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This thesis focuses on the problem of producing reliable estimates of Employment,
Unemployment and Activity rates by Sex-age groups for Venezuelan States using the
Population Census as auxiliary information. This is a common situation in the Latin-
America region. The SPREE approach to Small Area Estimation is suited to dealing
with this sort of problem. Although the use of SPREE methods in the SAE context has
been treated in the literature, its use for estimation of product multinomial variables as
well as a general methodology for variance estimation was largely unexplored.

There are some potential barriers to the convenient application of SPREE methods. To
start, we note that SPREE involves application of the Iterative Proportional Fitting
(IPF) algorithm which often requires the development of “domestic” computational
algorithms. Besides this, the general computation of variance estimates for SPREE is
not obvious. To address these issues, we established a link between SPREE methods,
Log-linear models and Logistic models allowing the integration of complex sampling
designs via the Pseudo-Likelihood approach to estimation. The main attraction of
such a link is that it offers the possibility of implementing SPREE from a GLM
perspective. We then show the equivalence of the Log-linear and Logistic versions of
SPREE to the application of the well known “Exposure” technique from regression
theory. This equivalence allows us to easily implement SPREE, computing parameter
and variance estimates as well as goodness of fit measures and related diagnostic,
using standard commercial statistical software. Overall, the approach to SPREE
presented in this thesis makes this technique more flexible and accessible for practical
application.

The “exposure” approach to SPREE was used in an empirical analysis of the
Venezuelan labour force, including a simulation study to examine the properties of the
estimators considered in this thesis. Superiority of the SPREE method over design-
based estimators when the former is based on a good reference table was evident.
However, conventional logistic model-based estimators can be regarded as favourable
alternatives to SPREE-based estimators in situations when there is a reasonable doubt
about the quality of the available reference information.
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CHAPTER 1

INTRODUCTION

Small Area Estimation (SAE) is concerned with strategies and techniques to produce
reliable estimates for small “groups” of units from a large universe. Different
dimensions such as time (longitudinal), the characteristics of units (vertical), space
(horizontal) or a combination of them commonly define these small “groups”.
Typically, however, SAE is related to the production of information for small
geographic areas, that is, for groups defined by “space” (or the combination of space
with any other dimension). This is mainly due to practical issues regarding the
dynamics of the process defining information needs. At some point, it becomes more
valuable to handle aggregate information for local areas than highly disaggregated

information for a larger area like a country.

1.1. FROM EXHAUSTIVE ENUMERATION TO SMALL AREA
ESTIMATION

Information needs have changed with the evolution of societies. Ever since organised
civilisation started developing on earth, quantitative information has played an
important role as an instrument for planning. Information regarding the size of
organised human settlements has historically been of concern to their leaders. An

early example of this can be found in the clay tables of the antique Babylon Circa



3800 BC, showing population counts to predict the future imperial income from
inhabitants’ tax payments. Other early censuses were registered in the Chinese,
Hebrew, Egyptian, Greek and Roman civilisations, the latter being the first to carry
out censuses periodically. Those were mainly undertaken with military enrolment and

tax imposition in mind.

Societies have changed through the years becoming larger and consequently more
complex. This has had an effect on information needs. However, the need for
information at geographic levels defining the organisational structure of societies has
remained a basic requirement for planning. In the modern era, democracies need
population counts to establish representation in congresses or parliaments, the 1790
US Census being the first one carried out with this purpose. Distributions of national
revenues, planning public services as well as economic and demographic matters have
increasingly motivated governments to produce information at local levels. The UK,
for instance, carried out its first census in 1801 as a simple count of population. Later
in the 1821 Census, ages were registered for first time and names, addresses and

occupations in the 1841 Census.

Nowadays, censuses are carried out all over the world, differing in periodicity,
procedures and contents. Although factors influencing the differences between
censuses can be related to a country’s specific goals, the factor defining the ultimate
structure of any census 1s the available budget. Censuses are complex operations and
the available budget will dictate the sort of technology, human resources, and
fieldwork complexity allowed and thus, the periodicity and content. However,
censuses can not completely provide either the highly diverse information needed in a
country or the periodicity with which this information is required. Even with
respectable budgets, developed countries can not fully meet these needs by relying on

censuses.

Other important sources of information are administrative registers (AR). This sort of
information is naturally generated mainly from legal procedures related to organised
societies. Land and businesses transactions, and unemployment and social security

registrations are just some examples where official lists or records have to be kept.



Registers with an electoral purpose, for instance, appeared in Europe around the
beginning of the 19" century. Like censuses, AR characteristics depend mainly on
specific goals, technology and human resources. Usually, registers are compiled by
different organisations within a country, with the process of data capture designed to
meet organization specific goals. National statistics offices can rarely influence these
processes. As a consequence, it is not surprising to find poor linkages between most
ARs. They are also highly dependent on institutional policies which, due to the lack of
linkage between organisations, make them unstable over time. Although the
usefulness of AR is limited by the issues mentioned above, registers have still proved
to be valuable sources of information for planning in different situations, at different

geographical and demographic levels.

Sample surveys as a scientific method of information collection, originated in the 19™
century with the representative method described by Kiaer in 1895. In 1925 the
International Statistics Institute officially accepted sampling surveys as a tool for
scientific collection of statistical data. However, it was not until the nineteen forties
that governmental offices started using them. Sample surveys are able to collect more
comprehensive and more complex information than censuses and AR. The low cost
and ease of execution of sample surveys quickly made them the main complement to
what used to be the principal, if not the only, sources of statistical information at the
time, censuses and administrative registers. A number of official survey programs
were initiated in many countries and by the seventies there existed little doubt about
their effectiveness and usefulness. However, these sample surveys were unable to
produce reliable estimates at every geographic and demographic level of interest
without becoming as logistically complex as censuses. Consequently, although these
surveys were used to provide information at the national level and, in some cases also
at large regional levels, information at local levels was still based on censuses and

AR.

However, the demands for detailed information at local areas were constantly
growing. This need became more acute when it became clear that the complete
coverage that censuses aim for is unfeasible, due, for example, to underenumeration.

This problem becomes more evident when statistics at local levels are used for



sensitive matters such as allocation of governmental funds. Consequently, researchers

were motivated to look for alternative procedures to satisfy these requirements.

The use of models in sampling theory provided a way of carrying out this task. The
use of regression methods as a tool for improving estimation at local levels was first
presented by Hansen, Hurwitz and Madow (1953) in their seminal text on sampling
techniques. Regression methods were subsequently used by Madow (1956) and
Woodruff (1966) in a report on the use of television in households and to produce
monthly national estimates of retail trade respectively. Ericksen (1974) used
regression methods to obtain postcensal estimates of population counts for local areas.
Using 1970 census data, he showed how the proposed estimators performed better
than traditional demographic procedures. Ericksen’s paper significantly motivated the
interest of researchers in the subject, and Fay and Herriot (1979), developed improved
per capita income estimates at state and local government levels for the US Treasury
Department. Their estimator was based on the Empirical Bayes method, combining
direct and synthetic estimations via a weighted average. These estimates were used by
the Treasury Department to allocate funds to local government units within the

different states.

Since Fay and Herriot’s work, much theoretical and applied research on small area
estimation has been carried out using different statistical techniques, with many
national statistics offices investing resources on special programs to develop
procedures to meet demands for local area estimates. For instance, Statistics Canada
launched an ambitious program in 1983 to develop a small area database. This
program was designed to take an integrated perspective covering areas such as the
production of “new small areas data sets”, the organisation of “small area data in
geographically oriented data bases” and the conformation of “geographic, conceptual
and methodological frameworks and tools needed to support continuing small area

data development, dissemination and analysis” (Brackstone 1987).

Several international conferences on the subject were also held. Statistics Canada
hosted an International Symposium on Small Area Statistics in Ottawa in 1985

producing two publications one for invited papers (Platek et al. 1987) and a second



one for contributed papers (Platek and Singh 1986). A similar symposium was held
in New Orleans in 1988 organised by the National Center for Health Statistics. An
international conference on the topic took place in Warsaw, Poland in 1992. Invited
and contributors papers presented in that conference were also published (Kalton,
Kordos and Platek, 1993). Recently, the U.S. Census Bureau organised a Conference
on Small Area Estimation held in Washington in 1998, the International Association
of Surveys Statisticians held the International Satellite Conference on Small Area
Estimation in Riga, Latvia, 1999 and the United States Postal Service in conjunction
with the American Statistical Association and other organizations held the
International Conference on Small Area Estimation and Related Topics, Potomac,
Maryland 2001. A variety of international courses and other events have also been
held in different countries, mainly in North America and Europe. For a
comprehensive list of major events addressing small area estimation issues that have
taken place in the last twenty years, see Gosh and Rao (1994) and Rao (1999). Some
recent practical applications on Small Area Estimation can be found in Citro et al.
(1997), Citro et al. (1998), Cohen (1999), Falorsi (1999), Wang et al. (1999),
Knaub(1999), Wang, Fuller and Opsomer (1999) Larsen (2000), Olsen et al. (2000),
Judkins and Liu (2000), Citro and Kalton (2000), Cohen (2000), You (2000).

Small area estimators are commonly known as “model estimators” or “indirect
estimators”. They make use of data from outside the area of interest to produce
estimates for that specific area, in contrast to traditional “design estimators” or “direct

estimators”, which use data from the area of interest only.

Although small area estimators have been developed and their properties studied
under both the randomisation and model-based approach to sample survey inference
an underlying model is always present, either explicitly or implicitly. Bayesian ideas
have also been used in the small area estimation context and they have proved useful
particularly when estimator accuracy needs to be assessed. Many of these estimators
make use of auxiliary data from censuses and/or AR. In such cases, the use of these
estimators is limited by the existence of adequate auxiliary information. In other
cases, estimators make use of information from just one source such as a survey, and

some smoothing is carried out to decrease the variability in the estimates. In general,



however, the basic idea behind all these procedures is to borrow “strength” in some
dimension (space, characteristics of units or/and time) to “aid” estimation for

“groups”. An overview of these developments can be found below in Section 1.5.

Most of the research carried out so far on SAE has focused of model-based
approaches to estimation for local areas. However, such estimators should be used
carefully. In particular, their dependency on hypothetical models does not appeal to
many analysts. Model validation has to be carried out in some sensible way and
estimators that are robust to model misspecification should be sought. Furthermore,
stable estimates of the reliability of the small area estimators have to be computable,
and when results are published, users have to be informed about the inherent
characteristics of this kind of estimations. Some analyses, e.g. comparison between
local areas, will be distorted when one area uses information from other areas
(Schaible 1992; Kalton 1994). Singh, Gambio and Mantel (1994) argue that ‘a model
estimator should be preferred over a design estimator only if its mean square error is
estimable and it is sufficient smaller than the corresponding variance of the design

estimator’.

An interesting issue that has not received much research attention so far is the
investigation of sampling strategies for improved small area estimates. Key
parameters in the sampling design can be modified and their impact on local area
estimation measured. This can reveal considerations that should be taken into account
when designing or redesigning sampling surveys with SAE in mind, thus reducing the
need for model based estimators. As Kalton (1994) points out "Where possible,
samples should be designed to produce direct small area estimates of adequate
precision, and sample design should be fashioned with this in mind’. Singh, Gambio
and Mantel (1994) report significant improvements in Canadian LFS estimates for
sub-provinces by reallocating the sample in two components: a first component
designed to provide reliable national and provincial level estimates (42,000
households) and a second component designed to provide improved sub-provincial

level estimates (17,000 households).



1.2. SMALL AREA ESTIMATION IN LATIN AMERICA'

Despite the amount of attention SAE has received during the last twenty-five years,
the official statistics offices in Latin America have remained largely unexposed to
these ideas. Although several reasons can be advanced to explain this fact, there are

three specific issues that we believe have been the main factors.

The Latin American political landscape was largely made up of dictatorship regimes
and intermittent unstable democratic governments until relatively recently. This factor
explains the heavily centralised governmental structures present in these countries.
Planning was completely centralised and little information at local levels was
required. Therefore the “demand” for local information, which has been the main

factor that has led other countries to move towards SAE, was not present.

Secondly, we have to consider the depressed economies that have historically
characterised many countries in Latin America. This fact has implied modest
governmental allocation of funds for statistics programs. Although it is not true in
general, it is possible to find national statistics offices from some countries struggling
to set up a single household survey even for their capital or main cities. Countries that
run continuing survey programs generally do it with surprisingly small budgets.
Consequently, it is hard to imagine these countries investing money to set up

programs like the one in Canada mentioned earlier.

Finally, one of the most important factors explaining the disparity between Latin
American countries and North American and European countries in terms of SAE
development is the lack of linkage between academic researches and governmental
statistics offices. A strengthening of this linkage could motivate changes in both the
way statistical offices conceive the production of statistics and the way the academic
research area direct its efforts. An integrated approach to the National Statistics
System in these countries, could lead to a long overdue interaction between the

governmental statistics offices and the academic area.

! Although the term “Latin America” formally refers to American countries that were colonies of Spain, Portugal
and France, in this work we will use this expression to denote Spanish-speaking countries only.



Nevertheless, the need for statistical information at local level in Latin America is
now on the increase. Many national and international aid programs with a regional
focus have started to be implemented. The “maturity” of some democratic systems is
now reflected in the continuing decentralisation process that these countries have been
undergoing. To learn about the effect that these phenomena have had on SAE demand
as well as to establish in general terms the “state of the art” concerning the production
of information for local areas in Latin America, we contacted fifteen out of eighteen
of the national statistics offices in the region. We got feedback from Argentina, Chile,
Ecuador, Peru, Mexico and Venezuela. It is important to point out that these are the
countries with the “strongest” statistics offices in Latin America, with INEGI from
Mexico being the statistics office in Latin America that has historically had the largest
budget. We therefore expect that these six countries give us an upper bound regarding
the situation of Latin American statistics offices. For countries from which we did not

get first-hand feedback, we have relied on information published in CIENES (1995).

None of the offices contacted produces statistics at local levels from sources other
than Censuses and special “ad-hoc” studies. However, all of them report pressure
from users to produce information at these levels. They all run permanent businesses
and labour force survey programs producing direct estimates up to levels of
disaggregation consistent with the sample design. Ecuador, Mexico and Venezuela are
the only countries where at least one survey covers both urban and rural areas. They
all produce results for “regions” i.e. aggregations of provinces or states. Mexico
produces some labour force indicators for states by combining sample from two
consecutive years. The sample sizes of the Labour force surveys vary from 9,180
households (Ecuador) up to 158,960 households (Mexico) per year. AR or any other
kind of auxiliary information other than censuses is rare in these countries.
Educational and formal employment registers are the most common AR but they are —
with the possible exception of Mexico- unreliable, usually published at the national
level and not kept in any exploitable data base format. No unemployment register is
available in any country. When questioned about the indicators that are the most
demanded at local levels by users, the common answer was the set of basic rates

describing labour force structure by sex and age groups. This is the main reason why



this thesis will focus on estimation of those rates at local levels. In particular, we

develop an approach for the specific case of Venezuela.

1.3. THE VENEZUELAN CASE

Although we focus on the Venezuelan case from now on, it should be noted that due
to the similarity among Latin American countries this development can be regarded as

generally applicable to the problem in Latin America.

As a consequence of a long history of centralised government, official information
sources in Venezuela are national level indicators. In the social context, several ARs
are available. These are designed to produce figures at the national level in most
cases. ARs of acceptable quality are compiled for births, deaths and educational
enrolment. Other ARs are rare and their quality is poor for local areas. Thus, the use
of statistics techniques based upon auxiliary information other than the Census’90 and

its population projections does not seem feasible at least in the short term.

The Labour Force Survey2 (LFS) is the instrument officially used in Venezuela to
estimate Labour Force indicators related to the supply side of the Labour Market. This
survey has been carried out by the Statistics and Informatics Central Office of

Venezuela (OCEI)’ since 1967.

The LFS produces six-monthly estimates at the national level based on a 12.000
household sample. In 1977, this sample size was increased to 75.000 households to
produce six-monthly estimates for nine regions. These regions consist of a group of
neighbouring states with similar characteristics such as weather, geography, and
predominant economic activity. In 1994 the LFS sample size was cut down to the

original 12.000 households due to budget restrictions.

% “Encuesta de Hogares por Muestreo” (EHM)
? It became the National Statistic Institute (INE) in the year 2000.



However, as a consequence of political reform, requirements for information at finer
geographic levels have arisen in the country since the beginning of the nineties. In
1989 the first democratic election for State Governors and County Mayors was held in
Venezuela. This started a process within the country, which has progressively
changed the levels at which social and economic planning is carried out in Venezuela.
Several economic and social strategies have been designed and executed at state and
county levels. Therefore, providing information for each of the 23 states and 353

counties® has become increasingly important.

The current LFS sample size only allows the production of reliable estimates at the
national level. Nevertheless, it is important to point out that through special
agreements reached between governors and the OCEL the LFS sample size has been
increased within seven states and the Metropolitan Area of Caracas (AMC)’ (see table
1) in order to obtain reliable estimates at those levels (though not with the same level

of disaggregation as the national estimates).

1.4. AIMS OF THE STUDY

We base our study on the basic set of labour force indicators identified as essential by
Latin American users, i.e. rates describing the labour force structure by sex-age
groups for states. Although SAE is usually associated with spatial problems, it can be
related to any other dimension of data disaggregation. In our specific case, we shall
focus on sub-populations that are defined by both spatial (states) and demographic
(sex-age groups) dimensions. In what follows, we refer to such groups as “sub-
populations”. We do not use the term “domains” to avoid conflict with the definition
given by the United Nations and popularised by Kish (1965), which relates “domains”
to sub-populations ‘about which the enquiry is planned to supply numerical

information of known precision’ (U.N., 1950).

* This is the total of Venezuelan counties for 1997. There have been some changes since that year.
* The AMC concern the Federal District (DF) and some counties from Miranda State.
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We are therefore basically concerned with three indicators: Employment Rate (,R),
Unemployment Rate (, R ) and Non-active Rate (,R ). The LFS conceptual definitions

of Employee, Unemployed and Non-active agree with the International Labour
Organization (ILO) definitions. The LFS operational definitions of these concepts
(variables and rules used to classify people into these groups) are adjusted so that the
particular socio-economic characteristics of Venezuela reflect the ILO conceptual
definitions as closely as possible. Making use of the variables contained in the
Summary Code, the LFS operational definitions of Employees, Unemployed and

Non-actives are as follows:

Employees:  people over 14 years old who have received or will receive money due
to any kind of work carried out during the survey reference period (the
week previous to the interview). This category includes self-employed.

Unemployed: people over 14 years old who have actively looked for a job and who
have not received money due to any kind of work during the survey
reference period (the week previous to the interview).

Non-actives: people over 14 year old who have not actively looked for a job and who
have not received money due to any kind of work during the survey

reference period (the week previous to the interview).

Notice that these categories are mutually exclusive and exhaustive for people over 14
years old. We further define Actives as the combination of both groups Employees

and Unemployed, this is, the complement of Non-actives category.
We now define the basic LF rates ,R, ,R and ,R:

R Employees R Unemployed

e u

Actives Actives

Non — actives

n

- (Actives)+ (Non — actives)

In the same way we can also define an Activity Rate ( ,R) as ,R=(1- R).
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Table 1.1
Venezuela. Activity Rate and Unemployment Rate by States

Activity Unemployment
State Rate se% cv% Rate se % cv% n
Venezuela 65.4 025 0.38 11.0 025 223 52,614
Dtto. Federal 68.0 0.66 0.97 7.8 057 7.33 5,263
Anzoategui 64.6 1.30 2.02 11.8 0.95 8.03 1,589
Apure 67.6 3.16 4.67 10.56 2.52 23.96 226
Aragua 69.4 123 177 7.9 0.84 10.72 1,739
Barinas 645 210 3.26 7.8 1.05 13.56 687
Bolivar 61.4 062 1.02 12.3 0.70 5.68 5,699
Carabobo 66.5 0.95 1.42 14.0 1.32 942 2,317
Cojedes 63.1 3.60 5.71 13.0 4.61 35.62 246
Falcon 64.4 0.84 1.30 16.6 0.88 5.33 4754
Guarico 62.7 1.19 1.90 18.8 1.79 09.54 798
Lara 63.0 0.69 1.10 9.0 063 6.97 5,153
Merida 64.1 1.32 2.05 52 1.04 1977 1,168
Miranda 65.2 0.89 1.36 76 0.65 8.54 3,567
Monagas 64.4 156 2.42 184 1.79 9.69 1,142
Nva. Esparta 59.5 2.68 4.51 41 1.21 29.72 453
Portuguesa 614 082 1.34 141 0.95 6.74 3.411
Sucre 58.9 1.54 2.61 84 119 1417 1,429
Tachira 64.6 1.03 1.60 7.7 1.05 13.55 1,677
Trujillo 63.7 143 225 13.2 2.65 20.08 894
Yaracuy 66.4 1.57 2.36 18.6 2.27 12.20 593
Zulia 68.5 0.58 0.85 147 0.55 3.72 8,531
Amazonas 68.0 2.32 3.41 54 147 27.05 483
Amacuro 67.1 148 2.21 56 1.35 24.08 795

Surce: Labour Force Survey, 1998 , OCEI

Estimation of these rates disaggregation by sex and age for each of the 23 Venezuelan
states will be our ultimate target. As ages are usually grouped into four groups (see
table 2), we will have a total of 184 sub-populations for which estimates of these rates
are required (736 estimates). These can be calculated by using the ratio estimators
commonly used by the LFS (section 2.2.4). However, as the LFS was designed to
produce reliable estimates at national level, the sample size within states is too small
to provide estimates with adequate precision for sex-age groups within states. As an
example, Table 1.1 shows these estimates along with sample sizes and precision
indicators for the 23 Venezuelan states. In the same way, Table 1.2 shows examples
of estimates for sub-populations defined by large sample size, medium sample size

and small sample size states.
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Table 1.2
Venezuela. Activity Rate and Unemployment Rate
by Sex and Age Groups

Activity Unemployment
Rate se% cv% Rate se% cv%

Sex Age

Dtto.Federal

Male 15-24 60.0 211 35 15.0 1.89 126 676
25-34 96.0 090 0.9 59 1.02 173 601
35-44 975 072 07 34 082 239 504
45 - + 765 166 22 45 0.89 197 691

Female 15-24 433 211 4.9 219 278 127 696
25-34 716 198 28 6.1 114 187 600
35-44 730 191 26 58 1.20 20.8 575
45- + 419 165 3.9 55 124 228 920

Anzoategul

Male 15-24 63.7 334 52 206 288 14.0 252
25-34 963 128 13 159 251 158 199
35-44 950 239 25 45 182 405 144
45 -+ 80.0 285 3.6 7.7 206 269 190

Female 15-24 346 3.63 105 215 618 28.8 223
25-34 567 442 78 13.1 3.23 247 200
35-44 66.2 4.05 6.1 4.8 2.10 439 144
45 - + 401 295 74 34 185 550 237

Apure
Male 15-24 76.2 832 10.9 170 7.78 458 39
25-34 955 328 34 64 586 91.8 29
35-44 95.9 433 45 20.5 12.71 62.0 18
45 -+ 74.1 843 114 36 334 925 29

Female 15-24 426 884 20.7 254 1049 41.2 35
25-34 68.3 10.24 15.0 47 470 100.2 27
35-44 82.0 10.32 126 0.0 0.00 * 20
45 - + 27.8 14.70 529 0.0 0.00 * 29
Surce: Labour Force Survey, 1998 , OCEI

It is important to point out that the Unemployment Rate is regarded as the most
critical from the political point of view. Public opinion and analysis is extremely
sensitive to the size of this indicator. Therefore, estimates of high precision are
required before these indicators can be released. For instance, a Coefficient of
Variation (CV) below 3% is required for the national Unemployment Rate estimate.

For states, a CV of 6% is usually required.

As can be seen from Table 1.1, the LFS estimation technique is not able to produce
reliable estimates even for states as population groups. Fifteen states in this table have

R estimates with CV estimates larger than 9%. From these fifteen states, six exceed

20% and one (Cojedes) is above 30%. CV estimates are calculated as the ratio of the
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estimated standard error (se) to the estimated rate; for instance, the estimated CV for

the R estimate is designed as:

From Table 1.2 it is clear that estimates for sub-groups related to states with medium
sample sizes and small sample sizes are far from adequate in terms of precision. Even

for states with a larger sample size, the CV values are not encouraging.

It is worth noting that for some subgroups (e.g. the last two shown in the Table 1.2),
the direct estimate is zero because no sample cases were observed for that category.
This is more likely due to the small sample size in these sub-populations rather than to

the non-existence of people in these categories.

Achieving high levels of precision for the estimates we are concerned with in this
study is a difficult task. We aim to produce improved estimates relative to the
precision that design based estimators can currently offer for those sub-groups. We
aim to do this by using simple procedures that can be accepted and applied with

relative ease by OCEL

We approach the problem from an estimation point of view. As the main source (and
the only one in many cases) of auxiliary information in Latin America countries is the
census, any techniques employed in this study will be based only on the availability of

population censuses and their population projections as auxiliary information.

As mentioned in section 1.1, the basic idea behind SAE techniques is to “borrow
strength” in some dimension (space, characteristics of units or/and time) to “aid”
estimation for “small groups™. This is achieved by using models either explicitly or
implicitly. If we identify the structure of a model that adequately explains the
distribution of the counts of interest, we can then estimate its parameters to obtain

model estimates of these counts. These model estimates should be more precise than
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direct estimations due to the fact that they are depend on the estimation of fewer
parameters, thus, each of those parameters is estimated using a larger effective sample
size. However, models are approximations to reality so they can lead to bias in
inference. Consequently, the model in use should sufficiently explain reality for the
reduction in variance due to the estimation of fewer parameters to offset the reduction

in accuracy due to bias.

The rates we want to estimate are computed from the three mutually exclusive and
exhaustive categories for people over 14 years old specified above. The literature
about SAE for labour force characteristics is mainly concerned with estimation of the
total or the rate of the unemployed population (e.g. Gonzalez and Hoza 1978, Cassel
et. al. 1987, Cronkhite 1987, Feeney 1987, Roberts et. al. 1987, Falorsi et. al. 1994,
Harter 2000, You et al. 2000). This literature, with few exceptions, assumes the
availability of auxiliary information highly correlated with unemployment figures
such as unemployment administrative registers. In this study we deal with the task of
obtaining simultaneous estimates for the four rates that fully define the basic structure
of the labour force, which are based on the three labour force counts for each sub-
group. The aggregate of these counts at state levels as well as at the national sex-age
groups have to agree with the LFS direct estimates. Finally, these estimates have to be
calculated using only censuses as auxiliary information. These conditions constrain
the spectrum of techniques that can be applied and the flexibility with which they can
be handled. Multivariate techniques that make use of auxiliary information are not

suitable in this case.

The method of Structure Preserving Estimation (SPREE) for categorical variables
(Purcell and Kish 1980) offers a possible answer to this situation. In this document,
we concentrate our attention on the general definition of that method, the development
of some variants and their application to our specific situation. Our intention is to
explore the SPREE method as a potential method for addressing the problem
described above, generalising it to make it more flexible in its application and

practical implementation.
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We start by describing the Venezuelan Census and Labour Force Survey (LFS)
programs and data, focusing in particular on the characteristics of those programs and
their resulting data that might have implication for the procedures to be considered in
this study. In particular we emphasise the theoretical description of the LFS parameter
and variance estimators since there is no document currently available with such a

detailed description.

We then give a theoretical definition of the SPREE method and specify some natural
variants, describing how they can be used in our specific case. An issue that we pay
particular attention to is the practical complexity associated with the implementation
of these methods. The SPREE method requires the application of iterative procedures
to compute estimates (see Chapter 3). In our case, it also involves the use of complex
design-based estimation techniques. These procedures require the development of
computational algorithms that are not found in the standard statistical software.
Additionally, the computation of variance estimates for the SPREE method is
essentially an unexplored area, reflecting the fact that SPREE has not been

investigated to any great extent in the SAE literature.

A primary result developed in this thesis is the formal specification of the SPREE
method as a particular application of Generalized Linear Model (GLM) theory
(McCullagh and Nelder 1983), specifically constrained Log-linear and Logistic
models. This link is expanded further in this thesis to allow for complex samples.
We then propose a new procedure to compute SPREE estimates that makes use of
standard statistical tools found in commonly used statistical software. This approach
allows the computation not only of the traditional SPREE estimates but also of all the
variants proposed in this document taking into account the sample design. An obvious
consequence is that the SPREE method then has all the advantages that flow from
working under the GLM framework, so that the estimation of variances is possible as
well as the computation of different goodness of fit measures and measures relating to
the identification of outlying cells and influential points. A critical evaluation of the
SPREE estimation procedure is then possible. Equally important is the fact that the
practical implementation of this procedure is then a simple and straightforward

application of commonly used statistical software.
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Following on from this theoretical development, we use the Venezuelan 1990 Census
to explore different model structures relevant to our specific LFS problem. In
particular, we design and carry out a simulation study replicating the LFS sample
design in order to examine the properties of a number of the estimators proposed for
this problem. In doing so we study the gains that SPREE methods can offer over the
traditional LFS direct estimates as well as compare the impact of applying SPREE
methods given census data from different periods. These data define the reference
information used by SPREE, and an investigation of the sensitivity of these methods

to the quality of this information is of some interest.

The final aim of this work is to extend the SPREE method to incorporate time as an
extra dimension within the estimation process. This is particularly useful when recent
reference information is not available but previous runs of the survey are available.
Although data limitations preclude any empirical investigation of the behaviour of
this extension, theoretical considerations indicates that this “borrowing of strength
over time” should substantially improve the performance of SPREE within the

Venezuelan context. Further research using this idea looks promising.

1.5. OVERVIEW OF SYNTHETIC ESTIMATORS AND OTHER SMALL
AREA ESTIMATION TECHNIQUES

The SPREE methods belong to the class of synthetic estimators. In an attempt to put
the SPREE method in context, we therefore describe in this section the ideas behind
this class of estimators. Before doing this, however, we feel that a brief discussion of
survey design issues concerning SAE as well as an overview of the demographic
methods that pioneered the work on SAE might be useful. Also, since the ideas that
are developed in this thesis can be expanded to cover another class of SAE, i.e. those
based on the inclusion of specific-area level random effects, we briefly discuss this

approach at the end of the section.
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Relevant references are given throughout this section. Comprehensive overviews of
SAE can be found in Gosh and Rao (1994), Marker (1999), Rao(1999), Pfeffermann
(1999) and Rao (2000).

1.5.1. Survey Design Issues

Apart from institutional related issues such as data development, infrastructure, policy
and management (for details on these issues see Brackstone 1987), the SAE problem
can be approached from two main technical points of views, survey design and
estimation techniques. Although surveys specifically designed to produce reliable
direct estimates for small areas are in general infeasible, different issues regarding
survey design can be considered in order to minimize the need for indirect estimators.
However, since the estimation approach to SAE has received the most attention in the
literature, research addressing survey design issues in the context of SAE is scarce.

The two main references addressing these issues are Singh et al. (1994) and Marker

(1999).

Singh et al. (1994) describes different ways in which sampling designs can be adapted
to increase the reliability of direct estimates for small areas without a significant
impact on the estimates for larger areas. They stress the need for an overall strategy at

planning, sampling design and estimation stages.

At the planning stage, they point out the importance of anticipating small areas for
which estimates might be required. Such anticipation allows survey designers to
consider different strategies whose feasibility can be studied in term of budget and

operational capabilities.

Once the data needs have been defined, they discuss how sampling designers should
ponder those requirements so that the sampling design reflects a compromise between
the requirements for small areas and the requirements for larger areas. They identify
two ways of working out that compromise, based on sample allocation and clustering.

They argue that disproportionate allocation of the sample in favour of small areas can

18



have an appreciable impact on the precision of small areas estimates without
significantly affecting the reliability of estimates for larger areas. Regarding
clustering, they suggest that attempts to reduce the level of clustering in the sampling
design should be made in order to increase the chances of having sample in as many

small areas as possible.

Finally they acknowledge that, no matter what the anticipation at the planning stage
and the compromise reflected in the sampling design, there will always be small area
information requirements for which direct estimates will not be satisfactory. It is in

such cases that the work on small area estimation plays an important role.

Marker (1999) also argues that one should concentrate efforts at the survey design
stage in order to increase the possibilities of producing direct estimates for as many
domains as possible. He suggests stratification and oversampling as strategies worth
considering. For small areas for which reliable direct estimates are not attainable after
stratification and oversampling have been considered, he suggests other strategies
such as the use of dual-frame estimation to “combine the national survey with
supplements in specific areas to produce direct estimates”. Finally Marker also
acknowledges the importance of special indirect estimation techniques to deal with

small areas for which suitable direct estimates are not possible.

1.5.2. Estimation Techniques

The first techniques developed to deal with estimation for small areas have their roots
in demographic projection and synthetic methods. They all are based on implicit
models that are assumed to be valid, producing indirect estimators with low
variability thanks to the “borrowing of strength” across areas. That is, these methods
assume that all the areas of interest behave similarly with respect to the variable of
interest and consequently one can “borrow strength” for any one small area by
capitalising on the similar behaviour of many small areas. This similar behaviour is
usually represented in terms of a common model for the distribution of the variable of

interest. By definition, these methods do not take into account area specific
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variability. Therefore, we can find situations in which the validity of the assumed
model fails leading to biased estimators. This fact has motivated researchers to
develop techniques based on models that include area specific effects; although these
methods are commonly referred in the SAE literature as model-based methods, we
shall refer to them in this chapter as “specific area-level random effect model

estimators”.

1.5.2.a. Demographic Methods

Demographic methods that use “symptomatic” data to produce demographic
projections for inter-censal years are commonly used in national statistics offices and
international organizations. Sieguel et. al. (1954), for instance, gives a comprehensive
overview of methods used in the 1940s and early 1950s for making estimates of
population below the State level. Some of those methods are still being used with
minor adjustments. Development has focussed on the improvement of mechanisms
and techniques to obtain the symptomatic data used in those demographic methods.
The principal demographic methods found in the literature are the Vital Rates,
Arithmetic, Geometric, and Component methods. We now briefly describe the Vital

Rates and Components methods.

The Vital Rates (VR) method was first described by Bogue (1950). It uses
Administrative Registers (AR) of births and deaths for the period ¢ for small areas, say

b, and d, and for larger areas containing the small areas, say B,, D, as well as AR or

A

any other reliable estimate for the larger area population counts P. We also assume
that corresponding figures for the last population census, say b,, d,, B,, D, and F,,
are available. If we define r, =b,/p, and r, =d,/p, we can write the population

count of interest for time ¢ for the target small area as,
1(b d
b= 5 |t
oo Tar
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The method consists of estimating the unknown rates 7, and 7, assuming the large
area ratios R, /R,, and R,/R,,, where R, =B /P, R, =B,/P,,R,=D,/P and

R,, =D, /P, , are the same as the small area ratios r, /7, and r, /r,,, so that,
R .
=", and 7, =7,
The VR estimate for the population count of interest for time ¢ for the target small

2 —l. i.}.ﬂ
R )

The Component method uses AR of immigration, emigration and net interstate

area 1s then,

migration to compute net migration. It basically “updates” the census population
count for a small area by adding to it the net migration as well as the difference in

number of births and number of deaths since the census year. That is,

P = Py +bot _dot +m,

where b,,, d,, and m, are respectively the number of births, deaths and net migration

ot

since the census year.

1.5.2.b. Synthetic Estimators

Synthetic estimators use direct estimates for larger areas to produce indirect estimates
for small areas. The implicit model of synthetic estimators assumes that the
characteristics of a large area are similar to the local characteristics of its smaller
areas. Several estimators that fall into this category have been developed in the last 45

years.
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The earliest formal publication recording the use of synthetic estimators in the context
of SAE is due to the U.S. National Center for Health Statistics (NCHS) (1968). They
used the National Health Interview Survey (NHIS) to obtain direct estimates of

National rates of disability R =N & N .; for J =78 population subgroups defined
in terms of socio-economic characteristics. Then, they use the 1960 census population

counts for the same population subgroups N, with N, =ij,=l N, to compute

synthetic State estimates of disability R, =Y, /N,,, where ¥, = ZL ijl Vi » USING

the following expression,

. I N
R¥ :ZNJ-R,J. (1.1)

J=1

This estimator has been used in different applications. The assumption here is that

R ;= Iéaj. Note that an equivalent expression for totals is obtained eliminating N,

from (1.1).

The variance of (1.1) is small because that estimator depends on reliable direct

estimates for national subgroups. On the other hand, the bias of this estimator might
be important if the assumption R ; =I§aj does not hold. However, this kind of

estimator is simple to implement and can perform better than direct estimators when
sample sizes for small areas are small, as Gonzalez et al. (1996) reports. Other
examples of the use of estimators like (1.1) can be found in different US. Bureau of the

Census methodological reports as well as in Gonzalez and Hoza (1978) and Haskey

(1991).

Holt et al. (1979) formulate explicit analysis of variance models for different
population structures implicitly assumed in different synthetic estimators, so that
those assumptions can be tested using the available data. They obtain Best Linear

Unbiased (BLU) estimators for small area totals and derive the bias under alternative
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models. For instance, an appropriate model for the synthetic estimator (1.1) assuming

Simple Random Sampling with sample size n = Z::] Zj:x Ry 1s,
Yair = Bj +E (1.2)

The BLU estimator of B, is R ; and the BLU estimator of ¥, is given by,

Y =Dy (Ry =R )+ NyR, (1.3)

=l j=

Estimator like (1.1) can be seen as special cases of the following general synthetic

estimator or Individual-level Synthetic Regression Estimator (Skinner 1991),
= J p— ~
}fasynr=ZXrB~ (14)

Here we assume we have individual level information about .J auxiliary variables for

the entire population, so that we can compute their population means X 5+ Applying

traditional regression methods to the sample data we estimate the coefficients ;- The

implicit assumption behind (1.4) is that the following model is a reasonable one for

every individual i=/, ..., N in the population,

Yai :(zj:‘xajiﬁj}-,—gai (1.5)

The random error €, is assumed to have mean zero for all individuals belonging to

area a and uncorrelated with the X variables. Skinner (1991) points out two possible
departures from this model, misspecification of the systematic component and
misspecifications of the random (error) term. The former can be dealt with applying
traditional diagnostic techniques. The latter is a more complex issue and it is the key

focus for SAE. The error structure in the implicit model might not have mean zero for
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area a but u,, thatis, € , =u_+v, with v, having mean zero across individuals in the
same area. In this case, (1.4) will have a bias equal to «, but a lower variance than the

direct estimates.

Assuming a direct estimator Y, can be considered unbiased and its covariance with

Y>"" is approximately zero, the Mean Squared Error (MSE) of (1.4) is,

MSE(isynr) — E():/asynr _2)2
=E[()—;‘:S}’nr _}%{l)+(2 _)7('):]~

— E(isynr _)'%1)2 _E(}Lfa _)7”)2

Therefore, an estimator of MSE (I:’asy ") is given by,

>

MﬁE(?W’):(iW"’ ¥ )2 —I?( 4 ) (1.6)

a

The direct estimators and its variance for areas with small sample size can be unstable

and consequently so can be (1.6). Gonzalez (1973) suggests to use the average of the

MSE (f’isy"’) over a as a global stable indicator of the MSE. However, this indicator

might be misleading as it does not represent an area-level specific measure of the

MSE.

If individual-level information is not available, area-level variables can be used

mnstead to produce Area-level Synthetic Regression Estimates (Skinner 1991),

described by Ericksen (1974). Let Z,,, k=1,..K , be a set of K area-level auxiliary

variables. The Area-level Synthetic Regression Estimator is given by,

fad K o ~
Ynsynm = Z Zy Bk (1.7)
k=1



where [3~k is the estimated regression coefficient for the model underlying (1.7), that is,

with the mean of €, equal to zero.

Various improvements to (1.4) have been proposed. For instance, Nichol (1977)
suggested including the synthetic estimator as an extra independent variable in a
conventional regression estimator. Another approach was suggested by Battese et al.

(1988) in which the sample area-mean of the random component €, e, is used as an

estimate of the area specific effect u,. That estimate is added to (1.4) multiplied by a

suitable proportion p,_ ; that is,

)'};com z}:/asynr +pa‘é‘a (1.8)

If we define the conventional regression estimator (Skinner 1991) as,

>

2 J — L ~
Y;zcrz H+Z(Xaj_Xaj)Bj
J=1

I»

a J
and knowing that ¢, =Y, —((z
=l

, , _
o B}.)), we just have to add (ZXaj B, ~ZX,,,~ ﬁ,}

J
J=1 j=1

to €, to rewrite (1.8) as,

1—;;1007" — pﬂj]’:{.’(?r + (1 _pa )isynr (1.9)
These estimators are commonly referred to as Composite Estimators (CE). In

general, different combinations of indirect and direct estimators can be used in a CE.

Purcell et al. (1980) suggest the use of the National mean direct estimator Y or some
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other larger area mean ¥, instead of the indirect estimator in expressions like (1.9), as

a convenient alternative in situations where auxiliary data is lacking or not sufficiently
reliable. They also suggest the use of a multifactor classification as an alternative in

specific situations, leading to an expression of the form,

= 2 ! =
o =p Y+ paY, (1.10)

i=1

where Y represents a direct estimator, Y, i=1,...,1 , represents 7 different predictors

I
for ¥ and (pa—kmeJ:l.

i=1

Different methods of computing the weights p, have been proposed in the literature
based on design-based arguments. Let )7,, be the direct estimator used in (1.9);

assuming Cov(isy "’,)L’H ) =0, we obtain optimal weights minimising MSE (}%{f"”’) ,
MSE(Y™") = p2V (¥, ) + (- p, ) MSE(Y,")
with respect to p,_, so that,

o __ MSEX™™)

- =~ o (111)
MSEXY™)+V (Y, )

These optimal weights can be estimated using (1.6) but they have the same instability
problem as (1.6). However, empirical studies have suggested that composite estimators

tend to be insensitive to deviations from the optimal weights (see e.g. Lundstrém

1987).
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Purcell and Kish (1979) propose the use of a single weight p, = p Va. An optimal

estimator for the common weight p is obtained by minimising ijl MSE (i“””)/ A

with respect to p, resulting in the following expression,

X MSEGPT)
> MSEGE Y V()

opt

Thompson (1968) considers the case of shrinking a direct estimator 0 towards a
“natural origin” 8, using a shrinking factor c. Let 6 = ﬁ , 8,=Y, and c=p, . This

estimator, called a “Shrinkage” estimator (Thompson, 1968), also has the form of a

composite estimator,
v =pY¥, +(1-p)Y, (1.12)
Following Thompson (1968), an optimal estimator for p, is,

opt __ ()7(1 _}—{))2
@ -n v,

(1.13)

Note that (1.13) is a special case of (1.11) where ¥, = i”’"‘ .

