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We investigate the possibilities for automatic reasoning about action and change 
in the Fluent Calculus. To this end, by relating reasoning about action and 
change in the Fluent Calculus to model checking of dynamic systems, we pur-
sue a systematic approach to analysing Fluent Calculus domains. Motivated by 
the different properties of Fluent Calculus domains known from the literature 
we define several Fluent Calculus fragments by syntactic criteria. We distinguish 
classes of dynamic properties to be inferred, focusing on several versions of plan-
ning problems. To apply results concerning the decidability of model checking 
of dynamic systems to decidability of reasoning about Fluent Calculus domains 
we establish tight relationships between models of the previously defined Fluent 
Calculus fragments and well known computational models like finite automata, 
Petri nets and two-counter machines. Furthermore, we show that dynamic prop-
erties, for example the existence of a plan, can be characterised by formulas of 
modal/temporal logics. Then, for every Fluent Calculus fragment and every 
class of dynamic properties we investigate the existence of a decision procedure. 
The results about decidability of all considered planning problems for the Flu-
ent Calculus fragment T C p l is particularly interesting. In TCph domains we 
can only use constant fluent and action symbols and the executability of actions 
must not depend on negative preconditions. Despite these restrictions, J-Cpl 
allows the specification of systems with an infinite state space. With the help of 
our decidability results we develop a partial deduction algorithm to solve con-
junctive planning problems for some Fluent Calculus domains. Our algorithm is 
the first complete reasoning method which can automatically solve conjunctive 
planning problems for TCpl domains. 
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Introduction 

During the last century the rapid development of computers has led to the au-
tomation of numerous tasks that have been previously considered to require 
"human intelligence". Most of these tasks can be characterised as explicit nu-
merical and symbolical calculations in the sense that they are based on well es-
tablished algorithmical models. For example, the differential calculus had been 
developed long before the construction of the Grst computer, that was capable 
of performing differentiation automatically. However, for most of the tasks hu-
mans perform in their everyday life, like oral and written communication, face 
recognition, or car driving, few satisfying algorithmical models exist. Addition-
ally, our everyday life is subject to change and so too are the targets of our 
models. It has also been questioned whether some aspects of human behaviour 
can be modelled by symbol-manipulating machines at all, e.g. [27, 155, 115]. 
Consequently, the main objectives of research in /nfe/Hgence are 
1) to investigate the principal possibilities for developing algorithmic models of 
certain aspects of human behaviour, and, if possible, 2) to provide such mod-
els [54]. Thereby, we will refer to those aspects of human behaviour which are 
subject of AI research as intelligent. This dynamic use of the word "intelligent" 
is in contrast to its use as an universal concept, i.e. a concept which can be 
justified without referring to human behaviour^. 

The only widely accepted way of determining whether a system models indeed 
intelligent behaviour is based on variants of the Turing test [153]. This test 
and its variants are designed to take as little internal structure of the system 
into account as possible. Basically, they refer to the structure that is required 
for communication with the system, only. As a result two main approaches for 
modelling intelligent behaviour have been developed. The first, the neuropsycho-
logical, approach aims to understand the biophysical processes of the "organ" 
brain, e.g. [132]. According to the hypothesis of neurocomputing, if the biophys-
ical processes can be imitated by a computer, then it is also possible to imitate 
intelligent behaviour, [63, 77]. Following this approach, perceptions which are 
accessible to introspection, are understood as side effects of the biophysical 
processes. In contrast to the neuropsychological approach, cZoaaicaZ AI avoids 
reference to underlying biophysical processes. Instead, its models are established 

^ We believe that the search for such an universal concept cannot be fruitful. 
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based on perceptions that are accessible by introspection, e.g. [153, 109]. The 
following work is dedicated to some aspects of this classical AI approach^. 

Instead of attempting to develop a model which contains concepts for all kinds 
of perceptions it hag been argued, [109, 62], that it is reasonable to restrict the 
domain to those concepts upon which a vast majority of humans will agree. 
Later, these "common sense" concepts can be supplemented by more specific 
ones. "Common sense" concepts include in particular the way humans perceive 
changes of the world and act accordingly. AI research has concentrated on this 
aspect from its early beginnings [104]. One of the most important approaches 
towards understanding and modelling our perception of action and change was 
introduced in [105, 109], and christened Situation Calculus. 

According to the classical AI approach intelligent systems consist of two compo-
nents: an internal representation of knowledge about the world and a reasoning 
mechanism. The reasoning mechanism controls the behaviour of the system by 
deriving relevant knowledge from the internal representation. In [109] the two 
components are called epistemological and heuristic, respectively. The under-
lying assumption is called the knowledge level hypothesis [113]. Note that due 
to the distinction between knowledge about the world and the world itself, the 
classical AI approach implicitly assumes the existence of a world. Hence, philo-
sophically speaking, classical AI is based on an objectivistic point of view [135]. 

Also based on the knowledge level hypothesis, cZoasicaf fogic has been developed 
as a model of human reasoning [43]. Thereby it provides "natural" languages 
to model our perception of action and change formally. In classical logic the 
relation between actual worlds and representations is called aemanfica. The 
heuristic component of a logic is called calculus. Thereby, the calculus should 
reflect the behaviour of the system that is possible in the world. Relying on these 
well established ideas, the name "Situation Calculus" refers to a class of logical 
second-order languages with extended Arst-order semantics. The second-order 
property of Situation Calculus languages is a result of allowing the specification 
of induction axioms, which require quantification over predicates. In this mod-
ern context the word "calculus" in the name "Situation Calculus" is actually 
misleading as in all recent work the name is not associated with a particular 
calculus. However, we keep the name for historical reasons. 

In fact, most of the research about the Situation Calculus and other logic-based 
approaches has been dedicated to solving problems of knowledge representation, 
only. Despite of this deficit the logic-based models, which are usually called 
models of Reasoning about Action and Change, have superseded most of the 
alternative models proposed in the history of AI research. 

