UNIVERSITY OF SOUTHAMPTON

TECHNICAL DESIGN METHODOLOGIES FOR ADVANCED FAST FERRIES

by Yıldız Saraç Williams

Master of Philosophy

School of Engineering Sciences Faculty of Engineering and Applied Science

April 2002

UNIVERSITY OF SOUTHAMPTON

ABSTRACT

FACULTY OF ENGINEERING AND APPLIED SCIENCE SCHOOL OF ENGINEERING SCIENCES, SHIP SCIENCE

Master of Philosophy

TECHNICAL DESIGN METHODOLOGIES FOR ADVANCED FAST FERRIES

by Yıldız Saraç Williams

The objective of the work has been to establish a technical design methodology for high speed ferries. The research programme comprised the development of a technical design framework for concept design of high speed ferries.

The approach has been to extend and build upon an existing research programme. In particular, this has entailed a fundamental examination and update of the section of the methodology dealing with estimation of dimensions, together with the establishment and manipulation of an effective mass estimate. Improvements and updating in the cost estimate have also been carried out.

Overall, the technical design framework has been established. It uses a flexible modular structure, allowing the quick generation of feasible designs. One of its major characteristics is that it uses a novel area based approach for the generation of a set of main dimensions, based on carrying capacities.

As high speed ferries are a relatively recent development, there is a lack of available systematic data and relevant techniques. Most major calculations are therefore performed using specialised data and tools created in the research programme, together with further modifications and updates. This allows the full investigation of the two most common hull configurations, namely monohulls and catamarans, which currently make up the majority of fast ferries.

CONTENTS

List of Tables	VI
List of Figures	VII
Nomenclature and Units	IX
Acknowledgements	XIII
1. Introduction	1
1.1 Definition of Research	1
1.2 Literature Review	3
1.2.1 Background	3
1.2.2 Technical Design Studies	6
1.2.2.1 Creation of Database	6
1.2.2.2 Estimation of Dimensions	6
1.2.2.3 Estimation of Masses	7
1.2.2.4 Estimation of Powering	9
1.2.3 Cost Studies	11
1.2.4 General Discussion	12
2. Dimensions	14
2.1 Background	14
2.1.1 Passenger-only Monohulls and Catamarans Database	15
2.1.2 Vehicle-Passenger Monohulls and Catamarans Database	16
2.2 Estimation of Main Dimensions	17
2.2.1 Passenger-only and Vehicle-Passenger Monohulls	18
2.2.2 Passenger-only and Vehicle-Passenger Catamarans	19
2.3 Estimation of Depth	20
3. Powering	37
3.1 General	37
3.2 Presentation of Data	37
3.3 Calm Water Resistance	38
3.4 Propulsion	41
3.4.1 Water Jets	42
3.5 Summary	43

4. Masses	46
4.1 General	46
4.2 Hull Mass	46
4.2.1 Background	46
4.2.2 Presentation of Hull Mass	48
4.2.3 Design Equations	49
4.3 Outfit Mass	51
4.4 Machinery Mass	53
4.4.1 Background	53
4.4.2 Principal Components of Propulsion Machinery	54
4.4.2.1 Total Mass Estimation for Diesel Engines	55
4.4.2.2 Total Mass Estimation for Gas Turbines	55
4.4.2.3 Total Mass Estimation for Propulsors	57
4.4.2.4 Total Mass Estimation for Gearboxes	57
4.4.3 Principal Components of Remaining Machinery	58
4.4.4 Total Machinery Mass	59
4.4.5 Summary	59
4.5 Deadweight	59
4.5.1 Background	59
4.5.2 Principal Components of Deadweight Mass	60
4.5.3 Summary	61
5. Costs	72
5.1 General	72
5.2 Approximate Overall Building Cost	72
5.3 Detailed Cost	73
5.3.1 General	73
5.3.2 Hull Cost	73
5.3.3 Outfit Cost	74
5.3.4 Machinery Cost	74
5.4 Overall Building Cost	75
6. Examples of the Methodology	81
6.1 General	81
6.2 Results	82
6.2.1 Example A	82
6.2.2 Example B	82

6.2.3 Example C	83
6.2.4 Example D	83
6.2.5 Example E	84
6.2.6 Example F : Investigation of Mass Balance	84
6.2.7 Example G : Investigation of Passenger Comfort Levels	85
6.3 Discussion of Results	85
7. Conclusions	101
7.1 Introduction	101
7.2 General Discussion	101
7.3 Further Work	102
7.4 Summary	102
8. References	104
Appendix I	107
A1 Database	108
A1.1 Background	108
A1.2 General Description	108
A1.3 Contributions	11 I
Appendix II	132
A2 Computer Program for Concept Design of a Fast Ferry	133
A2.1 Background	133
A2.2 General Description	133
A2.3 Code "Pre-Fast"	135

LIST OF TABLES

- Table 2.1: High Speed Ferry Database Range.
- Table 2.2: Design Equations and Range of Parameters for Derivation of Dimensions.
- Table 3.1: Typical Form Factor Values.
- Table 3.2: Effect of Each Parameter on C_R (NPL Series).
- Table 3.3: NPL Series Residuary Resistance Coefficient ($C_R \times 10^3$).
- Table 4.1: Designed Monohulls for Hull Mass Estimation ($L_{OVERALL} \times B$ is constant).
- Table 4.2: Designed Catamarans for Hull Mass Estimation ($L_{OVERALL} \times B$ is constant).
- Table 4.3: Calculation of Outfit Mass.
- Table 4.4: Remaining Machinery Mass Estimation.
- Table 4.5: Principal Components of Deadweight.
- Table 4.6: Suitable Formulae for the Principal Components of Deadweight.
- Table 4.7:Deadweight Estimation Compared with Actual Ship Data (FFI stands for Fast
Ferry International).
- Table 5.1: Rates of Materials and Labour Costs dated March 1999.
- Table 5.2: Costs of Propulsion Units.
- Table 5.3: Costs of Remaining Machinery (please see nomenclature for the abbreviations).
- Table 6.1: Example A.
- Table 6.2: Example B.
- Table 6.3: Example C.
- Table 6.4: Example D.
- Table 6.5: Example E.
- Table 6.6: Example F.
- Table 6.7: Example G.
- Table A1.1: Database description.
- Table A1.2: Contributions to the database from the current study.
- Table A2.1: Early Computer Programs Description.
- Table A2.2: Computer Program "Pre-Fast" Description.

LIST OF FIGURES

Figure 1.1: A Vehicle-Passenger Catamaran.

Figure 1.2: Overall Framework Flowpath.

Figure 2.1.a: Relation between Fn and L/B for Passenger-Only Monohulls.

Figure 2.1.b: Relation between Fn and L/B for Passenger-Only Catamarans.

Figure 2.2.a: Relation between Fn and L/B for Vehicle-Passenger Monohulls.

Figure 2.2.b: Relation between Fn and L/B for Vehicle-Passenger Catamarans.

Figure 2.3.a: Data Plots of Dimensions for Passenger-Only Monohulls.

Figure 2.3.b: Data Plots of Dimensions for Passenger-Only Monohulls.

Figure 2.3.c: Data Plots of Dimensions for Passenger-Only Monohulls.

Figure 2.4.a: Data Plots of Dimensions for Passenger-Only Catamarans.

Figure 2.4.b: Data Plots of Dimensions for Passenger-Only Catamarans.

Figure 2.4.c: Data Plots of Dimensions for Passenger-Only Catamarans.

Figure 2.5.a: Data Plots of Dimensions for Vehicle-Passenger Monohulls.

Figure 2.5.b: Data Plots of Dimensions for Vehicle-Passenger Monohulls.

Figure 2.5.c: Data Plots of Dimensions for Vehicle-Passenger Monohulls.

Figure 2.6.a: Data Plots of Dimensions for Vehicle-Passenger Catamarans.

Figure 2.6.b: Data Plots of Dimensions for Vehicle-Passenger Catamarans.

Figure 2.6.c: Data Plots of Dimensions for Vehicle-Passenger Catamarans.

Figure 2.7.a: Flowpath for Initial Estimation of Main Dimensions for Monohulls.

Figure 2.7.b: Flowpath for Initial Estimation of Main Dimensions for Catamarans.

Figure 2.8.a: The Correlation between Overall Depth and Draught for Monohulls.

Figure 2.8.b: The Correlation between Overall Depth and Breadth for Monohulls.

Figure 2.8.c: The Correlation between Overall Depth and Overall Length for Monohulls.

Figure 2.9.a: The Correlation between Overall Depth and Draught for Catamarans.

Figure 2.9.b: The Correlation between Overall Depth and Overall Breadth for Catamarans.

Figure 2.9.c: The Correlation between Overall Depth and Overall Length for Catamarans.

Figure 2.10: Definition of Depth for Catamarans and Monohulls for the Current Study.

Figure 2.11.a: The Comparison between Predicted and Existing Depth Data for Monohulls.

Figure 2.11.b: The Comparison between Predicted and Existing Depth Data for Catamarans.

Figure 3.1: Overall Water jet Efficiency.

Figure 4.1: Breakdown of Ship Mass.

Figure 4.2: Work Task Developed for Monohull Hull Mass Estimation.

Figure 4.3: Work Task Developed for Catamaran Hull Mass.

Figure 4.4: Relationship between Equipment Numeral and Net Steel.

Figure 4.5: Midship Section of a Monohull and a Catamaran.

- Figure 4.6: Monohull Hull Mass Data.
- Figure 4.7: Catamaran Hull Mass Data.
- Figure 4.8: Principal Components of Overall Machinery Mass.
- Figure 4.9: Diesel Engine Mass Data.
- Figure 4.10: Gas Turbine Mass Data.
- Figure 4.11: Water Jet Mass Data.
- Figure 4.12: Gearbox Mass Data.
- Figure 4.13: Deadweight Comparison.
- Figure 5.1: Diesel Engine Initial Cost Calculations.
- Figure 5.2: Gas Turbine Initial Cost Calculations.
- Figure 5.3: Water Jet Initial Cost Calculations.
- Figure 5.4: Gearbox Initial Cost Calculations.
- Figures 6.1: Comparison of Design Study A against Ship Data.
- Figures 6.2: Comparison of Design Study B against Ship Data.
- Figures 6.3: Comparison of Design Study C against Ship Data.
- Figures 6.4: Comparison of Design Study D against Ship Data.
- Figures 6.5: Comparison of Design Study E against Ship Data.
- Figures 6.6.a: Effect of Comfort Levels, Design Study G.
- Figures 6.6.b: Effect of Comfort Levels, Design Study G.

NOMENCLATURE AND UNITS

English Alphabet

A_P	Total passenger area (m ²)
As	Seating area (m ²)
A_{V}	Vehicle area (m ²)
В	Breadth (m)
b	Demihull breadth (m)
C _B	Block coefficient
C_{F}	Coefficient of frictional resistance (ITTC-57 Correlation line)
C _H	Hull costs (million US\$)
$C_{M/C}$	Monohull / Catamaran total building costs (million US\$)
C_{MA}	Machinery costs (million US\$)
Co	Outfit costs (million US\$)
C _R	Coefficient of residuary resistance $\left[R_R / 0.5 \rho A V^2\right]$
D_{OA}	Overall depth (m)
E _C	Equipment numeral for catamarans
E _M	Equipment numeral for monohulls
F_N	Froude number
L _{OA}	Length overall (m)
L_{WL}	Length on waterline (m)
N_{CAR}	Number of cars
N _{CREW}	Number of crew
N _{DECK}	Number of decks
N_{PAX}	Number of passengers
P_B	Installed power per propulsion unit (kW)
P_{I}	Total installed power (kW)
Ps	Total service power (kW)
R	Range (nautical miles)
R _n	Reynolds number (VL/v)
S	Separation of centrelines of demihulls (m)
SFC	Specific fuel consumption (kg/kW.h)
Т	Draught (m)
Vs	Service speed (knot)
W _D	Diesel engine weight (tonne)

)

Greek Alphabet

Δ	Displacement (tonne)
ν	Kinematic viscosity (m ² /s)
ρ	Density (assumed 1.025 t/m 3 for salt water)
∇	Displacement volume (m ³)

Abbreviations Used in the Computer Program & Examples of the Methodology

ABC	Approximate building cost (million US\$)		
AP	Total passenger area (m ²)		
AS	Seating area (m ²)		
AV	Vehicle area (m ²)		
В	Breadth (m)		
BC	Building cost (million US\$)		
BH	Demihull breadth (m)		
ВНОТ	B_H / T		
BOT	<i>B / T</i>		
СВ	Block coefficient		
CGB	Gearbox cost (million US\$)		
CH	Hull cost (million US\$)		
СМ	Total machinery cost (million US\$)		
CME	Main engine cost (million US\$)		
CO	Outfit cost (million US\$)		
СР	Propulsion cost (million US\$)		
CRM	Remaining machinery cost (million US\$)		
CWJ	Water jet cost (million US\$)		

D	Depth overall (m)
DIAM	Propeller diameter (m)
DISP1	$\Delta_1 = L_{wL} \times B \times T \times C_B \times \rho \text{ (for monohulls), } \Delta = 2 \times L_{wL} \times b \times T \times C_B \times \rho$
	(for catamarans) (tonne)
DISP2	$\Delta_2 = LS + DWT \text{ (tonne)}$
DW	Deadweight (WFL+WFW+WCR+WPAX+WVEH) (tonne)
EFF	Efficiency (η)
FN	Froude number
LB	$L_{wL} imes B$
LOA	Length overall (m)
LOB	L_{wL} / B
LOBH	L_{wL} / B_H
LOD	L / ∇^{γ_3}
LS	Lightship (WH+WM+WO) (tonne)
LWL	Length on waterline (m)
NCAR	Number of cars
NCREW	Number of crews
NDECK	Number of decks
NE	Number of engines
NPAX	Number of passengers
PD	Delivery power (kW)
PE	Effective power (kW)
PI	Installed power (kW)
R	Range of vessel (nautical miles)
RN	Reynolds number
RPM	Engine speed (rpm)
S	Separation of centrelines demihulls (m)
SFC	Specific fuel consumption (kg/kW h)
SOL	$S \neq L_{WL}$
Т	Draught (m)
VS	Service speed (knots)
WCAR	Car weight (tonne)
WCREW	Crew and effects weight (tonne)
WFUEL	Fuel weight (tonne)
WFWPROV	Fresh water and provisions weight (tonne)
WGB	Gearbox weight (tonne)

WH	Hull weight (tonne)
WM	Total machinery weight (tonne)
WME	Main engine weight (tonne)
WO	Outfit weight (tonne)
WP	Propulsor weight (tonne)
WPAX	Passenger and luggage weight (tonne)
WSA	Wet surface area (m ²)

ACKNOWLEDGEMENTS

Pursuing an MPhil at the University of Southampton has been a rich experience for me. Firstly. I thank the University of Southampton for creating this opportunity.

I would like to express my thanks and gratitude to my supervisor Dr Antony Molland for his invaluable guidance during this research and to the academic staff and research students in the School of Engineering Sciences.

I particularly thank Prof Philip Wilson for all his comments and support during the iterations on my thesis.

I have had great support and courage from my colleagues Mr Nicolas Choubry and Mr Simon Burnay, and also my manager Mr Gwynne Lewis.

I would also like to thank my very good friends Miss Araceli Arriaga, Miss Marion Meunier and Mr Serhat Demirtaş for sharing good and bad times with me.

Finally, I would like to thank my spouse Mr Michael Williams for putting up with my stress and nerves and never stop believing me and my parents, my brothers for their support throughout my study. This work would have not been possible without any of them.

1. INTRODUCTION

1.1 DEFINITION OF RESEARCH

High speed marine vessels include all those craft used for marine transportation requiring a high cruise speed. In recent years they have received huge attention due to owners increasing demands for achieving faster and more efficient vessels. Designers quest is therefore to obtain suitable innovative designs.

Figure 1.1: A Vehicle-Passenger Catamaran.

The ferry industry has, in the past few years, seen strong competition amongst builders and designers to obtain the best vessel for potential owners which has resulted in many different and varied designs, including hydrofoils, air cushion vehicles, and wing in ground effect craft. However, monohull and catamaran vessels still seem at present to be the most commercially effective.

The process of designing a vessel follows a series of iterations repeated a number of times until a final optimum design is achieved. The initial iterations could be termed the preliminary design of the vessel. From initial parameters defined by the owner, such as maximum payload, cruise speed, or others, the naval architect must determine dimensions for this new design, and develop from there the full design for a vessel. With the rapid increase in the use of high speed vessels it is apparent that there is a need for research in this area. As a result of these developments a research programme was initiated at the University of Southampton, aimed at addressing this subject and defining possible ways of arriving at rationalised solutions. Previous research, Karayannis [16], was concerned with preliminary technical ship design and decision making processes for high speed displacement vessels. The current work extends this study including the form of data, regressions and formulae that can be used for the initial design estimations of feasible monohull and catamaran high speed ferries.

Figure 1.2 illustrates the overall framework for the whole methodology of the technical design process in the current research programme. The dotted boxes represent issues to be addressed in the future (work ongoing as separate research programmes) out of the scope of this thesis.

Figure 1.2: Overall Framework Flowpath.

A general methodology for the derivation of dimensions is presented in the chapter 2. The attached source database contains a comprehensive number of fast ferries of current technology operating around the world, as well as proposed new designs. The main objective has been to develop an algorithm for the derivation of main dimensions, which will ensure reliable estimates of initial dimensions employed in the overall design of fast ferries.

The estimation of power is described in chapter 3. The proposed methodology provides reliable results for the initial development of feasible monohull and catamaran high-speed ferry designs as well as an estimation of machinery masses.

Chapter 4 describes in detail the estimation of masses. The approach has been based on a database generated from historical data as well as parametric hull estimates based on classification society rules for parent monohulls and catamarans. Machinery mass data has been assembled together with data for performing outfit mass estimates. These masses and the estimation of total mass are included as feedback in the dimensions algorithm in order to verify a balance of masses, or to modify the dimensions accordingly until a balance is achieved.

A detailed building cost estimation is presented in chapter 5. The chapter contains hull, outfit and machinery costs. Chapter 6 embraces parametric design studies and a discussion of the results whilst chapter 7 draws together conclusions and recommendations.

The generated design database is given in Appendix I.

The design methodology is integrated in a computer program, which contains the main components of the preliminary technical design of a high speed ferry. The program provides main dimensions, estimation of masses, powering and building costs for monohulls and catamarans. A more detailed description of the program is included in Appendix II.

1.2 LITERATURE REVIEW

1.2.1 Background

The principal objective of this work has been to establish a design methodology for high speed ferries. The overall research programme comprises developing a technical design framework for high speed ferries.

The approach has been to extend and build upon the earlier work of Karayannis [16]. In particular, this has entailed a fundamental examination and update of the section of the methodology dealing with estimation of dimensions of fast ferries, together with the establishment of an effective mass estimate. Improvements in the estimate of building costs have also been introduced. Other important contributing topics, such as seakeeping, are to be dealt with in separate but complimentary research programme. These developments have been achieved by means of various references and sources of information which are critically reviewed in the following paragraphs.

Overall, a technical design framework is established. It employes a flexible modular structure, allowing the quick generation of feasible designs which can then be compared using the decision making module for further study.

As high speed ferries are a relatively recent development, available systematic data and relevant design techniques are sparse. Most of the current major calculations are therefore performed using data and tools created within the Department of Ship Science, together with further modifications and updates. Currently, this allows the full investigation of the two most common hull configurations, namely monohulls and catamarans, which make up the majority of fast ferries. In the event that further data becomes available, other investigations could be conducted for different hull configurations using the same methodology. The following paragraphs review published material of particular relevance to the present study.

A description of a parametric design trade-off study and the results of a preliminary design for a 50 knots SES passenger car ferry is given by Joo et al [14]. The parametric analysis presented begins by determining the optimum dimensions and subsystems for an initial set of design requirements. A trade-off study is then conducted to evaluate the influence of changing the design requirements, including variations in design speed, sea state and operational range. Parameters investigated include ship length, ship beam, engine type, propulsor type and type of structural material. This particular study proves that rational designs could be developed for conditions up to sea state 5. Following the trade-off study, a set of final design requirements were established and ship dimensions were selected for further design development. The preliminary design for an SES passenger car ferry currently being developed and some leading particulars of this design were presented in the paper.

A similar approach has been used by Litai [18]. The author gives an introduction to the design, trial and operation of the "Hong Xiang" an SES ferry. Concept analysis and calculations are followed by a model test programme. Several technical features were adopted in the design.

Litai considers the design to be a success, and advocates the implementation of an air cushion catamaran in situations where conventional catamarans had previously been used. The benefits envisaged are those of improved seakeeping ability and economic results.

Kraus et al [17] present a basic cargo catamaran design. The design has been created by means of comparative studies of three chosen systems. Cost and freight rates are both comparative factors to determine the best system. The main dimensions and required freight rates for this vessel are calculated and compared with actual air freight and shipping rates on specific routes.

Trincas et al [28] focus on the analysis of passenger and car traffic moved by shortsea shipping connecting Greece to Italy, using an improved multi-criterial decision making methodology for concept design of fast monohulls. This paper is a useful reference for outfit mass data and should be considered in future analyses.

Trincas et al [29] use a similar design tool as that of Joo et al [14]. It deals with a concept development and feasibility study of a large catamaran designed for the fast sea transport of passengers and vehicles in the medium range Mediterranean routes, intended to be more profitable than present fast monohulls. The concept design was carried out by means of a multi-attribute decision-making procedure to generate and select the best possible solution. Two variants of the selected design, one assuming a gas turbine as a faster solution and the other one assuming a diesel engine for the slower alternative, were then submitted to a feasibility study. An economic trade off study was accomplished to compare the investment worth of the projected catamaran to the 'Aquastrada' fast monohull. It is stated that the feasibility study provides good economic results. As the previous reference, this paper is also a useful source of outfit mass data, and should be taken into account in future studies.

Warren et al [30] concentrate on the choice and installation of water jets from a ship designer's point of view. It is extremely useful to expand knowledge on water jets.

The classical, Watson et al [31], reviews the design methods presented in 1962. It extends the proposed changes in ship design, and suggests some further developments to them. It considers how the relationships between dimensions, the coefficients and quoted approximate formulae have changed and why. This classic early paper is noted mostly for the much used formulae and initial weight estimations for conventional displacement vessels. Although, it was originally developed for conventional vessels, with caution and suitable alterations this work can be adapted for fast vessels as will be shown throughout this work.

1.2.2 Technical Design Studies

1.2.2.1 Creation of Database

An initial database was created employing data obtained from an extensive literature search. The database, included in Appendix I, was generated by modifying and expanding an initial database from a previous research programme, Karayannis [16]. The vast majority of data on existing fast ferries and new constructions as well as proposed new designs was found in journals, mainly from the Fast Ferry International journal, but also Ship and Boat International and Naval Architect journals. Measurements, calculations and manipulation of the original data were required in order to derive sets of comparable vessel data suitable for the database.

A large number of high speed ferries are logged into the database. Most of them are already operating throughout the world, while some are at the stage of construction, or at least completed design. The vessels are divided into two major categories, passenger-only and vehicle-passenger carriers. A secondary distinction is made between monohulls and catamarans. Therefore four separate databases were created, namely for passenger-only monohulls (PM), passenger-only catamarans (PC), vehicle-passenger monohulls (VM) and vehicle-passenger catamarans (VC). It should also be noted that the database concerning catamarans also includes separately the other multihull types even though no algorithms have as yet been developed for them.

All relevant information was included in the databases, namely dimensions, weights, capacities, speed, range, propulsive installations, and other additional information. Furthermore, ratios were derived in order to be used in the design procedure. A significant factor was the availability or not of general arrangement plans since passenger and vehicle areas can have important influence in determining the size of each vessel. Therefore, for the vessels whose general arrangement plans were measured and ratios calculated.

The number of vessels in the database (also included in Appendix I) is adequate to allow reliable analysis of the relevant data. The significant features of the data are included in the thesis as tables or design equations.

1.2.2.2 Estimation of Dimensions

An introduction to alternative ways based on modern hull forms, to estimate main dimensions and coefficients in preliminary ship design for conventional ships is given by Guenther [2]. In this paper, the desired technical characteristics have been achieved with ships of greatly differing lengths. The length is determined from similar ships or from formulae and diagrams derived from a database of similar ships. The resulting length then provides the basis for finding the other main dimensions. Although the technique used in the paper is reasonably accurate, it is not suitable for research dealing with sparse data, such as the present one.

Karayannis et al [15] present systematic data and propose algorithms and formulae, which can be used for investigations of high speed ferry designs of monohull and catamaran configurations. These include initial estimations of technical aspects such as main areas and dimensions, and hull, machinery, outfit and total masses, as well as acquisition costs.

Molland et al [19] develop a global design model for the derivation of the technical and commercial attributes for monohulls and catamarans, together with the investigation of the potential of alternative decision making techniques and the implications of incorporating these into the overall concept exploration framework. Molland et al [20] describe the overall framework as well as details of the design modules and discuss the implications of applying different decision making techniques to select the more suitable vessel type and specification for a specific role.

1.2.2.3 Estimation of Masses

Cordano [5] gives a broad idea of the design criteria adopted in the development of the SES 500 – Fincantieri fast ferry. The author considers some special parameters for a technical selection and summarises these parameters as seakeeping with particular regard to the passenger comfort and transport efficiency. The paper contains costing estimations for construction and operation, and concludes with stating that the resulting design has an optimum size and high speed with a limited power and low operating cost.

Czimmek's [6] work is based on a conceptual design for a large surface effect ship (LSES), which was developed by Newport News Shipbuilding and Dry Dock Company (NNS) with the assistance of Marine Dynamics. Design optimisation and sensitivity studies were performed, using the NNS in-house surface effect ship optimisation program. In order to produce a viable design point, which could be evaluated for productivity and risk, computer-based parametric studies were performed with cushion length, cushion beam and cushion pressure as variables.

Both these last two papers contribute in expanding the understanding of the methodology in concept design.

7

1. Introduction

In Daidola [7], a standard for weight definition and an approach to weight control are presented for modern motor yachts and other craft. It includes a definition of weight and loading conditions for these vessels, which can be related to attainable vessel speeds. The weight control plan addresses concept though detail design, construction, delivery and service life. The author states that the procedure is adaptable to all types of hull structural material. The weight curves developed in this paper are obtained from the regression of vessel data. The paper presents a formal approach to weight control of craft of all types. The author states that, although it may seem a substantial and onerous system to apply to all craft designs, especially where little has been done before, in reality the concepts are few and the analysis and reporting efforts can be tailored to the needs of any project.

Fan et al [10] investigate the options available to the designer dealing with the structure of a high speed vessel, under the current regime of prescriptive classification regulations. Three different classification societies were selected for the investigation. Their conceptual approach to structural design is identified and compared, and detailed scantlings are derived using their rules for a representative fast catamaran. Based on these, a rudimentary comparison of the structural weight of a unit length of midship section is then presented. The paper concludes with a proposal for a new unified philosophy for the design of efficient high speed craft with consistent levels of safety. The feasible design studies from this paper have been included into the current study. The results were very useful when considering mass estimations.

Hughes [12] presents a strategy for achieving a first principles optimum structural design of a ship using modern computer-based tools, and demonstrates its feasibility with a large monohull fast ferry. The paper has two major goals; first of all to present a strategy for achieving a first principles optimum structural design of a ship (especially a high performance ship) using modern computer-based tools and second, to demonstrate the strategy for a large (100 m, 1000 t) monohull fast ferry, first using all aluminium and then adapting the design to be all composite. Two designs are produced with the 'Maestro' program, which is capable of performing optimisation based on trade-off of cost and weight. This particular reference demonstrates how computer-based design tools and a first principles approach can be used to obtain an optimum structural design of a high performance ship such as a fast ferry, and how these tools are evolving to handle composites as well as metals.

The previous research carried out at the University of Southampton, in the Department of Ship Science for preliminary technical fast ferry design and decision making process provides the major basis for the present research programme. Karayannis et al [15, 16, 19, 20] contain the

8

most useful information in estimation of masses as well as derivation of dimensions. These sources will be mentioned throughout the thesis where necessary.

In Sainz [23], a tool is developed to determine the components of a structural design, and a mass estimate, using the newly created Lloyd's register 'Special Craft' software. The estimations have been carried out only for monohulls and catamarans. This particular reference is a major source of hull mass estimation calculations, and uses a design tool similar to that of Fan et al [10] and Watson et al [31].

Vrontorinakis [29] assesses diesel engines and gas turbines rated for the propulsion of fast ferries though the use of nineteen common operating parameters. Their technical attributes are compared with each other in four power ranges, and in multiple installations specifically for chosen catamarans and monohulls. Elements of propulsors (water jets) are also generally discussed, and the matching requirements are investigated for all cases. It is, in general, an important reference of machinery mass and cost data.

Wood et al [32] provide a major contribution to the database generated in the current research programme, as it contains existing ship data for mass estimation and mass balance calculations. It discusses some of the design issues including the IMO High Speed Craft Code, classification and problems encountered when the British-designed 318 passenger, 45 knot TRICAT ferry was adapted for construction and operation in the United States. The paper also describes some of the design issues involved in implementing the high speed craft within the framework of passenger ferries under 100 GT, including lowering the tonnage to be less then 100 GT, the use of Det Norske Veritas for classification plan approval, and the use of US suppliers of materials and equipment.

1.2.2.4 Estimation of Powering

In the earlier stages of the research programme, Karayannis [16], the calculation of calm water resistance was performed using existing standard series data. The module included data from the NPL Series Bailey [1], Series 64 Yeh [34] and Southampton Extended NPL Molland et al [22] in monohull mode. A new catamaran mode was implemented including Series 64 and Molland et al [21]. Molland includes the catamaran series tested at Southampton, one of the most comprehensive sets of data available. The extension of the analysis to include catamarans, offers a wider range of block coefficients and higher $L/\nabla^{1/3}$ ratios. Detailed information about these particular sources of information is given in the following paragraphs.

A series of high speed monohull model hulls of round bilge shape designed for operation in the Froude number range, F_N =0.3-1.2 was tested at NPL Bailey [1]. The monograph presents data that can be used at the early design stages of marine vessels such as heavily loaded workboats, fast patrol craft and small naval ships. Resistance and source limited propulsion data are presented in a simple form enabling predictions to be made of the calm water speed and power requirements for a given design, a worked example is appended to illustrate the process. Stability underway, manoeuvring and seakeeping characteristics are discussed in the light model test results obtained from a representative selection of designs based on the series.

Yeh [34] reports the results of the hull resistance tests of Series 64 models. After preliminary investigation, 27 models of conventional round bilge hull forms were designed, constructed, and tested at the David Taylor Model Basin to gain information for a wide range of length-displacement ratios and speed-length ratio.

In Insel et al [13], a wide range of hull separations was tested and, overall, the experiments covered over 40 model configurations, each over a speed range up to a Froude Number of unity. Molland et al [22] extended the parametric investigation to cover changes in Breadth/Draught ratio (B/T) and a wider range of Length/Displacement ratios $(L/\nabla^{1/3})$.

Molland et al [22] summarizes an experimental investigation into the resistance components in calm water of high speed displacement catamarans with symmetric demihulls. The experimental programme was a development and extension of an earlier work in which a small series of three catamaran models were tested. Total resistance, running trim, sinkage and wave pattern analysis based on multiple longitudinal cut techniques were carried out for ten round bilge hulls derived from the NPL series. The tests were conducted over a Froude number range of 0.2 to 0.1 and separation to length ratios of 0.2, 0.3, 0.4, 0.5 and infinity. The results of the investigation provide a better understanding of the components of catamaran resistance including the influence of hull separation, length-displacement ratio and length-beam ratio over a wide range of Froude numbers.

These two main references on the resistance of high speed displacement catamarans have been used by Buckland [3] to provide data for the NPL and Series 64 round bilge series is an alternative form, using interference factors. Using the references as the sources of data, Buckland produced a rationalised resistance estimate procedure for both catamaran and monohull configurations to be utilized at the preliminary design stage. This procedure has been applied in the current work using the NPL Series for illustration.

Molland et al [21] describe further model tests on a catamaran in calm water with a hull form based on Series 64 round bilge hull form. The model was tested in monohull form and at two hull separations in catamaran configuration, in each case over a speed range up to a Froude number of unity. The information collected and represented in the report contributes to a further understanding of resistance of catamarans and provides resistance data for practical use at the preliminary design stage. The investigation provides an extension to the available resistance data for this vessel type, and the results are broadly similar to those for other round bilge forms. The catamaran/monohull resistance interference factors are also similar to other forms. This offers the potential for the development of general interference factors, which would not have a significant dependence on the particular hull shape.

To summarize, Bailey [1], Yeh [34], Molland et al [21] and [22] provide a wide range of data for round bilge monohulls and catamarans and provide the basis for the powering estimates in the current research programme.

Guenther [11] describes preferred prime mover choices for high speed marine transportation. It also gives details about compact high speed diesel engines and aero-derived gas turbines.

Svensson [24] and [25] provides information on water jets, and the advantages and disadvantages when selecting water jets as propulsors.

1.2.3 Costs Studies

The building cost of a ship is a function of several variable types such as technical, physical, managerial, financial, political and temporal. Its complete estimation calls for inputs from a range of disciplines. From the size of the vessel (L, B, D, T and C_B) and speed, V, the designer can estimate service propulsive power, P, and a first estimate of light displacement, consisting of separate values of steel, outfit and machinery weights. This stage is reached in the normal course of the early design procedure. At this point, given an indication of current labour and material costs, a preliminary costing can be achieved, as will be shown later. The reasons for costing at this early stage are to get an idea of the capital investment involved and to see how the cost might be affected by altering any of the principle variables, when the design is still sufficiently flexible.

The current research reported in this thesis involves costing at the building cost stage. Most of the calculations have been carried out by use of the methodology and data mentioned earlier. Other relevant references for the calculation of building costs are critically reviewed next.

Caryette [4] is a classical and much quoted work, which proposes a method for assessing the approximate capital cost of merchant ships at the very early stages of design. It is intended as a guide to ship designers and others who may wish to know the ship building cost at the beginning of a new project, and how it changes with alterations to principal design variables such as dimensions, weights, powering or carrying capacity. The outcome of the paper was to show that, there is an equation suitable for a wide range of merchant ship types, large or small, fast or slow. The author shows that the dimensions and weights largely determine the steelwork and outfit costs, and powering governs the machinery cost. The method described in this paper has been applied to merchant ships, but its philosophy can be expanded, and its costs adjusted and updated to suit fast ships, or any large marine structure.

Vrontorinakis [29] assesses diesel engines and gas turbines suitable for the propulsion of fast ferries though the use of 19 common operating parameters. Their technical attributes (power, mass, cost, etc.) are compared with each other in four power ranges, and in multiple installations specifically for chosen catamarans and monohulls. Elements of propulsors (water jets) are also generally discussed, and the matching requirements are investigated for all cases. The prime movers are utilized in their speed groups 35, 40 and 47 knots, which include a catamaran and a monohull each. Alternative engine installations are assessed technically, for the specific group requirements, and economically for a ten year period. Both average annual cost and net present value methods are used to choose the best installation for each ship. The thesis concludes by giving information about the advantages and disadvantages of the prime movers, as well as of the alternative engine installations for the catamarans and monohulls. Wright [33] describes the various types of high speed craft (air supported, foil supported, displacement hull, planing hull), and analyzes their suitability for certain passenger routes in different operating environments. The author also compares the transport and commercial efficiencies of a number of existing craft of mixed sizes and services. It concludes with a discussion on the economics of high speed craft service and the many factors that bear upon optimum craft selection for a particular route and operating environment.

1.2.4 General Discussion

A survey of relevant literature on the fields related to this research programme has been critically reviewed. This includes references on the various aspects of design, particularly in the conceptual and preliminary stages.

High speed ferries require a specialised approach to their concept design. This is due to a number of special characteristics these craft possess, mainly; the wide variety of hull configurations and types available for high speed ferry services and the subjective nature of passenger requirements which can affect the commercial potential of high speed ferries.

There is a lack of available historic data or systematic data as well as design tools and techniques for high speed ferries. Existing published data and tools for conventional vessels cannot be directly applied to high speed ferries since they possess distinct characteristics such as lightweight construction materials and different economic parameters. These vessels represent a relatively recent development. There is therefore scope for a systematic design methodology for high speed ferries. The methodology must be both robust and flexible in order to cope with this relatively recent but rapidly developing vessel category.

2. DIMENSIONS

2.1 BACKGROUND

The first step in the ship design process generally entails the calculation of an initial set of main dimensions. Main dimensions can have significant effects on major design aspects of the vessel, such as masses, powering and costs. Determining these main dimensions and ratios is therefore particularly important for the overall design. Historic data provide the starting point in their estimation process. Once a set of these dimensions has been selected it may then be modified if basic aspects such as masses are not adequate.

The main parameter influencing the initial set of main dimensions is the capacity of the vessel. This is obvious since carrying capacity directly affects the overall size of any ship. The use of this main parameter is also desirable from a practical point of view as it is, probably together with speed and range, the more likely basic requirement of a shipowner or an operator.

Karayannis's [16] study revealed that passenger and vehicle capacities seem to be the only parameters influencing the derivation of an initial set of main dimensions. Froude number, as a function of speed, did not show any significant correlation with the main hull ratios, such as L/B, B/T or $L/\nabla^{1/3}$. This can be clearly seen by the data plots of L/B against Froude number in Figures 2.1 and 2.2. The effect of speed on hull coefficients and ratios is therefore not included in the first estimate of dimensions although it is included indirectly in the power estimate and mass balance.

Further analysis of the database made it clear that an area based approach should be applied for the estimation of an initial set of main dimensions, Karayannis [16]. The effect of cargo capacity on main dimensions of the vessel that can be seen in Figures 2.3 to 2.6 follows this approach. All these figures are dealt with in sections 2.1.1 and 2.1.2. An overall description of the approach is described in section 2.2.

Karayannis's method for deriving an initial set of main dimensions was modified to incorporate the estimation of an initial depth (D), which, as will be seen later, increased the accuracy of the preliminary mass calculations. New modified estimated dimensions can then used to calculate an initial lightship and deadweight for passenger-only monohulls, passenger-only catamarans, vehicle-passenger monohulls and vehicle-passenger catamarans. As stated earlier, a database including a reasonable number of high speed ferries had been created from the analysis of historic data. The database was modified and extended (around 40%) during the current study. Detailed explanation about the database can be found in Appendix I. The new database coefficient ranges are given in Table 2.1.

2.1.1 Passenger-Only Monohulls and Catamarans Database

The parameters employed during the derivation of initial main dimensions are related to the cargo capacity of the vessels. As mentioned earlier, the estimation method is based on a cargo area based approach. The parameters corresponding to passenger monohulls and catamarans are seating area (As), passenger number (Np), passenger area (Ap) and L_{wL} ×B. The following part of this section explains the use of these parameters and how are they included into the study.

As/Np coefficient determines the level of accommodation quality in terms of area provided to passengers. Figures 2.3.a and 2.4.a display the correlation between seating area (As) and number of passengers (Np) for passenger-only monohulls and catamarans respectively. In the database, this coefficient ranges between As/Np=0.55 to 0.75 for passenger-only monohulls, and As/Np=0.55 to 0.85 for passenger-only catamarans. This is shown in the figures by including the linear As/Np=0.55, 0.65 and 0.75 trend lines for passenger-only monohulls and As/Np=0.55, 0.70 and 0.85 trend lines for passenger-only catamarans.

The As/Np range is not the same for passenger catamarans and monohulls. The difference could show that the quality of accommodation on passenger catamarans might be higher than on passenger monohulls. This could be caused by fare prices, journey range, or the frequency of use by certain group of passengers.

The coefficient Ap/As allows the designer to select the desired amount of additional spaces used by passengers. The correlation between seating area (As) and total passenger area (Ap) for passenger-only monohulls and catamarans is included in Figures 2.3.b and 2.4.b respectively. This coefficient varies between Ap/As=1.1 and 1.3 for both passenger-only monohulls and catamarans. This is reflected in the linear Ap/As=1.1, 1.2 and 1.3 trend lines.

Figures 2.3.c and 2.4.c illustrate the relationship between $L_{wL} \times B$ and total passenger area (Ap) for both passenger-only monohulls and catamarans. The obtained regression equations 2.1, 2.2 give a very good correlation between prediction and response (in most cases R²>0.9). The value R² representing the reliability of the trend line, R²=1 indicating a perfect correlation.

This means that the algorithm is reliable and its outcome can be trusted as a good initial set of dimensions for the current method of estimating mass, hence high values of R^2 are indication of a good fit to data for the equation.

The regression for passenger-only monohulls is given as follows.

$$L_{WL} \times B = 146 + 1.86 \cdot 10^{-3} \cdot A_P^2 \qquad R^2 = 0.99$$
 2.1

Whereas the regression for passenger-only catamarans is,

$$L_{WI} \times B = 138 + 0.910 \cdot A_P$$
 $R^2 = 0.76$ 2.2

The design algorithm is covered in section 2.2.

2.1.2 Vehicle-Passenger Monohulls and Catamarans Database

The design parameters for vehicle-passenger monohulls and catamarans are seating area (As), passenger number (Np), passenger area (Ap), vehicle number (Nv), vehicle area (Av) and product $L_{wL} \times B$.

Figures 2.5.a and 2.6.a display correlation between number of passengers (Np) and seating area (As) for vehicle-passenger monohulls and catamarans respectively. This part of the database data ranges between As/Np=0.9 to 1.3 for both vehicle-passenger monohulls and catamarans. This is shown in the figures by including the linear As/Np=0.9, 1.1 and 1.3 trend lines.

