ~D^ I takes the following form; 

A - / . 

(2 15) 
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Note that (2.12) and (2.15) differ just in the term j . Our experience is that 

this term tends to vary closely around one. Thus, we can expect that the use of ^ 

in (2.11) should work as an approximation to (2.14). However, if we substitute (2.15) 

in (2.10) to obtain the estimator of the variance of we obtain: 

c o v ( 7 / , 7 / ) = e ^ E 
hes 1% ^ i=l ^ ' fl=l ^ 

E 
hes 

) E f 
' a=] 

+ E 
j : 

\2 

a—I a ^ ' 

(2.16) 

Assuming a positive correlation between y and x, the second (negative) term within 

the squared brackets will be larger than the third one. Thus, taking into account just 

the first term of (2.16) yields a conservative estimator of the variance, that is; 

- t ' 
(«/, - i ) /=i 

(2.17) 

C2 18) 

The OCEI uses this approximation, collapsing pairs of consecutive PSUs. That is, 

pairs of consecutive PSUs are considered as being selected from a single stratum. Let 

yjj and ^^2 denote the estimates for the two PSUs collapsed into the /th "assumed" 

stratum, in the hth selection stratum. We have then that (2.18) reduces to: 

cov(f,«,Z.') = ( ] > « - Z , (2.19) 
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CHAPTER 3 

In sections 1.3 and 1.4 we discussed the necessity for improved estimates for labour 

force rates for sex-age groups, at state levels in Venezuela. We also noted the lack of 

auxiliary information available with the minimum requirements to be used for 

statistics estimation techniques. This led us to seek estimators that require, as 

auxiliary information, only censuses or their population projections. Although this 

applies to many countries in Latin America (see section 1.2), we refer only to 

Venezuelan states in this work. 

We begin this chapter defining the necessary notation as well as introducing the 

Pseudo-Likelihood technique which will be used later in this chapter. We then 

explore the SPREE method and its relationship to log-linear and multinomial logistic 

models used to obtain synthetic estimators for small areas represented as cross-

tabulations. Here we shall show the theoretical details establishing the equivalence 

between SPREE and the model-based approaches. The practical procedure to 

implement those approaches, including variance and covariance estimations, as well 

as its formal theoretical developments will be addressed in the next chapter. 

Throughout this chapter, we illustrate each development using examples from the 

LPS. For multinomial logistic models, we use the variables (sex, age, state) defining 

the sub-populations as the independent variables or effects in the model to obtain 
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smoothed estimates of the proportion of people in each of the three categories 

(Employed, Unemployed and Non-active) needed for the calculation of the rates 

within each sub-population. 

3.1. PfCrrWIUDIV AJfDTTBOE P I LMPROVlCH 

3.1.1. Notation 

We now define some basic notation that will be used from now on in this thesis. This 

basic notation is defined with the purpose of simplifying later explanations. 

Additional notation will be defined elsewhere in this document when required. 

Let us consider each sub-population as the cross-classification of people over 14 years 

old by sex, age groups and states. Let the subscript i=l,2 denote the zth sex category, 

j=l,2,3,4 denote the7th age group and k=l,2,...,23 denote the icth state (see section 

1.4). Thus, we have C = 2 4-23 = 184 cells or sub-groups. Similarly, let the 

subscript q=l,2,3 denote the groups Employed, Unemployed and Non-Actives 

respectively. In some cases and for the sake of simplicity, we will refer to the 

subgroups ijk ordered lexicographically as 5 = 1,... ,«S'. 

Regarding counts, proportions and rates, let us define: 

Mjjî  = The "true" finite population count of the number of people over 14 years old 

in the zth sex category, 7th age group, Mh state, ^th labour force group, for 

any specified time. We use the term "true count" to indicate the "assumed" 

true count, i.e. the Census counts for a census year. For any off-census year, 

we consider this count as "unknown". 

^ijk- The true finite population count of the number of people over 

14 years old in the /th sex category,7th age group, kih state, for any specified 

time. Likewise, any other subscript that is replaced with a point (•) will 

indicate that the figure is a total for that subscript. For example, will 
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indicate • Here we also use the term "true count" to indicate 

the "assumed" true count. In this case, the assumed true counts will still be 

the Census counts for a census year, but now, providing that the labour force 

groups (q) are aggregated, the "Census population projections" will be the 

"assumed" true count for any off-census year; otherwise the count will be 

regarded as "unknown". 

Pqlijk ^ijkql^ijk ^ True finite population proportion of the number of people over 

14 years old in the gth labour force group, belonging to the z'th sex category, 

yth age group, Ath state for any specified time. For the term "true", the same 

conditions as the ones described for apply. 

R̂y,̂  = True rate associated with the gth group for the zth sex category, yth age 

group, Ml state. That is, and R̂ŷ . would be the Employment 

Rate, Unemployment Rate and Non-activity Rate for the zth sex category, 7th 

age group, Ath state, as they were defined in section 1.4. Additionally, we 

define as the Activity Rate (section 1.4). For the term "true", the same 

conditions as the ones described for apply. 

When we use the small letters m and r instead of the capital letters M, and R used 

above, we will refer to sample figures. For instance, ruŷ ^ will denote the sample 

count of people over 14 years old in the zth sex category, yth age group, Ath state, ^th 

labour force group. To denote sample proportions we will usep instead of 71 . 

Likewise, when we use the symbols and "~" over any of these letters (including 

the symbol rt ), we will refer to a design-based estimator and to a model-based 

estimator of the letter or symbol in use. For instance, and will refer to the 

design based estimator and to the model based estimator of the true count of people 

over 14 years old in the zth sex category, 7th age group, Ath state, gth labour force 

group, for a specified time. 
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3.1.2. Pseudo-Maximum Likelihood (PL) 

We now give a brief description of the Pseudo-Maximum Likelihood method, which 

we shall use as the key tool to link the "standard" analytic statistics procedures to the 

case of complex samples. 

A common standard approach when estimating parameters for regression models is 

the use of Maximum Likelihood Estimation (MLE). Let (z = be n 

independent variables with known probability density function ; 8) . Suppose we 

have observed one realisation for each variable y^. The joint distribution of 

= is given by which can be regarded as a 

function of 0 and is called the Likelihood Function; 

i=\ 

The MLE of 0 is given by the vector 0 that maximises the Likelihood Function, 

which is the same as maximising the logarithm of the Likelihood Function 

Z(6) = Zog(Z(8)). 

The vector 0 can often be obtained by solving for 0 the set of Likelihood Equations: 

ae 6 56 6 ^ 

We have then that the set of Maximum Likelihood Statistics 0 is a function of the 

variables x , that is, 8 = -

When taking a sample using Simple Random Sampling (SRS) the assumption of 

independence is usually made and the vector of parameters 0 is obtained by MLE. 

When the sampling design is complex, the distribution functions fiiyf,^) are 
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affected, being now the conditional distributions of the population given the sampling 

design. If we want to apply MLE with complex samples we have to define first the 

structure of those conditional distributions to be used in the likelihood function. This 

process may be highly complicated requiring the modelling of the relation between y. 

and the design variables (Skinner 1989). 

Pseudo-Maximum Likelihood Estimation (PL) is an approach to the estimation of the 

vector of parameters 9 avoiding the complexity of defining the conditional 

distribution of y^. Suppose the sample ŷ  = has been taken from a finite 

population Q using a complex sampling design. Suppose Q consist of a realisation 

of N independent random variables ,z = (l,..,iV) with distribution function yi(]^;9) 

known. 

Suppose for the moment that we have observed the whole finite population Q, that is, 

we have a census. Using this information in (3.1) and solving for 9 , we would get a 

MLE of the vector of parameter 9 based on the finite population O ; that is, the MLE 

for 9 would be a vector of population parameters 6" defined by the values in O. 

We shall call 9" the census vector (Binder 1983), which is usually the target 

parameter in many common analysis where the estimation of 9 can be seen as a 

necessary step to estimate 9" itself 

We have now that n = N in the equation system (3.1) and thus U,. (9) = A(9) is 

a vector of finite population totals that are function of 9 . 

In practice we do not know the vector of finite population totals A (9) . The PL 

approach consists of replacing the vector of totals ^ ^ , U ; ( 9 ) = A(9) in (3.1) by a 

design consistent estimator A (9) and solving the equation system to obtain the 

pseudo-likelihood estimate 9^^ which therefore estimates the census vector 9" , 
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Here again, is a function of the variables y., that is, Qpi =g(yi,y2,--,y„) and the 

structure and properties of its variance-covariance matrix estimator will depend on the 

variance of that function under the complex sampling design. 

The estimator Qp̂  might coincide in some cases with the MLE 6 , for instance, if we 

use a self-weighted sampling design while using the Horwitz-Thompson estimator. 

However, it is clear that 9p̂  is not unique since it depends on the structure of the 

estimator A (6) used. 

3.2. THE SPREE METHOD 

As it has already been discussed, the method of Structure Preserving Estimation 

(SPREE) for categorical variables (Purcell and Kish 1980) offers a possible answer to 

the situation of main concern in this document, i.e. to obtain Labour Force estimates 

making use of auxiliary information derived from population censuses. 

3.2.1. General description of the SPREE Method 

The SPREE method consists in obtaining a cross-tabulation with estimated counts for 

the required period (often the present moment) using as a starting point a cross-

tabulation of the same dimension whose internal structure (marginals and counts) is 

believed to be highly correlated with the structure of the required cross-tabulation. 

The cross-tabulation used as starting point is often -but not necessarily- a table with 

the same variables as the one required by the researcher but for a previous reference 

period, i.e. a previous Census. 

The basic idea is, knowing that a cross-tabulation is fully defined by its internal 

association or interaction structure, to "update" some elements of that structure in the 

starting table by using "present" reliable information related to some of the margin of 

the cross-tabulation. We use the term "present" here to denote the period of time for 
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which estimations are required. Potential sources for present information are, for 

instance, large sample surveys, census updates and administrative registers. By using 

the Iterative Proportional Fitting (IPF) algorithm (see Deming and Stephan 1940, 

Purcell and Kish 1980, Agresti 1990, Chambers 1999), the chosen marginals in the 

starting table are forced to agree with the present marginals. This process updates the 

structural elements associated with the chosen marginals whilst leaving the remaining 

elements unchanged. The table counts resulting from this process are the estimated 

counts for the required period. 

The IPF algorithm consists of two basic steps that are repeated until a convergence 

criterion is achieved. Let us suppose we want to obtain updated count estimates for 

an x-dimensional cross-tabulation using as "initial" or "starting" point the same but 

outdated table whose counts we shall denote by M° , (c=l,...,C) where c denote the 

lexicographic order of the table cells. Let us also suppose that we have current or 

updated reliable information about r marginals of that cross-tabulation and let 

be a i?-vector containing those reliable marginal 

counts. The IPF algorithm proceeds as follows; 

a) Adjust the initial counts M° by an appropriate scaling factor to make them agree 

with one of the "present" marginals. Let us denote the adjusted counts by . 

b) Go back to step a), using the adjusted counts as initial values i.e. M° = M ^ , and 

using a different "present" marginals from M""'' that has not been used yet. If all 

the present marginals chosen for the process have already been used, start a new 

cycle using the one used in first place. 

New cycles are carried through until the following convergence criterion is attained: 

let M f = {mf be the vector of the r adjusted marginals involved in 

the process, after the steps a) and b) have been completed for the f-th time. Now, let 

AA 'be the vector whose elements Av4' are the absolute differences between the 

updated marginals and the adjusted marginals after the steps a) and b) have been 
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completed for the t-th time i.e. AA' = Convergence is achieved at the 

t-th. iteration when: 

<f) ; \/r ,f) = 0 (3.2) 

That is, all the differences between the adjusted marginals and the present marginals 

chosen for the process have to be sufficiently close to zero. 

We have then that the resulting adjusted counts from this process i.e. after 

convergence has been reached, are the SPREE estimates or updated count estimates 

we were looking for. Therefore, using the notation defined in this section, we can 

define the SPREE estimates of a cross-tabulation as the set of counts satisfying 

the set of equation: 

= M r ' (3.3) 

where is the vector of the R adjusted marginals involved in the process, after 

convergence has been attained. 

3.2.2. SPREE and the Labour Force case 

In our specific case, as it was explained in the previous section, the sub-population 

groups are a cross-classification of the people over 14 years old by sex, age group and 

state. The total counts and marginals for that cross-classification or cross-tabulation 

can be obtained for the Census year. In this section we will refer to Census year 

counts by adding apostrophe to the notation already defined i.e. M'y^ . 

We do not have reliable information about the current counts . However, the 

census population projections provide us with information about those marginals 
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related to the demographics variables (sex, age, and state), that is the sub-groups 

and consequently M,..„, , M,,,.,, M. .., and M,-^,. From the LFS we can 

select those estimates of the present marginals that we consider "reliable" enough to 

be included into the SPREE process. 

Example 

For illustration purposes and to bring theory into LF context, we will refer throughout 

this chapter to the LF situation using the notation defined in section 3.1.1. 

Let us suppose that we have reliable LFS estimates for the marginals and 

accordingly and M,j,^, i.e. and • Let us also consider the 

census demography projection at the state-sex-age group level as the true marginals 

My,., value. It is important to recall that, although the conceptual definition for the 

variable characterising an individual as employee, unemployed or non-active is 

exactly the same for both the 1990 Census and the LFS, there are practical issues 

suggesting that a prior adjustment of the Census data might be necessary (refer to 

section 2.3). It is also worth noticing that, due to the post-stratification estimation 

method used by the LFS, the LFS estimations counts equal the census 

demographic projection counts -the LFS estimation process forces the estimates 

of Mp. to be equal to the census projections-. Therefore, we shall use and 

indistinctively to denote those demography projection counts hence, although it 

is clear that will not be object of sampling error. 

Starting from the census cross-tabulation, we can use the iterative proportional fitting 

(IFF) algorithm to make the census marginal counts My,.,, and My,̂  agree with 

the census sub-population projection M^.and with the reliable LFS estimates of the 

current counts and My,^, that is, and My,^. The algorithm to obtain the 

SPREE estimates is as follows: 
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a) Adjust the initial counts by the scaling factor to make them 

agree with the "present" marginal estimate My^.- Let us denote the adjusted 

counts by . 

b) Adjust the counts by the scaling factor to make them agree with 

the "present" marginal estimate . Denote these adjusted counts by . 

c) Adjust the counts by the scaling factor j t o make them agree with 

the "present" marginal estimate . We denote these adjusted counts by . 

d) Go back to step a), using the counts as initial values. 

These steps go on until convergence is achieved. The resulting cross-tabulation will 

thus contain the SPREE-estimated counts with the SPREE-estimated 

marginal and for the present time period. The marginals , My,̂  and 

will all agree with the corresponding "present" marginal estimates , My,^ 

and , that is. 

(3.4) 

Note that this procedure has left unchanged the initial structural (interaction) terms of 

the Census table that are not related to the marginals we have forced to agree with 

"present" count estimates, i.e. it has left unchanged the I-K-Q, J-K-Q and I-J-Q 

structural terms. For instance, when we adjust the M'ŷ ^ to make them agree with the 

"present" marginal Mŷ ., - step a) in the IPF algorithm example above-; 

(3.5) 
ijk. 

we are using the same scaling factor at each level ofg, thus all the cross-

ratios but those related to q are being changed. 
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To illustrate this let us write the updated cross-ratio I-J for i=l,2 and7=1,2 after the 

adjustment given by (3.5), 

^ukq 
^uk- ^22k-

^nkq ^22kq 
^ukq 

^22k- ^nkq ^22kq 

^2\kq ^\2kq 
^2\kq 

^2\k-

^2\k-
^]2*g 

^\2k- ^2\kq ^nkq 
G ; ( 4 2 - A 2 ) = — ^ = ^ (3 6) 

Ci?(/, 2 - J] 2) has obviously changed from the original one. Working the same cross-

ratio for any combination of levels for I-J, I-K, J-K and I-J-K, we can easily see that 

those structural terms have changed. Let us now write any cross-ratio involving Q, 

say I-J-Q for i=l,2,j=l,2 and q=l,2: 

rtf(t — t —h % — ^2241 ^2\k2^\2k2 

^llkl ^\2k\ ^uk2 ^: 22*2 

^uk-

^\\k-
^22k\ 

^22k-

^22k-
^2\k2 

^2\k-

^2\k-
^\2k2 

^i2k' 

^uk' 

^2\k\ 
^2lk-

^\2k\ 
^\2k-

^uk2 
^uk-
Mm. 

m 221^2 
^22k' 

^22k-

(3.7) 

^\m^22k\ ^2\k2^nk2 

^2lk\^\2k\ ^\\k2^22k2 

This cross-ratio remains exactly the same as the initial census table. Again, working 

the cross-ratio for any combination of levels for I-Q, J-Q, K-Q, I-J-Q, I-K-Q, J-K-Q 

and I-J-K-Q, we can see that those structural terms have not changed. 

When we adjust the other two marginals and My,̂  = My,^, we then 

change the structural terms in the original table associated to those marginals, i.e. K-

Q, I-Q, J-Q, I-J-Q. Consequently, the only structural terms that are not changed in our 

specific case are I-K-Q, J-K-Q and I-J-K-Q. 

On the whole, we have that when applying the SPREE method we always end up with 

some marginals matching "present" marginals and with some structural interaction 
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terms changed and the others preserved. What term changes and what remains 

unchanged will depend on what marginals we adjust to current reliable information. 

3.3. THE SPREE METHOD AND LOG-LINEAR MODELS 

3.3.1. Log-linear Representation of Cross-tabulations 

We have seen in the previous section that the SPREE method involves three cross-

tabulations, i.e. the target unknown cross-tabulation, the reference or "starting point" 

cross-tabulation and the "estimated" cross-tabulation, as well as some reliable 

information related to some of the marginals of the target cross-tabulation. 

Nelder (1974) showed that cross-tabulations counts can be expressed or modelled as 

log-linear saturated models. Therefore, the three cross-tabulation involved in the 

SPREE method can be expressed as log-linear saturated models. In our case, the 

reference cross-tabulation is the Census table and its log-linear representation is, 

= 4-1^ -l-lg 4-1.. +1.^ 4-1^ 4-\y;̂  4-A.̂ g 4-A,̂  4-X̂ ^ 4-A.-ag 

(3.8) 

This is, a log-linear model containing all interactions up to the highest interaction 

order (saturated). Each parameter X, in (3.8) represents the structural terms 

associated with its sub-indices. For instance, the parameters Xy correspond to the 

structural terms given by (3.6), related to IJ when KQ are kept constants. Likewise 

the parameter correspond to the structural terms given by (3.7), related to IJQ 

when K is kept constant. The constant term in (3.8) is given by . 

In the same way, we can express the current but unknown cross-tabulation counts by: 

= XQ 4-\. 4-1̂ . 4-X̂  + \ + \ 
(3.9) 
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The cross-tabulation resulting from the SPREE method or "estimated" table can also 

be expressed as a log-linear model. We know that some of the structural terms in the 

SPREE-estimated table remain unaltered from the reference table. We also know that 

the remaining structural terms are "updated" or estimated. Therefore, we can expect 

that the log-linear model resembling this SPREE-estimated table will contain a 

mixture of original reference parameters and "updated" parameters. 

As we shall prove later in this Chapter, in the LPS situation this estimated table is 

represented by a log-linear model with the following general structure, 

Log(M,^)^Xl„ ;k (3.10) 

where and are the zero-ones rows defining the updated and the unchanged 

terms, respectively, related to cell ijkq. Note that X^^ and X?^ are just the rows of 

two matrices, X'̂  and X^ representing a partition of the well known model matrix 

for log-linear models, i.e. X = [X^ :X^]. The counts My^ are the SPREE-estimated 

present counts. 

In the example formulated in section 4.2.2 where the structural terms I-K-Q, J-K-Q 

and I-J-K-Q are preserved by the SPREE process, the explicit structure of the log-

linear model (3.10) representing the SPREE-estimated table would be, 

^ -i-X^ 

(3 11) 

We shall prove in the following sections that the "updated" vector of parameters 1 in 

(3.10) are the Pseudo-Likelihood estimates for the corresponding target vector of 

parameter k when these are constrained to equal the remaining "unchanged" 

parameters l ' . Consequently, the estimates generated by the SPREE method are 

in fact Pseudo-Likelihood estimates from a constrained saturated log-linear model. 
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This fact will enable us to develop expressions for SPREE-estimates and their 

respective variances based on Generalized Linear Model theory. 

3.3.2. Log-linear Models: A Brief Description 

Consider a set of sample counts from a given cross-tabulation with c = l,...,C 

denoting the lexicographic order for the C cells in the table. Let us suppose that 

follow an independent Poisson distribution, 

TMg! 

with expected frequency , that is, 

= (112) 

where is the cth row of the zero-one CxP model matrix X whose rows define the 

effects and/or interaction terms related to each count and 1 is a P-vector of 

parameters, so that (k) = / ( k ) . That is, the nonlinear expression of the model 

for jj.^, , is "linearized" and modelled as in (3.12) - a log-linear model. This 

is a special case of Generalized Linear Model (GLM) theory (McCullagh and Nelder 

1983, Dobson 1990). 

Many techniques have been developed to estimate the vector of parameters for models 

like (3.12); some of them are Weighted Least Squares (Grizzle et. al. 1969, Agresti 

1990), Minimum Chi-Squared (Neyman 1949, Bhapkar 1966, Agresti 1990), 

Minimum Discrimination Information (Kullback 1959, Berkson 1972, Simon 1973, 

Gokhale et.al. 1978), Kernel Smoothing (Aitchison et.al 1976, Agresti 1990) and 

Penalized Likelihood (Good et.al 1971, Simonoff 1983, Titterington et.al. 1985). 
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We shall use here Maximum Likelihood Estimation (MLE) to deal with log-linear 

models like (3.12) (McCullagh and Nelder 1983, Agresti 1990, Dobson 1990). MLE 

consists in finding the vector i that maximizes the likelihood function, 

Log(L{\i{'k))) = Log 
V c = l 

c 

7M. I 

-AW 

TM. ! 

c=l 
=E (̂ )) - E ()̂ ) - Z !) 

C=1 
C C 

= E ^ - constant 
C=1 C=I 

The likelihood equations are obtained by setting to zero the derivatives of the Log-

likelihood function with respect to the unknown vector of parameters 1 : 

8k 

where 
dLog{L) 

is a P-vector whose ^th element is given by: 

8Zog(l) 

C=1 c=\ 

x,x 

C113) 

so the Y>th likelihood equation is given by: 

C=I C=I 
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Let m be the C-vector of samples counts and let p(l) be the C-vector of expected 

frequencies . The set of likelihood equations is given in matrix notation as: 

:K'in==:x/|i()u) (s.i ' i) 

Birch (1963) showed that the likelihood equations for log-linear models are defined 

by equating the minimal sufficient statistics to their expected values. He also showed 

that for a log-linear model there exists just one set of counts that both satisfies the 

model and makes the minimal sufficient statistics equal to their observed values. 

Solving (3.14) for 1 we get the maximum likelihood estimates i and consequently, 

A = h(^), 

X'm = X'n( i ) (3.15) 

Note that the minimal sufficient statistics depend on the structure of the model. The 

zeroes and ones in each row of X define the cells for which the parameter related to 

that row plays any role. Therefore, X'm is a vector whose elements are the sums of 

cells defining specific marginals that correspond to parameters in the model. 

3.33. Log-linear "Census" Models 

Let us suppose now that our sample vector m is a vector of finite population counts 

M = {m^} with Mg =m . Let us suppose that the finite population, denote by 

Q*', is a sample from a super-population with c = \,..,C following an 

independent Poisson distribution. 

, (3.1,5) 
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with = |Lî (I) = e ' . It is clear then that the results developed in the last section 

fully apply to this case. The likelihood equations given in (3.14) are now, 

= p . i 7 ) 

Note that solving (3.17) for X we actually get the vector of parameters for the log-

linear model corresponding to the set of finite population counts ; we shall denote 

such a vector of parameter by ; that is, 

jCc%r(Af,) = (3.18) 

This vector therefore acts as the MLE for the super-population vector of 

parameters 1. That is, i = X"" , 

) == jCpfiL) (3.i()) 

Example. 

In our Labour Force case, assuming that the population counts follow an 

independent Poisson distribution^ the counts a n d M w o u l d be the 

minimal sufficient statistics for an unsaturated log-linear model = XI 

containing all the two-level interaction terms and the ijk as well as the ijq three-level 

interaction terms (see Agresti 1990 pg.l66), that is: 

\ ) + \ + Xy + 4- 4- (3.20) 
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Therefore, following Birch (1963) results, the equations: 

^ijk- - M-p. (^) 

(3.21) 

are the likelihood equations for the model (3.20) and the vector i and the set of 

counts (1) = satisfying these equations are the Maximum Likelihood 

Estimates for 1 and , 

= \ , (3.22) 

3.3.4. Constrained Log-linear Estimation 

We can also be interested in fitting a model where some of the higher interaction 

terms are believed to be known, hi this case we want the fitting process to be 

conditioned or constrained by them. 

Let be the -vector of unknown parameters and let be the ^ -vector of 

known parameters, with P ,̂+P|̂  = P . Let also and be the zero-one model 

matrices whose rows define, respectively, the unknown and known effects and/or 

interaction terms related to each count. We have then that the log-linear model we are 

interested in can be expressed as; 

= (3.23) 

We can obtain the likelihood equations for a log-linear model like (3.23) in the same 

way as we obtained those in (3.19). Suppose again that the counts follow an 

' Some considerations about this assumption will be discussed later in Chapter 5 
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independent Poisson distribution as in (3.16). However, we have now that 

ti, = ,tliatis, 

(3.24) 

where and Xf are the cth row of the zero-ones model matrix X^ and X^ 

respectively, so that = p^,(l^,^*) = / ( 1 ^ , 1 ^ ) . The Log-likelihood function is: 

I C = ] M ' 

C=1 

C 

y 

M I 

Z M / o g ( / / , ( IM"") ) - Z Z log(M,!) 
C=1 
C 

C=1 
C 

c=] 

£ m , [X ,"i" + X f j - X e " " ' " * " . ' ' ' -constant 

Noting that is a vector of known fixed constants, the likelihood equations for a 

log-linear model for p are obtained by setting to zero the derivatives of the Log-

likelihood function with respect to the unknown vector of parameters i F : 

where is a -vector whose p̂ A element is given by: 

C=1 

(325) 

71 



so the hkehhood equation is given by: 

We have then that, in matrix notation, the set of hkehhood equation is: 

X^'M = X^' (3.26) 

Solving (3.26) for iF we get the maximum likelihood estimates for 

X^'M = X^'n(i^,l^) (3.27) 

As the cells taken into account for a particular equation in (3.27) depends only on 

, it is clear that the minimal sufficient statistics in this case are the same as those 

of a reduced log-linear model Log{yC) = . 

However, the ML estimation of X" and n in (3.27) will differ from that of the 

reduced model; this is due to the fact that, following Birch (1963) results expanded 

by Haberman (1973, 1974), the MLE of parameters and counts for a log-linear model 

have to satisfy not only the minimal sufficient statistics but also the structure of the 

model. This structure is given by the right-hand side of equation (3.24). Therefore, 

the MLE k" and consequently ji have to take into account 1^, i.e. estimation is 

constrained by 1^. In brief, the ML estimates will consist of those values and M 

satisfying (3.27), that is, satisfying the minimal sufficient statistics as well as the 

model. 

Note that working with a model like (3.12), that is, Zog(n) = X 1 , can be considered 

as working with a particular case of the general model (3.23), 
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Log (fi) = ; in model (3.12) we do not make the assumption of 

knowing the value of any of the parameters in the structure of the model, i.e. all the 

parameters in the model belong to 1^, so 1 = 1" . 

Example 

Let us suppose we are interested in the saturated model, 

= H +1, +1^ + \ + \ - +\A + \ 

and we believe we know the true values for and . Therefore, following 

the notation defined above, we can write this saturated model as; 

+ \ " + \ " +k +k +'-jt+^J4 +'^t,+k!h + 
( i .zs j 

In this example, the matrix X" has the same structure as the matrix X in the model 

(3.20) defined for the previous example. Therefore, the general structure of the 

likelihood equations given by (3.27) generates, in this example, the same set of 

likelihood equations (3.21). However, this set of likelihood equations has now to be 

solved for conditioning on the vector of parameters , 

^ijk-~ ) 

(3.29) 

) 

That is, is the vector of ML estimates of constraint on 
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We finally have: 

) = li + + 
(3.30) 

with 

3.3.5. Pseudo-Likelihood Estimation for Log-linear Models 

So far in this chapter, we have been considering the super-population parameters 

as our target for estimation. We have also used the finite population counts 

and their model parameters as the ML estimates for (1). In practice, 

however, we do not know the value of the finite population counts . In fact, these 

counts are often the real target of the analysis, as it is in our case. 

Yet, it might be feasible to get reliable estimates of the marginal counts needed to 

solve the likelihood equations given above. Information from different sources like 

Administrative Registers might be available for the period of interest. If this 

information is available and we are willing to accept it as the "true" values, we can 

then apply the theory discussed in the previous sections and get the vector of 

parameters 1 = 1" and the ML estimates p ( i ) . 

When no information is available from administrative registers or the same is 

considered of poor quality, another alternative is the use of survey estimates. Suppose 

we have survey estimates for the counts in the cross-tabulation and, although they 

are considered of poor precision, the aggregated marginals involved in the likelihood 

equations are considered reliable. We can then use the PL approach explained in 
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section 3.1.2 replacing finite population quantities by corresponding survey estimates 

in the likelihood equations (3.26) to obtain the PL estimates for the vector of 

parameters 1 and the expected frequencies ^(1), 

= (3.31) 

Note that all we have done here is to use a vector of sampling estimates M instead of 

M in the likelihood equations. In other words, we are replacing the vector of totals 

= = 0 (3.32) 

by a consistent estimator, 

X'[M-n(l^,)L'')] = A(;L^,l"') = 0 (3.33) 

Therefore, we can say that the vector of parameter estimates , resulting from 

solving (3.31) for 1^ , is the vector of PL estimates generating the set of PL 

estimates , with elements , 

Zog(|ir') = X ^ % + X ^ r (3.34) 

Note that using direct survey estimates in the likelihood equations, we are in fact 

producing model-based estimates for the finite population counts to estimate the 

super-population parameters (1). Provide the model holds, the model-based 

estimates for the finite population counts should be of a higher accuracy than the 

direct survey estimates; this is due to the fact that are based on the estimation of 

a fewer number of parameters and therefore their level of precision is higher. 

However, as the model departs from reality the bias component in the estimates 

increases. Therefore, the gains in precision when estimating the finite population 
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counts through a specific model like in (3.34) have to offset the increases in bias in 

order to justify its use instead of direct survey estimates. 

Example 

We can usually obtain population projections for the counts . For counts 

involving Labour Force classification such as and , some countries 

produce estimates based on administrative registers such as registers of people 

claming benefits or registers of job seekers. If this is the case and we are willing to 

accept those figures as true values, we proceed as discussed in previous sections 

getting the vector of parameters i and the ML estimates p,(i). However, we 

recall that this is not the case we are facing in this work. We are working under a 

different scenario where no extra auxiliary information other than that coming from 

censuses is available. 

However, we do have survey information from the LFS that can be used in this 

process. Therefore, in our example in section 4.3.3 where we have the likelihood 

equations given by (3.29), we can rely on the population projections for the counts 

and on the LFS estimate M..,^ and in order to obtain the PL estimates 

. hi this case, the pseudo-likelihood equations would be: 

(3.35) 

Ay., 

Finally, the model estimates for the finite population counts are, 

p.36) 

and M,;: 
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3.3.6. SPREE Estimates: Log-linear Model Pseudo-Likelihood Estimates 

We have seen that the minimal sufficient statistics implied by (3.31) will depend on 

the structure of the model and: 

a) Those minimal sufficient statistics will always consist of those marginals for 

which we assume to have reliable current estimates. They are also related to 

the highest interaction terms in for each factor in the model. 

b) The likelihood equations given by (3.31) force the marginals of the to-be-

estimated table of counts to match the minimal sufficient statistics. 

c) Solving (3.31) for "k" given gives us PL estimates and thereby PL 

count estimates . 

We now focus our attention on the particular case of a saturated model of the form of 

(3.24). Let us consider the following two notes. 

In point a), note that the marginals involved in the minimal sufficient statistics are the 

same marginals belonging to the vector M""''' in the SPREE method procedure 

explained in section 3.2.1. 

In point b), note that the likelihood equations given by (3.31) will always have the 

same structure as those equations implied by (3.3) i.e. the set of equations the adjusted 

counts Mj, „ have to satisfy for those counts to be the SPREE estimates (see section 

3.2.1). 

Therefore, taking into account these comments, point c) also implies the adjusted 

counts Mj , „ resulting from the SPREE process have to be the PL count estimates 

obtained using the estimated Log-linear model, 

l o g (3.37) 
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where represent the "changed" or "updated" terms I and the "unchanged" 

terms i ' in the resulting SPREE model as denoted in (3.10). 

Example 

Let us return to the SPREE algorithm discussion. In the example in section 3.2.2, we 

discussed the case where a table from a previous census was to be updated using the 

LPS estimates My^,, and . We saw in that example that the IPF algorithm 

forces the following equalities to be true: 

Ad:,, = (3.38) 

which has exactly the same structure as (3.35) for the PL-estimates under the model, 

= ^ 

" + 
^ (139) 

We know from section 3.3.1 that the set of counts produced by the SPREE method in 

that example have the structural terms I-K-Q, J-K-Q and I-J-K-Q preserved from the 

census table. We also know from section 3.3.1 that these structural terms are related to 

the interaction terms in the log-linear representation of the census cross-tabulation that 

we denoted as and . Therefore, if we set 

3* - j 

and solve the likelihood equations (3.35) for 1^, we just have to invoke the result of 

Birch (1963) where he showed that for a log-linear model there exists just one set of 
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counts that both satisfies the model and ensures the minimal sufficient statistics are 

equal to the observed values, to prove that we will get from the constrained log-

likelihood PL-estimation the same set of estimated counts as those we get from the 

SPREE process, 

/ft/ 

3.4. UNSATURATED SPREE 

Suppose we conclude that some of the higher order interaction structures do not play 

any role in the overall structure of our cross-classification; yet, we feel that the higher 

interaction structures among the remaining terms are worth preserving. We can still 

use the SPREE algorithm in this case to get the target count estimates; however, this 

requires us to first make a suitable modification to the "reference" or "starting" table. 

This modified table has to be one having: a) the same structural terms as those to be 

either updated or preserved from the original table and b) the remaining structural 

terms not to be either updated or preserved set to one. We get to this modified table 

by building first a table from the marginals related to those effects to be either updated 

or preserved, and then expanding that table to the original dimension of the starting 

cross-tabulation ensuring the remaining structural effects are kept to one. 

This modified table can be represented as a non-saturated log-linear model where 

those parameters equivalent to those not to be either preserved or updated are not 

present, i.e. they equal zero. Here, note that structural terms (odd ratios) equalizing 

one in the cross-tabulation translate into parameters equalizing zero in the log-linear 

representation of such cross-tabulation. As this modified table is the one used as the 

starting table, this approach is called "unsaturated SPREE". 

The rest of the process would be exactly as it has been explained in this chapter. We 

apply the IPF algorithm to the modified starting table and end up with a table of count 
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estimates with the preserved structural terms from the original table and the updated 

structural terms as planned and the remaining structural terms equal to one. 

However, building that modified table might be cumbersome. Instead, we can use 

Log-linear models to do this. Let again be the set of parameters considered as 

"unknown" and the set of parameters considered as "known" in a log-linear model 

for the expected frequencies matrix of dimension C, that is, 

Zog (n) = -k (3.40) 

We recall that and represent the interaction structures to be updated and to be 

changed respectively in the SPREE procedure. In section 3.3.4 we showed that the 

general set of likelihood equations for this kind of models is given by: 

X'M = X'n(X^,l'') (3.41) 

However, note that we are now working under the assumption that some of the 

highest order interaction terms do not play any role in the structure of the cross-

tabulation. Therefore, our model (3.40) is now a non-saturated log-linear model with 

ly and 1'^ being of dimension ^ and respectively with (î , + ) < P . 

We obtain the PL estimates for the target counts as it was explained in section 3.3.5, 

that is, using the set of direct estimates M instead of M in (3.41), solving for , so 

that we get the vector , 

X^'M = X^'n(i^^,l^) (3.42) 

and finally using the equation: 

(3.43) 

Again, the cells taken into account for a particular equation in (3.42) depend only on 

so the minimal sufficient statistics are the same as those of a reduced log-linear 
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model consisting only of . Note in (3.42) that ML estimation of is also 

dependent on the value of . 

Example 

In our example, suppose we assume that the highest order structural terms ijkq in our 

cross-tabulation can be considered as not playing any role in the overall structure of 

the table; i.e. they are equal to one. Let us also suppose that we want to preserve the 

structural terms ijq and ikq from the census cross-tabulation updating the remaining 

terms making use of the corresponding LFS direct estimate marginals. 

We will use the log-linear approach to get the current count estimators. The modified 

census table can be obtained by fitting the unsaturated log-linear model, 

(3.44) 

Therefore, = e ™ are the counts in the modified "starting" table. Note that 

(3.44) does not contain the parameter . 

The current cross-tabulation counts are suppose to be well represented by the 

following unsaturated log-linear model, 

4-1" +X" +X" + A," -i-X" + 1 " + 1 

(3.45) 
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Note that this model, as model (3.44), does not contain the highest interaction term 

'^fkq • We now treat the terms related to the interaction structures to be preserved as 

"known", so that (3.45) can be written as, 

= = 1 ^ +X," + 1 " + 1 " +X" + 1 " + 1 " + 

(3.46) 

We now assume that the current counts follow a Poisson distribution with 

expected frequencies so we can use log-linear PL estimation to estimate the 

model. 

1 

(3.47) 

As we have already seen, this procedure will give us PL estimates for the target model 

(3.46). Therefore, considering and and using the LPS direct 

counts estimates to solve (3.42) for , we get the PL parameter estimates . 

The likelihood equations are the same as in (3.35); however, the resulting and 

consequently the resulting PL current count estimates are different in this case 

from those we would have obtained in (3.35). This is due to the fact that the 

likelihood equations are solved here constraining on =(^J^Aj^) ' whilst in the 

saturated example they are solved constraining on A j ^ ) ' • 

Finally, the set of PL current count estimates are given by the equation: 

(3/48) 
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INFORMATION 

We could face the situation where no information from reference tables is available. 

That is, there are not interactions from any reference table that we want to preserve. 

In this case we can still make use of log-linear models to get current count estimates 

although we now have to rely only on direct estimates of current marginals or any 

other source of information regarding current marginals we assume as reliable. That 

is, we have to rely on a traditional unsaturated log-linear model, 

Zog (H,) = (3.49) 

where 1 = 1^ is a ^-vector with < P . The likelihood equations are again given 

by (3.42) but without conditioning on any interaction term , 

IVI = )["'|i(]L%,) (3.5()) 

The set of PL estimates are given by the equation: 

IVI,% ==6?* (zkSl) 

Example 

Providing there is a close relationship between the preserved census year structures 

and the respective current structures, the procedure explained in previous sections 

should yield significantly better estimates of the count than those offered by the 

direct design estimators. 

The problem is that Latin American countries usually have unstable economies that 

do not guarantee the preservation over time of structures such as the labour force, 
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especially at small area levels. In the last fifteen years, for instance, Venezuela has 

experienced important economic changes that have led to dramatic transformations in 

the dynamics of its labour force. As a simple illustration of this fact, we can mention 

that the Venezuelan Unemployment Rate was 10.4% in 1990, dropping to 6.4% in 

1993 and registering 14.5% in 1999. The Activity Rate dramatically rose from 59.4% 

in 1990 to 65.7% in 1999. People occupied in either small businesses or as self-

employed increased 10.3% (from 42.1% to 52.4%) in just nine years. These 

indicators suggest that the dynamics governing the behaviour of the labour market 

have changed considerably since the last census year. This phenomenon can be even 

more evident at local levels. For instance, the discovery of new oil layers in the south 

east of the country at the beginning of the nineties motivated important internal 

changes in some states that started registering significant growth in population. These 

arguments suggest that preserving structures from the census year as those implied by 

'^'ikq'^'jkq 3nd in (3.8) may not be a sensible strategy to follow. However, this has 

to be verified before drawing any definitive conclusion. 

Suppose now that there is no Census table that can be used as a reference for the 

SPREE process. Suppose also we feel that the expected frequencies of the Poisson 

model generating the current set of counts is sufficiently explained by the following 

unsaturated log-linear model: 

= ^ = M' + \- + + 

(3.52) 

That is, the highest order interaction structures jkq ikq and ijkq in our cross-tabulation 

can be considered as not playing any role in the overall structure of the table, so we 

set them to one and consequently to zero in the log-linear model. 

The likelihood equations for this model are again the same as in (3.35). The resulting 

and PL current count estimates will be different from those shown in the 

previous examples as the likelihood equations in those cases are solved constraining 

on "known" parameters . 
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The PL current count estimates are now given by the expression: 

(3 53) 

3.6. THE SPREE METHOD AND MULTINOMIAL LOGISTIC MODELS 

Let again the set of population counts follow a Poisson distribution It is 

well know that the distribution of given M is multinomial 

with n^ = \xj\x. . If we assume one of the variables defining the cross-

tabulation a response variable and we split the set of population counts into the G 

groups defined by the remaining variables in the table, so that we rename the C counts 

as ;g = 1,..,G; c' = l , . . ,C, the conditional distribution of given 

Mg. is a product multinomial with = 

= y , n ,. Note that C = GxC . 
' eg * 5̂  

Suppose 71̂ ,/̂  =^cVg(P) = A(Z^,P) is a general response model for , where p is a 

T-vector of "effect" parameters and is the cth row of the zero-one CxJmodel 

matrix Z defining the effects and/or interaction terms related to each cell. A product 

multinomial logistic model for is given by, 

l o g 
\^baselg y 

==:z„j(== Z,p (3.54) 

where is any of the C expected response proportion of group g selected to be 

used as the base category. We can also express (3.54) for the case in which we 

assume we know some of the effects and/or interaction terms in p , 

l o g ^Z^^.p^'+Zy (3.55) 
^baselg y 
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The proportion is given by the expression, 

n 

Z.Jc'=I 

(3.56) 

We can easily extend the SPREE method to the case of product multinomial logistic 

regression noting that. 

y-baselg y 
l o g 

/^gbase / Z' 

l o g 
f \ 

\Mgbase J 

and by properties of logarithms. 

l o g 
\/^gbase y 

that is, a log-linear model for - |lî  minus the same model for another count 

V̂baseg ~ V̂b'̂  thus, assuming a general log linear model for like the one in (3.24), 

we have that, 

l o g 
V, ^base I g y 

{K-K^..y+(K--K^..y 

(3.57) 

Therefore, from (3.55) and (3.57) we have that. 