Recently, the possibilities for automatic reasoning methods based on knowl-
edge representations in Situation Calculus languages have received increased 
attention [119, 145]. One of the major reasons for the growing interest is the 
widespread opinion that the frame problem (see Section 2.1), which was consid-

^Note that there have also been attempts to relate the two approaches, e.g. [138, 136, 74]. 
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ered to be one of the most fundamental problems of knowledge representation, 
is solved for some cases. Originating in the work [11] on the connection method 
a simple and elegant way to overcome the frame problem was proposed in [68] 
and later christened Fluent Calculus. Although the Fluent Calculus was first 
introduced as a logic programming scheme together with SLDE-resolution (see 
Section 1.3) as heuristic component, the association with a particular calculus 
has been discarded later. As with the Situation Calculus, the name has been 
kept for historical reasons. Furthermore, the class of logical languages which 
is defined by the Fluent Calculus can actually be seen as an extension of Sit-
uation Calculus languages [150]. At the time of writing little research about 
possibilities for automatic reasoning within Fluent Calculus domains has been 
undertaken, which takes the particular properties of knowledge representation 
in the Fluent Calculus into account. With this thesis we attempt to start filling 
this gap. However, the recent work of [67] and [69] is strongly related to our ap-
proach. We will discuss results of these papers in more detail later in this work. 
Although some early Prolog implementations have also been used for automatic 
reasoning, their capabilities are very limited (see Chapter 6). 

Due to some of the second-order properties of Fluent Calculus languages and 
Situation Calculus languages we may apply Godel's theorem [53] to knowledge 
representations using these languages. According to the theorem we cannot hope 
to find a calculus that allows us to derive (precisely) all consequences of the rep-
resented knowledge, i.e. every (sound) calculus must be incomplete. Despite of 
this inherent limitation of formal systems, the hope persists that many domains 
do not require the full power of the languages. For such domains complete calculi 
and elective decision procedures may exist. Consequently, the first goal of this 
work is to identify classes of Fluent Calculus domains which are "interesting" 
from a representational as well as from a computational point of view. However, 
we cannot know in advance how a difference in the representational properties of 
a domain determines its computational properties. To this end we will represent 
some well known Fluent Calculus domain classes in a common scheme and take 
the fragments defined by their syntactical differences as a best bet. 

The second goal of this work is to investigate the previously identified Flu-
ent Calculus fragments for possibilities of automatic reasoning. Thereby we will 
first attempt to prove decidability of reasoning for large classes of problems char-
acterised by well known modal/temporal logics. If these attempts fail, i.e. no 
automatic reasoning procedures exist for the considered fragment, then we con-
tinue by investigating decidability of smaller classes of problems. In the research 
on Reasoning about Action and Change these latter classes of problems have 
received much attention under the name planning problems (see Section 2.1). 

To achieve the second goal we will follow the approach of model checking of 
dynamic systems (see Section 2.7). The aim of model checking is to allow veri-
fication of formulas of some modal/temporal logic for a given dynamic system. 
To understand reasoning about action and change in the Fluent Calculus as a 
model checking problem, in every Fluent Calculus domain, we will distinguish 
between knowledge describing the behaviour of a particular dynamic system 
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and properties we wish to infer. Then, depending on the the domain considered, 
the described dynamic system can be characterised by a well known model of 
computation, e.g. finite automaton, Petri net, counter machine, while Fluent 
Calculus formulas describing properties to be verified will be characterised by 
semantically equivalent formulas of modal/temporal logics. On one hand, this 
will allow us to prove (disprove) decidability of entailment problems by reducing 
to (from, respectively) known decision problems in model checking. On the other 
hand, we hope that the established relationships - between the Fluent Calculus 
and other well known models and languages - are of interest themselves. 

As a third goal we will propose a method for implementing decision procedures 
for the Fluent Calculus which are particularly suitable to solve conjunctive plan-
ning problems (see Section 2.1). The method will improve the possibilities for 
automatic reasoning wrt SLDE-resolution and other previous approaches, which 
are incomplete even for Fluent Calculus fragments where conjunctive planning 
problems are decidable. To this end we will develop an abstract partial deduc-
tion method (see Section 7.1) which is particular suitable for logic programming 
representations of Fluent Calculus domains. 

Structure of the Thesis 

According to the main goals, the thesis is structured into three parts. The first 
part follows the Chapter 1 which briefly introduces notions and notations used 
throughout the work. This part focuses entirely on knowledge representation in 
the Fluent Calculus. We will discuss the underlying assumptions and relations 
to other approaches in detail. Syntax and semantics of the classes of Fluent 
Calculus domain descriptions considered in this work are defined. Furthermore, 
we will propose a characterisation of models in terms of labelled transition sys-
tems. This characterisation is used mainly in the second part, but it proves 
also fruitful in the first part when relations between some Fluent Calculus frag-
ments are established. The second part is dedicated to the investigation of de-
cidability of reasoning in the Fluent Calculus. In Chapter 3, we introduce some 
modal/temporal logics of decreasing expressive power and show how formulas 
of these logics characterise formulas in the Fluent Calculus. In Chapter 4 we 
show how models of certain Fluent Calculus domains correspond to Petri nets. 
The correspondences are established by means of bisimulation. Finally, in Chap-
ter 5 we prove our decidability/undecidabihty results for each considered Fluent 
Calculus fragment and reasoning task. To this end our results concerning the 
relations between models of Fluent Calculus domains and Petri nets (or some 
other more well-known models of computation) are applied. In the first chap-
ter of the last part of the thesis we show how some Fluent Calculus domains 
can be represented as definite E-programs. Then, in Chapter 7 we develop our 
abstract partial deduction procedure. We prove that it is complete for conjunc-
tive planning problems in a particular Fluent Calculus fragment, once more by 
employing its relation to Petri nets. The last chapter concludes the work and 
sketches the possibilities for further research. 