The variation of Ap/As coefficient is shown in Figures 2.5.b and 2.6.b for vehicle-passenger monohulls and catamarans. It varies between Ap/As=1.1 to 1.5 for both vehicle-passenger monohulls and catamarans. This is again shown in the figures with the linear Ap/As=1.1, 1.3 and 1.5 trend lines.

Figures 2.5.c and 2.6.c display the correlation between number of vehicles (Nv) and vehicle area (Av) for vehicle-passenger monohulls and catamarans respectively. $L_{wL}xB$ is then estimated as a function of total passenger and vehicle areas (Ap and Av). The regressions give again a very good correlation between predictor and response (in most cases R²>0.9). The algorithm is therefore reliable enough so as to be used in the mass estimation.

Regression equations for vehicle-passenger monohulls are as follows.

$$A_V = 156 + 10.2 \cdot N_V \qquad \qquad R^2 = 0.92 \qquad \qquad 2.3$$

$$L_{WL} \times B = 121 + 0.27 \cdot A_P + 0.60 \cdot A_V$$
 $R^2 = 0.98$ 2.4

The corresponding equations for vehicle-passenger catamarans are given as.

$$A_{\rm v} = 12.4 \cdot N_{\rm v} \qquad \qquad R^2 = 0.99 \qquad \qquad 2.5$$

$$L_{WL} \times B = 471 + 0.55 \cdot A_P + 0.28 \cdot A_V \qquad R^2 = 0.80 \qquad 2.6$$

The design of the algorithm is explained in section 2.2.

Calculations have been carried out for passenger-only monohulls, passenger-only catamarans, vehicle-passenger monohulls and vehicle-passenger catamarans. The forms of the formulae are the same for each vessel, while the numerical factors vary. The derived formulae and data limits are given in Table 2.2. The table also displays database ranges of main design ratios and particulars of the vessels. These are as follows;

- Separation of centrelines of demihulls, length ratio (S/L)
- Length displacement ratio $(L/\nabla^{1/3})$
- Breadth, draught ratio (B/T)
- Demihull breadth, draught ratio (b/L)
- Block coefficient (C_B)
- Length overall, length waterline ratio (L_{OA}/L_{WL}) .

Table 2.2 also displays the overall depth values for monohulls and catamarans. Estimation of depth is explained in section 2.2.

2.2 ESTIMATION OF MAIN DIMENSIONS

Two design flowpaths were created by Karayannis [20], which illustrated the area-based approach. A new improved version is shown in Figures 2.7.a and 2.7.b, where a mass balance is now included within the procedure for the derivation of dimensions.

In these flowcharts, the number of passengers (Np) and vehicles (Nv) are the inputs. Seating area (A_S) is calculated as a function of passenger number (N_P), but variations are possible within reasonable limits dictated by the existing data, allowing the designer to select the desired level of seating comfort. In the same way, variations are possible for the passenger-seating area ratio (A_P/A_S) used for the calculation of passenger area (A_P).

A three-stage calculation $(N_P \rightarrow A_S \rightarrow A_P \rightarrow L_{WL} \times B)$ was preferred by Karayannis as it allowed more freedom in providing the vessel with the desired level of accommodation quality, in terms of areas provided to passengers. Instead of the three stage procedure used here, a twostage $(N_P \rightarrow A_P \rightarrow L_{WL} \times B)$ or even one stage process $(N_P \rightarrow L_{WL} \times B)$ could have been applied. This would make the algorithm much simpler, but would not allow for variations from the default areas.

2.2.1 Passenger-only and Vehicle-Passenger Monohulls

To obtain a solution for L and B, suitable first estimates of the L/B ratio and L×B product are input.

L/B is based on hull hydrostatic and hydrodynamic requirements and assumptions for L/ $\nabla^{1/3}$, C_B and B/T;

$$\frac{L}{B} = \left[\left(\frac{L}{\nabla^{\frac{1}{3}}} \right)^3 \times C_B \times \frac{T}{B} \right]^{\frac{1}{2}}$$
 2.7

LxB is a function of required passenger and vehicle areas;

$$L \times B = f(A_P, A_V), \qquad 2.8$$

where $A_{S} = f(N_{PAX})$, $A_{P} = f(A_{S})$ and $A_{V} = f(N_{CAR})$.

Suitable forms of equations 2-7 and 2-8, as well as ranges of the design parameters, can be derived from the data presented in Table 2.2. From this a solution for both length and displacement can be determined as follows;

$$L = \left[\left(L \times B \right) \times \left(\frac{L}{B} \right) \right]^{\frac{1}{2}}$$
 2.9

B can be determined from L/B, and T from B/T,

$$\Delta = L_{WL} \times B \times T \times C_B \times \rho \tag{2.10}$$

2.2.2 Passenger-only and Vehicle-Passenger Catamarans

In the case of catamarans, instead of the overall beam (B) for the initial calculations, the demihull beam (b) has been used. The separation of the demihull centrelines (S) is used as an additional parameter in the form of an S/L ratio, varied within the range dictated by the data in the database. Overall beam is then simply derived as B = S + b. For catamarans, L/B is derived as;

$$\frac{L}{B} = 1/\left[\frac{S}{L} + \frac{b}{L}\right]$$
 2.11

L/b is then derived as;

$$\frac{L}{b} = \left[\left(\frac{L}{\nabla^{\frac{1}{3}}} \right)^3 \times C_B \times \frac{T}{b} \right]^{\frac{1}{2}}$$
 2.12

In this case displacement volume (∇) refers to one of the hulls, and the catamaran displacement then becomes;

$$\Delta = 2 \times L_{WL} \times b \times T \times C_B \times \rho \tag{2.13}$$

From the equations and database, an initial set of main dimensions of the vessel and the other parameters can be established using mid-range values in Table 2.2 as starting points.

Depth is an important parameter for hull mass estimates and stability calculations, although it has no significance for hydrodynamic performance calculations. In the current work, overall depth, D_{OA} , (including the superstructure) is calculated as a function of B, by using the available data in the database. This study is explained in section 2.3. It should be emphasised

that the overall depth D_{OA} is an approximate value used primarily in the equipment numeral for hull and superstructure mass estimates.

As discussed earlier, the principal hull parameters did not show any reliable trends with speed. Thus, the initial estimate of dimensions is based only on passenger and vehicle requirements. This does create an anomaly in the design procedure in that, for example, a change in speed for a particular design, whilst retaining the same passenger and vehicle requirements, results in a change in propulsive power and machinery mass and hence overall mass balance. This problem is overcome by incorporating a mass balance directly within the procedure for the derivation of dimensions as shown in Figures 2.7.a and 2.7.b.

In the design path, Figures 2.7.a and 2.7.b, suitable values for $L/\nabla^{1/3}$, C_B and B/T are chosen and introduced into equation 2-7. These may then be modified in further design iterations in order to achieve a satisfactory balance of masses. There are several ways in which the parameters may be modified, but an approach which has been found to be efficient and satisfactory is to retain overall constancy of L/B, hence constant L (from equation 2-9), which results in constancy of equation 2-7. Hence for constant L/B, combinations of $L/\nabla^{1/3}$, C_B and B/T within equation 2-7 may be chosen depending on any other design constraints. For example, for fixed ∇ and $L/\nabla^{1/3}$, C_B and B/T can be increased to retain constant ∇ . Allowing a change in ∇ , C_B and $L/\nabla^{1/3}$ may be changed with B/T constant, or B/T and $L/\nabla^{1/3}$ changed with C_B constant or suitable changes to both B/T and C_B . The procedure for catamarans is similar, but using equations 2-11, 2-12 and 2-13. These procedures are demonstrated later in chapter 6 by comparing similar vessel requirements but at different speeds. Details of the mass estimates are given in chapter 4.

The dimension module has been developed to a reliable level. It must be kept in mind, however, that as the method is based on data from existing vessels it may not be safe to use outside the limits of the database, as extrapolations may not be reliable.

The database can be constantly updated and expanded, as new vessels are added to it. This would enhance the strength of the database and, in consequence, that of the method.

2.3 ESTIMATION OF DEPTH

Length, beam, draught and depth are the four main ship dimensions. The existing method was not capable of finding all of them. Only three of these main parameters were obtained, namely length, beam and draught. To complete the estimation of these four main dimensions, a study

carried out for the calculation of an initial depth. Depth is crucial for the derivation of hull mass estimation. A fast ferry's structure is made up of a combination of hull and superstructure. As opposed to conventional cargo ships, the superstructure of a fast ferry takes a big part from the whole structure of the vessel. Depth is therefore a main requirement in the hull mass estimation process. The estimation of hull mass is explained in more detail in section 4.1. In this section the duty of depth is clearer.

Depth has been correlated with overall length, overall beam and draught using data available from the database. Each correlation is repeated for catamarans and monohulls individually. The plots for monohulls are shown in Figures 2.8.a, 2.8.b and 2.8.c, and the plots for catamarans are Figures 2.9.a, 2.9.b and 2.9.c.

Since a fast ferry's superstructure takes the biggest part of the vessel and is built as part of the hull, the overall depth is taken as the height between keel and the highest point of the superstructure. This is illustrated in Figure 10.

From the correlations, the good linear relationship between overall depth and overall beam for both monohulls and catamarans was evident as Figures 2.8.b and 2.9.b show. The plot between overall depth and draught and overall length however, did not show a very good correlation. The data plots look very sparse.

Two equations were obtained from Figures 2.8.b and 2.9.b for monohulls and catamarans as follows;

$$D_{OA} = 4 + 0.6 \cdot B_{OA} \text{ for monohulls}$$

$$D_{OA} = 4 + 0.44 \cdot B_{OA} \text{ for catamarans}$$
2.14
2.15

Predicted results have been obtained from the above regression equations and have then been compared with actual ship depths included in the database. This study was undertaken to test the accuracy of the predicted results against actual data. The predicted results and actual data plots are shown in Figures 2.11.a and 2.11.b for monohulls and catamarans respectively.

A computer program written in FORTRAN has been developed to include all these main components of the concept design of fast ferries, for passenger monohulls, passenger catamarans, vehicle monohulls and vehicle catamarans. More detailed information about this program is given in Appendix II.

Vessel Type	N _P	Nv	Vs (kn)
Passenger-only Monohull	49-925	-	24-60
Passenger-only Catamaran	50-650	-	25-45
Vehicle-Passenger Monohull	400-1800	<450	28-45
Vehicle-Passenger Catamaran	150-1500	<450	28-43

 Table 2.1: High Speed Ferry Database Range.

Itom	Passenger-only	Passenger-only	Vehicle-Passenger	Vehicle-Passenger
Item	Monohulls	Catamarans	Monohulls	Catamarans
LxB	$146+1.86 \times 10^{-3} A_{P}^{2}$	138+0.91A _P	121+0.27A _P +0.60A _V	471+0.55A _P +0.28A _V
A _S /N _P	0.55-0.75	0.55-0.85	0.85-1.25	0.80-1.40
A _P /A _S	1.10-1.30	1.10-1.30	1.15-1.45	1.30-1.70
A _V	-	-	$156+10.2N_{V}$	$12.4N_{V}$
S/L	_	0.20-0.25	-	0.20-0.25
$L/\nabla^{1/3}$	5.0-7.5	8.0-10.5	6.5-9.0	8.5-11.0
majority	5.5-6.5	8.5-9.5	7.0-8.5	9.5-10.5
B/T	3.5-8.5	-	3.5-7.5	-
Majority	4.0-6.5	-	4.5-6.5	-
b/T	-	1.5-3.0	-	1.5-3.0
D _{OA}	4+0.6B	4+0.44B	4+0.6B	4+0.44B
C _B	0.35-0.45	0.40-0.55	0.35-0.45	0.40-0.55
L _{OA} /L _{WL}	1.13-1.15	1.13-1.15	1.13-1.15	1.13-1.15

 Table 2.2: Design Equations and Range of Parameters for Derivation of Dimensions.

Figure 2.1.a: Relation between Fn and L/B for Passenger-Only Monohulls.

Figure 2.1.b: Relation between Fn and L/B for Passenger-Only Catamarans.

Figure 2.2.a: Relation Between Fn and L/B for Vehicle-Passenger Monohulls.

Figure 2.2.b: Relation between Fn and L/B for Vehicle-Passenger Catamarans.

Figure 2.3.a: Data Plots of Dimensions for Passenger-Only Monohulls.

Figure 2.3.b: Data Plots of Dimensions for Passenger-Only Monohulls.

Figure 2.3.c: Data Plots of Dimensions for Passenger-Only Monohulls.

Figure 2.4.a: Data Plots of Dimensions for Passenger-Only Catamarans.

Figure 2.4.b: Data Plots of Dimensions for Passenger-Only Catamarans.

Figure 2.4.c: Data Plots of Dimensions for Passenger-Only Catamarans.

Figure 2.5.a: Data Plots of Dimensions for Vehicle-Passenger Monohulls.

Figure 2.5.b: Data Plots of Dimensions for Vehicle-Passenger Monohulls.

Figure 2.5.c: Data Plots of Dimensions for Vehicle-Passenger Monohulls.

Figure 2.6.a: Data Plots of Dimensions for Vehicle-Passenger Catamarans.

Figure 2.6.b: Data Plots of Dimensions for Vehicle-Passenger Catamarans.

Figure 2.6.c: Data Plots of Dimensions for Vehicle-Passenger Catamarans.

Figure 2.7.a: Flowpath for Initial Estimation of Main Dimensions for Monohulls.

Figure 2.7.b: Flowpath for Initial Estimation of Main Dimensions for Catamarans.

Figure 2.8.a: The Correlation Between Overall Depth and Draught for Monohulls.

Figure 2.8.b: The Correlation Between Overall Depth and Breadth for Monohulls.

Figure 2.8.c: The Correlation Between Overall Depth and Overall Length for Monohulls.

Figure 2.9.a: The Correlation Between Overall Depth and Draught for Catamarans.

Figure 2.9.b: The Correlation Between Overall Depth and Overall Breadth for Catamarans.

Figure 2.9.c: The Correlation Between Overall Depth and Overall Length for Catamarans.

Figure 2.10: Definition of Depth for Catamarans and Monohulls for the Current Study.

Figure 2.11.a: The Comparison Between Predicted and Existing Depth Data for Monohulls.

Figure 2.11.b: The Comparison Between Predicted and Existing Depth Data for Catamarans.

3. POWERING

3.1 GENERAL

A reliable power estimate is important in order to provide an estimation of machinery and fuel masses. A reliable database is also essential for carrying out powering estimates but unfortunately information is relatively limited, particularly in the higher speed range. To find suitable data for high speed monohull displacement crafts and multihulls some previous studies have been looked into. These are as follows:

Monohull mode; The NPL Series Bailey [1], Series 64 Yeh [34] and the Southampton Extended NPL Series Molland et al [22]. These collectively provide a good coverage of parameters for powering estimates and they also offer the facility to investigate a reasonable range of fast monohull ferries.

Multihull mode; Systematic resistance data for multihulls is more limited. The catamaran series tested at Southampton Molland et al [22] offers at present one of the most extensive sets of data, and provides a good basis for resistance estimates.

The current work's interest is the estimation of an initial set of main dimensions, masses and costs. The estimation of an initial set of main dimensions was dealt with in the previous chapter. This chapter deals with the estimation of initial power. Information on initial power is fundamental to obtain machinery and fuel masses. Presented databases help in providing an initial power. Presentation of data and the procedure behind this estimation is given in sections 3.2, 3.3 and 3.4.

3.2 PRESENTATION OF DATA

Work on the resistance of high speed displacement monohulls and catamarans has been ongoing over a number of years at the University of Southampton, Insel et al [13] and Molland et al [22], in an effort to improve the understanding of their resistance components and to provide design data.

Molland et al [22] describes a large series of model tests on catamarans in calm water. The experimental programme was a development of the earlier work Insel et al [13] in which a small series of three catamaran models were tested. In Molland et al [22], total resistance, running trim, sinkage and wave pattern analyses were carried out for ten round bilge hull

derived from the NPL Series. The tests were conducted over a Froude Number range of 0.1 to 1.0 and corresponding Reynolds number (R_N) range for the models 0.5×10^6 to 5.5×10^6 with separation to length ratios of 0.2, 0.3, 0.4, 0.5 and infinity.

In an earlier work, Insel et al [13] tested a wide range of hull separations. Overall, the experiments covered over 40 model configurations, each over a speed range up to a Froude Number of unity. Molland et al [22] has extended the parametric investigation to cover changes in breadth/draught ratio (B/T) and a wider range of length/displacement ratios ($L/\nabla^{1/3}$).

These two main works on the resistance of high speed displacement catamarans have been used by Buckland [3] to provide data for the NPL and Series 64 round bilge series is an alternative form, using interference factors. Using these references as the sources of data, Buckland produced a rationalised resistance estimate procedure for both catamaran and monohull configurations to utilize at the preliminary design stage. This procedure has been applied in the current work using the NPL Series for illustration as described in the next section.

3.3 CALM WATER RESISTANCE

The basic presentation of the experimental data from Molland et al [22] was as follows:

$$C_{T_{cal}} = (1 + \beta k)C_F + \tau C_W$$
3-1

where;

 C_F is obtained from the ITTC-1957 correlation line.

 C_w is the wave resistance coefficient for the demihull in isolation.

(1+k) is the form factor for the demihull in isolation.

 β is a viscous interference factor.

au is the wave resistance interference factor.

It is noted that for the demihull in isolation, $\beta = 1$ and $\tau = 1$.

Form factors (1+k) for monohulls and form factors for catamarans including viscous interference (1+ β k) were obtained by deducting the wave pattern resistance from total resistance Insel et al [13] and Molland et al [22]. Various research programmes have been carried out in order to provide guidance as to the selection of a suitable form factor. Due mainly to the lack of definitive values of form factors for high speed displacement craft, the 22nd ITTC in September 1999, recommended the use of (1+k)=1.0 and (1+ β k)=1.0 for such

craft Buckland [3]. Buckland [3] and Molland et al [19] state that for practical application, suitable values of form factor can be used. They also mention that these values may be adequately reliable for preliminary estimates of power at the early design stage. These form factor values are summarised in Table 3.1, and depend only on length-displacement ratio $(L/\nabla^{1/3})$, and are independent of hull separation S/L.

From a practical point of view it is not necessary to confine the user to the particular values of (1+k) or $(1+\beta k)$ proposed in Table 3.1. These factors may not necessarily be used directly for design or resistance scaling purposes, but they do provide a broad indication of changes in viscous resistance and viscous interference due to changes in Length/Displacement $(L/\nabla^{1/3})$. Thus they have been applied by the current work.

Buckland [3] took residuary resistance coefficients C_R (derived from $C_T - C_{F_{TTTC}}$) from Insel et al [13] and Molland et al [22]. He then evaluated the relationship between residuary resistance and each design parameter. The effects of each design parameter on C_R are given in Table 3.2.

The relationship between C_R and $L/\nabla^{1/3}$ is sufficiently predictable to form a basis for regression between $F_N=0.4$ -1.0. Therefore the data is only regressed between $F_N=0.4$ -1.0. It is made sure that for the current work the range of F_N is between 0.4-1.0. This range is 0.6,0.8 and 1.0 as can be seen in Table 3.3.

The effects of B/T and C_P on C_R have been found to be small in this F_N range, and therefore have not been considered as regression parameters. Buckland [3] has also shown that the effect of S/L on C_R is as significant as a change in $L/\nabla^{1/3}$ ratio, and has been used as a regression parameter. Therefore the regression has been performed at each value of S/L for the catamaran configuration. It should be mentioned that the current work uses the regressions for the NPL Series data and thus will only be directly applicable to these hull forms.

Table 3.3 shows the result of the regression for calculation of C_R in terms of $L/\nabla^{1/3}$ and S/L along with the R^2 value for each trendline fit. The trendline fits can be found in Buckland [3]. This value indicates how well the regression model fits the observed data, and it is seen that good fits are achieved in all but the high speed, low S/L data.

For a chosen speed, an estimate of ship total resistance coefficient can be made using the following relationships. These estimation relationships have been employed in the current study by introducing them into a computer program. The program results in an initial power value for a chosen speed. It is further explained in Appendix II.

For monohulls:

$$C_{T_{ship}} = C_{F_{ship}} + C_{R_{mod,el}} - k \left(C_{F_{mod,el}} - C_{F_{ship}} \right),$$
3-2

and for catamarans:

$$C_{T_{ship}} = C_{F_{ship}} + C_{R_{mod el}} - k\beta (C_{F_{mod el}} - C_{F_{ship}}).$$
3-3

These are based on the assumption that:

$$C_T = C_F + C_R$$
, or $C_T = (1+k) \times C_F + C_W$. 3-4

Model C_F has to be known to use these equations. Based on the model length of 1.6 m for models in Insel et al [13] and Molland [22], a kinematic viscosity for fresh water of 1.14×10^{-6} and using the ITTC correlation line, C_F can be derived as follows;

$$C_F = \frac{0.075}{\left[\log_{10} R_n - 2\right]^2}$$
 3-5

$$R_n = \frac{V \cdot L}{\upsilon}$$
 3-6

L = 1.6 m., $\upsilon = 1.14 \cdot 10^{-6} \text{ m}^2/\text{s}$, $g = 9.81 \text{ m/s}^2$

$$R_{n} = \frac{V \cdot L}{\upsilon} \times \frac{F_{n}}{\sqrt[V]{\sqrt{g \cdot L}}} = \frac{V \cdot L}{\upsilon} \times \frac{F_{n}}{V} \times \sqrt{g \cdot L} = \frac{L^{\frac{3}{2}}}{\upsilon} \times \sqrt{g} \times F_{n}$$
$$\implies R_{n} = \frac{1.6^{\frac{3}{2}}}{1.14 \cdot 10^{-6}} \times \sqrt{9.81} \times F_{n} = 5.56 \cdot 10^{6} \times F_{n}$$
3-7

$$C_{F_{\text{mod}\,rl}} = \frac{0.075}{\left[\log_{10}\left(F_n \times 5.56 \times 10^6\right) - 2\right]^2}$$
3-8

40

Once the $C_{T_{ship}}$ has been calculated, the total ship resistance can be calculated using the following equation;

$$R_{T_{\rm clup}} = C_{T_{\rm clup}} \cdot 0.5 \cdot \rho_{\rm SW} \cdot V_{\rm ship}^2 \cdot W_{\rm SA}$$
3-9

Wetted surface area may be calculated using a wetted surface coefficient (C_S), which is derived from breadth-draught ratio (B/T) and block coefficient (C_B) using regression formulae provided for the NPL and Series 64 forms Karayannis [16]. As a further approximation, the Denny Mumford formula gives reasonable results and is used in the current approximate estimate. The following formulae provide the wetted surface area of the vessel [the first is for monohull configurations and the second is for catamarans).

$$W_{SA} = (1.7 \times L_{WL} \times T) + (\nabla/T)$$

$$W_{SA} = 2 \times [(1.7 \times L_{WL} \times T) + (L_{WL} \times b \times C_B)]$$
3-10

Hence, using equation 3-9 the total ship resistance of the vessel can be calculated. Effective power P_E is then calculated directly as $R_T \cdot V_S$.

3.4 **PROPULSION**

The efficiency of an engineering operation is generally defined as the ratio of the useful work or power obtained to that expended in carrying out the operation.

In the case of a ship the useful power obtained is that used in overcoming the resistance to motion at a certain speed, which is represented by the effective power P_F .

Mechanical efficiencies, gear losses and shaft transmission losses all vary from ship to ship, according to the type of machinery and general layout. It is difficult to define the hydrodynamic efficiency of a hull propeller combination in terms of such an overall propulsive efficiency.

A more meaningful measure of efficiency of propulsion is the ratio of the useful power obtained, P_E , to the power actually delivered to the propeller, P_D . This ratio has been given the name quasi-propulsive coefficient, and is defined as:

3. Powering

$$\eta_D = \frac{P_E}{P_D}$$
3-11

$$P_E = R_T \cdot V_S$$
 3-12

$$P_D = \frac{R_T \cdot V_S}{\eta_D}$$
3-13

$$\eta_D = \eta_H \cdot \eta_B = \eta_H \cdot \frac{\eta_B}{\eta_O} \cdot \eta_O$$
3-14

The overall efficiency can then be established, as follows:

$$\eta_D = \eta_H \cdot \eta_R \cdot \eta_O \tag{3-15}$$

where η_{H} is defined as the hull efficiency, η_{R} is the relative rotative efficiency and η_{O} as the open water efficiency.

The required total installed power (P_I) is estimated assuming a margin for resistance increases due to hull roughness, fouling and weather. In the present work, for design purposes, a margin of 15% resistance increase due to hull roughness, fouling and weather is assumed. Hence:

$$P_D = P_E / \eta_D$$
 and $P_I = P_D \times 1.15$. 3-16

An overall propulsive efficiency (η_D) is calculated, leading to an estimate of the required installed power. At present, the overall efficiency is based on that for water jets which are the most widely used propulsion systems for high speed ferries.

Thus, resistance and propulsion calculations can be performed for any selected speed, allowing any desired operational speed to be investigated.

More detailed information about water jets and the calculation of overall propulsive efficiency is given in the following section.

3.4.1 Water Jets

The basic operating principle of the water jet is similar to that of the propeller. The propelling

force is generated by adding momentum to the water by accelerating a certain flow of water in an astern direction. In the water jet, water from beneath the vessel is fed through an inlet duct to an inboard pump, usually mounted at the transom, which adds head to the water. This head is then used to increase the velocity when the water passes through an outlet nozzle into the ambient atmospheric pressure. Deflecting the jet by means of a manoeuvring gear, usually hydraulically operated, generates steering and reversing forces Svensson [24,25].

In the case of water jets, overall efficiency in the current work is estimated from available statistical data from manufacturers Karayannis [16]. This is shown in Figure 3.1 and an approximate relationship that was found to fit the data adequately is as follows:

$$\eta_{D} = \frac{1}{1 + \left(\frac{16.8}{V_{S}(kn)}\right)}$$
3-17

As before, delivered power is then calculated directly as:

$$P_D = P_E / \eta_D$$
 3-18

3.5 SUMMARY

Assessing different research studies and using their results and database, the estimation of initial power is achieved. The current study is useful to find a power value at the preliminary ship design stage. For a chosen speed estimation of an initial power will help for the derivation of machinery and fuel masses and also costs.

The current estimation method is for monohulls and catamarans, but future study can be carried out to estimate the initial power of different hull configurations.

A computer program has been written to perform the powering calculations, for both monohulls and catamarans, by calculating main dimensions, masses and costs of a ship. The program incorporates routines for resistance calculations based on the regression equations for the systematic series for propulsive efficiency equation 3-17. The program is fully described in Appendix II.

$L/\nabla^{1/3}$	Form Factors			
	Monohull (1+k)	Catamaran (1+ β k)		
6.3	1.35	1.48		
7.4	1.21	1.33		
8.5	1.17	1.29		
9.5	1.13	1.24		

 Table 3.1: Typical Form Factor Values.

Parameter	B/T	$L/\nabla^{1/3}$	Ср	S/L
Effect on C _R	5-10% change	40-50% change	5-10% change	0-40% change
Predictability	Poor	Good	Poor	Poor

Table 3.2: Effect of Each Parameter on C_R (NPL Series).

Froude Number (F _n)	0.6	0.8	1.0
Monohull	$1702 \cdot \left(L_{\nabla^{1/3}} \right)^{-2.96}$	$533 \cdot (L/_{\nabla^{1/3}})^{-2.58}$	$122 \cdot \left(\frac{L}{\sqrt{1/3}} \right)^{-1.96}$
\mathbf{R}^2	0.991	0.982	0.950
S/L=0.3	$1774 \cdot \left(\frac{L}{\nabla^{1/3}} \right)^{-2.87}$	$180 \cdot (L_{\nabla^{1/3}})^{-1.97}$	$48 \cdot \left(\frac{L}{\sqrt{1/3}} \right)^{-1.41}$
\mathbf{R}^2	0.974	0.955	0.852
S/L=0.2	$5084 \cdot \left(L_{\nabla^{1/3}} \right)^{-3.30}$	$130 \cdot \left(\frac{L}{\sqrt{1/3}} \right)^{-1.82}$	$22 \cdot \left(\frac{L}{\sqrt{2^{1/3}}} \right)^{-1.06}$
R ²	0.973	0.932	0.782

Table 3.3: NPL Series Residuary Resistance Coefficient ($C_R \times 10^3$).

Figure 3.1: Overall Water jet Efficiency.

4. MASSES

4.1 GENERAL

One of the most important design factors in concept design is the estimation of the mass of the craft. Small changes in mass may have a significant effect on vessel performance, particularly for high speed craft. Therefore, estimating mass as accurately as possible is important for an effective and economic design.

It is often difficult to carry out an accurate mass estimation at the preliminary design stage because of the lack of data. Some of the data used for the calculations in the current work are from real ships, while other ships have been created from classification society rules. To carry out all the estimations, empirical methods are adopted. The following sections describe the techniques used in the empirical method developed in the current study.

For the estimation method, ship mass is divided into two major parts, lightship and deadweight. The further breakdown of masses is shown in Figure 4.1. Lightship is subsequently divided into three parts namely hull, outfit and machinery masses. Deadweight comprises cargo, crew, provisions and fuel weights.

The following sections describe the methods developed for estimating each of these masses. Section 4.2 covers hull mass, section 4.3 outfit mass, section 4.4 machinery mass and, finally section 4.5 deals with deadweight.

4.2 HULL MASS

4.2.1 Background

The structural design of high speed ferries can be seen as a crucial part in their design since any changes in mass can result in decreases or increases in powering and costs. Also, the importance of structural mass is reflected in that it can comprise up to 35% of the vessel's full mass.

The main purpose of this part of the research has been to estimate the preliminary structural mass of fast monohulls and catamarans. Structural mass includes the weight of all the platings, stiffeners, brackets, welds, etc. which comprise the structure of a vessel.

Several methods have been developed in the past to determine the hull structural mass of conventional hulls. Two of these methods are investigated in the current research. Taggart [26] and Watson et al [31]. Watson & Gilfillan's method is the most widely used for the preliminary structural mass of conventional displacement ships. This method is also used in the current work with a careful adaptation for fast ferries and is described in more detail later.

The most difficult part of the current study is finding reliable mass data. For business secrecy reasons it has been extremely difficult to obtain any real data from ship builders or operators. The only data obtained this way was under the promise of keeping its source secret. For this reason the current method has been developed mainly with generated data.

Some data for hull mass estimation is obtained from Sainz [23]. Sainz developed ship data by using Lloyd's Register classification society rules for small craft. A number of assumptions and calculations were undertaken to generate data. A software package has been developed by Lloyd's Register which carries out these processes automatically.

The process may be described in simple terms as firstly designing a typical midship section for a hull using a set of rules from a classification society. From this a mass per metre can be achieved for a position amidships and the distribution of weight along the length of the craft can later be determined, thereby establishing the total mass of the vessel. The approach parametrically investigates the hull mass estimates for several vessels of different dimensions.

For monohulls, two data sources were used for the structural design of the vessels. The first of these was the 'Mestral car ferry' concept design. Taking this initial design and varying its principal particulars, new vessel designs were developed. Five vessels were designed in a range from 50 to 150 metres, the length range of most of the new high speed marine vessels. This variation in length involved a new set of dimensions for beam, depth, etc., for each design.

The second data source for monohulls is an article from the fourth international conference on fast sea transportation, Hughes [12], where a strategy is presented for achieving a first principles optimum structural design of a ship using modern computer based tools.

The further part of the monohull structural design involved slight variations on the length and beam of the vessels. An investigation was performed to determine how the effect of keeping the load area of the decks constant would influence the final structural mass. Keeping the factors of length and beam constant make the load carrying ability of the vessels also constant. The investigation was performed on 50, 75, 100, 125, and 150 metre hulls and L/B variants of

4.5 to 7.0, to obtain an indication of the effect of these changes. These values can be seen in table 4.1. Total new designs were performed for these variations in length and beam. The parameters which are influenced directly by changes in length and beam were modified, although most dimensions were left intact. The work task developed for the monohull vessels is shown diagrammatically in Figure 4.2.

The structural design of catamarans also relied on Sainz [23] for it's final completion. It was assumed that the range in the case of catamarans would be up to 100 metres in length as the number of catamaran vessels above this value was very limited, with only a few prospective designs. The new dimensions for the newly developed designs were again derived from initial built vessel data acquired for the catamaran ships.

In the case of catamarans, three lengths, each with three hull separation ratios were investigated. The catamaran study used basic ship lengths of 50 m, 75 m and 100 m with S/L variants from 0.20 to 0.26. The technique used for estimating the hull mass of catamarans was similar to that of monohulls. The work task is shown diagrammatically in Figure 4.3 and the results are shown in Table 4.2.

4.2.2 Presentation of Hull Mass

A practical empirical approach involves developing formulae to represent the hull mass estimates. Many examples of empirical formulae exist to determine the mass of a hull. A commonly used formula for the estimation of hull mass for displacement vessels built in steel is that suggested by Watson et al [31]. The original formula used for the mass of structure estimation is;

$$W_{STRUCTURE} = W_{S7} \times [1 + 0.5 \times (C_B - 0.7)]$$
4-1

The value of the block coefficient (C_B) for the new design is inserted here, and W_{S7} can be estimated from;

$$W_{s7} = K \times E^{1.36}$$
 4-2

with values of K for various ship types given in Figure 4.4, in the case of displacement monohull ferries, where E is the equipment numeral, the value of K for steel hulls is in the range 0.024 < K > 0.037.

The value for equipment numeral (E) can be estimated from the following formula, which is commonly used for all varieties of displacement ships;

$$E = L \times (B+T) + 0.85 \times L \times (D-T) + 0.85 \times \sum l_1 h_1 + 0.75 \times \sum l_2 h_2$$
4-3

where l_1 and h_1 are the length and height of full width erections, and l_2 and h_2 are the length of houses. However, as fast ferries generally do not posses these separate types of erections, the last two terms of equation 4-3 would not be applicable.

Watson and Gilfillan [31] obtained values for the hull mass of typical vessels and plotted a graph showing the numeral value E against the net steel mass, showing a good relationship between these, and that the equipment numeral is appropriate in the determination of steel mass. This can be seen in Figure 4.4.

These empirical formulae are of great use in the first steps of design for traditional commercial displacement vessels. They provide a quick and immediate method of determining an approximate mass of the structural components of a hull. Next section explains the adaptation of these formulae to fast ferries.

4.2.3 Design Equations

The ship data created by employing Sainz's work [23] and that obtained from ship builders and written sources for high speed craft, are presented in terms of equipment numeral E. It is considered that although the method was originally developed for conventional vessels, a careful adaptation can make it suitable for high speed monohull and catamaran forms.

On this basis, the equipment numerals for monohulls and catamarans are obtained using equations 4-4 and 4-4. The different dimensions employed are described in Figure 4.5. In the equations, D_{OA} is taken as the depth overall including the superstructure.

$$E_{M} = L_{OA} \times (B+T) + 0.85 \times L_{OA} \times (D_{OA} - T)$$
4-4

$$E_{C} = 2 \times L_{OA} \times (b+T) + 0.85 \times L_{OA} \times (D_{OA} - T) + 1.6 \times L_{OA} \times (B - 2b)$$
4-5

In advocating the use of such an approach it can be noted that the numeral E is effectively a function of the total surface area of the ship, with a weighting for the portion above the waterline (D-T) (Figure 4.5). The weighting is currently left at the original value of 0.85 due to the lack of enough detailed data to suggest otherwise. In the case of catamarans, the third term

in the equipment numeral is a function of the added area due to the cross structure. The weighting of 1.6 in this case was derived from the parametric study of the influence of hull spacing on mass described earlier.

Available hull mass data is plotted against numeral E for both monohulls and catamarans. Equipment numeral is calculated for each ship based on the equations 4-4 and 4-5. Plots of total hull mass (hull and superstructure) in aluminium alloy for monohulls and catamarans to a base of equipment numeral are shown in Figures 4.6 and 4.7. Suitable fits to the data are found to be as follows;

Hull Mass for Monohulls
$$W_{HM} = 0.032 \cdot E_M^{1.2}$$
 4-6

Hull Mass for Catamarans

$$W_{HC} = 0.00064 \cdot E_C^{1.7}, (E_C \le 3025)$$
 4-7

$$W_{HC} = 0.39 \cdot E_C^{0.9}, (E_C > 3025)$$
 4-8

The regression line for monohulls is reasonably good, considering the lack of data and the difficulty to get real ship data. It can be thought that the lack of real ship data may not make the correlation reliable, but the data obtained from parametric design study is the only way to approach an estimation of preliminary hull mass of fast ferries. On this basis it is believed that the correlation is acceptable.

Of commercial confidentiality reasons the existing ship data for catamaran hull mass shown in Figure 4.7 cannot be referenced. These actual ship values made it clear that that the Lloyd's Register classification society rules based estimates for small catamarans (Figure 4.7) are very high. Reasons for this are not clear, although no effort was made in the rules based approach to adopt a low mass structure. Based on this, two individual relationships were created for large and small catamarans. For large catamarans, the parametric study results are found to be acceptable since they correlate well with the ship data. However, for small catamarans, as is mentioned above, the developed data did not show good correlation with the ship values. Thus, available ship values had to eased in the parametric design study results. These two curves fit the equations 4-7 and 4-8 with particular *E* numerals.

The data and its presentation provide a good starting point for the hull mass estimate. It is believed that as more data becomes available the method offers a good basis and opportunity for further development and refinement.

4.3 OUTFIT MASS

Outfit mass is divided into two parts in the current study. These are namely accommodation weight and remaining outfit weight. Accommodation weight is the most significant component of the outfit mass and is initially estimated by using a mass per unit area, which is explained in the following part of this section.

Accommodation weight includes lounges, dining rooms, self-service areas, air type seats, reception foyer, corridors, galley, toilets and cabins. These allow an initial estimation to be made based on total passenger and vehicle area. Average mass per unit area for components of accommodation is given as follows. Data has been derived from Karayannis [16].

Saloons, dining rooms, self service areas, Pullman seat areas, reception, foyers: 85 kg/m², Refrigeration: 151 kg/m², Toilet and shower rooms: 185 kg/m², Cabins (crew): 176/176/202 kg/m² (1/2/4 beds),
Wheel house: 1300 kg/unit area,
Chart room: 350 kg/unit area,
Radio room: 450 kg/unit area.
Corridors: 60kg/m²,
Galleys: 135 kg/m².

From all these detailed mass per unit area information, standard accommodation weight (W_{ACC}) can be found as;

$$W_{ACC} = x \times A_{P}$$
 4-9

where passenger area is:

$$A_{P} = f(L_{OA} \times B) = y \times L_{OA} \times B$$
4-10

From these results, accomodation weight can be estimated as;

$$W_{ACC} = x \times f(L_{OA} \times B) = x \times y \times L_{OA} \times B$$
4-11

Remaining outfit mass including any equipment not included in the machinery mass may, as a first approximation, be assumed as a linear function of overall length and breadth. This linear

51

function represents the area of the remaining outfit. Therefore remaining outfit mass can be derived from a formula such as;

$$W_{REM} = f(L_{OA} \times B) = z \times L_{OA} \times B$$
4-12

The above results led the outfit mass per deck to be estimated using equation 4-13. To find the outfit mass for the whole ship, the obtained outfit mass per deck should be multiplied by the number of decks (N_{DECK}) as seen in equation 4-14.

$$W_{o} = W_{ACC} + W_{REM}$$

$$W_{o} = (x \times y \times L_{OA} \times B) + (z \times L_{OA} \times B)$$

$$W_{o} = [(x \times y) + z] \times L_{OA} \times B$$

$$n = (x \times y) + z$$

$$W_{o} = n \times L_{OA} \times B$$
4-13

$$W_o = n \times L_{OA} \times B \times N_{DECK}$$
4-14

where n is derived from detailed lightship data. It is very hard to obtain detailed lightship data. Few data was found or could be estimated to obtain a suitable n value. All values and data can be seen in Table 4.3.

All the values derived from the available data are shown in Table 4.3. Typical values of n for an approximate preliminary estimate of total outfit mass per deck (for both monohulls and catamarans) were found to be around 0.027.

The above calculations lead to an approximate formula for outfit mass as follows;

$$W_o = 0.027 \times L_{OA} \times B_{OA} \times N_{DECK}$$

$$4.15$$

A more accurate outfit mass based on equations 4-13 could be developed once more data for fast ferries became available.

4.4 MACHINERY MASS

4.4.1 Background

The current study divides the overall machinery mass into two major components. These are the propulsion machinery and the auxiliary or remaining part of the machinery. The principal components of propulsion machinery are the main engines (diesel engine or gas turbine), gearboxes and propulsors (propeller or water jet), Guenther [11]. The remaining part of the machinery installation includes generators, pumps, piping and other auxiliary equipment. Figure 4.8 summarizes these components in a flowchart.

Machinery mass has been assembled into a set of data including the main machinery components suitable for high speed craft including medium and high speed diesels, gas turbines, water jets and gearboxes, Warren [30]. The data allows the overall mass of the propulsion system to be estimated with some confidence based on installed power. On the other hand, published data on the remaining part of the machinery mass is limited, hence it is currently calculated as a function of the overall propulsion mass.

In the initial stages of ship design, one of the important factors to choose is the suitable machinery. Especially, for fast craft the effect of propulsion is crucial. Some of these effects are listed below;

- Size (physical dimensions),
- Mass,
- Fuel consumption,
- Need for multiple installations and/or gearboxes.

Further factors, which can affect operating costs, are;

- Lubricating oil consumption,
- Reliability,
- Operational flexibility.
- Quick starting,
- Range of operation,
- Number of crew members,
- Maintenance costs.

