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Chapter 1
The pion’s distribution amplitude

One of the main achievements of Quantum Field theory is the description of
all hadrons through Quantum Chromodynamics (QCD). However, this theory
is difficult to handle since its degrees of freedom, quarks and gluons, are not
directly observable. This is due to the confining nature of QCD. The strong
coupling constant a,, which is dependent on the energy scale, blows up in the
low energy region (< 1GeV), resulting in the confinement of quarks and gluons
to form hadrons. In this region, it is therefore impossible to perform perturba-
tive computations through an expansion in powers of «,. Correspondingly, at
high energies QCD exhibits the property of asymptotic freedom i.e., the coupling
between quarks and gluons decreases considerably (and vanishes when the scale
tends to infinity), thus facilitating computations based on a perturbative expan-
sion. We emphasise however that even at high energies, non-perturbative effects

(hadronisation) always have to be considered.

One way to approach this problem is to try to factorise long- and short-distance
physics i.e., separate low energies from high energies, the latter of which can

be dealt with using perturbative techniques. The hadronisation of quarks and



gluons at low energies is then described by a distribution amplitude (or hadronic

wavefunction) [1, 2, 3, 4].

In calculating hadronic amplitudes, one must include both the hard perturbative
part of the amplitude and the non-perturbative hadronic wavefunctions. Since
the exact form of the hadronic distribution amplitudes are still uncertain despite
several studies [5, 6, 8, 9, 10, 11, 12, 13, 14], the description of the binding
of quarks and gluons to form hadrons is an essential part of the theory that
requires more understanding. In this work, we use Lattice QCD (LQCD) to
improve on the description of the leading-twist hadronic wavefunction of the
pion. Lattice simulations are particularly well suited to this problem since they
provide a framework in which to compute Green functions from first principles,

with a good control of errors.

In this chapter, we first discuss how factorisation can be applied to exclusive
processes at high energies. We then focus on the non-perturbative elements of
this approach and in particular, the distribution amplitude. We illustrate how the
moments of the pion’s distribution amplitude can be related to matrix elements
through an operator product expansion, and discuss the significance of the second
moment at high energies. Finally, the different approaches to calculating this

quantity are reviewed and the present status of the field is discussed.

1.1 Exclusive processes and form factors

There are two different classes of process that can be considered when investigat-
ing the strong interactions. The first is high-energy inclusive reactions in which
only the incoming states are specified. These processes, such as deep inelastic
scattering (DIS) however, provide a direct method to investigate the quark con-

tent of the hadrons themselves, rather than the way in which the quarks bind



to form hadrons. The strong interactions can also be studied through ezclusive
processes in which the incoming and outgoing states are specified. They can
be written in terms of form factors which are Lorentz invariant functions of the
momenta of the incoming and outgoing particles. An important source of in-
formation is that of electromagnetic form factors, since the photon is a suitable
probe with which to examine the structure of the bound state. In such processes,
high momentum transfer implies high resolution. Therefore, the hard elastic
scattering in e™m — e~ m provides a natural approach to studying the detailed

internal structure of the pion, as illustrated in Fig 1.1.

‘ 7(p1)
N INN= N

Y

[
>

Figure 1.1: er — em scattering where the pion-photon interaction is described
by the form factor F,(Q?).

The y*mm vertex can be written in terms of the electromagnetic form factor

(m(p2) [VLu(0)] 7(p1)) = Fo(@Q®)(p1 + P2)u (1.1)

where V,(0) = (Zeuy,u — fedy,d) is the electromagnetic current for the light
quarks and Q% = —¢? > 0 is the momentum carried by the photon. There is no
term proportional to (p; —p2), due to conservation of the electromagnetic current.

The form factor F,(Q?) is a non-perturbative quantity which contains both the



long-distance effects responsible for the hadronic structure and short-distance

interactions between the photon and the constituent partons.

1.2 Factorisation in exclusive processes

In order to isolate the interactions responsible for the hadronic structure of the
pion in the exclusive process (Eq. 1.1), long- and short-distances must be sepa-
rated. We now discuss the physical picture that will enable the factorisation of

the form factor F,(Q?) into hard and soft contributions [10, 15].

1.2.1 Physical picture

The perturbative part of a high-energy process deals with the participating
hadrons in their partonic form. For high enough energies, the relative velocities
of the participating particles are “light-like”. The binding of the hadron occurs
through quantum processes which are highly time dilated in the rest frame of
the remaining particles (i.e. the electron for e™m — e~7). This time dilation
results in a lengthening of the lifetime of the states within the hadron and so
the partonic content of the pion appears to be “frozen” relative to the electron.
As the relative velocities approach the speed of light, the duration for which the
particles remain in contact decreases and in this scenario, we expect an absence
of quantum interference between the long-distance interactions that ensure the
hadronic structure, and short-distance momentum transfers. This incoherence
between hard and soft physics suggests that throughout the collision process, the

participating hadrons are composed of definite partonic states.

This idea is illustrated by the electron-pion scattering in Fig 1.2, where the soft

interactions between the incoming valence quarks are represented by the distri-



bution amplitude ¢;,. The partons in this state then exchange momentum with
the electron via a photon, described by the hard-scattering kernel Ty and at a

later time, reform into a pion described by the wavefunction ¢g..

Ty

¢i'n ¢out

Figure 1.2: Separation of soft and hard physics in electron-pion scattering

1.2.2 Light-cone coordinates

To study the factorisation of high-energy exclusive processes involving light hadrons,
it is useful to introduce light-cone coordinates. In e™m — e~ 7 for instance, the
momenta of the incoming and outgoing pions p?, = p2,, = m? are much smaller
than the momentum transfer Q2. We can therefore make the approximation
p: =p? . =0,le. incoming and outgoing particles are moving on the light-cone.
Moreover, the partons that constitute each pion are expected to be collinear to

the momentum of the hadron, with only a small transverse momentum. As a first

approximation, the momentum of the constituent partons can also be considered

as light-like.
A standard four-vector and its modulus squared are defined as

v, = (vo, V1, Vg, V3) and v? = vg —v? — i — vl (1.2)



The light-cone coordinates are then defined as

Vo + V3 -
vy = and v = (vy,vy), 1.3
L= 1= (v1,v2) (1.3)
such that
v, = (vg,v_,71) and v? = Quiv_ — 0. (1.4)
The two “light-like” vectors ny = (1,0,0,.) and n_ = (0,1,0.) are shown in
Fig. 1.3 below
Vo
(time)
light-cone
S (timetlike) o
vy =0 v =0
n_\/n+
\) vs (space)
(space-like) (space-like)
(timetlike)

Figure 1.3: Tllustration of the light-cone coordinates.

We define the 4+ and — directions for the process of interest (7y* — 7):

Pout = Eoutn—!— (16)



1.2.3 Factorisation

We now proceed by factorising the electromagnetic form factor [1, 2, 16]. At
very high energies () — +00), the exclusive amplitude is dominated by hadronic
states with valence quark content (¢g in the case of the pion). Previous argu-
ments suggest that long- and short-distance effects can be separated, and the

corresponding expression for the form factor given in Eq. 1.1, is the convolution

Fuld?) = [ dadydzin(po)]aa(w)db()l0)
Ta(e,y, 2 OO (O m(p)),  (17)

where higher order corrections are suppressed by factors of 1/Q? Greek and
Roman indices denote spin and colour respectively, and the integral is over the
spatial coordinates. Since we are outlining the general approach, we do not use
light-cone co-ordinates. The perturbative amplitude 7 is computed at the quark
level. The bi-local matrix elements represent the hadronisation of quarks and
gluons. A path-ordered exponential P exp|fy dtz,A,(zt)], where A, is the gauge
field, is inserted in the bi-local matrix elements to maintain gauge invariance!.

This is illustrated in Fig 1.4 where the bi-local matrix elements in Eq. 1.7 that

represent the hadronisation of quarks and gluons into a pion are pictured as blobs.

The formula written in Eq. 1.7 is an attempt to factorise soft and hard contribu-
tions. In some physical processes, soft gluon exchanges contribute significantly
inside the hard scattering kernel. For such cases, soft and hard contributions can-
not be disentangled and the factorisation framework breaks down. We therefore
note that a consistent factorisation framework requires that soft gluon exchanges

must be suppressed in Eq. 1.7.

1The exponent vanishes in the light-cone gauge and therefore this term is absent in the
light-cone formalism.



uUpy Up2
m(p1) > ® E < > (p2)
VP2

Figure 1.4: Factorisation of the electromagnetic pion form factor

The perturbative kernel T describes the hard-scattering of the photon and the
partons. At high momentum, since the pion is almost light-like, the valence
quarks are approximated to be collinear. Each valence quark of the incoming
pion carries a fraction of the total momentum, up; or up; such that u +u =
1. Correspondingly, the valence quarks of the outgoing pion carry fractions of

momentum vp, and Upy such that v+v = 1. Some contributions to 7y are shown

%

in Fig 1.5.

Figure 1.5: Hard exchange of gluons contributing to the electromagnetic form
factor where (a) O(c;) contributions (lowest order) and (b) some higher order

contributions.



Dimensional arguments suggest that distribution amplitudes for three (or more)
partons (illustrated in Fig. 1.6) do not contribute to the form factors in the limit
@) — oo. This has been proved for the process mg — y7* [2]. The high-energy
picture of a pion made up of two valence quarks greatly simplifies the computation

of the hard-scattering kernel Ty.
s : T :
Figure 1.6: Three- and four-parton distribution amplitudes that are suppressed

by factors of 2. These diagrams are therefore absent in the computation of the
form factor at the leading order in Q).

Having factorised F,(@Q?) into non-perturbative matrix elements and a pertur-
bative kernel (Eq. 1.7), we can now relate these matrix elements to the pion’s
distribution amplitude via a light-cone expansion. Before this, we end the section

with a brief discussion of factorisation in the inclusive case.

1.2.4 Comparison with the inclusive case

As discussed, the factorisation framework enables the calculation of processes
at short-distance or high-momentum transfer. Factorisation can be applied to
inclusive as well as hard exclusive processes. In the latter case, the hadronic
amplitude is represented by the convolution of a process-dependent hard scatter-
ing amplitude Ty (computed at the quark level) with a distribution amplitude
¢ that is process-independent. In the inclusive case ({p — [X), the cross-section
can be expressed as the product of a scale-invariant lepton-quark cross-section
do convoluted with structure functions (. The structure function is a sum of

squares of the light-cone distribution amplitudes.



In order to outline the relation between these processes, a comparison of exclusive

amplitudes and inclusive cross sections is given in Table 1.1 [4].

exclusive amplitudes inclusive cross sections
M ~11¢(zi, @) @ Tu(wi, Q) do ~ 11G(24, Q) ® d6 (24, Q)
¢z, Q) = [Pk )by, ko) | G, Q) = T, [k, ][de] [y (z, ko) 2
measure ¢ iny — MM measure G in [p — [X
Ty expanded in o dé expanded in a;

Table 1.1: Comparison of the factorisation parameters in exclusive amplitudes

and inclusive cross sections

1.3 The distribution amplitude

The motivation underlying the computation of the pion’s distribution amplitude
exists not only because of the information that it provides on quark binding in
hadrons (i.e. the pion). In addition, ¢, is an input parameter in several hadronic
amplitudes such as the electromagnetic form factor of the pion and v*y* — =
which is studied by the CLEO collaboration [17]. The study of B-decays also
benefits from a better knowledge of ¢.. It has recently been proved that two-
body decays, such as B — mr [18, 19], can be computed in the framework of
factorisation in the heavy quark limit m; — oo. The analysis of current data

from BELLE [20], and BABAR [21] would also benefit from information on the

pion’s distribution amplitude.

In this section, the bi-local matrix elements appearing in Eq. 1.7 are expanded
near the light-cone and re-expressed in terms of the pion’s distribution amplitude.
We outline the connection between the light-cone expansion and the Operator

Product Expansion (OPE).

10



1.3.1 The light-cone expansion

The outgoing bi-local matrix element in Eq. 1.7 is expanded near the light-cone

[2, 10], i.e. (z —y)? ~1/Q?, such that
— _ ifw ! i(p.otup.y) 2
(m(p)ta(@)ds(y)[0) = - [ due (s )sat(u, Q%) + bt (1)

where ¢ (u, @?) is the distribution amplitude of the pion and f, = 93 MeV is the
pion decay constant. Although a path-ordered exponential has been inserted to
preserve gauge invariance, the exponent vanishes due to the choice of gauge (see

Footnote 1, page 7). There are several important points to note in Eq. 1.8

o Eq. 1.8 is written with the underlying assumption that transverse momenta
up to Q? have been integrated into the bi-local matrix elements, whereas

transverse momenta larger than @* will be included in the hard-scattering

kernel 1% (see Eq. 1.7)

e A renormalisation scale has been introduced in the definition of ¢. The
renormalisation scale dependence of ¢ will then be cancelled by the scale-

dependence in T to yield renormalisation scale independent form factors.

o y and u are the longitudinal fractions of momentum carried by the valence

quarks such that v +u =1

o h.t. are terms that yield é—suppressed contributions to form factors. They
are said to be higher-twist in the light-cone expansion (where twist is defined
in Eq. 1.16), and consist of all the possible terms with the same spinorial

structure and quantum numbers as the LHS of Eq. 1.8.

