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We study the phenomenological consequences of type I string constructions and 

higher-dimensional effective Aeld theories involving Dirichlet-branes with the aim of 

forging a connection between the underlying string theory and observable low-energy 

physics. First, we propose a mechanism for mediating supersymmetry (SUSY) break-

ing in type I string constructions with intersecting D-branes. We consider an explicit 

example with a Pati-Salam-like gauge symmetry, where only the third family and 

Higgs scalars acquire large soft masses. We compare the low-energy sparticle spec-

trum with gaugino mediation and no-scale supergravity models. Second, we use a 

model-independent parametrisation to study the localised twisted moduli contribu-

tions to supersymmetry breaking in the effective low-energy supergravity description 

of type I models. We derive general expressions for soft masses and trilinears in terms 

of Goldstino angles that control the relative contributions to supersymmetry breaking 

from the closed string sector. Finally, we study electroweak symmetry breaking in a 

five-dimensionai elective field theory where supersymmetry is broken on a spatially-

separated brane. We evaluate the dominant Kaluza-Klein (KK) contributions to the 

1-loop effective potential, and calculate the physical Higgs mass spectrum as a func-

tion of tan/) and the compactification scale M^. 
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C h a p t e r 1 

In t roduc t i on 

1.1 Pre l iminar ies 

1.1.1 Mot iva t i on 

The work in this thesis explores the connections between superstring theory and 

low-energy observable physics. There are strong motivations for supersymmetric ex-

tensions of the Standard Model that arise naturally in string theory, which in turn, 

provides the only consistent framework for uniting the four fundamental forces of 

Nature. There are several general aims to this approach: 

# to understand how the Standard Model can be embedded into a higher-dimensional 

string theory 

# to identify the mechanism(s) responsible for supersymmetry breaking 

# to make predictions that can be tested at the Tevatron or LHC, which in turn 

provide constraints on viable models e.g. 



— the hierarchy of fermion masses 

— the mass spectra of supersymmetric partners 

In particular, type I string theory provides an appealing framework to consider low-

energy phenomenology due to the Sexibility (or rather uncertainty) in defining the 

fundamental string scale M*. This is in stark contrast to heterotic theory, where M* 

is around an order of magnitide below the Planck scale independently of the details 

of compactihcation. The presence of extended Dirichlet-branes in type I (and 11) 

vacua offer many important consequences, most notably, the realisation that gauge 

and gravity fields can live in different numbers of dimensions. D-brane constructions 

also have a very rich gauge structure in which to embed the MSSM or some other well-

motivated gauge extension. These provide us with strong motivations for studying 

the phenomenological consequences of type I models. 

1.1.2 Thes i s S t r u c t u r e 

This thesis is organised as follows: in chapter 1 we review the Standard Model (SM) 

and discuss the motivations for its extension. In particular, we focus on low-energy 

A/" = 1 supersymmetry and the Minimal Supersymmetric Standard Model (MSSM). 

Supersymmetry (SUSY) is an essential ingredient in superstring theories that offer the 

only consistent framework for combining all four fundamental forces together within 

a single theory. We review the main features of type I string theory and discuss how 

developments in string theory have stimulated interest in higher-dimensional effective 

field theories involving Dirichlet-branes. 

In chapter 2, we propose a mechanism for mediating SUSY breaking in type I string 

models with intersecting D-branes. We consider an explicit construction involving 

intersecting D5-branes, where only the third family and Higgs scalars couple directly 

to the SUSY breaking sector to receive large soft masses. We compare the sparticle 



spectnim of our model with the predictions from gaugino mediation and no-scale 

supergravity models. 

We use a model-independent parametrisation to study the localised twisted moduli 

contributions to SUSY breaking in chapter 3. We propose a phenomenologically-

motivated Kahler potential for states that are sequestered away from the twisted 

moduli and derive general expressions for the soft masses and trilinears. 

In chapter 4, we study a higher-dimensional effective field theory that is motivated 

by the model discussed in chapter 2. We consider electroweak symmetry breaking 

(EWSB) in the presence of a single large extra dimension, and use a matrix method 

to extract the top and stop Kaluza-Klein spectra that yield the dominant contribution 

to the 1-loop effective potential. We calculate the Higgs mass spectrum as a function 

of tan/) and the compactification scale of the extra dimension Mg. We find that the 

standard MSSM bounds on the lightest Higgs scalar mass can be violated when the 

third family lives in the extra dimension. 

The overall conclusions to this thesis are presented in chapter 5, which is followed by 

a number of Appendices. 

1.2 T h e S t a n d a r d M o d e l 

The Standard Model ^ (SM) of particle physics combines the strong and electroweak 

forces within the framework of a renormalisable gauge field theory with a gauge 

group = 5'[/(3)c X X There are three generations of elementary 

fermions, where each generation contains a family of quarks and leptons. Table 1.1 

lists the gauge quantum numbers of these fields under the gauge group GgM- Demand-

ing that the lagrangian is gauge-invariant generates interactions between fermions 

^There are many excellent introductions to the SM, see Refs. [1, 2] for example. 



that are mediated by the exchange of intermediate vector bosons. 

Particles Spin ^ [ / (3 )c 5'[/(2)^ [/(l)y 

Left-handed quarks, = (^.z, c(,\L) 1/2 3 2 1/6 

Right-handed up quarks, 1/2 3 1 2/3 

Right-handed down quarks, 1/2 3 1 -1/3 

Left-handed leptons, = (z/.j, 6̂ %,) 1/2 1 2 -1/2 

Right-handed electrons, 1/2 1 1 -1 

Higgs boson, 0 = ($+ $°) 0 1 2 1/2 

Gluons, (a = 1 — 8) 1 8 1 0 

Weak bosons, (a = 1 — 3) 1 1 3 0 

Hyper charge boson, B 1 1 1 0 

Table 1.1: GgM gauge quantnm numbers of the fields in the SM. Notice that the 
left (right) handed components transform as doublets (singlets) under 5'(7(2)];. The 
quark and lepton helds carry an additional generation (or family) index z = 1,2,3 
e.g. , (f,- = (((,5,6), e,' = (e,^,T) and = (z/e,:/;;,z/T). 

Gauge symmetry forbids gauge boson and fermion (Dirac) mass terms in the la-

grangian ^ since left and right-handed fields transform in different representations 

of 5"(7(2)^. However, we are free to construct the following gauge-invariant Yukawa 

interaction term by adding a fundamental Higgs scalar doublet $ to the SM spectrum: 

(1.1) 

where 0"̂  = % <72 Note that gauge indices have been suppressed, and are 3 x 3 

Yukawa matrices in generation space. We propose that the Higgs scalar haa a potential 

that develops a non-trivial vacuum expectation value (VEV) which spontaneously 

^However, neutrinos are maaslesa in the SM since there are no right-handed neutrinos to 
form Dirac masses, c.. Also, Majorana maas terms violate 5'(7(2)2, x ( / ( l ) y gauge-
symmetry and are forbidden by conservation of lepton number. 



breaks the electroweak gauge symmetry down to electromagnetism 

X [/(l)y —> (7(1),^ (1.2) 

and generates Dirac mass terms from the Yukawa interactions in Eq.(l . l) . 

Consider the following lagrangian for the complex Higgs doublet: 

and the covariant derivative is given by: 

= (jK - ' j B , - 'ujWi r - j * (1,4) 

where ^ and ^ are the (/(l)y and 6'f7(2)f, gauge couplings, and — (7''/2 are the 

generators of 6'(7(2)f,. The Higgs potential in Eq.(1.3) has a symmetry breaking 

minimum away from the origin at = —m$/2A$. Using our freedom to make a 

global 5'(7(2)f, rotation, we can choose to locate the real VEV in the lower, neutral 

component of the Higgs doublet 

^ " 1 
V ! 

Expanding around this vacuum, we make the redefinition: 

/ 

wAere u = i ^ (1.5) 
V 

1 

\ 

0 

f + /^(a;) 
(1.6) 

where A (a;) is the physical Higgs field. The remaining three degrees of freedom from 

the original complex Higgs scalar doublet have been "eaten" by the gauge fields 

associated with the broken electroweak generators to give them mass. We can see 

these mass terms explicitly by expanding Eq.(1.3) around the symmetry breaking 



m i n i m u m ; 

^2.,2 
D ^ + y + yB/") ' + . . . (1.7) 

where combine to form a charged mass eigenstate 14^ = :F with 

a mass = ^^;/2. Notice that 14^ and are mixed together by EWSB, and the 

mass eigenstates are given by: 

A ̂
 / 

/ 

\ 

cos — sin 

sin COS y 

/ W 3̂ \ 

B , ) 

(1.8) 

where tan the weak mixing angle. The photon linear combination is 

still massless since electromagnetism is unbroken, while the neutral weak boson has 

obtained a mass We And that the observable electromagnetic 

charge is related to the weak and hypercharge gauge couplings by the relation: 

e = y cos (1.9) 

Substituting the Higgs scalar VEV ($) into Eq.( l . l ) , we can generate the following 

fermion mass matrices: 

(1.10) 

In general, will not be diagonal and so quarks from different generations can 

mix together. We can extract the physical masses (in the maas basis) by making a 

unitary transformation on the weak eigenstates (?/,,L, c^.^) that will diagonalise 

the mass matrices. For example, consider the transformations between the weak and 

mass bases: 

(1.11) 



where unitary and diagonalise the quark mass matrices: 

™;„J = "!* VR JJ J2) 

" L , = VI 

The combination is the unitary Cabibbo-Kobayashi-Maskawa (CKM) 

mixing matrix [3] and the standard parametrisation involves three physical mixing 

angles and a single phase that can lead to CP violation. The CKM matrix elements 

are observable in weak charged current processes, and VcxM is found to be highly 

diagonal. 

1.2.1 Successes of t h e S t a n d a r d M o d e l 

The SM has been rigorously tested at high-energy accelerators as illustrated by the 

amount of high precision data collected by the Particle Data Group [4]. Measurements 

of the width constrain the number of (active) neutrinos with masses < M^/2 

to be three. Hypercharge gauge anomalies arising from, triangle graphs involving 

internal loops of fermions are found to be exactly cancelled within each complete 

generation of quarks and leptons Taken together, we conclude that there must be 

three complete generations in the SM to maintain consistency. 

The quark model of mesons and baryons invokes approximate Eavour symmetries to 

successfully predict the light hadronic spectra of bound quark states. The unitarity of 

the CKM matrix offers a method called the Glashow-Illiopoulos-Maiani (GIM) mech-

anism [5] to suppress rare Savour-changing processes. In fact, the GIM mechanism 

predicted the charm quark prior to its experimental discovery. 

The Higgs mechanism for EWSB explains how the weak bosons acquire mass, and 

^This criteria, will prove important when we decide to supplement the matter content of the SM. 



therefore the short-range nature of the weak force. We can make perturbative cal-

culations of physical observables to test against experiment, and we understand the 

renormalisation group equation (RGB) evolution of physical parameters with energy 

scale. Indeed, we can understand the confinement of quarks inside hadrons from the 

infra-red behaviour of the 5'[/(3)c gauge group. 

1.2.2 U n a n s w e r e d ques t ions in t h e SM 

Despite the vast amount of experimental data, there is increasing observational and 

theoretical motivation for extending the SM which must be incomplete since gravity 

is not included. Quantum gravity effects are anticipated to appear around the Planck 

scale Mpf ^ 10^^ GeV, but this leaves a vast "energy desert" above the electroweak 

scale where "new physics" can appear. 

• N e u t r i n o masses and t he fe rmion h ierarchy 

The most significant experimental evidence for new physics MotfeZ 

is the observation of neutrino oscillations [6] which imply that neutrinos must have 

non-zero (albeit very small) masses. However, there are no right-handed neutrino 

states in the SM and so we cannot form Dirac masses or Majorana masses since the 

SM also conserves lepton number. An obvious extension is to trivially include right-

handed neutrinos Unfortunately, this offers no explanation why neutrino masses 

are so small (and similarly the observed hierarchy in the other fermion masses) and 

thus a more appealing approach is to embed the SM in a deeper theory where masses 

and couplings could be predicted a pnon . 

• Hierarchy p rob l em 

Prior to EWSB, fermions and gauge bosons are massless since mass terms explicitly 

violate gauge-invariance. However, there is no symmetry that protects the Higgs 

8 



boson mass from receiving large radiative corrections of order the cutoff scale 

A(;y, e.g. ^ Agyy. Figure 1.1 shows the dominant top-qnark radiative correction 

to the Higgs mass. 

$ 

167r̂  -2A?,V. + 6M] I n + 

Figure 1.1: The dominant top quark 1-loop correction to the Higgs mass is found to 
have a leading quadratic divergence. 

Suppose that this cutoff is associated with the Planck scale Mp/, then the Higgs boson 

mass correction would involve Planck-scale particles in virtual loops that would push 

the Higgs mass towards Mp;. However, we know that EWSB occurs at the weak 

scale which begs the question how the hierarchy between these two different 

scales is stabilised. A possible solution is to fine-tune the tree-level mass and 1-

loop corrections such that the sum is around the weak scale, but this seems highly 

unnatural. There is also no explanation of how the Higgs potential develops an 

instability (i.e. < 0) in the SM. 

* Gauge unif icat ion p rob lems 

Most theorists would agree that it would be desirable if the SM could be embedded 

into a deeper theory, perhaps uniting the three SM gauge groups within a grand 

unified theory (GUT) with a single gauge coupling e.g. 6'f/(5) or 5'0(10). GUTs 

are inherently more predictive and right-handed neutrino states arise naturally 

^In Appendix A, we will discuas a supersymmetric Pati-Salam G U T where lepton number is like 



However, when the observed low-energy gauge coupling constants are extrap-

olated up to high energies through RGB running, we find that they do not unify at a 

single value (using the matter content of the SM) as shown in Figure 1.2. 

60 

% 

50 

40 

30 

20 

10 

0 

" " 1 '""1 " " n 1 " '"1 " " 1 " " 1 " " " i '""H 

Standard Model : 

' ,.„ml . , , , J .wmJ , ,.,.^1 

lO'' lO'̂  10" 10̂  10'° 10'̂  10"̂  10'̂  10' 
(GeV) 

Figure 1.2: The renormalisation group equation (RGB) running of gauge coupling 
constants a, as a function of the renormalisation scale // in the SM. Notice that the 
gauge couplings do not meet at a single point. 

There are many well-motivated solutions to these problems including supersymmetry, 

grand unification, superstring theory and extra-dimensions that we wiU review in 

subsequent sections. 

1.3 S u p e r s y m m e t r y 

In this section, we aim to highlight the important features of phenomenologically-

viable low-energy supersymmetric models. However, there are plenty of excellent 

reviews that provide further technical details [8, 9, 10, 11]. 

Supersymmetry (SUSY) unites bosons and fermions through some underlying sym-

metry. It non-trivially combines spacetime Poincare symmetries with internal sym-

a "fourth colour" [7] and right-handed neutrinos arise in the same multiplets aa Wi/;, and 
e,\R. 

10 



metries, and extends ordinary spacetimeinto swpergpace by including anti-commnting 

coordinates along with the usual (commuting) spacetime coordinates In-

deed, a local (or gauged) theory of SUSY is called since it includes general 

coordinate transformations to oEer a theory of gravity. SUSY is also an essential in-

gredient in superstring models that (so far) provide the only consistent framework for 

combining all four fundamental forces. 

1.3.1 M i n i m a l S i ipe r symmet r i c S t a n d a r d M o d e l 

The minimal supersymmetric extension of the SM (MSSM) adds a fermion (boson) 

superpartner for each boson (fermion) particle in Table 1.1. This immediately olfers 

a potential solution to the hierarchy problem shown in Figure 1.1 since an additional 

diagram involving the scalar partner of the top quark contributes to to soften the 

quadratic divergence into a logarithm, provided the mass-splitting is around (9(TeV). 

However, the fermionic Higgsino partner of the Higgs scalar will couple to the hyper-

charge boson and re-introduces a triangle anomaly. Hence, a second Higgsino (and 

Higgs boson) with opposite hypercharge is required to cancel this anomaly. We label 

these two Higgs doublets and since we will find that they couple to fields with 

different weak isospin component is. The extended matter content of the MSSM is 

given in Table 1.2. 

It is convenient to work in terms of chiral (and vector) superfields which unite scalars 

with fermions (and fermions with vector bosons) within a single field. For instance, 

a chiral superheld can be expanded in superspace notation into component Aelds 

^(a:^, ^) = (;l»(a;) -|- ^^(z) ^(a;) -|- %<9̂ (̂ (a;) (1-13) 

\/2 4 

^We will consistently suppress the spinorial indices on ^ and See for example, Refs. [10, 11] 
for technical details about spinor algebra. 

11 



Particles Spin 0 Spin 1/2 5'f/(3)c ^(7(2)f, [/(l)y 

Q.z, ({(,% cf.i,) 3 2 1/6 

squarks, quarks % 3 1 -2/3 

3 1 1/3 

sleptons, leptons (i/iZ, Giz,) (l/il, Gil,) 1 2 -1/2 

eL 1 1 1 

Higgs, Higgsinos 1 2 1/2 

HD 1 2 -1/2 

Particles Spin 1/2 Spin 1 5'[/(3)c 5'[/(2)i, [/(l)y 

gluino, gluon (a=l-8) 9" a''" 8 1 0 
winos, W bosons (a=l-3) 1 3 0 

bino, B boson B B 1 1 0 

Table 1.2: GgM gauge quantum 
have taken the CP-conjugate of 
left-handed fields. 

numbers of the matter content of the MSSM. We 
all right-handed singlet fields to change them into 

where is a complex scalar (e.g. squark, slepton or Higgs boson); ^ is a left-handed 

2-component Weyl fermion (e.g. quark, lepton or Higgsino) and = (I2 , (z') with 

the Pauli matrices cr' . Notice that we have included a complex scalar Aeld 

F that will allow us to close the SUSY algebra off-shell and helps us keep track of 

degrees of freedom. However F is a non-dynamical field which can be eliminated using 

its classical equation of motion. The conjugate superfield expansion is found by 

taking the hermitian conjugate of Eq.(1.13) where the Weyl fermion is right-handed. 

We will refer to # (^^) as a left (right) superheld since they involve left-handed (right-

handed) Weyl spinors respectively. SuperAelds are usually distinguishable from their 

components as shown in Table 1.2, but in the case of 5'[/(2)2, doublets, it is convenient 

to use the same symbol for the superfield aad its SM component, e.g. represents 

both the quark doublet superfield and the quark doublet (i/^^ whereas the squark 

doublet is denoted by Q.i, = (wiz, (Z,%). 

12 



Similarly, vector superfields y can be decomposed ^ into gauge bosons 2-component 

Weyl fermion ganginos A and aziother auxiliary field D: 

g, g) - gA(a;) + # ^ ( a ; ) (1.14) 

Under infinitessimal (global) SUSY transformations, we find that fermions and bosons 

transform into each other as expected, while the auxiliary fields transform into total-

derivatives that vanish in the action. This provides a simple method of constructing 

SUSY-invariant lagrangians by extracting the coefBcients of (F-terms) and 

(D-terms) from a (gauge-invariant) combination of superfields. 

In the MSSM, we generalise the Yukawa couplings of Eq. ( l . l ) so that supersymmetric 

interactions are determined by a gauge-invariant, holomorphic superpotential of chiral 

superfields 

WMgsM = (i-is) 

where masses are generated after EWSB when acquire VEVs as given in Eq.(1.17). 

The supersymmetric Higgs mass parameter plays an important role in obtaining 

the correct EWSB VEVs and must be stabilised around // ^ O(M^) <K Mp;. Models 

have been proposed that generate the small //-term - these include the next-to-minimal 

supersymmetric Standard Model (NMSSM) which introduces an additional gauge sin-

glet superfield [12, 13] and also the Giudice-Masiero mechanism [14]. There are other 

renormalisable, gauge-invariant combinations of chiral superfields from Table 1.2 that 

^We are working in the so-called Wess-Zumino gauge, where non-physical degrees of freedom 
have been gauged away. 

^Renormalisable terms involve up to three chiral superAelds, although non-renormalisable inter-
actions can be constructed with higher-dimensional operators suppressed by powers of some mass 
scale. 
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can be included in the MSSM snperpotential 

W„PV = L,LL,LEI„ (1.16) 

where gauge indices have been suppressed. However, the first term leads to baryon 

number violation, while the last three terms violate total lepton number. Proton 

lifetime measurements severely constrain these interactions since tree-level diagrams 

can be constructed where squarks mediate very rapid proton decay. In the MSSM, we 

often invoke a new discrete symmetry called "R-parity" that forbid the superpotential 

terms in Eq.(1.16). This symmetry has important phenomenological implications 

since it predicts that the lightest supersymmetric particle (LSP) is stable against 

decay into ordinary SM particles and, if electrically neutral, it oEers a potential Dark 

Matter candidate. 

Electroweak symmetry is broken when the neutral components of the two Higgs scalar 

doublets acquire VEVs 

, / n \ 
{H. 

1 0 

A/2 
\ y 

1 

0 / 
(1.17) 

where we know % (246 Gey)^ from measurements of the Fermi constant 

Notice that we do not know the ratio between VEVs given by tan/) = 

cind look to experiment to constrain the parameter space. 

SUSY cannot be an exact symmetry in Nature since we have not observed degenerate-

mass superpartners at high-energy accelerators. However, we do not know the mech-

anism(s) responsible for breaking SUSY, although many models have been proposed. 

The allowed parameter space is only weakly constrained at present, and we must 

surely wait for the observation of sparticles at the Tevatron or LHC to identify viable 
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models. As discussed earlier, SUSY offers a solution to the hierarchy problem pro-

vided the sparticle masses lie around the TeV scale. In the absence of experimental 

data, we assume that the SUSY breaking parameters in the so/it lagrangian ^ Zlao/f 

are generated from some underlying theory (e.g. supergravity or string theory): 

^ + /,.c. 

^ I 2 ^ "t 2 2 ~ 2 ~ 2 

"I" ^ + A.c.) 

where M, are gaugino masses, and the trilinears and squark/slepton masses 

are 3 x 3 matrices in generation space. However, these parameters can have com-

plex entries (although the mass matrices must be hermitian) which introduces 105 

additional masses, phases and mixing angles that cannot be rotated away. 

Using this soft lagrangian and the superpotential, we can calculate the physical mass 

spectra of the superpartners by diagonalising the lagrangian to extract the squark and 

slepton masses. The two complex Higgs scalars contain 8 real degrees of freedom, of 

which 3 Goldstone modes are eaten by the weak bosons to give them mass, 

and the remaining 5 physical degrees comprise the physical Higgs sector of the MSSM: 

# - a charged Higgs boson pair 

# - a CP-odd, neutral Higgs boson 

# - two CP-even, neutral Higgs bosons 

After EWSB, the (observable) mass eigenstates are given by linear combinations of 

gauge eigenstates since fields with identical quantum numbers can mix together. For 

^Notice that terms in must not re-introduce quadratic divergences [15] and spoil the solution 
of the hierarchy problem. 
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instance, the charged Higgsinos and ganginos mix to form charginos: 

HT. HJ . W', W' xf , (1.19) 

and the neutral Higgsinos mix with the neutral gauginos to form neutralinos: 

( 1 . 2 0 ) 

where the lightest neutralino is often the LSP. 

1.3.2 Successes and mot iva t ions for l ow-ene rgy S U S Y 

Supersymmetry offers solutions to many of the problems in the SM and there is strong 

theoretical motivation for pursuing supersymmetric extensions of the SM. 

• Hie ra rchy p rob l em 

As shown in Figure 1.1, the Higgs scalars are not protected in the SM from acquiring 

quadratically-divergent radiative corrections from virtual loops of Planck-scale par-

ticles. However, SUSY stabilises the hierarchy between the electroweak and Planck 

scales by contributing sparticle loops for every particle loop that ao/tens the quadratic 

divergence into a logarithmic divergence as shown in Figure 1.3. 

This supersymmetric cancellation avoids the problem of fine-tuning provided that 

SUSY is broken around the TeV scale. 

• Rad ia t ive electroweak s y m m e t r y breaking 

Supersymmetry can also provide an explanation for the mysterious Higgs mechanism 

and the origin of its tachyonic maas. For example, in supergravity models with 

universal soft parameters at the GUT scale, we find that receives large radiative 
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Figure 1.3: The dominant top and stop 1-loop corrections to the Higgs mass, where 
the additional stop contribution cancels the quadratic divergence. In the limit that 
SUSY is preserved the Higgs mass would be 1-loop hnite. 

corrections from top and stop loops that do not exactly cancel. Extrapolating to low 

energies using RGEs, we see that is driven negative at the weak scale which 

triggers EWSB [16]. 

• Gauge coupl ing unif icat ion 

We have already shown that we do not obtain gauge coupling unification in the SM. 

However, the additional sparticles with masses around the TeV scale carry gauge 

quantum numbers and therefore modify the RGE running to yield approximate uni-

fication at a scale % 2 x 10^^ GeV as shown in Figure 1.4. 