All of the above effects are important, however some of them are crucial for fast craft. This is the case of the total machinery mass. An estimate is required at the initial stages of the design process. Big deviations from this initial assumption may result in future problems. Apart from changes in performance parameters and other engine properties, it might have an important effect on the final vessel's physical dimensions. For all these reasons, finding a method to estimate the initial machinery mass is considered to be vitally important. The current study deals with the preliminary estimation of main engine, propulsor, gearbox and remaining machinery weights. These are covered in the following sections.

4.4.2 Principal Components of Propulsion Machinery

The factors and parameters, generally used to characterize engine operation are;

- The engine's performance over its operating range and size,
- The engine's fuel consumption within this operating range and the cost of the required fuel type,
- Noise and air pollutant emissions within the operating range,
- The initial cost of the engine and its installation,
- The reliability and durability of the engine, its maintenance requirements, and how these affect engine availability and operating costs.

In addition to the above parameters engines specifically made for fast ferry applications are compared according to their load distribution Vrontorinakis [29]. Comparisons are performed considering that a fast ferry engine operates for up to 90% of the time at full load and only 10% of the time at less than 50% power.

Naturally in every application one of the primary requirements for an engine is to satisfy the power needs. This condition in fast ferries, not only has to be satisfied adequately, but it must also be achieved in confined spaces and by using the least mass. The main objective therefore is to achieve an increase in power to mass, and power to bulk volume ratios, in order to install more power in a given space, or to reduce the dimensions of the machinery room.

Another primary requirement for an engine is the fuel consumption. In engine tests, the fuel consumption is measured as a mass flow rate per unit time. A more useful parameter is the specific fuel consumption (sfc) which is fuel flow rate per unit power output. It measures how efficiently an engine is using the fuel supplied to produce work.

54

Low values of specific fuel consumption are obviously desirable. For diesel engines, typical best values are lower than 270 g/kWh, and in large engines this can go below 200 g/kWh, Vrontorinakis [29]. It is a measure of the engine's efficiency. This value is also used for the calculation of fuel mass in the current research.

Engine mass and bulk volume for a given rated power are important in many applications. This is especially important in the area of fast ferries, since the best engine could be impossible to use, if it simply cannot fit inside narrow catamaran demihulls. Two parameters useful for comparing these attributes from one engine to another are;

Specific Mass = Engine Mass / Rated Power Specific Volume = Engine Volume / Rated Power

4.4.2.1 Total Mass Estimation for Diesel Engines

Dry engine mass (manufacturer's catalogues) excludes the necessary fluids, lubricating oil and cooling water. It also excludes other heavier and equally important accessories for a specific application, such as the gearbox, the water jet and other auxiliary machinery (pumps, coolers, etc.). Most engines in these high speed ranges discussed for fast ferry applications would need to utilize a gearbox to transmit the output power to the water jets or around bends etc. Although coolers, pumps, fluids and others are absolutely necessary in all applications, their mass is definable within the overall estimation. A detailed weight database of most available engines is presented in Vrontorinakis [29]. Based on this data, Figure 4.9 has been produced for diesel engine mass. The correlation between diesel engine weight and power/engine speed ratio can be summarized as follows;

$$W_D = 6.82 \times \left(\frac{P_I}{n}\right)^{0.85}$$
 tonnes (R²=0.913) 4-16

where P_I is the delivered power to per propulsion unit, and *n* is the engine speed (rpm).

It should be noted that since equation 4-16 is non linear, it has to be applied for each engine unit.

4.4.2.2 Total Mass Estimation for Gas Turbines

Apart from diesel engines as prime movers for fast ferries, gas turbines are the other alternative,

either alone or combined with a diesel.

There are two main types of gas turbines namely the aero derivative and the heavy duty industrial. The former type usually comprises parts of a jet engine. somewhat down-rated with regard to temperature and power, acting as a hot gas generator supplying energy to a specially designed output turbine connected to the propulsion gearing.

As aircraft gas turbines are designed primarily for flying, the emphasis for fast ferry applications has to be on maintaining minimum size and mass, with restricted frontal area. However, these engines operate at higher-pressure cycles and burn expensive fuel, something not very desirable for marine applications in general.

The industrial gas turbine in turn, does not have so much emphasis on mass reduction, but has more emphasis on machine life and reduction on maintenance. The outcome is a more robust engine with inevitably higher mass, and bulk volume. For these reasons, the heavy-duty turbine is not offered for marine service, unless editions and developments in the cycle refine it.

Gas turbines consist of three parts:

- 1. Gas generator (produces hot gas), consists of compressor stages, combustion chambers and compressor turbine stages,
- 2. Power turbine,
- 3. Module.

For various reasons, marine gas turbines benefit from being in dedicated modules. When mass is considered, gas turbines have the ability to be able to include their auxiliaries in this contained platform, and offer advantages such as, structural support, ease of mounting, shock protection and others.

The mass of the turbine increases proportionally to the power output, just as diesel engines. Specific fuel consumption decreases along with the power increase. Based on Vrontorinakis [29] data was plotted in Figure 4.10. Gas turbines mass can be obtained using equation 4-17.

$$W_{GT} = 3.0 + 0.00056 \cdot P_1$$
 tonnes (R²=0.917) 4-17

where P_l is the installed power per propulsion unit.

Again, the weight formula has to be applied for each gas turbine.

4.4.2.3 Total Mass Estimation for Propulsors

One of the most important differences between fast ferry propulsion and conventional ship propulsion is created by the prime mover itself. No matter if it is a high or medium speed diesel engine or gas turbine, they all operate at high rotational speeds for a propulsor to cope directly and deliver the expected power. The accepted solution, is to use a reduction gearbox, which will bridge the speed difference, but at the same time add more weight, lower the transmission efficiency, increase bulk volume and complexity, and ultimately increase costs.

The propulsion device in turn, is almost always a water jet for fast speed applications, since among other advantages they prove to be more efficient at speeds over 25-30 knots than conventional propellers. Another very important aspect of water jets, is that they weigh less than propeller installations. Water jet mass data correlated with installed power (P_1) is shown in Figure 4.10. The main trend is represented by equation 4-18.

$$W_{wJ} = 0.00018 \times P_I^{1.18}$$
 tonnes (R²=0.966) 4-18

 P_I represents the installed power per propulsion unit.

Again as in previous sections the obtained equation is non linear and has therefore to be applied for each propulsor independently.

4.4.2.4 Total Mass Estimation for Gearboxes

Large amounts of data were found for gearboxes suitable for fast ferries, Vrontorinakis [29]. The data was processed to find an initial mass estimate of the gearboxes for fast ferries. The relationship between maximum power and the total weight of the gearboxes has been correlated in figure 4.12 to estimate an initial weight. Regression from this correlation is summarized in equation 4-19 with a satisfactory reliability of R^2 =0.80.

$$W_{GB} = 0.00348 \times P_1^{0.75}$$
 tonnes 4-19

 P_l is the installed power per propulsion unit. The estimation must be multiplied by the number of propulsion units to obtain the total gearbox weight.

Since the weight formula of gearbox is non linear, it has to be applied for each propulsion unit.

4.4.3 Principal Components of Remaining Machinery

Research was carried out initially to find suitable data for each of the remaining machinery parts to make the estimation of the remaining part of the machinery mass (W_{RM}) as reliable as possible. Detailed search to obtain generator, pump, pipe and other auxiliary mass data was performed. It was only possible to attain some generator mass data. Pumps, piping and other auxiliary mass data was not available. An alternative solution was therefore required to estimate the remaining part of the machinery mass. It was decided that the remaining part of the machinery installation weight could be estimated as a function of the total propulsion mass (W_P) as shown in equation 4-20. It is clear that the amount of the remaining machinery installed on board is dependent on the sizes of the main engine, propulsor and the gearbox. Therefore, the idea of remaining machinery mass being a function of the total propulsion mass machinery mass was plausible.

$$W_{P} = W_{D}(W_{GT}) + W_{WJ} + W_{GB}$$

$$W_{RM} = f(W_{P})$$
4-20

Propulsion mass data was gathered for high speed ferries from Joo et al [14] and Trincas et al [28]. These values can be seen in Table 4.4. It was very difficult to assess the type of function between the total propulsion mass and the remaining machinery mass since the available data was scarce. To keep the estimation simple, a linear relationship between these two masses was obtained. Thus, the remaining machinery mass found to be represented by equation 4-21.

$$W_{RM} = n \times W_{P}$$
 4-21

The value n is based on available data and a sequence of mass balances for high-speed craft. A number of calculations was carried out to find a suitable n value. An example from these calculations is shown below to better explain the process. The particular example's data is taken from Trincas et al [28]. The remaining calculations were undertaken in the same way. The average of the n values was then obtained. Values ranged from 0.64 to 0.45, with its final value being around 0.55. A suitable approximation of the remaining machinery mass was therefore that expressed in equation 4-22.

$$W_{RM} = 0.55 \times W_P \tag{4-22}$$

4.4.4 Total Machinery Mass

Total machinery mass estimation was completed taking into account the different aspects and techniques detailed in the previous sections. The total machinery mass is then calculated as the sum of the main engine, propulsor, gearbox and the remaining machinery masses in equation 4-23.

$$W_{TM} = W_P \times 1.55$$

$$W_{TM} = [W_D(orW_{GT}) + W_{GB} + W_{WJ}] \times 1.55$$

4-23

4.4.5 Summary

A method for the initial estimation of fast ferries total machinery weight has been generated. It is believed that the results can be accepted to be reliable with some degree of confidence.

Different engine modes and propulsors can be applied to the method in future to further expand its capabilities. Engine modes would account for the fact that some fast ferries contain diesel and gas turbines together as their main power suppliers. Also, a second propulsor such as a propeller could be added to the method.

It is clear that lack of data could cause some inaccuracy on the present results, but this does not invalidate the overall idea and methodology. Furthermore, the addition of more data in the future will enable a refinement of all the methods employed.

4.5 DEADWEIGHT

4.5.1 Background

Deadweight is defined as the difference between the load displacement and the lightweight. It is an important part of the whole vessel mass and can be estimated fairly accurately, since it is possible to obtain information for its components such as cargo, fuel, water, crew, effects, etc. In the context of the present research it is assumed to include the following:

- Passengers and luggage
- Vehicles
- Crew and effects
- Water and provisions
- Fuel and lubricating oil
- Ballast, cargo and others.

Deadweight estimation can only be carried out when the main operational requirements of the vessel are defined or assumed. These include speed, range and capacity. The mass per passenger, crew, luggage, effects and per vehicle is applied as typical standard values, as described in the next section.

4.5.2 Principal Components of Deadweight Mass

Standard values for components of deadweight mass are detailed in Table 4.5 from Karayannis [16]. The table shows the standard values for passenger, luggage, vehicle, crew, effects, water, provisions, fuel, lubricating oil and others weights.

Passenger and luggage weight is calculated by multiplying standard per person and luggage weight by number of passengers. The same method is applied to the vehicles and crew and effects.

The mass of water and provisions required are estimated by using typical daily consumption per person on board. This number then multiplied by the number of people on board.

Fuel and lubricating oil masses are calculated by using a relationship which is a function of service power, speed, consumption and range. The equations of principal components of deadweight are given in Table 4.6. The given equations show the basic relation between all these parameters. It is clear that the amount of fuel need to be stored on board is related to the effective power, specific fuel consumption, service speed and range of the vessel. A 9% for generator diesel and lubricating oil allowance is made together with a margin of 10%.

New deadweight values have been generated by using the equations in Table 4.7. These values have been compared against real ship data to measure the reliability of the current study's results. The comparisons are given in Table 4.7 and Figure 4.13. Figure 4.13 shows that the estimation is reliable for an initial set of calculations for deadweight. Only two parts of the real ship data and estimated value show reasonable correlation. For preliminary estimation purposes these two parts are acceptable.

4.5.3 Summary

Details of the estimation of masses which make up the total ship mass have been given in the previous sections. This allows the application of initial mass estimates to achieve a balance between masses and suitable dimensions, as described in chapter 2. They will then be employed for the building of cost estimates in chapter 5.

L _{OA} (m)	45	50	55	75	95	100	105	125	145	150	155
B (m)	9.83	8.85	8.04	12.6	15.86	15.07	14.35	19	23.06	22.3	21.58
D _{OA} (m)	9.18	9.18	9.18	11.14	13	13	13	15	16.7	16.7	16.7
T (m)	1.78	1.78	1.78	2.16	2.52	2.52	2.52	2.9	3.24	3.24	3.24
Е	805.5	846	886.1	1680	2592	2650	2707	4023	5473	5547	5621
Wh (t)	121.5	125	129.1	249.3	384.8	399.3	409.6	654.6	981.7	984.7	1020

Table 4.1: Designed Monohulls for Hull Mass Estimation ($L_{OVERALL} \times B$ is constant).

L _{OA} (m)		50			75			100	
B (m)	13.8	15.2	16.9	22.72	24.26	25.88	28.9	30.2	31.8
B/2	6.9	7.6	8.45	11.36	12.13	12.94	14.45	15.4	15.9
S/L	0.209	0.222	0.238	0.218	0.239	0.26	0.196	0.224	0.258
D _{OA} (m)		9.68		15.42	15.34	15.44		19.36	
T (m)		1.88			2.83			3.8	
B (m)		4		6.37	6.34	6.38		8	
E	1384	1460	1587	3305	3476	3661	5618	5813	6053
$\mathbf{W}_{\mathrm{h}}\left(\mathbf{t} ight)$	255	274	310	564	601	631	915	943	987

Table 4.2: Designed Catamarans for Hull Mass Estimation ($L_{OVERALL} \times B$ is constant).

NDECK	L _{OA}	B _{OA}	WOUTFIT	n	Reference
2	97.95	19.70	100.07	0.026	Joo et al [15]
2	109.50	29.50	180.00	0.028	Trincas et al [31]
2	80.24	20.18	87.59	0.027	Joo et al [15]
2	45	11.8	27.71	0.026	Wood et al [35]
2	50	11.8	33.95	0.029	Wood et al [35]
2.5	104.65	16.44	200.08	0.026	Trincas et al [30]

Table 4.3: Calculation of Outfit Mass.

W _{PROPULSION} (t)	$W_{REST}(t)$	n	Reference
190.39	121.5	0.64	Joo et al [15]
177.82	98.25	0.55	Joo et al [15]
100	45	0.45	Trincas et al [32]

 Table 4.4: Remaining Machinery Mass Estimation.

Passanger & Luggage	Passenger = 75 kg/person				
Tassenger & Duggage	Luggage = 30 kg/person				
Vehicles	1000 kg/car				
Crow & Fffacts	Crew = 75 kg/person				
Crew & Enects	Effects = 60 kg/person				
	Drinking water = 20 kg/person.day				
Water & Provisions	Hygiene = 120 kg/person.day				
	Provisions = 10 kg/person.day				
	Fuel oil = $P_{S} \cdot SFC \cdot (R/V_{S})$				
Fuel & Lubricant	Diesel oil = Fuel oil $\cdot 6\%$				
ruel & Lubricant	Lubricant oil = Fuel oil · 3%				
	Margin = 10%				

 Table 4.5: Principal Components of Deadweight.

Passenger & Luggage	$W_{PAX} = 0.105 \times N_{PAX}$ tonnes
Crew & Effects	$W_{CREW} = 0.135 \times N_{CREW}$ tonnes
Cars	$W_{CAR} = 1.0 \times N_{CAR}$ tonnes
Fuel & Lubricant oil	$W_F = [P_S \times SFC \times (R/V_S) \times 1.09 \times 1.10]/1000 \text{ tonnes}$
Fresh water&Provisions	$W_{FW} = 0.150 \times N_{PAX} \times (R/V_S) \times (1/24)$ tonnes

 Table 4.6: Suitable Formulae for the Principal Components of Deadweight.

N _{PAX}	N _{CAR}	N _{CREW}	R (nm)	$P_1(kW)$	V _S (kn)	DW _{real} (t)	Reference
367	0	5	200	5740	27	64	FFI May'95
794	190	5	350	22000	36	373	FFI June'95
696	100	5	500	29830	40	314	FFI December '95
400	60	5	310	12000	35	155	FFI March&April'96
446	52	5	200	32200	52	142	FFI December'97
351	42	5	100	10840	39	77-102	FFI January&February'96
1200	219	5	300	33900	36.5	448-574	FFI April'97
700	140	5	500	28320	35	360-450	FFI April'97
500	148	5	500	24000	37	200-320	FFI July&August'96
1800	460	5	300	88000	40	800-1200	FFI March&April'96
1500	425	5	295	44000	35	709-1185	FFI June'95

 Table 4.7: Deadweight Estimation Compared with Actual Ship Data (FFI stands for Fast Ferry International).

Figure 4.1: Breakdown of Ship Mass.

Figure 4.2: Work Task Developed for Monohull Hull Mass Estimation.

Figure 4.3: Work Task Developed for Catamaran Hull Mass.

			Standard Block Coefficient = 0.70 at 0.8D
Ship Type	К	E	100000 Tankers
Tankers	0.029-0.035	1500 <e<40000< td=""><td>Bulk Carriers</td></e<40000<>	Bulk Carriers
Chemical tanker	0.036-0.037	1900 <e<2500< td=""><td>▲ Passenger Ships</td></e<2500<>	▲ Passenger Ships
Bulk carrier	0.029-0.032	3000 <e<15000< td=""><td>★ General Cargo ★ Container</td></e<15000<>	★ General Cargo ★ Container
Open type bulk Container	0.033-0.040	6000 <e<13000< td=""><td>Research 10000 - • Refrig</td></e<13000<>	Research 10000 - • Refrig
Cargo	0.029-0.037	2000 <e<7000< td=""><td></td></e<7000<>	
Refrig.	0.032-0.035	E≅5000	Tug
Coasters	0.027-0.032	1000 <e<2000< td=""><td>×** a</td></e<2000<>	×** a
Offshore supply	0.041-0.051	800 <e<1300< td=""><td></td></e<1300<>	
Tugs	0.044	350 <e<450< td=""><td></td></e<450<>	
Trawler	0.041-0.042	250 <e<1300< td=""><td>A A</td></e<1300<>	A A
Research vessel	0.045-0.046	1350 <e<1500< td=""><td></td></e<1500<>	
Ferries	0.024-0.037	2000 <e<5000< td=""><td>•</td></e<5000<>	•
Passenger	0.037-0.038	5000 <e<15000< td=""><td>•</td></e<15000<>	•
			100 1000 10000 100000
			E-Hull Numeral (m ²)

Figure 4.4: Relationship Between Equipment Numeral and Net Steel.

Figure 4.5: Midship Section of a Monohull and a Catamaran.

Figure 4.6: Monohull Hull Mass Data.

Figure 4.7: Catamaran Hull Mass Data.

Figure 4.8: Principal Components of Overall Machinery Mass.

ł

Figure 4.9: Diesel Engine Mass Data.

Figure 4.10: Gas Turbine Mass Data.

Figure 4.11: Water Jet Mass Data.

Figure 4.12: Gearbox Mass Data.

Figure 4.13: Deadweight Comparison.

5. COSTS

5.1 GENERAL

In order to assess the commercial viability of high speed ferries, it is important to be able to estimate the costs related to such vessels as accurately as possible at the very early design stages.

The analysis presented herewith focuses on building costs. Estimates of running costs should not normally present problems once the operational requirements are known. The design and construction of high speed vessels involves innovative techniques and technologies. As a result, traditional approaches commonly used for estimating building costs used in conceptual and preliminary design studies, such as that developed by Caryette [4], may not be directly applicable for such craft, at least quantitatively. The approaches presented in this section have therefore been specifically developed for high speed vessels.

5.2 APPROXIMATE OVERALL BUILDING COST

As it is stated in chapter 2, carrying capacity is the major initial requirement for a new high speed ferry design in the current research study. At the same time speed is likely to be the second major initial requirement for a new high speed ferry design. They both directly influence the size of the vessel and the machinery installation, which are significant factors affecting a vessel's building cost.

In an earlier work, Karayannis [16], in order to provide rapid initial estimates, developed relationships for building cost calculations based on these parameters. The analyses were based on actual acquisition costs found for existing high speed ferries in relevant literature such as Lloyd's List, Fast Ferry International and other professional journals. It revealed that adequate correlations could be obtained for these parameters. The resulting regression formulae are given as follows:

$$C_{M} = -37.6 + 0.0115 \cdot N_{P} + 0.121 \cdot N_{V} + 1.230 \cdot V_{S} \text{ MUS}, \text{ R}^{2} = 0.96$$

$$C_{C} = -18.4 + 0.0294 \cdot N_{P} + 0.111 \cdot N_{V} + 0.445 \cdot V_{S} \text{ MUS}, \text{ R}^{2} = 0.89$$
5-2

where C_M and C_C represent the building costs (million United States Dollars) for monohulls and catamarans respectively.

As discussed in Molland et al [19] the correlation are satisfactory, although some problems exist for small vessels, which suggests that the formulae should be used with caution at the lower end of the size range. Apart from this exception, agreement of calculated values with real prices is generally reliable. Therefore, data obtained from Karayannis [16] is adequate and is used in the present study cost estimation method with some updates and alterations. which are clarified in the following sections.

5.3 DETAILED COSTS

5.3.1 General

The development of detailed calculations entails breaking down the total building costs into the hull, outfit and machinery costs. Also, the further division of each of these components into materials/equipment and labour was also investigated in the current work. As it is understandable, such investigations are particularly important in concept design studies since every little item included in the whole estimation will provide more accurate final results. Detailed calculations of hull, machinery and outfit costs are described below.

5.3.2 Hull Cost

The estimate of hull cost is mostly based on the hull mass. It is also constructed as a function of the labour costs. Beside these two factors, a 10% material scrap value is assumed, and is added to the total hull cost. Some data have been obtained from shipbuilders on the basis of commercial confidentiality. These data are shown in Table 5.1, and provides suitable values for the material and labour rates to be used in equation 5-3. The data has been obtained from a fast ferry shipbuilding company and asked not to be referenced regarding their secrecy reasons.

$$C_{H} = (W_{H} \times M \times 1.10) + (W_{H} \times LT \times LC) \text{ US}$$
5-3

where M is the material cost per tonne, LT is the labour hour per tonne and LC is the labour cost per hour. The first part of the equation calculates the material and scrap material values whilst the latter part determines the labour cost. The price of aluminium alloy is 5250US\$ per tonne, whilst mild steel costs 900 US\$ per tonne. Labouring time for simple structure is approximately 600 hours per ton and 900 hours per ton for complex structure. The definitions of simple and complex structures are explained in the following paragraph. Labour costs an average of 30 US\$ an hour. The labour hours have a range covering simple to complex structures. A monohull can be considered as a simple structured vessel. On the other hand a catamaran represents a complex structured ship, the simple reason being that a catamaran has got two thin demihulls and an extra structure between two hulls, which may be time consuming and difficult to manufacture.

From all above information, an estimation method of initial hull cost for high speed ferries has therefore been developed which is considered to be acceptable for preliminary estimates.

5.3.3 Outfit Cost

The estimate of outfit cost is based on a limited amount of available data. For the time being, an overall outfit cost (C_o) estimate, based on outfit mass (W_o), is proposed as follows. This value is derived from Karayannis [16] and has been updated according to the percentage of the inflation for each year.

$$C_{o} = 22,000 \times W_{o} \text{ US}$$
 5-4

5.3.3 Machinery Cost

The total machinery costs are made up from main engines (diesel engines and gas turbines), gearboxes and water jets together with the further costs. The further costs are a function of propulsion equipment costs, associated with the remaining equipment and the overall labour costs associated with the machinery installation.

It is assumed that the demand for passengers and cars to be transported always equals the full capacity of the vessel. For this reason the analysis had been carried out with the full displacement service speed and fuel consumption.

The overall factors that have been taken into account for a correct evaluation of the machinery costs are the following:

- Main engine capital cost as given by engine suppliers including installation, two days torsion vibrations tests, trials, and guarantee.
- Costs of gearboxes, water jets controls etc. according to prices obtained by manufacturers or suppliers.

All prices are quoted in United States Dollars (US\$). It should be mentioned that prices given by manufacturers and suppliers can be subject to large changes, depending on the special circumstances on each occasion. Engine manufacturers for example are willing to significantly reduce their listed engine price in order to ensure a future spare parts customer. Other reasons for price reductions are greater qualities purchased, and/or services ensured. Therefore, the prices given are average list prices, depending on place, time and customer, as well as on successful negotiations.

Relevant initial cost data, Vrontorinakis [29] has been displayed versus installed power in Figures 5.1 to 5.4. Regressions from the relevant figures are presented in Table 5.2.

The cost of the remaining items of machinery such as generators, pumps together with the overall auxiliary costs was found to be of the order of 40% of the propulsion machinery cost. This number was been generated by a sequence of cost balances.

Initially, a number of ship data was obtained from the database, Then, their hull, outfit, main engine, water jet and gearbox costs were estimated according to the equations developed in the current study. Equations 5-1 and 5-2 were used to estimate the overall building cost of each vessel. The estimated hull, outfit and machinery costs were subtracted from the estimated building cost to obtain the remaining machinery cost. Mean value of the ratio remaining machinery cost/propulsion cost was found to be 0.40. The end products can be observed from Table 5.3.

Consequently, total machinery cost can be summarized by equation 5-5.

$$C_{TM} = [C_D(C_{GT}) + C_{GB} + C_{WJ}] \times 1.40$$
5-5

where C_D corresponds to diesel engine, C_{GT} to gas turbine, C_{GB} to gearbox and C_{WJ} to water jet costs.

5.4 **OVERALL BUILDING COST**

After obtaining all the detailed estimates, the total building cost for monohulls (C_M) and catamarans (C_C) may now be summarized. The resultant formula is that presented in equation 5-6.

$C_M(C_C) = C_H + C_O + C_{TM}$

5-6

It should be noted that when developing a database of costs and assessing its reliability, published ship acquisition costs will have been influenced by other effects such as assumed profit levels, multiple builds, commissioning and delivery charges and how badly a shipyard may need an order.

Data for detailed costing, particularly that relating to remaining machinery costs, is sparse. Broad assumptions and data generated by sequences of cost balances have therefore been used in places. However, it is considered that the proposed equations will provide a reasonable estimate of overall cost, together with a good indication of relative levels between components costs and changes in component costs as a result of design changes. This makes the equations particularly suitable for use in preliminary design and concept investigations.

5.	Co	sts

Matarial (M)	Aluminium Alloy	5250 US\$/tonne		
Material (MI)	Mild Steel	900 US\$/tonne		
Labour Time(LT)	Simple Structure	600 hours/tonne		
Labour Time(LT)	Complex Structure	900 hours/tonne		
Labour Cost (LC)		30 US\$/hour		

Table 5.1: Rates of Materials and Labour Costs dated March 1999.

Diesel Engines	$C_D = 0.0003 \times P_I - 0.0423$ million US\$	$R^2 = 0.992$
Gas Turbines	$C_{GT} = (0.0004 \times P_I) - (4 \cdot 10^{-9} \times P_I^2) \text{ million US}$	R ² =0.999
Gearboxes	$C_{GB} = \left(2 \cdot 10^{-5} \times P_{I}\right) - \left(3 \cdot 10^{-10} \times P_{I}^{2}\right) \text{ million US}$	R ² =0.982
Water jets	$C_{WJ} = 0.0031 \times P_I^{0.61}$ million US\$	R ² =0.871

 Table 5.2: Costs of Propulsion Units.

Case	1	2	3	4	5	6	7	8	9	10
L _{OA}	54	31	24.55	54.46	95	95	96	102	124.7	82
Вод	9	3.7	6.5	9.3	16	17.4	16.2	15	18.7	14
Т	1.4	0.85	1.2	1.4	2.6	3.65	2.9	3.05	2.44	2.2
D _{OA}	5	2.5	2.5	4.45	4.6	6	10.5	5.2	6.2	9.25
Vs	35	33.5	26	38	36	35	35	37	38	40
N _{ENGINE}	2	3	3	3	2	2	2	2	3	2
N _{DECK}	2	1	1	2	2	2	2	2	2	2
P ₁	3000	2370	1830	6960	24000	23200	26000	24000	24000	16000
N _{PAX}	100	190	135	410	600	626	600	500	1250	600
N _{CAR}	-	-	-	-	173	160	188	148	238	70
СН	2.07	0.40	0.48	2.06	6.66	7.76	8.89	7.07	11.48	6.21
СО	0.58	0.07	0.10	0.60	1.81	1.96	1.85	1.82	2.77	1.36
СР	2.65	3.21	2.54	8.57	17.84	17.29	19.21	17.84	26.76	12.28
BC	6.6	5.79	4.07	13.86	34.51	32.01	37.40	31.57	52.31	26.97
CRM	1.31	2.12	0.96	2.63	8.20	5.0	7.45	4.83	11.30	7.12
Ratio	0.47	0.58	0.38	0.31	0.44	0.29	0.39	0.27	0.40	0.54
Reference	PM12b	PM31	PM35	PM38	VM6a	VM10a	VM16c	VM28	VM7c	VM15c

Table 5.3: Costs of Remaining Machinery (please see nomenclature for the abbreviations).

78

Figure 5.1: Diesel Engine Initial Cost Calculations.

Figure 5.2: Gas Turbine Initial Cost Calculations.

Figure 5.3: Water Jet Initial Cost Calculations.

Figure 5.4: Gearbox Initial Cost Calculations.

6. EXAMPLES OF THE METHODOLOGY

6.1 GENERAL

Example designs, which have been generated by applying the methodologies explained in this thesis, are presented in order to demonstrate their feasibility. Two major cases are discussed separately, namely passenger-only and vehicle-passenger vessels. This allows the generation of both small and large vessel designs to be performed. For each of these two categories monohull and catamaran designs are generated, illustrating the use of the methodologies for these two major vessel categories. Two engine and one propulsor type have been used namely diesel, gas turbine and water jet. Each case is estimated for three different service speeds in order to demonstrate the mass balance study as discussed in section 2.2. Hence five examples are carried out resulting in fifteen designs, and these are designated as follows:

Example A: Passenger-only monohull vessel, Diesel main engine, Water jet propulsor.

- Example B: Passenger-only catamaran vessel, Diesel main engine, Water jet propulsor.
- Example C: Vehicle-passenger monohull vessel, Diesel main engine, Water jet propulsor.
- Example D: Vehicle-passenger catamaran vessel, Diesel main engine, Water jet propulsor.
- Example E: Vehicle-passenger catamaran vessel, Gas Turbine main engine, Water jet propulsor.

Products of these examples are presented and commented in section 6.2 while an overall view discussed in section 6.3.

Another important issue investigated in this part of the study are the three different methods of changing hull parameters to achieve a mass balance, described earlier in this thesis (chapter 2). These methods are listed as:

Method 1	Constant $L/\nabla^{1/3}$ and modified C_B and B/T.
Method 2	Constant B/T and modified C_B and $L/\nabla^{1/3}.$
Method 3	Constant C_B and modified B/T and $L/\nabla^{1/3}$.

The outcome of this investigation can be seen in Example F. More detailed explanation can be found in section 6.2.6.

Lastly, Example G illustrates the application of different passenger comfort levels for two designs. This is also outlined in chapter 2.

6.2 **RESULTS**

6.2.1 Example A

Example A results, Table 6.1, show good correlation with the ship data, which is taken from Appendix I coded as PM4. The particular ship data provides good agreement with the study, and this can be clearly seen in the Figures 6.1.

First figure shows the similarity of some of the main dimensions against the ship data. As it is clear that there is a significant similarity between cases and the actual data.

Later figure presents the installed power changes with the gradually increased service speed. The power increases with speed as would be expected. The ship data is slightly higher then the example, this can be caused by the fact that the ship A is finer, so it would require less power to do the same speed, but this is only an assumption.

Fuel mass is little higher in the ship data. This should be a reason of the bigger installed power. On the other hand the fresh water mass is very low in the actual ship data. This might be caused by a watermaker. Most fast ferries have watermakers on board. There is no need for big tanks of water if the fresh water supplier is a watermaker. This stops the extra weight on board which is a very important issue for any ship, but especially for fast ships.

6.2.2 Example B

Example B demonstrates a good relationship with the ship data, Table 6.2, which is originally taken from Appendix I, PC10c.

Overall main dimensions display a good closeness. It is easy to see this with the Figures 6.2.

Installed power does not exhibit a good correspondence like the rest of data, and the reasons for this are unclear.

It appears to be the fuel mass is very much like the example. On the other hand fresh water mass seemed to be giving the same indication as previous example that, there is likely to be a watermaker installed on board.

6.2.3 Example C

Example C presents an acceptable agreement with the ship data, Table 6.3, which is gained from Appendix I, VM33.

Overall main dimensions exhibit satisfactory results. Figure 6.3 displays the results in a bar chart, which makes it easy to visualise the outcomes.

Installed power does not show a particularly good match. It is possible that the ship data engine is not as efficient as the engine Example C. That is why to produce 34 knots service speed actual ship needs more installed power than Example C ship. This is only one reason from many.

Unfortunately, no detailed deadweight data were available, but the given total deadweight demonstrates a satisfactory similarity with the example.

6.2.4 Example D

Example D represents a complete match with the existing ship data, see Table 6.4. The data adopted from Appendix I, VC3.

Main dimensions correlates very well with the VC3. It is possible to see the good correlation in Figure 6.4. The slight difference between the lengths might have been caused by the fact that the existing data has less cargo on board.

Existing ship's installed power is moderately less than the example. Considering that the existing ship is a smaller vessel a decrease in the power can be predicted.

Fuel mass and the total deadweight shows a good comparison. On the other hand fresh water mass seems to have some miscorrelation which is likely to be due to an installed watermaker.

Overall the examples demonstrates very satisfactory results, noting that these are preliminary values.

83

6.2.5 Example E

This study offers the best comparison of all the other examples. Table 6.5. The existing ship data is from Appendix I, VC11.

All the dimensions display reasonable correspondence, except the draught. It appears to be the existing ship's draught is very small. The fact is that with this draught and given displacement the ship's block coefficient can approximately be estimated as 0.76. This value is too large for a catamaran hull form as it is appreciated. As it is stated early in this thesis (chapter 2, Table 2.2) that the block coefficient for this type of vessel varies between 0.40 to 0.55. Therefore, 0.76 cannot be considered as a correct block coefficient.

This means that whether the given draught or displacement is not accurate. It should also be mentioned that considering the size of the ship draught seems very low, which means it might well be no-load draught. This size vessel should draw (full load) around 3.8 to 4.5 metres. This also shows that the estimated value presents approximately a true value.

The power displays good similarity with the available ship data. The concern is the deadweight of the existing vessel. It is heavier than the estimated value. Also, the displacement of the existing vessel is higher about 300 kg. It seems to be the estimated deadweight somehow is low, and this causes the total displacement to be low too. Considering that this estimation is a preliminary design few not very close results should not cause a problem.

All comparison of the results can be seen in Figures 6.5.

6.2.6 Example F : Investigation of Mass Balance

Example F illustrates the application of alternative mass balance methodologies, using either constant $L/\nabla^{1/3}$, B/T or C_B. Choice of these options may depend on limitations on length, breadth or draught or acceptable C_B for powering purposes.

A generated ship has been mass balanced with three different methods individually, and shown in Table 6.6. For each method, the altered parameters' fonts have been formatted in bold and underlined to be recognised. It is clear that only the method 2 kept all the initial estimated dimensions as it is, and the rest of the derivatives changed little comparing with the other two methods' results. For illustrative purposes, for the rest of the generative designs only method 2 is used.

In Examples A to D, for convenience, C_B was varied and the other two variables held constant, which results in the main dimensions of the ship remaining unaltered. This method has been imported into the software, therefore the mass balance can be created easily, and efficiently.

6.2.7 Example G : Investigation of Passenger Comfort Levels

It is apparent that when applied to parametric concept exploration exercises, other parameters can also be varied such as levels of passenger comfort using different seating areas as shown in Example G, see Table 6.7.

Two vessels have been included in the particular example. These are one passenger-only monohull and one vehicle-passenger monohull. Each vessel has two versions with different As/Np and Ap/As ratios. As explained earlier in this thesis, these are the parameters which alter passenger comfort. Case1 for passenger-only monohull uses less seating and passenger area per passenger, whilst Case2 has more area to improve passenger comfort. Improvement in the passenger comfort affects the dimensions of the vessel since bigger vessels require bigger engines and most importantly costs increase. A more clear picture can be drawn in Figures 6.6.a and 6.6.b.

This study makes it clear that passenger comfort should be controlled with care.

6.3 DISCUSSION OF RESULTS

In each of Examples A to D, three cases have been created. Cases1 are the original designs, Cases2 and Cases3 are speed-varied versions of the first design. These last two cases have been created to demonstrate the mass balance with speed change. Speed change causes differences on the machinery, fuel, fresh water weight, building cost and power. These differences from the original ship sometimes cause an imbalance between the first and the second displacements. The problem is solved employing the mass balance procedure outlined in section 2.

As stated earlier, the influence of speed on building costs can be clearly seen. It was, however, found that the approximate building costs for smaller vessels were unreliable, and hence have

been omitted. This is believed to be a question of lack of data, and can therefore be improved in the future as soon as more data become available.

Overall, comparisons of these vessels with existing high speed ferries indicate that the methodologies presented in this research programme generate realistic and feasible designs. It is clear that it is difficult to find complete ship data. Comparisons, therefore, should be approached taking this into account and thus allow for certain leeway in the results. Considering this, it is believed that the examples are reliable and feasible.

Some examples and existing ship data might have apparent differences. This may be due to variation in passenger comfort. Therefore, the deviation between the true and created ship might be quite larger than expected. This should also be approached with taking the passenger comfort level into account.

As noted elsewhere, for reliable results, input data should be used with caution, and input parameters within the limits of the database shown in Tables 2.1 and 2.2.

	Case I	Case II	Case III	Ship Data
Vessel Type	PM	PM	PM	PM
Engine Type	Diesel	Diesel	Diesel	Diesel
Propulsor	Water Jet	Water Jet	Water Jet	-
A _S /N _{PAX}	0.60	0.60	0.60	-
A_P/A_S	1.15	1.15	1.15	-
NPAX	400	400	400	450
VS	33	35	37	36
LOA	45.4	45.4	45.4	48.0
LWL	39.9	39.9	39.9	39.5
В	7.2	7.2	7.2	7.9
Т	1.6	1.6	1.6	1.3
D	8.3	8.3	8.3	-
СВ	0.40	0.41	0.42	_
AS	240	240	240	-
AP	276	276	276	-
LOD	7.00	6.95	6.90	7.20
BOT	4.5	4.5	4.5	6.1
NE	2	2	2	3
RPM	1800	1800	1800	-
PD	3850	4262	4746	-
PE	2551	2880	3264	_
PI	4427	4902	5458	6000
R	300	300	300	-
NCREW	20	20	20	-
NDECK	2	2	2	2
WH	77.5	77.5	77.5	-
WO	17.7	17.7	17.7	
WM	33.6	36.8	40.5	-
WPAX	42	42	42	-
WFUEL	8.3	8.9	9.5	10.9
WFWPROV	4.6	4.3	4.1	1.5
WCREW	2.7	2.7	2.7	-
BC (milUS\$)	5.5	5.7	6.1	
ABC (milUS\$)	_	-	-	-
LS	129	132	136	-
DW	61	61	62	-
DISP1	189	193	198	-
DISP2	190	193	198	-

Table 6.1: Example A.

	Case I	Case II	Case III	Ship Data
Vessel Type	PC	PC	PC	PC
Engine Type	Diesel	Diesel	Diesel	Diesel
Propulsor	Water Jet	Water Jet	Water Jet	-
A_{S}/N_{PAX}	0.65	0.65	0.65	0.59
A _P /A _S	1.20	1.20	1.20	1.18
NPAX	400	400	400	420
VS	33	35	37	37.5
LOA	42.2	42.2	42.2	40.0
LWL	37.0	37.0	37.0	35.6
В	11.4	11.4	11.4	10.1
BH	3.3	3.3	3.3	
Т	1.6	1.6	1.6	1.5
D	9.0	9.0	9.0	
S	8.1	8.1	8.1	-
СВ	0.51	0.52	0.54	-
AS	260	260	260	247
AP	312	312	312	291
LOD	7.96	7.89	7.80	-
внот	2	2	2	-
SOL	0.22	0.22	0.22	-
NE	2	2	2	2
RPM	1800	1800	1800	-
PD	4582	5212	6102	-
PE	3036	3521	4196	-
PI	5269	5993	7017	4000
R	250	250	250	-
NCREW	10	10	10	-
NDECK	2	2	2	2
WH	81.5	81.5	81.5	-
WO	26.0	26.0	26.0	
WM	39.3	44.0	50.7	-
WPAX	42	42	42	-
WFUEL	8.3	9.1	10.2	10.1
WFWPROV	3.8	3.6	3.4	1.5
WCREW	1.4	1.4	1.4	-
BC (milUS\$)	7.1	7.5	8.1	-
ABC (milUS\$)	-	-	-	-
LS	147	152	158	-
DW	59	59	60	-
DISP1	204	208	216	-
DISP2	206	211	218	-

Table 6.2: Example B.

	Case I	Case II	Case III	Ship Data
Vessel Type	VM	VM	VM	VM
Engine Type	Diesel	Diesel	Diesel	Diesel
Propulsor	Water Jet	Water Jet	Water Jet	-
A _S /N _{PAX}	0.95	0.95	0.95	-
A_P/A_S	1.20	1.20	1.20	-
NPAX	650	650	650	600
NCAR	150	150	150	160
VS	36	38	40	34
LOA	100.9	100.9	100.9	100.0
LWL	88.5	88.5	88.5	89.4
В	15.1	15.1	15.1	16.0
Т	2.0	2.0	2.0	3.0
D	13.0	13.0	13.0	-
CB	0.35	0.36	0.36	-
AS	618	618	618	-
AP	741	741	741	-
LOD	9.00	8.95	8.91	7.77
BOT	7.4	7.4	7.4	5.3
NE	4	4	4	4
RPM	2000	2000	2000	-
PD	13142	14543	16028	-
PE	8961	10085	11288	-
PI	15114	16724	18433	26000
R	500	500	500	-
NCREW	50	50	50	-
NDECK	4	4	4	-
WH	414	414	414	
WO	164	164	164	
WM	102	111	122	-
WPAX	68	68	68	-
WCAR	150	150	150	-
WFUEL	45	48	51	-
WFWPROV	11	11	10	-
WCREW	6.8	6.8	6.8	_
BC (milUS\$)	24.6	26	27	-
ABC (milUS\$)	32.3	34.8	37.2	-
LS	679	689	699	-
DW	298	300	303	310
DISP1	973	989	1002	-
DISP2	976	986	1004	-

Table 6.3: Example C.