Chapter 1 

Foundations 

In this chapter we summarise essential definitions of logic and logic programming 
as they will be used throughout this thesis. The given definitions follow standard 
notions and notations used in the field of Reasoning about Action and Change 
(RAC) and related areas of research. Notions and Notations that will be used 
but which are not commonly known in this field will be introduced in later 
chapters - usually right before their relations to RAC are discussed. 

1.1 Sorted F i r s t -Order Logic 

In this section we introduce sorted first-order logic. Our presentation is mainly 
based on the one in [28]. It is slightly extended by allowing the specification of 
an ordering relation between between sorts (see below). Such extensions have 
been investigated in great detail, e.g. in [22, 44, 154]. 

First of all, we consider a logic to consist of a syntax, which characterises a 
formal language, and a semantics. The syntax defines which expressions are 
allowed. The semantics defines the meaning of these elements and a relation, 
called entailment relation, between them which describes when elements of the 
language are logical consequences of other elements. 

Syntax 

The syntax of sorted first-order logic is defined by a signature: 

Definit ion 1.1.1 A signature is a tuple {SORT, <, FUN,REL) where 

1. SORT refers to a finite set. Each element of SORT is called a sort. 

2. -< is a partial order on the elements of SORT, 

5 
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S. FUN is a finite set of elements called function symbols. Thereby every 
function symbol f is associated an expression of the form f : Si x ••• x 
S„ -> S with S, Si,..., Sn £ SORT for some n 6 IN. 

4- REL is a finite set of elements called predicate symbols. Thereby every 
predicate symbol is associated an expression of the form p : Si x • • • x Sn 
with Si,... ,Sn E SORT for some n G IN. 

SORT, REL, FUN are disjoint. A function symbol f S with S G SORT is 
called a constant. 

For example, consider the signature = {{Z, N}, {N :< Z}, {zero :->• Z, succ : 
/ Z,pred : Z Z}, {lesa : Z x .Z}). 

A sorted first-order language is defined wrt some signature E and some variable 
decforofion. Variables can be seen as "place-holders" of objects. 

Def init ion 1.1.2 Let E = {SORT, :4, FUN, REL) be a signature and N a finite 
set. Then a mapping X : N SORT is a variable declaration wrt E. We denote 
a particular mapping of some variable x E N to S G SORT by (x : S). Each 
element of N is a variable name (for short variable^ wrt X, N{X) denotes the 
set of all variable names wrt X. 

The objects of a first-order language are represented by the set of terms associ-
ated with the signature and the variable declaration. The structure of the terms 
is defined by FUN: 

Definit ion 1.1.3 Let E = {SORT, X, FUN, REL) be a signature, X a variable 
declaration wrt E and S G SORT. Then the set Ts,^{X) of terms of sort S wrt 
E and X is inductively defined as follows: 

.Z. Z/Gf : 5̂ ) 6 X . TTien z G 7g,z(X). 

2. Let ti G Tsi,-£{X) for all 1 < i < m and {f : Si x x Sm ^ S) £ FUN 

The terms in (0) are called ground. 

The set of all terms wrt E and X is defined by 

TE(%) = J 

TAe variables of a term ^ ( G 7a,E(X) are denoted Vars(t) and :ndwc-
tively defined as: 

1. Vars{x) = {x] for {x : S) £ X 
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Vars(/(^i, . . . , fn)) = Var8(fi) U - U Vars(^n) /or / : 5'i x - - x % E 
FUN for some n £ K and n > 0, if n = 0 Vars(/) = 0. 

For example, the set 7z,2g(X) of terms of sort Z wrt Zg and X = { ( i : Z)} is 
defined as {zero,succ(zero),pred(zero),8Ucc(succ(zero)),pred(pred(zero)),..., 
r, succ(a;),pred(i),succ(8ucc(a;)),pred(pred(r)),... ,succ(pred(r)),.. 

While FUN defines the structure of objects relations represent "atomic" propo-
sitions about objects: 

Definit ion 1.1.4 Let S = {SORT, X, FUN, REL) he a signature and X a vari-
able declaration wrt S . Then the set Ay.{X) o / a toms wrt £ and X is defined 
as follows: 

1. Let ti 6 Tsi,-E{X) for all 1 < i < m, m E and {p : Si x • • • x Sm) E REL. 
TAen , . . . , tm) E Az (X). 

The atoms in Ay,{%) are called ground. The set of variables occurring in an 
p ( f i , . . . ,tm) ia oa Vafs(p(fi, . . . ,tm)) = Ui<j<m 

One of the atoms wrt the above signature Zz and X is Less{succ{succ{zero)),x). 

More complex formulas are defined by the use of logical connectors and quanti-

fiers-. 

Definit ion 1.1.5 Let H he a signature and X a variable declaration wrt S. 
Then the set F^{X) o/formulas wrt S, X is inductively defined as follows: 

.Let E f E ( X ) . TTien ((̂ i A <^), (î i V <^), (^i (^2), (<̂ 1 1̂ 2), 
(-<^1) E Fz(X) . 

3. Let {x : S) 6 X and (j) € Fj:{X). Then V(a ; :5 ) . ^ E F^{X) and 

By atoms{(f)) we define the set of atoms which occur in the formula cj). 

2%e ae( 0/ free variables Vars(< )̂ 0/ a /ormuZa is de_^ned oa 

.f. 1/ 6 {(1̂ 1 A 1̂ 2), (<̂ 1 V <A2),('Ai ^ < 2̂)} (Aen V^s(,^) = 
Vars(^i) U Vars(^2) 

g. «/<^ E {3(z : Vars(< )̂ = Var8(i^i) \ {1} 

A formula (p where Vars{4>) = 0 is called closed or sentence. 



i . fO(7NDATJON5 

For example, the expression 3(x : N). (Less{zero, succ{x)) ALess{pred{x), zero)) 
is a formula wrt and X. 