This unification is consistent with embedding the MSSM within a supersymmetric 

GUT group that can push the potentially dangerous proton decay rate experi-

mental lower bounds. 

1.3.3 U n a n s w e r e d ques t ions in t h e M S S M 

However, our understanding of low-energy SUSY is not complete since there are 

still many unanswered questions. One of the main concerns is the huge number of 
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Figure 1.4: The RGB extrapolation of gauge coupling constants a, to high energies 
in the SM and MSSM. Notice how additional sparticle loops in the MSSM modify 
the evolution of the gauge couplings which now meet meet at a unification scale of 
Mqut — 2 X 10^® G e V . 

(arbitrary) parameters in the MSSM - there are 124 masses, phases and mixing angles 

(excluding neutrino masses) compared to the 19 parameters in the SM. In the absence 

of sparticle data, we caimot identify the mechanism(s) responsible for SUSY breaking. 

In order to make progress, we assume that the MSSM arises from an underlying 

theory where these free parameters are inter-related by some (unknown) symmetries, 

e.g. supergravity, SUSY GUTs or string theory. For example, there has been extensive 

study of the phenomenology of minimal supergravity (mSUGRA) models where SUSY 

is broken in a "hidden sector" that is coupled through gravitational interactions to 

SM particles [17]. In these models, the soft parameters in Eq.(1.18) are unified at the 

Planck scale, i.e. universal gaugino maases Mi/g; squark, slepton and Higgs scalar 

masses Mg; and trilinears Ao. These high-scale parameters provide upper boundary 

conditions for running RGBs down to the weak scale to extract the physical low-energy 

sparticle spectra. Another variant is called "no-scale supergravity" [18] which assumes 

that Ml/2 Mo , Ao and leads to characteristic experimental signatures such as very 

light right-handed sleptons. However, SUSY breaking can also be communicated to 

the visible SM fields via an intermediate non-SM gauge sector [19, 20]. 

Developments in superstring theory involving Dirichlet-brazies and large extra dimen-
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sions offer exciting new possibilities for SUSY breaking since the hidden sector can 

now be physically separated or sequestered from the SM Aelds along an extra dimen-

sion(8). Parallel brane constructions also form the basis of the Horava-Witten model 

in strongly-coupled heterotic string theory [21] which in turn motivated the formula-

tion of anomaly [22, 23] and gaugino [24, 25] mediated SUSY breaking effective held 

theory models. 

We expect to observe sparticles at the Tevatron and/or LHC within the next ten 

years. However, experimental sensitivity is at the level where mSUGRA effects are 

(in principle) accessible in current experiments. For example, ofE-diagonal squark and 

slepton mass matrix elements cause Savour violation at 1-loop that is measurable 

in ^ mixing, 6 — a n d e-y processes. Flavour-changing neutral-

current (FCNC) data imposes very strong constraints on these off-diagonal mass 

matrix elements [26], and electric dipole moment observations constrain CP-violating 

phases in soft parameters [27]. 

We have shown that supersymmetry is a very powerful framework and offers many 

solutions to SM problems. However, we still need to consider how the MSSM can be 

embedded within a deeper theory such as superstring theory which is the focus of the 

next section. 

1.4 Supe r s t r i ng T h e o r y and E x t r a Dimens ions 

In this section, we aim to review the status of superstring phenomenology. There are 

many excellent introductions and reviews of superstring theory that can be consulted 

for technical details [10, 28, 29]. 

String theories offer the only consistent framework for unifying all four fundamental 

forces of Nature together. Matter fermions, Higgs scalars, gauge bosons and gravity 
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fields are all represented as different vibrational modes of microscopic strings of length 

1/M*, where M* is the fundamental string scale. Strings can have their ends free 

(open) or tied together to form a loop (closed), where a closed string is often regarded 

as a bonnd state of two open strings. Closed strings are found to possess a spin 2 

resonance representing a graviton which is the proposed mediator of gravitational in-

teractions. Supersymmetric strings (or superstrings) offer the most promising models 

and string phenomenology [30] is the study of how to embed the MSSM within string 

theory. 

1.4.1 S t r ing Revo lu t ions a n d Dual i t i es 

String theory has undergone a series of important developments or The 

first revolution occurred in 1984 when Green and Schwarz [31] constructed the lOd 

anomaly-free type I string theory involving open and closed strings with a gauge group 

5'0(32). This was followed by the formulation of the two lOd heterotic closed string 

theories that combined bosonic strings in 26d with the lOd supersymmetric Green-

Schwarz theory to give a gauge group 5'0(32) or x [32]. Heterotic and type I 

both exhibit A/" = 1 spacetime supersymmetry and contain very large gauge groups 

which can easily accommodate the MSSM. Type II models with A/" = 2 SUSY in lOd 

were later developed, giving a total of five consistent, perturbative superstring theories 

that are aU candidates for containing the MSSM. However, these models contain a 

plethora of exotic matter outside the MSSM states and the extra dimensions must be 

compactified from lOd to 4d in order to forge a connection with observable low-energy 

physics. 

The second string revolution occurred in 1995 with the discovery of weak/strong 

coupling dualities [34]. As shown in Figure 1.5, dualities are found to unite the 

five superstring theories and l i d supergravity as different perturbative limits of an 

underlying l i d [35]. Another important development was the discovery 
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Figure 1.5: The web of duaiities that inter-relate the Ave string theories with l i d M-
theory. HE and HO refer to the two heterotic theories with the gauge groups Eg x Eg 
and 5'0(32). This hgure is taken from Ref. [33]. 

of extended, solitonic objects called Dirichlet-branes [33, 36, 37] in type I and II 

vacua. Dp-branes span a (p -|- 1) sub-manifold of the full lOd spacetime and they 

are identified as the hyper-surfaces where open strings end. These open strings have 

Dirichlet boundary conditions in the (9 — p) coordinates transverse to the Dp-brane, 

and Neumann conditions inside the world-volume of the brane. Open strings attached 

to a given Dp-brane have Kaluza-Klein (winding) states along the compact dimensions 

with Neumann (Dirichlet) boundary conditions. A coincident stack of N D-branes 

generates a ( / ( # ) gauge group ^ and open strings carry Chan-Paton gauge quantum 

numbers for the gauge groups of the branes to which they are attached. Gravity 

fields arise as closed strings, so confining gauge fields to D-branes raises the (hitherto) 

unexplored possibility that gauge and gravity fields can live in different numbers of 

dimensions in type I and II theory. These discoveries ended the heterotic monopoly in 

string phenomenology and made other corners of the M-theory moduli space accessible 

to study. 

^Imposing a, mirror symmetry 0 (which is called "orientifolding" [38]), or groups of discrete 
symmetries Og, can generate alternative and 5'p gauge groups. 
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1.4.2 T y p e I St r ings 

In this section we will review type I string theory which has been the focus of in-

tense study recently [39, 40] ajid many semi-realistic models have already been con-

structed Perturbative type I models are particularly interesting since they 

are dual to strongly-coupled heterotic constructions. 

We can understand lOd 5'0(32) Type I string theory as an "orientifold" [38],[56]-[61] 

- or Zg projection - of type IIB theory in lOd. This projection is identified with the 

parity operation on the surface swept out by the string (world-sheet) that exchanges 

left and right-moving vibrations. It projects out states that are not invariant under 

fl and breaks A/" = 2 SUSY down to VV = 1. This results in an (unoriented) type 

I closed string theory in lOd However, orientifolding leads to string amphtudes 

containing tadpole divergences that must be cancelled for a consistent theory. The 

solution is to add states which are "twisted" with respect to (1 - and these are simply 

type I open strings with their ends attached to D-branes We And that we require 

32 D9-branes (with world-volumes filling the whole lOd spacetime) in the vacuum, 

where the attached open strings give rise to massless lOd gauge fields transforming 

in the adjoint of 5'C)(32). 

We need to generalise this orientifolding technique to compactify six dimensions while 

leaving a single unbroken supersymmetry in 4d We will consider type IIB 4d 

orientifolds [41]-[50] obtained by compactifying six dimensions on a six-torus = 

X X where each pair of compactified dimensions is wrapped around a 

symmetric two-torus T' of radius ^ and volume 2;, = (27r We will label the 

lOd spacetime coordinates as (a;o — zg), where (a;o — 3:3) span the usual 4d Minkowski 

^°Compare with type IIB theory where the closed strings 6ire said to be orienkcf. 
D-branes and orientifold planes both carry Ramond-Ramond charges, and so tadpole cancella-

tion is equivalent to a net Ramond-Ramond charge of zero. 
^'Notice that M = 1 SUSY in lOd is equivalent to jV = 4 in 4d, a n d so the compactification must 

simultaneously break three of the 4d supersymmetries. 
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spacetime. It is convenient to pair up the remaining six compact coordinates (Z4 — 

within three complexified dimensions as shown in Figure 1.6 

Zi = (a;4,Z5) , Z2 = (a:6,a;7) , 23 = (2:8,3:9) (1-21) 

where spans the two-torus T'. 

Twisting the compactihed theory by an orientifold group {fZ x (?}, where H is the 

world-sheet parity and G is a discrete Abelian group Zyv, x and x . . . x , 

leads to VV = 1 SUSY in 4d and the presence of singular fixed points that are invariant 

under the action of the orientifold group However, there are only a finite subset of 

type IIB orientifolds (type I orbifolds) that give rise to = 1 in 4d and these have 

already been classified in the context of toroidal heterotic compactihcations [62]. 

The action of orientifolding leads to tadpole divergences that must be cancelled by 

introducing Dp-branes into the vacuum, where p = 5 and/or 9 to preserve A/" = 1 

SUSY The tadpole cancellation conditions strongly constrain the gauge structure 

and massless spectrum by projecting out states that are not invariant under the 

orientifold group action [39, 40, 47, 48]. Notice that the presence of a background field 

field, or non-trivial Wilson lines, can modify the tadpole cancellation conditions 

and reduce the rank of the gauge groups [51, 53, 63] since fewer D-branes are required 

for consistency. 

Instead of using the world-sheet parity fl, we are free to use different Zg-parities to 

orientifold the type IIB theory, and other choices lead to vacua where D3 and/or 

DZ-branes must be added to cancel tadpoles. This scenario is related to the previous 

^^The origin of the compact space is a trivial example of a fixed point . 
^"^The D5i-branes span Minkowski space plus the two-torus T*, and the compactification radius 

of T ' is often labelled Ri = -R5,. 
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one involving D5, and/or D9-branes via transformations: 

where ^ is the radius of compactihcation of the two-torus T', M* is the string scale 

and A/ is the lOd dilaton that controls the type I string coupling. Therefore, T-

dualising a pair of compact dimension will exchange Neumann with Dirichlet bound-

ary conditions, and Dp-branes become D(p ± 2)-branes. 

Type I models are phenomenologically appealing since the fundamental string scale 

M* can take a range of values. This is in contrast to heterotic models where the string 

scale is fixed close to the Planck scale (independently of the compactification radii) 

by the relation M* = ^acc/T/S Mp; with 1/24. Dimensionally reducing the 

elective lOd lagrangian, we can extract expressions for the Planck mass and D-brane 

gauge couplings in terms of the compactification scales = 1 / ^ and M* [39, 40]: 

, i , . i f , . j . i i i i f i S 

where 0:5.(9) = 6'5 (̂9)/47r and A/ < 0(1) to remain perturbative. This explicit depen-

dence on the size and shape of the compactification manifold gives the string scale 

its freedom I T e y ;$ M* ;$ Mp;. In particular, type I string theory offers the ex-

citing possibility of large extra dimensions, where quantum gravity effects could (in 

principle) be accessible to the next generation of accelerators [64]. 

We will now consider the open and closed string states that arise in generic construc-

tions involving stacks of coincident D9-branes and three types of D5,-branes. Recall 

that D9-branes All the whole lOd spacetime (â o — â g), while a D5^-brane spans the 

usual 4d Minkowski space (a;o — â s) plus two extra compact dimensions that wrap 

around the two-torus T". 
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52-bra,ne 

.2̂2 = (3:6, a;%) 

zi = (2:4, Zg) 

Z3 = (a:8,a;9) 

(â o — 373) 5i-brane 

Figure 1.6: We can represent the six-dimensional compact space using a complexified 
coordinate system, where Z)5,-branes are shown as straight lines along the z, direction. 
Therefore, a D5i and D52-brane will overlap at the origin of the coordinate system 
(a;o — 3:3), but extend out into "perpendicular" compact dimensions. 

We can represent the 6d compact space on the six-torus using a three-dimensional 

coordinate system z, where each coordinate corresponds to a pair of compact dimen-

sions as given in Eq.(1.21). Therefore, stacks of coincident D5,-brane8 are represented 

by a single line along the coordinate. This is shown in Figure 1.6, where we have 

two different stacks of 5-branes that overlap at the origin (a;o — 3:3), but have world-

volumes that extend into different perpendicular compact dimensions. 

There are two types of massless A/" = 1 chiral fields that arise in type I models: 

# Closed strings chiral singlets 

Chiral singlets arise from the closed string sector and include a complex dilaton 6" and 

untwisted moduli fields 2̂  (% = 1,2,3) that freely move in the whole lOd spacetime. 

The untwisted moduli fields parametrise the size of the compactified dimensions where 

the compactification radius is given by: 

RI = 
2M. 

(1.25) 

In heterotic models, the 4d dilaton is uniquely defined by the string coupling (lOd 
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dilaton) and volume-modnlus. However in type I models, couplings are related to 

either the dilaton or untwisted moduli from T-duality. Compactifying the lOd theory 

using an orientifold leads to the presence of fixed points that are invariant under the 

orientifold group. Twisted moduli are closed strings that have been at these 

Axed point singularities and parametrise the size of the hxed points. As we will discuss 

in chapter 3, these twisted states can contribute to SUSY breaking and also modify 

gauge couphngs. Twisted moduli play an important role in cancelling anomalous 

[/(l) 's through a 4d generalisation of the Green-Schwarz mechanism [47, 48]. 

# Charged open string states 

Chiral matter, gauge bosons and Higgs helds arise as open strings attached to D-

branes. They can either end on D-branes (e.g. and carry 

charges under both gauge groups, or have both ends attached to the same D-brane 

(e.g. Cj ' , Cj). Notice that these latter states carry an additional index that can be 

exploited to constrain the form of the renormahsable superpotential. 

In the most general setups involving three types of D5,-branes and DQ-branes, string 

selection rules constrain the allowed combinations of open string states that appear 

in the superpotential (subject to gauge invariance) [39]: 

+6̂ 52 (1.26) 

+^9 

where the Yukawa coupling constants (associated with fields arising from each 5-and 

9-brane) are given by: 
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In Appendix B, we discuss the supergravity formalism tha t is used for the low-energy 

description of type I models in terms of the Kahler potential, superpotential and 

gauge kinetic functions [65]. We also provide general expressions for soft masses and 

trilinears in terms of SUSY breaking F-terms, where we will assume that only closed 

string states acquire non-zero VEVs. 

1.4.3 E x t r a D imens iona l Mode l s 

The recent developments in string theory involving D-branes, dualities and potentiaDy 

low string scales [66, 67] has stimulated interest in higher-dimensional effective Aeld 

theories and their phenomenological implications [64]. In particular, the realisation 

that gravity and gauge fields can live in different numbers of dimensions has inspired 

the construction of "brane-world" models where SM helds are confined to D-branes 

embedded in a higher-dimensional space felt by gravity [70]. These models offer new 

(non-supersymmetric) solutions to the hierarchy problem [71] and can explain the 

relative weakness of the gravitational force due to a volume suppression from the 

additional dimensions felt by gravity. Brane-world models also oEer a realisation of 

hidden sector SUSY breaking, where the hidden sector is spatially separated from the 

SM helds on a distant brane [22, 23, 24, 25]. 

Historically, the idea of (microscopic) extra dimensions pre-dates string theory and 

first appeared in the context of unification, when Kaluza and Klein attempted to 

combine Maxwell's theory of electromagnetism with Einstein^s theory of general rel-

ativity by embedding both theories in a generally covariant 5d spacetime [72]. They 

assumed that quantum corrections caused the extra dimension to curl up into a circle 

of radius 10^^ cm which is too small to observe. The fifth dimension 

?/ has the topology of a circle 5"̂ , so that a scalar held (^(a;, i/) propagating in the extra 

15 See Refs.[68, 69] for recent reviews. 
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dimension satisfies the boundary conditions: 

—(;6(a;,i/ + 27r^) (1.28) 

Hence, ?/) can be expanded as an infinite tower of 4d modes 

= (1.29) 
71 

where the momentum (mass) is quantised — » / ^ . The non-zero modes correspond 

to particles with masses around the Planck scale, which can be neglected in the low-

energy limit. Decomposing the Einstein-Hilbert action in 5d, they recovered the usual 

Maxwell theory coupled to general relativity where the off-diagonal fifth component 

of the metric tensor can be identified with the Maxwell field and the electric 

charge is given by e ^ -\/87r 

Instead of circular compactifications, recent higher-dimensional models have been 

studied where the extra dimension(s) are compactified on such as 5'^/Z2. 

These are constructed by dividing a continuous manifold (5"^) with a discrete sym-

metry (Zg) as shown in Figure 1.7 which leads to the appearance of discontinuous 

singularities, or fixed points, that are invariant under the orbifold group action 

However, we can still decompose higher-dimensional fields as infinite towers of Kaluza-

Klein excitations, but now the orbifold symmetry provides a mechanism to project 

out unwanted states 

In chapter 4, we will study a 5d supersymmetric effective field theory where the 

^®We have already seen in section 1.4,2 how closed strings (twisted moduli) can become trapped 
at such fixed points. 

^ ̂ Recall how the additional supersymmetries that remciiii when the lOd type IIB theory waa 
dimensionally reduced to 4d, are projected out by the orientifold group. 

^^Notice tha t M = 1 SUSY in 5d is equivalent to A/" = 2 SUSY in 4d, and it is convenient to 
construct vV = 2 hypermultiplets by combining an vV = 1 chiral supermul t ip le t with its CP-mirror 
partner as discussed in Appendix C. 
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5'̂  

Figure 1.7: We can construct an 5'^/^2 orbifold by dividing a circle 5"̂  by a discrete 
Z2 group. This identifies coordinates on opposite sides of the circle, and leads to the 
presence of two Axed points that are invariant under the Z2 symmetry. 

extra dimension ?/ is compactlAed on an 6'^/Z2 orbifold. In analogy to Eq.(1.29), we 

can decompose 5d Aelds into InAnite Kaluza-Klein towers: 

(1.30) 

where the orbifold leads to a classification of fields into even (E) and odd (0) ^2-

parity. Notice that we can project out non-MSSM states at ?/ = 0 by assigning them 

odd Zg-parity. 

29 



C h a p t e r 2 

B r a n e Med ia t ed SUSY Break ing 

We propose a mechanism for mediating supersymmetry breaking in Type I string 

constructions. The basic set-up consists of a system of three D-branes: two parallel 

D-branes, a matter D-brane and a source D-brane, with supersymmetry breaking 

communicated via a third D-brane, the mediating D-brane, which intersects both of 

the parallel D-branes. We discuss an example in which the first and second family 

matter fields correspond to open strings living on the intersection of the matter D-

brane and mediating D-brane, while the gauge fields, Higgs doublets and third family 

matter fields correspond to open strings living on the mediating D-brane. As in 

gaugino mediated models, the gauginos and Higgs doublets receive direct soft masses 

from the source brane, and Savour-changing neutral currents are naturally suppressed 

since the first and second family squarks and sleptons receive suppressed soft masses. 

However, unlike the gaugino mediated model, the third family squarks and sleptons 

receive unsuppressed soft masses, resulting in a very distinctive spectrum with heavier 

stops, sbottoms and staus. 
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2.1 P r e a m b l e 

The process of SUSY breaking continues to be an active area of research as discussed 

in section 1.3.3. Over the years there have been various mechanisms proposed, in-

cluding gravity [17], gauge [19, 20] and anomaly mediation [22, 23]. An alternative 

mechanism has been been put forward [24, 25] called mediated supersymme-

try breaking (^MSB) which has the attractive property of solving the Savour problem, 

since scalars masses effectively vanish at the GUT scale and are generated through ra-

diative corrections for which a GIM-like mechanism prevents Savour-changing neutral 

current (FCNC) problems. This is rather like the no-scale supergravity mechanism 

[18], but is implemented within a Horava-Witten [21] type set-up ^ consisting of two 

parallel but spatially separated D3-brane8 with SUSY broken on one brane, the su-

persymmetric matter fields living on the other brane and the gauge sector living in 

the bulk and communicating the SUSY breaking from one brane to the other. The 

Higgs doublets may also be in the bulk providing a solution to the // problem via the 

Giudice-Masiero mechanism [14]. The advantage of this set-up is that the contact 

terms arising from integrating out states with mass M are suppressed by a Yukawa 

factor if Af > 7}, and so a modest separation L between the two branes can lead 

to negligible direct communication between the SUSY breaking brane and the matter 

brane. This is the starting point of both the anomaly mediated and the gaugino 

mediated models, and underpins the solution to the FCNC problem in both cases. 

In this chapter we shall propose a mechanism for mediating SUSY breaking in Type 

I string models based on open strings starting and ending on D-branes. Type I 

string theories can provide an attractive setting for ideas such as gaugino mediated 

SUSY breaking (pMS'B), and we shall explore this possibility in this paper. In place 

of the Horava-Witten set-up we shall consider a Type I toy model consisting of two 

^Note that in the Horava-Witten model the branes are dynamical and appear at strong coupling. 
Also, they are not Dirichlet-branes and the gauge fields do not live in the bulk. 
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paraDel D-branes with a third D-brane intersecting with both of the parallel D-branes. 

Instead of having the gauge helds in the bulk we shall put the gauge fields onto the 

third mediating D-brane, which allows SUSY breaking to be communicated between 

the SUSY breaking brane and the matter brane. Thus the role of the bulk is played 

by the third mediating D-brane, and it is the gauge fields which live on this brane 

that communicates the SUSY breaking. However in Type I models it is natural for a 

matter family to also live on the mediating D-brane, and this provides a characteristic 

signature of the brane mediated SUSY breaking mechanism. 

To illustrate these ideas we consider a toy model inspired by the work of Shiu and Tye 

[52] using intersecting D5-branes, where the intersection regions are effectively parallel 

D3-branes within a higher-dimensional spacetime. In this model two chiral families 

occur in the 4d intersection region at the origin fixed point (5i52 sector), with a third 

family on the D52-brane (5282 sector). However our model differs from Shiu-Tye 

since we include a further -brane which intersects with the DSg-brane at a point 

located away from the origin fixed point, and suppose that SUSY gets broken on that 

brane and is communicated via the states on the D52-brane which intersect with both 

D5i-branes at the two fixed points - brane mediated SUSY breaking (BMSB). In this 

example gauge fields, Higgs fields and the third family all live in the mediating D-

brane which plays the role of the bulk in the original ^MSB scenario. This separation 

of the third family^ provides an explanation for the large mass of the third family of 

quarks and leptons, without perturbing the solution to the Eavour problem since the 

first and second families remain almost degenerate. 

^Remember that the first two families are localised within an effective 4d overlapping region, 
while the third family feels two extra dimensions 
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2.2 Gaug ino M e d i a t e d S u p e r s y m m e t r y Breaking 

In this section we review the mechanism [24, 25]. This toy model involves 

D3-branes embedded in a higher-dimensional space. Two parallel DS-branes are spa-

tially separated along (at least) one extra dimension as shown in Figure 2.1. Standard 

Model quark and lepton fields are localised on the mat ter braae at ?/ = 0 as open 

strings, while the gauge and (possibly) Higgs fields propagate in the bulk^. Super-

symmetry is broken on the displaced source D3-brane at ^ = 2}. SUSY breaking 

is communicated to the bulk fields by direct higher-dimensional interactions^, and 

mediated to the quark/lepton fields by Standard Model loops^. 

"matter D3-brane" 

MSSM matter fields 

"source D3-brane" 

SUSY breaking sector 

y = L 

Figure 2.1: An extra dimensional loop diagram that contributes to SUSY breaking 
scalar masses. It is similar to a self-energy diagram, but with the virtual gaugino not 
confined to either 4-dimensional brane. This figure is taken from Ref. [24]. 

The full D-dimensional lagrangian is split into two distinct pieces - a bulk term 

^Tlius feeling all 5-dimensions. 
"'Higher-dimensional operators are assumed to arise f rom the under lying string theory, although 

this is not clear at present. 
®Gauginos in the bulk couple directly to chiral fermions on the m a t t e r brane. They also couple 

to the hidden sector directly through mass-insertions on the source brane. 
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involving only bulk fields and terms localised on either D3-brane that allow direct 

bnlk-brane Aeld coupling. 