	Case I	Case II	Case III	Ship Data
Vessel Type	VC	VC	VC	VC
Engine Type	Diesel	Diesel	Diesel	Diesel
Propulsor	Water Jet	Water Jet	Water Jet	-
A _S /N _{PAX}	1.10	1.10	1.10	1.17
$A_{\rm P}/A_{\rm S}$	1.40	1.40	1.40	1.36
NPAX	650	650	650	620
NCAR	150	150	150	152
VS	36	38	40	36
LOA	82.7	82.7	82.5	76.6
LWL	72.5	72.5	72.4	68.0
В	21.3	21.3	21.3	22.2
BH	6.8	6.8	6.8	6.3
Т	2.8	2.8	2.8	3.0
D	13.4	13.4	13.4	-
S	14.5	14.5	14.5	15.9
СВ	0.45	0.46	0.46	
AS	715	715	715	726
AP	1001	1001	1001	987
LOD	8.50	8.47	8.43	8.50
ВНОТ	2.40	2.40	2.40	2.10
SOL	0.20	0.20	0.20	0.23
NE	4	4	4	4
RPM	1250	1250	1250	-
PD	23724	25454	27319	-
PE	16176	17651	19239	-
PI	27283	29272	31417	22800
R	400	400	400	300
NCREW	50	50	50	-
NDECK	3	3	3	-
WH	580	580	580	-
WO	142	142	142	-
WM	232	248	264	-
WPAX	68	68	68	-
WCAR	150	150	150	-
WFUEL	65	67	69	77
WFWPROV	9	8.6	8.1	4
WCREW	6.8	6.8	6.8	-
BC (milUS\$)	32.6	33.6	34.7	-
ABC (milUS\$)	33.4	34.3	35.2	-
LS	955	970	986	-
DW	317	318	321	360
DISP1	1273	1302	1302	-
DISP2	1272	1288	1307	-

Table 6.4: Example D.

	Case I	Case II	Case III	Ship Data
Vessel Type	VC	VC	VC	VC
Engine Type	Gas Turbine	Gas Turbine	Gas Turbine	Gas Turbine
Propulsor	Water Jet	Water Jet	Water Jet	_
A_{s}/N_{PAX}	1.10	1.10	1.10	_
A_P/A_S	1.40	1.40	1.40	-
NPAX	1500	1500	1500	1500
NCAR	440	440	440	440
VS	35	37	39	37
LOA	119.4	119.4	119.4	120.0
LWL	104.7	104.7	104.7	105.5
В	31.2	31.2	31.2	36.0
BH	8.2	8.2	8.2	-
Т	4.1	4.1	4.1	2.6
D	17.7	17.7	17.7	
S	23.0	23.0	23.0	-
CB	0.44	0.45	0.45	_
AS	1650	1650	1650	_
AP	2310	2310	2310	_
LOD	9.05	9.0	9.0	
внот	2.0	2.0	2	-
SOL	0.22	0.22	0.22	-
NE	4	4	4	4
PD	47645	51927	56283	-
PE	32193	35712	39338	-
PI	54792	59716	64726	60000
R	700	700	700	700
NCREW	150	150	150	-
NDECK	8	8	8	-
WH	1148	1148	1148	-
WO	805	805	805	_
WM	288	312	337	_
WPAX	157.5	157.5	157.5	_
WCAR	440	440	440	-
WFUEL	232	243	254	-
WFWPROV	37.5	35.5	33.7	-
WCREW	20.3	20.3	20.3	_
BC (milUS\$)	71.1	71.7	72.4	-
ABC (milUS\$)	89.7	90.7	91.5	-
LS	2241	2266	2291	_
DW	940	950	960	1433
DISP1	3181	3230	3230	3500
DISP2	3181	3216	3250	3500

Table 6.5: Example E.

	Generated Ship	Method 1	Method 2	Method 3
Vessel Type	PM	PM	PM	PM
Engine Type	Diesel	Diesel	Diesel	Diesel
Propulsor	Water Jet	Water Jet	Water Jet	-
A _s /N _{PAX}	0.60	0.60	0.60	0.60
A_P/A_S	1.15	1.15	1.15	1.15
NPAX	500	500	500	500
VS	36	40	40	40
LOA	46.4	46.4	46.4	46.4
LWL	40.7	40.7	40.7	40.7
В	9.0	9.0	9.0	9.0
Т	1.8	1.5	1.8	2.0
D	9.4	9.4	9.4	9.4
СВ	0.37	<u>0.45</u>	<u>0.39</u>	0.37
AS	300	300	300	300
AP	345	345	345	345
LOD	6.5	6.5	<u>6.39</u>	<u>6.30</u>
ВОТ	5	<u>6.08</u>	5	4.55
NE	2	2	2	2
RPM	1800	1800	1800	1800
PD	5905	7464	7264	7926
PE	4026	5257	5115	5582
PI	6791	8584	8353	9115
R	500	500	500	500
NCREW	20	20	20	20
NDECK	2	2	2	2
WH	98	98	98	98
WO	23	23	23	23
WM	49	61	59	64
WPAX	53	53	53	53
WFUEL	15	17	17	18
WFWPROV	8.7	7.8	7.8	7.8
WCREW	2.7	2.7	2.7	2.7
BC (milUS\$)	7.0	8.0	7.8	8.3
ABC (milUS\$)	-	-	-	-
LS	170	181	180	185
DW	83	85	85	86
DISP1	252	252	265	276
DISP2	253	266	265	271

Table 6.6: Example F.

	PM	PM	VM	VM
As/NPAX	0.55	0.75	0.85	1.25
A_{P}/A_{S}	1.10	1.30	1.15	1.45
NPAX	400	400	650	650
NCAR		-	150	150
vs	35	35	38	38
LOA	42.8	55.5	98.7	104.1
LWL	37.5	48.7	86.6	91.3
В	6.8	8.8	15.1	15.9
Т	1.5	2.0	2.3	2.4
D	8.1	9.3	13.0	13.5
СВ	0.44	0.31	0.35	0.33
AS	220	300	553	813
AP	242	390	635	1178
LOD	6.77	7.64	8.50	8.69
вот	4.50	4.50	6.50	6.50
NE	2	2	4	4
RPM	1800	1800	1250	1250
PD	3706	6906	16665	18903
PE	2504	4666	11556	13108
PI	4262	7942	19165	21738
R	300	300	1000	1000
NCREW	20	20	100	100
NDECK	2	2	4	4
WH	68	119	404	455
WO	16	26	161	179
WM	33	57	170	190
WPAX	42	42	68	68
WCAR	-	-	150	150
WFUEL	5.7	10.6	80.2	91.0
WFWPROV	4.3	4.3	21.4	21.4
WCREW	2.7	2.7	13.5	13.5
BC (milUS\$)	4.7	8.2	28.1	31.6
ABC (milUS\$)	-	-	34.8	34.8
LS	116	202	734	823
DW	58	63	353	365
DISP1	174	265	1084	1188
DISP2	174	265	1087	1188

Table 6.7: Example G.

Dimensions (L_{OA}, L_{WL}, B, T)

Installed Power (P_I)

Figures 6.1: Comparison of Design Study A against Ship Data

Dimensions (L_{OA}, L_{WL}, B, T)

Installed Power (P_I)

Figures 6.2: Comparison of Design Study B against Ship Data.

Dimensions (L_{OA}, L_{WL}, B, T)

Figures 6.3: Comparison of Design Study C against Ship Data.

Dimensions (L_{OA}, L_{WL}, B, S, b, T)

Figures 6.4: Comparison of Design Study D against Ship Data.

Dimensions (L_{OA}, L_{WL}, B, T)

Installed Power (P_I)

Figures 6.5: Comparison of Design Study E against Ship Data.

 $N_{PAX} = 400$, $V_S = 35$ knots

 $N_E = 2$, RPM = 1800

Figures 6.6.a: Effect of Comfort Levels, Design Study G.

 $N_{\text{PAX}}=650$, $N_{\text{CAR}}=150$, $V_{\text{S}}=35$ knots

 $N_E = 4$, RPM = 1250

Masses Figures 6.6.b: Effect of Comfort Levels, Design Study G.

7 CONCLUSIONS

7.1 INTRODUCTION

This final section reassesses the thesis main results and conclusions. Firstly, the significance of the present work is examined. Secondly, the concept of a further work process is then detailed in section 7.3. Finally, the main contributions and achievements are briefly outlined.

7.2 GENERAL DISCUSSION

- A technical design methodology has been developed and described which can be satisfactorily applied to the generation of principal particulars of fast ferries at the concept design stage. The methodology has been included in a computer based design program. Data and equations are presented in the thesis which facilitate the estimation of dimensions, powering, masses and building costs at the preliminary design stage. The procedure is suitable for high speed monohulls and catamarans which currently make up the majority of fast ferries. The scope of the current model would be enhanced with the inclusion of other multihulls, such as SES, SWATH and hybrid vessels, which offer the potential for further research.
- Background work associated with collecting and establishing the data and equations presented in the thesis indicates that it can be difficult to obtain, process and/or establish design data of adequate quality, particularly in the cases of masses and building costs. For this reason, caution should be exercised when using the data and equations, which should be only applied within the data range and for the correct vessel type.
- Complete calculations of a set of reliable, realistic and feasible main dimensions can be performed for high speed monohull and catamaran ferries. The methodology offers flexibility in the hull ratios and passenger comfort (such as seating and overall area per passenger).
- Approximate powering calculations offer reasonably reliable results for monohull and catamaran round bilge hulls. It would be desirable to enhance the scope of the powering module by including other hull types and more detailed calculations. At present, an approximation to water jet efficiency is used. Future work should focus on including the efficiencies of propellers and other propulsors.

- It is considered that the presented mass estimations offer reliable results. However, there is a general lack of reliable data for high speed vessels, which can restrict the quality of the estimations.
- Detailed calculations of building costs indicate that relatively reliable estimates of total cost can be obtained. The approximate estimates of building costs were not so reliable, particularly for small vessels. The overall costing procedures would benefit from improvements in the estimates of outfitting cost.
- Examples of the methodology have been used to demonstrate the scope of the technical design procedures. The resulting designs are found to be feasible and realistic, and suitable for further use in concept exploration and decision making methodologies.
- It is considered that, based on the data currently available, the methodology and design equations presented provide adequately reliable first estimates at the preliminary design stage. They should prove particularly useful for parametric concept exploration studies. It is also considered that the methodology developed and presented offers a good basis on which to build and develop further estimating techniques.

7.3 FURTHER WORK

The need for further work is important in order to improve some areas of the current methodologies and hence improve the overall accuracy of estimation of the design. These can be noted as follows;

- Enlargement of the database for the existing type of the vessels and calculations.
- Include different hull forms in the database.
- Include different types of propulsors along with engine configurations.
- Investigate the mass balance methods.
- Stability check on the overall design process.

7.4 SUMMARY

The work in this thesis can be summarised as follows;

• A robust method for estimation of initial set of main dimensions of fast ferries.

- A rigorous approach to calculate the installed power of fast ferries.
- A set of equations to estimate preliminary masses and costs of fast ferries.
- A computer program to create new designs efficiently.
- A comparison between results and existing ship data.
- Overall, creating a set of initial dimensions, power, masses and costs of four types of fast ferries with only few input variables.

8. **REFERENCES**

- [1] Bailey D., "The NPL High Speed Round Bilge Displacement Hull Series," *Marine Technology*, **4**, 1976.
- [2] Bertram V., "Estimating Main Dimensions and Coefficients in Preliminary Ship Design," *Ship Technology Research*, 45, 96-103, 1998.
- Buckland D.M., "Calm Water Resistance Estimation for High Speed Catamarans," M.Sc. Thesis, University of Southampton, Department of Ship Science, 1999.
- [4] Carreyette J., "Preliminary Ship Cost Estimation," *Transactions of the Royal Institution of Naval Architects*, **120**, 235-258, 1977.
- [5] Cordano A. and De Martini L. "SES 500-Fincantieri-Design Criteria," The 1st International Conference on Fast Sea Transportation, Trondheim, Norway, 179-198, 1991.
- [6] Czimmek D.W. and Schaub B.H., "Concept of a Large Surface Effect Ship for Fast Ocean Transport," *The 1st International Conference on Fast Sea Transportation*, Trondheim, Norway, 91-106, 1991.
- [7] Daidola J.C. and Reyling C.J., "Weight Definition and Control for Fast Craft," *Marine Technology*, 28(6), 329-339, 1991.
- [8] Doctors L.J., Renilson M.R., Parker G. and Hornsby N., "Waves and Wave Resistance of a High Speed River Catamaran," *The 1st International Conference on Fast Sea Transportation*, Trondheim, Norway, 35-52, 1991.
- [9] Etter D.M., "Fortran 77 with Numerical Methods for Engineers and Scientists," *The Benjamin Cummings Publishing Company Inc*, California, USA, 1992.
- [10] Fan M. and Pinchin M., "Structural Design of High Speed Craft-A Comparative Study of Classification Requirements," *The 4th International Conference on Fast Sea Transportation*, Sydney, Australia, 27-33, 1997.
- [11] Guenther C., "Prime Movers for High Speed Vehicles," The 1st International Conference on Fast Sea Transportation, Trondheim, Norway, 893-914, 1991.
- [12] Hughes O., "Two First Principles Structural Designs of a Fast Ferry-All-Aluminium and All-Composite," *The 4th International Conference on Fast Sea Transportation*, Sydney, Australia, 91-98, 1997.
- [13] Insel M. and Molland A.F., "An Investigation Into the Resistance Components of High Speed Displacement Catamarans," *Transactions of the Royal Institution of Naval Architects*, 134(11), 1992.
- [14] Joo Y.R., Nho K.Y., Jang H.S., Choi Y.K., Lavis D.R. and Forstell B.G., "Parametric Design Trade-Off Study and Preliminary Design of an SES Passenger Car Ferry," *The*

2nd International Conference on Fast Sea Transportation, Yokohama, Japan. 1531-1541, 1993.

- [15] Karayannis T., Molland A.F. and Sarac Williams Y., "Design Data for High-Speed Vessels," *The 5th International Conference on Fast Sea Transportation*, Seattle, USA, 605-615, 1999.
- [16] Karayannis T., "A Concept Design and Decision Making Model for Alternative High Speed Ferries," Ph.D. Thesis, University of Southampton, Department of Ship Science, 1999.
- [17] Kraus A. and Naujeck A., "Comparison of a Cargo Catamaran with Conventional Seaborne and Airborne Transportation," *The 1st International Conference on Fast Sea Transportation*, Trondheim, Norway, 293-308, 1991.
- [18] Litau H., "Design, Trial and Operation of 'Hong Xiang' SES Ferry," The 1st International Conference on Fast Sea Transportation, Trondheim, Norway, 529-539, 1991.
- [19] Molland A.F., Karayannis T. and Couser P.R., "Concept Exploration and Assessment of Alternative High-Speed Ferry Types," *The 4th International Conference on Fast Sea Transportation*, Sydney, Australia, 77-84, 1997.
- [20] Molland A.F. and Karayannis T., "Development of a Concept Exploration and Assessment Model for Advanced Fast Marine Vehicles," *The 6th International Marine Design Conference*, Newcastle upon Tyne, UK, 249-265, 1997.
- [21] Wellicome J.F., Molland A.F., Cic J. and Taunton D.J., "Resistance Experiments on a High Speed Displacement Catamaran of Series 64 Form," Report 106, University of Southampton, Department of Ship Science, 1999.
- [22] Molland A.F., Wellicome J.F. and Couser P.R., "Resistance Experiments on a Systematic Series of High Speed Displacement Catamaran Forms: Variation of Length-Displacement Ratio and Breadth-Draught Ratio," *Transactions of the Royal Institution* of Naval Architects, 138, 55-71, 1995.
- [23] Sainz M., "High Speed Marine Vehicles Parametric Hull Mass Estimation," M.Sc. Thesis, University of Southampton, Department of Ship Science, 1997.
- [24] Svensson R., "A Description of the Water Jets Selected for DESTRIERO," The 1st International Conference on Fast Sea Transportation, Trondheim, Norway, 1169-1184, 1991.
- [25] Svensson R., "Water Jet for Naval Applications," The Royal Institution of Naval Architects International Conference on New Developments in Warship Propulsion, London, UK, 1989.
- [26] Taggart R., "Ship Design and Construction," Society of Naval Architects and Marine Engineers, New York, USA, 1980.

- [27] Trincas G., Zotti I., Kahu O. and Totolici S., "Multi-Criterial Design Of Fast Monohulls For The Adriatic Shortsea Shipping Network," *The 4th International Conference On Fast sea Transportation*, Sydney, Australia, 191-200, 1997.
- [28] Trincas G., Biriaco A., Grubisic I. and Ponomarev A., "Feasibility Study on a High-Speed Catamaran: Comparison with Aquastrada," *The 3rd International Conference on Fast Sea Transportation*, Lubeck-Travemunde, Germany, 319-330, 1995.
- [29] Vrontorinakis I., "The Technical and Economic Assessment of Alternative Propulsion Engines for Fast Ferries", M.Sc. Thesis, University of Southampton, Department of Ship Science, 1997.
- [30] Warren N.F., Kecsmar J. and Sims N., "Water Jet Propulsion-A Shipbuilder's View", The Royal Institution of Naval Architects International Symposium on Water Jet Propulsion Latest Developments, London, UK, 4, 1994.
- [31] Watson D.G.M. and Gilfillan A.W., "Some Ship Design Methods", *Transactions of the Royal Institution of Naval Architects*, **119**, 279-289, 1976.
- [32] Wood W.A. and Hunter J.A., "TRICAT High Speed Ferry-Redesign for the US Market", *Marine Technology*, 36(1), 45-54, 1999.
- [33] Wright C., "Operation and Cost of High-Speed Craft," *Marine Technology*, 27(2), 104-113, 1990.
- [34] Yeh H.Y.H., "Series 64 Resistance Experiments on High Speed Displacement Forms," *Marine Technology*, 2(3), 248-272, 1965.

APPENDIX I

A1. DATABASE

A1.1. BACKGROUND

Appendix I contains information about the assembled database. An initial simpler database was first designed during earlier research, Karayannis [17]. This has been updated, expanded and modified during the current research programme until April 2000.

A1.2. GENERAL DESCRIPTION

The database includes over three hundred different vessels which have been recorded on four main spreadsheets representing the four major vessel categories, namely passenger-only monohulls (PM), passenger-only catamarans (PC), vehicle-passenger monohulls (VM) and vehicle-passenger catamarans (VC). The two catamaran databases also include all the different hull forms (SWATHs, SESs, wavepiercers and foil-assisted catamarans). For these hull types, relevant data are too few to analyse, and for this reason full analysis has been performed only for monohulls and conventional catamarans as it is mentioned earlier on this thesis.

In the spreadsheets, each row represents one vessel and each column represents different relevant information. Each column is often named as an abbreviation in order to accommodate as much information as possible. These abbreviations are described in Table A1.

The database has been focused on technical aspects such as main dimensions, seating and cargo areas, capacities, machinery installations, masses, some operational aspects and costs. Some of these values have been estimated from the general arrangement drawings, these are also described in Table A1.

The database has been developed in order to assist the generation of feasible and realistic technical designs for previous, current and future research studies. It is believed that it is an excellent tool great use for its purposes and can be easily updated and developed.

The relevant spreadsheets are presented as hardcopies at the end of this appendix. It should be mentioned that apparent lack of formatting is due to the fact that they were not designed to be used as printed spreadsheets. Therefore, they are also affixed at the end of the thesis in electronic format so as to be observed easily.

COLUMN	DESCRIPTION
Ship Code	Each vessel has been given a code to be recognised. There are mainly four different types of codes for four types of vessels, namely passenger-only monohull (PM), passenger-only catamaran (PC), vehicle-passenger monohull (VM) and vehicle-passenger catamaran (VC). Also, there are other vessel types for future studies, these are; passenger-only foil (PF), passenger-only SES (PS), passenger-only wavepiercer (PW), passenger-only SWATH (PSW), vehicle-passenger SES (VS) and vehicle-passenger wavepiercer (VW). Each vessel has a number immediately after the vessel type code. In some cases, different variants of the same design have been found often with slightly different characteristics from one operator to another. These are logged separately with the same number and with a lower case letter, such as PM1a and PM1b.
Des./Cons./ Yard	Designer, constructor or shipyard of the vessel whichever have been found.
L _{OA}	Overall length (m).
L _{BP}	Length between perpendiculars (m).
L _{WL}	Length on waterline (m).
В	Moulded and/or overall breadth (m). 'Mld' stands for moulded and 'oa' for overall.
D	Moulded and/or overall depth (m). 'Mld' stands for moulded and 'oa' for overall.
T	Draught (m).
b	Breadth of demihulls (m). This is given only for multihulls.
S	Separation of centrelines demihulls (m). This is given only for multihulls.
DWT	Deadweight (tonne).
DW Distribution	Detailed deadweights can be found in this column. These are represented as abbreviations and given as follows; Passenger (pax), fuel (f), fresh water (fw), luggage (lug), crew (cr), lubricating oil (lo), provisions (pro), bicycles (bike), store (str).
LS	Lightship (tonne).
Δ	Displacement (tonne).
GRT	Gross tonnage (tonne).
NT	Net tonnage (tonne).
Fuel	Fuel capacity on board (lt).
Fresh Water	Fresh water capacity on board (lt).
Other	Any other capacities (lt) and weights (t) have been found. Cargo and store are

Capacities,	taken as weights and always united as tonne. The rest of the capacities units are
Weights	all given as litre. These are represented as abbreviations and given as follows;
	Diesel oil (do), fuel oil (fo), lubricating oil (lo), hydraulic oil (ho), sewage (sew),
	sewage treatment (sew trt), bilge (bil), oily bilge (obil), sullage (sul), cargo (crg),
	store (str), black water (bw), grey water (gw), dirty oil (doil), reserve osmosis
	(rosm), container (con), bicycle (bike).
Pax	Number of passengers.
	It gives information on the passenger distribution. Abbreviations used in this
	column are as follows;
	Upper deck (ud), main deck (md), upper deck bow (udb), upper deck lounge (udl),
Der	upper deck saloon (uds), main deck saloon (mds), upper saloon (us), main saloon
Pax	(ms), aft saloon (as), bow saloon (bs), forward saloon (fs), forward lounge (fl),
Distribution	upper external (ue), very important person (VIP), upper saloon (us), lower saloon
	(ls), main bow saloon (mbs), main aft saloon (mas), bow saloon (bs), upper deck
	external (ude), forward deck external (fde), internal (in), top deck (top) external
	(ex).
Crew	Number of crew.
Cars	Number of cars.
Vs	Service speed (knots).
V _M	Maximum speed (knots).
SFC	Specific fuel consumption (units are given for each data individually).
RPM	Revolutions per minute for main engine (rpm).
Range	Range of the vessel (nautical miles).
	Column supplies information about the main propulsion plant. These are as
Propulsion	follows;
Plant	Main engine type, number of engines and installed power (kW). Main engine
	type is presented as abbreviations, namely diesel engine (D) and gas turbine (G).
	It provides data on auxiliary plant of the vessel. They can be summarised as
Auxiliary	follows;
Power	Number of engines, installed power (kW else it is noted next to the value) and
	revolutions per minute (rpm).
Propulsor	This column includes propulsor type and number. For example; 2wj stands for
Ttopulsor	two water jets and 2prop two propellers.
GA	It indicates the availability of the vessel's general arrangement. '*' means that
	general arrangement is obtainable from the given reference.
Page	This is the page number of the relevant reference which has the data been taken
2-	from.

	It is the source of the data. There are several magazines and publications which
	most of the data have been gathered from. These are Fast Ferry International
	(FF), Ship and Boat (SB), Naval Architect (NA), and International conference on
Source	fast sea transportation (FAST'Year). Roman numbers present the month of the
	year.
	Example; FF/III'96 represents Fast Ferry International magazine's March 1996
	edition.
BC million	Available building cost values. The units are noted next to the value.
ESTIMATED V	VALUES
Fn _{M/WL}	Froude Number (based on waterline length and service speed).
L _{OA} /B	Overall length and breadth ratio.
L _{wL} /B	Waterline length and breadth ratio.
$A_{s}(m^{2})$	Seating area.
$A_{\rm S}/p~(m^2)$	Seating area and number of passengers ratio.
$A_{P}(m^{2})$	Passenger area.
$A_{\rm P}/p~(m^2)$	Passenger area and number of passengers ratio.
A _P /A _S	Passenger area and Seating area ratio.
B/T	Breadth and Draught ratio.
L _{wL} *B	Waterline length and breadth product.
∇	Underwater volume of the vessel.
$L_{WL}/\nabla^{1/3}$	Waterline length and underwater volume ratio.

Table A1.1: Database description.

A1.3. CONTRIBUTIONS

The major contributions of this thesis to the database can be summarised as follows;

- There has been an increase of 39% in the number of vessels and extra information columns have been included. These are as follows; Demihull breadth for multihulls, Deadweight distribution, Net tonnage, Lightship, Crew number, Specific fuel consumption, RPM of main engine, Auxiliary power details (number of engines, power, and rpm), Propulsor details (number and type), Building cost, Page of the source.
- All the vessel data after September 1998 have been included to the database during the current research programme.

- Database format has been altered to make it easy to understand, and use. All the abbreviations are made to a uniform standard, which makes it easier to use. Where it is necessary columns have been expanded. The font has been uniformed.
- A detailed table has been created to give all the details of the database and meanings of the abbreviations.
- Passenger distribution, Other capacities data columns have been edited in more detail.
- Some calculations have been undertaken to find out separation between demihulls, Froude number, Displacement volume, L/B, S/L, B/T, L×B, b/T, L/b products.

Approximate vessel data have been entered to the database during the current work can be summarised as following table.

Vessel	Contri	butions	Tatal	Percentage of the
Туре	Current Research	Previous Research	IUtai	Current Contributions
РМ	33	108	141	33 %
VM	15	28	43	54 %
PC	10	60	70	17 %
VC	63	120	183	53 %
Total	121	316	437	39 %

Table A1.2: Contributions to the database from the current study.

"M1		LeOA (III)	$L_{BP}(m)$	L _{WL} (m)	B (m)	1 1	D (m)		T (m)	DWT (i)	LS(t)	Δω	GRT	Foel (IO	Fresh Water (It)	Other Conneities (ff) / Weights (i)	0	Description of the state			T
	Westport	28.90		24.55	6.90				1.65		1 10.00			11350	1 × 1120	Other Capacities (ii)7 weights (i)	Pax	Pax Distribution	Crew	$V_{\rm S}$ (kn)	$V_{\rm M}$ (kn)
<u>'M2</u>	WaveMaster	33.00		28,40	6.50		1.80		1.80		• • • • • • • • • • • • • • • • • • • •			10000	1000		149		A	28,0	a An ann an a
.ºM3	Pelmatic	31.00	26.50	26.50	6.50	mld			1.20		· · · · · · · · · · · · · · · · · · ·	en contrar e		3000	1000		2(A)	······································	- 2010-01 - 010 - 01	32.5	in the second se
PM4	Pelmatic	48.00	39.50	39.50	7.90	mld	· · · · · · · · · ·		1 30		·····			12(00)	430		149			34.0	- :
PM5	Oceanfast	31.90		27.70	6.50	-	1.90	mld	1.00		4		{	13000	1500		450		1	36,0	
PM6	Oceanfast	40.00		34.60	9.50		3.50	mld	1.10		· · · · · · · · · · · · · · · · · · ·			0000	1000		228			28.0	30.0
PM7	WaveMaster	35.40		31.60	7.00	mld	1 85	mld	2.10		{···· ····· ···	0.7		10000	1500		340			34,0	36.0
PM8	WaveMaster	31.50		26.60	6.50	mld	2.55	mld	0.00			63		5800	600	sul 600	260	2 40		27.0	
PM9	Aluminium Craft	35.00		30.12	7.40	ind	2.00	mild	0.90		-		-	00.87	1000	-	196			28.0	1
PM10	Aluminium Craft	37.00		31.84	8 (10)	+	1 70										250			27.0	
PMII	Aluminium Craft	32.00		28.50	7.40		2.70	····	1.95				070				350			30,0	1
PM12a	Ahnaz/Agat/Sukhoi	54.00			9.00	+ · · · · · · · · · · · · · · · · · · ·	5.00		1.4.1				229	2 x 2000	1 x 1000		275			25.0	26.0
PM12b	Almaz/Agat/Sukhoi	54.00			0.00	4 - 4	2.00							15000	1500		400			50.0	1
PM12c	Almaz/Agat/Sukhoj	54.00		• • • • • • • • • • • • • • • • • • • •	0.00		5.00							22(90)	1500		400			55.0	
PM13	Marinteknik	35.00			7.50		5.00	mfran a fi	1.70					23000	1500		400			60.0	
PM14	Pengnin	34 (0)			7.40		3.00		1.20								200	178 + 22 up		32.0	
PM15	FBM	70.00		65 (3)	12.50		5.00	1 1	1.55		1		ł			1	230	200 + 30 up		32.0	
PM16	FBM	45 (9)	·	43.00	15.50				2.00		÷						650-800		1	33.0	35.0
PM17	FBM	35 (8)		27.65	7.00	÷			1.50								500				35.0
PM18	Semo	20 (V)	35.50	54.05	7.00	÷+			1.1-1.8								170-210	······································	a		33.0
PM19a	Redringer	50.40	2.0.00	12.00	7.20	ea	2.5.5	+ +	1.22		1			4500	1000]	194	92 + 42 as + 60 up		32.0	37.0
PM19b	Redringer	50.40		43,00	9.20	oa	4.20		1.35	57		183.6		32000		5 	511	106 + 290 mid + 115 up			29.0
PM20	Linssen, Weeft	60.80	(3.00)	43.00	1.7;8,8		4.20		1.35	56	127.6	183.6		28000	15000		500	134ls + 158mbs + 106mas + 102us	6		28.5
PM21	Damachton / NCA	02.60	02380		10,40		4.80		2.00								925	158 dn + 428 + 339 un	÷	38.0	200
PM22	Derecktor / NCA	32.50		-	8.50	1.1			1.20								100			35.0	4 · · · · · · · · · · · · · · · · · · ·
01220	Dereckion / NCA	36.40			8.50	4			1.60								150			30.0	
011220	Connection	36.40			8.50		····		1.60								150	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	40.0	÷
03424	Washing	33.50		28.42	6.85	oa			1.32					1			260	172 + (76+12) up		78.0	dan sarah
19124	wavemaster	30,30		25.20	6.50	mld	3.80	mld	0.95		1		1	5600	1000	sul 750	101	116 (13)62) up	å	20.0	20.0
<u>19125a</u>	wesiport	30.50		l 6	6.90	mld									1135	1	150	107 + 48 up	i.	1	30.0
W1250	westport	29.00			6.90						1			11350	1125		149	102 T 46 HP		780	
10126	Marinteknik	45.00		39.20	8.90	mld			1.30					30000	2000	lo 1000	550	117br + 212au + 111au + 116ad	(·····	28.0	
11127	Allen Marine	19.50			3.90	1			0.45				27	1 x 1900	1 x 152		40	11203 + 21203 + 11103 + 11500			
2M28	Tenix Fast Ferry Designs	45.00		39.70	8.50		4.00		1.60	45	1		1	4000	1000		49			32	
'M29	Tenix Fast Ferry Designs	67.00		58.40	10.00				1.75			·····					- 400	······	<u> </u>		
· <u>M30</u>	SBF Shipbuilders	31,00		26,60	6.50	mld			1.50					5000	1000		2007	1/2		1	te e e
² M31	SBF Shipbuilders	31.00		27,00	3.70	mld			0.85		······································			8000	1000	· · · · · · · · · · · · · · · · · · ·	230	107 ms + 25 us + 16 md + 30 ud	l	30.0	1 6
M32	WaveMaster	37.40		31.30	8.00	oa	3.00	mld	2.45				i i	10000	1000	ent 750	190	140 ms + 42 us + 2 md		33.5	
<u>'M33</u>	WaveMaster	50.00		42.50	9.00	mid			2.00	30	5			8000	1(99)	10 500 + mm 1000	212	1000 mos + 72 mas + 82 us + 18 ud	5	24.0	
2M34	SBF Shipbuilders	35.00		31.70	7.00	mld			1.90		· · · · · · · · · · · · · · · · · · ·		10 <i>0</i>	10000	1(88)	1 10 500 T SCW 10(0)	324	0077	baanna ann	30.0	
'M35	OCEA Fast Ferry	24.55	23.50	20.00	6.50	mld	2.50	1	1.20	15.8			100	5010	1000	1, 250	314	207 ms + 105 us			32
PM36	OCEA Fast Ferry	27.60	27.30	23.70	7.00	mld	2.65	1 1	1,40	18.8				4400	1000	10 230	135	80 md + 55 ude	3_4		1
PM37	OCEA Fast Ferry	30.00		27.20	5.50	mld	2.50		2.10	11.8	· · · · · · · · · · · · · · · · · · ·		100	4400	1000	10 230	180	108 md + 72 ude	3_4	ļ	
PM38	Rodriquez Cantieri Naval	54,46		46.70	9.30		4.45		1.40		·		(10887	io 230	90	30 md + 60 ude	2	1	3()

Shin Code	SEC	RPM	Range (nm)	Propulsion Plant (kW)	Auxilary Power (kW) Pro	pulsor	GA	Page	Source	FRMWL	L _{OA} /B	L _{wL} /B	$A_{\rm S} ({\rm m}^2)$	A_s/p (m ²)	$\Lambda_{\rm p} ({\rm m}^2)$	A_p/p (m ²)	$\Lambda_{\rm P}/\Lambda_{\rm S}$	B/T	L _{WL} * B	V	L _{W1} /V ^{1/3}
PMI				D 2 x 1287			*		FF / I-II '95	:	3.980	3.558	95.000	0.638	117.000	0.785	1.232	4.182	169.395	111,801	5.096
PM2			450	D 2 x 1240			*		FF / III 195		3,851	4.369	114.000	0.570	131.000	0.655	1.149	3.611	184.600	132.912	5,565
PM3				2 x 1500			····· }		FF/IV '95	1	4.769	4.077	\ 	1				5.417	172.250	82,680	6.083
PM4	·····			3 x 2000	and a second sec				FF / IV 195		6,076	5.000	I					6.077	312.050	162.266	7.242
PM5			150	D3			* [1	FF / VII-VIII '95	0,936	4,908	4.262	130,000	0.570	141.000	0.618	1.085	6.500	180.050	72.020	6,658
PM6	, an , and ,		300	D 2			*		FF / VII-VIII '95	1,005	4.211	3.642	254.000	0.747	314,000	0.924	1.236	8.636	328.700	144.628	6.592
PM7			420	D 2 x 970			*		FF / XII '95		5.057	4.514	184.000	0.708	205.000	0.788	1.114	3.333	221.200	185,808	5.538
PM8			360	D 3 x 660	· · · · · · · · · · · · · · · · · · ·		\$		FF / XII '95		4.846	4.092	106.000	0.541	136.000	0.694	1.283	7.222	172.900	62.244	6.712
PM9				D 3		1	1		FF / I-II '96		4,730	4.070		ļ					222.888	0,000	
PM10				D 2 x 1940		1			FF / 1-11 '96		4.625	3.980	1			: 		L	254.720	0.000	
PMII	······································		180	D 3 x 620			*		FF / I-11 '96	0.800	4.324	3.851	159.000	0.578	172.000	0.625	1.082	5.920	210.900	105.450	6.032
PM12a			400	D 4 x 2000					FF / III.IV '96		6.000		Į	1	-	1			1		
PM12b	1		400	D 2 x 5000					FF/IILIV '96		6.000				ļ		التبنى استقتلتنا	: 9	J		
PM12c			400	D 2 x 5600					FF/III.1V '96	j	6,000						ļ) An an Angang an an an	·		
PM13				D 3 x 735			*		FF / XII 96		4.667				4			6.250			Lee conserved
PM14				D4x610			*		FF / XII '96		4.595			-			Į	5.481			4
PM15	1		1			1	*		SB / V 196	0.713	5.185	4.815						6.750	877.500		
PM16	······		1	D 2	1				F	0.887	5.114	4.773						5.867	369.600		
PM17				D 2/3					F	0.949	5.000	4.664			ļ., ,				228.550		
PM18				D 2 x 1470			*		FF/IV '97	1	3.889	1						5.902	A. 7	100.100	7 (20)
PM19a				D 2 x 2000					FF / V1 '97	0.726	5,485	4.674	L			مد د مىسا مىمىنى .		6.815	3953400	1/9.122	7.620
PM19b	232 g/kWh	1975	280	D 2 x 2000	2 x 100		*		FF / V 99	0.714										179.122	7.628
PM20	1		550	D 4 x 3805			*		FF / V 197		6.712							5.200		: }	
PM21				D 2 x 1500		1			FF / V '97	1	3.824	1		1				7.083	-		
PM22a				D 2 x 610					FF / V 197		4.282							5.313			
PM226				D4x610					FF / V '97		4.282							5.313	104 622		
PM23				D 2 x 735			*		FF71X '97		4.891	4.149				,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		5.189	194,677		
PM24	1		250	D 3 x 660			*		FF / IX 197	0.981	4.662	3.877						0.842	105,848)		1
PM25a]			D 2 x 1950					FF / V '98		4,420									¢	
PM25b		1835		D 2 x 1460					FF / VII-VIII'99		4.203				مد - با المراجع			6.046	540 000	\$	de en server
PM26							*		FF / XII 98		5.056	4.404						0.840	346.660		4
PM27	225 lt/h	1	1	D 2 x 412					FF / 1-11 98	4	5.000			÷.		4	1	5 212	227.450		4
PM28	1	1835	250	D 2 x 2300			*	6	FF7X'99		5.294	4.671						5 714	597.430		para ana
PM29								6	FF / X '99		6,700	5.840						3.714	173.000		. .
PM30		2100		D 3 x 610		buob	*	21	FF / X '99		4,769	4.092						4.333	00.000		
PM31	_	2100		D 3 x 790		3 wj	*	21	FF / X 99		8.378	7.297	1			1		3 265	250.400	1	1
PM32		2300	350	D 3 x 783		3 prop	*	14	FF / XI'99		4.675	3.913			· · · · · · · · · · · · · · · · · · ·			4.500	287.5(0)		··••
PM33	200 g/kWh	1850	2()()	D 2 x 2000		و و	*	1 8	FF7 XII 99		5.556	4.722	- 					3 6 8 4	221 0(8)	\$	
PM34	598 lt/h (75% mer)	2100		D 3 x 790			*	36	FF / III (0)	0.933	5,000	4.529						5 417	130,000	ikan sara a	
PM35	470 1/h	2100	290	D 3 x 610	42 kVA at 1500 rpm	.1 wj		22	FF7 BF00	1	3.111	3.077			1	1		5 000	165 000		1
PM36	590 II/h	2100	210	D 3 x 788	60 kVA at 1500 rpm	3 wj		22	FF7100	1	3.943	5,580						2.619	149.600	di sana	· [· · · · · · · · · · · · · · · · · ·
PM37	455 Wh	1950	290	D 2 x 883		2 prop		22	FF710100	0.945	5,455	4,945		···· [·				6.643	434 310	÷	
PM38	1			D 3 x 2320		Эwj		23	FF7 III '00		5,856	5.022						0.04.3	4.94.210	-i	