If is a formula with a set of free variables X and Y a sequence of variable names 
of X then we define a formula, denoted VF. {(p), to be universally closed wrt 4> 
and Y if VF. (<̂ ) is the result of adding for every variable a; of ? a quantifier 

: S), where S is the appropriate sort of x, to cj). We define V. {(j)) to denote 
the formula where Y contains all variables of X. Correspondingly, we also define 
3. {4') and 3F. (^) to denote the existentially closed formula wrt (j) (and Y). 

To increase readability brackets may be omitted by applying the following pri-
orities between logical connectors (ordered wrt decreasing priority): V, 3, 
A, V, =>, <!:>. Instead of writing V(ii : Si). (V(a;2 : 52). (.. .V(in : .9n) - - )) (or 
3(a;i :5'i).(3(a;2 :52).( . - ^(in :'?»). <̂  . . .)), respectively) for n > 1 we also 
write V(a;i : 5 i ) , (rg : Sg ) , . . . , (â n : -^n). (3(a;i : 5'i), (zg : 6^2),..., (̂ n̂ : -Sn). 1̂ , 
respectively). A sequence of variable declarations (a;i : S), (â z : : 5') 
may be abbreviated by (zi, ig , - - , : 5 ) for m > 1. 

We also try to commit ourselves as much as possible to the following notational 
conventions; 

N a m e s for sorts: starting with capital letter, anonymous: S, 3%, S2, • • • 

N a m e s for variables: x, y, z, xi, X2, • •., x', x", ... 

N a m e s for sets of variables or variable declarations: X , Y , . . . 

N a m e s for functions: small letters, more than one, anonymous: / , g, h, f i , 

/2, .- -

N a m e s for terms: t, ti, fg. 

N a m e s for atoms: starting with capital letter, anonymous: p, q, r, pi, P2, 

N a m e s for formulas: (j), tp, (j)i, 4>2, • • • 

N a m e s for sets of formulas: A, B, . . a n o n y m o u s : L, Li, 

Semantics 

A mapping that associates actual sets to SORT and actual functions and rela-
tions to FUN and REL, respectively, defines a meaning of ground atoms in a 
first-order language: 

Definit ion 1.1.6 Let S = {SORT, FUN, REL) be a signature. An interpre-
tation I of T. is a mapping from S to 

1. a family {S^ | S 6 SORT} of sets such that for 81,82 G SORT S( C Sl 
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2. a family {/^ | / G FUN} of operations 

: Sf X . . . X /or / : X . . . X ^0 e f 

3. a family {p' | p e REL} of relations 

p^ C S( X • • • X 5 ^ for p : 5 i X • • • X 5 „ G REL 

The universe of an interpretation I is defined by 

= U gf 
SeSORT 

For example, we may consider the interpretation I of Hz where = IN, = 
Z, zero' = 0, succ' = {x>-^x+l\x£ Z}, pred' = {xi-^x-l\xEl.} and 
Less' = {ix,y) | x < y&ndx,y 6 Z}. 

The meaning of a free variable is defined by a mapping to an actual object of 
appropriate sort: 

Definit ion 1.1.7 Let S = {SORT, X, FUN, REL) be a signature, X some vari-
able declaration, I an interpretation of S and t € Ts,e{X). Let A : N{X) -4-
sort' be a mapping such that X{x) E S' for {x : S) E X. Then the value t''^ 
is inductively defined as follows 

= A(a;) /or (z : 5') E 

/ ( ^ i , . . . , = /^(^I''^, . . , 4''^) /or / : X -. X gn 5'o 6 f [W 
E 7a,.,E(X), i = 1 , . . . ,71, n e IST. 

Now we can assign truth values, T and ± , to formulas wrt some interpretation: 

Definit ion 1.1.8 Let S — {SORT, -<,FUN, REL) be a signature, X some vari-
able declaration, I an interpretation of S and (p E F^{X). Let A : N{X) —> 
sort' be a mapping such that X{x) E S' for {x •. S) E X. Then the value of 

is inductively defined as follows 

J. ia T / o r p : X - X 6 6 7g.,E(%), i = 
1,... ,n, n E f i , i f f {t['^,..., t''^) E p', ± otherwise, 

(-11̂ )̂ ''̂  is T 13 J_, 

(<;6i A w T i f is T ond ia T, 

4- (01 V (/)2)''^ is T i f f either is T or 4>2^ w T (or both), 

5. {(j)i (p2)''^ is T i f f either is L or is T (or both). 
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(<̂ 1 4* 1̂ 2)̂ '̂  w T w T and :a T, or w ± onj *a ± , 

7. (V(a;: 5').f!,)^'^ ia T i f w T /or a» A' : 7V(X) swcA ( W 
-^'(l/) = '^(y) /or off (y : g') ^ (z : 5̂ ) o / X , 

8. (3(z : S). (pY'^ is T i f f there exists a A' : N{X) -4- SORT^ such that cp^'^' 
is T and X'{y) = \{y) for all {y : S') ^ {x : S) of X. 

For example, the formula 3(a;: AF). (f,es8(zero, succ(i)) Af,es8(pred(z),zero)) is 
assigned T in the interpretation I, since there is a mapping A which maps x to 0. 

Interpretations can be classified according to the values they assign to formulas: 

Defini t ion 1.1.9 Let E = (SORTFUN, REL) be a signature. An interpre-
tation I of T, in which some formula 4> is assigned T is called a model of (p, 
denoted I \= cj). If there is an interpretation I such that / f= 0 then (j) is called 
satisfiable, otherwise cp is called unsatisfiable. A formula 4> is a consequence of a 
set of formulas F, denoted F \= cj) if cp is assigned T in all interpretations where 
each formula ofF is assigned T. If cp is a consequence 0/0 then (p is called valid. 

