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Two values for the second moment of the pion's distribution amplitude are ex-

tracted from a lattice simulation of the appropriate two-point correlation func-

tions. The renormalisation coefBcients are calculated by combining the results 

from one-loop diagrams computed in the lattice regularisation scheme and the 

MS scheme. A comparison is made with previous lattice studies and QCD sum 

rule predictions. 
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C h a p t e r 1 

T h e p ion ' s d i s t r ibu t ion ampl i tude 

One of the main achievements of Quantum Field theory is the description of 

all hadrons through Quantum Chromodynamics (QCD). However, this theory 

is difhcult to handle since its degrees of freedom, quarks and gluons, are not 

directly observable. This is due to the confining nature of QCD. The strong 

coupling constant Og, which is dependent on the energy scale, blows up in the 

low energy region (< 1 GeV), resulting in the confinement of quarks and gluons 

to form hadrons. In this region, it is therefore impossible to perform perturba-

tive computations through an expansion in powers of Correspondingly, at 

high energies QCD exhibits the property of asymptotic freedom i.e., the couphng 

between quarks and gluons decreases considerably (and vanishes when the scale 

tends to infinity), thus facilitating computations based on a perturbative expan-

sion. We emphasise however that even at high energies, non-perturbative effects 

(hadronisation) always have to be considered. 

One way to approach this problem is to try to factorise long- and short-distance 

physics i.e., separate low energies from high energies, the latter of which can 

be dealt with using perturbative techniques. The hadronisation of quarks and 



gluons at low energies is then described by a ampZzYwffe (or hadronic 

wavefunction) [1, 2, 3, 4]. 

In calculating hadronic amplitudes, one must include both the hard perturbative 

part of the amplitude and the non-perturbative hadronic wavefunctions. Since 

the exact form of the hadronic distribution amplitudes are still uncertain despite 

several studies [5, 6, 8, 9, 10, 11, 12, 13, 14], the description of the binding 

of quarks and gluons to form hadrons is an essential part of the theory that 

requires more understanding. In this work, we use Lattice QCD (LQCD) to 

improve on the description of the leading-twist hadronic wavefunction of the 

pion. Lattice simulations are particularly well suited to this problem since they 

provide a framework in which to compute Green functions from first principles, 

with a good control of errors. 

In this chapter, we first discuss how factorisation can be applied to exclusive 

processes at high energies. We then focus on the non-perturbative elements of 

this approach and in particular, the distribution amplitude. We illustrate how the 

moments of the pion's distribution amplitude can be related to matrix elements 

through an operator product expansion, and discuss the significance of the second 

moment at high energies. Finally, the different approaches to calculating this 

quantity are reviewed and the present status of the field is discussed. 

1.1 Exclusive processes and fo rm factors 

There are two different classes of process that can be considered when investigat-

ing the strong interactions. The first is high-energy inclusive reactions in which 

only the incoming states are specified. These processes, such as deep inelastic 

scattering (DIS) however, provide a direct method to investigate the quark con-

tent of the hadrons themselves, rather than the way in which the quarks bind 



to form hadrons. The strong interactions can also be studied through 

processes in which the incoming and outgoing states are speciAed. They can 

be written in terms of form factors which are Lorentz invariant functions of the 

momenta of the incoming and outgoing particles. An important source of in-

formation is that of electromagnetic form factors, since the photon is a suitable 

probe with which to examine the structure of the bound state. In such processes, 

high momentum transfer implies high resolution. Therefore, the hard elastic 

scattering in e'vr —e"7r provides a natural approach to studying the detailed 

internal structure of the pion, as illustrated in Fig 1.1. 

7r(p2) 

Figure 1.1: eTT —ejr scattering where the pion-photon interaction is described 
by the form factor 

The 7*7r7r vertex can be written in terms of the electromagnetic form factor 

(7r(p2) 1^(0)1 7r(pi)) = +P2),i (1.1) 

where V^(0) = (|ew7^u — ̂ ed'^nd) is the electromagnetic current for the light 

quarks and > 0 is the momentum carried by the photon. There is no 

term proportional to (pi —^2),/ due to conservation of the electromagnetic current. 

The form factor is a non-perturbative quantity which contains both the 



long-distance effects responsible for the hadronic structure and short-distance 

interactions between the photon and the constituent partons. 

1.2 Factor isa t ion in exclusive processes 

In order to isolate the interactions responsible for the hadronic structure of the 

pion in the exclusive process (Eq. 1.1), long- and short-distances must be sepa-

rated. We now discuss the physical picture that will enable the factorisation of 

the form factor into hard and soft contributions [10, 15]. 

1.2.1 Physical picture 

The perturbative part of a high-energy process deals with the participating 

hadrons in their partonic form. For high enough energies, the relative velocities 

of the participating particles are "light-like". The binding of the hadron occurs 

through quantum processes which are highly time dilated in the rest frame of 

the remaining particles (i.e. the electron for ê Tr —e"7r). This time dilation 

results in a lengthening of the lifetime of the states within the hadron and so 

the partonic content of the pion appears to be "frozen" relative to the electron. 

As the relative velocities approach the speed of light, the duration for which the 

particles remain in contact decreases and in this scenario, we expect an absence 

of quantum interference between the long-distance interactions that ensure the 

hadronic structure, and short-distance momentum transfers. This incoherence 

between hard and soft physics suggests that throughout the collision process, the 

participating hadrons are composed of definite partonic states. 

This idea is illustrated by the electron-pion scattering in Fig 1.2, where the soft 

interactions between the incoming valence quarks are represented by the distri-



bution amplitude <̂ ,n. The partons in this state then exchange momentum with 

the electron via a photon, described by the hard-scattering kernel Tjj and at a 

later time, reform into a pion described by the wavefunction (f)out-

•^out 

Figure 1.2: Separation of soft and hard physics in electron-pion scattering 

1.2.2 Light-cone coordinates 

To study the factorisation of high-energy exclusive processes involving light hadrons, 

it is useful to introduce light-cone coordinates. In e"7r —̂  for instance, the 

momenta of the incoming and outgoing pions = m l are much smaller 

than the momentum transfer We can therefore make the approximation 

Pfn ~ Pout — 0, i e. incoming and outgoing particles are moving on the light-cone. 

Moreover, the partons that constitute each pion are expected to be collinear to 

the momentum of the hadron, with only a small transverse momentum. As a first 

approximation, the momentum of the constituent partons can also be considered 

as light-like. 

A standard four-vector and its modulus squared are defined as 

= and 'Un - u? (1.2) 



The light-cone coordinates are then defined as 

0̂ i % 1 —>• / \ and (1.3) 

such that 

= (i;+;U_,u_L) and u = (1.4) 

The two ''light-like" vectors = (1,0, Oi) and n_ = (0,1,0±) are shown in 

Fig. 1.3 below 

(space-like) 

uo 

(time) 

%;+ = 0 
(time 

(time 

like) 
light-cone 

, ' t;_ = 0 

i;3 (space) 

(space-like) 

like) 

Figure 1.3: Illustration of the light-cone coordinates. 

We define the -f- and — directions for the process of interest (Tr-y* —vr) 

Pin — E{nTl — 

Pout — 

(1.5) 

(1 .6) 



1.2.3 Factorisat ion 

We now proceed by factorising the electromagnetic form factor [1, 2, 16]. At 

very high energies (Q — + o o ) , the exclusive amplitude is dominated by hadronic 

states with valence quark content (gg in the case of the pion). Previous argu-

ments suggest that long- and short-distance effects can be separated, and the 

corresponding expression for the form factor given in Eq. 1.1, is the convolution 

= J dxdydz{iT{p2)\ul(x)d''^(y)\0) 

(1.7) 

where higher order corrections are suppressed by factors of 1/Q^. Greek and 

Roman indices denote spin and colour respectively, ajid the integral is over the 

spatial coordinates. Since we are outlining the general approach, we do not use 

light-cone co-ordinates. The perturbative amplitude Th is computed at the quark 

level. The bi-local matrix elements represent the hadronisation of quarks and 

gluons. A path-ordered exponential 7^exp[j^ where is the gauge 

field, is inserted in the bi-local matrix elements to maintain gauge invariance^. 

This is illustrated in Pig 1.4 where the bi-local matrix elements in Eq. 1.7 that 

represent the hadronisation of quarks and gluons into a pion are pictured as blobs. 

The formula written in Eq. 1.7 is an attempt to factorise soft and hard contribu-

tions. In some physical processes, soft gluon exchanges contribute significantly 

inside the hard scattering kernel. For such cases, soft and hard contributions can-

not be disentangled and the factorisation framework breaks down. We therefore 

note that a consistent factorisation framework requires that soft gluon exchanges 

must be suppressed in Eq. 1.7. 

^The exponent vanishes in the light-cone gauge and therefore this term is absent in the 
light-cone formalism. 



Figure 1.4: Factorisation of the electromagnetic pion form factor 

The perturbative kernel Th describes the hard-scattering of the photon and the 

partons. At high momentum, since the pion is almost light-like, the valence 

quarks are approximated to be collinear. Each valence quark of the incoming 

pion carries a fraction of the total momentum, upi or iZpi such that w + iZ = 

1. Correspondingly, the valence quarks of the outgoing pion carry fractions of 

momentum &nd upg such that f + u = 1. Some contributions to % are shown 

in Fig 1.5. 

(b) 

Figure 1.5: Hard exchange of gluons contributing to the electromagnetic form 
factor where (a) 0(0:,) contributions (lowest order) and (b) some higher order 
contributions. 



Dimensional arguments suggest that distribution amplitudes for three (or more) 

partons (illustrated in Fig. 1.6) do not contribute to the form factors in the limit 

Q —̂  oo. This has been proved for the process TTo —'Yi'* [2]. The high-energy 

picture of a pion made up of two valence quarks greatly simplifies the computation 

of the hard-scattering kernel 2^. 

TT ^ TT 

Figure 1.6: Three- and four-parton distribution amplitudes that are suppressed 
by factors of These diagrams are therefore absent in the computation of the 
form factor at the leading order in Q. 

Having factorised f^(Q^) into non-perturbative matrix elements and a pertur-

bative kernel (Eq. 1.7), we can now relate these matrix elements to the pion's 

distribution amplitude via a light-cone expansion. Before this, we end the section 

with a brief discussion of factorisation in the inclusive case. 

1.2.4 Compar ison with the inclusive case 

As discussed, the factorisation framework enables the calculation of processes 

at short-distance or high-momentum transfer. Factorisation can be applied to 

inclusive aa well as hard exclusive processes. In the latter case, the hadronic 

amplitude is represented by the convolution of a process-dependent hard scatter-

ing amplitude Th (computed at the quark level) with a distribution amplitude 

that is process-independent. In the inclusive case (Zp —> /%), the cross-section 

can be expressed as the product of a scale-invariant lepton-quark cross-section 

(iiT convoluted with structure functions (9. The structure function is a sum of 

squares of the light-cone distribution amplitudes. 

9 



In order to outline the relation between these processes, a comparison of exclusive 

amplitudes and inclusive cross sections is given in Table 1.1 [4], 

exclusive amplitudes inclusive cross sections 

do- ru nG(Zo, Q) g) (f<T(Za, Q) 

4a;, 0 ) = k i ) G(a;, Q) = En 

measure in --y —̂  M M measure G m Ip ^ IX 

[Tff expanded in expanded in 

Table 1.1: Comparison of the factorisation parameters in exclusive amplitudes 
and inclusive cross sections 

1.3 T h e d i s t r ibu t ion a m p l i t u d e 

The motivation underlying the computation of the pion's distribution amplitude 

exists not only because of the information that it provides on quark binding in 

hadrons (i.e. the pion). In addition, is an input parameter in several hadronic 

amplitudes such as the electromagnetic form factor of the pion and > vr 

which is studied by the CLEO collaboration [17]. The study of B-decays also 

benefits from a better knowledge of It has recently been proved that two-

body decays, such as .8 —̂  Trvr [18, 19], can be computed in the framework of 

factorisation in the heavy quark limit > oo. The analysis of current data 

from BELLE [20], and BABAR [21] would also benefit from information on the 

pion's distribution amplitude. 

In this section, the bi-local matrix elements appearing in Eq. 1.7 are expanded 

near the light-cone and re-expressed in terms of the pion's distribution amplitude. 

We outline the connection between the light-cone expansion and the Operator 

Product Expansion (OPE). 

10 



1.3.1 T h e light-cone expansion 

The outgoing bi-local matrix element in Eq. 1.7 is expanded near the light-cone 

[2, 10], i.e. (z — 2/)̂  1/0^, that 

(7r(p)|Ma(a;)(//3(2/)|0) = ^ ^ + /t.(. (1.8) 

where is the distribution amplitude of the pion and = 93 MeV is the 

pi on decay constant. Although a path-ordered exponential has been inserted to 

preserve gauge invariance, the exponent vanishes due to the choice of gauge (see 

Footnote 1, page 7). There are several important points to note in Eq. 1.8 

# Eq. 1.8 is written with the underlying assumption that transverse momenta 

up to have been integrated into the bi-local matrix elements, whereas 

transverse momenta larger than will be included in the hard-scattering 

kernel 7 ^ (see Eq. 1.7) 

# A renormalisation scale has been introduced in the definition of (j). The 

renormalisation scale dependence of ^ will then be cancelled by the scale-

dependence in to yield renormalisation scale independent form factors. 