Inserting the Dirac matrix (v,7s)ap into Eq. 1.8 and taking the trace, we obtain

(m(p)|a()(77s)d(y)]0) = —éprueip'”/dueiup(y“”)cb(u,QZ), (1.9)

11




where again, the integration over transverse momenta is implicit. This choice of
Dirac matrix isolates the lowest twist term containing the pion’s wavefunction.
When z and y coincide, Eq. 1.9 reduces to the coupling of the pion to the axial

current. The distribution is thus normalised

/01 dug(u, Q%) = 1. (1.10)

In the isospin limit m, = my, the distribution amplitude of the pion is symmetric

under the transformation u ¢ 4, i.e.
B(a, Q%) = é(u, Q2). (1.11)

This property is a consequence of the symmetry of the pion under G-parity (the

combination of an isospin rotation with charge conjugation).

1.3.2 The Operator Product Expansion

At small separations, bi-local operators exhibit a divergent behaviour. This diver-
gent behaviour can be expressed as the sum of products of a local operator with a
coefficient function (the so-called Wilson coefficient) depending on the separation
2. The local operators should have the same quantum numbers as the initial bi-
local operator, and the Wilson coefficients exhibit the same divergent behaviour
as z — 0. The OPE for the time-ordered bi-local operator u,, (%) dg (-“2—2) is
written as [22]:
TVWal=]¥s|l—=]| = Z Ci(z%)z" .. 2™
2 2 e~
32
J

S dijkBupgy - - 0 OU) L, (O)T 5y (1.12)

k=0

12



where the local operators are of the form

04, (0) = 9T Dy - Doy ¥, (1.13)

10 -tk

and the covariant derivative is defined as
“* > .
Du:au -‘ZQAM- (114)

In Eq. 1.12, m takes the values 1, 2 with Ff}) = v, and Fff) = V.75, and we
note that m = 2 is the case of interest later. The Lorentz indices are counted
by j and k < j. The local operators defined in Eq. 1.13 are gauge-invariant and

traceless, and have the same quantum numbers as the bi-local operator on the

LHS of Eq. 1.12.

The Wilson coeflicients C; carry the singularities of the matrix element in the

expansion. The short-distance behaviour of these coefficients is obtained by di-

mensional counting

lim C;(22) = (22)@"=#=D)/2(1n( 22 2))e, (1.15)

220

where d;cm) and k are the dimension and spin respectively of the local operators

Ofgﬁ)““k, i is the renormalisation scale, p is the anomalous dimension of the local

operator and D is the dimension of the bi-local operator. The singularity of the

Wilson coefficients is dependent on the twist 7 of the operators, defined as
r=d™ -k (1.16)
k .

The leading (most singular) term in Eq. 1.12 corresponds to the operators with

13



the lowest twist. In the case of the bi-local operator defined in Eq. 1.9, the lowest

twist is 7 = 2. The corresponding operators are of the form

Oﬂo = 771;7#07577[) (117)
— & )
Opows = Yuo¥s D ¥ (1.18)
- & e
Ouomuz = 77[)7#0'75 D[tlD/J,g ’QZJ (1.19)
- & &
ONO---N% = 1/)7#0 Vs D;,l,l oo Dl‘n ?7[), (120)

When sandwiched between a pion and the vacuum, O, is related to the pion
decay constant and O,,,, vanishes because the wavefunction is symmetric un-

der G-parity?. The first non-trivial matrix element involved at the lowest twist

contains the operator

— Rxd >
¢7ﬂ075 D#IDHQ w (121)

This operator is dominant at small z since it has the largest anomalous dimension
of all the possible lowest twist operators and therefore (from Eq. 1.15), its Wilson

coefficient is the most singular.
1.3.3 The OPE and its relation to the distribution ampli-

tude

We can now make the connection between the OPE in Eq. 1.12 and the moments

of the distribution amplitude ¢, (z,u) [22]. Using translational invariance, the

2QOnly even moments of the distribution amplitude are non-vanishing.
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light-cone expansion in Eq. 1.9 can be re-written as

(3)wee(F)

At this stage, we include the renormalisation scale-dependence on Q? explicitly.

>— —zfnpp/ due'® g_“pg')é(u,Qz). (1.22)

(n(r) |

As discussed in Sec. 1.3.1, Eq. 1.22 is shorthand notation for

[7 G [ (r0fa () e (5) )

1 . .
= ‘ifvrpu/o duefp““(“_“)qb(u,QZ), (1.23)

24 =0

We note here that in using light coordinates, p.z = pyz_+p_z, —p, 21, and that
we choose p_ = 0 and p; = 0 (because p? is light-like). A Fourier transformation
is used to eliminate the exponent on the RHS of Eq. 1.23 and so we obtain the

complete expression for the distribution amplitude

é(u, Q?) = T ‘_i_z_ e——p-x—z..(u—u)/Q d]u/ é]_e““gl‘gl
<7r(p) (2)7+75d<_;)’0>

In order to relate the distribution amplitude to the OPE, we insert the Dirac

(1.24)

24 =0

matrix (7,75 )ap into Eq. 1.12 and take the trace. The Wilson coefficients are

now defined as

éf(Q2)=4/ (d;:)L /dz* emFLOE (=22, (1.25)

With this definition, we can relate ¢(u, Q?) directly to the OPE:

¢( ’ _ f / dz_ _p+z_(u—a) Z C’;’(Q2)Z“1 L

52y
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Z dijkaUk+1 . .aM<’/T|’gZ(O)’7+’75 BM o Buk ¢(0)|0>7 (1'26)

k=0
dz_ _ —1 ik
- e3P+ (u=1) T
i S R[]
(p+2-)'dijibiC (@), (1.27)
where
<7T(P)'%E’)’+’Ys Bm Bﬂk $(0)]0) = bep1pu; - - - Puss (1.28)

and integration by parts has been used to convert the external derivatives d,,, ., ... 9,
into factors of _Tip+(u — ). This also produces terms from the derivative acting

on the z#1 ... z# in Eq. 1.27, however these are trace terms which are subtracted.

Noting that

dz_ (=25 0" _
— 2p+z (u—7) o —
o z"e L B(a ﬁ>n5(p+(u w)), (1.29)

Eq. 1.27 can now be written in the form

1)22'—-k(2)k(z‘)2z'—k+1 . ‘

$(u, Q%) = Z; Zi: - [ dijrCi(Q%)
> . _ N |
mcS(u — @) | (u—1a) " Fby. (1.30)

Having obtained an expression which clearly relates the distribution amplitude
to the operators appearing in the OPE of Eq. 1.12, we proceed to look at the

moments.
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1.3.4 Moments

The moments (see A.7 for an introduction to the moments of a distribution)
reveal the shape and structure of a distribution. The n** moment of the pion’s

distribution amplitude is defined as

(€)= [ deenole, @), (131)

where £ = u — @. Relating this to Eq. 1.30, the moments are defined as

o i(—l)wz (ii-++

4,425 k=0

d,]ké]"’(Q2) ./—11 d§£n+i—k {%5(5)} by (1.32)

Using integration by parts,
1 _ o
nti—k
[ e oo

_ /_11 dE(—1) EF6(E)(n +i— k) ... (n—k+1)
Sen (—1)'4! (1.33)

Il

Since there is a delta function, the above expression vanishes unless k& = n, and

therefore Fq. 1.31 is given by

! Z : N\ 2i—n ~

[ deeotu, @) = + (Z<—1>2’~n<2>n<z>2 dim) CH@Y b (134)
T \1,7,m

We note here that for the remainder of this subsection, the Wilson coefficients

will not be included in the definition of the moments. The following equations

are therefore dependent on the renormalisation scheme and scale, and the Wilson

coefficients (computed from Tx) must be included in order to obtain a physical
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result.

From Eq. 1.34, we see that the n'* moment is related to the operators with n
derivatives. This is equivalent to inserting operators with derivatives into Eq. 1.8.

The first moment is obtained by inserting one derivative to give

(F(P) (91075 D d0)0) = Fupuopne™ [ dufu — w)(uw, @) (1.35)

The first moment vanishes since ¢ is symmetric under the interchange of u <+ 4.
The lowest non-trivial moment of the pion’s distribution amplitude is the second
moment, which provides information on the momentum distribution between the
valence quarks in the pion’s wavefunction. For the purpose of this study, we
now restrict ourselves to this moment and note that from previous arguments
about the twist 7, this will be the most dominant term. Inserting two covariant

derivatives into Eq. 1.9, when z and y coincide, we obtain

(m|@(Y) o5 Dy Do AY)[0) = FrPyo P Pr (€2). (1.36)

The second moment (£?) enables us to discriminate between different types of
distribution amplitude. Two extreme examples are shown in Fig. 1.7, where the
distribution in Fig. 1.7(a) corresponds to a small value of [(£?) — 1/5], similar to
that of the asymptotic form of the wave function®. For a relatively large value
of [(€?) — 1/5], the corresponding distribution is shown in Fig. 1.7(b), which is

similar to the form predicted in Ref. [10].

3At very high energy, the wavefunction assumes an asymptotic form, for which (£2) = 1/5.
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é(¢,Q%) ¢(¢, Q%)

Figure 1.7: Two possibilities for the distribution of momentum between valence
quarks where (a) relates to an even distribution (small (€2)) [10], and (b) relates
to a large fraction of the momentum being carried by one of the valence quarks

(large (£7)).

1.3.5 The scale dependence of the distribution amplitude

Since the form factor F.(Q?) is an observable, it must be independent of the
renormalisation scale y, i.e.

d

u@Fw(Qz) = 0. (1.37)

As stated previously, the py-dependence of the distribution amplitude is cancelled
by the p-dependence in Ty. By increasing the scale p (at which F is factorised),
contributions from lines that are off-shell by O(p?) are shifted from Ty to ¢,.
Thus the derivative of ¢, with respect to p can be calculated in perturbation
theory. The evolution of ¢, is defined as [2, 3]:

deé(u, pu? 1
,ui(é/jﬂ-)-:/o dzV (u, z, os(11*)) b (2, 112), (1.38)

where the kernel V' is a distribution, known at two-loops [23]. The most general

solution to V at the one-loop level is an expansion in Gegenbauer polynomials
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cs 12, 9,

Yn

G (u, ) = 6u(l —u) > anCT%(Qu - 1) (hl /'L(—z) o , (1.39)

n>0

which can be rederived from Eq. 1.30 [22], v,, are anomalous dimensions related
to the operators in Eq. 1.20 (yo = 0 and y,50 > 0), S2 = (33 — 2n;)/12 and
the a, are arbitrary coefficients. The n in Eq. 1.39 must be even because of the
symmetry ¢.(u) = ¢q(a). As pu? — oo, Eq. 1.39 reduces to the “asymptotic”

form of the wavefunction, given by
do(z) = 6z(1 — ). (1.40)

As p? decreases, higher order coefficients, i.e. ay,ay4... become more important

in Eq. 1.39. We note that a; is related to the second moment of the distribution

amplitude.

1.4 Current status of research

There have been several studies concerned with this quantity both on the lattice

[5, 6, 7, 8, 9] and using QCD sum rules [10, 11, 24, 25].

The results from QCD sum rules for the second moment are

(%) = 04+£(15-200% (at Q =1.22GeV) [10, 24],  (1.41)
(€% = 0.39 (at @ = 1.5GeV) [11], (1.42)
(%) = 044£(10-15)% (at @ =0.5GeV) [25]. (1.43)

These values of (£?) relate to a broad distribution amplitude where the fraction
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of momentum shared between valence quarks is unequal. The main idea in the
sum rule approach [26], is to equate two representations of a Green function. The
first involves condensates through OPE, and the second is a dispersive integral
involving the imaginary part of the Green function, which can be related to the
moments. The sum rule approach requires a non-perturbative input, namely
condensates like (0]gq|0), (0|G G, ]0), ..., the values of which are still subject
to discussion. Moreover, it is necessary to assume that the lowest dimensional

condensates are sufficient for a meaningful result.

The operator matrix elements have also been studied previously using lattice
techniques. For example, (£?) was computed on a 10° x 20 lattice, with Wilson
fermions in the quenched approximation [6, 7]. The result for the second moment

(€7) =0.26 £ 0.13, (1.44)

in the lattice renormalisation scheme at ¢ ~ (1.8 GeV)™ which is smaller than
the sum rules result and implies the distribution illustrated in Fig. 1.7(a). Other

lattice predictions for this quantity, all of which were computed in the lattice

regularisation scheme, include

(€% = 0.235(25) (at Q =1.0GeV) [5], (1.45)
(%) = 0.30(13) (at Q@ =1.9GeV) [8], (1.46)
(€% = 0.11(2) (at @ =2.4GeV) [9], (1.47)
(€% = 0.10(1) (at Q= 2.4GeV) [9]. (1.48)

Since these results were established, techniques in lattice calculations (such as
O(a) improvement) and computing capabilities have been enhanced leading to

cleaner signals with smaller errors. With this motivation, it is expedient to re-
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calculate this quantity.