(x^,. - x ^ ^ . , ) j , " + ( x j . -X^^ . , )X ' = Z l f . " + z y (3.58) 
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As we have seen in this chapter, finding the PL estimates for the log-linear model 

Log ( i s equivalent to carrying out a SPREE process 

preserving the structural terms related to from the reference table. Therefore, if 

we substitute the PL estimate X" into (3.58) we get the structure of the logit model 

equivalent to the SPREE process, 

\"'baselg y 

+ Z j , p ' (3.59) 

Recall that when we fit (3.59) we are working with counts following a product 

multinomial distribution (M^,7i^yg) so that we assume fixed. Therefore, the 

log-linear models Log{\x^^,^ we are interested in are those containing the interaction 

terms as they force, through the likelihood equations, the marginals to agree 

with the population marginals . 

The PL estimates for the proportions , which are also the PL estimates for the 

finite population proportions P̂ ,,̂  = , are given by. 

jc'=] 

We shall illustrate this using our LFS case. 

Example 

Consider the saturated log-linear model for in (3.39). We have seen that fitting 

such a model conditioning on 1'̂  we get PL estimates equivalent to those 
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obtained by carrying out the SPREE method using the LPS estimates , M„, and 

M . . Therefore, we can obtain PL estimate for and therefore for as, qlijk ,/i/t 

Another way to get the PL estimate for is by fitting the equivalent product 

multinomial logistic model. The response variable is the category in the labour force 

which we denoted by q=l,2,3. We know that 71,̂ ^ =1. We can then 

write the following product multinomial logistic model for using q=3 as the 

base category, 

l o g 
TC 

(3.61) 

where p is the T=(IJK)(Q-l)-\Qctox of parameters. The proportion tc is given by, 

tl (3.62) 

Noting that , we can write (3.61) as follows: 

l o g qlijk 

V V 
= Log 

f \ 
^#3 

+,1^ +; i^+/ iy +,;i^ +;i^ 

4-,?^ +;i^ +/{^ +/l^ +^*3 +^^3 +^jt3) 



Rearranging, 

+ ( 4 - + « - 4 3 ) + % - < 3 ) + ( ; i l - < 3 ) 

(3.63) 

so that. 

Z,og 
V ^3/(/t y 

ijkq (3.64) 

Fitting (3.64) conditioning on -this will be explained in the next chapter-, we get 

the PL estimates, 

^-PL \ 

l o g 
71 ?/{/* 

\ ^3/# y 
= < +y9% + A : m ikq jkq r ijkq 

(3.65) 

where is the PL estimate for the constant term for the gth labour force group and 

(3^™' and are the corresponding sex, age group and state PL 

estimates effects and the sex-age PL estimates interactions effects at the different 

levels of q. The parameters p,.f ,̂ and correspond to the sex-state, age-state 

and sex-age-state interactions effects at the different levels of q for the Census year, 

which we planned to preserve. 

Note that the log-linear model we use here contains the interaction terms 

as necessary terms given the assumption that the Myĵ , are fixed. 
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The PL estimates , and consequently the PL estimates for , are 

finally given by, 

e " ' + % ' ' ' + P , ^ + P j I , + P w , 
^ (3.66^ 

z , = . 
g , + , % 
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( Z I l j U P T T I C R 4 

JSj?777WD4]rf<%n/ J f P j f TjBO? 

In the previous chapter, we discussed the hnk between the SPREE method and both 

log-hnear models and logit models. These methods allow us to produce alternative 

count estimates based on models when traditional direct estimates are considered 

unreliable and no auxiliary information other than from past censuses is available. 

The application of these methods results in smoothed estimates of the total counts 

^ijkq by the shrinking the direct estimates toward the average values defined by the 

direct estimates of marginal counts specified by the terms in the model. These model 

estimates should be better than the direct design estimates, providing the terms in the 

model explain well enough the structure of the current cross-tabulation. That is, the 

variance of these estimators should be lower than the variance of the direct estimators, 

but that difference must be sufficiently larger than the magnitude of the bias arising 

from the misspecification of the model for the model estimates to be preferred. 

The main advantage of having established the link between the SPREE method and 

log-linear and logit models is the possibility of using the Generalized Linear Model 

(GLM) theory to estimate parameters and calculate variances estimators for the 

SPREE process. 
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In this chapter we first discuss a new idea for the estimation of SPREE parameters 

and variances making use of the well known experimental design concept of 

"exposures". The appeal of this idea lies in its practical convenience as it can be 

carried out using standard statistical software. 

We then complement the theory developed in the previous chapter by describing the 

theory behind the parameter and variance estimation process. A Rao-Scott (1981) chi-

squared approximation is defined in order to assess the goodness of fit of the models 

proposed as representation of the cross-tabulation. Finally, alternatives for a 

diagnostics process are discussed in order to obtaining measures that give us some 

insight into the presence of outlying cells and influential points when these models are 

to be implemented in practical work. 

4.1. SPREE ESTIMATION AND VARIANCE ESTIMATES: PRACTICAL 

COMPUTATION 

The IPF algorithm described in the previous Chapter is the procedure traditionally 

used to fit SPREE models. However, that algorithm does not allow us to get 

parameter estimates and variances. We now describe a simpler method that allows us 

to obtain the target count estimates and their variances without prior knowledge of the 

model parameters from the census data. This approach can be carried out using 

standard statistical software. 

4.1.1. A new practical approach to SPREE computation: The Exposure-based 

Method 

We know fi-om the previous Chapter that both the census counts M\. (or any table 

counts being used as a reference table) and the unknown current year counts can 

be expressed as saturated log-linear models: 
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(4 1) 

(4 2) 

where X" and X" are the C-vectors of parameters for each saturated model. We also 

know that (4.1) and (4.2) are respectively ML estimates of the super-population 

model, 

(43) 

(4.4) 

Let us consider a table whose C cells values are the ratios \ i jM[ . , that is, the relative 

change between the expected value of the current count and the census year count for 

the cth-cell. Consider now the logarithm of the ratios \ i j M ^ . Treating these ratios 

as counts, we can also model them using a saturated log-linear model. 

l o g ( 4 j ) 

where V is the C-vector of parameters. We can get PL estimates for (4.5) using the 

same procedure explained in the previous Chapter (see Section 3.3.3). Therefore, 

using the direct estimates M we can obtain PL estimates for M , 

l o g x r (4.6) 

We shall highlight here the similarity of (4.6) to a technique widely used in 

experimental design when the outcome of a variable is known to be correlated to an 

"exposure" value (see e.g. Agresti 1990). Let y^, i=l,2,...,n , be a lexicographic-

ordered set of variables or counts following a Poisson distribution with mean y., from 
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a given cross-tabulation; that is, ~ P{Y.). Let the mean Y. be proportional to a 

quantity or "exposure" value . Modelling the ratios Y. / E. allows us to compare 

the means Y^ allowing for the distortions produced by the E.. Therefore, Y^! E. can 

be modelled as: 

X,.X 

(4.7) 

and the means Y. can be obtained as: 

:= (4.8) 

Using the sample counts y. we can obtain ML estimate of 1 and thus of Y.: 

(4.9) 

The term Logi^E^ j in (4.7) is usually called an 'offset'. Most currently available 

statistical software allow fitting models using an 'offset', and so obtaining count 

estimates like the set Ŷ  above is a fairly simple task to carry out. 

In (4.5) acts as the 'exposure' value we assume to be correlated to the current 

expected frequencies and in then equivalent to an offset. Therefore, the 

PL estimates for the current expected frequencies are given by, 
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Let us now look into the structure of (4.5). By properties of logarithms, equation (4.5) 

is the logarithm of the current expected frequency minus the logarithm of the 

census count M , 

(4.10) 

It follows that, replacing (4.1) and (4.2) into (4.10), 

f o g 
r \ 

X I - x . r 

(4 11) 

Let us write the vectors of parameters 1 and l " ' as a vectors consisting of two sub-

vectors and respectively. That is: 

1"' = 
nv 

so that (4.3) and (4.2) are now, 

(4.12) 

04 13) 

Here, 1 and 1 are -vectors containing the first parameters of "lower 

dimension" in 1 and l " ' respectively. On the other hand, and ^ are the P^ -

vectors containing the remaining P^ parameters in 1 and l " ; P^+Pj^=C. Thus, we 

can re-write (4.11) as, 

= X (4 14) 
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and given x , = [ x ^ , x f ] , 

: - 1" '' ) + X^ - 1"'^ ) (4 15) 

We have then that X^V in (4.5) can be written as -X"''^) + Xf j . 

Therefore, the PL estimates in (4.6) are in fact obtained by solving the corresponding 

likelihood equations for vectors and conditioning on the vectors 

and l " * . I n this case we can rewrite (4.6) as, 

= x:" f x""' - x" ' " )+xf f - X"''' (4.16) 

Let us assume now that i.e. the ^ parameters of the highest interaction 

order defining the structure of both the "actual" and the "reference" cross-tabulation 

can be considered as having the same value. In this case, the relative change IM[ 

can be modelled as the unsaturated log-linear model: 

and (4.16) would be. 

(4 17) 

04 18) 

Now, noting that by logarithm properties (4.18) can be re-written as: 

i o j ( ) = X , " ( i ' " - ) + i o g ( M; ) (4.19) 
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by (4.13) we have that; 

Zog ((I f ) = 1"'" + Xf 

+X^r''' (4.20) 

It is important to bear in mind that in (4.20) comes from (4.18), that is, is 

the PL estimated vector of parameter for the underline log-linear model (4.17). These 

estimates are obtained by solving the corresponding likelihood equation for 

conditioning on the value of ^. 

Following (4.19) and (4.20) we can write the following expression for the PL 

estimates of the expected frequencies, 

rfi _ .Tfi -'-"''J = ^ (4.21) 

We now recall the results of Birch (1963) where he shows that for a log-linear model 

there exists just one set of counts that both satisfies the model and ensures that the 

expected values of the minimal sufficient statistics are equal to their observed values. 

Therefore, if the set of counts given by (4.21) are the PL estimates for the current 

expected frequencies then they have to satisfy the likelihood equation for the model, 

where is considered as a constant. Note that this is the same set of PL estimated 

counts as those obtained in section 3.3.5 in the previous chapter, where 1'̂  is 

considered as the "unknown" parameters and is considered as the "known" 

parameters. Consequently, fitting a log-linear model using as an "exposure" variable 

the set of census counts is equivalent to fitting the same log-linear models as those 

described in chapter 3 and is therefore related to application of the SPREE process. 
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The advantage of this approach is that we do not need to know the assumed "known" 

parameters to fit the log-linear model with exposure values but only the counts from 

the reference table; this makes the estimation process simpler than the one implied by 

the original approach in section 3.3.5 where we have to find the census log-linear 

structure first to get the "known" parameters values. 

Example 

Let us consider again our example where the current set of counts and the set of 

counts firom a previous census are represented as: 

- X I - p, + 1 . + l y + 4- 4- 4" 
01.22) 

Z o g ^ - X I - H + \ + Xy 4- 4- 4 - 4 - 4 - \ 

+4* + + /ly*. 
04 23) 

Let us consider the ratio , that is, the relative change between the current 

count and the census year count for the ijkq-cQ\\ and let us suppose that ratio can be 

modelled as: 

V ̂ #9 J 
- X I ' ' - 4-1,'' 4 - l j 4-X* 4-A.J 4-lJ 4-X,̂  4-1^ 4-Xj* 4-X^ 4-1^ 4-1^^ 

(4.24) 

That is, we assume that the relative change is sufficiently explained by the 

first order factors, the second order interactions and the ijk and the ijq third order 

interactions in the cross-tabulation without any other interaction term playing an 

important role. This means that the remaining third and fourth order terms in (4.22) 

and (4.23) are the same. 
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We get estimates of the present counts by estimating y j in (4.24), so we 

have: 

Log ) = Log (m: , , ) + ( 4 ^ 2 5 ) 

and thus. 

e "* 0L26) 

04.27) 

Note that (4.25) is in fact: 

= p. + \ . +A.y + + \ + \ ' + \ + \ + 

+^-, +-4*9+^;*,+^*, +/^'^ + ' ^ + 

+ ^ + ; i ^ 

= (// +//'^) + (,^ + j!̂ '̂ ) + (Ay +A!^) + (/l^ + ^ t ) + ( \ +^J ) + 

+ ( ^ + 1 ) + + 4 ) + ( 4 , + +4*3 +&*, 

If we use the direct estimates to obtain V , we will have that i ' ' = has to 

satisfy the same conditions given in (3.35) as well as the model. Consequently, 

^ijkc, - ^ykq is the same set of counts obtained either using the estimated Log-linear 

model (3.37) with -{\kq^^jkq^'^ijkq) or using the relevant SPREE process as in 

Section 3.3. 

4.1.2. Unsaturated SPREE 

If as exposure variable we use counts from a "modified" reference table in the same 

fashion as those tables discussed in section 3.4, i.e. census tables with some of the 

highest interaction structures deleted, we get current count estimates equivalent to the 

"unsaturated SPREE" estimates in section 3.4. 
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Let us suppose that some of the parameters in vector l " * in the log linear 

representation of the census counts (4.13) are considered to be zero, so that 

<c and let again X® be equal to i.e. . In this case the 

structure of equation (4.17) and the estimates in (4.18) will remain the same. 

However, note here that the set of census counts m[. in the denominator are now 

those from the modified table, which should not differ that much from the original 

ones. 

The structure of the PL expected frequencies (4.21) remains also the same but now the 

vector has some terms missing or equal to zero. Therefore, application of Birch's 

results means that the set of counts given by (4.21) has to satisfy the likelihood 

equation for the log-linear model equivalent to the unsaturated SPREE as in section 

3.4. Note that if the assumption that the missing terms do not play a significant role in 

the model is sensible, then the resulting PL estimates from the unsaturated case will 

be close to those from the saturated one. 

4.1.3. Logit Models 

In section 3.6 we extended the SPREE method to product multinomial logistic 

regression. In doing so, we noted that the logarithm of the proportion ratios 

'̂ c-ighbaseig follow HOW the notation defined in section 3.6 for groups g and 

categories c i s equal to the ratio of the related cell counts v^gbase, that is. 

^ ^ 
l o g 

\^baselg f'^gbase 

with corresponding PL estimates given by. 

) (4.28) 

(4.29) 
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Suppose we now use the exposure variable approach to model the expected 

frequencies. Using the same correspondence in notation between the log-linear and 

the logit cases as in section 3.6, we have that from (4.19), 

(4.30) 

Therefore we can write the right-hand side in (4.29) -recall that "base" is one of the c ' 

response categories- as. 

so that rearranging terms, 

l o g k - ' 

gbase J 

(4 31) 

From section 4.6 we know that can be expressed in logistic 

notation as . hi the same way, ^X^, can be denoted in logistic 

notation as . We have thus that (4.31) can be written as, 

base!g / 

z ; , ( p - ' " - p ° ' ' ) + i o g k - ' 

^ ^gbase J 

gbase J 

(4 32) 

where -p" '^ j is the vector of PL estimates of parameters of the logit 

model constrained on the set of constants L o g { M ^ ^ , l ) . 
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The logarithm on the right hand side of (4.32) is the logarithm of the numerator minus 

the logarithm of the denominator, that is, the difference of logarithms of census 

counts. We know that those logarithms can be modelled as, 

l o g (4.33) 

Therefore we have that, 

\ gbase 

• + X L A " ) 

/ \ 1 oi'a , / \ q'b 

(4.34) 

Substituting (4.34) into (4.31) we therefore obtain, 

y'"'base/g J (4J5) 

= z ' p " + z " p ' 

which is the PL estimator of (3.57) already proved as the equivalent to carry out a 

SPREE process updating the structural terms related to 'k'^ = whilst preserving the 

structural terms related to from a reference table. 

It follows that the PL estimator of the logit model given in (4.32) is the equivalent to 

such a SPREE estimator. Note that here again we do not need the assumed "known" 

parameters to fit (4.32) but only the counts from the reference table; as in the log-

linear situation described above, this makes the estimation process simple since there 

is not need to find the census log-linear structure first to get the "known" parameters 

values. 

As Logit models deal directly with proportions, the idea of an "exposure" variable is 

not as natural as it is for log-linear models, thus we do not find this option for logit 
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models in statistical software. However, the ratios Zog j can be 

introduced in the fitting process as one of the independent variables with coefficient 

equal to one. This is easily done when a "parameter constraint" option is available in 

the statistical software. 

Finally, 6om (4.31) and (4.35) we have that the set of PL estimates for the proportion 

71 are given by, 

\ ; —'IM, 

As we have already mentioned, there are many statistical packages that can be used to 

fit the models described in this chapter. These packages offer options to take into 

account the complexity of the sample design in order to obtain the correct direct 

estimators and parameter estimator quantities. The variances of the model-based 

estimate counts can be obtained by writing programs not necessarily too 

complex. The structure of these variances is formally described below for the case of 

multinomial logistic models, which is the one we shall use for the simulation study 

carried out in this document. 

4.2. PRODUCT MULTINOMIAL LOGISTIC MODELS 

We now formally define the parameter estimation, variance estimation and model 

assessment processes for the general class of Logistic models we have proposed for 

sub-groups estimation. We do this using the notation specified for the particular 

situation of concern in this study, that is, the estimation of the proportion of people in 

each of the three categories (Employed, Unemployed and Non-active) needed for the 

calculation of the rates within each sub-population. 
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4.2.1. General Structure 

We shall start by defining a general model structure that covers all the logistic models 

discussed in this document in the context of our LFS situation. 

Let U = denote the Venezuelan population over 14 years old of 

size M for a specified reference time. 

Let [ /be partitioned into ijk=C groups (sub-populations) of sizes as specified in 

section 3.1, that is, [ / = {[/, , ],[/, , 2 , w h e r e 

My*.} ' 

Let y denote the variable "labour force status" of three mutually exclusive and 

exhaustive possible outcomes (l=Employee, 2=Unemployed or 3 =Non-Active). Let 

- M,* be the values of for the elements in group yA: and 

let us express M.^ (already defined in section 3.1) as: 

^ ijk-

~ S {yijk,v ) 5 i [yijk,v ) ' 
1 = 9 

0 otherwise 

We will consider the set of counts Myj^ as an independent sample from a super-

population that follows a multinomial distribution with Piyijk,v=^)='^qiijk 

Suppose '̂ q/ijk is related to a P-vector of dummy variables 

defining the effects and/or interaction terms related to 

count with P ~{I-J •K)(Q-V), so that X = is the zero-one 

(I -J-K •Q)xP saturated model matrix. Let also p = ((3,, Pj,..., P^,..., P^)' be the f -
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vector of super-population parameters for this saturated model, such that, 

is a general response model for . 

We now de&ie X , ^ = ( X ^ , X j ^ , X ^ ) and p = so that 

X = (X^,X^,X°) . Here, is a -sub-vector containing the parameters in p that 

are unknown, p'̂  is a p,. -sub-vector containing the non-zero parameters from p that 

are known -so there is no need for them to be estimated-, and p'̂  is a -sub-vector 

containing the parameters from P that are zero; p = +P^) . Accordingly, , 

and X° are the {i-j• k•q)xp^^, (i-j•k-q)^p^ and {i-j-k-q)^p^ model 

sub-matrices related to p^, p^ and p° respectively. We note that either P̂  or P̂  (or 

both) can be equal to zero. 

We use Generalised Linear Model (GLM) theory to specify the structure of n (P), 

Pf with logistic link Amctiong(7r^/..XP)) = -

We have then that the general structure of the model is: 

In X,*,P (4.37) 

given by, 
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4.2.2. Parameters and Variance Estimators: general form 

4.2.2.a. Standard ML estimation 

The multinomial distribution of the can be expressed as follows: 

p iy^ijkx' ̂ ijki' ^ijki / f y ] q=\^'jkq ^ijk-
^ i j k - ' 

• Y h m M " ' " (4.39) 
9=1 

We want to estimate the unknown sub-vector within vector p . The ML estimate 

for P^ is the vector p^ that maximizes the likelihood function, 

/ y f 
' ( p ) = n n n 

,•=1 j=\ k=\ 9=1 
04.40) 

Taking the logarithm of (4.40) and differentiating with respect to (3^, we get: 

^ 82 ^ 2 4 23 

Jmmmmd Jmmmmd mmmmd 
f=] y=l t = l 

2 4 

u 
ijkq ijkq,p ijk- ijkq,p - ^ 3 

/=! *=l 
2 4 

= X X X ^m,p i^ijkq ~ ̂ ijk.^qjijk (P)) 

04.41) 

,=i j=\ k=\ 

In matrix notation, let us consider again the cells ijk ordered lexicographically as 

c = 1,..., C where Let = and 
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Pc = , such that: 

' x p ' ;r ,(P)^ ' P i ' 

x r , ;r(P) = , P = Pc 

I c j vPcy 

that is, is defined as before, 7r(P) is the UK -vector of probabilities 7i^yp(P) and 

p is the UK -vector of sample proportions defined in section 3.1. Finally, let 

M = be the UK-yqcIox of cell counts = -^p . • Thus, we can 

write (4.41) as follows: 

^ 8L ^ 
gp 

= X" D(p-n (p" ,p* ,p*) ) 04.42) 
/ 

where D = diag(M) ® with (g) denoting Kronecker product. The ML estimates for 

P are given by P = (P^ ,P* ,P° )' and consequently m(p) = A where p^ is obtained 

by setting the -vector (4.42) to the -vector of zeros 0 and solving for p^ . This 

leads to the 7̂  likelihood equations, 

X"" Dp = X'̂  D;r(p'^,p' ' ,p' ') v'-rx—rau nk oO> (4.43) 

We can get estimators of the covariance matrices for p and n by using Taylor 

approximation or by combining standard GLM results with those of Royall (1986). 

Noting that. 

and 

X 'D(p-n(P) ) : 
^ 0L ^ 

5P 
+ 

gp (/2 (P^ -P : ' ) 
V^F y 

m(p) = n(p) + 
V 2P" / 

( P ^ - P ^ ) 
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By definition, X'D(p-n:(P)) = 0, so assuming that the inverse of exists, we 

have that, 

( P " - P " ) 
^ gL ^ 

5P y 
(4.44) 

and 

(; i(p)-;r(p))~ 
^ ( P ) 

8P" 
(P"-P") 04.45) 

Thus regarding 
V 2 P " ' / 

as a constant, we finally obtain. 

and 

Cov(p^) = 
5p 6/2 

Cov 
V y ap (/2 

V / 
(4.46) 

Cov(7r(p)) = 
V ^P"" y 

Cov(p") 
^an(p)^ 

V 2P" / 
(4.47) 

where Cov in (4.46) denotes design estimated variances and covariances, that is, not 

depending on the model and 

A = Blockdiag (Z)rflg(p J - p^p^). 

sp U2 
| = (X'DAX), = AX, with 
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4.2.2.b. Allowing for complex sampling design: PL estimation 

In reality, we do not have information about the whole population U but only 

information from the LFS sample. Let 6" = {6',, denote a sample of U 

obtained using a specific sampling design. We have then that S is also partitioned into 

ijk=C groups of sizes as specified in section 3.1, that is, 

where ) ' " ) s h a l l 

denote the values of y for the elements in group ijk as 

- and will also denote (already defined in section 3.1) 

as: 

ikq — ^ ^ [yijk,v) ; ^ [yijk,v) • 
1 if:)";,*,. =9^ 

0 otherwise 

If the sample counts follow a multinomial distribution with -P(>'p^ =q) 

and =1, we could apply the theory described earlier in this section to 

obtain parameter and variance estimates. However, the LFS sampling design is a 

complex one (see section 2.2.2) involving clustering of elements as well as 

stratification. The assumption that are independent may not necessarily 

be true. We also have that E(y.jî  J may not equal . This affects the 

distribution function f »^#3)» which is the conditional distribution of the 

population given the sampling design and not necessarily the same as (4.39). As the 

strata do not cross the cells, these do not affect the distribution function although we 

should bear in mind the assumption behind the post-stratification process used at the 

LFS estimation stage (see section 2.2.4); these post-strata do cross the cells. 

Moreover, the clustering present in the sampling design also affects the distribution 

function f -

To avoid the complex task of specifying a model for the sample data -which might 

also bring some misspecification problems to the inference (Skinner et. al. 1989)- it is 
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customary to use the Pseudo-Maximum Likelihood approach (PL) explained in 

section 3.1.2. Suppose we have observed the whole population so that the sample 

vector p is in fact the finite population vector of proportion P . hi that case we can 

simply apply all the theory described in this section to calculate the "census" or 

population vector p" for the target population (see Binder 1983), which itself is an 

estimate of the super-population parameter p defined above. However, since we 

have not observed the whole population but a sample fi-om it, we must first calculate 

direct estimates P of relevant population quantities and use them in (4.42) to obtain 

'pseudo' maximum likelihood estimations P f̂, =(P^',P^%P°')' of the vector 

parameter. Formally, (4.42) can be written: 

^ 8L ^ 
= X'D(P-;r(P^,P^,P°)) (4.48) 

where 7r = (A„...,A„...,Acy with given by (2.8) but 

calculated at sub-group levels and D = ( f m g ( M ) ® w i t h M = (M,,...,M^,...,M(,)' 

(the census population projections for sub-groups). Setting (4.48) equal to the vector 

of zeroes 0 , we get the likelihood equations, 

X^ 'DP = X^'D7r(P^,P^,p'') (4.49) 

Note that (4.49) depends on the individual estimated counts only via 

appropriate aggregates. Solving (4.49) for p^ gives the PL-estimates 

P̂L - 'P° )' of the model parameters, which can then be substituted in (4.38) 

to obtain the model (PL) estimates ='^qiyki^pi)• Note that p^^ is also a model-

based estimate for the "census" vector p" , i.e. Pp̂  = p ^ . Accordingly, a the 

model-based estimate of the finite population proportion = /^/^*(P^). The 

model-based (PL) estimates for the sub-group counts are therefore 

110 



We now write Cov(pp^) as, 

Cov(ppJ = 
tu2 

V V 
Cov 

^ 6L ^ 

y )U2 V ap / 

with 

Cov 
^ gL ^ 

= Cov^X^'D(P-;r(p ))) 

X" DCov(P)DX'^ 

015O) 

where, 

gp (72 
= (X'DAX); with A = Blockdiagij)iag{Tt^) - 7tjt[^. 

We estimate (4.50) by using =n:^(pp^) for 7t^=7r^(pp^) and Cov(P) for 

Cov(P). Cov(P) is given by (2.17) and (2.18) for the proportion case at sub-group 

level. Therefore, Cov(Pp^) is. 

Cov(P^J = (X'DAX)" X D Cov(P)DX (X'DAX)" (4.51) 

with = Blockdiag{^Diag{7t^)-TC^7i[Y Similarly, the covariance matrix of ;r(P^^) is 

given by, 

Cov(7r(p^j)= ^ Cov(P^J 
\ aP"" J 8p 

with 
^8;r(P )^ 

V y ap 
= AX 

v j 

which is estimated by, 

Cov(n(p^j) = AX(X'DAX)"' f x ' D Cov(P)Dxl(x 'DAXy' X'A (4.52) 
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4.2.3. Parameters and Variance Estimators: specific situations 

The general model structure (4.37) covers all the logistic models described in this 

document. The systematic part of the model, i.e. XP = X(P^ ) ' , will have 

different shapes depending on the specific situation we want to address. 

For logistic models equivalent to "saturated" or traditional SPREE estimation, Xp 

will contain the full range of parameters for the saturated model, i.e. = 0 and 

P^+P^= P, so that x p =: X(p^ ,P^ y . The estimation process follows as it has been 

described above but without p°. As we have seen, the number of equations involved 

in (4.49) is equal to the number of parameter in p^ ; however, the process of solving 

for p'̂  is conditioned on p^. Note that if we use the "offset" approach described at 

the beginning of this chapter, p^ then consists of the set of census log-ratios 

For logistic models equivalent to what we have called "Unsaturated SPREE" (section 

3.4), some of the higher order interaction effects are considered to be zero, hi this 

case we have ^ > 0 and 7% >0 with P^+Pj^+P^= P, so that Xp = X(P^', p^ , p° )' 

as described above. 

If we decide not to preserve structural terms from the reference cross-tabulation but 

still set some of the higher order interaction effects to zero, the equivalent logistic 

model has ^ > 0 and ^ =0 with P^^+P^=P. Here, Xp = X(P^' ,p° )' and the 

estimation process follows as it has been described above but without p^. Again, the 

number of equations involved in (4.49) will be equal to the number of parameter in 

P^ and the process of solving for p^ is conditioned on p*̂ . 
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4.2.4. Goodness of Fit 

The statistics most widely used to test goodness of fit of model based estimates and 

certain hypothesized values are the Pearson chi-squared test statistics X l and the 

Likelihood ratio statistics . In our case these are defined as follows: 

and Xl.=2m±W,±Log 
c=l q=\ ^qic c=l q=\ 

where = M ^ j M . We can also test nested hypotheses where a non-saturated model 

G1 defined in terms of a R-vector of parameters {R<P) is assumed to hold by setting 

P = (PpPj), where p, is a -vector and p̂  is a -vector, R = R^+R^. hi this case 

we test the hypothesis p2 = 0, by testing the goodness of fit of a model G2 consisting 

only of the R1-vector of parameters p,, given that G1 holds. Let denote the PL-

estimates for 01 and also let be the PZ-estimates for 02. The Pearson chi-

squared statistic and the Likelihood ratio statistics for the nested hypothesis are then 

as follows: 

arid JTlc((]%!/(21) 
c=l ?=1 ^qlc c=l q=l 

•^qu 

Under multinomial sampling the distribution of both X], and X\^ are asymptotically 

chi-squared with degrees of freedom [IJK{Q-\)~P'\ = (36'S>-P). Likewise, for the 

nested case, under multinomial sampling the distribution of both X^ and are 

asymptotically chi-squared with degrees of ixeedom {R-R^) = R^. However, since we 

have a complex sample design, the distribution of both X l and X^^ is shown by Rao 

and Scott (1981) to be asymptotically equivalent to a weighted sum of 368-P {R^ in 
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the nested case) independent chi-squared random variables each with one degree of 

freedom. That is, » ^ l r '"^ses-p'̂ ses-p' 

and Zf , (G2/Gl)«6,Z,-h. . .+8, / ,^ , with 

where the weights {Ŝ  > • • • • > 6 > 0 ) are the eigenvalues of the design effects 

matrix, 

V = (B 'DA-'B)"' (B 'DA-'Cov(A)DA-'B) 

where B is the matrix which complements X to form the zero-one model matrix for 

the saturated model. In general, B can be any (IJKQ x d f ) full rank matrix satisfying 

B 'X = 0, where (^degree of freedom equal to 368-p or in the nested case. Note 

that the weights 5, are equal to one in the case of product multinomial sampling, so 

they can be interpreted as generalized design effects'. 

We obtain estimators of 5 , 6, , through the matrix V, that is. 

V = (b 'DA-'b)"' ĵ B DA ' Cov(A)DA B 

The sum of the terms 5,. is given by ?r(V) (e.g. Harville 1997, p.539). Therefore, a 

Rao-Scott first-order correction for the statistics and , which is 

asymptotically distributed as chi-squared with df degree of freedom is given by: 

and = ̂  (4.53) 

with 

tr# df 

This correction works well if the variability of the terms 6 i s not large. A Rao-Scott 

second-order correction that takes into account this variability is given by: 
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= and = (4.54) 
^ ' 1 + a ^ ' 1 + a 

where is the coefficient of variation of the 5., that is, 

df 

1 = ' - i 
( # ) & " ^(V)" 

Both and ^ . ) are asymptotically distributed as chi-squared random 

variables with {df)l([ + a^) degrees o freedom. 

The second-order correction has been shown to perform well in different situations in 

several empirical studies (e.g. Rao and Scott 1981, Roberts et.al. 1987, Thomas and 

Rao 1987, Rao and Thomas 1999). An alternative test that takes into account the 

complex design used in selecting the sample is based on the Wald Statistic: 

Here is the pseudo-likelihood estimate of the [Z/Ar(2 -1) - P]-vector of 

parameters that we want to test being equal to zero and Cov(Yp^) is the estimator of 

the variance-covariance matrix of defined as in (4.51). 

However, has been found to perform poorly in several empirical studies, 

especially when the degree of freedom for the estimated covariance matrix is not large 

compared with the number of cells in the table (e.g. Rao and Scott 1981, Fay 1985, 

Thomas and Rao 1987, Rao and Thomas 1999, Molina and Skinner 1992); 

furthermore, it is not defined if any of the are equal to zero as occurs in the LPS 

data. 
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4.2.5. Diagnostics 

A critical assessment of the models to be considered in this study can be carried out 

by obtaining measures that give us some insight into the presence of outlying cells 

and influential points. 

By identifying outlying cells we can get a rough idea of the cells that are poorly 

explained by the model. We do not expect any model to accurately explain the 

behaviour of every cell but we do expect a good model to account for most of them. 

The relative importance between states and demographic groups tend to vary 

depending on the analyst and the kind of analysis he/she is going to undertake. For 

instance, having reliable estimates about the Unemployment rates relative to the 

population under 45 years old will be more important than those relative to the over 

45 years old groups. This is especially true in countries with "pyramid-like" age 

population structures like Venezuela. Thus, the final judgement on the usefulness of a 

model has to take into account this relative importance which depends on the realities 

of each country. That is why we are especially concerned here with the detection of 

patterns like, for instance, specific states or sex-age groups that the model seems 

unable to explain. 

Extreme points in the design space can affect the usefulness of a model. This can have 

an important influence in the structure of the model and consequently on the accuracy 

of estimation. This is the reason for our interest in the existence of influential points 

in our data. Should these points exist, some assessment regarding the influence they 

have on the estimation process needs to be undertaken, with the aim of establishing if 

the predicting power of the model can be improved by removing such cells 6om the 

estimation process. 

We shall follow Pregibon (1981) in define some useful diagnostic measures in this 

regard. He bases his suggestions mainly on measures that are easily calculated by 

using data naturally obtained during the fitting process. This is highly convenient in 

most of the practical situations when human and economic resources are limited, as it 

is in many national statistics offices. Although his work is based on a maximum 
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likelihood fit of a logistic regression model, it is also valid for any within the 

exponential family, even if pseudo-maximum likelihood has been used, as is the case 

in this thesis. For the remainder of this section, the sub-script c=l, ...,C(Q-1) will 

denote the lexicography order of the product multinomial table omitting the cell 

related to the Qth labour force category. 

Standardised residuals are commonly used as a first attempt to identify outliers. 

Following the notation used so far in this thesis, let Y = V-TCp^ be the IJK{Q-\)-

vector of residuals. We define the standardised residuals ^ where 

Cij Cij I Clj ,Clj \ CC] ' 

the estimated standard error for the residual r^, is given by the squared 

root of the cth component of the diagonal of the matrix: 

Cov(r): I - A X (X'DAX)' X D Cov(n:) I AX(X'DAX) X'D 

We obtain this matrix by noting that ixom (4.45) and (4.44) we have 

( :r ( ; ,J - ;r (P) ) -AX(;^ , -P) and ( ; , , - p ) = (X'DAX)x'D, 

so that, 

A - - (A - ;t) - AX(X'DAX) 'x'D(A-n) 

I - A X ( X ' D A X ) " ' X ' D (A- j r ) 

Assuming normality of the standardised residual distribution, we can then compare 

these standardised residuals with the values of the standard normal distribution, 

looking for potential outliers and extreme points. There are different ways of carrying 

out this comparison suggested in the specialised literature (e.g. Pregibon 1981, 

McCullagh and Nedler 1983, Dobson 1990, Agresti 1990, Draper and Smith 1998). 

We can for instance plot the ordered standardised residuals against the expected 

117 



normal order statistics. However, it is worth mentioning that cells with = 0 and 

TT = 1 makes the distribution of r skew and so makes the assumption of normality 

unreliable. A plot of the standardised residuals against the fitted values, excluding the 

points close to either zero or one, can give us an idea of the validity of the normality 

assumption related to the distribution of r. This plot should show an evenly spread 

pattern. 

Pregibon (1981) suggests an alternative method of detecting outliers that avoids 

problems with estimates that are close to zero and one. It consists in the use of 

components of the chi-squared statistic Xp ̂  or noting the fact that large values 

of these components suggest potential outliers. As we are concern with the complex 

sampling design case, it seems appropriate to use components of the Rao-Scott second 

order correction (or first order correction in cases where the second order correction 

can not be calculated) Xp^ and for this purpose as Roberts et. al. 

(1987) did for complex data in a binomial context. Again, different plots can be used 

as a visual check for outlying points. 

To detect influential points, Pregibon (1981) suggests the use of the projection matrix 

M that in our complex design case is given by the expression: 

M: 

[ I - H 

04 55) 

The interpretation of this matrix is similar to that of I - X(X'X) 'X' in traditional 

regression analysis, in the sense that the diagonal of the second term gives an 

indicator of the influence of each point in the design space. This can easily be seen if 

we consider the fitting process as carried out by iterative re-weighted least-squares or 

by Newton-Raphson Methods (see Pregibon 1981, p.712). Therefore, small values 

in the diagonal of M will identify potential influential cells. A visual 

examination of a plot of against c can give us an idea of the existence of such 

118 



cells. Hoaglin & Welch (1978) suggested looking at cells with < l - [ ( 2 - P ) / C ] 

as potentially influential for the linear case. Pregibon (1981) used the same criteria as 

a rough cut-off 

An alternative plot that can summarise information about outlying cells and extreme 

points in the design space is a plot of the values in the diagonal of the H matrix, , 

against or Note also that: 

X M M _ Xl JS.{l + a') _ Xl, 

x l [ s . , a ) x l / s . ( i + a ' ) x l 

and 

_ Xl,JS.{l + a') _ X] 

X l J S . , a ) X l J s . ( l + a ' ) x l , 

If influential points are detected, further investigation about how heavily these points 

influence the estimation process should be carried out. The impact can be measured 

with respect to parameter estimates, fitted values or chi-squared statistics. In the 

study reported in this thesis we aim to obtain good estimates of rates and are not 

interested in the specific structure and dynamics of the underlying factors determining 

these rates. Therefore, we will not be concerned with the impact of influential points 

on parameter estimates, unless it involves significant impact on fitted values. 

To measure the effect of extreme points on the fitted values as well as on the 

goodness-of-fit statistics, Pregibon (1981) again used a generalisation of the 

traditional regression diagnostic. Similar results were also implemented by Roberts et. 

al. (1987) for complex data in the binomial context. 

Let (c) be the pseudo-likelihood estimate of the parameter vector p calculated 

without taking into account the c-th cell. Likewise, let = n^Py,^(c)^ be the 
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vector of fitted values using Pp^(c). A measure of the effect of cell c-th on the fitted 

value /-th can be obtained as follows, 

A , x X , ( 8 . , a ) = ( i . , a ) 

or 

(5..<i) = ( « . , < ; ) - J f i , {S..a) 

where Xp i_̂  and are the contributions of cell /-th to the Pearson 

and Likelihood Ratio goodness-of-fit statistics respectively when cell c-th has been 

removed from the fitting process. Pregibon (1981) uses the following approximation 

to AXlĵ  i = - Xlj^ i for non-complex binomial data: 

(4.56) 
1--/% (1 

where denote the element l,c of the matrix for non-complex binomial data that is 

equivalent to the H matrix in (4.55). For our complex independent multinomial data 

we use the elements from the H matrix in (4.55) and X^ i and X^ ^ 

instead of X l i and Xj, ^ in (4.56). This leads to the following expression: 

A,XI, " f ' - (4.57) 
^ ' l — h„ 7^ \ % 

For each potential influential point, we can obtain a set of C measures ^6 . , a j . 

Then we can plot each of these sets against c for a visual inspection of the impact of 

each influential point on every other cell. Note that negatives A,Xlĵ  ^^6 .,a^ values 

indicate an improvement in the c-th cell fit due to removing cell I from the fitting 
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process. The opposite is also true, positive values indicate a 

worsening in the c-th cell fit due to removing cell I Irom the fitting process. 

Regarding the effect of cell c-th on the goodness-of-fit value, we can obtain useful 

measures from the following expressions: 

( 6 a ) = a) - ( 6 a ) 

or 

A,xL, ( 8 a ) = x ; . ( 8 a ) - Lw (5'., a ) 

They indicate changes in the value of the goodness-of-fit statistics (Pearson Chi-

squared and Likelihood Ratio) due to deleting the /-th cell from the fitting process. 

Again, Pregibon (1981) uses an approximation to for non-

complex binomial data: 

(4.58) 
1 hii 

He also gives an approximation for changes in the Pearson Chi-squared statistics 

AX^=X^-X^__,,thatis: 

= ^ (4.59) 

though he warns about its inferiority compared with due to the fact that x], 

does not necessarily decrease as data is removed from the fitting process. 

As we did in (4.57), we write an approximation to A^X^ (5 .,a) as follows. 

< , ( 6 . , a ) 
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A plot of against I then provides us with a visual tool to examine the 

magnitude of the changes in the Likelihood Ratio statistics when different cells are 

removed from the fitting process. 
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CHAPTER 5 

K/%\%%ZIZEjL47VJLf%f 

In this Chapter we carry out an empirical analysis of the different models that can be 

used to obtain SPREE estimates, including unsaturated SPREE and conventional 

Logistic models. 

We first discuss some important issues about the structure of the population and its 

implication in the estimation process. Next, we carry out an empirical analysis and 

provide diagnostics for different potential models using data from the Venezuelan 

1981 and 1990 Population Census. We then describe and discuss the results from a 

simulation study based on the Venezuelan 1990 Census; this simulation study is 

designed to explore the design-based properties of a number of competing estimators 

based on the theory developed in previous sections. Finally, we briefly discuss some 

issues related to using "time" as an extra dimension in the SPREE process. 

5.1. CONSIDERATIONS ABOUT THE STRUCTURE OF THE POPULATION 

Throughout this document, we have taken the count to be a realisation from a 

super-population following an independent Poisson distribution with expected value 

and variance equal to . Likewise, when we condition on the marginals , we 

have assumed these counts are distributed as product multinomial with 
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and = "i this case we also assume 

that each individual in the finite population is independent and identical distributed as 

a product multinomial with -P(Xŷ ^ =9) Xg=i^'7/p Furthermore, we 

also assume that are related to a set of variables 

allowing us to model as with p = (P,,.., p ,̂)' a 

f-vector of unknown super-population parameters. 