(a;,!/)] + ^ (;/ - %/;,) 4 (a;, 2/^), % (a;)] (2.1) 
i 

where j runs over the branes, x are coordinates for the 4 non-compact dimensions, y 

are coordinates for the D — 4 compact spatial dimensions, ^ is a generic bulk Held, 

and is a held localised on the brane. 

A Naive Dimensional Analysis (NDA) [73] allows the 5d (or higher) effective theory 

to be on to the observed 4d theory at the compactihcation scale. The 4 

and D-dimensional gauge couplings can be related by the volume of the compact 

dimensions Vb-4: 

s i = ^ (2.2) 
KD-4 

The D-dimensional gauge coupling g'g must be smaller than its strong-coupling limit, 

otherwise perturbative results become meaningless^ 

(2-3) 

where /g is a geometrical loop factor for D dimensions, = 2^7r^/^r(D/2), M is 

the fundamental scale in the effective field theory which acts as a regulating cutoE, 

and e suppresses the coupling strength. Note that e ^ 1 corresponds to the strong 

coupling limit. This places a constraint, along with FCNC suppression, that restricts 

the maximum size of the extra dimensions [24, 25]. 

Following the work of Randall and Sundrum on spatially-separated D3-branes in extra 

^Extra dimensions (and Kaluza-Klein excitations) change the energy-dependence of couplings to 
power law running above the compactification scale. This allows for unification at lower scales, see 
[66, 74] for a review. 

34 



dimensions [22], contact terms between Aelds on opposite branes aze exponentially 

suppressed by an amount where L is the separation between D3-branes along 

the extra dimen8ion(8). Eq. (2.4) is an example of an exponentially suppressed 4-

point operator involving superhelds from the matter and source braaes that generates 

scalar masses: 

(2.4) 

where are source and matter superhelds respectively. 

Compare the suppressed contact terms with the operators giving rise to gaugino 

masses and Higgs SUSY breaking parameters, from Higgs superhelds and 

gauge field strengths 14^ living in the bulk. 

+ + Ax.)]} (2.5) 

which leads to the following soft terms when we match to the D-dimensional theory^: 

R 2 2 2 : ^ 
~ M M^-^VN-I ~ DI M' ~ 1^2 M^-^VD-, ~ d , A-P 

(2.6) 

where we have used Eqs. (2.2,2.3) with ^̂4 % 1. 

Notice that we are following Ref. [25] with the Higgs Aelds living in the extra-

dimensional bulk so that the //-term is generated on the source brane via the Giudice-

Masiero mechanism [14]. In comparison, Ref. [24] choose to localise the Higgs doublets 

on the matter D3-brane and include an additional gauge singlet (NMSSM [12, 13]) 

to generate // with an extra superpotential term W Hence, an effective 

^Notice that the term and Higgs mass-squared terms are enhanced by a volume factor relative 
to the gaugino maas and the ;j-term. 
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^-term can be generated if the scalar component of the singlet # acquires a non-zero 

VEV. 

2.3 T y p e I S t r ing- Inspi red M o d e l 

Now we turn to Type I string constructions and introduce a toy model motivated 

by the work of Shiu and Tye [52]. The string scale M* is usually considered to be 

of the order 10^^ GeV, but recently the gauge unification scale was suggested to be 

as low as 1 TeV, which could allow the string scale at a comparable value. Shiu 

and Tye [52] discuss the phenomenological possibilities within Type I string theory 

and overlapping D5-branes. They use the duality between the compactification of 

lO-dimensional Type IIB string theory on an orientifold, with Type I theory on an 

orbifold, to recover a 4-dimensional A/" — 1 supersymmetric chiral string model with 

Pati-Salam-like gauge symmetry ^ [7, 75]. 

We have already discussed in section 1.4.2 that tadpole cancellation conditions and 

a non-zero background B-field constrain the number and type of D-branes allowed 

within the model to D5 and D9-branes only [53]. In a particular scenario they consider 

only one type of D5 brane (53) together with the D9 brane, and after T-dualising two 

pairs of compact dimensions, they obtain a scenario with two intersecting branes, 

namely 5i and 52 branes which intersect at the origin fixed point. A gauge group 

[/(4) (g) (2) (g) (2)' exists on each brane, and they discuss three scenarios where the 

SM gauge group originates from different brane combinations. Their third scenario is 

of particular interest since it leads to three chiral families - two families on the 5i52 

overlap and a third family on the D52-brane as shown in Figure 2.2. 

Using Eq.(1.26), we can extract the renormalisable superpotential terms allowed by 

^See Appendix A for details of the Pa,ti-Salam gauge group. 
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52-brane 

Effective D3-brane 

cf 

c ̂5i52 

5i-brane 

Figure 2.2: The matter fields and Higgs doublets resulting from Shiu and Tye's third 
scenario with intersecting D5-branes, where CJ" is an open-string state (matter Aeld) 
starting and ending on the brane. is an open-string state starting on the 
brane and ending on the brane. 

string selection rules: 

1%.,̂  = -K [752(̂ 5152(̂ 5152 ^2.7) 

where we have neglected all other open string states. 

We now proceed to introduce a toy model based on the above construction. In order 

to allow the third family Yukawa couplings consistent with the allowed 

terms in Eq.(2.7), we assign the Higgs doublets jKT = or This leads 

to the four possible allocations of 82 states in Table 2.1. 

52 states A B c D 

Cf ' 

F3L — QsL ^ LSIJ Cf ' 

Table 2.1: Allocation of 82 states that lead to third family-only Yukawa couplings at 
lowest order. We use the lower index to distinguish between doublets, singlets amd 
Higgs helds. 
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Notice that there are no free indices on the intersection states 

— QiZ,, C SiSo (* = 1,2) 

which means that we cannot distinguish between the first two families. 

(2.8) 

In our Type I string-inspired model, we shall assign the gauge groups and matter Aelds 

as in Table 2.2, where we have ignored the custodial 5'f/(4)5^ gi (7(1)^ symmetry. The 

states <̂ , 'K, "K' are used to break the gauge groups down to the aa discussed 

in Appendix D.l. 

States Sector 5'[/(4)5, 5'[/(2)5:, ^^(2)5,« ^^(2)5,, 

FiL — QiL ! Lii, SiSz 4 1 1 1 2 

SiSz 4 1 1 2 1 

fsz, = 03Z,, 3̂1, 52 4 1 2 1 1 

= O3R ) ; ^3R i •52 4 2 1 1 1 
4> 51-52 1 1 2 1 2 

SiSz 1 2 1 2 1 
n 52 4 2 1 1 1 
w 52 4 2 1 1 1 

52 1 2 2 1 1 

Table 2.2: 5'(7(4)52 (gi '5'[/(2)52A ® 'S'(/(2)52z, ® '5'(/(2)5iA ® '$'(/(2)5if, quantum numbers 
for left and right-handed chiral fermion states and symmetry breaking Higgs helds. 

Gauge invariance with respect to the initial gauge group 5'(7(4)52 (g) 5'[/(2)52^ 0 

5'C/(2)52 .̂ ® 5'(7(2)G^^ (g) 5'(7(2)5^^ provides a mechanism to forbid both first and sec-

ond family Yukawa couplings and R-parity violating superpotential terms 

in Eq.(1.16) without any other assumptions^. Note that the //-term is forbidden by 

string selection rules, which also forbid a superpotential te rm involving a matter brane 

^Notice that the third family right-handed neutrinos and sneutrinos receive large Majorana masses 
from the operators resulting in a see-saw mechanism. This is discussed in Ref. [76], 
along with a discussion of higher-dimensional operators suitable for first and second family fermion 
masses. 



smglet^° where W ^ Therefore, the Giudice-Masiero mechanism oEers the 

best opportunity for producing a //-term from the soft potential as discussed later. 

2.4 Brarie M e d i a t e d S u p e r s y m m e t r y Breaking 

We now augment the model in section 2.3, by including an additional D5^-brane lo-

cated at an orbifold fixed point away from the origin as shown in Figure 2.3. The 

idea of including the extra 5^-brane is that SUSY is broken on this brane and com-

municated by the MSSM states that live on the Sg-brane which intersects it Thus, 

the gauge fields on the Sg-brane play the role of the gauge fields in the bulk in Figure 

2.1. In Appendix E, we will discuss the various mass scales in this model. 

5i 

matter brane 

CF 

5; 

source brane 

Figure 2.3: A brane-construction using overlapping D5-branes, with effective D3-
branes at the intersection points spatially separated along the DSg-brane. The hrst 
two chiral families live on the Arst intersection region. The third family and 
Higgs doublets live on the DSg-brane in the "bulk" between the source and 
matter branes. The gauge-singlet source field in principle can either live on the 
brane or be localised on the 5^62 intersection, but for definiteness we assume the 
latter possibility. 

We now consider a limiting case in which the model in Figure 2.3 reduces to the 

non-renormalisable higher-dimensional 4-point superpotential term may be generated by two 
additional gauge singlet fields, eg. IV ^ This can become the 3-point term when one 
of the singlet fields acquire a VEV. 

^^We will assume an cirbitrary gauge group on the S^-brane, and ignore tcidpole cancellation 
conditions at this fixed point. 
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model discussed in section 2.2, namely that the D52 compactification radius 

is very much larger than the DSi radius^^ 

» 7̂ 5: » M - ' (2.9) 

In this limit, the model reduces to that shown in Figure 2.1, where the matter and 

source D3-branes correspond to the intersection regions of the D5-branes, and the 

bulk corresponds to the mediating 62 brane, as shown in Figure 2.4. Note that the 

Arst two families are located on the matter brane, while the third family and Higgs 

doublets live on the mediating 82 brane. 

5; 

matter source 
brane brane 

matter I I source 
brane 9 • brane 82 

52 

Figure 2.4: The intersecting D5-brane construction in the limit of small D5i com-
pactihcation radius. The D5i-branes reduce to effective D3-branes, separated in two 
orthogonal dimensions along the D52-brane (6u%). The allocation of Higgs and chiral 
matter fields are the same as in Figure 2.3 and Table 2.2. 

From Eq.(1.24), we know that the gauge couplings on the branes are given by: 

- (27r)3Az ' ' (27r)3Az ^ ^ ^ 

where A/ is the lOd dilaton in type I string theory and the compact volume spanned 

by the DS^-brane is = (27r We can see that the coupling-squared is inversely 

proportional to the compactification volume t;5 ,̂ which implies that 5̂̂  g'sg from 

Eq.(2.9). This limiting caae of the symmetry breaking is discussed in Appendix D.2, 

but the important results are that the dominant components of the gauge fields live 

radii must be larger than the inverse string scale otherwise the original T-dual 
description in terms of 9 and Ss-branes f rom Ref. [52] is more appropr ia te , and we lose the intersecting 
brane structure. 
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on the DSg-brane which is consistent with with two extra bulk dimensions. 

After the gauge symmetry is broken down to the Standard Model, we recover the 

relationship between gauge couplings: 

where , and this is consistent with gauge coupling uniAcation if 

at the GUT scale. 

It is also interesting to note that the restrictions we place on the radii do not restrict 

the radius of the third complexified dimension too strongly. This could allow a large 

extra dimension felt by gravity alone (with a size of the order of 1mm) as considered 

recently [70], but we will not discuss that possibility here. 

In this limiting case, we can use the results of Ref. [25], where we identiiy = TZgg, to 

extend the analysis for the size of the extra dimensions and exponential suppression 

factors. Ref. [25] considers the maximum dimension size in the strong coupling limit 

e ^ 1, but for a small number of extra dimensions the theory does not need to be 

strongly coupled at the string scale, ie. e ^ 1. 

Consider our symmetric toroidal compactification where the volume of the compact 

dimensions is 

Using Eqs. (2.2,2.3) with D = 6, we can relate dimension size to the parameter e for 

^4 ^ C)(l) (as observed for SM couplings). 

- (eZ6)& (2.13) 
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Note that from Eqs. (2.12, 2.13), we have: 

~ DE (2.14) 

e g—Z/iVf* /2 

1 63 2 X 10-^"^ 

0.8 56 6 X 1 0 - ^ ^ 

0.6 49 3 X 1 0 - ^ ^ 

0.4 40 2 X 1 0 - ^ 

0.2 28 8 X 10- '^ 

0.1 20 5 X 1 0 - ^ 

0.05 14 9 X 10-"̂  
0.01 6 4 X 1 0 - ^ 

Table 2.3: Estimates for the toroidal compactification length L and exponential sup-
pression factor for D = 6, where 2} = 

We have just seen how to recover the model, but with two extra dimensions 

and the third family in the bulk. We can use the operators that generate 

scalar and Higgs masses, A and B//-terms and even a //-term via the Giudice-Masiero 

mechanism^^. However, in our model with M = M* and ^ there are 

only two extra dimensions in the bulk between D3-branes^^. 

We use Eqs. (2.4-2.6) with the following identifications: 

(% = 1, 2) = 

M/'' = 

= (c?) , 03Z, , ) ^3B (2.15) 

^^Remember that a superpotential /f-term is forbidden by string selection rules for our choice of 
states. 

^^This allows us to use Table 2.3 to get restrictions on the size of .Rg,. 
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to generate higher-dimensional operators, subject to the full 42222 gauge invariance. 

We assume that the F-component of the gauge-singlet Aeld which we assume 

to be a string state localised at the intersection between the source brane and the 

mediating brane, acquires a non-zero VEV and breaks supersymmetry. We now 

proceed to discuss the different types of masses in the limiting case of the BMSB 

model. 

2.4.1 Gai igino masses 

In the limit of ^5^ ^ , the Standard Model gauge fields are dominated by their 

components on the DSg-brane (bulk). In agreement with we generate gaugino 

masses of the same order of magnitude from Eqs. (2.5,2.6) 

L f k (2.16) 

(where is the volume of the compact dimensions inside the D52-brane world-

volume.) Notice that gauginos on the D5i-brane will have exponentially-smail masses 

due to their separation from the SUSY breaking, and we would expect to observe them 

at colliders unless they acquire large masses through some (unspecified) mechanism. 

2.4.2 F i r s t a n d second family scalar m a s s e s 

This is the generic 4-point contact term between fields on opposite branes that leads 

to exponentially suppressed first and second family squark and slepton maases^^, using 

^^This operator also leads to Arst and second family mixing and off-diagonaJ mass matrix elements. 
There may be another operator leading to first and third family mix ing , 
eg. 
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Eq.(2.4). 

Af,%2 n 

M, A (2.17) 

QLOjz, + + <%R(4'A + + 6*56 jB + 

Table (2.3) shows that the exponential suppression factor is strong for two extra 

dimensions. Therefore, contact term contributions to the first and second family 

scalar masses are negligible at high energies, and they are generated by RGE eEects 

instead. 

Loop contributions to first and second family scalar masses as shown in Figure 2.1 are 

much larger than contact terms and anomaly mediated contributions. So, although 

the first and second family squark/slepton masses are not zero at high-energies, they 

are suppressed by a loop factor relative to third family scalar masses. 

2.4.3 Higgs m a s s t e r m s a n d t h i rd f ami ly sca la r masses 

Extending Eq. (2.5) to include third family scalars, we have the following higher-

dimensional operators: 

SC„„ ~ ^ jd'e + h.c.) + ^44>s [hIH, + HlHi + {HM + h.c.) 

(2.18) 
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From Eqs. (2.6, 2.18), we obtain the //-term, 

1^ 
/6/Z4 1 Fg 

M* eZ4 M, 

Higgs and third family scalar masses. 

2 2 2 ^6//4 1 F j 

(2.19) 

(2.20) 

2.4.4 Scalar m a s s m a t r i x 

We have generated a scalar mass matrix with an explicit third family mass hierarchy 

at lowest order: 

scalar 6(4 

^ 0 0 0 

0 0 0 

0 0 1 

(2.21) 

The first and second family mass matrix elements are dominated by loop corrections 

since the contact term contributions are exponentially suppressed. However these 

contributions are still smaller than the third family masses due to the location of the 

third family in the bulk and its direct coupling to the SUSY breaking hidden sector. 

2.4.5 Tr i l inear A - t e r m s 

Gauge invariant operators can be constructed for third family A-terms as follows: 

(2.22) 
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These operators lead to trilinear A-terms that are proportional to the Yukawa cou-

plings: 

Z6//4 
^ 0 0 0 

0 0 0 

0 0 1 

Fs 1 
' ' 0 0 0 ' ^ 

0 0 0 

0 0 1 

(2.23) 

where we have used Eq.(2.14). 

The first and second family A-terms are negligible in comparison to the third family 

term, and receive loop-suppressed contributions instead. 

2.4.6 Yukawa t e x t u r e s 

Using our choice of states and Eq. (2.7), we obtain a third family hierarchical Yukawa 

texture for the quark and lepton sectors at lowest-order. This texture rejects the 

observation that m^ 3> ; mt 3> and m .̂ > 

^ 0 0 0 ^ 

0 0 0 

0 0 1 

w/iere o = «, (f, e, z/ (2.24) 

Smaller next-to-lowest order Yukawa couplings (and associated trilinear A-terms) are 

generated by higher-dimensional operators. Notice that an interesting operator is 

allowed by 42222 gauge invariance, and appears to be such a small Yukawa term: 

(2.25) 

The scalar components of the superAelds jif, and (Higgs) acquire VEVs and 

spontaneously break the gauge symmetry. When each Eeld is replaced by its VEV, 
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we can generate a first and second family mass term. This operator will be suppressed 

by powers of the string scale such that the first and second family have much smaller 

masses relative to the third family in the bulk. 

2.4.7 M a s s r a t ios and F C N C c o n s t r a i n t s 

Consider the ratio of Higgs and third family scalar masses to 

gaugino masses 

2 <̂32 (2.26) 

using Eqs. (2.2,2.3) and 1, where m^ = 

Also consider the ratio of trilinear soft masses ylss to gaugino masses using Eqs. 

(2.16,2.23): 
1 

(2.27) 33 

e g—Z/iVf* /2 A s s / m A 

1.0 2 X 10-^"^ 158 12.6 0 .016 

0.8 6 X 10-^^ 126 11.2 0 .018 

0.6 3 X 10-^^ 95 9.7 0 .020 

0.4 2 X 10-^ 63 7.9 0 .025 

0.2 8 X 10-'^ 32 5.6 0 .035 

0.1 5 X 10-^ 16 4.0 0 .050 

0 .05 9 X lO-'^ 8 2.8 0 .071 

0 .01 4 X 10"^ 1.6 1.3 0 .159 

Table 2.4: Estimates for the ratio of scalar masses ajid third family A-terms to gaugino 
masses for different e and the exponential suppression factor (for masses-squared) 
arising from toroidal compactification. 

Experimental constraints on FCNC [26] from mass-squared matrix elements require 
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a suppression of ^ 10"^ — 10"^ at the high-scale for Arst and second family scalar 

masses in Eq. (2.17). Using Table 2.4, we get a Zower limit of say e ^ 0.01. However, 

phenomenological considerations restrict the ratio of and and places an upper 

limit of say e ^ 0.1. This amount of suppression requires tha t the effective D3-branes 

are separated by a distance of order 10/M*. 

2.4.8 P h e n o m e n o l o g y 

As in [25] we shall consider the phenomenology based on an inverse compactification 

scale in our case) close to the unification scale 2 x 10^^ GeV. It is 

natural to assume a high energy unification scale in the limiting case since 

in this limit the light physical gauge fields all arise from the mediating Sg brane, and 

so are all subject to a single gauge coupling constant, g'sg = 

We have seen that in the BMSB model (at Mg^/T) the trilinear and first and second 

family soft maases are negligible, while the third family soft masses, and the Higgs 

mass parameters are larger than the gaugino masses. In Table 2.5 we compare a 

sample spectrum in the BMSB model to that in both the model [24, 25] and 

the no-scale supergravity model [18], where the ratio of Higgs VEVs tan/3 = 20 and a 

universal gaugino mass of M1/2 = 300 GeV, are chosen to give a lightest Higgs boson 

mass of about 115 GeV, consistent with the recent LEP signal [77, 78]. 

In the no-scale model the only non-zero soft maas is M1/2, which results in a very 

characteristic spectrum where the right-handed slepton is very light and is in danger 

of becoming lighter than the lightest neutralino The model differs from 

the no-scale model only by the inclusion of soft Higgs niaases which we have taken 

to be degenerate and somewhat higher than the gaugino masses. The main effect is 

^®Note tha t tan /? = 20 is sufficiently small tha t we may neglect all Yukawa couplings except the 
top Yukawa coupling in the RGBs. 
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BMSB no-scale 

300 300 300 
Ao 0 0 0 

0 0 0 

500 0 0 

500 500 0 

500 500 0 

9 830 830 830 

X? 124 119 124 

X2 239 200 237 

X3 506 258 472 

517 314 485 

xf 238 195 237 

X^ 518 314 486 

220 220 220 

546 220 220 

124 124 124 

% 515 124 124 

205 205 205 

540 205 205 

740 740 740 

037) 783 653 676 

R : ^2B 715 715 715 

O3B 628 520 577 

744 744 744 

787 658 681 

713 713 713 

871 713 713 

ii 613 492 544 

h 832 718 745 
tan/? 20 20 20 

115 114 115 

mgo 738 596 511 

rrijifi 738 596 511 

742 602 517 

XMz) 500 250 467 

Table 2.5: Comparison of spectra (in GeV) for the three models BMSB, gMSB and 
no-scale supergravity. The common parameters are tan ^ = 20, universal gaugino 
mass Ml/2 = 300 GeV, trilinear soft mass Ao = 0, first and second family squark and 
slepton masses = 0. The parameters are chosen to give a lightest Higgs boson 
maas consistent with the LEP signai [77, 78]. The ^ parameter (assumed positive) 
and B are determined from the low-energy EWSB conditions. 

49 



to reduce the parameter, which is determined here from, the EWSB condition, and 

taken to be positive, which results in lighter charginos and neutralinos. Also in the 

model the heavy Higgs and third family squark spectrum is also noticeably 

different from the no-scale model. Turning to the BMSB model, we see that the 

effect of having both the Higgs and third family soft masses is to raise the // parameter, 

and of course to significantly increase the third family squark and slepton masses, 

providing an unmistakable spectrum and a characteristic smoking gun signature of 

the model. 

2.5 Conclusions 

We have proposed a mechanism for mediating SUSY breaking in Type I string theories 

- BMSB. Rather similar to the pMS'B set-up in Figure 2.1 we have proposed a Type 

I string-inspired set-up consisting of three intersecting D5-branes as shown in Figure 

2.3 in which the gauge fields, Higgs doublets aad third family matter fields all live on 

the third mediating 52-brane which plays the role of the bulk in the scenario. 

The presence of the third matter family on the mediating D-brane is characteristic of 

Type I string constructions and provides the main experimentally testable difference 

between the BMSB and models. 

We have considered a limiting case in which and shown that in this 

case the model reduces to the original model with the role of the bulk being 

played by the mediating Sg-brane. In this limiting case, the model naturally leads to 

approximately universal gaugino masses and a single unified gauge coupling constant, 

which motivates the identification of the string scale with the usual GUT scale. In 

this case the phenomenology of the BMSB model is rather interesting, and it may be 

noted in [25], if we had taken non-degenerate Higgs soft maases then the lightest right-
handed slepton mass could have been significantly increased relat ive to the no-scale model due to 
the hypercharge Fayet-Illiopoulos D-term. 
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compared to the predictions of the no-scale snpergravity and the model. As in 

the model, the first two families naturally receive very small masses at the high 

energy scale leading to Savour-changing neutral currents being naturally suppressed. 

The presence of third family soft masses will not alter this conclusion very much since 

FCNC limits involving the third family are much weaker. However the third family 

soft masses will lead to a characteristic squark and slepton mass spectrum which may 

be easily distinguished from that of both no-scale supergravity and the model 

as shown in Table 5. The /^-problem is solved by the Giudice-Masiero mechanism as 

in the original gMSB model. 

In this limiting case the BMSB model bears a close resemblance to both the no-scale 

supergravity and the models. The fact that the third family receives a non-

zero soft SUSY breaking maas is strictly not an unambiguous signal of the underlying 

Type I string model, since it is possible for this to happen in both the other cases also. 

For example in the old heterotic models based on orbifolds, matter may be localised 

in the fixed points of the orbifold (the twisted sector) or not (the untwisted sector) 

so it is possible to have the third family playing a different role from that of the first 

two families. What is different in the model presented here is that the gauge group is 

localised on two different branes, but in the limiting case (above) the physical gauge 

group arises essentially from one brane, and in this limit we return to a situation 

similar to that of the old heterotic string theories. There are however three points 

worth noting here. Firstly, the presence of two families at the intersection points of 

two branes, and one family on a single brane, seems to be typical of Type I string 

constructions [52]. Secondly in Type I string constructions we have the possiblity of 

full unification of both gravity and gauge forces, precisely because gravity exists in 10 

dimensions whereaa the gauge groups live in a 6 dimensional sub-manifold, which is 

not possible in old heterotic string theories. Thirdly, the limiting case of TZgg 

would be expected to apply only approximately, and therefore in practice there will 

be corrections, for example, to gauge coupling unification which may be observable. 
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In the more general non-limiting case, the model will have an even richer structure. In 

this limit (ie. must use the full gauge state expressions listed 

in Appendix D.l. The light gauge states are no longer dominated by their D52-brane 

components, but are instead mixtures of fields from either brane, with the exception 

of the gluon/gluino states that arise from the DSg-brane. The result is that the 

high energy gluino mass will be larger than the high energy wino and bino masses. 