1.5 Summary

In this chapter, we began with a discussion of the necessity for a more accurate
treatment of non-perturbative effects in QCD. These effects are considered within
the context of exclusive processes at high energies (described in terms of form
factors), which in certain cases, can be factorised into long- and short-distance
contributions [22, 3]. In particular, the electromagnetic form factor describing
e~m — e~m can be written as the convolution of a hard scattering kernel (com-

puted at the quark level), and matrix elements of fermionic bilinears (Eq. 1.7).

Using a light-cone expansion, the bi-local matrix elements are then written in
terms of a Fourier transform of the pion’s distribution amplitude ¢ (Eq. 1.24).
The bi-local matrix elements themselves exhibit divergent behaviour at short
distances and can be expressed (via an OPE) as the sum of products of a local
operator with a coefficient function. Having defined the OPE for the fermionic
bilinear in Eq. 1.7, the associated local operators are identified, and their relation

to the moments of the distribution amplitude is outlined. The n** moment of the

distribution ¢ is defined as [24]
(&) = [ deenole, Q). (1.49)

Its relation to the matrix elements of the local operators appearing in the OPE

is given by

<Olouomun(o){7r> = faPuo -+ - Pun <§n> T (1.50)
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where
© o
Ouo---un(o) = VVuo¥5 Dy -+ Dyn (0 (1-51)

and the ellipsis indicates terms which can be removed by subtracting traces. This
study uses lattice QCD to compute the matrix elements appearing in Eq. 1.50

for n = 2.
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Chapter 2

Formulating QCD on the lattice

As discussed in Ch. 1, a key feature of the coupling constant ¢ in QCD is that it
decreases as the scale at which it is defined increases. This property, known as
asymptotic freedom, enables the utilisation of perturbation theory in the calcu-
lation of short-distance contributions to a process. The quarks and gluons that
participate in these hard processes interact at distances of less than 0.1fm. How-
ever, the binding of quarks and gluons to form hadrons, known as confinement,
is a long-distance (~ 1fm) effect where the magnitude of the coupling constant
prohibits the use of a perturbative expansion. In order to calculate physically
measurable quantities from QCD, it is therefore essential to use non-perturbative

methods such that long-distance effects are dealt with.

We find that providing these long-distance effects can be expressed in terms of
matrix elements of local operators (where the external states are single particles
or the vacuum)?, composed of quarks and gluons, it is possible to calculate such

amplitudes using the formulation of QCD on the lattice (LQCD). This enables

'Recent research [27, 28, 29], shows that matrix elements with two-particle external states

might be calculable.
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the prediction of important quantities such as decay constants, form factors, mix-

ing amplitudes and the subject of this work, distribution amplitudes.

Having motivated the study of QCD on the lattice as an essential tool in dealing
with the non-perturbative contributions, we now consider some of the details of
its formulation, the extraction of physical quantities from lattice computations

and some of the sources of uncertainty that accompany this theory.

2.1 Lattice QCD

The formulation of QCD on the lattice was first introduced by Wilson [30]. There
are a number of steps which lead from QCD in continuous Minkowski space-
time to Lattice QCD. Following a Wick rotation to Euclidean field theory, the
theory must be discretised and the action defined on the lattice. This procedure
introduces a cut-off into the theory which is dependent on the lattice spacing “a”.
Once the theory is in place, we look at how to extract physical results. As will
be discussed in Sec. 2.1.5, Monte Carlo methods are used to compute the Path
Integral (PI). Amplitudes are then extracted from the correlators and finally the

cut-off dependence must be removed. The material included in this section is

based on Refs. [31, 32, 33, 34, 35, 36]

2.1.1 Euclidean field theory

In this section, we make the connection between Minkowsi and Euclidean field

theory. The generating functional in Minkowski space is defined as

2M = [ DIGI DDl o), (2.1)
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where G are the gauge fields, 1 and ¢ are the fermion fields and S[G,,] is
the action. This can be used to calculate Green functions from which physical
quantities are extracted. When calculating short-distance physics, this functional
integral is expanded in the regime where the coupling constant ¢ is small and so
physical quantities are obtained perturbatively. However, as discussed in Ch. 1,

this expansion is not valid over all ranges of the coupling.

The exponent in Eq. 2.1 is imaginary and therefore cannot be computed nu-
merically. By expressing the path integral in Euclidean space, it is possible to

compute correlation functions from which matrix elements can be extracted.

The connection between four dimensional Minkowski field theory and four di-
mensional Euclidean field theory is made through an analytic continuation. By

performing the Wick rotation,

Tog — —i$4 (22)

Po - —ip4, (23)

where o is the zeroth component of the four vector z,. This leads to the Eu-

clidean convention,

2% = x4z, (2.4)

pg = P’+pi. (2.5)

It should be noted that the Lorentz invariant quantity t2—x? has been replaced by

x%+z4%, the invariant quantity of O(4) which is the symmetry group of Euclidean
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field theory?®. The Euclidean generating functional is then defined as

2% = [ DIG)DIyIDIgleS#15, (2.6)

Having obtained the Euclidean form of the generating functional, space-time
must be discretised in a finite volume by creating a lattice on which to perform

numerical simulations of the path integral.

2.1.2 Discretising space-time

The process of discretisation replaces continuous space-time by a hypercubic lat-

tice L, defined as

a S

LE:{anZ“ 9:0,1,...,7’—1-“’1’2’3:0,1,...,L—1}, (2.7)

where a is the lattice spacing °, T' is the number of sites in the temporal direction,
L is the number of sites in the spatial direction. From this, the number of sites
on the lattice is given by L3>T. We note that the volume of the lattice is finite and
that the number of degrees of freedom is now finite. Discretisation also demands
the replacement of the integrals over space-time by sums, and derivatives with

respect to space-time by finite differences?.

Having discretised space-time, the momenta can be chosen to lie in the first

Brillouin zone —% < p < Z. A further consequence of discretisation is the

a

2See Ch. 3 for further discussion on the reduction in symmetry by formulating QCD on the

lattice.
3This work only considers four-dimensional isotropic lattices.
4The replacement of derivatives by finite differences will be discussed in section 2.1.3.
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introduction of a momentum cut-off
T
A=—, (2.8)
a

and so the lattice itself acts as an ultra-violet regulator of QCD3,

2.1.3 Gauge fields on the lattice

The continuum QCD action in Fuclidean space is given by
— 1
SE = Z/ ZZ)Q(E + mq)d)q + §/TT(F;LuFuV); (29)
q z e

with the following definitions:

e ¢ and % represent the quark and antiquarks of flavour ¢

o ) =~,D, where the covariant derivative is defined by

D,=0,—1gA,. 2.10
p=0u "

A, = ALT® are the gauge fields associated with the gluons and T are the gen-

erators of the colour SU(3) Lie algebra

[T°,T% = if***T° and Tr(T“Tb):%éab. (2.11)

o The gauge field strength F}, is defined as

5Regularisation and renormalisation in LQCD will be discussed further in Sec. 2.1.6
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F, = é[D#,Dy]. (2.12)

In the continuum, a gauge transformation on a quark field causes it to pick up a

phase factor given by the path ordered product

q(z) = L(z,y)q(y), (2.13)

where L(z,y) = Pefy w9442 a0 d the ordering is such that A,(z) is always to
the right of A,(z + dz). The gauge transformation of a path ordered exponential

depends only on its end points
L(z,y) = V(z)L(z,y)V ™ (y), (2.14)

and so the quantity ¢(z)L(z,y)q(y) is gauge invariant. Another gauge invariant

product is the trace of the path-ordered integral around any closed path

TrlL(z,z)] — Tr[V(z)L(z,z)V(z)] (2.15)
= Tr[L(z,z)], (2.16)

known as a Wilson Loop. Since L(z,y) transports the gauge rotation from one
point to another, it suggests that on the lattice, the gauge field should be placed
on the links connecting the sites, rather than the sites themselves. Following this,

we define a discrete analogue of the path ordered product
Ulz) = eowuletF) (2.17)

as shown in Fig. 2.1 below. U,(z) is an element of SU(3) associated with the

link from site z to site z + au.
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z T+ ap
Figure 2.1: The gauge link U,(z) from site z to = + u.

In the continuum limit, this corresponds to a line integral along the link, i.e.

Udz) ~ L(z,z+ap) (2.18)
= 1 -iagAu(e+ )+ O(a?). (2.19)

The gauge transformations of the U fields are

Uu(z) = V(2)U,(2)VT(z + an), (2.20)

where V(z) € SU(3) are the gauge transformation matrices that sit on the sites.
From Eq. 2.20, it can be seen that the trace of a closed product of U’s in a closed
loop will be invariant under gauge transformations (since V(z)V1(z) = 1) and

from this, we can define a Wilson loop on the lattice.

We now construct the lattice analogue of the pure gauge action by constructing

the smallest Wilson loop on the lattice

P, =U,(2)U,(z + au)Ui(m + av)Ul (), (2.21)

known as a plaquette and shown below in Fig. 2.2.
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e+av Ullz+av) z+ap+av

°
Ul(z) y | Ulz +ap)
o— » ®
T Ulz) zx+4ap

Figure 2.2: The smallest Wilson loop on the lattice known as a “plaquette”.

By inserting the definition of the link variable (Eq. 2.17) into Eq.2.21 and using
the Baker-Cambell-Hausdorff relation,

L
cAeB — A+B+5[ABl+...

[N
)
8]
S

; (2.

we find that Eq. 2.21 reduces to

: 2 4
1ag9° | 4 e a
Pw=1+—‘2 NES, —

2
T NN R P 1 ia®G, +iatH,, + O(d®). (2.23)

4 Hyt py

Taking the trace of Eq. 2.23 and keeping only Real parts gives

(,7,492 2 6 9
TT(FW) + O(a®), (2.24)

]R[TT(PAW)] = Nc - 9

where N, is the number of colours. From this, we obtain the relation between

the continuum and the lattice pure gauge action:

[ > %TT[FWFW] ~3 g%(NC CR[THPL)]) + 0@,  (2.25)

Qv
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where N, is the number of colours. Finally, re-writing 8 = 2]¥°, we define the

Wilson gauge action

(2.26)

Before constructing the functional integral from Eq. 2.26, the measure (over the
gauge degrees of freedom) must be defined. Since gauge fields are defined on
the lattice by the link variables which are SU(3) matrices, the measure must

be invariant under group transformations. Following this constraint, the Haar

measure is defined as
/ dUf(U) = / dUF(UV) = / dU F(WU), (2.27)

where U and W are elements of the colour SU(3) gauge group. The Haar measure

can be normalised as [ dU = 1. The functional integral is now written as

11 dUu(m)eﬁZW RITr(Fp)] (2.28)

links
2.1.4 Fermion fields on the lattice

From the action in Euclidean space (Eq. 2.9), the fermionic part is described by

the term
= &Q(ﬁ + my )iy, (2.29)

where there is a sum over quark flavour ¢ and the fermion fields ¥, and 1, are in
the fundamental representation of colour SU(3). In order to discretise this term,

the fermion fields are placed on the sites with the following gauge transformation
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properties

plx) — V(z)p(z), (2.30)
P(z) — PVi(a). (2.31)

The next step is to discretise the derivative. The fermion fields must be separated
and link variables are used to maintain gauge invariance. The covariant derivative

in Eq. 2.29 is then defined as

BD,p(a) = o) Un()pa + a) — Ul — ap)ple — ap)]. (232

Taylor expanding the fields and dropping higher order terms in a, Eq. 2.32 reduces

to the continuum covariant derivative.

Db = [0, — igAul. (2.33)

Including the mass term and the v matrices, we obtain the naive fermion action

SN B, U) = 5 B lUu@)0(a + o) = Ul(e = aphb(e — ap)] (2:34)

+ Z map(z )i ().
This can be re-written as
Sy (. U) = 32 9(e) May U6 ), (2.35)
wheré M is given by
Mg U] = by + o Sl = lessbogna]  (236)

Iz
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and z and y label the lattice sites and with spin and colour indices suppressed.

Before constructing the complete partition function with Eqs.(2.28,2.35), we note
that the naive fermion action in Eq. 2.35 gives rise to a problem known as “fermion
doubling” which must be dealt with. The action yields 2* = 16 degenerate states
rather than one. To demonstrate how this happens, consider the momentum
space free propagator®

Gy = —2Fam (2.37)

s2 — (amy)?’

where s, = sin(ap,). If we define the momentum range in the Brillouin zone to
be [5Z,3L], then in the limit i, — 0, we see that for each momenta ap, = 0 and
ap, = m, this term will vanish. There is a pole near each of the sixteen possi-

ble positions, hence the single lattice fermion represents sixteen degenerate states.

On the lattice, for a pole in the propagator associated with a left-hand (right-
hand) field at ap, = 0, we actually find a replica of a right-handed (left-handed)
field associated to a pole at ap, = 7. In fact, the problem of fermion doubling
is strongly related to chiral symmetry on the lattice, as stated by the Neilsen-
Ninomiya no-go theorem [37, 38], which states that a fermionic theory on the

lattice cannot simultaneously contain the following properties:
e locality (nearest neighbour interaction)
e translational invariance

e Hermiticity

e exact chiral symmetry

6This is obtained by setting the gauge links U, (z) = 1 and taking the Fourier transform of
the inverse Dirac operator in Eq. 2.35.
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e no fermion doubling.