Another approach that uses the idea of shrinking a direct estimator towards a

conjecture is the James-Stein estimator (James and Stein, 1961),

0" =p®6 +(1-p=w° (1.14)

a

where 9; is the direct estimator of the function 8, = f(¥,) , with values that are
independently N@®,V) distributed  and Pl =1-[(4-2)V /5] with

S= Z; @, —0°)* . Here 0 is our guess. Finally, ¥* = £7@ ).
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Efron and Morris (1972) noted that ):’;JS may perform poorly when the guessed values
0. are not close to 0,. They proposed a “restricting” rule to avoid estimates that
differ from 6, more than + ¢ times the value of JV . That is, the final estimate is
675 if that value is between 6, +¢v/V and either 6, +¢/V or 8, —cV depending

whether 6 exceeds the upper or lower bound of 6, +¢+/V . Denoting the resulting

estimator as 6, we have the Restricted JS estimator Y** = 7@ *5) .

Other approaches to defining the p, weights lead to another kind of composite
estimator called a Sample-size dependent estimator. In this case the weight depends

on the estimator of the size of the small area population Na. Drew et al. (1982)
suggest using just the direct estimator, i.e. p™ =1, if Na is higher or equal to & N,

and p** =(N,/5N,) otherwise. Here, & is a suitable factor that needs to be chosen.

Hidiroglou et al. (1985) propose the use of p*** =(N,/N.) (“modified regression”
factor). Later, Sirndal et al. (1989) proposed that p»** be modified by imposing a

“dampening” factor (Nn /N_)" in order to avoid “extreme” estimates for very small

areas. They suggest the following rule,

(N,/N)) if N,>N,

PDMRE —
’ (]Va /N )" if otherwise

Holt and Holmes (1994) propose an estimator for unequal probability designs in
situations in which borrowing information across small domains is not feasible. Let

the target of inference Y, , k=1, ...,K be the unknown population total of units with a

specific characteristic k. Let y,, =Z:Z1 V. be the sample count of units with

characteristic £ in sampling design stratum A, A=I,..,H, where y,,. is a Bernoulli

variable with Pr(y=1/h)=F,,. Also let N, and n, be the population total and the
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sample size for the design stratum # so that y,, =y, /n,. The maximum likelihood

(ML) estimator for 7, =Zthl N,F,, is the stratified direct estimator

¥, = II; N,y,, , which is unreliable if the sample sizes within strata are small.

Now suppose we can define a new stratification £ f=/,...,F, so that f cuts the

population across the original strata # and so that Pr(y,, =1)=F,, can be

considered constant across 4, 1.e. B, = £, . The expected value for the population

total ¥, can now be rewritten as E(Yk)=Z:[=1N,, OB, » where Q. is the

probability of belonging to stratum f given the unit belongs to the original stratum A.

The ML estimator for this expected value is finally,
H F H
Z{:ZZNhXiX_V_ - ny;yi (1.15)

where y,. is the sample total of units belonging to stratum / and stratum fat the same

time, y, is the sample total of units in stratum f and )A’f 1s the stratified direct

estimator of the population total of units in stratum fi The resulting estimator (1.15)
borrows strength across the design strata 2 and Holt and Holmes (1994) shows that it

1s more accurate than the traditional stratified estimator provided the assumption

P, =B, holds.

The Structure Preserving Esimation (SPREE) method also belongs to the class of
synthetic methods of estimation. Purcell and Kish (1980) describe this method which
is based on application of the Iterative Proportional Fitting algorithm (IPF) (Deming
and Stephan., 1940). SPREE requires the specification of an association structure
linking the distribution of the target variable and some covariates at small area level
and an allocation structure characterising the current relationship between these
variables at a larger area level. The information necessary for specifying the
association structure is typically obtained from recent censuses or administrative

records. The current information required for the allocation structure is typically
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obtained from national surveys or any other reliable source. The basic idea behind the
SPREE method is: “(i) to conform to the current information in the allocation
structure; and to (ii) preserve somehow the earlier relationships present in the

association structure without interfering with aim (i) above.” (Purcell and Kish, 1980).

These authors describe different situations that might arise, depending on the
available information, for the specific case of a categorical target variable required for

certain small domains and one categorical auxiliary variable. Let N, be a set of

counts from a cross-tabulation defining the association structure from, say, the last
census. Here a and j refer to area and category of auxiliary variable whilst i, i=1,...,1,

represents the category of the target variable. Let m,; be the set of “unknown” counts

of which we only know or have reliable estimates of certain aggregates corresponding

to the allocation structure. They consider situations where the information available

is: (a) Naij’ m-{/" (b) Nnij’ m.jj; m,., (C) Naij’ m-ij’ mmj’ (d) N(l'j’ m‘i/’
(e N, my m, ad (f) N, m;, m,; . Cases d, e and f represent special

situations in which a full association structure is not available. They use a weighted

least squares approach and minimize the loss function,

j 2 Noj (= Ny )’ _ch (60725

J
=

A

SOR) =Y
a=1 i
where ¢ (,;), c¢=1,..,C, denote the cth constraining equation in the Lagrangian
f(m,;), corresponding to the marginal constraints specified by the allocation
structure.  For case (a), for instance, there is only one constraint, i.e.

o, (m,;) = Z:; #,; —m,; , and the estimate of the target count m,,, is given by

J

~ Nai‘
. =ZN—»’m_l.j (1.16)

Jj=1 B

For cases (b) and (c) they apply the IPF algorithm to obtain maximum likelihood

estimates of m,,, . For cases (d), (e) and (f), where a full association structure N,; is
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not available, they define a “dummy association structure” by assuming

proportionality across the i categories, so that a full set of estimated counts ]\~fm.j is

used in the analysis.

The assumption behind the use of SPREE in (a) and (b) is that the interactions from
the association structure of higher order than the one defined by the allocation
structure is the same as the corresponding interactions of same order for the target
counts. Using again case (a) as example, the assumption behind (1.16) is

N, /Ny =, / m,; . For SPREE estimates in cases (d), (¢) and (f), an additional

assumption is that the missing interactions from the association structure are not
relevant i.e. the association structure (odd ratio) for that specific missing component

equals one, for the set N, or for the set m,, so that in case (), for instance,

aif >

Noy [Ny =N [N =my[m; .

Note that the gains in precision from using SPREE are due to the fact that, thanks to
the information from the past used in the SPREE process, we only use present data to
estimate the marginal given by the allocation structure. That is, if the information
regarding the allocation structure comes from a national survey that leads to poor

direct estimates for m,; and m, , then it might be possible that reliable direct

estimates of an aggregate like m ; can be identified so that (1.16) produces estimates
with a lower variance than direct estimators. Here again, the superiority of the SPREE

estimator over the direct estimator depends on the trade off between gains in precision

and increases in bias due to departures from the assumptions behind the method.

A more detailed description of the SPREE method and some of its variants is set out
in Chapter 3, where it is also put into the context of the specific LFS problem of

interest in this thesis.

Feeney (1987) carried out an evaluation study of the use of the SPREE method to
produce estimates of total unemployed for Local Government Areas in four states of

Australia. He used information from the Department of Social Security (DSS) related
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to unemployment benefits to construct the association structure and the 1981
Population Census to obtain the allocation structure. He compared his results with the
“real” values from the Census and argued that, should this evaluation show SPREE
methods work well using the Census data, it should also work well using the Monthly

Labour Force Survey (MLFS). Two variables, Sex-marital status and Age group, were

used in the analysis. The target set of counts were m,, :Zz_jmm.j , Where m,,

represents the total of unemployed for the small area a, sex-marital status i and age

group j. The allocation structure was defined by the marginals m,, and m,_; taken

from the Census. To compare the SPREE estimates with MLFS direct estimates,
Feeney derived estimates of the standard error of the SPREE estimates by assuming
these estimates had the same error structure as the MLFS estimates. The results
showed that in general, the SPREE methods provide improved estimates compared

with MLFS direct estimates.

Lundstrom (1987) carried out an evaluation study comparing two direct estimators,
three SPREE estimators and a three composite estimator using as indirect estimators
each of the SPREE estimators to estimate the number of nonmarried cohabiting
persons in Swedish municipalities. He found that SPREE methods were superior to
the direct estimators. Apparent differences were found between SPREE estimators

and composite estimator.

Griffiths (1996) used SPREE estimates within a composite estimator to produce
employment and household income estimates for Congressional Districts in Iowa
State, U.S.A. He used the estimator (1.16) to compute the SPREE estimates. The
allocation structure was obtained from the 1994 Current Population Survey (CPS) and

the association structure was produced using the 1990 US Decennial Census.
1.5.2.c. Specific Area-level Random Effects Model Estimators
Synthetic estimators have the advantage of being simple to implement. They

commonly lead to estimates that are more precise than comparable direct estimators
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for small areas. If good auxiliary information is available and an appropriate model
can be formulated so that the error specification in the implicit (or explicit) model

behind the estimator, i.e. E(g,)=0 in (1.5), is reasonable, synthetic estimators are

highly accurate; in these cases they are certainly the appropriate choice for producing
estimates for small areas. However, in the presence of an important misspecification

of the error structure, e.g. €,=u,+v,., E(,)=u, with u, large, synthetic

a

estimators lose accuracy; if the gains in precision do not offset the bias caused by u,

synthetic estimators can be even less accurate than traditional direct estimators.

In those situations, specific area-level random effect model methods provide a better
approach to small area estimation; in particular, since they take into account local
variation they can be more efficient than synthetic estimators in situations like the one
described above. Another advantage of those methods is that they offer the possibility
of obtaining “stable area specific measures of variability associated with the

estimates” (Rao, 2000).

Specific area-level random effect models also offer the flexibility to formulate and
handle complex cases. In this sense, traditional random effect models has been
extended to more complex situations such as multivariate models (see e.g. Datta et al.
1999, Datta et al. 1996, Cressie 1992, Freedman et al 1992), time series models (see
e.g. Datta et al. 1999, Pfeffermann et al. 1998, Tiller 1992, Pfeffermann et al. 1990),
multilevel models (see e.g. Moura et al. 1999, You et al. 1999) and logistic models
(see e.g. Jian et al. 1999, Malec et al. 1999, Booth et al. 1998, Malec et al. 1997,
Farrel et al. 1997a, Farrel et al. 1997b).

For comprehensive reviews and appraisals of specific area-level random effects
model-based methods of SAE see Gosh and Rao (1994), Rao (1999), Pfeffermann
(1999) and Rao (2000).
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CHAPTER 2

DESCRIPTION OF THE DATA

Two main sources of data are used in this study: the last Venezuelan Population
Census (1990) and the Labour Force Survey. In the following sections, we describe
these sources in more detail. We focus particularly on the LFS parameter and variance

estimation methodology since a detailed description of this does not currently exist.

2.1. THE VENEZUELAN 1990 CENSUS

The Venezuelan Population Census carried out in 1990 (Census’90)!, is the most
important source of local level information in the country. Its information is not only
used for descriptive and analytical purposes but also as the base for sampling designs
and field operations and as auxiliary information for survey estimation. The LFS
sampling design is based on the cartographic and demographic database of the
Census’90. Sex-age population projections based on this census are used by the LFS
as auxiliary information for Post-stratification estimators. It is also the basis for the
simulation analysis reported later in this thesis. Consequently it is appropriate that we

now describe some aspects of this census that are relevant.

' XII Censo de Poblacion y Viviendas.
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The Census’90 was carried out via face to face household level interviews. On the
21st of October 1990 about 80% of the country was interviewed. The remaining 20%
were interviewed within the next 30 days, keeping the same reference date i.e. 20-10-

1990.

2.1.1. General Format, Field Organisation and Sampling Design

The Census’90 was a “mixed” operation in which a set of basic demographic
variables was obtained for the whole population (Basic Questionnaire) whilst a
supplementary set of variables was additionally obtained from a sample (Expanded
Questionnaire). The sample consisted of the whole population in the rural areas and

approximately 20% of the population in the urban areas as explained below.

For this Census, private addresses (PA) in Venezuela were partitioned into physical
groups called “Segments” (urban areas) of approximately 200 PA each and “Sectors”
(rural areas) of sizes around 100 PA. These Segments and Sectors are mutually
exclusive and exhaustive for PA. In the urban areas, each Segment was partitioned
into approximately 10 “Sections” of 20 PA. Finally, these Sections were partitioned
into 2 “Subsections” of 10 PA each. This hierarchical structure reflects the logistics of
the execution of the census. A Segment contains the quantity of PA that one
supervisor was able to handle with ease in one day. In the same way, the amount of
work assigned to one interviewer consisted of either one Section if he/she was
applying the Basic Questionnaire or one Subsection if he/she was applying the
Expanded Questionnaire. In the rural areas each Sector corresponded to a population
settlement (towns). Each Segment and Sector was identified in the official maps

»2 whilst sketches were drawn for each Section

produced by “National Cartography
and Subsection; a written description for cach of those units (Segments/Sectors,
Sections and Subsections) was recorded. A code system was used to link the

information registered for each address in the Census database and the respective

? Cartografia Nacional. This is the official body of the Venezuelan government responsible for building
and maintaining the cartography of the country.
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units to which it belonged. This cartographic and demographic database is now used

for the design and implementation of the household surveys carried out by OCEL

The expanded questionnaire sample in the urban areas was selected using a stratified
cluster sampling design. The strata and the clusters were Segments and Sections
respectively. Around 20% of the Sections were selected within each Segment with
equal probability, i.e. 2 out of 10 Sections in most of the cases. Finally, the Expanded

Questionnaire was applied to all households within the selected Sections.

2.1.2. The 1990 Census Variables and Their Correspondence with The LFS

Variables

The variables needed to construct the basic labour force indicators were collected in
the Basic Questionnaire. Two databases were built from these questionnaires, one
containing the first set of variables for the whole population (Basic Database) and the
other containing the second set of variables obtained using the expanded questionnaire
(Expanded Database). Since it was not possible to obtain the Basic Database from

OCE], the one used in this thesis is the Expanded Database.

An important aspect of the Census’90 is the fact that all the labour force variables
collected in the census have the same conceptual definitions as the ones collected in
the LFS. Therefore, any difference between these sources is mainly related to
practical issues such as non-sampling errors, which are expected to be larger in an
exhaustive enumeration like the census than in a sampling survey situation like the

LFS.

Another important practical difference between these sources is found in the process
used to classify people over 15 years old into activity/non-activity and
employee/unemployed groups. The LFS uses an algorithm based on a set of additional
questions to carry out this classification process (Summary Code). The Census’90 in
contrast used a single question to classify people. Thus, although both sources follow

the same conceptual definitions, the LFS is expected to get a better measurement. The
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Tabla 2.1
Venezuela. Clasification of the Labour Force
with and without Summary Code (SC)
and Employment, Unemployment and Activity Rates
(Cells are percentages calculated for rows)

Cateory Cateory with SC
without SC Employee Unemployed | Non-Active Total Rates
Employee 99.91 0.05 0.04 48.08 92.04
Unemployed 4.88 93.90 1.22 4.16 7.96
Non-Active 4.01 5.11 90.88 47.76 47.76
Total 50.15 6.37 43.47 100
Rates 88.73 11.27 43.47

impact of the summary code on the classification outcomes can be seen from the
difference in the LFS estimates with and without using the code. Table 2.1 shows
examples of these differences for the second semester of the 1998 LFS. In this table,
the columns and the rows represent the LFS classification taking and without taking

into account the Summary Code.

As it can be seen from the table, use of the Summary Code increases the percentage of
people classified as Unemployed and Employed, due mainly to a reclassification of
people initially classified as Non-Active (4.01% reclassified as Employed and 5.11%
reclassified as Unemployed). The category Unemployed rises from 4.16 to 6.37, that
is, a relative increment of 53%, whilst Employed increases from 48.08 to 50.15, a
relative increment of 4.3%. Consequently, the Employment Rate and the
Unemployment Rate decrease (from 92.04 to 88.73) and increase (from 7.96 to 11.27)
3.31 units respectively, whilst the Non-Activity Rate decreases 4.19 units, from
47.76% to 43.47%. Therefore, if we assume the classification produced by using the
Summary Code is the “correct” one, we can expect both the Unemployment Rates and

the Activity Rates produced by the Census to underestimate the real figures.
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This information can be used to adjust Census values is an attempt to make them
comparable to LFS outcomes. This adjustment can be carried out as a simple
multiplication of the Census rates by the variation adjustment estimated from the LFS.
Given the characteristics of our study, such adjustment would require a set of tables
like table 2.1 at sub-population levels, preferably for the Census year. These sub-
populations, as described in Chapter 1, consist of combination of both spatial (states)
and demographic (sex-age groups) dimensions. Although the estimates set out in these
tables would then be based on small sample sizes, the adjustments we are interested in
are the differences between two highly correlated variables and therefore should be

reliable enough for our purpose.

The adjustment described above is useful when applying methods that involve the use
of labour force indicators from both the Census and the LFS. Obviously, it is
unnecessary when the information required from the Census does not consist of
labour force indicators, for instance sex-age population totals. In this thesis we study
SPREE methods for producing reliable sub-groups estimates. SPREE methods are
explained in the next chapter and they involve the use of labour force indicators from
both databases. However, our study of SPREE is mainly based on simulations from
the Census data and does not involve the use of the LFS database. Therefore, no
adjustments were necessary in our study. Nevertheless, we emphasize that such

adjustment would be necessary if this technique was apply in a real life situation.

2.2. THE LLABOUR FORCE SURVEY

The LFS is the oldest continuous survey run in Venezuela. This survey has supplied
the country with valuable information related to households since 1967. Despite the
fact that the LFS mainly aims to produce information regarding the Labour Force, this

survey has always been an important general source of social information related to

households.

38



2.2.1. General Format of the LFS

This survey is run twice a year, 22 weeks during the first six months of the year and
22 weeks during the last six months. The sample of the survey is distributed randomly
across the 22 weeks in such a way that each week can be considered as a sub-sample
of the country. The information is collected using direct interviews in which a
“interviewer” fills out a questionnaire with the information provided by an
“interviewed” on behalf of every member of the household. The person interviewed
can be any member of the household older than eighteen years. The current
questionnaire contains 13 questions about the characteristics of the house, 9 questions
about the household and 62 about the inhabitants of the households, including thel0

questions that comprise the Summary Code referred to in the previous section.

2.2.2. LFS Sampling Design

Although the sampling design has changed three times since 1967, its main features
have remained the same, i.e. a stratified three-stage sampling design. We now
describe this design pointing out the differences, where relevant, between the 1985-

1993 design and the current design.

From 1985 to 1993 the strata were the nine regions described in section 1.3.
Currently, the strata consist of spatial areas within states (see table 2.2). These areas
are made up of neighbouring counties with similar characteristics. In particular, each
area is expected to be internally homogeneous with respect to economic activities and

services.

The first stage of selection is a random selection of segments and sectors (Primary
Sampling Units, PSU) from the census database. In the 1985-1993 design, selection
was made with probabilities proportional to the number of private properties
registered within each PSU following the 1981 census. A geographically ordered
systematic procedure was used for this selection. In the current design, this selection

was carried out in two phases. In the first phase, a group of PSUs were independently

39



12

ST.46
ST.47
ST.48
ST.49

ST.12

AM. DE CARACAS

AM. DE BARCELONA-PTO. LA CRUZ
TRS

APURE
AM. DE SAN FERNANDO
MUNICIPIO PAEZ

TRS
A
AM. DE MARACAY
TRS

BARINAS
AM. DE BARINAS

BOLIVAR (a)
MUNICIPIO CARONI

MUNICIPIO HERES

LOCALIDAD UPATA

MUNICIPIO CEDENO, EL CALLAO, GRAN
SABANA, PIAR, MUNICIPIO PIAR, RAUL LEONI

CARABOBO
AM. DE VALENCIA

(a)
MGCP : ZAMORA, COLINA, MIRANDA
MCP : CARIRUBANA, LOS TAQUE, FALCON

GUARICO

AM. DE CALABOZO
TRS

AM. DE BARQUISIMETO
TRS

MERIDA
AM. DE MERIDA
TRS

167
83
15
65

500
300

240

300
150
150

310
140
170

Table 2.2 1/2
Venezuela. Labour Force Survey (LFS)
Sample Size (PSU) by Selection Strata, Current Design, 98-1l
SEGMENTS (PSU)
T |, NAMES __

Census Sample LFS

VENEZUELA 21854 | 6078 1833
s R Gy oo o

81
63

28]

231
126
105

44

15
29
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Table 2.2 2/2
Venezuela. Labour Force Survey (LFS)
Sample Size (PSU) by Selection Strata, Current Design, 98-l

SEGMENTS (PSU)
e e NAMES -
Census LFS

Sample
13 MIRANDA 2629 565 212
ST.24 |REGION LOS TEQUES 347 120 28
ST.25 |REGION BARLOVENTO 313 65 25
ST.26 [VALLES DEL TUY 467 80 38
ST.27 |EJE GUARENAS GUATIRE 274 100 22
14 MONAGAS 646 200 34
AM. DE MATURIN 315 80 18
TRS 331 120 18

170

AM. DE PORLAMAR - PAMPATAR 166 80

' TRS 191 90
16 PORTUGUESA (a) 704 250
ST.32  |AM. DE ANAGUA -ARAURE 202

T
17 SUCRE 862 330 52

ST.34 |AM. DE CUMANA 241 110 14
TRS 621 220 38

A.M. DE SAN CRISTOBAL 376 150 25
SAN ANTONIO DEL TACHIRA - PEDRO 71 35 11

AM. DE VALERA 193 8

TRS 538 120 23]

20 YARACUY 513 175 26
ST.41 |AM. DE SAN FELIPE 112 6

sT42 |TRS )
21 ZULIA (a) 2581 590 315
ST.43 |AM. MARACAIBO 1501 300 195
ST.44 |ZONA ORIENTAL DEL LAGO 577 170 68
sT45 |TRS 503 120 52|

T.F. AMAZONAS

23 |ST.51 |DELTA AMACURO 134 40 20

* TRS = The rest of the state
* AM. = Metropolitan Areas
* (a) = Sample size extended on OCEI-Governors agreements

41



Table 2.3

VENEZUELA. LABOUR FORCE SURVEY (LFS)
SAMPLE SIZE — DESIGN 1985-1993

VENEZUELA 3,794
Capital 613
- Metropolitan Area of Caracas 371
- Rest 242
Central 414
Centro-Occidental 485
Guayana 734
Los Llanos 100
Los Andes 471
Nor-Oriental 489
Zulia 488

selected within each stratum for the MMSV>, A total of 6,078 PSUs were selected in
this phase with probabilities proportional to the number of PA registered within each
PSU following the 1990 census. The systematic procedure used in this case followed
a geographical order in the rural areas and a combined socio-economic order and a
geographical order in the urban areas. The socio-economic order was defined by a
classification of segments made by OCEI according to a special method. For the
second phase, a sub-sample of PSUs from the first phase was selected using the same
procedure explained above, but with equal probabilities. This sub-sample is the set of

PSUs used by the LFS

The second stage of selection was a random selection of sub-segments (Secondary
Sampling Units, SSU). These sub-segments are spatial divisions of the segments

made for sampling purposes. Each segment was divided into four sub-segments of

? Master Sample. This is a sample of primary units used as the base for the design of any survey in
which the observation units are houses, households and/or persons.
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Table 2.4

VENEZUELA. LABOUR FORCE SURVEY (LFS)
STATES AND PERIODS FOR WHICH AGREEMENTS WERE SIGNED

90-1 — 98-l
L’_’m A 0 fo lkzsz gsgisé:; Eu gs Esg f;ff.tv‘sEs
Metropolitan Area of ; »

Caracas 1

Aragua

IFalcon

{Bolivar—D.A.-T.F,A.

]Lara

iPortuguesa

[Tachira

Zulia

1 It is comprised by Dtto.Federal and 4 Miranda State counties (Metopolitan Area)

approximately 50 private properties. Two sub-segments were independently selected
within each segment. The selection was made with probabilities proportional to the
number of PA within each area determined by a “reference count” carried out after the
sub-segments had been created. A systematic procedure was used for this selection.

In rural sectors only one sub-segment was selected.

The third stage of selection was a random selection of PA (Tertiary Sampling Units,
TSU). Approximately five PA were independently selected within each sub-segment
with equal probabilities. A systematic procedure was used for this selection from an
updated list of PA constructed for each sub-segment. In rural sectors approximately

ten PA per sub-segment were selected.

In the 1985-1993 design, the 3,794 PSU roughly yield a sample size of 190,000
people of which approximately 120,000 are over fourteen years old. In the current
design, for the second 1998 LFS run (98-1I), the 1,833 PSU yield a sample size of
approximately 110,000 people of which about 70,000 are over fourteen years old. The
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sample sizes for both designs are shown in the tables 2.2 and 2.3. It is important to
point out that agreements between OCEI and the governors of same States have been
signed in order to increase the sampling size for these states. The states involved in
such agreements as well as the periods for which these agreements have been signed
are shown in table 2.4. The sample sizes comprising these agreements for the 98-11

LFS run are reflected in table 2.2.

The survey has a rotation system in which each PA selected remains in the sample for
six runs (three years) and then is permanently dropped from the sample. Each
Segment in the sample belongs to one of six “rotation panels”, each panel being a
sub-sample of the country. At every new run of the survey, one panel is “rotated”; i.e.
the PA in the sample within the Segments belonging to those panels are replaced with

other PA from the same segment.

2.2.3. Selection Probabilities

The LFS technical reports (OCEI 1987 and OCEI 1997) contain general details
concerning the main characteristics of the survey. We now describe the estimation

methodology used in the LFS.

The selection probability of any PA —and consequently any person who lives in this

PA- is given by:

T, 1 ];Z Cpi
PA) =1y, -2 n, - —-b-—L. 2L 2.1
p( ln_]k) oh ];l " noh T}"i . ( )

hij

where T, is the total of PA (Census) in the Ath stratum (h=1,...,H). T,, is the total
(Census) of PA in the ith PSU, in the Ath stratum (i=1,..., N,). T, is the total of PA
after the reference count, in the ith PSU, in the hth stratum. 7, is the total of PA

after the reference count, in the jth SSU, in the ith PSU, in the Ath stratum (j=1,...,
B,)). T, is the total of PA after the exhaustive list, in the jth SSU, in the ith PSU, in
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the Ath stratum. n,, is total of PSU in the MMSYV in the Ath stratum. #n, is the total
of PSU in the LFS sample in the 4th stratum. c,; is the total of PA in the LFS sample

in the jth SSU, in the ith PSU, in the Ath stratum. 5 is the number of SSU in the LFS,

which equals 2 for segments and 1 for sectors.

The sampling design is self-weighting within each stratum:

T
h

hij

in which case (3.1) reduces to:

n,-b-l

p(P Ah;’jk) =

h

where /=5 and h=2 for urban areas and /=10 and b=1 for rural areas, so, -/ =10 in

both cases.

The design weight attached to the Ath PA in the sample in the jth SSU, in the ith PSU,

in the Ath stratum (k=1,..., T, ) is then given by:

T,

-1
Wy = P(PA,, )" = 2 10 (2.2)

Noting that (2.2) only depends on 4, we have that V i, j,k:
Wik = W (2.3)
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2.2.4. Parameter Estimators

The LFS estimator of:total is the standard Horwitz-Thompson estimator but adjusted

for non-response and for post-stratification.

The non-response adjustment is made for £ socio-economic groups. The segments
within a stratum are grouped into socio-economic classes using the information on the
census database. However, the original census classification for a specific segment is
sometimes updated when significant changes of the standard of living in the area are

observed. The weight of each PA is then “inflated” by the factor ¢,,/c,, (e=1,...,E)

where the numerator is the total of PA in the sample in the eth socio-economic group
hth stratum and the denominator is the total of PA successfully interviewed in the
same group in the same stratum. In the LFS technical documentation there is no
formal justification for this adjustment. However, it is clear that the implicit model
assisting this procedure is a group mean model as in Sarndal et al. (1992, p.264), in

which it is assumed that a common mean E é(y,,eijk)z B, and variance

Ve (yheijk)chhe is shared by all PA within the same socio-economic group. The
weight attached to the £th PA in the sample in the jth SSU, in the ith PSU, in the Ath
stratum after non-response adjustment then:

G

W;leijk = W;ze = Wh ) c'e 9 v i:jak (24)
h

e

The post-stratification adjustment is made using the projected state level census sex-

age distribution at the reference time of the survey.

Let a=1,2,3,...,A denote the 4=22 sex-age sub-strata. Let , X, be the projected

census population of the Ath stratum in the a sex-age group and let X, = Zhes .6

be the aggregate projected census population of the a sex-age group for the strata
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comprising the sth state. The estimator of the total for a specific variable y is then

given by:
N 4 N 4 % A ZZE(WhB'ayhev
ﬁ=Z@M¢&FZ(f ) D At X | 25)
“ et - Z Z Z (Whe a xhev

hes e=l v=1

where _ x,,, =1 if the vth element belongs to the sex-age group a and zero otherwise.

This is a form of combined Post-stratification estimator. Note that

My, > iy, ~
Z’ESZEIZ ( Whe ”yhev _”Y; and ZhesZe_Z ( Whe nxhev aXs are the

Horwitz-Thompson estimators of ¥, and X respectively.

Since ,x,, =1 for x,,, €a, the implicit model assisting this procedure can also be
regarded as a group mean model, in which it is assumed that a common mean
E, (, ¥4, )=, B, and variance v, (, Y10 )=, © 2 is shared by all the individuals within the

same sex-age group within a specific stratum.

The final weight attached to the vth person in the sample within the Ath stratum and

the eth soci-economic is:

X

a

(2.6)

Wie = Wy,

e

Therefore, (2.5) can be written as:

My

=§;§ZM%JW 2.7)

v=1
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Finally, the national level estimate is obtained as the sum of Y* for all the

M
Venezuelan States: » ¥* .

Let y be a dichotomous variable (0 and 1) indicating the membership to a specific
group defined by a characteristic of interest. The proportion of people that belong to

that group is estimated by:

s YEYF
L 2.8
s SR ; ( )

Indicators such as the unemployment rate are estimated as the ratio of two Post-
stratification estimators. For instance, let ,y,., be equal to one if the vth person in
(ahe) is over 14 year old and unemployed and zero otherwise. Let also ,z,,, be equal

to one if the vth person in (ahe) is over 14 year old and active (employed or
unemployed) and zero otherwise. The Unemployment Rate as defined in section 1.4 is

then estimated at state level as follows:

3

( W;:e ’ nyhev)

M
M-
M

he

=

Il

I
<
i
3
[

MN)
=
M
M

(2.9)

S

( Whe ' aZhev)
=1

]
—
<

hes e

=1
I

At the national level this rate is estimated as:

M
la%)
=

=3
=y

i
7

M-
N>
v oy

“
i

Estimates of a specific R for any sex-age group can be obtained by taking into

account just the people who belong to this specific group in (2.9).

48



2.2.5. Variance Estimators

The variance of the LFS estimators is complicated by the fact that without
replacement sampling is used to select PSUs. However, assuming that the PSUs were
sampled with replacement within each stratum, we can estimate the variance and
covariance of the Horwitz-Thompson estimators by using the ultimate cluster

technique (see e.g. Kish 1965, Wolter 1985, Skinner et al. 1989, Sarndal et al. 1992):

(.2, )= =3 (5,5 )(2,-2) 210)

where Y, :Z;ZZ; w,, Yuwp  1s the Horwitz-Thompson estimators of Y, and,
Y, =3"7%,,7%,= Y./n, , ¥ :Zhes)}h . Similar definitions apply to Z,., Z,, and

25. The assumption that the PSUs were sampled with replacement leads to a

conservative variance estimator (e.g. Skinner et al. 1989, p.49).

To get the variance and covariance estimators of a total such as )iR in (2.7), we
replace ¥,, and Z,, with D7, and D7 respectively in (2.10) where D, (and similarly
for D7) is the estimated sum of the residuals €y = o Vhip — R o« Xy Weighted by

w,, for the ith segment in the Ath stratum:

mhij

R A b .
Dh};:ZZZWheaéhijv (211)

a=1 j=1 v=1

wﬂ)

where , R’ =2 and noting that:

>
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A~

. e A 1 4 b ,
DIT:ZDI)r;/nh:_ ZZ Whe(ayht]'v_—‘aR;}nxhtjv)

i=1 }’lh i=] a=1 j=1 v=1
A A y S

— __a’s
- a*h Aatth

a=1 a“ts

Thus (IA),I{ - I—A)-hy ) takes the form:

Ay R J % aj}s 0 & v aAs v
(Dht—D;)ZZ aY;zi_ & aXhiJ_Z[a B )? aXhJ
a=1 a“"s a=l a*“ts
2.12)
4 A ol % ~ al
:z (a Wi~ ath )~ a’f (aXhi—a h)
a=l1 a“>s

Substituting (2.12) (and its corresponding expression for z) in (2.10) we obtain the

expression for the covariance of two estimators of totals:

ny

cov(}'}SR,ZASR)=Z !

(13;,. —15;)(13;,. —f);) 2.13)
hes (”h ‘1) i=1

The estimator of the covariance of two proportions like the one in (2.8) is given by:

cov(ﬁf’y,ﬁf’z) =%covar(f§R,ZAsR)

s

in order to estimate the covariance of two estimators of ratios like (2.9) we use in

2.11):

. B B Ay- *AR _ Az.
zzehijv-(ayhijv aRs nxhijv) Rs (aZhijv aRs a‘xhijv)

- R
_(ayhijv“‘Rs aZhijv)
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It is important to point out that the LFS database does not contain the weights w,, but

the weights after sex-age adjustment _ w,, for each person in the sample.

If we use ,w,, in (2.11), and noting that:

WAL '
SR he 5 yhaijv Whe : ylmijv 5
g T TS o« X Ty _ 4
~ R h . ] . ~
X ZW' . X “ X, Zzzwhe Ky X
he st haijv i v
P « X
we obtain:
A b My }‘;R
Vo a”s
Dhl~§ :z :§ :(1 he ayhyv >R (lxhl_]V
a=1 j=1 v=l aXs
A b Ty >R
_ W' nXs . aY;
- he 2 ayhyv SR a”vhijv
a=1 j=1 v=I a‘*s aXs
4 N
S V. A
- )2 at hi )2, a“>hi
a=1 g4t a‘ts
And

7 in this case is:

2 4 yR ~ A
Z(Y;f_y;lk)_z ﬂ)i( (uXh T a h)
a=] ¢
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Note that (2.12) and (2.15) differ just in the term X / a)?s . Our experience is that
this term tends to vary closely around one. Thus, we can expect that the use of _w,,
in (2.11) should work as an approximation to (2.14). However, if we substitute (2.15)

in (2.10) to obtain the estimator of the variance of ¥* we obtain:

oon(.37) = S S R~ S| A )

(2.16)

Assuming a positive correlation between Y and X, the second (negative) term within
the squared brackets will be larger than the third one. Thus, taking into account just

the first term of (2.16) yields a conservative estimator of the variance, that is:

hes

var(#1)= Z(nh )Z( I%hf)z 2.17)

cov(i,27 )= 3 P B R -5 ) 24 - 24 @18

hes

i=

The OCEI uses this approximation, collapsing pairs of consecutive PSUs. That is,

pairs of consecutive PSUs are considered as being selected from a single stratum. Let
YR and Y* denote the estimates for the two PSUs collapsed into the /th “assumed”

stratum, in the Ath selection stratum. We have then that (2.18) reduces to:

co(12.21)= 33304 - 11 ) 24, 24,) @19
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CHAPTER 3

LOG-LINEAR MODELLING FOR SPREE ESTIMATION

In sections 1.3 and 1.4 we discussed the necessity for improved estimates for labour
force rates for sex-age groups, at state levels in Venezuela. We also noted the lack of
auxiliary information available with the minimum requirements to be used for
statistics estimation techniques. This led us to seek estimators that require, as
auxiliary information, only censuses or their population projections. Although this
applies to many countries in Latin America (see section 1.2), we refer only to

Venezuelan states in this work.

We begin this chapter defining the necessary notation as well as introducing the
Pseudo-Likelihood technique which will be used later in this chapter. We then
explore the SPREE method and its relationship to log-linear and multinomial logistic
models used to obtain synthetic estimators for small areas represented as cross-
tabulations. Here we shall show the theoretical details establishing the equivalence
between SPREE and the model-based approaches. The practical procedure to
implement those approaches, including variance and covariance estimations, as well

as its formal theoretical developments will be addressed in the next chapter.
Throughout this chapter, we illustrate each development using examples from the

LFS. For multinomial logistic models, we use the variables (sex, age, state) defining

the sub-populations as the independent variables or effects in the model to obtain
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smoothed estimates of the proportion of people in each of the three categories

(Employed, Unemployed and Non-active) needed for the calculation of the rates

within each sub-population.

3.1. NOTATION AND THE PL APPROACH

3.1.1. Notation

We now define some basic notation that will be used from now on in this thesis. This
basic notation is defined with the purpose of simplifying later explanations.
Additional notation will be defined elsewhere in this document when required.

Let us consider each sub-population as the cross-classification of people over 14 years
old by sex, age groups and states. Let the subscript i=7,2 denote the ith sex category,
j=1,2,3,4 denote the jth age group and k=1,2,...,23 denote the kth state (see section
1.4). Thus, we have C=2-4-23=184 cells or sub-groups. Similarly, let the
subscript ¢g=17,2,3 denote the groups Employed, Unemployed and Non-Actives
respectively. In some cases and for the sake of simplicity, we will refer to the

subgroups ijk ordered lexicographically as s =1,...,S .
Regarding counts, proportions and rates, let us define:

M, = The “true” finite population count of the number of people over 14 years old

in the ith sex category, jth age group, kth state, gth labour force group, for
any specified time. We use the term “true count” to indicate the “assumed”
true count, i.e. the Census counts for a census year. For any off-census year,

we consider this count as “unknown”,

M. = Z;l M, = The true finite population count of the number of people over

14 years old in the ith sex category, jth age group, kth state, for any specified
time. Likewise, any other subscript that is replaced with a point (=) will

indicate that the figure is a total for that subscript. For example, M, will
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.. 2 3 « . 3.
indicate Zl_:] Zq=1 M g Here we also use the term “true count” to indicate

the “assumed” true count. In this case, the assumed true counts will still be
the Census counts for a census year, but now, providing that the labour force
groups (q) are aggregated, the “Census population projections” will be the
“assumed” true count for any off-census year; otherwise the count will be
regarded as “unknown”.

P = My, /M = True finite population proportion of the number of people over

14 years old in the gth labour force group, belonging to the ith sex category,

Jth age group, kth state for any specified time. For the term “true”, the same

conditions as the ones described for M, apply.

R, = True rate associated with the gth group for the ith sex category, jth age

g~ ik
group, kth state. That is, ,R;, ,R; and R, would be the Employment
Rate, Unemployment Rate and Non-activity Rate for the ith sex category, jth
age group, kth state, as they were defined in section 1.4. Additionally, we

define ,R; as the Activity Rate (section 1.4). For the term “true”, the same

conditions as the ones described for M, apply.

When we use the small letters m and r instead of the capital letters M, and R used

above, we will refer to sample figures. For instance, m,_ will denote the sample

itkg
count of people over 14 years old in the ith sex category, jth age group, kth state, gth

labour force group. To denote sample proportions we will use p instead of 7 .

Likewise, when we use the symbols “*” and “~” over any of these letters (includin
y y g

the symbol 7 ), we will refer to a design-based estimator and to a model-based

estimator of the letter or symbol in use. For instance, M. and M stg Will refer to the

ijkg
design based estimator and to the model based estimator of the true count of people
over 14 years old in the ith sex category, jth age group, kth state, gth labour force

group, for a specified time.
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3.1.2. Pseudo-Maximum Likelihood (PL)

We now give a brief description of the Pseudo-Maximum Likelthood method, which
we shall use as the key tool to link the “standard” analytic statistics procedures to the

case of complex samples.

A common standard approach when estimating parameters for regression models is

the use of Maximum Likelithood Estimation (MLE). Let y, (i=1..,n) be n
independent variables with known probability density function f;(»;;0). Suppose we

have observed one realisation for each variable y,. The joint distribution of

y; (i=1,..,n) is given by f,(»;0)- £5(3,:;0)--- f,(»,;0) which can be regarded as a

function of 0 and is called the Likelihood Function:
1(0)=11/0:0)
i=1

The MLE of 0 is given by the vector 0 that maximises the Likelihood Function,

which is the same as maximising the logarithm of the Likelihood Function

L(0)=Log(1(0)).

The vector © can often be obtained by solving for @ the set of Likelihood Equations:

OL(8) & oLog(f,(ys9) < _
o =2 - _;:U,.(G)—O (3.1

We have then that the set of Maximum Likelihood Statistics  is a function of the

variables y,, that is, 0= (Vs Varees V) -
When taking a sample using Simple Random Sampling (SRS) the assumption of

independence is usually made and the vector of parameters 0 is obtained by MLE.

When the sampling design is complex, the distribution functions f;(y,;0) are
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affected, being now the conditional distributions of the population given the sampling
design. If we want to apply MLE with complex samples we have to define first the

structure of those conditional distributions to be used in the likelihood function. This

process may be highly complicated requiring the modelling of the relation between y,

and the design variables (Skinner 1989).

Pseudo-Maximum Likelihood Estimation (PL) is an approach to the estimation of the
vector of parameters 0 avoiding the complexity of defining the conditional

distribution of y,. Suppose the sample y, ,i=(l,..,n) has been taken from a finite

population Q using a complex sampling design. Suppose € consist of a realisation

of N independent random variables Y, , i = (1,.., N) with distribution function f;(¥;0)

known.

Suppose for the moment that we have observed the whole finite population Q, that is,
we have a census. Using this information in (3.1) and solving for 0, we would get a

MLE of the vector of parameter 0 based on the finite population Q; that is, the MLE
for @ would be a vector of population parameters 0 defined by the values in Q.

We shall call 8% the census vector (Binder 1983), which is usually the target

parameter in many common analysis where the estimation of @ can be seen as a

necessary step to estimate 0% itself.

We have now that n = N in the equation system (3.1) and thus Z: U, (0)=A(0) is

a vector of finite population totals that are function of 0.

In practice we do not know the vector of finite population totals A(8). The PL
approach consists of replacing the vector of totals ZZI U,(6)=A(6) in (3.1) by a
design consistent estimator A(G) and solving the equation system to obtain the
pseudo-likelihood estimate 8,, which therefore estimates the census vector 0,

6, =0
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Here again, 0,, is a function of the variables y,, that is, 8,, =g(y,,¥,,...,y,) and the

structure and properties of its variance-covariance matrix estimator will depend on the

variance of that function under the complex sampling design.

The estimator 0 », might coincide in some cases with the MLE é, for instance, if we
use a self-weighted sampling design while using the Horwitz-Thompson estimator.

However, it is clear that 8,, is not unique since it depends on the structure of the

estimator A(O) used.

3.2. THE SPREE METHOD

As it has already been discussed, the method of Structure Preserving Estimation
(SPREE) for categorical variables (Purcell and Kish 1980) offers a possible answer to
the situation of main concern in this document, i.e. to obtain Labour Force estimates

making use of auxiliary information derived from population censuses.