# and iZ are the longitudinal fractions of momentum carried by the valence 

quarks such that u + u = 1 

# are terms that yield ^-suppressed contributions to form factors. They 

are said to be higher-twist in the light-cone expansion (where twist is defined 

in Eq. 1.16), and consist of all the possible terms with the same spinorial 

structure and quantum numbers as the LHS of Eq. 1.8. 

Inserting the Dirac matrix ('-ŷ '̂ys)̂ ^ into Eq. 1.8 and taking the trace, we obtain 

(7r(p)|u(a;)('y^'-X5)%)|0) = (1.9) 

11 



where again, the integration over transverse momenta is implicit. This choice of 

Dirac matrix isolates the lowest twist term containing the pion's wavefunction. 

When a; and ^ coincide, Eq. 1.9 reduces to the coupling of the pion to the axial 

current. The distribution is thus normalised 

Jo 

In the isospin limit the distribution amplitude of the pion is symmetric 

under the transformation « i.e. 

This property is a consequence of the symmetry of the pion under G-parity (the 

combination of an isospin rotation with charge conjugation). 

1.3.2 T h e Ope ra to r P r o d u c t Expansion 

At small separations, bi-local operators exhibit a divergent behaviour. This diver-

gent behaviour can be expressed as the sum of products of a local operator with a 

coeScient function (the so-called Wilson coeScient) depending on the separation 

z. The local operators should have the same quantum numbers as the initial bi-

local operator, and the Wilson coeScients exhibit the same divergent behaviour 

as z 0. The OPE for the time-ordered bi-local operator Ua dp is 

written as [22]: 

T 

Z • 9.. (1.12) 
t=0 

12 



where the local operators are of the form 

o ' : ' (0) = ^r (™)S„ (1.13) 

and the covariant derivative is defined aa 

In Eq. 1.12, m takes the values 1, 2 with Tj/) = and = 7/̂ 75, and we 

note that m = 2 is the case of interest later. The Lorentz indices are counted 

by J and A; < j . The local operators defined in Eq. 1.13 are gauge-invariant and 

traceless, and have the same quantum numbers as the bi-local operator on the 

LHS of Eq. 1.12. 

The Wilson coefhcients C, carry the singularities of the matrix element in the 

expansion. The short-distance behaviour of these coefficients is obtained by di-

mensional counting 

lim (1.15) 
z^-^O 

where and A; are the dimension and spin respectively of the local operators 

the renormalisation scale, p is the anomalous dimension of the local 

operator and D is the dimension of the bi-local operator. The singularity of the 

Wilson coefficients is dependent on the twist r of the operators, defined as 

T = — k (1.16) 

The leading (most singular) term in Eq. 1.12 corresponds to the operators with 

13 



the lowest twist. In the case of the bi-local operator defmed in Eq. 1.9, the lowest 

twist is T = 2. The corresponding operators are of the form 

Dm V" (1-18) 

D îiDIJ,2 '0 (1.19) 

/̂1(0 •••ATN '̂ O'/ttoTS D 1^1 • • • DTIN 05 (1.20) 

When sandwiched between a pion and the vacnuin, 0 ^ is related to the pion 

decay constant and vanishes because the wavefunction is symmetric un-

der G-parity^. The hrst non-trivial matrix element involved at the lowest twist 

contains the operator 

V'- (1-21) 

This operator is dominant at small z since it has the largest anomalous dimension 

of all the possible lowest twist operators and therefore (from Eq. 1.15), its Wilson 

coefEcient is the most singular. 

1.3.3 T h e O P E and its re lat ion to t he dis t r ibut ion ampli-

t u d e 

We can now make the connection between the OPE in Eq. 1.12 and the moments 

of the distribution amplitude (^^(a;,/.«) [22]. Using translational invariance, the 

^Only even moments of the distribution amplitude are non-vanishing. 

14 



light-cone expansion in Eq. 1.9 can be re-written as 

7r(p) 

At this stage, we include the renormalisation scale-dependence on explicitly. 

As discussed in Sec. 1.3.1, Eq. 1.22 is shorthand notation for 

(2 TT 
d' zj_ e 

=0 

= (1.23) 
JO 

We note here that in using light coordinates, p.z = p+z_ +p_z+ — pj.i'x, and that 

we choose p_ = 0 and = 0 (because is light-like). A Fourier transformation 

is used to eliminate the exponent on the RHS of Eq. 1.23 and so we obtain the 

complete expression for the distribution amplitude 

A -/ 27r 
e 2 p+z-(u-u) 

(2 TT 

TT (P) ^ ( 0 7+75 ^ 0 
z+=0 

(1.24) 

In order to relate the distribution amplitude to the OPE, we insert the Dirac 

matrix ('y '̂'y5)a^ into Eq. 1.12 and take the trace. The Wilson coefBcients are 

now defined aa 

C t ( 0 ' ) = 4 
(27r) 

With this definition, we can relate <;6(u, Q^) directly to the OPE: 

2 /" (fz-
(w ,Q) ^ — y 

A -/ (27r) 
62 ^p-l,z-(u—u) E 

(1.25) 

15 



.. .^^X7r|V'(0h+75 5^, . . . D̂ ,k V'(0)|0), (1.26) 
t=0 

^ /- ^ vZ. - 2 . 

A ; (27r) 
62' E E Y ( « -

(p+z_)y, , ,6t(7;(Q'), (1.27) 

where 

(ir(p)|!^7+75 . . . Dn 1^(0)10) = 6ip+p„, .. . p „ . (1.28) 

and integration by parts has been used to convert the external derivatives ^̂ +̂1 - -

into factors of ^p+(2/ — ti). This also produces terms from the derivative acting 

on the • • • z^' in Eq. 1.27, however these are trace terms which are subtracted. 

Noting that 

2n ^(tz — w)̂  
(1.29) 

Eq. 1.27 can now be written in the form 

< (̂u, 0^ 
j,i>j k=0 u 

8' 

^(u — «) 
-(̂ (t/ — u) (tf - (1.30) 

Having obtained an expression which clearly relates the distribution amplitude 

to the operators appearing in the OPE of Eq. 1.12, we proceed to look at the 

moments. 

16 



1.3.4 Momen t s 

The moments (see A.7 for an introduction to the moments of a distribution) 

reveal the shape and structure of a distribution. The moment of the pion's 

distribution amplitude is defined as 

{?") = / 'KCmQ''), (1.31) 

where ^ = u — u. Relating this to Eq. 1.30, the moments are defined as 

(c) = E 
j,i>j k=0 u 

6*. 

Using integration by parts, 

n+i—k 

J ^ + 2 — A : ) . . . ( n — A: + 1 ) 

(1.32) 

(1.33) 

Since there is a delta function, the above expression vanishes unless k = n, and 

therefore Eq. 1.31 is given by 

= j-1 I (1.34) 

We note here that for the remainder of this subsection, the Wilson coefEcients 

will not be included in the definition of the moments. The following equations 

are therefore dependent on the renormaiisation scheme and scale, and the Wilson 

coefhcients (computed from T^) must be included in order to obtain a physical 
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result. 

From Eq. 1.34, we see that the moment is related to the operators with n 

derivatives. This is equivalent to inserting operators with derivatives into Eq. 1.8. 

The first moment is obtained by inserting one derivative to give 

(7r(p)|M(2/)'y,;g'y5 % ) | 0 ) = (1-35) 

The first moment vanishes since 4> is symmetric under the interchange of u O u. 

The lowest non-trivial moment of the pion's distribution amplitude is the second 

moment, which provides information on the momentum distribution between the 

valence quarks in the pion's wavefunction. For the purpose of this study, we 

now restrict ourselves to this moment and note that from previous arguments 

about the twist r , this will be the most dominant term. Inserting two co variant 

derivatives into Eq. 1.9, when x and y coincide, we obtain 

% ) | 0 ) = (1-36) 

The second moment enables us to discriminate between different types of 

distribution amplitude. Two extreme examples are shown in Fig. 1.7, where the 

distribution in Fig. 1.7(a) corresponds to a small value of — 1/5|, similar to 

that of the asymptotic form of the wave function^. For a relatively large value 

of |(^^) — 1/5|, the corresponding distribution is shown in Fig. 1.7(b), which is 

similar to the form predicted in Ref. [10]. 

^At very high energy, the wavefunction assumes an asymptotic form, for which = 1/5. 
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Figure 1.7: Two possibilities for the distribution of momentum between valence 
quarks where (a) relates to an even distribution (small (^^)) [10], and (b) relates 
to a large fraction of the momentum being carried by one of the valence quarks 
(large 

1.3.5 T h e scale dependence of t he dis t r ibut ion ampl i tude 

Since the form factor Fn (̂Q )̂ is an observable, it must be independent of the 

renormalisation scale i.e. 

(1.37) 

As stated previously, the )U-dependence of the distribution amplitude is cancelled 

by the /^-dependence in Th- By increasing the scale jj, (at which is factorised), 

contributions from lines that are off-shell by are shifted from TH to 

Thus the derivative of with respect to fj, can be calculated in perturbation 

theory. The evolution of is defined as [2, 3]: 

(1.38) 

where the kernel y is a distribution, known at two-loops [23]. The most general 

solution to y at the one-loop level is an expansion in Gegenbauer polynomials 
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CJ [2, 3], 

3 / 
= I , (1.39) 

n>0 \ A / 

which can be rederived from Eq. 1.30 [22], 7„ are anomalous dimensions related 

to the operators in Eq. 1.20 ('-yo = 0 and 'yn>o > 0), /)2 = (33 — 2My)/12 and 

the arbitrary coefBcients. The m in Eq. 1.39 must be even because of the 

symmetry = <^?(i(). As ^ oo, Eq. 1.39 reduces to the "asymptotic" 

form of the wavefunction, given by 

<̂ o(a;) = 6z(l — z). (1-40) 

As decreases, higher order coefBcients, i.e. 02,04 - - - become more important 

in Eq. 1.39. We note that 02 is related to the second moment of the distribution 

amplitude. 

1.4 C u r r e n t s t a tu s of research 

There have been several studies concerned with this quantity both on the lattice 

[5, 6, 7, 8, 9] and using QCD sum rules [10, 11, 24, 25]. 

The results from QCD sum rules for the second moment are 

= 0.4 ± ( 1 5 - 2 0 ) % (at Q = 1.22GeV) [10,24], (1.41) 

= 0.39 (at Q = 1 .5GeV)[ l l ] , (1.42) 

= 0 . 4 1 ( 1 0 - 1 5 ) % (at 0 - O . 5 G e V ) [ 2 5 ] . (1.43) 

These values of relate to a broad distribution amplitude where the fraction 
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of momentum shared between valence quarks is unequal. The main idea in the 

sum rule approach [26], is to equate two representations of a Green function. The 

first involves condensates through OPE, and the second is a dispersive integral 

involving the imaginary part of the Green function, which can be related to the 

moments. The sum rule approach requires a non-perturbative input, namely 

condensates like (0|gg|0), (0 |G^j .G '^ j , | 0 ) , . . the values of which are still subject 

to discussion. Moreover, it is necessary to assume that the lowest dimensional 

condensates are suSicient for a meaningful result. 

The operator matrix elements have also been studied previously using lattice 

techniques. For example, was computed on a 10^ x 20 lattice, with Wilson 

fermions in the quenched approximation [6, 7]. The result for the second moment 

is 

0.26 ±0 .13 , (1.44) 

in the lattice renormalisation scheme at a ~ (1.8 GeV)"^ which is smaller than 

the sum rules result and implies the distribution illustrated in Fig. 1.7(a). Other 

lattice predictions for this quantity, all of which were computed in the lattice 

regularisation scheme, include 

= 0.235(25) (at Q = 1.0GeV)[5], (1.45) 

(^^) = 0.30(13) (at 0 = 1.9GeV) [8], (1.46) 

= 0.11(2) (at 0 = 2.4GeV) [9], (1.47) 

= 0.10(1) (at Q = 2.4GeV) [9]. (1. 

Since these results were established, techniques in lattice calculations (such as 

0(a) improvement) and computing capabilities have been enhanced leading to 

cleaner signals with smaller errors. With this motivation, it is expedient to re-
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calculate this quantity. 

1.5 S u m m a r y 

In this chapter, we began with a discussion of the necessity for a more accurate 

treatment of non-perturbative effects in QCD. These effects are considered within 

the context of exclusive processes at high energies (described in terms of form 

factors), which in certain cases, can be factorised into long- and short-distance 

contributions [22, 3]. In particular, the electromagnetic form factor describing 

e~Tx —> e~TX can be written as the convolution of a hard scattering kernel (com-

puted at the quark level), and matrix elements of fermionic bilinears (Eq. 1.7). 

Using a light-cone expansion, the bi-local matrix elements are then written in 

terms of a Fourier transform of the pion's distribution amplitude cj) (Eq. 1.24). 