Wilson [30] proposed a solution to the problem of fermion doubling by adding

an irrelevant operator to the action that explicitly breaks chiral symmetry
r - -
Sy = 2 g9(@)[Ul(x = (e — p) = Uulo)(e + ) — 20(a)b(a)]  (2.38)
Ty

where 1 is known as the Wilson parameter. The form of the free propagator

originally given in Eq. 2.37 is now modified to

—if + (am, — %lp)

s? — (amy + 3152)2 ’

G(k) = (2.39)
where k = 23m(%) The relation between the mass in the continuum (m,pys)
and the lattice (my) is amyp,,s = am + g—fcz In the case where ak, = 7, we find
that k # 0 and so the additional pole (at ak, = 7) gains an effective mass. In
the limit @ — 0, with = kept finite, myp,s will tend to infinity and the doublers
will decouple from the theory. Since chiral symmetry is explicitly broken on
the lattice, there is nothing to prevent the quark mass from being additively
renormalised. Moreover, the additive renormalisation receives a large correction
at the one-loop level [39] and therefore has to be determined non-perturbatively.
It is important to note that exact chiral symmetry can be obtained on the lattice
using fermions that satisfy the Ginsparg-Wilson relations [40]. However, strict
locality is lost [41] due to interactions between fermions that are beyond nearest
neighbour (further than the surrounding sites), and this formulation of fermions

on the lattice is computationally expensive.

The Wilson action is therefore defined as
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Sy = Zz/)L IUMATER (2.40)

where %% = \/m,a + 4rip and the interaction matrix M , 1s written as
MZZ/[U]C‘ = gy — RZ[(T ~ Y ) Vsy—p + (7 + ’)’u)Ux o 0,y+4] (2.41)
m

with k = m’ known as the hopping parameter. Together with Eq. 2.26, we

define the full Wilson action (including the pure gauge term) as

T P]
— (2.42)

=D (e) My, ~5Z

The relation between the fermion action and the continuum is S, = S& 4+ 0(a).
It therefore will not be the final action that we actually use in this work since the
Ofa) errors can be removed by Symanzik’s “improvement program”. This will

be discussed further in Sec. 2.2.3.

2.1.5 Numerical simulations

LQCD evaluates matrix elements by computing the PI non-perturbatively as
opposed to formulating an asymptotic expansion in the coupling. In this section,
we give a brief outline of how these computations are performed. The simulation

details particular to this study will be discussed in Ch. 5.

In order to compute the PI, it must be reduced to a finite number of degrees of
freedom. This reduction is achieved by introducing a lattice of finite extent in

Euclidean space and time.
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To demonstrate the major steps involved in simulations we consider the pion

two-point function
(0/0(@)8!(0)}0) = 2~ [14] [Tldalldgle™~5% tysd(e)dsu(0), (243

where ®(z) = uysd(z) is an interpolating operator for the pion and S, and

Sn + Sw are defined in Eqs.(2.26,2.40),. Eq. 2.43 can be re-written as

— f[dU] Hq det(@ + mq)e_SgTI‘ [(@ + md);ol’)/s(p -+ 7nu)(')‘rl,->,5]
— f[dU]TI, det( + my)e=Ss :

(2.44)

where z and y are lattice sites and (J) + my) is the complete lattice Dirac oper-
ator appearing in the sum Sy + Sw. The second line (Eq. 2.44) is obtained by
integrating over the fermion fields leaving a functional integral over gauge fields

only, with the measure

dp = [dU]T] det( + my)e™%. (2.45)

In this study, we work in the quenched approximation which sets the determinant
of the fermion matrix to a constant. This approximation and its consequences

will be discussed further in Sec. 2.2.2.

A set of gauge configurations is generated with probability measure du using
Monte Carlo methods. Propagators (D + m,)~! are then computed on each
configuration by inverting the matrix given in Eq. 2.41 and joining together into

traces as in Eq. 2.44.

In order to extract physical information from the correlator in Eq. 2.43, a com-
plete set of states is inserted and a Fourier transform in the spatial directions is

performed. At large time separations, the correlator reduces to
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3" e PE0[d(2)®(0)]0) ;Ee—Ef, (2.46)

i
x

where Z is the pion wavefunction renormalisation constant and F is the energy
of the pion. By plotting the log of the correlator at zero momentum, we can

extract the mass of the pion on the lattice (am,).

2.1.6 Renormalisation

The relation between bare and renormalised quantities in QCD can be expressed
in terms of a perturbative expansion in the coupling. Any quantity computed on
the lattice is defined in terms of the cut-off a. Therefore we need to relate the bare
lattice operators to a continuum renormalisation scheme, at a renormalisation
scale u (in this case, MS). This procedure is known as “matching”. In Eq. 2.47
below, the bare lattice operator )(a) is related with Q(y) (the operator computed
in the MS scheme) by Z(au) (computed through matching)

Q(u) ~ Z(ap)Q(a). (2.47)

Physical quantities do not depend on the renormalisation scheme or the scale.
Once the lattice operators have been matched to the continuum ones, a physical
result Appys 1s obtained by combining matrix elements in the MS scheme with

the Wilson coefficients C' (1) (computed in the same scheme),

Aphys ~ C(1)Q(p). (2.48)
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The result here is independent of the scheme and scale up to the order that the

Wilson coefficient is calculated.

This topic will be discussed in more detail in Ch. 4, where we calculate the
relevant Feynman diagrams in both the lattice and continuum schemes, perform
the matching procedure and then combine the results with the Wilson coefficients

relevant for the operators of interest in this work.

2.2 Errors and sources of uncertainty

There are several sources of uncertainty in lattice calculations. We consider the

statistical error, the error due to quenching and the effects of discretisation and

O(a) improvement.

2.2.1 Statistical errors

There is an inherent statistical error associated with all quantities computed on
the lattice whose origins lie in the finite number of gauge configurations used
to compute the PI. It is assumed that the gauge configurations are distributed
according to the weight exp=5Vl (in the quenched approximation), and that the
configurations generated are a finite sample of this distribution. The bootstrap

procedure [42] is used to estimate the error associated with this sampling.

The bootstrap procedure randomly samples a new set of configurations from the
original (allowing repeated resampling of the same configurations) and recalcu-
lates the results. This process is repeated “N” times and provides a distribution
for each quantity. By looking at the distribution of the bootstrap samples of a

quantity, we obtain an estimate of the statistical error associated with it.
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2.2.2 The quenched approximation

As stated previously, in the quenched approximation the fermion determinant is
set to a constant. This is referred to as Quenched QCD (QQCD). Physically, this
constitutes the omission of internal fermion loops and so the vacuum polarisation
effects of quark loops are ignored. The motivation for this approximation is
the reduction in CPU time. One of the problems with QQCD is that since the
internal quark loops (which are necessary to obtain on-shell intermediate states)
are absent, resonances become stable states. For many quantities computed on
the lattice, the discrepancy between the quenched calculations and that of the
physical quantities is about 10%. It is important to note however that the non-
perturbative features of QCD are retained in this approximation since QQCD

maintains both confinement and chiral symmetry breaking.

2.2.3 Discretisation and O(a) improvement

As stated previously, the action given in Eq. 2.42 contains O(a) errors originating
from the fermionic action and O(a?) terms coming from the pure gauge action.
In order to obtain a level of precision at least to O(a?), it is possible to remove

the O(a) contributions by implementing an improvement program.

Improvement of the fermionic action was first outlined by Symanzik [43]. The
removal of O(a) contributions was then implemented by Sheikholeslami and
Wohlert [44], by defining an additional operator in the action, known as the
“Clover” term”. The operator is constructed from the sum of four plaquettes in

the (1, ) plane, stemming from the point z, such that

"The action including this term is referred to as the Sheikholeslami-Wohlert action.
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[V (2) = UL, (2)], (2.49)

which is represented diagrammatically in Fig. 2.3 and where

(Uu(2)Up(z + ap)Ul(z + v)Ul(2) (2.50)

T
]
T

~ Ullz — ap)Ul(z — ap — av)U,(z — ap — av)U, (z — av)
+ U, (2)Ul(z — ap + av)Ul(z — ap)Uu(x — ap)
— Ul(e — av)Uu(z — av)U,(z — ap)U}()).

T —ap+av x4+ av T+ ap+ av
° [ - °
! LY
- z - T+ ayp
r—ay e ) = °
f 4
° ) ~ °
r—apu—av T —av T+ ap— av

Figure 2.3: The Clover operator that removes O(a) contributions from the Wilson
fermion action.

Eq. 2.49 is added to the Wilson fermion action with the coefficient csw
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Ssw = Sw + a*cswrr Y P(z)Y(), (2.51)

where P(z) = 25, , F¢ ()0, and 0,4, = S[v,,7.]. In addition to the inclusion
of this operator, the fermion fields (in on-shell hadronic matrix elements) undergo

the rotation [45]:

v = W =(1-az Pl +0(c) (2:52)
§ = ¥'=(-az D)+ 0(a).

The removal of O(a) errors through the addition of the clover term and the rota-
tion of the fermion fields in the operators reduces the difference between contin-
uum and lattice matrix elements to terms of O(ac;). These errors can be removed
using perturbation theory, where cgw is computed to one-loop. The remaining
lowest order errors will then be of O(ac?). By tuning csw non-perturbatively
[46], it is possible to remove all O(aaf) terms in the action. Nevertheless, the
procedure of removing such terms from hadronic matrix elements is more involved

and this is left to future work.

We finish by stating the exact form of the action (Eq. 2.51) that is used in this

study

TrP

Ssw = Z@DL MW¢L—ﬂZ ’“’ +a4CSW/£rZ7ZP(:c)¢(:v), (2.53)



where the error in the action due to discretisation is now of O(a?).
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Chapter 3

The hypercubic group and

operator mixing

In this chapter, we consider the consequences of the reduction in symmetry due
to the replacement of the Lorentz group by the hypercubic group. In particular,
we investigate the fact that the reduced symmetry admits greater opportunity
for operator mixing and is therefore a major problem which must be dealt with

in order to obtain a physical result from the lattice.

3.1 Operator mixing

As established in Ch. 1, in order to calculate moments of the pion’s distribution
amplitude, we are required to study the matrix elements of the lowest twist local

operators between the pion and the vacuum [22].

In the continuum, these operators are classified according to their behaviour

under Lorentz transformations and charge conjugation. The leading twist (7 =
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2) operators are totally symmetric, traceless tensors and as a result of their
transformation properties, do not mix with operators of lower dimension under

renormalisation.

A major consequence of modelling QCD on the lattice is the reduction in the
spacetime symmetries of the theory. Analytically continuing from Minkowski
to Euclidean space replaces the Lorentz group by the orthogonal group O(4).
There is a further reduction in symmetry due to the discretisation of spacetime:
O(4) — M4 C O(4), and therefore the hypercubic group (#H4) describes the

spacetime symmetries of the lattice.

The opportunity for operator mixing under renormalisation is increased due to
the fact that the hypercubic group H4 (defined in Sec. 3.3), is a finite group and
therefore the symmetries imposed by this group are less restrictive than those
of the Lorentz group. Mixing with operators of lower dimension is of concern
because the mixing coefficient will contain negative powers of the lattice spacing

a. In the limit ¢ — 0, this will produce power divergences which render the

result unphysical [6].

When calculating matrix elements on the lattice, operators must therefore be
classified according to their behaviour under H4 rather than the Lorentz group
and chosen in such a way that for symmetry reasons they cannot mix with lower

dimensional operators, thus ensuring the absence of power divergences.

We therefore proceed by searching for a choice of Lorentz indices such that the
operators O, = PYuoYs BMBM ¢ satisfy the specified criteria. We could
begin by considering the operators O,,,. However, operators with this Lorentz
structure (all three indices equal) transform like the (3,3) irreducible represen-

tation of the hypercubic group and mix under renormalisation with other four

dimensional operators, an extensive study of which can be found in Ref. [47].
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This leaves the possibility of O,,, with all three Lorentz indices different and also
Ogppy with o # p. In this chapter we investigate the transformation properties of

these operators with respect to the hypercubic group.

3.2 Relevant group theory

In this section, we briefly review the group theory necessary to establish the

correct Lorentz structure for the operators. The material presented within this

subsection is based on Refs. [48, 49].

3.2.1 Some basic definitions and properties

A group G is defined as a set of elements g1, g2, gs.... with a rule for combining

them called a group multiplication which satisfies the following axioms:
(i) Closure: the product g;g; is also an element in G

(ii) Associativity: the group multiplication is associative
i.e. (9:9;)9x = 9i(9gign);
(iii) Identity: there exists an element e in G, called the identity, such that
eg = ge = g for all g;
(iv) Inverse: for each g there is an element g~! such that
g lg=9g97" =e.

46



If the number of elements in G is finite, the group is said to be finite. The order
of the group, denoted by |G|, is the number of elements within the group and the

order of each element g is the least integer n such that " = e.