Since in real situations we work with survey samples, we described a Pseudo-

Maximum Likelihood approach to deal with the distortion caused on the survey data 

distribution by sampling designs like the LFS, which involves strata, clusters and 

unequal selection probabilities. This would "reassemble" the finite population 

distribution, producing estimates and their variance estimates allowing for the 

adjustment needed for the sampling design. This theoretical formulation implies that 

if we knew the finite population counts we would be able to estimate the model 

parameters and their variance applying standard estimation procedures like 

ML estimation. 

However, the theoretical process generating the finite or "census" population counts 

can be more complex than the one described here. This seems plausible taking into 

account the clustering pattern human beings follow regarding allocation, the internal 

regionalization of a country regarding economical activities as well as others cultural 

patterns found in different societies. For instance, we have that the "geographical" or 

"spatial" component is likely to be more complex than the physical division implied 

by "states". It is noticeable the socio-economic differences found in Latin-American 

countries between "main" cities and the rest of the country. Moreover, within those 

"main" cities, it is likely to find the usual clustering structure regarding socio-

economic aspects with a between cluster heterogeneity certainly higher than what can 

be found in developed countries. Others factors related to individual characteristics or 

internal households composition might also play a role in the super-population 

structure. Educational level and relationship with other household members are 

examples of potentially important variables in explaining that structure. 
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In those situations, units from the same sub-population ijk might in fact have different 

expected values tt given by the "true" more complex super-population model. In 

other words, the super-population distribution generating the finite population might 

have different parameters depending not only on the variables ijk but also on other 

variables. This obviously violates the distributional assumptions about and y.j,. ^ 

specified above. Elements in the finite population belonging to a specific sub-group 

ijk are not longer independent and the set of counts are not distributed as product 

multinomial anymore. 

Given these circumstances, our first reaction would be to change the working model 

in favour of a model that better represents the "real" dynamic governing labour force 

variables. The original target parameters would be disaggregated so new 

parameters , with d representing one or more than one extra dimension, would 

become the target of analysis. This can be accomplished by adding an extra dimension 

to the working cross-tabulation, corresponding to adding fixed parameters to the 

model. Alternatively, we can add random parameters to the model at the extra-

dimension level or treat geographical information as "extra-levels" in the analysis 

(multilevel modelling). The approach we should follow will depend on the available 

information regarding the sampled element as well as the "geographic" strata and/or 

cluster relevant units. This process would lead to a better understanding of the 

geographical and socio-economic interaction of the process in the population. For a 

comprehensive discussion on this subject see Chapter 10 in Skinner et. al. (1989). 

At this point it is necessary to go back to the initial formulation and targets of this 

study. Its main goal is to produce estimates for the main indicators required by the 

national statistics office in Venezuela (INE) as well as in most Latin American 

countries. For different reasons, these indicators are needed at state level and 

disaggregated by gender and age-groups; we therefore require estimates of the counts 

or the proportions - ^ y k q / ^ m - needed to construct the labour force rates 

that are the ultimate target of this work. This fact does not mean that a deeper 
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analysis and understanding of the dynamics of the labour force is not necessary. On 

the contrary, this would obviously be of great benefit to analysts and to national 

statistics systems. However, due to restrictions in the data available to us for this 

study -INE policy regarding data disclosure is far from an open one- as well as 

restriction in time we will not attempt this sort of analysis, even though we 

acknowledge its importance. 

We still have to address the impact on variance estimation and hypothesis testing 

from misspecification of the model. It is pertinent to stress that our target parameters 

are the finite population counts My^ and proportions and not the model 

proportions . We use a model for as a theoretical tool to get estimates for 

and regard the sampling design as the only impediment to carrying out 

appropriate analysis of the finite population parameters using standard statistical 

procedures. Therefore, the PL approach and the adjustment made to the Pearson and 

LR chi-squared statistics (refer to Chapter 4) should be all we need to compute 

parameter and variance estimates and to carry out tests of hypotheses for the finite 

population parameters. Those procedures take care of the effect that the sampling 

design has on the data so we can carry out an appropriate analysis with focus on our 

finite population aims. 

This point is particularly important when working with SPREE estimation. The 

assumed "known" parameters in the model have a real interest when the focus is on 

the analysis of the finite population. They are used to improve the quality of the finite 

population estimates even if the model is not appropriate for describing the super-

population process. Let us consider the logistic representation of the finite population 

set of probabilities given by, 

l o g p 
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Suppose we know the interaction terms and from a set of finite 

population proportions from a previous period of time, which are roughly the 

same as their equivalent current interaction terms, that is, 

=p; 

= A/*, 

We formulate this model for the super-population generating the finite population and 

apply the methods described in previous chapters, so that using the LFS sample we 

get the PL estimates for the super-population logits, that is, 

l o g 
V V 

: cy. + K ' + A : + A + A m (5.2) 

which are also the estimates for the finite population logits in (5.1), 

l o g 
pPL 

=a r + p r + p r + p r + p ^ + p ^ + p I + p ijkq (5.3) 

The set of PL estimates : should therefore be of high precision for the 

finite population proportions 7 ,̂̂ ^ no matter whether the explanatory variables in the 

model are appropriate or not. Similarly, the variance estimators and adjusted tests 

described in the previous chapter should be the appropriate when estimating finite 

population characteristics, even though this might not be the case when inference 

about super-population quantities is of primary interest. 
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5.2. MODELS STRUCTURES FOR SPREE AND RELATED MODELS 

We have seen in previous chapters that the log-linear and logistic models equivalent 

to the SPREE method consist of two set of parameters, the unknown parameters and 

the assumed known parameters. The latter are those related to the structural terms we 

want to preserve from the reference cross-tabulation. We have also seen that the 

estimation process is conditioned on those "known" parameters; however, the 

structure of the likelihood equations will depend only on those margins related to the 

"unknown" parameters. 

The decision here is what structural terms we want to preserve and what structural 

term we will update in the estimation process. This decision is related to the 

information available to us regarding the margins of the cross-tabulation as well as the 

confidence we have about the stability over time of the structure of the reference 

table. The decision is likely to be a compromise between the following two 

statements. 

Firstly, to update specific structural terms we must have reliable information 

regarding the current marginal counts related to those terms. Available information 

will basically depend on population projections based on the latest census, vital 

statistics and the LPS and its sampling design. 

Secondly, to preserve specific structural terms we should have the confidence those 

terms have remained sufficiently stable between the two points in time involved in the 

analysis. In general, this confidence will weaken as the gap between those two points 

in time gets bigger. How fast it weakens will depend on the dynamic of the variables 

governing the socio-economics process in the country. 

Another factor to take into account is the fact that the LPS traditionally produces 

direct estimates for labour force indicators for sex-age groups at the national level. 

These indicators are widely published and the LPS design ensures that these estimates 

have good reliability. It is thus necessary that the model estimated counts agree with 

the sex-age group direct estimates at the national level. This suggests that the set of 
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pseudo-likelihood equations related to the fitting process for the log-linear working 

model should satisfy the equalities • For this to be possible, the 

interaction terms I-J-Q have to be regarded as part of the "unknown" terms in the 

model, that is, the term has to be present in our log-linear model, which is 

equivalent to saying that the interaction term (3.̂  has to be in our logistic model. 

It follows that the choice should be made among the four following logistic models. 

r \ 
: < +,94 + 4 (5/0 

(5.5) 

l o g 
f \ 

(5X% 

l o g 
r \ 

(5.7) 

Model (5.4) is the simplest model of this kind assuring an agreement between the 

model estimates and the LPS sex-age group direct estimates at the national level 

whilst model (5.7) is the most complex. 

Other structures like the independence model (5.8) below can also be considered, 

however, their use does not guarantee the agreement explained above. Should we 

decide to use them, we would have to carry out a calibration process after the 

estimates have been obtained in order to obtain the desired agreement. For this reason, 

model (5.8) would have to prove significantly better than (5.4) to justify a more 

complex estimation process. 

l o g 
f/9 

(5.8) 
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Unsaturated SPREE models will result from "deleting" ^-terms from the models 

above. Different combinations can be obtained depending on what and how many k-

terms are deleted. 

5.3. CENSUS-BASED COMPARATIVE ANALYSIS 

We have seen in Chapter 2 that the most recent census available in Venezuela at the 

moment is the one carried out in 1990\ That represents a gap of over ten years with 

respect to the present year, and does not sound too promising when thinking of 

structural terms as "preserved" over time. 

We will use the 1990 and 1981 censuses in a first attempt to explore the behaviour of 

the SPREE models in different situations. 

In this section we explore empirically the SPREE estimation process when the gap in 

time is nine years. We shall assume we do not know the 1990 counts but only some 

of its aggregated marginals. We will use these marginals and the 1981 census table to 

produce SPREE estimates and Unsaturated SPREE estimates for 1990. These 

estimations will be calculated using the "exposure" approach proposed in Chapter 4 

using the software STATA 7.0^. 

Let and the census'81 and the "unknown" census'90 counts for sex 

category i, age group j, state k and labour force classification q. We want to get 

SPREE estimates for assuming we know a set of 1990 marginal aggregates. 

' A Census was carried out in Venezuela in the year 2001; however, no database and only results at the 
national level were available at the time this document was produced. 
" Stata Corporation, Texas, Release 2001 
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We know that using the following saturated logistic models, 

l o g 
f p81 ^ 

p 8 1 

and 

p 9 0 : = a : ' ^ + p r " + p f + p : " + p r + p : " + p j T + p . Z ' (^.lo) 

we can express the finite population proportions and 

C . as follows. 

p8! 

s 

(5 11) 

and 

.\/kP ,90" 
p 9 0 _ 

Wi/* -

^q=\ 
e X, 

(5.12) 

We recall that (5.9) and (5.10) are also estimators of the super-population model 

parameters. 

_8I 
= and l o g 90 
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In order to explore the characteristics of different model structures, we shall fit the 

following SPREE models estimating their parameters for 1990, using the Census data 

as described above: 

SPREEOO 
71 

jq Hkq rijq Hikq H jkq Hijkq 

f ~ 90 A 
= + A : + 

SPREE(c) Zog 
/ 90 \ 

;z-̂  V ^3/i/t y 

SMtEEOO Zog 
f ~ 90 A 

V V 

We will also fit the following Unsaturated SPREE models; 

(a)-(b) Zog 
. 3̂/w* y 

(a)-(c) l o g 
\ ^3/# y 

(a)-(d) Zog ^<i/m 

V 3̂/(/* y 
+ < 

(b)-(c) l o g 
71. 

.90 

3/#y 

(b)-(d) l o g 
V ^3/# y 

+ < 
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We compare these estimates with the target finite population 1990 counts, and with 

the following conventional Logistic models (no preservation of structure): 

(a) 

(b) 

(c) 

(d) 

l o g 

l o g 
a-*" 

90 
'jkg 

In what follows we refer to the conventional Logistic model (a), the SPREE model (a) 

and the Unsaturated SPREE model (a)-(b), (a)-(c), (a)-(d), as "a-based models". 

Likewise, we refer to the conventional Logistic model (b), the SPREE model (b) and 

the Unsaturated SPREE model (b)-(c), (b)-(d), as "b-based models". Finally, the 

conventional Logistic model (c) and the SPREE model (c) are called "c-based 

models" whilst the conventional Logistic model (d) and the SPREE model (d) are 

called "d~based models". 

Table 7.1 in the Appendix shows the Absolute Relative Bias of the proportion 

estimates ~'̂ 7iijk foi" all the models (m) specified above. The Absolute Relative 

Bias (ARB) for the estimates generated by a model is given by, 

590"" 
^qlijk 

p90 

p90 
qlijk 

X 100 (5^3) 

The ARB value represents the absolute relative bias that an estimator based on a 

particular model will have when applied to LFS sample in 1990. As we are interested 
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in the outcome of a muhinomial variable, we also consider the subgroups averages of 

the ARBs of the three LFS proportion (Table 7.2), that is, 

=̂1 
(5.14) 

Table 5.1 shows the aggregated differences d\ {ms)-(ml) in ARB between the SPREE 

estimates (ms) and the conventional Logistic estimates (ml) for each LF category 

q=l,2,3 i.e. q=Employee, Unemployed and Non-active. The values in that table are 

given by, 

d (7W)-(7M/) 
/ y 

f=i =̂1 &=i 
(5.15) 

where the (ms)-(ml) combinations are: 

(ml) 

(C) 

jP/(EE (4) 
(4̂  

(b) 

Table 5.1 
Venezuela - Aggregated Differences 

For 1990-1981 SPREE Models and Unsaturated SPREE 

q 
(LF) 

1990 
Census 

Prop. 

MODELS (ms) 
q 

(LF) 

1990 
Census 

Prop. 
SPREE Unsaturated SPREE 

q 
(LF) 

1990 
Census 

Prop. 
(a) (b) (c) (d) (a)-(b) (a)-(c) (aHd) ( b K c ) (bKd) 

1 47.5 13.3 0.0 -1.3 2.3 14.4 14.4 14.3 1.0 -1.0 

2 7.5 -6.7 4.8 1.7 6.2 -10.5 -8.5 -10.3 4.1 1.2 

3 4&0 6.0 0.9 -0.9 1.7 6.1 6.6 5.6 2.1 -0.6 
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In general, we can see from table 5.1 that the conventional Logistic models recorded 

lower ARBs than the SPREE models (1990-1981). 

We can also look at the proportion of subgroups (table 5.2) where a gain in ARB with 

respect to the conventional Logistic models was observed, that is, the proportion 

of subgroups with <0, 

(mj)-(W) !=] y=i *=1 

where. 

184 

1 if 

0 otherwise 

(5.16) 

We recall that ( / . / . ; [ ) = C = 184. 

Table 5.2 shows that despite the overall superiority of a-based models evident in 

Table 5.1, this improved performance comes from less than the 50% of subgroups. 

Furthermore, Table 7.1 in the appendix shows the irregularity of the behaviour of 

estimates from one subgroup to another when using different a-based models. For the 

rest of the models, i.e. b-based, c-based and d-based models it seems clear that not 

only does the use of SPREE and Unsaturated SPREE models not lead to an overall 

improvement in ARB but on the contrary, it actually worsen the overall outcome. 

Table 5.2 

Venezuela - Proportions of subgroups with < 0 

For 1990-1981 SPREE Models and Unsaturated SPREE Models. 

q Prop 

MODELS 

q Prop SPREE Unsaturated SPREE q Prop 

(a) (b) (c) (d) (a)-(b) (a)-(c) (a)-(d) (b)-(c) (b)-(d) 

1 47.5 16.8 52.7 57.6 37.0 9.2 17.9 12.0 42.4 61.4 

2 7.5 48.4 31.5 41.3 29.3 45.7 48.4 46.2 33.7 37.0 

3 45.0 39.1 50.0 60.9 38.6 40.2 35.3 40.2 35.9 61.4 

135 



0) O) 
E g 
03 
a 3 
2 
O) 
.a 

(0 g 
CO 

I 
ss 

_3 

J2 < 

(a) Spree(a) (aXb) (aXc) (=Kd) (b) Spree(b) (b)-(c) (b)-(d) 

(c) Spree(c) (d) Spree(d) 

Models 

Figure 5.1. Box plots of the subgroups ARB-j^. distribution, 

for conventional Logistic models, 1990-1981 SPREE Models 

and Unsaturated SPREE Models. 

A better picture of the differences between models is obtained from Figure 5.1 which 

shows box plots of the distribution of the subgroups ARBŷ  for each model. These 

are separated into four charts for a-based, b-based, c-based and d-based models. The 

graph clearly shows that using reference information with a 9 years gap is not only 

unnecessary but also inadequate. Unfortunately, we do not have the required data to 

carry out the same exercise with a smaller gap. Instead, later in this chapter we will 

carry out a simulation study with samples from the Census'90 in order to assess how 

these models perform in a census year. 

If a good reference table for a particular model is available for the period of interest, 

i.e. the preservation assumptions are sufficiently acceptable, we can use the 

appropriate SPREE model so that the bias shown in Figure 5.1 is significantly reduced 

as we shall later show in the simulation study. In that case we are almost guaranteed 

superior quality estimates in terms of Mean Squared Error {MSB - Variance + Bias^) 
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Figure 5.2 Box Plots of the subgroups ARB average distribution, 

for conventional Logistic models (a), (b), (c) and (d). 

when using the sample from the LFS compared with the direct estimates obtained 

from this survey. 

As an alternative procedure, should such a table not be available, we are interested in 

exploring possible gains from using conventional Logistic models like models (a), (b), 

(c) and (d). The idea is to assess these four models to understand the differences 

between them in terms of the bias of the corresponding model estimates This will also 

allow us to determine potential variants of these models that might provide a better fit. 

Figure 5.2 shows the box plots of the distribution of the subgroups ARB average 

(ARByî  ) for the conventional Logistic models (a), (b), (c) and (d). As we expect, the 

more complex the model the lower its overall bias. However, the most important 

characteristic we can observe in Figure 5.2 is the appreciable impact that inclusion of 

the sex-age interaction has on the fitting process -model (b)-. That impact is not so 

dramatic when we add either the age-state interaction -model (c)- or the sex-state 

interaction -model (d)- to the sex-age interaction model (b). 
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Figure 5.3 Box plots of the distribution of the Subgroup aggregated ARB 

by Sex and Age, for conventional Logistic models (a), (b), (c) and (d). 

We know that the simpler the model the higher the precision with which its 

parameters and consequently the target estimates can be estimated. On the other hand, 

the simpler the model the higher the bias in these estimates. Therefore, the fact that 

there is no big difference in bias from model (b) to models (c) and (d) might mean that 
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Figure 5.4 '5ybr q=l andq=2 i.e. Employees and Unemployed 

for Model (b) by States. 

the gain in precision with b-based models offsets its potential bias. This fact is 

important because it give us an insight into the potential superiority of one type of 

model among those considered so far. On the other hand, the a-based models show a 

big difference in ARB terms when compared to the b-based models so that a 

favourable bias-precision balance seems unlikely. 

Figure 5.3 shows box plots of the distribution of the subgroup aggregates ARB 

(ARByj^) for the conventional Logistics models (a), (b), (c) and (d) by Sex and Age 

group. That figure shows that, in general, the pattern in Figure 5.2 is replicated for 

each Sex-Age group. 

Figure 5.4 shows the ARB for Employees and Unemployed (q=l,2) for model (b) by 

States with the two digit labelling indicating Sex code and Age group code. We recall 

that the ARB figures are in fact absolute residuals from the model fitting process. 

From a visual inspection of this graph we can identify some subgroups for which the 

fit is fairly poor. They are mainly sub-groups related to Age 3 and Age 4, particularly 

when Sex equals 2. However, some of these points correspond to proportions lower 
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Figure 5.5 values for q=l and q=2 i.e. Employees and Unemployed 

for Modes (a), (b), (c) and (d) by States. 

than 0.02 for which an ARB of 60% might not be a problem. A similar pattern can be 

seen for models (a), (c) and (d). 

However, as we have already discussed it in Chapter 4, ill-fitting points do not 

necessarily correspond to influential points. On the contrary, experience has shown 

that points that might influence the fitting process making its overall performance 

poorer are rarely ill-fitting points (Pregibon 1981). At this point, we are interested in 

the characteristics of potentially influential cells in order to learn more about the 

models and alternative variants that might improve the overall outcome. 

In order to obtain a preliminary idea of the existence and characteristics of influential 

points we carry out a visual inspection of the values as was discussed in 

Section 4.2.5. Figure 5.5 shows four graphs corresponding to models (a), (b), (c) and 

(d) with the values for q=l,2 by States. In those graphs, the two digit labels 
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again indicate Sex code and Age group code. Each graph shows a horizontal line that 

indicates the rough cut-off point [l - (ipjijk{q -1))] suggested by Hoaglin & Welch 

(1978) as a guide for determining potential influential points. 

Only model (a) and model (c) register cells below the cut-off point. However, a 

pattern can be noticed in those graphs. For models (a), (b) and (d), the cells showing 

lower m-values are cells related to Age group 1. On the other hand, model (c) shows 

cells related to Age groups 3 and 4 with the lowest and highest -values whilst Age 

groups 1 and 2 seem to be in between. It also seems important to mention the slightly 

different behaviour shown by States 1,13 and 21. This is particularly noticeable for 

models (b) and (c). Those states are mainly urban and their socio-economic 

characteristics are certainly different from the other states, which may also affect the 

fitting process. An important fact about those states is that their sample size in the 

LPS is large and Sex-Age direct estimates are expected to be of a reasonable quality. 

Taking into account those facts, we now define some variants of our models in order 

to explore their impact in the overall outcome. The description of the variants is as 

follows, 

VI — No Age group 1 

V2 — No State 1 

V3 — No Age group 1 and State 1 

V4 — No States 1,13 and 21 

Note that those variants are equivalent to "adding" extra parameters to each model 

without having to include a further full interaction. For instance, fitting model (b) 

without Age group 1 is equivalent to having a new factor (say New Age), with value 1 

if Age is different from 1 and zero otherwise, interacting with the remaining factors in 

the model. That is, we are including an interaction Age-State but using the variable 

New Age so that we add 22 extra parameters to the model instead of the 66 that would 

result from using the full Age-State interaction. Based on that fact, we observe that 

there is no need to fit variants 1 and 3 for model (c), for instance, as they do not add 

new information to the conventional Logistic model (c) and its variant 2 respectively. 
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Figure 5.6 Box plots of the subgroups ARB distribution (q=l,2), 

for variants VI, V2, V3 and V4 by Models (a), (b), (c) and (d). 

Figure 5.6 shows the box plots of the ARB for those variants along with their 

respective original models. We use "VO" in that graph to denote the respective 

original model without modifications. Due to comparative purposes those graphs do 

not contain information related to Age group 1 and states 1,13 and 21. 

For the a-based models we can see how deleting Age group 1 produce a noticeable 

impact in the overall performance pushing the box down. That impact is due to the 

fact that when we remove one Age group, we are actually "adding" extra Age-related 

interactions, including a Sex-Age interaction which has been shown to be an 

important one in the previous plots. However, the ARB levels still remain high. 

Deleting State 1 or States 1,13 and 21 does not produce an appreciable overall impact 

for model (a). As for models (b), (c) and (d), there does not seem to be a clear 

advantage in using any of the variants; although slightly improvements can be seen in 
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some of them, it is unlikely that they will offset the increase in variability due to the 

extra parameters those variants suppose. 

It is important to emphasise the interpretation of deleting categories from models (a), 

(b), (c) and (d). As we have already mentioned above, deleting categories is similar to 

adding interactions between a new partition of the variable subject to category 

removal and the rest of the variables. Analysing Figure 5.6 from that perspective, the 

relevance of the Sex-Age interaction is again evident. Once Sex-Age interaction is in 

the model, i.e. models (b), (c) and (d), adding extra interactions related to State does 

not have a major impact in the model. 

Figure 5.7 shows Model (b) Unemployment ARB (q=2) against Unemployment 

proportions (in percentages figures) for subgroups by Sex-Age groups. Those graphs 

show the origin of the extreme ARB figures registered in previous charts; they are 

registered mainly in subgroups with proportions lower than 0.05, particularly in 

Sex=2 & Age=4, i.e. females aged 45 and more, where all proportions are lower than 

0.02. These large ARB values for small proportions are expected given the "relative" 

nature of such a measure and they do not necessarily indicate bad estimates. The 

important fact here is that there are no extreme ARB values for moderate and large 

proportions. 

This Census based comparative analysis has given us an idea of the potential 

usefulness of different possible models. The use of the SPREE method using a nine 

year old reference table does not seem to be a sensible approach. Traditional logistic 

analysis might offer an alternative to direct estimators, particularly using a model like 

model (b). However, a complete analysis of the appropriateness of these models as 

estimators of the subgroup proportions considered in this work needs to take into 

account the variance that the use of the LFS brings into the process; such an analysis 

as well as the study of SPREE methods using recent reference tables will be carried 

out next based on a simulation study. 
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5.4. SIMULATION STUDY 

In this section, we describe and analyse results from a simulation study based on the 

Venezuelan Census'90 data. 

The primary goal of this simulation study is to asses the properties of the estimators 

and their variance estimators for the models proposed so far in this thesis. We have 

already mentioned the trade off between bias and variance between those models. 

From this simulation study we shall empirically learn about the characteristics of that 

trade off. Learning about the effect that each interaction term has on that process will 

give us an idea of what to expect from those models in different situations. 

This study also includes SPREE models using the 1990 Census so that the 

characteristics of those procedures with an "adequate" reference table can be 

explored. 

5.4.1. Description of the Simulation Study 

5.4.1.a. Selection of the samples 

The simulation study consisted of 1.000 samples selected from the Census'90 data 

following as close as possible the current sampling design of the Labour Force Survey 

(LFS). Technical details about the Census'90 and the LPS including details about 

their databases are given in Chapter 2. However, we now recall some key points that 

are relevant to the description of the simulation study. 

The LFS sampling design is a stratified three-stage design. The LFS uses the 

Segments and the Sectors from the Census'90 as primary sampling units (PSU), 

creating special sub-divisions or sub-segments (of approx. 50 private addresses "PA" 

each) to be used as secondary sampling units (SSU). Finally, a sample of 

approximately five PA or tertiary sampling units (TSU) is selected within each sub-
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segment in the sample. The Segments are stratified by geographical areas such as 

states or states divisions. 

The Census'90 database used for the simulation study was the Expanded Database. 

This database comprises the information collected from the Census sample units using 

the Expanded Questionnaire. The Census'90 sample design was a stratified clusters 

design where approximately a 20% of clusters were sampled in the urban areas whilst 

100% were included in rural areas. The Segments (of approx. 200 PA each) were used 

as strata in the urban areas and the "Sections" (partition of "Segments" of approx. 20 

PA each) were the clusters. 

The Expanded Database contains weights for each person and household in the 

sample. These weights are the adjusted weights after a complex post-stratification 

procedure involving ten different variables. Any attempt to withdraw samples from 

the Census using the Expanded Database has to take into account the Census 

sampling design. The original Census design weights were not available to us and 

their precise computation was not possible due to practical issues that arose during the 

Census execution. Each Segment was supposed to contain 10 Sections of 

approximately 20 PA each. However, some Segments ended up containing a larger 

number of PA than expected and so were divided into more than 10 Sections. As we 

have no access to the Basic Database, the actual number of Sections per Segment is 

unknown leaving us with no way of reproducing the original Census design weights. 

To carry out the simulation we therefore considered the Census sample related to the 

urban areas as the actual Venezuelan urban data. For the rural areas, since they were 

completely enumerated in the Census, we selected a sample independently for each 

state of the same fraction as the one considered for urban areas, that is, a 20% sample 

within each state. This rural sample was then taken to be the actual Venezuelan rural 

data. Therefore in our simulation study, the combined 20% urban and rural sample is 

the target finite population and the parameters of interest are those that characterise 

this "synthetic" Venezuelan population. 
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Our aim was to select samples using a sampling design as similar as possible to the 

LFS sampling design. Therefore as in the LFS sampling design, the Census Segments 

were used as PSUs. We used states as the strata instead of sub-divisions of states. 

However, the information contained in the Expanded Database allowed us to sort the 

PSUs by geographical order within states introducing a stratification effect similar to 

the one present in the LFS sampling design which uses a systematic mechanism in the 

selection process. PSU or Segments were selected with probability proportional to 

the number of PA using a systematic mechanism. Table 5.3 shows the PSU sample 

size per State. 

In the Urban areas, the sections comprising a segment were used as SSUs and their 

sub-sections as TSUs. One SSU per Segment sampled was selected with probability 

proportional to the number of PA. In the same way, one TSU per SSU sampled was 

selected also with probability proportional to the number of PA. Finally, all the PA 

within a selected TSU were considered as the final sample. 

For the rural areas, the database does not contain any information that can be used as 

sub-divisions of Sectors. The LFS selects one SSU per PSU in rural areas, selecting 

ten consecutive PA from each SSU selected. For the simulation study, we selected ten 

consecutive PA with equal probability from each Sector in the sample. In a few cases 

the number of PA in a specific Sector was less than ten; In this case we included all its 

PA in the sample. 

Table 5.3 
Simulation Study PSU 
Sample Size by State 

STATE 
PSU 

Sample 
STATE 

PSU 
Sample 

STATE 
PSU 

Sample 
STATE PSU 

Sample 

1 261 7 81 13 212 19 31 

2 66 8 11 14 34 20 26 

3 24 9 50 15 16 21 315 

4 74 10 34 16 32 22 15 

5 28 11 75 17 52 23 20 

6 115 12 44 18 58 
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5.4.l.b. Selection Probabilities and Weights 

Following the notation used in Chapter 2 but noting that our "Venezuela" is now the 

information in the database prepared for this simulation study, the probability of 

selecting the \th PSU within the hth stratum is pi = (7̂ ,. IT^). 

In the same way, let be the total of PA in the Census Section (SSU) of the ith 

Segment (PSU) in the hth stratum. The probability of selecting the ]th Census Section 

within the ith urban PSU within the hth stratum is = {bhiT̂ y / , where 6̂ ,. is 

the number of Sections selected for the census sample in the ith Segment in the hth 

stratum and is the total number of Sections in the same Segment and stratum. 

Therefore the probability of selecting a PA in the iht rural PSU within the hth stratum 

is , p 2 = (c ,̂ / T^i), where c .̂ is equal to ten, or T̂ . if the Sector contains less than ten 

PA. 

For the simulation study, the selection probability of any PA in the urban areas and in 

the rural areas respectively can be expressed as follows: 

>• pip-^hijk) ~ 

% 
V J 

^hi = n. 
{ „ \ 

t 

(5.17) 

(5.18) 

One problem is that we do not have any information about the values of 5 ,̂,.. 

However, we know that the Sections were selected at random and that their sizes 7]̂ . 

must be rather similar. Therefore, must approximate 7̂ . and so we can use 

the following expression as a good approximation to ; 
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Noting that in urban areas 7],. is the sample size within a specific PSU, we have that 

in those areas =ĉ ,- and so we can write the common expression: 

ilpip^hijk) " rpipaiiik) ~ p(panik) -
t 

(5.19) 

Therefore, for each sample in the simulation study, we have a set of weights 

attached to the units in the sample. Let the subscript g=l,...,1000 denote the gth 

sample of the simulation study. We shall denote the weights related to the gth sample 

as follows: 

r ^ 
I (g) J 

(5.20) 

noting that h=s because the states are the strata in our simulation study. 

5.4.I.C. Direct and Post-stratification Estimators of Parameters 

Let us consider a variable Y related to people and let c=l,..,C denote the cth sub-

group for which we require estimates, as denoted in Section 3.1.1. The Horwitz-

Thompson estimator of the total Y and proportion P for the cth sub-group for the gth 

sample will be: 

f=I 

M. 

(5.21) 

(522) 
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where y^i^cis) is the sample total for the cth sub-group within the z'th PSU, /zth 

stratum for the gth sample, and is the census population total for the cth sub-

group. The ratio Y/Z is estimated by: 

Once a sample is drawn, a post-stratification adjustment is made at state levels using 

the Census sex-age counts at the same level of aggregation as it is currently done for 

the LFS (Section 3.2.4), that is A=22 sex-age post-strata. As in Section 3.2.4, the 

weights attached to the people in the sample are modified using this post-stratification 

adjustment. The resulting post-stratified weights are as follows; 

. ( 5 . 2 4 ) 

where is the census population total for the ath post-stratum within the sth state 

and is its Horwitz-Thompson estimator of the form as (5.21) for the gth 

sample. The resulting estimators of the total Y, the proportion P and the ratio R=X/Z 

are then post-stratified (PS) estimators given by; 

= vW, (5J!5) 

f=l 

_f_VZL/:= -JLlALL (SJZG) 

(g) = (5,27) 
z f ( g ) z x g ) . ; : ( g ) 

where is the sample total of people for the cth sub-group within the ith PSU, Ath 

stratum for the gth sample. 
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Let Y represents the total of the qth category of the labour force structure, that is 

y = M . Then, equations (5.21) and (5.25) are the direct and PS estimators 

respectively of the total of people in that category and the employment, 

unemployment, activity and inactivity rates are then estimated using (5.23) and 

(5.27). 

5.4.1. d. Variance Estimator for the Direct and Post-stratification Estimators 

Assuming that the PSUs were sampled with replacement within each stratum, we use 

the ultimate cluster technique (e.g. Kish 1965, Wo Iter 1985, Skinner et al. 1989, 

Samdal et al. 1992) to estimate the variance and covariance of the Horwitz-Thompson 

estimator Y^{g)\ 

varltig))-
("a ~1) 

(5.28) 

The variances of (g) and (g) are: 

(5.30) 

F a r ( « , ( g ) ) s 
( z , ( s ) ) 

riy-lt (g))-2R,{g)Cov(i (g),zAg)) 

+(s^)'Var{z^(g)) 
(5.31) 
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Applying the same arguments as in Section 2.2.5, an approximation to the variance 

and CO variance of 7 / (g) is calculated by using the expressions; 

Var ( s ) ) = i t (?) 
\^h V /=1 

(5.32) 

= (5.33) 

Consequently, the expressions for the variances of Pf{g) and R^(g) are: 

Var(pf(g)) = 
1 n 

(5.34) 

(z"(«)) 

( •4"(?) ) 

rar(yf(g))- 24' (g)Cov ( f f (&), Zf (&)) 

+ ( 4 ' ' ) V a r ( z , ' ( j ) ) 

yar(/,'(g))- 2R; (g) Cov ( / / ( g ) , , Pf (g)) 

+ (R;(g))' rar(,Pf(g)) 

(5.35) 

5.4.1.6. Models considered in the Simulation 

The models fitted to the data obtained in each of the 1000 samples are the SPREE 

models (a), (b), (c) and (d) and the Conventional Logistic models (a), (b), (c), (d) 

described in Section 5.3. However, there are two differences here. Firstly, we shall 

use the LFS-like samples to estimate the marginals used to update the required terms 

in the model. Secondly, the reference table used in the SPREE process will be the one 

defined by the Expanded Census'90 database from which the samples are drawn. This 

is the best possible scenario as any interaction term to be preserved from the reference 
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table is guaranteed to be equal to that of the target table. This is the equivalent to the 

"ideal" situation in which the preservation assumption flawlessly holds. 

5.4.1.f. Estimators of Parameters 

The 1000 sample estimates of the proportion of people in each of the three groups 

q=l,2,3 that comprise the basic structure of the labour force were obtained for each 

model for each of the sub-groups c=l, ...,184, that is, 

pqlc -'^qlc ' 
x ê(g) x̂ e(g) 

3 1 + Z 
(5.36) 

Let nu/c(g) denote the sum 'iiyc(s)+'^2/c(s) • The employment, unemployment, 

activity and non-activity rates are estimated by using the expressions, 

^,2/r(g) 

.^c(g) = l -A/c(g) 

(5.37) 

5.4.l.g. Variance Estimators 

Let 7t(9(g)^ be the IxJxKx(Q-l)=368 vector: 

71 (0(g))= 

(8(g)) 

(8(g)) 

^c(8(g)) 

with (8(g)): 
71 

71. 

(e(g))' 

(8(g)), 
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We substitute (5.34) in its variance-covariance matrix form into the equation (4.46) in 

order to calculate the variance estimates of the matrix Jr^0(g)^, that is, the diagonal of 

the matrix: 

Cov(;r(8(g))) = A(g)X(x'DA(g)Xy |^X'DCovar(p''(g))DxJ(x'DA(g)Xy XA(g) 

(5.38) 

where A(g) = 5/ocMzag'[Diag(;t^(g))-;r^(g)7r^(g)'J and X and D are as in Section 

4.5.2. 

The estimates of the variances Fa7'^g^^(g)) = yaf^^.Rg(g)) = F<3/'(?i3/̂ (g)) are 

defined by the diagonal of (5.38). The estimates of the variances 

as follows, 

(^12/c(g)) 

K /c (g)) - 2, & (g) Covar (vi (g),?: 12/, (g)) 
(5.39) 

(;^i2/c(g)) 

(?: 2/c W ) - 2, (g) Covar (?: (g),:?! ,2/c W ) 
(5.40) 

where: 

(7112/,(g)) = (g)) + F a ? - ( g ) ) + 2 CovaA-(71,,,(g),^!/,(g)) 

and, 

Covar(f ,/Xg),:^,2/r(g)) = Fa^(T^i/c(g))+Covar(Tr,/Xg),it2/c(g)) 

Covar(7i2/,(g),:f,2/Xg)) = ^^(^2/c(g))+Covar(f ,/X&),T^2/Xg)) 
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5.5. PTE]RJF()RPWLAJ\C]E INI)I(:^nr()RS 

In this section we define the indicators that will be used to assess the properties of the 

different estimators considered in the simulation study i.e. the model estimators 

defined in Section 6.4.1 .e plus the Direct and the PS estimators. 

Let (j) (c^) be any of the estimators considered in this study for the c/A-sub-population 

and qth LF category parameter (j) {cq). This parameter can be either a proportion or 

one of the rates defined in the previous section. In the case of rates q will just denote 

which rate the parameter is referring to, i.e. Employment, Unemployment, Activity or 

Non-activity rates. 

Let ^{cq,g) denote a specific outcome of ^{cq) generated at simulation g. Let 

SE^ and CV^ be the standard error estimate and the estimate of the 

coefficient of variation of the estimate (j) (eg) obtained fi-om the gth simulation. An 

unbiased estimator for the expected value of ^{cq), j is given by: 

1000 

Therefore, an estimator of the bias of (j) {cq) is given by: 

Bias j = E{^{cq)^-^{cq) (5.42) 

We need indicators that allow us to assess the performance of ^{cq) as an estimator 

of the parameter (j) {cq) and to compare it with other estimators of that parameter. The 

key properties of estimators we are interested in are bias, accuracy and confidence 

interval coverage. By assessing accuracy and bias we can learn about the usefulness 

of each estimator at estimating the target parameters and the gains obtained due to the 
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use of one estimator over another. On the other hand, we can use the information 

about coverage rates to assess the impact of not taking into account bias in the 

construction of confidence intervals. 

Eight performance indicators for ^{cq) are therefore defined as follows. 

a) Absolute Relative Bias: ARB 
1 1000 — y 

1000 (Z)(cg) 

b) Relative Root MSB: j U Z M S E = 

1 
1000 

1/2 

c) Coverage Rate: 
1 1000 

1000 t-=1 

1 if (|) (eg) GI(|) (eg) d: z(a / 2). ((|) (eg)) 

0 otherwise 

d) Average SE: 

e) Standard Error; 
1000 ^ 

(c^)) = [ (c^)) - ^ 4 ^ ' (f (c^)) 

1/2 

- | l /2 

Keg) 

f) Coefficient of Variation: cv{^{cq)^ = 5£'^(|)"(cg)j (eg) 

(eg)) = ((^(cg))- (^eg)) 
1/2 
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g) Ilebtn^SEEtias: Rj%%?|d{a7)| = -_i_^ ' )! 

V 

In the case of proportions, we are interested in the performance of the vector of 

binomial estimators 9(c) = (̂))"(ĉ ) j = (̂|)"(cl),(f (c2),(f (c3) j . Therefore the performance 

indicators to be analyzed will be the average of the three binomial indicators for each 

subgroup. For instance, the Absolute Relative Bias indicator we are interested in is 

given by. 

0 

In a similar way we obtain the following indicators rrmse (^(p(c)), 5e/4(^(c)), 

a : (9(c)), CF(9(c)) and ^(5^^(9(0)). 

Regarding the coverage indicator Ci?(9(c)), we use a different approach for 

proportions from the one given above. This is due to the fact that we are dealing with 

a multinomial variable and in this situation it is more informative to calculate an 

integral coverage rate, i.e. a rate indicating the percentage of samples for which the 

three confidence intervals simultaneously include their respective parameters. In this 

case we are interested in constructing simultaneous confidence intervals such that the 

combined coverage rate is about the ( l - a ) % aimed. A common approach to 

construct those simultaneous confidence intervals is due to Goodman (1965). The 

approach consists to constructing all the q confidence intervals -q being the number 

of categories in the multinomial population- using z(a / 2q) instead of z(a /2) in the 
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formula for the confidence interval. The Coverage Rate indicator for proportion is 

therefore given by, 

1 1000 

zWc,g)) = 
1 if (eg) EI (|) (eg) ± z(a / 2 0 - ((|i (eg)) 

0 otherwise 

V g E c 

All these indicators are easily interpreted. The ARB indicator gives us a measure of 

the magnitude of the bias relative to the size of the parameter for a particular 

estimator. 

The RRMSE can be interpreted in a similar way as the traditional coefficient of 

variation (CF), but noting that in this case the numerator is the mean squared error 

(MSE) instead of the variance. This is the standard indicator used to asses the 

accuracy of each estimator and thereby the gain or loss associated with using a 

particular model estimators. This indicator can be compared to the CV indicator in 

order to asses whether the coefficient of variation estimator CV^ is a useful measure 

of the accuracy of an estimator. 

The CR indicator will allow us to assess the adequacy of confidence intervals for a 

particular estimator based on the standard error estimates, since this assumes 

unbiasness and normality of the estimator distribution. We will use a = 0.05, so we 

are looking for values of this indicator that are significantly lower that 0.95 (or 95 in 

percentage figures). 

The CR indicator can also alert us possible problems with the variance estimator of 

the unbiased Direct estimator and/or the almost unbiased Post-stratification estimator. 

The appropriateness of the standard error and coefficient of variation for estimating 

the real standard error and coefficient of variation can be assessed by looking at the 

SEA, SE and RSEB indicators. Large discrepancies between average and simulation 
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estimates of the standard error are indications of problems in precision measurement 

estimation from sample data. If the variance estimator formula is not adequate, we 

can check whether it is overestimating or underestimating the real variance by looking 

at the Relative SE Bias (RSEB). The RSEB indicator gives us a measure of the 

magnitude of the bias in the standard error estimator relative to the size of the 

parameter. 

We also calculate some summary version of these indicators that can help provide a 

general picture of the characteristics and performance of the estimators. First of all, 

we will calculate the average of the seven performance indicators at different levels 

i.e. national averages, sex-age group averages and so on. To illustrate, the national 

average of the ARB indicator for proportions and rates estimators are respectively. 

and 

f 2 ^4 

- / . \ 1 

I ; (£•?)) 

The averages CF((|)) and are 

defined in the same way. 