For every signature, there exist interpretations where the interpretation of each 
sort is simply defined by the set of terms of this sort. In these cases the inter-
pretation of the function symbols is given by the corresponding mappings on 
terms. The only differences between such interpretations result from different 
interpretations of the relations: 

Def ini t ion 1.1.10 Let S = {SORT, <, FUN, REL) be a signature. The Her-
brand-universe [ / ^ is the set of all ground terms ofE: 

- u rs,z(0) 

The set of all ground atoms is called the Herbrand-base o / S . An interpretation 
I of E is called a Herbrand-interpretation if 

= Ts,E(0) /or ^ e gOJZT 

2. f'{ti,...,tn) = f{ti,.-.,tn) for all ti E S-, i = l,...,n and for all 
f '. Si X • • • X Sn Sq G f u n 

An Herbrand-interpretation that is a model for some formula cp is called 
an Herbrand-model of (p. 

We may define a calculus formally wrt a logic: 
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Definit ion 1.1.11 A calculus C consists of a logic L, a set A of formulas of 
C, called axioms, and a set called inference rules. The inference rules define a 
derivability relation t- between elements of the language. 

Let 1= represent the entailment relation of C. Then C is called complete wrt C i f f 
whenever A |= 0, A h and C is called sound wrt C i f f whenever A h 0, k\= (f). 

First-order logic has many sound and complete calculi, e.g. Gentzen and Hilhert 
systems. However, first-order logic is only semi-decidable, i.e. the valid formulas 
are recursively enumerable while the non-valid formulas are not. 

For further details on first-order logic in general the reader is referred to, e.g. [42]. 

Equational Theories 
It is often convenient to provide relations which characterise when two objects 
are equivalent. In this work we will use such relations, called equations, in par-
ticular to state dependencies between subsequent states of dynamic systems. 
E.g. in physics, difference equations are often used in a very similar way. 
An equation is represented by a binary predicate symbol. The properties which 
ensure that a predicate indeed represents an equivalence relation are ensured 
by the well known axioms given in the following definition. To emphasise these 
particular properties it is common to write equation symbols in infix notation. 

Definit ion 1.1.12 Let £ = {SORT, <, FUN, REL) he a signature, X an ap-
propriate variable declaration wrt E, S G SORT and —g : S x S £ REL. The 
Axioms 

V(a;,3/:5').(z=s3/=^3/=sa;) 

V(a;,y,z : 5'). (z 1/ A ̂  z z =a z) 

V(zi ) , . . . (Zi, 1/ : S i ) , . . . , (im 
—S y ^ f\^l 1 • • ' ) • 3 J —S J I 1 y J : ^m}) 

for all f : Si X X Sm S E FUN for l<i<m, mEf^ with Si — S. 

V(ri : 5 i ) , . . . , (li,2/ : 5' i ) , . . . , (Zm : S^). 77; 
—sy ^ p{^i,..., 37%,..., XjTi) p{^i5 • • • ) • • •) ^mj) 

for all p : Si X • • • X Sm E REL for 1 < i < m with Si = S, are called the 
standard equality axioms wrt =s . 

Note that (substitutivity I) and (substitutivity II) are actually axiom schemata 
rather then axioms, since they are meant to hold for every function and relation 
symbol of the signature. 

It is often necessary to specify properties additionally to the standard equality 
axioms. In this work it will be su&cient to consider only properties that can be 
represented according to the following schema. 
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Def in i t ion 1.1.13 Let S = {SORT, <, FUN, REL) he a signature, X a vari-
able declaration wrt £ and S € SORT. An equational theory Eg for a predicate 
=s '• S X S E REL consists of the standard equality axioms for =g and a set 
of formulas of the form 

V. (s = g 

tu/iere E 

IfEs\=s=st for some terms s,t e Tg.zW we write also s =es t. 

The equational theory where the set of formulas of the above form is empty is 

called standard equational theory. 

E x a m p l e 1.1.1 {Ez continued) Let be extended by the predicate =z'- Zx 
Z. The formula 

V(x : Z).pred{succ{x)) =z succ{pred{x)) 

together with the standard equality axioms forms an equational theory. • 

It has been pointed out that axioms which define properties of equational re-
lations often cause trouble in deductive systems, e.g. if the set of substitutions 
solving a unification problem (see below) is infinite. Consequently, it has been 
proposed to treat equations in a special way. To this end we distinguish those 
interpretations which take already the standard equality axioms into account. 
Similarly, we distinguish interpretations which are models for the considered 
equational theory. 

Def in i t ion 1 .1.14 Let E = {SORT, <, FUN, REL) be a signature. An E-in-
terpretation of S is an interpretation I where for each S E SORT =s' with 
= g : 5 X 5 6 REL is given by some equivalence relation over . 

An Herbrand-E-interpretation is an E-interpretation I where for each S € SORT 
5'̂  ia de/ined (Ae congruence cZoaaea o/ on arbitrary congruence reZa îon oi;er 
Ts,E(0). 

If an E-interpretation is a model for E = f/ien it is called E-model. 
Correspondingly, an Herbrand-E-interpretation which is model for E is called an 
Herbrand-E-model. 

A formula cj) is called E-valid fE-unsatisfiable, respectively) i f f (p is true (false, 
respectively) in every E-model. 