Two elements g; and g, of a group G are said to be in the same conjugacy class

C' if there is an element g in G such that
g2 = 9919 (3.1)

Any group can be partitioned into classes where each element is in exactly one
class only. Elements that are in the same class share the same structural property
of the group, that is, they are (geometrically) of a similar kind. We note that

each element of a conjugacy class has the same order.

3.2.2 Representations

For our purposes, we are interested in the action of #, on vector spaces, where

the basis will be the operators of interest and the action of any element in H, is

represented by a matrix.

Consider a set of n x n non-singular matrices D corresponding to elements of a
finite group G, i.e. ¢ — D(g) V g € G, such that the following conditions are

satisfied:
D(g:)D(gz) = D(gig2), (3.2)

D(I) = I. (3.3)

The matrix to which the group element g maps is written D(g) and a complete

set of matrices, one for each element of the group, is called an n-dimensional
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representation of the group.

3.2.3 Reducible and irreducible representations

Let D® and D® be representations of a group G, with dimensions n; and n,

respectively. Then for each ¢ in G, the assignment

D(g) = DW(g) & D¥)(g) (3.4)

determines a new representation of dimension ny + ny, which is called the direct
sum of D™ and D@, A representation is said to be reducible if it is equivalent to
a direct sum of the form shown in Eq. 3.4}, A representation which is not reducible
is said to be irreducible and is denoted by d((g) . Irreducible representations form
the building blocks of representation theory and any (reducible) representation

can be written as a direct sum over all possible irreducible representations:

D(g) = m1dM(g) & med®(g) & ... & myd™(g), (3.5)

where the integers (my) indicate the number of times each particular irreducible

representation d(*) is repeated.

We now state the fundamental orthogonality relation for the matrices of irre-

A similarity transform (see Eq. 3.7) is usually required in order to obtain the block diagonal
form of D(g).
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ducible representations. A proof of this theorem can be found in group theory
textbooks, e.g. in Ref. [48]. Let G be a finite group with |G| elements and
let d,d® ... d™) be the inequivalent irreducible representations of G, with

dimensions ny, ng,...,ny respectively. Then
3 2 2

}:d “di(g) = lnGl 0ik0j10ap- (3.6)

o

We use this relation in the next subsection to develop the theory of characters.

3.2.4 Characters

Two representations D) and D(® of a group @ are said to be equivalent if they

can be related by a similarity transformation of the form

SDWS-! = D®)(g), (3.7)

where 5 is an appropriate matrix. The fact that equivalent representations are in-
terchangeable suggests that each representation contains inessential information.
In enumerating the possible representations of a group, we therefore only wish to
consider inequivalent representations and in order to do this, require a character-
isation of the representation which is invariant under similarity transformations.
We find that some of the essential information of a particular representation is
carried in the trace of the representation and is known as the character y(g). If

D is a representation of a group, the character xp of D is defined as
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xp(g) = Trace[D(g)]. (3.8)

Characters are the same for equivalent representations and similarly, elements
that belong to the same conjugacy class have the same character. From the
orthogonality relation stated in Eq. 3.6, we can derive an orthogonality relation

for characters. By setting + = 7 and k£ = [, we obtain

3 X5 (9) X5 (9) = |GlSap- (3.9)

g

Let D be a reducible representation of G as defined in Eq. 3.5. By taking the

trace of this equation, we find

xp(g) = maixam(9) + maXae(g) + ... + maxam(g). (3.10)

Multiplying Eq. 3.10 by x7.) and using the orthogonality relation Eq. 3.9, we ob-

tain the number of times (m;) that each irreducible representation occurs within

the representation D(g)

my = |—§;—,zxzm (9)x(9), (3.11)

and similarly for mg, ..., my. This relation can then be used to decompose each

of the representations of O,,, and O,,, into irreducible representations of H,.
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3.3 Decomposition of O,, and O,,, into irre-

ducible representations of #,

As stated previously, we would like to determine how each set of operators O,,,
and O,,, with o # u # v # o, transforms under the hypercubic group and to

decompose each of the two representations into irreducible representations of 4.

The hypercubic group is generated by 90° rotations and reflections in each of the
six lattice planes. It has 384 elements which are classified in terms of 20 conju-
gacy classes [50]. Each element of the group can be described as an element of
the four dimensional rotation group, as an element of SU(2) ®@ SU(2)/Z; or, as a
product of permutations of lattice axes with reflections along axes. For our pur-
poses, we restrict ourselves to the final description but illustrate the connection
with an example of the relation between a rotation and a permutation/reflection:
Ri5(%) = Pi(12), shown below in Fig. 3.1. The rotation is about the 3 axis (anti-
clockwise in the direction of the axis), (12) denotes a permutation of the 1-2 axes

and P; is a reflection of the 1-axis in the 2-3 plane.

3
] Rip()
| 1

——
1/\2 2

3 3 3
1
1 2 9 I 9

Figure 3.1: Equivalence between an element of the hypercubic group in four
dimensional rotation notation and lattice permutation/reflection notation.
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An example of a typical element for each conjugacy class of the hypercubic group,
together with the order of each class is given in Table B.1. These elements
will be used to act on the components of each basis which will then provide us
with the characters of the representation (see Sec. B.2 for further explanation).
The characters of the 20 irreducible representations of the hypercubic group are

displayed in Tables 5.2a-c, Ref.[50].

Using this information and Eq. 3.11, we now search for the necessary Lorentz

structure for both operators such that each will transform irreducibly under the

hypercubic group.

3.3.1 Transformation of O,,, under H,

We begin with the operator O,,, = ¥y,7s Bqu Y, witho # u #v # 0. Thisis
a 24-dimensional representation since there are 4 choices for o, 3 choices for p and
2 choices for v. In order to obtain the characters for this representation, we must
use its transformation properties under elements from each conjugacy class of the
hypercubic group. The left hand column in Table B.2 displays the components
of the basis vector for this representation which are constructed from the direct
product of p,, ¢, and r,, where each of these objects transforms like a vector
under H4. The elements of the group then act on each component in this column
vector according to the rules given in Sec. B.2. Subsequent columns display the
transformation properties under an element from each conjugacy class. The sum
of each column is given at the base of Table B.2, thus we obtain the character of

the representation for each element.

Combining the results from Table B.2 with characters of the irreducible repre-

sentations of H,? and using the character orthogonality relation (Eq. 3.11), we

2The characters of the irreducible representations of #4 are given in Tables 5.2a-c, Ref.[50].
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establish how many times (my) each irreducible representation occurs within the
24-dimensional reducible representation. We find that O,,, transforms like a

(5,5 @ (3, %—)(H @ 2.8 reducible representation. However, if we consider
the combination Oyy,,y, With 0 # p # v # o and symmetrising over y and v,

we obtain a 12 dimensional representation (Table B.4), which transforms like a

(%—,_g)(” & 8(1) reducible representation.

3.3.2 Transformation of O,,, under H,

The second operator Oup, = ¥Y,7s 5“132 Y, with o # p is a 12 dimensional
representation since there are four choices for o and three choices for u. The
components of the basis vector are displayed in the left hand column of Table B.3
and are constructed (as in the previous case with the exception that u = v) by
taking the direct product of ¢, ® p, @ p,, where g, and p, are four vectors. As
before, the characters of the representation are established from the transforma-
tion properties of the operator under different elements in the hypercubic group.
Using the character orthogonality relation (Eq. 3.11) to combine the results from
Table B.3 with the irreducible representations of H4, we find that it transforms

like a (4,1)(2) @ 87 reducible representation.

In order to isolate a particular irreducible representation for each operator, we try

to construct a basis that will transform like the 8-) dimensional irreducible rep-
2 2

resentation. From Table B.5 we find that the linear combination p, [pz — p—‘%&J

transforms as required and so we are able to isolate the irreducible representations

of each operator that will not mix with lower dimensional operators.
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3.4 Summary

The operator Oy} = DYe Vs Zils),, ¥ with o # p # v # o and symmetrising
over u and v transforms like a (g—,—%)(” @® 8™ reducible representation of the
hypercubic group, which does not mix with lower dimensional operators. In
order to obtain an operator proportional to p,p,p,, as in the continuum limit,
the 8*) term must be subtracted. However, this term vanishes when we take the
matrix element of this operator between the pion and the vacuum since there is
only one four-momentum from which to build the 8¢+ term. Thus we obtain the

term that is directly proportional to the second moment of the pion’s distribution

amplitude,

7(p)) = Apopypy, (3.12)

(0100 {1y

where p is the four momentum of the pion and the coefficient A is proportional
to (£2). In order to obtain a non-vanishing signal, this choice of Lorentz indices

requires two non-zero components of the spatial momentum.

—_ =
The operator O, = ¥y, DD, ¢ with o # p transforms like the (1, 4)) g
8(=) reducible representation of the hypercubic group. In order to prevent mixing

with lower dimensional operators, a linear combination of these operators is taken

and we find that the subtracted operator

/ Oyg29 + Oyss

0411 = 0411 — 9 (313)
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transforms like the 8(~) irreducible representation. Taking the matrix element of

the operator defined in Eq. 3.13 between the pion and the vacuum,

2 2
(000 Ir(p) = O[5t — BEE], 314)

we are able to isolate the term containing (£?). This combination of indices allows

for just one non-zero component of the spatial momentum.
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Chapter 4

Operator Matching

The lattice formulation is a bare theory which is regularised by an ultra-violet
cut-off a=! (in momentum space). The results obtained for bare lattice operators
must therefore be translated to those of renormalised ones, and this is done by
“matching” them onto a continuum renormalisation scheme, e.g. the MS scheme.
The motivation behind this lies in the fact that the renormalisation scale and
scheme dependence must be removed in order to obtain physical results. Since
the Wilson coefficients that remove this dependence are usually computed in the
MS scheme, the results obtained from lattice calculations must be related to this
scheme. Furthermore, the results for the second moment using QCD sum rules
are defined in this scheme and therefore, matching is necessary to obtain a result

that can be compared with sum rule predictions.

In this chapter, we examine how these matching coefficients are computed at
one-loop to obtain a result in the MS scheme. We discuss the details and present
the results of the perturbation theory used to obtain the matching coefficients.
This requires the calculation of one-loop Feynman diagrams both on the lattice

and in the continuum.
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4.1 Matching to the MS scheme

As discussed in Ch. 2, lattice operators are defined with a cut-off @, denoted in
this chapter as Q(a). There are several ways in which to compute the matching
coefficients for Q(a). One technique is that of non-perturbative renormalisation
[51]. In comparison with perturbative matching, the systematic effects are differ-
ent but it is easier to control them. Since the renormalisation constants relevant
to this quantity have not been computed non-perturbatively, we resort to pertur-

bation theory at the one-loop level.

The form of the matrix element of the relevant operator @); at one-loop, both in

the continuum and on the lattice, is given by

<Qi>m,latt = Zm,latt<Qi>(o)a (4'1)

where (Qi)(g) is the tree level matrix element of ¢); sandwiched between the
relevant external states, and Zg,,, are the one-loop renormalisation constants.
Since matrix elements must be the same in all regularisation schemes at tree-level,

we define the matching condition:
Z= Qs = Ll Qidtate- (4.2)

For the composite operators relevant to this work, the renormalisation constants

are of the form

s = 1+ —%[7(0) 10g H’Q' + dcont] (43)
MS 47 A? ’
o' 1
Dty = 1+ E[’Y(O) log (a2/\2> + diast], (4.4)

where 4(%) is the one-loop anomalous dimension associated with the operator Q;
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and is universal i.e. it has the same value in all regularisation schemes. The
logarithmic terms in Eqgs. 4.3 and 4.4 arise from the regularisation of UV di-
vergences, and the constants d.on and di; are finite contributions which are
scheme-dependent. In the presence of an IR divergence, the same regulator must
be used in the calculation of Zgg and Zjag for the purpose of matching. In
this work, a gluon mass A is included in the gluon propagator (see App. C.1 for
the Feynman rules) to regulate the IR divergence. Having defined the one-loop
correction in Eq. 4.1, the matching coefficient Z; is then defined as

J=
7 = < MS >
M Zlatt

o
= 1 + Z/};[’Y(O) log(az,uz) + (dcont — dlatt)]- (45)

We note that the dependence on the IR regulator has cancelled in Eq. 4.5.

4.2 Perturbation theory

4.2.1 Continuum perturbation theory

In this section, we present the results for the one-loop perturbation theory in
the continuum. The Feynman rules are given in App. C.1.1 and the one-loop
diagrams, computed in the Feynman gauge, are illustrated in App. C.2. The
one-loop correction from each diagram is given in Table 4.1. We note that the
one-loop correction from the self energy is that for the wavefunction renormali-

sation. The three results are summed together to obtain a value for Z,;.