Ship Code	Des/Cons/Yard	L _{OA} (in)	L _{sp} (m)	L _{WL} (m)	B (m)		D (m)		T (m)	b (m)	S (m)	DWT (t)	DW Distribution (1)	Δ (1)	GRT	NT	Fuel (lt)	Fresh Water (11)	Other Canacities (1t) / Weights (1)	Pay	Pay Distribution	Crew	V (kn)	V am
PCla	Rosendal Werft	29.00	27.40	27.20	8,00		3.10		1.50		5.50						1.001(10)	Treat (fuller (fr)	erg 7	100	Tax (Ast brutton	1 1.10	32.0	• N (KII)
PCI6 PC2a	Rosendal Werft	29,00	26.10	27.20	8,10	4	3.10		1.50		5.55								erg 7	100			32.0	
РС2Ь	Rosendal Werft	36.00	32.77	31.60	9.90	1.1	3.10		1.74	1.1	6.15			1.00		100	65(0)	1500	1500	308		-	35,0	
PC3	Ineat / Nichols	32.40		28.70	9.10	oa			1.40							1	2 x 8525	3 x 2460	sew 1500 sew 3140 + str 1 13	.10			25.0	
PC4a	Austal	40.10		35.00	11.50	mld			L40								17000	1500		355	266 + 81 up + 8 VIP		40.5	
PC40 PC4c	Austal	40.10		35.00	11.50	nuld		1	1.40					1.1			1(8)00	1500		338	262 + 60 up + 16 VIP		33.5	
PC5	Lock Crowther	35.00		32.15	11.60	100			1.60		8.60						20800	1500		332	256 + 64 up + 12 VIP	1	40.2	
PC6a	Marinteknik	42.10		36 80	11.00	mld		1 1	1.20	3.55	6.95			1.00						395			29.0	30,0
PC6b	Marinteknik	42.00		37.95	11.50	mld	3.70	ruld	1,30	3 35	7.65	46.80	and the second s				2 x 5000	1×1000		506			33.0	
PC7	Austal	42.10		36.00	11.00	unid	2 500		1 70	3.70	7,05							and a survey		381			50.0	
PC8a	Bâtservice	38.00		33.95	11.20	1000	3.90	muu	1.60	3.90					543		14000	1500	0/05	331			42.5	
PC9	Incat Designs	47.40		46.40	12.20	08			1.60	3.20	9,00			1000					acw and	550		1	3530	
PC10a	Kyacriter Fjellstraud	40.00		35.55	10.10	1.1	3.97	mld	1.50	·							2 x 6000	1 x 1500	bil 1 x 1500 + sew 1 x 1500	306		-	37.5	
PCIBe	Kvaerner Fiellstrand	30.00		35.55	10,10	4.4	3.97	mld	1.50	2.1				(2 x 6000	1 x 1500	bil 1 x 1500 + sew 1 x 1500	333			37.5	
PC11	Occanfast	35.60		29.10	10,60		3.70	ndd	1.40					4			2 X 6080	1 x 1500	bil 1 x 1500 + sew 1 x 1500	420	222 - 25	4	37,5	
PC12a	Occanfast	40,00		33 20	12,00		3.70	bhu	1.40								12000	1500		366	222 + 28 up 282 + 84 up		30.0	37.0
PC12h	Occatefast	40.00		33,20	12.00		3.70	ndd	1.40					1						300	252 + 48 up	1	34,0	36.0
PC13h	Occanfast	42.00		35.20	12.00	1	3.70	ndd	2.20								14000	1500		380	274 + 106 ap		42.0	44.0
PC13e	Occanfast	42.00		35,70	12.00		3.70	mid	2.20				and the second second				20000	2000		415	334 + 81 up	1	, 41.0	43,0
PC14	Oceanfast	55,00		48.30	15.00		3.70	mld	1.50								22000	1500	-	572	400 ± 126 up 418 (±30 VIP) ± 124 up	1	38.0	40.0
PC15	Marinette Marine	30.00		27.00	9.10	14		1.1	0,90					1			2 x 3800			400			35.0	38.0
PC16h	FBM	45.00		43,00	11.80	ou .	100	1	1.40		8.60			1 .		1.1	23000	1000	lo 100	496			20.0	
PC17	Nigel Oce Associates	40.10		33.00	10.60	mld		1 × 1	1.60		5,00			ł.			12000			496			23,0	25.0
PC18	WaveMaster	42.00		36.00	12.00	nild	3,70	mld	2.00	2.75	8,30						19000 7 39000	2000	sul 1000	380		ł	42.0	
PC19 PC20	Incal Designs Abundulary Cenfi	49.92		49.68	12.40	4.4			1.80	3.00	9.40									550		1	40+	
PC21	Lloyd's Ships	38,00		33.66	12.00	terrane in the second	4.45		1.80	3.20	8.30	40.00		124	567		12000	18(0)		360			32.0	34,0
PC22a	Advanced Multihull Designs	41.27		36.23	12.00	生性		4	1.50		· ·	40,00	a second and second	101			10500	4000	to 11.5 + fw 3.8	400		4	30,0	
PC23a	his	39.92		38.00	10.24	cia -			1.50			35,00		1.1		6		760	to 4,2	160		1	26.6	37.0
PC236	luis	39.92		38.00	12.74	618			1.56		[]	51.00		1				1100	fo 6,6	240			29.8	33.3
PC24	Fanille Dufeer	38.60		34.20	12.74	- nu			1.62			72.00		199				1800	fo 8.8	384			31.6	36.1
PC25	SBF	31.70		28.08	9,60	1		1.1	1.00	1	1.1			144		÷				300	218 + 12 no (1-1 mbm)		30.0	
PC26a	Westamarin	42.00		37.37	10.00	ndd			2.13					1) · · · · · · · · · · · · · · · · · · ·	400	314 + 86 up		38.0	42.0
PC27	Westaniarin	42.00		37.37	10.00	inid			2.18	2.75	6.85			1	499	÷	2 x 3200 + 2 x 4200	2 x 1000	lo 1x250 + sew 1x2000	400			38,0	42.0
PC28	Oceanfast	44.80		38,30	12.00	08	3.70	bía	2.20	3.60	6.05			- · ·						225	A15 - 100			
PC29	Daewoo	40.25		35.65	9.30	untd		1.1	1.50							1000	14000	1500	a and a second	350	342 * 100 up		38.0	40.0
PC30a	Senso	40.00	36,50	36.50	11.50	4.4	3.95	1	1.50					155						351		1	35.0	
PC31b	FBM	45.00		40.00	11.80		4.76		1.45	1.00	8.50		· · · · · · · · · · · · · · · · · · ·	188		1.1				312			44,0	
											01240					1		1.11		A32			45,0	1
PF1a	Hyumlai	45.50		37.98	11,40	οa	5.10		1.60		é									300	708 + 92 up	·	35.0	
PF1h	Hyundai Munimuluulu	45.00	27.00	37.56	11.40	0a	5.10		1.60											300	208 + 92 up		40,0	· · · · · ·
PF2b	Marinteknik	45.00	37.00	37.00	11.00	mid	4.10	ndd	1.90	2.75	7.76	190.00					2. 0000			400		J	50,0	54.0
PF3a	Kvaerner Fjellstrand	35.00		29.65	12,00		4.20	inid	3.63		<u>. 1-4-7</u>	100.10		· · · · · · · · · · · · · · · · · · ·	450		2 x 1000	1 x 2500	In 1x400 + bil 1x1000 + nm/1x1500	445			41.5	
PF36	Kyaerner Fjellstrand	35.00		29.65	12.00		4.20	mld		1		50.00						1		483			4,3,6	· · · · · · · · · · · · · · · · · · ·
PF5a	Ditachi	30.00		÷	11.70	-		· · · · · · · · ·	1.75		ļ	1 [·				12400	2300		350	······		46.0	
PF5b	Hitachi	39.50			11.40	nid	3.70	bku	1.90	÷	<u> </u>		· · · · · · · · · · · · · · · · · · ·		284	· · · · · · · · · · · · · · · · · · ·			· · · · · · · · · · · · · · · · · · ·	200	170 - 30 m			45.0
PF6	Rodriguez	31.20		26.40	6.78	mld	3.90	hull	1.45					121	210	80				240	1321s + 108us		40.0	41.5
PF8	Rodriguez	28.60		26.21	5.86	mld			3.50		·····		· · · · · · · · · · · · · · · · · · ·		144	- 98				125	· · · · · · · · · · · · · · · · · · ·		32.0	34.0
PF9	Air Ride Seacoaster	19.80			5.80	ma		-	1.60			È		60	174	115				161	ten and the second		32.0	34,0
-						1					• • • • • • • • • • • • • • • • • • •	e				1		1	· · · · · · · · · · · · · · · · · · ·	102	102.08 + 00.00			·
PS1a	International Shipyards / Ulstein	39.60	<u>.</u>	33.30	11.90		4.00	mld	1.80								14(80)	1500		350	(45.0	48.0
upsus -	Unternational Shipyards / Histein Suma	38.30	-	33.30	11.90	4	4.00	ndd	3.00	-		1			1	1	14060	1500		350			45.0	48.0
PS3	Samsung	40,00 36 70		35.20	11.60		4.00	4 4	1.25		1		4	100	2	1				400			1	50.0
PS4	International Shipyards	38.70		33.19	11.60		4.007	1 - 1	2,84	1	1		and the second second	100		÷				352		4	45.0	19.0
PS5	Oceanfast / Ulstein	35,60		29.30	10.60	11	3.70	mld			1.11	1.000		1		1	10000	1000		250		1	35.0	37.0
PS7	Occontast / Ulstein Occonfast / Ulstein	39.60		33.30	11.90	4 4	3,70	mld		1				1	4.1.1		12000	1500		350		1	31.0	33.0
PS8	Oceanfast / Ulstein	55.00		48.15	11.90		4,30	mid mid		*	1.000			1	i .	1	14000	1500		380			42.0	44.0
			1				-					1	· · · · · · · · · · · · · · · · · · ·			1	421MMF	1500		348		÷	38,0	40,0
PW1	NQEA	45,45	÷	39.56	16.24			1	L 90	3.00	13.15	53,00		1	ť		2 x 6000 / 2 x 36000	2 x 3000	sul 1x4500	450		÷	÷	36.0
PW2 PW1	Auvanced Multihull Designs	42.50	<u>}_</u>	36.95	12.20	638	+ 60		1.95		8.95	38.00		\$			14000	1000		350			33.0	36.0
<u> </u>				÷	2.00	oa	4,50	·	1.80	· · · · · · · ·		20,00					16090	1(66)	lo 200 + sal 1000 + obil 180	158		8		27.5
PSW1	Almaz/Agat/Sukhoj	32.30	4		10,50	oa		1	2,30			275.00					9700	2008)		186			78.0	i
PSW2	SWATH LOPI (Nº A -1	39.70	ļ		14.20				2.00				······			1		÷		400		e de la come de La de la c	29.0	30,0
PSW4	SWATH International	33.60	÷	32.40	18.07	638L			2.90			63.74			1025		14090			367			27.0	
PSW5	SWATU International	37.20			18.00	Ga			3.50											449			26-34	
PSW6	Sansing	34,00			13,00	Ca			2.70			41,00		200			· · · · · · · · · · · · · · · · · · ·		1	350	······		30,0	31.5
PC44	Austal			35.00	11.50		3.00		1.75		ł			4		4			L	ļ				
PC4e	Austal	40.10		35,60	11.50	nid	3.80	nid	1.35			1	· · · · · · · · · · · · · · · · · · ·	ł	ļ		2 x 5000 2 x 5000	1 x 1500	·	318	198 + 108 up + 12 VIP		34.0	
PC4f	Austal	40,10		35,00	10.80	bka			1.40	1	1		······································				10000	1500	· · · · · · · · · · · · · · · · · · ·	304	222 + 90 lip + 26 VB ² 250 + 54 tm		35.0	
PC8b	Batservice	38,00			11.46	oa	3.90	mld	1.65				· · · · · · · · · · · · · · · · · · ·				· · · · · · · · · · · · · · · · · · ·		4 · · · · · · · · · · · · · · · · · · ·	354	248 + (100+6) up		35.0	
PC10d	Kvacraer Fiellstrand	38,00	ģ i		11.46	, na	3.90		1.84	ļ	ļ	37.43		144	531		2 s 3000	1 x 1500	lo 2x130 + sew 1x1500 + sul 1x100	357	250nid + 100ad + 7VIP		33.0	38.0
PC10e	Kvacraer Fjellstrand	40.(8)	¢		10,10			÷	4.40	· · · · ·	÷	52.00		· · · · · · · · · · · · · · · · · · ·	478		2 X 5000	1500	sew 1500 + bil 1500	376	253ms + 123ms		36.0	
PC195	Ineat / South Australian Ships	49.92		46.68	12.40	ester of Light of	4.13	nıld	2.08	3,00	· · · · · · · · · · · · · · · · · · ·	47.95			0		19800	2800	sew 1000	430	270 108 4 24 88		30,0	41.0
PC22b PC22e	AMD. / Dakota Creek	41.27	\$	i ngenari	11.50	ou		4. 4	1.50			40.00					14000	3800	·	325	garan ana pananan ana arawa arawa arawa Arawa arawa pananan arawa arawa arawa		32.0	36.0
PC22d	AMD / Dakota Creek	41.30		30.23	11.50	rietd con			1.50	3,00	· · · · · · · · · · · · · · · · · · ·	40.00					14(80)	3800		301	182 + (94+25) ap			32.0
PC26e	Bâtservice / Westamarin	42,00		37.40	10.00	nıld	4.10	mld	2.20				······	+			1800	OINRI		307	212 + (92+21) ap 306 + 86 up		300	36.0
PC30b	Semo	40.00	36.50		10.40	cia.	4.10		1.35		1	1		1	290		2 x 4000	2000	2	372	244 + 128 up		34.0	39.5

Passenger-only Catamarans

.

Page 1 of 4

Passenger-only Catamarans

PC26c PC30h	PC224 PC224	PC19b PC22b	PC10d PC10e	PC35	PC4c	PENI	PSW5 PSW6	PSW4	PSW1		PW1	PS8	PS6	PS3 PS4	PS16 PS2	PSIa	644	P177	base base	PF5a PF5a	PF3a PF3b	PF2b PF2b	PF1b	PC3Ih	PC31a	PC28 PC29	PC26b PC27	PC25 PC26n	PC23c PC24	PC23a	PC21	bC.16 bC.16	PC17	PCI6a	PCH	PC13a	PC12a PC12b	PC10c	PC10a	PC3a PC9	PC3 PC5c	PC'6b	PCAc	PC4a	PC21	PCIN	10C'1a
					0.82 1/1					1-1												L L		4	łł	44	I			-				11		- I I	<u></u>	.			<u></u>					-ii	
			2000							2102	2316								1000						No. 1 5 No. 11																						
270		280	750				200	2(4)	250	477	220	390 381	200	250	4007 300	4007300		1.247	171	400	300	200	(K)K			200					10		5 5 1	10004	390		250	200				275					
02x12			90			D	P	0	88		,			50	D		-				9				 								,											 Юн			
60 + D 2 x 1 2 x 1100	2 x 1960 4 x 1194	4 x 1940 2 x 1960	2 x 2000 2 x 2000	2 x 2840 4 x 788	2 x 1980 2 x 1980	2 x 1980	2 × 2000	2 x 2870	2 × 1500 2 × 2000	2 X 11.75	4 x 1343 2 x 1960	5 5 4	D2	2 x 2000 D 2	D 2 x 1970	e	2 x 1320 2 x 932	2 x 932	4 - 2023	2 X 2945	2 x 4474	D 4 4 x 1470	2 x 4105 2 x 4105	62	2 x 1940 2 x 4200	4 x 2000 2 x 2000	4 x 1485	2 X 1435 4 X 1485	2 × 1618	2 X 2000	2 x 2000	4 x 1932	2 × 2000	02 x 948	D4	D2	D2	2 x 2000 D 2	2 x 2009 2 x 2000	- 2 × 2060	D4	4 x 1415 2 x 1935	2 x 2000 2 x 2000	2 x 2600	04 x 735	2 A 1040 0 4 A 550	
089																		×.		· · · · · · · · · · · · · · · · · · ·								, ,		- 4 20-0	en i .				i												
1194 A				2 × 07						C9 X 7								V.A9 C12		··· ··································																											
			3			·····									-		2 pro										t							•••••													
	•••	• •	• •	• •	• •	•		• •	• •					ذ. • •	• •	•	•		*	*	* *			•	• •	•	• •				:	• •	• • •	••	: • • • • • • • •			*	••		• •		· ·		•.•		
													1																									-		1		:					
			•											:			15					-							:					•			:					ζ.,					
HF / A	HF/	1/4H	E.	1 T	HP/1			PAS	1477/11	/44	EL-14	1/44 1/14	1/11 1/15	147	HF /	5E /1	(년 (년	(H) (A)	1977	FF/10	小小 SB/	141	SB/	, 8B		1/#8	SB/VI	SB/	199	1/4F	141	140	HF/	/ 4M (/ 4M	IA/46	HE/VII	IIA/4H	11/141	I/JEF I/V/I/I	9. F	SB/1	197	HE ([14] [14]	HAVAH 1/4H	EV/H	
V 97 V 97	7.97	709 111 197	VII.98	(II) 97	N 197	29' N	9.7	56. L	56. A 715 96. Al	V-99	56. IIA 56. IIIA-	56. III 19.22	11 - 25 - 11 - 28 - 11 - 11 - 28 - 29	V 95	. 8 8 1 8 8	197 H	V'99 (11'99)	V 99	86. A	96. AI	76, A 56, IIIA	56. AI	56. II: 56. IX	£6. IN	56. AL	56. ID	-VIII '94	11 94 12 14 14	-11 % -11 %	-11-96 -11-96	ч 1. 1. 28 1. 1. 28	20 '85 10 '85	S6. N 56. IN	N '95 S6. NI	-VIII - 95	-VIII -95	S6. ULA S6. ULA	56. III.A 96. II 9	56. DIA 26. LIA	i⊴ < 8 8	56. IL 57	N 95	N.95	58, IF 58, IF	56, III.A 56, II	-VIII '95 -11-95	
1.047				716.0	9 4 1	1944		0.779			0.892	1.153	1.062	1.000	1.281	1 761	1.025	1.279			1.357	1350	0.933	1.169	0.952	194	1.021	0.992	0.842	0.873	0.896	0.932	1.001	1.106	0.898	1123	0.969	1.033	1.033	0.987	1.369	1.083	0.930	0.767	1.023	1.008	
	0.873	0,986									0.940	1.208	1,368	1.384	1.366		1.089	1.327	¢¢	0		1.458	· · · · · · · · · · · · · · · · · · ·			1.221	1.128	1.085	0.887	0.853	1560		0,626	1.201	1.099	1.218	1.026	1 126	1.2	1	·····	0.869					
3.591 3.846	3 589	4.026	3.960	3,316	3,487	2197	2.967	2.076	3.076	3.125	2,709 3,484	3.529	3.358	3,448 3,058	3.218	3 770	4.992 3.414	4.602	3.421 3.465	3.838	2.917	49	3.991 3.947	3.814	3,478	3,733	4.200	3.302	3,133	3.439 3.898	3.167	4.026	3.814 3.783	3.297	3,500	3.500	, 3,333 3,333 3,333	3.960	3.960	3 875 3.393	3.652	3.017	3.487 3.487	3,560 3,487	3.750	3.625	
3,740	051'E	3.765		3.241	3,043			1.793			2.436	3.018	2.764	3.034 2.688	2.798		4.244	3.894		2.471	2.471	3.364	3 332	3,390	3.174	4 3 192 7 8 4 4	3.131	3.288	2.983 2.983	3.019	2,871	3.000	3.644	2.967 3.644	2.975 3.220	2.933	2.767	3.520	3.305	3.366	3.300	2.772 3.345	3.043 3.043	3.043 3.043	3.292	3.400 3.358	
					÷				÷		0.332			·····.							0.196			0.213			0.183				0 241	0.234	0.200	0.200	:	···			0.194	0.198	0.202	0.267	·		0.196	0.202	
	in summer										380,000			258,(km 294.(km	217.000					2424,000	317,000			256,000	237.000	297.000	275 000		:	355,000	296,000	249.000	275.000 232.000	307,000		274,0881		200.000 247.000	367.000	266,000 249,000	395.000	221.090		:	271.080	78,000	
											0.844			0.645	0.620					PC/10	0.747			0.771	0.675	0.660	0.688			1,179	0,822	0.655	0.554	0.768		0.721		885'0	0.667	0.804	0.781	0.713	•••••		0.880	0.780	ĺ
											480.000	:	- - -	335.000	263.000 263.000					ORD 755	352 (99)			322.000	291.000	389.000	334,000			386.000	. 330.000	290,000	314,000 255,000	319.000		320,090		227.000	455,060	321.000	412.000	256.000			333,000	97.000 104.000	1
											0.854			0.838	0.751					0.875	0.865			0.970	0.829	0.864	0,835			1.282	0.917	0.763	0.633	0.798		0.842		0.682	0.827	0.970	0.814	0,826	÷.,		1.081	0.970	
											1.263			1.298	1.212					1.158	1.1224			1.129 1.258	1.228	1.310	1215		•	1.087	1.115	1.165	1.142	1,039	:	1.168		1.135	1.240	1,207 1,153	L183	1.158	i	 : j	1.229	1.244	
7.667 4.545 7.704	7.667 7.667	5.962	6.228 5.941	7.714 6.945	8158	4.815	5 143	5 253	4.565	5,333	8.547		4.085	9.280 8.571	3.967	67070	1.676	4 676	0000	6.686	5 946 3 306	5,789	7.125	8.613 9.613	7.667	5.455	4.587	7.429 9.600	8.167 7.864	8.000	6.778	6.880	8.551	% ID	5.455	9.000 9.000	8.571	6.733	1.625 6.733	8.615 7.000	8.846	7.250		6.500	5.647	5,333	
374.000	416.645	578.833		378.000	402.500 402.500			585.468			642,454 450,790	396-270 426.020 722.250	310,58(408.320	396.270		163.122	178,992		355.800	407.000 355.800	428.184 407.008	432.97	472 (NX	419.75	459.60	373.70	355.68t 269.568	484,120 484,120	434.760	413,400	432.004	507,410 349,810	245.70	428,40	422,40	308,46	359.05	359.055	422.244	436.425	372.94c 404,800	402.500	261.17	303.36	217.60	- 10 March -
	2.099	1 442									1.579										2,027					3,600	1,261				1463	1.567							2,000	3.900	2.577	2.958					
	12.077	15.560									13,187										9.867					8,486	13.589				10.766	16.560							14.50	9.667	11.328 9.730	10,366					the second se
					-									7.546				5.382						7,040	8.632	8.654	106.8	8,760			× 06.5	9.227							10.163	8,883	985.6	9.263					the second second
			140.4			1 561								156.05		10 BC		118.0	292.6			-		183.4	. 181.2	1 87.9	147.9	119,0	- 11.7 10 7 7 7 7 7	· · · · · · · · · · · · · · · · · · ·		1 118.80							8 190.0.	1 152.9	132.2	125.41					
	2.077	5.560	140,488			195.122					3,187			7.546 156.098		26.257	······································	5.382 118.049	292.683		3,867			7,040 183,415	8.632 1.51.220	2.159 8.054 87.984 2.159 8.089 212.335	3.589 8.901 147.985	8.760 119.024	• • • • • • • • • • • •	1 1117-111	0766 8065 135.111	3.091 9.227 118.800 6.560 10.151 21.1.618							4.500 10.168 190.054	3.667 8.883 152.911	1.328 9_386 132.218 0.730	0.366 9.263 125.414					ve H

Page 2 of 4

Page 3 of 4

- 1 - 2 2	÷.	÷ •			-		~ ~		-				-			-		-	~ ~	0.0				~	~		~							~		~	~													~	~	
N.	₽. 		201		38.6	38.	ŝ	i ž i	175			R	9 9		28.0	327		34.6	2 2 	52.1		~		371	8		30.			30.0	38			101		30.	371					8.8								28,1	25.0	321
V _s (kn)		5°16	357.45	36.0	070	26.0			32.0	28.0	32.0	27.0	32.0	28.0	25.0	33.0 34.0	34.0		34.0	50.02	9.44	0'02 20'0	36.0		28.0	28.0	t a	28.0	32.0	0.02 0.02	32.0	25.0	25.0	33.0	30.0	0.02	25.0 37,0	26.0	25.0	28.0	26.0	30,0 33,5	31.0	36.0 35.5	31.0	33.0 34.0	29.0 33.5	41.0	9 N 0 2 N 0 2 N 0		40.04	27.0
Crew			** *****	ŝ					*											2				an 199 A.			13			e.	2					en.					5	3	v, v, ·	7		- , ∞		2	м Ф	×	7	77
Pax Distribution		234) + 70 up		307/mid + Mad		in 264 + 148 up / nut 20 + 64 + 143	315 ± 33 m ± 16 VIP ± 16 off	278 + 162 np	da wa ± ovz		201 + TV		133 + 7 up	272 + (50+84) up + 94 top	dn 82 + 10 ns + 10 ns + 10 nd + 20 ns + 24 ns		232 + (112+8) up	70 + (20+48) up	qu (07+(00+30)+20) up qu (02+30)+70) up	248 + (52+4) up 244nul + 52ud + 4vin	388 + (80+48) up	1	238 + 84 up 199 + 159 un	218 + (132+8) up	dn (19 + stil 69]	169tus + 6flus 256.tus ± 60.tus ± 20.05tu	298aus+134us+33ude	102ms + 24ms + 20md	117ms + 32us + 23ud 151ms + 25us + 16md + 32ud	127ns + 52ns 127ns + 38ns + 11VIP	106cord a ddod	68md + 30nd + 12ex	10804 + 4040 10804 + 40ad	2210sd + 69sd 220nsd + 8thul		112ms + 38ude	124ng + Notels + Acc 168nd + 38nd	136md8 + 144mde 62ms + 18us + 10mde	Sthus + 2thus + 25mde 9Mnis + 24us + 35mde	132ms + 68ms	74m6+26ux	70ms+20hus	1.120 - 1.100 - 1.100 - 1.100 - 1.100 - 1.100 - 1.100 - 1.100 - 1.100 - 1.100 - 1.100 - 1.100 - 1.100 - 1.100 -	253nss + 124us + 35ndc 253nss + 124us + 48udc + 46sdc	342in + 58ev	[442 ms + 48mJ [992 ms + 159 m]		346 nus + 96 us + 5 vip	110 ms		1801 uns + 24 u.d	13041+76 ud 13041+76 ud
And		300 365	200 180	403	8	909 629	250 380	014	00	220-300 220-300	001 212	9	949 77	200	496	061 061	199 352	111	92 8	10E 200	516	868	358	358	229	229	432 12	12	224	621 921	191	011	148	290 300	201	9	206	<u>8</u> 8	51 FE	200	5 6 6	8 ĝ.	2 3 5	7 14	2 9 E	358	!	1	£ ≞ 3	180	201	206 206
Other Capacities (h) / Weights (t)		scw 760		lo 350 + sew 1500 + ho 150 + abil 1000		scw 15(8) + sul 1(88)	sew 1000	sew 1x15(8) + sul 5(8) sew 1x1000 ± oct 0000	sew 1x15(0) + sal 1x800)			20 bike	sul 1/400	and 1500	la 100	to 2x100	org 14	sul 1x380		bw 2000										sul 750 sul 1x750		scw 1x360		sew 1x1500 sew 1x800	In 1x250 + sew 1x500	sew 380 + ho 110		sul 1500 + gw 500						12 AM		lo 500 + sul 1000	la 150 la 240	1000 1001 1007 1001 1000 1000	sur .see + aou .30 + 20 bite sul 750 crg 5	le 2x100	lo 2x100	-
Fresh Water (10) 2000		2000 9,50	1 x 1000	1(KK)		2000	1000	1 x 1500 1 × 800	1 × 800			VILVE	1 x 400	UUM	UNDI	1 x 1140	1500	1 x 380		2000	UKC1	0001	1001 X 1	1001	1000	10/01	0001	1000	1(58)	2 x 500	USE	1 x 210 2 × 210	2×210	1 x 1500 1 x 1500	1 × 500 1 × 1800	380	i i i	1000	600 850	500		Trives	1942	2850	50	3000	una (0.00	2000 2000	1 x 750	1 x 750	1000
Fuel (1) 2 x 4000		20000	Z X 30801	10000		16000	2 x 4000	2 x 10000 2 x 3000	2 x 3060		12000	00007	2 x 3000	00001	23000	2 x 1250	13400	2 x 5300 2 x 4960	2 x 4960	2000	CKNJL	(8)88 (8)72 ~ 2	MMCV7	13600	(000)	19994	13500	0001	5000	5000 1 x 5000	2100	1 x 1825 2 x 4175	2×4175	2 x 3750 2 x 35(8)	2 x 1500 2 × 4000	(X)62	10000 V 4	21822	20Mb	3000	2500 7000		808	2 x 8450	utur.	75(9)	1(88) 1(89)	DODAT?	UKK872	2 x 3000	2 × 3000	(RNN)I
N																																															0000					
GRT 290						:	Ş.	395	365				:			213				: .								r - 1. e 1			. 08	51	5	5 S							: :					138	2 07.	.,				
A (I)	411.74						128				113		3	··•*; ··						202		arra 401.		-	:						1 1 1 1				·				8	₽.	21 48								г			· • · · • ·
DW Distribution (1)									-				-			· ·														•		-		-	:		1 100 T 5 + 1 6 T + 600 1	t we have a lower small	-							: • •	mx + lue 33, $cc 0.75$, 0.92 , $lor 1.5$	pax 11.25 + cr 0.24 + f 3.4 + fw 0.5 + lo 0.045 + pro 0.2 + bike 0.4		nax 11.7 + hug 1.8 + cr 0.6 + f 5.1 + fw 0.75 + ho 0.2 + str 0.3	pas 30 + lug 6 + f 20 + fw 2 + lo 0.25	
(I) LMO		00.10	0017Z	5			: :	32.00			39.00	60.09	16.00	1			;	-			51.00	72.00		24 B			28,00			17.16				35.00		18.40	30.20			`	7.00		30.80	57.53 34.93	21.00		67.25	16.01		20:45 20:45	58.25	42,40
2 (m)		······		*****			······																	-		*****											******	1											• • • • • • •		- <u>-</u>	
(10) q																	97 F	2.75	2.75									-	:	:										:				,,	, ,	,	:		-		3.20	:
T (m) 1.35	ļ	<u>8</u> 8 8	5 5 7	1	88	2.20	1.50	1.60	<u>8</u> 2	971	1.80	8 9	Ξź	2.50	2 13 13	1.25	193	3 3	1.1	8	8	2.00	097	3 9	08 P	1.50	55	5.5	051	1.10	8	0.76 9.76	0.76	8	097	1.20	1.60	64 T	888	22	¥ 9	120	1.40	1.50	8 S	98 9	9 <u>7</u> 19	091	118	8.9	3	2 9
Ц.							blut						phu	*****		a	bhu	· • · · · •						bka		•••• ••••	phu	******	Ţ								blea								**** ******	7	Pla	Dla	hlar	•••••		
D (m)		2.74		-41-9		3.70	3.70					5.15	3.26			3.00	92 K				· · ·		ent foge o	4.00	2.20		R7	88	180	3.80			3 70			3.17	3.50	2.03	2.40	2.75				917 97		1.10	3.50	2.60	3,20			3.90
10 10			5 0 9		0 R	8 9	0 mild	8 8 8 9	2 0		bha o'	0 Q	0 9	40 mld	đ S o	2 pa			5 80 - mhd	0.0	8 20	8 8 8 8	os or	8 	o ng o	blm 00	o nid	0 the second se	o o	0 0						8	55 00	e 1		+ ×			- 9	2 o	9.2	0 mkd	8 8 8	o mpg			Ro	1872 202
1) B (r		38	23	Ξ	23	3 =	2	2 g	£.8	28 G	3	83	C8 11	Ξ	∃ ₹	9 g	122	13	23	20	12	2 2	11	1 E	58 52	130	3.2	22	33	33		3.2	2.8	ġ	# 3 	23	1.9.8	6.0	22	3.2	5.5	3 2	8 G	33	12.1	51.5	19 E	-	- 8.0 8.0	5 50 5 50	Ξ,	: 2 H
Lwi, (n			4		35.30	37.00	36.00				32.90	42.70	26.25	40.70	11.25	29.50	37.081	33.96	33.96	40.15	39.75	30.05		41.60	21.92	45.40	# 98 61 19 80	19.80	26.60	25,40	27.10		31.60			5 5 5 7	98.62 62 62	95-91 95-91	22.61	29.97	21.20	*******	35,00	36.05 97.05	29.50		47.50	34.00	27,00.	25.20	43.12 23.80	23.81
L _{BF} (m) 36.50																33.00																														40.90					47.00	40.00
L _{9A} (m) 40.00	000 CE	33,98	32.00	42.50	92 SC 92 SC	818	42.00	0.8	32.00	32.00	37.70	00.67	30.00	44.00	32.90	32.90	42.10	37,07	45.60	45.60	17.11	33.30	92.11 92.02	09.65	25.50	52,40	22.30	22.30	31.00	30.50	30.50	23,80	23.80	09/16	(6)14	28.10	36.80 32,00	18 22	23,43 25,08	32.31	23,00	36.00	24,00	9 9 X	35.00	42.16 24.00	30.00 52.75	33 (8)	32 (k) 26 15	28,00	16.91	27.20
ip Code Des/Cons/Yard	12 Sabre	3.1 Incat Designs Marineknik	34b Marinteknik 45 FIBM	36 Advanced Multibull Designs	INFI 1	39 WaveMuster 10 Kvacruer Fiellstrand	11 New Tech 17 K Statemen Efellicitation	43a Kvacrner Fjellstrund	44a Dorocking / NGA	44h Derecktur / NGA 45 Derecktor / NGA	46 Derecktor / NGA	48 WaveMaster	10 Austal 30a Austal	50h Austal Ships	52a HBM	52b HBM 5A Batservice	54 Austal 55 Incut Designs / Gladdine Hearn	56a Incat Designs / Gladding Hearn	57a Derecktor / Madding Bearn 57a Derecktor / NGA	57b Derecktor / NOA 58 Austal	50a Cris	600 Lindstol	61 Austral V2 AMD / Dakoto Creek	63 Austral	644 Sabre (Royal Forry 2)	658 Austal (Sh. Austal	66a Subre (Royal Ferry 1)	46e Sabre (Cape of Good Hope)	67 SBF 58a WaveMaster	68b WaveMaster 9 Tekniseraft	70 Alten Marine 11 Alten Marine	72a Allen Marine	73 Alten Martine 73 Kvaerner Fjellstrand	74 Kvaerner Fjellstrand 75a-b Kvaerner Fjellstrand	76 Kvaerner Ejellstrand	78 Incut Designs	90 Utstein WaveMaster	81 Abuninim Marine CMCS 32 Abuninim Marine CMCS	83 Alterninium Marine CMCS 34 Alterninium Marine CMCS	85 Aluminium Marine CMCS	87 Allison CMCS Fastert	58 Cougar 59a Cougar	89b Congar 10 FTBM	21 Incar / Nicholas 12 Incar Designs / Gladding Hearn	9.3 Jucat Designs / Nicholas 14 PBM	95 Austal Ships 76 Ona Baatbyggeri	97 Oun Baathyggeri 38 HBM	99 N(3:A Australia	100 S191: Shipbuilders 101 Marinteknik Shipbuilders	102 FISMA 103 FISMA	104 Incut Designs/CTI Designs 105n CNB	1051 CNB 106 OCEA Fast Perry

Passenger-only Catamarans

Passenger-only Catamarans

PC102 PC103 PC104 PC105u PC105u PC106	PC101 PC100 PC309	PC95 PC97 PC98	PC94 PC93 PC93	PC 89a	PC88 PC87 PC87	PC34 PC34	PC78 PC79 PC80 PC81	PC75a-b PC76 PC77	PC73	PC71 PC724 PC726	PC20	PC'67 PC'684	PC661 PC66b PC66c	PC65a PC65a PC65b	PC63 PC64a	PC61 PC62	PC59a PC59h	PC578 PC58 PC58	PC56a PC56b	P(53 P(54	PC52a PC52b	PC20b	PC48 PC49	PC46 PC46 PC47	PC44b PC44b	PC134	PC41 PC42	PC38 PC39 PC40	PC35 PC35 PC37	PCM PCM	PC36c
920 h/a		2800 July	1052 Whr 740 Mhr				405 h/hr 4821z/hr		1	3301zh 4501zh 4501zh	501 lt/h 258k/h			1.75 t/b									å						1067 11/1		
2300 1880 1835	2110	2000 2100 2100 13000	2000 2000	2100	2100	2100 2100 1810	2300 13000 1800							2100						:		2000									•
36	200	:	160		250 300	2001	40 S0				250/95%fac 300(28ku)	250	350 350	400	400				400	5	120	1960		400			185	400	150		tentify (terry
- 4999	555	ਬ ਚ ਚ ਦ		995	,		ㅋ곳의ㅋ	ਰ ਕੁੱਕ						p e e	a a s		22	7 7 9	e e e	19 e	<u>a</u> a a		ie e	50			e e			aaai	10 10 10 10 10 10 10 10 10 10 10 10 10 1
2 x 820 D 2 4 x 1960 2 x 870 2 x 1210 2 x 1939	2 x 960 4 x 790 2 x 910	2 x 2320 2 x 670 2 x 670 2 x 4208	2 x 2320 4 x 1460 4 x 716 2 x 2320 2 x 1778	4 x 801 2 x 787 2 x 801	4 x 790 2 x 358 2 x 790	2 x 507 2 x 507 2 x 805	2 x 783 2 x 2300 2 x 1016 2 x 395	2 x 960 4 x 1050 2 x 788	4 X 430 4 X 788 2 X 2012	4 x 319 4 x 412 4 x 450	3 x 660 2 x 515 1 x 560	3 x 610 3 x 610	2 x 820 2 x 820 2 x 820	2 x 1007 4 x 790 4 x 2320	4 x 1980 2 x 1980	2 × 1500 2 × 2320 1 × 1343	2 x 1740 2 x 2320	2 ~ 5970 2 × 5535 4 × 2320	4 x 1300 4 x 1300 4 x 1300	4 x 625 2 x 1980	2 × 1500 2 × 1500	2 x 2000 2 x 2000	4 × 1939 2 × 1499	4 x 630 2 x 2000 D 2	2 x 610 4 x 610	4 x 610 4 x 610	4 x 1960 . 1 x 1740	10.2 2 x 2032 2 x 1415	2 x 2180 2 x 2000 2 x 1360	4 x 600 4 x 735 4 x 735	2 x 2000 2 x 2000
2 x 16 2 x 24 120 KVA at 1500 r	ŝ	2 x 135 at 1300qpr 2 x 37 2 x 37 2 x 100 at 1500 qu	2 x 65 at 1800pp 2 x 105 at 1800pp 7 n		1 × 25kVA	1 × 25kVA	2 x 40 2 x 40kVA	2 x 50 2 x 100	1 x 30 2 x 48 2 x 48	122	-	2 x 37.5kVA		2 × 60%VA				2 x 99				1 x 100 + 1 x 135							2 x 90		2 Auxuary Fower (w
prop 4 wj	2 prop 4 wj 2 wj	2 - N S				· .	2 prop				:		 	4 wj	ک			;			:		•••••••								W) Proputs
	• • •		• • • •		a: •	••		** * *	• •	• •	• •	• • •		· · ·	• • •	• • •		• •		* *	: 	*	:	• •.				* *	• •	* *	or GA
	USS 4	NOK 1.3													088.9.7																BCmillion
23 35 28 11 11	35_36 21 34	15-18 20_21 20_21 20_21 30_32	S 2 S	8 5	47 48,000 49	555:	46 and 13			- :		· · · · ·		5 	53	6						28_29						÷	1		Page
FF 1-100 FF 1-100 FF 1-100 FF 1-100 FF 1-100	14F N. 99 14F N. 99	HF IX '99 HF IX '99 HF IX '99 HF IX '99	66.111A-LIA - LIA	EF/ VL99 EF/ VL99	14E/ VI '99 14E/ VI '99 14E/ VI '99	85/1/30 HF/V1/30 FF/V1/30	FF/V'99 FF/V'99 FF/V'99	FF/10/99 FF/10/99	66.111/35 66.111/35 14.171/38	14771-11798 14771-11798 14771-11798	FF/1-1798	FF / NI '98	FF/XII'98	147/ NI-VIII-VIII-00 147/ NI-98 and N-96 147/ NI-98	86.X / HI HI / A / HI 86.X put 86, A / HI	86, 11 / ±1	86. III / JEI 86. III / JEI 87. III / JEI	147/11/28	86, IF1/ EE 86, IF1/ EE 86, IF1/ EE	FF / XII '97 FF / XII '97	90.X/44 15. 1X/44 16. X/44	66.NL4H 14.NL4H	107 VI - 201 107 VI - 201 107 VI - 201	FF/V .97	FF/V-97	66.017.4H 166.07.4H 16.07.4H	16, MI/H	F 11-11-97	SB/EI1.97	1017 A 1107 1017 A 1107 1007 1007 1007 1007 1007 1007 1007	Source EF/IV '97
1.009 0.943 0.843	0.873	0.977	0.925		0.960 0.985 1.070	0.953	0.830		0.964	0.885	0.945 1.339	1.033 1.019	1.033	0.983	0.968		0.755	1.296	0.050	816.0	0.617	0.772	1.026	1.002				0.702	0,880		FBSWI
0.916 0.858 1.077			, , , , ,		1.320		0.896	i i	-		1,590	0 978		0 975	195	······································		1348	1.038		0.691	· · ·	1,005	1.045		1	1.204	0.783			FRMML
3,294 2,941 3,942 3,200 3,200 3,679	4.458 3.478 3.269	4.207 3.373 2.667 4.058	3.905 3.655 3.707 3.333	3.000	3.950 3.109 3.286	3.227 3.149 3.371	3.935 3.935	4 198	2.800 3.750 3.615	3,588 2,955 2,800	4.692	2,823 4,769	2.823	4.031	3.642 3.662	3.233	3.277	3.864	3.615	3.418	3.919 3.917	3.729 3.729	4.083 3.448	3.670 3.770	3.765	3,465 3,465	3.500	3.920	4.237	3.441 3.596	L _{1M} /B 3.846
2,965 2,694 3,624 2,800 2,800 3,201	4.096 2.935	3.546 3.654	3.333 3.336 3.272		3.664 2.938 3.029	2.929 2.929 3.132	3.170	ž	3.292	3,188	3.908 2.406	4,092	3,492 2,506 2,506	3,492	3,200		3,046	3.403 3.403	3413	3.217	3,750	3,449	3.158 3.558 3.017	3.290	2		3,000	3.274 3.530 3.083	3.823		1-81,/B
				·····		÷					•							3	· • · · • • • •	· .			:				è, - - - -			an, in rarr	S/Loui
					•			*,***									÷ .														A_{y} (m ⁴)
								· · ·						· · · · · · · · · · · · · · · · · · ·	:			÷.,		1	:							annan 1977 - 19 - 1			А,/р (m²)
			• ;		· .	-			:	:				•									:		;	· .	:				A _F (m ²)
	-		:							. :	1		1	1	÷.	2								1							A _P /p (m ²)
	:				÷	<u>,</u>				•			• .		: :	-	· .								•		· .				$\Lambda_{\rm p} / \Lambda_{\rm s}$
5.313 5.667 7.212 5.000 5.000 8.000	5.188 9.200 6.780	6.656 6.944 6.429 7.067 8.025	5.750 5.750 8.000	7.500 5.926	4.674 4.741 7.080	4.284	7,000 5,230 7,520 5,500	1.250	5.517 S.517	9.444 7.444 11.184	6.842 5.909 8.421	4333	8.667 5.267 5.267	8 1 1	8.000 9.286	1.813 0.090	9.286	5.621 7.867 6.556	7.376 6.219	6,394	8.741 6.720	4.720	9.500 7.500	5.556	5.667	6313	6.733 8.000	7.636 7.407 5.455	4,378 8,741	5 471	B/T 7.704
214.200 194.650 513.128 202.300 202.300 401.520	282,200 248,400 0,000	245,440 617.509	367.500 472.430 276.920		1793.392 245,155 120.320 148,400	100.790 129.148 163.680	195.720 222.768 280.120 255.200		303,360	230,350	165,100 165,100 98,560	156,420	590.200 156.420 156.420	173.010 590.200	540,800	528.675	518.738	337.902 473.770 473.770	267.011 337.902	245,440	522.150	480.260	285,000 512,400 778 775	329,000			432,000	231.000 353.000 444.000	532.298		I.w. * B
1.939																		1.554	2.200 1.719												B _H /T
13,475																		12,349	10.531 12.349												L-w, / B _H
*				5.00 6	6.318	6.781				6.568	5.208						**** ****	6,809				6,78,5	ŝ	6,343			7.202		111 ali ad 1		L _{W2} /\(\nabla\) ¹⁰
	70.244	aduu a (dud		40.523	30.024 26.341 46.829	34.146				201.244	25 854							197 073				61F 69	3	139.512			124.878				Δ