In this more general case the gauge couplings are no longer equal, so there is less 

motivation to identify the string scale with the GUT scale. Generally the string scale 

can take any value from a few TeV to 10^^ GeV, and we have the possibility of a mm 

scale large extra dimension. 

The toy model has other interesting features such aa the fact that the gauge symmetry 

forbids first and second family Yukawa couplings at lowest order, and naturally forbids 

R-parity violating operators that cannot be forbidden by string selection rules alone, 

while allowing the third family Yukawa coupling. Most importantly, however, the toy 

model demonstrates the BMSB mechanism, which is baaed on having at least three 

branes with two different intersection points. This minimum requirement implies 

that constructions with all the branes at the origin fixed point are inadequate for 

our purpose. Although there are examples in the literature of intersecting branes 

at different Axed points [54], such models are generally more complicated than the 

simple set-up considered here. Nevertheless our BMSB mechanism could provide a 

useful alternative starting point from which to address the problem of SUSY breaking 

in more general Type I string theories. 

Finally note that it has been been suggested, in the context of Type I theories, that 

singlet twisted moduli, which appear in the tree-level gauge kinetic function, might 

be responsible for generating gaugino masses if they acquire non-vanishing F-terms, 

and that this might provide a brane realisation of if the standard model gauge 

symmetry originates from 9-branes providing that there are in addition two sets of 
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DS-brazies located at two diEerent fixed points [79]. This suggestion shares some of 

the features with the work in the present chapter, although model building issues were 

not discussed, and the characteristic possibility of the third family on the mediating 

brane was not considered. Also additional contributions from the F-terms of dilaton 

6' and moduli fields 2^ were also generically allowed, whereas in this chapter we have 

implicitly assumed them to be absent. In the next chapter, we wiH explore the role of 

twisted moduli as sources of SUSY breaking in the context of general D-brane models 

involving intersecting D-branes. 
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C h a p t e r 3 

Twis ted Modul i and 

S u p e r s y m m e t r y Break ing 

We consider twisted moduli contributions to supersymmetry breaking in effective type 

I string constructions involving intersecting and D9-branes using Goldstino an-

gles to parametrise the supersymmetry breaking. It is well known that twisted moduli 

enter at tree-level into the gauge kinetic functions, and can provide new sources of 

gaugino mass if they develop F-term vacuum expectation values. It is generally as-

sumed that string states which are sequestered from the twisted moduli receive a zero 

soft mass in the twisted modulus domination limit, however the standard form of 

K ^ e r potential does not reproduce this expectation. We therefore propose a new 

form of the Kahler potential which is consistent at leading order with the sequestered 

form proposed by Randall and Sundrum, and show that it leads to exponentially 

suppressed sequestered soft masses. Including the effects of Green-Schwarz mixing, 

we write down the soft scalar and trilinear masses arising from a type I string con-

struction involving intersecting D5, and D9-branes in the presence of untwisted and 

twisted moduli. If the squarks and sleptons are identified with sequestered states 

then in the twisted moduli dominated limit this corresponds to gaugino mediated 
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supersymmetry breaking, and we discuss two different scenarios for this. The general 

results will be useful for phenomenological studies involving a combination of grav-

ity and gaugino mediated SUSY breaking due to the dilaton, untwisted and twisted 

moduli contributions, and enable the soft masses to be studied as a function of the 

different compactification radii. 

3.1 Pre l iminar i e s 

Superstring theories offer the only consistent method for unifying the four funda-

mental forces of Nature within a single framework, as discussed in section 1.4, Prior 

to 1995, heterotic strings with a gauge group of 6'C)(32) (heterotic-0) or x Eg 

(heterotic-E) offered the most promising possibility of constructing superstring mod-

els containing the MSSM. However, the discovery of Dirichlet-branes and string du-

alities ended this heterotic monopoly on string phenomenology, and semi-realistic 4d 

A/" — 1 type I models have been constructed from type IIB orientifolds, as reviewed 

in section 1.4.2. 

The heterotic-0 and type I models share common features, but differ in phenomeno-

logically important ways. For instance, both scenarios contain dilaton and (twisted 

and untwisted) moduli fields - closed string states that are related to the geometry 

of the compactihed space and appear in the low-energy four-dimensional effective 

SUGRA theory [65]. However, in contrast to heterotic models, type I theories include 

extended, solitonic Dirichlet-branes which are needed to cancel tadpole anomalies. 

Stacks of coincident D-branes are found to generate gauge groups within their 

world-volume (which can be smaller than the full lOd space), and the attached open 

strings are identified with chiral matter and gauge helds. Hence, type I models nec-

essarily include open closed strings for consistency. This raises the hitherto 

unexplored possibility that gravity (closed) and gauge/chiral (open) fields can live in 
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different numbers of dimensions. Another important diference is that in type I models 

the fundamental string scale M* is no longer fixed at the grand unification Mcc/r or 

Planck scales Mp/, and in principle can be as low as the TeV scale [66, 67] with the 

lower bound determined by phenomenology. The low energy gauge structure is con-

trolled by the number and type of D-branes present in the vacuum, and background 

B-fields can also induce further symmetry breaking [51, 53]. 

An important difference between heterotic and type I is the role played by twisted 

moduli helds - closed string states that are frapyecZ at fixed points in the underlying 

manifold due to the action of orbifold compactification. Consider the gauge kinetic 

function that appears in the SUGRA lagrangian [65]. In weakly coupled heterotic 

string theory, the string coupling constant is uniquely determined by the dilaton 

^ and: 

= + (3.1) 

where /ug is the Kac-Moody level of the gauge factor^ and the dependence on the 

untwisted moduli Ai_foop(7^) only arises from 1-loop string threshold corrections [80] 

In contrast, type I models have gauge kinetic functions tha t depend on the dilaton S 

for 9-branes and the moduli fields Z; for 5,-branes at tree-level, giving rise to different 

gauge couplings on different branes. In addition the gauge kinetic functions have a 

tree-level dependence on the twisted moduli, and this gives rise to different gauge 

couplings even within a particular D-brane sector. The tree-level dependence on the 

twisted moduli fields F*' from the twisted sector (within the world-volume of a 

In the MSSM, — ̂ su(2)l — ^^u{i)y — ̂ -
^In contract, there is a very diEerent situation for the strongly coupled case (from M-theory) 

where /« receives comparable contributions at tree-level from the dilaton and untwisted moduli 
f ie lds/ ' -6 '4-r [81]. 
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given D-brajie sector) are given by: 

^ + (3-2) 

+ (3.3) 
t 

where the gauge coupling is found by the relation: 

= — (3.4) 

and g(p,) label the Axed points within the 9(5,)-brane and A: calculable 

model-dependent coefhcients involving Chan-Paton matrices [39]. Thus twisted mod-

uli tend to induce non-universal gauge couplings even for gauge groups living on a 

common brane sector. The twisted moduli also play an important role in the can-

cellation of gauge and gravitational anomalies in type I models - like the dilaton 

in heterotic string theory - through a generalised four-dimensional Green-Schwarz 

mechanism [48] that mixes twisted and untwisted moduli together. 

The Kahler potential and superpotential can also receive non-perturbative contribu-

tions, and in the absence of a complete model one may adopt a phenomenologically-

motivated parametrisation in order to make progress [39, 82]. The relative contribu-

tions to the overall SUSY breaking F-term vacuum expectation value from different 

fields can be parametrised in terms of angles In such an approach one can 

derive the soft parameters in terms of these Goldstino angles, and examine various 

limits in which the dilaton or moduli fields dominate. As envisaged by the origina-

tors of the approach, it may also be used to investigate the contributions to SUSY 

breaking from twisted moduli in effective type I theories, in addition to the usual 

dilaton and untwisted moduli fields [83]. However the analyses that have been done 

so far have only considered the explicit situation where the gauge group and matter 

^See the discussion in Appendix B.2 for further details. 
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fields arise from a stack of D9-braaes, and thus share the same world-volume aa all 

of the twisted moduli helds. It is one of the purposes of this chapter to extend the 

scope of such ajialyses to include more general set-ups involving intersecting D5, and 

D9-branes. In so doing we encounter a difhculty that is not present in the case of a 

single D9-brane set-up, namely the problem of sequestered states which do not share 

the same world volume as the twisted moduli, and we show how this problem may 

be successfully resolved. 

In this chapter, then, we shall consider twisted moduli contributions to SUSY breaking 

in elective type I string constructions based on a general set-up involving intersecting 

and D9-branes, using Goldstino angles to parametrise the SUSY breaking. It is 

well known that the F-term VEVs of the twisted moduli fields provide a new source 

of gaugino masses [79]. It is also generally assumed tha t states that do not live 

in the same world-volume should receive zero soft mass contributions in the twisted 

moduli dominated limit, which oEers a possible string realisation of gaugino medi-

ated SUSY breaking [24, 25, 79]. However we show that the standard form 

of K ^ l e r potential is not consistent with this physical requirement. We therefore 

propose a new form of the Kahler potential which is consistent at leading order with 

the sequestered form proposed by Randall and Sundrum [22], and which leads to 

exponentially suppressed sequestered soft masses, in agreement with physical expec-

tations. Including the effects of Green-Schwarz mixing we then write down soft scalar 

and trilinear masses arising from a general string construction involving intersecting 

2)5, and Z)9-branes in the presence of untwisted and twisted moduli. We show how 

the results may be applied to and discuss two explicit scenarios for this. The 

general results will be useful for phenomenological studies involving a combination 

of gravity and gaugino mediated SUSY breaking due to the dilaton, untwisted and 

twisted moduli contributions, and enable the soft masses to be studied as a function 

of the finite compactification radii. 
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3.2 Effect ive T y p e I S t r ing T h e o r y and Twis ted 

M o d u l i 

3.2.1 Kal i le r Po t en t i a l s 

In this section we will introduce a generic type I string construction involving inter-

secting Z)5,-branes embedded within D9-branes, where coincident D-branes give rise 

to gauge groups localised within the world-volume of the corresponding D-brane. In 

section 1.4.2, we discussed how chiral charged matter fields appear as open-strings 

with their ends attached to D-branes. Chan-Paton factors at the string ends carry 

the gauge quantum numbers under the attached gauge group. This type of construc-

tion leads to two distinct types of matter held - ' and are open strings with 

both ends attached to the same D5(9)-brane, while and have their ends 

attached to different D-branes and the string tension forces the inverse length of the 

strings to become of order the string scale M*. The states become localised at 

the 4d intersection point between the two D5-branes, while the states have one 

end attached anywhere along the S^-brane world-volume. The spectrum also contains 

closed strings that correspond to the gravity multiplet and dilaton (6") and moduli 

fields (31). Notice that this construction is entirely general and is T-dual to alter-

native scenarios involving D7- and D3-branes. A construction involving two sets of 

intersecting branes within a D9-brane is shown in Figure 3.1, but our analysis can be 

extended for a full set of three perpendicular intersecting branes and the open/closed 

string states that result. 

We can now exploit the string duality between lOd 5'0(32) heterotic theory and lOd 

type I theory to derive the 4d Kahler potential ^^(5", 21, C^) for the dilaton 5', (un-

twisted) moduli 7̂  and charged chiral superfields that arise in the low energy 

supergravity description of the model with two sets of intersecting D5-branes embed-
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5i-brane 

/ \ 

^95i C 

Origin fixed point 

cf- ^ 

^5i52 

J 

( .95 , 

1̂2 
X 52-brane 

Figure 3.1: A generic type I string construction involving two sets of perpendicular 
D5-branes embedded within a D9-brane, where the DS-brane world-volumes intersect 
at the origin. Charged chiral fields appear as open strings with both ends attached 
to the same D-brane and or different branes and Closed strings 
(5", 7^) can live in the full lOd space, although orbifolding leads to closed strings 
(twisted moduli Yt) localised at 4d fixed points within t he D5,-brane world-volume. 

ded within a D9-brane as shown in Figure 3.1. Ignoring the twisted moduli for the 

moment, the result is [39]: 

^ = - In -K ^ - In (Ti -j-

- In (Tz -i- f z - - In (^3 + fg - (3.5) 

j(2/5i52|2 |(^95ij2 1(̂ 952 

(5" -k ^)V2(r3 + fa ) ' / " (Tg + ^2)1/2(^3 -f- f s ) ' / ' (7̂ 1 + fi)i/::(T3 -H fg) ' /" 

where the results can easily be extended to include a third 53-brane. 

Expanding the K ^ e r potential in the lowest order in the mat ter fields 

(i.e. (6" -K ^ ) » + ICM") yields: 

A - = - I n (S + S ) - £ l o (Ti + f . ) + ^ + 
5U2 12 

+ 
^ ( 6 " - ^ ^ ) (T i -kT i ) (Ti + Ti) 

(3.6) 
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|A^5I|2 1/̂ 912 |/^5i 12 |2 |/^9|2 
I 1^3 l_ I |(^2l _ I 1^2 l_ I |L'l 1̂  I 1^31 

(7̂ 2 + ^2) (^2 + ^2) ' (Ts + rs) ( T a + T s ) (^3 + ^3) 
j^5i52j2 

^ (5 ' + ^)l/2(r3 + f3y/^ (72 +72)1/2(^3+ ^3)1/2 (^1+^1)1/2(^3 + ^3)1/2 

Using Appendix B, we can identify the individual Kahler metrics (which are diagonal 

= ^obc^ab) for each type of charged chiral held: 

1 

(^ + 5") 
1 

7 " ( T t + f , : 
, rfi \ (* f ^ f *) 

= T T f T ^ (3-7) 

KQ5I52 

(r, + T,-; 
1 

(^ + ^)l/2(r3 + T3)'/" 

( r , + f , ) i /2 ( r t + f t ) ' / " (* 7̂  J V ^ f 

The twisted moduli also contribute to the Kahler potential, but the precise form 

of the contribution is strongly model-dependent. For simplicity we shall consider a 

single twisted modulus within each of the three D5-brane sectors, which we denote 

by where A; = 1,2,3 labels the branes. Each of the Yt may be regarded as 

a linear combination of all the twisted moduli within tha t D5t brane, so that the 

simplified gauge kinetic function is from Eq.(3.3), 

= r , + ^ } ^ (3.8) 

Modular anomaly cancellation via the Green-Schwarz mechanism suggests that this 

contribution mixes twisted and untwisted moduli together while preserving modular 

invariance. We will work in terms of a general even function jiT with an argument: 

{Y, + Y t ) - S i ! s M T , + f , ) (3.9) 
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For simplicity, we will initially drop the Green-Schwarz t e rm = 0) and assume 

a very simple form [84] 

= + (3.10) 

which is valid for small values of close to the fixed point. Hence the tree-level 

Kahler potential for the closed string states is: 

^ = - In (6" + ^ In (r , + i i ) + ^ ^ ( } ^ , (3.11) 
i=l /c=l 

We will repeat our analysis in the presence of a Green-Schwarz mixing term ((̂ cg ^ 0) 

in section 3.3. 

Recall from Eq.(1.26), that the perturbative superpotential is given by: 

+^52 -h -1- (3.12) 

+^9 

where the Yukawa coupling constants (associated with fields arising from each 5-and 

9-brane) are given by: 

2 47r 2 47r , . 

However, the superpotential can also receive (unknown) non-perturbative contribu-

tions, e.g. from gaugino condensation^, that require the F-terms to be parametrised 

in terms of Goldstino angles. 

In this general setup, we are assuming that SUSY breaking originates from the 

closed string sector. In the absence of a Green-Schwarz anomaly cancelling term 

^See [85] for a recent discussion in the context of stabilising the di laton potential in type I string 
theory. 
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2 
o I . in Eq.(3.10), the K ^ l e r metric is diagonal at leading order since AeS", |C, 

Using Eq8.(3.6,3.10,B.8) we can write down the SUSY breaking F-term VEV in terms 

of two Goldstino angles where describes the relative contributions from 

the dilaton and moduli (twisted and untwisted moduli) F-terms respectively, and we 

are assuming a vanishing cosmological constant 

= \/3m3/2sin^e'"^(j;rgg)-^/'' = V3m3/28iii^e'^(5' + ^ ) (3.14) 

= \/3n^3/2Cos^sin<^0^e'°''(j!r^vpJ"^/^ — \ /3m3/2Cos^sin^8,e '° ' ' (7 i + fiX3'15) 

= \/3yM3/2COS^cos(^$Ae''^^(A^y;^y),)"^''^ = V3m3/2Cos^cos(^$te '°^ (3.16) 

where 0 i ($t ) parametrise the relative contributions from different untwisted (twisted) 

moduli respectively, and satisfy 8? = 1 and I]k=i — 1-

We can study three limits of phenomenological interest where different sources of 

SUSY breaking dominate: dilaton (S) domination where s in^ = 1; untwisted moduli 

(7^) domination where cos^ = s in^ = 1; and twisted moduli (]^) domination where 

cos^ = cos<^ — 1. In the next sub-section we shall see t ha t there is a problem with 

the sequestered maases in the twisted moduli dominated limit, ajid then we show how 

this problem may be resolved. 

3.2.2 P r o b l e m s w i t h t h e S t a n d a r d K a h l e r P o t e n t i a l 

In order to illustrate the problem let us consider the case of a smgi/e linear combination 

of twisted moduli located inside the 52-brane, which we denote by Yg, corresponding 

to the simplified gauge kinetic function = 72 + 5a^ /47r . Thus we take the SUSY 

breaking parameter $2 = 1 in Eq.(3.16). We regard this linear combination ^2 to be 

located in the world-volume of the 52-brane at a distance 0(7^5;) from the intersection 

states Figure 3.1 shows that only and states can couple directly 

to the ^2 twisted moduli, while are confined on the 5i-brane, and is 
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confined to the origin fixed point. We refer to the states and which 

are spatially separated from Vg as being sequestered from it. 

Using Eqs.(3.14-3.16,8.17) with the standard Kahler metric for the intersection and 

5i-brane states of Eq.(3.7), the sequestered state scalar masses are found to be (still 

ignoring the Green-Schwarz mixing term = 0): 

777,̂ ,5̂ 52 

m^5, = m 3̂/2 

= ^3/2 

= ^3/2 

7?7.̂ 95i — ^3/2 

1 — - ^sin^ ^ + 03 cos^ ^ sin^ 

1 — 3 sin^ ^ 

1 — 30g cos^ ^ sin^ (3.17) 

1 — - cos^ ^ sin^ ^82 -|-

In the twisted moduli dominated limit where the F-term is the only contribution 

to the SUSY breaking (cos ^ = cos <̂  = 1) the intersection state masses from Eq.(3.17) 

are: 

J 
3/2 0 — (3.18) 

These soft masses are found to be independent of the separation between the origin 

and the fixed point at which the twisted moduli live. Physically, this is not what we 

expect for fields trapped at the origin fixed point. Since these states are sequestered 

from the twisted moduli we would expect that their soft maases be exponentially 

suppressed by the spatial separation between the two fixed points, as the following 

argument explains. In the twisted moduli dominated limit, the situation regarding 

the sequestered states is physically equivalent to the ^MSB scenario [24, 25] as shown 

in Figure 3.2. 

In section 2.2 we discussed that, in gaugino mediation, SUSY is broken on a 4d hidden 
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brane 
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Figure 3.2: The intersecting D5-brane construction shares similar features with the 
gaugino mediated SUSY breaking model in the limit of a small compactification radius 
^5;. In this limit, the and states are eEectively localised at the origin, 
and these intersection states aje equivalent to the matter brane while the localised 
twisted modulus is equivalent to the hidden sector brane where SUSY is broken. The 
spatial separation between the two fixed points (matter and hidden sector brane) is 
r - 0 (^5 , ) . 

sector brane which is spatially separated along one (or more) extra dimensions from 

another parallel 4d matter brane where matter fields are localised. Scalar masses on 

the matter brane are exponentially suppressed at tree-level by the distance between 

the branes but are radiatively generated at one-loop via gaugino mediation. In the 

string theory realisation, the role of the hidden sector brane is played by the twisted 

moduli localised at a non-trivial fixed point separated from the origin fixed point 

which corresponds to the matter brane. 

Clearly in the limit of large spatial separation between the two fixed points r ^ (^(j^s;) 

the sequestered soft masses should be exponentially suppressed 

e ' ^3/2 
J 

(3.19) 

^Physically, this suppression is due to integrating out the heavier modes (with masses above the 
cutoff M*) that propagate between sectors with a Yukawa-like propagator. 
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where M* is the ultraviolet cutoff for the effective theory, which we will associate with 

the string scale. Obviously, a sufBciently large separation will lead to a negligibly small 

mass as in which offers a solution to the Savour problems and suppression 

of flavour-changing neutral-currents. In the next sub-section we propose a new form 

of the K ^ l e r potential which give rise to the correct exponentially suppressed soft 

sequestered masses in Eq.(3.19) rather than the result in Eq.(3.18). In Appendix G 

we consider an alternative exponential suppression factor that is attributed 

to non-perturbative world-sheet instanton corrections [86]. 

3.2.3 A N e w Kahler Po ten t i a l 

We need to modify the intersection state Kahler potentials ATc/siSg, and to 

give the desired exponentially suppressed mass prediction in Eq.(3.17) with an exphcit 

dependence on the separation. Notice that in the limit of very small separation, we 

should be able to recover the previous (standard) form of Eq.(3.7). To begin with 

we will only consider the Kahler potential for states and later generalise to the 

^5i ^ ^95i ĝg well. 

Consider the scalar mass relation of Eq.(B.17) for the intersection states in the 

limit of twisted moduli domination and let us determine the K ^ l e r potential from 

the requirement that it be exponentially suppressed: 

— 7713/2 (3.20) 

where cos ^ cos ; twisted moduli domination corresponds to cos ^ = 

cos = 1, and is the compactification radius of the second complex dimension and 
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is of order the separation between the hidden sector moduli and the intersection 

states. The 4d untwisted moduli field 2̂  can be decomposed into real and imaginary 

pafts: 

7 1 - ^ ^ ^ + 2 7 7 , (3.21) 
A/ 

where = Ag. is the compactification radius on the torus, M* is the string scale, 

is an untwisted closed string from the Ramond-Ramond sector, and Af is the lOd 

dilaton which is related to the fundamental (perturbative) string coupling and can be 

set equal to unity. We can find a relationship between the real part of the untwisted 

T-modulus field 72 and the compactification radius : 

We solve for the Kahler potential that leads to the equivalence of the last two lines 

of Eq.(3.20): 

C [ 5 , T i , r 3 ] (3.23) 

where ^ is some arbitrary function of 5", and/or T3. The condition that the previous 

expression for the Kahler potential of Eq.(3.6) is reproduced in the limit of a small 

compactification radius, i.e. ^ + ^ 0 fixes the function (̂ [6", 

Then in the limit of very large separation ^5^ + ^2 — 0 0 : 
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In this limit, using Eqs.(3.14-3.16,8.17) we obtain: 

3/2 1 — - I sin ^sin^ ^ + 03 cos^ ^ sin^ — cos^ ^ cos^ (3.26) 

which replaces the form in Eq.(3.17) in the large separation limit, and vanishes in the 

limit of twisted moduli domination (cos^ = cos(^ = 1) due to the strong exponential 

suppression factor. 

As shown in Appendix F, Randall and Sundrum [22] have discussed the conditions 

under which a visible matter sector may be sequestered from a SUSY breaking hidden 

sector. The Kahler potential in Eq.(F.7) leads to scalar masses that vanish exactly: 

= - 3 M p ; h i 1 + e _|_ g (3.27) 

where is the separate Kahler potential for the visible (hidden) sectors, and 

is the reduced Plajick mass. If we write the visible sector (C) and hidden sector 

(Yg) Kahler potentials as: 

= 3 i c r Kui = \{Y2 + (3.28) 

then the combined Kahler potential may be expanded for small |C|^ and (^2 + IKg)" 

as: 

A' -3M^; In 1 

1 + 
6M& PI 72M^; 

(3.29) 

+ • • • 

The expansion of the coefhcient of |C|^ in Eq.(3.29) is equivalent to the expansion of 

jg Eq.(3.25) up to O (}2 + ^ ) ^ , where we have adopted "natural'' units 

and set Mp; = 1. Therefore the numerator in Eq.(3.25) is equivalent to the Randall-

Sundrum sequestered form of the Kahler potential in Eq.(3.29) up to O (Y^ + ^ ) ^ , 

68 



which is sufEcient for all practical purposes. 