In the continuum Feynman rules, we note the absence of a rule containing the

operator O,,, that is proportional to g?. In fact, all the diagrams in the contin-
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] diagram ‘ one-loop correction

self energy 2 (Cp [ log C — %
Oauu
2x saill(A+ B) | £2CF —lg)—ologC’—%

o correct asev [L _ 29
vertex correction 47rC’p glog C — 74

Table 4.1: One-loop results from the continuum, where C' = f; and Cp = g—.

uum are the same for each operator. The two-gluon diagram does not exist for
Ogsfuwy since g # v. The reason this term is also absent for O,,, is that there
are no derivatives present to build a term proportional to pi. Therefore, the
diagram containing this term is a trace term in the continuum calculation which
is subtracted from the complete set of diagrams in order to isolate the second

moment.

4.2.2 Lattice perturbation theory

The one-loop contribution from each diagram computed using lattice perturba-
tion theory is presented in Table 4.2, where the numerical error in the finite
contribution is less than 0.1%. The wavefunction renormalisation is defined by
the correction from the self energy diagrams. The Feynman rules are given in
App. C.1 and the diagrams are illustrated in App. C.2. In addition, the compu-
tation of the sail diagrams on the lattice is outlined in App. C.3.

In the lattice simulation, isolating the term that contains the second moment
involves taking the ratio of the correlator of the operator with the correlator of
the axial current. Since chiral symmetry is broken on the lattice, the axial current

will also get renormalised and we state here the‘one—loop contribution to the axial

current [52],
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! diagram one-loop correction {

self energy 2(Cp[—log L 4 1.12]
2x self energy (clover) | ZcswCp(—2.249)
self energy (clover-clover) | 2%y, Cr(0.458)
tadpole correction = Cp(—12.24)
O
2x sail(A + B) 2 Cp[—Llog L — 2.171]
2x sail(A + B) (clover) | ZCrcsw(2.689)
vertex correction 2 Cp[zlog L —0.018]
2x vertex (clover) = Cresw(—3.26)
vertex (clover-clover) 2 Cpcty(—0.793)
o
2x sail(A + B) 2 Cp|—Flog L +1.611]
2x sail(A + B) (clover) | ZCpcsw(—0.672)
vertex correction 2 Cp[tlog L —1.979]
2x vertex (clover) 2 Cresw(—0.476)
vertex (clover-clover) 2 Crctw(3.92)
tadpole (Ogp,) +(Cr(48.932)

Table 4.2: One-loop results from the lattice, where L = ((121—/\2) and Cr = 3.

Zi=1+ %%CF ~15.796 — 0.248csw + 2.251cky | (4.6)

The renormalisation constant Z4 is computed in this work with csw = 1.

4.3 The matching procedure and associated un-

certainties

In the one-loop matching procedure, the choice of coupling constant used and the
scale at which the matching is performed must be carefully considered. We now

discuss these options before computing the coefficients in Eq. 4.5.
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e In performing operator matching using a perturbative expansion to one-

loop, one is free to choose the expansion parameter «;, defined as

2

9
s = —. 4.7
e (4.7)

Choosing the bare lattice coupling as the expansion parameter often gives

poor convergence of the series. A better choice is that of the “boosted”
coupling constant [53]:

6

Opoosted = 77—
Buddn’

(4.8)
L A4 . .

where ug = <§Tr0plaq> is the gauge invariant mean value of U, and [ is

the same parameter that appears in the Wilson plaquette action which is

related to the bare coupling by

90 = "g‘ (4.9)

In addition to the boosted coupling, another favourable choice of «; is that
of the MS scheme as described in Ref. [53]. Following this proposal, we use

ug which is measured numerically on the lattice, and the relation
—In(ug) = %ay(?).éll/a)(l — 1.185a,), (4.10)

where the coupling «,(3.41/a) [54] is defined from the heavy quark potential
[565]. Solving Eq. 4.10 for «,(3.41/a), and using the relation [56]

2c,

+cia?), (4.11)

A1
NS (‘%’) = a,(e¥/°3.41/a)(1 +

T

we then obtain ogg by running «, at the two-loop level, with number

of flavours ny = 0 (quenched approximation). Using the same two-loop
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running, ogs(q) is then computed at different scales. In this work, the
simulation uses g = 6.2 and the corresponding ug = 0.8771. A central
value for Zy; is obtained by using ogg(q = 2/a). By varying ¢ between
1/a and 7/a, the systematic errors are estimated. The numerical values of

oxs(q) at ¢ = 1/a, 2/a and 7/a are given in Table 4.3.

B | ags(1/a) | oxs(2/a) | ems(/a)
6.2 | 0.172993 | 0.140189 | 0.124985

Table 4.3: The variation of agg(g) with scale that will be used in the one-loop
matching procedure

o The scheme-dependent constants deont and diage are next-to-leading loga-
rithms and can be absorbed by tuning the scale ;. However, since this can
result in a loss of control over the higher order logarithmic contributions,

g is usually chosen to be of O(1/a), thus maintaining a small contribution

from these terms.

o The choice of csw aflects the value of dj.¢ in Eq. 4.4. In this work, we use
csw = 1 in the one-loop matching as the clover term is always accompanied

by powers of a; in the perturbative calculation.

4.4 Results

We now present the results for 7y, /Z4 with different values of «;. The numerical
results for each operator are displayed in Table 4.4 where Zy;/Z4 is given for

various a, with ay =1 and csy = 1.
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Qs

VAYIA 0.1255 0.12499 0.14019 0.17299
(boosted) | (g =7/a) | (¢g=2/a) | (¢ =1/a)
Zi (0y) | L4510 1.449 1.518 1.680
Z3 (00,,) | 0.556 0.558 0.490 0.331
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Table 4.4: Matching coefficients for different o, with Csyy = 1.0 and ap = 1.0.




Chapter 5

Numerical simulation, analysis

and results

In Ch. 3, we established the form of the operators which, when sandwiched be-
tween the pion and the vacuum, yield the second moment of the pion’s distri-
bution amplitude (£?). TFollowing this, the one-loop matching coefficients were
computed in order to relate the lattice results to the MS scheme (Ch. 4). In
this chapter, we present the details of the numerical simulation of the correlators
that contain these matrix elements. The numerical results are then matched to

the MS scheme and the systematic errors associated with the final results are

discussed.

5.1 Lattice computation

In this section, we state the details of the lattice on which the simulation was per-
formed. The correlation functions that were computed are listed and we examine

how they are combined such that (£?) is isolated.
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5.1.1 Simulation details

The details of the simulation are summarised in the following:

e = ;% = 6.2 (where gy is the bare coupling), with corresponding inverse

lattice spacing ™ = 2.67 £ 0.06GeV (from the spectrum results for m
[57] using o as determined in Ref. [58]), on a 243 x 48 lattice;

e SW fermion action, with csw = 1.61, tuned such that the action is non-

perturbatively improved with all O(a) errors removed;

o the three values of x used in the simulation are shown with the correspond-
ing physical light pseudoscalar masses (composed of degenerate quarks) in

Table 5.1, with x. = 0.135818717 [57];

K k= 0.13460 | x = 0.13510 | & = 0.13530
Mys (MeV) 74873 57475 49078

Table 5.1: Values of £ shown with the corresponding values of pseudoscalar meson
mass [58] (converted into natural units using a™! = 2.67GeV), obtained by fitting

to Eq. 5.10.

o the 154 quenched configurations used in the simulation were generated using
an over-relaxed [59, 60] Cabibbo-Marinari algorithm [61], and the quark

propagators were generated using the bi-Conjugate Gradient Stab algorithm

[62];
e non-improved local operators;

e the statistical error in this work is estimated by creating 100 bootstrap

samples.
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5.1.2 Correlation functions

The matrix elements that yield (£%) are

<OIOU{AW}‘W(?D)> = f7r<€2>papupm (5'1)
010,17 (p)) = fr (E) PoPubus (5.2)

where f. is the pion decay constant.

Generically, for an operator (), the two-point correlator can be written as
7 (p, 1) = 22 ePXQ(x,1)27(0)), (53)

where p is the spatial momentum and ® = y51 (typically of the form @ysd) is
the interpolating operator which overlaps with the single pion state. Inserting
a complete set of states and considering large Fuclidean time separation that

ensures dominance of the ground state, Eq. 5.3 can be re-expressed as

C8(p.0) 25 - (0IQUO)Im(p)e ", (5.4)

S

where F, is the energy of the pion, and Z, is the wavefunction renormalisation

given by
Zz = (Olpysep|m), (5.5)

which is independent of p. We now list the two-point functions that are combined

in order to compute (£?). This includes the pion propagator,

C3(p,t) = D eP™(0]9(x,1)27(0)[0), (5.6)
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In isolating (£2), it is necessary to compute the correlator composed of the fourth

component of the axial current A, and the interpolating operator ®*
C(pt) = 2P0l Au(x, 1)27(0)]0)- (5.7)
X

The correlators involving the two operators appearing in Eqgs. 5.1 and 5.2 are

defined as

C7(pit) = 20 eP™(010s 4 (x,1)27(0)]0), (5.8)

CY'(p,t) = > e®X0]0,,,(x,1)®(0)[0). (5.9)

Inserting a complete set of states and looking at large Euclidean time separations,

the above correlators can be written as

‘ 72
Ci(p.t) = [ + e BT, (5.10)
Ze , _
Cip,t) = S fre™, (5.11)
Ze _
C’.)O(p7t) = Q—E_e EWth<§2>papupl/> (512)
! L _ «
C7 (p.1) = 5o Tel€)popupue™™, (5.13)
where we remind the reader that
@)
Oy = Oanr — Ouzz o Qs (5.14)

2 *

as defined in Ch. 3. We also note that ¢ is chosen to be the time direction. The
second moment is isolated by taking the ratio of the correlator containing the op-

erator Oyq,n or O with C$(p,t) (computed at the same spatial momentum).
{wv} oup 2

YThis is done in order to compute the pion decay constant fr which is then divided out.
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For Oa{ul/} = 04{12}7

Cco(t
C{l(t) p:(l’l,O)
= pip2(€?) (5.15)

N

Ry =

! —_ /
In the case of O], , = O}, we define

o
= i

= pHE). (5.16)

We note that in the above equations, R; (Rz) correspond to R; (R;) in the no-
tation of Ref. [7].

By exploiting the cubic symmetry of the lattice, Ry and [y are computed in
different directions of the momentum. The final results quoted for R, and R, are

averages of those related by cubic symmetry.

5.2 Analysis and lattice results

Having defined the correlators, we now present the details of the numerical anal-

ysis and results.

5.2.1 Correlators and Plateaux

In this section, we first present the effective mass plots, obtained using

C3(p,t+1)
C3(p,t)
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Figure 5.1: Effective mass plot for k = 0.13530. Each fit is an estimate for the
energy of the pion (as in Eq. 5.17), and for p? = 0, we obtain a value for the
mass of the pion.

These are used to estimate the range over which to fit By and £, to a constant.
As a typical example, the effective mass plot for ¥k = 0.13530 is presented in
Fig. 5.1. From this plot, the range over which it is assumed that the single pion

state has been isolated is estimated to be 9 < ¢ < 18 (for all spatial momenta).

The correlator Cy'(p,t) (the fourth component of the axial current), is presented
in Fig. 5.2, using a logarithmic scale with x = 0.13460, and momentum p? = 1

and p? = 2.

Before presenting the final plateaux for R; and R,, we display the individual
results for each direction. The purpose of this is to ensure that the results are

compatible and therefore independent of direction, i.e., that cubic symmetry is
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Figure 5.2: The fourth component of the axial current plotted on a logarithmic
scale at p? = 1 and p? = 2, for x = 0.13460. The straight-line behaviour of each

set indicates that the data points fit well to an exponential.

maintained. Fig. 5.3 displays the results for R; computed in different directions

on the lattice. The results for R, are given in Fig. 5.4.

Having selected a suitable range, we now present the average of the individual
results for R; and R, in Fig. 5.5, where both plots are computed with £ = 0.13460.
Fitting R; and Rs to a constant, we obtain the results presented in Table 5.2.
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Figure 5.3: Ry (O,(u) computed in different directions (p* = 2).

5.2.2 Numerical results

In Sec. 5.2.1, we presented the results for Ry, R; at different k. In order to
obtain values in the limit of zero quark mass, the results given in Table 5.2 must

be extrapolated to k. FEach extrapolation for Ry and R is shown in Fig. 5.6.

Extrapolating (£2) to the zero quark mass limit, we find the bare lattice results:

(€)1, = 0.1845 £ 0.0322 (from R;) (5.18)
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Figure 5.4: Ry (O ) computed in different directions (p*=1).

L
and

()1, = 0.0436 £0.0170 (from Ry) (5.19)

5.3 Final results and systematic errors

In this section, we present the result for (€?) in the MS scheme and discuss the

systematic errors.
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Figure 5.5: Ry (Oopuw) and Ry (0),,,) with x = 0.13460.
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5.3.1 Results in the MS scheme

Having obtained (£%) in the lattice regularisation scheme, we must now match

the results onto the MS scheme,

() = (Zo/Z4)(E%)1, (5.20)

where Zp is the matching coefficient which relates the lattice operator Or, to its

MS counterpart, and Z4 is the renormalisation constant for the axial current.
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|R.| «=013460 | «=013510 | x=0.13530 |

Ry,
' R, [ 0.010018 +0.000714 [ 0.011018 & 0.001192 | 0.011658 + 0.001720
R, | 0.002854 + 0.000359 | 0.003077 £ 0.000634 | 0.002703 + 0.000906

Table 5.2: R, and R, for different

Combining the results in Sec. 5.2.2 with matching coefficients (as presented in

Ch. 4), we obtain the following results:
()35, = 0.280(49)739 (5.21)
and

(€%)3m, = 0.021(8)%7 (5.22)

where the first error quoted is statistical and the second is the systematic error. In
obtaining Eqgs. 5.21 and 5.22, we use the one-loop matching coeflicients calculated

at as(¢g = 2/a), csw = 1.0 and match at g = 1/a which will be discussed in the

next section.