Then, since we will only require one non-standard equational theory, we can 
apply the following result which has been first shown in [72]: 

P r o p o s i t i o n 1.1.1 Let E = {SORT, <, FUN, REL) be a signature, X a vari-
able declaration wrt E, ^ 6 F^{X) and Eg an equational theory for some pred-
icate of E and some S E SORT. Then with E = Eg, E \= cp i f f (j) is E-valid and 
EUc/) is unsatisfiable i f f (j) is E-unsatisfiable. 
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Unification 

To avoid the difficulties caused by the use of equations it has been shown in 
[121], following the idea of [131], how equational theories can be successfully 
built into the unification procedure. In this subsection we introduce the notions 
of unification theory we rely on. The goal of unification is to find for two atoms 
a set of variable instantiations such that the atoms become identical. Variable 
instantiations are represented by substitutions: 

Definit ion 1.1.15 Let E = {SORT, FUN,REL) he a signature and X a 
variable declaration wrt E. A substitution a wrt S and X is a mapping N{X) -> 
Ty,{X), such that for all {x : S) £ X a(x) E Ts,s{X) and only for a finite 
number of x £ N{X) holds x ^ a{x). a{x) is also denoted as xa. The set 

Dom(a) — {x \ X ^ xa} 

is called domain of the substitution a. 

The restriction of a substitution a to a variable declaration Y, denoted cr|y is 
defined as z(cr|y) = xa for x £ N{Y) and a;(a|y) = x otherwise. 

The composition of two substitutions a and 9 wrt S and X, denoted as aO, is 
defined as x{a9) = {xa)9. 

The empty substitution is denoted by e. 

A substitution may be applied to a term (or a formula, respectively) and by this 
transform it into one of its instances. 

Definit ion 1.1.16 Let S = {SORT, <, FUN, REL) be a signature, X a vari-
able declaration wrt E. Then the application of a substitution a wrt E and 
X to a term t E T-z{X), written as ta is defined for t = f{ti,... ,tn) with 
/ : 5'i X - X 5'n 5'o E f Z/AT oa fcr = / ( f i a , . . . , 

Furthermore, let (j) E F^{X). Then the application of a wrt E and X to (j), 
written as (j)a is defined as 

.f. ... ,(m) 6 A2(X) (Aen <̂cr = 

2. if <p = (^0) then cpa = -<{(/>a), 

g. = ((̂ 1 op ^2) (Aen = (< îa op 1̂ 20̂ ) /or op E {A, V, =>, 

V(z : 

.4 (erm (Yormufa w cafW an instance 0/ some ferm 2̂ f/ormWa <^^1/ 
(Aere w a au6s(:tut:on ô  a«cA (Aat 2̂0̂  = 
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E.g., succ{succ{succ{y))) is an instance of succ(x) as with substitution a = 
{x i-> succ(succ{y))} holds succ{x)a = succ(succ{succ{y))). 

Note that the results of applying substitutions according to the above definition 
may be unexpected. E.g, consider the two formulae A 3(2/ : Z).Q(z,%/) 
and P{x) A 3{y' : Z).Q{x,y'). The formulas are equivalent up to renaming 
of the non-free variable. However, if we apply the substitution a — {x 
y} the resulting formulas are no longer equivalent up to renaming: {P{x) A 
3(z/ : = f(3/)A3(2/ : Z).Q(y,y) and (P(a;)A3(y' : Z).Q(a;,y))cr = 

If some formula (j) is an instance of some formula ijj then ijj is also called more 
general then cj). If (p is more general then ijj and ip is more general then cp then 
^ and ^ are called rarionk (of each other). 

Often it is not feasible to consider the large (or even infinite) number of all 
possible substitutions. Instead the number of substitutions can be restricted to 
those that do not produce the same instances if applied. Additionally, different 
terms resulting from applying different substitutions might also be equivalent 
if we take some underlying equational theory into account. Hence, to reduce 
the number of substitutions further we introduce a generalised notion of the 
"instance-of" relation between substitutions. 

Defini t ion 1.1.17 Let S = {SORTFUN, REL) be a signature, X a vari-
able declaration wrt S, Eg an equational theory for some predicate =s of S 
with S E SORT and some Y C X. Then two substitutions a and 9 wrt S and 
X are called Eg-equivalent wrt Y, denoted (a =es,y 9), if 

xa =Es 370 for all x G N{Y). 

The substitution 9 is called Eg-instance of a wrt Y, denoted (CT <Es,y ^) there 
exists a substitution p wrt E and X, such that 

(zO =Es,y a;i7p) /or off z E ./V(y). 

Now we deSne the unification problem wrt an equational theory. 

Def init ion 1.1.18 Let E = {SORT, FUN, REL) be a signature, X a vari-
able declaration and Eg be an equational theory for some predicate =s : S x S 
ofE. An Es-unification problem consists of two terms s,t E Ts,-e{X) and the 
question whether there exists a substitution a with Dom{a) C Vars{s,t), such 
that^ 

SO" =Es 

^By Vars(s,t) we denote the set Vars(s) U Vars(t). 
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A substitution, which is solution to an Es-unification problem of s and t is called 
E^-unifier for s and t. Two terms are Es-unifiable if there exists an Es-unifier 
for them. 

A term s is an Eg-instance of a term t, denoted s <es t, i f f there is a substitution 
a with s =Es at. 

If we consider the equational theory of Example 1.1.1 (denoted by Ez) then, e.g., 
succ{pred{zero)) <ez pred{succ{x)). Thereby the E^-unifier is {x M- zero}. 

We may classify unification algorithms according to the set of unifiers they 
compute. Algorithms that compute representations of all possible unifiers are 
particularly important. For certain equational theories such algorithms may not 
exist, e.g. if it is not decidable whether two terms are unifiable at all. 

Defini t ion 1.1.19 Let E = (SORT, FUN, REL) be a signature, X a vari-
able declaration wrt Z, Eg an equational theory for some predicate of S and some 
S 6 SORT. Furthermore, let UEs{s,t) be the set of all Es-unifiers of some terms 
s,t G T^iX). Then the set U C UEs{s,t) is called a complete set ofEs-unifiers, 
if for all 0 6 UEsis,t), there exists a £ U such that a <Es,Vars(s,t) 

If U is complete and for all 9,a £ U, a <Es,Vars(s,t) ^ implies a =Es,Vars{s,t) 

then it is called minimal. 