We also define some measures that will help us to understand the differences between 

estimators in terms of the percentage of subgroups satisfying a certain requirement 

regarding the level of a given indicator. These measures are given below for rates 

estimators. For proportion estimators we just have to substitute ^(c) for (j) (cq) in 

any of these expressions. 
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a) Percentage of subgroups with a Relative Root MSB <=0.15 

%™</$E(( | )W)<0.15 

f(c^) 

/ I 184 \ 

184 :^ 
100; 

1 if RRMSE(#c^) )<0 .15 

0 otherwise 

b) Percentage of subgroups with a RRMSE Improvement >0.15 with respect to the 

Post-Stratification estimators 

> o.i5 = — W 
184 \ 

184 t i / 
100 

i{cq) = 
if RC W),(|)pg (c^)) < —0.15 

0 otherwise 

RRMSE -RRMSE (c^)) 

RRMSE 

where {cq) denote a Post-Stratification estimator. 

The %RRMSE indicator summarises the percentage of sub-populations for which the 

RRMSE yield by the simulation study is lower than a specific limit. We have chosen 

0.15 as this limit on the basis that this figure is the "acceptable" limit for publication 

purposes. Therefore, the %RRMSE indicator will give us an idea of the percentage of 

"publishable" estimates when using each estimator considered in the study. However, 

it will not give us all the information about the gains or the improvement in RRMSE 

terms obtained by using a specific estimator with respect to any other estimator. For 

that purpose we have calculated the %RIRRMSE indicator. 

The %RIRRMSE indicator gives us the percentage of sub-population groups for 

which the relative change in the RRMSE of a specific estimator with respect to the 
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RRMSE of the Post-stratification estimator RC (eg') j is lower than a given 

number. Note that relative negative numbers in RC (eg)j denote 

improvement in RRMSE terms of that estimator with respect to the PS estimator, 

whilst positive figures denote deterioration. We will use 0.15 as the limit. 

These indicators will also be disaggregated by sex, age group, sex-age groups and 

state. 
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5.6. RESULTS 

We now present and comment on the results obtained from the simulation study. In 

order to make a basic comparison to asses the appropriateness of the simulation 

process, Table 5.4 shows the estimated design based ARB from the simulation versus 

the "real" ARB calculated from the Census data for models (a), (b), (c) and (d) 

proportion estimators. Those figures are presented for Sex-age groups and along with 

the national average. The table does not show differences that might raise any 

concern. 

Table 5.5 shows the national average of the performance indicators for the Direct, 

Post-stratification (PS), models (a), (b), (c) and (d) proportion estimators as well as 

the SPREE models (a), (b), (c) and (d) estimators. The most important aspect shown 

in this table is the quality of the SPREE estimators when the reference table is an 

Table 5.4 
PERFORMANCE INDICATOR ARB AND REAL ARB 

FOR PROPORTION ESTIMATORS Model a, b, c and d 
BY SEX AND AGE GROUPS and NATIONAL AVERAGE 

Sex-Age 
Group 

ARB Sex-Age 
Group 

ARB 

(a) (b) (c ) (d) (a) (b) (c ) (d) 

Total 
S 

2&2 

20.2 

8.7 

8.6 

6.9 

6.9 

6.4 

6.4 

1 1 R 11.8 7.6 4.9 4,0 
2 1 

15.9 7.0 7.9 5.0 

s 11.6 7.7 5.1 3.9 S 15.9 6.9 7.8 4.9 

1 2 R 11.2 6.2 6.4 5.8 
2 2 

9.2 7.1 5.1 2.9 

S 11.3 6.2 6.5 5.7 8 9.1 7.1 5.1 3.2 

1 3 ^ 
20.3 7.5 6.0 8.2 

2 3 
25.9 9.4 6.0 6.3 

S 2&3 7.5 6.0 8.2 S 25.8 9.4 6.0 6.4 

14 R 12.4 8.9 4.8 6.6 2 4 
55.0 15.5 13.8 12.2 

S 12.4 8.9 5.0 6.6 8 55.3 1&2 13.5 12.0 

R=Real ARB% 
S=Estimated ARB% (simulation) 
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Table 5.5 
PERFORMANCE INDICATORS FOR PROPORTION ESTIMATORS 

BY ESTIMATOR (Direct, PS, Model a, b, c and d and SPREE) 
NATIONAL AVERAGE 

Performance 
ESTIMATOR 

Indicator 
Direct PS 

(a) (b) ( c ) (d) 
Direct PS 

Spree (a) Spree (b) Spree ( c) Spree (d) 

CR 

ARB 

RRMSE 

SEA 

SE 

RSEB 

cv 

8&7 

O.G 

22.7 

3.7 

3.5 

-O.E 

84^ 

0.9 

22.7 

3.7 

3.5 

-0.7 

2&6 226 

31.5 6&7 77.6 81^ 
922 920 88.0 929 

2 0 2 8.6 6.9 6.4 
0.3 0.3 0.6 0.5 

2&9 134 18M 14.5 
8.8 9.2 15.2 i i a 

1.8 1.8 2.9 2.4 
1.8 1.9 2.9 2.7 

1.7 1.7 2.7 2.1 
1.7 1.7 2.7 2.1 

0.9 0.8 0.7 1.0 
0.8 0.8 0.8 2.3 

102 9.6 15.5 12J 
8.8 9.2 15.2 11.8 

adequate one. We recall that for this simulation we construct the reference table from 

the 1990 Census data. Coverage rates for SPREE estimators are even superior to the 

Direct and PS estimators because they are not affected by the instability due to small 

sample sizes found in design based estimators. Note the dramatic reduction in bias 

caused by preserving appropriate interactions in contrast with the conventional 

Logistics models (a), (b), (c) and (d) and its obvious effect in reducing the RRMSE 

values. 

As we expected, the standard error levels are rather similar for the SPREE and the 

conventional Logistic model estimators since the differences between them are the 

"constant" preserved interaction terms (see Chapter 4). The bias of the estimator of 

the standard error (RSEB) seems to be small and positive for the model estimators. 

For the design-based estimators, the national average shows a negative bias; we have 
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02 5 w a * w a m m 20100 

Model (b) Model (b) 

M^io a # 
PECENTAGES SAMPLE SIZE 

Figure 5.8 Subgroups RSEB by 
Percentage Parameter and Sample Size 
for PS and Logit Model (b) Estimators. 

seen in Chapter 2 that the variance estimator of the design-based estimators tends to 

be conservative so a positive bias was expected. This national average bias is affected 

by two factors, the instability of the estimator of the SE in small sample size situations 

and the relative nature of the RSEB indicator itself, with the latter being the most 

important. 

Figure 5.8 shows the subgroups RSEB against subgroups sample size and against the 

percentage parameters for the PS estimator and the Model (b) estimator. It can be seen 

that the bias of the SE estimator is rather stable and slightly positively biased for large 

sample sizes and large percentages. For combination of small sample size and small 

percentages the RSEB registers high values. All the extreme negative RSEB values 

shown in the graph correspond to subgroups with parameters lower than one percent. 

Also, the estimator of the SE is noticeable more stable in RSEB terms for model 

estimators. 
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Table 5.6 
PERFORMANCE INDICATORS FOR PROPORTION ESTIMATORS 

FOR SEX-AGE GROUPS AND THE NATIONAL AVERAGE 
BY ESTIMATOR (Direct, PS, Model a, b, c and d) 

Coverage Rate (CR) % Absolute Relative Bias (ARB) % Relative Root MSE (RRMSE) % 
Age 

Group Dir. PS (a) (b) (c ) (d) Dir. PS (a) (b) ( c ) (d) Dir. PS (a) (b) (c) (d) 

Total 83.7 84.0 31.5 667 77.6 817 0.8 0.9 202 8.6 6.9 6,4 22.7 22.7 23.9 119 1&1 14.5 

1 1 892 90.0 45M 58.5 75.1 84.0 0.5 0.5 116 77 5.1 3.9 14.5 14.3 15.9 124 114 i i a 
1 2 8A0 87.1 40.0 71.1 74.8 715 0.6 0.6 11.3 62 6.5 57 18.7 187 16.1 11.7 15.8 13.4 
1 3 855 85.4 19.5 6&8 767 6&5 0.8 0.8 20.3 7.5 6,0 8.2 216 23.7 23 3 13.1 19.5 15.1 
1 4 88.2 8&2 35.1 63.5 77.6 822 0.7 0.6 12.4 8.9 5.0 6.6 19.1 18.9 16.0 118 185 14.1 
2 1 8&8 87.4 219 70.6 71.0 86.1 0.6 0.6 15.9 6.9 7.8 4.9 17.9 17.8 182 122 16.1 116 
2 2 890 89.2 51.6 66.7 84.4 877 0.7 0.7 9.1 7.1 5.1 3.2 17.8 17.8 14.0 12.4 154 12.4 
2 3 80.7 80.5 26.7 71.1 8&3 88.2 0.9 1.0 2&8 9.4 6.0 6.4 282 28 3 2&0 14.6 20.2 15.1 
2 4 63.1 63.4 9.3 623 75 8 82.2 1.8 2.2 55.3 15.2 13.5 12.0 4^5 4ia 58.9 2&6 26.1 20.4 

Although the superiority of the SPREE estimators with respect to the design-based 

estimators and the conventional Logistic model estimators is clear, we recall that this 

is true provide an appropriate reference table is being used. If this is not the case, we 

might consider the option offered by the conventional Logistic model estimators. On 

average, apart from Model (a), they all register a lower RRMSE than the design-based 

estimators. A disadvantage of these estimators is that their Coverage Rate is affected 

by their bias (see Table 5.5). Models (b) and (d) appear to be on average the best 

options among the four conventional Logistic models considered in the study; based 

on those average figures we would favour the Model (d) estimator as its RRMSE is 

not far from Model (b) RRMSE and its coverage rate (CR) is almost at the same level 

as the design-based estimators CR values. Note that the CV seems to be a better 

estimator of the RRMSE for Model (d) than for Model (b). 

We now look at some disaggregated figures to see if the national averages in Table 

5.5 reflect the behaviour of those estimators at different levels. Table 5.6 shows the 

Sex-age group average of the performance indicators for the Direct, Post-stratification 

(PS), models (a), (b), (c) and (d) proportion estimators. The Sex-age average figures 

seem to behave similarly to the national average figures. For group 2-4, i.e. females 

aged over 44, the figures shows particular poor performances for all the estimators. 
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Table 5.7 
PERFORMANCE INDICATORS FOR PROPORTION ESTIMATORS 

FOR SEX-AGE GROUPS AND THE NATIONAL AVERAGE 
BY ESTIMATOR (Direct, PS, SPREE Model a, b, c and d) 

Sex- Coverage Rate (OR) % Absolute Relative Bias (ARB) % Relative Root MSE (RRMSE) % 
Age 

Group Dir. PS (a) (b) (c) (d) Dir. PS (a) (b) (c) (d) Dir. PS (a) (b) (c) (d) 

Total 83.7 84.0 92.2 920 88.0 929 0.8 0.9 0.3 0.3 0.6 0.5 22.7 22.7 8.8 9.2 152 11^ 

1 1 8&2 90.0 920 92.1 8&8 94.6 0.5 0.5 0.3 0.3 0.5 0.4 14.5 1 4 j 8.4 8.5 11.7 10.7 
1 2 87.0 87.1 91.9 91^ 88.1 93.4 0.6 0.6 0.4 0.3 0.5 0.4 18.7 1&7 8.7 9.0 13^ 11.1 
1 3 855 85.4 91.5 91.5 8&7 9&6 0.8 0.8 0.3 0.3 0.7 0.4 23.6 237 8.9 9.4 17.3 11.4 
1 4 88.2 8&2 91^ 92.1 877 94.1 0.7 0.6 0.3 0.3 0.7 0.4 19.1 1&9 8.8 8.9 170 11M 
2 1 8&8 8A4 924 92.1 89.1 920 0.6 0.6 0.3 0.3 0.4 0.5 17.9 17^ 8.8 9.0 123 11.9 
2 2 89.0 8&2 9Z3 924 89.1 919 0.7 0.7 0.3 0.3 0.5 0.5 17.8 17a 8.7 B.8 13.3 11.9 
2 3 8&7 80.5 92.5 92.4 87.7 922 0.9 1.0 0.3 0.3 0.7 0.5 28.2 2&3 9.0 9.5 17.9 125 
2 4 63.1 63.4 93.2 91^ 87.1 91.3 1.8 2.2 0.3 0.4 0.8 0.6 41.5 41.8 9.4 10.8 18.7 13.5 

This is due to the fact that this group is the one with lower proportions and sample 

size levels. However, the important point to note in this case is that, apart from model 

(a), the model-based estimators have better RRMSE levels than the design-based 

estimators. Again, the model (d) estimator seems to be the best option. 

Table 5.7 is the equivalent to Table 5.6 but for SPREE model estimators. Here again 

the behaviour is similar to the national average figures and the same comment 

regarding Sex-age group 2-4 applies. Since bias is not an important factor for these 

SPREE estimators, it is natural to choose as the best estimator the simplest model 

since its RRMSE levels are the lowest and its CR values the highest. This model is 

either the independence model (a) or the sex-age interaction model (b), depending on 

whether or not we need the sex-age group agreement to the national figures. 

We arrive at the same conclusions for both the conventional Logistic estimators and 

the SPREE estimators after analysing the performance indicators by States. State level 

figures for conventional Logistic models are shown in Table 5.8. 
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Table 5.8 
PERFORMANCE INDICATORS FOR PROPORTION ESTIMATORS 

FOR STATES AND THE NATIONAL AVERAGE 
BY ESTIMATOR (Direct, PS, Model a, b, c and d) 

swe % AbmWeReWheBbsV^GO RkWweRoaWGE(mWKe) 

Dir. PS (a) (b) (c ) (d) Dir. PS (a) (b) (c ) (d) Dir. PS (a) (b) (c) (d) 

To&l 83.7 84.0 31.5 66.7 77.6 81V 0.8 0.9 20.2 8.6 6.9 6.4 22.7 22.7 2&9 13.9 18.1 14^ 

1 934 94.5 6.2 2 7 a 31^ 57.3 0.3 0.2 1&2 8.4 8.3 5.3 7.5 7.4 1GU 10.0 1&9 7 7 

2 88.2 88.5 22.5 81^ 84.8 9^3 0.5 0.4 21.1 6.7 6.5 4.1 16.4 16.4 23.0 10M 14.2 9.9 

3 78.6 7&2 64.1 75.2 80.2 85.8 1.0 1.2 16^ 11.2 6.7 9.0 324 33.0 2Z9 1A6 2&5 19.7 

4 90.3 90.6 4.4 56.4 7 9 1 79.5 0.6 0.6 204 7.2 5.5 5.6 14.2 14.2 21.8 10.1 1Z2 9.9 
5 7&4 7&8 33.6 67.4 8&7 8&5 1.2 1.5 22.4 9.1 8.7 3.8 2eu2 281 2&0 16x1 22.4 14.8 

6 9&2 90.4 5.2 75.8 8&6 8&5 0.6 0.6 18.5 4.6 3.7 3.5 13L1 13.1 197 8.0 10.1 8 4 

7 8&4 8 9 9 8.8 83.4 90.2 85.4 0.6 0.6 1&8 3.1 1.5 3.3 14.2 14.1 17.5 7.2 9.7 8.6 

8 6A1 66.6 63.4 81.3 7&3 84.9 1.5 1.2 2 3 7 9.6 8.6 6.2 43.3 44.8 3&0 2&9 3Z2 24^ 

9 8A4 87.9 31.6 79.1 86.1 86.6 0.8 0.8 22.3 7.4 7.3 4.4 19.2 19.0 25.0 11^ 15.4 12.4 

10 83.6 84.2 31.5 6&6 77.6 85.2 1.0 0.9 2&5 9.4 7.7 6.1 25.1 24 9 24.1 14.7 20.6 14^ 
11 90.4 90.5 17.3 7 1 2 85.3 9 i a 0.7 0.7 22.5 6.2 5.5 4.2 1EU5 154 24.3 1&2 127 10.0 

12 84.8 85.2 34.0 6 1 ^ 8Z3 8 2 3 0.8 0.8 215 8.8 7.0 7.0 23.3 2 3 2 24.7 137 1&2 15.0 

13 92.1 9Z8 2&6 41.7 57.8 5 3 2 0.4 0.4 15.5 7.2 6.1 6.6 9.3 9.1 16.7 9.2 9.8 9.5 
14 8&5 83.8 47.5 7&4 8&3 84.5 0.8 0.9 19.1 7.9 7.2 5.8 23.8 24.0 23.1 1&5 1&5 14.6 

15 71.0 7&9 49.3 74.4 7&6 80.4 1.2 1,2 20.1 6.8 2.6 6.9 37.4 37 3 267 16.3 2&0 2&2 

16 8&8 80.8 27.4 58.6 79.0 8Z5 1.0 1.0 21.1 9.0 8.0 5.3 2&6 26.4 24^ 154 2&5 14.9 

17 87^ 88.1 41.0 5 8 8 7&6 70.9 0.6 0.6 1&8 10.7 5.4 10.4 19.4 19.5 20.5 14.2 14^ 1&6 

18 87.0 8A8 12.4 85.2 8&5 9&6 0.9 0.9 2&0 5.5 4.8 4.6 18U8 187 2&3 10.1 144 11.7 

19 825 83.0 504 7 1 ^ 8 1 4 86.1 0.6 0.7 22.0 10.7 7.0 10.0 25.9 2&8 264 1&9 2&2 1&3 

20 80.4 80.4 44.2 83.1 85.1 86.4 1.5 1.3 2 0 7 6.5 5.5 5.6 2&9 2&9 24^ 13.1 20.0 15.2 

21 92.1 92.6 0.1 62.7 77.4 91.5 0.2 0.2 1&1 4.0 3.3 1.8 7.3 7.2 1&9 6.3 7.1 5.3 

22 70.1 7&8 59.2 5&5 6Z4 79.9 1.9 2.0 19.3 17.6 16.8 9.1 3&0 39.3 28.4 26.6 33.1 23.4 

23 754 75.4 4&0 4&3 64.4 70.6 0.8 1.2 29.0 21.0 14^ 17.7 34.2 33.7 36.5 29.0 29.4 28.8 

An interesting aspect shown by the tables analyzed so far is that there does not seem 

to be a big difference in RRMSE terms between the conventional Logistic estimators 

and the SPREE estimators based on models (c) and (d). This fact is important since it 

tells us that when the reference information available departs from an ideal case like 

the one we have created for our simulation study, SPREE estimators based on models 

(c) and (d) might rapidly become inferior to the conventional Logistic model (c) and 

(d) based estimators. However, the SPREE model (b) estimator might still be a good 

competitor. 
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Figure 5.9 Box Plots of the Subgroups RRMSE Distribution for the 
Direct, Post-Stratification (PS), Logistic and SPREE Models (a), (b), (c) 

and (d) Proportion Estimators. 

Figure 5.9 shows box plots for the subgroups RRMSE distribution for all the 

estimators in the simulation. Those plots confirm the comments made in this section 

regarding estimators and their RRMSE. Note, for instance, the similarity between the 

conventional Logistic models (c) and (d) estimators and the SPREE models (c) and 

(d) estimators. 

Table 5.9 shows the percentage of subgroups with all three proportion estimates, i.e. 

Employees, Unemployed and Non-actives, registering a RRMSE lower than 0.15 

(15%) at the same time. That gives us an idea of the proportion of subgroups for 

which is more likely to have stable rates estimates. The figures are presented by sex-

age groups for the Direct, Post-stratification (PS), models (a), (b), (c) and (d) 

proportion estimators as well as the SPREE models (a), (b), (c) and (d) estimators. We 

can see again evidences of the gains obtained by using the model-based estimators. 

This time, the conventional Logistic Model (b) estimator seems to outperform the 

conventional Logistic Model (d) estimator by an appreciable margin, particularly for 

some sex-age subgroups (1-2, 1-3, 2-1). The SPREE estimators prove once more to 
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Table 5.9 
PERCENTAGE OF SUBGROUPS WITH THREE PROPORTIONS RRMSE<0.15 

FOR SEX-AGE GROUPS AND THE NATIONAL AVERAGE 
BY ESTIMATOR {Direct, PS, Model a, b, c and d and SPREE) 

SEX-AGE 
GROUPS 

ESTIMATOR 

Direct PS (a) (b) (c) (d) 

Spree (a) Spree (b) Spree ( c) Spree (d) 

Total 20.7 20.1 1&5 
7&8 

52.2 
7&5 

3 2 1 
37.5 

42.4 
57M 

1 1 43.5 43.5 4&5 
826 

7&9 
82.6 

60.9 
60.9 

73.9 
7&3 

1 2 26.1 21.7 26.1 
826 

6&2 

8 2 6 
39.1 
5 2 2 

4A8 
78.3 

1 3 
13.0 13.0 4.3 

7 8 3 
65.2 
7&3 

34.8 
39.1 

4^5 
7&9 

1 4 17.4 17.4 13.0 
7&3 

5&5 
7&3 

21.7 
21^ 

52.2 
73.9 

2 1 30.4 30.4 4.3 
78.3 

5&5 
7&3 

43.5 
47.8 

39.1 
43.5 

2 2 21.7 21.7 5 2 2 
7&3 

60.9 
78.3 

34.8 
43.5 

43.5 
4&5 

2 3 13.0 13.0 4.3 
78.3 

2&1 
7&9 

17.4 
21^ 

2&1 

34.8 

2 4 
0.0 0.0 

0.0 

100.0 

0.0 

100.0 

0.0 

100.0 
0.0 

100.0 

be superior to their competitors, with the SPREE model (a) estimator registering the 

highest gains. 
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Table 5.10 
PERFORMANCE INDICATORS FOR UNEMPLOYMENT RATE ESTIMATORS 

BY ESTIMATOR (Direct, PS, Model a, b, c and d and SPREE) 
NATIONAL AVERAGE 

Performance 
Indicator 

ESTIMATOR 
Performance 

Indicator 
Direct PS 

(a) (b) ( c ) (d) 

Performance 
Indicator 

Direct PS 
Spree (a) Spree (b) Spree ( c ) Spree (d) 

CR 87J 87.6 68J 8&3 904 9&2 
CR 87J 87.6 

94.6 94.3 924 9&5 

ARB 1.6 2.2 
29J 125 8.8 10.4 

2.2 
0.5 0.6 0.9 0.8 

RRMSE 4 2 3 42.8 36.4 2^9 2&2 2^3 
14.4 15.3 2&9 19^ 

SEA 4.3 4.3 2.2 2.2 3.3 2.7 

2.1 2.1 3.2 2.7 

SE 4.7 4.8 2.1 2.1 3.3 2.7 
2.0 2.1 3.3 2.7 

RSEB -7.1 -7.5 
0.5 0.3 -0.5 0.2 
0.5 0.4 -0.5 0.3 

GV 4 2 3 42.7 
17.5 164 2&8 2&8 
144 15.3 2&9 19^ 

We now present some tables and charts for estimated labour force rates. We shall 

concentrate mainly on Unemployment Rate (UR) indicators since estimation of these 

rates is basic indicator of the labour force. 

Table 5.10 shows the national average of the performance indicators for the Direct, 

Post-stratification (PS), models (a), (b), (c) and (d) Rate estimators as well as the 

SPREE models (a), (b), (c) and (d) Rate estimators. As in Table 5.5, the most 

important result shown in this table is the quality of the SPREE estimators when the 

reference table is an adequate one. In general, the performance indicators for the 

Unemployment Rates show a similar behaviour to those of proportions. The SPREE 

estimators show lower RRMSE figures and higher CR values than their competitors 
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Figure 5.10 Box Plots of the Subgroups RRMSE Distribution for the 
Direct, Post-Stratification (PS), Logistic and SPREE Models (a), (b), 

(c) and (d) Unemployment Rate Estimators. 

thanks to the lower ARB registered. As expected, the simpler the model the better the 

RRMSE figures for the SPREE estimators. As for the Conventional Logistic model 

estimators, the Model (b) estimator is the one with the lower RRMSE; in this case, 

however, the CR value for the Conventional Logistic Model (b) is similar to that of 

the design-based estimators and these values are even higher for the Conventional 

Logistic models (c) and (d). In this sense, it seems reasonable to choose the 

conventional Logistic model (b) estimator among the conventional Logistic estimators 

as its RRMSE is the lowest and its CV is of an acceptable level. However, Figure 

5.10 shows how the conventional Logistic model (b) estimator, although having a 

lower national average for RRMSE than the conventional Logistic model (d) 

estimator, has more extreme RRMSE values than the model (b) estimator. 

The RSEB figures show again a negative bias for the design-based estimators. The 

explanation in this case is the same as for the case of proportions discussed above. 

Subgroups with low unemployment rates and small sample sizes show a higher bias; 

two subgroups with a particular low UR push the national RSEB average downwards. 

171 



Table 5.11 
PERFORMANCE INDICATORS FOR UNEMPLOYMENT RATE ESTIMATORS 

FOR SEX-AGE GROUPS AND THE NATIONAL AVERAGE 
BY ESTIMATOR (Direct, PS, Logistic Model a, b, c and d) 

Sex-Age Coverage Rate (CR) % Absolute Relative Bias (ARB) % Relative Root MSE (RRMSE) % 

Dir. PS (a) (b) (c) (d) Dir. PS (a) (b) (c) (d) Dir. PS (a) (b) (c) (d) 

Total 87.7 87.6 68.1 86.3 90.4 90.2 1.6 2.2 29.1 12.5 8.8 104 423 428 3&4 219 292 243 

1 1 93.3 93.4 87.7 87.7 92.9 91.4 0.6 0.7 8.5 8.1 4.4 5.1 20.5 20.6 1&9 154 1&6 15,5 

1 2 93.0 92.9 91.4 91.1 91.7 93.0 0.6 0.8 5.5 5.2 5.2 4.0 241 240 1&5 15.3 2&9 16.5 

1 3 91.7 91.6 73.7 92.6 91.2 92.5 0.7 0.8 128 6.4 3.6 7.0 323 327 19J 1A2 2&8 19.4 

1 4 91.3 91.3 66.0 87.4 91.0 88.0 1.3 1.2 14.8 119 3.6 126 35.0 35.8 22.6 22.1 33.8 24.2 

2 1 91.0 91.2 82.3 85.6 87.8 89.1 1.2 1.3 9.0 8.1 9.1 6.9 26.6 2&3 1&6 15.2 1&6 19.0 

2 2 92 0 914 811 842 8&8 910 1.0 1.5 11.0 10.8 9.3 4.6 3&5 30.7 1&6 19.1 23.5 21.7 

2 3 83.3 83.1 49.1 83.8 90.6 89.8 2.7 2.9 4&1 1A5 125 154 618 62.1 523 27.3 36.7 322 

2 4 662 65.4 13.3 78.2 87.8 86.7 4.9 B.4 125 32.1 22.7 280 108 110 131 432 51.5 46.1 

The national average pattern of the performance indicators is similar to that of the 

disaggregated figures by sex-age and states, so, our conclusions are the same. As an 

example, Table 5.11 shows the Sex-age CR, ARB and RRMSE average indicators for 

the Direct, Post-stratification (PS), models (a), (b), (c) and (d) Rate estimators as well 

as the SPREE models (a), (b), (c) and (d) Rate estimators. 

Table 5.12 shows the percentage of subgroups with an Unemployment Rate estimator 

RRMSE lower than 0.15 (15%) and a Relative Improvement of the RRMSE with 

respect to the PS estimator (RIRRMSE) higher than 15%. We have already seen that 

the model-based estimators offer significant improvements when compared to the 

design-based estimators in this regard. This fact is confirmed when looking at the 

RIRRMSE values, which show the model estimators producing relative reductions of 

the RRMSE values with respect to the design-based estimators for a high percentage 

of subgroups. On the other hand, only the 13.6% and the 13.0% of the subgroups have 

an RRMSE lower than 0.15 for the Direct and the PS estimators respectively. This 

figure rises to 39.7% for the Conventional Logistic model (b) and 53.3% for the 

SPREE model (b) estimator. Table 5.13 shows the same figures disaggregated by Sex-

age groups. Although this again represents an improvement over to the design-based 
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Table 5.12 
PERCENTAGE OF PERFORMANCE INDICATORS 

FOR UNEMPLOYMENT RATE ESTIMATORS SATISFYING A GIVEN CONDITION 
BY ESTIMATOR (Direct, PS, Models a, b, c and d and SPREE) 

Performance 
Indicator 

ESTIMATOR Performance 
Indicator 

Direct PS (a) (b) (c ) (d) 

% RRMSE <=15 1&6 13.0 
2&3 3&7 22.3 3tO % RRMSE <=15 1&6 13.0 
5&7 5&3 2&5 36.4 

%RIRRMSE > 15% 0.0 6&3 8&6 522 9&8 
100.0 100.0 64.7 9&9 

estimators, it is also clear that none of these estimators offers publishable RRMSE 

level for almost half of the subgroups. 

Based on this analysis, it therefore seems sensible to favour the use of the 

Conventional Logistic model (b) or (d) estimators in this simulation. The difference in 

RRMSE values between the Conventional Logistic and SPREE estimators for models 

(b) and (d) do not seem to be too large and, bearing in mind that in this study we are 

using an "ideal" reference table that is unlikely to be available in practice, the former 

estimators would appear to be a safe choice. It is also clear that SPREE estimators 

offer the best choice if a good reference table is available. 

Table 5.13 
PERCENTAGE OF PERFORMANCE INDICATORS 

FOR UNEMPLOYMENT RATE ESTIMATORS SATISFYING A GIVEN CONDITION 
BY ESTIMATOR (Direct, PS, Models a, b, c and d) 

Sex-
Age 

% Relative Root MSE (%RRMSE) <=15 
% Relative RRMSE Improvement 

(%RIRRMSE)> 15% 
Group 

Direct PS (a) (b) ( c ) (d) Direct (a) (b) (c ) (d) 

Total 1I&6 13.0 2&3 3 9 7 22.3 31.0 0.0 6&3 88a 5 2 2 9oa 

1 1 3&1 3&1 4 7 a 5 2 2 4&5 47.8 0.0 5&5 78a 1 7 ^ 87.0 
1 2 17.4 17.4 5&2 5 2 2 30.4 4 7 a 0.0 87a 9 5 7 39J 9 5 7 
1 3 8.7 8.7 21.7 4&5 13.0 39.1 0.0 7&3 iooa 1 7 4 95.7 
1 4 13.0 8.7 4.3 3&1 13.0 34.8 0.0 6&9 9 i a 8.7 9 i a 
2 1 17.4 17.4 5&5 6&9 4&5 34.8 0.0 8 7 a 9 i a 8 2 6 87.0 
2 2 13.0 13.0 4 7 ^ 4&5 2&1 34.8 0.0 87.0 7 3 a 69a 8 2 6 
2 3 0.0 0.0 4.3 2 ^ 7 8.7 8.7 0.0 4 7 a 9ia 957 957 
2 4 0.0 0.0 0.0 4.3 0.0 0.0 0.0 26.1 8 7 a 8 7 a 9 i a 
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5.7. TIME AS AN EXTRA DIMENSION 

So far in this thesis we have considered estimators that borrow strength from the two 

dimensions defining our "small areas" or sub-groups, i.e. space (horizontal) and 

characteristics of units (vertical). We have seen that SPREE works well when a good 

reference table is used (see Section 5.5). Therefore, we expect in practical situations a 

decrease in SPREE performance as the gap between the reference information and the 

target period increases. This suggests that incorporating information about the effect 

that "time" plays into the estimation process should be helpful. 

Although the SPREE method uses information from a previous point in time, it does 

not "borrow" strength from that third dimension; instead such information is used 

without any intermediate processing so that the estimation process of borrowing 

information both horizontally and vertically takes place conditioned on it. However, 

since the LPS is a panel survey taking place twice a year (see Chapter 2), it seems 

sensible to explore the possibility of borrowing strength in time as an extra dimension. 

Recent work in borrowing strength over time has been investigated in the context of 

estimators based on specific area-level random effects models (see Section 1.5 for 

references); none of them apply to our specific case or to SPREE estimation. We now 

discuss some issues that need to be considered if we wish to extend SPREE by 

borrowing strength over time. 

Consider a set of T tables containing the unknown counts , where t = \,...,T 

denotes a sequence of time periods and c denotes the lexicographical order of the cells 

ijkq. Let us suppose that LPS direct estimates for that set of tables are available 

although they are considered unreliable. Consider also a table containing the Census 

counts MgQ, that is, for time t=Q. At time one it seems reasonable to expect 

good estimates from SPREE using the Census as reference information. That 

expectation fades as we move further from t=0. At time T, SPREE might even be 

worse than the standard LPS direct estimates at t=T. 
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A naive first approach would consist in using the SPREE-estimated table for ml as 

the reference table for SPREE at t=2 and so on until we get to the target time period 

t=T. However, we note that this process actually "preserves" interaction terms from 

the original Census table with the remaining terms updated using the sample at each 

time period. Consequently, since at each time period we preserve the same interaction 

terms from t-0, the final estimated table at t=T is the same as we would have 

obtained from applying SPREE directly using the time T sample and the t=0 Census 

as the reference information, i.e. this naive approach and the conventional SPREE 

procedure used throughout this thesis are equivalent. 

Different situations can arise depending on whether we choose to preserve different 

interaction terms at each time period. For instance, we might preserve at t=2 some 

terms that were updated at t=l, so that the outcome is a table with some structural 

terms preserved from the Census, some structural terms preserved from the previous 

time period estimated table and the remaining terms updated. Even in these situations 

this approach does not seem to offer a significant advantage over the simple SPREE 

methods considered in this thesis. 

Consider now another set of tables containing the "known" set of counts M\^, 

t = {1-g),{2-g),...,{T-g) corresponding to T previous time periods; here g is a 

constant such that t = {T-g) represents a point in time before the point in time 

represented hy t = \ (see Figure 5.11). 

We could treat each set of tables, i.e. t = (}-g),...,{T-g) and as single 

five-dimensional tables with counts M] and respectively, where c now denotes 

the lexicographical order of the cells ijkqt. In this situation, the former table provides 

us with valuable information regarding the structural changes of the "marginal" four-

dimensional tables over time. Note, however, that the LPS is a panel survey with a 

specific rotation system and thus observations in the sample from different time 

periods can not be regarded as independent. This fact affects the assumption of 

independence required for the formulation of the model-based estimation procedures 

described in Chapter 4. The effect that this dependence has on the estimation process 
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as well as the potential extension to SPREE to allow a longitudinal log linear 

modelling approach remain to be investigated. 

It should be pointed out that this approach requires an expanded reference table 

which, in our case, seems rather unrealistic. An important point is that this method 

assumes the preserved "time effects" to be the same for the target expanded table as 

for the expanded reference table. In our situation, this means that the gender, age 

group and state dynamics in time of the labour force follows the same pattern for the 

target period as it does for the reference period. This is a strong assumption that needs 

to be carefully checked. 

Another approach to borrowing strength in time consists in testing for structures 

preservation over time. This can be done by applying SPREE independently to each 

of the T periods of time using the same reference information. If we find that the 

estimated parameters of the fitted models are not significantly different, then we 

might pool the datasets and apply SPREE to the pooled dataset. The resulting 

estimates should be of higher precision than the ones obtained from applying the four 

dimensional SPREE using just one dataset, as no extra parameters are being added to 

Expanded IxC-Reference Table 

Marginal C-Reference Tables 

Expanded TxC-Target Table 

Marginal C-TargetTables 

Figure 5.11 Representation of the Tables Involved in the SPREE 
Process with "Time" as an Extra Dimension. 
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the process and the sample size has increased. The reduction in variance will depend 

on the level of dependence between samples. Note that this approach is intended to 

improve the estimation of the terms being "updated" during the SPREE process and it 

does not address the issue of inadequate reference information. Note also that a 

similar procedure can be applied to conventional Logistic estimators where no 

reference information is used. 

One way of testing testing preservation of structure consists in fitting separate 

SPREE-equivalent logistic models for each period of time and then testing the 

equality of the model parameters. Rao, Kumar and Roberts (1989) describe a similar 

procedure based on Rao-Scott corrections to Chi-Squared and Likelihood Ratio tests 

for an unsaturated logistic model for binary response and two periods of time. Its 

extension to SPREE equivalent logistic models for multinomial response is 

straightforward. Finally, we note that full preservation of structure becomes less likely 

as the gap between the earliest and the latest periods of time increases; therefore the 

approach described above seems to be more plausible when data are available for two 

consecutive time periods. 
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This thesis has focused on the problem of producing reliable estimates of 

Employment, Unemployment and Activity rates by Sex-age groups for Venezuelan 

States using the Population Census as auxiliary information. From research we 

conducted in 15 national statistics offices in the Latin America region we observed 

that this is a common problem. 

The SPREE approach to Small Area Estimation (Purcell and Kish 1980) is suited to 

dealing with this sort of small area estimation (SAE) problem. Although the use of 

SPREE methods in the SAE context has been treated in the literature, its use for the 

estimation of product multinomial variables as well as a general methodology for 

variance estimation were largely unexplored. 

The methodology proposed in this thesis is based on the availability of two datasets, 

the Population Census database and the Labour Force Survey (LFS) database. An 

issue that must be taken into account when applying this methodology is that of the 

compatibility between those two sources as far as the conceptual definition of the 

labour force variables is concerned. A difference in such conceptual definition means 

that those two sources are in fact measuring different variables, which represents an 

obvious complicating factor in the analysis. Even if after examining such 
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compatibility we find there is a perfect conceptual match, we still have to considere 

how these variables are actually measured. Thus even though the two sources can 

share variables with the same conceptual definition, yet different methods of 

measurement can also complicate the analysis. This is the case in Venezuela where 

the labour force status for the Census is obtained by using one direct question in 

contrast to the algorithm based on a set of questions (Summary Code) used in the 

LPS. Thus the presence of such differences have to be examined carefully in order to 

decide if an adjustment strategy is necessary before applying the methodology 

describe in this thesis. 

A detailed theoretical description of the Venezuelan LPS parameter and variance 

estimators did not exist. Therefore, such a theory was developed in this document 

from a model assisted perspective. 

The use of SPREE in the context of product multinomial variables was then 

described. In doing so, we established a link between SPREE methods. Log-linear 

models and Logistic models allowing for the integration of complex sampling designs 

via a Pseudo-Likelihood approach to estimation. The main attractiveness of such a 

link is that it offers the possibility of implementing the SPREE method from a GLM 

perspective. This link has served as the base for the development of all the theory 

regarding SPREE and related SAE procedures described in this document.. 

There are some potential barriers to the convenient application of SPREE methods. To 

start, we note that SPREE involves the application of the Iterative Proportional Fitting 

(EPF) algorithm (Deming and Stephan 1940). Practical implementation of such a 

procedure then typically requires the development of "domestic" computational 

algorithms. Another issue related to the use of SPREE methods is that, apart from 

special situations, the computation of variance estimates is not obvious. In order to 

deal with this problem, we showed the equivalence of the Log-linear and Logistic 

version of SPREE to the well known "Exposure" technique from regression theory. 

This equivalence allows us to easily implement SPREE using standard commercial 

statistical software. Under this approach, the computation of parameter and variance 

estimates taking into account the sampling design is straightforward, as is the 
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computation of goodness of fit measures and related diagnostics. Consequently, a 

critical evaluation of the SPREE estimation procedure becomes feasible. On the 

whole, this "exposure" approach to SPREE facilitates and makes more flexible and 

accessible its application and practical implementation. 

The "exposure" approach to SPREE was then used in an empirical analysis of the 

Venezuelan labour force. A first analysis was conducted using the Venezuelan 1990 

Census as the information source for the target period and the Venezuelan 1981 

Census as the reference source of information. This analysis showed that SPREE 

methods where not suitable given a nine year gap between the reference and target 

time period. We also compared the SPREE and the Unsaturated SPREE methods with 

conventional Logistic model-based estimation for this situation. The latter approach 

does not depend on the reference source of information, and performed creditably in 

our analysis. 

We then used a simulation study to explore the application of SPREE using an "ideal" 

reference source. In this study the properties of a number of SPREE and conventional 

Logistic model-based estimators were analysed. The simulations were based on the 

Venezuelan 1990 population Census and were designed to replicate as closely as 

possible the LFS sampling design. In this case the gap between the reference and the 

target period used in the study was zero. 

This study showed that the presence of a Sex-age interaction term in SAE models was 

significant for this data. In addition, the clear superiority of the SPREE method over 

design-based estimators and conventional Logistic model-based estimators was 

evident. However, it is important to point out that this superiority is based on the 

availability of "ideal" reference information; an unrealistic assumption for inter-censal 

periods. How fast the gains from this "ideal" situation fade as the gap between the 

reference information and the target period increases is a topic for future research. 

The definition of an adequate gap size for the use of SPREE depends on both the 

variables under study and the dynamic of the process governing them. Between 1981 

and 1990 Venezuela went through a delicate economical transition period. This fact 
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might have had an important impact on the structure of the labour force in the 

country, and hence directly affect the performance of SPREE. An idea of the 

magnitude of this sort of changes in the labour force structure can be obtained with 

the help of experts in the field. Examination of the data at the national level can also 

be considered; however, it is important to bear in mind that "local" changes can also 

have a significant impact on interaction structures. 

Although SPREE methods proved superior to conventional Logistic model-based 

estimators in the simulation study, the difference between them was not as large as we 

might have expected; this is true particularly for models that are calibrated to national 

Sex-age group totals, i.e. models different fi-om the independence model. This fact led 

us to recommend conventional logistic model-based estimators as favourable 

alternatives to SPREE-based estimators, particularly in situations when there is a 

reasonable doubt about the quality of the available reference information. 

The logistic model containing only sex-age interaction (model b) and the logistic 

model containing sex-age interaction and sex-state interactions (model d) showed the 

best performance among the different model structures considered in this study. 

Model b seemed to be the best overall option. 

Although the use of SPREE and conventional Logistic model-based estimators 

produce an important improvement over the design-based estimators, we found that 

they do not as yet offer "publishable" precision levels for almost half of the target 

subgroups. This fact led us to briefly discuss alternative methods involving the use of 

"time" as an extra dimension. We expect this approach to offer higher levels of 

precision than approaches that ignore changes over time particularly for the case of 

the conventional Logistic model-based estimators. Such an analysis represents future 

research. 

Throughout the empirical analysis in this thesis, we have assumed that the process 

behind the generation of the finite population follows a product multinomial 

distribution with E ( M a n d F ( M ( 1 . A deeper 

examination of the structure of the population might suggest a better specification of 
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this distributional assumption, leading to an improvement in the estimation process. 

This is another topic for further work. 

Synthetic estimators are more convenient, in terms of theoretical and practical 

simplicity, than specific area-level random effects model-based methods. This fact is 

more evident in national statistics offices with scarce highly specialized human 

resources. However, alternative options for logistic methods involving specific area-

level random effects models need to be studied and compared to the simpler synthetic 

competitors. Important work in this direction has been conducted (e.g. Parrel et al. 