5.3.2 Systematic errors

The main systematic error in this work is due to the matching coefficients com-
puted in Chapter 4. Choosing csy = 1.0 (since cgw = 1.61 is of the order a?), we
must then decide the value of o, at which to perform the perturbative expansion,

and the scale g at which to match the lattice and continuum one-loop results.

Since we perform the matching at the one-loop level, there is no preferred choice
of a;. We therefore choose «;(¢) obtained in the MS scheme [53], as described

in Sec. 4.3. We then use this coupling constant at the scale ¢ = 2/a (the central
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Figure 5.6: The extrapolation of Ry and R; to the zero quark mass limit.
value) and vary ¢ between 1/a and 7/a to estimate the systematic error.

By performing the matching at ¢ = 1/a, all the log terms vanish in the expansion.
In this procedure, the leading error is of the form (o /47 )2k, where k is a constant,

independent of pa. Obtaining k on the lattice is a formidable task. In principle,

(1)

one could calculate the two-loop anomalous dimension ~,,/, and use it to run at

next-to-leading order on the lattice to another scale. Matching is then performed

at one-loop and the result run back to ¢ = 1/a in the MS scheme at the same

recision (having computed W)y The difference between this result and the one
p g NS

obtained by matching directly at ¢ = 1/a will then indicate the size of (a/47)%k.
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However, in view of the fact that the one-loop correction to each operator is large
(especially in the case of R,), it is difficult to be sure of the accuracy of this
approach. It would therefore be preferable to match non-perturbatively, thus

removing the uncertainty that accompanies the perturbative series.

The extrapolation to m, = 0 is mild, particularly in the case of [, and so
the error associated with it is expected to be small. Since the simulations were
performed using only one value for the lattice spacing, it is not possible to ex-
trapolate to the continuum limit. Although an improved action has been used
and we are working with a light-quark system at quite a fine lattice spacing
(a=! = 2.67+0.06GeV), we note that it would be preferable to include improved

operators in order to further reduce discretisation errors.

Finally, the results are obtained within the quenched approximation. In order to
make a reliable estimate of the error due to quenching, we would have to perform

a simulation using dynamical fermions which is beyond the scope of this work.
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Chapter 6

Conclusions

In this work, the second moment of the pion’s distribution amplitude (£?) has
been computed from lattice QCD using two operators, each belonging to a dif-
ferent irreducible representation of the hypercubic group. The results obtained

at 2.67 GeV in the MS scheme are (from Egs. 5.21 and 5.22)

(€%); = 0.280(49)%

and
(€%) = 0.021(8)*2.

These results are incompatible and correspond to significantly different distribu-
tion amplitudes. The value for (£?);, obtained from R; (defined in Eq. 5.15),
indicates that a large fraction of the pion’s momentum is carried either by the
quark or the antiquark. However, this is contradicted by the result for (£2),, cal-
culated from R; (as defined in Eq. 5.16), that describes a wavefunction in which

the momentum is shared equally between valence quarks.
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Combining these results with the definition of the pion’s distribution amplitude

(Eq. 1.39),

br(z, 1°) = 62(1 —2) > an(/x)C'n%(Q:zt — 1), (6.1)

n>0

where ag = 1 and ax(p) = 35/12((€2)(u) — 1/5), we obtain an expression for
¢x(z). The series in Eq. 6.1 is truncated at n = 2. In approximating ¢,, we
have assumed that the scale is sufficiently high such that contributions to the
wavefunction from higher twist terms are negligible. The wavefunctions generated

from each value of (£?) are plotted in Fig. 6.1, along with the asymptotic form

(for which (£%) = 1/5).

¢x(2)
? (€%)2
2.5 7 - \\
/ \
/
2 / \\
/ (€%)o \
1.5 // \
h \
1 / / ~ - \ \
/ ~— _ / \
/ \ \
0.5/ J/ (€ \
\ \
/ . . .
7 0.2 0.4 0.6 0.8 \ /1
\ / N )
~N ~—
-0.5

Figure 6.1: The pion’s distribution amplitude for (£?)q = 1/5 (asymptotic form),
(€%); = 0.280 and (£2), = 0.02L.
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In order to make a comparison with other studies (both in the lattice regular-
isation scheme and in the MS scheme), the results must be compared at the
same scale. All of the lattice studies conducted previously present the results in
the lattice regularisation scheme at different scales and therefore we have used
quenched! one-loop running [63] to obtain results at our lattice scale (2.67 GeV).
These are then compared with our bare lattice results. From Table 6.1, we ob-
serve that (£2)1, actually agrees with the previous predictions for the operator
corresponding to (%), [5, 6, 8], originally obtained with inverse lattice spacing
a”!'=1.01 GeV, a™! = 1.8 GeV and a™! = 1.9 GeV respectively. The operator
corresponding to (£%)1,, was also calculated previously on the lattice [9], however,
we do not find agreement with this result. The result for (£?)1, is well below all

values previously predicted for this operator (O,,,) using the lattice.

The comparison with predictions from QCD sum rules (0.4 + 0.2 at @) = 1.22
GeV [10], and 0.39 at @ = 1.5 GeV [11]), is made after running the sum rule
results in the MS scheme at two loops [63] with the appropriate number of active
flavours, up to our lattice scale. From Table 6.1, we see that (£?); is in good

agreement with sum rule predictions. However, in the case of (£2),, this is again

much smaller.

In summary, we note that the operator used to compute (€?)1, (Ogiu.}) agrees
with previous values associated with the operator O,,,. When this is matched
to the MS scheme, we find satisfactory agreement with sum rule predictions.
However, the result for (£%), is incompatible with preceding lattice values for
this operator. Furthermore, it is smaller than that of the asymptotic value which
is unexpected at this scale. At this stage however, there is no reason to reject the
result obtained for the second moment from Ry and therefore further investigation

is necessary.

1 Although the result quoted in reference [9] is calculated using two flavours of sea-quarks,
the sea-quark masses are quite heavy.
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current results previous lattice results | QCD sum rules
(€% = 0.280(49)F%5 | (€%)1, = 0.235(25) [5 0.353(61) [10]
(%), = 0.185(32) (€%, = 0.26(13) [6
(€%); =0.021(8)F3 (€)1, = 0.30(13) [8
(€)1, = 0.045(17) (L, =0.11(2) ]9

(€%, = 0.101(10) [9

]
]
] | 0358  [11]
]
]

Table 6.1: A comparison between the values of (€2} obtained in this study, pre-
vious lattice results (all obtained in the lattice regularisation scheme) and QCD
sum rules. The errors on (£%)r,,, are statistical only.

In general, there are a number of ways in which to reduce the error that ac-
companies the prediction of (£?) using lattice QCD. The most significant source
of uncertainty is expected to come from the perturbative renormalisation of the
lattice operators. As discussed in Chapter 5, this could be reduced considerably
by matching non-perturbatively. The systematic error resulting from O(a) terms
could be removed by using improved operators (in addition to the improved ac-
tion), such that the leading discretisation error is of O(a?). The statistical error
could be reduced by increasing the number of configurations on which the cor-
relators are measured. In addition, the uncertainty introduced by working in
the quenched approximation could be avoided by simulating the operators using

dynamical fermions.

Possible phenomenological extensions of this study include an analysis of the
fourth and sixth moments of the distribution amplitude. However, this would
undoubtedly require a non-perturbative computation of the matching coefficients
due to the increased number of derivatives in the operators. Furthermore, con-
tributions to the shape of the distribution amplitude from higher twist terms are
expected to be small at higher energies. Another possibility would be to perform

a similar analysis of particles such as the p-meson and the kaon. This would
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provide valuable non-perturbative information necessary to describe other decay
modes of B mesons [18]. We also note that the lowest moments of baryon distribu-
tion amplitudes are useful in order to compute the proton’s electromagnetic form
factor. This is particularly interesting since experiment currently disagrees with

the theoretical predictions of the asymptotic form of the proton wavefunction.
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Appendix A

The moments of a distribution

In this section, we introduce the moments of a distribution and demonstrate the
way in which they characterise and therefore provide insight into the form of a
distribution. The material contained within is based on Ref. [64]. In order to
illustrate the ideas and definitions clearly, we begin with a brief introduction to

the expectation, variance and standard deviation of a distribution.

A.1 Expectation

The definition of expectation for a discrete random variable X with possible

values 1, z9,...2, is defined as

BOX) = Y s (25), (A1)

where f(x;) is the probability that X = ;. For a continuous random variable X
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with density function f(a), the expectation of X is defined as

o0

BE(X) = / 2 f(e)dz. (A.2)

-0

The expectation of X is usually called the mean u. This single value represents

the average of X and is therefore considered as a measure of the central tendency

of the distribution of X.

A.2 The variance and standard deviation

Having defined the mean u as the expectation of a random variable in Eq. A.1
and Eq. A.2 for the discrete and continuous case respectively, we now introduce

another important quantity called the variance which is defined by

V(X) = E[(X — ), (A3)

which is a positive quantity also denoted as o%. Explicitly, if X is a discrete

random variable with probability function f(x), then the variance is given by

o? = (e - ) f(a). (A4)

In the case of a continuous random variable with density function f(z), the

variance is defined to be
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o0

0? = / (z — ) f(x)dz. (A.5)

— o0

The standard deviation is obtained by taking the positive square root of Eq. A.3,

l.e.

o = V(X) = /El(z — p)2]. (A-6)

Both the variance and the standard deviation are a measure of the dispersion of
the values of the random variable about the mean u. Another way to say this
is that they provide insight into the shape of f(z), the probability distribution
(for the discrete case) or the density function (continuous case). For values that
are concentrated around g, the variance is small and the density function has
a peaked shape. Conversely, if the values are scattered with many distributed
far from the mean, the variance is large and the density function has a flatter

appearance. These distributions are illustrated in Fig. A.1 below.

A.3 The moments of a distribution

Following on from the variance, we can now generalise to the moments of a
random variable X, which characterise the form of the distribution f(z) about

the mean. Explicitly, the n'* moment about the mean u is defined as
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f(=) small variance

\

large variance
|74

z X

Figure A.1: Density functions with small and large variance.

(€)= BUX —p)"]; (A.7)

where n = 0,1,.... From Eq. A.7, it can be seen that the zeroth moment £° = 1,
the first moment ¢! = 0 and the second moment £* = E[(X — p)?] which (from
Eq. A.3) is the variance. Since this study focuses on the second moment, we do

not consider the higher moments.

Since we are interested in the second moment of the pion’s distribution amplitude
where ¢(£) is a continuous distribution, we state the equation for the moments

of a continuous distribution about the mean

o0

€= [ (€-nrreae (A8)

o =00
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For a distribution with mean y = 0, the n** moment is defined as

b= | s (A.9)

To relate this to the main text, we note the following points.

o { = u— u where u and u are the fractions of momentum carried by the

quark and antiquark

o the limits in Eq. A.8 are [—1,1] since the fraction of momentum ranges

between zero and one.

o $(£) is symmetric i.e. ¢(€) = ¢(—E)
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Appendix B

Group theory

In this section, we present the character tables for the operators of interest.

B.1 The hypercubic group

Table B.1 displays a typical element of the hypercubic group (H4) for each conju-

gacy class. The characters for the irreducible representations of H4 can be found

in Tables 5.2a-c, Ref. [50].

B.2 Obtaining the characters for each represen-

tation
Since we do not know the matrix form of the representation, we take an element

from a particular class and act on the operators which form a basis. For example,

consider the component p;gers of Oy, under the reflection of both the 1- and
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typical element

class | order | no. of elts. | permutation/reflection notation

A 1 1 I

B 2 6 PP,

C 2 1 P PP Py

D 4 12 (12) P

E 2 24 (12)Ps

F 4 12 (12)P, P Py

G 3 32 (123)

H 6 32 (123) P, Py

I 8 24 (1234)P,

J 2 12 (12)(34)

K 4 12 (12)(34) P, P,

L 2 4 (-1)P

M 2 4 (=1)PLP,Ps

N | 2 12 (=1)(12)

) 4 24 (=1)(12) P, Ps

P 2 12 (—=1)(12) P3Py

Q 6 2 (-1)(123) P,

R 6 32 (—1)(123) Py

S 4 48 (—1)(1234)

T 4 24 (=1)(12)(34) P,

Table B.1: Typical element for each conjugacy class of the hypercubic group

2-axis.

PP,
prgers — (=p1)(—q2)rs

= PqsT3

Since the component is invariant under this operation, this implies that there is
an entry of 1 along the diagonal of the representation. If however we consider a
permutation of the indices of O,,,, since all indices are different, this implies a
zero entry for the diagonal element of the representation.