Page 4 of 4

Ship Code	Des/Cons/Yard	L _{DA} (m)	L _{BP} (m)	L _{WL} (m)	B (m)	TT	D (m)	Т	' (m)	DWT (t)	Δ (t)	GRT	Fuel (lt)	Fresh Water (it)	Other Capacities (lt) / Weights (t)	Pax	Pax Distribution	Crew	Cars	V _s (kn)	V _M (kn)	SFC	RPM
VMI	Pelmatic	71.30	60,40	60.40	11.30	mld		2	2.10				25000	7500		450			43	33.0734.0			
VM2	Marinteknik	85,00		75.15	15.00				3.00	300						584			104	35.0	36.0		
VM3	Pelmatic	100.00	87.50	87.50	17.30	mld			3.50						fo 90 + fw 7.5	650		1	170	34.0			1
VM4	Pelmatic	125.(%)	114.50	114.50	17,30	mld			5.10			÷				750		į	180	34.0			
VM6a	Fincantieri	118.00	105.00	106.00	19,40	. oa	11.80	(3.40	400.	2350	· · · · · · · · · · · · · · · · · · ·				900			334	40.0	42.0		
VM7a	Bazan	124.70	02,547	109.80	18.70	03	11.20		2.00	400+	1810	her and the second s			6x 70/450 ± 6# 8	1250			746	38.0	40.0		
VM7b	Bazan	124.70		109.80	18.70	va	11.20		2.50	1	1010	÷			10 10 400 4 10 8	1250			240	38.0	40.0		
VM8	FFM / Rodriquez	141.84		122.70	21.10		12.20	3.1	1/3.43	706/1185	2700/3179		{			1500			425	36.0/34.0	35.5/37.5		
VM9	JSC Meteor	100.00		86.00	16,40	oa			2.40	525	1250					540		· · · · · · · · · · · · · · · · · · ·	112	55.0760.0			nije over o
VM10a	Mjellem & Karlsen	95,00	86.45	88.90	17.40	mld	6.00		3.65	500		4675/1402	196000	27000	lo 7000 + sew 20000 + bw 183000	626		1	160	35.0	an adjudent at the s		
VM10b	Mjellem & Karlsen	95.00	86.45	88.90	17.40	mld	6.00		3.60			1				600			160	33.0	38.0		
VM10c	Mjellem & Karlsen	95.00	86,45	88,90	17,40	4			3.60	500		4000				600			160	33,0	35,0		
VMIIIa	Mjellem & Karlsen	115.00		101.68	17.40	mld	6.00		3.70							800			210	33.0			
VM12	Miellem & Karlsen	135 (0)		101.08	20.00	mid	0.00		3.70 4.10				Į.			800		1	210	40,0	1		
VM13a	Fincantieri	100.00	88.00	88.00	17.10	rold	10.70	·····	2.10	2.4()			<u></u>			1200 900			175	30,0	40.0	·····	
VM14	Royal Schelde	128.00		115.00	18.40/18.0	xo	7.00	2.80	074.00				85(86)	7000	lo 3500 ± sew 7000 ± bit 10000	778		÷	234	37.5	40,0		
VM15a	Fincantieri	82.00	72.00	72.00	14,00	ę	8.50			170	÷	4				450		·····	1 70	32.0	4		
VM15b	Fincantieri	82,00	72.00	72.00	14,00		8.50			170						450			70	39.0	1		
VM16a	Fincantieri	96,50	83.80	83.80	16.00		10.50			3207400		1				650		· · · · · · · · · · · · · · · · · · ·	175	31.5	1		
VM16c	Fincantieri	96.00			16,20	mld	10.50		2.90	400					1	800			188	35.0	37.0		
VM17	Fincantieri	143.10	128.60	128.60	22.00		12.60			775/930			1		1	1500			420	36.8	1		
VM18a	Koyal Schekle	135.00		119.36	17.50				3.30	400	Ļ					750			156	35.0	· · · · · · ·		
VM10	Marinteknik	1.55.00 86.00		119.30	17,50		5.00		3,30	4(8)	<u> </u>					750			156	38.0			
VM20	Bazan	179.00	• • • • • • • • • • • • • • • • • • • •	10.04	21.50		5.00		2.90		1		÷			550			1.50	35.0	20.0		
VM21	IHI	199.00		175.95	25.00				4.90			1	-			515		ł.	202	29.4	.39.0		ł
VM22	Schischau Seeheckwerft	173.70	158.00	165.40	24.00	mld	8.80	÷	6.25	5240		· · · · · · ·	1 350 000	300 (890	do 90000 + bw 1 270 000	14(8)			403	26.8		• • • • • • • • • • • • •	
VM23	Rodriquez	101.75		85.30	14,50			· · · · · · · · · · · · · · · · · · ·	2.12	233	1033	- b		· · · · · · · · · · · · · · · · · · ·		450		· {	150	43.0	nin sa sa sa		
VM24a	Bazan	96.00		84.88	14.60						1070	1				450			116	34,0			
VM24b	Bazan	96.00		84.88	14,60						1070			1	1	600			84	34.0			
VM24c	Bazan	96.00		84.88	14.60						1070					450			113	41.0			
VM25	Bazan	122.50		108.31	18,70	···			2.40							750			170	and the second s	43.0		
VM26	Royal Schelde	90.00		78.25	15,00				2.10			1				400			144	37.0			
VM5b	Fincentien	120.00	106.00	105.00	19.00	03	11.50		3.50	850						000			210	40.0			
VM5c	Fincantieri	120.00	106.00	106.00	19.00	00	11.50		3.50	850					1	900	· · · · · · · · · · · · · · · · · · ·		310	33.0			
VM6b	Fincantieri	94.(K)	82.00	82.00	16,50	oa	10.25	1	2.70	260		· · · · · · · · · · · · · · · · · · ·				450 - 600			150	40.0	······	··· · ··· · · ·	
VM6c	Fincantieri	94.00	82.00	82.00	16.50	oa	10.25		2.70	245		1	1			450 - 600	4	1	150	36.0			
VM6d	Fincantieri	94,00	82.00	82.00	16,50	oa	10.25		2.70	245				1		450 - 600		1	150	33.0			
VM7c	Bazan	124.70		109.80	18.70	oa	6.20		2.44		1840		70000/49010	0		1250	828 + 422 up		238	38.0			
VM/d	Bazan	125.00	110.00		18,70		11.30		2.70	448-574	1	-			2 6	1200		1	219	36.5			
VM15c	Fincanteri	100.00	8830	72.00	17.10	mid	0.70		2.60						· · · · · · · · · · · · · · · · · · ·	782			175	38.0	40.0		
(initiat	1 Alcaliners	62300	72300	12.00	14/10/		9.23	4	2.20							600	· · · · · · · · · · · · · · · · · · ·		/0	40.0	44.0		
VM27a	Fincantieri	146,00	128.60	128,60	22,00		12.60		3.60	80071200					· · · · · · · · · · · · · · · · · · ·	1800			460	40.0			
VM27b	Fincantieri	145.60	128.60		22.00		12.60			805-1200	1	10200				1800			450	40/33/22	(4+2/4+1/4	1 	
VM28	Leroux & Lotz	102.00	1	87.50	15.00	mld	5.20	1	3.05	200 - 320	1100		84(0)	8000	······································	500			148	37.0			
VM29	Leroux & Lotz	137,00		122.50	21,00	mld	6.20		3.20	750			130000	16000		1000	· · · · · · · · · · · · · · · · · · ·		3()8	42,0	nganan ann na se		
VM30	Rodriquez	103.50		87.00	14.50	oa	9,50		2.30	280	1170		89000			507			150	35.0	37.0		
VM31	Finnyards	150.00	110.00	110.00	20.00		12.00		4.00	1500					}	600			130	35-40			
VM32b	Fincantieri	128.00	112.20	112.20	19,40	mid	12.20			600						1000			308	40.0	42.0	p	
VM33	Finnyards	120,00	89.40	89.40	16.00	mld	6.10		3.00	310/450		· · · · · · · · · · · · · · · · · ·				1200				42.0	40.0		-
VM34	Leroux & Lotz	66.00	58.00	58.00	10.90	mld			2.00	92-120			26000	SOC		450	-		42	30.0	1		
VM35	Lennux & Lotz	72.00	1		11.10			· {· · · · · · · · · · · · · · · · · ·	2.10	102-130	-		30000	10000		450	••••••••••••••••••••••••••••••••••••••		50	32.0	ter en	8	
VM36	Samsung	99.50														630	······	-9	160	35.0			1
VM37	Leroux & Lotz	112.00	100,00		15.00	mld	5.40		2.50	360-450		1				700			140	35.0			
VM38	Finnyards	100.00		<u>.</u>	16.40				3.00	310					1	600			160	35-40		6	
VMA9 VMA0a	Podviouez	73.00		64.00	13.00	oa	8.60		2.00	2/21	100		4000			500			15	34-37		p	
VM40b	Rodriate2	70.90	+	64.00	12,40	oa	8,00		2.45	200	567		40,00			520	264 mil + 156 mil		37	1v =	35.0	517.4c.0	
VMI41	Samsung	99.50		0400	12.40	ea ea	0.00		4.30	1	302		1210000	1	-	630	304 md + 150 ud		160	28.5	35.0	or/gkw/l	я [
VM42	Fincantieri	112.00	•••••••••••••••••••••••••••••••••••••••		17.10	mld	11.00		3.00		·					1000	÷		200	42.0		÷	
VM43	Mitsubishi	100.56			14.90		10.30		2.70	¢	·····	1498				423			106	74-07	42.4	fe e concernante c	
VM44	Tenix Fast Ferry designs	106,00			18.00		6.50		4,00	2000	1	1	100000	10000		448-650			153	40.0		· · · · · · · · · · · · · · · · · · ·	1(X))
VM45	Cantiere Navale De Poli	95.00	86.50		16.80	mid	10.30	mid	2.55	400				1		803	607 md + 196 ud	22	170	28.0			1200
VM46	Alstom Leroux Naval	140.00	126.00		21.80		6.2/14.9		3.80	1300						1800		22	450	40,0			}
VM47	Van Der Giersen AMD	142.00	123.70	1	22.00				2.60	1365						1400				42.0			3600
VM40	Roonquez Canueri Naval	/5,30		107.05	13.50		9,00		1.65	1	1		1	1		598	414 md + 184 ud	Į.	80	36.0		4	
1.0142	proving accounter in avail	; 14730		107.60	15/10		11.00	1.1	2.00	1	1		1			: 1.500			54.05	37.0			1

Ship Code	Range (nuu)	Propulsion Plant (kW)	Auxiliary Power (kW)	Propulsor	GA	Page	Source	Fuener	Filmer	Los/B	Lan / B	$A_{\rm e}$ (m ²)	A_{c}/n (m ²)	$A_{\pi}(m^2)$	$A_{\rm e}/m(m^2)$	A / A	$A_{(m^2)}$	A lu(m ²)	D/T	1 4.0		1 1771/3
VMI		4 x 2300			1		FF / 10 195	0.698/0.717	spw1.	6.310	5.345		Lush (m)	74p (111)	App (iii)	Ap/ As	$\Lambda_V(\mathbf{n})$	As/v(m)	5 391	LWL * B	572.217	L _{W1} /V
VM2	750	D 3			*		FF / IV 195	0,663	0.682	5.667	5.010	680.000	1 164	787 000	1 3/18	1 157	1202 (99)	13 304	5.000	1127.250	273.317	. 7.271
VM3		4 x 6000					FF / IV '95	0,597		5.780	5.058					1.157	13233440	13.774	4 0 4 2	1127.230 /	1332.700	6.795
VM4		G 1 x 21000 + D 2 x 6000	1				FF / IV 195	0.522		7.225	6.618	1	1						3 207	1010.750	4040.034	0.612
VM5a	500	G 2 x 21000 + D 2 x 6000					FF / V '95	0,638	0.670	6.082	5.464		••••••						5714	2056.400	2706 704	7.531
VM6a	300	D 4 x 6000			*		FF / V '95	0.653		5.938	5.125	523.000	0.872	863,000	1.438	1.650	1685 (88)	9.740	6 154	1312.000	1364.480	7 313
VM7a	.900	D 6 x 5800			*		FF / V '95	0.596	0.627	6.668	5.872	1172.000	0.938	1437,000	1.150	1.226	2377 (80)	9.663	7 480	2053 260	2053.260	8630
VAIR	2007/200	D 6 x 5650	·		*		NA / XI '95	0.596		6,668	5.872	1494.000	1.195	2026.000	1.621	1.356	2377.000	9.742	7,480	2053.260	2053.260	8.639
VM9	13(4)	$G = X \neq IGAO + IJ + X BORO$			P	····	FF / VI '95	0.534/0.504	0.526/0.556	6.722	5.815						·····	1	6.78/6.15	2588.970	3220,679	8,309
VMIDs		D 4 = 5900			* !		FF / VII-VIII `95	0.974/1.063		6.098	5.244	941.000	1.743	1279.000	2.369	1.359	1556.000	13.893	6.833	1410.400	1353.984	7,774
VM10b		D 4 x 5800			+		FF / 1X '95	0.610		5.460	5.109	647.000	1.034	917.000	1.465	1.417	1959.000	12.244	4.767	1546.860	2258.416	6,776
VM10c	• • • • • • • • • • • • • • • • • • • •	D 4 x 5800					FF / IX 95	0.575	0.662	5.460	5.109					ĺ			4.833	1546.860	2227.478	6.807
VMIIa		D 4 x 5800		N		·····	5B7 VII-VIII 94	0.575	0.610	5.460	5.109	789,000	1.315	972.000	1.620	1.232	1959.000	12.240	4.833	1546.860	2227.478	6,807
VM11b		G	ka ara sa sa sa muuna da sa		···		FF / IA 93	0.538		6.609	5.844								4.703	1769.232	2618.463	7.377
VM12						-	FF / IX '05	0.052		6.609	5.844		-			1			4.703	1769.232	2618,463	7.377
VM13a		D 4 x 6875	ha a na anna an a saonn ann ann an sao dha		*		FF / VIL '05	0.451	0.700	6.750	5,968								4.878	2387.200	3915.008	7.573
VM14		D 4 x 6875	haaan, maaa ah		*		FE / L II '96	0.002	0.700	2.646	0.140	0.12 000	1.004				\$		6.218	1504.800	1655.280	7.439
VM15a		D 2 x 5600	· ······ ··· ··· ··· ··· ··· ··· ··· ·				FE/L11 '96	0.574		5 857	5 142	0923587	1.084	1190.000	1.530	1.412	2820.000	12.051	6,500	2093.000	2318.400	8.689
VM15b		D 4 x 4200		i			FF / 1-11 '96	0.755		5 857	5 143		[1			1008.000		
VM16a		D 4 x 5650					FF / I-11 '96	0.565		6.031	5 738		······							1008.000	ļ	
VM16c	300	4 x 6500 / D 4 x 7080 / D 4 x 72	00				FF / X`98			5.976	1	1	····	3 		•••••••			5.594	1340,800		÷
VM17		D 2 + G 1 ~ 54000					FF / J-II '96	0.533	• • • • • • • • • •	6.505	5 845	+			1917-1-1-1	[5,580			4
VM18a		D 4 x 7380 / G 2 x 14800				İ	FF / I-II '96	0.526		7.714	6.821	1					1	(5 202	2629.200	1767 114	0.620
VM18b		G 2 x 18900					FF / 1-11 '96	0.571		7.714	6.821	1				\$	÷		5 303	2065.500 : 2009.900	2/37.216	8,512
VM19		D 4					FF / I-II '96	0.659	·	6.014	5.317	1			· · · · · · · · · · · · · · · · · · ·			••••••••	3.503	2000.800	2/07.210	8.512
VM20	360 - 400	G 2 x 20800 + D 2 x 5000			*		SB / V '94	0.000	0.596	6.000	5.365	1140,000	1.140	1584 (00)	1 584	1 380	4225 000	11.267	7.414	1007.572 :	1522.521	0.010
VM21		D 2 x 23850					NA / III '95	0.364		7.960	7.038				1.504	1.0102	HEBOUNK!	11.207	7.414	4308 750	2010.029	6.110
V/N122	270.1700	D 4 x 7920	ta ana ana ana ana ana ana ana ana ana a		*		NA / IV 195	0.342		7.238	6.892		• · · · · · · · · · · · · · · · · · · ·			*******	· · · · · · · · · · · · · · · · · · ·		3 840	3969 600	00747981	7.607
VNI2.5	3707.680	G T x 20500 + D 2 x 3565			*		SB / X1 '93	0.765		7.017	5.883	503,000	1.118	690,000	1.533	1.372	1449,000	9,660	6.840	1236 850	1048 849	8 3 4 5
VM24a		D 4 x 5000	1				SB / V '94	0.606		6.575	5.814									1239.248	1043.902	8 367
VM24c		0 1 × 10200 × D 7 × 2000					SB / V '94	0.606		6.575	5,814					1				1239,248	1043.902	8.367
VM25		$G = 1 \times 20800 + 10.2 \times 5000$, haan ahaa ahaa ahaa ahaa ahaa ahaa ahaa				SB / V '94	0.731		6.575	5.814							4		1239.248	1043,902	8.367
VM26		$D_{A,S} = 6000$	·····	··			SB / V '94	0,000	0.679	6.551	5.792							·····	7.792	2025.397	1944.381	8.678
		17 4 4 186.07					SB / 1-11 195	0.687		6,000	5.217	499.000	1.248	677.000	1.693	1.357	1450.000	10.069	7.143	1173.750	985.950	7.862
VM5b	300 - 500	G 2 + D 2 ~ 54(80)			*		n	0720		6.016	6.670	-			ļ							
VM5c	300 - 500	D 6 x 6000	ár e le comune e arren a aronnaí de					0.638		0.316	5.579								5.429	2014.000	2819,600	7.503
VM6b	300 - 500	G I + D 2 ~ 28200	••••••••••••••••••••••••••••••••••••••		*		n n	0.527		6,207	3.579								5.429	2014.000	2819.600	7.503
VM6c	300 - 500	D 4 x 6000			*		5	0.720		5.607	4.970	1	-						6.111	1353,000	1461.240	7.226
VM6d	300 - 500	D 4 x 5250			*		D D	0.000		5 607	4.970		·····				ļ		6.111	1353,000	1461.240	7.226
VM7c	30071700	D 6 x 5650			*		FF / XII '96	0.596		6.668	5 872								6.111	1353.000 ;	1461.240	7.226
VM7d	300	D 6 x 5650			*		FF / IV '97	1		6.684									7,004	2053.260	1795.122	9.035
VM13b		D 4 x 6875			*	1	FF / V1 97			5.848			:						0.920	. 1	() () () () () () () () () ()	
VM15e	300	D 4 x 4000			Р		В	0.774	0.852	5.857	5.143			*****					6364	1008.000	·	
						1													0.004	1008.000		han mari
VNI2/a	.300	G 2 x 21000 + D 4 x 6500					FF/ULIV '96	0.579		6.636	5.845								6111	2820 200	2716 022	0.217
V/V1270	2000 / 2000	$G = 2 \times 21000 + D = 4 \times 6500$			*		FF / VII-VIII '97			6.618									0.111	1	- ar 103/02	2.417
VM20	2007 700	D 4 x 60R065(R)			*		FF / VII-VIII '96	0.650		6.800	5.833	1							4.918	1312 500	1260.000	8101
VM 30		$0.2 \times 25000 \pm D.2 \times 6000$			*		FF / VII-VIII '96	0.623		6.524	5.833							6	6,563	2572.500	3292.800	8 2 3 4
VM31		1) 4 X (KAK)			•		FF / IX '96	0.616	0.651	7.138	6.000								6.304	1261,500	1160.580	8,279
VM32a		L/ U A (MR/					FF/IV 97	10 620		7.500				l	Ļ				5.000	i	1	
VM326	1.45 (c.) (c.) (c.)	D 2 x 21000	ç	• • • • • • • • • • • • • • • • • • • •			r EC / V 109	0.620	0.651	6,598	5.784									2176.680		
VM33		D 4 x 6500				•	ГГ / <u>Д</u> Уð	1.60.1		6,598	4	4	è							1.	1	
VM34		D 4			*	1	F	0.591		6.055	5 327						1		5.333	1430.400		
VM35		D 4 ~ 10300			*			17,4947		6.486	3.341			······					5.450	632.200		
VM36		D 4 x 7080	1		8		NA / VI '97					• • • • • • • • • • • • • • • • • • • •					į		5.286		6	·
VM37	500	D 4 x 7080			\$	i i i i i i i i i i i i i i i i i i i	FF / IV '97	• • • • • • • • • • • • •	,	7.467	• • • • • • • • • • • • • • • • • • •			······ ·······························					r (1995)	p /		i a a secola
VM38		D 4 x 6500				1	FF / IV '97	1		6.098								(i	0.0AU 5.467	1	1	1
VM39		D 4 x 3250-4000			*		FF / VI '97			5.615	· · · · · · · · · · · · · · · · · · ·							r	5.407 6.5(¥)	;	į	÷
VM40a	280	D 4 x 2350					FF / VI '97		0.719	5.718	5.161						· · · · · · · · · · · · · · · · · · ·		5.061	793.600	600 756	7 547
VM41	5.80	D 4 x 2350			* ;	1	FF / I-II'99	0.585	0.657	5.718	5.161	1							5,391	793.600	548 202	7 810
VM41	200	U 4 x 7080					SB / XI `97	L			1	1]						A 10 / 1	, second l	5411.623	7.019
VM43	500	G 2 X 15000	ļ				FF / X'98			6.550								þ.a. , - a i mar an an a s	5,700			(
VM44	4(8)	D 4 X 0000	·····		* :		HIPER			6,749									5.519		(*** *** **)	
VM45	500+	D 3 x 5400			. 1	6	FF / X 99			5.889			1				·····	o	4,500			
VM46		GT 2 x 25 MW + D 2 + 9100	······	A 111	•		FF / XI '99			5.655		ļ							6.588	÷		
VM47	400	GT 3 x 22 MW		4 W]	*	19	FF/III 00			6.422									5.737	1		200 C.0002 C.000
VM48		D 3 x 3900		3 103		21	PP/III 00	0.240	•••••••••••••••••••••••••••••••••••••••	6.455	1 505								8.462			
VM49		D 6 x 6500		5 w)		23	FF/III UU FF/III UU	0.740		5.578	4.733								8.182	862.650		
				5 WJ		63	FF710-00	0.587		6.649	5.615	1	1						7.346	2048.475	-	

V. (bu)		e ç	47.0	17.0	0.74 Sn.6	49.0	36.0	43.6	37 - 43	35 - 40 30 - 45	30.45	900 310	40.0	42.0	36.0	38.0	28.0	30.0	36.0	2 0 2	0.05	40 240	0.0736.0	01210	28.0	37.0	38.0	30.0	40.0		45.0	43.6	410	40.8	38.0	38.0	38.5	34.0	33.8	38.0	38.0	45.0	32 - 43 40 - 46	36 - 45	34.0	40 0 42 0	57.0	36.0	37.0	40.0	40 0 40 0	35-40		38.0	74.0	38.0	35.0	0.02	
Care	3	a e	32	R s	2 2	12	152	120	2 A	52	z	2 Q	8	ŧ 3	98 X	2	18	92	175	R 9	30	84	4 12	341	10	250	» 3	28	82		्र ह ह	120	8	120	6	49 175	175	250	व्र ६	7 4	48 2700	200	200	310	717	240 240	S 3	350	320	23	375	290	51 X	129	92 175	125	200	<u>ę</u> 5	e s
Crew			and a second second	k. : :						÷	••••••••••••••••••••••••••••••••••••••															i 											 	21	-			-								e			-						·• · ·
					1977 - 1988 - 19	0																	fr		12 VIP										~ ~			X BC		- 16 (T 1	us										{								
stribution											58 + 26 up				·····	+ 145 up	+ 142 up Mana	0 u D							30 up1 +		- 166 un		and the second second	1 M.M. 1								+ + pa 9/2	747457	+ 60 ap	NS as +64		- 11 1111	100 A. A. MARCO			da 085						- 162 up 162 up	i.			da 06 + 6	105 mil	da ave
Pax Di					1.000						(curs)					110.4	262.4	κì				-			+ da 136) +		14		and the				STRANSPORTS	·				94 md + 2	146+	340	128bs + 1						70+						145+				cars 70	. 205	ł
														<u> </u>			·	ļ.,							128	0												-				-		200								- 6			-				
Day 1	450	456	150	750	6 92	202	620	450	9	25 25	450	2	90.22	Ç.	400	255	률 홍	500	209	ā (ā	5	8 9	909	00	236	100	282	375	400		000	450	09	450	450	456 608	906	001	450	44	380	008	100	1250-1	325	169	450	100	1500	350	150	90 H	360	305	909 909	33	500 800	150	368
0.3											······				0+15 con				5	2 2	c										sal 2x1000			ç	0000	c1000 acw 2000													· · · · · · · · · · · · · · · · · · ·						and an inclusion		[ns + 000		8
t). Weight						o 1000	(1001-2	v 10			******************************				sul 1×500				120 00 1) + sul 250	+ sul 200										2x7500+			0 + ad 100	XI 102 + 0X	X0 + sul 1x -2x100 + s			· · · · · · · · · · · · · · · · · · ·		000		·····					-			******		sul 500 sul 500	0		· · · · · · · · · · · · · · · · · · ·	00 + bil 16		X0 + obil 3
pacifies ()						2500 + d	500 + sev	41 + 96 of	A					and a second	1x3000				A do TOW	+ do 100	0 + bil 200				crg 24				···· ' uuuu		100 + 100		and a second	X002 m.38	scw 1x150	sew 1x150 x300 + ho					sew 1 x 2			A						lo 1000			1x1500+ 1x1500+	sul 1x50			bw-gw 40	******	- sul 1x25(
Other Ca						E	lo.								000 + scw				10, 1000	lo 1000	lo 1000		~~~~						·		04 scw 4			lo 500+	+ 005x1 +	5 1X500 + 000 + lo 2																	NUN SUW				ho 400 +		lo 1000+
				· · · · · · · · · · · · · · · · · · ·											lx1 ol																lo 2x5(4	2																					+ 0001 o		
/ater (It)					80	8	8	000	8	3					000	8	88	00	000	8	8 90	000	000	200				4	88		38			8	0000	<u> 8</u>	5	3	8		000						8			8			500 500	500			8		500
Fresh V					25	92	4	160	8	8					1x	15	2 2	20	2 X 2	97	8.	2 X 3		~~~				ę	9.8		9.6			30	1 × 1	<u>8</u> 6	P		30		2 x 2		- A CARLON AND AND AND AND AND AND AND AND AND AN				50			20				[1]			40		1 x 2
						0000		2				-		Ş	Q				8		000x v	R		2				UNIN			0	0	÷	•	Q.	2 2	ş	2		- -	•					14 mil							8.8	8	\$7 				Ŕ
Fuel (35000	10005	92000	30006	20000	10011					2 X 150	14000	22000	35000	1800C	18000	x 420071 7 x 300	2 x 300	0 × 600					- CONC	35000	35000	2 x 450			2 × 1500	2 × 300	2 x 300 2 x 300	1 ~ 350		24000		4 x 750	UCOD19	140068	10000			35000			18000			2 × 1000 2 × 1000	2 x 1200		16500	70000	13000	4 x 120i
٤T									8 8	3		_		8 8	8					-									-							55							8	20			31	90	1	_								08	_
(0 0)									8.4	1	nnje .	8	F 8	₹ 8	77						\$			-							-				-	5	2						96	86			11	011	8							W1		4 165	
Ā												38									and a r							5	2								2		· · · ·								22		\$					· · · · • • · · ·		6		20	
_																																								NAME AND DESCRIPTION				··· ······												· · · · · · · · · · · · · · · · · · ·			
ibution (1																														1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.																							1000 ANY 1112						
DW Distr						·	· · · · · · · · · · · · · · · · · · ·																· · · · · · · · · · · · · · · · · · ·																										· · · · · · · · · · · · · · · · · · ·			~~~~							
																							·····																																				
T (I)	12		12		23	8	Q 9			9 9	2.7	E)	-		-				102.4	102.4	- 0		000	. 500			-	_,		5				20	2 2		9 20	5		-		ç	8 9		_	_	5	e 8	ę .	-	8 9	8,			29	-	400		8
MCI (III	12	_	4		-	1	е с С	_	8 3		37	14						\$	71.17	1714	36 B. 36	8		80 250	5 	-	-		0				3	4.12			8 88 						33	4			2	r: x	= :	-	28	<i>8</i> . •		~	æ ——	×.	340		-
(m) S (00 13.					8	01 05		e e									05 13.	80	88	05 17.	25 18.	2	21	25 8.1			5 5	75 14								00									••••	65												00
4 (ii)	20 10 5	20	18			0	36 25 2	00	9 9	10	8	9			8	88	9	80 /3.20 5	80 4	2 4	3.10 5	4 9 9	/3.20	50	/2.40 3. 80	20		7 00 7	90	15	09	-		83	2 5	22	9	35	8	88	1	20	00 9	20			5		20	8	50	20				0 g	55	18	20 5.
· ۲		2	2		-	2 20		2	mid 3	nld 2	e eri	-			5	mid 2	mld 1	mud 2.50	-		2.50	ald 2.	nald 2.50	2	1.75	-		2.20.	udd 2	2	ri	-		mld 2.	mid 2	2 C	alid S S	, Lind		c) c		e	44	r ri		¢	0 ri	ल सं	प -		4 0	3				ndd 1.	add 3.	2 plan	2
D (11)	5.65					044	N7 7		83 83	5.70			• • • •			3.70	4.30	650 -			-	7.00	7.50		,				5.50	-	7.20	¢umer n.	8.05	5.85	5.85	6.50	0.70 6.60	6.65			4.00	8.50	10.50	12.60				10.50	14.50	10.00	12.50	·	·			4.00	7.30	4.50	-
	8 8	8 1	8	g	g	8	pp	bla	plu plu	88		8 8	8	88				n blur	80	8 7	plu	7	ppu	pla		hdi		bla	blai		- Plan	Plan	pla		8	plu	8	plu		ndd bla	8	a blu	bhu bhu	plu	pla bla	blu	ŝ			bla	pla		2	8		Pla		pha	(3)
B (m)	05.61	19.50	19.50	19.50	19.50	10.01	23.40	16.80	25.50	16.50 19.90	23.20	14 00	17,00	21.60	16.50	12.50	15.00	23 (0) 23 (0)	14 46	14.46 14.46	23.00	23.00 21.00	27.00	27,00	24.80	9.30	16.40	23.00	18.00	19.50	22.00	23.40	23,40	16.50	16,80	23.00	25.80	17.50	15.00	88	25.00	27.00	32.00	30.00	25.10	28,00	19.00	29,80	36.00	29.00	40.00 23.10	28.40 12.00	12.00	20.80	23.00	13.00	24.00 10.40	12.90	17(0)
(III) (III)	96.5	1 23	8	1.37	2.01	00.0	2.95	5.90	9.80	4.65 2.77	0.53	398	9.25	140	4.00	011	8.30	8.06	2.80	2.80	8.50	8.50	8.80	06.8	970 970	5.40	8.60	58.9	030		8.00	6.03	80			0.00	009	1.20	8.37		5.08	9 F	0.30	7.40	7.55	4.43	6.94			5.00				-	80	091	4 20		2.30
(m)],								4		v)	~ :					. व		. 0			<u>ر</u>						5	g		-	9		-	ļ		~ *	5	v.		-			~ ~			ت	9		00	4				8	-	*	4		-
(I) [.48F							+																-							-											~													80.1					-
TO 40	70.36	28.00	78.40	78 00	70.75	76.60	76.10	52.50	25.00	60.09	85.58	20.02	56.00	88.00	59.20 M 00	44.70	55.00	K2.30	58.10	59.43	78.60	78.60	95.00	09.69	122.00	40.25	78 00	75.60	29.90	70.40	76.10	76.10	76.12	00,00	60.00	82.30	122.5(59.90	55.00	55.00	74.00	81.10	91.30	88.00	76.80	98 (N) 77 34	77.32	06.661	59.43	113.00	77.00	46.00	46.00		83.50	47.60	43.10	72.09	00.10
I.I.I		0.0		M.D.				and annual					mercel constraint		_					Designs				101 C 101 C			atter.			A.D.																													
off ons/A	ala	alia / A	alla	A / eme	ocal offic / A Ac	44.		5		Fjellstrand	ŝiis				jellstraud			strafia	ulu.	Multihall	stalia	draffa	stralla	strafa	sui		on Acare			wina / A.N	cldc	" de Anna e es		Jellstrand	jellstrush	stralia	1		- X-	4 4	at/Sukhoi	ll li	<u> </u>	n/Stena		M.D.	(II)					iclistrand	Jellstrand				strafia		
Drs And	Incat Austr	neal lasu neal Austi	neat Anslu	Incat Tasu	A.M.D. /1	Arwal Selic	Danyard	WaveMasi	Westaman	Kvaemer I Voemer I	meat Desig	Misui	Mitsui	Vitsui	Kvaemer) Teremfron	Decandast	Occanfust	erries Au	ncol Austi	Advanced .	ernes Au	Austal Perries Aus	erries Au	Varies Au	neat Dedi	Daewoo	Dacwoo	Anstal	Austal	neat Tasm	Royal Sch. Danyard	banyard	Danyard	Vacmer]	Vacmer]	Terrics Au	Ы	Vustal	Marinteka. Aarintekai	Manintekni	Munz/Ag	Westamon	Westaman Vestaman	Westamen	buryard	banyard bazan / A.	Bazan / A	. 2	KIIS VMD.	sprexuer.	innyards	mnyards Cvacmer F	(vacher)	Iyundai	Januaring.	Austal Aitsubishi	Ferries Au NM	HI Marine Alia	DEAL CAL
p Cude			1				14 (S) I		Í		-			10	9 -	x		1a (S) 1		×	234		4	(† ×	26a h	21 (M) II	50	0	-		4 1) (S) (S)	te (S)	e (S)	æ 5	-	12	9	11	1	130		2	9	18 (S) 1	0(8)	() () () () () () () () () () () () () (121		* < *	1		= = = =	11		2 2	2 9	<u></u>	6 a	1
102	2	202	NC)			15	12	<u>ÿ</u>]ÿ	15	0202	S S	12	22	12	DA NO	15	EN S	15	ON N	VC2	02	2 2 X	VC:		22	TOA N		12	Ú2	VCI	2 10 N	VCX	12	02	12	22	12	NC3	02		DA DA	NC	S N	DA DA	12	승진	02	발	\$ \$	N ²	<u>VC4</u>	202	VCS	NC:	VC3		VCS	VCK	1