The bi-local matrix elements themselves exhibit divergent behaviour at short 

distances and can be expressed (via an OPE) as the sum of products of a local 

operator with a coefficient function. Having defined the OPE for the fermionic 

bilinear in Eq. 1.7, the associated local operators are identified, and their relation 

to the moments of the distribution amplitude is outlined. The moment of the 

distribution is defined as [24] 

{e) = j dwmQ')- (1.49) 

Its relation to the matrix elements of the local operators appearing in the OPE 

is given by 

= APw - - " (1.50) 
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where 

0w)...;;»(0) = Dm . . . V) (1.51) 

and the ellipsis indicates terms which can be removed by subtracting traces. This 

study uses lattice QCD to compute the matrix elements appearing in Eq. 1.50 

for n = 2. 
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C h a p t e r 2 

Formula t ing Q C D on t h e lat t ice 

As discussed in Ch. 1, a key feature of the coupling constant g in QCD is that it 

decreases as the scale at which it is deAned increases. This property, known as 

asymptotic freedom, enables the utilisation of perturbation theory in the calcu-

lation of short-distance contributions to a process. The quarks and gluons that 

participate in these hard processes interact at distances of less than O.lfm. How-

ever, the binding of quarks and gluons to form hadrons, known as confinement, 

is a long-distance effect where the magnitude of the coupling constant 

prohibits the use of a perturbative expansion. In order to calculate physically 

measurable quantities from QCD, it is therefore essential to use non-perturbative 

methods such that long-distance effects are dealt with. 

We find that providing these long-distance effects can be expressed in terms of 

matrix elements of local operators (where the external states are single particles 

or the vacuum)\ composed of quarks and gluons, it is possible to calculate such 

amplitudes using the formulation of QCD on the lattice (LQCD). This enables 

^Recent research [27, 28, 29], shows that matrix elements with two-particle external states 
might be calculable. 
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the prediction of important quantities such as decay constants, form factors, mix-

ing amplitudes and the subject of this work, distribution amplitudes. 

Having motivated the study of QCD on the lattice as an essential tool in dealing 

with the non-perturbative contributions, we now consider some of the details of 

its formulation, the extraction of physical quantities from lattice computations 

and some of the sources of uncertainty that accompany this theory. 

2.1 Lat t ice Q C D 

The formulation of QCD on the lattice was first introduced by Wilson [30]. There 

are a number of steps which lead from QCD in continuous Minkowski space-

time to Lattice QCD. Following a Wick rotation to Euclidean field theory, the 

theory must be discretised and the action defined on the lattice. This procedure 

introduces a cut-off into the theory which is dependent on the lattice spacing "a". 

Once the theory is in place, we look at how to extract physical results. As will 

be discussed in Sec. 2.1.5, Monte Carlo methods are used to compute the Path 

Integral (PI). Amplitudes are then extracted from the correlators and finally the 

cut-off dependence must be removed. The material included in this section is 

baaed on Refs. [31, 32, 33, 34, 35, 36] 

2.1.1 Euclidean field theory 

In this section, we make the connection between Minkowsi and Euclidean field 

theory. The generating functional in Minkowski space is defined as 

= y D[<9]D[^]D[^]e'^[^'^'^], (2.1) 
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where (9 are the gauge Aelds, ^ ajid ^ are the fermion Aelds and is 

the action. This can be used to calculate Green functions from which physical 

quantities are extracted. When calculating short-distance physics, this functional 

integral is expanded in the regime where the coupling constant g is small and so 

physical quantities are obtained perturbatively. However, as discussed in Ch. 1, 

this expansion is not valid over all ranges of the coupling. 

The exponent in Eq. 2.1 is imaginary and therefore cannot be computed nu-

merically. By expressing the path integral in Euclidean space, it is possible to 

compute correlation functions from which matrix elements can be extracted. 

The connection between four dimensional Minkowski field theory and four di-

mensional Euclidean field theory is made through an analytic continuation. By 

performing the Wick rotation, 

XQ —y —1X4 (2.2) 

Po -ZP4, (2.3) 

where To is the zeroth component of the four vector This leads to the Eu-

clidean convention, 

2;̂  = + 374, (2.4) 

PE = P^+P4- (2.5) 

It should be noted that the Lorentz invariant quantity has been replaced by 

+ 0:4̂ , the invariant quantity of 0(4) which is the symmetry group of Euclidean 
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field theory^. The Euclidean generating functional is then deAned as 

= y (2.6) 

Having obtained the Euclidean form of the generating functional, space-time 

must be discretised in a finite volume by creating a lattice on which to perform 

numerical simulations of the path integral. 

2.1.2 Discretising space-t ime 

The process of discretisation replaces continuous space-time by a hypercubic lat-

tice Zg, defined as 

LE ^ = = (2.7) 

where a is the lattice spacing T is the number of sites in the temporal direction, 

^ is the number of sites in the spatial direction. From this, the number of sites 

on the lattice is given by We note that the volume of the lattice is finite and 

that the number of degrees of freedom is now finite. Discretisation also demands 

the replacement of the integrals over space-time by sums, and derivatives with 

respect to space-time by finite differences^. 

Having discretised space-time, the momenta can be chosen to lie in the first 

Brillouin zone — f < p < A further consequence of discretisation is the 

^See Ch. 3 for further discussion on the reduction in symmetry by formulating QCD on the 
lattice. 

^This work only considers four-dimensional isotropic lattices. 
' 'The replacement of derivatives by finite differences will be discussed in section 2.1.3. 
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introduction of a momentum cut-off 

A = —, (2.8) 

and so the lattice itself acts as an ultra-violet regulator of QCD^ 

2.1.3 Gauge fields on the lat t ice 

The continuum QCD action in Euclidean space is given by 

with the following definitions: 

# ^ and represent the quark and antiquarks of Savour g 

# ^ where the covariant derivative is defined by 

D/j — djj, — igAfi- (2.10) 

are the gauge fields associated with the gluons and T"" are the gen-

erators of the colour 5'[/(3) Lie algebra 

= and = (2.11) 

# The gauge field strength is defined as 

'Regularisation and renormalisation in LQCD will be discussed further in Sec. 2.1.6 
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= (2.12) 

In the continuum, a gauge transformation on a quark held causes it to pick up a 

phase factor given by the path ordered product 

= (2.13) 

where L{x,y) = 7^6-̂  tgA^{z)dz^, and the ordering is such that A^(z) is always to 

the right of A^(z + dz). The gauge transformation of a path ordered exponential 

depends only on its end points 

Z,(a;,2/)->y(a;)I(z,2/)y-X!/), (2.14) 

and so the quantity g(z)i}(a:,2/)g(2/) is gauge invariant. Another gauge invariant 

product is the trace of the path-ordered integral around any closed path 

[rr[i,(z,a;)] —> !rr[y(a;)Z(a;,a;)y'Xz)] (2.15) 

= rr[Z^(a:,3;)], (2.16) 

known as a Wilson Loop. Since 7L(z,2/) transports the gauge rotation from one 

point to another, it suggests that on the lattice, the gauge held should be placed 

on the links connecting the sites, rather than the sites themselves. Following this, 

we dehne a discrete analogue of the path ordered product 

(7^(z) = (2.17) 

as shown in Fig. 2.1 below. U^^{x) is an element of SU{3) associated with the 

link from site a; to site z + 
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• »- • 
T T + 

Figure 2.1: The gauge link from site a; to a; + //. 

In the continuum limit, this corresponds to a line integral along the link, i.e. 

Z/(z,a; + a//) (2.18) 

= 1 — iagAfj_(x H — + O(o^). (2.19) 

The gauge transformations of the U fields are 

C/;̂ (a;) -> y (z ) ( /^(z )yt (z + o//), (2.20) 

where V{x) E SU(3) are the gauge transformation matrices that sit on the sites. 

From Eq. 2.20, it can be seen that the trace of a closed product of [/'s in a closed 

loop will be invariant under gauge transformations (since y(a;)y^(a;) = 1) and 

from this, we can define a Wilson loop on the lattice. 

We now construct the lattice analogue of the pure gauge action by constructing 

the smallest Wilson loop on the lattice 

+ G^)(yJ(a;), (2.21) 

known as a plaquette ajid shown below in Fig. 2.2. 
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+ O//) 

Figure 2.2: The smallest Wilson loop on the lattice known as a "plaquette". 

By inserting the definition of the link variable (Eq. 2.17) into Eq.2.21 and using 

the Baker-Cambell-Hausdorff relation, 

_ ^A+B+^[A,B]+... (2.22) 

we find that Eq. 2.21 reduces to 

= 1 + + 0(/]. (2.23) 

Taking the trace of Eq. 2.23 and keeping only Real parts gives 

lR[rr(P,„)] = N,- - ^ T r ( F l ) + O(o') (2.24) 

where is the number of colours. From this, we obtain the relation between 

the continuum and the lattice pure gauge action: 

fd*x g irr[F„„F„J - E ^ ( % - E[rr(P,„)]) + 0{a'), (2.25) 
^ fj.ij 9 
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where Wc is the number of colours. Finally, re-writing ^ we dehne the 

Wilson gauge action 

s j = ( 2 . 2 6 ) 

Before constructing the functional integral from Eq. 2.26, the measure (over the 

gauge degrees of freedom) must be deAned. Since gauge fields are defined on 

the lattice by the link variables which are SU{3) matrices, the measure must 

be invariant under group transformations. Following this constraint, the Haar 

measure is defined as 

y = y = y (2.27) 

where and ty are elements of the colour 5'(/(3) gauge group. The Haar measure 

can be normalised as / = 1. The functional integral is now written as 

Zg = / n (2.28) 
l inks 

2.1.4 Fermion fields on the lat t ice 

From the action in Euclidean space (Eq. 2.9), the fermionic part is described by 

the term 

6", = ^ , ( ^ + )7Zg) ,̂, (2.29) 

where there is a sum over quark Savour g and the fermion fields and are in 

the fundamental representation of colour SU(3). In order to discretise this term, 

the fermion fields are placed on the sites with the following gauge transformation 
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properties 

y(a;)^(z), (2.30) 

(2.31) 

The next step is to discretise the derivative. The fermion fields must be separated 

and link variables are used to maintain gauge invariance. The covariant derivative 

in Eq. 2.29 is then defined as 

^D^^(a;) = —^(z)[[/^(a;)^(z + o^) - [/j[(z - o//)i/'(a; - o^)]. (2.32) 

Taylor expanding the fields and dropping higher order terms in a, Eq. 2.32 reduces 

to the continuum covariant derivative. 

(2.33) 

Including the mass term and the 7 matrices, we obtain the naive fermion action 

= E ^ aju)i/,(a: - a/^)] (2.34) 
a;,/Li 

y^m^(a;)'^(z). 

This can be re-written as 

s«{i,,i.u) = Y.i'(':W„[u\'Hy), (2.35) 
a; 

where M is given by 

Mx,y\U\ = TUq^xy + ^ nUx,y^x,y-fi ~ 1 x - ( 2 . 3 6 ) 
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and a; and 7/ label the lattice sites and with spin and colour indices suppressed. 

Before constructing the complete partition function with Eqs.(2.28,2.35), we note 

that the naive fermion action in Eq. 2.35 gives rise to a problem known as "fermion 

doubling" which must be dealt with. The action yields 2̂^ = 16 degenerate states 

rather than one. To demonstrate how this happens, consider the momentum 

space free propagator^ 

where = sin{apfj). If we define the momentum range in the Brillouin zone to 

be [ ^ , 1^], then in the limit m , -> 0, we see that for each momenta = 0 and 

apfj, = TT, this term will vanish. There is a pole near each of the sixteen possi-

ble positions, hence the single lattice fermion represents sixteen degenerate states. 

On the lattice, for a pole in the propagator associated with a left-hand (right-

hand) Aeld at = 0, we actually find a replica of a right-handed (left-handed) 

field associated to a pole at = tt. In fact, the problem of fermion doubling 

is strongly related to chiral symmetry on the lattice, as stated by the Neilsen-

Ninomiya no-go theorem [37, 38], which states that a fermionic theory on the 

lattice cannot simultaneously contain the following properties: 

• locality (nearest neighbour interaction) 

• translational invariance 

• Hermiticity 

• exact chiral symmetry 

®This is obtained by setting the gauge links (x) = 1 and taking the Fourier transform of 
the inverse Dirac operator in Eq. 2.35. 
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• no fermion doubling. 

Wilson [30] proposed a solution to the problem of fermion doubling by adding 

an irrelevant operator to the action that explicitly breaks chiral symmetry 

= - //) - + //) - (2.38) 
X,fJ, 

where r is known as the Wilson parameter. The form of the free propagator 

originally given in Eq. 2.37 is now modified to 

G{k} = (2,39) 
- (am, + 

where k = 2 s i n ( ^ ) . The relation between the mass in the continuum (niphys) 

and the lattice (m,) is = om + In the case where = 7r, we find 

that ^ / 0 and so the additional pole (at = tt) gains an effective mass. In 

the limit o — 0 , with r kept finite, wiU tend to infinity and the donblers 

will decouple from the theory. Since chiral symmetry is explicitly broken on 

the lattice, there is nothing to prevent the quark mass from being additively 

renormalised. Moreover, the additive renormalisation receives a large correction 

at the one-loop level [39] and therefore has to be determined non-perturbatively. 