1989, Malec et al. 1997, Gosh et al. 1998, Jian et al. 1999). The adaptation and 

extension of those works to our particular situation and an appropriate comparative 

analysis is an important task that remains to be undertaken. 

Finally, it is important to point out that all our comments so far have been related to 

the SAE problem from an "estimation" perspective. However, it is just as important to 

conduct research aimed at exploring other approaches as institutional related 

strategies and survey design. It is vital that national statistics offices in Latin-America 

start playing a leading role in the development of the national statistics systems in 

their respective countries. The lack of auxiliary information is a task of prime 

importance and its negative impact in the national statistics system cannot be ignored. 

As regards to survey design, different issues like cluster structure, strata conformation 

and sample sizes should be considered and analysed in order to minimize the need for 

indirect estimators. 
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Table 7.1 

Venezuela 

1 9 9 0 C e n s u s Proportions and Abso lute Relative Res idua l s (ARB) 

for Thirteen Different Models 

1/12 

Categories 
Census 

MODELS 

SPREE Unsaturated SPREE 
G T 

y F l u / ) 
(a) (b) (c) (d) ( a ) - ( c ) ( b ) - ( c ) ( b ) - ( d ) 

1 1 1 1 1 4 & 9 2 ^ 7 13.0 9 . 8 2 . 6 6 . 3 7.9 9 . 3 3 . 0 3 . 5 3,1 1.7 10.4 1 6 ^ 

1 1 1 2 1 2 ^ 1 8 ^ 7.3 6 . 5 1.7 1 4 ^ 9.1 6 . 8 1 & 0 1 5 ^ 1 5 ^ 15.5 9 . 9 9 . 8 

1 1 1 3 3 / 4 3 3 . 9 19.8 15X3 2 . 9 13.2 7.5 10.1 9 4 0 . 4 9 . 5 3 . 0 1 0 ^ 1 8 ^ 

2 1 1 2 1 8 & 0 2 . 3 0.0 1.9 2.5 1.7 2.1 3 . 9 0,1 1.8 1.6 2 . 2 2.1 1.6 

1 1 2 2 9 . 4 5 . 3 5.5 0.7 4 . 2 3 4 . 0 5 . 8 9.7 6 . 9 2 2 . 3 3 5 . 6 2 & 2 8 . 6 1.1 

1 1 2 3 7.6 1 8 ^ 6.7 2 2 J 2 2 ^ 9 2 & 1 3 0 4 3 & 9 9,2 8 . 2 2 6 4 5 . 2 3 3 . 6 16.1 

3 1 1 3 1 8 & 0 1 . 4 0 . 2 0 . 6 1 . 8 7.5 1.6 3.1 0 . 2 7 . 6 7.4 7.4 1.2 1.8 

1 1 3 2 8.1 15.9 0 . 5 3.7 1.4 2 & 0 6.1 1.7 5 . 2 2 4 ^ 2 & 3 2 4 ^ 4 . 4 2.4 

1 1 3 3 5.9 4 2 9 2.5 13.4 2 / 5 7 4 ^ 1 4 ^ 4 2 4 1 0 ^ 7 6 4 7 & 3 7 ^ 3 11.3 2 2 8 

4 1 1 4 1 6 / 0 8 . 5 9 . 6 6 . 3 2.7 3 & 6 1 /6 8 . 7 1 1 4 2 & 2 31.0 25.7 18.5 1 0 ^ 

1 1 4 2 6.1 1 3 ^ 4 . 4 8 . 5 1 . 2 2 / 5 2 & 5 7.3 2 / 3 0 . 0 2 1 ^ 0 . 6 1 & 0 2 . 9 

1 1 4 3 2 & 9 1 & 1 2 5 . 1 17.6 6 . 5 7 ^ 2 3 & 0 2 & 0 2 2 1 6 5 4 / 2 3 6 4 . 2 4 2 ^ 2 & 0 

5 1 2 1 1 31.7 2 & 9 9 . 9 1 4 ^ 3 1.0 2 4 ^ 1 2 ^ 10.7 3 . 9 2 4 ^ 1 3 ^ 2 & 8 2 1 4 9 . 6 

1 2 1 2 9 . 3 2 & 9 5 . 5 8 . 2 3 . 3 14.7 2 & 7 2 & 7 2 & 6 7.7 1 0 ^ 8 . 2 2 & 6 2 a 6 

1 2 1 3 5 & 0 1 8 ^ 6 . 2 9 . 0 0 . 0 1 0 7 11.5 9 . 8 5 . 8 1 2 ^ 5 . 6 1 3 ^ 1 5 ^ 8 4 

6 1 2 2 1 5 4 M 5 . 4 10.1 2 . 8 3 . 8 8 . 0 4 . 3 2 . 3 1.8 1,2 9.1 2.1 3.5 8 . 6 

1 2 2 2 7.5 2.7 3 . 2 0 . 8 2.7 3 8 4 4 . 8 8 . 4 7.6 5 & 0 4 & 6 5 & 3 2 . 8 1 & 6 

1 2 2 3 3 & 4 8.1 1 4 ^ 9 4.1 4 . 9 3 . 8 5.1 5.0 4.0 8 . 6 4.3 7.4 5.4 1 5 7 

7 1 2 3 1 55.4 1.0 4 . 9 0 . 8 1 . 5 2 3 . 1 1 4 ^ 0.7 7.8 1 4 ^ 2 ^ 8 1 & / 1 2 . 1 3 . 8 

1 2 3 2 4.2 2 1 ^ 1 & 5 6 . 3 8 . 4 9 . 8 3 & 6 1 8 . 8 3 ^ 8 2 1 ^ 1 2 8 21,0 3 ^ 7 2 4 ^ 

1 2 3 3 4 0 4 0 . 8 8 . 2 1.7 1.1 3 ^ 7 2 & 2 1.0 1 4 ^ 1 / 8 27.1 1 & 6 1 9 ^ 7,8 

8 1 2 4 1 3 ^ 2 0 . 0 4 . 0 1 1 . 2 5 . 7 4 3 . 1 6 . 9 1 2 . 2 1 & 7 5 2 7 4 2 5 5 2 . 1 6 . 6 5.7 

1 2 4 2 1.7 5 1 ^ 2 2 9 2 ^ 6 1 5 4 2 8 4 1 6 4 11.8 1 1 . 5 4 & 3 4 & 9 4 & 2 4 1 7 34.1 

1 2 4 3 6 8 M 1.3 2 . 3 5 . 6 2.1 1 9 . 8 2.7 5.7 / I 2 4 ^ 2 0 . 1 2 4 ^ 1.9 3 . 4 

9 2 1 1 1 3 & 2 12JG 1.7 0.7 0 . 5 9 . 6 11.7 1 2 . 0 11.0 9 . 6 9 . 8 1 0 . 6 11,1 11,4 

2 1 1 2 1 & 3 11.2 3 . 3 2 . 2 0 . 4 1 & 2 6 . 5 1 2 . 0 1.0 1 & 0 1 6 . 1 2 1 ^ 4 . 8 1 0 . 7 

2 1 1 3 4 4 . 5 1 5 . 2 0.3 1.4 0,3 15.1 7 . 9 6.1 9.4 15.4 1 4 . 5 17.2 8.1 6.1 

10 2 1 2 1 7 T 3 1.9 2.1 2.5 0 . 8 0 . 6 6 . 3 4 . 8 5.3 1.3 0,1 1.1 7.1 5 . 9 

2 1 2 2 -MkB 5.1 3 . 3 5.3 1.5 1 3 . 2 7.5 1.1 2 2 2 a o 1 1 . 2 17.6 9 . 8 4.4 

2 1 2 3 1 4 ^ 1 & 0 7.4 7.4 5.7 10.7 24.1 2 5 . 5 2 4 v 6 14.6 12,4 1 2 . 8 2 & 0 2 5 . 6 

11 2 1 3 1 7 & 7 1.4 2.1 2 . 4 1.0 1 4 M 4 . 4 6.1 3 . 6 1 & 0 13U3 1 5 X 2 4.3 5,7 

2 1 3 2 1 2 . 6 2 1 / 1 5.5 5.7 0 . 6 1 1 . 6 9 . 3 1.2 15.4 1 8 . 3 9 . 6 19.9 1CL5 2 . 3 

2 1 3 3 11.7 3 2 . 1 7.9 9 . 5 6.1 79.1 3 8 / 1 3 7 . 9 3 9 . 6 7 7 . 7 79.2 77.0 3 & 0 3 4 . 8 

12 2 1 4 1 5 8 . 5 2 . 3 0 . 3 1.3 1.7 2 7 3 6 . 3 6 . 0 5.7 2 & 8 27.8 2 & 5 7.2 5.5 

2 1 4 2 9 . 0 2 3 . 7 7.5 5.3 3 . 2 0 . 8 4 . 8 7.9 1,0 6 . 7 1.2 4.2 5.6 1.4 

2 1 4 3 3 2 5 1 0 . 8 2 . 7 0.9 4 . 0 4 8 . 9 l O X ) 1 3 . 0 1CU3 5 0 J 4 9 / 7 4 9 X 3 11.5 9.5 

13 2 2 1 1 1 5 . 7 18.2 4.5 1.6 8 . 9 5 3 . 9 7.8 7.0 1CUS 5 9 J 2 5 7 \ 6 6 0 . 1 11.7 1 2 . 0 

2 2 1 2 7 . 9 2 2 2 3 . 9 4.5 5 . 9 3 2 X 3 11.1 3 . 9 3 . 2 2 1 5 2 5 X 8 2 8 X 0 4 . 9 6.5 

2 2 1 3 7 & 3 6.1 1.3 0 . 8 1 . 2 1 4 J 5 2 . 8 1.8 1.8 1 4 / 1 1 4 J 3 1 5 . 3 2 . 9 3 . 2 

14 2 2 2 1 3 & 2 3.1 4.1 5.2 0 . 4 1 6 . 0 4 . 9 4.1 7.1 1 4 4 1 2 . 6 1 4 . 8 1.3 3.1 

2 2 2 2 6 . 9 1 6 . 8 1 3 ^ 1 0 ^ 2 3 4 & 0 9 . 2 2 . 0 2 1 . 8 3 6 X 3 4 2 . 5 3 2 X 5 1,1 1 5 . 4 

2 2 2 3 5 & 9 3 . 6 0 . 7 1.6 0 . 0 3.4 1.6 2 . 5 1.4 3 . 8 2.1 4.5 0 . 6 3.5 

15 2 2 3 1 3 / 0 1.1 5.0 4 . 8 2.1 1 4 . 0 3 . 9 2 . 0 5 . 6 1 5 . 5 1 4 . 3 15X2 3.5 2.1 

2 2 3 2 3 . 3 7 & 0 2 2 0 2 1 ^ 9 . 2 1 1 5 . 6 4 2 . 1 2 5 . 0 2 2 / 1 8 5 X 3 1 1 1 . 4 9 5 X 3 3 8 / 8 2 & 7 

2 2 3 3 59.7 4 . 9 1.9 1.8 0 . 8 2.3 4.7 2 . 6 4.7 4 . 9 2 . 7 4.1 4.3 2 . 9 

16 2 2 4 1 18.1 4 . 2 9 . 3 4 . 0 7.1 58.1 5 . 2 1.5 5.1 5 7 X 3 5 & 2 5 7 . 1 6 . 6 3.3 

2 2 4 2 0 . 8 1 9 5 / 8 4 / 8 55.3 3 1 ^ 12.1 2 ^ 2 4 4 . 3 5 . 5 7 . 3 1,9 1 4 X ] 3 5 . 1 5 & 7 

2 2 4 3 81.1 1.1 1.6 0 . 3 1.3 13.1 0 . 9 0 . 8 1.1 1 2 . 7 1 3 . 0 1 2 . 6 1.1 0 . 2 
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Categories 
Census 

MODELS 

SPREE Unsaturated SPREE 
G T 

a 
e F (a) (b) (c) (d) ( a ) - ( b ) ( a ) - ( c ) ( b ) - ( c ) ( b ) - ( d ) 

17 3 1 1 1 4 ^ 0 1.5 1 2 . 2 9.7 4 . 8 2 7 ^ 8 . 8 1.8 6 . 5 3 ^ 2 3 2 8 2 & 8 14,0 9.7 

3 1 1 2 I t s 8.7 6 . 5 3.7 8 . 3 8 . 7 4.9 11.2 1.9 2 2 9 1 7 ^ 2 2 . 0 3,1 8 . 9 

3 1 1 3 4 t 8 0 . 6 15.5 9 . 9 7.6 3 Z 9 8 . 6 5.1 7 . 8 4 ^ 2 4 1 ^ 3 & 5 1 6 ^ 1 & 3 

18 3 1 2 1 7 4 ^ 2 . 5 1.8 0 . 8 4.7 1.4 4.6 0.7 5 . 8 3.7 2 . 0 3,5 4 . 6 3,1 

3 1 2 2 9 . 2 2 . 5 4.7 5 . 2 2 . 2 3 5 M 8 . 7 1 9 ^ 0 . 4 4 & 4 2 8 7 4 1 ^ 2 . 9 1 3 ^ 

3 1 2 3 1 6 ^ 1 0 M 11.1 0 . 9 21.0 1 3 ^ 2 & 7 1 4 ^ 27.3 5 . 8 7,4 7,3 2 & 1 2 2 5 

19 3 1 3 1 7 & 9 4.0 0.4 0 . 0 2 . 8 1 0 ^ 0.0 0 . 6 1,3 1 1 ^ 11,3 11,5 1,8 2 . 3 

3 1 3 2 6.4 2.4 2 ^ 4 1.8 15.7 2 & 0 52.7 17.7 4 0 . 7 17,1 21,0 1 7 7 4 & 0 4 2 4 

3 1 3 3 1 3 ^ 2 2 2 12L8 0 . 6 2 ^ 0 7 4 4 2 & 0 4 . 8 2 & 6 75.8 7 & 5 7 & 0 3 2 1 3 & 4 

20 3 1 4 1 6 4 . 4 1 0 ^ 8.4 3.5 3.1 17.1 3 . 5 3.5 2 . 3 1 & 9 1 & 3 14,1 3 . 7 6 . 6 

3 1 4 2 4.3 3 . 2 2 6 J 3 . 6 2 ^ 0 4 7 ^ 3 8 7 1 8 ^ 2 8 / 1 5 & 9 4 5 . 4 5 7 9 3 & 5 4 5 7 

3 1 4 3 3 1 ^ 2 1 ^ 12L8 6 . 8 3 . 4 4 1 ^ 1.8 4 . 8 0 . 8 3 & 6 4 a o 3 7 ^ 2 . 8 7 . 3 

21 3 2 1 1 1 2 7 0.4 2 & 4 3 & 6 9 . 5 2 ^ 8 2 & 3 1.8 2 4 ^ 7 & 5 6 & 5 7 4 ^ 1 6 ^ 2 ^ 9 

3 2 1 2 6 . 5 3 & 6 1 8 . 5 6 . 6 11.2 2 & 6 4 1 V 31.6 27.4 5.7 0 . 8 7,7 1 & 0 2 4 ^ 

3 2 1 3 8 & 8 3.3 3 . 0 5 . 2 0 . 6 1.2 6 . 5 2 . 8 6.1 1 1 ^ l a s 11,1 1.1 1.3 

2 2 3 2 2 1 2 7 ^ 2 4 0 15.1 2.3 1.3 2 8 8 1 6 7 2 . 3 11.6 2 2 8 2 4 ^ 2 1 ^ 1 & 4 11.7 

3 2 2 2 5.2 0.4 2 . 5 9 . 5 9.1 5 6 ^ 2 & 0 2 & 2 6 . 1 4 6 M 5 0 7 4 7 ^ 1 4 ^ 8 . 2 

3 2 2 3 6 7 ^ 9 . 9 6 . 0 0 . 2 1.2 7.5 4 . 9 0 . 8 4 . 3 5 . 8 6 . 0 5 . 3 4,4 4 . 2 

2 3 3 2 3 1 31.1 19.1 1 0 . 9 0.1 2.1 2.1 1 7 ^ 2 . 3 12.5 11.1 11.2 11,8 8 . 5 7 . 8 

3 2 3 2 2 . 0 8 4 7 27.1 5 . 9 4 3 . 0 119.7 4 2 4 7.3 7 & 8 9 1 ^ 9 & 4 8 7 ^ 31.1 2 4 ^ 

3 2 3 3 6 6 9 1 1 ^ 5 . 9 0.1 0.3 2 . 6 9 . 3 1.3 8 . 2 2 4 2 . 2 2 . 8 4 . 9 4 . 4 

2 4 3 2 4 1 1 & 2 10.5 4 . 0 1 6 . 2 1 2 0 52.1 8.1 1 0 . 6 1.6 58.0 56.0 5 8 7 1.0 3 . 3 

3 2 4 2 0 . 8 8 & 3 7.4 2 & 4 0.1 1 & 4 1 2 9 6.0 3 & 9 3 & 4 3 & 4 3 & 0 1 4 ^ 12.0 

3 2 4 3 8 4 ^ 2 . 7 0 . 7 2.7 2 . 2 9 . 6 1.6 1 . 8 0.7 1 0 . 8 10.5 11,0 0.0 0.7 

2 5 4 1 1 1 4 8 . 3 4.0 4 . 5 1.6 0 . 2 1 0 . 1 7.6 4.1 8 . 4 1 7 . 0 1 1 ^ 15,1 5 . 8 2,4 

4 1 1 2 14.1 2 & 0 11.1 3 . 7 9 . 5 19.1 1 0 . 8 10.0 1Cr8 1 2 . 3 17.2 1 2 . 9 8 . 4 3,5 

4 1 1 3 3 ^ 6 1 4 . 8 1.7 0 . 6 3 . 3 2 0 . 1 5.7 1.5 6.7 2 6 ^ 2 1 7 24,3 4 . 3 1,8 

2 6 4 1 2 1 7 & 8 6.7 3 . 6 3 . 6 2.1 6 . 5 1.0 0 . 6 0 . 9 7.0 8,1 6,1 2 . 2 0.7 

4 1 2 2 12.3 4 . 5 5.4 4.7 1.3 2 6 / 3 2 . 4 4.5 1.9 2 6 M 31,6 2 3 / 1 6 . 3 0,5 

4 1 2 3 7.9 6 0 . 8 2 & 3 2 & 6 1 9 ^ 2 4 / 2 6 . 0 0.7 5 . 6 3 a o 3 2 6 25,1 12.1 7.4 

27 4 1 3 1 8 2 . 2 4.1 1.6 2 . 8 0 . 3 9 . 3 1.8 0 . 9 2.1 8 . 4 8 . 5 8 7 0.7 1,3 

4 1 3 2 1 1 . 5 2 1 . 9 7.1 3.7 11.0 28.7 10.5 1.4 11.1 2 4 ^ 2 & 4 2 6 / 3 7.6 8 . 3 

4 1 3 3 6 . 3 9 3 / 7 3 3 8 3 a 2 2 & 7 68.7 4 . 9 8.7 6 . 5 6 5 ^ 6 & 0 6 6 ^ 4.4 1,5 

2 8 4 1 4 1 6 4 . 0 0.7 0 . 8 1.2 3 . 9 1 7 . 8 0 . 8 0.0 0 . 6 2 1 j 1 8 . 2 2 2 4 0.2 4 . 8 

4 1 4 2 8 . 7 2 4 / 7 9 . 2 0.2 11.7 5.9 2.1 1.8 1.7 4 . 4 5,9 6 . 5 2 . 2 8,7 

4 1 4 3 2 A 2 9.7 1.1 2 . 8 5.3 4 3 / 7 1.3 0 . 6 0.7 4 8 . 9 4 4 . 6 5CUS 1.1 8 . 4 

2 9 4 2 1 1 2 ^ 8 21.4 0 . 9 3 . 4 7.0 4 2 / 5 0 . 9 4 . 8 0 . 2 3 9 ^ 4 7 ^ 3 5 / 8 6.7 5,2 

4 2 1 2 8 . 9 2 3 / 8 0 . 2 5 . 5 4 . 9 5 . 8 1 0 / 1 11.7 9 . 6 4.0 1,1 7,5 1 5 / 9 1 0 / 3 

4 2 1 3 7 ^ 3 9 . 3 0.2 0 . 3 1.4 13.3 1.0 2 . 9 1.1 12.0 1 4 ^ 1 1 . 5 0 . 0 2 . 8 

3 0 4 2 2 1 3 4 . 9 1 6 / 4 9 . 2 7.7 4 . 2 14.1 2 . 0 6 . 3 1.6 2 2 ^ 1 8 . 8 2 0 / ] 6 . 8 7,4 

4 2 2 2 8 . 5 3 . 5 5.5 6.4 0 . 2 4 & 7 11.6 1 3 . 8 11.1 5 2 . 0 5 0 / G 5 0 / 3 1 5 . 0 1 4 . 2 

4 2 2 3 5 & 6 9 . 6 4 . 8 3 . 8 2 . 6 1.4 0.5 1.8 0.7 6.1 4,0 4 . 8 1.9 2 . 4 

31 4 2 3 1 3 & 3 1 2 . 3 6 . 5 5 . 8 1.8 11.1 5 . 3 3 . 8 4 . 8 9 . 2 1CU3 11,3 6 . 3 4,5 

4 2 3 2 5.0 17.1 1 8 ^ 8 . 2 1 3 ^ 1 8 . 0 2 3 . 9 1 5 . 9 2 3 . 2 14,7 1 1 . 8 1 9 / 2 2 7 . 7 2 2 9 

4 2 3 3 5 & 7 1 0 . 2 3 . 0 3 . 3 0.1 6 . 2 1.6 1.3 1.3 5.2 6 . 4 6 . 2 1.9 1,1 

3 2 4 2 4 1 1 9 7 1 0 . 9 5 . 6 3.7 1.6 5 ^ 6 0.3 6 . 3 2 . 3 5 3 . 0 5 8 / 3 5 4 . 6 8 . 0 0 . 8 

4 2 4 2 1.5 8 ^ 3 9 . 6 1.3 6 . 0 3 4 . 0 9 . 7 9 . 0 1 0 M 40,1 3 8 / 5 3 8 / 3 1 6 . 5 1 7 . 3 

4 2 4 3 7 8 J 9 4 . 2 1,2 0 . 9 0 . 5 1 4 . 3 0 . 3 1.4 0 . 8 1 4 . 0 1 5 . 3 1 4 L 3 2 . 3 0,5 



Table 7.1 

Venezuela 

1 9 9 0 C e n s u s Proportions and Absolute Relative Res idua l s (ARB) 

for Thirteen Different Models 

3/12 

Categories 
Census 

MODELS 

SPREE Unsaturated SPREE 
G T 

a 
e F ; 

(a) (b) (c) ( d ) ( a ) - ( c ) ( O H c ) 

33 5 1 1 1 4 7 6 3 . 2 13.1 7.8 4.5 1 & 5 2 . 9 4.4 8 . 9 25.5 2 & 9 2 3 7 1.4 4 . 0 

5 1 1 2 1 2 M 21.3 4 . 6 3.0 1 1 . 0 10.9 1.6 8 . 0 8 . 4 13.4 1 0 ^ 1 5 ^ 2.5 4 . 0 

5 1 1 3 4 ^ 2 2.7 14.1 1 0 J 2 2 . 0 2 2 7 3 . 9 2 . 8 13.0 3 4 . 2 2 7 9 3 2 8 0 . 9 6 . 0 

34 5 1 2 1 7 5 . 9 4 . 8 0 . 8 2 . 8 2 . 0 1.8 4 . 3 3 . 6 5 . 6 4.4 5.1 3.1 1.7 3 . 2 

5 1 2 2 1 2 M 7.2 5.7 0.5 6 . 0 7.1 1 2 ^ 3 . 2 1 0 ^ 19.7 11.7 15.0 9 . 8 7.7 

5 1 2 3 12.0 3 7 4 11.1 1 8 . 2 6.7 3.9 1 4 ^ 1 9 7 2 4 ^ 7 . 6 2 & 3 4 . 6 1.1 1 2 4 

35 5 1 3 1 7 & 5 2.7 1.2 1.2 3 . 6 1 3 7 5 . 6 2.0 6 . 5 13.1 1 & 3 1 3 7 5 . 2 5 . 2 

5 1 3 2 1 0 ^ 2 4 7 9 . 2 2.5 10.0 1 8 7 2.1 2.1 3.7 2 & 2 1 6 ^ 2 & 9 3 . 0 7 . 0 

5 1 3 3 11.0 4 2 9 0.5 1CX8 16.1 8 a i 4 1 ^ 1 6 ^ 4 & 9 7 4 ^ 7 9 2 75.2 4 0 . 0 3 ^ 2 

3 6 5 1 4 1 6 4 . 3 9 . 6 7.6 6 . 2 1.1 13.4 7.0 1.1 2 . 6 1 & 6 1 2 3 1 7 ^ 8 . 0 1.4 

5 1 4 2 7.2 2 & 8 7.7 2 . 4 4 . 4 4 . 8 1.1 1 & 5 4.5 8 . 3 3 . 9 3 . 6 3.7 2 . 0 

5 1 4 3 2 & 5 2 7 ^ 1 9 . 2 14.5 3 . 6 3 1 ^ 1 E U 0 . 3 4.9 3 & 5 2 8 7 4 1 M 1 S U 3 . 6 

37 5 2 1 1 1 4 ^ 10.5 1 4 . 5 2 ^ 8 3 . 2 5 7 ^ 1 0 ^ 1 2 0 0 . 2 6 & 8 7 9 7 6 2 9 3 a 2 1 & 8 

5 2 1 2 5 . 9 1 & 6 1 1 . 4 6 . 0 2 . 8 4 2 8 2 ^ 4 8 . 8 7.1 2 & 9 35.2 4 ^ 4 1 4 7 1 & 0 

5 2 1 3 7 & 5 3 . 2 3 . 5 5 . 0 0.4 1 & 8 3.5 2 . 9 0 . 5 1 4 ^ 1 7 ^ 1 4 ^ 6 . 6 3.7 

3 8 5 2 2 1 2 8 M 2 4 ^ 15.5 7.5 1.1 9.5 0.1 3 . 2 8.7 3 2 6 2 1 9 2 & 6 1 2 0 1 & 9 

5 2 2 2 6 . 2 3.0 0 . 3 1.0 5 . 0 5 5 ^ 2 2 0 8 . 0 3 0 . 1 4 4 . 9 5 2 2 3 & 4 1 6 5 4 . 4 

5 2 2 3 6 5 7 1 0 . 8 6 . 6 3 . 3 0 . 0 1.2 2.1 0 . 6 6 . 6 9.7 4 . 4 8 . 5 3 . 6 7 . 6 

3 9 5 2 3 1 31.4 2 0 ^ 1 2 . 8 3.1 1.3 1 & 8 3 & 8 5 . 2 2 7 . 1 2 5 8 . 9 5.7 3 2 2 14.5 

5 2 3 2 2 . 9 5 8 / 4 8 . 9 9 . 3 3.8 1 1 2 2 3 & 5 1 1 . 9 2 7 7 6 4 . 5 9 3 . 1 8 & 2 2 & 8 1 8 . 8 

5 2 3 3 6 5 . 7 1 2 , 6 6 . 5 1.9 0.5 11.5 19.4 3 . 0 1 4 ^ 1.7 8 . 3 0 . 8 1 & 6 7 . 8 

4 0 5 2 4 1 1 & 0 3 4 . 9 2 ^ 0 3 4 . 6 5.4 5 1 ^ 1 3 . 9 4 2 0 0 . 0 4 & 0 5 3 . 9 4 & 5 8.1 2 & 4 

5 2 4 2 0 . 8 1 2 7 ^ 12.7 2 Z 6 2 . 3 2 & 9 2 7 2 & 5 11.1 2 & 2 3 4 . 5 1 & 2 6 . 0 2 1 . 2 

5 2 4 3 8 & 2 6 . 5 4.2 5.4 0 . 8 8 . 0 2.1 6 . 6 0.1 6.7 8.4 7.0 1.2 4.0 

41 6 1 1 1 4 3 1 1 2 ^ 2.1 0 . 6 1.5 1CX2 1 0 . 2 9 . 2 1 & 0 8 . 4 8.7 11.4 11.0 9.7 

6 1 1 2 1 4 A 10.7 3 . 6 3.1 0.2 2 4 ^ 1 4 7 2 2 2 5 . 8 2 2 8 18.4 2 9 . 1 8 . 2 19U3 

6 1 1 3 4 2 . 5 1 6 . 3 0 . 9 0 . 4 1.6 1 8 . 7 5 . 3 1.8 11.2 1 6 . 2 15.1 2 1 4 8 . 4 3.1 

42 6 1 2 1 7 & 9 3.0 0 . 6 0.3 0 . 0 1.0 4.7 3.7 4.7 1.5 0.4 1.5 5 . 4 4 . 3 

6 1 2 2 1 2 . 3 3 . 6 2.5 4 . 6 1.6 0 . 9 2 a i 1 1 . 0 1 3 . 8 1 6 . 1 1.3 i a 2 1 & 5 11.5 

6 1 2 3 1 1 . 8 2 2 . 9 1.2 2 . 7 1.4 7 . 6 9 . 2 12.1 15.9 7.3 0 . 9 0.7 1 & 3 1 6 . 0 

43 6 1 3 1 7 & 4 1.8 1.4 1.6 0.9 13.2 5 . 9 5 . 8 5 . 6 1 3 . 0 12.4 1 3 . 2 4 . 9 5.1 

6 1 3 2 9 . 9 1 6 . 2 0.3 2 . 6 4 . 6 1 5 / 4 6 . 6 0 . 9 14.3 1 8 . 8 9 . 4 2 2 7 1 3 . 3 4 . 8 

6 1 3 3 1 0 . 8 2 8 X 3 10.5 9.5 10.7 8 3 . 3 4 9 7 4 2 . 2 5 4 . 2 78.5 8 2 X 8 7 & 6 4 & 3 3 2 . 9 

44 6 1 4 1 6 & 7 4.2 2 . 4 0.7 2 . 6 2 0 X 2 0.7 4 . 6 2 . 5 2 1 9 2 1 . 8 2 1 0 3.2 1.9 

6 1 4 2 8 . 2 2 7 7 1 2 7 3 . 0 8 . 9 1 3 . 8 1 7 J 2 1.8 9 . 2 6.4 1 2 . 2 1 1 . 8 1 4 . 9 1 5 . 8 

6 1 4 3 2 8 M 1 7 / 1 9 . 0 0.6 8 . 5 4 1 / 7 3 . 3 1 1 . 0 2 . 9 4 7 \ 8 4 5 / 7 44.2 3.0 0 . 2 

45 6 2 1 1 1 8 . 6 2 1 . 0 0 . 3 1.4 1.9 5 5 . 9 11.1 8 . 3 9 . 0 51.3 4SUS 5 4 . 2 6 . 5 9 . 2 

6 2 1 2 7.1 2CL2 5.7 6 . 0 3 . 3 4 ^ 9 2 0 . 0 7.9 0 . 8 1 5 . 8 2 2 X 5 3 1 9 3 . 2 1 1 . 0 

6 2 1 3 7 ^ 3 7 . 2 0 . 6 0 . 2 0 . 2 17.9 4.7 2 . 8 2 . 2 1 4 / 4 1 4 J 3 1 6 / 7 1.9 3 . 4 

4 6 6 2 2 1 3 ^ 3 1CX6 3.1 0.7 4 . 8 1 8 . 1 7.1 7.3 5.4 2 1 . 6 1 5 . 8 2 3 / 7 4 . 8 1 1 9 

6 2 2 2 6.1 1 7 \ 6 1 4 ^ 9 . 4 4 . 4 4 6 . 1 5 . 9 8 . 4 2 2 J 5 4CL0 5 0 . 5 31.5 1 4 . 0 1 & 1 

6 2 2 3 5 9 7 7.9 3 . 2 0 . 5 3 . 2 5.7 3.5 5.1 0 . 8 8 . 3 3 . 9 1 0 / 4 1.3 8 . 7 

47 6 2 3 1 3 & 5 4.1 2.1 3.5 1.1 6 . 2 11.3 0 . 8 9 . 4 1 2 X 2 2.5 1 0 . 5 15.1 6 . 2 

6 2 3 2 3.1 6 ^ 6 1 3 ^ 8 . 8 3 . 5 111.1 3 6 X 2 1 5 . 6 12JG 6 5 . 1 1 0 6 J G 8 8 / 7 3 3 . 2 2 2 2 

6 2 3 3 5 ^ 4 6 . 3 0.7 1 . 9 0 . 6 1.8 9 . 8 1.4 7.2 4.9 4.0 2.5 1 2 . 2 5.5 

4 8 6 2 4 1 21.1 7.2 1 2 ^ 2.1 1 2 ^ 5 & 7 8 . 3 1 0 . 5 1 2 J 6 5 B . 2 6 & 6 5 6 X 3 13U2 4.7 

6 2 4 2 1.0 1 1 1 . 9 5 . 4 2 5 M 4 . 9 3 ^ 4 1 3 / 4 1 8 . 0 3 ^ 6 2 6 . 8 3 4 . 0 1 4 ^ 8 1 0 . 0 1 4 . 7 

6 2 4 3 7 7 . 8 0.4 3 . 3 0 . 2 3 . 4 1 6 . 4 2 . 4 3.1 3 . 8 1EL2 1(%9 15.7 3.7 1.1 
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Categories 
Census 

MODELS 

SPREE Unsaturated SPREE 
G 

T 
a F 1 (a) (b) (c) (d) ( a ) - ( b ) ( a ) - ( c ) ( b ) - ( c ) ( b ) - ( d ) 

4 9 7 1 1 1 45.1 8 . 0 1.4 1.9 1.2 1 C U 8 . 9 1 0 ^ 8 . 4 1 2 ^ 1 0 ^ 11.0 8 , 4 7.9 

7 1 1 2 14.9 1 7 ^ 2 . 9 1.1 3 . 4 1 5 ^ 7.0 9 . 0 4.5 15.9 16.5 15,4 7 . 2 5 . 9 

7 1 1 3 3 & 9 15.5 0.5 1.7 0.2 1 7 ^ 7.5 8 . 4 7 . 8 1 9 7 17.8 18.2 6 . 9 6 . 7 

5 0 7 1 2 1 7 & 2 3 . 6 0 . 2 0.4 0 . 2 1.7 4.3 4 . 0 3 . 8 3.1 2 . 6 2.7 3 . 5 3 . 2 

7 1 2 2 1 3 ^ 1.4 0.3 0 . 8 0 . 2 17.1 6 . 4 7.1 3 . 8 21.1 1 9 ^ 2 0 7 3 . 6 2 . 6 

7 1 2 3 1 0 ^ 2 & 9 1.6 3.5 1,5 8 . 7 2 2 . 7 19.5 2 2 . 0 3.4 5.5 6.1 2 & 4 1 9 ^ 

51 7 1 3 1 7 & 9 2.5 0 . 3 0.4 0.3 1 1 ^ 3 . 3 3 . 2 2 . 9 11.2 11.0 1 1 ^ 2 . 8 3.5 

7 1 3 2 1 0 7 1 & 0 0.2 3 . 2 0.7 1 7 ^ 1.6 4 . 6 4.3 1 6 ^ 1 & 3 17.5 3.3 2 . 3 

7 1 3 3 9 . 3 3 & 8 3.1 0 . 2 3.4 7 6 6 2 & 9 3 2 5 3 0 / 1 7 & 3 75.7 7 6 8 2 7 7 3 2 6 

5 2 7 1 4 1 6 2 2 0.5 1.2 0.1 1.4 2 2 9 4.5 3.9 4 . 0 2 4 ^ 2 2 8 2 & 0 4 . 6 6 . 8 

7 1 4 2 8 . 8 2 5 7 10.4 0.5 9 . 8 1.8 1.9 2 . 9 0.7 2 . 6 2 . 8 3 . 0 0.5 5 . 6 

7 1 4 3 2 & 1 8 . 7 0.5 0 . 3 0 . 0 4 & 5 9.1 9 . 2 8 . 7 51.5 4 9 7 52.7 9 . 8 12.9 

5 3 7 2 1 1 2 1 ^ 2 7 V 8 . 5 3 . 8 8 . 6 3 7 ^ 2 . 6 0.7 1.2 3 4 . 7 3 & 8 3 & 3 1.7 6 . 5 

7 2 1 2 8 . 2 2 1 ^ 4.1 1.8 3.1 1 & 5 4 . 6 5 . 9 9 . 3 1 4 ^ 14.0 1 4 ^ 3.7 4 . 0 

7 2 1 3 7 ^ 6 1 0 ^ 2.1 0 . 9 2.2 1 2 7 1.3 0 . 9 1.4 12.1 1 2 7 1 1 . 7 0 . 9 2.4 

54 7 2 2 1 3 ^ 2 10.5 3 . 4 0 . 8 3.7 17.6 5 . 8 3 . 0 7.2 2 ^ 4 2 a 9 19.1 9 . 0 7.0 

7 2 2 2 7.6 5.4 2 . 9 1.2 1.9 4 1 ^ 0.1 1.1 5 . 6 4 5 ^ 4 & 5 4 4 . 8 6 . 2 5.1 

7 2 2 3 5 7 ^ 7.2 2 . 5 0 . 6 2 . 5 5 . 3 3 . 6 1.7 3.7 6 . 6 6 . 8 5 . 8 4.7 3 . 6 

55 7 2 3 1 3 & 2 i a 5 4 . 5 0 . 9 4.5 1 0 ^ 7.1 6 . 3 8 . 2 7.7 10.5 8 . 8 6 . 8 7 . 8 

7 2 3 2 4 . 3 3 2 . 1 8.0 7.9 9.1 3 7 ^ 11.9 9 . 3 1 6 . 8 3 & 1 3 3 . 0 3 ^ 6 1 3 . 8 12,2 

7 2 3 3 5 7 ^ 9 . 4 2 . 4 0 . 0 2.3 4.0 3 . 8 3.5 4.2 2.5 4.5 3 . 2 3.5 4 . 3 

5 6 7 2 4 1 1 9 7 4.2 1.0 0 . 2 2 . 2 5 & 3 3.1 0.7 3 . 3 SSUG 5 6 7 54.6 4.7 0 . 2 

7 2 4 2 1.5 7 2 4 1 & 7 2 . 7 1 & 4 3 & 8 9.5 5.1 15.4 3 & 2 3 & 3 3 & 4 1 6 . 5 1 8 . 4 

7 2 4 3 7 & 9 2.4 0.5 0.1 0 . 8 1 4 7 0.9 0.1 1.1 14.1 14.8 1 4 ^ 1.5 0 . 4 

57 8 1 1 1 4 3 . 7 3 . 3 6 . 8 6.4 1.3 1 & 5 1.2 4.0 3 . 2 1 9 . 6 1 9 . 6 1 7 7 0.0 2 . 8 

8 1 1 2 1 ( x 4 4 . 6 9.5 6 . 0 4.9 11.9 0.1 9 . 9 1.5 2 6 J 9 15.7 2 6 . 1 4.0 1 5 . 9 

8 1 1 3 3 & 9 5.5 11.4 9 . 5 3.4 2 5 / 2 1.3 0.4 4 . 2 3 2 ^ 2 7 \ 9 3 0 . 2 1.6 3,4 

5 8 8 1 2 1 75.2 5.7 1.9 2 . 2 0.2 3 . 0 3.5 1.0 4 . 0 5.5 3.4 4.7 3 . 3 2 , 0 

8 1 2 2 13.1 0 . 8 2 . 2 1.8 3.3 6 . 5 1 4 . 2 4.7 14.0 2EUS 4 . 2 2 5 / 0 16.1 1,1 

8 1 2 3 11.7 3 5 . 4 9 . 4 12.1 2.1 1 2 0 6 . 8 11.5 9 . 8 6 . 5 17.1 2 . 3 3.1 1 3 , 8 

5 9 8 1 3 1 7 7 . 2 2 . 2 1.3 0 . 5 2.7 1 3 ^ 4 . 0 4 . 9 4 . 5 1 3 7 13.0 1 3 . 9 3 . 9 5 . 0 

8 1 3 2 1 1 . 8 2 1 J 5 5.9 4 . 5 5.1 13.1 6 . 6 5.4 6 . 5 1 9 J 5 1 3 / 8 2 0 / 3 5 . 0 2 . 6 

8 1 3 3 1 1 . 0 3 8 . 8 2.7 1.7 1 3 ^ 7 7 . 7 35.3 2 8 ^ 3 8 . 3 75.1 7 6 . 6 7 6 / 0 3 2 ^ 3 2 . 5 

6 0 8 1 4 1 6 2 2 6 . 9 5.1 2 . 6 0 . 9 2 2 / 3 4.0 4 . 4 5 . 2 1 9 / 1 20.4 2 & 5 0 7 1,1 

8 1 4 2 7.0 7.4 1 1 ^ 4.0 15.9 6 . 2 2 . 0 1 1 . 6 2 9 2 6 8 8 . 0 2 6 . 1 2 . 2 1 9 . 8 

8 1 4 3 3 & 8 1 5 . 6 7 . 5 6 . 2 1.8 4 7 / 7 8 . 6 11.5 11.2 4 5 / 3 4 3 . 0 4 7 . 2 2 . 0 6 . 8 

61 8 2 1 1 1 4 4 8.7 1 6 ^ 1 8 ^ 5.7 6 0 . B 1 2 U 5 1 ( x 3 1Ck3 7CU3 7 0 / 5 6 6 . 6 2 2 / 5 1 6 . 5 

8 2 1 2 7.3 1 9 M 7.5 13.1 0 . 6 2 9 . 9 8 . 6 2.1 6.1 2 0 / 2 3 9 / G 2 0 / 2 1 7 \ 5 0,4 

8 2 1 3 7 & 3 3 . 4 3 . 7 4 . 6 1.0 14.0 3 . 3 2.8 2 . 5 1 4 . 9 16.7 14^1 5 . 8 3 , 0 

6 2 8 2 2 1 2 & 7 1 7 . 3 8 . 9 5.5 1.3 1 9 4 9 . 6 9.7 7.1 2 & 4 1 9 / 3 2 2 / 5 9.1 11,1 

8 2 2 2 7 . 4 2.1 1.2 3 . 2 6 . 9 6 2 . 9 3 4 . 9 1 6 . 8 3 6 / 4 4 6 . 9 5 & 8 4 6 / S 2 8 / 5 7,9 

8 2 2 3 6 & 8 8 . 4 4.1 2 . 2 0 . 2 1.7 0.4 2 . 6 0 . 9 6 . 5 2 . 2 5.1 0 . 9 4,3 