Vehicle-Passenger Catamarans

Page 1 of 4

Ship Code	V _M (kn)	SFC	RPM	Range (nm)	Propulsion Plant (kW)	Auxiliary Power (kW)	Propulsor	GA	Page	Source	Fn _{SWL}	FnMWL	L _{OA} /B	L _{wL} /B	S/LwL	$\Lambda_8 (m^2)$	A _s /p (m ²)	$A_{\mu}(m^2)$	A./p (m ²)	$\Delta r / \Delta r$	$\Delta_{\rm V}({\rm m}^2)$	$A_{\rm y}/{\rm y(m^2)}$	B/T	Lun *B	B./T	Lus / Ru	1	
VCIh	50.0				D 4 x 5310					FF / 1-IL '95		1.130	3.610	3.279		1	-						8.864	1246,830		COMIT FOR	1.000123	
VCle	55.0	-			D 4 x 5310					FF/III '95	0.925	1.027	3.608	3.277	0.215	373.000	1.269	642.000	2.184	1.721	536.000	10.113	9.286	1246,050	2.381	12.780	9.906	536.76
VC2a	51.0		1.	1	D 4 x 5420	· · · · · · · · · · · · · · · · · · ·	······			5D71-0-93 FE71.0 '95	0.914	0.002	3.041	3.407									8,864	1257,555				
VC2b	50.0			I	D 4 8 5420					14F/HL'95	0.910	0.968	4.021	3.689							<u>.</u>	·	9.286	1391.715				dans
VC2e	51,0				D 4 x 5310					SB / I-II '95	0.914	0.992	4.000	3.660									8,945	1301 715		ļ		4
VC2n	53.0		· * · · · · · · · · · · · ·	200	D 4 x 5420					SB / XI '95	0.968	1.020	4.036	3.693						6	·····		à	1404.195		·····		
VC3		Anno 1997 - 1997		300	1) 4 x 5700	· · · · · · · · · · · · · · · · · · ·				FF / XII '95	0.947	1.024	4.064	3.708		667.000	0.867	1011.000	1.315	1.516	400.000	12.500	9.028	1409.850	2.315	14.460	10.656	624.67
VC4a (S)	46.4	ð	•••••	240	G 7 x 12400			•		FF / IV '95	0.717	0.0(1)	3.458	3.070	0.154	726.000	1.171	987.000	1.592	1.360	2017.000	13,270	7,380	1506.200	2.100	10.794	8.489	*****
VC5		-	1		D 4 x 1940				÷.	FF / IV '95	0.776	0.961	3.252	2.690	ł.	782.000	1.738	1314.000	2.920	1.680	1469.000	12.242	6.964	1473.030				
VC6					11000 - 16000			•		FF / IV '95	0.861 - 1.001		3 452	2.964	0.261	386.000	0.858	660.000	1 497	1 7 2 2	655 000	12.120	8.400	771.120				
VC7		ļ			22000 - 30000					FF / İV '95	0.717 - 0.819		2.941	2.524	0.305	984.000	1.021	1292.000	1.340	1.313	2183.000	11.674	7.500	830.040 1640.925			1	
VC9					D 2/D 4/G 2					FF / V1 '95	0.667 - 1.000		3.636	3.312	1		1	1					7.674	901.725			÷	-å
VC10	39,0			350	D 27D 470 2					FF / VI '95	0.678 - 1.018		3 015	2.652									9,476	1050.123				
VCH	40.0		1	700	G 4 x 15000					FF / VL 95	0.659	0.714	3.689	3 471	-	1		÷					7.733	1868,296			1	1
VC12				1	4 x 2647					IF/VII-VIII '95	0.991	0.040	3.571	3 141		÷							13,846	3799,440			8,830	*****
VC13					2 x 3897					FF / VII-VIII '95	0.726		3.294	2,897	1			1					1	815.720				1
VC14			1		4 x 3897					FF/VII-VIII '95	0.807		4 323	3.802		4				ō				1401 600		······	è	
VC16	····	·····	ė		4 X 3897 13 2 x Sd(M)	·····				PF/VII-VIII '95	0.672		4.074	3,583								1	1	1671.840				1
VCI7	30.0	-		200	D 2				-	DE (VIL-VIII '95	0.738	0.778	3.588	3.273	1	358.000	0.819	498.000	1.140	1,391	648.000	14.087	5.690	891,000		1	1	1
VC18	30.0	,]	200	D 2				·····	1977 VII-VIII '95	0.720	0.778	3.520	3 208		· · · · · · · · · · · · · · · · · · ·				-		i	8.333	501.250				
VC19	37.0	: 6 m		350	12.4				. 1	FF / VII-VIII '95	0.827	0.875	3.667	3.220						-			5.682	513.750		1	1	
VC20	32,0			450	D 4			1	1	FF / VII-VIII '95	0.688	0.734	3.189	2.773		······			(h		10.000	949.050				
VC22a					D 4 x 6000			*		FF / IX '95	0.712		3.57k	3.000	0.201	815,000	1,358	1118.000	1.863	1,372	2144.000	12.251	9.200	1587.000	2.020	13.663	9.805	696.90
VC22b	i	-	ł.		D 2 x 4320				1	1477 XII '95	0.814		4 018	3.651	1	1					1		8.033	763.488	2.222	13.200	9,892	304.13
VC22c				100	D 2 x 5420					117 / XH '95	0.769		4.018	3.651				-					8.033	763,488	2.2.22	13.200	9.892	304.13
VC23a		2 2	! 	1	D 4 x 5500			•		FF / XH '95	0.675		3.417	2.051	0.253	514 000	0.769	380,000	1.083	1.407	476,000	11.333	10.329	763.488	2.857	13.200	10.757	236.54
VC236			l.		D 4			*		b		· · · · · · · · · · · · · · · · · · ·	3.417	2.978	0.276	541.000	0.902	945.000	1.572	1.700	13943000	8.245	9.200	1575.500	2.020	13.564	9,758	691.85
VC23c	42.07.58.0	· · · · · · · · · · · · · · · · · · ·			D 4 x 5500			•		Ð	0.794 / 0.715	0.834 / 0.754	3.417	2.978	0.279	599.000	0.998	871,000	1.452	1.454	1286.000	6.989	0.583	1575 500	1.114	10.118	10.477	228.96
VC24b	39.0736.0			1	D A = 6000					FF / XH '95			3.519	3.289	1	1			·····		1		10,800	2397.600		6		den staat
VC25	29.0			540	D 2 x 2000	·····	·····			D	0.684 / 0.629	0.721 / 0.666	3.467	2.922	0.276	1232.000	1.232	1665.000	1.665	1.351	3155,000	12,520	10.800	2130,300			1	1
VC26a		à	1		D 4				1	FF / XII '95	0.620	0.757	3.667	3.217	0.227	192.000	0.814	241.000	1.021	1.255	129.000	12,900	6.860	463.200	1.857	11.877	8.684	175.63
VC27 (W)	40.0		1		D 2 8 2000			1		SB / 1-11 '95	1.049	1.104	4.328	3.806	·		den en					6.526	2385.760		: 			
VC28 VC20			ş		D 2 x 5420					SB / 1-11 '95	0.694		4,756	4.183	÷								0.200	1125 040				1
VC30		5			10 2 x 2700				1	SB / XI '95	0.777		3 629	3.246	0.225	382.000	1.019	494.000	1.317	1,293	395.000	14,107	6.200	499,100	1.025	19.634	9.959	132.02
VC31a			1		D 2	•••••				D	0.804		3.287	2.907		\$03.000	1.258	673.000	1.683	1,338	1112.000	15,444	10.450	1537.550			8,965	829.27
			1	i						D	-		3.328	2.794	0.286	386.000	0.873	681.000	1.541	1.764	750.000	6.881	9.000	905400	1.875	13.413	9.448	301,80
VCId	50.0				D 4 x 5420					F			3.610		· · · · · · · · · · · · · · · · · · ·													
VC3b	(36 LS)		ļ	310	D 4 x 5700			-	1	FF / V1 '96	İ		1.010		1								9.070	1406.000		1	1	÷
VC46 (S)	40.4				G ~ 24800				,	FF / IX '96	0.875	0.931	3.252	2.860										1566 174		· · · · · · · · ·		
VC4d (S)					D/G ~ 24800	· · · · · · · · · · · · · · · · · · ·				FF / IX '96	0,853		3.252	2.860						1	1			1566,174		1	1	1
VC4c (S)	46.4	1			G 2 x 12400	-				14771X '96 198007 '07	0.823		3,252	2.860	1							1		1566.174				1.000
VC8b			1		D 2 x 7200					147 / X'98			3.253		· · · · · · · · · · · · · · · · · · ·							į 1				· · · · · · · ·		
VCSe			1		D 2 x 7200	2 x 240		-	1	FF / HF 99			3.571		1								6.522			1		
VCSa VC211	40.2		1050	310	D 2 x 7200	2 x 240	2 wj	•	16	177-1-11'00	1		3,571	6 · · · · · · · · · · · · · · · · ·	4			1					6.640	++			ş	4
VC21c	41.0	····	÷	350	D 4 x 6000			· · ·		1377 VI 196	0,741	0.795	3.578	3.000				1					8.070	1587.000			1	
VC26b	37.0		1250	360	D 4 x 6500	4x 190 kW at 1800 mm			10	SB / 1-11 '98 FF V1'00	0.752	0.801	3.578	3.074	÷		1						8.214	1626.100			1	
			1	1	1				andir aq		0.010	0.020	4.740	5.721							ş		6.615	2476.800	1.538	16.000	7.934	***
VC31b	35.5		ļ		D 2 x 6500			•		14771X-'97	0.776	0.815	3,423	2.926	1			ŧ.				1	5 2 2 4	896.000		1	÷	1
VC32b				180	10.4 x 2000				1	FF / 111,1V '96	0.756		3.667	3.225		1	;				4	6	7,500	725,594		••••••••	÷	· • · · · · · · · · · · · · · · · · · ·
VC32c					G 2 x 2840 + D 2 x 2000					14:7 VII-VIII '97			3.667										7,500			- -		
VC33				300	D 2 x 6500	-			i i	FF7 BLV 96	0.733		3,667	3 (03	1.1		1	-					7.500	1		1		
VC34				400	G 2 x 25000					FF / III.IV '96	0.881		3.478	3.059	÷			4					ļ	1627.089				÷
VC35			£	450	D47G2 - 20000-34000			1		FF / 111, IV '96	1		3.004	2.642	1			(1		7.207	1018,294		1	÷	1
VC37				500	G2 - 35000-52000 G2 - 35000 52000			•		FF / III,IV '96			2.853	2.509				C					8.000	2569.569	نسب ، است			4 1
VC38 (S)			inner e	400	G 2 x 17000	·····				FF7 III,IV '96	0.747		3.228	2.839		ļ							7.111	2907.300			1	1
VC39 (S)					D ~ 12400				1	FF / 10,19 96	0.747		2.933	2.580			1						8.108	2321.900		1		
VC40 (S)					G - 24800					IFF/IX '96	0.799	• • • • • • • • • • • • • • • • •	3.060	2.691	4	· · · · · · · · · · · · · · · · · · ·								899.208		: A		
VC41 (S)	(0.0		÷		G ~ 32000					FF/1X '96	0.751		3.429	3.015		1		1						7364 116			1	1
VC42a	56.D			200	G 2 x 16100					FF7 XII '96	1.119	1.178	3.974	3.595	1			1				å	9.051	1361.422			÷	· · · · · · · · · · · · · · · · · · ·
VC43			+	400	G 2 x 10100			*		FF / XH '97		1.100	4.069	3.681		J		Į					8.920	1328.860	2.653	12.379	7,864	703,41
VC44				300	G 4 x 20600				÷	NA			5.582		1			<u>{</u>					7.857	1		;		
VC45 (S)			1		G 4 x 17000					NA / IV '97			3.056	·····	· • · · · · · · · · · · · · · · · · · ·								6.082				en en en en en en en en en en en en en e	-l
VC46					D 4 x 5440			*		F	1		4.110		1	1							9.000			-		******
VC18		-			D 2 x 6000 + G 2 x 21500				j	F	0.674		3.897	3.276		. 0		1			6		7.436	2755 000		•••••		4
VC49		i	ł		0 2 X 21500 + 0 2 X 14915 D 4 * 6500					F			3.250		-			1					9,091				1	1
VC50	l	-			D = x 0.000 D 2 x 6500 + G 2 x 17000					14F71V '97 EE CIV '67			3.333		-		-					2	9.240				1911	1
VC51a	38.D		j		D 4 x 1740				·····	197/V '97	••• ••••••		3 893				· · · · · · · · · · · · · · · · · · ·	÷	h-h11aa				8.875					÷
VC51b	38.0	- 			D 4 x 1740			.	1	FP / V '97			3,833		1								1			-		4
VCSIC	60.0			1	D 4 x 2000			* 1		17? / V1 '98	ĺ		3.833			1		1				ά	<u>(</u>			÷ · · · · · · · · · · ·	ę	÷
VC53	00.0	, p. 71	+		1) 1 × 5650			•		SB / XI '97				ļ		ļ	1	1						1			1	
VC54	1			1	12 4 8 5050 D 4 8 6500				-	SB / XI '97	0.667		3.430	1	-		1				,						1	der ander e
VC55	39.0	977 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	l		D 4 x 1980			•			•	0.903	3.642	3 200		ļ	÷					Į		han and				
VC56	42_0			1	D 4 x 6500			•		FF / IX '97	1	0.22.1	6.779	1.200	1			{			1		9,286	540.800		-		
VC57			TT VOMAL	350	D 4 x 6500			•		FF / IX '97	0.705		3.608	3.092		÷					8	h	6.575	1780 800				
VC59	30.0	\$	h	• • • • • • • • •	D 2 x 2088					FF / XI '97	0.778		4.144	3,856		1			: :			[7.222	417.040			1	1
VC60	48,0		1	440	D 4 x 5500					FF7 V1 '98		0.022	5.588		1		1						6.293	1	· · · · · · · · · · · · · · · · · · ·			199.02
				*****						11/JA 20	.1	0.927	9.210	: 3.805	1		1	÷					8 636	1 1373 700	2 2 2 3	·		

10 10<	Norm Norm <th< th=""></th<>
m m	Main Main <th< td=""></th<>
No. No. <td>Mark Mark <th< td=""></th<></td>	Mark Mark <th< td=""></th<>
M M	Num Num
1 1	Plane Plane <t< td=""></t<>
No No<	No. No.
M Form J NML DNV Methodine(1) AUX Description Post Methodine(1) Control C	Model Model <t< td=""></t<>
WT 0 WT Mediation 0 AU CHT 0 Peri 0. Description 0 Par Mediation 0	NULL TWO Mediation () A () Gray () Deal Deal <thdeal< th=""> <thdeal< th=""> <thdeal< td="" th<=""></thdeal<></thdeal<></thdeal<>
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$
AD CRU CRU Frai Mode Frai Mode Prov Distribution 1 2000 1400 1000<+se 3000	AD CRF Feat Water (0) Feat Water (0) Dotter Capacities (0), Wights (0) Drs Drs <t< td=""></t<>
GTX Fract (b) Fract Mater (b) Other Consolition Part (b) Part (b)<	GRT Field(n) FreeM Water (n) Other Commission(n) FreeM Water (n) Other Commission(n) Correction(n) Correct
Fuld(0) Fray Water (0) Dot Concentration Prov Prov Monthmin 2000 3100 1000 + sev 3000 + 81 3000 - 3100 100 7000 + 2000 + 2000 2000 2000 2000 100 7000 + 2000 + 2000 2000 + 2000 + 2000 2000 2000 2000 100 7000 + 2000 + 2000 2000 + 2000 + 2000 2000 2000 2000 2000 2000 2000 + 2000 + 2000 2000 + 2000 + 2000 2000 1000 2000 1000 1000 2000 + 2000 2000 + 2000 2000 + 2000 2000 + 2000 2000 + 2000 2000 + 2000 2000 + 2000 2000 + 2000 2000 + 2000 2000 + 2000 2000 + 2000 2000 + 2000 2000 + 20	Text Text <thtext< th=""> Text Text <tht< td=""></tht<></thtext<>
Text Water (1) Other Capediae (1) Pact Pactor (1) P	Miller (II) Other Cherolities (II) Fixe Machina Creation 2000 1000 + web (2004 + bit (3004 + at 2300 001 25004 + 11341 90 2000 1000 1001 25004 + 10341 90 25004 + 10341 90 2000 web (2004 + web (2004 + bit (3004 + bit (3010 + bit (301
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$
Proc. Proc. Description 100 70.0.0.1.20.0.0.0.1.0.0.0.0.0.0.0.0.0.0.0	Pros Prost Methoding Creation 1001 70014-1240-00-110-11 90 901 901 70014-1240-00-110-11 90 902 2530-00-110-00 90 90 903 1010-00 2530-00-110-00 90 903 1010-00 2530-00-110-00 90 903 1010-00 2530-00-10 90 904 1000-00 1010-00-10 90 904 1000-00 1010-00-10 90 904 1000-00 101+12-00 90 904 1000-00 201+12-00 101 904 201+12-00 201+12-00 101 904 201+12-00 201+12-00 101 904 201+12-00 201+12-00 201 904 201+12-00 201+12-00 201 904 201+12-00 201+12-00 201 904 201 201+12-00 201 201 904 201 201+12-00 201
Alternation (20) (20) (20) (20) (20) (20) (20) (20) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11)	Part Michael Constrained Constrained <thconstrained< th=""> <thconstrained< th=""></thconstrained<></thconstrained<>
	(<u>creat</u> 3) (2) (2) (2) (2) (3) (3) (3) (3) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4

Vehicle-Passenger Catamarans

Page 3 of 4

NAME Probability	Shin Code	V. (ku)	SEC	PPM	Runne (nm)	Description Plant (I:W)	Amilian Banan (1985)	Dennik	() I										· · · · · · ·						т				
VAM VA A VA VA </th <th>VC62</th> <th>47.0</th> <th></th> <th>100.02</th> <th>tunige (ant)</th> <th>D.4 x 7200</th> <th>Autuary Lower (EW)</th> <th>ropuisor</th> <th>GAL</th> <th>Page</th> <th>Source</th> <th>Fn_{S/WI}</th> <th>PD30WL</th> <th>L_{OM}/B</th> <th>L_{WL}/B</th> <th>S / L_{WL}</th> <th>$\Lambda_{s}(\mathbf{m}^{*})$</th> <th>A₂/p (in[*])</th> <th>Λ_{p} (m[*])</th> <th>A_P/p (m[*])</th> <th>Λ_p / Λ_s</th> <th>$A_{V}(\mathbf{m}')$</th> <th>$\Lambda_{\chi}/v(m^{*})$</th> <th>B/T</th> <th>L_{WL} * B</th> <th>B_H/T</th> <th>L_{WL}/B_{H}</th> <th>L_{WL}/Γ</th> <th>7</th>	VC62	47.0		100.02	tunige (ant)	D.4 x 7200	Autuary Lower (EW)	ropuisor	GAL	Page	Source	Fn _{S/WI}	PD30WL	L _{OM} /B	L _{WL} /B	S / L _{WL}	$\Lambda_{s}(\mathbf{m}^{*})$	A ₂ /p (in [*])	Λ_{p} (m [*])	A _P /p (m [*])	Λ_p / Λ_s	$A_{V}(\mathbf{m}')$	$\Lambda_{\chi}/v(m^{*})$	B/T	L _{WL} * B	B _H /T	L_{WL}/B_{H}	L_{WL}/Γ	7
Vach 10 Also Matrix	VC63		3323 b//w	·	375	13.4 × 3200	4 A 200				PP / 1-11 98	0.708	0,881	3 484	3.148									7.394	1873.920				
Vrdaf Jada Mod Impart of the second seco	VC64a	42.0	\$310			D 4 x 7000	281/0	· ····			FF / IV '99	0.797		4.224	3.9.53						······································			7.818	1169.600				in a second
View Jumin 200 Description 2000 Description	VC64b		74 1/h	3600		(2T 2 x 18MW		4			177 (112:00	0.703	0.801	3.608	5.092	••••••	÷						,	7,500	1780,800				
Vire No D <thd< th=""> D D D</thd<>	VC65		2169b/br	2000		D 4 x 7320	2 - 135			45	FT7 RF 00	0.782		3.608	3.088	·······		· · · · · · · · · · · · · · · · · · ·						6.575	1778.400				
Virgit 4:0 - 0 - 1 1 1 - - - - </th <th>VC66</th> <th>36.0</th> <th>i zroznani</th> <th></th> <th></th> <th>0.4 × 18000</th> <th>2 × 100</th> <th></th> <th></th> <th>4.3</th> <th>FF / V199</th> <th></th> <th></th> <th>3.920</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th>6.410</th> <th></th> <th></th> <th></th> <th></th> <th></th>	VC66	36.0	i zroznani			0.4 × 18000	2 × 100			4.3	FF / V199			3.920										6.410					
View A D	VC67	45.0				1 04 8 10000	4 S 4021			- 11	IT VI VI VI			3.202	·····			· · · · · · · · · · · · · · · · · · ·											
VX07 J00 D 2 6400 2 327 A D 3 PERP m A 33 PERP	VC68	45.0				D4					FF VII-VIII 99			4.114			ļ,												
V270 230 100 D 2 4/00 3.37 4 D 2 100 <	VC69	and Same	5	2100		D 2 x 610	2 * 27			20.21	PF VIEVIII 99			3,655	·····		· · · · · · · · · · · · · · · · · · ·												
NYT 40 33 m 100 104 4 200 4 3 200 4 3 200 100 100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	VC70		·····	2100		D 2 x 620	2 4 47			20_21				2.122										6,429					
V772 Image: Marked and the state of t	VC71	42.0	5.3 1/1	1050		E) 4 x 7200	4 x 240 at 1500 mm	h		22.24	117 1A 92	0.7/2	0.001	2.650			è							7.067					
V.72. P1 202 P1 202 P1 202 P1 203	VC72		1	de autoritaria			4 A 240 in 1990 (pair	}·····		6	ET 1X 99	0.765	0.501	3.017	3.092				·····					7.500	1780.800				
N74 1<	VC73					D 4 x 7925	·····	4		20	17 A 22	1.920		3.197	3.382			ļ			·			6.320	894.280				
NY75 I	VC74		e			D 4 x 3300		4 wi		20	17 XI 99	0.262		4.2.58	3.769										637.000		14,848		
Vill D	VC75	······				D 4 or GT 4	·····			20	EE / 11200	0.737		4.224	3.935		\$							6.798	1169.600	1.680	16.000		
VNI VNI P <th></th> <th></th> <th>·····</th> <th></th> <th></th> <th></th> <th>· · · · · · · · · · · · · · · · · · ·</th> <th>þ</th> <th></th> <th></th> <th>11//11/00</th> <th>0.5.0</th> <th></th> <th>4.170</th> <th>3.882</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th>10.625</th> <th>1122.000</th> <th></th> <th>a man d</th> <th></th> <th>÷</th>			·····				· · · · · · · · · · · · · · · · · · ·	þ			11//11/00	0.5.0		4.170	3.882									10.625	1122.000		a man d		÷
NYAB 400 D 2 b + X88 H M M M H M M M L M M	VWI	1				D 2 + \$420 - D 2 + 4050			. 1		170 ()))		-	1	1			1									1		
VN30 VN30 D44 \$530 C PF AU 30 0 178 0.760 0.710 0.700 1.720 1.750	VW2a	[······	••••• • ••••• •• •• •• •			DA v 5500			-i-t-		FF7 III '95	0.523		. 4.994	4.451	0.162							,	6.445	1776.821	1.806	15.880		
With With <th< th=""><th>vwn</th><th>40.0</th><th>1</th><th>ł</th><th>1</th><th>D 4 x 5500</th><th></th><th></th><th></th><th>1</th><th>1427 XII 95</th><th>0.746</th><th></th><th>3.121</th><th>2.550</th><th>0.330</th><th>712.000</th><th>1.052</th><th>890.000</th><th>1.315</th><th>1.250</th><th>1947.000</th><th>10.757</th><th>8.667</th><th>1723.800</th><th>1.443</th><th>15.312</th><th>8 286</th><th>*****</th></th<>	vwn	40.0	1	ł	1	D 4 x 5500				1	1427 XII 95	0.746		3.121	2.550	0.330	712.000	1.052	890.000	1.315	1.250	1947.000	10.757	8.667	1723.800	1.443	15.312	8 286	*****
VN6 V30 - P1 A 4 10 0 - P1 A 10 0 1.28 2.28 0.500 1.195 1.190 1.59 2.50 0.000 1.244 0.603 0.603 0.294 0.296 0.500 0.195 1.590 1.590 1.590 1.244 0.503 1.607 6.853 VW6 -24 D 4 5 5000 - - 0.40 3.307 4.00 3.307 5.500 0.95 87.000 1.345 1.39 1.4000	VW3		1			D 4 × 6875		••			FF 7 V1 90	0.787	0.807	A.121	2.550		\$							8.667	1723.800	1.443	15.312	6,476	帮助装持算机
NYK6 52.0 D 4 x 6500 J 4 x 7050 J 1 7 y J 2 7 y <thj 2="" 7="" th="" y<=""> <thj 2="" 7="" th="" y<=""> <thj 2="" 7<="" th=""><th>VW4</th><th>39.0</th><th>1</th><th></th><th></th><th>D 4 x 6100</th><th>1</th><th></th><th></th><th></th><th>FF7 XII 95</th><th>0.738</th><th></th><th>3.225</th><th>2.755</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th>8.525</th><th>1862.380</th><th>1.459</th><th>16.097</th><th>8,685</th><th>######</th></thj></thj></thj>	VW4	39.0	1			D 4 x 6100	1				FF7 XII 95	0.738		3.225	2.755									8.525	1862.380	1.459	16.097	8,685	######
VW6 - 0 0 1	VW5	52.0	÷····			D 4 x 6500				f.	TT / AU 93	0.600	0,702		2.816	0,296	956.000	1.195	1519.000	1.899	1.589	2800 000	12.444	9.058	2470.308	1.511	16.883		
VYP S2.0 D D P1 × 200 P1 × 100	VW6	1			1	1) 4 × 5000		1 3	.	1	PP/AU 95	0.939	0.997	4.095	3,846									7.640	1403,086				
VW8 4.0 D <thd< th=""> D D D</thd<>	VW7	32.0				D 4 x 2023	· · · · · · · · · · · · · · · · · · ·	• . · · · · · · · · · · · · · · · · · ·	÷.	·····	107 (MI 107	0.053		4.103	3,977		585.000	0.975	807,000	1,345	1,379	874,000	15.891		1512.225				
Wwg 43.0 D 4 x7080 - I D 0.73 0.702 214.380 1.10 1.883 WWg 44.0 D 4 x7080 - FF / W 97 0.783 5.512 3.128 7027 214.380 1.162 18.807 WWg 44.0 D 4 x7080 - FF / W 97 0.744 4.53 3.327 7027 214.380 1.162 18.807 WW12 A 4.0 - FF / W 97 0.744 4.558 3.89 7467 7922 17.647 7922 17.647 7923 7924	VW8	46.0	1			D 4 x 7200			- 1	1	10111191			9.020			4							6.696					
VW00	VW9a	43.0	фи илин станицин, 1		***	D 4 x 7080		h	*	·····			0.283	2,420	2 1 2 6	· · · · · · · · · · · · · · · · · · ·		è						10.037					
WUID 44.0 D4 \$ 7080 * H7 H1 97 0.322 0.827 3.332 2.99 D4 \$ 7080 7.22 193.600 1.20	VW9b	1	1	1	İ	D 4 x 7080	1			1	107 / IV 197	0.783	0.763	3.512	2 102		÷							7.027	2114 580	1.170	18,783		
VW11 0 0.4 x 2300 + 2 x 400 0 0 0 0.704 0.80 2.589 0 1/2.9 1/2.9 1/2.0 <th1 2.0<="" th=""> 1/2.0 1/2.0<!--</th--><th>VW10</th><th>44.0</th><th></th><th></th><th></th><th>D 4 x 7080</th><th></th><th>ş</th><th>*</th><th>·····</th><th>132/111/207</th><th>0.752</th><th>TCNO</th><th>1 2 2 2 2</th><th>1 020</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th>1.027</th><th>2113,800</th><th>1.162</th><th>18.907</th><th>1.1222.1</th><th>. h</th></th1>	VW10	44.0				D 4 x 7080		ş	*	·····	132/111/207	0.752	TCNO	1 2 2 2 2	1 020									1.027	2113,800	1.162	18.907	1.1222.1	. h
VIV12a 44.0 D26000 1.0 0.13 0.14 0.13 0.11 0.13 0.11 0.13 0.11 0.13 0.11 0.13 0.11 0.13 0.11 0.13 0.11 0.13 0.11	VW11	1	1			D 4 x 7200 + 2 x 4060		1	~ İ	1	FET / IV 107	0.744	0.021	4.559	3 970		ŧ.							9.429	1986.000	1.257	17.647	1.522	*****
YW120 44.0 D 4 X6500 - - PP / V1 Y98 0 703 4226 3.965 0.703 2024.000 - 1	VW12a	44.0				26000		1			R		0.763	4 7 26	3.0.5									7,467	1926.400				
VW12a D4 x 6500 4 sj 2b PF Nor '9P 0.712 4.152 3.89 D.1 D.02 S00 2.11 15.702 VW12a (T4 x 2400) 2 sj 2 sj PF Nor '9P 0.018 4.25 3.904 7.904 8.79 26.808 2.11 15.702 VW13a 42.0 0.04 x 8275 4 y - 2 s PF Nor '9P 0.018 4.25 3.904 7.904 8.79 26.800 2.11 15.702 VW13a 42.0 P1 x 8275 4 y - 2 s PF Nor '9P 0.037 3.809 3.02 7.44 216.000 1.711 14.760 VW13a 0.02 + 0.01 x 10.033 / 17.033 / 17.033 2 x 20 + furbines - PF /11.979 0.637 3.602 3.917 6.33 3.525.00 10.00 2.500 VW15 3 0.0 7006 (300 hb/ 100 7.43 7300 4 x 200 - - FF /11.979 0.673 3.602 3.368 - 7.62 2.5000 1.00	VW12b	44.0				D 4 x 6500	1		*	1	FF / VL '98		0.763	4 726	3.065		1							7.793	2024.960				
VWL1a - 0 0.4 x 24400 2xi PP Nov'99 0.003 4.2 z 1940 3.00 2.0 z 100 6.0 z 2.0 z 100 100 z	VW12c					D 4 x 6500		4 wi		28	FP Nov 99	0.712		4 1 52	1 801		÷	·					•••••	9 610	2024.960	210	16 703		
VWL5a 42.0 75600 75.0 75.00 77.20 75.00 77.20 7	VW12d	1	<u>.</u>	1		GT 4 x 24400	1	2 w	í	28	FP Nov '99	0.903		4.226	3.960									7 702	20.38.300	1.066	15,702		()
VW15h O D 4 \$\x275\$ 4w * 28 Pf V1 \y8 and X199 0.637 38.0 1302 2.04 210.600 111 14.70 VW14a 0.00 64 \$11324 \$16334 \$1737\$ 2 \$20 \$1700\$ 0.37 38.0 302 624 \$121634\$ 7731 14 \$700\$ 623 \$3070\$ 620 \$3070\$ 620 \$3070\$ 620 \$3070\$ 620 \$3070\$ 620 \$3070\$ 620 \$3070\$ 620 \$3070\$ 620 \$3070\$ 620 \$3070\$ 620 \$3070\$ 620 \$3070\$ 620 \$3070\$ 620 \$3070\$ 620 \$3070\$ 620 \$3070\$ 620 \$3070\$ 620 \$3070\$ 620 \$3070\$ 620 \$3070\$ 7200 \$300 7200 \$300 7200 \$300 7200 \$300 7200 \$300 7200 \$300 7200 \$300 7200 \$300 7200 \$300 7200 \$300 7200 \$300 7200 \$300	VW13a	42.0				36000			-		B		0.704	3.869	3 302		· · · · · · · · · · · · · · · · · · ·		ŧ					7.756	2022.100	1.200	10.002		÷
VW14a G 4 4 13124 /1633 /1770 2 x 20 + Turbine * M PF / XU/96 0.72 4.18 4.02 ////////////////////////////////////	VW13b		2			D 4 x 8275	1	4 wi	· [28	HF / VI '98 and XI'99	0.637		3.869	3 392				(i					7.447	2716,400	1.211	11.700		
VW14b 1000 GT 4 12000 1N 1P 3/5/5 0.256 4.00 3.917 6.33 325.000 1.000 75.000 VW145 3.60 2.2 D4 X 7080 4 X 200 * 1P / V/99 0.664 0.673 3.542 70.01 23.00 1.000 12.16 19.11 VW16 38.0 70.01 23.04 4 X 200 * 17 FFV1LV1199 and X 99 0.673 3.664 3.282 70.01 23.06 1.34 9 1.34 20.44 3.04 1.34 20.44 1.34 20.44 3.06 3.067 3.069 3.069 70.01 23.06 1.34 20.44 30.44 3.04	VW14a					G 4 x 13124 / 15633 / 1737	Q 2 x 230 + Turbines		*		FF/XII'98	0.773		4 138	4.052		÷							6.042	2407 500	0.070	25 000		iyaa a
VW16 38.0 222) J 4 7080 4 8230 •) F/ / V''9 0.664 0.073 5.64 3.292) 7.091 223.300 1.216 19 11 VW16 38.0 7000 D 4 7200 4 8230 • 17 fF VL/VIP 90 all X'90 0.663 3.664 3.292 . 7.091 223.300 1.216 19 11 VW17 38.0 7000 D 4 7200 4 820 • 9 IF / IV 199 90 all X'90 0.663 3.664 3.292 . 7.091 223.300 1.216 19 11 VW17 38.0 7000 D 4 4 sig • 9 IF / IV 199 90 all X'90 0.663 3.694 3.49 . 7.001 223.200 1.326 9.14 VN1 • • 0 2 IF / IV 199 50 0712 0.203 2.592 2.002 2.002 4.8320 0.44 9.14 VS2 • • 0.2 · IF / VII 1915 0.712 3.602 2.707 <	VW14b				1000	GT 4 x 13000	1			18	FF X 95	0.758	1	4,000	3.917		1							6.383	3525.000	1.000	25.000		: 1
VW16 28.0 7006. \$300 hdy 1030 700- 2 4 x 230 4 x 230 • 17 FF VILVUP 99 mal X 97 0.673 3.602 3.308 7000- 7027 2236 cm0 7027 2236 cm0 7027 2336 cm0 7027 2336 cm0 7027 2336 cm0 7027 2336 cm0 7027 2336 cm0 7027 2336 cm0 7028 2014 cm0 7018 cm0 7018 cm0 7018 cm0 7018 cm0 7018 cm0 7018 cm0 7018 cm0 7018 cm0 7018 cm0 7018 cm0 7018 cm0 701	VW15	38.0			232	D 4 x 7080	4 x 230	1	×		FF / IV '99	0.664	0.673	3.664	3,282			i i						7.081	2253,200	1.216	19.111		
VWI7 X0 D.4 4 wj • 9 PF LIT00 0.651 3.654 3.459 7.821 247.200 1.324 20.441 V81 2 x 3897 PF LIT00 0.926 2.992 2.392 416.774 <td< th=""><th>VWI6</th><th>38.0</th><th>7000- 6300 h</th><th>4 <u>1030</u></th><th>700+</th><th>D 4 x 7200</th><th>4 x 230</th><th></th><th>•</th><th>17 1</th><th>FF VII-VIII'99 and X'99</th><th>•</th><th>0.673</th><th>3.692</th><th>3.308</th><th></th><th>1</th><th></th><th></th><th></th><th></th><th></th><th></th><th>7.027</th><th>2236.000</th><th></th><th></th><th></th><th></th></td<>	VWI6	38.0	7000- 6300 h	4 <u>1030</u>	700+	D 4 x 7200	4 x 230		•	17 1	FF VII-VIII'99 and X'99	•	0.673	3.692	3.308		1							7.027	2236.000				
V81 2 x 3897 PF/VIL/UI 95 0.926 2.992 2.392 416.724 V82 4 x 5368 FF/VIL/UI 95 07.12 3.200 2.558 1002.200 1002.200 V83 0.2 FF/VIL/UI 95 09.17 3.460 2.767 6820 1515.160 V84 0.2 FF/VIL/UI 95 0.71 3.460 2.707 6820 1515.160 V84 0.2 FF/VIL/UI 95 0.71 3.460 2.707 6820 1515.160 V84 0.2 FF/VIL/UI 95 0.71 3.460 2.707 6820 1515.160 V84 0.2 FF/VIL/UI 95 0.71 3.460 2.707 6820 1515.160 V84 0.2 FF/VIL/UI 95 0.71 3.460 2.706 0.276 7.159 50.41	VW17	38,0	÷			D 4		4 wj		. 9	145 1-11.00		0.651	3 6 5 4	3.459		1							7.824	2447.200	1.324	20.444		1.000
VN2 2.3.7.497 (FF/VIL/UI) '95 0.906 2.992 2.302 416.724 VN2 4.5.358 FF/VIL/UI '95 0.712 7.200 2.538 1023.200 1023.200 VS3 0.2 FF/VIL/UI '95 0.712 7.200 2.538 1023.200 1023.200 VS4 0.2 FF/VIL/UI '95 0.717 7.462 2.767 6.882 151.50 VS4 0.2 • FF/VIL/UI '95 0.711 3.460 2.706 6.882 151.50 VS4 0.2 • FF/VIL/UI '95 0.711 3.460 2.706 7.159 2.866.960 1.216 1.594	1001	+	Į					ļ ļ.									1					1							1.1
152 4 x 368 FF / VII. VIII '95 0 712 2.202 2.558 102.200 1003.200 VS3 0.2 FF / VII. VIII '95 0 917 3.462 2.767 6802 1515.50 VS4 0.2 FF / VII. VIII '95 0 711 3.462 2.767 6802 1515.50 VS4 0.2 FF / VII. VIII '95 0 711 3.462 2.767 6805.90 1216 15.944 VS4 0.2 FF / VII. VIII '95 0.717 7.462 2.769 2.769 2.769 2.769 12.66.506 12.16 15.944	VSI		÷			2 x 3897		ļ		i	FF / VII-VIII '95	0,936		2.992	2.392		1					1			416.724				1
VS3 G 2 IF/XII 95 9817 3.462 2.767 6.882 15.150 VS4 G 2 • IF/XII 95 0.711 3.460 2.708 0.295 7.159 2680.960 12.16 15.944 VS5(G) D4 4.600 • 92.72 7.26 9.025 9.025 1.16 15.944	VSZ					4 x 5368		įį.			FF / VII-VIII '95	0.712		3.200	2.558		1								1023.200				1
10-9 G2 • FF/XII 95 0711 3A60 2708 0295 1719 1719 1719 1719 1719 1719 1719 17	VS3					6.2					FF7 XII '95	0.817		3.462	2.767									6.882	1515.150				
102 N 195 0216 2017 102 000 1270 110000 1270 110000 1270	VSE (C)		÷			G 2					FF / XII '95	0.711	ļ	3.460	2.708	0.295		Į						7.159	2686.950	1.216	15.944		
VX2 3.05 2.290 0.205 813000 1.338 1118 MB1 1.865 1.372 2144.000 1.8234 10.450 1.331 13.233	V35 (0.)					D 4 X 6000		ļ		·	SB / XI '95	0.716		3.565	2.963	0.263	815.000	1.358	1118,000	1.863	1.372	2144.000	12.251	10 450	1567.450	2.341	13.233		1
Ver 2/0 10/07 10	V\$7	•			260	0 4 X 10000				·	SB / XI '93	0,859		2.333	2.026		671.000	1.118	809.000	1.348	1.206	1599.000	17.767		1109.160				
USS 125 L186 D.649 481000 0.640 540000 0.718 1.123 751.000 8940 6.340 1191.920 0.760 9.895 4.645	VS8	42.5			500	174 X 3076					D	0 804		1.625	1.186	0.649	481.000	0.640	540.000	0.718	1.123	751.000	8.940	6,340	1191.920	0.760	9,895	4.685	#######
VS9 U 24500 (22) 1350 (22) 2550 (22) 1200 U 24500 (22) 2550 (22) 1200 U 24500 U 24500U 24500 U 24500 U 24500U 24500 U 2450	VS9	·····	· · · · · · · · · · · · · · · · · · ·			C 2 × 13500 + C 2 + 20500					D	0.966	1.027	1.847	1.473	0.528	926.000	1.852	1356,000	2.712	1.464	1425,000	14.250	6.382	1452.250	0.772	12.171	5,779	#######
VSEL 37.0 30 DA LOUIS A ALADAD - P//III/V 70 3165	VSEI	37.0	1		350	10 2 X 15000 + 0 2 X 2050		÷			11F / III,1V '96	8.000	0.076	3.165					Į	[<u>.</u>		8,889					
VS10 400 102 cm 1 22 250 1000 722 250	VS10	1	· · · · · · · · · · · · · · · · · · ·		400	D 2 x 6000	······································			······	P#7 III '95	0.829	0.876	3.667	3.210		<u>.</u>		<u>.</u>					10,000	722.250				
	VSII	1				(17 x 21500			-		PF 7 III, IV 96		L.,	4.771				<u></u>	ļ			ļ		ļ					· · · · · · · · · · · · · · · · · · ·
	VS12	1				V.+ 4 41/00				·····	r E			2.435										5,167	ļ				

Vehicle-Passenger Catamarans

Page 4 of 4

APPENDIX II

A2. COMPUTER PROGRAM FOR CONCEPT DESIGN OF A FAST FERRY

A2.1. BACKGROUND

As part of the research a number of computer programs have been created to implement the preliminary design stages of fast ferries. Four main separate programs which estimated the main dimensions, main power, masses and costs of each vessel types (four types of vessel, namely passenger-only monohull, vehicle-passenger monohull, passenger-only catamaran and vehicle-passenger catamaran) have been developed. Each estimation method has been explained in detail in this thesis. The following table summarises all the inputs and outputs of each program.

PROGRAM	INPUTS	OUTPUTS
Dimension	N _{PAX} , N _{CAR} , V _S , V _{TYPE} , C _B , B/T, S/L, B _H /T, L/ $\nabla^{1/3}$	L_{OA} , L_{WL} , B, b, T, D_{OA} , S, A_S , A_P , Δ_1 .
Power	Outputs from "Dimension", V _{TYPE} , E _{TYPE} , N _E , V _S , RPM	$P_D, P_E, P_I.$
Mass	Outputs from "Dimension" and "Power", N _{PAX} , N _{CAR} , V _{TYPE} , E _{TYPE} , V _S , N _E , R, N _{CREW} , N _{DECK} .	$W_{H}, W_{O}, W_{M}, W_{PAX}, W_{FUEL}, W_{FWPROV}, W_{CREW}, LS, DW, \Delta_{2}$.
Cost	Outputs from "Mass", N _{PAX} , N _{CAR} , V _S .	С _н , С _о , С _м , ВС, АВС.

Table A2.1: Early Computer Programs Description.

A2.2. GENERAL DESCRIPTION

Research entailed modifying and combining all programs into one major program to create new designs efficiently and easily. This program inputs and outputs all the variables listed in the above table within one unique run. Table A2.2 displays all the inputs and outputs of this whole program. As shown in the relevant table, the user can select the number of passengers, cars, service speed, type of the vessel, type of the main engine and some variables at the beginning of each run.

PROGRAM	INPUTS	OUTPUTS
	N _{PAX} , N _{CAR} , V _S , V _{TYPE} , E _{TYPE} .	$L_{OA}, L_{WL}, B, b, T, D_{OA}, S, A_S, A_P, P_D, P_E, P_I, W_H, W_O, W_M.$
Pre-Fast	N _E , RPM, N _{DECK} , N _{CREW} , R,	W _{PAX} , W _{CAR} , W _{FUEL} , W _{FWPROV} , W _{CREW} , BC, ABC, LS,
	$L/\nabla^{1/3}$, B/T, B _H /T, S/L, C _B .	$DW, \Delta_1, \Delta_2.$

Table A2.2: Computer Program "Pre-Fast" Description.

The program is especially designed for very simple use where the process can be repeated as much as it is necessary. At the end of each run the program is designed to display all the inputs and outputs into a sheet, which can then be printed out.

It is important to mention how the mass balance study is included in the program. At the end of the each run the program assesses the final outcomes namely DISP1 and DISP2. This procedure has been detailed in chapter 2 under the name of mass balance. If there is no balance between these two variables, which means DISP1 and DISP2 have more than 1% of a difference, then the program asks the user to choose whether to carry on with a non balanced design or to create a mass balance. If the user chooses to create a mass balance the program follows the procedure detailed in chapter 2, and builds a mass balance between these two variables. If not, the run ends up with no mass balance.

Passenger comfort is another issue to point out. There are two variables which alter the passenger comfort, these are A_S/N_{PAX} and A_P/A_S . These variables can be changed with a quick alteration in the code. The ranges of these variables are mentioned in chapter 2, and by staying within these ranges they can be modified for different passenger comforts.

The computer program has been written in FORTRAN language. A full listing of the source code is included at the end of this appendix. The meanings of all the abbreviations can be found in the nomenclature of this thesis.