We can now write down the modified form of the tree-level K ^ l e r potential that 

yields the "correct" mass for the intersection states (and similarly the 5i-brane 

states and - in the limit of yg-domination - with an explicit dependence on 

the separation between the intersection point and the twisted moduli hidden sector: 

T,, f , , - In ^ In (r,- + f , ) + ^(}^ + 
1=1 

^(^2,^2) 1^5, ,2 ^(^2, V2) 1^5, 12 , ^(^2; ^2) 1^5, 2 /o .)n\ 

2̂ ^3 

, \cl'? , ^ i c f p ^ | C | ' | ' Y- ( ( ^ 2 . ^ ) 1^5,5,,2 
&(% + %) &(g + g) 6 m ( 5 + sy/'(n + ' ' 

2̂ ^3 
1̂ 912 1/̂ 912 

CZGS: (?̂ 2 + ^2)1/2(^3 + (Ti + f i ) + ^3)1/^ 

where 

(3.31) 

Before we repeat this analysis with the Green-Schwarz mechanism to cancel anoma-

lies, we will show that onr result can be generalised to a construction involving three 

perpendicular D5-branes that all intersect at the origin. We will assume that there 

are three separate linear combinations of twisted moduh - one combination within 

each D5,-brane world-volume - each at a distance 0 ( ^ 5 J from the origin intersection 

states, where 

= 4 5 ^ ('-32) 

We can immediately write down the form of the K ^ l e r potential that will give the 
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correct prediction for the masses in the Y-dominated SUSY breaking limit: 

^ ' + ( T l T ^ ) 1^: I 

(Tg + fg) I 1 I + (^ + ^)V"(r3 + ^ ^ 

6(7^2,}^) 6(^3,%) , 95.2 , ,_95,,2 , 
(^2 + ^2)1/2(^3 + ^3)^/"' ' ^ ( r i + f i ) l / 2 ( T 3 + 7^)1/2 I I ^^^^ 

Notice that the ' and states will couple directly to the twisted moduli within 

the same brane (Y^), but will receive exponentially suppressed SUSY breaking con-

tributions from the twisted moduli on diEerent branes (i*^,). The states live in 

the full lOd space and therefore can couple to all twisted moduli. 

3.3 Green-Schwarz Mixing 

In this section we will repeat our previous analysis, but with the inclusion of an 

anomaly cancelling Green-Schwarz term that requires mixing between the twisted 

and untwisted moduli helds as discussed in section 1.4.2. This mixing leads to a 

non-diagonal Kahler metric (at leading order) and we use a canonically normalising 

P-matrix in our parametrisation to dehne the SUSY breaking F-terms 

For simplicity, we will again assume that only a single linear combination of twisted 

moduli fields ^2 (within the D52-brane world-volume at a distance 0(^5^) from the 

intersection point) contributes to the SUSY breaking. Since only the twisted moduli 

from the 52-brane contribute, it is not too unreasonable to suppose that only the T2 

untwisted modulus field participates in the anomaly cancellation. Using Eq8.(3.9,3.10) 

^See Appendix B.2 for details. 
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we propose that ^2 baa the following Kahler potential [84]: 

A (̂ 2? ^2) — 2 ^ ^ ^Gs In(72 + T2)] (3.34) 

We can calculate the Kahler metric by using Eq.(3.30) with the modified twisted 

moduli potential: 

/ 

Kr ji 

(5'+g)2 

0 

0 

0 

0 

(Ti+Ti)2 
0 

0 

0 

0 

32+?: 

0 

0 

0 

1 

m+Ts):' 

0 

0 

0 

\ 

72+T2 
0 

1 

(3.35) 

where / = 5", 7^, and A; = 1 + ^ ^ ln(72 + Ta) . For simplicity, we 

assume that |C|^ <K (5" + 5 )̂, (31 + 7t) 

The Kahler metric is block-diagonal, and we can canonically normalise the metric 

using a (5 X 5) P-matrix [83] as discussed in Appendix B.2. Using Eq.(B.8), the 

F-terms are dehned as: 

Fi 

/ Fg ^ 

% 

% 
y 

^ sin ^ ^ 

cos ^ sin 81 6*°̂ ^ 

cos ^ sin @2 6"̂ ^ 

cos ^ sin <;6 0 3 

^ cos ^ cos ^ 

(3.36) 

where ^ and are Goldstino angles, %], 8 j 8 i = 1 and we have included CP-phases 

a , . 

^Notice that in this limit the exact form of the intersection state Kahler potential is not 
important. 
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Using Eq.(3.35) and imposing the condition = 1 we obtain a very compli-

cated expression for the P-matrix that can be expanded for large values of (72 + ^2) 

to give: 

P 

( ^ + 5" 0 

0 + f 1 

0 0 

0 0 

0 0 

0 

0 

vA 

0 

\/kS 

0 

0 

0 

Ts + f s 

0 

0 

0 

\ 

0 

(3.37) 

where A; = 1 + ^2 + ^2 - ln(72 + 

From Eqs.(3.36,3.37) we find that the SUSY breaJ{ing F-terms up to O 1/(72 + ^2 

are: 

Fs 

Ft, 

Ft, 

Fy, 

\/3m3/2 sin ^ (5" + 5") 

V3m3/2 cos ^ sin 81 (Ti + f i ) 

-^3^3/2 cos g , ^ 

'\/3m3/2 cos ^ sin 83 (7^ + 2^ 

sin ^ 
^2 + i2 

(3.38) 

\/3m3/2 cos ^ sin<^ 
(^2 + ^2)^ 

02 e' 

+ cos (6 1 
(^2 + Tg) 

Notice that in the limit of 72 (or ^2) modulus domination, 6ô A 7^^ and ^ are non-

zero. However, setting cos^ = cosi^ = 1 still corresponds to the V^-domination hmit, 

even in the presence of Green-Schwarz mixing, and we expect the intersection state 

masses to depend on the separation from the }2-fields as before. 

Our previous analysis, in the absence of a Green-Schwarz mixing term, leads us to 
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propose the following generalisation of the Kahler potential in Eq.(3.23): 

I f 1 - e - V ^ / 2 ^ ^ + f a )} ' 

(5' + ^)i/2(r3 + f3) ' / ' : 
(3.39) 

which leads to an exponentially suppressed intersection state maas in the limit of 

Yo-domination: 

1.(̂ 2 + ^2)3/2] 
(3.40) 

Similar results apply to the (7̂  ^ and states and we obtain a Kahler potential as 

in Eq.(3.30), but with Eq.(3.31) generalised to 

^(Tg, }^) = (̂ 1 - ln(r2 + f^ )} ' ] (3.41) 

In section 3.5 we will consider an explicit example and analyse the soft parameters in 

various limits. 

Notice that our comment at the end of section 3.2.3 about including the eEects of mul-

tiple SUSY breaking twisted moduli still holds. The previous expression of Eq.(3.33) 

is eaaily generalised by replacing the arguments as follows: 

(}1, + ?;,) —^ (}^ + y;,) - <^Ggin(rt + f t ) . (3.42) 

3.4 Soft S U S Y Break ing P a r a m e t e r s 

We can now write down the complete list of soft scalar masses and trilinears that arise 

in a general string construction involving two intersecting D5-branes embedded within 

a D9-brane, where a single linear combination of twisted moduli Yg is located at a 

fixed point within the world-volume of one of the branes (Sg). It is straightforward to 
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generalise these results to more twisted moduli fields, and we have explicitly discussed 

the case of three twisted moduli in section 3.2. The results presented in this section 

will be useful for performing more general phenomenological analyses of sparticle 

spectra in string theory than have been done so far in the literature 

Note that the gaugino masses require knowledge of the gauge group embedding, and 

therefore gaugino masses are more model-dependent. We will consider a simple ex-

ample in section 3.5. 

3.4.1 Scalar Masses 

Using Eqs.(3.30,3.38,3.41,8.17) we can write down the scalar masses for the non-

sequestered states Cj and which couple directly to the twisted moduli 

= "^3/2 

2 ^ 2 
2̂ — ^3/2 

— = "^3/2 

= mgyg 

9 mg,952 — ^3/2 

1 — 383 cos^ ^ sin^ ^ 

1—3 sin^ 

1 — 38i cos^ ^ sin^ 

1 — 30 ; cos^ ^ sin^ (;6 

1 — ^ cos^ ^ sin^ (;6 + 83^ 

(3.43) 

The sequestered states and are spatially separated from the twisted 

modulus field and have masses of the form: 

3 

r 
3 

— -nzgyg ^sin^ ^ -|- 83 cos^ ^ sin^ 

k 
^ cos^ g sin^ ^ -I- 8 3 

^In appendix G we consider an alternative exponential suppression factor that can be 
attributed to non-perturbative world-sheet instanton corrections [86], and we calculate the modified 
expressions for scalar masses and trilinears. 

74 



(3 .44) 

m —?7%q/n8o COS 0 sill I ^"^3/2^2 

where 

= mg/a 1 — cos g cos^ <A ^1 - (3 .45) 

cos^ ^ sin^ 02 
k 

( l - e - V ^ / 2 ^ {}^ + - (^G^ln(r2 + f^ )} 

\ / r2 + fg + }^ - (^Gglll(T2 + fg)} ' (̂ 2 + /Tg + ^2 
cos^ ^ sin^ ^ 02 ^ 

cos^^cosf^silll^ + g-V^^-i^/2 

32V^ (^2 + ^2) 

X (^8(^2 + fz)"/" + {}^ + }^ - <^G5ln(r2 + ^2)}) o 

Y2 -{• Y2 — Sgs 111(̂ 2 + T2 

(^2 + ^2)3/2 

In the limit of a large separation, ^72 + 72 —̂  00 

1 — cos^ ^ cos^ 

cos^ ^ sin^ 82 (̂ Gg 
-̂ ^2 + — (^Galll(72 + ^2)^ 

(3.46) 

and for a small separation ^72 + 72 — 0 

(3.47) 

Now we will consider the diEerent limits of SUSY breaking: 

Dilaton domination (sin^ = 1): 

1,3 '"rf. 2 — ^3/2 
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TTi ̂ ^2 — 7̂7-̂52 — ^^^3/2 

- 2^^3/2 

Notice that this limit generally gives rise to tachyonic states. 

# T-moduli domination (cos^ = sin(^ = 1): 

(3.48) 

TTl ̂ 52 mg,9 — )7̂ 3/2 (l 3 8 : 

— 772̂ 8 — 7^3/2 

777g,5;52 = -- ^'7^^/203 

2 2 3 2 
772̂ 951 — 77%̂  " ' 2"^ ' / ' ( v 

77% 3/2 

m 3/2 (l - 3 8 0 

0 

— 37713̂ 283 

, )7%c952 — 772̂ 3/2 

+ 8^1 , 771̂ 51 = 7%y 

^^3/2®2 

0^ (3.49) 

where 

77%T = 77̂  3/2 ^ (̂ 1 - e - \ / ^ / 2 ^ hi(?'2 + f a )} (3.50) 

8n e-\/^2+T2/2 y ^ 2 / / T" 
+ ' v:^2 + Tz - <^Ggin(r2 + r ^ ) } 2 + /Tg + 32A; 

IKg-modiili domination (cos^ = cos<^ = 1 ) : 

1,2,3 

772̂ 5152 

77*̂ 8 ̂  g — = m 3/2 

777, 51 777. ̂ .gsj _ ^ - \ / ^ / 2 ^ 2 
3/2 (3.51) 

where the Sg-and 9-brane states couple directly to the SUSY breaking twisted moduli 

and are not exponentially suppressed. 

Physically the twisted }2 moduli dominated limit, corresponds to gaugino mediated 
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SUSY breaking, if the standard model quark and lepton states are identified with the 

sequestered states (see later example). The dilaton and T-moduH domination limits 

correspond to different examples of gravity mediated SUSY breaking. In the general 

case where we are not in any particular limit, SUSY breaking wiU have contributions 

from the F-terms of the dilaton and untwisted moduh as well as the twisted moduli, 

and then we must use the general formulae for the scalar masses in Eqs.(3.43,3.44). 

3.4.2 Tr i l inears 

The trilinear and Yukawa couplings arise from the superpotential, where the dominant 

tree-level contributions are shown in Eq.(3.12) in terms of open string states. The 

precise structure of the Yukawa and trilinear matrices depend on the identification of 

these string states with MSSM fields. As shown in Eq.(3.12), the leading terms are 

constrained by string selection rules and gauge invariance. Higher order corrections 

can be generated by higher-dimensional operators where powers of the model cutoff 

(e.g. the string or Planck scales) lead to a large suppression. We will illustrate 

how different identifications lead to alternative Yukawa structures in section 3.5, as 

recently discussed in Ref. [87]. 

We can list the dominant trilinear couplings that arise from the perturbative su-

perpotential of Eq.(3.12). Using Eqs.(3.30,3.38,3.41,B.19) and making the standard 

assumption that the Yukawa couplings have no dependence on the dilaton and 

moduli fields (^ j In = 0) ^ we find: 

— —\/3)?%3/2 COS' • , - 2 sm<p 
02 6'°'" 

\/k 

+ sincA -k ^2)} ' (3.52) 

^Notice tha t by definition, the Yukawa couplings are related to t h e modul i fields through Eq.(3.13) 
so this assumption is not really valid, but we make it for i l lustrat ive purposes so tha t our results 
may be compared to others in the literatm-e. 
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COS 4 " ^ ^ 111(̂ 2 + ^2)} 

-^c^c9^ic»:i — —\/3?7^3/2 [sm^e'""^ 

+ cos gsm,^ ^ 0 % g - V ^ / Z yT2 + f2{}2 + ^ - <̂ GS + f2 )} ' 

p'icxY2 / / — \ 
- cos ^ COS — (^1 + 2 e - V 3 ^ 2 + f . / 2 j { } ^ + ^ _ i n ( r 2 + f 2 ) } 

Ac5i52c»5ic=^2 — —VSms/g 

(3 .53 ) 

02 e''': 1 1 / • 
- sin ^ 6*°̂ ^ + - COS ^ sin <;6 1 8% + y_ 
2 2 y ^/k 

03 

+ cos g sin ^ 0 % e - \ / ^ / 2 ^^2 + Tg {}^ + }^ - 111(̂ 2 + fg )} ' 

gtOy^ / y 2— \ 

- cos g COS — (̂ 1 + 2 e-V:r2+f2/2 j ^ 1^(72 + fg )} 

^cgicsiszcsi'z " ^ -\/3"^3/2 cos^ |^8in^0ie'°" 

+ s i n , ^ ^ ^ - (̂ GS 111(^2 + ^ 2 ) } ' 

- cos e - \ / ^ / 2 ln(r2 + fg)} 
— —'\/3?7Z3/2 COŜ  Sin ( 

02 6*°̂ ^ 

- COS e'"^2 {}^ + ^ - ln(r2 + ^2)}' 

^c»c^c| = ^C»C=52C«:2 = - \ /3m3/2 [sin^e'"'^ 

- cos g COS ln(r2 + ^2)} 

(3 .54) 

(3 .55) 

(3 .56) 

(3 .57) 

Now we will consider the diEerent limits of SUSY breaking: 

# Dilaton domination (sin^ = 1): 

^c»c85ic8:i = = ^C»C9:2C952 = 2Ac5i52C'95ic,952 = —\/3m3/2e 

(3.58) 
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T-moduli domination (cos ^ = sin^ = 1): 

\/'3 f O9 6*^^ \ 
ĉ®i®2a®®i c®®2 = ——/M3/2 ( ©1 -j -y= 03 I — A 

3 
^Cgic'iSzc^iSz ^ ^ " —VSms/gGie'^'^ — -v4 (3.59) 

'^c'^'cp-cl' = ^C?C»I0»2 = - y j ™ 3 / 2 02 6 

where 

^ + + }^ - (^G^ln(r2 + f z ) } ' (3.60) 

# Yg-modnli domination (cos^ = cos<;!» = 1): 

(̂;«2g5i52g;5i52 = Ag^gSSiggSi =Ac5lS2C'9SlC=52 — 

^C3iC'̂ i=2C5i52 — = 3 ^ V^z+^z/^ ^ (3.61) 

^ '̂ Cg^C^Sgc'GSg — = ^C^C^^2C^^2 ' 3 A 

where 

giay^ _ 
A = )?%3/2 + ^2 — (̂ Gg ln(22 + ^ 2 ) j (3.62) 
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3.5 Gaug ino M e d i a t e d SUSY B r e a k i n g Revis i ted 

The preceeding results are based on a general set-np of intersecting and D9 

branes. In order to discuss it is sufhcient to specialise to the case of just two 

intersecting sets of D5 branes, 5i and 82. This set-up arises for example in the explicit 

string constructions of Ref. [52]. We shall assume that the MSSM gauge group arises 

from the 52-brane only. This enables approximate gauge coupling unification to be 

achieved. The MSSM matter helds are identified as either or states. We 

aasume that any states are gauge singlets with respect to any gauge groups on 

the 5i-brane. Such a set-up may be achieved in practice from constructions involving 

severely asymmetric compactihcations (for example ^5^ ^5, as shown in section 

2.4), where the combined gauge groups generally arise from linear combinations of 

groups on each set of branes. The asymmetry ensures that the dominant contributions 

live on the Sg-brane, a limit we refer to as "single brane dominance". 

Although the perpendicular 5i-brane seems to be irrelevant in this scenario, in fact it 

plays an important role since the states are sequestered at a distance r ^ 0(^5%) 

from the Axed point associated with the twisted modulus Yg. From Eq.(3.44) we And 

the soft maas for the sequestered state to be 

^sin^ ^ 8^ cos^ ^ sin^ (3.63) 

where is given in Eq.(3.45). In the twisted moduli dominated limit (cos^ = 

cos = 1) 

(3.64) 

If the standard model states are all identihed as intersection states then, for 

a large compactiAcation radius, this setup corresponds to gaugino mediated SUSY 

breaking. However the soft mass in Eq.(3.63) is valid away from the twisted modulus 

dominated limit, and is also valid for a small compactiAcation radius. It therefore 

80 



allows more general and detailed studies of gangino mediation to be performed, in-

cluding the effects of finite compactihcation radii, and t he contributions from gravity 

mediation effects, which in type I theories correspond to the dilaton and untwisted 

moduli F-term VEVs. 

The non-sequestered soft masses are given by Eq.(3.43); 

mgs — m 3̂/2 

^2 — "^3/2 

2 ^ 2 773̂ ,62 = ^3/2 

383 cos^ ^ sin^ ^ 

3 sin^ ^ 

38^ cos^ ^ sin^ 

(3.65) 

The MSSM gauge groups all arise from the Sg-brane, and using Eq.(3.3) with a single 

linear combination of twisted moduli fields within the 52-brane world-volume, we find: 

(a = 5'(/(3)c,^(7(2)z,(7(l)y) (3.66) 

where are model-dependent coefhcients that depend on the details of the orbifold 

compactification 

We can find the gaugino masses using Eq8.(3.4,3.38,B.18): 

OTT 

— cos e' 'i2 
a 

47r 

Now consider different limits of SUSY breaking: 

(Tg Tg) 

(3.67) 

^"Notice that for Z3 and Z^ orbifolds, these coefEcents are p ropor t iona l to the MSSM 1-loop 
beta-function coefBcients 6a. 
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Dilaton domination (sin^ = 1): 

M . = 0 (3.68) 

T-modulii8 domination (cos^ = sin<^ = 1): 

STT 
2̂ e 

# y^-modnlns domination (cos^ = cos(^ = 1): 

\/3m3/2 g'i 
STT 

G5 
' (rg + f a ) ^ 

T2 + T2 47r (^2+^2)2 , 

(3.69) 

(3.70) 

3.5.1 Scenar io A - Gaug ino M e d i a t e d S U S Y Break ing For 

All T h r e e Families 

X 

o S.T. 

1,2,3 H, U, j 

^2 
- ^ 5 2 

Figure 3.3: The allocation of charged chiral fields in scenario A which is similar to 
the gaugino mediated SUSY breaking model [24, 25]. The MSSM gauge group arises 
from the 52-brane, and all three MSSM chiral families (1,2,3) are localised at the 
origin, while the Higgs ( ^ u , ^ j ) and MSSM gauge fields live on the 52-brane. The 
dilaton and moduli fields 5", 7̂  live in the full lOd space and a single twisted moduli 
y2 is localised at a fixed point inside the Sg-brane world-volume. 

In scenario A, depicted in Figure 3.3, the three chiral families are open string states 
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localised at the origin Axed point, and the Higgs fields feel two extra dimensions as 

open string states with both ends attached to the 52-brane. 

_ ^5I52 1,2,3) (3.71) 

= Cf ' 

The Higgs states carry an extra index that plays an important role in constructing 

the perturbative superpotential from open string states. The tree-level snperpotential 

from Eq.(3.12) contains the terms: 

(3.72) 

In order to obtain non-zero third family Yukawa couplings (at tree-level), we can 

immediately see that the Higgs fields must be states. This leads to a "democratic" 

Yukawa texture (and trilinear matrix) where all entries are equal: 

^ 1 1 1 

52, 1 1 1 

1 1 1 

(3.73) 

/ 

The democratic structure arises due to the presence of three (indistinguishable) chiral 

families, localised at the origin fixed point (C^^^^). However, type I compactihcations 

do not generally lead to low-energy spectra with this property as one (or more) 

families generally arise with both ends attached to the same D5-brane (C^') which is 

the situation we will discuss in scenario B. 

The squark, slepton and Higgs soft masses are given by Eqs.(3.63,3.65) with the 

identifications in Eq.(3.71). In general the squark and slepton (C^^^^) soft masses 

receive unsuppressed contributions from the dilaton and untwisted moduli F-term 

VEVs, which corresponds to the string version of conventional gravity mediation. In 



the limit of twisted moduli domination, we see that the quarks and lepton states 

acquire exponentially small soft scalar masses: 

^ (% = 1,2,3) (3.74) 

and the Higgs scalars obtain much larger masses due to their direct coupling with the 

SUSY breaking sector (twisted moduli): 

— ^3/2 (3.75) 

This yields the same spectrum as the gaugino mediated SUSY breaking scenario [24, 

25], where vanishingly small scalar masses at the high-scale (due to the separation 

between sectors) offers an attractive (and natural) solution to the SUSY Eavour prob-

lem However, unlike the third family trilinear A33 = from 

Eq.(3.61) is not loop suppressed and depends on the explicit function of twisted mod-

uli 1^,72,^2). 

The general results in Eqs. (3.63,3.65) enable us to smoothly move away from the 

twisted moduli dominated limit (corresponding to ^MSB) and also consider the con-

tributions of the dilaton and untwisted moduli to the soft masses (corresponding 

to the gravity contributions to SUSY breaking). We can also consider the effect 

of smoothly changing the compactification radius (corresponding to varying the 

distance r in Figure 3.2.) 

Notice that if we assign the Higgs fields as different 52-brane states - for example 

.ffu = and 2 - then it is possible to generate a ^-term in the tree-level 

discussed in section 2.4.7, flavour-changing neutral-current suppression places a lower limit 
on the size of the separation. 
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superpotential 

D A ^ ^ (3.76) 

if we add a gauge singlet that acquires a non-zero VEV, e.g. 

3.5.2 Scenar io B - Gaiigiiio M e d i a t e d S U S Y Break ing For 

t h e F i rs t a n d Second Families O n l y 

In scenario B, depicted in Figure 3.4, the third family is moved on to the 52-brane 

along with the Higgs and gauge Aelds. 

= C^'^' (1 = 1,2) (3.77) 

This setup is a simplification of the BMSB model of Chapter 2 in the limit of a 

vanishing 5i-brane compactihcation radius, where the gauge fields are dominated by 

their components on the Sg-brane - "single brane dominance". 

In order to generate a third family Yukawa coupling at tree-level, the Higgs and third 

family singlets and doublets must carry different indices. However, we are still free to 

choose whether the allocation of Higgs Aelds allows first and second family Yukawa 

couplings at tree-level. For example, suppose that we choose the following allocations: 

,L3 i = C f = = (3.78) 

We will generate block-diagonal Yukawa textures that are not consistent with exper-
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X 

1,2 

Figure 3.4: The allocation of charged chiral fields in scenario B which is a simplifi-
cation of the brane mediated SUSY breaking model in Chapter 2. The MSSM gauge 
group arises from the 52-brane, and only the first two chiral families (1,2) live at 
the origin while the third family (3), Higgs (^7^,^^^) and gauge fields live on the 
52-brane. The dilaton and moduli fields 5", 7̂  live in the full lOd space and a single 
twisted moduli Yg is localised at a fixed point inside the Sg-brane world-volume. 

imental data: 

u 

1 1 0 

1 1 0 

0 0 1 

(3.79) 

However, if we choose that ^ , then we generate a Yukawa texture with only 

a single non-zero value in the (33) entry: 

/ 
0 0 0 

0 0 0 

0 0 1 

\ 

(3.80) 

which is more compatible with data, as higher order corrections can generate the 
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required structure. We also obtain a trilinear matrix with a single (33) entry: 

^ 0 0 0 ^ 

0 0 0 

0 0 A 3 3 

(3 .81) 

where A33 = 60m Eq.(3.56). 