It is important to note that exact chiral symmetry can be obtained on the lattice 

using fermions that satisfy the Ginsparg-Wilson relations [40]. However, strict 

locality is lost [41] due to interactions between fermions that are beyond nearest 

neighbour (further than the surrounding sites), and this formulation of fermions 

on the lattice is computationally expensive. 

The Wilson action is therefore defined as 
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(2.40) 

where = ^/mgO + 4r^ and the interaction matrix is written as 

M + (r + (2.41) 

with K = 2amg+8r' ^nown as the hopping parameter. Together with Eq. 2.26, we 

define the full Wilson action (including the pure gauge term) as 

Sw = J : 4'''{x)MZ4'i - /) E (2.42) 
/ji/ 

The relation between the fermion action and the continuum is 6"̂ *̂ — + 0(a) . 

It therefore will not be the final action that we actually use in this work since the 

(9(o) errors can be removed by Symanzik's "improvement program". This will 

be discussed further in Sec. 2.2.3. 

2.1.5 Numer ica l simulations 

LQCD evaluates matrix elements by computing the PI non-perturbatively aa 

opposed to formulating an asymptotic expansion in the coupling. In this section, 

we give a brief outline of how these computations are performed. The simulation 

details particular to this study will be discussed in Ch. 5. 

In order to compute the PI, it must be reduced to a finite number of degrees of 

freedom. This reduction is achieved by introducing a lattice of finite extent in 

Euclidean space and time. 
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To demonstrate the major steps involved in simulations we consider the pion 

two-point function 

(0|$(z)$^(0)|0) = (2.43) 

where $ (z ) = w^^d^x) is an interpolating operator for the pion and Sg and 

6"̂ ^ + 6"̂ : are defined in Eqs.(2.26,2.40),. Eq. 2.43 can be re-written as 

- / M n , d e t ( ^ + m,)e-^9Tr[(^ + mj)-J^5(^ + M%u)8;j75] , 
. (2.44) 

n , det(^ + m,)e-^9 

where a; and ^ are lattice sites and ( ^ + m,) is the complete lattice Dirac oper-

ator appearing in the sum + Sw- The second line (Eq. 2.44) is obtained by 

integrating over the fermion fields leaving a functional integral over gauge fields 

only, with the measure 

(//i = [dU] J J d e t ( ^ + mq)e~^^. (2.45) 
1 

In this study, we work in the quenched approximation which sets the determinant 

of the fermion matrix to a constant. This approximation and its consequences 

will be discussed further in Sec. 2.2.2. 

A set of gauge configurations is generated with probability measure using 

Monte Carlo methods. Propagators ( / ) + m,)"^ are then computed on each 

configuration by inverting the matrix given in Eq. 2.41 and joining together into 

traces as in Eq. 2.44. 

In order to extract physical information from the correlator in Eq. 2.43, a com-

plete set of states is inserted and a Fourier transform in the spatial directions is 

performed. At large time separations, the correlator reduces to 
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(2.46) 

where Z is the pion wavefunction renormalisation constant and E is the energy 

of the pion. By plotting the log of the correlator at zero momentum, we can 

extract the mass of the pion on the lattice (am^). 

2.1.6 Renormal isa t ion 

The relation between bare and renormalised quantities in QCD can be expressed 

in terms of a perturbative expansion in the coupling. Any quantity computed on 

the lattice is defined in terms of the cut-off a. Therefore we need to relate the bare 

lattice operators to a continuum renormalisation scheme, at a renormalisation 

scale /i (in this case, MS). This procedure is known as "matching". In Eq. 2.47 

below, the bare lattice operator Q(G) is related with Q(^) (the operator computed 

in the MS scheme) by Z{afj,) (computed through matching) 

Q(//) ^ .^(G//)Q(o). (2.47) 

Physical quantities do not depend on the renormalisation scheme or the scale. 

Once the lattice operators have been matched to the continuum ones, a physical 

result is obtained by combining matrix elements in the MS scheme with 

the Wilson coefficients C(^) (computed in the same scheme), 

^ C(//)Q(//). (2.48) 



The result here is independent of the scheme and scale up to the order that the 

Wilson coefficient is calculated. 

This topic will be discussed in more detail in Ch. 4, where we calculate the 

relevant Feynman diagrams in both the lattice and continuum schemes, perform 

the matching procedure and then combine the results with the Wilson coefficients 

relevant for the operators of interest in this work. 

2.2 E r r o r s and sources of unce r t a in ty 

There are several sources of uncertainty in lattice calculations. We consider the 

statistical error, the error due to quenching and the effects of discretisation and 

0 (o ) improvement. 

2.2.1 Stat is t ical errors 

There is an inherent statistical error associated with all quantities computed on 

the lattice whose origins lie in the finite number of gauge configurations used 

to compute the PI. It is assumed that the gauge configurations aie distributed 

according to the weight exp~'^[^^ (in the quenched approximation), and that the 

configurations generated are a finite sample of this distribution. The bootstrap 

procedure [42] is used to estimate the error associated with this sampling. 

The bootstrap procedure randomly samples a new set of configurations from the 

original (allowing repeated resampling of the same configurations) and recaicu-

lates the results. This process is repeated "N" times and provides a distribution 

for each quantity. By looking at the distribution of the bootstrap samples of a 

quantity, we obtain aji estimate of the statistical error associated with it. 
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2.2.2 T h e quenched approximat ion 

As stated previously, in the quenched approximation the fermion determinant is 

set to a constant. This is referred to as Quenched QCD (QQCD). Physically, this 

constitutes the omission of internal fermion loops and so the vacuum polarisation 

effects of quark loops are ignored. The motivation for this approximation is 

the reduction in CPU time. One of the problems with QQCD is that since the 

internal quark loops (which are necessary to obtain on-shell intermediate states) 

are absent, resonances become stable states. For many quantities computed on 

the lattice, the discrepancy between the quenched calculations and that of the 

physical quantities is about 10%. It is important to note however that the non-

perturbative features of QCD are retained in this approximation since QQCD 

maintains both confinement and chiral symmetry breaking. 

2.2.3 Discret isat ion and 0 ( a ) improvement 

As stated previously, the action given in Eq. 2.42 contains 0(a) errors originating 

from the fermionic action and terms coming from the pure gauge action. 

In order to obtain a level of precision at leaat to it is possible to remove 

the 0(a) contributions by implementing an improvement program. 

Improvement of the fermionic action was first outlined by Symanzik [43]. The 

removal of 0(a) contributions was then implemented by Sheikholeslami and 

Wohlert [44], by defining an additional operator in the action, known as the 

"Clover" term^. The operator is constructed from the sum of four plaquettes in 

the (/i, u) plane, stemming from the point x, such that 

^The action including this term is referred to as the Sheikholeslami-Wohlert action. 
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(2.49) 

which is represented diagrammatically in Fig. 2.3 and where 

Ufiu ^ (2.50) 

— Uj^(^x — (iji^Uhi^x — ct/̂  — au^Un(^x — cijj, — cii/^Ui/i^x — oz/) 

+ [/^(a;)(7^(a; — a// + oz/)[/J(z — o^)[/^(a; — o^) 

— (7j(z — oi/)[/^(z — oi/)[/;,(a; — o/i)[r|(z)). 

X — a/j, + au 

X — an # 

X — afi — au 

a; + Of/ 

X — au 

a; + + oz/ 

z + 

X + a/j, — au 

Figure 2.3: The Clover operator that removes 0{a) contributions from the Wilson 
fermlon action. 

Eq. 2.49 is added to the Wilson fermion action with the coefhcient 
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'S'gw: = 5'̂ / + (2.51) 
a; 

where f (a;) = y î/]- addition to the inclusion 

of this operator, the fermion fields (in on-shell hadronic matrix elements) undergo 

the rotation [45]: 

^ = (1 — o - ^ ) ^ + (̂ (G )̂ (2.52) 

-4 i;̂ ' = (l — o - ^ ) ^ + 0(G^). 

The removal of 0{a) errors through the addition of the clover term and the rota-

tion of the fermion fields in the operators reduces the difference between contin-

uum and lattice matrix elements to terms of 0(00!^). These errors can be removed 

using perturbation theory, where cgw is computed to one-loop. The remaining 

lowest order errors will then be of 0{aa l ) . By tuning csw non-perturbatively 

[46], it is possible to remove all 0(Go;") terms in the action. Nevertheless, the 

procedure of removing such terms from hadronic matrix elements is more involved 

and this is left to future work. 

We finish by stating the exact form of the action (Eq. 2.51) that is used in this 

study 

^ I ] ^ (z)^(a;), (2.53) 
x,y fMU •' c X 
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where the error in the action due to discretisation is now of 
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C h a p t e r 3 

T h e hypercubic g roup and 

ope ra to r mixing 

In this chapter, we consider the consequences of the reduction in symmetry due 

to the replacement of the Lorentz group by the hypercubic group. In particular, 

we investigate the fact that the reduced symmetry admits greater opportunity 

for operator mixing and is therefore a major problem which must be dealt with 

ill order to obtain a physical result from the lattice. 

3.1 O p e r a t o r mixing 

As established in Ch. 1, in order to calculate moments of the pion's distribution 

amplitude, we are required to study the matrix elements of the lowest twist local 

operators between the pion and the vacuum [22]. 

In the continuum, these operators are classified according to their behaviour 

under Lorentz transformations and charge conjugation. The leading twist (r = 
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2) operators are totally symmetric, traceless tensors and as a result of their 

transformation properties, do not mix with operators of lower dimension under 

renormalisation. 

A major consequence of modelling QCD on the lattice is the reduction in the 

spacetime symmetries of the theory. Analytically continuing from Minkowski 

to Euclidean space replaces the Lorentz group by the orthogonal group 0(4). 

There is a further reduction in symmetry due to the discretisation of spacetime: 

0(4) —> 9^4 C 0(4) , and therefore the hypercubic group (%) describes the 

spacetime symmetries of the lattice. 

The opportunity for operator mixing under renormalisation is increased due to 

the fact that the hypercubic group T-L^ (defined in Sec. 3.3), is a finite group and 

therefore the symmetries imposed by this group are less restrictive than those 

of the Lorentz group. Mixing with operators of lower dimension is of concern 

because the mixing coeScient will contain negative powers of the lattice spacing 

G. In the limit a —^ 0, this will produce power divergences which render the 

result unphysical [6]. 

When calculating matrix elements on the lattice, operators must therefore be 

classified according to their behaviour under 'H4 rather than the Lorentz group 

and chosen in such a way that for symmetry reasons they cannot mix with lower 

dimensional operators, thus ensuring the absence of power divergences. 

We therefore proceed by searching for a choice of Lorentz indices such that the 

operators ^ satisfy the specified criteria. We could 

begin by considering the operators 0^^^. However, operators with this Lorentz 

structure (all three indices equal) transform like the ( | , | ) irreducible represen-

tation of the hypercubic group and mix under renormalisation with other four 

dimensional operators, an extensive study of which can be found in Ref. [47]. 
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This leaves the possibility of Oa^u, with all three Lorentz indices different and also 

with (7 ^ In this chapter we investigate the transformation properties of 

these operators with respect to the hyper cubic group. 

3.2 Relevant g roup theo ry 

In this section, we brieSy review the group theory necessary to establish the 

correct Lorentz structure for the operators. The material presented within this 

snbsection is based on Refs. [48, 49]. 

3.2.1 Some basic definitions and proper t ies 

A group G is defined as a set of elements gi,g2,g2,..-- with a rule for combining 

them called a group multiplication which satisfies the following axioms: 

(i) Closure: the product gigj is also an element in G; 

(ii) Associativity: the group multiplication is associative 

i-e. 

(iii) Identity: there exists an element e in G, called the identity, such that 

6̂ ^ = 5̂ 6 = 5̂  for all g'; 

(iv) Inverse: for each g there is an element g~^ such that 
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If the number of elements in G is finite, the group is said to be finite. The order 

of the group, denoted by |G|, is the number of elements within the group and the 

order of each element g is the least integer n such that gf" = e. 

Two elements and ^̂2 of group (3 are said to be in the same conjugacy class 

C if there is an element g in G such that 

6̂ 2 (3.1) 

Any group can be partitioned into classes where each element is in exactly one 

class only. Elements that are in the same class share the same structural property 

of the group, that is, they are (geometrically) of a similar kind. We note that 

each element of a conjugacy class has the same order. 

3.2.2 Represen ta t ions 

For our purposes, we are interested in the action of on vector spaces, where 

the basis will be the operators of interest and the action of any element in 9̂ 4 is 

represented by a matrix. 

Consider a set of n x M non-singular matrices D corresponding to elements of a 

finite group G, i.e. g —> D(g) V ^ E G, such that the following conditions are 

satisfied: 

D(gi)D(g2) = D(gig2) . (3.2) 

D(I) = I. (3.3) 

The matrix to which the group element ^ maps is written D(g) and a complete 

set of matrices, one for each element of the group, is called an n-dimensional 
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representation of the group. 

3.2.3 Reducible and irreducible representa t ions 

Let and be representations of a group G, with dimensions ni and ng 

respectively. Then for each p in (?, the assignment 

D(g) = D W ( g ) ® D W ( g ) (3.4) 

determines a new representation of dimension + ng, which is called the direct 

sum of and A representation is said to be reducible if it is equivalent to 

a direct sum of the form shown in Eq. 3.4^. A representation which is not reducible 

is said to be irreducible and is denoted by (f(') . Irreducible representations form 

the building blocks of representation theory and any (reducible) representation 

can be written as a direct sum over all possible irreducible representations: 

D(g() = mic;(^)(p) @ @ @ m;v6;(^)(gr), (3.5) 

where the integers (m^) indicate the number of times each particular irreducible 

representation is repeated. 