An unification algorithm P is called complete ("minimalj if P computes U (a 
minimal set of E-unifiers) for arbitrary s,t E T^{X). 

Note that minimal sets of Es -unifiers are always unique up to variable renaming 
if they exist. Hence, we denote the minimal Es-unifier of s and t by ijUEs{s,t). 
We call a substitution in fJ,Uzs {s, t) a most general Es-unifier (mgeu) of s and t. 

An equational theory Eg is called decidable if for any two terms s,t E Ts{X) 
s —Es-, Vars{s,t) ^ decidable. 

An equational theory Eg is called finitary if for any two terms s,t G Ts{X), 
there exists a finite complete set of Es-unifiers. 

Example 1.1.2 Let Zg contain all elements ofLz of Example 1.1.1 and ad-
ditionally a function mult : Z x Z ^ Z and a predicate —z'- Z x Z. Consider 
the equational theory to be defined by 

and the standard equality axioms. 

Now consider the terms s = niuIt{x,zero), t — mult(zero,y). The substitution 
0 = {r 1-4 zero, 2/ M- zero} is an E-unifier for s and t, and so is ly = {x 
mult{zero, z),y i-4 mult{z, zero)}. Furthermore, {0,u} is a complete set of E-
unifiers and, since 9 and v are incomparable under <es the set is also minimal. 

• 

For further details, e.g. on particular equational theories and unification theory 
see e.g. [139, 5]. 
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Unification Completeness 

Using the standard equality axioms and the axioms of the equational theory 
for some predicate = s , does not automatically allow us to conclude when two 
terms are actually not equal. I.e. from s ^es t for some terms s,t and some 
equational theory Eg wrt sort S we can not follow that Eg \= -^s =s t (which we 
also denote as Eg j= s / g t). To this end additional axioms have to be provided. 
The first correct approach in [137] that is independent of a particular equational 
theory has lead to the following notion of unification completeness: 

Definit ion 1.1.20 Let E = {SORT, FUN, REL) be a signature, X a vari-
able declaration, Eg an equational theory wrt some predicate =g of E and some 
S € SORT. A consistent set of formulas Eg is called unification complete wrt Eg 
if Eg implies the formulas o/Eg and for arbitrary s,t e 7g,E(X) the following 
holds 

1. if s and t are not Es-unifiable, then Eg |= ->3. (s =g t) 

2. for every complete set U of Eg-unifiers for s and t 

Eg t= V. (a = s f => (^=g)) 

ee 

w/iere Vars(3,f) = ^ = g = 3/i =5i n A - Az/m 
ZiS = ri for all i = 1,... ,m and Zg is a sequence of variables zi,... ,Zk with 
Vars(ri) U - U Vars(rk) = { z i , . . . , z t } . 

In other words, s=st is valid only if this is justified by a unifier in U. g ^ g ( i s 
valid whenever U is empty. 

For some equational theories the existence of unification complete theories has 
been shown [70]: 

Propos i t ion 1.1.2 Let 2 = {SORT,•<, FUN, REL) be a signature, X a vari-
able declaration. Eg a decidable equational theory wrt some predicate of T, and 
some S e SORT, P a complete Es-unification algorithm. Then there exists a 

compkfe t/ieory Eg /or Eg. 

If only Herbrand-models are considered a unification complete theory induces a 
particular congruence relation on the universe [146]: 

Propos i t ion 1.1.3 Let S = {SORT, FUN, REL) be a signature, X a vari-
able declaration and Eg a decidahle equational theory wrt some predicate of E 
and some S E SORT. Let Eg be a unification complete theory for Eg. Then every 
Herbrand-model of Eg induces a smallest congruence relation on the Herbrand-
universe wrt Eg. 



1.2 Higher-Order Logics 

In this work we will also require statements of properties which are not ex-
pressible in any first-order language. To this end we will refer occasionally to 
a second-order language corresponding to some signature. In the following we 
briefly introduce the necessary extensions of syntax and semantics. 

Syntax 

Second-order languages allow additional use of variables representing predicates 
and functions: 

Definit ion 1.2.1 Let E = (SORT, X, FUN, REL) be a signature. Then a map-
ping X : iV - > ( 5 i X • • • X Sn) with 5 i , . . . , 5 „ 6 SORT and n (a mapping 
X : N (Si X ••• X Sn ^ S) with S, Si,..., Sn E SORT and n e ¥1) is a dec-
laration of predicate variables wrt T, (a declaration of function variables wrt E). 
We denote a particular mapping of some variable x G N to Si x • • • x Sn (x £ N 
(o X - by (% : x -- x fby (z : x -- x JSbcA 
element of N is a predicate variable name (function variable namej wrt X, 
N{X) denotes the set of all variable names wrt X. 

Correspondingly, the set of terms of a second-order language is inductively de-
fined as in the first-order case but additionally to the application of functions 
function variables can be used for the construction of terms. 

Defini t ion 1.2.2 Let 2 = (SORT, X, FUN, REL) be a signature and X consist 
of a variable declaration and a variable declaration of functions wrt E and S £ 
SORT. Then the set Ts,t,{X) of terms of sort S wrt E and X is inductively 
defined as in Definition LI.3 and additionally: 

j&ef e /or off 1 z anui x -- x,Snt E 

Accordingly, the definitions of ground terms, 7g(-) and Vars(_) are extended. 
Using predicate variables new atomic sentences can be built: 

Def init ion 1.2.3 Let £ = {SORT, <, FUN, REL) be a signature and X con-
sist of a variable declaration, a variable declaration of functions and a variable 
declaration of predicates wrt E. Then the set A^{X) o / a toms wrt E and X is 
inductively defined as in Definition 1.1.4 and additionally: 

jg. 6 /or aZf 1 < i < m, m E N and (0 : 6'i x - x 5^ )̂ E X. 
r/ien . . . ,fm) E 
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We also extend ground atoms and Vars(-) accordingly. 