To summarise,
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e component left unchanged: enter +1
e for an odd number of reflections: enter -1
e for a permutation of the axes for Oy ,,: enter 0

e for a permutation of the 2- and 3-axes for Og,,: enter 1

Following this simple set of rules, Tables B.2 - B.6 are completed.

Note that the components in Table B.6 are defined as

F(pcf)(zturl/) = < [73061#711/ +p0ql/r#

| =

+ PuGoTu + PuQuTo — 2PuGuTo — QP/J.QG'TU]

and

. 1
G(paa Gus Tu) = - [pcr([u{’“u + PoQuTy — PuvloTy — puguro] .
V3

2V3
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basis class and typical element
components | A B C D-K | L M N-T
Podu?y I Plpz P1P2P3P4 - Pl P1P2P3 -
P1GaTs 1 1 -1 0 1 1 0
P1GaTq 1 1 -1 0 1 -1 0
P143T2 1 1 -1 0 1 1 0
P1G3T4 1 -1 -1 0 1 -1 0
P1qaT2 1 1 -1 0 1 -1 0
P1GaT3 1 -1 -1 0 1 -1 0
P2giTs3 1 1 -1 0 1 1 0
P2g1Ty 1 -1 0 1 -1 0
P2gaTy 1 -1 0 1 1 0
P2gary 1 -1 -1 0 -1 -1 0
P2447T 1 1 -1 0 1 -1 0
P2aqar3 1 -1 -1 0 -1 -1 0
P3qiTs 1 1 -1 0 1 1 0
P3qiT4 1 -1 -1 0 1 -1 0
P3Gaty 1 1 -1 0 1 1 0
P3GaTy 1 -1 -1 0 -1 -1 0
P3qGary 1 -1 -1 0 1 -1 0
P3qaT2 1 -1 -1 0 -1 -1 0
P1qiT2 1 1 -1 0 -1 0
PaqiT3 1 -1 -1 0 -1 0
PaGaT1 1 1 -1 0 1 -1 0
P4Gars 1 -1 -1 0 - -1 0
PaqsTy 1 -1 -1 0 -1 0
Daqaro 1 -1 -1 0 -1 -1 0
| Tr[R(g)] |24] 0 | 24 ] 0 J12] -12 | 0 |

Table B.2: Characters of the 24 dimensional representation O, ,,
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class

E[F|GK|L|M[NJO[P[QT

-1

-1

C|D

-1

A B

basis
components

P4
1 932
Pi (ﬁ
P2 q%
P2 Cﬁ
P2 qi
Psfﬁ
Psgs
Pag;
P4€1f
P4 Qg
P4Q§

| Tr[R(g)] [12]0[-12]2]0[2] 0 [-6[6[-2]0[2] 0 ]

Table B.3: Characters of the 12 dimensional representation Oy,

=
Lo ooolooclolo|lolololo
o
Alococlool— ool |lolo
Oloc|lvo|jo|lcjoVio|lo|-|o|o
Z|loololole|loT olo|T olo
=3l il il Ll il Al o el ol BB el
4 e
ST ololoocloo|lololololaslo
oIS
oo o~Hio|lo|l—|lo|lo
Holoooolodio|lo|—o|o
Ao lcoioleo|dioo|V oo
{1 T N S N N R S R A O A A I |
— — —
sl e e e el R bl Bl bl A Bl
I R R R T Rl EE Py Py v N v
w1
k=
A Bl IS B IR Ao u
.mmﬂﬂmﬂuTTmWTT%‘m%
0 — ] Ll Bl B | o
amquqﬂwquww%qq
—] = — N o bl B B
=N W RV R RSN E RS A RS PSS
Q
()

| 61-6]2[0f2] 0 |

[12]0[-12]2]0]2] 0

Tr[R(g)]

|

Table B.4: Characters of the 12 dimensional representation Og(,,, where y and

v are symmetrised
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TOOOOOOOO
w2
molT|oololo|lo|o
Clol—|olcilo|lc|lo|o
(=
o|lolo|lololclolo
Z
el Rt i A Al Bl A ER B
w
2
dK_OOOOOOUO
(=1
Tiol—oclocolololo
Dlo|Tioloolo|lolo
=
olo|lo|lolo|lo|lolo
]
S0 I I I R At Il By
Rl Rl I Rl I Bt Bl
< o s ] e e | e |
o bl | =] — ] —
.D%\Z%uZpZMZpr)mzp
[ R R 3 R ta R E R P S P VIS P () o8
Seozl N ed N Nl e
o | & fed el rad el el el e
w)
S AR AR
Rl Baka R Ral ko B Rl larlas] Na Kl fos)
S EEEYEYR
Ol & I o o o o =~ o
R 8 ] & & | &

(50 5] 0 [ 1[I0 4[4[ 0 [1][1[0]

Tr[R(g)]

|

Table B.5: Characters of the 8(-) dimensional representation

mI.*OOOOOOOOO
5]
pllololo|~lo|loiolic
ClTlolclolvio|lo ||
[nl

Lo lolololoo|lolo|lo
<

et

P=H Ll el Al el Sl Al s
w —
<
dKOOOOOOOOO
ot

i |lololo|l—lolo|o|~
Clvielolo|7d ol |o|x
S

Lo |oo|lolo|loio|o|o
]

o i e e
S A AR i Al Aol Al Al el R
Bll_gll_lﬂﬂu
Lol IR S [ (N NP (S N | 1)
Lﬂ\l/\))\l/))\l/\)

S I I et oo B B ]

o= I N S S S S O I | e
MOQQQQQQQQR
A J S S & S S S Sll=—
< g8 8E S 8K S &)
ST S E = G GE GG

Table B.6: Characters of the 8t) dimensional representation
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Appendix C

Feynman diagrams

In this section, the Feynman rules in both the continuum and lattice [65] regu-
larisation schemes are presented. In Sec. C.2, we illustrate the one-loop diagrams
necessary to compute the matching coefficients for the operators of interest. In

Sec. C.3, we outline the calculation of the sail diagrams on the lattice.

We note that in Sec. C.1.2, the following notation is used

I' = Yo V5, (Cl)

2 .
b, = Esm(app), (C.2)

where a is the lattice spacing.
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C.1 Feynman rules

C.1.1 Continuum Feynman rules (Minkowski space)

! D(p)=421)

pe—m

a k b 3 —10,,0"

T Gu(P) = (‘fﬂk 37
M 14

a,

> > V;L(pa Q) = _ig,-yﬂt@

p q
OO';LU
. ” O = -4k, k,t*

a, (L, v

Ora = —Agl [k, A% + k, A2] 1
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C.1.2 Lattice Feynman rules (Euclidean space)

a k b , )
D(k)=7 . .W —
= Yo sin(akq)+5k

1 a
e~ G =m0 o
i v Pk —a?)2
a,
b ¢ V. = — aptag i e
- . ulpya) = —ig |yucos (5] = 3r(pF )| (t%)se
P q
a,
b Cc VI — T : _ ap—ag A
- > @ > 4 (»,q) gesw 3 20 Opu Sm(ap aq)y COS( 3 )o ( Jse
q
where 0,, = % Vo, 7v]
a, p b, v
1 ag? ap+a a —_— a
> > Viw (P, q) = —*5-0uy [T COS(_p'Jgr_ﬂ)u — Slap + GQ)u} {1t} e
¢, p dy, q
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——» Or = —4gl'sin(ak,) sin(ak,)

§ a, p, v
—d Org = —42@[sin(ak,) cos(ﬁgizk)—”)

+ sin(ap,) cos (—p—gﬁﬁ](ta)bc

Orag = 21 sin(ap,) sin(k—;z)u tatb

+ 2T sin(ap,) sin(£22), to¢*

— 4T cos(p — &), cos(p + &), 14"

C.2 One-loop contributions

Continuum Feynman diagrams (0 = 0,,,):

ﬂ - self energy - vertex correction

0,.A, 0,A,

- sail diagram A - sail diagram B
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Lattice Feynman diagrams

o= Oa/,w; Oau/.a

e = clover improved vertex

self energy:

i W i W il 8

tadpole correction: Opuu tadpole correction:

vertex correction:

R
A

sail diagrams:

- R
-

102



C.3 An example Feynman diagram on the lat-

tice

In order to demonstrate how Feynman diagrams are computed on the lattice, we
outline the steps involved in calculating the sail diagrams for the operator Oy,
(see Sec. C.2 and note that we do not include the clover improved vertex in this

example). Before computing the diagrams, we make the following definitions:

s, = sin(ak,), (C.3)
¢, = cos(ak,), (C.4)
k ak,
Su (5) = sin <——§—) ) (C.5)
k ak
Cp (5) = cos (—%) ; (C.6)
. o f akq
Ay = ) sin — | (C.7)
5 2 ak
1 E = Zsin|—£ _
and —sin ( 5 ) , (C.8)
where «a is the lattice spacing.
The sail diagram is written as
5 dk o
1= [, 5yt Vel ) D) Or G, (C.9)

and inserting the Feynman rules, this expression can be split into two contribu-
tions, labelled S, and Sy, each corresponding to a term in Opg. Performing a

Taylor expansion around ap, = 0 so that we can pick out terms that have the
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correct continuum behaviour, we obtain

44k k B\ ap k k
2 - n o v N v id . n
e o) o () e 5 2]
2.2 A
2 Sp“ [—%cy ( ) + 178, (2” [—iYaSa + 2rA]

() () )

at | apy a2pAp,
l .
2 G, (k) { + 2Gg(k)s,\ 4Gg(k)c/\+ i, (k)? .S/\Sp:l , (C.10)

where the colour factor Cr = 4/3, I' = 7,75 and G(k) is the denominator of the

quark propagator given by
(k) = s? +4r*Ad (C.11)

The gluon propagator in Eq. C.10 has the denominator

L. 2/\2
ak) + 2 (C.12)

W= (5) + 5

@

where A is the gluon mass introduced to regulate the IR divergence.

Terms with an odd number of sin functions will vanish in Eq. C.10 and terms
which are of lower order than O(a®p?) cancel. Commuting the gamma matrices
to the right produces terms which are proportional to p*g,, T and pp,v. T, both
of which can be removed since p* is small and the latter is proportional to m,

(from the Equations of Motion). Eq. C.10 thus reduces to

d*k at

Sa=9 OFp“p”F/ ) 4G, (k)
/l Tq
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— 23is(2]53 (g) + 27‘2A18183 }
1 L oo on 2.2k
+Gg(k)2 f:——és”.su——% A1SMS,, 3

Lo 1y, o 2.2 (K
+Gg(k) [ 23“3V+2r Ais,c, 5 , (C.13)

where we note that by power counting, the first term is IR divergent. Before
dealing with this divergence and the additional finite terms, we write down the

expression for the second term in Eq. C.9,

_ d*k k , k ap, k , k
Sy = zg2CF/ o) {%cy <§) —rs, (—2-) ~ 5 [fy,,sl, (5) + irc, <§>}
_I_agp,% . ak i ak
2 Wew | irsy |

1 , ap, k a’pup, k
iy 5, - 20 2Py A r
Gq(k){ Va8 + 21 JF{ 5 cy <2> 5 Sy 5

2 ~ 2.2 2
a (L])/\ a p/\ a p/\pp

1 — gy — ) .14
G, (k) { 26,0 T AG, AT 4Gg(k>25“\3p] (C.14)

2on

As with S,, terms of lower order than O(a2p2) cancel. The gamma matrices in
the remaining terms are commuted to the right and neglecting terms proportional

to p?, Eq. C.14 reduces to

1 k
Gy R [ (5) cute)t "%153}

+Ggl(k) [~st + 2r2 A4 (1 ~2s2 (g))} } , (C.15)

where the first term contains [R divergent terms. Combining S, and S}, we obtain

14k a*
S, = ¢2Crp,. Vr/ il
bE IR | n )i 26, (k)

2 ' (14]6 (L4 A B
Sa+ Sy = —4pup.Lyg CF/ (2m)* G (k) ng(k)i” t Gg(k)2
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C 1

1.
— + =5 — =1 ,(C.16
tem Tt 1) (18
where,
A= -4SZS§ +10s3 57 — 65 s, — 23233+25i3§ + 2525252
4,22 4,42
4s, 5,5, + 2s,s,s, (C.17)
B = — & —15232 +oslst —slst 4 §34 —~ =" (C.18)
- 22 gy r 2 .
1 1
C = sisl—sis),— §5i + §Si (C.19)

and terms denoted with an underbrace are IR divergent. These are dealt with by
subtracting and adding the divergent part. This leaves a finite term that, with
the other finite terms, can be computed numerically and a divergent term which
is calculated analytically. The result of the divergent integral is logarithmic, de-
pending on the lattice spacing and the gluon mass (the IR regulator). Explicitly,
the overall result for these two diagrams (including the symmetric combinations)

is given by

| =10 1
2(S, + §) = (~4Tnp,) -Cr [ log (aw> - 2.171] . (C.20)

4 3

The results for all the one-loop diagrams are given in Table 4.1 (continuum), and

Table 4.2 (lattice), Ch. 4.
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