We now state the fundamental orthogonality relation for the matrices of irre-

^ A similarity transform (see Eq. 3.7) is usually required in order to obtain the block diagonal 
form of D(g). 
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ducible representations. A proof of this theorem can be found in group theory 

textbooks, e.g. in Ref. [48]. Let G be a finite group with \G\ elements and 

let be the inequivalent irreducible representations of (?, with 

dimensions ni, n g , . . . , respectively. Then 

E 4 ° ' ( S ) ' 4 ? ' ( S ) = (3.6) 
a Ma 

We use this relation in the next subsection to develop the theory of characters. 

3.2.4 Charac te r s 

Two representations and of a group G are said to be equivalent if they 

can be related by a similarity transformation of the form 

= D(^)(g), (3.7) 

where S is an appropriate matrix. The fact that equivalent representations are in-

terchangeable suggests that each representation contains inessential information. 

In enumerating the possible representations of a group, we therefore only wish to 

consider inequivalent representations and in order to do this, require a character-

isation of the representation which is invariant under similarity transformations. 

We find that some of the essential information of a particular representation is 

carried in the trace of the representation and is known as the character %(̂ ). If 

D is a representation of a group, the character of D is defined as 
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XcW) = Trace[D(g)]. (3.8) 

Characters are the same for equivalent representations and similarly, elements 

that belong to the same conjugacy class have the same character. From the 

orthogonality relation stated in Eq. 3.6, we can derive an orthogonality relation 

for characters. By setting i = j and k = I, we obtain 

I Z X j w W X j w W = (3.9) 
3 

Let D be a reducible representation of G as defined in Eq. 3.5. By taking the 

trace of this equation, we find 

XD(^f) = niiXj(i) (p) + ^2%j(2) (5f) + . . . + (^). (3.10) 

Multiplying Eq. 3.10 by and using the orthogonality relation Eq. 3.9, we ob-

tain the number of times (mk) that each irreducible representation occurs within 

the representation D(g) 

"̂ 1 = I ] W%D(^), (3.11) 

and similarly for m g , . . . , This relation can then be used to decompose each 

of the representations of and into irreducible representations of 
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3.3 Decompos i t ion of and Oami into irre-

ducible r ep resen ta t ions of 

As stated previously, we would like to determine how each set of operators 0, 

and with <7 ^ ^ z/ ^ cr, transforms under the hypercubic group and to 

decompose each of the two representations into irreducible representations of H4. 

The hypercubic group is generated by 90° rotations and rejections in each of the 

six lattice planes. It has 384 elements which are classified in terms of 20 conju-

gacy classes [50]. Each element of the group can be described aa an element of 

the four dimensional rotation group, as an element of 6'(7(2) (g) 5'Z7(2)/Z2 or, as a 

product of permutations of lattice axes with rejections along axes. For our pur-

poses, we restrict ourselves to the Anal description but illustrate the connection 

with an example of the relation between a rotation and a permutation/refection: 

shown below in Fig. 3.1. The rotation is about the 3 axis (anti-

clockwise in the direction of the axis), (12) denotes a permutation of the 1-2 axes 

and Pi is a reflection of the 1-axis in the 2-3 plane. 

3. 
R 121 

1 

(12) Pi 

Figure 3.1: Equivalence between an element of the hypercubic group in four 
dimensional rotation notation and lattice permutation/reflection notation. 
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An example of a typical element for each conjugacy class of the hypercubic group, 

together with the order of each class is given in Table B.l . These elements 

will be used to act on the components of each basis which will then provide us 

with the characters of the representation (see Sec. B.2 for further explanation). 

The characters of the 20 irreducible representations of the hypercubic group are 

displayed in Tables 5.2a-c, Ref.[50]. 

Using this information and Eq. 3.11, we now search for the necessary Lorentz 

structure for both operators such that each will transform irreducibly under the 

hypercubic group. 

3.3.1 Transformat ion of Oanv under H4 

We begin with the operator V', with c ^ jU ̂  i/ ^ cr. This is 

a 24-dimensional representation since there are 4 choices for d, 3 choices for ^ and 

2 choices for z/. In order to obtain the characters ibr this representation, we must 

use its transformation properties under elements from each conjugacy class of the 

hypercubic group. The left hand column in Table B.2 displays the components 

of the basis vector for this representation which are constructed from the direct 

product of q„ and where each of these objects transforms like a vector 

under % . The elements of the group then act on each component in this column 

vector according to the rules given in Sec. B.2. Subsequent columns display the 

transformation properties under an element from each conjugacy class. The sum 

of each column is given at the base of Table B.2, thus we obtain the character of 

the representation for each element. 

Combining the results from Table B.2 with characters of the irreducible repre-

sentations of 9̂ 4̂  and using the character orthogonahty relation (Eq. 3.11), we 

^The characters of the irreducible representations of W4 are given in Tables 5.2a-c, Ref.[50]. 
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establish how many times (mk) each irreducible representation occurs within the 

24-dimen8ional reducible representation. We And that transforms like a 

® ® 2.8(+) reducible representation. However, if we consider 

the combination with c ^ ^ ^ and symmetrising over ^ and z/, 

we obtain a 12 dimensional representation (Table B.4), which transforms like a 

(§) 2)̂ ^̂  @ reducible representation. 

3.3.2 Transformat ion of under ^4 

The second operator with cr is a 12 dimensional 

representation since there are four choices for cr and three choices for The 

components of the basis vector are displayed in the left hand column of Table B.3 

cind are constructed (as in the previous case with the exception that = z/) by 

taking the direct product of ® P,; ® where and are four vectors. As 

before, the characters of the representation are established from the transforma-

tion properties of the operator under diEerent elements in the hypercubic group. 

Using the character orthogonality relation (Eq. 3.11) to combine the results from 

Table B.3 with the irreducible representations of % , we find that it transforms 

like a (§, ^) '̂̂  @ 8̂ "̂  reducible representation. 

In order to isolate a particular irreducible representation for each operator, we try 

to construct a basis that will transform like the 8^"' dimensional irreducible rep-
2 2 

resentation. From Table B.5 we find that the linear combination 

transforms as required and so we are able to isolate the irreducible representations 

of each operator that will not mix with lower dimensional operators. 

53 



3.4 S u m m a r y 

The operator ^ with cr jU y ^ cr and symmetrising 

over // and :/ transforms like a (^, @ 8(+) reducible representation of the 

hypercubic group, which does not mix with lower dimensional operators. In 

order to obtain an operator proportional to PaPuPv, as in the continuum limit, 

the 8(+) term must be subtracted. However, this term vanishes when we take the 

matrix element of this operator between the pion and the vacuum since there is 

only one four-momentum from which to build the 8 ^ term. Thus we obtain the 

term that is directly proportional to the second moment of the pion's distribution 

amplitude, 

(3.12) 

where p is the four momentum of the pion and the coefficient A is proportional 

to In order to obtain a non-vanishing signal, this choice of Lorentz indices 

requires two non-zero components of the spatial momentum. 

The operator with <7 ̂  transforms like the @ 

8(") reducible representation of the hypercubic group. In order to prevent mixing 

with lower dimensional operators, a linear combination of these operators is taken 

and we find that the subtracted operator 

0 ; „ = 0 , n - t (3.13) 
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t r a n s f o r m s l i k e t h e S ' ' i r r e d u c i b l e r e p r e s e n t a t i o n . T a k i n g t h e m a t r i x e l e m e n t o f 

the operator deAned in Eq. 3.13 between the pion and the vacuum, 

(0|04ii|7r(p)) = Cp4 (3.14) 

w e a r e a b l e t o i s o l a t e t h e t e r m c o n t a i n i n g ( ^ ^ ) . T h i s c o m b i n a t i o n o f i n d i c e s a l l o w s 

for just one non-zero component of the spatial momentum. 
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C h a p t e r 4 

O p e r a t o r Ma tch ing 

The lattice formulation is a bare theory which is regularised by an ultra-violet 

cut-off (in momentum space). The results obtained for bare lattice operators 

m u s t t h e r e f o r e b e t r a n s l a t e d t o those o f r e n o r m a l i s e d o n e s , a n d t h i s i s d o n e b y 

" m a t c h i n g " them o n t o a c o n t i n u u m r e n o r m a l i s a t i o n s c h e m e , e . g . t h e M S s c h e m e . 

T h e m o t i v a t i o n b e h i n d t h i s l i e s i n t h e f a c t t h a t t h e r e n o r m a l i s a t i o n s c a l e a n d 

scheme dependence must be removed in order to obtain physical results. Since 

the Wilson coeGcients that remove this dependence are usually computed in the 

MS scheme, the results obtained from lattice calculations must be related to this 

scheme. Furthermore, the results for the second moment using QCD sum rules 

are defined in this scheme and therefore, matching is necessary to obtain a result 

t h a t c a n b e c o m p a r e d w i t h s u m r u l e p r e d i c t i o n s . 

I n t h i s c h a p t e r , w e e x a m i n e h o w t h e s e matching c o e f f i c i e n t s a r e c o m p u t e d at 

o n e - l o o p t o o b t a i n a r e s u l t i n t h e M S s c h e m e . W e d i s c u s s t h e d e t a i l s a n d p r e s e n t 

t h e r e s u l t s o f t h e p e r t u r b a t i o n theory u s e d t o o b t a i n t h e m a t c h i n g c o e f f i c i e n t s . 

T h i s r e q u i r e s t h e c a l c u l a t i o n o f o n e - l o o p Feynman d i a g r a m s b o t h o n t h e l a t t i c e 

a n d i n t h e c o n t i n u u m . 
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4.1 M a t c h i n g to t h e MS scheme 

As discussed in Ch. 2, lattice operators are defined with a cut-off a, denoted in 

this c h a p t e r a s Q{a). There a r e s e v e r a l w a y s i n w h i c h t o c o m p u t e t h e m a t c h i n g 

coefBcients for Q(G). One technique is that of non-perturbative renormalisation 

[ 5 1 ] . I n c o m p a r i s o n w i t h p e r t u r b a t i v e m a t c h i n g , t h e s y s t e m a t i c effects a r e d i f f e r -

ent but it is easier to control them. Since the renormalisation constants relevant 

to this quantity have not been computed non-perturbatively, we resort to pertur-

b a t i o n t h e o r y a t t h e o n e - l o o p l e v e l . 

The form of the matrix element of the relevant operator Q, at one-loop, both in 

the c o n t i n u u m a n d o n the lattice, i s g i v e n b y 

(Q')MS,latt — (4-1) 

where is the tree level matrix element of Q, sandwiched between the 

relevant external states, and ^re the one-loop renormalisation constants. 

S i n c e matrix e l e m e n t s m u s t b e the s a m e i n a l l r e g u l a r i s a t i o n s c h e m e s a t t r e e - l e v e l , 

we define the matching condition: 

(4.2) 

F o r t h e c o m p o s i t e o p e r a t o r s r e l e v a n t t o t h i s w o r k , t h e r e n o r m a l i s a t i o n c o n s t a n t s 

are of the form 

(4-^) 

= 1 + (4.4) 

w h e r e 7 ' ° ^ i s t h e o n e - l o o p a n o m a l o u s d i m e n s i o n a s s o c i a t e d w i t h t h e o p e r a t o r Q i 
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and is universal i.e. it has the same value in all regularisation schemes. The 

logarithmic terms in Eqs. 4.3 and 4.4 arise from the regularisation of UV di-

vergences, and the constants (Zcont and are Anite contributions which are 

scheme-dependent. In the presence of an IR divergence, the same regulator must 

be used in the calculation of and for the purpose of matching. In 

this work, a gluon mass A is included in the gluon propagator (see App. C.l for 

the Feynman rules) to regulate the IR divergence. Having defined the one-loop 

correction in Eq. 4.1, the matching coefficient ZM is then defined as 

, î\,ra 
M Z-- - ' 

Z\s,tt 

= 1 + + (<^cont — (^ la t t ) ] - ( 4 . 5 ) 

We note that the dependence on the IR regulator has cancelled in Eq. 4.5. 

4.2 P e r t u r b a t i o n t heo ry 

4.2.1 Con t inuum pe r tu rba t ion theory 

In this section, we present the results for the one-loop perturbation theory in 

the continuum. The Feynman rules are given in App. C.1.1 and the one-loop 

diagrams, computed in the Feynman gauge, are illustrated in App. C.2. The 

one-loop correction from each diagram is given in Table 4.1. We note that the 

one-loop correction from the self energy is that for the wavefunction renormali-

sation. The three results are summed together to obtain a value for Ziatt-

In the continuum Feynman rules, we note the absence of a rule containing the 

operator that is proportional to . In fact, all the diagrams in the contin-
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diagram one-loop correction 

self energy - l o g C - l 

2 x sai l (v4 4- B ) - ^ l o g C - y 

vertex correction g log C - ^ 

Table 4.1: One-loop results from the continuum, where (7 = ^ and Cf 3' 

uum are the same for each operator. The two-gluon diagram does not exist for 

since fi u. The reason this term is also absent for is that there 

are no derivatives present to build a term proportional to Therefore, the 

diagram containing this term is a trace term in the continuum calculation which 

is subtracted from the complete set of diagrams in order to isolate the second 

moment. 