6 3 8 2 3 1 3 4 . 5 1 0 . 3 3 . 3 1.1 4.2 8.1 ISLO 3 . 9 9 . 6 11.1 9 . 8 1 3 / 3 10.1 5,2 

8 2 3 2 3.1 75.7 21.1 1 8 ^ 1 3 ^ 102.4 3 & 0 9 . 4 3 & 7 7 6 . 6 9 3 . 9 77.1 2 & 0 1 7 \ 0 

8 2 3 3 6 2 4 9 . 5 2 . 9 0.3 1.6 0 . 6 8 . 3 2.7 6 . 9 2 . 3 0.7 3 . 5 7.0 3,7 

6 4 8 2 4 1 1 5 J 6 1 3 . 3 6 . 9 1 1 ^ 4.5 6 ^ 4 9 . 3 2 3 1 3 . 5 5 2 2 5 4 . 6 5 4 . 0 4 . 0 5 . 6 

8 2 4 2 0.7 2 4 4 . 0 7 0 7 4 7 ^ 5 5 ^ 5 . 8 3 6 . 8 5 & 7 3 ^ 3 1 7 . 0 4.5 1 6 . 2 3 3 . 9 6 2 2 

8 2 4 3 8 & 7 4.4 1.8 2 . 6 0 . 4 11.5 1 . 4 0.0 2 . 3 9 . 6 1CX2 9 . 9 1.0 1,5 
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Categories 
Census 

MODELS 

SPREE Unsaturated SPREE 
G T 

y F w j (a) (b) (c) (d) ( a ) - ( c ) ( a ) - ( d ) ( b ) - ( c ) ( b ) - ( d ) 

6 5 9 1 1 1 3 & 1 1 0 ^ 1.1 0 . 3 3 . 3 1 4 ^ 7.2 11.7 5,5 1 5 ^ 1 5 ^ 154 6 . 6 7.2 

9 1 1 2 1 8 M 10.6 4 . 3 4 . 5 0 . 5 3.1 10.9 0 . 2 8 . 9 2 1 M 10.5 17,2 3.1 4.5 

9 1 1 3 4 ^ 8 1 2 ^ 2.5 2 . 0 2 . 4 12.5 1 0 ^ 9 . 3 7 . 9 2 0 J 16.1 1 8 ^ 6 4 3 . 9 

6 6 9 1 2 1 6 & 1 0.2 4.3 4 . 2 2 . 6 0.5 8 . 0 6 . 0 7.3 1.1 0 . 7 1.7 9 . 3 7,0 

9 1 2 2 1 & 3 11.5 9 . 3 6 . 9 3 . 9 6 . 6 12.4 2 . 9 13.1 13.3 0.0 17.8 1 8 ^ 3.1 

9 1 2 3 1 5 ^ 1 4 4 7.4 9.6 6 . 5 5,5 1 9 4 2 & 9 15.6 11.2 3 . 0 1 3 9 1 8 ^ 2 & 0 

67 9 1 3 1 7 & 1 2 . 7 1.2 2 . 3 0 . 2 1 3 ^ 2 . 4 4.1 2 . 2 1 5 4 15.0 14.8 3 . 8 3 . 8 

9 1 3 2 1 4 ^ 1 & 6 1.7 6 . 6 4.5 2 4 17,4 5 . 2 1 6 ^ 11.7 9 . 2 8 . 0 8.7 1 C U 

9 1 3 3 1 2 J 3 5 . 9 4.7 5.9 3,7 7 & 7 3 3 . 3 2 & j 3 & 9 7 & 2 7 & 0 75,7 31,7 3 2 9 

6 8 9 1 4 1 5 3 . 3 0 . 8 1.3 0 . 3 0.1 3 2 7 9 . 0 4 . 6 7.3 3 ^ 5 3 1 ^ 30,4 7.7 6.7 

9 1 4 2 9 . 9 2 t O 4 . 0 4 . 9 1,8 5 . 3 1.7 5.5 3,4 15.2 1.2 2 ^ 2 6 . 4 1 1 ^ 

9 1 4 3 3 & 8 6.7 0 . 9 1.8 0 . 3 4 8 8 1 2 ^ 8 . 2 9 . 6 4 & 3 4 6 3 4 9 4 9.5 12,7 

6 9 9 2 1 1 14.3 2 2 6 0.7 0 . 9 4 . 3 3 & 9 6,1 2 6 3.1 4 & 8 4 7 7 4 9 . 1 4 . 9 3,0 

9 2 1 2 8 . 0 1 8 ^ 9 . 5 10.1 4.5 1 & 0 3 . 3 1 2 8 1.3 2 7 ^ 4 & 9 13.6 2 1 ^ 7 . 0 

9 2 1 3 7 7 6 6.1 0 . 8 1.2 0.3 8.5 1.5 1.8 0 . 4 11,5 1 & 5 i a 5 3.1 0 . 2 

7 0 9 2 2 1 3 ^ 9 1.1 8 . 4 8 . 8 4.0 7.1 2 . 6 2.7 0 . 0 6 . 5 1.0 7 . 0 8 . 8 3 . 7 

9 2 2 2 7 . 6 15.9 12.4 1 6 . 5 2.7 5 & 9 2 & 5 7 . 8 2 & 9 3 7 0 4 & 0 4 4 . 2 1 0 7 4 . 4 

9 2 2 3 6 1 ^ 1.4 2.7 2 . 4 2.4 3 . 7 4 . 8 0,4 3 . 2 1.3 5.4 1.9 5,7 2 . 4 

71 9 2 3 1 3 3 . 2 0 . 8 5.6 4 . 9 2.1 16,2 2 . 9 2,2 5.5 1 & 9 1 & 9 1 & 3 0 . 9 1.3 

9 2 3 2 3 . 3 9 & 7 3 & 4 2 ^ 9 1 & 3 9 & 8 3 1 ^ 1 1 . 2 3 7 ^ 101.2 1 0 & 5 7 8 6 3 & 5 1 & 9 

9 2 3 3 6 & 5 5.3 1.1 1.2 0 . 2 3 . 4 3 . 2 0 . 6 4 . 8 5 . 2 4 . 9 6.1 1.6 0,3 

72 9 2 4 1 1 & 8 9 . 4 3.4 1.1 6 . 5 57.7 0 . 8 3 . 9 1.2 5 4 . 5 5 & 6 54.7 0.5 5.0 

9 2 4 2 0 . 8 213X3 56.5 5 2 0 3 & 9 2 2 7 1 1 9 1 5 / 9 1 & 0 8 . 9 8 . 0 4 . 0 3 & 5 3 5 4 

9 2 4 3 8 & 4 3 . 6 1.1 0.7 1.4 9.5 0.0 0.5 0 . 4 8.7 9 . 2 8 . 9 0 . 4 1,2 

73 10 1 1 1 4 6 M 3.5 13.1 1 & 0 5,4 1 1 . 8 8 . 3 1 0 . 8 1 2 0 22.4 1 5 4 15.7 4.8 3 . 4 

10 1 1 2 15,3 10.2 4.4 2 0 1,1 1 8 . 6 7,0 1 7 \ 9 4 . 6 2 2 9 1 6 . 5 21.7 5 . 5 11,9 

10 1 1 3 3 & 6 0.1 17.4 1 2 7 5 . 9 2 1 4 7.2 5 . 8 1 2 . 6 3 5 . 8 2 4 ^ 2 7 3 3 . 5 0 . 6 

74 10 1 2 1 7 ^ 4 5 . 3 1.3 1.8 1.3 2 5 4 . 2 0 . 8 5,1 3.7 2 . 3 0 . 9 4.7 5.3 

10 1 2 2 IZLS 6 . 0 8 . 0 0.1 8 . 0 1 8 / 7 2.4 1 2 / 3 2,1 3 0 / 0 1 3 4 2 & 0 8 . 6 0 . 9 

10 1 2 3 1 3 . 3 2 4 M 0.0 i a 4 1 4 ^ 3.5 21^ 1 5 / 7 2 & 7 7 . 3 0.5 1 8 / 3 1 8 / 5 3 0 7 

75 10 1 3 1 7 & 8 1.0 2 8 0.7 5.1 14.7 5.1 3.4 5 . 9 1 6 . 3 14,9 1 7 . 4 6.1 8 . 9 

10 1 3 2 1 1 . 8 2 2 . 4 6 . 5 3.5 6 . 9 10.9 11.0 0,7 1CL8 2 2 . 1 1 0 . 8 26^5 9.0 9.1 

10 1 3 3 1 2 . 4 2 7 \ 5 1 0 ^ 0.7 2 4 ^ 7 9 3 4 1 ^ 2 1 . 8 4 6 . 4 78.4 8 0 / 3 81.1 45.6 4 5 . 9 

76 10 1 4 1 6 2 4 8 . 5 6.5 4 . 2 0.5 21.1 2 . 0 1CUS 4.5 20.0 1 1 . 8 2 & 5 9 . 8 4 . 9 

10 1 4 2 8 . 7 2 6 . 7 10.9 3 . 3 7.8 1 & 1 1 8 / 3 1 1 . 2 1GL9 0,5 14.1 4.4 2 1 . 8 7.5 

10 1 4 3 2 & 0 2 6 J 3 17.3 10.1 3.3 4 ^ 7 1.2 2 6 / 2 4.7 4 2 ^ 2 1 . 2 4 9 . 3 27.7 8 . 2 

77 10 2 1 1 1 2 . 7 0 . 0 2 & 0 3 & 5 1 0 ^ 7 3 / 2 2 3 . 5 2 5 / 7 15X5 9 7 . 0 1 1 7 ^ 7 7 . 8 6 1 . 1 2 2 3 

10 2 1 2 7.7 2 6 . 4 1.4 4.0 8 . 9 2 9 . 8 11.7 1.6 7 . 4 11.6 2 2 L 5 1 7 / 3 6.7 3 . 8 

10 2 1 3 7 & 6 2 . 6 4 . 4 6 . 2 0 . 8 1 4 J 3 4 . 9 4,0 3 . 2 1 6 / 7 21.1 14.1 10,4 3 . 2 

7 8 10 2 2 1 2 8 M 2 1 . 4 1 2 ^ 4 . 6 0.5 3 0 . 1 2 1 / 3 12,7 1 5 . 1 3 5 / 0 2 8 7 2 3 . 6 19.4 1 0 . 7 

10 2 2 2 6 . 2 1 8 . 2 14.9 0 . 2 9.1 6 3 . 2 3 3 . 3 2^7 3 5 X 3 3 8 . 1 4 9 . 0 3 3 / 7 1 0 M 1 3 . 7 

10 2 2 3 6 & 7 1CK9 6 . 9 2 . 0 1,1 6 . 8 5 . 9 3.1 3.1 11.3 7.6 6 . 9 7.3 5 . 9 

79 10 2 3 1 3 2 2 1 5 . 3 8.1 1.6 3 . 8 4 . 9 2 8 ^ 5 4 . 9 2 2 / S 3.2 0.8 12.1 2 4 / 4 6 . 3 

10 2 3 2 3.1 7 ^ 6 1 8 ^ 1 3 ^ 1 2 7 1 3 0 / 2 5&0 17.5 51,7 74.1 111.1 8 4 . 6 4CL6 2 2 2 

10 2 3 3 6 4 . 7 11.0 4 . 9 0.1 1.3 8 . 7 1 6 . 9 3 . 3 1 2 L 7 2.0 5,7 2 . 0 14.1 4.2 

8 0 10 2 4 1 14.9 1 4 . 7 8.5 1 8 ^ 8 . 0 7 7 . 5 4 & 9 1 & 1 4 8 / 9 4 8 . 8 6 5 / 2 55,1 1 6 / 4 2 . 5 

10 2 4 2 1.0 130.1 1 4 ^ 3^5 4 . 3 7 2 3 5 6 J 6 2 2 3 5 9 / 4 1 9 . 8 4 8 7 1 7 / 5 2 4 / S 15.2 

10 2 4 3 8 4 . 1 4.1 1.7 3.5 1.4 1 4 . 5 8 . 4 3,1 9 . 3 8 . 9 12.1 1 0 / 0 3 . 2 0 . 6 
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Categories 
Census 

MODELS 

SPREE Unsaturated SPREE 
G 

T 

y 
F I d ; 11- ) 

(a) (b) (c) (d) ( a ) - ( b ) ( a ) - ( c ) ( b ) - ( c ) ( b ) - ( d ) 

81 11 1 1 1 4 & 8 1.0 8 . 3 5.7 3 . 6 3 . 2 15,5 8 . 5 1 5 ^ 2 0 3 8 . 0 1 5 ^ 1 1 ^ 2,9 

11 1 1 2 14.6 15.2 0.7 0 . 4 2 . 7 2 & 9 12,3 5,5 1 3 ^ 1 6 ^ 2 1 M 1 2 4 1 2 ^ 2,3 

11 1 1 3 3 & 6 7.0 9 . 8 7 . 0 3 . 3 1 1 8 14,1 8,1 1 3 ^ 3 & 9 1 7 ^ 2 & 3 9 . 0 2,6 

8 2 11 1 2 1 7 6 3 4 . 9 1.2 1.9 0 . 3 7.5 1,0 1 . 0 1,1 5.0 8 . 8 3 . 5 1.8 2,5 

11 1 2 2 13.1 3 . 5 2 . 0 1 . 2 3 . 2 3 3 . 4 9,7 3 . 8 8 . 3 2 2 8 3 2 4 23.0 8 . 0 0,5 

11 1 2 3 1 0 ^ 3 & 1 11.5 11.8 1,8 1 2 ^ 4 . 6 11,8 2,7 7,9 2 & 2 3 . 6 2 . 8 17,5 

8 3 11 1 3 1 8 & 7 4 . 6 1.4 0 . 7 0,1 9.7 1,3 2 . 0 1,4 9,5 9 . 5 10.0 0.7 2,1 

11 1 3 2 1 & 4 1 4 ^ 2.1 1.5 0 . 6 1 1 ^ 10,5 9 . 0 8 . 9 11,8 1 3 ^ 1 2 ^ 5 . 8 8 . 2 

11 1 3 3 8 . 9 5 & 6 1CL2 8 . 4 0 . 2 7 4 ^ 2 4 ^ 28,4 2 & 5 7 2 2 6 & 8 7 & 2 1 2 ^ 2 & 3 

8 4 11 1 4 1 6 1 ^ 1.9 0.0 2 . 2 3 . 6 2 ^ 6 0 . 6 2 . 5 0 . 3 2 & 8 1 8 ^ 2 & 2 1.3 7 . 6 

11 1 4 2 7 . 8 1 9 ^ 2 . 4 4.5 1.8 2 & 9 1 6 ^ 7,3 1 4 ^ 11,1 1 & 9 11.6 1 0 ^ 8 . 5 

11 1 4 3 3 1 ^ 8 . 7 0 . 6 5 . 4 6 . 8 4 & 0 5,5 6 . 8 4 . 3 4 & 9 41.5 5 4 . 8 0.0 17.2 

8 5 11 2 1 1 1 6 ^ 1 & 7 9 . 9 1 5 . 3 2.1 5 7 ^ 1 & 8 0 . 6 11,1 6 a o 8 & 6 51.5 3 & 6 4,5 

11 2 1 2 8 . 0 25.1 0.1 0.7 1.6 1 & 4 6 . 3 3 . 3 2 . 9 13,1 9 . 9 8 . 8 5.0 10,3 

11 2 1 3 7 & 5 5 . 6 2 . 2 3.4 0 . 3 1 & 6 1,7 0,5 2,1 1 4 ^ 20.4 1 2 ^ 7.9 0,1 

8 6 11 2 2 1 3 2 4 14.1 6 . 5 4.1 0 . 8 11.0 0,2 6 . 5 0 . 6 2 2 4 8 . 6 1 & 3 1.5 4,3 

11 2 2 2 7.7 2 . 4 4.7 2 . 0 4 . 6 5 2 3 1 6 . 4 15,8 1 & 8 4 7 ^ 4 7 ^ 4 & 4 9 . 5 1 3 . 1 

11 2 2 3 5 & 9 7.3 2 . 9 2 . 0 0 . 2 0 . 8 2,0 1,5 1,5 5 . 9 1.5 2.5 2 . 0 0 . 6 

8 7 11 2 3 1 3 7 ^ 7.2 1.0 1.5 4.5 15.0 2 3 3,4 2 . 6 1 2 6 1 8 ^ 1 Z 2 0 . 3 1,2 

11 2 3 2 3,5 5 5 ^ 8.1 4.1 8 . 3 4 & 5 3 . 3 3,5 0.0 6 1 ^ 49.1 5 & 4 1,3 2 . 4 

11 2 3 3 59.0 7 . 8 1.1 1.2 2.4 6 . 8 1,3 1,9 1,7 4 . 3 8.7 7.6 0 . 3 0 . 6 

8 8 11 2 4 1 1 6 . 1 1 8 . 3 1 2 2 7.5 2 . 9 5 7 \ 9 3 . 3 4,1 4,1 4 9 M 5 & 5 5 & 2 4.5 4,9 

11 2 4 2 0 . 8 1 9 & 0 4 & 2 4 1 ^ 4 & 5 2 7 ^ 5,4 2,1 7,9 5 . 8 3.7 0.3 3 & 2 3 7 ^ 

11 2 4 3 8 3 . 1 5.4 2 . 8 1.8 1.0 11.5 0 . 6 0 . 8 0,7 9.5 1 1 ^ 10.3 0,5 1,3 

8 9 12 1 1 1 50.4 0 . 4 i a 4 6.1 5.5 2 1 ^ 1,6 2 . 9 4 . 2 2 3 / 4 1 & 7 2 4 ^ 0 . 9 5 . 5 

12 1 1 2 9 . 4 2 C r 8 4.7 1.6 2 . 2 2 8 ^ 1 8 . 3 6 . 9 2 1 ^ 15.9 2 & 0 14.0 1 & 0 1,7 

12 1 1 3 4 & 2 4 . 3 12.0 7.3 6.4 3 3 . 6 6 . 3 5 . 3 0,2 3 3 . 1 31.2 3 3 . 9 5.3 7,3 

9 0 12 1 2 1 7 & 0 0.0 3 . 9 0.4 5 . 8 0.7 5,3 4 . 8 7 . 4 1.2 0 . 9 0.7 5,0 6 . 3 

12 1 2 2 8.1 2.7 4.3 1 5 ^ 1.4 4 6 / ] 1 6 a 8 . 0 8 . 0 3 0 . 5 4 8 . 5 3 4 . 3 1 & 4 7,4 

12 1 2 3 1 5 . 9 1.6 21.0 i a o 27.2 2 0 M 3 3 . 9 2 6 9 39.5 2 1 ^ 20.5 21.0 3 & 7 3 3 L 8 

91 12 1 3 1 8 4 . 3 5 . 6 1.8 0 . 6 0 . 3 8 . 6 0 . 8 2 . 0 1,0 8 . 5 i a o 8 . 2 2 . 7 0,7 

12 1 3 2 6.7 14.1 3 . 8 1.7 2 . 2 27.1 11,2 9 . 3 1 8 J 3 1 1 . 9 2 & 4 9 . 0 10,7 1 2 3 

12 1 3 3 9 . 0 6 3 X 3 1 4 . 4 6 . 8 4 . 8 5 9 . 9 1 5 J 5 11,4 4,1 7 & 9 7 2 2 7 & 4 1 7 M 1 5 . 3 

92 12 1 4 1 6 & 7 6.7 4.3 4 . 3 0 . 8 17,0 0 . 8 3,7 3 . 0 1 8 . 9 16.0 18X3 2,5 0 . 8 

12 1 4 2 4 . 8 15.6 2 . 8 3.2 1.2 5 2 . 2 4 6 / 4 6 . 3 37,5 1 5 . 8 51.7 1 9 . 2 4 5 ^ 1 3 . 5 

12 1 4 3 2 & 5 17.4 9 . 2 10.1 1.9 4 6 . 3 5,9 9 . 2 12,7 4 4 . 6 44.1 4 4 . 0 1,8 0,4 

9 3 12 2 1 1 1 7 . 2 15X5 8 . 4 17.1 0 . 8 7 1 . 0 2 2 2 1 11,1 57.3 6 4 . 0 6 0 ^ 16X2 1 1 . 9 

12 2 1 2 5 . 3 2 ^ 5 2.7 2.7 4.9 4,5 1SU2 7,3 8 . 0 8.2 7 . 2 1.5 2 2 . 4 15,8 

12 2 1 3 7 7 . 6 5.3 1.7 3 . 6 0,2 1 5 / 4 3 . 6 4,2 1,9 1 2 U 2 1 3 / 7 13.4 2,1 1,6 

94 12 2 2 1 31.5 2 ^ 2 1 2 ^ 1,0 4 . 8 1 7 \ 6 7,9 1,1 0,5 2 6 X 3 2 i a 2 7 . 7 1CUS 17,1 

12 2 2 2 6.1 2 & 0 2 2 0 2 a o 14,5 5 1 . 9 1 5 . 8 2 5 M 3 . 2 5 8 . 7 5 2 U S 6 1 ^ 19,2 3 2 J G 

12 2 2 3 6 2 4 8 . 3 4 . 0 2 . 4 1,0 3 . 8 2 5 1,9 0 . 6 7.5 5 . 8 8 . 0 3,5 5,4 

9 5 12 2 3 1 3 & 3 4 . 0 2.7 1,2 8 . 9 5.2 1 2 . 7 10,8 5,4 1 5 . 9 13.5 14.7 2 . 8 1,4 

12 2 3 2 2 . 2 5 & 4 8 . 0 4 . 9 1 8 ^ 3 & 5 1 0 / 7 10,1 4,5 59X2 3 2 J 0 4 9 ^ 1 4 . 6 3,3 

12 2 3 3 5 & 5 4 . 8 1.5 1,0 5,2 2 0 8,1 7,6 3 . 8 8.4 7.9 8 . 0 1.4 0 . 8 

9 6 12 2 4 1 1 5 . 5 2 & 6 1 6 ^ 17,5 5 . 9 5 8 M 2 . 2 9 . 6 1 2 . 6 4 ^ 9 5 0 / 7 4 7 X 3 1CUS 1 8 . 8 

12 2 4 2 0.5 172U5 3 & 3 2 7 ^ 4 & 8 1SL4 16,1 12L6 3 0 . 1 6 . 2 21X2 1ZL0 67X5 2 & 9 

12 2 4 3 8 ^ 0 5 . 5 3.3 3 . 4 1.4 1 ( X 8 0 . 3 1,7 2,1 8 . 9 9 . 2 8 . 8 2 . 4 3 . 6 
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Categories 
Census 

MODELS 

SPREE Unsaturated SPREE 
G T 

M F J 
( a ) (b) (c) (d) ( a ) - ( b ) ( a ) - ( c ) ( a ) - ( d ) ( b ) - ( c ) ( b ) - ( d ) 

97 1 3 1 1 1 4 & 4 2 & 2 1 7 / 1 1 0 / 7 9.7 9 . 4 7.4 7.2 2.9 6.5 3.4 1.8 1 2 2 1 9 4 

13 1 1 2 1 2 ^ 1 2 ^ 1.1 3.1 3 . 9 2 1 ^ 15.6 10.3 17.0 1 8 M 2 ^ 8 2 0 2 1 4 2 13.6 

13 1 1 3 4 ^ 8 3 3 . 8 2 0 . 1 13.1 9 . 8 17.5 3.5 4 . 9 2.1 1.6 1 0 ^ 4.3 9 . 4 17.8 

9 8 13 1 2 1 8 & 1 3 . 4 0 . 9 0 . 9 2 . 8 1.2 2.7 3 . 6 1.7 3 . 0 1.3 3 . 9 2 . 4 0 . 3 

13 1 2 2 9 . 5 1 . 9 2 . 3 3 . 2 2.5 1 6 ^ 9 . 0 1 6 ^ 7.3 2 2 1 2 2 3 2 & 0 2.7 1.6 

13 1 2 3 7.3 3 6 . 1 7.5 5 . 8 2 8 . 1 7.7 1 8 ^ 1 & 6 9 . 6 4 . 8 1 3 ^ 14.2 2 & 5 0.7 

9 9 13 1 3 1 8 & 5 3 . 0 1.1 0 . 8 2 . 5 6 . 8 0 . 9 1.3 0.1 6.5 6 . 8 6 . 2 0 . 9 0.2 

13 1 3 2 7.9 14.7 1.1 4 . 7 1.6 2 4 ^ 5 . 9 1.5 4 . 2 2 & 8 2 & 1 1 9 ^ 1.9 1.9 

13 1 3 3 5.6 6 & 0 1 5 . 0 5 . 4 3 7 2 7 & 7 5.0 2 2 . 1 4.1 7 2 2 7 & 0 6 9 2 11.7 6 . 3 

t o o 13 1 4 1 6 9 7 1.6 2.9 2 . 8 1.7 2 0 6 7.3 4.2 4 . 8 19.9 2 2 . 0 1 8 ^ 9 . 5 3 . 4 

13 1 4 2 5 . 8 11.2 7.0 7.4 4 . 2 16.6 1 7 ^ 6.1 1 7 ^ 7.3 1 9 ^ 7 8 2 & 0 7.9 

13 1 4 3 2 4 ^ 1.8 1 & 0 9 . 8 3 . 8 6 Z 4 2 4 V 13.4 1 7 9 58.2 6 & 8 5 4 4 3 2 4 1 1 4 

101 13 2 1 1 2 & 6 2 5 ^ 7.4 1 6 . 0 0 . 4 3 4 . 5 4.5 4 . 2 0 . 4 3 a o 1 3 4 3 4 2 2 2 1 3 . 8 

13 2 1 2 8 . 3 2 5 . 1 2.5 4.4 2 . 3 4 . 4 2 0 / 1 1 4 4 19.7 0.4 6 . 7 0.3 2 & 6 1 & 6 

13 2 1 3 63.1 1 4 ^ 3 . 7 7 . 8 0.1 15.1 4.7 3 . 8 2 . 8 1 3 ^ 5.2 1 5 ^ 1 3 . 1 3 . 5 

1 0 2 13 2 2 1 4 9 7 2.1 7.2 1.3 2 . 0 9 . 6 2.4 1.5 0 . 6 4 . 9 1 3 V 7.3 1.2 3 . 2 

13 2 2 2 6 . 6 5.1 4.1 4 . 2 6 . 9 3 4 . 1 11.4 3 . 9 l a o 4 7 5 4 & 8 4 7 4 3.1 8.5 

13 2 2 3 4 3 . 7 1.6 7 . 6 0 . 9 1.3 5.8 1.0 1.1 2 . 2 1.6 9 . 0 1.2 0 . 9 4 . 9 

1 0 3 13 2 3 1 51.0 2 . 4 2 . 0 1.2 3.1 1 4 ^ 3.4 3.4 0.5 12.3 1 1 ^ 1 & 0 1.5 1.8 

13 2 3 2 4 . 0 2 1 ^ 1 3 . 9 8 . 3 11.7 1 8 ^ 2 & 4 1 7 0 2 & 0 2 4 V 2 2 0 2 5 4 2 & 0 2 1 ^ 

13 2 3 3 4 & 0 4 . 7 3.5 0 . 6 2 . 5 14.4 6 . 4 2 . 4 3 . 2 11.7 11.4 9 . 0 3 . 9 0.1 

1 0 4 13 2 4 1 2 & 6 2 . 8 6 . 9 6 . 0 0 . 2 4 5 4 6 . 0 2 . 0 9 . 2 54.7 4 5 . 4 5 2 ^ 9 4 . 2 4.7 

13 2 4 2 1.6 5 1 . 1 2 & 6 2 & 6 2 a o 2 2 7 7 . 8 2 4 ^ 8 . 4 4 5 V 2 7 3 4 4 . 5 1 3 . 6 3 0 V 

13 2 4 3 6 & 8 0 . 0 3 . 4 3.0 0.5 1 & 2 2 . 3 1.4 3 . 6 2 3 J 5 1 & 2 2 2 7 1.4 2 . 6 

105 14 1 1 1 3 & 5 1 3 . 1 1.0 2 . 9 0 . 4 11.0 12.7 1 0 . 5 11.8 1 & 5 1 & 9 1 4 . 3 9 . 2 10.0 

14 1 1 2 16.3 1 3 . 0 2 . 8 5.7 2.1 21.0 8 . 3 11.4 4 . 2 1 8 V 17.3 2 1 ^ 4 . 2 8 . 4 

14 1 1 3 4 & 2 14.1 0.2 4.1 0.4 15.2 6.5 3 . 9 7 . 2 1 & 3 1 6 M 1 7 . 8 5.4 4 . 5 

1 0 6 14 1 2 1 6 7 2 0 . 9 3.7 2.4 2 . 5 1.9 6 , 4 3.1 5.4 1.2 0.5 0 . 9 8 . 8 7.5 

14 1 2 2 17.1 1 2 ^ 1 0 . 4 5 . 0 5 . 4 9 . 6 9 . 8 0 . 8 5 . 9 13V 4 . 8 1 1 . 3 1 4 V 9.2 

14 1 2 3 1 5 V 1 7 ^ 4.7 4 . 9 4.7 2 . 6 1 6 J 3 1 4 X ) 1GU3 9 . 9 7.4 8 . 3 2 1 ^ 2 2 . 1 

1 0 7 14 1 3 1 7 T 5 0.1 4 . 3 4.7 3 . 3 1 7 ^ 2 5 . 2 7.3 4.4 ISLO 1 7 \ 9 19.3 6 . 6 8.1 

14 1 3 2 1 3 . 8 2 3 1 6 . 9 4.7 1.6 6 . 0 13.0 5 . 6 17.8 15.5 8 . 3 17.2 9.7 1.1 

14 1 3 3 14.7 2 1 / 1 1 4 . 5 1 8 ^ 1 4 ^ 7 8 2 37.7 4CUS 3 8 . 3 7 8 . 1 7 9 4 7 7 . 5 4 1 ^ 3 8 / 4 

1 0 8 14 1 4 1 56.6 6 . 7 4 . 6 0.2 5.4 2 & 9 3 . 9 7.9 3.0 2 & 9 2 4 . 5 2 3 / 7 2 . 6 0 . 9 

14 1 4 2 8 . 6 17.1 0 . 9 4 . 0 6.7 2 2 U 0 1 5 . 6 11.3 2CL8 2 3 . 3 2 5 X 3 2 0 1 16X9 10X2 

14 1 4 3 3 4 . 8 1 5 / 2 7.3 1.3 7.2 4 7 ^ 1 0 . 2 1 5 . 6 10.1 4 4 . 6 4 & 2 4 3 . 5 8 . 3 3 . 9 

1 0 9 14 2 1 1 1 2 . 3 11.0 1 4 ^ 8 . 2 1 8 ^ 45.1 0.4 3 . 9 2.8 7 1 ^ 6 9 2 7 2 / t 19.1 2 0 X 3 

14 2 1 2 6 . 6 11.1 1 9 ^ 1 3 ^ 4.7 5 0 X 2 2 2 J S 1 6 . 7 9 . 2 4 2 7 4 4 . 7 5 1 . 6 19X0 2 4 . 7 

14 2 1 3 81.1 2 . 6 3 . 8 2 . 4 3 . 2 1 1 . 0 1.8 0 . 8 1.2 14.4 1 4 2 15X2 4.5 5.1 

110 14 2 2 1 2 & 8 5.3 2 . 6 5.4 0 . 8 2 3 X 3 1 2 / 2 6 . 4 1 5 X 2 14X2 12.3 1 4 / 1 1.4 3.4 

14 2 2 2 7 . 3 9.1 5.5 11.3 7 . 9 4 8 J 8 11.1 0.7 2 1 . 8 3 9 X 9 4 6 . 1 3 5 X 3 7.7 9 . 6 

14 2 2 3 6 3 . 9 3.4 0.5 1.2 0.5 5.2 4.2 2 . 8 4.4 1.8 0 . 3 2.4 0.3 2 . 6 

111 14 2 3 1 3 & 0 4.9 1 i a 9 . 3 9 . 0 1SL7 1.6 0 . 2 0 . 6 23X3 22X9 2 3 . 6 4 . 8 5 . 8 

14 2 3 2 3.5 6 4 . 0 1 2 ^ 1 7 ^ 2 . 2 8 3 / 7 2 1 . 9 14.1 7.2 71.7 91.1 82X9 27.2 2 2 M 

14 2 3 3 6 1 . 5 0.9 5.7 4.3 5.2 6 . 4 0 . 4 0.7 0.7 9.4 7.8 8 V 1.2 2 . 0 

1 1 2 14 2 4 1 1&4 3 . 6 9.1 0 . 6 7.7 6 2 . 3 11.9 0 . 5 11.1 5 & 4 59.1 5 9 X 3 5 . 9 4 . 9 

14 2 4 2 0 . 8 1 8 & 1 4&4 4 2 3 2 & 4 0 . 8 4 6 J 4 7 6 27.1 2.3 6 . 6 9 4 4&8 5 4 X 8 

14 2 4 3 8 & 8 1.2 1.3 0.5 1.2 11.4 1.7 0 . 6 1.8 10.9 10.8 1CL8 0 . 6 0.4 
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Categories 
Census 

MODELS 

SPREE Unsaturated SPREE 
G T 

a 
e F l"- 1 (a) (b) (c ) (d) ( a ) - ( b ) (a)-(c) ( a ) - ( d ) ( b ) - ( c ) 

113 15 1 1 1 5 4 . 5 3.5 4 . 7 0.2 5 . 8 1 6 ^ 1.4 7,0 8 . 2 1 4 ^ 1 8 ^ 6 . 6 3 . 9 8.1 

15 1 1 2 12.0 0 . 6 1.0 2 . 2 4 . 6 3 . 5 8 . 4 1.1 2 1 ^ 8 . 6 1 6 ^ 0 . 0 9 . 4 

15 1 1 3 3 3 . 9 9 . 8 7 . 8 0 . 6 i a i 2 7 ^ 1,1 8 . 3 1 3 ^ 3 1 ^ 3 3 4 1 6 ^ 6 . 3 9 . 8 

114 15 1 2 1 8 & 4 4.7 1.9 0 . 6 2 . 3 2 . 0 5,3 2,4 3 . 8 3 . 8 1.2 1.7 4.7 2 . 0 

15 1 2 2 8 . 8 1.2 2 . 0 1.9 1.4 5 . 3 2 & 4 5.2 2 4 4 2 1 4 5,5 2 & 2 2 5 7 3 . 6 

15 1 2 3 7.7 4 9 7 1 8 . 8 8 . 8 2 2 . 8 1 5 ^ 2 & 1 2 & 0 13,4 1 6 ^ 6 . 3 4 . 8 21,0 17.8 

115 15 1 3 1 8 4 . 7 2 . 0 0 . 6 0.1 0 . 3 7 . 8 1,5 5 . 6 0 . 3 9.1 6.7 9 . 7 1.4 4 . 2 

15 1 3 2 7.5 1 8 J 2 . 3 1.1 2 . 8 4.1 2 t 8 3.1 2 & 3 2 & 2 3 . 9 25.1 18^ 3.7 

15 1 3 3 7 . 8 3 & 6 3 . 8 2.4 0.6 8 ^ 3 3 7 ^ 5 & 0 26,1 7 & 5 6 8 4 s a g 3 . 6 4 1 ^ 

1 1 6 15 1 4 1 6 2 1 9.7 11.6 3 . 8 1 ( X 7 3 & 2 2 & 3 11,1 1 & 3 3 Z 6 3 & 2 3 & 0 1 & 6 2 ^ 5 

15 1 4 2 5.1 l a o 8 . 9 0 . 3 7.6 11.3 9 . 2 8 . 9 1 0 ^ 1 0 ^ 1 2 7 10,1 1 2 6 1 2 9 

15 1 4 3 3 Z 7 1 & 8 2 & 3 7.1 2 1 . 5 7 & 7 4 2 y 22,4 3 3 . 0 6 & 6 6 4 . 9 7 & 0 3 3 4 4 & 9 

117 15 2 1 1 2 & 5 2 & 1 9 . 6 0.4 8 . 2 15.9 1 9 ^ 7,3 1 1 ^ 2 9 / 1 21.1 1 & 2 1 3 ^ 17,9 

15 2 1 2 7.3 2 & 8 7.5 1.6 5.2 8 . 2 10.0 15,3 5 . 2 4 . 3 9 . 9 7,7 7,8 2 2 ^ 

15 2 1 3 6 6 2 14^ 4 . 7 0 . 3 3 . 8 7.3 8 . 9 4 . 6 5,2 11.2 9 . 5 6 . 8 6 . 4 9 . 7 

1 1 8 15 2 2 1 4 4 . 0 3 . 2 2 . 8 1.3 1.4 2 & 3 1 2 ^ 4,0 1 & 5 10,1 2 4 . 1 2 . 8 1 3 4 8 . 0 

15 2 2 2 5.7 4.6 3 . 2 3.3 5.2 6 & 0 2 & 6 1 3 M 2 8 7 4 & 2 5 & 6 4 & 2 2 & 8 1 1 ^ 

15 2 2 3 5 ^ 3 3 . 3 2.1 1.5 0 . 6 1 & 6 7,6 2 . 0 1 3 a 3 . 4 1 4 ^ 3.1 9 . 0 8 . 4 

119 15 2 3 1 4 & 5 7.1 1.7 0.3 3 . 0 3 & 9 1 9 . 1 1,0 12.6 9.5 2 & 8 1 6 . 1 1 4 . 1 3 . 8 

15 2 3 2 3.1 3 & 0 4 . 6 2 . 9 2 . 8 3 7 ^ 124 1 & 8 9 . 4 3 & 7 4 2 3 3 2 9 9,0 1 5 . 2 

15 2 3 3 51.4 8 . 5 1.2 0 . 4 2 . 5 2 5 . 1 1 7 ^ 0.1 11.7 6 . 2 2 1 M 12,3 1 & 0 4 . 3 

1 2 0 15 2 4 1 2 1 ^ 1 5 . 2 9.7 9 . 5 10.6 5 4 . 2 2 . 4 2 & 8 6 . 4 4 7 \ 9 4 6 4 5 & 9 11,2 2,4 

15 2 4 2 0 . 8 1 5 2 . 1 2 & 8 1.6 2 & 1 5 & 3 4 2 0 4 4 . 6 3 9 X 3 1 2 . 3 2 9 J 1 & 3 9,1 7.6 

15 2 4 3 7 7 . 6 5 . 8 3.0 2 . 6 3.2 1 & 6 1,1 7,9 1.4 1 3 . 4 1 & 2 1 & 2 3 . 0 0 . 6 

1 2 1 1 6 1 1 1 5 1 M 4 . 0 1 2 . 8 7 . 5 3 . 6 1 9 . 8 1,9 2 . 5 6.1 2 5 ^ 2 1 ^ 2 ^ 3 3 . 3 7,3 

1 6 1 1 2 1 3 . 8 9 . 3 4 . 6 4 . 8 1.9 1 5 . 8 4.7 9 . 7 2,7 2 t O 1 & 3 2 2 / 9 5.5 1 2 . 9 

16 1 1 3 3 5 M 2.1 2 ^ 5 1 2 . 9 4.5 3 5 . 0 4 . 6 7.5 ICU] 4 & 9 3 7 ^ 4 ^ 9 6 . 9 15,7 

1 2 2 16 1 2 1 7 7 . 1 3.7 0.1 2 . 6 2.8 3 . 4 2 . 6 2 . 9 4,7 4,1 5.7 3,5 0 , 7 2 . 4 

16 1 2 2 12.2 7.9 6 . 8 3.1 7.1 7.5 1 2 . 8 5 . 0 11,1 1 8 J 8 11,1 1 5 . 7 10.0 7.1 

16 1 2 3 1 0 . 8 3 5 ^ B . 5 2 2 . 3 12.1 15.7 4.5 1 4 . 8 2 1 ^ 8 . 5 2 8 . 5 7.6 5 . 9 9.4 

1 2 3 16 1 3 1 8 0 7 2 . 9 0 . 4 2 . 4 2.8 1 1 . 9 4 . 8 1,3 6,1 1 0 . 7 1 1 , 5 11,0 4.5 3 . 0 

16 1 3 2 9.5 1 8 . 0 1.7 0.3 2 . 5 1 7 \ 2 4 . 8 0 . 9 5 . 6 1 4 X ) 1 4 . 3 1 6 / 5 7 . 2 2,7 

16 1 3 3 9 . 8 4 1 . 8 1.3 2 ^ 2 2 ^ 6 8 1 . 2 4 4 . 6 9,7 5 5 . 5 7 4 . 4 8 & 9 7 4 / 5 4 4 . 0 2 7 . 3 

1 2 4 16 1 4 1 6 & 5 10.4 8 . 5 4 . 8 1 . 8 8 . 5 1CU2 2.5 4 . 2 11,9 7,6 1 2 / 4 1 1 . 2 5,1 

16 1 4 2 6 . 3 1 1 . 4 7 . 2 0 . 3 11.3 11.1 5 . 6 1 6 ^ 1 2 5 2 3 . 0 1 & 5 19,4 6.7 1 4 / 3 

16 1 4 3 2 & 2 3 1 . 0 2 1 4 1 3 M 2.1 2 5 J 9 2 6 / 4 2 . 8 8 . 3 3 8 . 0 2 4 . 0 3 8 4 2 8 . 6 1 ( X 2 

1 2 5 16 2 1 1 1 7 . 0 1 2 . 5 11^ 2 & 3 6 . 2 6 7 \ 4 2 0 . 8 1 8 . 2 5,1 5EU0 6 9 J 5 5 6 / 0 2 3 . 7 9 . 6 

16 2 1 2 6.7 2 0 . 2 6.1 1 & 3 3.1 3 5 X ) 1GU3 9 . 4 3 . 2 1 9 . 2 2 8 . 3 2 6 / 4 1CL3 5.4 

16 2 1 3 7 & 3 4 . 6 3.1 6.1 1.7 1 8 X ) 6.1 4 . 9 1,4 1 4 . 6 1 7 . 9 1 4 / 8 6 . 2 2 . 6 

1 2 6 16 2 2 1 3 0 . 1 2 7 X ) 1 8 J 6.7 3.7 6 . 2 2 . 6 4.2 14,2 3 2 / B 1 7 / 7 31.2 7,8 1 9 . 1 

16 2 2 2 6 . 0 1 2 . 2 9 . 3 6 . 2 3 . 4 5 5 . 2 2 0 / 7 5 . 9 2 9 J 5 4 & 6 4 9 7 3 6 ^ 11,8 9 . 4 

16 2 2 3 6 3 . 9 1 3 . 8 9.7 3.7 2.1 2 . 3 3 . 2 1.4 9 . 5 11,6 3,7 11.2 2 . 6 9 . 9 