3.2.1. General description of the SPREE Method

The SPREE method consists in obtaining a cross-tabulation with estimated counts for
the required period (often the present moment) using as a starting point a cross-
tabulation of the same dimension whose internal structure (marginals and counts) is
believed to be highly correlated with the structure of the required cross-tabulation.
The cross-tabulation used as starting point is often —but not necessarily- a table with
the same variables as the one required by the researcher but for a previous reference

period, i.e. a previous Census.

The basic idea is, knowing that a cross-tabulation is fully defined by its internal
association or interaction structure, to “update” some elements of that structure in the
starting table by using “present” reliable information related to some of the margin of

the cross-tabulation. We use the term “present” here to denote the period of time for
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which estimations are required. Potential sources for present information are, for
instance, large sample surveys, census updates and administrative registers. By using
the Iterative Proportional Fitting (IPF) algorithm (see Deming and Stephan 1940,
Purcell and Kish 1980, Agresti 1990, Chambers 1999), the chosen marginals in the
starting table are forced to agree with the present marginals. This process updates the
structural elements associated with the chosen marginals whilst leaving the remaining
elements unchanged. The table counts resulting from this process are the estimated

counts for the required period.

The IPF algorithm consists of two basic steps that are repeated until a convergence
criterion is achieved. Let us suppose we want to obtain updated count estimates for

an x-dimensional cross-tabulation using as “initial” or “starting” point the same but
outdated table whose counts we shall denote by M? , (c=1,...,C) where c denote the

lexicographic order of the table cells. Let us also suppose that we have current or

updated reliable information about R marginals of that cross-tabulation and let

M = (MM, .M ,..,MJ") be a R-vector containing those reliable marginal

counts. The IPF algorithm proceeds as follows:

a) Adjust the initial counts M by an appropriate scaling factor to make them agree

with one of the “present” marginals. Let us denote the adjusted counts by M.

b) Go back to step a), using the adjusted counts as initial values i.e. M2 =M, and

using a different “present” marginals from M{“" that has not been used yet. If all

the present marginals chosen for the process have already been used, start a new

cycle using the one used in first place.

New cycles are carried through until the following convergence criterion is attained:

let MY =(M/",...M",..,M}") be the vector of the R adjusted marginals involved in

the process, after the steps a) and b) have been completed for the ¢-th time. Now, let

AA'be the vector whose elements A4, are the absolute differences between the

updated marginals and the adjusted marginals after the steps a) and b) have been
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completed for the #-th time i.e. AA! =[M* —M™"|. Convergence is achieved at the

t-th iteration when:
AA’r<6 s Vr,0=0 3.2)

That 1s, all the differences between the adjusted marginals and the present marginals

chosen for the process have to be sufficiently close to zero.

We have then that the resulting adjusted counts from this processM/ i.e. after

convergence has been reached, are the SPREE estimates or updated count estimates

we were looking for. Therefore, using the notation defined in this section, we can

define the SPREE estimates of a cross-tabulation as the set of counts M satisfying

the set of equation:

M =M*" (3.3)

where M/ is the vector of the R adjusted marginals involved in the process, after

convergence has been attained.

3.2.2. SPREE and the Labour Force case

In our specific case, as it was explained in the previous section, the sub-population
groups are a cross-classification of the people over 14 years old by sex, age group and
state. The total counts and marginals for that cross-classification or cross-tabulation

can be obtained for the Census year. In this section we will refer to Census year

counts by adding apostrophe to the notation already defined 1.e. M z/kq .

We do not have reliable information about the current counts M, . However, the

census population projections provide us with information about those marginals
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related to the demographics variables (sex, age, and state), that is the sub-groups M,

and consequently M, , M, s Mooy My, My, and M, . From the LFS we can

select those estimates of the present marginals that we consider “reliable” enough to

be included into the SPREE process.

Example
For illustration purposes and to bring theory into LF context, we will refer throughout

this chapter to the LF situation using the notation defined in section 3.1.1.

Let us suppose that we have reliable LFS estimates for the marginals M, , M, and

ie. M,

iegs Mivy and M. jog- LEt Us also consider the

accordingly M, and M

.j.(] kd
census demography projection at the state-sex-age group level as the true marginals

M,

s value. It is important to recall that, although the conceptual definition for the
variable characterising an individual as employee, unemployed or non-active is
exactly the same for both the 1990 Census and the LFS, there are practical issues
suggesting that a prior adjustment of the Census data might be necessary (refer to

section 2.3). It is also worth noticing that, due to the post-stratification estimation

method used by the LFS, the LFS estimations counts ]\ngk, equal the census
demographic projection counts M, -the LFS estimation process forces the estimates
of M. to be equal to the census projections-. Therefore, we shall use M,,. and

M., indistinctively to denote those demography projection counts hence, although it

ik

is clear that M ;. Will not be object of sampling error.

Starting from the census cross-tabulation, we can use the iterative proportional fitting

(IPF) algorithm to make the census marginal counts M., M ,',kq and M y , agree with
the census sub-population projection M i« and with the reliable LFS estimates of the

current counts M, and M, , that is, M. and M j.q- Lhe algorithm to obtain the

ifeq wkg

SPREE estimates is as follows:
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a) Adjust the initial counts M, by the scaling factor M, /M, to make them

agree with the “present” marginal estimate M .- Let us denote the adjusted

)

"

ijkq *

counts by M

b) Adjust the counts M, by the scaling factor M. /M. to make them agree with

the “present” marginal estimate M j.o - Denote these adjusted counts by M, .

"

ijkq

¢) Adjust the counts M, by the scaling factor M, / M mh] to make them agree with

the “present” marginal estimate M. « - We denote these adjusted counts by M ykq .

1

d) Go back to step a), using the counts M, as initial values.

These steps go on until convergence is achieved. The resulting cross-tabulation will

thus contain the SPREE-estimated counts M ;k’;REE with the SPREE-estimated

marginal M iy @0d M. &, Tor the present time period. The marginals M koo M j-q and

~

M., will all agree with the corresponding “present” marginal estimates M ke M e

wkq

and M i » that 1s,

(3.4)

Note that this procedure has left unchanged the initial structural (interaction) terms of
the Census table that are not related to the marginals we have forced to agree with
“present” count estimates, i.e. it has left unchanged the I-K-Q, J-K-Q and I-J-Q

jg t0 make them agree with the

structural terms. For instance, when we adjust the M

“present” marginal M, - step a) in the IPF algorithm example above-:

Mijkq =

M, M. 3.5

ijke
we are using the same scaling factor M, / M yk at each level of g, thus all the cross-

ratios but those related to ¢ are being changed.
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To illustrate this let us write the updated cross-ratio I-J for /=1,2 and j=1,2 after the
adjustment given by (3.5),

. M .M
" My, M 224 , ,
CR(I,, - J, )= Mllkq M221«1 _ e Mnk- 2 M22k- ” Mllkq Mzqu 3 6)
1,2 1,2 ' ' ‘
21kg Mlqu M. M,,.. M M. MZqu M12kq

21k 12
! M21k “ M]ZA-

CR(I,, —J,,) has obviously changed from the original one. Working the same cross-

ratio for any combination of levels for I-J, I-K, J-K and I-J-K, we can easily see that
those structural terms have changed. Let us now write any cross-ratio involving Q,

say I-J-Q for i=1,2, j=1,2 and ¢=1,2:

CR([ Q ) Mllkl M22kl . MZlkZ M12k2
1,2 1,2 " "
MZlkl M12k1 MllAZ M22k2
M' Mllk- M' M22k- M' MZlk M M12k
11k1 M' 22k1 M‘ 21k2 M 12k2M
— 1lke 22ke | 21ke 12k- (3 7)
M' MZIk M M12k- M' Mllk M M22k-
21k1 M 12k} M 11k2 M 22k2 M
21ke 12k 11k 22k
= Mllkl M22k1 M21k2 M12k2
M21k1 M]Zkl M11k2 M22k2

This cross-ratio remains exactly the same as the initial census table. Again, working
the cross-ratio for any combination of levels for I-Q, J-Q, K-Q, I-J-Q, I-K-Q, J-K-Q

and I-J-K-Q, we can see that those structural terms have not changed.

When we adjust the other two marginals M..kq :M,,kq and Ml.j =M, , we then

ieoq?
change the structural terms in the original table associated to those marginals, i.e. K-
Q, I-Q, J-Q, I-J-Q. Consequently, the only structural terms that are not changed in our
specific case are I-K-Q, J-K-Q and I-J-K-Q.

On the whole, we have that when applying the SPREE method we always end up with

some marginals matching “present” marginals and with some structural interaction
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terms changed and the others preserved. What term changes and what remains

unchanged will depend on what marginals we adjust to current reliable information.

3.3. THE SPREE METHOD AND LOG-LINEAR MODELS
3.3.1. Log-linear Representation of Cross-tabulations

We have seen in the previous section that the SPREE method involves three cross-
tabulations, i.e. the target unknown cross-tabulation, the reference or “starting point”
cross-tabulation and the “estimated” cross-tabulation, as well as some reliable

information related to some of the marginals of the target cross-tabulation.

Nelder (1974) showed that cross-tabulations counts can be expressed or modelled as
log-linear saturated models. Therefore, the three cross-tabulation involved in the
SPREE method can be expressed as log-linear saturated models. In our case, the

reference cross-tabulation is the Census table and its log-linear representation is,

Log(M,fjkq) L T S A o T T W

(3.8)
This is, a log-linear model containing all interactions up to the highest interaction
order (saturated). Each parameter XA in (3.8) represents the structural terms
associated with its sub-indices. For instance, the parameters 7»11 correspond to the

structural terms given by (3.6), related to IJ when KQ are kept constants. Likewise

the parameter X;q correspond to the structural terms given by (3.7), related to 1JQ

when K is kept constant. The constant term in (3.8) is given by A, .
In the same way, we can express the current but unknown cross-tabulation counts by:

Log(Mijkq) =kt A A FA AR A A A R AR A A A A A A,
(3.9)
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The cross-tabulation resulting from the SPREE method or “estimated” table can also
be expressed as a log-linear model. We know that some of the structural terms in the
SPREE-estimated table remain unaltered from the reference table. We also know that
the remaining structural terms are “updated” or estimated. Therefore, we can expect
that the log-linear model resembling this SPREE-estimated table will contain a

mixture of original reference parameters and “updated” parameters.

As we shall prove later in this Chapter, in the LFS situation this estimated table is

represented by a log-linear model with the following general structure,

=X4 h +X2 (3.10)

ijkq ) ijkq ijkg

Log (M

where X, and X, are the zero-ones rows defining the updated and the unchanged
terms, respectively, related to cell jjkg. Note that X/, and X7, are just the rows of
two matrices, X* and X® representing a partition of the well known model matrix
for log-linear models, i.e. X =[X":X"]. The counts A, are the SPREE-estimated

present cournts.

In the example formulated in section 4.2.2 where the structural terms [-K-Q, J-K-Q
and [-J-K-Q are preserved by the SPREE process, the explicit structure of the log-
linear model (3.10) representing the SPREE-estimated table would be,

Log(M,_.,,‘,q):koJr T A o O T A" Vi VY
(3.11)

We shall prove in the following sections that the “updated” vector of parameters A in
(3.10) are the Pseudo-Likelihood estimates for the corresponding target vector of

parameter A when these are constrained to equal the remaining “unchanged”

parameters A . Consequently, the estimates generated by the SPREE method M kg OT€

in fact Pseudo-Likelihood estimates from a constrained saturated log-linear model.
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This fact will enable us to develop expressions for SPREE-estimates and their

respective variances based on Generalized Linear Model theory.

3.3.2. Log-linear Models: A Brief Description

Consider a set of sample counts m_, from a given cross-tabulation with c¢=1,...,C
denoting the lexicographic order for the C cells in the table. Let us suppose that m,

follow an independent Poisson distribution,

) B Iu;"c _e‘llc
f (mc > /uc ) - m, !
with expected frequency p, =e**, that is,
Log(p,)=X (3.12)

where X, is the cth row of the zero-one CxP model matrix X whose rows define the

effects and/or interaction terms related to each count and A is a P-vector of

parameters, so that p, = p_(A)= f (). That is, the nonlinear expression of the model

for pu, p, =e**, is “linearized” and modelled as in (3.12) — a log-linear model. This

is a special case of Generalized Linear Model (GLM) theory (McCullagh and Nelder
1983, Dobson 1990).

Many techniques have been developed to estimate the vector of parameters for models
like (3.12); some of them are Weighted Least Squares (Grizzle et. al. 1969, Agresti
1990), Minimum Chi-Squared (Neyman 1949, Bhapkar 1966, Agresti 1990),
Minimum Discrimination Information (Kullback 1959, Berkson 1972, Simon 1973,
Gokhale et.al. 1978), Kernel Smoothing (Aitchison et.al 1976, Agresti 1990) and
Penalized Likelihood (Good et.al 1971, Simonoff 1983, Titterington et.al. 1985).

66



We shall use here Maximum Likelihood Estimation (MLE) to deal with log-linear
models like (3.12) (McCullagh and Nelder 1983, Agresti 1990, Dobson 1990). MLE

consists in finding the vector & that maximizes the likelihood function,

C (Y. ot
Log (L (u(k))) = Log(Hy-cO;n)—,ej

IO
= Lomt )

> m Log(u, (W)~ u,(h)— Z Log(m,")

c=1

C c

_ X,

= E m, X h— E e”<" —constant
c=1 c=1

The likelihood equations are obtained by setting to zero the derivatives of the Log-

likelihood function with respect to the unknown vector of parameters A:

(6Log(L)) o
a )

where (QZ%(L)) is a P-vector whose pth element is given by:

el el (3.13)

so the pth likelihood equation is given by:

C

C
>x,mo=x, 1)
c=1

c=1
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Let m be the C-vector of samples counts m_ and let p(h) be the C-vector of expected

frequencies p_ (A). The set of likelihood equations is given in matrix notation as:
X'm=Xn) (3.14)

Birch (1963) showed that the likelihood equations for log-linear models are defined

by equating the minimal sufficient statistics to their expected values. He also showed

that for a log-linear model there exists just one set of counts m;, that both satisfies the
model and makes the minimal sufficient statistics equal to their observed values.

Solving (3.14) for & we get the maximum likelihood estimates & and consequently,

fi=p(),
X'm=X"p(l) (3.15)

Note that the minimal sufficient statistics depend on the structure of the model. The
zeroes and ones in each row of X' define the cells for which the parameter related to

that row plays any role. Therefore, X'm is a vector whose elements are the sums of

cells defining specific marginals that correspond to parameters in the model.

3.3.3. Log-linear “Census” Models

Let us suppose now that our sample vector m is a vector of finite population counts

M={M,6} with “ M, =M. Letus suppose that the finite population, denote by
€ e=1 c p p

QY is a sample from a super-population with M, c=1,.,C following an

independent Poisson distribution,

(3.16)
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with p, =p () =e**. It is clear then that the results developed in the last section

fully apply to this case. The likelihood equations given in (3.14) are now,
X'M=X"p) (3.17)

Note that solving (3.17) for A we actually get the vector of parameters for the log-

linear model corresponding to the set of finite population counts A, ; we shall denote

such a vector of parameter by A% ; that is,
Log(M )= X% (3.18)

This vector A% therefore acts as the MLE for the super-population vector of

parameters A. That is, & = 22,

XM =Xp")=Xn@) (3.19)

Example.

In our Labour Force case, assuming that the population counts M follow an

ijkq
independent Poisson distributionl, the counts M. .M, and M., would be the
minimal sufficient statistics for an unsaturated log-linear model Log(u)=X}.

containing all the two-level interaction terms and the ijk as well as the ijg three-level
interaction terms (see Agresti 1990 pg.166), that is:

Log(uijkq) =he A A A A A F R A R F A R A R, A, (3.20)

ik



Therefore, following Birch (1963) results, the equations:

My, = 1y (1)
M.y =ty (1) (3.21)
My =ty (3

are the likelihood equations for the model (3.20) and the vector A and the set of

counts |t =i (A =eX* satisfying these equations are the Maximum Likelihood
p‘ljkq szkq y g

Estimates for & and p,, ,

Log(pijkq)zko+ T I T i P S T VO S (3.22)

3.3.4. Constrained Log-linear Estimation

We can also be interested in fitting a model where some of the higher interaction
terms are believed to be known. In this case we want the fitting process to be

conditioned or constrained by them.

Let AY be the P -vector of unknown parameters and let A* be the P, -vector of

known parameters, with P, + B, =P. Let also X" and X* be the zero-one model

matrices whose rows define, respectively, the unknown and known effects and/or
interaction terms related to each count. We have then that the log-linear model we are

interested in can be expressed as:

Log(p)=X"2" + X*2% (3.23)

We can obtain the likelihood equations for a log-linear model like (3.23) in the same

way as we obtained those in (3.19). Suppose again that the counts A, follow an

! Some considerations about this assumption will be discussed later in Chapter 5
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independent Poisson distribution as in (3.16). However, we have now that

XUV axik .
p,=e " Tt thatis,

Log(p,)=X/2" +XIF (3.24)

where XY and X are the cth row of the zero-ones model matrix X” and X*

respectively, so that p_=p (LY, 4%)= f(AY,1%). The Log-likelihood function is:

U 4K -1, (Y 05
Log(L(u(}.U,XK )) Log[nﬂc (» l) ]

C M, AU 5 Ky =u, (7 05)
:ZLog He 0,17 )e
c=1 Mc!

=>"M_Log(u, (WY ,1%) = > . 1Y ,05) =D Log(M. 1)

c=1 =1 e=1

- ZC:MC [XE’XU +XFAK ] - iexﬁ,)‘U*XﬁK — constant

c=] =1

Noting that A% is a vector of known fixed constants, the likelihood equations for a

log-linear model for p are obtained by setting to zero the derivatives of the Log-

likelihood function with respect to the unknown vector of parameters A" :

OLog(L) _0
al )

where (?-Z—;aof—u(LlJ 1s a P, -vector whose pth element is given by:

@Log(L) U XI/A( +XK;K
_— M x X,
(2D S-S,

XZP (Mc _/uc(}“Ua)"’K))

(3.25)

Il
o MQ
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so the pt/ likelihood equation is given by:
C C
D xe,M, = x],m (,4)
c=1 c=1
We have then that, in matrix notation, the set of likelihood equation is:

XYM =X p(aY, %) (3.26)

Solving (3.26) for AY we get the maximum likelihood estimates for p,
p(kY, 1) =ji:

XYM =X p(AY,05) (3.27)

As the cells taken into account for a particular equation in (3.27) depends only on

XY, it is clear that the minimal sufficient statistics in this case are the same as those

of a reduced log-linear model Log(p)=X"AY .

However, the ML estimation of AY and p in (3.27) will differ from that of the

reduced model; this is due to the fact that, following Birch (1963) results expanded
by Haberman (1973, 1974), the MLE of parameters and counts for a log-linear model
have to satisfy not only the minimal sufficient statistics but also the structure of the

model. This structure is given by the right-hand side of equation (3.24). Therefore,

the MLE AY and consequently fi have to take into account AX, i.e. estimation is

constrained by A% . In brief, the ML estimates will consist of those values 4V and M
satisfying (3.27), that is, satisfying the minimal sufficient statistics as well as the

model.

Note that working with a model like (3.12), that is, Log(p)=X &, can be considered

as working with a particular case of the general model (3.23),
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Log (n)=X"2Y +X*A*; in model (3.12) we do not make the assumption of
knowing the value of any of the parameters in the structure of the model, i.e. all the

parameters in the model belong to A”,so0 A =2A".

Example

Let us suppose we are interested in the saturated model,
Lag(“ijkq) =RHAFR AR A FA Ay AR A A A A A Ry A A

and we believe we know the true values for A, ,A, and 2}, . Therefore, following
the notation defined above, we can write this saturated model as:

Log(, ) =X5, A" + X5 0

ijkq ijkq

U 1% U U u u U 1% 1% U U U U
Log(;,tijkq)—Xo AT AR N A AN A A, A A A A A

K K K
Fig + Ay + Ay

(3.28)

In this example, the matrix XY has the same structure as the matrix X in the model

(3.20) defined for the previous example. Therefore, the general structure of the
likelihood equations given by (3.27) generates, in this example, the same set of

likelihood equations (3.21). However, this set of likelihood equations has now to be

solved for AY conditioning on the vector of parameters AL*,

M. = B (iu,xx)
M.y =ty (37,05) (3.29)

Mij-q = Hijg (XU’)"K )

That is, AV is the vector of ML estimates of AY constraint on A% .
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We finally have:

Log(ﬂljkq)zXV AV XE K

ijkq ijkq

Log (i, ) = B +R7 + A7 + 87 + 17 48]+ + 87 + 00+ 15+ 00 + 4+ + (3.30)
+A% .

K K
g Agig + A

U U, xK 1K
Kipgh + X

with i, =e

3.3.5. Pseudo-Likelihood Estimation for Log-linear Models

So far in this chapter, we have been considering the super-population parameters

1, (A) as our target for estimation. We have also used the finite population counts
M, and therr model parameters A% as the ML estimates for p.(A). In practice,

however, we do not know the value of the finite population counts A, . In fact, these

counts are often the real target of the analysis, as it is in our case.

Yet, it might be feasible to get reliable estimates of the marginal counts needed to
solve the likelihood equations given above. Information from different sources like
Administrative Registers might be available for the period of interest. If this
information is available and we are willing to accept it as the “true” values, we can

then apply the theory discussed in the previous sections and get the vector of

parameters & =A% and the ML estimates p(&).

When no information is available from administrative registers or the same is

considered of poor quality, another alternative is the use of survey estimates. Suppose
we have survey estimates 1\7IC for the counts in the cross-tabulation and, although they

are considered of poor precision, the aggregated marginals involved in the likelihood

equations are considered reliable. We can then use the PL approach explained in

74



section 3.1.2 replacing finite population quantities by corresponding survey estimates
in the likelihood equations (3.26) to obtain the PL estimates for the vector of

parameters A and the expected frequencies p(A),
X'M =X'p(0Y,05) (3.31)

Note that all we have done here is to use a vector of sampling estimates M instead of

M in the likelihood equations. In other words, we are replacing the vector of totals
X[M-p@’, 05 |=A(M,25)=0 (3.32)
by a consistent estimator,
x’[M—p(x",xK)]:A(x‘ﬂﬁ):o (3.33)

Therefore, we can say that the vector of parameter estimates A", resulting from

solving (3.31) for AY, is the vector of PL estimates 1Y, generating the set of PL

estimates ji”*, with elements [i’*,
Log (4= X7, + X028 334

Note that using direct survey estimates M . in the likelihood equations, we are in fact
producing model-based estimates M . for the finite population counts to estimate the
super-population parameters p_(A). Provide the model holds, the model-based
estimates for the finite population counts M . should be of a higher accuracy than the

direct survey estimates; this is due to the fact that M are based on the estimation of

a fewer number of parameters and therefore their level of precision is higher.
However, as the model departs from reality the bias component in the estimates

increases. Therefore, the gains in precision when estimating the finite population
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counts through a specific model like in (3.34) have to offset the increases in bias in

order to justify its use instead of direct survey estimates.

Example

We can usually obtain population projections for the counts M, . For counts

involving Labour Force classification such as M, and M, , some countries

ij-q?
produce estimates based on administrative registers such as registers of people
claming benefits or registers of job seekers. If this is the case and we are willing to

accept those figures as true values, we proceed as discussed in previous sections

getting the vector of parameters % =22" and the ML estimates n(k). However, we
recall that this is not the case we are facing in this work. We are working under a
different scenario where no extra auxiliary information other than that coming from

censuses is available.

However, we do have survey information from the LFS that can be used in this
process. Therefore, in our example in section 4.3.3 where we have the likelihood

equations given by (3.29), we can rely on the population projections for the counts

M. and on the LFS estimate M_,,{q and M j.o 0 order to obtain the PL estimates

M

i - In this case, the pseudo-likelihood equations would be:

Mijk- = szk-(}‘gu)"K)

qu ZMAq(igLa;"K) (335)
M, =M, (1,05

jog \PpL>

Finally, the model estimates for the finite population counts are,

~ X, 05 +X 0K
MITE = o X (3.36)

kg

PL __ ~PL
and M, =, .
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3.3.6. SPREE Estimates: Log-linear Model Pseudo-Likelihood Estimates

We have seen that the minimal sufficient statistics implied by (3.31) will depend on

the structure of the model and:

a) Those minimal sufficient statistics will always consist of those marginals for

which we assume to have reliable current estimates. They are also related to

the highest interaction terms in A" for each factor in the model.
b) The likelihood equations given by (3.31) force the marginals of the to-be-

estimated table of counts to match the minimal sufficient statistics.

¢) Solving (3.31) for &Y given A%, gives us PL estimates AY, and thereby PL

count estimates M, .

We now focus our attention on the particular case of a saturated model of the form of

(3.24). Let us consider the following two notes.

In point a), note that the marginals involved in the minimal sufficient statistics are the

same marginals belonging to the vector M{” in the SPREE method procedure

explained in section 3.2.1.

In point b), note that the likelihood equations given by (3.31) will always have the

same structure as those equations implied by (3.3) i.e. the set of equations the adjusted

counts M,  have to satisfy for those counts to be the SPREE estimates (see section

3.2.1).

Therefore, taking into account these comments, point c) also implies the adjusted

counts M7  resulting from the SPREE process have to be the PL count estimates

ab,..n

M,, obtained using the estimated Log-linear model,

Log(M,, ) =X"4}, + X 3¢ (3.37)
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where 1Y, represent the “changed” or “updated” terms & and A* the “unchanged”

terms A in the resulting SPREE model as denoted in (3.10).

Example

Let us return to the SPREE algorithm discussion. In the example in section 3.2.2, we

discussed the case where a table from a previous census was to be updated using the

LFS estimates M P M kg and M jeg - WeE SAaW in that example that the IPF algorithm

forces the following equalities to be true:

ke ik

il
, %

(3.38)

ijg

=R R
Il Il
= X

which has exactly the same structure as (3.35) for the PL-estimates under the model,

Log(uijkq)zkél SR B Sl S e i el W M i S A (3.39)

K K K
iy + Ay + Ay

We know from section 3.3.1 that the set of counts produced by the SPREE method in
that example have the structural terms [-K-Q, J-K-Q and I-J-K-Q preserved from the

census table. We also know from section 3.3.1 that these structural terms are related to

the interaction terms in the log-linear representation of the census cross-tabulation that

'

we denoted as Ay, , A, and A,

jtg - Lherefore, if we set

}\‘iﬁ] = 7\'i'kq
« ,
Aty = Ay
A8 =2

iikg — Yijkg

and solve the likelihood equations (3.35) for LY, we just have to invoke the result of

Birch (1963) where he showed that for a log-linear model there exists just one set of
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counts that both satisfies the model and ensures the minimal sufficient statistics are
equal to the observed values, to prove that we will get from the constrained log-
likelihood PL-estimation the same set of estimated counts as those we get from the
SPREE process,

X 1y + X A%

MR = M, (5, 25 = Hijkq (25 =e

ijkq

3.4. UNSATURATED SPREE

Suppose we conclude that some of the higher order interaction structures do not play
any role in the overall structure of our cross-classification; yet, we feel that the higher
interaction structures among the remaining terms are worth preserving. We can still
use the SPREE algorithm in this case to get the target count estimates; however, this

requires us to first make a suitable modification to the “reference” or “starting” table.

This modified table has to be one having: a) the same structural terms as those to be
either updated or preserved from the original table and b) the remaining structural
terms not to be either updated or preserved set to one. We get to this modified table
by building first a table from the marginals related to those effects to be either updated
or preserved, and then expanding that table to the original dimension of the starting

cross-tabulation ensuring the remaining structural effects are kept to one.

This modified table can be represented as a non-saturated log-linear model where
those parameters equivalent to those not to be either preserved or updated are not
present, i.e. they equal zero. Here, note that structural terms (odd ratios) equalizing
one in the cross-tabulation translate into parameters equalizing zero in the log-linear
representation of such cross-tabulation. As this modified table is the one used as the

starting table, this approach is called “unsaturated SPREE”.

The rest of the process would be exactly as it has been explained in this chapter. We

apply the IPF algorithm to the modified starting table and end up with a table of count
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estimates with the preserved structural terms from the original table and the updated

structural terms as planned and the remaining structural terms equal to one.

However, building that modified table might be cumbersome. Instead, we can use
Log-linear models to do this. Let A" again be the set of parameters considered as

“unknown™ and A® the set of parameters considered as “known” in a log-linear model

for the expected frequencies matrix of dimension C, that is,

Log(p)=X"2Y + X*2* (3.40)

We recall that 1Y and A" represent the interaction structures to be updated and to be
changed respectively in the SPREE procedure. In section 3.3.4 we showed that the

general set of likelithood equations for this kind of models is given by:
X'M =X"n(rY,0%) (3.41)

However, note that we are now working under the assumption that some of the
highest order interaction terms do not play any role in the structure of the cross-

tabulation. Therefore, our model (3.40) is now a non-saturated log-linear model with

AY and A* being of dimension P, and P, respectively with (P, +B,) < P.

We obtain the PL estimates for the target counts as it was explained in section 3.3.5,

that is, using the set of direct estimates M instead of M in (3.41), solving for AV, so

that we get the vector 1%, ,

X" M=X"p(Y,,05) (3.42)
and finally using the equation:
M,, = (3.43)

Again, the cells taken into account for a particular equation in (3.42) depend only on

XY so the minimal sufficient statistics are the same as those of a reduced log-linear
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model consisting only of AY. Note in (3.42) that ML estimation of AV is also

dependent on the value of A% .

Example

In our example, suppose we assume that the highest order structural terms ijkg in our
cross-tabulation can be considered as not playing any role in the overall structure of
the table; i.e. they are equal to one. Let us also suppose that we want to preserve the
structural terms ijg and ikg from the census cross-tabulation updating the remaining

terms making use of the corresponding LFS direct estimate marginals.

We will use the log-linear approach to get the current count estimators. The modified

census table can be obtained by fitting the unsaturated log-linear model,

" . Q" 4 Q" ar an an o° (o} o Q" Qr Qn o
Log(M,.jkq)~Xijkq}. =Ny + A +xj + A +Xq +?\ij + A, +k,.q +7u].k +7qu +7qu
O a0 s0r aon

+iijk +/1ijq +Al.kq +/1jkq

(3.44)

Therefore, M}, = & are the counts in the modified “starting” table. Note that

(3.44) does not contain the parameter A, .
The current cross-tabulation counts are suppose to be well represented by the

following unsaturated log-linear model,

Q_3Q Q Q Q Q Q (9] O O Q Q
AT =A A +Xj +A, +xq +7»,.j + A +7Liq +xjk+qu+xkq

Q Q O Q
+/1ijk + %q + iikq + ;tjkq

Log (Mijkq) =X

ijkg

(3.45)
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Note that this model, as model (3.44), does not contain the highest interaction term

A . We now treat the terms related to the interaction structures to be preserved as

ifkq *

“known”, so that (3.45) can be written as,

QU K QK _ QU QU QU QU QU QU QU QU
mx +X,.jqu =X, +A +kj + A, +kq +7L,.j. +A; +X,.q +

_wU
Log(M,,)=X;
QU QU QU QU QU QK QK

M,jk +qu +/1kq +/1ijk +/1,.jq +/1ikq +ﬂ,jkq

(3.46)

We now assume that the current counts A, follow a Poisson distribution with
expected frequencies p, so we can use log-linear PL estimation to estimate the

model,

Log(p,, ) =X, 0" + X

K _ 12U U U U U U U 1% 1% U
i g =hg FAFAT AR AR A A R R A

U U U K K
+ Ay A+ A, A A,

(3.47)

As we have already seen, this procedure will give us PL estimates for the target model

(3.46). Therefore, considering A% =A% and A¥ =AY and using the LFS direct

ikg ikq Jkg Jkq

counts estimates M, to solve (3.42) for .Y, we get the PL parameter estimates i‘;L.

ijkg
The likelihood equations are the same as in (3.35); however, the resulting XZL and
consequently the resulting PL current count estimates M ;ﬁl are different in this case
from those we would have obtained in (3.35). This is due to the fact that the

likelihood equations are solved here constraining on A% = (A, ,A; )" whilst in the

kg

saturated example they are solved constraining on A% = (A, A5 A% )"
Finally, the set of PL current count estimates are given by the equation:

Y XYY, +XFK XUI xFe”
M, =e """ =ttt (3.48)
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3.5. LOG-LINEAR MODELLING WITHOUT STRUCTURAL
INFORMATION

We could face the situation where no information from reference tables is available.

That is, there are not interactions from any reference table that we want to preserve.

In this case we can still make use of log-linear models to get current count estimates
although we now have to rely only on direct estimates of current marginals or any
other source of information regarding current marginals we assume as reliable. That

1s, we have to rely on a traditional unsaturated log-linear model,

Log(p,)=X (3.49)

where A=A" is a P, -vector with P, < P. The likelihood equations are again given

by (3.42) but without conditioning on any interaction term A,
XYM = XY n(dY, (3.50)
The set of PL estimates are given by the equation:

M, =~ (3.51)
PL

Example

Providing there is a close relationship between the preserved census year structures

and the respective current structures, the procedure explained in previous sections

should yield significantly better estimates of the count A/, than those offered by the

direct design estimators.

The problem is that Latin American countries usually have unstable economies that

do not guarantee the preservation over time of structures such as the labour force,
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especially at small area levels. In the last fifteen years, for instance, Venezuela has
experienced important economic changes that have led to dramatic transformations in
the dynamics of its labour force. As a simple illustration of this fact, we can mention
that the Venezuelan Unemployment Rate was 10.4% in 1990, dropping to 6.4% in
1993 and registering 14.5% in 1999. The Activity Rate dramatically rose from 59.4%
in 1990 to 65.7% in 1999. People occupied in either small businesses or as self-
employed increased 10.3% (from 42.1% to 52.4%) in just nine years. These
indicators suggest that the dynamics governing the behaviour of the labour market
have changed considerably since the last census year. This phenomenon can be even
more evident at local levels. For instance, the discovery of new oil layers in the south
east of the country at the beginning of the nineties motivated important internal
changes in some states that started registering significant growth in population. These

arguments suggest that preserving structures from the census year as those implied by

A ,A, and A in (3.8) may not be a sensible strategy to follow. However, this has

ikq > " jkq ijkq

to be verified before drawing any definitive conclusion.

Suppose now that there is no Census table that can be used as a reference for the
SPREE process. Suppose also we feel that the expected frequencies of the Poisson
model generating the current set of counts is sufficiently explained by the following

unsaturated log-linear model:

Log (M, ) =Xh=p+d + A, +h + X, 0 +hy + 0 + A + A + 0+ +
(3.52)

That is, the highest order interaction structures jkq ikq and ijkq in our cross-tabulation
can be considered as not playing any role in the overall structure of the table, so we

set them to one and consequently to zero in the log-linear model.

The likelihood equations for this model are again the same as in (3.35). The resulting
A, and PL current count estimates A/, will be different from those shown in the

previous examples as the likelihood equations in those cases are solved constraining

on “known” parameters A" .
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The PL current count estimates are now given by the expression:

ML = Rt (3.53)

itkg

3.6. THE SPREE METHOD AND MULTINOMIAL LOGISTIC MODELS

Let again the set of population counts M, follow a Poisson distribution P(p,). Itis
well know that the distribution of M, given M = Zil M, 1s multinomial (M,n ),

with m,=p, /p ;p= Zil u, . If we assume one of the variables defining the cross-

tabulation a response variable and we split the set of population counts into the G

groups defined by the remaining variables in the table, so that we rename the C counts

as M, ;g=1..,G;c'=1.,C, the conditional distribution of M, given

M, = M, is a product multinomial (M,,,m,, ), with nc./g:pgc./ug;

c'eg

ué=>y _ u, . Notethat C=GxC.

Suppose «t,,, =7, (B)=h(Z,,B) is a general response model for ©,, where B is a
T-vector of “effect” parameters and Z_ is the cth row of the zero-one Cx7 model

matrix Z defining the effects and/or interaction terms related to each cell. A product

multinomial logistic model for ., is given by,

Log[ Tt ] ~Z p=78 (3.54)

ﬂbase/ g

where ., 1s any of the C " expected response proportion of group g selected to be

used as the base category. We can also express (3.54) for the case in which we

assume we know some of the effects and/or interaction terms in B,

T,
Log( c’g ): ZZC,BU +Z§C.BK (3.55)

base/ g
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The proportion 7, is given by the expression,

eréCvﬁU +Z5.p¢
T, = - - .
c/g ZC- elgc-ﬂuﬂéclﬁ’( (3 56)

c'=1

We can easily extend the SPREE method to the case of product multinomial logistic

regression noting that,

., AT -
Log| —" |=Log ~———————~“gc/u —|=Log a
7 base/ g lugbase / H Iugbase

and by properties of logarithms,

Log [“—gj = Log (.. )~ L0 ( Hypese )

ghase

that is, a log-linear model for p,.=p, minus the same model for another count
Hyaeee = M5 thus, assuming a general log linear model for p, like the one in (3.24),

we have that,

Log[ Terg } =(XUAY + X5 )= (XY, A+ XE )

ﬂbase/g
=(XUAY = XY, 0 )+(XEAK - X5 A5 (3.57)
= (XU =X, ) (X5 - X, A
Therefore, from (3.55) and (3.57) we have that,
(X(gjc' - ngase))\‘U + (ch' - ngase ))“K = ZZC’BU + Z;'BK (358)
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As we have seen in this chapter, finding the PL estimates for the log-linear model
Log(u gc.) =X A" +X A" is equivalent to carrying out a SPREE process
preserving the structural terms related to A* from the reference table. Therefore, if

we substitute the PL estimate 47  into (3.58) we get the structure of the logit model

equivalent to the SPREE process,

TE:L ~ytL ~ o rPL
Log( ~PL/g J: (XZC' _X(gjbase))"u +(X§c' ~X‘{g<l7ase))“K = ch'ﬁU +Z§c'BK (359)

Recall that when we fit (3.59) we are working with counts M. following a product

multinomial distribution (M#,n,,,) so that we assume M, fixed. Therefore, the

log-linear models Log(ugc.) we are interested in are those containing the interaction
terms Kg as they force, through the likelihood equations, the marginals M .. to agree

with the population marginals M, .

PL

1g» Which are also the PL estimates for the

The PL estimates for the proportions 7

finite population proportions F,,, =M, /M ¢ » are given by,

it = C (3.60)

We shall illustrate this using our LFS case.

Example

Consider the saturated log-linear model for i, in (3.39). We have seen that fitting

such a model conditioning on A“ we get PL estimates (i) equivalent to those
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obtained by carrying out the SPREE method using the LFS estimates M k> M .,y and

M., . Therefore, we can obtain PL estimate for 7, and therefore for £, as,

~PL
~pL Hijrg

7Z"I/"J‘k - 3 ~PL
Zqzl Hijeg

Another way to get the PL estimate for n_,, is by fitting the equivalent product

multinomial logistic model. The response variable is the category in the labour force

which we denoted by ¢=1/,2,3. We know that m,, +7,,, +7,,, =1. We can then
write the following product multinomial logistic model for =, using g=3 as the

base category,

o
Log (M] =X,.,B (3.61)

Tk

where B is the T=(LJK)(Q-1)-vector of parameters. The proportion 7, is given by,

Xijkq ﬁ

e
S (3.62)
Zq:l X’/qu

Noting that 7, = Ly, /K. » We can write (3.61) as follows:

T, H;
Log| — |= Log| —* | = Log  tty, )~ Log (;s:) =
Ty Hipes

= (A + A4 AT+ A+ A+ AL A AL A A A A D+ D+ A+ A )

U U U U U U U U U 4 U U U K K K
—(lo +A A H A A A A A A+ A +/1jk+/1j3+/1k3+/1y‘k+ki].3+?u,.k3+kjk3+7Ll.jk3)
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Rearranging,

Log[ q/ukj (A;/_AGU)+(/1U—X,U)+(/1U‘13)4‘( /1/5]3)

Ty (3.63)
U K
+(ﬂqu 113) + ( thq Z’tk?a) + (/1}/«] k3) + ( ykq t/k3)
so that,
T .
qfik | _ U U U U U K K K

LOg(;Z—J =0y + Py + Byt By + Big + Bag + Bing * Big (3.64)

3/ijk

Fitting (3.64) conditioning on B* -this will be explained in the next chapter-, we get

the PL estimates,

~PL
T /0 PL ~ P ~ Pl ~ o PL ~ o PL
g/jk | _ =U Ut Ut U U K K K
LOg{TJ—% +By By tBy t By t Byt Pugt By (3:65)

3/ijk

where toPL is the PL estimate for the constant term for the gth labour force group and

BUPL, BZPL,B " d[gif.;m are the corresponding sex, age group and state PL
estimates effects and the sex-age PL estimates interactions effects at the different
levels of ¢. The parameters B , B, and By its correspond to the sex-state, age-state

and sex-age-state interactions effects at the different levels of g for the Census year,

which we planned to preserve.

Note that the log-linear model Log( py.kq) we use here contains the interaction terms

A asnecessary terms given the assumption that the M, are fixed.

ik
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The PL estimates 7, , and consequently the PL estimates for P, =M, /M, ,are

q/lijk »
finally given by,

gPL g PL L PL L PL o PL
ea‘l’J Bl +Bly By +Biy +Biy BB,

~PL

7Z'q/ijk_ 5 TUPL L ZgPL ooPL gPL e e ¢ (366)

Z &% tPa By +ba By gt Big Py

g=1
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CHAPTER 4

PARAMETER AND VARIANCE ESTIMATION FOR THE
SPREE METHOD

In the previous chapter, we discussed the link between the SPREE method and both
log-linear models and logit models. These methods allow us to produce alternative
count estimates based on models when traditional direct estimates are considered

unreliable and no auxiliary information other than from past censuses is available.

The application of these methods results in smoothed estimates of the total counts
M, by the shrinking the direct estimates toward the average values defined by the

direct estimates of marginal counts specified by the terms in the model. These model
estimates should be better than the direct design estimates, providing the terms in the
model explain well enough the structure of the current cross-tabulation. That is, the
variance of these estimators should be lower than the variance of the direct estimators,
but that difference must be sufficiently larger than the magnitude of the bias arising

from the misspecification of the model for the model estimates to be preferred.

The main advantage of having established the link between the SPREE method and
log-linear and logit models is the possibility of using the Generalized Linear Model
(GLM) theory to estimate parameters and calculate variances estimators for the

SPREE process.
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In this chapter we first discuss a new idea for the estimation of SPREE parameters
and variances making use of the well known experimental design concept of
“exposures”. The appeal of this idea lies in its practical convenience as it can be

carried out using standard statistical software.

We then complement the theory developed in the previous chapter by describing the
theory behind the parameter and variance estimation process. A Rao-Scott (1981) chi-
squared approximation is defined in order to assess the goodness of fit of the models
proposed as representation of the cross-tabulation. Finally, alternatives for a
diagnostics process are discussed in order to obtaining measures that give us some
insight into the presence of outlying cells and influential points when these models are

to be implemented in practical work.