4.2.2 Lat t ice pe r tu rba t ion theory 

The one-loop contribution from each diagram computed using lattice perturba-

tion theory is presented in Table 4.2, where the numerical error in the finite 

contribution is less than 0.1%. The wavefunction renormalisation is defined by 

the correction from the self energy diagrams. The Feynman rules are given in 

App. C.l and the diagrams are illustrated in App. C.2. In addition, the compu-

tation of the sail diagrams on the lattice is outlined in App. C.3. 

In the lattice simulation, isolating the term that contains the second moment 

involves taking the ratio of the correlator of the operator with the correlator of 

the axial current. Since chiral symmetry is broken on the lattice, the axial current 

will also get renormalised and we state here the one-loop contribution to the axial 

current 
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diagram one-loop correction 

self energy ^Cf [— log L 4-1.12] 
2x self energy (clover) ^ c g t y C f ( — 2 . 2 4 9 ) 

self energy (clover-clover) 
tadpole correction : ^ C f ( - 1 2 . 2 4 ) 

OUFIU 

2x sail(A + B) ^ C f [ — ^ l o g L — 2.171] 
2 X sail(v4 -t- B) (clover) ^CfCgTv(2.689) 

vertex correction l o g I - 0 . 0 1 8 ] 

2x vertex (clover) ^Crcg;y(-3 .26) 
vertex (clover-clover) ^ C f C g ; y ( — 0 . 7 9 3 ) 

OAIIFI 

2x sail(A -t- B) ^ C f [ - ^ l o g Z , + 1 . 6 1 1 ] 

2x 8ail(A-|-B) (clover) ^ C f ^ c g w r ( - 0 . 6 7 2 ) 

vertex correction ^ C H ^ l o g l - 1 . 9 7 9 ] 

2x vertex (clover) :ECF%Ty(-0.476) 
vertex (clover-clover) ^ C f C g ; y ( 3 . 9 2 ) 

tadpole (0(T;:,i) ^ C f ( 4 8 . 9 3 2 ) 

Table 4.2: One-loop results from the lattice, where 

'ZI A l + p - C r 
47r 

-15.796 - 0.248cgpy + 2.2510^;^ (4.6) 

The renormalisation constant Za is computed in this work with csw = 1-

4.3 T h e ma tch ing p rocedu re and associated un-

cer ta in t ies 

In the one-loop matching procedure, the choice of coupling constant used cmd the 

scale at which the matching is performed must be carefully considered. We now 

discuss these options before computing the coefficients in Eq. 4.5. 
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• In performing operator matching using a perturbative expansion to one-

loop, one is free to choose the expansion parajneter deAned as 

a , = (4.7) 

Choosing the bare lattice coupling as the expansion parameter often gives 

poor convergence of the series. A better choice is that of the "boosted" 

coupling constant [53]: 

where uo = ^ is the gauge invariant mean value of and 8̂ is 

the same parameter that appears in the Wilson plaquette action which is 

related to the bare coupling by 

5̂ 0 = (4.9) 

In addition to the boosted coupling, another favourable choice of a , is that 

of the MS scheme as described in Ref. [53]. Following this proposal, we use 

tfo which is measured numerically on the lattice, and the relation 

—In(wo) — — a ) ( l — l.lSScK^), (4.10) 

where the coupling a^(3.41/o) [54] is defmed from the heavy quark potential 

[55]. Solving Eq. 4.10 for ai,(3.41/a), and using the relation [56] 

= a,(e'/"3.41/a)(l + ^ + (4.11) 
\ a / ?r % 

we then obtain by running at the two-loop level, with number 

of flavours nj = 0 (quenched approximation). Using the same two-loop 
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running, is then computed at different scales. In this work, the 

simulation uses [3 = 6.2 and the corresponding UQ = 0.8771. A central 

value for ZM is obtained by using = 2/a). By varying q between 

1/a and 7r/a, the systematic errors are estimated. The numerical values of 

at g = 1/a, S/a and Tr/o are given in Table 4.3. 

6.2 0.172993 0.140189 0.124985 

Table 4.3: The variation of with scale that will be used in the one-loop 
matching procedure 

• The scheme-dependent constants <icont and c/iatt are next-to-leading loga-

rithms and can be absorbed by tuning the scale However, since this can 

result in a loss of control over the higher order logarithmic contributions, 

^ is usually chosen to be of 0 ( l / o ) , thus maintaining a small contribution 

from these terms. 

# The choice of affects the value of in Eq. 4.4. In this work, we use 

csw = 1 in the one-loop matching as the clover term is always accompanied 

by powers of in the perturbative calculation. 

4.4 Resu l t s 

We now present the results for ZM/ZA with different values of The numerical 

results for each operator are displayed in Table 4.4 where ZM/ZA is given for 

various with a/i = 1 and csw = 1-
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Q S 

0.1255 0.12499 0.14019 (117299 
(boosted) (g = 7r/o) (g = 2/0) ( g = 1/0) 

'̂ 1 1.451 L449 1.518 1.680 
.̂ 2 (Oe/j/j) 0.556 0.558 0.490 0.331 

Table 4.4: Matching coefBcients for di&rent a , with = 1.0 and OjU = 1.0. 
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C h a p t e r 5 

Numer ica l s imulat ion, analysis 

and resul ts 

In Ch. 3, we established the form of the operators which, when sandwiched be-

tween the pion and the vacuum, yield the second moment of the pion's distri-

bution amplitude ({^). Following this, the one-loop matching coefficients were 

computed in order to relate the lattice results to the MS scheme (Ch. 4). In 

this chapter, we present the details of the numerical simulation of the correlators 

that contain these matrix elements. The numerical results are then matched to 

the MS scheme and the systematic errors associated with the final results are 

discussed. 

5.1 Lat t ice compu ta t i on 

In this section, we state the details of the lattice on which the simulation was per-

formed. The correlation functions that were computed are listed and we examine 

how they are combined such that is isolated. 
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5.1.1 Simulation details 

The details of the simulation are summarised in the following: 

• /? 6.2 (where Qq is the bare coupling), with corresponding inverse 

lattice spacing a ^ = 2.67 i 0.06GeV (from the spectrum results for 

[57] using ro as determined in Ref. [58]), on a 24^ x 48 lattice; 

• SW fermion action, with csw = 1.61, tuned such that the action is non-

perturbatively improved with all 0{a) errors removed; 

• the three values of k used in the simulation are shown with the correspond-

ing physical light pseudoscalar masses (composed of degenerate quarks) in 

Table 5.1, with K, = 0.135818±|I [57]; 

K K = 0.13460 K = 0.13510 K ̂  0.13530 

Mp,(MeV) 7481^ 574t | 4901^ 

Table 5.1: Values of K shown with the corresponding values of pseudoscalar meson 
mass [58] (converted into natural units using = 2.67GeV), obtained by fitting 
to Eq. 5.10. 

the 154 quenched configurations used in the simulation were generated using 

an over-relaxed [59, 60] Cabibbo-Marinari algorithm [61], and the quark 

propagators were generated using the bi-Conjugate Gradient Stab algorithm 

# non-improved local operators; 

• the statistical error in this work is estimated by creating 100 bootstrap 

samples. 
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5.1.2 Correla t ion funct ions 

The matrix elements that yield are 

(5.1) 

(5.2) 

where is the pion decay constant. 

Generically, for an operator Q, the two-point correlator can be written as 

Cf{p , t ) = j:e"'-''{Q(x,t)iS\0)}, (5.3) 
X 

where p is the spatial momentum and $ = (typically of the form u-ygcZ) is 

the interpolating operator which overlaps with the single pion state. Inserting 

a complete set of states and considering large Euclidean time separation that 

ensures dominance of the ground state, Eq. 5.3 can be re-expressed as 

C?(p. t) ^(0|Q(0)|7r(p)>e-®-', (5.4) 

where is the energy of the pion, and is the wavefunction renormalisation 

given by 

= (Oli^TsV'k), (5.5) 

which is independent of p. We now list the two-point functions that are combined 

in order to compute (^^). This includes the pion propagator. 

C | (p . i ) = 2 ]e""(0 |$ (xX)$ ' (0 ) |0 ) , (5.6) 



In isolating it is necessary to compute the correlator composed of the fourth 

component of the axial current and the interpolating operator 

C # ( p x ) = E«"" (OM. (xX)$* (0 ) | 0 ) . (6.7) 
X 

The correlators involving the two operators appearing in Eqs. 5.1 and 5.2 are 

defined as 

C?{p,t) = i : e"- (0 |0„( ,„ , (x . i )®t(0) |0 ) . (5.8) 
X 

c°'{p,t) = (5.9) 
X 

Inserting a complete set of states and looking at large Euclidean time separations, 

the above correlators can be written as 

C 2 ( P , ^ ) = + ( 5 . 1 0 ) 

( 5 . 1 2 ) 

( P , ^ ) = ( 5 . 1 3 ) 

where we remind the reader that 

o; i i - 0411 - ( 5 . 1 4 ) 
O422+0433 

as defined in Ch. 3. We also note that a is chosen to be the time direction. The 

second moment is isolated by taking the ratio of the correlator containing the op-

erator or with C^(p,^) (computed at the same spatial momentum). 

^This is done in order to compute the pion decay constant which is then divided out. 
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For = 04{12}) 

C°(i) 
R, = 

Ci{t) p = ( l , l , 0 ) 

= (5.15) 

In the case of define 

^9 = cm 
p\{e). (5.16) 

p= ( l , 0 , 0 ) 

We note that in the above equations, (Ag) correspond to ^2 in the no-

tation of Ref. [7], 

By exploiting the cubic symmetry of the lattice, Ri and i?2 are computed in 

different directions of the momentum. The final results quoted for Ri and i?2 are 

averages of those related by cubic symmetry. 

5.2 Analysis and la t t ice resul t s 

Having defined the correlators, we now present the details of the numericai anal-

ysis and results. 

5.2.1 Corre la tors and P la teaux 

In this section, we first present the effective mass plots, obtained using 



p̂ =0 

p=2 

+ 1 t ; r + + f + + M + M 

10 12 
time 

14 16 18 20 22 24 

Figure 5.1: Effective mass plot for K = 0.13530. Each fit is an estimate for the 
energy of the pion (as in Eq. 5.17), and for = 0, we obtain a value for the 
mass of the pion. 

These are used to estimate the range over which to fit and 7̂ 2 to a constant. 

As a typical example, the effective mass plot for K = 0.13530 is presented in 

Fig. 5.1. From this plot, the range over which it is assumed that the single pion 

state has been isolated is estimated to be 9 < < < 18 (for all spatial momenta). 

The correlator C^(p,^) (the fourth component of the axial current), is presented 

in Fig. 5.2, using a logarithmic scale with K = 0.13460, and momentum = 1 

and p^ = 2. 

Before presenting the final plateaux for Ri and we display the individual 

results for each direction. The purpose of this is to ensure that the results are 

compatible and therefore independent of direction, i.e., that cubic symmetry is 
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\ (p =1) 
A. (P=2 ) 

12 13 14 

time 

Figure 5.2: The fourth component of the axial current plotted on a logarithmic 
scale at = 1 and = 2, for K = 0.13460. The straight-line behaviour of each 
set indicates that the data points fit well to an exponential. 

maintained. Fig. 5.3 displays the results for Ri computed in different directions 

on the lattice. The results for Eg are given in Fig. 5.4. 

Having selected a suitable range, we now present the average of the individual 

results for Ri and R2 in Fig. 5.5, where both plots are computed with K = 0.13460. 

Fitting Ri and R2 to a constant, we obtain the results presented in Table 5.2. 
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Figure 5.3: computed in diEerent directions = 2). 

5.2.2 Numer ica l results 

In Sec. 5.2.1, we presented the results for TZi, 7̂ 2 at diEerent K. In order to 

obtain values in the limit of zero quark mass, the results given in Table 5.2 must 

be extrapolated to Kent- Each extrapolation for Ri and i?2 is shown in Fig. 5.6. 

Extrapolating to the zero quark mass limit, we And the bare lattice results: 

)L: = 0.1845 d: 0.0322 (from Ai) (5.18) 
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Figure 5.4: % ) computed in different directions = 1). 

and 

= 0.0436 ± 0.0170 (from (5.19) 

5.3 F ina l resu l t s and sys temat ic e r rors 

In this section, we present the result for in the MS scheme and discuss the 

systematic errors. 
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Figure 5.5: and with K = 0.13460 

5.3.1 Resul ts in t he MS scheme 

Having obtained in the lattice regnlarisation scheme, we must now match 

the results onto the MS scheme, 

(5.20) 

where ZQ is the matching coefficient which relates the lattice operator OL, to its 

MS counterpart, and ZA is the renormalisation constant for the axial current. 
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/ L K = 0.13460 K = 0.13510 K = 0.13530 

Ri 0.010018 ± 0.000714 0.011018^:0.001192 0.011658 ±0.001720 
R2 0.002854 ± 0.000359 0.003077 ± 0.000634 0.002703 ± 0.000906 

Table 5.2: jZi and ^2 for diEerent /c 

Combining the results in Sec. 5.2.2 with matching coeiBcients (aa presented in 

Ch. 4), we obtain the following results: 

= 0.280(49)1^ (5.21) 

and 

(e'>MS, = 0 . 0 2 1 ( 8 ) 3 (6.22) 

where the Arst error quoted is statistical and the second is the systematic error. In 

obtaining Eqs. 5.21 and 5.22, we use the one-loop matching coefficients calculated 

at 0:3(9 = 2/0), = 1.0 and match at // = l / o which will be discussed in the 

next section. 