1 2 7 16 2 3 1 3 1 . 6 31.1 2 & 5 6.5 7.9 2 ^ 7 4&9 9.1 3 6 J 4 . 8 2 3 . 2 3.5 4 7 . 2 24,1 

16 2 3 2 3 . 0 6 ^ 8 12.2 0 . 9 6 . 3 113,2 3 & 7 0,5 2 7 / 7 6 8 . 0 9 6 / 4 7 8 / 8 2 7 / 6 1 6 . 8 

16 2 3 3 6 5 . 5 1 7 . 8 11^ 3.2 4.1 17,5 2 ^ 8 4.4 1 8 . 7 5.4 1 5 . 6 5.3 2 4 / 0 1 2 . 4 

1 2 8 16 2 4 1 17^ 1 6 . 0 9 . 9 2 1 ^ 9 . 3 6 2 . 6 1 2 . 3 1 6 . 0 2 6 / 1 5 t 6 6 2 / 2 5 2 U 5 12.3 7.1 

16 2 4 2 1.0 10SUO 4.3 1.8 6 . 4 3 3 . 2 2,1 2 & 5 1 6 ^ 6 2 & 8 4 4 . 1 2 2 2 2 0 / 2 6 . 7 

16 2 4 3 8 Z 0 4,7 2.1 4.5 2.0 13.4 2 . 6 3 . 6 5.7 11,0 1 3 / 4 1 1 . 2 2 . 8 1.6 
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Categories 
Census 

MODELS 

SPREE Unsaturated SPREE 
G T 

y F let; 1 ( a ) (b) ( c ) (d) ( a ) - ( b ) (a)-(c ) ( a ) - ( d ) ( b ) - ( c ) ( b ) - ( d ) 

1 2 9 17 1 1 1 3 4 . 0 16.3 3 . 8 3 . 8 2 . 9 7 . 2 1 6 ^ 15.1 1 9 ^ 6 . 3 7.1 8 . 6 16.7 1 6 ^ 

17 1 1 2 1 8 ^ 0.4 1 3 / 4 1.7 1 4 . 5 2 & 9 15,1 8 . 5 2 & 1 32.0 2 & 4 2 9 J 1 8 7 1 8 ^ 

17 1 1 3 4 7 7 11.7 2 . 4 3 . 3 3.5 15.1 6 . 2 7.5 6.1 1 6 ^ 1 6 ^ 17.2 4.7 4 . 8 

1 3 0 17 1 2 1 6 & 7 0 . 6 5.5 4.3 5.1 1.3 9 . 6 7.3 1 1 ^ 3 . 6 3 . 8 2.1 1 2 ^ 1 0 ^ 

17 1 2 2 1 5 ^ 3.1 0 . 3 2.1 0 . 8 1 9 ^ 2,5 5 . 9 8 . 8 1 & 3 1 2 ^ 2 2 . 4 8 . 3 0 . 2 

17 1 2 3 1 8 ^ 0.4 1 8 . 8 1 6 . 7 17.1 2 ^ 5 3 t 5 3 & 2 3 t 2 2 6 1 2 & 6 2 5 7 3 4 . 9 3 & 3 

131 17 1 3 1 7 & 5 2.0 2 . 3 4.4 2.1 1 8 ^ 6 . 5 7.8 7 . 8 1 8 ^ 1 9 a 1 7 ^ 9.1 7.0 

17 1 3 2 1 1 ^ 8 . 5 1 1 . 4 1.2 1 & 9 3 . 3 1 6 U 7.0 8 . 2 8 . 2 1 2 7 2.7 5.5 1 6 6 

17 1 3 3 1 5 ^ 1 & 4 1 9 . 0 1 9 . 2 1 7 / 1 7 & 8 4 1 ^ 4 ^ 9 4 1 ^ 8 ^ 3 8 1 ^ 7 9 9 4 5 7 4 4 . 1 

1 3 2 17 1 4 1 5 & 0 i a 3 8 . 0 1.5 8 . 7 2 4 ^ 3 . 0 6 . 7 4.1 2 3 . 1 2 4 ^ 2 1 ^ 2 . 5 0.7 

17 1 4 2 5 . 8 2 2 9 5 0 . 3 1.2 4 & 9 7 & 9 6 & 6 1 7 ^ 5 4 ^ 6 & 7 7 & 0 78.0 5 & 9 6 & 8 

17 1 4 3 3 & 2 12.8 4 . 8 2 . 3 6.1 5 1 ^ 1 & 3 1 & 6 15.3 4 7 ^ 4 9 9 4 7 ^ 1 3 ^ 9 . 0 

1 3 3 17 2 1 1 11.3 6.1 2 ^ 2 12.1 2 & 2 8 & 7 2 & 6 2 2 9 1 8 ^ 9 & 5 8 & 9 102.7 3 2 4 4 & 2 

17 2 1 2 8 . 5 3 2 3 8 . 3 3 . 8 6.1 9 . 6 2 7 0 2 & 5 1 2 0 3 . 8 7.5 9 . 4 1 2 . 1 2 & 0 

17 2 1 3 BOM 4 . 3 2.1 2.1 2 . 6 1 & 4 0.5 1,1 1.3 1 3 7 1 & 5 1 & 5 3 . 3 2 . 9 

1 3 4 17 2 2 1 2 & 0 2.3 5 . 3 9 . 2 3 . 6 2 & S 1 1 ^ 7,6 7.5 16.7 1 3 ^ 2 ^ 4 1.2 9.1 

17 2 2 2 8 . 0 1.5 4.3 3 . 9 2 . 2 5 & 8 2 & 8 1 8 . 9 1 0 ^ 4 & 8 5 1 ^ 55.8 1 7 ^ 24.1 

17 2 2 3 6 3 . 0 0.9 3 . 0 4.7 1.9 3 . 6 2 . 0 1,1 2.1 1.5 0 . 6 2 . 3 1.7 1.1 

1 3 5 17 2 3 1 3 3 . 7 3.4 9.7 8 . 9 8 . 4 11.2 7,1 4,5 3 . 9 1 & 2 1 & 9 15.2 2.1 2 . 9 

17 2 3 2 3 . 3 71,5 1 8 . 6 4.0 2 1 . 0 4 4 . 4 6 . 4 1 6 . 3 1 4 ^ 6 & 5 6 & 2 47.1 8 . 6 3.2 

17 2 3 3 6 3 . 0 2.0 4 . 2 4.5 3.4 3.7 3 . 5 1.6 2 . 9 6.1 5.1 5 . 6 1.6 1.4 

1 3 6 17 2 4 1 1 4 ^ 1,5 4.0 5 . 8 3 . 2 5 & 4 2 . 8 9 . 3 2 . 0 5 4 ^ 5 & 4 5 2 8 5.5 8 . 8 

17 2 4 2 0 . 8 1 7 0 J 3 & 6 7.4 3 ^ 8 3 & 2 8 . 2 3 5 . 9 1 & 4 8.1 4.7 2 & 2 3 2 X 3 1 1 . 5 

17 2 4 3 8 5 / 0 2 . 0 0 . 3 0 . 9 0 . 2 9 . 6 0 . 4 1.2 0 . 2 9 . 2 9 . 0 9 . 0 1.2 1.6 

1 3 7 18 1 1 1 4 & 4 5 . 8 4 . 3 0.7 1.8 1 7 . 8 2 . 6 8 . 6 1 0 . 3 1 4 . 9 15.4 16.0 4 . 4 3.7 

18 1 1 2 11.6 2 4 . 6 8 . 4 5 . 0 8.7 3 & 0 2 1 v 4 1 4 M 1 7 . 9 17.4 2 5 X S 1 Z 4 16.1 6.7 

18 1 1 3 4 2 M 13.1 2 . 4 0 . 6 0 . 4 2 7 ^ 3 . 0 5.7 6 . 5 2 1 ^ 2 4 ^ 2 2 5 0.4 2 . 2 

1 3 8 18 1 2 1 7 & 3 5 . 0 1.4 1.7 0 . 6 4.0 1.9 1,0 3 . 6 2 . 9 1.8 3 . 2 3.7 2 . 2 

18 1 2 2 1 0 . 8 1.6 0.3 0 . 5 1.5 2 & 6 2 . 3 11,5 3 . 3 1 4 . 9 2 U 15.8 3 . 2 7.1 

18 1 2 3 10.8 3 7 \ 8 1 0 . 6 1 1 ^ 6.1 5.5 11.2 18X8 2 2 . 8 6 . 3 8 . 3 7.6 2 2 L 5 8 . 9 

1 3 9 18 1 3 1 8 1 . 5 3 . 8 0.4 0.7 0 . 3 12X3 5.1 4 . 0 6 . 4 11.1 11.7 11.0 3 . 9 3 . 2 

18 1 3 2 9 . 2 i c r 4 3.3 2 . 8 4.5 3 2 X 3 1 6 . 6 2.5 1 & 1 2 4 . 5 3 0 . 4 2 3 7 1 4 ^ 5 . 6 

18 1 3 3 9 . 2 5 3 . 0 6 . 8 8 . 8 2.1 7 6 ^ 2 8 . 1 3 3 . 1 3 8 . 6 7 3 L 8 7 3 . 3 73.1 20.4 2 2 . 5 

1 4 0 18 1 4 1 6 Z 3 1 . 8 0.3 1.7 2.1 2CL9 1.5 4.4 6 . 3 2 5 ^ 2 2 . 0 25.0 3 . 0 5.4 

18 1 4 2 7.1 2 6 X ) 10.3 4.2 1 0 ^ 15.0 7 . 9 3 . 2 9 . 9 7 . 2 14.6 6 . 5 9 . 5 1 0 / 4 

18 1 4 3 3 & 6 9.7 1.9 4.5 1.8 4 6 . 1 4 . 9 8 . 2 15.1 5CL2 4 8 ^ 4 9 3 8 . 3 8 . 6 

1 4 1 18 2 1 1 1 9 . 5 2 4 . 9 4 . 2 1,6 7 . 8 3 7 \ 6 3 . 4 7.4 13X3 4 3 . 4 40X3 4 5 . 6 0 . 6 1.9 

18 2 1 2 7.2 2 & 7 6 . 4 7.4 5 . 8 1 0 . 9 2 ^ 0 15.9 3 0 . 1 2.1 12.7 3 . 3 27X5 19.5 

18 2 1 3 7 & 4 9 . 5 1.8 0 . 3 2 . 6 8 . 9 3 . 5 0 . 4 6 . 4 1 1 . 3 9 . 5 1 1 . 8 2 . 8 1.4 

142 1 8 2 2 1 3 3 . 4 1 3 . 6 5 . 9 3 . 6 3.2 5 a 4 3 ^ 5 1 / \ 0 2 8 . 6 2 3 / 4 3 2 / 7 2 4 x 6 2 0 / 7 1 3 X 2 

1 8 2 2 2 6 . 2 1.8 0 . 9 0 . 8 0 . 6 2 r L 5 1 7 . 9 4.4 16x5 5 0 X 3 4 4 . 1 5 M . 2 3 . 3 1 5 / 4 

1 8 2 2 3 6 ^ 4 7,7 3.2 1 . 9 1.8 24JG 2 Z 6 9 . 0 1 7 \ 5 7,7 1 3 . 5 8 . 3 11.1 5.7 

1 4 3 18 2 3 1 37.1 1 ( X 5 3 . 8 1.5 0 . 9 1 4 . 9 2.1 2 . 5 6 . 0 7,7 9 . 6 6 . 6 7 . 8 1 0 . 4 

1 8 2 3 2 2 . 8 6 a i 1 0 ^ 9 . 0 1 2 ^ 2 7 X 9 1 8 . 5 2 . 6 2 & 3 5 3 X 2 3 8 / 4 51.3 10.9 2.2 

1 8 2 3 3 6 a o 9 . 3 2 . 9 1,3 1.2 7,9 0 . 4 1.4 4.7 2 . 2 4.1 1.7 4.3 6 . 3 

1 4 4 1 8 2 4 1 1 6 . 9 1 4 ^ 9 8 . 7 6,1 3 . 5 5 & 6 1.2 8 . 9 1 2 . 8 4 & 2 5 & 4 4 & 7 3 . 8 1 3 . 8 

1 8 2 4 2 0 . 7 1 6 4 . 8 3 1 ^ 3 & 3 3 t 6 2 & 2 2.0 1CX0 8 . 0 1 3 . 5 2.7 1 4 . 3 4 a o 16.2 

1 8 2 4 3 8 2 X 3 4 . 5 2.1 1.6 1.0 11,9 0 . 3 1.7 2.7 10.2 1 & 9 1 0 . 1 1.1 3 . 0 
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Categories MODELS 

s s 
T 

T 

s A 
L 

uensus 
Prop. (a) (b) (c ) (d) 

S P R E E Unsaturated SPREE 
G 

s 
T 

T e F 

uensus 
Prop. (a) (b) (c ) (d) 

(a) (b) (c) (d) ( a ) - ( b ) ( a ) - ( c ) ( a ) - ( d ) ( b H c ) ( b ) - ( d ) 

145 19 1 1 1 4 & 8 1.4 11.6 9 . 0 5.3 1 6 2 3 . 8 1.2 9 . 0 2 3 4 1 7 4 2 2 7 2 3 3.1 

19 1 1 2 1 3 ^ 11.8 3 . 3 1.9 4 . 9 1 & 7 5.1 1.4 11.3 2 0 4 2 1 4 1 4 4 1 0 M 2.7 

19 1 1 3 4 1 ^ 2 3 1 4 . 0 9 . 4 7.5 2 & 5 2 . 6 1.8 6 . 3 3 3 4 2 6 6 3 & 1 0.7 4.3 

1 4 6 19 1 2 1 7 & 6 2 . 8 1.3 0 . 0 3 . 9 5 . 2 1.9 3 2 4 . 3 2 . 0 5.3 2 . 2 1.9 4 . 4 

19 1 2 2 1 1 ^ 1.3 0 . 8 7.4 4.7 4 2 4 1 & 4 14.1 6 . 2 2 7 4 3 7 4 3 3 . 5 1 2 ^ 7 . 9 

19 1 2 3 1 4 ^ 1 5 M 7.3 5.7 1 5 . 9 7.5 2 2 . 3 2 7 2 2 6 2 11.3 3.1 15.1 1 9 2 2 & 1 

1 4 7 19 1 3 1 7 & 5 4 . 8 0 . 8 0 . 3 1.3 1 3 2 4 . 8 1.4 6 . 5 11.5 1 4 M 11.1 6 . 2 2 . 2 

19 1 3 2 8.7 7.4 1 2 . 2 0 . 9 5 . 6 1 4 4 6 2 19.6 4.1 1.9 2 1 4 3.1 2 . 8 2 5 4 

19 1 3 3 1 1 ^ 3 A 5 3 . 6 2.4 13.1 7 & 3 3 6 4 2 3 4 4 1 4 7 5 4 7 9 2 7 6 7 3 & 4 34.1 

1 4 8 19 1 4 1 6 1 J 7.4 5.1 5.7 0 . 4 1 9 2 1.0 4.1 2 . 3 2 1 4 1 & 7 2 1 2 4.3 1.0 

19 1 4 2 5 . 6 1.2 2 ^ 5 3 . 2 1GU3 5 & 3 4 8 . 5 1 5 4 3 & 7 4 1 2 4 & 7 4 9 4 3 9 V 4 0 4 

19 1 4 3 3 2 8 14.1 6 . 1 11.4 2.1 4 5 7 6 . 4 10.4 1 0 4 4 6 4 3 9 4 4 8 . 3 1.4 8 . 8 

1 4 9 19 2 1 1 1 3 ^ 4 . 3 2 3 . 1 3 ^ 4 9 . 0 8 2 0 2 7 4 2 3 4 1 5 4 8 4 . 0 9 9 2 8 4 4 4 3 . 0 2 7 7 

19 2 1 2 7 . 3 3 3 . 9 1 ( X 9 3.4 4.5 1 ^ 3 2 5 4 2 0 2 7.6 3.5 3.2 1 1 4 1 2 7 2 6 4 

19 2 1 3 7 & 5 3 . 8 2 . 8 4.7 1.1 1 2 7 2 4 2 . 1 1 . 8 14.3 1 6 4 1 3 4 6 . 0 2.1 

1 5 0 19 2 2 1 3 0 . 4 1 2 4 4.1 0.1 5 . 5 1 1 4 1.7 6 . 8 6.5 2 0 4 1 0 . 1 2 0 2 0 . 0 9 . 4 

19 2 2 2 7.3 1 2 9 1 5 . 3 11.0 7.2 5 8 4 2 7 2 2 4 4 9 4 53.1 5 1 4 5 9 4 1 6 4 3 & 4 

19 2 2 3 6 2 3 4.3 0 . 2 1.3 3 . 5 1.3 2 . 3 0.4 4 . 3 3 . 9 1.2 2 . 8 1,9 1.0 

151 19 2 3 1 3 4 . 5 7 . 2 0 . 2 0 . 6 8 . 8 1.8 2 1 4 4.1 1 3 4 1 2 6 2 . 7 1 3 4 1 7 4 4 . 8 

19 2 3 2 2 . 9 5 & 9 i a 5 2 . 6 21.5 3 9 4 9 . 2 9.1 1 5 4 6 6 4 45.4 4 2 9 4.7 6 . 2 

19 2 3 3 6 2 6 6 . 7 0 . 6 0.4 3 . 9 2 . 8 11.7 1.8 8 . 4 3 . 9 0 4 5 . 2 9 4 2 . 4 

1 5 2 19 2 4 1 1 2 3 3 7 ^ 3 a o 2 6 M 1 4 2 5 & 4 5 . 6 1 9 . 9 5 . 2 41.0 4 9 4 4 2 . 1 1 6 4 3 2 4 

19 2 4 2 0 . 6 2 2 9 . 9 6 4 . 6 2 ^ 4 7 & 3 2 8 2 5.8 1 4 . 8 2 9 4 1 6 . 7 1 0 . 8 1.0 5 8 . 1 3 8 4 

19 2 4 3 8 7 ^ 6 . 8 4 . 6 3 . 9 2.5 8 . 0 0 . 8 2.7 0.5 5.7 6 . 9 5.9 2 . 6 4 . 8 

1 5 3 2 0 1 1 1 39.1 9.1 1.8 4.1 1.5 4.3 17.3 1 4 . 0 2 0 2 1 3 . 7 8.4 1 3 2 1 & 4 8 . 8 

2 0 1 1 2 1 7 ^ 5 . 7 8 . 4 3 . 9 4 . 6 1 5 . 4 4 . 6 7 . 6 5.1 2 1 4 1 6 . 3 2 0 4 5.0 9 . 8 

2 0 1 1 3 4 & 6 10.4 5 . 0 5.2 0 . 5 10.0 1 3 . 6 9 4 1 6 . 1 2 1 . 0 1 4 . 0 2 0 . 1 10.1 4 . 0 

1 5 4 2 0 1 2 1 7 & 9 3 . 0 1.1 0.5 1.9 3 . 3 4 . 2 3.0 5.1 3 . 0 3 . 6 2 . 8 4 . 2 4 . 7 

2 0 1 2 2 1 4 ^ 1.5 0.5 0 . 3 2 . 4 2 0 4 1.0 8 . 8 2 8 2 7 . 8 1 8 . 9 2 8 4 2 . 9 4 . 6 

2 0 1 2 3 1 4 ^ 5 16.4 6 . 0 2.1 1 1 ^ 4 . 9 1 9 / 4 2 3 . 4 2 2 . 0 13.4 1.4 15.0 1 7 4 27.6 

155 2 0 1 3 1 7 & 2 2.3 1.4 1 . 2 2.1 1 3 . 8 4.0 3 4 4 . 8 1 4 . 6 1 4 . 6 14.5 5.1 4 . 9 

2 0 1 3 2 12.7 19L4 2 . 8 5.2 1.1 5 . 4 1 6 M 9.8 1 3 4 ISLO 10.9 1 2 . 6 8.5 5 . 8 

2 0 1 3 3 12.1 3 4 . 5 5 . 9 1.8 1 2 0 7 9 4 4 1 . 6 3 1 . 8 4 4 4 7 7 . 0 7 9 2 77.2 4 & 4 3 6 2 

1 5 6 20 1 4 1 6 ^ 3 9 . 5 7.5 3 . 0 5.2 1 7 4 3 . 6 2 . 3 2 . 0 i e u 5 1 6 J 5 1 8 . 8 4 . 0 1.1 

2 0 1 4 2 8 . 0 1 2 1 6.7 3.5 1 0 ^ 2 3 ^ 16.1 1 2 J 5 1 4 4 2 8 X ) 1 8 J 5 2 8 / 7 1 0 . 7 21.1 

2 0 1 4 3 3 & 7 2 2 X 3 1 3 ^ 6 . 8 7 . 6 4 0 . 0 3.0 7.8 0 . 2 4 4 . 1 3 7 7 4 4 . 9 5.3 3 . 2 

157 2 0 2 1 1 1 3 . 6 11.1 1 3 ^ 1 1 ^ 8 . 3 5 6 J 9 9 . 3 3 . 2 4.5 7 3 . 2 8 5 X 2 7 2 / 7 3 3 4 2CUS 

2 0 2 1 2 7 . 9 2 2 U 0 3 . 1 8 . 5 4 . 3 2 6 7 5.3 0.7 8 . 4 2 4 J 2 3 4 . 8 21.8 14X3 0 . 7 

2 0 2 1 3 78.4 4.3 2.7 2 . 9 1.0 12JG 2.2 0.5 1.6 15.2 1 8 X 3 1 4 4 7.3 3 . 6 

158 2 0 2 2 1 2 & 4 11.4 3.5 1.1 0 . 3 17.1 5 . 9 7.3 2 . 3 2 2 U 2 12.1 2 2 X 3 1.8 1CX4 

20 2 2 2 7.5 7 . 3 4.2 0.6 2 . 4 4 9 ^ 2 11.8 1 . 4 8 . 8 3 9 J 9 4 8 J 5 4 0 . 9 11.0 1.1 

2 0 2 2 3 6 3 . 1 6 . 2 2.1 0.5 0 . 4 2.1 1.4 3 . 6 0 . 0 6 . 0 0.1 5.5 0.5 5 . 0 

1 5 9 2 0 2 3 1 33.1 8.1 1.3 2 . 5 2.7 1.2 1 9 . 5 5.9 1 5 . 8 1 0 . 6 6 . 2 11.2 1 4 . 9 7 . 9 

2 0 2 3 2 3.1 8 & 0 2 7 ^ 2 0 2 1 9 ^ 1 0 0 / 4 31.5 11.5 3 7 \ 0 9 8 / 7 1 1 4 . 8 9 5 . 1 4 2 4 2 & 8 

2 0 2 3 3 6 3 . 7 8 . 4 2.1 0 . 3 0 . 5 4 . 3 11.7 3 . 6 1CX0 0.7 2 . 5 1.1 9 . 8 5 . 5 

1 6 0 2 0 2 4 1 1 5 ^ 6 . 8 1.0 1 2 4 5 . 6 5 ^ 9 2 . 4 1 7 \ 5 7 . 8 53.1 5 9 . 2 5 3 . 8 5.3 5 . 9 

2 0 2 4 2 0 . 9 1 8 1 . 7 4 & 6 3 2 6 2 & 4 3 & 0 3.5 1.5 1.8 3 . 9 i : L 3 1.5 2 3 X 3 4 1 3 

2 0 2 4 3 8 & 8 3.1 0 . 6 2.5 0.7 1 & 9 0.5 3 2 1.5 9 . 7 1C19 9 . 8 0.7 1.5 
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Categories 
Census 

MODELS 

SPREE Unsaturated SPREE 
G T 

y 
F 1 (a) (b) (c ) (d) (a)-(c) (a)-(d) (b)-(c) (b)-(d) 

161 21 1 1 1 4&1 5.3 5.0 3.8 0.5 13.7 6.5 4.7 11^ 15^ 12^ 15.7 7.7 4.4 

21 1 1 2 14^ 134 1.4 1.7 0.0 24M 13.1 12^ 12^ 21^ 24^ 21.1 14.1 10.3 

21 1 1 3 4 2 2 10.1 5.5 4.5 0.5 2 2 3 2.1 0.6 7.8 2&0 2&6 2 3 4 3.0 1.0 

162 21 1 2 1 74^ 4.7 0.8 1.7 0.6 5.0 1.4 2 5 3.0 3.1 4.9 3.2 1.7 3.1 

21 1 2 2 12^ 0.9 1.0 3.2 0.5 2&0 5.7 2.8 3.1 2^2 27.9 2 t 2 4.1 1.8 

21 1 2 3 12^ 2&5 4.1 6.7 3.4 0.3 14^ 18^ 21.3 2 5 0.8 2.5 14^ 16.7 

163 21 1 3 1 8&0 5.3 1.8 1.4 0.5 11.9 3.3 2.3 4.5 10.7 11.7 10^ 3.3 1.9 

21 1 3 2 10^ 12^ 5.0 0.1 3.3 2 2 2 2.7 0.6 5.7 13^ 2 a i 13^ 1.2 6.9 

21 1 3 3 9.8 56.7 9.3 11.6 0.9 7 4 4 2&9 19^ 31.1 7 3 4 7&0 73.1 2&6 2&0 

164 21 1 4 1 6 t 2 5.1 3.1 2.2 0.2 21^ 1.0 2.6 4.4 2 3 4 2 2 5 2&2 2.5 2.9 

21 1 4 2 7.8 2 a 2 3.0 0.5 2.8 11^ 6.6 5.0 5.7 6.3 10^ 7.1 5.3 1.8 

21 1 4 3 31^ 15^ 6.9 4 . 4 0.4 4&2 3.7 6.4 l a o 47^ 4&9 47^ 6.2 6.2 

165 21 2 1 1 15.7 15^ 7.7 1CK2 0.5 8&0 27^ 24.1 18.5 64.4 6&8 65 9 1&8 15^ 

21 2 1 2 7.4 2 3 4 2.6 3.3 2.2 14^ 3.0 2.5 0.7 13^ 10^ 11.9 8.0 7.3 

21 2 1 3 7 7 . 0 5.5 1.8 2.4 0 . 3 17^ 5.2 4.7 3.7 144 15^ 14 6 3.3 2 4 

166 21 2 2 1 3&2 15^ 7.8 3.9 2.3 2 0 4 8.5 1 t 8 2.4 28J 2 2 3 2&6 9.4 15 8 

21 2 2 2 7.5 3.2 5.7 5.2 4.8 5&5 2 2 3 21.3 2 a o 5 a i 48M 5&9 i a 8 15 5 

21 2 2 3 62 3 7.3 3.1 1.3 0.5 3.2 1.4 3.2 1.3 7.6 5.0 7.7 3.2 5.8 

167 21 2 3 1 34^ 12.1 5 . 2 3.2 0.3 3.0 1&0 8.1 9.9 6.1 2.8 5.6 15.8 12^ 

21 2 3 2 3.4 54^ 7.0 0.4 8.1 5 5 4 1.6 0.3 5.6 54^ 4 7 . 6 5 2 0 4.0 0.8 

21 2 3 3 626 9.5 3.2 1.7 0.3 1.4 8.8 4.4 5.7 0.3 1.1 0.2 8.4 6.8 

168 21 2 4 1 1&2 9 . 0 3.2 7.4 4 . 9 5&0 6.0 14.9 2.8 51.5 5 & 7 5 1 4 3.1 8.7 

21 2 4 2 1.1 9 7 4 1.3 3.0 2.7 35.6 8.9 8.5 8.3 3 2 2 31.1 3&3 5.3 8.6 

21 2 4 3 8 2 7 3.1 0.6 1.5 1.0 10.9 1.1 2.8 0.7 10.5 1^9 10.5 0.5 1.6 

169 22 1 1 1 3&2 3 9 4 2^5 154 1.4 1&8 123 3 8 4 5.1 2.7 14^ 4 . 4 8.7 2 3 7 

22 1 1 2 120 11.5 4.5 5 . 9 7.7 21.7 9.4 9.9 2 0 4 2&6 2 2 4 34^ 10.1 22.7 

22 1 1 3 54.8 264 13.9 8.1 2.6 1 1 . 3 5.4 21^ 7.6 4.0 13.6 10.1 3.1 9.4 

170 22 1 2 1 6&4 6.3 10.8 12.0 1.3 9.6 15.5 12.5 10.6 6.5 11.2 5.2 17.3 1 2 4 

22 1 2 2 13.0 2 1 X 2 19.9 12.1 10.4 6.2 24^ 18.0 25X) 0.8 9.8 6.7 28.5 25.1 

22 1 2 3 1&6 8.5 2^8 3&8 2.6 sn.i 3&9 33.4 21^ 23L5 34.5 14^ 4 3 . 7 28.1 

171 22 1 3 1 7 T 2 7.8 12.3 13.6 4.3 2 2 4 9.2 11.2 4.7 25.7 2&2 25/S 12/4 14.7 

22 1 3 2 7.5 4.8 14^ 1.9 3&5 20M 43.8 7.6 43.2 1.1 25.4 5.8 51/4 1 3 U 2 

22 1 3 3 21.3 24 2 4&5 4&2 25.0 82J0 4&3 40.1 3^9 85J5 86/G 82^5 59^ 53/9 

1 7 2 22 1 4 1 5 2 8 9.8 12.3 15^ 5.5 5 3 X 3 30.1 12 2 leus 41.1 54^ 3&0 3 3 L 2 11.5 

22 1 4 2 5.1 3.7 167 4.6 2&1 6.2 9.1 11.0 13/7 3 3 ^ 3.6 24.1 6.3 12U3 

22 1 4 3 42.1 11.8 17^ 19^ 4.4 66.0 367 16.6 21.6 55.5 6&3 50/S 40^ 16.0 

173 22 2 1 1 19.5 33.6 15^ 2&8 16^ 25.7 52^ 33.3 38 2 20.2 3.7 28/2 35.8 1CX3 

22 2 1 2 4.9 11.0 18^ 13.1 9.9 8.8 17\2 5.8 1.7 29/2 30.3 55.5 1.5 28.2 

22 2 1 3 7&6 9 . 4 2.6 5.3 5.0 6.0 14.6 8.9 9.7 7.1 1.0 1&9 9.1 0.8 

174 22 2 2 1 42.1 17.6 2&8 17^ 1.7 1.1 9.9 17.2 6.6 16M 6.3 11.1 16/4 19.0 

22 2 2 2 5.1 12.8 8.8 2&6 6.0 4^2 0.6 5.9 11.5 43.6 44.9 32/3 6.7 16.6 

22 2 2 3 5 2 8 1ZL9 18M 11^ 1.9 3.1 7.9 13.1 6.4 17\0 9.4 12/0 13.8 13.6 

175 22 2 3 1 4^6 17.4 2&1 234 2.3 2EU0 15/4 21/4 0.1 36/3 35.5 32.3 23/4 18.2 

22 2 3 2 2.6 5&9 7.4 6.1 8.5 148.0 57\9 8.7 75/7 52/2 1004 83/1 28/4 19.8 

22 2 3 3 51.8 12.4 2&0 2^9 2.5 17.1 10.6 18.4 3.9 29/3 26.1 24/2 19.2 15.0 

176 22 2 4 1 26 1 34.2 3&2 34.4 157 5 7 . 9 11.9 34.4 9.1 74 0 62/3 71.6 20/] 35/0 

22 2 4 2 1.0 6&7 18^ 2&3 24^ 2 2 3 1.1 1.7 17.9 4&8 48.2 33/9 32/9 8.5 

22 2 4 3 7 2 9 11.3 14^ 12^ 6.0 21.1 4.3 12.3 3.5 2^2 23/0 26M 7.6 12^7 
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Categories 
Census 

Prop. 

M O D E ^ 

S s 

T 

T 

s A 
L 

Census 
Prop. (a) (b) (c) (d) 

S P R E E Unsaturated SPREE 
G 

s 

T 

T e F 

Census 
Prop. (a) (b) (c) (d) 

(a) (b) (c ) (d) ( a ) - ( b ) (a)-(c) ( b ) - ( c ) (b)-(d) 

1 7 7 2 3 1 1 1 3 4 . 9 3 & 4 16.5 4 . 4 2 . 0 3 1 V 9.5 7.1 2 1 ^ 1 4 ^ 3 1 ^ 2 & 6 9 . 8 3.1 

23 1 1 2 1 4 ^ 3 . 6 17.1 2 . 9 2 1 . 5 2 & 2 1 1 4 5 . 8 2 3 V 3 & 9 2 & 9 4 ^ 3 9 . 6 2 8 V 

23 1 1 3 S O V 1 9 ^ 6.5 2 . 2 7 . 5 2 & 3 9 . 8 3 . 2 2 1 4 20.1 2 & 5 2 & 0 9 . 5 6.1 

1 7 8 23 1 2 1 6 & 4 8 . 3 13.0 12U3 5 . 9 3 . 5 11.5 1.7 6.7 3 . 9 11.4 0.5 1 8 ^ 9 . 4 

2 3 1 2 2 1 1 ^ 3 . 8 2.0 0 . 3 3 . 9 11.3 1 0 ^ 1 7 ^ 1 4 ^ 2 9 4 3.1 2 8 4 2 3 4 4 . 3 

2 3 1 2 3 2 Z 4 2 & 8 37.6 3 & 4 1 9 . 6 1 6 ^ 2 & 0 1 3 ^ 12.6 2 & 5 3 2 3 15.6 4 3 . 4 3 0 J 

1 7 9 23 1 3 1 6 & 3 9.7 14.4 1 7 \ 4 8 . 5 2 1 ^ 6 . 0 1 1 ^ 2 . 3 2 & 5 2 4 ^ 2 & 3 1 1 ^ 1 2 ^ 

2 3 1 3 2 6 . 5 16.1 4 ^ 5 3 . 6 50.5 6 & 3 9 2 2 10.8 8 & 2 3 & 1 57.4 35.5 8 5 M 5 & 3 

2 3 1 3 3 2 4 2 3 Z 2 5 2 2 5 & 8 3 ^ 9 79.1 4 2 0 3 & 1 2 & 0 8 4 V 8 4 ^ 8 1 ^ 5 6 7 5 2 0 

1 8 0 2 3 1 4 1 5 & 1 1.5 0 . 9 10.6 1 1 . 3 3 & 6 9.1 8 . 3 0.5 2 1 ^ 3 2 9 1 6 ^ 1 2 3 7 . 9 

2 3 1 4 2 4.5 13.4 3 & 0 3 . 6 3 & 9 4 7 ^ 3 & 6 8 . 3 2 & 5 6 & 5 4 3 . 7 6 & 6 3 5 . 3 4 & 3 

2 3 1 4 3 3 7 ^ 0 . 8 6 . 0 1 & 1 1 & 0 5 3 A 1 8 ^ 1 3 ^ 4.1 4 1 ^ 5 & 5 3 3 . 6 2 3 4 6 . 6 

1 8 1 2 3 2 1 1 1 5 ^ 2 0 . 1 2 . 6 10.1 3 & 2 1 2 ^ 41.4 2 4 ^ 2 7 3 27.1 1.9 4 5 4 3 3 . 2 3.5 

2 3 2 1 2 6 . 5 3 ^ 6 6 . 8 6 . 6 5 . 2 2.4 1 9 ^ 6 . 6 9.1 1.2 14.1 7.4 i a 3 10.5 

2 3 2 1 3 7 7 . 7 6 . 6 0 . 0 1.5 6.7 2 . 3 1 0 0 5 . 6 4 . 8 5.4 0 . 8 9 . 8 7.6 0 . 2 

1 8 2 2 3 2 2 1 3 & 2 1 3 ^ 19.5 2 2 1 0.5 9 . 3 1.2 16.1 1 6 4 2 1 ^ 1 & 2 11.3 2 ^ 9 17.4 

2 3 2 2 2 5 . 8 3.5 0.3 0 . 5 3 . 6 6 & 3 4 ^ 9 2 & 4 2 & 3 4 8 4 6 ^ 2 4 4 . 7 3 2 . 1 3 . 3 

2 3 2 2 3 5 5 . 1 9 . 0 1 3 . 8 1 5 . 6 0.0 0 . 3 3.5 1 4 4 8 . 9 20.0 15.7 1 2 7 1 & 3 12.7 

1 8 3 2 3 2 3 1 4 & 9 2 1 ^ 2 & 6 2 & 9 9.4 4 3 . 0 3 a i 3 3 . 5 1 & 1 4 & 5 4 & 3 3 9 4 3 & 3 2 4 V 

23 2 3 2 2 . 4 8 2 2 2 & 3 10.5 1 9 ^ 9 ^ 8 25.0 3 4 . 3 5 & 6 7 & 8 103.4 8 & 0 3 3 . 5 2 & 5 

23 2 3 3 5 0 V 1 & 9 2 & 5 2 & 4 7 . 8 35.5 2 & 7 3 2 6 1 4 ^ 3 & 6 3 & 9 3 2 4 3 2 0 21.7 

1 8 4 2 3 2 4 1 2 & 4 3 & 4 4 & 2 2 & 0 2 1 ^ 6 & 9 2 & 6 3 & 2 1 4 ^ 7 8 V 7 0 4 7 & 0 3 3 . 6 4 ^ 3 

2 3 2 4 2 0.5 2 7 8 2 8 7 V 4 2 0 9 0 6 5 . 3 31.4 2 . 0 7 4 ^ 15.0 2 6 J 9 2 & 6 7 T 8 85.5 

2 3 2 4 3 7 3 . 1 11.4 1 4 . 0 9 . 8 7.2 2 & 0 1 0 ^ 1 0 . 9 4 . 8 2 8 4 2 5 ^ 2 6 J 9 11.7 1 4 ^ 
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Categories MODELS 

s s 
T 
T 

s A 

(a) (b) (c) (d) 
SPREE Unsaturated SPREE 

G 

s 
T 
T e 

(a) (b) (c) (d) 
(a) (b) (c) (d) (a)-(c ) (a)-(d) (bHc) (bHd) 

1 1 1 1 27.4 15.1 11.8 2.9 7.2 7.5 9.7 4.2 1.2 4,4 0.8 94 138 
2 1 1 2 6.8 5.5 10.1 8.4 203 123 10.7 5.1 108 22,0 12.2 14,4 4.5 
3 1 1 3 24.0 3.8 9.1 10.5 31.6 2.1 11.6 13,2 320 30.9 314 4.2 2.9 
4 1 1 4 126 152 11.8 2.9 40,1 24,0 8.4 17.0 311 38.9 307 234 14.1 

5 1 2 1 28.0 8.7 13.0 1.0 128 134 10.9 6.6 15.0 8,0 15.8 16.3 8.1 
6 1 2 2 6.2 10.7 2.9 3.4 13.2 10.5 4,7 9.9 17.9 15,7 17.8 7.3 10.2 
7 1 2 3 9.6 11.1 4.0 3.0 272 22.5 4.5 16.1 24.5 264 23.6 19.5 10.5 

8 1 2 4 230 10.0 14.9 5.7 25.0 4.0 8.0 lOJ 370 33.6 36.7 12,9 9.3 
9 2 1 1 138 1.5 2.2 1.0 18.9 1.0 3,4 2.1 19.4 18.0 212 0,4 2.8 
10 2 1 2 13.8 2.7 2.9 0.7 124 5.8 2,0 3.6 126 103 12.6 6.0 4.1 
11 2 1 3 3&8 2.1 2.6 0.6 30.3 2.4 2.7 5.2 32.0 296 322 3.1 3.6 
12 2 1 4 12.4 3.8 1.8 1.9 244 6.2 1.2 4.1 22.0 246 22.3 6.2 5.3 
13 2 2 1 16.8 5.2 3.8 2.2 338 9.4 6.6 3.2 31.4 32,5 34.4 6.9 7.7 
14 2 2 2 103 5.9 6.1 0.4 19.1 1.6 2.8 6.8 14.6 154 137 3.1 8.2 
15 2 2 3 29.7 7.1 6.9 0.9 44.0 13.4 7.9 7.4 35.5 428 38.6 123 9.0 
16 2 2 4 61.7 13US 15.4 6.9 314 7.3 10.7 4.4 24 7 27 9 25.0 11.1 16.2 
17 3 1 1 3.2 12.1 5.4 8.9 23.7 7.7 5.3 6.1 31.8 312 31.2 11.9 114 
18 3 1 2 3.0 7.8 4.2 9.3 11 j 9.3 6.7 124 10.8 7.2 115 9.8 8.3 
19 3 1 3 4.8 1&7 6.4 19.6 31M 18.6 2.0 162 300 30.6 299 196 192 
20 3 1 4 9.0 12.1 2.3 8.3 275 7.1 3.3 3.4 27.2 264 274 6.6 11.9 

21 3 2 1 182 11.0 11.3 5.7 11.5 208 9,8 168 2&8 29.0 28 7 7.1 11.2 
22 3 2 2 8.8 4.3 4.2 1.2 28.1 12 3 8.1 3.9 219 24,0 218 7.5 4.6 
23 3 2 3 47.1 17.6 3,8 16.3 48.6 27.6 1,7 39.3 41 j 43.9 40.1 19M 16.3 
24 3 2 4 45.4 2.4 6.3 7.0 21^ 1&8 9.2 240 305 30.5 314 2.2 1.8 
25 4 1 1 17.0 3.9 1,9 3,5 13.7 3.7 1.5 4.3 15.5 14.1 14,4 3.6 3.6 

26 4 1 2 22.7 9.7 8,3 6,7 248 8.0 4.0 7.6 26.8 301 23,9 119 7.4 
27 4 1 3 46.4 108 10.8 9.8 31.2 9.0 6.1 8.5 280 28 3 29,3 123 9.9 

28 4 1 4 11.5 3.4 1.0 5.6 19.7 3.9 2.9 3.5 23 3 20.2 25.0 2.8 4.9 
29 4 2 1 218 1.6 2.9 2.7 257 1.0 2.0 1.0 23,5 252 23.5 5.3 1.7 

30 4 2 2 7.1 3.3 3.7 2.5 16.3 2.8 1.6 3.2 214 19.4 19 9 1.3 2.0 
31 4 2 3 15.5 8.1 5.7 4.9 17.1 6.6 3.0 6.1 14,9 14.7 17.6 8.5 5.8 
32 4 2 4 314 5.8 2.5 3.8 32.0 0.9 3.4 1.3 33.6 35 3 33.6 6.0 3.5 
33 5 1 1 9.1 10.0 6,9 4.5 206 4.0 4.0 6.8 284 23.6 28.2 7.4 8.3 
34 5 1 2 17.5 4.5 8.2 5.0 13.2 6.2 1.6 6.8 19.8 22 5 16.6 10.4 4.7 
35 5 1 3 30.2 3.4 5.4 10.5 35.3 8.4 6,6 119 334 339 34.6 7.2 5.8 
36 5 1 4 23 7 14.5 8.7 4.9 11,0 20.8 9.0 13,4 14 2 9.8 16.6 23.1 144 
37 5 2 1 13.8 8.6 11.9 2.2 36.7 10.6 6,8 4.3 35.8 42.3 37.8 15.9 10.1 