4.1. SPREE ESTIMATION AND VARIANCE ESTIMATES: PRACTICAL
COMPUTATION

The IPF algorithm described in the previous Chapter is the procedure traditionally
used to fit SPREE models. However, that algorithm does not allow us to get
parameter estimates and variances. We now describe a simpler method that allows us
to obtain the target count estimates and their variances without prior knowledge of the
model parameters from the census data. This approach can be carried out using

standard statistical software.

4.1.1. A new practical approach to SPREE computation: The Exposure-based
Method

We know from the previous Chapter that both the census counts M, (or any table
counts being used as a reference table) and the unknown current year counts A, can

be expressed as saturated log-linear models:
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Log(M,)=X" (4.1)

Log(M,)=X A" (4.2)

where A% and A% are the C-vectors of parameters for each saturated model. We also
know that (4.1) and (4.2) are respectively ML estimates of the super-population

model,

Log(p.)=X (4.3)

Log(p,)=X (4.4)

Let us consider a table whose C cells values are the ratios p_ /M, , that is, the relative
change between the expected value of the current count and the census year count for

the cth-cell. Consider now the logarithm of the ratios p, /M, _. Treating these ratios

as counts, we can also model them using a saturated log-linear model,

u ,
Log| £« =X A 4.5
g(Mj . 4.5)

C

where A" is the C-vector of parameters. We can get PL estimates for (4.5) using the

same procedure explained in the previous Chapter (see Section 3.3.3). Therefore,

using the direct estimates M, we can obtain PL estimates for M,
}IPL - P
Log| — |=X A" 4.6
g[ v; J c (4.6)

We shall highlight here the similarity of (4.6) to a technique widely used in
experimental design when the outcome of a variable is known to be correlated to an

“exposure” value (see e.g. Agresti 1990). Let y,, i=1,2,..,n, be a lexicographic-

ordered set of variables or counts following a Poisson distribution with mean Y, from
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a given cross-tabulation; that is, y, ~ P(¥;). Let the mean Y, be proportional to a
quantity or “exposure” value E,. Modelling the ratios Y,/ E, allows us to compare

the means Y, allowing for the distortions produced by the E,. Therefore, Y,/ E, can

Y.
Log| — |=X,A

be modelled as:

4.7)
Log(¥, )~ Log(E, )= X,
and the means Y, can be obtained as:
Y, =E - (4.8)
Using the sample counts y, we can obtain ML estimate of A and thus of ¥;:
Y, =E -&&* (4.9)

The term Log(El.) in (4.7) is usually called an ‘offset’. Most currently available

statistical software allow fitting models using an ‘offset’, and so obtaining count

estimates like the set )7, above is a fairly simple task to carry out.

In (4.5) M, acts as the ‘exposure’ value we assume to be correlated to the current
expected frequencies p, and Log(M c) in then equivalent to an offset. Therefore, the

PL estimates for the current expected frequencies are given by,

~PL _ yet XA
p-=M_ e

[4 c
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Let us now look into the structure of (4.5). By properties of logarithms, equation (4.5)

1s the logarithm of the current expected frequency p, minus the logarithm of the

census count M,

Log (—Ai—j = Log(u, )~ Log (M) (4.10)

4.11)

Let us write the vectors of parameters A and A” as a vectors consisting of two sub-

vectors A%, A% and L, A respectively. That is:

] e
)\‘B ? A.Q'B

so that (4.3) and (4.2) are now,

Log(n,)=X/"+X2" (4.12)

Log(M,) =X/ + X227 (4.13)

Here, A and L°“ are P,-vectors containing the first P, parameters of “lower
dimension” in A and A” respectively. On the other hand, ,® and A“” are the P,-
vectors containing the remaining P, parameters in A and A”'; P, + P, = C. Thus, we

can re-write (4.11) as,

“ )“A ‘_)\‘Q'A
Log(jwi J =X [x’* —xQ'BJ (4.14)
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and given X = [Xf,Xf:I ,

Log(ﬁ—iﬁ—J =X/ (M =a%)+ X2 (17 -0 (4.15)

4

We have then that X, 1" in (4.5) can be written as X/ (A*-2%*)+X? (2" -1%").
Therefore, the PL estimates in (4.6) are in fact obtained by solving the corresponding
likelihood equations for vectors A” and A® conditioning on the vectors

2% and A%?. In this case we can rewrite (4.6) as,

Log (%;-j =X/ (1 -2 x2 (177 -007) (4.16)

c

Let us assume now that 1* =4%” i.e. the P, parameters of the highest interaction

order defining the structure of both the “actual” and the “reference” cross-tabulation

can be considered as having the same value. In this case, the relative change p_/M,

can be modelled as the unsaturated log-linear model:

B Afnd 04
Lo =X A 4.17
g( MJ 2 ) (4.17)
and (4.16) would be,
~PL
He | pd 747 404
Log (-——M; j_ X’ (x A ) (4.18)

Now, noting that by logarithm properties (4.18) can be re-written as:

Log (/") =X/(1" =2 )+ Log (M) (4.19)
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by (4.13) we have that:

Log (i) =X}(1"" =22} + X/221 4+ X207

Log(ji/*)=X/1"" +X2%" (4.20)

It is important to bear in mind that X#%4" in (4.20) comes from (4.18), that is, 1*" is
the PL estimated vector of parameter for the underline log-linear model (4.17). These
estimates are obtained by solving the corresponding likelihood equation for A“

conditioning on the value of L%

Following (4.19) and (4.20) we can write the following expression for the PL

estimates of the expected frequencies,

x4 (iAP" _}.Q'A)

MPL 0 =M o xAAt xeyen 491
. =W, =M, -e =g (4.21)

We now recall the results of Birch (1963) where he shows that for a log-linear model
there exists just one set of counts that both satisfies the model and ensures that the
expected values of the minimal sufficient statistics are equal to their observed values.
Therefore, if the set of counts given by (4.21) are the PL estimates for the current

expected frequencies then they have to satisfy the likelihood equation for the model,
Log(p, )=X 1"+ X0

where A%? is considered as a constant. Note that this is the same set of PL estimated
counts as those obtained in section 3.3.5 in the previous chapter, where A? is
considered as the “unknown” parameters and A“””? is considered as the “known”

parameters. Consequently, fitting a log-linear model using as an “exposure” variable
the set of census counts is equivalent to fitting the same log-linear models as those

described in chapter 3 and is therefore related to application of the SPREE process.
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The advantage of this approach is that we do not need to know the assumed “known”
parameters to fit the log-linear model with exposure values but only the counts from
the reference table; this makes the estimation process simpler than the one implied by
the original approach in section 3.3.5 where we have to find the census log-linear

structure first to get the “known” parameters values.

Example

Let us consider again our example where the current set of counts M, and the set of

jig are represented as:

counts from a previous census M

Log(My, )=Xh=p+h+h, +h, +h, + A, +hy +h +h, +4, +2,

+/11.jk + ﬂijq + /”t,.kq + ljkq + ﬂ,.jkq

(4.22)

Log (Mg )=X0 =p + 0 + & + Ay + A + 2 + Ay + 0 +45 + 4, + 4,
+A

ijk iig

T TR T R T o
oo+ A +/1ikq+2’jkq+ﬂ'ifk(1

Let us consider the ratio M, /M., that is, the relative change between the current

ijkq ijkq
count and the census year count for the ijkg-cell and let us suppose that ratio can be

modelled as:

iig

M,
LOg(M—',’qu=XW Sl A O A A I R v
ijkg

(4.24)

/M,

ifkg

That is, we assume that the relative change M 1s sufficiently explained by the

ijkg
first order factors, the second order interactions and the ik and the ijq third order
interactions in the cross-tabulation without any other interaction term playing an
important role. This means that the remaining third and fourth order terms in (4.22)

and (4.23) are the same.
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We get estimates M s#g OF the present counts M, by estimating A" in (4.24), so we

ijkq
have:
Log(M, )= Log(My, )+ X1 (4.25)
and thus,
My, =M, - (4.26)

Note that (4.25) is in fact:

Log (M, )= '+ 2 + b 40+, 4K+ Ay +hy + 05 +h, +1, +

+A. + A+ A

ik ijq ikq

~r r r r r r r r
+/1,.j + Ay + ﬂ,,.q +/1jk +/1jq +/1kq + /11.1.,( +/11.jq

! ! r r r r Nr
F Ayt Ay A A A A+

(4.27)
=(U + )+ A+ A+ A+ A+ (4 + A+ + R+
+(ﬂ!.']. +Z,.j’.)+(/1;k +/?;;)+(/1,.'q +i,.f])+(ﬂj'.k +i;k)+(/1;q +/{;q)+
+(,1,;q +,ik;,)+(/1,;.k +,i,;k)+(,11 + A )Mf},, + Ay A

iig ijq ijkg

If we use the direct estimates M,, to obtain A’, we will have that &’ =27, has to

ijkg

satisfy the same conditions given in (3.35) as well as the model. Consequently,

M. =M™

kg jt, 1 the same set of counts obtained either using the estimated Log-linear

model (3.37) with 4% =(%,, 0,0,

t . .
g y‘kq) or using the relevant SPREE process as in

Section 3.3.

4.1.2. Unsaturated SPREE

If as exposure variable we use counts from a “modified” reference table in the same
fashion as those tables discussed in section 3.4, i.e. census tables with some of the
highest interaction structures deleted, we get current count estimates equivalent to the

“unsaturated SPREE” estimates in section 3.4.
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Let us suppose that some of the parameters in vector A®2 in the log linear
pp P g

representation of the census counts (4.13) are considered to be zero, so that
P,+P,<C and let again L” be equal to A%, ie. ¥ =A"*. In this case the
structure of equation (4.17) and the estimates in (4.18) will remain the same.
However, note here that the set of census counts M, in the denominator are now
those from the modified table, which should not differ that much from the original

ones.

The structure of the PL expected frequencies (4.21) remains also the same but now the

vector A”? has some terms missing or equal to zero. Therefore, application of Birch’s
results means that the set of counts given by (4.21) has to satisfy the likelihood
equation for the log-linear model equivalent to the unsaturated SPREE as in section
3.4. Note that if the assumption that the missing terms do not play a significant role in
the model is sensible, then the resulting PL estimates from the unsaturated case will

be close to those from the saturated one.

4.1.3. Logit Models

In section 3.6 we extended the SPREE method to product multinomial logistic
regression. In doing so, we noted that the logarithm of the proportion ratios

Mg [Toasese -We follow now the notation defined in section 3.6 for groups g and

categories ¢ -, is equal to the ratio of the related cell counts . /i, , that is,

Log ( g J: Log [ P J: Log(1,.)~Log (11, (4.28)

base/ g ghase

with corresponding PL estimates given by,

ﬁSLg ~PL ~PL
Log[ ]=Log(ugc.)—Log(ugbase) (4.29)

base/ g
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Suppose we now use the exposure variable approach to model the expected
frequencies. Using the same correspondence in notation between the log-linear and

the logit cases as in section 3.6, we have that from (4.19),
Log(al*)= ch.(if‘” e ) +Log(M,,.) (4.30)

Therefore we can write the right-hand side in (4.29) —recall that “base” is one of the ¢’

response categories- as,
[ X2 (1" =224) 4 Log (M) || X (A =27 )+ Log (M., )|

so that rearranging terms,

- pL ,
Log[ el j= (X4 X )M —xQ'A)+Log(A]f,g”' j (4.31)

7T base/ g gbase

From section 4.6 we know that (X;’C.—Xzbase)i”ﬂ can be expressed in logistic

notation as Z*.p* . In the same way, (X" —X* )A%“ can be denoted in logistic
gc y gc ghase g

notation as Z£,p%*. We have thus that (4.31) can be written as,

7 ~ 7 , M.
Log( ~P(L/° :ch'(ﬂA “ﬁQA)+LOg I[i-

base/ g gbase

(4.32)

o M.,
A E" c
=ch.[3 +L0g( £ )

ghase

where B* = (f}”’m -—BQ'A) is the vector of PL estimates of parameters of the logit

model constrained on the set of constants Log (M /M ;’,base) :
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The logarithm on the right hand side of (4.32) is the logarithm of the numerator minus
the logarithm of the denominator, that is, the difference of logarithms of census

counts. We know that those logarithms can be modelled as,
Log (M, )=X.A%" + X227 (4.33)

Therefore we have that,

LOg [“ Migcv J - (ch')"Q'A + ch'kQ'B ) _( ngase)"Q'A + ngﬂser‘B)

ghase (4.34)
= (ch' - X;base );"Q'A + (ch' - X:base );"QIB
Substituting (4.34) into (4.31) we therefore obtain,
7ok -
Log| — clg | _ XAC' _xA - )\‘APL . XBC' _X? - 2B
( b’Zie/gJ (X =X B (X5 =X (4.35)

= z;jc.fsf‘ + zjc,fsf"

which is the PL estimator of (3.57) already proved as the equivalent to carry out a
SPREE process updating the structural terms related to A” =AY whilst preserving the

structural terms related to A% =A% from a reference table.

It follows that the PL estimator of the logit model given in (4.32) is the equivalent to
such a SPREE estimator. Note that here again we do not need the assumed “known”
parameters to fit (4.32) but only the counts from the reference table; as in the log-
linear situation described above, this makes the estimation process simple since there
is not need to find the census log-linear structure first to get the “known” parameters

values.

As Logit models deal directly with proportions, the idea of an “exposure” variable is

not as natural as it is for log-linear models, thus we do not find this option for logit
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models in statistical software. However, the ratios Log(M:gC. /Mgbm) can be

introduced in the fitting process as one of the independent variables with coefficient
equal to one. This is easily done when a “parameter constraint™ option is available in

the statistical software.

Finally, from (4.31) and (4.35) we have that the set of PL estimates for the proportion

~ Pl .
T, are given by,

- M,
x4 _xA (1,1"" _;\Q'A)_FLOO Meer
~ JPL by & T
ezgc’BA +Z§c'ﬁ8 e( gf gme) Mgbmc‘
~PL
7 = - , (4.36)

—PL
c 4 54 B gB L ) i~
z ez‘gc " +Z,.B o (ch.—Xﬁbﬂse )(l“ -39 A)+Log[v———-M,°L ]

c'=1 2 e ghase
c'=1

As we have already mentioned, there are many statistical packages that can be used to
fit the models described in this chapter. These packages offer options to take into
account the complexity of the sample design in order to obtain the correct direct

estimators and parameter estimator quantities. The variances of the model-based
estimate counts A;[C can be obtained by writing programs not necessarily too
complex. The structure of these variances is formally described below for the case of
multinomial logistic models, which is the one we shall use for the simulation study

carried out in this document.

4.2. PRODUCT MULTINOMIAL LOGISTIC MODELS

We now formally define the parameter estimation, variance estimation and model
assessment processes for the general class of Logistic models we have proposed for
sub-groups estimation. We do this using the notation specified for the particular
situation of concern in this study, that is, the estimation of the proportion of people in
each of the three categories (Employed, Unemployed and Non-active) needed for the

calculation of the rates within each sub-population.
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4.2.1. General Structure

We shall start by defining a general model structure that covers all the logistic models

discussed in this document in the context of our LFS situation.

Let U ={u,,u,,...,u,,....u,,} denote the Venezuelan population over 14 years old of

size M for a specified reference time.

Let U be partitioned into ijk=C groups (sub-populations) of sizes M, as specified in

section 3.1, that is, U={U,,1U, 55Uy Us 403} where

Uijk:{“y‘k,vug‘k,z»"-auyk,va U m, 3.

ik

Let y denote the variable “labour force status” of three mutually exclusive and
exhaustive possible outcomes (1=Employee, 2=Unemployed or 3=Non-Active). Let

Viua> Vigzo-+os Vi -+ Vit be the values of y for the M, elements in group ijk and

let us express M, (already defined in section 3.1) as:

Uk

1ify, =
My, = Zf(yykv) ; I(y,-ﬂ.,v)={ " =4

0 otherwise

We will consider the set of counts M, as an independent sample from a super-

population that follows a multinomial distribution with P(y,,=¢q)=n,,, and

Zq o gk T

Suppose 7, is related to a P-vector of dummy variables

X i,.p) defining the effects and/or interaction terms related to

it = Kjig.15+++> Xiihg >+ %

count M with P=({-J-K)(Q-1), so that X:{XW} 1s the zero-one

ijkq

(I-J-K-Q)x P saturated model matrix. Let also ﬁz(BI,BZ,...,Bp,...,BP)’ be the P-
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vector of super-population parameters for this saturated model, such that,

T =T g (B) = A(Xj, . B) 1s a general response model for ;.

We now define X, =(Xj X5 .X7) and B=".“,p%) so that
X=(XY,X*,X%). Here, B’ is a P, -sub-vector containing the parameters in B that
are unknown, B* is a P, -sub-vector containing the non-zero parameters from B that
are known -so there is no need for them to be estimated-, and B° is a P, -sub-vector
containing the parameters from B that are zero; P=(P, +F, +P)). Accordingly, XV,
X* and X° are the (/-J-K-Q)xP,, (I-J-K-Q)x P, and (I-J-K-Q)xP, model
sub-matrices related to B¥, p* and B° respectively. We note that either F, or P, (or

both) can be equal to zero.

We use Generalised Linear Model (GLM) theory to specify the structure of m_ . (B),

P . . . . .
g, )= szl Xjiq.» B, With logistic link function g(r ;. (B)) =In (71: ofiik (B)/Tc Yk (B)).

We have then that the general structure of the model is:

7 (B)
In| —4# =2 =X 4.37
(7[3/1’]'/{ (ﬁ)} ! qB ( )

with T i (BY,B*,B°) given by,

eX,ﬂ«,B exfﬂwf‘
T ik B = 3 = (4.38)

Xpg 2 Kb
Zq:l € 1 + Zq:l €

105



4.2.2. Parameters and Variance Estimators: general form
4.2.2.a. Standard ML estimation

The multinomial distribution of the M, can be expressed as follows:

! 3

3 M. ! My
P Mo My My 130 My, = M )| = | =52 | [ (B 439)

ﬂ I
,,=1Mry‘kq- 9=l

We want to estimate the unknown sub-vector B within vector p. The ML estimate

for Y is the vector ¥ that maximizes the likelihood function,

3

K
My

I1 T Imgu®™ (4.40)

1A Hq 1Mykq' 9=1

:x

®=11

i=1

~.
|

Taking the logarithm of (4.40) and differentiating with respect to f3 ;f , we get:

i=1 j=1 k=

2 4 v eX;kqﬂ
Z tjkq ykq r ijkg, 3 X p
p

,_.

Q

,\,.

S

k)

)

D W
LR
®

e

=

£

=

[Mukqxllkq r Mik-xgkq,pﬂq/ijk (ﬁ)] (4‘41)

1

1J

I
M
‘Mb
B Iz

{: Xijkq,p (Mukq Myk ”q/t/k (B))]

I
.MN
M=

1

a
—

)|
—_
~,

Il

In matrix notation, let us consider again the cells ijk ordered lexicographically as

XU
¢=1,...,C where C=184.Let X! =X}, =| 7 |, m ()= V'f"(ﬁ ) and

k2
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Xy () P,

p. =(§V/ﬁkj, such that: XV = x(j , t(P) = nc:(li) ,p= pc
2/ijk . . .

X7 n.(P) Pc

that is, XY is defined as before, w(B) is the IJK -vector of probabilities © i (B) and
p is the ZJK -vector of sample proportions p,,,, defined in section 3.1. Finally, let
M :(Ml,...,Mc,...,MC)’ be the IJK-vector of cell counts M, =M,-,-k.,- Thus, we can

write (4.41) as follows:

oL
( ] X" D(p-=(B’,B*.$%)) (4.42)
op”

where D =diag(M)®1, with @ denoting Kronecker product. The ML estimates for
B are given by p=(B",p* ,p%)" and consequently m(p)== where ¥ is obtained
by setting the P,-vector (4.42) to the P, -vector of zeros 0 and solving for . This

leads to the P, likelihood equations,
X’ Dp=X"Dr(p".p".p") (4.43)

We can get estimators of the covariance matrices for p and 7 by using Taylor
approximation or by combining standard GLM results with those of Royall (1986).
Noting that,

X’D(p—n(ﬁ»z( al;j (

3 j(ﬁ -9

aBUZ

and

() = num( B“”](B” )

107



2
By definition, X'D(p—z(p)) =0, so assuming that the inverse of EEE exists, we

have that,
A AN
N I
and
(n(m—n(ﬂ)){@;‘l}(?)j(ﬁ”—13”) (4.45)

2

Thus regarding (—66 L

-1
7 ] as a constant, we finally obtain,

Cov(p¥) = (— aal;{; J C;)V(;BI; ) [— ;’;(f‘z J (4.46)
and
Cov(n(p)) = ( ?ég)Jcbv(ﬁ”)(agég)) (4.47)

A

where Cov in (4.46) denotes design estimated variances and covariances, that is, not

2
depending on the model and (—gﬁlljin:(X’DAX), (agég)JzAX, with

A = Blockdiag (Diag(pc) -p_p, ) :

108



4.2.2.b. Allowing for complex sampling design: PL estimation

In reality, we do not have information about the whole population U but only
information from the LFS sample. Let S ={s,,s,,...,5,,...,5,} denote a sample of U

obtained using a specific sampling design. We have then that S is also partitioned into

jk=C groups of sizes my,  as specified in section 3.1, that is,

S=48118 1120585085425 Where S, :{Sijk,l’Si/'k,2>"‘7Sz'j'k,v""’sz]'k,M,jk,}' We shall

denote the wvalues of y for the m,, -elements in group ik as

ijke

Yikas Vias-+s Viws -+ Yiiwm,, and will also denote my,, (already defined in section 3.1)

as:

M.

Lify, =q
"ia :; I(yus) 5 1 (yfﬂf’v):{o othorwise

If the sample counts m,,, follow a multinomial distribution with P(y; ,=¢)=m_;

ijkg

and ;n .5 =1, we could apply the theory described earlier in this section to

obtain parameter and variance estimates. However, the LFS sampling design is a

complex one (see section 2.2.2) involving clustering of elements as well as

stratification. The assumption that y,, ,..., Yjm, are independent may not necessarily
be true. We also have that E(y,,) may not equal mym, . This affects the
distribution function P(m,,,my,,,m,,), which is the conditional distribution of the

population given the sampling design and not necessarily the same as (4.39). As the
strata do not cross the cells, these do not affect the distribution function although we
should bear in mind the assumption behind the post-stratification process used at the
LFS estimation stage (see section 2.2.4); these post-strata do cross the cells.

Moreover, the clustering present in the sampling design also affects the distribution

function P(my,,,my,,m;,).

To avoid the complex task of specifying a model for the sample data -which might

also bring some misspecification problems to the inference (Skinner et. al. 1989)- it is
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customary to use the Pseudo-Maximum Likelihood approach (PL) explained in
section 3.1.2. Suppose we have observed the whole population so that the sample

vector p 1is in fact the finite population vector of proportion P. In that case we can
simply apply all the theory described in this section to calculate the “census” or
population vector B for the target population (see Binder 1983), which itself is an
estimate of the super-population parameter B defined above. However, since we
have not observed the whole population but a sample from it, we must first calculate

direct estimates P of relevant population quantities and use them in (4.42) to obtain
‘pseudo’ maximum likelihood estimations f,, =(B”,p*,p°) of the vector

parameter. Formally, (4.42) can be written:

oL ~
(5BU j =X'D(P-=(B”,B*,p7)) (4.48)
where ft=(#,,....,«,,...7)" Wwith &, =(T,,,,%,;), T, gven by (2.8) but

calculated at sub-group levels and D =diag(M)®1, with M =(M,...M_,...M.)

(the census population projections for sub-groups). Setting (4.48) equal to the vector

of zeroes 0, we get the likelihood equations,
XY DP=XYD=(p’,p*,p°) (4.49)

Note that (4.49) depends on the individual estimated counts (M, 7, ) only via
appropriate  aggregates. Solving (4.49) for PBY gives the PL-estimates
B, =(BY.B*,B") of the model parameters, which can then be substituted in (4.38)
to obtain the model (PL) estimates 7,7, =, (B,). Note that f,, is also a model-
based estimate for the “census” vector B, i.e. B,, =p% . Accordingly, 7 f/fjk a the
model-based estimate of the finite population proportion P, , P7r =P, . (By,). The

model-based (PL) estimates for the sub-group counts M,  are therefore

M =g? M

kg T " qlik £ pjke
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We now write Cov(p ) @s,

- (LY | (a)( &LY)
Cov(BPL)z( aﬂ‘”j Cov(&ﬁ”} ( 5[3”2) (4.50)
with
© (oL o
COV(aﬁU\]=COV(X D (P-=n(p )))
= (XU' D Cov(P)D X" )
where,

- aBUz

[ oL j = (X'DAX) ; with A = Blockdiag (Diag(nc) - ncﬂ?i ) .

We estimate (4.50) by using #™ == (f,,) for =, =x,(B,) and Cov(P) for
Cov(lA’). Cov(P) is given by (2.17) and (2.18) for the proportion case at sub-group

level. Therefore, C;)V(B ) 1S,

-1

Cov(p,,) = (X'DAX)'l (X’D c;v(l‘))DX)(XfDAX) (4.51)

with A = Blockdiag (Diag(fcc)—-itjci). Similarly, the covariance matrix of #(B,,) is

given by,

\
c:ov(n(ﬁ,,L)){%}Cw(%[aﬁ )); i [an(lz ) J-ax

which is estimated by,

ch(n(BPL)) = AX(X’D/SX)_I (X‘D cfw(ﬁ)DX)(X’D&X)’1 XA (4.52)
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4.2.3. Parameters and Variance Estimators: specific situations

The general model structure (4.37) covers all the logistic models described in this

document. The systematic part of the model, i.e. Xp =X(pY ,p*,p%)", will have

different shapes depending on the specific situation we want to address.

For logistic models equivalent to “saturated” or traditional SPREE estimation, Xf
will contain the full range of parameters for the saturated model, 1.e. P, =0 and
P +P, =P, sothat Xp=X(B",p*) . The estimation process follows as it has been
described above but without B°. As we have seen, the number of equations involved
in (4.49) is equal to the number of parameter in B ; however, the process of solving
for Y is conditioned on B*. Note that if we use the “offset” approach described at
the beginning of this chapter, B* then consists of the set of census log-ratios

Log(M,./M,,.).

ghase

For logistic models equivalent to what we have called “Unsaturated SPREE” (section

3.4), some of the higher order interaction effects are considered to be zero. In this
case we have P, >0 and P, >0 with P +P, +P, =P, so that Xp = X(B"',p* ,p°)’

as described above.

If we decide not to preserve structural terms from the reference cross-tabulation but

still set some of the higher order interaction effects to zero, the equivalent logistic
model has P, >0 and P, =0 with P, +P, =P. Here, Xp=X($",B”) and the
estimation process follows as it has been described above but without B*. Again, the

number of equations involved in (4.49) will be equal to the number of parameter in

BY and the process of solving for gV is conditioned on °.
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4.2.4. Goodness of Fit

The statistics most widely used to test goodness of fit of model based estimates and

certain hypothesized values are the Pearson chi-squared test statistics X, and the

Likelihood ratio statistics X ,,. In our case these are defined as follows:

~

nq/c n

X2 C (“ _TE,,;C)Z - g g
PmY WAL and X =2m) W) Log
c=1 c=1 q=1

3
q=1 7

g/c
/

Zye

gle

where W, =M _/M . We can also test nested hypotheses where a non-saturated model

G1 defined in terms of a R-vector of parameters (R<P) is assumed to hold by setting

B=(B,.B,), where B, isa R -vector and B, is a R, -vector, R=R, +R,. In this case
we test the hypothesis B, =0, by testing the goodness of fit of a model G2 consisting

only of the R/-vector of parameters B, , given that G/ holds. Let 7, denote the PL-

estimates for G/ and also let 7T o D€ the PL-estimates for G2. The Pearson chi-

squared statistic and the Likelihood ratio statistics for the nested hypothesis are then

as follows:

~ 2
ch/c _nq/c)

C
Xﬁ(G2/G1)=mZC:WCZ3:( - and XZR(Gz/Gl)zszmi:Log
g=1

c=1 q=1 qle c=1

N

nq/c
7T

qlc

Under multinomial sampling the distribution of both X} and X}, are asymptotically
chi-squared with degrees of freedom [[JK(Q-1)-P]=(368— P). Likewise, for the
nested case, under multinomial sampling the distribution of both X; and X, are
asymptotically chi-squared with degrees of freedom (R - R,) = R,. However, since we
have a complex sample design, the distribution of both X, and X, is shown by Rao

and Scott (1981) to be asymptotically equivalent to a weighted sum of 368-P (R, in
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the nested case) independent chi-squared random variables each with one degree of
freedom. That 1is, X} ~8,Z, ++8:4 pZsesp> Xig®0,Z + +8,s5 pZocs ps
X (G2/Gl)~8,Z, +:+08, Z, and X (G2/ G =5,Z, +- 48, Z, , with Z, » o
where the weights (8, >----28,, , >0) are the eigenvalues of the design effects

matrix,

V=(B'DA"B) (B'DACov(#)DA™'B)

where B is the matrix which complements X to form the zero-one model matrix for
the saturated model. In general, B can be any (ITKQ x df) full rank matrix satisfying
B'X =0, where df=degree of freedom equal to 368-P or R, in the nested case. Note

that the weights 8, are equal to one in the case of product multinomial sampling, so

they can be interpreted as “generalized design effects’.

We obtain estimators of 9, s ., through the matrix V, that is,
v=(B '1)5‘113)‘1 (B '‘DA™ Cov(ﬁ)D&“B)

The sum of the df terms 6:. is given by z‘r(f7) (e.g. Harville 1997, p.539). Therefore, a

Rao-Scott first-order correction for the statisticsX; and X7, which is

asymptotically distributed as chi-squared with df degree of freedom is given by:

2 (< X; 2 (£ LZR
X3(8.)= L and X2 (8.)= N (4.53)

with

This correction works well if the variability of the terms & ; 1s not large. A Rao-Scott

second-order correction that takes into account this variability is given by:
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X

T

(4.54)

x;(8.4)=
where a2 is the coefficient of variation of the & ., that is,

ar
57 .
&2: ; l _1=(df)tr(vz)_1
(df)s. r(V)?

Both X ;‘;(ESA ) and X}, (ESA.) are asymptotically distributed as chi-squared random

variables with (df)/(1+ &%) degrees o freedom.

The second-order correction has been shown to perform well in different situations in
several empirical studies (e.g. Rao and Scott 1981, Roberts et.al. 1987, Thomas and
Rao 1987, Rao and Thomas 1999). An alternative test that takes into account the

complex design used in selecting the sample is based on the Wald Statistic:

X2 =(Tp) Cov(i )" ()

Here ¥, is the pseudo-likelihood estimate of the [LJK(Q-1)—P]-vector of

parameters that we want to test being equal to zero and Cov(y,,) is the estimator of

the variance-covariance matrix of ¥,, defined as in (4.51).

However, X, has been found to perform poorly in several empirical studies,

especially when the degree of freedom for the estimated covariance matrix is not large
compared with the number of cells in the table (e.g. Rao and Scott 1981, Fay 1985,
Thomas and Rao 1987, Rao and Thomas 1999, Molina and Skinner 1992);

furthermore, it is not defined if any of the &, are equal to zero as occurs in the LFS

/e

data.
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4.2.5. Diagnostics

A critical assessment of the models to be considered in this study can be carried out
by obtaining measures that give us some insight into the presence of outlying cells

and influential points.

By identifying outlying cells we can get a rough idea of the cells that are poorly
explained by the model. We do not expect any model to accurately explain the
behaviour of every cell but we do expect a good model to account for most of them.
The relative importance between states and demographic groups tend to vary
depending on the analyst and the kind of analysis he/she is going to undertake. For
instance, having reliable estimates about the Unemployment rates relative to the
population under 45 years old will be more important than those relative to the over
45 years old groups. This is especially true in countries with “pyramid-like” age
population structures like Venezuela. Thus, the final judgement on the usefulness of a
model has to take into account this relative importance which depends on the realities
of each country. That is why we are especially concerned here with the detection of
patterns like, for instance, specific states or sex-age groups that the model seems

unable to explain.

Extreme points in the design space can affect the usefulness of a model. This can have
an important influence in the structure of the model and consequently on the accuracy
of estimation. This is the reason for our interest in the existence of influential points
in our data. Should these points exist, some assessment regarding the influence they
have on the estimation process needs to be undertaken, with the aim of establishing if
the predicting power of the model can be improved by removing such cells from the

estimation process.

We shall follow Pregibon (1981) in define some useful diagnostic measures in this
regard. He bases his suggestions mainly on measures that are easily calculated by
using data naturally obtained during the fitting process. This is highly convenient in
most of the practical situations when human and economic resources are limited, as it

is in many national statistics offices. Although his work is based on a maximum
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likelihood fit of a logistic regression model, it is also valid for any within the
exponential family, even if pseudo-maximum likelihood has been used, as is the case
in this thesis. For the remainder of this section, the sub-script ¢=1,...,C(Q-1) will
denote the lexicography order of the product multinomial table omitting the cell

related to the Q¢4 labour force category.

Standardised residuals are commonly used as a first attempt to identify outliers.

Following the notation used so far in this thesis, let r = f’—ﬁPL be the IJK(Q-1)-

vector of residuals. We define the standardised residuals e, =7, / Iilq/ch (r,,) where

Vclq/iq (r,,), the estimated standard error for the residual 7, , is given by the squared

root of the cth component of the diagonal of the matrix:

A - A R A — ?
Cov(r):[I—Ax(X'DAX) 'X'D|Cov(#) I- AX(X'DAX) leD]

We obtain this matrix by noting that from (4.45) and (4.44) we have
(7(Br)~n(B)) ~ AX(B,, ~B) and (B, -B)=(X'DAX)X'D,
so that,

f—f,, ~(R—n)—AX(X'DAX) X'D(it—n)

- [1 —AX(X'DAX) " X'D|(%—n)

Assuming normality of the standardised residual distribution, we can then compare
these standardised residuals with the values of the standard normal distribution,
looking for potential outliers and extreme points. There are different ways of carrying
out this comparison suggested in the specialised literature (e.g. Pregibon 1981,
McCullagh and Nedler 1983, Dobson 1990, Agresti 1990, Draper and Smith 1998).

We can for instance plot the ordered standardised residuals against the expected
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normal order statistics. However, it is worth mentioning that cells with 7, =0 and
i, =1 makes the distribution of r skew and so makes the assumption of normality

unreliable. A plot of the standardised residuals against the fitted values, excluding the
points close to either zero or one, can give us an idea of the validity of the normality
assumption related to the distribution of r. This plot should show an evenly spread

pattern.

Pregibon (1981) suggests an alternative method of detecting outliers that avoids
problems with estimates that are close to zero and one. It consists in the use of
components of the chi-squared statistic X, or X, noting the fact that large values
of these components suggest potential outliers. As we are concern with the complex

sampling design case, it seems appropriate to use components of the Rao-Scott second

order correction (or first order correction in cases where the second order correction
can not be calculated) X, (5 .,&) and X, (5 .,&) for this purpose as Roberts et. al.

(1987) did for complex data in a binomial context. Again, different plots can be used

as a visual check for outlying points.

To detect influential points, Pregibon (1981) suggests the use of the projection matrix

M that in our complex design case is given by the expression:

M= [1 ~DAVX(X'DAX) " XfD‘/zA‘/Z}
(4.55)

=[1—H]

The interpretation of this matrix is similar to that of I-X(X’X)™"' X' in traditional

regression analysis, in the sense that the diagonal of the second term gives an
indicator of the influence of each point in the design space. This caﬁ easily be seen if
we consider the fitting process as carried out by iterative re-weighted least-squares or
by Newton-Raphson Methods (see Pregibon 1981, p.712). Therefore, small values

m_ in the diagonal of M will identify potential influential cells. A visual

cc

examination of a plot of m_ against ¢ can give us an idea of the existence of such
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cells. Hoaglin & Welch (1978) suggested looking at cells with m,, <1—[(2——P)/ C]

as potentially influential for the linear case. Pregibon (1981) used the same criteria as

a rough cut-off.

An alternative plot that can summarise information about outlying cells and extreme

points in the design space is a plot of the values in the diagonal of the H matrix, 4,

against X, (5.,&)/)(,2, (5.,&) or Xy, (SA.,&)/XLZR (5.,&). Note also that:

X;.(8.4) x2 /ba+a?) x2,
x;(8.a)  Xp/sa+aty X

and

XL2R,c (5,,&) _ XLZR’C/g-(l"'&z) _ XLZR,C
Xi(6.a) XL /6(+d)  Xi

If influential points are detected, further investigation about how heavily these points
influence the estimation process should be carried out. The impact can be measured
with respect to parameter estimates, fitted values or chi-squared statistics. In the
study reported in this thesis we aim to obtain good estimates of rates and are not
interested in the specific structure and dynamics of the underlying factors determining
these rates. Therefore, we will not be concerned with the impact of influential points

on parameter estimates, unless it involves significant impact on fitted values.

To measure the effect of extreme points on the fitted values as well as on the
goodness-of-fit statistics, Pregibon (1981) again used a generalisation of the
traditional regression diagnostic. Similar results were also implemented by Roberts et.

al. (1987) for complex data in the binomial context.

Let fi » (¢) be the pseudo-likelihood estimate of the parameter vector B calculated

without taking into account the c-th cell. Likewise, let ftPL(c)=n(f3 PL(c)) be the
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vector of fitted values using B s (c). A measure of the effect of cell c-th on the fitted

value /-th can be obtained as follows,

or

AX e (80)=Xiny . (818)- X1y, (8-)

where X, , (SA.,&) and X, (SA.,&) are the contributions of cell /-th to the Pearson
and Likelihood Ratio goodness-of-fit statistics respectively when cell ¢-th has been
removed from the fitting process. Pregibon (1981) uses the following approximation

2 2 2 . A .
to AX},, = X/, . — X}z, for non-complex binomial data:

—~ 2‘X'P,chlc)(l’,l + X}%,Zhli

AXE = (4.56)
I“* LR, 1 _ hll (1 _ hll )2

where /%, denote the element /¢ of the matrix for non-complex binomial data that is
equivalent to the H matrix in (4.55). For our complex independent multinomial data

we use the %, elements from the H matrix in (4.55) and X3, (5 .,&) and X, (5 .,&)

instead of X, and X, in (4.56). This leads to the following expression:

2X,, (5., a)h,c)(,,,, (6“ . &) X2, (5‘ .,a)h,i
1-h, ¥ (1-h,Y

For each potential influential point, we can obtain a set of C measures A,X ;. (SA.,&).

Then we can plot each of these sets against ¢ for a visual inspection of the impact of
each influential point on every other cell. Note that negatives A,X}, . (5 .,fz) values

indicate an improvement in the c-th cell fit due to removing cell / from the fitting
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process. The opposite is also true, positive A,XZ‘R’C (5 .,&) values indicate a

worsening in the c-th cell fit due to removing cell / from the fitting process.

Regarding the effect of cell c-th on the goodness-of-fit value, we can obtain useful

measures from the following expressions:

AKX (8.0)= X2 (8.4)- X7, (8.4)
or

AKX (8.a)= X7, (8.0)- X7, ,(8-a)

They indicate changes in the value of the goodness-of+fit statistics (Pearson Chi-

squared and Likelihood Ratio) due to deleting the /-th cell from the fitting process.
Again, Pregibon (1981) uses an approximation to AX/, = X;,— X ,_, for non-

complex binomial data:
Xlz’,lhll

4.58
1-h, (4:38)

2 . 2
AIXLR = XLR,Z +

He also gives an approximation for changes in the Pearson Chi-squared statistics
AX;=X,-X,_,, thatis:

2
XPJ

4.59
o (4.59)

AXE=

though he warns about its inferiority compared with A, X}, due to the fact that X

does not necessarily decrease as data is removed from the fitting process.

As we did in (4.57), we write an approximation to A, X}, (6A .,d) as follows,

X7, (8-4)

AX? (5.,&) =— (4.60)
1l
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A plot of A X}, (5 .,&) against / then provides us with a visual tool to examine the

magnitude of the changes in the Likelihood Ratio statistics when different cells are

removed from the fitting process.
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CHAPTERS

EMPIRICAL RESULTS FOR VENEZUELAN LFS

In this Chapter we carry out an empirical analysis of the different models that can be

used to obtain SPREE estimates, including unsaturated SPREE and conventional

Logistic models.

We first discuss some important issues about the structure of the population and its
implication in the estimation process. Next, we carry out an empirical analysis and
provide diagnostics for different potential models using data from the Venezuelan
1981 and 1990 Population Census. We then describe and discuss the results from a
simulation study based on the Venezuelan 1990 Census; this simulation study is
designed to explore the design-based properties of a number of competing estimators
based on the theory developed in previous sections. Finally, we briefly discuss some

issues related to using “time” as an extra dimension in the SPREE process.

5.1. CONSIDERATIONS ABOUT THE STRUCTURE OF THE POPULATION

Throughout this document, we have taken the count M, to be a realisation from a

itkq
super-population following an independent Poisson distribution with expected value

and variance equal to pi, . Likewise, when we condition on the marginals M, , we

have assumed these counts are distributed as product multinomial with
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EM,)=Mymn, ; and V(M y=M,® . (1-7,;); 0 this case we also assume

that each individual in the finite population is independent and identical distributed as

. - . 3
a product multinomial with P(y, , =¢g)=n_,, and Zq:ln o =1. Furthermore, we
also assume that 7, are related to a set of variables X, = (X, 15 Xjag s+ Xjg p)

allowing us to model & _,, as 7, =7 5 (B) = A(X;;,.B) with p=(B,,...B ., B,) a

P-vector of unknown super-population parameters.

Since in real situations we work with survey samples, we described a Pseudo-
Maximum Likelihood approach to deal with the distortion caused on the survey data
distribution by sampling designs like the LFS, which involves strata, clusters and

unequal “ selection probabilities. This would “reassemble” the finite population

~PL

distribution, producing estimates 7, and their variance estimates allowing for the

adjustment needed for the sampling design. This theoretical formulation implies that

if we knew the finite population counts M, we would be able to estimate the model
parameters 7, (B) and their variance applying standard estimation procedures like

ML estimation.

However, the theoretical process generating the finite or “census” population counts
can be more complex than the one described here. This seems plausible taking into
account the clustering pattern human beings follow regarding allocation, the internal
regionalization of a country regarding economical activities as well as others cultural
patterns found in different societies. For instance, we have that the “geographical” or
“spatial” component is likely to be more complex than the physical division implied
by “states”. It is noticeable the socio-economic differences found in Latin-American
countries between “main” cities and the rest of the country. Moreover, within those
“main” cities, it is likely to find the usual clustering structure regarding socio-
economic aspects with a between cluster heterogeneity certainly higher than what can
be found in developed countries. Others factors related to individual characteristics or
internal households composition might also play a role in the super-population
structure. Educational level and relationship with other household members are

examples of potentially important variables in explaining that structure.
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In those situations, units from the same sub-population ijk might in fact have different
expected values m given by the “true” more complex super-population model. In
other words, the super-population distribution generating the finite population might

have different parameters n, depending not only on the variables ijk but also on other

variables. This obviously violates the distributional assumptions about M, and y, ,

specified above. Elements in the finite population belonging to a specific sub-group

ijk are not longer independent and the set of counts M, are not distributed as product

multinomial (M,.,7 ;) any more.