5.3.2 Systemat ic errors 

The main systematic error in this work is due to the matching coefficients com-

puted in Chapter 4. Choosing = 1.0 (since = 1.61 is of the order 0^), we 

must then decide the value of at which to perform the perturbative expansion, 

and the scale at which to match the lattice and continuum one-loop results. 

Since we perform the matching at the one-loop level, there is no preferred choice 

of as- We therefore choose Qs((/) obtained in the MS scheme [53], as described 

in Sec. 4.3. We then use this coupling constant at the scale g = 2/o (the central 
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Figure 5.6: The extrapolation of and % to the zero quark mass limit. 

:ic error. value) and vary g between 1/a and 7r/a to estimate the systemat 

By performing the matching at ^ = l / o , all the log terms vanish in the expansion. 

In this procedure, the leading error is of the form (o!a/47r) /̂b, where A; is a constant, 

independent of Obtaining A; on the lattice is a formidable task. In principle, 

one could calculate the two-loop anomalous dimension and use it to run at 

next-to-leading order on the lattice to another scale. Matching is then performed 

at one-loop and the result run back to /i = 1/a in the MS scheme at the same 

precision (having computed 7 ^ ) - The difference between this result and the one 

obtained by matching directly at /,< = 1/a will then indicate the size of (ag/47r)^A;. 
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However, in view of the fact that the one-loop correction to each operator is large 

(especially in the case of %), it is difhcult to be snre of the accuracy of this 

approach. It would therefore be preferable to match non-perturbatively, thus 

removing the uncertainty that accompanies the perturbative series. 

The extrapolation to = 0 is mild, particularly in the case of TZg, and so 

the error associated with it is expected to be small. Since the simulations were 

performed using only one value for the lattice spacing, it is not possible to ex-

trapolate to the continuum limit. Although an improved action has been used 

and we are working with a light-quark system at quite a fine lattice spacing 

= 2.67 ± 0.06GeV), we note that it would be preferable to include improved 

operators in order to further reduce discretisation errors. 

Finally, the results are obtained within the quenched approximation. In order to 

make a reliable estimate of the error due to quenching, we would have to perform 

a simulation using dynamical fermions which is beyond the scope of this work. 
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C h a p t e r 6 

Conclusions 

In this work, the second moment of the pion's distribution amplitude has 

been computed from lattice QCD using two operators, each belonging to a dif-

ferent irreducible representation of the hypercubic group. The results obtained 

at 2.67 GeV in the MS scheme are (from Eqs. 5.21 and 5.22) 

( ^ " ) i = 0 . 2 8 0 ( 4 9 ) 1 ^ ° 

and 

= 0.021(8)1^. 

These results are incompatible and correspond to significantly different distribu-

tion amplitudes. The value for obtained from (defined in Eq. 5.15), 

indicates that a large fraction of the pion's momentum is carried either by the 

quark or the antiquark. However, this is contradicted by the result for (^^)2, cal-

culated from A2 (as defined in Eq. 5.16), that describes a wavefunction in which 

the momentum is shared equally between valence quarks. 
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Combining these results with the definition of the pion's distribution amplitude 

(Eq. 1.39), 

= 6a;(l — z) ^ (2a: — 1), 
n>0 

(6.1) 

where Go = 1 and — 35/12((^^)(^) — 1/5), we obtain aji expression for 

<^ (̂a;). The series in Eq. 6.1 is truncated at M = 2. In approximating we 

have assumed that the scale is sufficiently high such that contributions to the 

wavefunction from higher twist terms are negligible. The wavefunctions generated 

from each value of are plotted in Fig. 6.1, along with the asymptotic form 

(for which = 1/5). 

2.5 

1.5 

0.5 

-0.5 

Figure 6.1: The pion's distribution amplitude for (^^)o = 1/5 (asymptotic form), 
( f >1 = 0.280 and (̂ )̂2 = 0.021. 
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In order to make a comparison with other studies (both in the lattice regular-

isation scheme and in the MS scheme), the results must be compared at the 

same scale. All of the lattice studies conducted previously present the results in 

the lattice regularisation scheme at different scales and therefore we have used 

quenched^ one-loop running [63] to obtain results at our lattice scale (2.67 GeV). 

These are then compared with our bare lattice results. From Table 6.1, we ob-

serve that actually agrees with the previous predictions for the operator 

corresponding to (i^^)l2 [5, 6, 8], originally obtained with inverse lattice spacing 

cr^ = 1.01 GeV, a~^ = 1.8 GeV and = 1.9 GeV respectively. The operator 

corresponding to was also calculated previously on the lattice [9], however, 

we do not find agreement with this result. The result for (i^^)l2 is well below all 

values previously predicted for this operator using the lattice. 

The comparison with predictions from QCD sum rules (0.4 ± 0.2 at Q = 1.22 

GeV [10], and 0.39 at Q = 1.5 GeV [11]), is made after running the sum rule 

results in the MS scheme at two loops [63] with the appropriate number of active 

Savours, up to our lattice scale. From Table 6.1, we see that (^^)i is in good 

agreement with sum rule predictions. However, in the case of (^^)2, this is again 

much smaller. 

In summary, we note that the operator used to compute (0(r{;,;,}) agrees 

with previous values associated with the operator When this is matched 

to the MS scheme, we find satisfactory agreement with sum rule predictions. 

However, the result for is incompatible with preceding lattice values for 

this operator. Furthermore, it is smaller than that of the asymptotic value which 

is unexpected at this scale. At this stage however, there is no reason to reject the 

result obtained for the second moment from i?2 and therefore further investigation 

is necessary. 

^Although the result q u o t e d i n r e f e r e n c e [9] is calculated using two flavours of sea-quarks, 
the sea-quark masses are quite heavy. 
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current results previous lattice results QCD sum rules 

( f ) i = 0.280(49)±^° 

= 0.185(32) 

=0.021(8)±^ 

( f )L, = 0.045(17) 

= 0.235(25) [5] 

( f )L , =0.26(13) [6] 

0.30(13) [8] 

)L, = 0.11(2) [9] 

= 0.101(10) [9] 

0.353(61) [10] 

0.358 [11] 

Table 6.1: A comparison between the values of obtained in this study, pre-
vious lattice results (all obtained in the lattice regularisation scheme) and QCD 
sum rules. The errors on statistical only. 

In general, there are a number of ways in which to reduce the error that ac-

companies the prediction of using lattice QCD. The most significant source 

of uncertainty is expected to come from the perturbative renormalisation of the 

lattice operators. As discussed in Chapter 5, this could be reduced considerably 

by matching non-perturbatively. The systematic error resulting from 0(0) terms 

could be removed by using improved operators (in addition to the improved ac-

tion), such that the leading discretisation error is of O(a^). The statistical error 

could be reduced by increasing the number of configurations on which the cor-

relators are measured. In addition, the uncertainty introduced by working in 

the quenched approximation could be avoided by simulating the operators using 

dynamical fermions. 

Possible phenomenological extensions of this study include an analysis of the 

fourth and sixth moments of the distribution amplitude. However, this would 

undoubtedly require a non-perturbative computation of the matching coeScients 

due to the increased number of derivatives in the operators. Furthermore, con-

tributions to the shape of the distribution amplitude from higher twist terms are 

expected to be small at higher energies. Another possibility would be to perform 

a similar analysis of particles such as the jO-meson and the kaon. This would 

80 



provide valuable non-perturbative information necessary to describe other decay 

modes of B mesons [18]. We a l s o note that the lowest moments of baryon distribu-

tion amplitudes are useful in order to compute the proton's electromagnetic form 

factor. This is particularly interesting since experiment currently disagrees with 

the theoretical predictions of the asymptotic form of the proton wavefunction. 
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A p p e n d i x A 

T h e m o m e n t s of a d i s t r ibu t ion 

In this section, we introduce the moments of a distribution and demonstrate the 

way in which they characterise and therefore provide insight into the form of a 

d i s t r i b u t i o n . T h e m a t e r i a l c o n t a i n e d w i t h i n i s b a s e d o n R e f . [ 6 4 ] . I n o r d e r t o 

illustrate the ideas and definitions clearly, we begin with a brief introduction to 

the expectation, variance and standard deviation of a distribution. 

A . l E x p e c t a t i o n 

The definition of expectation for a (fzacrefe random variable % with possible 

values 3:2,... is defined as 

-E(A') = E ^ i / f e ) . (A.l) 
j=i 

where is the probability that % — For a random variable 
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with density function / ( z ) , the expectation of % is defined as 

/

OO 

(A.2) 
-OO 

The expectation of X is usually called the mean fj.. This single value represents 

the average of % and is therefore considered as a measure of the central tendency 

of the distribution of X , 

A.2 T h e var iance and s t a n d a r d devia t ion 

Having defined the mean fi as the expectation of a random variable in Eq. A.l 

and Eq. A.2 for the discrete and continuous case respectively, we now introduce 

another important quantity called the variance which is defined by 

1/(A') = E[(X - I^n (A.3) 

which is a positive quantity also denoted as Explicitly, if % is a 

random variable with probability function / ( z ) , then the variance is given by 

(7̂  = V(a;). (A.4) 

In the case of a random variable with density function /(a;), the 

variance is defined to be 



(7̂  = / (3; — (A.5) 
J — CO 

The standard deviation is obtained by taking the positive square root of Eq. A.3, 

i.e. 

a = , j n x ) =E[{x - ^Y\. (A.6) 

Both the variance and the standard deviation are a measure of the dispersion of 

the values of the random variable about the mean Another way to say this 

is that they provide insight into the shape of /(a;), the probability distribution 

(for the discrete case) or the density function (continuous case). For values that 

are concentrated around the variance is small and the density function has 

a peaked shape. Conversely, if the values are scattered with many distributed 

far from the mean, the variance is large and the density function has a Eatter 

appearance. These distributions are illustrated in Fig. A.l below. 

A.3 T h e m o m e n t s of a d i s t r ibu t ion 

Following on from the variance, we can now generalise to the moments of a 

random variable X , which characterise the form of the distribution f{x) about 

the mean. Explicitly, the moment about the mean // is defined as 
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small variance 

i large 

Figure A.l: Density functions with small and large variance. 

( r> = B K x - (A.7) 

where n = 0 , 1 , . . . . From Eq. A.7, it can be seen that the zeroth moment ^ = 1, 

the first moment = 0 and the second moment — /̂ )̂ ] which (from 

Eq. A.3) is the variance. Since this study focuses on the second moment, we do 

not consider the higher moments. 

Since we are interested in the second moment of the pion's distribution amplitude 

where <̂ (̂ ) is a continuous distribution, we state the equation for the moments 

of a continuous distribution about the mean 

/
CO 

-oo 

(A.8) 
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For a distribution with mean /u = 0, the moment is defined as 

/

CO 

(A.9) 
-oo 

To relate this to the main text, we note the following points. 

# ^ = 'U — iZ where % and iZ are the fractions of momentum carried by the 

quark and antiquark 

e the limits in Eq. A.8 are [—1,1] since the fraction of momentum ranges 

between zero and one. 

# (^(^) is symmetric i.e. 
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A p p e n d i x B 

G r o u p t heo ry 

In this section, we present the character tables for the operators of interest. 

B . l T h e hypercub ic g roup 

Table B.l displays a typical element of the hypercubic group (%) for each conju-

gacy class. The characters for the irreducible representations of 9̂ 4 can be found 

in Tables 5.2a-c, Ref. [50]. 

B.2 Ob ta in ing t h e charac te rs for each represen-

t a t i on 

Since we do not know the matrix form of the representation, we take an element 

from a particular class and act on the operators which form a basis. For example, 

consider the component pi<72?'3 of under the reflection of both the 1- and 
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class order no. of elts. 
typical element 

class order no. of elts. permutation/reflection notation 
A 1 1 I 
B 2 6 
C 2 1 
D 4 12 (12)fi 
E 2 24 (12)f3 
F 4 12 ( 1 2 ) f i f 3 f 4 
G 3 32 (123) 
H 6 32 (123)f i f4 
1 8 24 (1234)fi 
J 2 12 (12)(34) 
K 4 12 (12)(34)fif2 
L 2 4 ( - l ) f i 
M 2 4 ( — 1) f 1 ̂ 2 ̂ 3 
N 2 12 (-1)(12) 
0 4 24 (-1)(12)PIP3 
P 2 12 (-1)(12)P3F4 
Q 6 32 ( - l ) ( 1 2 3 ) f i 
R 6 32 (-1)(123)P4 
S 4 48 (-1)(1234) 
T 4 24 (—l)(12)(34)fi 

Table B.l: Typical element for each conjugacy claas of the hypercubic group 

2-axis. 