The soft masses for this scenario are very similar to scenario A, except that the third 

family is a state, so it is now a non-sequestered state. In the twisted moduli 

domination limit of Eq.(3.51), the Arst two families receive exponentially suppressed 

masses as for scenario A. However, the third family and Higgs acquire large soft 

masses 0(023/2) which may be read oif from Eq.(3.65). 

As discussed earlier, the experimental constraints from FCNC data is only sensitive to 

the first two families [26], and this scenario (with a hierarchically larger third family) 

may not violate these constraints, thereby providing an interesting alternative solution 

to the Savour-changing problem. 

3.6 Conclusions 

We have considered twisted moduli contributions to supersymmetry breaking in ef-

fective type I string constructions based on intersecting and DQ-branes, using the 

formalism of Goldstino angles and extending the scope of previous analyses which were 

based on a single Z)9-brane sector. The more general set-up allows the possibility of 

states which are sequestered from twisted moduli states which are located at Axed 

points and cannot move freely. The sequestered states should have suppressed soft 

mass contributions from distant twisted moduli, and this observation has been used 

to suggest how might be implemented in type I string theory [79]. However, 
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contrary to this expectation, we find that the standard form of the Kahler potential 

leads to non-zero soft masses for the sequestered states in the twisted moduli dom-

inated limit. This motivated us to look for a new form of K ^ l e r potential for the 

sequestered states. We have proposed a new Kahler potential which is consistent at 

leading order with the sequestered form proposed by Randall and Sundrum [22], and 

which leads to exponentially suppressed sequestered soft masses. Including the effect 

of Green-Schwarz mixing we have derived trilinears and soft scalar masses arising 

from a general string construction involving intersecting and D9-branes in the 

presence of untwisted and twisted moduli. We have shown how the results may be 

applied to and discussed two explicit scenarios for this based on two inter-

secting 5i and 82 brane sectors, in which the MSSM gauge group is placed on the 62 

sector. The second scenario in which only applies to the first two families, 

while the third family receives an unsuppressed soft mass, is a simplification of the 

model discussed in Chapter 2, but we have extended it to incorporate both gravity 

and gaugino mediation effects. 

These general results will be useful in phenomenological studies involving a combina-

tion of gravity and gaugino mediated SUSY breaking due to the dilaton, untwisted 

and twisted moduli contributions, which enable the soft masses to be studied as a 

function of the compactihcation radii. Previous analyses [83] have only considered 

the effect of twisted moduli in the case where the gauge group and matter fields hve 

on the D9-brane, and share the same world-volume with all twisted moduli fields. 

However such a scenario does not give rise to localised mat te r fields (confined at in-

tersection points) and in general one does not encounter states which are sequestered 

from twisted moduli. Hence the standard K ^ e r potentials used in those analyses are 

perfectly acceptable. By contrast our analysis opens the door for more general type 

I string constructions involving D9 DS^-branes, where potentially more realistic 

phenomenology and hierarchies between observables can be obtained with some or all 

of the matter fields sequestered from twisted moduli SUSY breaking sectors. 



C h a p t e r 4 

S u p e r s y m m e t r i c Higgs Bosons in a 

5d Orbifold Mode l 

We consider a 5d simplification of the BMSB model from Chapter 2, where the extra 

dimension is compactified on an 6'i/Z2 orbifold. We analyse the phenomenology of 

the Higgs sector in this effective Held theory for a compactification scale Mc = 1 / ^ 

around the TeV scale. We show that the conventional MSSM Higgs boson mass 

bounds in 4d can be violated when we allow the gauge sector, Higgs, top and stop 

fields to live in the fifth extra dimension. Supersymmetry is broken at an orbifold 

fixed point which is spatially separated from the Yukawa brane where two chiral fam-

ilies are localised. When the brane-localised supersymmetry breaking term for the 

stop sector is arbitrarily large, we find that the stop Kaiuza-Klein mass spectrum 

is completely independent of the Higgs fields. Hence, the Higgs masses only receive 

radiative contributions from the top Kaluza-Klein modes. We find that the 1-loop 

effective potential is insensitive to the cutoff scale of the theory. This yields a nega-

tive correction to the Higgs scalar squared-maas that triggers electroweak symmetry 

breaking in the range 1.5 ;S tan^^ 20, where bottom/sbottom loop effects can be 

ignored. The recent LEP Higgs bound at m/jO > 114.1 GeV, in conjunction with 



naturalness arguments, allows us to bracket the compactiAcation scale 1.5 ;S Mc ;$ 4 

TeV. Within this parameter space, we find that the lightest Higgs boson mass has 

an upper bound ;$ 160 GeV with the magnitude of the //-parameter restricted to 

the range 33 ^ |//| ;$ 347 GeV. 

4.1 I n t r o d u c t i o n 

Extra-dimensional supersymmetric models with a TeV compactification scale [66, 67] 

offer an exciting new environment for investigating electroweak symmetry breaking 

(EWSB). Various models have been proposed to study EWSB in extra dimensions and 

their phenomenological implications [88]-[93] and the majori ty of models break SUSY 

through Scherk-Schwarz (SS) boundary conditions ^ [95]. However we will concentrate 

only on those models which recover the MSSM below the compactification scale and 

are anomaly-free after the orbifold compactification [96]. An important feature of 

these types of models are that the contribution of quark/squark Kaluza-Klein (KK) 

modes to the Higgs mass is negative which triggers EWSB at the TeV scale. Also the 

1-loop radiative correction to the effective potential is found to be free of ultraviolet 

divergences, which implies that the Higgs physics is completely independent of the 

high-energy physics above some cutoff scale. This is due to the requirement of A/" = 1 

SUSY in 5d (which is equivalent to = 2 SUSY in 4d after compactification ) which 

leads to a finite 1-loop effective potential because even though SUSY is globally softly 

broken, it is still preserved locally [91, 97] 

In this chapter we show that the conventional MSSM lightest Higgs boson mass bound 

< 130 GeV [99] can be violated by allowing some of the fields to live in a fifth 

^Notice that Ref.[94] demonstrate the equivalence of SS boundary conditions with Wilson line 
symmetry breaking. 

^Recently, the finiteness of this kind of theory has been showed explicitly at 2-loops [98]. 
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extra dimension Motivated by fine-tuning arguments, we are led to a (conservative) 

upper bound on the compactihcation scale ^ 4 TeV. At this compactiAcation 

scale, the lightest Higgs boson mass can be pushed as high as 160 Gey. We 

find that in order to have EWSB through radiative corrections, tan^^ can have a 

wide range 1.5 ;$ tan/) ;$ 20 rather than the small range allowed in the model of 

Ref. [92] 35 ;$ tan ;$ 40, where SUSY is broken through the SS mechanism. We only 

limit tan/) ;$ 20 since we neglect bottom-sbottom loop effects. Note that, unhke the 

MSSM, t a n ^ 1.5 is not ruled out by experiment in our extra dimensional model. 

4.2 O u r M o d e l 

4.2.1 Ou t l ine 

In this section we introduce our string-inspired model which is a simplification of 

the BMSB scenario discussed in Chapter 2, but with only a extra dimension 

compactihed on an orbifold as shown in Figure 4.1. We regard this model 

as an effective field theory which is defined below a cutoff that we identify with the 

string scale M*. Compactification of the extra dimension on the orbifold leads to a 

description of 5d bulk fields (^) as infinite towers of KK resonances. The Zg orbifold 

lets us classify bulk fields into even and odd parities which satisfy the following 

transformation rules under 

Even Odd 

Revert V ) = Ceven ( ® j V ) , ^odd u ) = ^odd {x-, y ) ( 4 . 1 ) 

^Higher upper bounds on the lightest boson mass have been recently calculated in the context of 
SUSY in warped extra dimensions [100] and a (de)constructed mode l [101]. 
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"Yukawa, brane" 

lst/2nd family - Fi,2Z,, 

MSSM matter fields 

rpmc 

H,, 

fjmc 
^•'-u 

Tpmc 

H, 

TTmc 

"source brane" 

SUSY breaking sector 

<^a,3, 

Figure 4.1: Our model showing the parallel 3-branes spatially separated along the 
extra dimension y. This extra dimension is compactihed on the orbifold that 
leads to two fixed points at 1/ = where the two 3-branes are located. The first 
two chiral families (^1,2) live on the Yukawa brane at ^ = 0, while SUSY is broken by 
F-terms of gauge singlet fields ((^g) on the source brane at ^ = TrA. The third family 
(f^), gauge sector (VMSSM) and Higgs superfields live in the extra dimensional 
bulk along with their A/" = 2 SUSY partners which are required for consistency. The 
fields present in the model are summarised in Table 4.1. 

The odd fields have KK expansions involving sin(k!//B) or sin(mt2/) where A; is the 

KK number and m* is the KK-mode mass^. Notice that odd fields do not have 

zero modes which can be associated with MSSM fields since they have wavefunction 

profiles that vanish at the fixed points. In contrast, the even fields have cos (A;7//7Z) or 

cos (mt?/) expansions and therefore do not vanish at the orbifold fixed points^. These 

Z2-parity transformation properties are important when we come to couple bulk fields 

to boundary fields at either fixed point [102], for example when we localise the third 

family Yukawa couplings at ^ = 0 in section 4.3.2. 

From a 4d perspective. A/' = 1 SUSY in 5d is equivalent to VV = 2 in 4d, since the 

^Usually the KK modes have masses of the form = t / A . 
^We can choose that the familiar MSSM helda are even with respect to the ^g-symmetry, and so 

have maasless zero modes before SUSY breaking. 
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Kaluza-Klein modes can combine in pairs to form = 2 invariant states. However 

CP-conjugate "mirror" Aelds also need to be added to the theory to respect the 

A/" = 2 SUSY and form hypermultiplets as discussed in Appendices C.l and C.3. For 

instance, each 5d vector supermultiplet contains a five-component gauge field 

a real scalar cr and two Weyl fermions that all transform in the adjoint 

representation of the gauge group [93, 103]. Each can be decomposed into an 

A/' = 1 vector supermultiplet (containing a gauge boson and a gaugino Ai) and 

an A/" = 1 chiral supermultiplet (containing a scalar S ^ cr -|- 2̂ 45 and a fermion Ag) 

where the fifth component of the 5d gauge boson becomes the longitudinal component 

of the scalar. Similarly each 5d matter hypermultiplet can be decomposed into an 

A/" = 1 chiral supermultiplet and its CP-"mirror" chiral supermultiplet, e.g. the up-

like Higgs hypermultiplet contains the familiar MSSM Higgs chiral superfield 

and its CP-"mirror" partner. The location of the fields present in our model are 

shown in Table 4.1. 

States Location %2-pa'rity 

= (z = l ,2) y = 0 

= % , % , % (* = 1,2) 2/ = 0 

fsz, = Qsz,, ^31, bulk even 

bulk even 

zrmc /Hmc rmc 
-̂ 31, — VsZ/ ) 

bulk odd 

r/mc r)77ic pmc bulk odd 

y = , Ai bulk even 

S = (7 -j- zAg, X2 bulk odd 

bulk even 

bulk odd 

<^s,3, y = ttR 

Table 4.1: The location of the states present in our model. Bulk fields are also 
classified by their transformation with respect to Z2-parity. Notice that the superfields 
Q, U, D, L, E implicitly include the scalar and fermion components, e.g. Q.i, ^ 
QiL ) QiL-
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4.2.2 Lag rang i an 

From section 2.2, we know that the 5d lagrangian can be split into an A/" = 2 invariant 

bulk term [103] consisting of 5d bulk fields, and separate 4d VV = 1 invariant brane 

terms localised at either fixed point. Notice that the 4d brane terms are formed from 

the boundary fields and the even projections of the bulk fields on to the boundary 

branes using an off-shell formalism of = 2 SUSY in 5d [102]. 

r = ^5 [ ^ (a;, 2/) ] + %] (̂  (?/ - ?/;) ^ (a;, (a;) ] (4.2) 
j 

where j runs over the two branes at the orbifold fixed points, x are coordinates for 

the 4 non-compact dimensions, y is the coordinate for the extra compact spatial 

dimension, ^ is a bulk field, and is a field localised on the brane. 

The 5d lagrangian for vector (^4^,0", and matter hypermultiplets (0? = 

and given below [93, 103] includes the standard kinetic energy terms 

and supersymmetric Yukawa interaction terms: 

^ 4- — A,- c, Â  j 

-t- (4.3) 

where a labels the bulk matter fields (including both Higgs doublets and the third 

family superfields); *, j — 1,2 are 5'[/(2)B (R-symmetry) indices and M, = 0 — 3,5. 

is a covariant derivative and r '" are 5'[/(2) generators where m=l,2,3. $?(^a) 

are the scalar (Dirac fermion) components of the Higgs and third family superhelds. 

The 5d Dirac matrices are given in Appendix C.2. 

Unlike previous models, we assume that supersymmetry is broken by non-zero F-terms 

of 4d gauge-singlet fields localised on the source brane at the fixed 
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point ?/ = TT^ and mediated across the extra dimension by bulk Aelds aa discussed in 

Chapter 2. Notice that the SUSY breaking fields carry additional indices that allow 

for non-universal couplings, e.g. and are not necessarily equal. However, 

we assume that the same gauge-singlet <̂ ,̂3 couples to the whole third family 

(Higgs) fields respectively. Generalising the D-dimensional operators from Eq.(2.18), 

but for one extra dimension, we can generate third family scalar and gaugino masses: 

i (y - TTfl) - jd'e -^FiF, + jd'e + h.c. (4.4) 

where represent the third family superfields ^ 

5d gauge field-strength superfield that contains the gaugino as its lowest component, 

and C3 (cu,) are the couplings of the third family (gauge fields) to the SUSY breaking 

sector. 

Similarly we can also generate soft Higgs masses, and //-terms through the fol-

lowing operators: 

-t- /i.e. 

(4.5) 

Terms with even-parity fields replaced by their mirror pairs are forbidden by Z2-

parity, as only even fields couple directly to the 3-brane boundaries at the orbifold 

fixed points. However, the y-derivative of an odd field is actually even with respect 

to Z2-parity, so terms like: 

S(!, - nR) (4.6) 

are allowed by the Zg symmetry, but can be neglected since they are so heavily 

suppressed by high powers of the cutoff scale M,. 
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We choose to localise the Yukawa couplings on the "Yukawa" brane at ?/ = 0 since we 

are unable to produce Yukawas in the bulk from higher-dimensional operators because 

such operators would explicitly break the A/" = 2 SUSY^. Therefore couplings between 

bulk and brane fields can only be consistently dehned on the boundaries of the 5d 

space. In order to discuss EWSB, we will consider t he dominant top/stop sector 

Yukawa couplings and ignore the rest The lagrangian term that generates Yukawa 

couplings is given by: 

= -%) ^ Jd^e {Q3l % £/|fi + h.c.) (4.7) 

where and (;/f) is the 5d (4d) Yukawa coupling. We will make 

an additional assumption that only the zero KK-modes of the Higgs scalars acquire 

non-zero VEVs and participate in EWSB. It is convenient to expand the zero modes 

of the neutral components of each complex (scalar) Higgs doublet in terms of real 

and imaginary parts: 

1 1 
t=o ^ ^ 

where electroweak symmetry is spontaneously broken when the real parts acquire 

non-zero VEVs < >, < 0 and < > = < >— 0. 

4.3 Ka luza-Kle in mass s p e c t r a 

In this section we will calculate the top and stop KK mass spectra in the presence of 

Yukawa couplings using a variant of the matrix method developed in Refs. [104, 105]. 

This method allows us to diagonahse the infinite KK mass matrices, where non-trivial 

® Notice that it is possible to construct higher dimensional opera tors in the bulk tha t respect the 
weaker constraint of (R-parity) invariance, but A/" = 2 S U S Y is still explicitly broken. 

^We will also neglect b o t t o m / s b o t t o m effects by taking tan/? < 20. 



mixing between different KK modes is induced by tlie delta-functions in Eqs.(4.4) and 

(4.7). We find that for realistic phenomenology, we require a large mixing parameter 

(cK3 1) between stop KK modes and small mixing 1) between Higgs KK 

modes. Finally, we will calculate the stop/top sector K K contributions to the 1-loop 

effective potential, and we find that it is finite due to supersymmetry in 5d. 

4.3.1 Top K K mass s p e c t r u m 

We will begin by diagonalising the top KK mass matr ix which is independent of 

the SUSY breaking sector. Using Appendix C.3 and Eq.(C.7), we can combine 

Eqs.(4.3,4.7) to find the terms in the 5d lagrangian tha t contribute to the top mass 

matrix: 

where The 5d top fields have the following KK-expansions: 

2/) = -y=^z,(B),o(a;) + f ] y ^ cos j (4.10) 

«,«)(- ,! /) = £ ( b ) 

and since we assume that only the real part of the zero-mode of acquires a non-zero 

VEV, we can neglect all other KK-modes in the Higgs expansion: 

HI = (4.12) 

where we have used Eq.(4.8) and dropped the imaginary part. 

Substituting these KK expansions into Eq.(4.9) and integrating out the extra dimen-
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sion, we obtain the 4d lagrangian: 

f ] (4,A:^n + 
k=l 

Ufhu 

w 
/ \ 

k=l A;J=1 

(4.13) 

+ (L f-)- i?) 

where we have used the following identity 

A;/ 
ai/ cos I — I cos 

TT R 

R R 
(4.14) 

This infinite matrix can be rewritten in block-diagonal form: 

+ /̂ .C. 

R 
k,l 
I ] ( 4.0 ^ met 

Z„0 "-RiA; 

0 - M \ 

0 

- M 

0 

\ / , \ 
tA,0 

.imc 
V / 

(4.15) 

4" h.c. 

where % = (1 ,1 ,1 ,1 , . . . ) and Mt; = 

Following the method discussed in Ref. [105], we consider the eigenvalue equation: 

MT 

/ \ 

a 

Bk 

y a . 

/ \ a 

Bk 

yCk J 

(4.16) 

where is the field-dependent mass of the top KK excitation; a is a number, 

while and Ct are infinite-dimensional vectors. After multiplying out Eq.(4.16) and 

some algebra, we obtain three independent relations: 

— — ^ 2_^ ̂ k' 
yt^uj k'=i 

(4.17) 



B, = ^ g g , , (4.19) 

where we can sum Eq.(4.19) nsing the identity 

to derive an eigenvalue condition for each KK-mode: 

TT 
tan 

a/2 

This yields the following field-dependent KK mass eigenvalues 

, / 2/t TT 

(4.21) 

A;Mr7 4 arctan - (A; = —oo,... , oo) (4.22) /(? I UU.\,UU,±J. , 

TT 

where Mc = 1 /^ . We can identify the observable top mass with the A; = 0 KK mode, 

m,[A.] = ^ arctan (4.23) 

Notice that we recover the usual MSSM relation = Z/t/^u/v^ in the limit 

that Mc —> oo as expected since the theory becomes four-dimensional. However, for 

general Mc, Eq.(4.23) is diEerent due to the non-trivial mixing between KK-modes 

on the Yukawa brane from Eq.(4.7). 

4.3.2 S top K K m a s s s p e c t r u m 

We will now repeat the diagonalisation procedure for the stop fields. However, the 

stop analysis is complicated by an additional source of KK mixing from the SUSY 
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breaking sector in Eq.(4.4), where the mixing parameter ag is related to the F-term 

VEV of the SUSY breaking singlet (̂ 65',3: 

«3 = csTT (4.24) 

Using Eqs.(4.3,4.4,4.7), we can extract the stop mass terms in the 5d lagrangian: 

771C 

7% 

+ fQ3Z,̂ A + (4.25) 

+ (̂ (3/ - TT̂ )̂ ^ ^ ^ , 3 

where /t = (7rjZM*)^^^^(. Notice that there is an important diEerence from the 

previous top analysis since expansion of the Yukawa coupling operator Eq.(4.7) into 

component fields leads to terms in Eq.(4.25) that involve 5d stop fields, Higgs scalars 

and quark superheld auxiliary F-terms that need to be integrated out. 

The standard definition of auxiliary F-terms are modified when 5d bulk Aelds are 

coupled to 4d boundary helds due to the requirement tha t the localised coupling 

preserves A/" = 1 SUSY at the boundary. We use the method developed in Ref. [102] 

that exploits an off-shell formulation of SUSY to define the auxiliary fields in terms 

of the even-parity projections of bulk helds on to the boundary 

F L = Siy) (4.26) 

fi 
Pis , = '^(a) T S J i l H° - (4.27) 

M; 3/2 ^ 

Substituting and into Eq.(4.25) will lead to the appearance of squared 

^Notice that this expression also involves odd-parity mirror fields since the extra-
dimensional derivative of aa odd held is even. 
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delta-functions 6^(2/). These can be re-expressed as = <^(0)6(2/), where we recast 

^(0) as 

- 1 0 0 1 n o o 9 O O / 1 \ ' ^ n 0 9 

and D is an infinite quantity. However, we And that %) factors out and will not appear 

in the KK mass eigenvalues. 

The 5d stop fields have the standard KK expansion 

1 - °° 1 
2/) = -^=fz,(B),o(a;) + E cos j (4.29) 

^ (iR ) (4.30) 

and can be substituted with Eqs.(4.12,4.26,4.27) into Eq.(4.25) to obtain the la-

grangian terms that contribute to the 4d KK mass matrix: 

rmasa ^ 

4,f - 2^2 
A:=l 

-t- (Z, <-> ̂ ) 

% jr ̂  
A;,Z=1 A:=l 

- E V^!/, A. t R ( % ( w + ilJZ 
k,l=l 

where we have integrated out the extra dimension and used the identity in Eq.(4.14). 

This infinite mass matrix can be re-written in the basis: 

A:, Z = 1 , . . . , 00 (4.32) 
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so that Eq.(4.31) becomes: 

.L/ 4,f 
1 oo 

E (%,. i U % ' IX 
k,l=l 

2^2 
(4.33) 

/ 

\ 

+ 2r^ D # ^ 3 % + 2\/2r^ 2)% 

7^ + 2V2r" 2)%:̂  J + 4r" D J 

- r (%. M) 
V 2 r ( j . M ) 

\ / ; \ 
tL,0 

fmc 
/ \ / 

"h h.c. 

where T = ^ ) , % = (1 ,1 ,1 ,1 , . . . ) , % = (—1,1, —1,1, . . . ) , = A; and 

J =%^% 

1 1 1 

1 1 1 

1 1 1 

\ : 

J = % ^ % 

• / 

/ 1 _ i 1 . . . ^ 

— 1 1 — 1 • • • 

1 -1 1 

\ • 

(4.34) 

• • / 

Suppose that the eigenvector $^2, — <̂ i„2 

mass eigenvalue equation: 

(.mc ^mc 
)B,1 9^,2 

satisfies the 

(4.35) 

Then we obtain the following relations: 

A' 

(^g7^+ + % P _ ) - r ^ Z (A: = 0) 
1=1 

00 
+ 2 (5'c)'P+ + S'g'P-) — \ / 2 T ^ Z 

/=1 
00 

V^7^+^i,,o + + 2 (6^7^+ + ^'o'P-) — \ /2 r 
/=1 

—r k (j)Lfl — \ /2 r k (So + Se) + k'^ 4''r\ ~ 1,2,3, 

?71C 

(4.36) 

{k G ocld^ 

(A; E ez;en) 
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where A = 7̂  and 

TT̂  
% = H 5"̂  = ^ (4.37) 

l^even 

Following a series of manipulations, we can eliminate D and solve Eq.(4.36) to obtain 

a transcendental equation for the stop KK mass = A/7Z: 

tan T̂T ^ -R 0:3 
TT 

i + ^ r ' (4.38) 

which can be solved iteratively ^ by considering diEerent limits of the KK mixing 

parameter 0:3. 

# No SUSY breaking (^3 —0) 

In the limit that SUSY is unbroken (0:3 = 0), Eq.(4.38) becomes 

ji! tan^ 0 (4.39) 

where the non-trivial solution is identical to the top KK mass eigenvalue in Eq.(4.22) 

as expected since supersymmetry is preserved. 

# Weak SUSY breaking (0:3 <K 1) 

In the limit of weak SUSY breaking, there is minimal mixing between KK modes 

(a3 <K 1), and the stop mass eigenvalues are given by: 

/uMc + ^ CK3] 1 + 0(0:3, (4.40) 

^Notice that we are unable to solve Eq.(4.38) for 03 1 since the corrections can no 
longer be neglected. 