Given these circumstances, our first reaction would be to change the working model
in favour of a model that better represents the “real” dynamic governing labour force

variables. The original target parameters =n_,, would be disaggregated so new
parameters ©_,..,, with d representing one or more than one extra dimension, would

become the target of analysis. This can be accomplished by adding an extra dimension
to the working cross-tabulation, corresponding to adding fixed parameters to the
model. Alternatively, we can add random parameters to the model at the extra-
dimension level or treat geographical information as “extra-levels” in the analysis
(multilevel modelling). The approach we should follow will depend on the available
information regarding the sampled element as well as the “geographic” strata and/or
cluster relevant units. This process would lead to a better understanding of the
geographical and socio-economic interaction of the process in the population. For a

comprehensive discussion on this subject see Chapter 10 in Skinner et. al. (1989).

At this point it is necessary to go back to the initial formulation and targets of this
study. Its main goal is to produce estimates for the main indicators required by the
national statistics office in Venezuela (INE) as well as in most Latin American
countries. For different reasons, these indicators are needed at state level and
disaggregated by gender and age-groups; we therefore require estimates of the counts

M =M, /M. needed to construct the labour force rates

jt; O the proportions P, .

that are the ultimate target of this work. This fact does not mean that a deeper
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analysis and understanding of the dynamics of the labour force is not necessary. On
the contrary, this would obviously be of great benefit to analysts and to national
statistics systems. However, due to restrictions in the data available to us for this
study —INE policy regarding data disclosure is far from an open one- as well as
restriction in time we will not attempt this sort of analysis, even though we

acknowledge its importance.

We still have to address the impact on variance estimation and hypothesis testing
from misspecification of the model. It is pertinent to stress that our target parameters

are the finite population counts M, and proportions F,. and not the model

proportions T We use a model for © as a theoretical tool to get estimates for

qlijk " alijk

P and regard the sampling design as the only impediment to carrying out

q/ijk
appropriate analysis of the finite population parameters using standard statistical
procedures. Therefore, the PL approach and the adjustment made to the Pearson and
LR chi-squared statistics (refer to Chapter 4) should be all we need to compute
parameter and variance estimates and to carry out tests of hypotheses for the finite
population parameters. Those procedures take care of the effect that the sampling
design has on the data so we can carry out an appropriate analysis with focus on our

finite population aims.

This point is particularly important when working with SPREE estimation. The
assumed “known” parameters in the model have a real interest when the focus is on
the analysis of the finite population. They are used to improve the quality of the finite
population estimates even if the model is not appropriate for describing the super-

population process. Let us consider the logistic representation of the finite population

set of probabilities 7, given by,

P,
L0g£_ » j =o'+ By By + Big + B + By + B, + B, G-
3ijk
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Suppose we know the interaction terms B, By, B, and B from a set of finite

population proportions Pq ;7 from a previous period of time, which are roughly the

same as their equivalent current interaction terms, that is,

By = B,
Biy = B,
By = Big
Py = P

We formulate this model for the super-population generating the finite population and
apply the methods described in previous chapters, so that using the LFS sample we

get the PL estimates for the super-population logits, that is,

~PL
T - - -
q/ijk _ ~PL PL PL PL K K K K
Log(ﬁm, )-aq + iq + Jq + kq + ijq+ ikq+ jkq+ ijkq (5'2)
3/ijk
which are also the estimates for the finite population logits in (5.1),
pop g
PPL
q/yk . ~QPL ~QPL NQPL ~QPI. X K K K
Log B =d&, +PB, +P;, +By +Bj B B B (5.3)
3/ijk

The set of PL estimates 7/, =P/ should therefore be of high precision for the

finite population proportions £, ., no matter whether the explanatory variables in the

model are appropriate or not. Similarly, the variance estimators and adjusted tests
described in the previous chapter should be the appropriate when estimating finite
population characteristics, even though this might not be the case when inference

about super-population quantities is of primary interest.
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5.2. MODELS STRUCTURES FOR SPREE AND RELATED MODELS

We have seen in previous chapters that the log-linear and logistic models equivalent
to the SPREE method consist of two set of parameters, the unknown parameters and
the assumed known parameters. The latter are those related to the structural terms we
want to preserve from the reference cross-tabulation. We have also seen that the
estimation process is conditioned on those “known” parameters; however, the
structure of the likelihood equations will depend only on those margins related to the

“unknown” parameters.

The decision here is what structural terms we want to preserve and what structural
term we will update in the estimation process. This decision is related to the
information available to us regarding the margins of the cross-tabulation as well as the
confidence we have about the stability over time of the structure of the reference
table. The decision is likely to be a compromise between the following two

statements.

Firstly, to update specific structural terms we must have reliable information
regarding the current marginal counts related to those terms. Available information
will basically depend on population projections based on the latest census, vital

statistics and the LFS and its sampling design.

Secondly, to preserve specific structural terms we should have the confidence those
terms have remained sufficiently stable between the two points in time involved in the
analysis. In general, this confidence will weaken as the gap between those two points
in time gets bigger. How fast it weakens will depend on the dynamic of the variables

governing the socio-economics process in the country.

Another factor to take into account is the fact that the LFS traditionally produces
direct estimates for labour force indicators for sex-age groups at the national level.
These indicators are widely published and the LFS design ensures that these estimates
have good reliability. It is thus necessary that the model estimated counts agree with

the sex-age group direct estimates at the national level. This suggests that the set of
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pseudo-likelihood equations related to the fitting process for the log-linear working
model should satisfy the equalities M g =M., (h5,,1%) . For this to be possible, the
interaction terms I-J-Q have to be regarded as part of the “unknown” terms in the

model, that is, the term 7»;.; has to be present in our log-linear model, which is

U

4, has to be in our logistic model.

equivalent to saying that the interaction term [3

It follows that the choice should be made among the four following logistic models,

m .
[ijk U U U U U K K K
Log| == |=a, + By + By + B+ By + Big + Bitg + Bing (5-4)
T3k
T ..
[ijk U U U U U U K K
Log| —* =q, +18iq +lqu+lqu+ﬂijq+ itg T Pig + Pijig (55)
yyiix
T ..
ik U U U U U K U K
Log'_qi =4, +ﬂiq+ﬂjq+ﬁkq+ﬂﬁq+ﬂikq+ kg + Piig (5.6)
T ayiik
T .
[ijk U U U U U U U K
Log ﬂ—qL =0y + P+ Big Brg * Byt Bag + Biag + By (.7)
3ijk

Model (5.4) is the simplest model of this kind assuring an agreement between the
model estimates and the LFS sex-age group direct estimates at the national level

whilst model (5.7) is the most complex.

Other structures like the independence model (5.8) below can also be considered,
however, their use does not guarantee the agreement explained above. Should we
decide to use them, we would have to carry out a calibration process after the
estimates have been obtained in order to obtain the desired agreement. For this reason,
model (5.8) would have to prove significantly better than (5.4) to justify a more

complex estimation process.

T .

ik | v U u v K & X x

LOg(;ﬂ’) =0, + iy + Byt Big + By + Bag + By + Biig 8
3/ijk
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Unsaturated SPREE models will result from “deleting” k-terms from the models
above. Different combinations can be obtained depending on what and how many %-

terms are deleted.

5.3. CENSUS-BASED COMPARATIVE ANALYSIS

We have seen in Chapter 2 that the most recent census available in Venezuela at the
moment is the one carried out in 1990'. That represents a gap of over ten years with
respect to the present year, and does not sound too promising when thinking of

structural terms as “preserved” over time.

We will use the 1990 and 1981 censuses in a first attempt to explore the behaviour of

the SPREE models in different situations.

In this section we explore empirically the SPREE estimation process when the gap in
time is nine years. We shall assume we do not know the 1990 counts but only some
of its aggregated marginals. We will use these marginals and the 1981 census table to
produce SPREE estimates and Unsaturated SPREE estimates for 1990. These
estimations will be calculated using the “exposure” approach proposed in Chapter 4

using the software STATA 7.0°.

Let M, and M, be the census’81 and the “unknown” census’90 counts for sex

category i, age group j, state k and labour force classification ¢. We want to get

SPREE estimates for M 5,2] assuming we know a set of 1990 marginal aggregates.

! A Census was carried out in Venezuela in the year 2001; however, no database and only results at the
national level were available at the time this document was produced.
? Stata Corporation, Texas, Release 2001
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We know that using the following saturated logistic models,

81 q
3ijk

psl
“qfijk | _ 81 _ _81® 81 81 819 81 81° 81% 81
LOg[ 0 ] =X B =o, 4By + By By By B By By (-9)

and

) q
3/ijk

P>
Jik | 90 _ _ 90° 90% 90% 90 90% 90" 90? 902
LOg( 0 | = Kb =0 +By By + By +Bj +Ba +Bu tBu  (5.10)

we can express the finite population proportions P =M /M. and

90 90 90
B = Mijkq/Mijk- as follows,
Xijkqﬁglﬂ
o L — (5.11)
[ S —— '
g=1
and
90 eXWﬁQOQ
S — (5.12)

g=1

We recall that (5.9) and (5.10) are also estimators of the super-population model

parameters,

81 90
T T
q/ik | _ 81 qfiik | _ 90
Log [—————81 ] = X,.jqu and Log( 5 ] = Xl.jqu
3/ijk 3/ijk
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In order to explore the characteristics of different model structures, we shall fit the
following SPREE models estimating their parameters for 1990, using the Census data

as described above:

90

T ik
SPREE (a) Log| —% =g+ A0+ B0+ B+ Bi + Bor + 5 + By

T3k

90
T .
q/ik | _ 90 90 90 90 81°
SPREE (b) Log| —:— (=2, +ﬂiq +,[)’jq + B, + l]q+ e T
3/ijk

+

ﬂ\q ykq

90
T

qfijk | _ 90 90 20 90 81
SPREE (c) Log| —2X |=a + B+ B2 + B + Boe + Bos + By + Bt

ijq qu ifkq
T syiin

90
1

SPREE (d) Log| —% |=a®+ B+ 20+ B + foe + By +Bon +

ijg ikg qu ykq
Tsiie

We will also fit the following Unsaturated SPREE models:

90
/ijk 90 90 90
(@)-(b) Log| =5~ |=0, + By + By + By +

ijq
T3k

90
gfijk | _ 90 , P90 90 90 81°

%0 =4, +ﬁiq ) I qu
3/ijk

(@)-(c) Log

90

afik | o0 90 9
(a)-(d) Log %0 =a, +ﬂiq TPt kq )+ iig + ]/“I
3/

ik

90

ik
(b)-(c)  Log ﬂ’;{: =+ B0+ B+ B+ B+ B
3/

iik

90

T .
qliik | _ 90 90 90
(b)-(d) Log| =4 \=a, + B + ) + Be + +

iiq ]/“I
73k

90

g/ik | _ 90 90 920 90
{c)-(d) Log| == |=a, + B, +B;, + By + yq+ ,kq
yyijk

+

qu



We compare these estimates with the target finite population 1990 counts, and with

the following conventional Logistic models (no preservation of structure):

q/iik | _ 90 90 90 90
(a) LOg ~—0 —-aq +ﬂiq +ﬂj(]+ kg
Taiix
90
T
q/ijk | _ 90 20 90 90 90
(b) Log| —— |=a, + B, + B, + B, + B
Tayiin
90
T
glijk | __ 90 90 90 90 90 90
(C) Log 90 =q, +'Biq +18jq + kq +'Bijq + ikq
T3k
90
T
%
@ Log| —ZE |=a+ B+ By + By + By +po
q g
L

In what follows we refer to the conventional Logistic model (a), the SPREE model (a)
and the Unsaturated SPREE model (a)-(b), (a)-(c), (a)-(d), as “a-based models”.
Likewise, we refer to the conventional Logistic model (b), the SPREE model (b) and
the Unsaturated SPREE model (b)-(c), (b)-(d), as “b-based models”. Finally, the
conventional Logistic model (c¢) and the SPREE model (c) are called “c-based
models” whilst the conventional Logistic model (d) and the SPREE model (d) are

called “d-based models”.

Table 7.1 in the Appendix shows the Absolute Relative Bias of the proportion

estimates P77, =70y for all the models (m) specified above. The Absolute Relative

Bias (ARB) for the estimates generated by a model is given by,

o0 9%
ARB(PS ) = ”/”’;)90 " %100 (5.13)

a/ijk

The ARB value represents the absolute relative bias that an estimator based on a

particular model will have when applied to LFS sample in 1990. As we are interested
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in the outcome of a multinomial variable, we also consider the subgroups averages of

the ARBs of the three LFS proportion (Table 7.2), that is,

q/ijk

sy m 3 ~ m
ARB, (P0)) = %Z ARB(P) (5.14)
gq=1

Table 5.1 shows the aggregated differences D" in ARB between the SPREE

estimates (ms) and the conventional Logistic estimates (ml) for each LF category
q=1,2,3 i.e. g=FEmployee, Unemployed and Non-active. The values in that table are

given by,
o) _ N
(ms)—(ml) __
D q - Z
=

J
i S

S 5[ arBEy) - ARBE)] (5.15)

J=1 k=1

where the (ms)-(ml) combinations are:

(ms) (ml)
SPREE (a) (a)
SPREE (b) (b)
SPREE (c) (c)
SPREE (d) (d)

USPREE (a)-(b) (a)

USPREE (a)-(c) (a)

USPREE (a)-(d) (a)

USPREE (b)-(c) (b)

USPREE (b)-(d) (b)
Table 5.1

Venezuela - Aggregated Differences D"
For 1990-1981 SPREE Models and Unsaturated SPREE

1990 MODELS (ms)
(LqF) Census SPREE Unsaturated SPREE |
Prop- 1@y [ [ ) [@) ] @b | are) | @) | )e) | o))
1 475 13.3 0.0 -1.3 2.3 14.4 14.4 14.3 1.0 -1.0
2 75 -67 48 17 6.2 -10.5 -8.5 -10.3 4.1 1.2
3 45.0 6.0 0.9 -09 1.7 6.1 6.6 5.6 2.1 -0.6
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In general, we can see from table 5.1 that the conventional Logistic models recorded

lower ARBs than the SPREE models (1990-1981).

We can also look at the proportion of subgroups (table 5.2) where a gain in ARB with

respect to the conventional Logistic models was observed, that is, the proportion

PG of subgroups with D <0,

ijkg
>3

PG(mS)—(ml) — i=1 j=1
q

M=

](D_(_MS)—(ml))

- ijkg
5.16
184 ( )

.
|

where,

(ms)—(ml)
1 (Dtjkq

)= 1 if DG~ <0
0 otherwise

We recall that (/-J-K)=C=184.

Table 5.2 shows that despite the overall superiority of a-based models evident in
Table 5.1, this improved performance comes from less than the 50% of subgroups.
Furthermore, Table 7.1 in the appendix shows the irregularity of the behaviour of
estimates from one subgroup to another when using different a-based models. For the
rest of the models, i.e. b-based, c-based and d-based models it seems clear that not
only does the use of SPREE and Unsaturated SPREE models not lead to an overall

improvement in ARB but on the contrary, it actually worsen the overall outcome.

Table 5.2

- (ms)—(ml}) H (ms)=(ml)
Venezuela - Proportions PG, of subgroups with Dy <0

For 1990-1981 SPREE Models and Unsaturated SPREE Models.

MODELS
q Prop SPREE Unsaturated SPREE
@ | ® | ©) ] @ Leo ] @rc ] @] o) o

1 475 16.8 527 57.6 370 9.2 17.9 12.0 424 614
2 75 484 315 413 293 457 484  46.2 337 37.0
45.0 391 50.0 609 386 402 353 402 359 614

w
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Figure 5.1. Box plots of the subgroups ARB, distribution,
for conventional Logistic models, 1990-1981 SPREE Models
and Unsaturated SPREE Models.

A better picture of the differences between models is obtained from Figure 5.1 which

shows box plots of the distribution of the subgroups ARB., for each model. These

iik
are separated into four charts for a-based, b-based, c-based and d-based models. The
graph clearly shows that using reference information with a 9 years gap is not only
unnecessary but also inadequate. Unfortunately, we do not have the required data to
carry out the same exercise with a smaller gap. Instead, later in this chapter we will
carry out a simulation study with samples from the Census’90 in order to assess how

these models perform in a census year.

If a good reference table for a particular model is available for the period of interest,
1.e. the preservation assumptions are sufficiently acceptable, we can use the
appropriate SPREE model so that the bias shown in Figure 5.1 is significantly reduced

as we shall later show in the simulation study. In that case we are almost guaranteed

superior quality estimates in terms of Mean Squared Error ( MSE = Variance + Bias®)
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Figure 5.2 Box Plots of the subgroups ARB average distribution,
for conventional Logistic models (a), (b), (c) and (d).

when using the sample from the LFS compared with the direct estimates obtained

from this survey.

As an alternative procedure, should such a table not be available, we are interested in
exploring possible gains from using conventional Logistic models like models (a), (b),
(c) and (d). The idea is to assess these four models to understand the differences
between them in terms of the bias of the corresponding model estimates This will also

allow us to determine potential variants of these models that might provide a better fit.

Figure 5.2 shows the box plots of the distribution of the subgroups ARB average
(ARBy, ) for the conventional Logistic models (a), (b), (c) and (d). As we expect, the

more complex the model the lower its overall bias. However, the most important
characteristic we can observe in Figure 5.2 is the appreciable impact that inclusion of
the sex-age interaction has on the fitting process —model (b)-. That impact is not so
dramatic when we add either the age-state interaction —model (c)- or the sex-state

interaction —model (d)- to the sex-age interaction model (b).
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Figure 5.3 Box plots of the distribution of the Subgroup aggregated ARB
by Sex and Age, for conventional Logistic models (a), (b), (c) and (d).

We know that the simpler the model the higher the precision with which its
parameters and consequently the target estimates can be estimated. On the other hand,
the simpler the model the higher the bias in these estimates. Therefore, the fact that

there is no big difference in bias from model (b) to models (c) and (d) might mean that
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Figure 5.4 ARB’s for g=1 and q=2 i.e. Employees and Unemployed
Jor Model (b) by States.

the gain in precision with b-based models offsets its potential bias. This fact is
important because it give us an insight into the potential superiority of one type of
model among those considered so far. On the other hand, the a-based models show a
big difference in ARB terms when compared to the b-based models so that a

favourable bias-precision balance seems unlikely.

Figure 5.3 shows box plots of the distribution of the subgroup aggregates ARB
(ARB, ) for the conventional Logistics models (a), (b), (c) and (d) by Sex and Age

group. That figure shows that, in general, the pattern in Figure 5.2 is replicated for

each Sex-Age group.

Figure 5.4 shows the ARB for Employees and Unemployed (¢=1,2) for model (b) by
States with the two digit labelling indicating Sex code and Age group code. We recall
that the ARB figures are in fact absolute residuals from the model fitting process.
From a visual inspection of this graph we can identify some subgroups for which the
fit is fairly poor. They are mainly sub-groups related to Age 3 and Age 4, particularly

when Sex equals 2. However, some of these points correspond to proportions lower
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Figure 5.5 m values for g=1 and g=2 i.e. Employees and Unemployed

ijkq.ijkq
Jor Modes (a), (b), (c) and (d) by States.

than 0.02 for which an ARB of 60% might not be a problem. A similar pattern can be

seen for models (a), (c) and (d).

However, as we have already discussed it in Chapter 4, ill-fitting points do not
necessarily correspond to influential points. On the contrary, experience has shown
that points that might influence the fitting process making its overall performance
poorer are rarely ill-fitting points (Pregibon 1981). At this point, we are interested in
the characteristics of potentially influential cells in order to learn more about the

models and alternative variants that might improve the overall outcome.

In order to obtain a preliminary idea of the existence and characteristics of influential

points we carry out a visual inspection of the my, . values as was discussed in

Section 4.2.5. Figure 5.5 shows four graphs corresponding to models (a), (b), (c) and

(d) with the m values for q=1,2 by States. In those graphs, the two digit labels

ifkq.ijkq
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again indicate Sex code and Age group code. Each graph shows a horizontal line that

indicates the rough cut-off point [1-(2P/IJK(Q —1))] suggested by Hoaglin & Welch

(1978) as a guide for determining potential influential points.

Only model (a) and model (c) register cells below the cut-off point. However, a
pattern can be noticed in those graphs. For models (a), (b) and (d), the cells showing
lower m-values are cells related to Age group 1. On the other hand, model (c) shows
cells related to Age groups 3 and 4 with the lowest and highest m-values whilst Age
groups 1 and 2 seem to be in between. It also seems important to mention the slightly
different behaviour shown by States 1, 13 and 21. This is particularly noticeable for
models (b) and (c). Those states are mainly urban and their socio-economic
characteristics are certainly different from the other states, which may also affect the
fitting process. An important fact about those states is that their sample size in the

LFS is large and Sex-Age direct estimates are expected to be of a reasonable quality.

Taking into account those facts, we now define some variants of our models in order

to explore their impact in the overall outcome. The description of the variants is as

follows,

V1 -- No Age group 1

V2 -- No State 1

V3 -- No Age group 1 and State 1
V4 -- No States 1, 13 and 21

Note that those variants are equivalent to “adding” extra parameters to each model
without having to include a further full interaction. For instance, fitting model (b)
without Age group 1 is equivalent to having a new factor (say NewAge), with value 1
if Age is different from 1 and zero otherwise, interacting with the remaining factors in
the model. That is, we are including an interaction Age-State but using the variable
NewAge so that we add 22 extra parameters to the model instead of the 66 that would
result from using the full Age-State interaction. Based on that fact, we observe that
there is no need to fit variants 1 and 3 for model (c), for instance, as they do not add

new information to the conventional Logistic model (c) and its variant 2 respectively.
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Figure 5.6 Box plots of the subgroups ARB distribution (q=1,2),

Jor variants V1, V2, V3 and V4 by Models (a), (b), (c) and (d).

Figure 5.6 shows the box plots of the ARB for those variants along with their
respective original models. We use “V0” in that graph to denote the respective
original model without modifications. Due to comparative purposes those graphs do

not contain information related to Age group 1 and states 1, 13 and 21.

For the a-based models we can see how deleting Age group 1 produce a noticeable
impact in the overall performance pushing the box down. That impact is due to the
fact that when we remove one Age group, we are actually “adding” extra Age-related
interactions, including a Sex-Age interaction which has been shown to be an
important one in the previous plots. However, the ARB levels still remain high.
Deleting State 1 or States 1, 13 and 21 does not produce an appreciable overall impact
for model (a). As for models (b), (c) and (d), there does not seem to be a clear

advantage in using any of the variants; although slightly improvements can be seen in
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some of them, it is unlikely that they will offset the increase in variability due to the

extra parameters those variants suppose.

It is important to emphasise the interpretation of deleting categories from models (a),
(b), (¢) and (d). As we have already mentioned above, deleting categories is similar to
adding interactions between a new partition of the variable subject to category
removal and the rest of the variables. Analysing Figure 5.6 from that perspective, the
relevance of the Sex-Age interaction is again evident. Once Sex-Age interaction is in
the model, i.e. models (b), (¢) and (d), adding extra interactions related to State does

not have a major impact in the model.

Figure 5.7 shows Model (b) Unemployment ARB (g=2) against Unemployment
proportions (in percentages figures) for subgroups by Sex-Age groups. Those graphs
show the origin of the extreme ARB figures registered in previous charts; they are
registered mainly in subgroups with proportions lower than 0.05, particularly in
Sex=2 & Age=4, i.e. females aged 45 and more, where all proportions are lower than
0.02. These large ARB values for small proportions are expected given the “relative”
nature of such a measure and they do not necessarily indicate bad estimates. The

important fact here is that there are no extreme ARB values for moderate and large

proportions.

This Census based comparative analysis has given us an idea of the potential
usefulness of different possible models. The use of the SPREE method using a nine
year old reference table does not seem to be a sensible approach. Traditional logistic
analysis might offer an alternative to direct estimators, particularly using a model like
model (b). However, a complete analysis of the appropriateness of these models as
estimators of the subgroup proportions considered in this work needs to take into
account the variance that the use of the LFS brings into the process; such an analysis
as well as the study of SPREE methods using recent reference tables will be carried

out next based on a simulation study.
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5.4. SIMULATION STUDY

In this section, we describe and analyse results from a simulation study based on the

Venezuelan Census’90 data.

The primary goal of this simulation study is to asses the properties of the estimators
and their variance estimators for the models proposed so far in this thesis. We have
already mentioned the trade off between bias and variance between those models.
From this simulation study we shall empirically learn about the characteristics of that
trade off. Learning about the effect that each interaction term has on that process will

give us an idea of what to expect from those models in different situations.

This study also includes SPREE models using the 1990 Census so that the

characteristics of those procedures with an “adequate” reference table can be

explored.

5.4.1. Description of the Simulation Study

5.4.1.a. Selection of the samples

The simulation study consisted of 1.000 samples selected from the Census’90 data
following as close as possible the current sampling design of the Labour Force Survey
(LFS). Technical details about the Census’90 and the LFS including details about
their databases are given in Chapter 2. However, we now recall some key points that

are relevant to the description of the simulation study.

The LFS sampling design is a stratified three-stage design. The LFS uses the
Segments and the Sectors from the Census’90 as primary sampling units (PSU),
creating special sub-divisions or sub-segments (of approx. 50 private addresses “PA”
each) to be used as secondary sampling units (SSU). Finally, a sample of

approximately five PA or tertiary sampling units (TSU) is selected within each sub-
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segment in the sample. The Segments are stratified by geographical areas such as

states or states divisions.

The Census’90 database used for the simulation study was the Expanded Database.
This database comprises the information collected from the Census sample units using
the Expanded Questionnaire. The Census’90 sample design was a stratified clusters
design where approximately a 20% of clusters were sampled in the urban areas whilst
100% were included in rural areas. The Segments (of approx. 200 PA each) were used
as strata in the urban areas and the “Sections” (partition of “Segments” of approx. 20

PA each) were the clusters.

The Expanded Database contains weights for each person and household in the
sample. These weights are the adjusted weights after a complex post-stratification
procedure involving ten different variables. Any attempt to withdraw samples from
the Census using the Expanded Database has to take into account the Census
sampling design. The original Census design weights were not available to us and
their precise computation was not possible due to practical issues that arose during the
Census execution. Each Segment was supposed to contain 10 Sections of
approximately 20 PA each. However, some Segments ended up containing a larger
number of PA than expected and so were divided into more than 10 Sections. As we
have no access to the Basic Database, the actual number of Sections per Segment is

unknown leaving us with no way of reproducing the original Census design weights.

To carry out the simulation we therefore considered the Census sample related to the
urban areas as the actual Venezuelan urban data. For the rural areas, since they were
completely enumerated in the Census, we selected a sample independently for each
state of the same fraction as the one considered for urban areas, that is, a 20% sample
within each state. This rural sample was then taken to be the actual Venezuelan rural
data. Therefore in our simulation study, the combined 20% urban and rural sample is
the target finite population and the parameters of interest are those that characterise

this “synthetic” Venezuelan population.
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Our aim was to select samples using a sampling design as similar as possible to the
LFS sampling design. Therefore as in the LFS sampling design, the Census Segments
were used as PSUs. We used states as the strata instead of sub-divisions of states.
However, the information contained in the Expanded Database allowed us to sort the
PSUs by geographical order within states introducing a stratification effect similar to
the one present in the LFS sampling design which uses a systematic mechanism in the
selection process. PSU or Segments were selected with probability proportional to
the number of PA using a systematic mechanism. Table 5.3 shows the PSU sample

size per State.

In the Urban areas, the sections comprising a segment were used as SSUs and their
sub-sections as TSUs. One SSU per Segment sampled was selected with probability
proportional to the number of PA. In the same way, one TSU per SSU sampled was
selected also with probability proportional to the number of PA. Finally, all the PA

within a selected TSU were considered as the final sample.

For the rural areas, the database does not contain any information that can be used as
sub-divisions of Sectors. The LFS selects one SSU per PSU in rural areas, selecting
ten consecutive PA from each SSU selected. For the simulation study, we selected ten
consecutive PA with equal probability from each Sector in the sample. In a few cases

the number of PA in a specific Sector was less than ten; In this case we included all its

PA in the sample.
Table 5.3
Simulation Study PSU
Sample Size by State
PSU PSU PSU PSU
STATE | g2 mple STATE | gample STATE | gomole STATE | 5amole

1 261 7 81 13 212 19 31
2 66 8 11 14 34 20 26
3 24 9 50 15 16 21 315
4 74 10 34 16 32 22 15
5 28 11 75 17 52 23 20
6 115 12 44 18 58
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5.4.1.b. Selection Probabilities and Weights

Following the notation used in Chapter 2 but noting that our “Venezuela” is now the

information in the database prepared for this simulation study, the probability of

selecting the izh PSU within the hth stratum is pl=n,(7},/T,).

In the same way, let 7, be the total of PA in the j#i Census Section (SSU) of the itk

Segment (PSU) in the hth stratum. The probability of selecting the jth Census Section
within the iz7 urban PSU within the heh stratum is |, p2 =(b,7,;/ B, ,;), where b,; is

the number of Sections selected for the census sample in the itz Segment in the hth

stratum and B,; is the total number of Sections in the same Segment and stratum.

Therefore the probability of selecting a PA in the iA# rural PSU within the h## stratum

is ,p2=(c,/T,), where c,, is equal to ten, or 7, if the Sector contains less than ten

PA.

For the simulation study, the selection probability of any PA in the urban areas and in

the rural areas respectively can be expressed as follows:

7.\ b, 1,
PA_)=n,| || —2 5.17
up( Izyk) h(]-;l ](Bhithi ( )

.\ ¢, C,.
PA. V=mn| L || 2 |=p | 5.18
,P( i) nh(ﬂ](ﬂ;} nh(];) ( )

One problem is that we do not have any information about the values of B,,.

However, we know that the Sections were selected at random and that their sizes 7,
must be rather similar. Therefore, (B,,,/b,;) must approximate 7, and so we can use

the following expression as a good approximation to , p(PA4,;) :

_ [ T
up(PAhz_'/'k) =, T

h
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Noting that in urban areas T,; is the sample size within a specific PSU, we have that

in those areas 7, =c,; and so we can write the common expression:

hif

C..
up(PAhijk) = rp(PAhijk) = p(PAhijk) =, ('}%Lj (5.19)

h

Therefore, for each sample in the simulation study, we have a set of weights w;,

attached to the units in the sample. Let the subscript g=1,...,1000 denote the gth
sample of the simulation study. We shall denote the weights related to the gth sample

as follows:

L, _|_ I
Wik (&)=w,(g)= (”/;Chi(g) j = (HSCS,- (g)] (5.20)

noting that #=s because the states are the strata in our simulation study.

5.4.1.c. Direct and Post-stratification Estimators of Parameters

Let us consider a variable Y related to people and let ¢=1,..,C denote the cth sub-
group for which we require estimates, as denoted in Section 3.1.1. The Horwitz-
Thompson estimator of the total Y and proportion P for the cth sub-group for the gt

sample will be:

7.(2)=Y W) (521)
YRURAC)
P(g) == (5.22)
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where y,; (g) is the sample total for the ctk sub-group within the ith PSU, Ath

stratum for the gth sample, and M, is the census population total for the ct# sub-

group. The ratio Y/Z is estimated by:

5 Y.(g)
R =-£ 5.23
£)a® (5.23)

Once a sample is drawn, a post-stratification adjustment is made at state levels using
the Census sex-age counts at the same level of aggregation as it is currently done for
the LFS (Section 3.2.4), that is A=22 sex-age post-strata. As in Section 3.2.4, the
weights attached to the people in the sample are modified using this post-stratification

adjustment. The resulting post-stratified weights are as follows:

M@ﬁm@yjz) (5.24)

a §

where M is the census population total for the ath post-stratum within the stk state

and HMS (g) 1s its Horwitz-Thompson estimator of the form as (5.21) for the gth

sample. The resulting estimators of the total Y, the proportion P and the ratio R=X/Z

are then post-stratified (PS) estimators given by:

\ Z Wi (&) V3. (&)
P (g) = }:c(g) M, = Zl M, (5.25)
M, (g) Zw,,,.(g) m; (g)
s, o Y Y.(g)
A= T T @ o0
T T P
R*(g) = Yie) _Y. (), (8) (527)

ZM9) Z.(2) .B(2)

where m,; . is the sample total of people for the czh sub-group within the ith PSU, Ath

stratum for the gt sample.
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Let Y represents the total of the qt/ category of the labour force structure, that is

Y=M, . Then, equations (5.21) and (5.25) are the direct and PS estimators
respectively of the total of people in that category and the employment,

unemployment, activity and inactivity rates R, are then estimated using (5.23) and

(5.27).

5.4.1.d. Variance Estimator for the Direct and Post-stratification Estimators

Assuming that the PSUs were sampled with replacement within each stratum, we use
the ultimate cluster technique (e.g. Kish 1965, Wolter 1985, Skinner et al. 1989,

Sarndal et al. 1992) to estimate the variance and covariance of the Horwitz-Thompson

estimator )A’c(g) :

Var(7, ()=~ >(7, ()~ T, .(2)) (5.28)
(nh _1) i=1

C;v(ﬁ(g),fc(g)):(n”h Z()’;},i’c(g)_)—a,c(g))(zhﬂf(g)_fh,c(g)) (5.29)

f ‘1) i=

The variances of f’c (g) and IAQC (g) are:

ny

var 2 0)) 2 oy 2 e 91 o0 (5.30)

V;I’ (Iléc (g)) ~ ———1—*— V;zr (f}c (g)) - ZIQC (g) CAOV (Y: (2), Z: (g))

PR ) (5.31)
(Z.(2) +(R.) var(2.(2))

~
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Applying the same arguments as in Section 2.2.5, an approximation to the variance

and covariance of IA’CR (g) 1s calculated by using the expressions:

var (94(9)) 22— (92 ()T () (532)
(}’lh—l) i=1

£5

Con(F2(8),2(@)) = - (h (0) - T @) ) 280~ 25 (@) 539

(nh —1) =

Consequently, the expressions for the variances of P*(g) and R*(g) are:

ny

var(B(9)) = M}—Z-E"—”:EZ(KIR (©)- I?;,ﬁfc(g))z (5.34)

| par(78(e) 2R (9) Cov (1 (), 25(9)

Var (R*(g)) 2 —— )
ai’( g) (ZCR(g)) [ +( ACR)ZVar(ZACR(g))j
) ) (5.35)
oy rar(Bre) 2R @) Cov(, (o). B ()
(Ere) (@) var(.E*(9))

5.4.1.e. Models considered in the Simulation

The models fitted to the data obtained in each of the 1000 samples are the SPREE
models (a), (b), (c¢) and (d) and the Conventional Logistic models (a), (b), (c), (d)
described in Section 5.3. However, there are two differences here. Firstly, we shall
use the LFS-like samples to estimate the marginals used to update the required terms
in the model. Secondly, the reference table used in the SPREE process will be the one
defined by the Expanded Census’90 database from which the samples are drawn. This

is the best possible scenario as any interaction term to be preserved from the reference
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table is guaranteed to be equal to that of the target table. This is the equivalent to the

“ideal” situation in which the preservation assumption flawlessly holds.

5.4.1.f. Estimators of Parameters

The 1000 sample estimates of the proportion of people in each of the three groups

g=1,2,3 that comprise the basic structure of the labour force were obtained for each
model for each of the sub-groups c=/, ..., 184, that is,

X, 0(g) exmé(g)

3 X b T X0
g g
Zq:le 1+2q=le

B =7, =, (8(g)= (5.36)

Let 7,,,.(g) denote the sum 7, (g)+7,,(g). The employment, unemployment,

activity and non-activity rates R, are estimated by using the expressions,

R (g)=Juel8) : R (g) =)
7[12/c(g) ﬂlz/c(g) (5.37)
B()=1-7,(8) R(2)=7(2)

5.4.1.g. Variance Estimators

Let & ( é(g)) be the IxJxKx(Q-1)=368 vector:

m (0(e))
NN e (i)
n(ﬂ(g))— ”C(?(g)) : with nc<9(g))"{7zwk(é(g))]
n.(0(g))
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We substitute (5.34) in its variance-covariance matrix form into the equation (4.46) in

order to calculate the variance estimates of the matrix n(()(g)) , that is, the diagonal of

the matrix:

-1

CBv(n(é(g))) = Z\(g)X(X’DA(g)X) (X’D Co;ar(f’R (®)D X) (X’DA@)X)‘1 XA(g)

(5.38)

where A(g) = Blockdiag [Diag (7.(2))- = (), (g)'] and X and D are as in Section

4.5.2.

The estimates of the variances V;zr( JR( g)) = V;zr( nﬁc(g)) = Var (F,,.(g)) are

defined by the diagonal of (5.38). The estimates of the variances V;zr(e}?c(g)) and

A

Var( y ﬁc ( g)) are as follows,

L Par () —2,R.(2) Covar (7. (2) %1 (2))

_ : L - (5.39)
(7712/c(g)) +(el§c(g)) Var(ﬁu/c(g))

Var (R (2))=

L Var(i,.(8)— 2,R.(2) Covar (,,.(2),% 15, (2))

_ _ L - (5.40)
(72c(8)) +(,R.(2)) Var (#,,.(2))

Var(,R.(2))=

where:

VZIV (ﬁlz/c (g)) = V;W (ﬁ]/c (g)) + V;l}’ (ﬁz/c(g)) +2

Co}ar(ﬁl,c(g),ﬁyc(g))]

and,
Co;ar (ﬁl/c (g)s"flz/c(g)) = V;zr (TEI/c (g)) +C5var (ﬁ]/c (g)>7€2/c (g))

Co;ar(ﬁzm(g)aﬁlz/c(g)): V;lr(ﬁz/c(g))+C5Vdr(ﬁ1/c(g),ﬁ2/c(g))
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5.5. PERFORMANCE INDICATORS

In this section we define the indicators that will be used to assess the properties of the
different estimators considered in the simulation study i.e. the model estimators

defined in Section 6.4.1.e plus the Direct and the PS estimators.

Let (j; (cg) be any of the estimators considered in this study for the cth-sub-population
and qth LF category parameter ¢ (cg). This parameter can be either a proportion or

one of the rates defined in the previous section. In the case of rates g will just denote
which rate the parameter is referring to, i.e. Employment, Unemployment, Activity or

Non-activity rates.

Let (1; (cq,g) denote a specific outcome of (1; (cq) generated at simulation g. Let
SE, (qf (cq)) and CV, (4; (cq)) be the standard error estimate and the estimate of the

coefficient of variation of the estimate q§ (cq) obtained from the gth simulation. An

unbiased estimator for the expected value of (1; (cq), E (d; (cq)) is given by:

1000

E(fteq)) =2 Y208 (541

Therefore, an estimator of the bias of d)A (cq) 1s given by:
Bias(¢(cq)) = £(§(cq)) -4 (cq) (5.42)

We need indicators that allow us to assess the performance of (1; (cg) as an estimator
of the parameter ¢ (cq) and to compare it with other estimators of that parameter. The

key properties of estimators we are interested in are bias, accuracy and confidence
interval coverage. By assessing accuracy and bias we can learn about the usefulness

of each estimator at estimating the target parameters and the gains obtained due to the
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use of one estimator over another. On the other hand, we can use the information
about coverage rates to assess the impact of not taking into account bias in the

construction of confidence intervals.

Eight performance indicators for qf (cq) are therefore defined as follows,

a) Absolute Relative Bias: ARB(&(cq)) = 10100 : §{¢;C(Z’q§) —1} i
1 oo 17

A TP UCESRICH)

b) Relative Root MSE: RRMSE (¢(cq)) = i
P(cq)
c) Coverage Rate: CR ((bA (cq)) = TO—O6 Z i((bA (cq,2)) ;
Genay— |1 T B E[len a0 12)-55, G cn)
0 otherwise
. 1 100~

d) Average SE: SEA (¢ (cq)) = 1000 Z SE, ((b (cq))
e) Standard Error: SE (q§ (cq)) = [_IH%(; . Z (4; (cq,8)-E ((I)A (cq)))z}

1/2

SE(§(cq)) =| RRMSE? (§(cg)) - ARB* (§ (D) | 9o

f) Coefficient of Variation: CV (¢(cq)) = SE (qi (c9)) /¢ (cq)

cv ((t;(CC])) = [‘RRMSE2 (d;(cq)) — ARB? (d;(cq))]m
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1 oo se, ((j;(cq)) - SE (df(cq))
1000 & #(cq)

g) Relative SE Bias: RSEB ((;;(cq)) =

SEA(§(cq))~SE(§(cq))
#(cq)

RSEB($(cq)) =

In the case of proportions, we are interested in the performance of the vector of
binomial estimators ¢(c) = (d; (cq)) = ((5 (cl),d; (02),(1; (c3)). Therefore the performance

indicators to be analyzed will be the average of the three binomial indicators for each

subgroup. For instance, the Absolute Relative Bias indicator we are interested in is

given by,

© ARB (i;(cq)
ARB((,[\)(C)) — g=1 Q( )

In a similar way we obtain the following indicators RRMSE(§(c)), SEA(¢(c)),

SE(¢(c)), CV(¢(c)) and RSEB(§(c)).

Regarding the coverage indicator CR((I)(c)), we use a different approach for

proportions from the one given above. This is due to the fact that we are dealing with
a multinomial variable and in this situation it is more informative to calculate an
integral coverage rate, i.e. a rate indicating the percentage of samples for which the
three confidence intervals simultaneously include their respective parameters. In this
case we are interested in constructing simultaneous confidence intervals such that the

combined coverage rate is about the (1-a)% aimed. A common approach to

construct those simultaneous confidence intervals is due to Goodman (1965). The
approach consists to constructing all the Q confidence intervals -Q being the number

of categories in the multinomial population- using z(o / 2Q) instead of z(o /2) in the
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formula for the confidence interval. The Coverage Rate indicator for proportion is

therefore given by,

1000

CR(@(C))=——1——-Zi(¢;(C:g)) ;
1000 4

o Uif fleq) €]6eq) £ 2@ 120) - SE, G (cq))| Vo€
i(h(c,2)) =

0 otherwise

All these indicators are easily interpreted. The ARB indicator gives us a measure of
the magnitude of the bias relative to the size of the parameter for a particular

estimator.

The RRMSE can be interpreted in a similar way as the traditional coefficient of
variation (CV), but noting that in this case the numerator is the mean squared error
(MSE) instead of the variance. This is the standard indicator used to asses the
accuracy of each estimator and thereby the gain or loss associated with using a

particular model estimators. This indicator can be compared to the CV indicator in

order to asses whether the coefficient of variation estimator C I/:g is a useful measure

of the accuracy of an estimator.