PiP'. ^ (-Pi)(-92)r3 

Since the component is invariant under this operation, this implies that there is 

cin entry of 1 along the diagonal of the representation. If however we consider a 

permutation of the indices of since all indices are different, this implies a 

zero entry for the diagonal element of the representation. 

To summarise. 
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# component left unchanged: enter +1 

# for an odd number of reflections: enter -1 

# for a permutation of the axes for enter 0 

# for a permutation of the 2- and S-axes for enter 1 

Following this simple set of rules, Tables B.2 - B.6 are completed. 

Note that the components in Table B.6 are defined as 

+ - 2p^g r̂(r - 2p^g^r^] (B.l) 

and 

. (B.2) 
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baais 
components 

class and typical element baais 
components A B c D-K L M N-T 

I ^1^2 f i f 2 ; ' 3 a - Pi f l f 2 f 3 -

Pig2r3 1 1 - 1 0 1 1 0 

Pig2r4 1 1 0 1 - 1 0 

Pi 93̂ 2 1 1 0 1 1 0 

Pi93r4 1 - 1 - 1 0 1 - 1 0 

Pig4r2 1 1 0 1 - 1 0 

Pi94^3 1 - 1 0 1 - 1 0 

P29ir3 1 1 - 1 0 1 1 0 

^291^4 1 1 0 1 - 1 0 

^293^1 1 1 0 1 1 0 

^293^4 1 - 1 0 - 1 - 1 0 

^294^1 1 1 0 1 - 1 0 

^294^3 1 - 1 0 - 1 - 1 0 

P39ir2 1 1 0 1 1 0 

^391^4 1 - 1 -1 0 1 - 1 0 

^392^1 1 1 0 1 1 0 

^392^4 1 - 1 0 - 1 - 1 0 

^394^1 1 - 1 0 1 - 1 0 

^394^2 1 - 1 -1 0 - 1 - 1 0 

P4gir2 1 1 0 1 - 1 0 

P4gir3 1 - 1 0 1 - 1 0 

^492^1 1 1 0 1 - 1 0 

P4g2r3 1 - 1 0 - 1 - 1 0 

P4g3ri 1 0 1 - 1 0 

^493^2 1 - 1 - 1 0 - 1 - 1 0 

2 4 0 -24 0 1 2 - 1 2 0 

Table B.2: Characters of the 24 dimensional representation O 
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basis 
components 

class basis 
components A B C D E F G-K L M N 0 p Q-T 

Pi 92 1 -1 -1 0 0 0 0 1 1 0 0 0 0 

Pi 93 1 -1 -1 0 0 0 0 1 1 0 0 0 0 

Pi 94 1 -1 -1 0 0 0 0 1 1 0 0 0 0 

P29l 1 -1 -1 0 0 0 0 -1 1 0 0 0 0 

P293 1 -1 -1 0 0 0 0 -1 1 0 0 0 0 

Pzgf 1 -1 -1 0 0 0 0 -1 1 0 0 0 0 

P39l 1 1 -1 0 0 0 0 -1 1 0 0 0 0 

P392 1 1 -1 0 0 0 0 -1 1 0 0 0 0 

P394 1 1 -1 1 -1 -1 0 -1 1 -1 1 1 0 

P49l 1 1 -1 0 0 0 0 -1 -1 0 0 0 0 

P492 1 1 -1 0 0 0 0 -1 -1 0 0 0 0 

P493 1 1 -1 1 1 -1 0 -1 -1 -1 -1 1 0 

12 0 -12 2 0 -2 0 -6 6 -2 0 2 0 

Table B.3: Characters of the 12 dimensional representation 0 

basis 
components 

class basis 
components A B C D E F G-K L M N 0 p Q-T 

Pi92^3 1 1 -1 0 0 0 0 1 1 0 0 0 0 

Pi92^4 1 1 -1 0 0 0 0 1 -1 0 0 0 0 

Pi93^4 1 -1 -1 0 0 0 0 1 -1 0 0 0 0 

P29ir3 1 1 -1 0 0 0 0 1 1 0 0 0 0 

P29ir4 1 1 -1 0 0 0 0 1 -1 0 0 0 0 

P293r4 1 -1 -1 0 0 0 0 -1 -1 0 0 0 0 

P39ir2 1 1 -1 -1 -1 1 0 1 1 -1 -1 1 0 

P39ir4 1 -1 -1 0 0 0 0 1 -1 0 0 0 0 

P392r4 1 -1 -1 0 0 0 0 -1 -1 0 0 0 0 

P49ir2 1 1 -1 -1 1 1 0 1 1 -1 1 1 0 

P49ir3 1 -1 -1 0 0 0 0 1 -1 0 0 0 0 

P492r3 1 -1 -1 0 0 0 0 -1 -1 0 0 0 0 

Tr[R{g)] 12 0 -12 -2 0 2 0 6 -6 -2 0 2 0 

Table B.4: Characters of the 12 dimensional representation where and 
are symmetrised 
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baais 
components 

class baais 
components A B C D-F G H I-K L M N-P Q R S-T 

PM - =4^1 1 1 - 1 0 0 0 0 - 1 - 1 0 0 0 0 

P.IPI - 4 ^ ] 1 1 - 1 0 - 1 1 0 - 1 - 1 0 1 - 1 0 

PM - ^ 1 1 1 - 1 0 0 0 0 - 1 1 0 0 0 0 

1 1 - 1 0 0 0 0 - 1 1 0 0 0 0 

P,IPI - 4 ^ 1 1 -1 - 1 0 0 0 0 - 1 1 0 0 0 0 

PM - ^ 1 1 - 1 - 1 0 0 0 0 - 1 1 0 0 0 0 

PDPL-'^L 1 - 1 - 1 0 0 0 0 1 1 0 0 0 0 

1 - 1 - 1 0 0 0 0 1 1 0 0 0 0 

Tr{R{g)] 8 0 - 8 0 1 0 - 4 4 0 1 - 1 0 

Table B.5: Characters of the 8̂  ) dimensional representation 

basis c l a s s 

components A B C D-F G H I - K L M N - P Q R S - T 

^(Pi, 92,̂ 3) 1 1 - 1 0 -1 1 0 1 1 0 - 1 1 0 

1 1 - 1 0 0 0 0 1 - 1 0 0 0 0 

^(Pi,93,n) 1 - 1 - 1 0 0 0 0 1 - 1 0 0 0 0 

93,̂ 4) 1 - 1 -1 0 0 0 0 - 1 - 1 0 0 0 0 

G(pi, 92,̂ 3) 1 1 -1 0 - 1 1 0 1 1 0 - 1 1 0 

G(Pi, 92,̂ 4) 1 1 - 1 0 0 0 0 1 - 1 0 0 0 0 

G(pi, 93,̂ 4) 1 - 1 - 1 0 0 0 0 1 - 1 0 0 0 0 

G(p2,g3,r4) 1 - 1 - 1 0 0 0 0 - 1 - 1 0 0 0 0 

8 0 - 8 0 - 2 2 0 4 - 4 0 - 2 2 0 

Table B.6: Characters of the dimensional representation 
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A p p e n d i x C 

F e y n m a n d iagrams 

In this section, the Feynman rules in both the continuum and lattice [65] regu-

larisation schemes are presented. In Sec. C.2, we illustrate the one-loop diagrams 

necessary to compute the matching coefEcients for the operators of interest. In 

Sec. C.3, we outline the calculation of the sail diagrams on the lattice. 

We note that in Sec. C.1.2, the following notation is used 

r - 7(775, (C.l) 
2 

a 

where a is the lattice spacing. 



C . l F e y n m a n rules 

C.1.1 Cont inuum Feynman rules (Minkowski space) 

z D ( p ) = ^ 

G, 

— 9 ) = 
P 

Of = -4rA;^A;,r 
A; & 

G, y 

_» OFG = —4^r \kfj,Al + k^A'l 

9 9 



c.1.2 Lat t ice Feynman rules (Euclidean space) 

A; 6 
D(k)= T? 

^ ^ r' — 
-y-2 2\: 

a, // 

p < 

^ a, ^ 

b CX < 
p 

q 
7 , c o s ( = ± a ) - M F T ^ ) , (r) 6c 

%f(p, g) = k ; , sm(ap - og)^ c o s ( ^ ^ ) ^ (r)^, 

G, 

where (7̂ ^ = ^ [7^,7,/] 

6, // 

c, p d, g 

%..(?,9) = r c o s ( ^ ) ^ - % î'̂ (Gp + og),j 
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Op = —AgT sm{akfj,) sm{aky) 

G, y 

P 

OjTG = -4&r[sin(o&^) c o s ( ( 2 ^ ) 

+ sill(Gp^) cos 

OfGG = 2r 

+ 2r 8m(Gp^)sin(^)^^°^'' 

4 r C 0 8 ( p - C O s ( p + 

C.2 One- loop cont r ibu t ions 

Cont inuum Feynman diagrams ( o = : 

- self energy - vertex correction 

sail diagram A sail diagram B 
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Lattice Feynman diagrams 

self energy: 

O — Oaiiii-i OcTfj,^ 

# = clover improved vertex 

tadpole correction: tadpole correction: 

vertex correction: 

WBTTTSTS 

sail diagrams: 
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C.3 A n example F e y n m a n d iagram on t h e lat-

t ice 

In order to demonstrate how Peynman diagrams are computed on the lattice, we 

outline the steps involved in calculating the sail diagrams for the operator 

(see Sec. C.2 and note that we do not include the clover improved vertex in this 

example). Before computing the diagrams, we make the following definitions: 

8in(o&^), (C-3) 

= co8(oA;^), (C.4) 

(C-6) 

A, = (C.7) 
a 2 

2 . /06, 
and k = (C.8) 

where o is the lattice spacing. 

The sail diagram is written as 

r ̂  A* 

^ 

and inserting the Feynman rules, this expression can be split into two contribu-

tions, labelled S":; and 6'(,, each corresponding to a term in Ofg . Performing a 

Taylor expansion around = 0 so that we can pick out terms that have the 
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correct continuum behaviour, we obtain 

& = 
k\ ap„ 

g + . r c , -

2 9 p; 
- 7 . C , f - l + 2 r a j - [— '̂JcxSa + 2rAi] 

r k' 
t 2 

E ) 
OPA 

' + 2 ^ f ' ' 4GM 4G;(¥ ' (C.IO) 

where the colour factor (7̂ ^ = 4/3, F^'-y.^'ys and G(k) is the denominator of the 

quark propagator given by 

G,(A;) = 6' + 4r'Af (C.l l ) 

The gluon propagator in Eq. C.IO has the denominator 

oA; 
(C.12) 

where A is the gluon mass introduced to regulate the IR divergence. 

Terms with an odd number of sin functions will vanish in Eq. C.IO and terms 

which are of lower order than cancel. Conmiuting the gamma matrices 

to the right produces terms which are proportional to and /(p/i-yi/r, both 

of which can be removed since p"^ is small and the latter is proportional to m, 

(from the Equations of Motion). Eq. C.IO thus reduces to 

k 
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+ 

+ 

1 

1 

+ 2r^ 

- l . X - 2 r ^ A , . X 

4- 2r^Aig^c^ , (C.13) 

where we note that by power counting, the hrst term is IR divergent. Before 

dealing with this divergence and the additional finite terms, we write down the 

expression for the second term in Eq. C.9, 

'k 

2 

'k' 'k' 

"''PI ok 
- 7 . C , l y l + 2 r 6 , l y 

E> 

[—z-ygja + 2rAi] r 

1 + 

Op̂  /'A;\ /A)' 

2 1^2/ 2 (,2, 

" ' " ' r e , + ^ . , 3 , 
2Ga(A;) " 4Ga(A;) " 4Gg(A;)2 

(C.14) 

As with 5'a, terms of lower order than O(G^p )̂ cancel. The gamma matrices in 

the remaining terms are commuted to the right and neglecting terms proportional 

to Eq. C.14 reduces to 

5'6 = y 
( ^ 2 G ^ 

1 

1 
.6; + 2r'Ai l - 2 5 ; i - , (C.15) 

where the hrst term contains IR divergent terms. Combining 6'a and S";,, we obtain 

Sa + Sb — —Api^tPi^Tg^Cp 
(27r)4 G'(A;) 

A B 
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c 1 
,(C.16) 

where, 

v4 

- 46^626:+23^6:3: ( c . i n 

B 

C 

4 ^ : + 2 < -6^ 
2 ^ 

1,4 
2 " 

(C.18) 

(C.19) 

and terms denoted with an iinderbrace are IR divergent. These are dealt with by 

subtracting and adding the divergent part. This leaves a finite term that, with 

the other hnite terms, can be computed numerically and a divergent term which 

is calculated analytically. The result of the divergent integral is logarithmic, de-

pending on the lattice spacing and the gluon mass (the IR regulator). Explicitly, 

the overall result for these two diagrams (including the symmetric combinations) 

is given by 

2(5'a + 5;,) 
a 

4rp^pi,)—Cf 
-10 

loG 
1 

2.171 (C.20) 

The results for all the one-loop diagrams are given in Table 4.1 (continuum), and 

Table 4.2 (lattice), Ch. 4. 
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