^"Notice that this eigenvalue also applies for the mirror stop fields after EWSB when the 
Yukawa couplings in Eq.(4.7) induce mixing between even and odd-parity stop fields. However, in 
the absence of EWSB (< Au > = 0), the mirror stop fields will have the usual KK masses t/.R since 
they do not couple directly to the SUSY breaking sector. 
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where we have used the expression for the field-dependent top mass from 

Eq.(4.23), and Z^[Au,0!3] is given by: 

72 rk i _ J i f < / ^ ^ > = 0 

0 otherwise (4-41) 

From Eq.(4.40), we see that the mass of the stop A; = 0 mode is given by: 

+ (4.42) 

where the stop mass is equal to the top mass and SUSY breaking soft mass added 

in quadrature Hence, we can generate soft masses around the TeV scale with 

minimal mixing (ag <g 1) if the compactihcation scale Afc hes at very high energies.. 

^ O(Tey) =:> Mc » 1 T e y (4.43) 

Therefore, below the compactification scale we recover the usual 4d MSSM phe-

nomenology. 

e Strong SUSY breaking (03 1) 

Finally we will consider the strong SUSY breaking limit (0:3 1) which leads to 

maximal mixing between KK-modes. This scenario is equivalent to a large extra 

dimension and the solution of Eq. (4.38) is given by: 

2 A r ' 
- f 2 ^ 1 + {k — — 0 0 , . . . , 0 0 ) ( 4 . 4 4 ) 

Notice that to leading order the stop mass eigenvalues are independent of the Higgs 

^^For simplicity, we have neglected the trilinear mixing term .4^ between the stop left and right 
fields. 
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background field (A,,). This independence can be explained by the arbitrarily large 

mixing term on the source brane that makes the Yukawa brane become transparent 

which washes out any field dependence, and so the stop mass is identified by its 

SUSY breaking contribution. We find that the compactification scale should be Mc 

(9(Tey) to provide soft terms at the electroweak scale. 

4.3.3 S t o p / T o p K K con t r ibu t ions t o t h e effective po ten t i a l 

We will now calculate the dominant stop emd top Kaluza-Klein contributions to the 

effective potential using the KK mass spectra: 

Mc 
4 arctan 

A,, TT 

k + 

TT c, 
(4.45) 

The KK contributions to the 1-loop effective potential are given by the relation: 

p ' + 
(4.46) 

where the trace is over all degrees of freedom Since the stop KK mass eigenvalue 

is independent of the Higgs field we find that the stop contribution is constant 

and can be absorbed into the cosmological constant. 

We perform the momentum integral in Eq.(4.46) using dimensional regularisation, 

and find that the top and stop contributions can each be separated into an infinite 

pole part and a Anite piece. For instcince, the infinite part from the top sector is given 

Recall that each top/stop (and mirror) field has three colours and four degrees of freedom, i.e. 
a four-component fermion or two complex scalars, so the trace gives an overall factor of = 12. 
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by: 

+ E 
k=l R 

+ ^ 
6=1 ^ + rnt[h^] 

(4.47) 

where the second term arises from A; ^ 0 top KK modes, and the third term from 

the CP-"mirror" fields. Using zeta-function regularisation to perform the infinite 

summation [106, 107], we find that the three terms in Eq.(4.47) exactly cancel each 

other. Therefore, (and similarly %,^) vanishes due to the explicit A/" = 2 SUSY 

present in the bulk, and the top (stop) contributions to the 1-loop elective potential 

are found to be hnite. Notice that in a non-supersymmetric model, the third term in 

Eq.(4.47) involving CP-"mirror" fields does not appear ajid so the top contribution 

is no longer hnite. Also note that in the case of small extra dimensions, the non-zero 

KK-modes are decoupled from the low-energy physics, and so only the first term in 

Eq.(4.47) arises and we recover the usual MSSM effective potential. 

We find that the finite top contribution is: 

^ 1 
167r® ^ 

cos 
27r n 77%̂  [At 

(4.48) 

and the constant field-independent stop contribution is given by: 

atop 
g ( - 1 ) " _ 135 ((5) 

IGtt® 
Tl=l 72" 2567r6 

(4.49) 

which can be absorbed into the cosmological constant and dropped from our subse-

quent analysis. 
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4.3.4 S U S Y B r e a k i n g Higgs P a r a m e t e r s 

The soft Higgs mass parameters are generated on the source brane at ?/ = TrE through 

the higher-dimensional operators in Eq.(4.5). Substituting the standard KK expan-

sions for the 5d Higgs doublet fields will lead to mixing between KK modes, where 

the mixing parameter is given by: 

(̂ ) 
and is the F-term VEV associated with the singlet field, and we have 

assumed that = c^. 

In section 4.3.2, we were led to maximal mixing (as Z$> 1) in the stop sector to generate 

soft masses around the TeV scale. We also know that for EWSB via top/stop radiative 

corrections, we require a negative mass-squared to trigger spontaneous symmetry 

breaking. However, this is harder to achieve when 0:3 % a n since the tree-level and 

(negative) 1-loop contributions have comparable magnitude. We conclude that the 

KK-modes in the Higgs sector must be minimally mixed (o/f 1) for viable radiative 

EWSB. 

Comparing Eqs.(4.24) and (4.50) shows that we have two options, either (i) the 

couplings in the higher-dimensional operators are hierarchical (cs c^) which 

appears unattractive, or else (ii) there is a non-univerality in the hidden sector. We 

have assumed the latter option where different SUSY breaking fields couple to the 

stop and Higgs sectors separately which allows for non-universal F-terms ^ ^s.s) 

with comparable hidden sector couplings c 0(1). 

In the case of minimal mixing, the Higgs KK mass matrix is dominated by the diagonal 

elements, so that we can decouple the non-zero KK excitations. Instead we will impose 

the EWSB conditions on the lightest (A; = 0) KK-modes where the soft parameters 
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can be taken directly from Eq.(4.5): 

2 _ mrr = 
^ TT TT̂  
Cgy; 2 

Afg — —^ Afg, (4.51) 

2 
±1// = mg , )U — 

where - m^ . 

4.4 Rel iabi l i ty and P e r t u r b a t i v i t y 

We have not yet imposed any constraint on the relationship between the compactiA-

cation scale Mc and the cutoE scale M*. The requirement of perturbativity (where 

our perturbative analysis is valid) allows us to And an upper bound on the ratio 

(M*/Mc). We know that the gauge and Yukawa couplings exhibit power law run-

ning behaviour in extra-dimensional models [74]. Indeed the beta functions of these 

couplings depend on powers of the renormalisation scale // due to the inclusion of the 

KK-modes that makes the physics highly sensitive to the renormalisation scale. This 

implies that gauge coupling unification and the emergence of the Landau pole in the 

Yukawa couplings are accelerated with respect to the usual (logajithmically-running) 

4d theory. The top Yukawa coupling is found to develop a singularity at energies 

close to the compactihcation scale Mc- In our model, the presence of the third family 

in the 5d bulk gives the Yukawa coupling beta function a quadratic dependence 

on the ratio between the renormalisation scale // and the compactification scale Mc: 
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Note that this dependence on is stronger than the corresponding beta function 

for the gauge coupling which is only linearly-dependent 

JL 
Mr 

+ • • • (4.53) 

Suppose is the scale where the top Yukawa coupling becomes non-perturbative, 

which was found by the authors of Ref. [92] to be % SMc. Therefore, we can 

maintain a (reliable) perturbative regime by imposing the following constraint on the 

cutoff scale of our theory 

M* 6 M* < 5Mc (4.54) 

Similarly the cutoff is bounded from below by the compactification scale Mc, and we 

find that the string scale M* is restricted to the range: 

Mc < M, < 5Mc (4.55) 

4.5 Higgs Mass S p e c t r u m 

In this section we will calculate the mass eigenvalues in the Higgs sector, where the 

light and heavy CP-even Higgs mass eigenstates (/i°, j7°) are linear combinations of 

the real fields and Aj. We can use the standard MSSM relations to And the masses 

of the charged ( ^ ^ ) and CP-odd (A°) Higgs Aelds. The tree-level potential in terms 

of the neutral components of the A; = 0 Higgs doublets 

% free < 0 + mr < 0 « 0 < 0 + 

-"u,0 < 0 

(4.56) 
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where we are free to dehne as real and positive by absorbing any phase into ^ 

and have traded the and 5'f/(2)^ gauge couplings for the 

physical mass and the VEV t; = 246 GeV. Using Eq.(4.51), we And that the 

Higgs doublets share the same soft mass since we assume — c;y: 

mi 2 ~ — l/̂ l '^H (4.57) 

and we regard and as input parameters. 

Combining Eqs.(4.8,4.23,4.48,4.56), we And an expression for the total 1-loop effective 

potential in terms of the real Higgs helds 

y ~ huhd + 

OO 1 
c_ _ 

167r̂  ^ 

9MA 

hi 

cos 

hi 

2n arctan 

(4.58) 

/iw TT 

\\/2 Mc, 

where we can neglect the imaginary parts j since they acquire vanishing VEVs and 

we have also dropped the constant stop contribution. 

Applying the EWSB conditions at the usual minimum (7^^) = usin/) , (/ij) = f cos/? 

with t; = 246 GeV. 

ay ay 
= 0 (4.59) 

{hu ) 

allows us to eliminate and terms of the other parameters. By imposing the 

correct observable mass (Mg = 91.18 GeV), we can also eliminate mgo/t so that 

the compactification scale Mc and tan^^ (or equivalently m^o) are regarded as the 

two free parameters. In Figure 4.2, we plot mgo/t as a function of the compactification 

scale Mc for two diEerent values of tan/3. 

We construct the CP-even mass matrix from the second derivatives of the elective 
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(GeV) 

7 0 0 

H Mc (GeV) 
1 5 0 0 2 0 0 0 2 5 0 0 3 0 0 0 3 5 0 0 4 0 0 0 

Figure 4.2: The universal Higgs soft mass against the compactih-
cation scale Mc for tan/? — 1.5 and 20. 

potential at the minimum, which can be diagonalised to find the mass eigenvalues 

(4.60) 

/ 

Notice that these CP-even eigenvalues include the 1-loop effects, but only mg is 1-loop 

improved since we are neglecting bottom-sbottom loops for tan < 20: 

m 2,imp — ^ 2 + 
1 (op 
2 

(4.61) 
{hu),{h(i) 

where mg = from Eq.(4.57). However (and m^) are not 1-loop improved, 

so we caji use the standard 4d tree-level MSSM expressions to find the CP-odd (A°) 
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cind charged Higgs masses [11] 

2B// 

sin 2/3 

ni\o + 

(4 .62) 

(4 .63) 

where is the physical mass. We solve for aa a function of the free 

parameters (Mg, tan/3), and use the standard definition of fine-tuning A [108, 109] 

(but neglecting the variation of tan with respect to changes in Mc) to find an upper 

limit on the compactification scale Mc-

A = 
Mc 

(4.64) 

A 

1000 
tan/) 

M c (Ge 

4 0 0 0 
1.5 

Figure 4.3: The fine-tuning parameter A as a function of tan/) and the compactifi-
cation scale Mc in GeV. A is shown to have a very weak dependence on tan/) in the 
range 2.5 ;S tan ;$ 20 for which we can neglect bottom-sbottom effects. However, 
the fine-tuning rapidly becomes singular as tan/3 1. 

Motivated by the fine-tuning as shown in Figure 4.3, we choose to investigate the 
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parameter space Mc < 4 TeV and 1.5 < tan/3 < 20 where the fme-tuning A 

O(IO^). 

Higgs Mags (GeV) 

t a n p = 1.5 

100 200 300 400 500 600 700 800 
(GeV) 

Figure 4.4: The Higgs masses against for tan/3 = 1.5. We 
have run 1 < Afc < 4 TeV parametrically along each curve. The LEP candidate 
at 115 GeV [77] is shown for comparison with We have also 
included the MSSM results taken from Ref.[4] to compare against our 
model (6oM-/mes). 

In Figures 4.4 and 4.5, we plot the eigenvalues (m,,o, m^o) of the CP-even mass matrix 

and the charged Higgs mass against the CP-odd mass (m^o) for two fixed 

values of tan /3 = 1.5 and 20. In Figure 4.4 we also include the MSSM predictions for 

t a n ^ = 1.5 taken from [4] for comparison. Notice that, unlike the MSSM predictions 

from [4], our model is excluded by the LEP signal for t a n ^ = 1.5. There are 

additional experimental lower limits for the other Higgs masses 

> 92 Gey > 6 9 G e y (4.65) 

but these provide a much weaker constraint on our model. 
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Higgs Mass (GeV) 

400 -

300 

2 0 0 -

100 -

tan p = 20 

1 1 5 GeV 

100 200 300 400 
(GeV) 

Figure 4.5: The Higgs masses against for tan/) = 20. We have 
run 1 < Mc < 4 TeV parametrically along each curve. The LEP candidate at 115 
GeV [77] is shown for comparison with 

In Figure 4.6, we plot the lightest Higgs mass (m/to) as a function of the compactiA-

cation scale Mc and tan /). The LEP data excludes the parameter space below the 

first contour at = 1 1 5 GeV [77] which corresponds to a compactiAcation scale 

Mc py 1.5 — 1.7 TeV over the whole range of tan Combining Figures 4.3 and 4.6 we 

find a very conservative estimate for the allowed window of compactification scales in 

o u r m o d e l ; 

1.5Tey < Mc < 4 T e y (4.66) 

Our model can easily accommodate the conventional 4d MSSM upper bound on the 

lightest Higgs boson mass 130 GeV, and can be pushed as high as ^ 160 

GeV with Mc % 4 TeV and 5 ;S tan/) < 20. Recall that including additional matter 

(e.g. gauge singlets in the NMSSM [12, 13]) can also raise the upper bound on the 

lightest Higgs mass, but our "minimal" extension of the MSSM in 5d achieves higher 
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3000 -

M c (GeV) 
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1000 

140 GeV \145 GeV 

130 GeV 

115 GeV 

1. 5 7 10 20 

Figure 4.6: Mass contour plot for the lightest Higgs mass as a function of the 
compactiAcation scale Mc (GeV) and tan in the absence of bottom sector effects 
(i.e. tan/3 < 20). The LEP candidate at 115 GeV [77] is easily accommodated 
over the range of tan/) with a compactihcation scale Afc % 1.5 — 1.7 TeV. At lajge 
tan 20 and Mc —> 4 TeV, the lightest Higgs mass can be as large as m/io ^ 164 
GeV. 

mass bounds without adding extra matter content. 

We can use Figure 4.2 to And limits on the //-parameter from the universal soft Higgs 

maas mgo/f which is constrained when we impose EWSB at the electroweak minimum. 

From Eq.(4.51) we And the ratio between = yMg and |//|^ in terms of the 

compactiAcation and cutoA scales: 

H 
l/̂ l 

M*7r 
(4.67) 
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where we have assumed that ^ 1. 

Recall from section 4.3.4 that we assume non-universality in the SUSY breaking sector 

to obtain maximal (minimal) mixing in the stop (Higgs) sectors for 

viable radiative EWSB while maintaining similar couplings C3 ̂  cg. We can use the 

constraints from Eq.(4.55) to And limits on the ratio between the soft Higgs mass and 

the //-parameter from Eq.(4.67) 

TT < ~ I | 2 

l/̂ l 
,6 STT (4.68) 

and therefore limits on mgo/t in terms of 

(TT + 1) ;$ (Ŝ T -|- 1) (4.69) m H 

The constraints on the ^-parameter for different compactification scales and values 

of tan;^ are shown in Table 4.2: 

Mc = 1.5 T e y Mc = 4 T e y 

tan/) = 1.5 114 > > 57 347 > |//| > 173 

t a n ^ = 20 66 > |//| > 33 215 > > 107 

Table 4.2: Upper and lower limits on the size of the ^-parameter for two diEerent 
values of t a n ^ = 1.5 and 20, and compactiAcation scales Mc = 1.5 and 4 TeV. 

Therefore, the magnitude of the ^-parameter is constrained to the range 33 ;$ 

GeV in our model. 

< 347 
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4.6 Conclusions 

In conclusion we have considered the Higgs sector of an VV = 1 supersymmetric 5d 

theory compactified on an orbifold 5'^/Z2 where the compactihcation scale Mg ^ 

O(T'ey). This effective field theory is inspired by the explicit type I string model 

in chapter 2. Orbifolding leads to fixed points at either end of the extra dimension 

(y) where 4d branes can be localised. Supersymmetry is broken by the F-term VEV 

of a gauge singlet on the brane at y = TrTZ that is spatially separated from another 

Yukawa brane at ^ = 0 where the first two MSSM families and Yukawa couplings are 

localised. Direct coupling between the two sectors (and therefore soft squark masses 

at the high-scale) is suppressed by the separation between the branes which alleviates 

the Savour-changing neutral-current problem since the first and second family squark 

masses are only generated through Savour-blind loops. The third family, gauge sector 

and Higgs fields live in the extra dimensional bulk with their A/" = 2 supersymmetric 

partners (which are required for consistency) and therefore receive unsuppressed soft 

masses due to their direct coupling to the SUSY breaking sector. 

We assume a non-universality in the SUSY breaking sector, where different gauge 

singlets couple separately to the stop (Higgs) fields and the associated F-term VEVs 

are hierarchical (fg,7f <K ^ ,3 ) which induces maximal (minimal) mixing between dif-

ferent KK-modes. The maximal mixing between stop modes requires the use of a 

matrix method to diagonalise the inhnite mass matrix. In contrast the Higgs KK-

modes are minimally mixed so that the mass matrix is dominated by the diagonal 

components and we can effectively decouple the non-zero KK-modes from the anal-

ysis. We And that the soft Higgs parameters are generated by non-renormalisable 

operators. The presence of the third family in the bulk is particularly important for 

its dominant 1-loop contribution to the Higgs effective potential. The full tower of top 

and stop Kaluza-Klein modes contribute to the potential and trigger radiative elec-

troweak symmetry breaking. Following dimensional regularisation and zeta-function 
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regularisation techniques, we find that the 1-loop contributions to the effective po-

tential are separately finite and therefore insensitive to the high-energy cutoff M*. 

However in the maximal mixing limit we And that the top contribution has a non-

trivial dependence on the Higgs background helds, whereas the stop sector will only 

contribute to the cosmological constant. 

We minimise the 1-loop effective potential and impose the conditions for electroweak 

symmetry breaking to find the physical Higgs maas eigenvalues. Requiring the correct 

physical Z°-mass allows us to eliminate parameters in terms of the compactification 

scale Mc and t a n ^ (or equivalently m^o). We use fine-tuning arguments to constrain 

the parameter space Mc ;$ 4 TeV, and choose to study the region 1.5 ;$ tan/) < 

20 where bottom sector effects can be neglected. We obtain physical Higgs mass 

eigenvalues for different values of t a n ^ and find that the LEP signal [77] imposes a 

lower limit on the compactihcation scale Mg > 1.5 TeV. We also fmd that, unlike 

the MSSM, tan/) = 1.5 is not excluded by experiment and our model can easily 

accommodate the LEP signal over the full parameter space. In fact the usual MSSM 

upper bound ;$ 130 GeV) and the NMSSM bound (m/io ;$ 150 GeV) can be 

trivially exceeded and raised to 164 GeV for a compactification scale Mc ^ 4 

TeV and 5 ;$ tan ^ ;$ 20. 

Note that radiative electroweak symmetry breaking is viable over a large range 1.5 ^ 

tan /) ;$ 20 in comparison to an alternative model [92] tha t is severely constrained to 

the smaller range 35 ;$ tan /) ;$ 40. The requirement of perturbativity in our model 

imposes a constraint on the relationship between the compactification scale Mc and 

the cutoff M* scale (Mc ,$ M, ;$ 5Mc). We use this constraint in combination with 

the assumption of a universal soft Higgs mass to deduce limits on the 

/^-parameter, and we find that the magnitude of is inside the range 33 6 |//| ;$ 347 

GeV. 
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Chap te r 5 

Conclusions 

In this thesis we have studied connections between superstring theory and low-energy 

observable physics in the context of type I string models and higher-dimensional 

effective Aeld theories involving intersecting Dirichlet-branes. In chapters 2 and 3, we 

studied how generic models with localised supersymmetry breaking can be realised in 

intersecting D-brane constructions. We considered an explicit three-family example 

involving three intersecting D-branes that, in the limit of asymmetric compactification 

radii, reduces to the gaugino mediated SUSY breaking model, but with the Pati-Salam 

gauge group arising from a linear combination of gauge groups on different branes. 

Type I string selection rules constrained the form of the renormalisable superpotential 

which, for our assignment of open string states, forbids R-parity violating terms and 

leads to a third family hierarchical Yukawa texture. We compared the low-energy 

sparticle spectra with gaugino mediation and no-scale supergravity predictions, and 

found that our model has a characteristic experimental signature with much heavier 

stops, sbottoms and staus due to the separation of the third family states which is a 

common feature of type I constructions. 

We extend these ideas, in chapter 3, by identifying the localised SUSY breaking fields 
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with twisted moduli - closed string states that become trapped at orbifold fixed points. 

Intersecting D-brane constructions provide a mechanism for confining open string 

states (corresponding to MSSM Aelds) at the four-dimensional intersection point be-

tween branes. This offers a string realisation of gaugino and anomaly mediated SUSY 

breaking when the twisted moduli, that acquire SUSY breaking VEVs, are localised at 

another spatially-separated fixed point in the compact space. However, in the absence 

of a complete understanding of non-perturbative corrections to the K ^ e r potential 

and superpotential, we used a model-independent parametrisation to derive general 

expressions for soft masses and trilinears in models with D5 and D9-branes. This 

framework allows us to perform more general investigations of SUSY breaking that 

involve both conventional gravity mediation and gaugino mediated SUSY breciking. 

In chapter 4, we considered electroweak symmetry breaking in an effective field theory 

motivated by the model in chapter 2. The equivalence of A/" = 1 SUSY in 5d with 

A/" = 2 in 4d necessitates the inclusion of additional exotic CP-"mirror" states into 

the spectrum. We are forced to localise Yukawa couplings on a 4d boundary which 

induces mixing between different Kaluza-Klein modes. We utilise a matrix method 

to extract the Kaluza-Klein mass spectrum of the top and stop fields which provide 

the dominant contributions to the 1-loop effective potential. After minimization, we 

derived expressions for the physical Higgs boson spectra as a function of tan ^ and 

the compactihcation scale Mc. We found that the conventional 4d MSSM bounds on 

the lightest Higgs boson can be exceeded for a conservative choice of parameters by 

allowing the third family and Higgs helds to live in the extra dimension. 

The "holy grail" of string phenomenology is to understand how the MSSM can be de-

rived from a higher-dimensional string theory that unites all four fundamental forces 

together in a consistent framework. We would like to understand the observed pat-

tern of fermion masses and the mechanism(s) responsible for supersymmetry breaking. 

However, we must not underestimate the importance of experiment which provides 
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invaluable constraints on constructing realistic string-inspired models. The work pre-

sented in this thesis goes some way to address these issues and bridge the gap between 

low-energy observations and the underlying string theory. 

121 



Append ix A 

Supersymmet r i c Pa t i -Sa lam Model 

In this Appendix we will review the supersymmetric Pati-Salam model [7] which 

arises in heterotic [110] and type I string constructions ^ [52, 55]. The original (non-

supersymmetric) Pati-Salam model [75] was an attempt to embed the SM in a larger 

gauge group. It treated lepton number as the fourth quark colour so that leptons 

and quarks are united within the same multiplets, and right-handed neutrinos arise 

naturally. 

The supersymmetric Pati-Salam model has the same gauge group: 

Gps = 5'[/(4) (g, ® (A.l) 

and each generation % of quarks and leptons transform in the following representations 

under Gfg: 

= (4,2,1] ^ 
\ 6,]: y 

(A.2) 

^However, this type I model has multiple ^(7(2)2, and factors. This model will be studied 
in more detail in chapter 2. 
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F, ,.R 
45 41 4S ) 

'4S ' 

(A.3) 
u ,A I'. / 

where we have suppressed gauge indices, and superAelds are represented by their 

fermionic components from Table 1.2. Notice that right-handed superhelds have been 

CP-conjugated to obtain left-handed superfields to be able to construct a holomorphic 

superpotential. 

The two MSSM Higgs doublet superhelds are contained in the representation: 

H (A.4) 

d J 

where this embedding of the MSSM Higgs fields avoids the phenomenological Higgs 

doublet-triplet splitting problems of minimal 6'(/(5) models [111]. 

There are additional heavy Higgs fields in the representations: 

n 

n' = (4,1,2) 

wg 

d^ 

^ ^ 

„.R „,B G 

(A.6) 

(A.6) 

These heavy Higgses will break the Pati-Salam gauge symmetry down to the SM 

when their "neutrino" components develop VEVs around the GUT scale Mgc/T: 

("K) = (%/%) = ^ Mcc/T ('K') = ^ Mci/T (A.7) 

where 5'(7(3)c is contained in 5'[/(4), and the hypercharge f / ( l )y is a linear combina-

tion of the residual (7(1) subgroups in 'S'(/(4) and 6'(7(2)^. This symmetry breaJ{ing 

separates the two MSSM Higgs doublets in Eq.(A.4), and we And that the hypercharge 
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(and electromagnetism) assignments are naturally quantised. 