38 5 2 2 16.9 10.7 4.4 1,2 18.7 6.2 2.3 13.6 24,1 21.7 204 4,7 126 
39 5 2 3 34.9 10.9 3.8 1.4 45.4 31.1 6.0 22.2 23 8 36.3 30.0 24.4 13.0 
40 5 2 4 53.9 11.1 20,0 3.4 31 4,4 21 j 7,0 254 34.4 24,5 4.9 127 
41 6 1 1 15 7 1.2 1.0 3.3 19.4 0.8 5.3 5.5 17 2 15.2 224 3.0 3.7 
42 6 1 2 15.7 3.1 4,7 1.2 17.9 13.4 9.2 8.2 17.2 15,5 18 2 10.3 7.5 

43 6 1 3 28.4 2.3 2,0 2,0 33 7 8.4 5.3 13.0 32,2 :M.3 326 9.4 4.7 
44 6 1 4 18.5 9.9 1,3 7.8 19.9 167 3.6 11.1 20.5 21.5 20.5 12.6 14.6 
45 6 2 1 17.9 3,5 1,8 0.7 41.0 14.6 8.6 5.4 29.0 31.0 36.7 6.0 10.2 

46 6 2 2 12.7 6.9 3,8 3.6 19L3 1.6 7.3 6,0 191 19.5 17.4 2.8 13 5 
47 6 2 3 26.7 3.4 3.8 0.2 42.3 17.9 7.6 8.4 30.8 39,7 37.5 18.9 10.0 

48 6 2 4 38.8 4.9 7.3 8.9 3&2 9.2 9.2 16.9 34.4 37J9 29,8 10.1 8.4 
49 7 1 1 14.3 1.3 1.8 1,4 16.8 1.1 2.0 1.9 18.3 17 3 17.3 0.6 0,9 

50 7 1 2 14.3 1.7 2.9 1.3 13.2 2.5 2.8 1.2 17.3 15.8 15.9 1.0 1,0 
51 7 1 3 34.6 3.7 3.7 2.7 30.6 4.6 2,3 3,7 3^2 2&6 30.6 5.4 2,9 
52 7 1 4 11.0 4.0 0.5 4.1 21.4 2.8 1.3 2.1 24.0 21.1 24.7 2.1 4,9 

53 7 2 1 2Z6 5.2 2.6 4.4 22.4 4.0 2.8 2,8 21,9 22.5 21.3 3.9 5.8 
54 7 2 2 9.5 3.9 1.6 2.8 17\2 5.0 3.9 3.4 19,9 2&2 ISt.1 4.0 3.4 
55 7 2 3 21.7 3.1 1.6 3,9 24.4 1.8 0.6 4.1 2Z3 23 1 23.1 2.3 2,3 
56 7 2 4 38.2 2.1 1.9 2.7 30.6 3.4 4.8 1.2 31,6 325 32.1 2.1 1,2 
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57 8 1 1 6.0 9.0 6.8 3.4 2^2 7.3 3,5 6.3 28,6 228 269 7.3 7.4 

58 8 1 2 15.4 2.8 4.3 1.8 13.8 9.8 2.6 8,7 186 15.2 16.5 11.9 1.6 

59 8 1 3 22.6 4.0 4.2 7.7 30.8 8.9 4.8 1&3 32,0 30,5 32 8 7.1 5,4 

60 8 1 4 11.1 5.0 3.4 3,5 22.6 4,4 1.6 4.4 21.8 19.6 22,6 7,4 3.5 
61 8 2 1 13.8 8.1 11.4 4.9 35.1 8.8 5.9 6,6 353 426 33.7 15.7 6.6 
62 8 2 2 11.8 5.7 2.7 0.2 22.7 9.2 2.1 9.5 20.0 21.2 18,5 6.4 4.6 

63 8 2 3 3 3 8 7.8 6.2 7.7 43.5 16,0 6.5 13,9 36.4 41.5 37.7 13^! 8.4 

64 8 2 4 68.3 14.4 12.9 8.5 32.0 9.0 10,9 9,1 22,0 290 23,0 4.5 13,1 

65 9 1 1 10.1 4.7 3.5 2.7 14 5 6.9 2.3 5,9 24.0 18.6 22,0 3,5 2.6 

66 9 1 2 14.4 3.3 4.7 1.6 1Z3 7,4 2,8 9,0 122 11.3 12.6 10.2 2,4 

67 9 1 3 24.5 4.6 5.5 4.4 303 6.4 3.9 5.2 33,0 324 319 3.8 4.4 

68 9 1 4 7.9 1.7 2.5 3.4 242 5.5 0.8 4,4 252 24.2 27.1 5.5 3,3 

69 9 2 1 17.5 4.3 6.3 2.8 22.7 3.2 4.2 3.6 30,7 38.1 26.2 11.9 1.5 

70 9 2 2 6.1 7.0 7.3 4.5 22,2 13U0 2.5 1CL7 137 18.7 16,5 9.2 4.3 

71 9 2 3 42.2 15.2 13.2 7.9 43.8 14.7 7,4 17.9 46,5 49 0 38.6 17.0 9.5 

72 9 2 4 84.3 2Z9 16.9 15.1 284 6.3 6.5 8.6 24.1 22.9 20,8 13U3 16.8 

73 10 1 1 10.1 13 8 9.5 7.8 22.6 6.4 5.4 4.3 328 24,1 27.1 9.3 8.9 
74 10 1 2 8.6 3.9 2.6 9.9 124 3.7 4.4 6.1 1&0 12,2 10.1 4.9 6.8 

75 10 1 3 209 9.2 1.5 15.5 320 9.9 2.9 12,3 35.7 32.7 38.7 11.4 14J5 
76 10 1 4 222 13.1 6.7 4.5 217 16.5 6.3 12,9 17.3 10 4 22,3 3^8 8.5 

77 10 2 1 11.4 11.3 17.2 3.3 39.1 14,0 9.4 9.4 4 a i 52.4 35.6 25.4 7.3 
78 10 2 2 15.7 9.7 2.0 1.7 2&2 16.0 9,5 13.8 23,7 24,2 17.2 8.1 7.1 

79 10 2 3 30.9 8.0 1.5 1.2 39.8 27,1 3.4 23.1 22.6 33/7 30.1 2&4 5,5 

80 10 2 4 46.2 5.5 148 4.7 559 38.1 16.9 40,9 28,7 4&9 30.4 177 1.9 

81 11 1 1 7.3 7.5 4.9 3.0 15.7 8.1 1.5 8.4 264 19.4 20,7 5.0 3.4 

82 11 1 2 17.2 3.9 5.1 0.3 266 9.6 4.1 9,9 20.3 30.9 15.3 122 0.3 
83 11 1 3 36.0 4.3 4.0 0,5 3^2 2.8 0,2 2.6 29,1 2&6 3&9 8.5 0.2 

84 11 1 4 9.1 0.3 3.6 4.3 23.3 5.5 1.5 5.5 22.7 19.8 25.4 6.2 4,6 

85 11 2 1 17.8 3.4 7,2 1.0 27,7 2.9 2.6 4.3 298 3&8 2^8 14.3 1.9 
86 11 2 2 8.2 3.9 2.4 1.4 18.9 4,7 4.0 3.4 22.3 16.7 19.7 2.7 2.0 
87 11 2 3 26.2 3.3 2.7 4.6 25,5 0.9 0.5 1,1 29.1 28.1 29,9 2,2 3,9 

88 11 2 4 73.9 18.9 13.2 135 32.6 2.0 3.3 3.2 205 25.2 219 1Z4 13.5 

89 12 1 1 10.0 8.6 5.7 3.4 29 3 9.8 6.5 6.9 25.2 27.8 25.1 9.1 9.9 

90 12 1 2 3.5 13.1 11.0 132 22.5 16,8 10.8 16.4 16,9 23.6 182 17.5 13.7 

91 12 1 3 36.1 4.8 2.3 3,1 28.3 25,3 182 218 286 34.7 273 9.8 6.4 
92 12 1 4 13.7 8.8 5.5 2.8 32 5 18.8 3.1 12,2 20.6 312 213 20.6 10,2 

93 12 2 1 17.8 6.7 9.3 3.4 30 8 14,8 10.4 6.4 29,8 28.1 2&5 13.3 9.3 

94 12 2 2 15.0 12.2 9.5 4.9 21.1 4.6 8.7 3,6 27,6 2&7 29 1 7.0 14,5 

95 12 2 3 16.2 4.3 2.3 6.2 11.3 12.7 5.8 4.4 22.7 13.8 19.2 8.8 5.7 

96 12 2 4 53.5 9.2 8,2 9.1 33.8 1.8 117 9,3 26.0 2 i a 275 17.8 7.7 

97 13 1 1 26.2 13.7 9.6 8.4 14.1 3.3 3.1 3.2 3,3 9.5 5,5 6.3 11.2 

98 13 1 2 11.6 2.4 5.4 9.4 9.4 5.4 8.5 1,3 15.9 13,6 19,9 7.6 4.4 

99 13 1 3 34.1 4,6 2.2 14,4 30.2 8.8 1.5 12,3 29,3 306 27,5 4.8 8.7 

100 13 1 4 4.6 7.0 7,5 4.4 30 6 12,7 4.0 9.6 25 8 33.4 24.1 18.2 3.6 
101 13 2 1 24.8 5.0 104 1,4 19 4 6.0 3.4 3.8 18,9 8.3 212 15,9 2.9 

102 13 2 2 2.9 5.6 1.7 2,5 13L3 9.7 6,7 8.2 15,7 193 15^ 2.7 3,9 

103 13 2 3 11.3 7.3 3.1 4,7 2^9 11.8 2.8 10,0 22.6 213 212 9.1 5.5 

104 13 2 4 2&5 13.1 11.9 7,7 270 2,5 7.2 3.8 39 9 28.7 386 3.2 110 
105 14 1 1 15.5 1.6 4,0 2.3 18.9 3.4 3,5 1,9 19.2 188 2&9 0.5 2,1 

106 14 1 2 i:L6 5.4 3.1 4.0 11.9 6.1 3.5 4.6 10,0 7.6 9.8 7.5 5,4 

107 14 1 3 2^6 7.3 9.0 5,9 31.5 3,6 6,2 5.3 34.9 330 35.2 5.1 7.4 

108 14 1 4 15.0 5.5 1.7 6.9 21.5 3.3 1.3 5.2 19,7 21.3 1 8 j 4.8 7.2 

109 14 2 1 10.3 13.6 7.9 9.1 35.3 9.9 8.7 4.3 42,5 423 46.0 14.0 16.5 

110 14 2 2 8.2 2.7 5.2 2,9 2&5 6.4 2.4 11,1 16.1 178 15,0 2.6 5.2 
111 14 2 3 28.8 11,7 122 5.9 41,2 11.7 8,5 5.9 3&4 453 430 15,2 14,0 

112 14 2 4 5^4 9.4 8.7 3.8 31.3 12.4 8.0 7,0 2&8 284 277 11.1 12^ 
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113 15 1 1 8.6 5.4 0.5 7.0 19.0 8.1 2.7 12.9 22.5 20.4 12.9 9.4 3.5 

114 15 1 2 2 3 8 9.2 5.4 11.6 2.7 11.9 0.9 10.8 25.7 7.1 15.8 8.8 1.3 

115 15 1 3 312 2.3 0.7 4.5 25.3 12.8 14.1 13.4 3&3 192 33.3 23.3 5.4 
116 15 1 4 14.0 15.2 4.2 14.2 398 24.5 10 6 19.9 32.7 3 7 2 35.7 20 7 21.4 

117 15 2 1 252 5.7 0.8 4.9 17.7 10 0 3.2 8.0 185 20.8 12.4 8.2 11.4 

118 15 2 2 4.9 5.8 3.7 3.9 2 7 3 9.7 1.5 13.7 149 266 15.2 8.2 9.4 

119 15 2 3 19.1 1.8 0.5 1.3 40.5 15.4 4.3 12.4 27.0 39.7 297 13.5 7.0 

120 15 2 4 715 18.1 7.1 18.0 37.8 10.5 21.0 13.3 21.3 23.3 22.1 10.2 11.1 

121 16 1 1 4.3 13.4 8.6 1.8 2 5 6 5.4 8.3 4.8 33.1 2 6 8 33^ 6.9 13.8 

122 16 1 2 17.3 4.1 9.5 5.0 19.6 8.6 1.6 4.5 20.9 26.9 19.3 12.5 4.7 

123 16 1 3 26.8 1.9 7.1 9.2 34.4 10.2 8.3 15.6 29.9 332 30.9 10.6 1.2 
124 16 1 4 2 2 2 12.6 8.7 2.1 9.7 2&4 9.0 12.7 13.1 8.0 13.4 24.3 13.2 

125 16 2 1 15.0 6.7 13.6 4.3 4 3 3 17.1 13.3 5.5 33.5 4 i a 35 3 15.9 8.2 
126 16 2 2 185 12.5 4.4 2.6 191 8.0 1.1 17.0 24.8 20.6 22 8 3.3 14.3 
127 16 2 3 44.4 18.2 3.8 7.9 59.2 4^4 6.4 30.5 31.6 51.3 36.0 35.8 20.4 

128 16 2 4 57.2 11.7 18U2 1.3 31.6 5.3 2^6 9.7 24.4 3 5 6 23.1 5.0 13.7 

129 17 1 1 9.8 4.7 3.6 4.5 21.0 2.4 3.7 3.7 2 3 7 22.8 23.4 4.3 4.2 

130 17 1 2 7.1 7.5 5.2 8.4 11.7 3.3 3.7 5.7 7.3 7.1 10.0 7.6 5.1 

131 17 1 3 16.7 9.2 8.0 9.5 28 8 9.0 6.0 7.0 31.0 33 2 28.6 8.3 10.5 

132 17 1 4 122 16.3 2.3 15.2 37.7 1&6 1.9 13.0 33.5 35.0 35.5 15.3 19.4 

133 17 2 1 1&3 11.4 7.8 9.9 26.3 11.7 9.2 4.8 35.6 35.9 34.0 9.9 17.2 

134 17 2 2 3.3 2.8 3.1 2.8 23.7 8.3 4.9 1.5 18.4 19.0 2^9 6.8 7.2 

135 17 2 3 25.2 8.0 4.5 9.6 23.7 1.8 6.5 6.6 3 5 2 3Z7 26.5 5.6 2.6 

136 17 2 4 73.9 16.4 5.9 17.7 30.9 3.0 10.1 11.9 24.3 2&3 24.0 18.2 11.3 

137 18 1 1 15.0 7.2 3.0 4.2 27.5 9.0 2.3 1.8 19.3 23.6 20.1 5.1 7.9 

138 18 1 2 19.5 5.7 6.4 3.1 25.8 7.4 20.7 1.9 22.6 18.5 2&7 2.2 6.6 
139 18 1 3 37 9 6.3 6.7 4.2 35.0 7.9 1.2 10.0 30.9 3Z8 3&3 10.5 6.7 

140 18 1 4 13.0 4.0 4.1 3.8 23.6 9.5 3.5 5.9 20.7 2 ^ 6 20.0 8.3 4.6 
141 18 2 1 225 2.4 4.9 4.4 1&3 7.5 3.4 12.8 22.4 1(x7 22.8 6.6 2.6 
142 18 2 2 7.3 4.3 2.9 0.9 2 9 6 2 7 9 8.4 2 2 8 22.4 2 ^ 9 23.2 108 5.4 

143 18 2 3 29,9 6.5 4.6 5.1 22.8 4.1 2.8 9.1 27 8 2&6 26.6 3.0 6.6 
144 18 2 4 56.1 10.3 10 1 7.4 32 8 1.4 7.9 8.1 24.6 21.4 24.7 145 10.7 

145 19 1 1 6.7 8.5 6.3 3.5 21.1 2.2 5.6 3.0 28.0 2 4 3 24.8 4.9 7.6 

146 19 1 2 12.0 0.4 2.8 6.3 24.3 6.9 5.4 2.0 16.5 24.7 17.0 7.0 3.4 
147 19 1 3 2 5 3 3.0 0.6 6.9 3 5 4 7.4 3.5 13.0 30.0 38.2 28.8 11.7 6.1 

148 19 1 4 10.2 11.4 6.9 5.4 28.7 163 3.6 10.2 25.1 23.7 28.2 179 12.5 
149 19 2 1 15 8 11.5 12.0 3.9 30.2 146 11.6 4.4 33.6 39.2 314 16.4 15.3 

150 19 2 2 9.9 7.2 4.4 4.6 22.1 9.1 7.9 6.1 23.5 192 25.3 5.7 108 
151 19 2 3 26.8 3.9 0.6 8.0 1:L1 144 5.2 10.2 26 5 15.0 19.5 106 4.6 

152 19 2 4 82.4 25.0 16.0 21.1 34.3 2.2 1Z4 9.7 18.8 206 21.4 17.4 172 
153 20 1 1 10.0 4.9 4.7 0.4 15.1 3.8 0.3 5.4 2 4 2 18.0 23.4 1.4 4.0 

154 20 1 2 12.1 1.8 0.7 5.2 15.7 5.3 1.7 5.0 14.0 168 13.5 6.7 2.1 

155 20 1 3 26.7 2.5 0.8 6.0 30.6 7.5 1.0 8.2 3 1 8 3Z2 31V 4.9 2.8 
156 20 1 4 14.3 10.2 4.6 6.9 17\2 1 i a 4.5 9.6 20.6 14.7 21.2 11.0 9.9 
157 20 2 1 14.3 7.7 8.2 3.1 30.0 4.0 0.5 3.4 35.2 4&6 34.1 167 6.6 

158 20 2 2 7.7 3.1 0.5 1.7 21.2 6.0 1.8 6.4 20 8 2 0 2 207 7.4 3.3 

159 20 2 3 27.8 4.6 1.9 3.1 23.7 10M 3.2 9.9 27.5 29.4 268 110 3.6 

160 20 2 4 56.5 8.7 10.2 6.5 38.1 8.2 11.1 9.9 25.8 33.0 26.8 3.8 7.6 

161 21 1 1 10.5 4.2 3.1 0.6 2&2 4.3 5.0 1.8 22.9 22.1 23.1 3.9 4.3 

162 21 1 2 15U0 3.2 4.7 0.7 24.4 7.8 5.0 3.5 19.4 24.1 198 7.3 3.7 

163 21 1 3 34.7 5.7 5.9 1.9 31.4 4.9 6.4 2.7 27.8 31.0 27^ 3.6 6.2 

164 21 1 4 12.5 3.3 1.5 2.1 2^2 4.5 2.5 0.8 20.2 2 0 8 20.3 2.7 3.3 
165 21 2 1 1&4 2.9 4.8 1.2 3&4 8.8 7.8 6.4 2&4 3 0 0 292 4,1 2.6 

166 21 2 2 7.8 5.3 3.6 2.5 21.4 5.5 6.1 6.6 23.3 19.9 23a 1.6 6.1 

167 21 2 3 27.1 4.8 2.5 2.6 2 2 9 7.0 2.4 5.4 24.2 2&3 23 1 5.8 4.4 

168 21 2 4 3&8 0.6 2.9 3.1 33.1 1.2 3.5 4.3 3^3 3 1 7 317 2.1 1.2 
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(a) (b) (c) (d) 
(a) (b) (c) (d) (a)-(b) ( a ) - ( c ) (aHd) (bHc) 0 X 0 

169 22 1 1 223 6.6 6.4 9.5 17.6 10.0 127 14^ 12.8 19.6 20.6 11.5 1.0 

170 22 1 2 9.7 16.7 19.9 7.7 20.0 20.1 16.7 12.8 1 8 9 20.1 13 1 234 15.5 

171 22 1 3 162 24.2 21.7 17.7 35.1 245 16.6 17.1 40.7 38.6 41.2 327 21.2 

172 22 1 4 11.4 14.9 12 2 0.9 44.2 273 8.6 19.7 37.4 44.7 32.0 29.0 8.0 

173 22 2 1 29.0 10,6 1CL5 7.1 13.4 32.7 20.9 21.0 12.7 2.5 23.8 20.0 2.5 

174 22 2 2 14.1 1SL0 14.4 4.2 18.0 9.5 12.2 5.2 27.7 22.2 21.0 15.9 11^ 

175 22 2 3 324 17.0 16.1 10.1 75.5 339 19.2 396 44.9 6 2 4 54.0 27.9 21.4 

176 22 2 4 34.1 224 24.4 8.1 29.5 2.9 14M 17.3 46.0 4 0 8 40.2 148 13.5 

177 23 1 1 15.6 10.7 3.0 15.4 2 5 5 6.3 5.4 18.5 20.4 24.3 2&0 5.7 9.1 

178 23 1 2 154 23.5 23.1 15.2 15.9 21.4 16.6 165 25.1 19.9 20,4 3Z5 19.7 

179 23 1 3 25.0 44.6 26.8 39.2 55,5 47.1 21.4 39 1 48.4 55.4 47.8 513 42.0 

180 23 1 4 9.6 167 8.9 23.1 41.2 196 8.1 8.0 41.0 41.8 3&6 21.2 18.3 

181 23 2 1 26.6 8.4 5.5 15.2 1.5 21.6 9.8 10.0 16.7 7.4 255 148 9.2 

182 23 2 2 14.1 19.6 22.6 3.5 28.5 17.7 1&5 2 1 8 2 9 1 28.6 22.2 23.5 11.7 

183 23 2 3 48.6 2&5 26.4 2 ^ 2 63.0 294 23.2 34.9 5 8 8 71.4 59.7 36.7 26.1 

184 23 2 4 71.7 26.9 14.4 25.7 3 8 8 10.6 19 3 12.2 38.5 3 1 ^ 33.1 209 27.5 



REFERENCES 

Agresti Alan (1990), "Categorical Data Analysis", New York: John Wiley and Sons. 

Aitchiso J. and Aitken C.G.G. (1976), "Multivariate Binary Discrimination by the 

Kernel Method", Biometrics, Vol.63, 413-420. 

Battese G.E. and Harter M. and Fuller W.A. (1988), "An Error-Components Model 

for Prediction of County Crop Areas Using Survey and Satellite Data", Journal of the 

American Statistical Association, Vol.83, 28-36. 

Berkson J. (1972), "Minimum Discrimination Information, the "No Interaction" 

Problem, and the Logistic Function", Biometrics, Vol.28, 443-468. 

Bhapkar V.P. (1966), "A Note on the Equivalence of Two Test Criteria for 

Hypotheses in Categorical Data", Journal of the American Statistical Association, 

Vol.61, 228-235. 

Binder D.A. (1983), "On the Variances of Asymptotically Normal Estimators from 

Complex Surveys", International Statistical Review, Vol.51, 279-292. 

Birch M.W. (1963), "A New Proof of The Pearson-Fisher Theorem", Annals of 

Mathematical Statistics, Vol.35, 817-824. 



Bogue D.J. (1950), "A Technique for Making Extensive Population Estimates", 

Journal of the American Statistical Association, Vol.45, 149-163. 

Booth J.G. and Hobert J.P. (1998), "Standard Errors of Predictors in Generalized 

Linear Mixed Models", Journal of the American Statistical Association, Vol.93, 362-

372. 

Brackstone G.J. (1987), "Small Area Data: Policy Issues and Technical Challenges", 

In: Small Area Statistics (Platek R., Rao J.N.K., Samdal C.E. and Singh M.P. Eds.), 

New York: John Wiley, 1-22. 

Cassel C.M. and Kristiansson K.E. and Raback G. and Wahlstrom S (1987), "Using 

Model-Based Estimation to Improve the Estimate of Unemployment on a Regional 

Level in the Swedish Labour Force Survey", In: Small Area Statistics (Platek R., Rao 

J.N.K., Samdal C.E. and Singh M.P. Eds.), New York: John Wiley, 141-159. 

Centro Interamericano para la Ensenanza de Estadisticos (CIENES) (1995), 

"Encuestas sobre Fuerza de Trabajo: Metodologia Comparada", Santiago: CIENES 

Press. 

Chambers, R.L. (1997), "Small-Area Estimation: A Survey Samplers' Perspective", 

In: Population Counts in Small Areas: Implications for Studies of Environment and 

Health (Arnold, Elliot, Wakefield and Quinn Eds), Studies on Medical and Population 

Subjects No.62, Governmental Statistical Service, UK, London: The Stationary 

Office. 

Citro F.C. and Cohen M.L. and Kalton G. and West K.K. (Eds.) (1997), "Small-Area 

Estimates of School-Age Children in Poverty, Interim Report I: Evaluation of 1993 

County Estimates for Title I Allocations", National Research Council, National 

Academy Press. 



Citro F.C. and Cohen M.L. and Kalton G. and West K.K. (Eds.) (1998), "Small-Area 

Estimates of School-Age Children in Poverty, Interim Report II: Evaluation of 1993 

County Estimates for Title I Allocations", National Research Council, National 

Academy Press. 

Citro F.C. and Kalton G. (2000), "Small-Area Income and Poverty estimates: 

Priorities for 2000 and Beyond", ASA Proceedings of the Section on Survey Research 

Methods, 69-74 

Cohen M.L. (2000), "Evaluation of the Census Bureau's Small-Area Poverty 

Estimates", ASA Proceedings of the Section on Survey Research Methods, 62-68. 

Cohen M.P. (1999), "Small Area Estimation for the Distribution of the Parameters 

with Covariates", ASA Proceed, of the Sec. on Survey Research Methods, 655-659. 

Cressie N. (1992), "REML Estimation in Empirical Bayes Smoothing of Census 

Undercount", Survey Methodology, Vol.18, 75-94. 

Cronkite F.R. (1987), "Use of Regression Techniques for Developing State and Area 

Employment and Unemployment Estimates", In: Small Area Statistics (Platek R., 

Rao J.N.K., Samdal C.E. and Singh M.P. Eds.), New York: John Wiley, 160-174. 

Datta G.S. and Day B. and Basawa I. (1999), "Empirical Best Linear Unbiased and 

Empirical Bayes Prediction in Multivariate Small Area Estimation", Journal of 

Statistical Planning and Inference, Vol.75, 269-279. 

Datta G.S. and Ghosh M. and Nangia N. and Natarajan K. (1996), "Estimation of 

Median Income of Four-Person Families: A Bayesian Approach.", In: Bayesian 

Analysis in Statistics and Econometrics (Berry, D.A., Chaloner, K.M. and Geweke, 

J.K. Eds.), New York: John Wiley and Sons, 129-140.. 



Deming W.E. and Stephan F.F. (1940), "On a Least Squares Adjustment of a 

Sampled Frequency Table When the Expected Marginal Totals are Known", Annals 

of Mathematical Statistics, Vol.11, 427-444. 

Dobson A.J. (1990), "An Introduction to Generalized Linear Models", Chapman & 

Hall/CRC Press, 2nd. Ed. 

Draper N. and Smith H. (1998), "Applied Regression Analysis", New York: John 

Wiley and Sons, 3rd Ed. edition. 

Drew D. and Singh M.P. and Choudliry G.FI. (1982), "Evaluation of Small Area 

Techniques for the Canadian Labour Force Survey", Survey Methodology, Vol.8, 17-

47. 

Efron B. and Morris C. (1972), "Limiting the Risk of Bayes and Empirical Bayes 

Estimates - Part II: The Empirical Bayes Case", Journal of the American Statistical 

Association, Vol.67, 130-139. 

Ericksen E.P. (December 1974), "A Regression Method for Estimating Population 

Changes of Local Areas", Journal of the American Statistical Association, Vol.69, 

867-874. 

Falorsi P.P and Falorsi S. and Russo A. (1994), "Empirical Comparison of Small 

Area Estimation Methods for the Italian Labour Force Survey", Survey Methodology, 

Vol.20, 171-176. 

Falorsi P.D. and Russo A. (1999), "A Conditional Analysis of Some Small Area 

Estimators in Two Stage Sampling", Journal of Official Statistics, Vol.15, 537-550. 

Parrel P.J. and McGbbon B. and Tomberlin T.J. (1997b), "Empirical Bayes 

Estimates of Small Area Proportions in Multistage Designs", Vol.7, 1065-1083. 



Fay R.E. (1985), "A Jackknife Chi-squared Test for Complex Samples", Journal of 

the American Statistical Association, Vol.80, 148-157. 

Fay R.E. and Herriot R. (1979), "Estimates of Income for Small Places: An 

Application of James-Stein Procedures to Census Data", Journal of the American 

Statistical Association, Vol.74, 269-277. 

Feeney G.A. (1987), "The Estimation of the Number of Unemployed at the Small 

Area Level", In: Small Area Statistics (Platek R., Rao J.N.K., Samdal C.E. and Singh 

M.P. Eds.), New York: John Wiley, 198-218. 

Freedman D.A. and Navidi W.C. (1992), "Should We Have Adjusted the U.S. 

Census of 1980? (with discussion)", Survey Methodology, Vol.18, 3-74. 

Ghosh M. and Natarajan K. and Stroud T.W.F. and Carlin B.P. (1998), 

"Generalized Linear Models for Small Area Estimation", Journal of the American 

Statistical Association, Vol.93, 273-282. 

Ghosh M. and Rao J.N.K. (1994), "Small Area Estimation: An Appraisal", Statistical 

Science, Vol.9, 55-93. 

Gokhale D.V. and Kullback S. (1978), "The Information in Contingency Tables", 

New York: Marcel Dekker. 

Gonzalez M.E. (1973), "Use an Evaluation of Synthetic Estimates", Journal of the 

American Statistical Association, 33-36. 

Gonzalez, M. E. and Hoza, C. (March 1978), "Small-Area Estimation with 

Application to Unemployment and Housing Estimates", Journal of the American 

Statistical Association, Vol.73, 7-15. 

Goodman L. A. (1965), "On Simultaneous Confidence Intervals for Multinomial 

Proportions", Technometrics, Vol.7, 247-254. 



Gozalez J.F. and Placek P.J. and Scott C. (1996), "Synthetic Estimation in 

Followback Surveys at the National Center for Health Statistics.", In: Indirect 

Estimators in U.S. Federal Programs (Schaible, W.L. Ed.), New York: Springer-

Verlag, 16-27. 

Griffiths R. (1996), "Current Population Survey Small Area Estimation for 

Congressional Districts", ASA Proceedings of the Section on Survey Research 

Methods, 314-319. 

Grizzle J.E. and Starmer C.F. and Koch G.G. (1969), "Analysis of Categorical Data 

by Linear Models", Biometrics, Vol.25, 489-504. 

Haberman S.J. (1973), "Log-linear Models for Frequency Data; Sufficient Statistics 

and Likelihood Equations", The Annals of Statistics, Vol.1, 617-632. 

Haberman S.J. (1974), "The Analysis of Frequency Data", Chicago: University of 

Chicago Press. 

Hansen M. and Hurwitz W.N. and Madow W.G. (1953), "Sampling Survey Methods 

and Theory", New York: John Wiley and Sons, Vol. 1. 

Harte R. (2000), "County Estimates of Employment using CES and ES202 Data", 

ASA Proceedings of the Section on Government Statistics and Social Statistics, 166-

171. 

Harville D.A. (1997), "Matrix Algebra From a Statistician's Perspective", New York: 

Springer-Verlag. 

Haskey J. (1991), "The Ethnic Minority Population Resident in Private Households -

Estimates by Country and Metropolitan Districts of England and Wales", Population 

Trends, Vol.63, 22-35. 



Heady Patrick and Clarke P. and Brown G. and D'Amore A. and Mitchell B. 

(1999), "Small Area Estimates Derived from Surveys", Paper created for lASS 

Conference on Small Area Estimation. 

Hidiroglou M.A. and Sarndal C.E. (1985), "An Empirical Study of some Regression 

Estimators for Small Domains", Survey Methodology, Vol.11, 65-77. 

Hoaglin D.C. and Welch R.E. (1978), "The Hat Matrix in Regression and ANOVA", 

The American Statistician, Vol.32, 17-22. 

Holt D. and Holmes D.J. (1994), "Small Domain Estimation for Unequal Probability 

Survey Designs", Survey Methodology, Vol.20, 23-31. 

Holt D. and Smith T.M.F. and Tomberlin T.J. (1979), "A Model Based Approach to 

Estimating for Small Subgroups of a Population", Journal of the American Statistical 

Association, Vol.74, 405-410. 

James W. and Stein C. (1961), "Estimation with Quadratic Loss", In: Proceedings of 

the Fourth Berkeley Symposium on Mathematical Statistics and Probability, Vol. 1, 

University of California Press, Berkeley, 361-379. 

Judkins D.R. and Liu J. (2000), "Correcting the Bias in the Range of a Statistics 

Across Small Areas", Journal of Official Statistics, Vol.16, 1-13. 

Kalton G. (1994), "Issues and Strategies for Small Area Data; Comment", Survey 

Methodology, Vol.20, 18-20. 

Kalton G. and Kordos J. and Platek R. (Eds) (1993), "Small Area Statistics and 

Survey Designs", Vol. I: Invited Papers; Vol. II: Contributed Papers and Panel 

Discussion. Central Statistical Office, Warsaw. 

Kish L. (1965), "Survey Sampling", New York: John Wiley and Sons, 1st Ed. 



Knaub J R. Jr. (1999), "Using Prediction-Oriented Software for Model-Based and 

Small Area estimation", ASA Proceedings of the Section on Survey Research 

Methods, 660-665. 

Kullback S. (1959), "Information Theory and Statistics", New York: John Wiley and 

Sons. 

Larsen M.D. (2000), "Estimation of the Small Area Proportions Using Survey 

Weights", ASA Proceedings of the Section on Government Statistics and Social 

Statistics, 148-153. 

Lundstrom S. (1987), "An Evaluation of Small Area Estimation Methods: The case of 

Estimating the Number of Nonmarried Cohabiting Persons in Swedish 

Municipalities", In: Small Area Statistics (Platek R., Rao J.N.K., Samdal C.E. and 

Singh M.P. Eds.), New York: John Wiley, 239-256. 

Madow L.H. (1956), "U.S. Television Households by Region State and County -

March 1956", Advertisind Research Foundation, New York. 

Malec D. and Sedransk J. and Moriarity C.L. and Leclere F. (1997), "Small Area 

Inference for Binary Variables in the National Health Interview Survey", Journal of 

the American Statistical Association, Vol.92, 815-826. 

Marker D.A. (1999), "Organization of Small Area Estimators using a Generalized 

Linear Regression Framework", Journal of Official Statistics, Vol.15, 1-24. 

McCullagh P. and Nelder J.A. (1983), "Generalized Linear Models", London: 

Chapman and Hall, 1st. Ed. 

Molina E.A. and Skinner C.J. (1992), "Pseudo-likelihood and quasi-likelihood 

estimation for complex sampling schemes", Computational Statistics and Data 

Analysis, Vol. 13, 395-405. 



Moura F.A.S. and Holt D. (1999), "Small Area Estimation Using Multilevel 

Models", Survey Methodology, Vol.25, 73-83. 

Nelder J.A. (1974), "Log-Linear Models for Contingency Tables: A Generalization of 

Classical Least Squares", Applied Statistics, Vol.23, 323-329. 

Neyman J. (1949), "Contributions to the Theory of the Chi-squared Test", In: 

Proceedings of the First Berkeley Symposium on Mathematical Statistics and 

Probability, Edited by Neyman, J., University of Cahfomia Press, Berkeley, 361-379. 

Nichol S. (1977), "A Regression Approach to Small Area Estimation", Unpublished 

Manuscript, Australian Bureau of Statistics, Canberra, Australia. 

Oficina Central de Estadistica e Informatica (OCEI) (1987), "Encuesta de Hogares 

por Muestreo: Documento Tecnico", Caracas: Imprenta OCEI. 

Oficina Central de Estadistica e Infbrmatica (OCEI) (1997), "30 Anos de la Encuesta 

de Hogares por Muestreo", Caracas: Imprenta OCEI. 

Olsen C.H. and Schirm A.L. and Zaslavsky A.M. (2000), "An Evaluation of State 

Estimates Produced by Model-Based Reweighting of a National Database", ASA 

Proceedings of the Section on Government Statistics and Social Statistics, 154-159. 

Pfeffermann D. (1999), "Small Area Estimation - Big Developments", Paper 

Presented at the Conference on Analysis of Survey Data, Southampton, England. 

Pfeffermann D. and Burk L. (1990), "Robust Small Area Estimation Combining 

Time Series and Cross-Sectional Data", Survey Methodology, Vol.16, 217-237. 

Pfeffermann D. and Feder M. and Signorelli D. (1998), "Estimation of 

Autocorrelations of Survey Errors with Application to Trend Estimation in Small 

Areas", Journal of Business and Economic Statistics, Vol.16, 339-348. 



Platek R. and Rao J.N.K. and Samdal C.E. and Singh M.P. (ed.) (1987), "Small 

Area Statistics", International Symposium on Small Area Statistics - Mayo 1985 -

Ottawa. 

Platek R. and Singh M.P. (1986), "Small Area Statistics: Contributed Paper", 

Laboratory For Research in Statistics and Probability, Carleton University. 

Pregibon D. (1981), "Logistic Regression Diagnostics", The Annals of Statistics, 

Vol.9, 705-724. 

Purcell N.J. and Kish L. (1979), "Estimation for Small Domains", Biometrics, 

Vol.35, 365-384. 

Purcell N.J. and Kish L. (1980), "Postcensal Estimates for Local Areas (or 

Domains)", International Statistical Review, Vol.48, 3-18. 

Rao J.N.K. (1999), "Some Recent Advances in Model-Based Small Area Estimation", 

Survey Methodology, Vol.25, 175-186. 

Rao J.N.K (2000), "Introduction to Small Area Estimation", Monograph Published by 

EUSTAT, Spain, March 2000. 

Rao J.N.K. and Kumar S. and Roberts G. (1989), "Analysis of Sample Survey Data 

Involving Categorical Response Variables: Methods and Software", Survey 

Methodology, Vol.15, 161-186. 

Rao J.N.K. and Scott A.J. (1981), "The Analysis of Categorical Data from Complex 

Sample Surveys: Chi-Squared Test of Goodness of Fit and Independence in Two-Way 

Tables", Journal of the American Statistical Association, Vol.76, 221-230. 

Roberts G. and Rao J.N.K. and Kumar S. (1987), "Logistic Regression Analysis of 

Sample Survey Data", Biometrika, Vol.74, 1-12. 



Royall R.M. (1986), "Models Robust Confidence Intervals Using Maximum 

Likelihood Estimators", International Statistical Review, Vol.54, 221-226. 

Sarndal C. and Swensson B. and Wretman J.H. (1989), "The Weighted Residual 

Technique for Estimating the Variance of the General Regression Estimator of the 

Finite Population Total", Biometrika, Vol.76, 527-537. 

Sarndal C. and Swensson B. and Wretman J.H. (1992), "Model Assisted Survey 

Sampling", New York: Springer-Verlag. 

Schaible W.L. (1992), "Use of Small Area Statistics in U.S. Federal Programs", 

Vol.1, 95-114. 

Siegel J.S. and Shryock H.S. and Greenberg B.Jr. (1954), "Accuracy of Postcensal 

Estimates of Population for States and Cities", American Sociological Review, 

Vol.19, 440-446. 

Simon G. (1973), "Additivity of Information in Exponential Family Probability 

Laws", Journal of the American Statistical Association, Vol.68, 478-482. 

Simonoff J. (1983), "A Penalty Function Approach to Smoothing Large Sparse 

Contingency Tables", The Annals of Statistics, Vol.11, 208-218. 

Singh A C. and Mantel H.J. and Thomas B.W. (1994), "Time Series EBLUP's for 

Small Areas Using Survey Data", Survey Methodology, Vol.20, 33-43. 

Singh M.P. and Gambino J. and Mantel H.J. (1994), "Issues and Strategies for Small 

Area Data", Survey Methodology, Vol.20, 3-22. 

Skinner C. (1991), "The Use of Synthetic Estimation Techniques to produce Small 

Area Estimates", NM18 - New Methodology Series, Office of Population Census & 

Surveys. 



Skinner C.J. and Holt D. and Smith T.M.F (Eds.) (1989), "Analysis of Complex 

Surveys", Chincester: John Wiley and Sons. 

Thomas R. D. and Rao J.N.K. (1987), "Small-Sample Comparisons of Level and 

Power for Simple Goodness-of-fit Statistics Under Cluster Sampling", Journal of the 

American Statistical Association, Vol.82, 630-636. 

Thompson J.R. (1968), "Some Shrinkage Techniques for Estimating the Mean", 

Journal of the American Statistical Association, Vol.68, 113-122. 

Tiller R.B. (1992), "Times Series Modelling of Sample Survey Data from the U.S. 

CPS", Journal of Official Statistics, Vol.8,149-166. 

Titterington D.M. and Bowman A.W. (1985), "A Comparative Study of Smoothing 

Procedure for Ordered Categorical Data", Journal of Statistics and Computing 

Simulation, Vol.21, 291-312. 

U.S. Government Printing Office, Washington, D.C. (1968), "Synthetic State 

Estimates of Disability.", P.H.S. Publication 1759.. 

United Nations Statistical Office (1950), "The Preparation of Sampling Survey 

Reports", New York: U.N. Series C, 1 edition. 

Wang J. and Fuller W.A. and Opsomer J. (1999), "Small Area Estimation in the 

National Resources Inventory", ASA Proceed, of the Sec. on Survey Research 

Methods, 650-654. 

Wang S. and Chambers R.L.C. and Douglas A. and Caplen D. (1999), "Small Area 

Estimation of Unemployment in Great Britain", Paper created for lASS Conference 

on Small Area Estimation. 

Wolter K.M. (1985), "Introduction to Variance Estimation", New York; Springer-

Verlag. 



Woodruff R.S. (1966), "Use of a Regression Technique to Produce Area Breakdowns 

of the Monthly National Estimates of Retail Trade", Journal of the American 

Statistical Association, Vol.61, 496-504. 

You Y. and Rao J.N.K. (1999), "Hierarchical Bayes Estimation of Small Area Means 

Using Multilevel Models", Proceedings of lASS Satellite Conference on Small Area 

Estimation, 171-185, Riga, Latvia. 

You Y. and Rao J.N.K. and Gambino J. (2000), "Hierarchical Bayes Estimation of 

Unemployment Rates for Sub-Provinctional Regions Using Cross-Sectional and Time 

Series Data", ASA Proceedings of the Section on Government Statistics and Social 

Statistics, 160-165. 