The CR indicator will allow us to assess the adequacy of confidence intervals for a
particular estimator based on the standard error estimates, since this assumes
unbiasness and normality of the estimator distribution. We will use o =0.05, so we
are looking for values of this indicator that are significantly lower that 0.95 (or 95 in

percentage figures).

The CR indicator can also alert us possible problems with the variance estimator of
the unbiased Direct estimator and/or the almost unbiased Post-stratification estimator.
The appropriateness of the standard error and coefficient of variation for estimating
the real standard error and coefficient of variation can be assessed by looking at the

SEA, SE and RSEB indicators. Large discrepancies between average and simulation
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estimates of the standard error are indications of problems in precision measurement
estimation from sample data. If the variance estimator formula is not adequate, we
can check whether it is overestimating or underestimating the real variance by looking
at the Relative SE Bias (RSEB). The RSEB indicator gives us a measure of the
magnitude of the bias in the standard error estimator relative to the size of the

parameter.

We also calculate some summary version of these indicators that can help provide a
general picture of the characteristics and performance of the estimators. First of all,
we will calculate the average of the seven performance indicators at different levels
1.e. national averages, sex-age group averages and so on. To illustrate, the national

average of the ARB indicator for proportions and rates estimators are respectively,

ARB (¢ )= (1—;—4- f ARB($ (cq)))
and
ARB (¢)= (I;_z;f ARB (@(c)))

The averages RRMSE (q§ ) , CR (c}; ) , SEA ((j; ) , SE (q§ ) , CV (d; ) and RSEB (d; ) are

defined in the same way.

We also define some measures that will help us to understand the differences between
estimators in terms of the percentage of subgroups satisfying a certain requirement

regarding the level of a given indicator. These measures are given below for rates
estimators. For proportion estimators we just have to substitute @(c) for ¢; (cq) in

any of these expressions.
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a) Percentage of subgroups with a Relative Root MSE <= 0.15

[%RRMSE (q§ (cq)) < 0.15] = (—lélfji(cq)] -100;

c=1

_ [1 if RRMSE(§(cg)) <0.15
i(cq) =

0 otherwise

b) Percentage of subgroups with a RRMSE Improvement > 0.15 with respect to the

Post-Stratification estimators

184

[%R[RRMSE(qf (cq)) > 0.15} = (1—;4—2 i(cq)J-IOO

c=1

1 if RC(§(cq),$p(cq)) < —0.15

0 otherwise

i(eq) = [

RRMSE (§(cg))-RRMSE (6 5, (cq))
RRMSE (s(cq))

RC(@(cq), s (ca))=

where d; »s(cq) denote a Post-Stratification estimator.

The %RRMSE indicator summarises the percentage of sub-populations for which the
RRMSE yield by the simulation study is lower than a specific limit. We have chosen
0.15 as this limit on the basis that this figure is the “acceptable” limit for publication
purposes. Therefore, the %RRMSE indicator will give us an idea of the percentage of
“publishable” estimates when using each estimator considered in the study. However,
it will not give us all the information about the gains or the improvement in RRMSE
terms obtained by using a specific estimator with respect to any other estimator. For

that purpose we have calculated the %RIRRMSE indicator.

The %RIRRMSE indicator gives us the percentage of sub-population groups for
which the relative change in the RRMSE of a specific estimator with respect to the
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RRMSE of the Post-stratification estimator RC ((1; (cq),d)A ps (cq)) 1s lower than a given
number. Note that relative negative numbers in RC ((1; (cq),(i; ps (cq)) denote
improvement in RRMSE terms of that estimator with respect to the PS estimator,

whilst positive figures denote deterioration. We will use 0.15 as the limit.

These indicators will also be disaggregated by sex, age group, sex-age groups and

state.
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5.6. RESULTS

We now present and comment on the results obtained from the simulation study. In
order to make a basic comparison to asses the appropriateness of the simulation
process, Table 5.4 shows the estimated design based ARB from the simulation versus
the “real” ARB calculated from the Census data for models (a), (b), (c) and (d)
proportion estimators. Those figures are presented for Sex-age groups and along with
the national average. The table does not show differences that might raise any

concern.

Table 5.5 shows the national average of the performance indicators for the Direct,
Post-stratification (PS), models (a), (b), (c) and (d) proportion estimators as well as
the SPREE models (a), (b), (c) and (d) estimators. The most important aspect shown

in this table is the quality of the SPREE estimators when the reference table is an

Table 5.4
PERFORMANCE INDICATOR ARB AND REAL ARB
FOR PROPORTION ESTIMATORS Model a, b, c and d
BY SEX AND AGE GROUPS and NATIONAL AVERAGE

Sex-Age ARB Sex-Age ARB
Group Group

@ ol o @] o]
Total R 202 87 69 64

S 202 86 69 64

11 R 118 76 49 40 21 R 159 70 79 50
S 1.6 77 51 39 S 159 69 7.8 49
19 R 112 82 64 538 55 R 982 714 51 29
S 113 62 65 57 S 91 71 51 32
13 R 203 75 60 82 23 R 259 94 60 63
S 203 75 6.0 82 S 258 94 6.0 64
14 R 124 89 48 66 24 R 55.0 155 13.8 12.2
S 124 89 50 6.6 S 553 152 13,5 120

R=Real ARB%
S=Estimated ARB% (simulation)
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Table 5.5
PERFORMANCE INDICATORS FOR PROPORTION ESTIMATORS
BY ESTIMATOR (Direct, PS, Model a, b, ¢ and d and SPREE)

NATIONAL AVERAGE
ESTIMATOR
Performance
Indicator Direct | PS (a) )] (c) (d)
Spree (a) Spree (b) Spree ( c) Spree (d)
31.5 66.7 77.6 81.7
CR 83.7 84.0 920 92.0 88.0 92.9
20.2 8.6 6.9 6.4
ARB 0.8 0.9 03 0.3 0.6 0.5
23.9 13.9 18.1 14.5
RRMSE 227 227 o8 97 152 118
1.8 1.8 2.9 24
SEA 3.7 3.7 18 1.9 2.9 2.7
1.7 1.7 2.7 2.1
SE 35 3.5 1.7 1.7 2.7 2.1
0.9 0.8 0.7 1.0
RSEB 08  -0.7 08 08 08 2.3
10.2 9.6 15.5 12.1
cv 226 226 5.8 92 152 118

adequate one. We recall that for this simulation we construct the reference table from
the 1990 Census data. Coverage rates for SPREE estimators are even superior to the
Direct and PS estimators because they are not affected by the instability due to small
sample sizes found in design based estimators. Note the dramatic reduction in bias
caused by preserving appropriate interactions in contrast with the conventional

Logistics models (a), (b), (c) and (d) and its obvious effect in reducing the RRMSE

values.

As we expected, the standard error levels are rather similar for the SPREE and the
conventional Logistic model estimators since the differences between them are the
“constant” preserved interaction terms (see Chapter 4). The bias of the estimator of
the standard error (RSEB) seems to be small and positive for the model estimators.

For the design-based estimators, the national average shows a negative bias; we have
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Figure 5.8 Subgroups RSEB by
Percentage Parameter and Sample Size
for PS and Logit Model (b) Estimators.

seen in Chapter 2 that the variance estimator of the design-based estimators tends to
be conservative so a positive bias was expected. This national average bias is affected
by two factors, the instability of the estimator of the SE in small sample size situations
and the relative nature of the RSEB indicator itself, with the latter being the most

important.

Figure 5.8 shows the subgroups RSEB against subgroups sample size and against the
percentage parameters for the PS estimator and the Model (b) estimator. It can be seen
that the bias of the SE estimator is rather stable and slightly positively biased for large
sample sizes and large percentages. For combination of small sample size and small
percentages the RSEB registers high values. All the extreme negative RSEB values
shown in the graph correspond to subgroups with parameters lower than one percent.
Also, the estimator of the SE is noticeable more stable in RSEB terms for model

estimators.
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Table 5.6
PERFORMANCE INDICATORS FOR PROPORTION ESTIMATORS
FOR SEX-AGE GROUPS AND THE NATIONAL AVERAGE
BY ESTIMATOR (Direct, PS, Model a, b, ¢ and d)

iz); Coverage Rate (CR) % Absolute Relative Bias (ARB) %  Relative Root MSE (RRMSE) %

Group Dir. PS (@) (b) (c) (d) Dir. PS (@) (b) (c) (d) Dir. PS (@) (b) (c) (d)

Total 83.7 840 315 667 776 817 08 09 202 86 69 64 227 227 239 139 181 145

11 89.2 90.0 451 585 751 840 05 05 116 77 51 39 145 143 159 124 134 118
12 870 871 400 711 748 735 06 06 113 62 65 57 187 187 181 117 158 134
13 855 854 195 69.8 767 695 08 08 203 75 60 82 236 237 233 131 195 151
14 88.2 89.2 351 635 776 822 07 06 124 89 50 66 191 189 160 138 185 141
21 86.8 874 249 706 710 86.1 06 06 159 69 78 49 179 178 182 122 16.1 136
22 89.0 892 516 667 844 877 07 07 91 71 51 32 178 178 140 124 150 124
23 80.7 805 267 711 853 882 09 10 258 94 60 64 282 283 290 146 202 151
24 631 634 93 623 758 822 18 22 553 152 135 120 415 418 589 206 261 204

Although the superiority of the SPREE estimators with respect to the design-based
estimators and the conventional Logistic model estimators is clear, we recall that this
is true provide an appropriate reference table is being used. If this is not the case, we
might consider the option offered by the conventional Logistic model estimators. On
average, apart from Model (a), they all register a lower RRMSE than the design-based
estimators. A disadvantage of these estimators is that their Coverage Rate is affected
by their bias (see Table 5.5). Models (b) and (d) appear to be on average the best
options among the four conventional Logistic models considered in the study; based
on those average figures we would favour the Model (d) estimator as its RRMSE is
not far from Model (b) RRMSE and its coverage rate (CR) is almost at the same level
as the design-based estimators CR values. Note that the CV seems to be a better
estimator of the RRMSE for Model (d) than for Model (b).

We now look at some disaggregated figures to see if the national averages in Table
5.5 reflect the behaviour of those estimators at different levels. Table 5.6 shows the
Sex-age group average of the performance indicators for the Direct, Post-stratification
(PS), models (a), (b), (c) and (d) proportion estimators. The Sex-age average figures
seem to behave similarly to the national average figures. For group 2-4, i.e. females

aged over 44, the figures shows particular poor performances for all the estimators.
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Table 5.7
PERFORMANCE INDICATORS FOR PROPORTION ESTIMATORS
FOR SEX-AGE GROUPS AND THE NATIONAL AVERAGE
BY ESTIMATOR (Direct, PS, SPREE Model a, b, ¢ and d)

i‘;’;‘ Coverage Rate (CR) % Absolute Relative Bias (ARB) %  Relative Root MSE (RRMSE) %

Growp  pir ps (@) () (c) (d) Di. PS (a) (b) (c) (d) Dir. PS (@ (B (¢ ()

Total 83.7 84.0 92.2 92.0 88.0 92.9 08 09 03 03 06 05 227 227 88 9.2 152 11.8

89.2 90.0 92.0 92.1 88.8 94.6 05 05 03 03 05 04 145 143 84 85 11.7 10.7
87.0 87.1 91.9 91.7 88.1 934 06 06 04 03 05 04 187 187 87 9.0 13.2 111
85.5 85.4 91.5 91.5 86.7 93.6 08 08 03 03 07 04 236 23789 94 173 114
88.2 89.2 91.8 92.1 87.7 94.1 07 06 03 03 07 04 191 18988 89 17.0 111
86.8 87.4 92.4 92.1 89.1 92.0 06 06 03 03 04 05 179 17888 9.0 123 11.9
89.0 89.2 92.3 924 89.1 919 07 07 03 03 05 05 178 178 8.7 8.8 13.3 119
80.7 80.5 92,5 92.4 87.7 92.2 08 10 03 03 07 05 282 28390 95 179 125
63.1 63.4 93.2 91.8 87.1 91.3 18 22 03 04 08 06 415 418 94 10.8 18.7 135

NNNN S A L a
PWN S AW N

This is due to the fact that this group is the one with lower proportions and sample
size levels. However, the important point to note in this case is that, apart from model
(a), the model-based estimators have better RRMSE levels than the design-based

estimators. Again, the model (d) estimator seems to be the best option.

Table 5.7 is the equivalent to Table 5.6 but for SPREE model estimators. Here again
the behaviour is similar to the national average figures and the same comment
regarding Sex-age group 2-4 applies. Since bias is not an important factor for these
SPREE estimators, it is natural to choose as the best estimator the simplest model
since its RRMSE levels are the lowest and its CR values the highest. This model is
either the independence model (a) or the sex-age interaction model (b), depending on

whether or not we need the sex-age group agreement to the national figures.
We arrive at the same conclusions for both the conventional Logistic estimators and

the SPREE estimators after analysing the performance indicators by States. State level

figures for conventional Logistic models are shown in Table 5.8.
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Table 5.8
PERFORMANCE INDICATORS FOR PROPORTION ESTIMATORS
FOR STATES AND THE NATIONAL AVERAGE
BY ESTIMATOR (Direct, PS, Model a, b, ¢ and d)

State Coverage Rate (CR) % Absolute Relaot/ive Bias (ARB) Relative Root(;ASE {(RRMSE)
Code ° ’
Dir. PS (a) (b) (¢) (d) Dir. PS (@ (b (¢) (d Dir. PS (a) (b) (c) (d)
Total 83.7 84.0 31.5 66.7 77.6 817 08 0.9 202 86 6.9 6.4 227 227 23.9 139 18.1 145
1 93.4 945 6.2 276 317 57.3 03 02 152 84 83 53 75 7.4 16.1 10.0 109 7.7
2 88.2 88.5 225 81.2 848 90.3 0.5 04 211 87 65 41 16.4 16.4 23.0 10.1 14.2 9.9
3 78.6 78.2 64.1 75.2 80.2 85.8 1.0 1.2 163 112 6.7 9.0 324 33.0 22.9 17.6 23.5 19.7
4 90.3 90.6 4.4 56.4 79.1 795 06 06 204 7.2 55 56 142 142 21.8 101 122 9.9
5 794 79.8 33.6 674 80.7 895 1215 224 91 8.7 3.8 282 28.1 26.0 15.1 224 148
6 90.2 90.4 5.2 75.8 886 835 06 06 185 46 3.7 35 13.1 131197 8.0 10.1 84
7 894 899 8.8 834 90.2 854 0606 158 31 15 33 142141175 72 97 86
8 67.1 66.6 63.4 81.3 79.3 849 1512 237 96 8.6 6.2 433 44.8 33.0 209 322 249
9 87.4 879 31.6 79.1 86.1 86.6 0.8 0.8 223 74 7.3 4.4 192 19.0 250 11.9 154 124
10 83.6 84.2 315 63.6 77.6 852 1.0 09 205 94 7.7 6.1 251 249 24.1 147 206 145
11 90.4 90.5 17.3 712 853 916 0.7 0.7 225 62 55 42 155 154 243 10.2 127 10.0
12 84.8 85.2 34.0 61.6 823 823 08 0.8 215 88 7.0 7.0 23.3 23.2 247 137 182 15.0
13 92.1 92.8 23.6 41.7 57.8 53.2 04 04 155 72 6.1 66 9.3 91167 92 98 95
14 83.5 83.8 475 794 833 845 (0809 191 79 72 58 238 24.0 23.1 135 185 146
15 71.0 70.9 493 744 796 804 1212 201 68 26 69 374 373 26.7 16.3 26.0 20.2
16 80.8 80.8 274 58.6 79.0 825 1.0 10 211 90 80 53 26.6 264 249 154 20.5 14.9
17 87.6 88.1 41.0 58.8 796 709 0.6 0.6 16.8 10.7 54 104 194 195 20.5 14.2 145 156
18 87.0 87.8 124 85.2 885 906 0.9 09 230 55 4.8 4.6 188 187 253 101 144 117
19 82.5 83.0 50.4 71.0 81.4 86.1 06 0.7 220 10.7 7.0 10.0 259 25.8 26.4 15.9 20.2 18.3
20 80.4 80.4 44.2 83.1 85.1 86.4 1513 207 65 55 56 26.9 269 24.8 13.1 20.0 15.2
21 921 926 0.1 62.7 774 915 0.2 02 181 4.0 33 1.8 73 72189 63 71 53
22 70.1 70.8 59.2 55.5 62.4 799 19 2.0 193 176 168 9.1 39.0 39.3 28.4 26.6 33.1 234
23 75.4 754 48.0 40.3 64.4 706 0.8 1.2 29.0 21.0 146 17.7 34.2 33.7 36.5 29.0 29.4 28.8

An interesting aspect shown by the tables analyzed so far is that there does not seem

to be a big difference in RRMSE terms between the conventional Logistic estimators

and the SPREE estimators based on models (c) and (d). This fact is important since it

tells us that when the reference information available departs from an ideal case like

the one we have created for our simulation study, SPREE estimators based on models

(¢) and (d) might rapidly become inferior to the conventional Logistic model (c) and

(d) based estimators. However, the SPREE model (b) estimator might still be a good

competitor.
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Figure 5.9 Box Plots of the Subgroups RRMSE Distribution for the
Direct, Post-Stratification (PS), Logistic and SPREE Models (a), (b), (¢)
and (d) Proportion Estimators.

Figure 5.9 shows box plots for the subgroups RRMSE distribution for all the
estimators in the simulation. Those plots confirm the comments made in this section
regarding estimators and their RRMSE. Note, for instance, the similarity between the
conventional Logistic models (c) and (d) estimators and the SPREE models (c) and

(d) estimators.

Table 5.9 shows the percentage of subgroups with all three proportion estimates, i.e.
Employees, Unemployed and Non-actives, registering a RRMSE lower than 0.15
(15%) at the same time. That gives us an idea of the proportion of subgroups for
which is more likely to have stable rates estimates. The figures are presented by sex-
age groups for the Direct, Post-stratification (PS), models (a), (b), (c) and (d)
proportion estimators as well as the SPREE models (a), (b), (¢) and (d) estimators. We
can see again evidences of the gains obtained by using the model-based estimators.
This time, the conventional Logistic Model (b) estimator seems to outperform the
conventional Logistic Model (d) estimator by an appreciable margin, particularly for

some sex-age subgroups (1-2, 1-3, 2-1). The SPREE estimators prove once more to
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Table 5.9
PERCENTAGE OF SUBGROUPS WITH THREE PROPORTIONS RRMSE<0.15
FOR SEX-AGE GROUPS AND THE NATIONAL AVERAGE
BY ESTIMATOR (Direct, PS, Model a, b, ¢c and d and SPREE)

ESTIMATOR
SEX-AGE
GROUPS
Direct | P§ |—(2) (b) (e) (@
Spree (a) Spree(b) Spree(c) Spree (d)
Total 207 201 18.5 52.2 32.1 42.4
78.8 75.5 37.5 57.1
11 435 435 43.5 73.9 60.9 73.9
82.6 82.6 60.9 78.3
12 264 217 26.1 65.2 39.1 47.8
82.6 82.6 52.2 78.3
13 13.0 130 4.3 65.2 34.8 435
78.3 78.3 39.1 73.9
14 174 174 13.0 56.5 21.7 52.2
78.3 78.3 21.7 73.9
21 304 304 4.3 56.5 435 39.1
78.3 78.3 47.8 43.5
22 217 217 52.2 60.9 34.8 43.5
78.3 78.3 43.5 43.5
23 13.0 130 4.3 26.1 17.4 26.1
78.3 73.9 21.7 34.8
24 00 00 0.0 0.0 0.0 0.0
100.0 100.0 100.0 100.0

be superior to their competitors, with the SPREE model (a) estimator registering the

highest gains.
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Table 5.10
PERFORMANCE INDICATORS FOR UNEMPLOYMENT RATE ESTIMATORS
BY ESTIMATOR (Direct, PS, Model a, b, ¢ and d and SPREE)

NATIONAL AVERAGE
ESTIMATOR
Performance
Indicator
Direct | Ps —@) (b) (c) @

Spree (a) Spree (b) Spree (¢) Spree (d)
68.1 86.3 90.4 90.2

CR 87.7 87.6
94.6 94.3 92.4 93.5
ARB 16 22 29.1 12.5 8.8 104
0.5 0.6 0.9 0.8
RRMSE 423 428 36.4 21.9 29.2 243
14.4 15.3 25.9 19.5
SEA 43 43 2.2 2.2 3.3 27
2.1 2.1 32 2.7
2.1 2.1 3.3 2.7

SE 47 4.8
2.0 2.4 3.3 27
0.5 0.3 -0.5 0.2

RSEB 71 75
0.5 0.4 -0.5 0.3
17.5 16.4 26.8 20.8

cv 42.3 427
14.4 15.3 25.9 19.5

We now present some tables and charts for estimated labour force rates. We shall
concentrate mainly on Unemployment Rate (UR) indicators since estimation of these

rates is basic indicator of the labour force.

Table 5.10 shows the national average of the performance indicators for the Direct,
Post-stratification (PS), models (a), (b), (c) and (d) Rate estimators as well as the
SPREE models (a), (b), (c¢) and (d) Rate estimators. As in Table 5.5, the most
important result shown in this table is the quality of the SPREE estimators when the
reference table is an adequate one. In general, the performance indicators for the
Unemployment Rates show a similar behaviour to those of proportions. The SPREE

estimators show lower RRMSE figures and higher CR values than their competitors
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Figure 5.10 Box Plots of the Subgroups RRMSE Distribution for the
Direct, Post-Stratification (PS), Logistic and SPREE Models (a), (b),
(¢) and (d) Unemployment Rate Estimators.

thanks to the lower ARB registered. As expected, the simpler the model the better the
RRMSE figures for the SPREE estimators. As for the Conventional Logistic model
estimators, the Model (b) estimator is the one with the lower RRMSE; in this case,
however, the CR value for the Conventional Logistic Model (b) is similar to that of
the design-based estimators and these values are even higher for the Conventional
Logistic models (c) and (d). In this sense, it seems reasonable to choose the
conventional Logistic model (b) estimator among the conventional Logistic estimators
as its RRMSE is the lowest and its CV is of an acceptable level. However, Figure
5.10 shows how the conventional Logistic model (b) estimator, although having a
lower national average for RRMSE than the conventional Logistic model (d)

estimator, has more extreme RRMSE values than the model (b) estimator.

The RSEB figures show again a negative bias for the design-based estimators. The
explanation in this case is the same as for the case of proportions discussed above.
Subgroups with low unemployment rates and small sample sizes show a higher bias;

two subgroups with a particular low UR push the national RSEB average downwards.
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Table 5.11
PERFORMANCE INDICATORS FOR UNEMPLOYMENT RATE ESTIMATORS
FOR SEX-AGE GROUPS AND THE NATIONAL AVERAGE
BY ESTIMATOR (Direct, PS, Logistic Model a, b, ¢ and d)

Sex-Age Coverage Rate (CR) % Absolute Relative Bias (ARB) % Relative Root MSE (RRMSE) %
Group

Dir. PS (@) (b) (c) (d) Dir. PS (a) (b) (c) (d) Dir. PS f(a) (b) (o) (d)

Total ~ 87.7 87.6 68.1 86.3 90.4 90.2 16 22 291 125 88 104 423 428 364 219 292 243

93.3 934 87.7 87.7 929 914 06 07 85 81 44 51 205 206 159 154 186 155
93.0 929 914 91.1 91.7 930 06 08 55 52 52 40 241 240 155 153 209 165
917 916 73.7 926 912 925 07 08 128 64 36 70 323 327 197 172 288 194
91.3 91.3 66.0 874 91.0 88.0 13 12 148 119 36 126 350 358 226 221 338 242
91.0 91.2 82.3 85.6 87.8 89.1 12 13 90 81 91 69 266 263 156 152 196 190
92.0 91.9 81.1 84.2 89.8 91.0 1.0 15 110 108 83 46 305 307 186 191 235 217
83.3 83.1 49.1 83.8 90.6 89.8 27 29 461 175 125 154 618 621 523 273 367 322
86.2 65.4 13.3 78.2 87.8 86.7 49 84 125 324 227 280 108 110 131 432 515 4641

N N NN A a o
BWON = R WON -

The national average pattern of the performance indicators is similar to that ofi the
disaggregated figures by sex-age and states, so, our conclusions are the same. As an
example, Table 5.11 shows the Sex-age CR, ARB and RRMSE average indicators for
the Direct, Post-stratification (PS), models (a), (b), (c) and (d) Rate estimators as well
as the SPREE models (a), (b), (c) and (d) Rate estimators.

Table 5.12 shows the percentage of subgroups with an Unemployment Rate estimator
RRMSE lower than 0.15 (15%) and a Relative Improvement of the RRMSE with
respect to the PS estimator (RIRRMSE) higher than 15%. We have already seen that
the model-based estimators offer significant improvements when compared to the
design-based estimators in this regard. This fact is confirmed when looking at the
RIRRMSE values, which show the model estimators producing relative reductions of
the RRMSE values with respect to the design-based estimators for a high percentage
of subgroups. On the other hand, only the 13.6% and the 13.0% of the subgroups have
an RRMSE lower than 0.15 for the Direct and the PS estimators respectively. This
figure rises to 39.7% for the Conventional Logistic model (b) and 53.3% for the
SPREE model (b) estimator. Table 5.13 shows the same figures disaggregated by Sex-

age groups. Although this again represents an improvement over to the design-based
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Table 5.12
PERCENTAGE OF PERFORMANCE INDICATORS
FOR UNEMPLOYMENT RATE ESTIMATORS SATISFYING A GIVEN CONDITION
BY ESTIMATOR (Direct, PS, Models a, b, ¢c and d and SPREE)

Performance ESTIMATOR
Indicator
Direct PS (@) (b) (¢ (d)
%RRMSE <=15 13.6 13.0 gg? gg; Zgg g;g
%RIRRMSE > 15% 00 . 66.3 88.6 52.2 90.8

100.0 100.0 64.7 98.9

estimators, it is also clear that none of these estimators offers publishable RRMSE

level for almost half of the subgroups.

Based on this analysis, it therefore seems sensible to favour the use of the
Conventional Logistic model (b) or (d) estimators in this simulation. The difference in
RRMSE values between the Conventional Logistic and SPREE estimators for models
(b) and (d) do not seem to be too large and, bearing in mind that in this study we are
using an “ideal” reference table that is unlikely to be available in practice, the former
estimators would appear to be a safe choice. It is also clear that SPREE estimators

offer the best choice if a good reference table is available.

Table 5.13
PERCENTAGE OF PERFORMANCE INDICATORS
FOR UNEMPLOYMENT RATE ESTIMATORS SATISFYING A GIVEN CONDITION
BY ESTIMATOR (Direct, PS, Models a, b, c and d)

Sex- o . o _ % Relative RRMSE Improvement
Age % Relative Root MSE (%RRMSE) <=15 (%RIRRMSE) > 15%

Growp “hiect PSS (@) () (o) (d) Direct (@) () (¢ ()

Total 13.6 13.0 293 39.7 223 31.0 0.0 663 886 522 90.8
11 39.1 39.1 47.8 522 435 478 0.0 565 783 174 870
12 174 17.4 522 522 304 478 0.0 87.0 957 39.1 957
13 87 87 21.7 43,5 13.0 39.1 0.0 78.3 100.0 174 957
14 13.0 87 43 391 13.0 3438 0.0 609 913 8.7 913
21 174 174 565 609 435 34.8 0.0 87.0 913 826 87.0
22 13.0 13.0 478 435 261 34.8 0.0 87.0 739 69.6 826
23 0.0 00 43 217 87 87 0.0 478 913 957 957
24 00 00 00 43 00 00 0.0 261 87.0 87.0 913
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5.7. TIME AS AN EXTRA DIMENSION

So far in this thesis we have considered estimators that borrow strength from the two
dimensions defining our “small areas” or sub-groups, i.e. space (horizontal) and
characteristics of units (vertical). We have seen that SPREE works well when a good
reference table is used (see Section 5.5). Therefore, we expect in practical situations a
decrease in SPREE performance as the gap between the reference information and the
target period increases. This suggests that incorporating information about the effect

that “time” plays into the estimation process should be helpful.

Although the SPREE method uses information from a previous point in time, it does
not “borrow” strength from that third dimension; instead such information is used
without any intermediate processing so that the estimation process of borrowing
information both horizontally and vertically takes place conditioned on it. However,
since the LFS is a panel survey taking place twice a year (see Chapter 2), it seems
sensible to explore the possibility of borrowing strength in time as an extra dimension.
Recent work in borrowing strength over time has been investigated in the context of
estimators based on specific area-level random effects models (see Section 1.5 for
references); none of them apply to our specific case or to SPREE estimation. We now
discuss some issues that need to be considered if we wish to extend SPREE by

borrowing strength over time.

Consider a set of T tables containing the unknown counts M, where t=1,...,T
denotes a sequence of time periods and ¢ denotes the lexicographical order of the cells
ifkq. Let us suppose that LFS direct estimates for that set of tables are available
although they are considered unreliable. Consider also a table containing the Census
counts M, that is, for time =0. At time one (#=1), it seems reasonable to expect
good estimates from SPREE using the Census as reference information. That
expectation fades as we move further from #=0. At time 7, SPREE might even be

worse than the standard LFS direct estimates at #=T.
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A naive first approach would consist in using the SPREE-estimated table for =1 as
the reference table for SPREE at =2 and so on until we get to the target time period
t=T. However, we note that this process actually “preserves” interaction terms from
the original Census table with the remaining terms updated using the sample at each
time period. Consequently, since at each time period we preserve the same interaction
terms from =0, the final estimated table at r=T7 is the same as we would have
obtained from applying SPREE directly using the time 7 sample and the =0 Census
as the reference information, i.e. this naive approach and the conventional SPREE

procedure used throughout this thesis are equivalent.

Different situations can arise depending on whether we choose to preserve different
interaction terms at each time period. For instance, we might preserve at t=2 some
terms that were updated at t=1, so that the outcome is a table with some structural
terms preserved from the Census, some structural terms preserved from the previous
time period estimated table and the remaining terms updated. Even in these situations
this approach does not seem to offer a significant advantage over the simple SPREE

methods considered in this thesis.

Consider now another set of tables containing the “known” set of counts M,
t=(1-g),(2-g),....(T —g) corresponding to 7T previous time periods; here g is a
constant such that #=(7—g) represents a point in time before the point in time

represented by 7 =1 (see Figure 5.11).

We could treat each set of tables, i.e. t=(1-g),...,(T—g) and t=/,...,T, as single
five-dimensional tables with counts M, and M, respectively, where ¢ now denotes

the lexicographical order of the cells ijkg?. In this situation, the former table provides
us with valuable information regarding the structural changes of the “marginal” four-
dimensional tables over time. Note, however, that the LFS is a panel survey with a
specific rotation system and thus observations in the sample from different time
periods can not be regarded as independent. This fact affects the assumption of
independence required for the formulation of the model-based estimation procedures

described in Chapter 4. The effect that this dependence has on the estimation process
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as well as the potential extension to SPREE to allow a longitudinal log linear

modelling approach remain to be investigated.

It should be pointed out that this approach requires an expanded reference table
which, in our case, seems rather unrealistic. An important point is that this method
assumes the preserved “time effects” to be the same for the target expanded table as
for the expanded reference table. In our situation, this means that the gender, age
group and state dynamics in time of the labour force follows the same pattern for the
target period as it does for the reference period. This is a strong assumption that needs

to be carefully checked.

Another approach to borrowing strength in time consists in testing for structures
preservation over time. This can be done by applying SPREE independently to each
of the T periods of time using the same reference information. If we find that the
estimated parameters of the fitted models are not significantly different, then we
might pool the datasets and apply SPREE to the pooled dataset. The resulting
estimates should be of higher precision than the ones obtained from applying the four

dimensional SPREE using just one dataset, as no extra parameters are being added to

Expanded TxC-Reference Table

I-g 2-g 3-g T-g

Marginal C-Reference Tables

Expanded TxC-Target Table

1 2 3 T

Marginal C-TargetTables

Figure 5.11 Representation of the Tables Involved in the SPREE
Process with “Time” as an Extra Dimension.

176



the process and the sample size has increased. The reduction in variance will depend
on the level of dependence between samples. Note that this approach is intended to
improve the estimation of the terms being “updated” during the SPREE process and it
does not address the issue of inadequate reference information. Note also that a
similar procedure can be applied to conventional Logistic estimators where no

reference information is used.

One way of testing testing preservation of structure consists in fitting separate
SPREE-equivalent logistic models for each period of time and then testing the
equality of the model parameters. Rao, Kumar and Roberts (1989) describe a similar
procedure based on Rao-Scott corrections to Chi-Squared and Likelihood Ratio tests
for an unsaturated logistic model for binary response and two periods of time. Its
extension to SPREE equivalent logistic models for multinomial response is
straightforward. Finally, we note that full preservation of structure becomes less likely
as the gap between the earliest and the latest periods of time increases; therefore the
approach described above seems to be more plausible when data are available for two

consecutive time periods.

177



CHAPTER 6

CONCLUSIONS

This thesis has focused on the problem of producing reliable estimates of
Employment, Unemployment and Activity rates by Sex-age groups for Venezuelan
States using the Population Census as auxiliary information. From research we
conducted in 15 national statistics offices in the Latin America region we observed

that this is a common problem.

The SPREE approach to Small Area Estimation (Purcell and Kish 1980) is suited to
dealing with this sort of small area estimation (SAE) problem. Although the use of
SPREE methods in the SAE context has been treated in the literature, its use for the
estimation of product multinomial variables as well as a general methodology for

variance estimation were largely unexplored.

The methodology proposed in this thesis is based on the availability of two datasets,
the Population Census database and the Labour Force Survey (LFS) database. An
issue that must be taken into account when applying this methodology is that of the
compatibility between those two sources as far as the conceptual definition of the
labour force variables is concerned. A difference in such conceptual definition means
that those two sources are in fact measuring different variables, which represents an

obvious complicating factor in the analysis. Even if after examining such
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compatibility we find there is a perfect conceptual match, we still have to considere
how these variables are actually measured. Thus even though the two sources can
share variables with the same conceptual definition, yet different methods of
measurement can also complicate the analysis. This is the case in Venezuela where
the labour force status for the Census is obtained by using one direct question in
contrast to the algorithm based on a set of questions (Summary Code) used in the
LFS. Thus the presence of such differences have to be examined carefully in order to
decide if an adjustment strategy is necessary before applying the methodology

describe in this thesis.

A detailed theoretical description of the Venezuelan LFS parameter and variance
estimators did not exist. Therefore, such a theory was developed in this document

from a model assisted perspective.

The use of SPREE in the context of product multinomial variables was then
described. In doing so, we established a link between SPREE methods, Log-linear
models and Logistic models allowing for the integration of complex sampling designs
via a Pseudo-Likelihood approach to estimation. The main attractiveness of such a
link is that it offers the possibility of implementing the SPREE method from a GLM
perspective. This link has served as the base for the development of all the theory
regarding SPREE and related SAE procedures described in this document..

There are some potential barriers to the convenient application of SPREE methods. To
start, we note that SPREE involves the application of the Iterative Proportional Fitting
(IPF) algorithm (Deming and Stephan 1940). Practical implementation of such a
procedure then typically requires the development of “domestic” computational
algorithms. Another issue related to the use of SPREE methods is that, apart from
special situations, the computation of variance estimates is not obvious. In order to
deal with this problem, we showed the equivalence of the Log-linear and Logistic
version of SPREE to the well known “Exposure” technique from regression theory.
This equivalence allows us to easily implement SPREE using standard commercial
statistical software. Under this approach, the computation of parameter and variance

estimates taking into account the sampling design is straightforward, as is the
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computation of goodness of fit measures and related diagnostics. Consequently, a
critical evaluation of the SPREE estimation procedure becomes feasible. On the
whole, this “exposure” approach to SPREE facilitates and makes more flexible and

accessible its application and practical implementation.

The “exposure” approach to SPREE was then used in an empirical analysis of the
Venezuelan labour force. A first analysis was conducted using the Venezuelan 1990
Census as the information source for the target period and the Venezuelan 1981
Census as the reference source of information. This analysis showed that SPREE
methods where not suitable given a nine year gap between the reference and target
time period. We also compared the SPREE and the Unsaturated SPREE methods with
conventional Logistic model-based estimation for this situation. The latter approach
does not depend on the reference source of information, and performed creditably in

our analysis.

We then used a simulation study to explore the application of SPREE using an “ideal”
reference source. In this study the properties of a number of SPREE and conventional
Logistic model-based estimators were analysed. The simulations were based on the
Venezuelan 1990 population Census and were designed to replicate as closely as
possible the LFS sampling design. In this case the gap between the reference and the

target period used in the study was zero.

This study showed that the presence of a Sex-age interaction term in SAE models was
significant for this data. In addition, the clear superiority of the SPREE method over
design-based estimators and conventional Logistic model-based estimators was
evident. However, it is important to point out that this superiority is based on the
availability of “ideal” reference information; an unrealistic assumption for inter-censal
periods. How fast the gains from this “ideal” situation fade as the gap between the

reference information and the target period increases is a topic for future research.
The definition of an adequate gap size for the use of SPREE depends on both the

variables under study and the dynamic of the process governing them. Between 1981

and 1990 Venezuela went through a delicate economical transition period. This fact
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might have had an important impact on the structure of the labour force in the
country, and hence directly affect the performance of SPREE. An idea of the
magnitude of this sort of changes in the labour force structure can be obtained with
the help of experts in the field. Examination of the data at the national level can also
be considered; however, it is important to bear in mind that “local” changes can also

have a significant impact on interaction structures.

Although SPREE methods proved superior to conventional Logistic model-based
estimators in the simulation study, the difference between them was not as large as we
might have expected, this is true particularly for models that are calibrated to national
Sex-age group totals, i.e. models different from the independence model. This fact led
us to recommend conventional logistic model-based estimators as favourable
alternatives to SPREE-based estimators, particularly in situations when there is a

reasonable doubt about the quality of the available reference information.

The logistic model containing only sex-age interaction (model b) and the logistic
model containing sex-age interaction and sex-state interactions (model d) showed the
best performance among the different model structures considered in this study.

Model b seemed to be the best overall option.

Although the use of SPREE and conventional Logistic model-based estimators
produce an important improvement over the design-based estimators, we found that
they do not as yet offer “publishable” precision levels for almost half of the target
subgroups. This fact led us to briefly discuss alternative methods involving the use of
“time” as an extra dimension. We expect this approach to offer higher levels of
precision than approaches that ignore changes over time particularly for the case of
the conventional Logistic model-based estimators. Such an analysis represents future

research.

Throughout the empirical analysis in this thesis, we have assumed that the process
behind the generation of the finite population follows a product multinomial

y=M 7w ; and V(M )=M,n . (0-7_.). A deeper

ijks ijk

distribution with E(M

ijkq

examination of the structure of the population might suggest a better specification of
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this distributional assumption, leading to an improvement in the estimation process.

This is another topic for further work.

Synthetic estimators are more convenient, in terms of theoretical and practical
simplicity, than specific area-level random effects model-based methods. This fact is
more evident in national statistics offices with scarce highly specialized human
resources. However, alternative options for logistic methods involving specific area-
level random effects models need to be studied and compared to the simpler synthetic
competitors. Important work in this direction has been conducted (e.g. Farrel et al.
1989, Malec et al. 1997, Gosh et al. 1998, Jian et al. 1999). The adaptation and
extension of those works to our particular situation and an appropriate comparative

analysis is an important task that remains to be undertaken.