CODE "PRE-FAST"

PROGRAM ESTI OF DIME POWER MASS COST CHARACTER *1 YESNO, YN CHARACTER *2 VTYPE, ETYPE COMMON/ONE/LOA, LWL, B, S, BH, T, D, CB, DISP1, WME, WP, WGB, WM, CME, CP, CGB, Ś CM, WO, CO, WH, CH, BC, WFUEL, WFWPROV, WCREW, WPAX, WCAR, DW, DISP2, VS, SOL. \$ LOD, WSA, FN, RN, CFM, CFS, FN1, FN2, FN3, CR1, CR2, CR3, CR4, CR5, CR6, CR7, \$ CR8, CR9, D1, A, B1, C, CR, CRS2, k, bk, CTS, RTS, PE, PD, PI, EFF, N, ABC, Ś AJ, AKT, AKQ, DIAM, RPM, NPAX, NCAR, NCREW, AS, AP, NDECK, NE, R, BHOT, BOT, LS COMMON/TWO/VTYPE, ETYPE REAL NPAX, NCAR, NCREW, AS, AP, AV, LB, LWL, LOA, B, D, BH, T, S, DISP1, LOD, BOT, \$ CB, PB, RPM, R, VS, LOB, LOBH, LOBH1, SOL, BHOT, NE, NDECK, PI, PE, PD, FN, RN, \$ CO,WSA,CFM,CFS,FN1,FN2,FN3,CR1,CR2,CR3,CR4,CR5,CR6,CR7,CR8,CR9, Ś D1, A, B1, C, CR, CRS2, k, bk, CTS, RTS, EFF, n, AJ, AKT, AKQ, DIAM, DISP2, LS, ABC 500 WRITE (*,*) ' ' WRITE (*,*) ' PRELIMINARY DERIVATION OF DIMENSIONS' WRITE (*,*) ' ESTIMATIONS OF POWERING, MASSES AND COSTS' WRITE (*,*) ' FOR ADVANCED FAST FERRIES' C-----C----INPUT REQUIREMENTS WRITE (*,*) ' ' WRITE (*,*) ' INPUT NUMBER OF PASSENGERS. ' READ (*,*) NPAX WRITE (*,*) ' ' WRITE (*,*) ' INPUT NUMBER OF CARS. ' READ (*,*) NCAR WRITE (*,*) ' ' WRITE (*,*) ' INPUT SERVICE SPEED OF THE VESSEL (kn).' READ (*,*) VS WRITE (*,*) ' ' WRITE (*,*) ' INPUT VESSEL TYPE (PM/VM/PC/VC): ' WRITE (*,*) ' PM=PASSENGER-ONLY MONOHULL, WRITE (*,*) ' VM=VEHICLE-PASSENGER MONOHULL, WRITE (*,*) ' PC=PASSENGER-ONLY CATAMARAN, WRITE (*,*) ' VC=VEHICLE-PASSENGER CATAMARAN. READ (*,520) VTYPE WRITE (*,*) ' ' WRITE (*,*) ' INPUT MAIN ENGINE TYPE: ' WRITE (*,*) ' (D=DIESEL ENGINE T=GAS TURBINE). ' READ (*,520) ETYPE IF ((ETYPE.EQ.'D').OR.(ETYPE.EQ.'d')) THEN WRITE (*,*) ' ' WRITE (*,*) ' INPUT NUMBER OF ENGINES AND THEIR SPEED (RPM). ' READ (*,*) NE, RPM ELSE WRITE (*,*) ' ' WRITE (*,*) ' INPUT NUMBER OF ENGINES. ' READ (*,*) NE ENDIF WRITE (*,*) ' ' WRITE (*,*) ' INPUT THE NUMBER OF DECKS. ' WRITE (*,*) ' Majority: passenger-only vessels 2,

```
WRITE (*,*) '
                           vehicle-passenger vessels 3. '
      READ (*,*) NDECK
      WRITE (*,*) ' '
      WRITE (*,*) ' INPUT NUMBER OF CREW. '
      READ (*,*) NCREW
      WRITE (*,*) ' '
      WRITE (*,*) 'INPUT RANGE OF THE VESSEL (nmiles). '
      READ (*,*) R
C-----
C----DERIVATION OF DIMENSIONS FOR PASSENGER-ONLY MONOHULLS
      IF ((VTYPE.EQ.'PM').OR.(VTYPE.EQ.'pm')) THEN
      WRITE (*,*) ' '
      WRITE (*,*) ' INPUT LENGTH-DISPLACEMENT RATIO: '
     WRITE (*,*) ' Majority: passenger-only monohulls 5.5-6.5, '
      READ (*,*) LOD
     WRITE (*,*) ′ ′
     WRITE (*,*) ' INPUT BREADTH-DRAUGHT RATIO: '
     WRITE (*,*) ' Majority: passenger-only monohulls 4.0-6.5, '
     READ (*,*) BOT
     WRITE (*,*) ' '
     WRITE (*,*) ' INPUT BLOCK COEFFICIENT: '
     WRITE (*,*) ' Majority: passenger-only monohulls 0.35-0.45.'
     READ (*,*) CB
     AS=0.6*NPAX
     AP=1.15*AS
     LB=146.0+(1.86E-3*(AP**2.0))
     LOB=SORT(((LOD**3.0)*CB)/BOT)
     LWL = (LB * LOB) * *0.5
     LOA=1.14*LWL
     B=LWL/LOB
     T=B/BOT
     D=4.0+(0.6*B)
     DISP1=1.025*LWL*B*T*CB
     WRITE (*,*) ′ ′
     WRITE (*,*) ' DERIVATION OF DIMENSIONS
     WRITE (*,*) ' ----- metres '
     WRITE (*,*) ' '
     WRITE (*,560) LOA
     WRITE (*,561) LWL
     WRITE (*,562) B
     WRITE (*,563) T
     WRITE (*,564) D
     WRITE (*,565) CB
     WRITE (*,566) DISP1
                                       ',F10.2)
  560 FORMAT (' OVERALL LENGTH:
 561 FORMAT (' WATERLINE LENGTH:
                                       ',F10.2)
 562 FORMAT (' BREADTH:
                                       ',F10.2)
 563 FORMAT (' DRAUGHT:
                                       ',F10.2)
 564 FORMAT (' DEPTH:
                                       ',F10.2)
 565 FORMAT (' BLOCK COEFFICIENT:
                                       ',F10.2)
 566 FORMAT (' DISPLACEMENT1:
                                       ',F10.2)
C-----
C----DERIVATION OF DIMENSIONS FOR VEHICLE-PASSENGER MONOHULLS
     ELSEIF ((VTYPE.EQ.'VM').OR.(VTYPE.EQ.'Vm')) THEN
     WRITE (*,*) ' '
     WRITE (*,*) ' INPUT LENGTH-DISPLACEMENT RATIO: '
     WRITE (*,*) ' Majority: vehicle-passenger monohulls 7.0-8.5.'
     READ (*,*) LOD
     WRITE (*,*) ' '
     WRITE (*,*) ' INPUT BREADTH-DRAUGHT RATIO: '
     WRITE (*,*) ' Majority: vehicle-passenger monohulls 4.5-6.5. '
```

```
READ (*,*) BOT
      WRITE (*,*) ' '
      WRITE (*,*) ' INPUT BLOCK COEFFICIENT: '
      WRITE (*,*) ' Majority: vehicle-passenger monohulls 0.35-0.45.'
      READ (*,*) CB
      AS=0.95*NPAX
      AP=1.2*AS
      AV=156.0+(10.2*NCAR)
      LB=121.0+(0.27*AP)+(0.60*AV)
      LOB=SORT(((LOD**3.0)*CB)/BOT)
      LWL=SQRT(LB*LOB)
      LOA=1.14*LWL
      B=LWL/LOB
      T=B/BOT
      D=4.0+(0.6*B)
      DISP1=1.025*LWL*B*T*CB
      WRITE (*,*) ′ ′
      WRITE (*,*) ' DERIVATION OF DIMENSIONS
      WRITE (*,*) ' ----- metres'
      WRITE (*,*) ′ ′
      WRITE (*,570) LOA
      WRITE (*,571) LWL
      WRITE (*,572) B
      WRITE (*,573) T
      WRITE (*,574) D
      WRITE (*,575) CB
      WRITE (*,576) DISP1
  570 FORMAT (' OVERALL LENGTH:
                                        ',F10.2)
               WATERLINE LENGTH:
  571 FORMAT ('
                                        ',F10.2)
  572 FORMAT ('
                BREADTH:
                                        '.F10.2)
  573 FORMAT ('
                DRAUGHT :
                                        ',F10.2)
  574 FORMAT ('
                                        ',F10.2)
                DEPTH:
  575 FORMAT (' BLOCK COEFFICIENT
                                        ′,F10.2)
  576 FORMAT (' DISPLACEMENT1:
                                        ',F10.2)
C----DERIVATION OF DIMENSIONS PASSENGER-ONLY CATAMARAN
      ELSEIF ((VTYPE.EQ.'PC').OR.(VTYPE.EQ.'pc')) THEN
     WRITE (*,*) ′′
     WRITE (*,*) ' INPUT LENGTH-DISPLACEMENT RATIO: '
     WRITE (*,*) ' Majority: passenger-only catamarans 8.5-9.5. '
     READ (*,*) LOD
     WRITE (*,*) ' '
     WRITE (*,*) ' INPUT DEMIHULL BREADTH-DRAUGHT RATIO: '
     WRITE (*,*) ' Majority: passenger-only catamarans 1.5-3.0. '
     READ (*,*) BHOT
     WRITE (*,*) ′′
     WRITE (*,*) ' INPUT SEPARATION-LENGTH RATIO: '
     WRITE (*,*) ' Majority: passenger-only catamarans 0.20-0.25. '
     READ (*,*) SOL
     WRITE (*,*) ' '
     WRITE (*,*) ' INPUT BLOCK COEFFICIENT: '
     WRITE (*,*) ' Majority: passenger-only catamarans 0.40-0.55. '
     READ (*,*) CB
C----AS/NPAX=0.55-0.85
     AS=0.7*NPAX
C----AP/AS=1.10-1.30
     AP=1.2*AS
     LB=138.0+(0.910*AP)
     LOBH=SQRT(((LOD**3.0)*CB)/BHOT)
     LOBH1=1.0/LOBH
     LOB=1.0/(SOL+LOBH1)
     LWL=SORT(LB*LOB)
```

```
LOA=1.14*LWL
      B=LWL/LOB
      S=LWL*SOL
      BH=LWL*LOBH1
      T=BH/BHOT
      D=4.0+(0.44*B)
      DISP1=2.0*1.025*LWL*BH*T*CB
      WRITE (*,*) ' '
      WRITE (*,*) ' DERIVATION OF DIMENSIONS'
      WRITE (*,*) ' ----- metres '
      WRITE (*,*) ' '
      WRITE (*,580) LOA
      WRITE (*,581) LWL
      WRITE (*,582) B
      WRITE (*,583) S
      WRITE (*,584) BH
      WRITE (*,585) T
      WRITE (*,586) D
      WRITE (*,587) CB
     WRITE (*,588) DISP1
  580 FORMAT (' OVERALL LENGTH;
                                               ',F10.2)
  581 FORMAT (' WATERLINE LENGTH:
                                               ',F10.2)
  582 FORMAT (' BREADTH:
                                               ',F10.2)
  583 FORMAT (' SEPARATION BETWEEN DEMIHULLS: ', F10.2)
                                               ',F10.2)
  584 FORMAT (' DEMIHULL BREADTH:
                                              ′,F10.2)
  585 FORMAT (' DRAUGHT:
                                              ',F10.2)
  586 FORMAT (' DEPTH:
                                              ',F10.2)
  587 FORMAT (' BLOCK COEFFICIENT:
  588 FORMAT (' DISPLACEMENT1:
                                              ',F10.2)
C-----
                                   _____
C----DERIVATION OF DIMENSIONS FOR VEHICLE-PASSENGER CATAMARANS
      ELSE.
     WRITE (*,*) ′ ′
     WRITE (*,*) ' INPUT LENGTH-DISPLACEMENT RATIO: '
     WRITE (*,*) ' Majority: vehicle-passenger catamarans 9.5-10.5. '
     READ (*,*) LOD
     WRITE (*,*) ' '
     WRITE (*,*) ' INPUT DEMIHULL BREADTH-DRAUGHT RATIO: '
     WRITE (*,*) ' Majority: vehicle-passenger catamarans 1.5-3.0. '
     READ (*,*) BHOT
     WRITE (*,*) ' '
     WRITE (*,*) ' INPUT SEPARATION-LENGTH RATIO: '
     WRITE (*,*) ' Majority: vehicle-passenger catamarans 0.20-0.25.'
     READ (*,*) SOL
     WRITE (*,*) ' '
     WRITE (*,*) ' INPUT BLOCK COEFFICIENT: '
     WRITE (*,*) ' Majority: vehicle-passenger catamarans 0.40-0.55.'
     READ (*,*) CB
C----AS/NPAX=0.80-1.40
     AS=1.40*NPAX
C----AP/AS=1.30-1.70
     AP=1.70*AS
     AV=12.4*NCAR
     LB=471.0+(0.55*AP)+(0.28*AV)
     LOBH=SQRT(((LOD**3.0)*CB)/BHOT)
     LOBH1=1/LOBH
     LOB=1/(SOL+LOBH1)
     LWL=SQRT(LB*LOB)
     LOA=1.14*LWL
     B=LWL/LOB
     S=LWL*SOL
     BH=LWL/LOBH
     T=BH/BHOT
```
```
D=4.0+(0.44*B)
      DISP1=2.0*1.025*LWL*BH*T*CB
      WRITE (*,*) ''
      WRITE (*,*) ' DERIVATION OF DIMENSIONS'
      WRITE (*,*) ' ----- metres'
      WRITE (*,*) ′′
      WRITE (*,590) LOA
      WRITE (*,591) LWL
      WRITE (*,592) B
      WRITE (*,593) S
      WRITE (*,594) BH
      WRITE (*,595) T
      WRITE (*,596) D
      WRITE (*,597) CB
      WRITE (*,598) DISP1
  590 FORMAT (' OVERALL LENGTH:
                                            ', F9.2)
  591 FORMAT (' WATERLINE LENGTH:
                                             ',F9.2)
  592 FORMAT (' BREADTH:
                                            ',F9.2)
  593 FORMAT (' SEPARATION BETWEEN DEMIHULLS: ', F9.2)
  594 FORMAT (' DEMIHULL BREADTH:
                                             '.F9.2)
  595 FORMAT (' DRAUGHT:
                                             ′,F9.2)
  596 FORMAT (' DEPTH:
                                             ′,F9.2)
  597 FORMAT (' BLOCK COEFFICIENT:
                                             ′,F9.2)
  598 FORMAT (' DISPLACEMENT1:
                                             ′,F9.2)
     ENDIF
----
C----ESTIMATION OF MASSES
C----Hull Mass
      IF ((VTYPE.EQ.'PC').OR.(VTYPE.EQ.'pc')) THEN
      EC=(2*LOA*(BH+T))+(0.85*LOA*(D-T))+(1.6*LOA*(B-(2*BH)))
      IF (EC.LE.3025) THEN
      WH=0.00064*(EC**1.7)
      ELSE
      WH=0.39*(EC**0.9)
      ENDIF
      ELSEIF ((VTYPE.EO.'VC').OR.(VTYPE.EO.'VC')) THEN
      EC=(2*LOA*(BH+T))+(0.85*LOA*(D-T))+(1.6*LOA*(B-(2*BH)))
      IF (EC.LE.3025) THEN
      WH=0.00064*(EC**1.7)
      ELSE
     WH=0.39*(EC**0.9)
      ENDIF
      ELSEIF ((VTYPE.EQ.'PM').OR.(VTYPE.EQ.'pm')) THEN
      EM = (LOA*(B+T)) + (0.85*LOA*(D-T))
     WH=0.032*(EM**1.2)
     ELSE
     EM = (LOA*(B+T)) + (0.85*LOA*(D-T))
     WH=0.032*(EM**1.2)
     ENDTE
C----Outfit Mass
     WO=0.027*NDECK*LOA*B
C----Machinery Mass and Powering Estimation
     CALL POWER
C----Diesel Engines
     PB=PI/NE
     IF ((ETYPE.EQ.'D').OR.(ETYPE.EQ.'d')) THEN
     PSRATIO=PB/RPM
     WME=NE*6.82*(PSRATIO**0.85)
     WGB=NE*0.00348*(PB**0.75)
C----Gas Turbines
     ELSE
     WME=NE*(3+(0.00056*PB))
```

```
WGB=NE*0.00348*(PB**0.75)
      ENDIF
 C----Water Jets
      WP=NE*0.00018*(PB**1.18)
      WMM=WME+WP+WGB
C----Remaining machinery mass is a function of WMM.
      FACTOR=1.55
      WM=WMM*FACTOR
 C----ESTIMATION OF COSTS
C----Hull Costs
      IF ((VTYPE.EQ.'PC').OR.(VTYPE.EQ.'pc')) THEN
      CH=((WH*5250*1.1)+(WH*900*30))*1E-6
      ELSEIF ((VTYPE.EQ.'VC').OR.(VTYPE.EQ.'vc')) THEN
      CH=((WH*5250*1.1)+(WH*900*30))*1E-6
        ELSEIF ((VTYPE.EQ.'PM').OR.(VTYPE.EQ.'Vm')) THEN
        CH=((WH*5250*1.1)+(WH*600*30))*1E-6
         ELSE.
         CH=((WH*5250*1.1)+(WH*600*30))*1E-6
      ENDIF
C----Outfit Costs
     CO=22000.0*WO*1E-6
C----Machinery Costs (Main engine, Gearbox, Propulsor).
      IF ((ETYPE.EQ.'D').OR.(ETYPE.EQ.'d')) THEN
      CME=NE*(0.0003*PB-0.0423)
      ELSE
     CME = NE*((-4E-9*(PB**2))+(0.0004*PB))
     ENDIF
     CGB=NE*(2E-5*PB-(3E-10*(PB**2)))
     CP=NE*0.0031*(PB**0.6122)
     CM = (CP + CME + CGB) * 1.40
C----Total Building Costs (million US$)
     BC = (CM + CO + CH)
C----Approximate Building Costs (million US$)
     IF ((VTYPE.EQ.'PM').OR.(VTYPE.EQ.'pm')) THEN
     ABC=-37.6+(0.0115*NPAX)+(0.121*NCAR)+(1.23*VS)
     ELSEIF ((VTYPE.EQ.'VM').OR.(VTYPE.EQ.'vm')) THEN
     ABC=-37.6+(0.0115*NPAX)+(0.121*NCAR)+(1.23*VS)
     ELSEIF ((VTYPE.EQ.'PC').OR.(VTYPE.EQ.'pc')) THEN
     ABC=-18.4+(0.0294*NPAX)+(0.111*NCAR)+(0.445*VS)
     ELSE
     ABC=-18.4+(0.0294*NPAX)+(0.111*NCAR)+(0.445*VS)
     ENDIF
-----
     WRITE (*,*) ' '
     WRITE (*,*) ' POWER ESTIMATION
                                              kW ′
     WRITE (*,600) PD
     WRITE (*,601) PE
     WRITE (*,602) PI
  600 FORMAT (' DELIVERY POWER:
                                            ',F20.2)
  601 FORMAT (' EFFECTIVE POWER:
                                            ',F20.2)
  602 FORMAT (' INSTALLED POWER:
                                            ',F20.2)
C-----
----
     WRITE (*,*) ' '
     WRITE (*,*) ' HULL MASS ESTIMATION
                                               t′
```

```
WRITE (*,605) WH
  605 FORMAT (' TOTAL HULL MASS: ', F7.2)
C_____
    WRITE (*,*) ' '
    WRITE (*,*) ' OUTFIT MASS ESTIMATION t '
    WRITE (*,610) WO
  610 FORMAT (' TOTAL OUTFIT MASS
                                 ',F7.2)
C-----
_ ~
    WRITE (*,*) ' '
    WRITE (*,*) ' MACHINERY MASS ESTIMATION t '
    WRITE (*,615) WME
    WRITE (*,616) WP
    WRITE (*,617) WGB
    WRITE (*,618) WM
 615 FORMAT (' MAIN ENGINES:
                                  ',F20.2)
 616 FORMAT (' PROPULSORS:
                                  ′,F20.2)
 617 FORMAT (' GEARBOXES:
                                  ′,F20.2)
 618 FORMAT (' TOTAL MACHINERY MASS:
                                   ′,F20.2)
C------
----
    WRITE (*,*) ' '
    WRITE (*,*) ' HULL COST ESTIMATION KUS$'
    WRITE (*,625) CH
 625 FORMAT (' TOTAL HULL COST: ',F20.1)
C-----
    WRITE (*,*) ′′
    WRITE (*,*) ' OUTFIT COST ESTIMATION KUS$'
    WRITE (*,626) CO
 626 FORMAT (' TOTAL OUTFIT COST
                                 ',F10.1)
C-----
_ ----
    WRITE (*,*) ' MACHINERY COST K$US '
    WRITE (*,630) CME
    WRITE (*,631) CP
   WRITE (*,632) CGB
    WRITE (*,633) CM
                                  ′,F20.2)
 630 FORMAT (' MAIN ENGINES:
 631 FORMAT (' PROPULSORS:
                                  ′,F20.2)
 632 FORMAT (' GEARBOXES:
                                  ',F20.2)
 633 FORMAT (' TOTAL MACHINERY COST:
                                  ',F20.2)
C-----
------
   WRITE (*,*) ′′
   WRITE (*,*) ' BUILDING COST ESTIMATION KUS$'
   WRITE (*,635) BC
 635 FORMAT (' TOTAL BUILDING COST: ', F20.1)
```

```
C-----
C----Deadweight Analysis
      SFC=0.22
      WFUEL=((PE*SFC*(R/VS))*1.09*1.1)/1000.0
      WFWPROV=0.00125*NPAX*(R/VS)
      WPAX=NPAX*0.105
      WCREW=NCREW*0.135
      WCAR=NCAR*1.0
      DW=1.06*(WFUEL+WFWPROV+WPAX+WCREW+WCAR)
C----Lightship
     LS=WH+WO+WM
C----Displacement from 'LS+DW'
      DISP2=DW+LS
      WRITE (*,*) ' '
      WRITE (*,*) ' DEADWEIGHT ANALYSIS'
      WRITE (*,*) ' -----'
      WRITE (*,*) '
                                                    t'
      WRITE (*,640) WFUEL
     WRITE (*,641) WFWPROV
     WRITE (*,642) WCREW
     WRITE (*,643) WPAX
     WRITE (*,644) WCAR
     WRITE (*,645) DW
     WRITE (*,646) LS
     WRITE (*,647) DISP2
  640 FORMAT (' FUEL & LUBRICANT
                                               ',F8.2)
  641 FORMAT (' WATER & PROVISIONS
                                               ′,F8.2)
  642 FORMAT (' CREW & EFFECTS
643 FORMAT (' PASSENGERS & LUGGAGE
                                               ′,F8.2)
                                               ',F8.2)
  644 FORMAT (' CARS
                                               ',F8.2)
  645 FORMAT (' DEADWEIGHT
                                                ,F8.2)
  646 FORMAT (' LIGHTSHIP
                                                ,F8.2)
  647 FORMAT (' DISPLACEMENT2=LS+DW
                                               ′,F8.2)
C-----
----
C----MASS BALANCE CALCULATIONS
     IF (((ABS(DISP2-DISP1)*100)/DISP1).GE.1.0) THEN
     WRITE (*,*) ' '
     WRITE (*,*) ' There is not a balance between DISP1 & DISP2.'
     WRITE (*,*) ' Do you want to perform the calculations for '
     WRITE (*,*) ' a different CB and LOD (Y/N)?'
     READ (*,520) YN
     IF ((YN.EQ.'Y').OR.(YN.EQ.'y')) THEN
     CONTINUE
     ELSE
     GOTO 510
     ENDIF
     CB=(DISP2*CB)/DISP1
C----CB2=CB1*(LOD2/LOD1)**(1.0/3.0) with these equations without
C----changing the dimension of the vessel, we can balance the mass.
     LOD=LOD*((DISP1/DISP2)**(1.0/3.0))
     IF ((VTYPE.EQ.'PM').OR.(VTYPE.EQ.'pm')) THEN
     DISP1=1.025*LWL*B*T*CB
     ELSEIF ((VTYPE.EQ.'PC').OR.(VTYPE.EQ.'pc')) THEN
     DISP1=1.025*2*LWL*BH*T*CB
     ELSEIF ((VTYPE.EQ.'VM').OR.(VTYPE.EQ.'Vm')) THEN
     DISP1=1.025*LWL*B*T*CB
     ELSE
     DISP1=1.025*2*LWL*BH*T*CB
     ENDIF
```

177
101
19
100 -
1
1
lo l
1-4
N.
\sim
1
immed
i sumi

WRITE(16,30)D,P	, F8.2)	, F8.2/,	、F8.2/	WRITE (16 WRITE (*, 20 FORMAT(' '.F8.2/.	, F8.2)	、F8.2/、 、F8.2/、 、F8.2/、	\$	D1,A,B1,C,CR,CF OPEN (16, WRITE (16 WRITE (16, WRITE (*, 10 FORMAT('	NPAX,NCAR,NCREV \$ CB,PB,RI \$ CO,WSA,C	AJ , AKT , AKQ , DIAN COMMON/TV REAL	CM,WO,CO,WH,CH, \$ LOD,WSA, \$ CR8,CR9, \$	SUBROUTII CHARACTEF COMMON/ON	WRITE (* WRITE (* READ (*, IF ((YES) GOTO 500 ELSE GOTO 5: GOTO 5: STOP ENDIF 530 CALL HARI STOP END		ELSE CONTINUE ENDIF
I,ABC,S,	Η	BH =	11 CC	,20) LWI 20) LWL LWL =	LOA =	= SN	NCAR =	.S2, k, bk FILE='G ,10) NP 10) NPA NPAX =	M, R, VS, M, R, VS, FM, CFS,	I, RPM, NP 10/VTYPE	BC,WFUE FN,RN,C D1,A,B1	VE HARDC { *2 VTY VE/LOA,L	(*) / DC (*) / FC (*) / FE (*)	*	
R,LS,CB	′,F8.2,	′,F8.2,	′,F8.2,	L,NE,WFU ,NE,WFUE ',F8.2,	′,F8.2,	', F8.2,	',F8.2,	,CTS,RTS :\HARDCC AX,LOD,W X,LOD,WC ',F8.2,	AV, LB, LW LOB, LOBH FN1, FN2,	AX,NCAR, ,ETYPE	IL, WFWPR(FM, CFS, E , C , CR , CF	OPY PE,ETYPI WL,B,S,I) YOU WA DR ANOTH SNO (').OR.('		
, NCREW, D	ים דו	, PD	' RPM	EL, B, RPM, L, B, RPM, ' NE	SOL	' BHOT	BOT	, EFF, n, <i>i</i> PY.DAT', O,NCAR, E , NCAR, BC , LOD	TL, LOA, B, I, LOBH1, S FN3, CR1,	NCREW, AS)V, WCREW 'N1, FN2, J \S2, k, bk	3H, T, D, C	UT TO PE ER VESSE YESNO.EQ		
W, AS, NDE	= ',F8	≓ ′,F8	= ',F8	I,WFWPROV WFWPROV = ',F8	= ',F8	= ',F8	= ′,F8	AJ,AKT,A STATUS BOT,WM,V DT,WM,VS = ',F8	, D, BH, T, SOL, BHOT , CR2, CR3	S, AP, NDE	, WPAX , WC FN3 , CR1 , , CTS , RTS	B,DISP1,	RFORM CZ L (Y/N); .'Y')) T		
ECK, DI	.2 , ,	.2, '	.2,'	V, BH, F , BH, PC .2, '	.2, '	.2, '	.2, '	KQ, DI <i>!</i> = 'un} S, BHOT, .2, '	S,DISJ ,NE,NI ,CR4,(CK, NE	AR, DW CR2, CI , PE, PI	WME,W	P' PHEN		
SP1,AP,WH,	BC(milUS\$)	WCREW	WFWPROV	D,WCREW,T,),WCREW,T,H WFUEL	WCAR	WPAX	WM	AM, DISP2, Li cnown') r, WPAX, LOA WPAX, LOA, i WO	P1,LOD,BOT DECK,PI,PE CR5,CR6,CR	, R , BHOT , BO'	, DISP2, VS, R3, CR4, CR5 D, PI, EFF, N	P,WGB,WM,C	TIONS,		
DISP2	11	H	II	, PE, BC 2E, BC =	11	II	11	S,ABC ,SOL,WCAR 3OL,WCAR =	, , PD, FN, RN, 7, CR8, CR9,	T,LS	SOL, ,CR6,CR7, ,ABC,	ME, CP, CGB,			

```
WRITE(*,30)D,PI,ABC,S,R,LS,CB,NCREW,DW,AS,NDECK,DISP1,AP,WH,DISP2
    30 FORMAT(' D
                       = ',F8.2,' PI
                                          = ',F8.2,' ABC(milUS$)=
 ',F8.2/,
                  S
                       = ',F8.2,' R
                                          = ',F8.2,' LS
      $
                                                                    =
 ',F8.2/,
      $
                 СВ
                       = ', F8.2, ' NCREW = ', F8.2, ' DW
                                                                    =
 ',F8.2/,
                  AS
                       = ',F8.2,' NDECK = ',F8.2,' DISP1
      Ś
 ',F8.2/,
                 AP
                       = ',F8.2,' WH = ',F8.2,' DISP2
      Ś
                                                                   =
 ',F8.2)
       CLOSE(16)
       RETURN
       END
SUBROUTINE POWER
       CHARACTER *2 VTYPE, ETYPE
       COMMON/ONE/LOA,LWL,B,S,BH,T,D,CB,DISP1,WME,WP,WGB,WM,CME,CP,CGB,
      Ś
CM, WO, CO, WH, CH, BC, WFUEL, WFWPROV, WCREW, WPAX, WCAR, DW, DISP2, VS, SOL,
      $ LOD, WSA, FN, RN, CFM, CFS, FN1, FN2, FN3, CR1, CR2, CR3, CR4, CR5, CR6, CR7,
      $ CR8, CR9, D1, A, B1, C, CR, CRS2, k, bk, CTS, RTS, PE, PD, PI, EFF, N, ABC,
      Ċ
AJ, AKT, AKQ, DIAM, RPM, NPAX, NCAR, NCREW, AS, AP, NDECK, NE, R, BHOT, BOT, LS
      COMMON/TWO/VTYPE, ETYPE
      REAL
NPAX, NCAR, NCREW, AS, AP, AV, LB, LWL, LOA, B, D, BH, T, S, DISP1, LOD, BOT,
      $ CB, PB, RPM, R, VS, LOB, LOBH, LOBH1, SOL, BHOT, NE, NDECK, PI, PE, PD, FN, RN,
      $ CO,WSA,CFM,CFS,FN1,FN2,FN3,CR1,CR2,CR3,CR4,CR5,CR6,CR7,CR8,CR9,
      Ś
D1, A, B1, C, CR, CRS2, k, bk, CTS, RTS, EFF, n, AJ, AKT, AKQ, DIAM, DISP2, LS, ABC
C----PASSENGER MONOHULL
      IF ((VTYPE.EQ.'PM').OR.(VTYPE.EQ.'pm')) THEN
        FN=(VS*0.5144)/SORT(9.81*LWL)
        RN=(VS*0.5144*LWL)/1.19E-6
        CFM=0.075/(((ALOG10(FN*5.56E+6))-2)**2)
        CFS=0.075/(((ALOG10(RN))-2)**2)
        WSA = (1.7 \times LWL \times T) + (LWL \times B \times CB)
        FN1=0.60
        FN2=0.80
        FN3=1.0
        CR1=(1702.0*LOD**(-2.96))*0.001
        CR2=(533.0*LOD**(-2.58))*0.001
        CR3=(122.0*LOD**(-1.96))*0.001
       D1=(FN2*FN3**2-FN3*FN2**2)-FN1*(FN3**2-FN2**2)+FN1**2*(FN3-FN2)
        A=(CR1*(FN2*FN3**2-FN3*FN2**2)-FN1*(CR2*FN3**2-CR3*FN2**2)
          +(FN1**2)*(CR2*FN3-CR3*FN2))/D1
     Ś
        B1=((CR2*FN3**2-CR3*FN2**2)-CR1*(FN3**2-FN2**2)
     Ś
          +FN1**2*(CR3-CR2))/D1
        C=((FN2*CR3-FN3*CR2)-FN1*(CR3-CR2)+CR1*(FN3-FN2))/D1
        CR=A+B1*FN+C*FN**2
        k=0.15
        CTS = (CFS + CR) - (k * (CFM - CFS))
C----VEHICLE MONOHULL
      ELSEIF ((VTYPE.EQ.'VM').OR.(VTYPE.EQ.'vm')) THEN
        FN=(VS*0.5144)/SQRT(9.81*LWL)
        RN=(VS*0.5144*LWL)/1.19E-6
        CFM=0.075/((ALOG10(FN*5.56E+6)-2)**2)
        CFS=0.075/((ALOG10(RN)-2)**2)
        WSA = (1.7 \times LWL \times T) + (LWL \times B \times CB)
```

```
FN1=0.60
         FN2=0.80
         FN3=1.0
         CR1=(1702.0*LOD**(-2.96))*0.001
         CR2=(533.0*LOD**(-2.58))*0.001
         CR3=(122.0*LOD**(-1.96))*0.001
        D1=(FN2*FN3**2-FN3*FN2**2)-FN1*(FN3**2-FN2**2)+FN1**2*(FN3-FN2)
         A=(CR1*(FN2*FN3**2-FN3*FN2**2)-FN1*(CR2*FN3**2-CR3*FN2**2)
           +(FN1**2)*(CR2*FN3-CR3*FN2))/D1
      Ś
         B1=((CR2*FN3**2-CR3*FN2**2)-CR1*(FN3**2-FN2**2)
          +FN1**2*(CR3-CR2))/D1
      Ś
         C=((FN2*CR3-FN3*CR2)-FN1*(CR3-CR2)+CR1*(FN3-FN2))/D1
         CR=A+B1*FN+C*FN**2
         k=0.15
         CTS = (CFS + CR) - (k * (CFM - CFS))
C----PASSENGER CATAMARAN
       ELSEIF ((VTYPE.EQ.'PC').OR.(VTYPE.EQ.'pc')) THEN
         WSA=2*((1.7*LWL*T)+(LWL*BH*CB))
         FN=(VS*0.5144)/SORT(9.81*LWL)
         RN=(VS*0.5144*LWL)/1.19E-6
         CFM=0.075/((ALOG10(FN*5.56E+6)-2)**2)
         CFS=0.075/((ALOG10(RN)-2)**2)
         FN1=0.60
        FN2 = 0.80
        FN3=1.0
        CR4=(1774.0*LOD**(-2.87))*0.001
        CR5=(180.0*LOD**(-1.97))*0.001
        CR6=(48.0*LOD**(-1.41))*0.001
        CR7=(5084.0*LOD**(-3.30))*0.001
        CR8=(130.0*LOD**(-1.82))*0.001
        CR9 = (22.0 \times LOD \times (-1.06)) \times 0.001
c----S/L=0.3
        IF (SOL.EQ.0.3) THEN
       D1=(FN2*FN3**2-FN3*FN2**2)-FN1*(FN3**2-FN2**2)+FN1**2*(FN3-FN2)
        A=(CR4*(FN2*FN3**2-FN3*FN2**2)-FN1*(CR5*FN3**2-CR6*FN2**2)
     Ś
          + (FN1**2)* (CR5*FN3-CR6*FN2))/D1
        B1 = ((CR5*FN3**2-CR6*FN2**2)-CR4*(FN3**2-FN2**2))
     Ś
          +FN1**2*(CR6-CR5))/D1
        C = ((FN2*CR6-FN3*CR5)-FN1*(CR6-CR5)+CR4*(FN3-FN2))/D1
        CR=A+B1*FN+C*FN**2
C - - - - S / L = 0.2
        ELSEIF (SOL.EQ.0.2) THEN
       D1=(FN2*FN3**2-FN3*FN2**2)-FN1*(FN3**2-FN2**2)+FN1**2*(FN3-FN2)
        A=(CR7*(FN2*FN3**2-FN3*FN2**2)-FN1*(CR8*FN3**2-CR9*FN2**2)
     Ś
          +(FN1**2)*(CR8*FN3-CR9*FN2))/D1
        B1=((CR8*FN3**2-CR9*FN2**2)-CR7*(FN3**2-FN2**2)
          +FN1**2*(CR9-CR8))/D1
     Ś
        C=((FN2*CR9-FN3*CR8)-FN1*(CR9-CR8)+CR7*(FN3-FN2))/D1
        CR=A+B1*FN+C*FN**2
C----0.4>S/L>0.3
        ELSEIF (SOL.GT.0.3.AND.SOL.LE.0.4) THEN
       D1=(FN2*FN3**2-FN3*FN2**2)-FN1*(FN3**2-FN2**2)+FN1**2*(FN3-FN2)
        A=(CR4*(FN2*FN3**2-FN3*FN2**2)-FN1*(CR5*FN3**2-CR6*FN2**2)
          +(FN1**2)*(CR5*FN3-CR6*FN2))/D1
     Ś
        B1=((CR5*FN3**2-CR6*FN2**2)-CR4*(FN3**2-FN2**2)
          +FN1**2*(CR6-CR5))/D1
     Ś
        C=((FN2*CR6-FN3*CR5)-FN1*(CR6-CR5)+CR4*(FN3-FN2))/D1
        CR=A+B1*FN+C*FN**2
C----0.3>S/L>0.2
        ELSEIF (SOL.GE.0.2.AND.SOL.LE.0.3) THEN
       D1=(FN2*FN3**2-FN3*FN2**2)-FN1*(FN3**2-FN2**2)+FN1**2*(FN3-FN2)
        A=(CR7*(FN2*FN3**2-FN3*FN2**2)-FN1*(CR8*FN3**2-CR9*FN2**2)
          +(FN1**2)*(CR8*FN3-CR9*FN2))/D1
```

```
B1=((CR8*FN3**2-CR9*FN2**2)-CR7*(FN3**2-FN2**2)
      Ś
          +FN1**2*(CR9-CR8))/D1
         C=((FN2*CR9-FN3*CR8)-FN1*(CR9-CR8)+CR7*(FN3-FN2))/D1
         CRS2=A+B1*FN+C*FN**2
         CR=CRS2-((SOL-0.2)/(0.3-0.2))*(CR2-CR3)
         ELSE
         WRITE (*,*) 'S/LWL RATIO IS OUT OF RANGE.'
         STOP
         ENDIF
        bk=0.25
        CTS = (CFS + CR) - (bk*(CFM - CFS))
C----VEHICLE CATAMARAN
      ELSE
        WSA=2*((1.7*LWL*T)+(LWL*BH*CB))
        FN=(VS*0.5144)/SORT(9.81*LWL)
        RN=(VS*0.5144*LWL)/1.19E-6
        CFM=0.075/((ALOG10(FN*5.56E+6)-2)**2)
        CFS=0.075/((ALOG10(RN)-2)**2)
        FN1 = 0.60
        FN2=0.80
        FN3=1.0
        CR4=(1774.0*LOD**(-2.87))*0.001
        CR5=(180.0*LOD**(-1.97))*0.001
        CR6=(48.0*LOD**(-1.41))*0.001
        CR7=(5084.0*LOD**(-3.3))*0.001
        CR8=(130.0*LOD**(-1.82))*0.001
        CR9=(22.0*LOD**(-1.06))*0.001
C----S/L=0.3
        IF (SOL.EQ.0.3) THEN
       D1=(FN2*FN3**2-FN3*FN2**2)-FN1*(FN3**2-FN2**2)+FN1**2*(FN3-FN2)
        A=(CR4*(FN2*FN3**2-FN3*FN2**2)-FN1*(CR5*FN3**2-CR6*FN2**2)
          + (FN1**2) * (CR5*FN3-CR6*FN2)) / D1
     Ś
        B1=((CR5*FN3**2-CR6*FN2**2)-CR4*(FN3**2-FN2**2)
          +FN1**2*(CR6-CR5))/D1
     Ś
        C=((FN2*CR6-FN3*CR5)-FN1*(CR6-CR5)+CR4*(FN3-FN2))/D1
        CR=A+B1*FN+C*FN**2
C - - - - S/L = 0.2
        ELSEIF (SOL.EQ.0.2) THEN
       D1=(FN2*FN3**2-FN3*FN2**2)-FN1*(FN3**2-FN2**2)+FN1**2*(FN3-FN2)
        A=(CR7*(FN2*FN3**2-FN3*FN2**2)-FN1*(CR8*FN3**2-CR9*FN2**2)
          +(FN1**2)*(CR8*FN3-CR9*FN2))/D1
     Ś
        B1=((CR8*FN3**2-CR9*FN2**2)-CR7*(FN3**2-FN2**2)
     S
          +FN1**2*(CR9-CR8))/D1
        C=((FN2*CR9-FN3*CR8)-FN1*(CR9-CR8)+CR7*(FN3-FN2))/D1
        CR=A+B1*FN+C*FN**2
C - - - - 0.4 > S/L > 0.3
        ELSEIF (SOL.GT.0.3.AND.SOL.LE.0.4) THEN
       D1=(FN2*FN3**2-FN3*FN2**2)-FN1*(FN3**2-FN2**2)+FN1**2*(FN3-FN2)
        A=(CR4*(FN2*FN3**2-FN3*FN2**2)-FN1*(CR5*FN3**2-CR6*FN2**2)
     Ś
          +(FN1**2)*(CR5*FN3-CR6*FN2))/D1
        B1=((CR5*FN3**2-CR6*FN2**2)-CR4*(FN3**2-FN2**2)
     Ś
          +FN1**2*(CR6-CR5))/D1
        C=((FN2*CR6-FN3*CR5)-FN1*(CR6-CR5)+CR4*(FN3-FN2))/D1
        CR=A+B1*FN+C*FN**2
C----0.3>S/L>0.2
       ELSEIF (SOL.GE.0.2.AND.SOL.LE.0.3) THEN
       D1=(FN2*FN3**2-FN3*FN2**2)-FN1*(FN3**2-FN2**2)+FN1**2*(FN3-FN2)
       A=(CR7*(FN2*FN3**2-FN3*FN2**2)-FN1*(CR8*FN3**2-CR9*FN2**2)
         + (FN1**2)* (CR8*FN3-CR9*FN2))/D1
     Ś
       B1=((CR8*FN3**2-CR9*FN2**2)-CR7*(FN3**2-FN2**2)
         +FN1**2*(CR9-CR8))/D1
     Ś
       C=((FN2*CR9-FN3*CR8)-FN1*(CR9-CR8)+CR7*(FN3-FN2))/D1
       CRS2=A+B1*FN+C*FN**2
```

```
CR=CRS2-((SOL-0.2)/(0.3-0.2))*(CR2-CR3)
        ELSE
        WRITE (*,*) 'S/LWL RATIO IS OUT OF RANGE.'
        STOP
        ENDIF
        bk=0.25
        CTS=(CFS+CR)-(bk*(CFM-CFS))
      ENDIF
        RTS=CTS*0.5*1.025*WSA*((VS*0.5144)**2.0)
C----Effective power (kW)
        PE=RTS*VS*0.5144
C----Water jet efficiency
        EFF=1.0/(1.0+(16.8/VS))
C----Delivery power (kW)
      PD=PE/EFF
C----15%resistance increase due to hull roughness, fouling and
weather.
      PI=PD*1.15
      RETURN
      END
```