In analogy to the discussion of the Higgs mechanism in section 1.2, the broken gener-

ators of the Pati-Salam group have corresponding gauge bosons that become maasive 

after symmetry breaking, while the SM gauge bosons remain massless. Diagonalising 

the mass matrices, we And the following heavy gauge bosons: 

# 6 5'[/(4) bosons with mass-squared -|-

# 2 6"(7(2)^ bosons with mass-squared -|-

# 1 bosons with mass-squared -t- 4-

where ^4 and ^2^ the gauge couplings for 5'[/(4) and 5'f7(2)j^ respectively. They 

are related to the hypercharge coupling by the relation: 
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Append ix B 

Supergravi ty Basics 

We will use conventional supergravity formalism to describe the 4d effective theory 

that describes the low energy limit of type I string models. Supergravity (local SUSY) 

is defined in terms of a Kahler function (G) of generic chiral superfields (<̂  = /t,C'a) 

including the hidden sector closed strings (/t — 5", 7^, Yt) and open string matter states 

(C. = 

The Kahler potential A"((̂ , ^) is a real function of chiral superfields and may be ex-

panded in powers of matter states [65] (including non-perturbative contributions): 

A — A ( / i , h) + Kabihj h)CaCb + —Zab{h, h)CaCh - f h.c. - h . . . (B.2) 

where is the (generally non-diagonal) matter metric and a non-zero bilinear term 

can generate the //-term through the Guidice-Masiero mechanism [14] subject 

^Notice that we have included powers of the reduced Planck mass (Mff ) that appear in the 
Kahler function to obtain the correct dimensions, although it is conventional to adopt natural units 
and set Mf; = 1. 
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to gauge-invariance. The superpotential is a holomorphic function of chiral 

superfields that can also be expanded: 

= #(7^) + + . . . (B.3) 

Notice that it includes a trilinear Yukawa term (that will generate fermion masses) 

and a bilinear //-term. However, the Kahler potential and superpotential also receive 

non-perturbative contributions that are often difScult to predict. To make progess we 

will utilise a simple parametrisation of our ignorance of the non-perturbative sector 

in terms of Goldstino angles and CP-phases. 

B . l S u p e r gravi ty Po t en t i a l 

We know that SUSY must be broken in Nature, but the precise mechanism responsible 

is not known at present. It is convenient to analyse the SUSY breaking by considering 

the F-part of the SUGRA scalar potential It can be expressed in terms of derivatives 

of the Kahler function (?(^, ^), or equivalently in terms of the F-term auxiliary fields 

that can acquire non-zero VEVs and trigger the SUSY breaking [65]. Using Eq.(B.l) 

we obtain: 

- 3 ] = (B.4) 

where / , J = E 5", 2^, and 

Gf = (B.5) 

f z = (B.6) 

We will ignore the D-term contributions arising from the gauge sector. 
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where ( i s the inverse of the metric and satisfies the relation = 

A subscript on G denotes partial differentiation, while the same subscript on F is 

just a label. A barred subscript on an F-term denotes its conjugate field ^ 

W e m a k e n o d i s t i n c t i o n b e t w e e n u p p e r a n d lower i n d i c e s . 

After SUSY breaking, the supersymmetric partner of the Goldstone boson (Goldstino) 

is by the massless gravitino through the super-Higgs mechanism. The gravitino 

now has a mass given by 

™3/2 = = e'"'' i m r = ^(-Pj Kn F,) (B.7) 

and sets the overall scale of the soft parameters. 

In the absence of F-term vacuum expectation values ( ( ^ ) = 0 V<^/), the locally 

supersymmetric vacuum is negative However if one (or more) of 

the auxiliary F-terms acquires a non-zero VEV, the negative vacuum energy can be 

(partially) cancelled. This raises the exciting possibility that the vacuum energy, or 

rather the cosmological constant Vo, can be made vanishingly small in agreement with 

e x p e r i m e n t a l l i m i t s . N o t i c e that such a poss ib i l i ty c a n n o t a r i s e in global S U S Y . 

B.2 S U S Y break ing F - t e r m s 

As previously mentioned, (unknown) non-perturbative contributions to the K ^ l e r 

function require a parametrisation of our ignorance in terms of Goldstino angles and 

CP-phases that the relative contributions to SUSY breaJking from the various 

F- te rms VEVs. We can define a column vector of F - t e r m V E V s F in t e rms of a mat r ix 

f and column vector 8 (which also includes a CP-phase), where 0 has unit length 
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and satisfies p canonically normalises the K&ler metric f = 1: 

F = '\/3Cm3/2 ( f 8 ) 

F t = VSCmg/g ( e t f t ) 

(B.8) 

Replacing the fields by their VEVs, we can rewrite Eq.(B.4) as a matrix equation: 

(y) = F - 3m, 3/2 

(B.9) 

— f C l) 

where Vo is the cosmological constant and hence = 1 + . Therefore, choosing 
3/2 

a vanishingly small cosmological constant sets C = 1. 

As an example consider the case of the dilaton 6" and an overall moduli field T 

with diagonal K ^ l e r metric. The SUGRA potential would be a "sum of squares" 

Vp |Fg|^4- |Fr |^ + . . . — and hence the P-matrix is a diagonal normalising 

m a t r i x : 

PlJ = IJ (B.IO) 

In this special case we would recover the expressions of Refs.[39, 65, 82] 

F = 
Fs 

F r 

\ / 
= \ /3C m3/2 

\ 

(B.ll) 

so that dilaton(moduli) dominated SUSY breaking corresponds to sin^(cos^) = 1 

respectively. However in the more general case, the potential includes terms that mix 

different F-terms. The action of the P-matrix is to canonically normalise the Kahler 

128 



metric and maintain the validity of the parametrisation 

B.3 Soft Masses and t r i l inears 

Using Eqs.(B.2,B.3) we can write down the SUSY breaking masses and 

trilinears that arise in the soft SUGRA potential [65]: 

"t" + A.C.̂  + . . . (B.12) 

where the Kahler metrics are in general not diagonal leading to the non-canonically 

normalised soft masses 

— (^3/2 + ^ ^ (B.13) 

+ ( a •<->• 6) + (o c))] 

where the subscript m = /̂ , C^. Notice that a non-diagonal K ^ e r metric for the 

matter states will generate a mass matrix between diEerent fields. The physical 

masses and states are obtained by transforming to the canonically normalised K ^ l e r 

metric, 

^,6(7,(76 —^ (B.15) 

The Kahler metric is canonically normalised by a transformation = 1, so 

that the physical canonically normalised masses are related to the previous non-

^The Kahler metric always receives ofF-diagonal components f rom the matter fields, but these are 
conventionally assumed to be small in comparison to the diagonal entries. However, the anomaly 
cancelling Green-Schwarz term in string theory mixes different fields at the same level to introduce 
oE-diagonal components of comparable size. 
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canonical mass matrix by the relation 

i = P ' n i l P - (B.16) 

If the Kahler matter metric is diagonal (but not canonical) then the 

canonically normalised scalar masses are simply given by 

(in ( / , J = /,, C.). (B.17) 

The soft gaugino mass associated with the gauge group is: 

and the canonically normalised SUSY breaking trilinear term for the scalar Aelds 

A.6C = F; + ^/In};^, - a^ln . (B.19) 
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Append ix C 

J\f = 2 supe r symmet ry formal ism 

C . l M i r r o r fields in VV = 2 s u p e r s y m m e t r y 

As discussed in section 1.4.3, we can construct VV = 2 SUSY hypermultiplets from an 

A/" = 1 chiral supermultiplet in combination with its CP-"mirror" superfield. We will 

remove any ambiguity by specifying what we mean by a "mirror" partner. Consider 

the left-handed quark MSSM doublet, Q.f,, as an explicit example. Under the MSSM 

gauge symmetry and Lorentz symmetry, haa the following quantum numbers 

respectively: 

Now the mirror the opposite gauge quantum numbers, but still transforms 

like a left-handed Aeld: 
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However, the CP-operation recovers a right-handed "CP-mirror" with the same gauge 

quantum numbers: 

3,2, 0, 
1 

(C.3) 

When we consider the Higgsinos and top quark, it will be useful to form 4-component 

Dirac spinors from the W" — 1 MSSM fields and the CP-conjugates of their mirror 

fields. This leads to mixing in the classical equations of motion as discussed in 

Appendix C.3. Similary for gauginos we associate the usual W = 1 gaugino and its 

.A/" = 2 superpartner together in a 4-component spinor. Note that use of the term 

"mirror" will implicitly include CP-conjugation. 

C.2 5d Di rac mat r i ces 

In this Appendix we will review the Dirac matrices that appear in the fermion terms 

of the 5d Lagrangian. We will use the notation that the indices M, N run over 0,1,2,3,5; 

and runs over 0,1,2,3 as usual. We use a timelike metric "1 ) ; 

and take the following basis for the 5d Dirac matrices: 

7 M 
/ 0 a'' ^ 0 ^ 

o''" 0 0 I ) \ 
(C.4) 

where = (1, 

C.3 M — 2 spinors and 5d k ine t ic t e r m s 

It is convenient to work in terms of A/" = 2 hypermultiplets, which we have seen are 

formed from conventional A/" = 1 supermultiplets by adding the CP-conjugates of 
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their mirror superhelds with opposite quantum numbers. 

We will consider an explicit example where the third family lives in the extra-

dimensional bulk. The third family scalars and their mirrors are uncoupled, and 

so only the even parity (MSSM) scalajs couple directly to the SUSY breaking sector 

to acquire a soft mass. However, the form of the 5d Dirac matrices causes mixing 

between fermion fields of even and odd Zg-parity. 

Consider the top fields charged with respect to the (unbroken) 5'(7(2)^ gauge group 

in the MSSM - the left-handed top is contained within the left-handed quark doublet 

Qsf, along with the left-handed bottom quark. The right-handed top is a singlet with 

respect to 5'[/(2)z,, and so a Dirac mass term ^ + is forbidden by 

gauge invariance^. 

In the VV = 2 generalisation, we must include additional mirror fields to construct the 

fuU 5d hypermultiplet. The left-handed top and the CP-conjugate of its mirror, 

can be combined into a 4-component Dirac spinor, since the charge-conjugated 

left-handed mirror is equivalent to a right-handed fermion. Similarly for the right-

handed top and its mirror Notice that 5'(/(2)f, singlets and doublets appear in 

different Dirac spinors, and therefore do not break the gauge symmetry. We have two 

4-component Dirac spinors for the top sector, where the index labels the handedness 

of the MSSM fermion: 

Tl T , R 

/ -imc \ 

t n 

(C.5) 

a n d s im i l a r l y T = T'^7'' 

Tr .met .t (C.6) 

Dirac mass may be formed after the SU{2)l gauge symmetry is broken which is what happens 
in the (MS)SM through the Higgs mechanism and EWSB. 

133 



We can now construct the kinetic terms in the 5d lagrangian in the absence of inter-

actions. 

= (C.7) 

Notice that the 4d kinetic terms do not mix fields, while leads to mixing between 

fields and their mirror states. This leads to non-trivial classical equations of motion. 
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Append ix D 

Spec t rum of Gauge bosons in 

B M S B 

D . l Gene ra l case 

In this Appendix we consider the effect of symmetry breaking on massless gauge 

field states and gauge couplings in the BMSB model of chaper 2. We begin with 

the gauge group 5'[/(4)52 g) 5'[/(2)5^^ (g 5'[/(2)52^ ® 5'[/(2)5^^ (g) 5'Z/(2)52^, where the 

scale-dependence of the gauge couplings is governed by RGBs. Conventionally, the 

symmetry breaking all occurs at high energies (10^^ — except for 5'[/(2)^ (g) 

which happens at the electroweak scale (u % 246 GeV). In the 

tables that follow, gauge couplings are assumed to be at high energies unless other-

wise stated. Notice that i, a and m are adjoint indices for SU(2), SU(3) and SU(4) 

respectively. 

(a) First combine the chirai SU(2) groups from either brane via diagonal symmetry 

135 



S U ( 4 k , '$'^(2)5,. 

9^2 5̂ 51 

Gg: 

Table D.l: The initial gauge groups, gauge couplings and states in our model, 

breaking to recover the Pati-Salam gauge group. 

SC7(2)5.,„ (S 51 '(2)5„, , SU{2Uin 

SU(4h, » SC/(2)i ® S£/(2)„ = G f s => (D.l) 

Spontaneous symmetry breaking (SSB) induces a change of basis, parametrised by 

(D.2) cos = 
+ & 

We can express the new massless states and gauge couplings in terms of the original 

parameters. The Higgs mechanism generates massive gauge bosons with masses of 

the order of the symmetry breaking scale. 

5'[/(2)^ ^(7(2)B 

5̂% 

+ & 

Table D.2: The new massless states and couplings after the original gauge symmetry 
is broken down to the Pati-Salam gauge group. 

plus 3 massive 6'[/(2)_L ( % ) ^'^d 3 massive 5'(7(2);% bosons, of mass 
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(b) QCD 6'[/(3)c is contained within The U(l)8 combine to give the hyper-

charge U(l) using the relationship y = (B — + 2/^. 

D [ / ( I ) / , (D.3) 

The Pati-Salam gauge group is broken down to the Standard Model by giving VEVs 

to the Higgs fields "K' as discussed in Appendix A. 

® [/(I)/;, ^ [ /( l)y 

(D.4) 

The change of basis is parametrised by 

cos 9 h = 
3 (psi + a'sz 

5 4 + 
(D.5) 

Gaifge group 5'(7(3) [/(I) y 

952 gl, = 
951 352 

& 
gy = gSig'Sz V3 

ysgg,+ 

G: 
52 

9^ 0 1 ' & 
BY = 

Table D.3: The Standard Model massless states and gauge couplings expressed in 
terms of the original parameters. 

plus 6 massive 5'(7(4)52 bosons mass Mg = 

2 massive 5'[/(2)j% bosons mass 

and 1 massive 5'[/(2)g_f, boson (Xg-i,), mass 4^% 
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(c) Finally, we can recover the QCD and EM Standard Model gauge group via the 

familiar low-energy Higgs mechanism, parametrised by 

coŝ M^ — 
5̂ 51 (u) + (t;) 

Electroweak symmetry breaking occurs when the Higgs fields 77 ,̂ acquire non-

zero VEVs. Notice that the gauge couplings are evaluated at the electroweak scale 

5̂  = 

5'(/(3)c 0 (7(l)gM (D.6) 

Gauge group 5'(/(3) (7(1) 

Co«p/mg 5̂2(1;) e = 
g5i(t;)6r52(i;)\/3 

A = 

Table D.4: The massless gauge states and couplings after electroweak symmetry 
breaking. 

plus 3 massive 5'(7(2)2, bosons with masses: 

w i 2 2\/^5i (u) + 5̂2 (t;) 
and 

2 + F52(^)) (%5. (u) + 
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D.2 Limi t ing case ^ 

In this Appendix we repeat the symmetry breaking analysis for the limiting case 

^52 » Asi 5̂52 5̂51 (D.7) 

We find that the dominant components of the massless gauge fields live on the 82-

brane ("bulk") which is consistent with - "single brane dominance". 

(a) After diagonal symmetry breaking we recover the Pati-Salam gauge group 

8(7(4)5, 0 ^[/(2)^ 0 ^f7(2)B 

^(7(4)5, ^[/(2)^ ^(7(2);% 

952 

Table D.5: The dominant components of massless states and couplings after symmetry 
has been broken down to the Pati-Salam group. 

plus 3 massive 5'(7(2)f, and 3 massive 5'[/(2)^ bosons 

M i l . , 2 x , 2 

Z,/A 

(b) We break the Pati-Salam group down to the Standard Model. Notice the relation-

ship between the hypercharge gauge coupling and the other gauge couplings, which is 

consistent with gauge coupling unification. This will happen if the 5; gauge coupling 

equals gGt/T the GUT scale. 

plus 6 massive 5'(7(4)52 bosons 

2 maasive 5'[/(2)B bosons ^ f 

and 1 massive 5'[/(2)a_^ boson ^ 
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g' l ,a '52 

^5, 

Table D.6: The dominant components of the massless states and couphngs after the 
Pati-Salam group is broken down to the Standard Model. 

(c) Finally the Higgs mechanism indnces electroweak symmetry breaking, and gener-

ates the massive W and Z bosons. 

^(7(3)c (/(l)gM 

e - yia'sg 

\ /§ + §(̂ 52 

Table D.7: The dominant components of the familiar massless gauge states after 
electroweak symmetry. 

plus 3 massive bosons: 

and (Zg - -
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Append ix E 

Mass scales in B M S B 

In this Appendix we consider the different mass scales present in the BMSB model. 

Each time the gauge symmetry is spontaneously broken down towards the Standard 

Model, the gauge bosons associated with the broken generators acquire masses via 

the Higgs mechanism, where the masses are around the symmetry breaking VEVs. 

Our model already assumes an order for symmetry breaking, which creates a VEV 

hierarchy For instance, we know that ^ 

since these broken symmetry bosons have not been observed. 

We must also consider the (inverse) compactiAcation radii of the D5-branes. Their 

relative sizes are arbitrary, but we choose to start with the relationship or 

equivalently as shown in Figure E.l. Notice that we have not specified 

how is related to the other two compactihcation radii, sufBce to say that a large 

third dimension (felt by gravity alone) is not forbidden, i.e. 

In this work, we have adopted the standard scenario with symmetry breaking occur-

ring at a scale comparable to the first two compactification radii and string scale. 

Soft masses are also generated at around the same scale. We have deliberately not 

specified these scales, but we claim that the formalism applies for GUT/string scales 
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Energy scale 

Af Af* -

= (Zsz = 6 g5 ,̂ g52(6d) g5i (27r% J , 5̂% (̂ Tr̂ Sg) 

4 i = 4 , 4 ; = 6 g5i,g52(6c() gsz (27rJ?52) 

(̂ 5i = (fsz = 4 g'Si , gSz 

Figure E.l: At energy scales below an inverse compactiHcation radii, the dimension 
appears too small to observe. The coupling in a higher-dimension is related to the 
same coupling in a lower dimension via Eq. (2.2). 

in the region 1 TeV to 10^ GeV. 

We impose the following restrictions: 

-1 D-l 

(E.l) 

^ t; ^ O (M p̂y) 

These constraints provide six ways of ordering the inverse radii and VEVs. The 

snpersymmetry breaking scale (where soft masses are generated) also needs to be 

assigned, thus giving a total of 30 possibilities. 

In Table 13 we list the various possibilities for the relative ordering of mass scales, 

VEVs and inverse compactihcation radii within the constraints of Eq.(E.l). 
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A V M * 

B V A s / M * 

C V A s / M , 

D V A s / M * 

E V 

F V 

Table E.l: Possible ordering of symmetry breaking VEVs and inverse compactification 
radii within the constraints of Eq. (E.l). 
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Append ix F 

Sequestered Hidden Sectors a la 

Randa l l -Sundrum 

Randall and Sundrum [22] constructed a model with parallel 3-branes separated along 

a hfth extra dimension y. Matter fields are localised on one brane at 1/ = 0 while 

SUSY was broken on the other brane at ?/ = 2̂ . SUSY breaking is communicated 

between sectors via bulk helds living in the extra dimension including gravity and the 

conformal anomaly multiplet. The hidden sector is truly '^sequestered", or hidden, 

from the visible sector due to the very weak gravitational coupling strength. 

Consider the supergravity lagrangian kinetic term for chiral matter superfields Q = 

(g, g) coupled to generic bulk superfields 0, 

£ y = 9 Jd'O [ f ( Q t . 0 ) - i / (?•. g ) TC + . . . (F.l) 

where g' = % is the Ricci scalar, and we adopt the "compensator formahsm" 

of Wess and Bagger [112] for the gravity fields: 

$ = 1 + (F.2) 
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such that Sat space corresponds to $ = 1, = 7;̂ ^ and Eq.(F.l) recovers the 

familiar globally supersymmetric lagrangian. 

The kinetic lagrangian function / is related to the supergravity Kahler potential AT 

by: 

/ = (F.3) 

where Mp; = Mp;/87r is the reduced Planck mass and is conventionally set equal to 

unity in cosmological units. Notice that for a canonically normalised K ^ e r potential 

^(9^, 9) = 9^9 then 

9) + . . . (F-4) 

which gives the standard Ricci scalar term from the Einstein-Hilbert action 

+ (F.5) 

Now we will include a hidden sector field S which acquires a non-zero VEV and 

breaks SUSY. The effect of SUSY breaking is communicated to the visible sector 

via the bulk $ fields, and any direct coupling between the two sectors arises from a 

non-renormalisable operator with a coefhcient suppressed by powers of Mp;. 

Previous attempts to incorporate a hidden sector held have simply added the visible 

and hidden sector matter Kahler potentials together hut from 

Eq.(F.3) this will clearly lead to a non-zero tree-level scalar mass, albeit suppressed 

by powers of the Planck mass. Randall and Sundrum realised that in order to obtain 

a truly sequestered hidden sector, the hidden and visible sector K&ler potentials 
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must be added non-linearly: 

y — — + /t,,;, + A i j 

= — 1 + -j_ g-^h,d/3M^i (F.6) 

which gives a combined K ^ e r potential: 

li^RS — —3-Mpilii 2 _j_ g I^vis/3Mp^ _j_ g (F.7) 

Notice that there is no problem adding the individual hidden and visible sector su-

perpotentials together to form a combined superpotential, since each superpoten-

tial is radiatively stable due to supersymmetric non-renormalisation theorems. The 

Randall-Sundrum K ^ l e r potential possesses the property that - due to a "magical" 

cancellation - the scalar mass vanishes exactly at tree-level. 
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Append ix G 

Al ternat ive exponent ia l 

suppression factor 

In this Appendix we consider an alternative suppression factor that is at-

tributed to non-perturbative world-sheet instanton corrections [86], and diEers from 

the (previous) held theory interpretation of the suppression due to propagating mas-

sive m o d e s . 

We summarise the modified scalar masses and trilinears found by repeating the earher 

calculations in section 3.4, but with the alternative suppression factor. The non-

sequestered scalar masses of Eq.(3.43) remain unchanged, but Eq.(3.44) becomes: 

— -mgyg ^sin^ ^ + 03 cos^ ^ sin^ 

cos^ ^ sin^ + 0 ^ 

—3m3y2sin^^ (G.l) 

— 3m3y203 cos^ ^ sin^ 

3 
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where 

~ 2 2 
m = ^ 3 / 2 1 — cos^ ^ cos^ — e 

COS^^Sm^,^8^(^Gg _ ^_(T2+T2)/4 
^ — (^oa ln(72 + 72 (G.2) 

32A; 
COS^^COS(̂ 8m<^ ^026'(°^^ 4-036 (̂ 2+^2)/4 

3 2 7 1 

X {}^ + }^ - ln(T2 + f2)} (8(^2 + fz ) + {}^ + ^ _ ln(r2 + fg)} 

which replaces Eq.(3.45); and the masses are expanded up to O "m.? Tz+TzJ 

Similarly we can And modiAed expressions for the trilinears of Eqs.(3.52 - 3.57). 

C^i ®2 C®1 ®2 — V^M^3/2 COS 9 sin 
02 e'^z 

^ / T 

+ sin <A e-(:r,+f,)/4 ^ + ^2)}' 

- cos (1 + 2 e-(:r,+T,)/4^ {}^ + :^ - ln(r2 + ^2)} 

(G.3) 

AgGcSSigMi — —'\/3?7%3/2 singe'""^ 

+ cos g sin e-m+f2)/4 fy . ^ j " 
12\/^ 

(G.4) 

cos ^ cos - — (1 + 2 {}2 + ^ - lii(r2 + f , 

= —'\/3m3/2 
1 1 / • 09 
- sin ^ + - cos ^ sin I 0 1 -| 1 : ^ 
2 2 \ 

03 e'''^ 

+ cos ^ sin ^ 0 ^ e-m+T2)/4 + ^^2)}' (G.5) 

cos g cos ^-— ^1 + 2 e (̂ 2+7!2)/4̂  _|_ + T2) j 

=/tg5lg85i(;85i = "\/3m3/2 COS^ 

+ sin e-(T2+f,)/4 + 2̂ )̂ j 

sin ^ 01 6*°̂^ 

2 
(G.6) 

148 



COS 111(̂ 2 + fg)}] 

82 e ' ^ 
sin ^ 

V ^ 
AgS2g52(;52 =^C=2C852C952 = " \/3yM3/2 COŜ  

- COS e'^2 lll(r2 + fg)}] 

^c=c^c^ = ^c»c»s2c»52 = —'\/3m3/2 [sin^e"^^ 

(G.7) 

— cos ^ COS 6'°"^ '̂ 2̂ + ^2 — lll(T2 + T2) j (G.8) 

where all trilinears have been expanded up to O -

It is now straightforward to consider these modified expressions in diEerent hmits of 

SUSY breaking domination as before. 
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