Finally, it is important to point out that all our comments so far have been related to
the SAE problem from an “estimation” perspective. However, it is just as important to
conduct research aimed at exploring other approaches as institutional related
strategies and survey design. It is vital that national statistics offices in Latin-America
start playing a leading role in the development of the national statistics systems in
their respective countries. The lack of auxiliary information is a task of prime
importance and its negative impact in the national statistics system cannot be ignored.
As regards to survey design, different issues like cluster structure, strata conformation
and sample sizes should be considered and analysed in order to minimize the need for

indirect estimators.
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APPENDIX



Table 7.1
Venezuela

1990 Census Proportions and Absolute Relative Residuals (ARB)
for Thirteen Different Models

112

Categories MODELS
S5 A Census
S T e g L Prop. () (b) ©) () SPREE Unsaturated SPREE
F.
G 7 « - @] ol el o leojeele-@lb-el o
1 11 1 1 49.9 20.7 13.0 9.8 2.6 6.3 7.9 9.3 3.0 3.5 3.1 1.7 104 16.6
1 1 1 2 12,7 18.8 7.3 6.5 1.7 142 9.1 6.8 16.0 150 157 155 9.9 9.8
11 1 3 374 339 19.8 153 29 132 7.5 101 9.4 0.4 9.5 3.0 105 18.8
2 1 1 2 1 83.0 2.3 0.0 1.9 2.5 1.7 2.1 3.9 0.1 1.8 1.6 2.2 2.1 1.6
11 2 2 9.4 5.3 5.5 0.7 42 34.0 5.8 9.7 6.9 223 356 232 8.6 1.1
1 1 2 3 7.6 185 67 222 219 231 304 309 9.2 8.2 264 52 336 161
3 1 1 3 1 86.0 1.4 0.2 0.6 1.8 7.5 1.6 3.1 0.2 7.6 7.4 7.4 1.2 1.8
1 1 38 2 8.1 15.9 0.5 3.7 1.4 26.0 6.1 1.7 52 248 253 240 4.4 2.4
1 1 3 8 59 429 25 1834 275 743 146 424 102 764 733 753 113 228
4 1 1 4 1 67.0 8.5 9.6 6.3 27 306 176 8.7 114 26,2 31.0 257 185 109
11 4 2 6.1 13.3 4.4 8.5 1.2 275 255 7.3 273 0.0 21.8 0.6 18.0 2.9
1 1 4 3 26.9 18.1 251 17.6 65 702 380 200 221 654 723 642 421 280
5 12 1 1 31.7 26.9 9.9 143 1.0 242 129 107 39 249 135 268 214 9.6
1t 2 1 2 9.3 26.9 55 8.2 3.3 147 287 257 236 7.7 105 8.2 256 20.6
i 2 1 3 59.0 187 6.2 9.0 0.0 107 115 9.8 58 122 56 13.1 15.5 8.4
6 1t 2 2 1 54.1 54 101 2.8 3.8 8.0 4.3 2.3 1.8 1.2 9.1 2.1 3.5 8.6
1 2 2 2 7.5 2.7 3.2 0.8 27 384 4.8 8.4 7.6 53.0 436 533 2.8 18.6
1 2 2 3 38.4 8.1 14.9 4.1 4.9 3.8 5.1 5.0 4.0 8.6 4.3 7.4 54 157
7 1t 2 3 1 55.4 1.0 4.9 0.8 1.5 231 14.3 0.7 7.8 146 208 13.7 121 3.8
12 3 2 42 217 135 6.3 8.4 98 336 188 308 216 128 210 307 249
1 2 3 8 40.4 0.8 8.2 1.7 1.1 30.7 2832 1.0 140 178 27.1 16.6 19.8 7.8
8 1 2 4 1 30.2 0.0 4.0 11.2 5.7 431 6.9 122 167 527 425 521 6.6 5.7
1 2 4 2 17 519 229 246 154 284 164 118 115 463 499 462 417 3441
1 2 4 3 68.1 1.3 2.3 5.6 2.1 19.8 2.7 57 7.1 245 201 242 1.9 3.4
9 2 1 1 1 39.2 126 1.7 0.7 0.5 96 117 120 11.0 9.6 9.8 106 111 114
2 1 1 2 16.3 11.2 3.3 2.2 04 182 65 12.0 1.0 19.0 16.1 216 4.8 107
2 1 1 3 445 152 0.3 1.4 0.3 151 7.9 6.1 94 154 145 172 8.1 6.1
10 2 1 2 1 71.3 1.9 2.1 2.5 0.8 0.6 6.3 4.8 5.8 1.3 0.1 1.1 71 5.9
2 1 2 2 14.8 5.1 3.3 53 1.5 13.2 7.5 1.1 22 200 112 176 9.8 4.4
2 1 2 3 14.0 15.0 7.4 7.4 57 107 241 255 246 146 124 128 26.0 256
1T 2 1 3 1 75.7 1.4 2.1 2.4 1.0 141 4.4 6.1 3.6 150 13.8 152 4.3 5.7
2 1 3 2 126 21.4 5.5 57 06 116 9.3 12 154 183 96 199 105 2.3
2 1 3 3 11.7  32.1 7.9 9.5 6.1 79.1 384 379 396 777 792 770 390 3438
12 2 1 4 1 585 2.3 0.3 1.3 1.7 273 6.3 6.0 57 268 278 265 7.2 5.5
2 1 4 2 9.0 237 7.5 53 3.2 0.8 4.8 7.9 1.0 6.7 1.2 4.2 5.6 1.4
2 1 4 3 325 10.8 2.7 0.9 40 489 100 13.0 106 501 497 490 115 9.5
183 2 2 1 1 15.7 18.2 4.5 1.6 8.9 539 7.8 70 106 592 576 60.1 11.7  12.0
2 2 1 2 7.9 222 3.9 4.5 59 323 1141 3.9 32 215 258 280 4.9 6.5
2 2 1 3 76.3 6.1 1.3 0.8 1.2 145 2.8 1.8 18 144 1486 153 2.9 3.2
14 2 2 2 1 33.2 3.1 4.1 52 04 16.0 4.9 41 7.1 144 126 1438 1.3 3.1
2 2 2 2 69 168 13.6 109 2.3 48.0 9.2 20 218 363 425 326 1.1 154
2 2 2 3 59.9 3.6 0.7 1.6 0.0 3.4 1.6 2.5 1.4 3.8 2.1 4.5 0.6 3.5
15 2 2 3 1 37.0 1.1 5.0 4.8 2.1 140 3.9 2.0 56 155 143 152 35 2.1
2 2 3 2 33 760 220 215 9.2 1156 421 250 224 853 1114 959 38.8 287
2 2 3 3 59.7 4.9 1.9 1.8 0.8 2.3 4.7 2.6 4.7 4.9 2.7 4.1 4.3 2.9
16 2 2 4 1 18.1 4.2 9.3 4.0 7.1 58.1 52 1.5 51 573 582 57.1 6.6 3.3
2 2 4 2 0.8 1958 478 553 31.8 121 242 443 55 7.3 1.9 14.0 351 567
2 2 4 3 81.1 1.1 1.6 0.3 1.3 131 0.9 0.8 1.1 127 13.0 126 1.1 0.2



Table 7.1
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1990 Census Proportions and Absolute Relative Residuals (ARB)
for Thirteen Different Models
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Categories MODELS
s 5 s A [ |Consus SPREE Unsaturated SPREE
T e 9 o Prop. | (a) by (c) (@)
G 1 4 . @] o )] @ [@ol@-cle-o-c]o-@
17 3 1 1 1 470 15 122 97 48 272 88 18 65 302 32.8 298 140 97
3 1 1 2 113 87 65 37 83 87 49 112 19 229 170 220 31 89
3 1 1 3 418 06 155 99 76 329 86 51 7.8 402 415 395 165 13.3
18 3 1 2 1 748 25 18 08 47 14 46 07 58 37 20 35 46 3.1
3 1 2 2 92 25 47 52 22 351 87 198 04 404 287 413 29 13.8
3 1 2 3 160 101 111 09 210 138 267 149 273 58 7.4 73 231 225
19 3 1 3 1 799 40 04 00 28 106 00 06 13 116 113 115 1.8 23
3 1 3 2 64 24 244 18 157 260 527 177 407 171 21.0 177 460 42.4
3 1 3 3 136 222 138 06 240 744 250 48 266 758 765 760 321 33.4
20 3 1 4 1 644 108 84 35 31 171 35 35 23 139 163 141 37 66
3 1 4 2 43 32 261 36 210 476 387 182 281 569 454 57.9 355 457
3 1 4 3 312 219 138 68 34 418 1.8 48 08 366 400 373 28 7.3
21 3 2 1 1 127 0.4 284 366 95 208 203 18 248 755 665 748 163 209
3 2 1 2 65 39.6 185 6.6 112 256 417 316 274 57 08 77 180 246
3 2 1 3 88 33 30 52 06 12 65 28 61 114 105 111 11 1.3
22 3 2 2 1 276 240 151 23 13 288 167 23 116 228 242 219 134 117
3 2 2 2 52 04 25 95 91 568 250 232 61 461 507 472 148 82
3 2 2 3 673 99 60 02 12 75 49 08 43 58 60 53 44 42
23 3 2 3 1 311 191 109 01 21 24 173 23 125 111 112 118 85 78
3 2 3 2 20 847 271 59 430 1197 424 7.3 798 91.8 994 87.8 31.1 245
3 2 3 3 69 114 59 01 03 26 93 13 82 24 22 28 49 44
24 3 2 4 1 152 105 4.0 162 120 521 81 106 16 580 560 587 1.0 3.3
3 2 4 2 08 863 74 204 01 194 129 6.0 399 364 384 380 140 12.0
3 2 4 3 840 27 07 27 22 96 16 18 07 108 105 11.0 00 07
25 4 1 1 1 483 40 45 16 02 101 76 41 84 170 119 151 58 24
4 1 1 2 141 260 111 37 95 191 108 100 108 123 172 129 84 35
4 1 1 3 376 148 17 06 33 201 57 15 67 265 217 243 43 18
6 4 1 2 1 798 67 36 36 21 65 10 06 09 70 81 61 22 07
4 1 2 2 123 45 54 47 13 268 24 45 19 261 316 234 63 05
4 1 2 3 79 60.8 283 286 193 242 60 07 56 300 326 251 121 7.4
27 4 1 3 1 822 41 16 28 03 93 18 09 21 84 85 87 07 1.3
4 1 3 2 115 219 71 37 110 287 105 14 111 243 254 263 7.6 83
4 1 3 3 63 937 338 302 237 687 49 87 65 652 650 663 44 15
8 4 1 4 1 640 07 08 12 39 178 08 00 06 214 182 224 02 48
4 1 4 2 87 247 92 02 117 59 21 18 17 44 59 65 22 87
4 1 4 3 272 97 11 28 53 437 13 06 07 489 446 506 1.1 84
29 4 2 1 1 208 214 09 34 70 425 09 48 02 390 478 358 67 52
4 2 1 2 89 238 02 55 49 58 104 117 96 40 11 75 159 10.3
4 2 1 3 703 93 02 03 14 133 10 29 14 120 140 115 00 238
30 4 2 2 1 349 164 92 77 42 141 20 63 16 225 188 200 68 7.4
4 2 2 2 85 35 55 64 02 487 116 138 111 520 506 500 150 14.2
4 2 2 3 566 96 48 38 26 14 05 18 07 61 40 48 19 24
31 4 2 3 1 393 123 65 58 18 111 53 38 48 92 106 113 63 45
4 2 3 2 50 174 182 82 130 180 239 159 232 147 118 192 277 229
4 2 3 3 557 102 30 33 01 62 16 13 13 52 64 62 19 1.1
32 4 2 4 1 197 109 56 37 16 546 03 63 23 530 583 546 80 08
4 2 4 2 15 803 96 13 60 340 97 90 101 401 385 383 165 17.3
4 2 4 3 789 42 12 09 05 143 03 14 08 140 153 143 23 05
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e T e g flPR @ © © ©
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3 5 1 1 1 47.6 3.2 13.1 7.8 45 16.5 2.9 4.4 89 255 209 237 1.4 4.0
5 1 1 2 12.1 213 4.6 3.0 11.0 109 1.6 8.0 84 134 102 159 2.5 4.0
5 1 1 3 40.2 27 141  10.2 2.0 227 3.9 28 13.0 342 279 328 0.9 6.0
34 5 1 2 1 75.9 4.8 0.8 2.8 2.0 1.8 4.3 3.6 5.6 4.4 5.1 3.1 1.7 3.2
5 1 2 2 12.1 7.2 57 0.5 6.0 7.1 129 32 109 197 117 15.0 9.8 7.7
5 1 2 8 12.0 374 11.1 18.2 6.7 3.9 140 197 245 7.6 203 4.6 1.1 124
3 5 1 3 1 78.5 2.7 1.2 1.2 3.6 13.7 5.6 2.0 6.5 13.1 13.3 137 5.2 52
5 1 3 2 105 247 9.2 25 100 187 2.1 2.1 37 202 164 23.9 3.0 7.0
5 1 3 8 11.0 429 05 10.8 16.1 80.1 418 16.3 499 745 792 752 400 302
3 5 1 4 1 64.3 9.6 7.6 6.2 1.1 13.4 7.0 1.1 26 16.6 123 17.8 8.0 1.4
5 1 4 2 7.2 238 7.7 2.4 4.4 4.8 1.1 10.5 4.5 8.3 3.9 3.6 3.7 2.0
5 1 4 3 285 278 19.2 145 3.6 31.6 16.1 0.3 49 395 287 411 19.1 3.6
37 5 2 1 1 146 105 145 248 32 579 109 120 0.2 688 797 629 302 138
5 2 1 2 59 16.6 114 6.0 2.8 428 204 8.8 7.1 289 352 404 147 16.0
5 2 1 3 79.5 3.2 3.5 5.0 04 13.8 3.5 2.9 0.5 148 173 14.86 6.6 3.7
38 5 2 2 1 28.1 245 155 7.5 1.1 9.5 0.1 3.2 87 326 219 286 120 169
5 2 2 2 6.2 3.0 0.3 1.0 50 558 220 8.0 301 449 522 394 165 4.4
5 2 2 3 65.7 10.8 6.6 3.3 0.0 1.2 2.1 0.6 6.6 9.7 4.4 8.5 3.6 7.6
3 5 2 3 1 314 209 128 3.1 1.3 13.8 36.8 52 27.1 2.5 8.9 57 322 145
5 2 3 2 29 584 8.9 9.3 3.8 1122 395 119 277 645 931 802 26.8 188
5 2 3 3 657 12,6 6.5 1.9 05 115 194 3.0 14.2 1.7 8.3 0.8 16.6 7.8
40 5 2 4 1 13.0 349 270 346 54 51.3 139 420 0.0 43.0 539 455 8.1 254
5 2 4 2 0.8 1272 127 226 2.3 29.9 27 285 111 202 345 132 6.0 212
5 2 4 3 86.2 6.5 4.2 5.4 0.8 8.0 2.1 6.6 0.1 6.7 8.4 7.0 1.2 4.0
41 6 1 1 1 43.1 125 2.1 0.6 1.5 102 10.2 9.2 13.0 8.4 87 114 110 9.7
6 1 1 2 144 107 3.6 3.4 02 246 147 222 58 228 184 291 82 198
6 1 1 3 425 16.3 0.9 0.4 1.6 187 5.3 1.8 112 162 151 214 8.4 3.1
42 6 1 2 1 75.9 3.0 0.6 0.3 0.0 1.0 4.7 3.7 4.7 1.5 0.4 1.5 5.4 4.3
6 1 2 2 12.3 3.6 2.5 4.6 1.6 0.9 201 1.0 13.8 161 1.3 102 185 115
6 1 2 3 11.8 229 1.2 2.7 1.4 7.6 9.2 121 15.9 7.3 0.9 0.7 153 16.0
43 6 1 3 1 79.4 1.8 1.4 1.6 0.9 132 59 5.8 56 13.0 124 132 4.9 5.1
6 1 3 2 9.9 16.2 0.3 2.6 46 154 6.6 0.9 143 1838 94 227 133 4.8
6 1 3 3 10.8 28.3 10.5 95 107 833 497 422 542 785 828 766 483 329
4 6 1 4 1 63.7 4.2 2.4 0.7 26 202 0.7 4.6 25 219 218 210 3.2 1.9
6 1 4 2 8.2 277 127 3.0 89 138 172 1.8 9.2 64 122 118 149 158
6 1 4 3 28.1 174 9.0 0.6 8.5 417 33 110 2.9 478 457 442 3.0 0.2
45 6 2 1 1 18.6 21.0 0.3 1.4 1.9 559 111 8.3 9.0 513 496 54.2 6.5 9.2
6 2 1 2 7.1 202 57 6.0 3.3 409 20.0 7.9 0.8 158 225 31.9 32 11.0
6 2 1 3 74.3 7.2 0.6 0.2 02 179 47 2.8 22 144 146 167 1.9 3.4
46 6 2 2 1 34.3 10.6 3.1 0.7 4.8 18.1 7.1 7.3 54 216 158 237 4.8 11.9
6 2 2 2 6.1 17.6 143 94 4.4  46.1 59 84 225 400 505 315 140 181
6 2 2 3 59.7 7.9 3.2 0.5 3.2 5.7 3.5 5.1 0.8 8.3 3.9 104 1.3 8.7
47 6 2 3 1 39.5 4.1 2.1 3.5 1.1 6.2 113 0.8 94 122 25 105 151 6.2
6 2 3 2 3.1 646 139 8.8 35 1111 362 156 126 651 106.6 887 33.2 222
6 2 3 3 57.4 6.3 0.7 1.9 0.6 1.8 9.8 1.4 7.2 4.9 4.0 25 122 5.5
48 6 2 4 1 21.1 7.2 122 21 123 587 83 105 126 582 606 56.9 132 4.7
6 2 4 2 1.0 111.9 54 251 49 374 134 18.0 306 268 340 148 100 147
6 2 4 3 77.8 0.4 3.3 0.2 3.4 16.4 2.4 3.1 3.8 16.2 16.9 157 3.7 1.1
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49 7 1 1 A1 451 8.0 1.4 1.9 1.2 101 89 104 84 122 103 11.0 8.4 7.9
7 1 1 2 149 17.3 2.9 1.1 34 158 7.0 9.0 45 159 16,5 154 7.2 5.9
7 1t 1 3 399 155 0.5 1.7 02 173 7.5 8.4 78 197 178 182 6.9 6.7
50 7 1 2 1 76.2 3.6 0.2 0.4 0.2 1.7 4.3 4.0 3.8 3.1 2.6 2.7 3.5 3.2
7 1 2 2 13.0 1.4 0.3 0.8 02 1741 6.4 7.1 3.8 211 199 207 3.6 2.6
7 1 2 3 10.8 26.9 1.6 3.5 1.5 87 227 195 220 3.4 55 6.1 204 196
51 7 1 3 1 79.9 2.5 0.3 0.4 0.3 11.3 3.3 3.2 29 112 110 113 2.8 3.5
7 1 3 2 10.7 16.0 0.2 3.2 0.7 17.8 1.6 4.6 43 169 163 175 3.3 2.3
7 1 3 3 9.3 39.8 3.1 0.2 34 766 299 325 301 763 757 768 277 3286
52 7 1 4 1 62.2 0.5 1.2 0.1 1.4 229 4.5 3.9 4.0 245 228 250 4.6 6.8
7 1 4 2 8.8 257 104 0.5 9.8 1.8 1.9 2.9 0.7 2.6 2.8 3.0 0.5 5.6
7 1 4 3 29.1 8.7 0.5 0.3 0.0 495 9.1 9.2 87 515 497 527 9.8 129
538 7 2 1 1 212 277 8.5 3.8 8.6 37.0 2.6 0.7 1.2 347 36.8 333 1.7 6.5
7 2 1 2 82 212 4.1 1.8 3.1 13.5 4.6 59 9.3 146 140 14.8 3.7 4.0
7 2 1 3 70.6 10.8 2.1 0.9 22 127 1.3 0.9 1.4 121 127 117 0.9 2.4
54 7 2 2 1 352 105 3.4 0.8 3.7 17.6 58 3.0 72 204 209 191 9.0 7.0
7 2 2 2 7.6 5.4 2.9 1.2 1.9 416 0.1 1.1 56 451 455 448 6.2 5.1
7 2 2 3 57.3 7.2 2.5 0.6 2.5 53 3.6 1.7 3.7 6.6 6.8 5.8 4.7 3.6
55 7 2 3 1 38.2 10.5 4.5 0.9 45 102 7.1 6.3 8.2 77 105 8.8 6.8 7.8
7 2 3 2 4.3 321 8.0 7.9 91 372 119 93 168 351 33.0 356 138 122
7 2 3 3 57.5 9.4 2.4 0.0 2.3 4.0 3.8 3.5 4.2 2.5 4.5 3.2 3.5 4.3
56 7 2 4 1 19.7 4.2 1.0 0.2 2.2 56.3 3.1 0.7 3.3 536 56.7 546 4.7 0.2
7 2 4 2 15 724 137 27 154 3338 9.5 5.1 154 392 3883 394 165 184
7 2 4 3 78.9 2.4 0.5 0.1 0.8 14.7 0.9 0.1 1.1 141 14.8 14.3 1.5 0.4
57 8 1 1 1 43.7 3.3 6.8 6.4 1.3 185 1.2 4.0 32 196 196 177 0.0 2.8
8 1 1 2 16.4 4.6 9.5 6.0 49 119 0.1 9.9 15 269 157 26.1 4.0 159
g 1t 1 3 39.9 55 114 9.5 3.4 252 1.3 0.4 42 325 279 302 1.6 3.4
58 8 1 2 1 75.2 5.7 1.9 2.2 0.2 3.0 3.5 1.0 4.0 5.5 3.4 47 3.3 2.0
8 1 2 2 13.1 0.8 2.2 1.8 3.3 6.5 14.2 47 140 256 42 250 161 1.1
8 1 2 3 117 354 9.4 121 2.1 12.0 6.8 115 9.8 6.5 17.1 2.3 3.1 13.8
5 8 1 3 1 77.2 2.2 1.3 0.5 27 13.1 4.0 4.9 45 137 13.0 13.9 3.9 5.0
8 1 3 2 11.8 215 5.9 4.5 5.1 13.1 6.6 5.4 6.5 195 13.8 20.3 5.0 2.6
8 1 3 3 11.0 38.8 2.7 1.7 134 777 353 289 383 751 766 760 325 325
60 8 1 4 1 62.2 6.9 5.1 2.6 0.9 229 4.0 4.4 52 194 204 205 0.7 1.1
8 1 4 2 7.0 74 118 4.0 159 6.2 20 116 29 2638 8.0 26.1 22 19.8
8 1 4 3 30.8 156 7.5 6.2 1.8 477 86 115 112 453 43.0 472 2.0 6.8
6t 8 2 1 1 14.4 8.7 163 18.6 57 608 136 163 103 706 705 666 226 165
8 2 1 2 7.3 1941 7.5 131 0.6 299 8.6 2.1 6.1 202 396 202 175 0.4
g8 2 1 3 78.3 3.4 3.7 4.6 1.0 14.0 3.3 2.8 25 149 16.7 141 58 3.0
62 8 2 2 1 297 173 8.9 55 13 194 9.6 9.7 71 254 1983 225 a1 111
8 2 2 2 7.4 2.1 1.2 3.2 6.9 629 349 168 364 469 588 46.6 285 7.9
8 2 2 8 62.8 8.4 4.1 2.2 0.2 1.7 0.4 2.6 0.9 6.5 2.2 5.1 0.9 4.3
63 8 2 3 1 345 103 3.3 11 4.2 8.1 12.0 3.9 96 111 g.8 133 101 52
8 2 3 2 3.1 757 2141 18.4 13.9 1024 33.0 94 307 766 939 77.1 280 17.0
8 2 3 3 62.4 9.5 2.9 0.3 1.6 0.6 8.3 2.7 6.9 2.3 0.7 3.5 7.0 3.7
64 8 2 4 1 156 133 6.9 119 45 614 9.3 23 135 522 546 540 4.0 5.6
8 2 4 2 0.7 2440 707 475 553 58 36.8 537 313 17.0 45 16.2 339 622
8 2 4 3 83.7 4.4 1.8 2.6 04 115 1.4 0.0 2.3 9.6 102 9.9 1.0 1.5
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65 9 1 1 1 36.1 103 1.1 0.3 3.3 143 7.2 117 55 156 152 154 6.6 7.2
9 1 1 2 18.1  10.6 4.3 4.5 0.5 3.1 109 0.2 89 211 105 172 3.1 4.5
9 1 1 3 458 123 2.5 2.0 24 125 10.0 9.3 79 207 16.1 189 6.4 3.9
66 9 1 2 1 66.1 0.2 4.3 4.2 2.6 0.5 8.0 6.0 7.3 1.1 0.7 1.7 9.3 7.0
9 1 2 2 18.3 11.5 9.3 6.9 3.9 66 124 29 131 1383 0.0 17.8 182 3.1
g 1 2 3 156 144 7.4 9.6 6.5 55 194 289 156 11.2 3.0 139 182 260
67 9 1 3 1 73.1 2.7 1.2 2.3 02 138 2.4 4.1 22 154 150 1438 3.8 3.8
9 1 38 2 142 18.6 1.7 6.6 4.5 24 174 52 166 11.7 9.2 8.0 8.7 101
9 1 3 3 12.7 35.9 4.7 59 37 767 333 293 309 752 760 757 317 329
68 9 1 4 1 53.3 0.8 1.3 0.3 01 327 9.0 4.6 7.3 305 318 304 7.7 6.7
9 1 4 2 9.9 210 4.0 4.9 1.8 5.3 1.7 5.5 3.4 152 1.2 20.2 6.4 113
9 1 4 3 36.8 6.7 0.9 1.8 0.3 488 125 8.2 9.6 48.3 463 494 95 127
69 9 2 1 1 143 226 0.7 0.9 43 359 6.1 2.6 3.1 46.8 477 4941 4.9 3.0
9 2 1 2 8.0 185 9.5 101 45 180 3.3 128 1.3 275 459 136 213 7.0
9 2 1 3 77.6 6.1 0.8 1.2 0.3 8.5 1.5 1.8 04 115 135 105 3.1 0.2
70 9 2 2 1 30.9 1.1 8.4 8.8 4.0 7.1 2.6 2.7 0.0 6.5 1.0 7.0 8.8 3.7
9 2 2 2 7.6 159 124 16.5 27 58.9 285 7.8 259 37.0 480 442 107 4.4
9 2 2 3 61.6 14 2.7 2.4 2.4 3.7 4.8 0.4 3.2 1.3 54 1.9 57 2.4
7t 9 2 3 1 33.2 0.8 5.6 4.9 21 16.2 2.9 2.2 55 199 199 193 0.9 1.3
9 2 3 2 33 957 354 279 163 988 318 112 370 1012 1085 786 39.5 18.9
9 2 3 3 63.5 53 1.1 1.2 0.2 3.4 3.2 0.6 4.8 52 4.9 6.1 1.6 0.3
72 9 2 4 1 13.8 9.4 3.4 1.1 6.5 577 0.8 3.9 1.2 545 56.6 547 0.5 5.0
9 2 4 2 0.8 2183.3 565 520 339 227 119 159 16.0 8.9 8.0 40 305 354
9 2 4 83 85.4 3.6 1.1 0.7 1.4 9.5 0.0 0.5 0.4 8.7 9.2 8.9 0.4 1.2
73 101 1 1 46.1 3.5 13.1 10.0 54 118 83 108 120 224 154 157 4.8 3.4
10 1 1 2 15.3 10.2 4.4 2.0 1.1 18.6 7.0 179 46 229 165 217 55 11.9
10 1 1 3 38.6 0.1 174 127 59 214 7.2 58 126 358 248 273 3.5 0.6
74 10 1 2 1 74.4 5.3 1.3 1.8 1.8 2.5 4.2 0.8 5.1 3.7 2.3 0.9 4.7 53
10 1 2 2 12.3 6.0 8.0 0.1 8.0 187 24 123 21 30.0 134 250 8.6 0.9
10 1 2 3 13.3  24.1 0.0 104 146 35 212 157 26.7 7.3 0.5 183 185 307
75 10 1 3 1 75.8 1.0 2.8 0.7 51 147 5.1 3.4 59 163 149 174 6.1 8.9
i0 1 3 2 11.8 224 6.5 3.5 6.9 109 11.0 0.7 108 221 108 265 9.0 9.1
10 1 3 3 124 275 109 07 243 793 415 218 464 784 808 811 456 459
76 10 1 4 1 62.4 8.5 6.5 4.2 05 211 2.0 106 45 200 11.8 235 9.8 4.9
10 1 4 2 8.7 26.7 10.9 3.3 7.8 161 183 112 16.9 0.5 141 44 218 7.5
10 1 4 3 29.0 263 17.3 101 3.3 407 1.2 26.2 47 428 212 493 277 8.2
77 10 2 1 1 12.7 0.0 280 365 107 732 235 257 155 97.0 1179 778 611 223
10 2 1 2 77 26.4 1.4 4.0 89 298 117 1.6 74 116 235 173 6.7 3.8
10 2 1 3 79.6 2.6 4.4 6.2 0.8 146 4.9 4.0 32 167 211 141 104 3.2
78 10 2 2 1 281 214 129 4.6 05 301 218 127 151 350 28.7 236 194 107
10 2 2 2 6.2 182 149 0.2 9.1 632 333 247 353 38.1 49.0 337 101 137
10 2 2 38 65.7 10.9 6.9 2.0 1.1 6.8 59 3.1 3.1 1183 7.6 6.9 7.3 5.9
79 10 2 3 1 32.2 153 8.1 1.6 3.8 49 285 49 2286 3.2 0.8 121 244 6.3
10 2 3 2 31 716 187 137 127 1302 550 175 517 741 1111 846 406 222
10 2 3 3 647 11.0 4.9 0.1 1.3 8.7 16.9 3.3 137 2.0 57 2.0 141 4.2
80 10 2 4 1 14.9 147 85 18.0 8.0 775 439 16,1 489 48.8 652 551 16.4 2.5
10 2 4 2 1.0 130.1 148 305 43 723 566 223 594 198 487 176 246 152
10 2 4 3 841 41 1.7 3.5 1.4 145 8.4 3.1 9.3 89 12.1 10.0 3.2 0.6
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81 11 1 1 1 468 10 83 57 36 32 155 85 154 203 80 153 113 29
11 1 1 2 14.6 152 0.7 0.4 27 209 123 55 135 165 211 124 122 2.3
111 1 3 386 70 98 70 33 118 141 81 136 809 177 233 90 26
82 11 1 2 1 763 49 12 19 03 75 10 10 11 50 88 35 18 25
111 2 2 18.1 3.5 2.0 1.2 32 334 9.7 3.8 8.3 228 324 230 8.0 0.5
111 2 3 106 391 115 118 18 128 46 118 27 79 232 36 28 175
83 11 1 3 1 80.7 4.6 1.4 0.7 0.1 9.7 1.3 2.0 1.4 9.5 95 10.0 0.7 2.1
i1 1 3 2 104 149 2.1 15 06 118 105 9.0 89 118 136 126 5.8 8.2
11 3 3 89 586 102 84 02 743 240 284 235 722 69.8 752 129 283
84 11 1 4 1 612 19 00 22 36 206 06 25 03 238 188 262 13 7.6
11 1 4 2 7.8 195 2.4 4.5 1.8 209 16.6 7.3 147 1141 16.9 116 103 8.5
i1 1 4 3 31.0 8.7 0.6 54 6.8 46.0 55 6.8 43 499 415 548 0.0 17.2
85 11 2 1 1 16.5 13.7 9.9 153 21 573 108 06 111 600 886 515 386 4.5
11 2 1 2 8.0 251 0.1 0.7 1.6 104 6.3 3.3 29 1341 9.9 8.8 5.0 103
11 2 1 3 75.5 5.6 2.2 3.4 0.3 136 1.7 0.5 2.1 145 204 122 7.9 0.1
86 11 2 2 1 324 141 6.5 4.1 0.8 11.0 0.2 6.5 0.6 224 86 16.3 1.5 4.3
12 2 2 77 24 47 20 46 523 164 158 138 47.8 47.8 494 95 13.1
11 2 2 3 59.9 7.3 2.9 2.0 0.2 0.8 2.0 1.5 1.5 5.9 1.5 2.5 2.0 0.6
87 11 2 3 1 37.5 7.2 1.0 1.5 45 15.0 2.3 3.4 26 126 182 172 0.3 1.2
11 2 3 2 35 555 8.1 4.1 83 46.5 3.3 3.5 0.0 619 491 564 1.3 2.4
11 2 3 8 59.0 7.8 1.1 1.2 2.4 6.8 1.3 1.9 1.7 4.3 8.7 7.6 0.3 0.6
88 11 2 4 1 161 183 122 75 29 57.9 83 41 41 491 585 532 45 49
11 2 4 2 0.8 198.0 492 410 455 27.0 54 2.1 7.9 5.8 3.7 03 362 370
11 2 4 3 83.1 54 2.8 1.8 1.0 115 0.6 0.8 0.7 95 114 103 0.5 1.3
89 12 1 1 1 50.4 04 104 6.1 55 215 1.6 2.9 42 234 197 244 0.9 5.5
12 1 1 2 9.4 208 4.7 1.6 22 285 183 69 217 159 28.0 140 18.0 1.7
12 1 1 3 402 43 120 73 64 336 63 53 02 331 312 339 53 7.3
90 12 1 2 1 76.0 0.0 3.9 0.4 5.8 0.7 5.3 4.8 7.4 1.2 0.9 0.7 5.0 6.3
12 1 2 2 8.1 2.7 43 1586 14 46.0 16.8 8.0 80 305 485 343 194 7.4
121 2 3 159 16 210 10.0 272 201 339 269 395 215 205 21.0 337 338
91 12 1 3 1 843 56 18 06 03 86 08 20 10 85 100 82 27 07
12 1 3 2 6.7 141 3.8 1.7 22 271 112 9.3 183 119 284 9.0 107 123
12 1 3 3 90 633 144 68 48 599 156 114 41 709 722 704 171 153
92 12 1 4 1 657 67 43 43 08 170 08 37 30 189 160 183 25 08
121 4 2 48 156 28 32 12 522 464 63 375 158 517 192 452 135
121 4 3 205 174 92 101 1.9 463 59 92 127 446 441 440 18 04
93 12 2 1 1 172 155 84 171 08 710 223 212 111 573 640 603 162 11.9
122 1 2 53 275 27 27 49 45 192 73 80 82 72 15 224 158
i2 2 1 3 77.6 583 1.7 3.6 0.2 154 3.6 4.2 1.9 13.2 137 134 2.1 1.6
94 12 2 2 1 315 202 121 10 48 176 79 11 05 263 218 277 106 17.1
122 2 2 61 200 220 200 145 51.9 158 251 32 587 536 614 192 326
12 2 2 3 624 83 40 24 10 38 25 19 06 75 58 80 35 54
95 12 2 3 1 39.3 4.0 2.7 1.2 8.9 52 127 1038 54 159 13,5 147 2.8 1.4
2 2 3 2 2.2 56.4 8.0 49 188 395 107 1041 45 592 32.0 48.0 146 3.3
12 2 3 3 55 48 15 10 52 20 81 76 38 84 79 80 14 08
9 12 2 4 1 155 236 166 175 59 581 22 96 126 47.9 507 473 106 188
12 2 4 2 05 1735 363 27.3 458 194 161 136 30.1 62 212 120 675 209
12 2 4 3 84.0 55 3.3 3.4 1.4 108 0.3 1.7 2.1 8.9 9.2 8.8 2.4 3.6
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97 13 1 1 1 464 262 174 107 9.7 9.4 7.4 7.2 2.9 6.5 34 1.8 122 194
13 1 1 2 129 12.8 1.1 3.1 39 216 156 103 170 181 208 202 142 136
13 1 1 3 40.8 338 201 131 9.8 175 3.5 4.9 2.1 1.6 105 4.3 9.4 17.8
98 13 1 2 1 83.1 3.4 0.9 0.9 2.8 1.2 2.7 3.6 1.7 3.0 1.3 3.9 2.4 0.3
13 1 2 2 9.5 1.9 2.3 3.2 25 166 9.0 16.8 7.3 221 223 23.0 2.7 1.6
13 1 2 3 7.3 364 7.5 58 2841 77 185 18.6 9.6 48 138 142 235 0.7
929 13 1 3 1 86.5 3.0 1.1 0.8 2.5 6.8 0.9 1.3 0.1 6.5 6.8 6.2 0.9 0.2
13 1 3 2 79 147 1.1 4.7 1.6 249 5.9 1.5 42 208 23.1 196 1.9 1.9
131 3 3 56 68.0 15.0 54 372 707 50 221 41 722 73.0 692 117 6.3
100 13 1 4 1 69.7 1.6 2.9 2.8 1.7 20.6 7.3 4.2 48 199 220 185 9.5 3.4
13 1 4 2 58 11.2 7.0 7.4 42 166 170 6.1 17.5 7.3 19.0 7.8 23.0 7.9
13 1 4 3 24.5 1.8 10.0 9.8 38 624 247 134 179 582 668 544 324 114
101 13 2 1 1 28.6 256 7.4 16.0 0.4 345 4.5 4.2 04 30.0 134 342 221 3.8
13 2 1 2 8.3 251 2.5 4.4 2.3 44 201 144 197 0.4 6.7 0.3 236 136
13 2 1 3 63.1 149 3.7 7.8 0.1 15.1 4.7 3.8 2.8 136 52 156 131 3.5
102 18 2 2 1 49.7 2.1 7.2 1.3 2.0 9.6 2.4 15 0.6 49 137 7.3 1.2 3.2
13 2 2 2 6.6 5.1 4.1 4.2 6.9 341 114 3.9 10.0 475 438 474 3.1 8.5
13 2 2 3 43.7 1.6 7.6 0.9 1.3 58 1.0 1.1 2.2 1.6 9.0 1.2 0.9 4.9
103 183 2 3 1 51.0 2.4 2.0 1.2 3.1 14.2 3.4 3.4 0.5 123 118 10.0 1.5 1.8
13 2 3 2 40 21.9 139 83 117 186 284 170 290 247 220 254 250 21.8
13 2 3 3 45.0 47 3.5 0.6 25 144 6.4 2.4 32 117 114 9.0 3.9 0.1
104 13 2 4 1 28.6 2.8 6.9 6.0 0.2 454 6.0 2.0 92 547 454 529 4.2 4.7
13 2 4 2 1.6 511 236 236 200 227 7.8 240 84 457 273 445 136 307
i3 2 4 3 69.8 0.0 3.4 3.0 05 19.2 2.3 1.4 36 235 192 227 14 2.6
105 14 1 1 1 355 1341 1.0 2.9 04 110 127 105 11.8 135 139 143 9.2 10.0
14 1 1 2 16.3 13.0 2.8 5.7 2.1 21.0 8.3 114 42 187 17.3 218 4.2 8.4
14 1 1 3 48.2 1441 0.2 4.1 04 152 6.5 3.9 72 163 16.1 178 54 4.5
106 14 1 2 1 67.2 0.9 3.7 2.4 2.5 1.9 6.4 3.1 54 1.2 0.5 0.9 8.8 7.5
4 1 2 2 171 125 104 5.0 54 9.6 9.8 0.8 59 137 48 113 147 9.2
14 1 2 3 157 17.4 4.7 4.9 4.7 26 169 140 166 9.9 7.4 8.3 219 221
107 14 1 3 1 71.5 0.1 4.3 4.7 33 17.2 52 7.3 44 19.0 179 193 6.6 8.1
14 1 3 2 13.8 231 6.9 4.7 1.6 6.0 13.0 56 17.8 155 83 17.2 9.7 1.1
14 1 3 3 147 214 145 186 145 782 377 406 383 781 794 775 413 384
108 14 1 4 1 56.6 6.7 4.6 0.2 54 259 3.9 7.9 3.0 239 245 237 2.6 0.9
14 1 4 2 86 17.1 0.9 4.0 6.7 23.0 156 113 208 233 258 20.1 169 102
14 1 4 3 348 152 7.3 1.3 7.2 478 102 156 101 446 462 435 8.3 3.9
109 14 2 1 1 12.3 11.0 144 8.2 18.4 451 0.4 3.9 28 718 692 724 191 203
14 2 1 2 66 11.1 195 139 47 502 226 167 9.2 427 447 516 19.0 247
4 2 1 3 81.1 2.6 3.8 2.4 32 11.0 1.8 0.8 1.2 144 142 152 4.5 5.1
110 14 2 2 1 28.8 5.3 2.6 5.4 0.8 239 122 6.4 152 142 123 144 1.4 3.4
14 2 2 2 7.3 91 55 113 7.9 488 111 07 218 398 46.1 358 77 9.6
14 2 2 3 63.9 3.4 0.5 1.2 0.5 5.2 4.2 2.8 4.4 1.8 0.3 2.4 0.3 2.6
111 14 2 3 1 35.0 49 113 9.3 9.0 197 1.6 0.2 0.6 238 229 236 4.8 5.8
14 2 3 2 35 64.0 129 176 2.2 837 219 141 72 717 91.1 829 272 221
14 2 3 3 61.5 0.9 57 4.3 52 6.4 0.4 0.7 0.7 9.4 7.8 8.7 1.2 2.0
112 14 2 4 1 15.4 3.6 9.1 0.6 7.7 623 119 05 111 594 591 593 5.9 4.9
14 2 4 2 0.8 188.1 434 423 234 0.8 461 476 27.1 2.3 6.6 9.4 498 5438
14 2 4 3 83.8 1.2 1.3 0.5 1.2 114 1.7 0.6 1.8 109 10.8 10.8 0.6 0.4
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113 15 1 1 1 54.5 3.5 4.7 0.2 58 16.2 1.4 7.0 8.2 148 18.9 6.6 3.9 8.1
5 1 1 2 116 120 0.6 1.0 2.2 46 35 8.4 11 210 86 16.0 0.0 9.4
15 1 1 3 33.9 9.8 7.8 0.6 101 276 1.1 83 136 31.0 334 16.1 6.3 9.8
114 15 1 2 1 83.4 4.7 1.9 0.6 2.3 2.0 5.3 2.4 3.8 3.8 1.2 1.7 4.7 2.0
15 1 2 2 8.8 1.2 2.0 1.9 1.4 53 254 52 244 214 55 202 257 3.6
15 1 2 3 7.7 497 18.8 88 228 158 281 200 134 18.2 6.3 48 21.0 17.8
11515 1 3 1 847 2.0 0.6 01 0.3 7.8 1.5 56 0.3 9.1 6.7 9.7 1.4 4.2
15 1 3 2 7.5 181 2.3 1.1 2.8 4.1 21.8 3.1 233 232 3.9 251 189 3.7
15 1 3 8 7.8 39.6 3.8 2.4 06 803 379 580 261 765 684 809 3.6 416
116 15 1 4 1 62.1 9.7 116 3.8 107 38.2 233 111 183 326 352 36.0 186 205
15 1 4 2 51 10.0 8.9 0.3 76 11.3 9.2 89 106 109 127 101 126 129
15 1 4 3 327 16.8 233 71 215 707 427 224 330 636 649 700 334 409
117 15 2 1 1 265 28.1 9.6 0.4 82 159 195 7.3 116 291 211 19.2 139 17.9
5 2 1 2 7.3 298 7.5 1.6 52 82 10.0 153 52 4.3 9.9 7.7 7.8 229
15 2 1 8 66.2 145 4.7 0.3 3.8 7.3 8.9 4.6 52 11.2 9.5 6.8 6.4 9.7
118 15 2 2 1 44.0 3.2 2.8 1.3 14 233 125 4.0 195 101 241 2.8 134 8.0
15 2 2 2 57 4.6 3.2 3.3 52 600 296 131 287 482 566 492 238 116
15 2 2 3 50.3 3.3 2.1 1.5 06 136 7.6 2.0 138 34 146 3.1 9.0 8.4
119 15 2 3 1 455 7.1 1.7 0.3 3.0 309 191 1.0 126 9.5 268 16.1 141 3.8
15 2 3 2 3.1 36.0 4.6 2.9 28 374 124 158 9.4 36.7 423 329 9.0 15.2
15 2 3 8 51.4 8.5 1.2 0.4 25 251 17.6 0.1 117 6.2 211 12.3 138.0 4.3
120 15 2 4 1 21.6 152 9.7 95 106 542 24 26.8 64 479 464 539 112 2.4
15 2 4 2 0.8 152.1 26.8 1.6 291 56.3 420 446 393 123 291 18.3 9.1 7.6
15 2 4 3 77.6 5.8 3.0 2.6 32 15.6 1.1 7.9 1.4 134 132 152 3.0 0.6
121 16 1 1 1 51.1 40 128 7.5 3.6 19.8 1.9 2.5 6.1 258 21.0 253 3.3 7.3
16 1 1 2 13.8 9.3 4.6 4.8 1.9 15.8 4.7 9.7 27 21.0 16.3 229 55 129
16 1 1 3 35.1 21 205 129 45 35.0 4.6 7.5 10.0 459 37.0 459 6.9 157
122 16 1 2 1 771 3.7 0.1 2.6 2.8 3.4 2.6 2.9 4.7 4.1 5.7 3.5 0.7 2.4
16 1 2 2 12.2 7.9 6.8 3.1 71 7.5 128 50 111 18.8 11.1 15.7 10.0 7.1
16 1 2 3 10.8 354 8.5 223 121 157 45 148 215 8.5 285 7.6 59 9.4
123 16 1 3 1 80.7 2.9 0.4 2.4 28 11.9 4.8 1.3 6.1 107 115 11.0 4.5 3.0
16 1 3 2 95 18.0 1.7 0.3 25 17.2 4.8 0.9 56 14.0 143 165 7.2 2.7
16 1 3 3 9.8 418 1.3 202 206 812 446 97 555 744 809 745 440 273
124 16 1 4 1 68.5 104 8.5 4.8 1.8 85 10.2 2.5 42 119 76 124 11.2 5.1
16 1 4 2 63 114 7.2 0.3 113 1141 56 16.2 125 23.0 135 194 6.7 143
16 1 4 3 252 310 214 131 21 259 264 2.8 83 38.0 240 384 286 10.2
125 16 2 1 1 17.0 125 115 233 6.2 674 208 182 51 58.0 695 56.0 237 9.6
16 2 1 2 6.7 20.2 6.1 103 3.1 350 1638 9.4 32 192 283 264 103 5.4
16 2 1 3 76.3 4.6 3.1 6.1 1.7 18.0 6.1 4.9 14 146 179 1438 6.2 2.6
126 16 2 2 1 301 27.0 187 6.7 3.7 6.2 2.6 42 142 328 177 312 7.8 1941
16 2 2 2 6.0 122 9.3 6.2 34 552 207 59 295 406 497 366 11.8 9.4
16 2 2 3 63.9 13.8 9.7 3.7 2.1 2.3 3.2 1.4 95 11.6 3.7 11.2 2.6 9.9
127 16 2 3 1 316 311 235 6.5 7.9 257 499 9.1 361 4.8 232 3.5 472 241
16 2 3 2 3.0 618 122 0.9 6.3 1132 38.7 05 277 680 964 788 276 16.8
16 2 3 3 655 17.8 119 3.2 41 175 258 44 187 54 156 53 240 124
128 16 2 4 1 17.0 16.0 9.9 21.8 93 626 123 160 264 516 622 525 123 71
16 2 4 2 1.0 109.0 4.3 1.8 6.4 332 21 255 16.6 26.8 441 222 202 6.7
16 2 4 3 82.0 4.7 2.1 4.5 20 134 2.6 3.6 57 110 134 112 2.8 1.6
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129 17 1 1 1 34.0 16.3 3.8 3.8 2.9 72 168 151 193 6.3 71 8.6 16.7 164
17 1 1 2 18.3 04 134 17 145 259 151 85 201 320 294 29.1 187 180
17 1 1 3 477 117 2.4 3.3 3.5 151 6.2 7.5 6.1 168 163 17.2 4.7 4.8
180 17 1 2 1 65.7 0.6 55 4.3 5.1 1.3 9.6 7.3 11.0 3.6 3.8 21 120 105
17 1 2 2 15.5 3.1 0.3 2.1 0.8 196 2.5 59 88 163 126 224 8.3 0.2
i7 1 2 3 18.8 04 188 167 171 205 315 302 312 261 236 257 349 363
131 17 1 3 1 725 2.0 2.3 4.4 2.1 18.0 6.5 7.8 78 189 198 17.9 9.1 7.0
17 1 3 2 11.6 85 114 1.2 10.9 3.3 16.1 7.0 8.2 8.2 127 2.7 55 16.6
17 1 3 3 159 154 19.0 192 174 798 414 409 419 803 813 799 457 441
132 17 1 4 1 58.0 103 3.0 1.5 8.7 245 3.0 6.7 41 281 242 218 2.5 0.7
17 1 4 2 58 229 503 1.2 489 769 656 178 545 687 700 78,0 589 638
17 1 4 3 36.2 12.8 4.8 2.3 6.1 514 153 136 153 479 499 472 133 9.0
133 17 2 1 1 11.3 6.1 212 121 232 807 236 229 182 935 89.9 1027 324 402
17 2 1 2 85 323 8.3 3.8 6.1 96 27.0 205 120 3.8 7.5 94 121 26.0
17 2 1 3 80.1 4.3 2.1 2.1 26 104 0.5 1.1 1.3 187 135 135 3.3 2.9
134 17 2 2 1 29.0 2.3 53 9.2 3.6 235 114 7.6 7.5 167 13.0 204 1.2 9.1
17 2 2 2 8.0 1.5 4.3 3.9 22 568 258 189 104 488 518 558 179 241
17 2 2 3 63.0 0.9 3.0 4.7 1.9 3.6 2.0 1.1 2.1 1.5 0.6 2.3 1.7 1.1
135 177 2 3 1 33.7 3.4 9.7 8.9 84 11.2 7.1 4.5 39 182 158 152 2.1 2.9
17 2 3 2 33 715 186 4.0 21.0 444 6.4 163 144 695 652 471 8.6 3.2
17 2 3 3 63.0 2.0 4.2 4.5 3.4 3.7 3.5 1.6 2.9 6.1 5.1 5.6 1.6 1.4
136 17 2 4 1 14.2 1.5 4.0 5.8 3.2 554 2.8 9.3 2.0 543 534 528 5.5 8.8
17 2 4 2 0.8 170.7 35.6 74 378 352 8.2 359 104 8.1 47 202 323 115
17 2 4 3 85.0 2.0 0.3 0.9 0.2 9.6 0.4 1.2 0.2 9.2 e X¢] 9.0 1.2 1.6
137 18 1 1 1 46.4 58 4.3 0.7 1.8 17.8 2.6 86 103 149 154 16.0 4.4 3.7
18 1 1 2 11.6 24.6 8.4 5.0 87 30.0 214 141 17.9 174 256 174 161 6.7
18 1 1 3 421 1341 2.4 0.6 0.4 27.8 3.0 57 6.5 212 240 225 0.4 2.2
138 18 1 2 1 78.3 5.0 1.4 1.7 0.6 4.0 1.9 1.0 3.6 2.9 1.8 3.2 3.7 2.2
18 1 2 2 10.8 1.6 0.3 0.5 1.5 23.6 23 1156 33 149 217 158 3.2 7.1
18 1 2 3 10.8 378 106 11.6 6.1 55 112 188 2238 6.3 8.3 7.6 235 8.9
139 18 1 3 1 81.5 3.8 0.4 0.7 0.3 123 5.1 4.0 64 111 117 11.0 3.9 3.2
18 1 3 2 9.2 194 3.3 2.8 45 323 16.6 25 181 245 304 237 142 5.6
8 1 3 3 9.2 53.0 6.8 8.8 21 76.0 281 331 386 738 733 731 204 225
140 18 1 4 1 62.3 1.8 0.3 1.7 2.1 209 1.5 4.4 6.3 255 220 250 3.0 5.4
18 1 4 2 71 26.0 103 42 106 15.0 7.9 3.2 9.9 7.2 146 6.5 9.5 104
18 1 4 3 30.6 9.7 1.9 4.5 1.8 46.1 4.9 82 151 502 482 493 8.3 8.6
141 18 2 1 1 195 249 4.2 1.6 7.8 37.6 3.4 74 13.0 434 403 456 0.6 1.9
18 2 1 2 72 297 6.4 7.4 58 108 270 159 301 21 127 3.3 276 195
18 2 1 3 73.4 9.5 1.8 0.3 2.6 8.9 3.5 0.4 6.4 113 95 11.8 2.8 1.4
142 18 2 2 1 334 13.6 5.9 3.6 32 504 375 170 286 234 327 246 207 132
i8 2 2 2 6.2 1.8 0.9 0.8 06 315 179 44 165 506 441 512 3.3 154
18 2 2 3 60.4 7.7 3.2 1.9 1.8 246 226 9.0 175 7.7 135 8.3 111 5.7
143 18 2 3 1 371 105 3.8 1.5 0.9 149 2.1 2.5 6.0 7.7 9.6 6.6 7.8 104
18 2 3 2 2.8 8601 10.8 9.0 125 279 185 26 203 532 384 513 109 2.2
18 2 3 3 60.0 9.3 2.9 1.3 1.2 7.9 0.4 1.4 4.7 2.2 4.1 1.7 4.3 6.3
144 18 2 4 1 16.9 14.9 8.7 6.1 3.5 56.6 1.2 8.9 128 492 534 487 3.8 138
18 2 4 2 0.7 1648 319 383 316 292 2.0 100 8.0 135 27 143 400 16.2
18 2 4 3 82.3 4.5 2.1 1.6 1.0 11.9 0.3 1.7 27 102 10,9 101 11 3.0
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145 19 1 1 1 45.8 1.4 116 9.0 53 16.2 3.8 1.2 9.0 236 176 227 2.3 3.1
19 1 1 2 13.3 118 3.8 1.9 49 167 5.1 14 113 203 214 149 101 2.7
19 1 1 3 41.0 2.3 14.0 9.4 7.5 235 2.6 1.8 6.3 33.0 26,6 301 0.7 4.3
146 18 1 2 1 73.6 2.8 1.3 0.0 3.9 5.2 1.9 3.2 4.3 2.0 583 2.2 1.9 4.4
19 1 2 2 11.6 1.3 0.8 7.4 47 424 164 141 6.2 270 378 335 124 7.9
19 1 2 8 14.8 15.1 7.3 57 15.9 75 223 272 262 113 3.1 15.1 19.2 28.1
147 19 1 3 1 79.5 4.8 0.8 0.3 1.3 132 4.8 14 65 115 141 111 6.2 2.2
19 1 3 2 8.7 74 122 0.9 56 146 6.2 19.6 4.1 1.9 216 3.1 2.8 259
19 1 3 3 118 375 3.6 24 131 783 366 239 410 758 792 767 394 341
148 19 1 4 1 61.7 7.4 5.1 57 04 19.2 1.0 4.1 23 210 167 21.2 4.3 1.0
19 1 4 2 56 1.2 205 3.2 163 56.3 485 158 367 412 497 450 397 408
19 1 4 3 32.8 141 6.1 11.4 2.1 457 64 104 106 465 399 483 1.4 8.8
149 19 2 1 1 13.2 4.3 231 304 9.0 820 276 236 153 84.0 992 845 430 277
19 2 1 2 7.3 339 109 3.4 45 103 25.0 20.2 7.6 3.5 3.2 11.0 127 26.8
19 2 1 8 79.5 3.8 2.8 4.7 1.1 12.7 2.3 2.1 1.8 143 16.8 13.0 6.0 2.1
150 18 2 2 1 304 120 4.1 0.1 55 115 1.7 6.8 6.5 208 10.1 202 0.0 9.4
19 2 2 2 7.3 129 153 11.0 72 585 272 245 93 531 518 599 163 304
19 2 2 3 62.3 4.3 0.2 1.3 3.5 1.3 2.3 0.4 4.3 3.9 1.2 2.8 1.9 1.0
151 19 2 3 1 34.5 7.2 0.2 0.6 8.8 1.8 21.9 4.1 13.9 126 2.7 13.0 173 4.8
19 2 3 2 29 599 105 26 215 395 9.2 9.1 15.3 66.6 454 429 4.7 6.2
19 2 3 8 62.6 6.7 0.6 0.4 3.9 28 117 1.8 8.4 3.9 Q.6 5.2 9.3 2.4
152 19 2 4 1 123 377 30.0 26.1 14.2 554 56 199 52 41.0 499 421 16.0 324
19 2 4 2 06 2299 646 274 753 282 58 148 293 16.7 1038 1.0 581 380
19 2 4 3 87.2 6.8 4.6 3.9 2.5 8.0 0.8 2.7 0.5 57 6.9 5.9 2.6 4.8
153 20 1 1 1 39.1 9.1 1.8 4.1 1.5 43 17.3 14.0 202 137 84 132 134 8.8
201 1 2 17.3 57 8.4 3.9 46 154 4.6 7.6 51 218 163 20.9 5.0 9.8
20 1 1 3 436 104 5.0 52 0.5 10.0 13.6 95 16.1 21.0 140 20.1 10.1 4.0
154 20 1 2 1 70.9 3.0 1.1 0.5 1.9 3.3 4.2 3.0 5.1 3.0 3.6 2.8 4.2 4.7
20 1 2 2 14.6 1.5 0.5 0.3 24 209 1.0 8.8 28 278 189 28.6 2.9 4.6
20 1 2 3 145 164 6.0 2.1 11.8 4.9 194 234 220 134 14 150 176 27.6
155 20 1 3 1 75.2 2.3 1.4 1.2 2.1 13.8 4.0 3.5 48 146 146 145 5.1 4.9
201 3 2 12.7 194 2.8 5.2 1.1 54 16.1 98 135 13.0 109 126 8.5 5.8
201 3 3 12.1 345 5.9 1.8 120 799 416 318 443 77.0 792 772 404 36.2
156 20 1 4 1 61.3 9.5 7.5 3.0 52 17.0 3.6 2.3 20 185 165 188 4.0 1.1
20 1 4 2 8.0 121 6.7 35 104 234 16.1 125 148 28,0 185 287 107 21.1
20 1 4 3 30.7 22.0 133 6.8 7.6 40.0 3.0 7.8 0.2 4441 377 449 5.3 3.2
157 20 2 1 1 136 111 139 116 8.3 56.9 9.3 3.2 45 732 852 727 339 206
20 2 1 2 7.9 23.0 3.1 8.5 43 26.7 5.3 0.7 84 242 348 21.8 143 0.7
20 2 1 3 78.4 4.3 2.7 2.9 1.0 126 2.2 0.5 16 152 183 148 7.3 3.6
158 20 2 2 1 294 114 3.5 1.1 0.3 171 5.9 7.3 23 232 121 223 1.8 104
20 2 2 2 7.5 7.3 4.2 0.6 24 492 118 1.4 8.8 399 485 409 11.0 1.1
20 2 2 3 63.1 6.2 2.1 0.5 0.4 2.1 1.4 3.6 0.0 6.0 0.1 5.5 0.5 5.0
159 20 2 3 1 33.1 8.1 1.3 2.5 2.7 1.2 195 59 158 106 6.2 112 149 7.9
20 2 3 2 3.1 850 279 202 195 1004 315 115 37.0 987 1148 0951 424 288
20 2 8 3 63.7 8.4 2.1 0.3 0.5 4.3 117 3.6 10.0 0.7 2.5 1.1 9.8 5.5
160 20 2 4 1 15.3 6.8 1.0 12.0 56 579 24 175 7.8 531 592 538 5.3 5.9
20 2 4 2 0.9 1817 406 326 284 33.0 3.5 1.5 1.8 3.9 133 1.5 233 413
20 2 4 3 83.8 3.1 0.6 2.5 0.7 109 0.5 3.2 1.5 9.7 10.9 9.8 0.7 1.5
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161 21 1 1 1 43.1 5.3 5.0 3.8 05 137 6.5 47 119 152 120 157 7.7 4.4
21 1 1 2 146 134 1.4 1.7 00 241 131 122 125 215 241 211 141 103
21 1 1 3 422 101 55 4.5 05 223 2.1 0.6 7.8 23.0 206 234 3.0 1.0
162 21 1 2 1 74.8 4.7 0.8 1.7 0.6 5.0 1.4 2.5 3.0 3.1 4.9 3.2 1.7 3.1
21 1 2 2 12.8 0.9 1.0 3.2 05 29.0 57 2.8 31 202 279 212 4.1 1.8
21t 1 2 3 12.3 295 4.1 6.7 3.4 0.3 146 18,0 213 2.5 0.8 25 143 16.7
163 21 1 3 1 80.0 53 1.8 1.4 05 119 3.3 2.3 45 107 117 108 3.3 1.9
21 1 3 2 10.3 12.8 5.0 0.1 3.3 222 2.7 0.6 57 138 20.1 13.0 1.2 6.9
2t 1 3 3 9.8 56.7 93 116 09 744 239 193 311 734 750 731 256 230
164 21 1 4 1 61.2 5.1 3.1 2.2 02 215 1.0 2.6 4.4 234 225 232 2.5 2.9
21 1 4 2 7.8 20.2 3.0 0.5 28 11.2 6.6 5.0 57 6.3 10.2 7.1 5.3 1.8
21 1 4 3 31.0 152 6.9 4.4 04 452 3.7 64 10.0 478 46.9 476 6.2 6.2
165 21 2 1 1 157 15.8 7.7 10.2 05 80.0 272 241 185 644 698 659 19.8 152
21t 2 1 2 74 234 2.6 3.3 22 142 3.0 2.5 0.7 138 102 11.9 8.0 7.3
21 2 1 3 77.0 55 1.8 2.4 0.3 17.6 52 47 3.7 144 152 146 3.3 2.4
166 21 2 2 1 30.2 15.8 7.8 3.9 23 204 85 118 24 281 223 286 94 158
21 2 2 2 7.5 3.2 57 52 48 555 223 213 20.0 501 481 509 108 155
21 2 2 8 62.3 7.3 3.1 1.3 0.5 3.2 1.4 3.2 1.3 7.6 5.0 7.7 3.2 5.8
167 21 2 3 1 34.0 1241 5.2 3.2 0.3 3.0 16.0 8.1 9.9 6.1 2.8 56 158 125
21 2 3 2 3.4 543 7.0 0.4 8.1 554 1.6 0.3 56 546 47.6 52.0 4.0 0.8
21 2 3 8 62.6 9.5 3.2 1.7 0.3 1.4 8.8 4.4 57 0.3 1.1 0.2 8.4 6.8
168 21 2 4 1 16.2 9.0 3.2 7.4 4.9 53.0 6.0 149 28 515 537 514 3.1 8.7
21 2 4 2 1.1 974 1.3 3.0 27 356 8.9 8.5 83 322 311 333 5.3 8.6
21 2 4 3 82.7 3.1 0.6 1.5 1.0 10.9 1.1 2.8 0.7 105 109 105 0.5 1.6
169 22 1 1 1 332 394 245 154 14 108 123 384 5.1 27 143 4.4 8.7 237
22 1 1 2 12.0 115 4.5 5.9 7.7 217 9.4 9.9 204 256 224 340 101 227
22 1 1 3 548 264 13.9 8.1 26 11.3 54 212 7.6 4.0 13.6 10.1 3.1 9.4
170 22 1 2 1 68.4 6.3 10.8 12.0 1.3 9.6 155 125 106 6.5 112 52 17.3 124
22 1 2 2 183.0 212 199 121 104 6.2 249 18.0 250 0.8 9.8 6.7 285 251
22 1 2 3 18.6 85 258 358 26 311 399 334 215 235 345 146 437 284
171 22 1 3 1 71.2 7.8 123 136 43 224 92 112 47 257 232 256 124 147
22 1 3 2 7.5 4.8 14.8 1.9 305 20.1 438 7.6 432 1.1 254 58 514 132
22 1 3 38 21.3 242 465 462 250 820 463 401 309 855 866 835 59.8 539
172 22 1 4 1 52.8 9.8 123 153 55 533 301 122 186 411 548 380 332 115
22 1 4 2 5.1 3.7 167 46 201 6.2 31 110 137 333 3.6 241 6.3 1238
22 1 4 3 421 118 175 19.8 44 66.0 367 166 216 555 683 506 409 16.0
173 22 2 1 1 195 336 150 238 169 257 525 333 382 202 3.7 282 358 103
2 2 1 2 49 110 188 13.1 9.9 8.8 17.2 5.8 1.7 292 303 555 1.5 282
22 2 1 3 75.6 9.4 2.6 53 5.0 6.0 14.6 8.9 9.7 7.1 1.0 109 9.1 0.8
174 22 2 2 1 421 176 238 179 1.7 1.1 99 17.2 6.6 16.1 63 111 164 190
22 2 2 2 5.1 12.8 8.8 28.6 6.0 41.2 0.6 59 115 436 449 323 6.7 16.6
2 2 2 3 52.8 129 181 116 1.9 3.1 7.9 131 6.4 17.0 94 120 138 13.6
175 22 2 3 1 456 174 23.1 234 23 28.0 154 214 0.1 363 355 323 234 182
22 2 3 2 2.6 56.9 7.4 6.1 85 148.0 57.9 87 757 522 1004 834 284 1938
22 2 3 3 518 124 200 209 25 171 106 184 39 293 261 242 192 150
176 22 2 4 A1 26,1 342 382 344 157 579 119 344 91 740 623 716 200 350
22 2 4 2 1.0 657 182 253 249 223 1.1 17 179 468 482 339 329 8.5
22 2 4 3 729 113 140 127 6.0 21.1 43 123 35 272 28.0 261 7.6 127
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177 23 1 1 1 349 304 165 4.4 20 317 9.5 71 212 143 315 236 9.8 3.1
23 1 1 2 14.5 3.6 171 29 215 2682 114 58 237 359 239 413 9.6 287
23 1 1 3 50.7 199 6.5 2.2 75 293 9.8 32 214 20.1 285 28.0 9.5 6.1
178 23 1 2 1 66.4 83 130 123 5.9 35 115 1.7 6.7 39 114 05 186 9.4
23 1 2 2 11.2 3.8 2.0 0.3 39 1183 102 172 148 294 3.1 284 234 4.3
23 1 2 3 224 228 376 364 196 162 29.0 139 126 2685 323 156 434 30.1
179 23 1 3 1 69.3 9.7 144 174 85 214 6.0 116 23 265 243 253 118 126
23 1 3 2 6.5 16.1 405 36 505 663 922 108 832 331 574 355 851 593
23 1 3 3 242 322 522 508 379 791 420 361 290 847 848 819 587 520
180 23 1 4 1 58.1 1.5 09 106 11.3 306 9.1 8.3 05 216 329 165 123 7.9
23 1 4 2 45 134 38.0 36 369 474 386 83 265 685 437 656 353 463
23 1 4 3 37.4 0.8 6.0 16.1 130 534 188 139 41 419 565 336 234 6.6
181 23 2 1 1 15.8 20.1 26 101 352 125 414 246 273 27.1 1.9 454 332 3.5
23 2 1 2 6.5 306 6.8 6.6 5.2 2.4 195 6.6 9.1 1.2 141 74 10.83 105
23 2 1 3 777 6.6 0.0 15 6.7 23 10.0 5.6 4.8 54 0.8 9.8 76 0.2
182 23 2 2 1 39.2 132 195 221 0.5 9.3 1.2 161 16.4 21.0 132 113 209 174
23 2 2 2 5.8 3.5 0.3 0.5 3.6 663 409 284 263 484 602 447 321 3.3
23 2 2 3 55.1 9.0 138 156 0.0 0.3 35 144 8.9 20.0 157 127 183 127
183 23 2 3 1 469 21.3 26.6 269 94 43.0 30.1 335 18.1 465 483 394 363 247
23 2 3 2 24 822 253 105 193 908 250 343 59.6 738 1034 B88.0 335 255
23 2 3 3 50.7 159 235 254 7.8 355 267 326 140 396 399 324 320 217
184 23 2 4 1 264 364 402 280 215 689 296 302 145 787 704 750 336 403
23 2 4 2 05 278.2 87.7 420 906 53 314 20 742 150 269 296 718 855
23 2 4 3 73.1 11.4  14.0 9.8 72 250 105 109 48 284 253 269 117 140
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1 1 1 1 274 151 11.8 2.9 7.2 7.5 97 42 1.2 4.4 0.8 g0 138
2 1 1 2 6.8 55 10.1 8.4 203 12.3 10.7 5.1 10.8 220 122 14.4 4.5
3 1 1 3 24.0 3.8 9.1 105 316 2.1 11.6 13.2 320 309 313 4.2 2.9
4 1 1 4 126 15.2 11.8 2.9 401 24.0 8.4 17.0 311 389 307 230 141
5 1 2 1 28.0 87 13.0 1.0 128 134 109 6.6 15.0 80 158 16.3 8.1
6 1 2 2 6.2 107 2.9 34 13.2 105 47 899 179 157 178 7.3 102
7 1 2 3 9.6 11.1 4.0 30 272 225 4.5 16.1 245 264 236 19.5 10.5
8 1 2 4 23.0 100 149 57 250 4.0 8.0 10.7 370 336 36.7 129 9.3
9 2 1 1 13.8 1.5 2.2 1.0 189 1.0 3.4 2.1 1894 18.0 21.2 04 2.8
10 2 1 2 13.8 2.7 2.9 07 120 5.8 2.0 36 126 103 126 6.0 4.1
11 2 1 3 30.8 2.1 2.6 06 303 2.4 2.7 52 320 296 322 3.1 3.6
12 2 1 4 12.4 3.8 1.8 1.9 240 6.2 12 4.1 220 248 223 6.2 53
13 2 2 1 16.8 5.2 3.8 22 338 94 6.6 32 314 325 344 6.9 7.7
14 2 2 2 10.3 59 6.1 04 181 1.6 2.8 6.8 146 156 13.7 3.1 8.2
15 2 2 3 29.7 7.1 6.9 09 440 13.4 7.9 74 355 428 386 12.3 9.0
16 2 2 4 61.7 13.6 15.4 6.9 31.0 7.3 10.7 44 247 279 250 11.1 16.2
17 3 1 1 3.2 121 5.4 8.9 237 7.7 5.3 6.1 318 312 312 119 114
18 3 1 2 3.0 7.8 42 93 11.2 93 6.7 124 108 72 115 9.8 8.3
19 3 1 3 48 187 6.4 196 311 18.6 20 162 300 306 299 196 19.2
20 3 1 4 9.0 121 2.3 83 275 7.1 3.3 34 272 260 278 6.6 119
21 3 2 1 182 110 113 57 115 20.8 98 16.8 298 29.0 287 7.1 11.2
22 3 2 2 8.8 4.3 4.2 1.2 28.1 12.3 8.1 39 219 240 218 7.5 4.6
23 3 2 3 471 17.6 38 163 486 276 1.7 393 412 439 401 19.1 16.3
24 3 2 4 45.4 2.4 6.3 70 213 15.8 92 240 305 305 314 2.2 1.8
25 4 1 1 17.0 3.9 1.9 35 137 3.7 1.5 4.3 15.5 141 14.4 3.6 3.6
26 4 1 2 22.7 9.7 8.3 6.7 248 8.0 4.0 76 268 301 239 119 7.4
27 4 1 3 464 10.8 10.8 98 31.2 9.0 6.1 85 280 283 293 123 9.9
28 4 1 4 11.5 3.4 1.0 56 197 3.9 2.9 3.5 233 202 250 2.8 4.9
29 4 2 1 21.8 1.6 29 27 257 1.0 2.0 1.0 235 252 235 53 1.7
30 4 2 2 7.1 3.3 3.7 25 16.3 2.8 1.6 32 219 194 199 1.3 2.0
31 4 2 3 15.5 8.1 57 49 171 6.6 3.0 6.1 149 147 176 8.5 58
32 4 2 4 31.4 5.8 2.5 3.8 320 0.9 3.4 1.3 336 353 336 6.0 3.5
3 5 1 1 9.1 10.0 6.9 45 208 4.0 4.0 6.8 284 236 282 7.4 8.3
34 5 1 2 17.5 4.5 8.2 50 132 6.2 1.6 6.8 198 225 166 104 4.7
3% 5 1 3 30.2 3.4 54 105 353 8.4 6.6 119 33.0 339 346 7.2 58
36 5 1 4 23.7 14.5 8.7 49 11.0 208 9.0 13.4 14.2 98 16.6 23.1 14.4
37 5 2 1 13.8 86 11.9 22 367 106 6.8 43 358 423 378 159 101
38 5 2 2 16.9 10.7 4.4 1.2 18.7 6.2 2.3 136 241 21.7 204 47 12.6
3 5 2 3 349 109 3.8 14 454 311 6.0 222 238 363 300 244 130
40 5 2 4 539 11.1 20.0 34 319 44 212 70 258 344 245 49 127
41 6 1 1 15.7 1.2 1.0 3.3 194 0.8 53 5.5 172 152 224 3.0 3.7
42 6 1 2 15.7 3.1 4.7 1.2 179 134 9.2 82 17.2 155 182 103 7.5
43 6 1 3 28.4 2.3 2.0 2.0 337 8.4 53 13.0 322 313 326 9.4 47
4 B 1 4 18.5 9.9 13 7.8 199 167 36 111 205 215 205 126 146
45 6 2 1 17.9 3.5 1.8 0.7 410 146 8.6 54 2900 310 36.7 6.0 10.2
46 6 2 2 12.7 6.9 3.8 36 193 1.6 7.3 6.0 19.1 18.5 17.4 2.8 13.5
47 6 2 3 26.7 3.4 3.8 0.2 423 179 7.6 84 308 397 375 189 100
48 6 2 4 38.8 4.9 7.3 89 382 9.2 9.2 16.9 344 379 298 101 8.4
449 7 1 1 14.3 1.3 1.8 14 16.8 1.1 2.0 19 183 173 17.3 0.6 0.9
5 7 1 2 14.3 1.7 29 1.3 132 25 2.8 1.2 17.3 158 15.9 1.0 1.0
5 7 1 3 34.6 3.7 3.7 27 306 4.6 23 37 302 296 3086 5.4 2.9
52 7 1 4 11.0 4.0 0.5 4.1 21.4 2.8 1.3 2.1 240 211 24.7 2.1 4.9
53 7 2 1 22.6 5.2 2.6 44 224 4.0 2.8 28 219 225 213 3.9 58
54 7 2 2 9.5 3.9 1.6 28 17.2 5.0 3.9 34 199 202 191 4.0 34
5 7 2 3 21.7 3.1 1.6 39 244 1.8 0.6 4.1 223 231 23.1 2.3 2.3
56 7 2 4 38.2 2.1 1.9 27 306 3.4 4.8 1.2 316 325 321 2.1 1.2
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57 8 1 1 6.0 9.0 6.8 3.4 202 7.3 3.5 6.3 286 228 269 7.3 7.4
58 8 1 2 15.4 2.8 4.3 1.8 138 9.8 2.6 87 186 152 165 119 1.6
5 8 1 3 22.6 4.0 4.2 7.7 30.8 8.9 48 103 320 305 328 71 54
60 8 1 4 11.1 5.0 3.4 35 226 4.4 1.6 44 218 196 2286 7.4 3.5
61 8 2 1 13.8 8.1 11.4 49 351 8.8 5.9 6.6 353 426 337 157 6.6
62 8 2 2 1.8 57 2.7 02 227 9.2 2.1 95 200 212 185 6.4 4.6
63 8 2 3 33.8 7.8 6.2 77 435 16.0 6.5 139 364 415 377 132 8.4
64 8 2 4 68.3 144 129 8.5 320 9.0 109 91 220 2980 230 45 131
65 9 1 1 10.1 4.7 35 27 145 6.9 2.3 59 240 186 220 35 2.6
66 9 1 2 14.4 3.3 4.7 16 123 7.4 2.8 90 122 113 126 10.2 2.4
67 9 1 3 24.5 4.6 5.5 44 303 6.4 3.9 52 330 324 319 3.8 4.4
68 9 1 4 7.9 1.7 2.5 3.4 242 5.5 0.8 44 252 242 271 55 3.3
69 9 2 1 17.5 4.3 6.3 28 227 3.2 4.2 36 307 381 262 119 1.5
70 9 2 2 6.1 7.0 7.3 45 222 130 25 107 137 187 16.5 9.2 43
71 9 2 3 422 152 132 79 438 147 74 179 465 480 386 17.0 9.5
72 9 2 4 843 229 169 151 284 6.3 6.5 86 241 229 208 133 16.8
73 10 1 1 10.1 13.8 9.5 7.8 226 6.4 54 43 328 241 271 9.3 8.9
74 10 1 2 8.6 3.9 2.6 9.9 124 3.7 4.4 6.1 150 122 101 4.9 6.8
75 10 1 3 20.9 9.2 1.5 155 320 9.9 29 123 357 327 387 114 145
76 10 1 4 222 131 6.7 45 217 165 6.3 129 173 104 223 31.8 8.5
77 10 2 1 114 113 17.2 3.3 391 14.0 9.4 94 401 524 356 254 7.3
78 10 2 2 15.7 9.7 2.0 1.7 292 16.0 95 138 237 242 17.2 8.1 71
79 10 2 3 30.9 8.0 1.5 1.2 398 271 34 231 226 337 301 204 55
80 10 2 4 46.2 55 1438 47 559 38.1 16.9 409 28.7 439 304 177 1.9
81 11 1 1 7.3 7.5 4.9 3.0 157 8.1 1.5 84 264 194 207 5.0 34
82 11 1 2 17.2 3.9 5.1 0.3 266 9.6 4.1 99 203 309 153 122 0.3
83 11t 1 3 36.0 4.3 4.0 0.5 302 2.8 0.2 26 291 286 309 8.5 0.2
84 11 1 4 9.1 0.3 3.6 43 233 5.5 1.5 55 227 198 254 6.2 4.6
85 11 2 1 17.8 3.4 7.2 1.0 277 2.9 2.6 43 298 398 248 143 1.9
86 11 2 2 8.2 3.9 2.4 14 189 4.7 4.0 34 223 167 197 2.7 2.0
87 11 2 3 26.2 3.3 2.7 46 255 0.9 0.5 1.1 29.1 281 299 2.2 3.9
88 11 2 4 739 189 132 135 326 2.0 3.3 32 205 252 219 124 135
8 12 1 1 10.0 8.6 57 3.4 283 9.8 6.5 69 252 278 251 9.1 9.9
90 12 1 2 35 131 110 132 225 168 108 164 169 236 182 175 137
91 12 1 3 36.1 4.8 2.3 31 283 253 182 218 286 347 273 9.8 6.4
92 12 1 4 13.7 8.8 55 28 325 188 3.1 122 206 312 213 206 102
93 12 2 1 17.8 6.7 9.3 34 308 148 104 64 298 281 285 133 9.3
94 12 2 2 15.0 122 9.5 49 211 4.6 8.7 36 276 237 291 7.0 145
95 12 2 3 16.2 4.3 2.3 62 113 127 5.8 44 227 138 19.2 8.8 5.7
96 12 2 4 53.5 9.2 8.2 9.1 338 1.8 117 93 26.0 216 275 17.8 7.7
97 13 1 1 262 137 9.6 84 141 3.3 3.1 3.2 3.3 9.5 55 6.3 11.2
98 13 1 2 11.6 2.4 54 9.4 9.4 54 8.5 1.3 159 136 1998 7.6 4.4
99 13 1 3 34.1 4.6 22 144 302 8.8 1.5 123 293 306 275 4.8 8.7
100 13 1 4 4.6 7.0 7.5 44 306 127 4.0 g6 258 334 241 182 36
101 13 2 1 24.8 50 104 14 194 6.0 3.4 3.8 18.9 83 212 159 2.9
102 13 2 2 2.9 5.6 1.7 25 133 9.7 6.7 82 157 193 159 2.7 3.9
103 13 2 3 11.3 7.3 3.1 47 219 118 28 100 226 213 212 9.1 5.5
104 13 2 4 205 1341 11.9 77 270 2.5 7.2 38 399 287 386 32 110
105 14 1 1 15.5 1.6 4.0 2.3 189 3.4 3.5 19 192 188 209 0.5 2.1
106 14 1 2 12.6 54 3.1 40 1.9 6.1 3.5 46 100 7.6 9.8 7.5 54
107 14 1 3 24.6 7.3 9.0 59 315 3.6 6.2 53 349 330 352 5.1 7.4
108 14 1 4 15.0 5.5 1.7 6.9 215 3.3 1.3 52 197 213 184 4.8 7.2
109 14 2 1 103 136 7.9 9.1 353 99 8.7 43 425 423 46.0 14.0 165
110 14 2 2 8.2 2.7 52 29 235 6.4 24 111 16.1 17.8 150 2.6 5.2
111 14 2 3 288 117 122 59 412 117 8.5 59 394 453 430 152 1490
112 14 2 4 51.4 9.4 8.7 3.8 313 124 8.0 7.0 298 284 277 111 120
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113 15 1 1 8.6 54 05 7.0 19.0 8.1 2.7 12.9 22.5 20.4 129 9.4 3.5
114 15 1 2 23.8 9.2 5.4 11.6 27 118 09 108 257 7.1 15.8 8.8 1.3
115 15 1 3 31.2 2.3 0.7 45 253 128 1441 13.4 303 19.2 333 233 54
116 15 1 4 140 15.2 4.2 142 398 245 106 199 327 372 357 207 214
117 15 2 1 25.2 57 0.8 4.9 17.7  10.0 3.2 8.0 185 208 124 82 114
118 15 2 2 49 58 3.7 39 273 9.7 1.5 13.7 149 26.6 15.2 8.2 94
119 15 2 3 19.1 1.8 0.5 1.3 405 15.4 43 12.4 27.0 39.7 297 135 7.0
120 15 2 4 71.5 181 7.1 180 378 105 210 133 213 23.3 221 102 111
121 16 1 1 43 134 8.6 1.8 256 5.4 8.3 48 331 26.8 338 69 138
122 16 1 2 17.3 4.1 9.5 5.0 19.6 8.6 1.6 4.5 20.9 26.9 19.3 12.5 4.7
123 16 1 3 26.8 1.9 7.1 9.2 344 102 83 156 299 332 309 106 12
124 16 1 4 22.2 12.6 8.7 2.1 97 234 9.0 12.7 13.1 8.0 134 243 13.2
125 16 2 1 15.0 6.7 13.6 4.3 433 17.1 13.3 5.5 335 416 353 15.9 8.2
126 16 2 2 185 125 4.4 26 191 8.0 1.1 17.0 248 206 228 33 143
127 16 2 3 44.4 18.2 3.8 7.9 592 414 6.4 30.5 31.6 51.3 360 358 204
128 16 2 4 572 117 18.2 1.3 3186 53 246 97 244 356 231 50 137
129 17 1 1 9.8 4.7 3.6 45 210 2.4 3.7 3.7 23.7 228 234 4.3 42
130 17 1 2 71 7.5 5.2 8.4 1.7 33 37 57 7.3 7.1 10.0 7.6 5.1
131 17 1 3 16.7 9.2 8.0 g5 288 9.0 6.0 70 310 332 286 83 105
132 17 1 4 12.2 16.3 2.3 15.2 377 166 19 130 335 350 355 153 184
133 17 2 1 15.3 11.4 7.8 9.9 26.3 1.7 92 4.8 35.6 359 340 9.9 17.2
134 17 2 2 3.3 2.8 3.1 2.8 237 8.3 4.9 1.5 184 190 219 6.8 7.2
135 17 2 3 252 8.0 45 9.6 237 1.8 6.5 66 352 327 265 56 2.6
136 17 2 4 73.9 16.4 59 17.7 309 3.0 101 119 243 253 240 182 113
137 18 1 1 15.0 7.2 3.0 42 275 9.0 2.3 1.8 18.3 236 201 5.1 7.9
138 18 1 2 19.5 57 6.4 3.1 258 74 207 1.9 22.6 18.5 23.7 2.2 6.6
139 18 1 3 37.9 6.3 6.7 4.2 35.0 7.9 1.2 10.0 30.9 32.8 30.3 10.5 6.7
140 18 1 4 13.0 4.0 4.1 3.8 236 9.5 35 5.9 20.7 246 200 83 4.6
141 18 2 1 22.5 2.4 4.9 44 16.3 7.5 34 128 224 167 228 6.6 26
142 18 2 2 7.3 4.3 29 0.8 296 279 8.4 22.8 22.4 249 232 10.8 54
143 18 2 3 299 6.5 4.6 5.1 22.8 4.1 28 9.1 27.8 236 266 3.0 6.6
144 18 2 4 56.1 10.3 10.1 7.4 328 1.4 7.9 8.1 246 214 247 145 10.7
145 19 1 1 6.7 8.5 6.3 3.5 21.1 2.2 5.6 3.0 28.0 243 248 4.9 7.6
146 19 1 2 12.0 0.4 2.8 6.3 243 6.9 54 2.0 1656 247 170 7.0 3.4
147 19 1 3 253 3.0 0.6 6.9 35.4 7.4 35 13.0 30.0 382 288 1.7 6.1
148 19 1 4 10.2 11.4 6.9 54 287 16.3 3.6 10.2 251 237 282 179 125
149 19 2 1 1568 115 12.0 39 302 146 116 44 336 392 314 164 153
150 19 2 2 9.9 7.2 4.4 46 221 9.1 7.9 6.1 23.5 182 253 57 10.8
151 19 2 3 26.8 3.9 0.6 80 124 14.4 52 102 265 150 195 108 46
152 19 2 4 82.4 25.0 16.0 21.1 343 2.2 12.4 97 18.8 206 214 17.4 17.2
153 20 1 1 10.0 4.9 4.7 0.4 15.1 3.8 0.3 54 24.2 18.0 234 1.4 4.0
154 20 1 2 12.1 1.8 0.7 52 15.7 53 1.7 5.0 14.0 16.8 13.5 6.7 2.1
155 20 1 3 26.7 25 0.8 6.0 306 7.5 1.0 82 31.8 322 317 4.9 2.8
156 20 1 4 14.3 10.2 46 6.9 17.2 11.6 4.5 9.6 206 147 21.2 1.0 9.9
157 20 2 1 14.3 7.7 8.2 3.1 30.0 4.0 0.5 3.4 35.2 43.6 34.1 16.7 6.6
158 20 2 2 7.7 3.1 0.5 1.7 21.2 6.0 1.8 6.4 20.8 20.2 207 7.4 33
159 20 2 3 27.8 46 1.9 3.1 23.7 101 3.2 99 275 294 268 110 3.6
160 20 2 4 56.5 8.7 10.2 6.5 381 8.2 111 99 258 330 26.8 3.8 7.6
161 21 1 1 10.5 4.2 3.1 06 232 4.3 5.0 1.8 229 221 23.1 3.9 4.3
162 21 1 2 15.0 3.2 4.7 0.7 24.4 7.8 5.0 3.5 19.4 24 .1 19.8 7.3 3.7
163 21 1 3 34.7 57 59 1.9 314 4.9 6.4 27 278 31.0 273 3.6 6.2
164 21 1 4 12.5 3.3 1.5 2.1 20.2 45 2.5 0.8 20.2 20.8 203 2.7 33
165 21 2 1 18.4 2.9 4.8 12 354 8.8 7.8 6.4 294 300 292 4.1 2.6
166 21 2 2 7.8 53 3.6 25 214 558 6.1 6.6 23.3 1.9 238 16 6.1
167 21 2 3 271 4.8 25 2.6 22.9 7.0 2.4 54 242 203 231 5.8 4.4
168 21 2 4 390.8 0.6 2.9 3.1 33.1 1.2 3.5 43 31.3 317 317 2.1 1.2
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169 22 1 1 22.3 6.6 6.4 95 176 100 127 148 128 196 206 115 1.0
170 22 1 2 9.7 167 199 77 200 201 167 128 189 201 131 234 155
171 22 1 3 162 242 217 177 351 245 166 171 407 386 412 327 212
172 22 1 4 11.4 149 122 09 442 273 86 197 374 447 320 290 8.0
173 22 2 1 29.0 106 10.5 71 134 327 209 21.0 127 25 238 200 2.5
174 22 2 2 141 19.0 144 42 18.0 95 122 52 277 222 210 159 1186
175 22 2 3 324 170 16.1 101 755 339 192 396 449 624 540 279 214
176 22 2 4 341 224 244 81 295 29 141 173 46.0 408 402 148 135
177 23 1 1 156 107 30 154 255 8.3 54 185 204 243 280 57 9.1
178 23 1 2 154 235 231 152 159 214 166 165 251 199 204 325 197
179 23 1 3 250 446 268 392 555 471 214 391 484 554 478 513 420
180 23 1 4 9.6 167 89 231 412 196 8.1 80 410 418 356 212 183
181 23 2 1 26.6 8.4 55 152 15 2186 98 100 187 74 255 148 9.2
182 23 2 2 141 196 226 35 285 177 195 218 291 286 222 235 117
183 23 2 3 486 285 264 212 63.0 294 232 349 588 714 597 367 261
184 23 2 4 717 269 144 257 388 106 193 122 385 315 331 209 275
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