Def in i t ion 1.2.4 Let E be a signature and X consist of a variable declaration, 
a variable declaration of functions and a variable declaration of predicates wrt 
E. Then the set Fe{X) 0/formulas wrt E, X is defined as in Definition 1.1.5 
and additionally: 

4- Let (# : 5 i X X Sm) G X, m £ and 4> E F^{X). Then the formulas 
V($ : 5'i X ' X Sm). o n d 3 ( $ : Si x - x 5^)- ^ ore oko in 

5. Let ($ : 5i X • • • X 5m So) 6 X and cj) E Fy,{X). Then the formulas 
V($ : Si X - X So). and 3 ($ : Si x - x Sm So). ore ako in 

Again, we assume also the definitions of free variables and closed formulas to 
be extended. 

Semantics 

As in the first-order case an interpretation associates actual sets to SORT and 
actual functions and relations to FUN and REL. However, the meaning of free 
predicate and function variables has to be defined. Then we can assign truth 
values to formulas wrt some interpretation; 

Def in i t ion 1.2.5 Let E = {SORT, <, FUN, REL) be a signature, X consist 
of a variable declaration, a variable declaration of predicates and a variable 
declaration of functions wrt E, I an interpretation of H and t € Ts^t,{X). Let 
\ be a mapping such that X{x) £ S^ for {x : S) £ X, A($) C S[ x • • • x for 
($ : Si X • • • x Sm) with m £ IN and A($) is a mapping S[ x • • • x -> Sq 
for (# : Si X • • • x Sm -> So) with m £ IN. Then the value t^'^ is inductively 
defined as in Definition 1.1.7 and additionally: 

g. $ ( t i , . . . . . . , ^ y ) / o r ( 0 : S i X . . . X S » So) G % 

wifA E Tg;,E(A'), 2 = 1 , . . . n E rf. 

Z/e( ^ E fE(%). r/ien t/ie value 0/ ia indwc(i:;eZy denned oa in De^ni-
tion 1.1.8 and additionally: 

g. $ ( ( 1 , . . . ,tn)^''^ ia T /or ( $ : Si X - X Sm) E (i E 7s^,E(X), i = 
1,... ,n, n £ ¥1, i f f {t{'^,..., t''^) £ i . otherwise, 

10. V($ : S).4> is T i f f is T for all X' such that A'($) = A($) for all 
($ : S') ^ ($ : S) of X where S, S' denote either 3% x ••• x S,„ with 
S i , . . . , Sm E SOjZT, or Si X - X Sm So wit/i So, S i , . . . , Sm E SOJZr. 

The definitions of the other quantifiers can be derived accordingly. Interpreta-
tions can be classified according to the values they assign to formulas as in the 
Grst-order case. 
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Modal and Temporal Logics 

We will also refer to logics which are, wrt classical first-order logic, extended 
by additional operators, called modalities (originally introduced in [97], with 
satisfactory semantics in [81]). Some of these logics are particularly important 
for this work, in particular so called temporal logics based on the ideas in [125]. 
Hence, we will discuss the particular syntax and semantics of the considered 
logic in more detail in Chapter 3. However, for more information, also on the 
historical background and the relations between modal and temporal logics, the 
reader is referred to e.g. [141, 9]. 

1.3 Logic P r o g r a m s with Equal i ty 

We will consider only logic programs that are extended by an equational theory 
and do not allow the use of negation. 

Definit ion 1.3.1 Let T, he a signature and X a variable declaration. A definite 
clause is an expression of the form 

A <r- Bi,..., Bm 

where A, called the head, and B i , . . . , B„i, called the body, are atoms of As{X). 

A definite logic program with equational theory (for short: definite E-programj 
is a pair (D, E) where E is an equational theory for predicate =s and D is a 
finite set of definite clauses where =s does not appear in the head. 

Since the equational relation =s should be exclusively defined by the associated 
equational theory E clauses that define , i.e. = g appears in the head, are 
disallowed in the program P. 

The meaning of a definite logic program with an equational theory is given 
by the semantics of first-order logic: the atoms in the body of each clause are 
considered to be coimected by conjunction and every clause is assumed to be 
universally closed. All clauses are connected by conjunction. Furthermore, the 
standard equational axioms and the axioms of the particular equational theory 
are added (by conjunction). Then, the semantics of the resulting formula where 
the considered structures are restricted to be Herbrand-interpretations define 
the meaning of the program. Using this semantics it has been shown in [72]: 

Propos i t ion 1.3.1 Every definite E-program has a smallest Herhrand-E-model. 

In the following we will often consider the signature and set of variables associ-
ated with a definite E-program to be implicitly defined. 
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Defini t ion 1.3.2 Let (D,E) be a definite E-program. Then a definite query is 
an expression of the form 

<— Ai,..., Am 

where Ai,... ,Am are atoms with m > 0. Ai,... ,Am are called subgoals of 
the query. The case where m = 0 is denoted by •. An answer substitution for 
a definite query G is a substitution a with Dom(a) C Vars(G')^. a is called a 
correct answer substitution wrt {D, E) if Dl) E \=y. {{Ai A • • • A Am)cy)-

From Proposition 1.3.1 follows the correspondence between models and correct 
answer substitutions: 

Corollary 1.3.2 Let (D, E) be a definite E-program. Then for the smallest 
Herbrand-E-model M of{D,E) holds: 

M = {A I A ground atom, for which e is correct answer wrt (D,E)} 

In the special case where the equational theory E of a definite E-program {D, E) 
is empty, we call {D,E) a definite logic program and refer to it simply by D. 

SLDE-resolution 

In [72, 47, 66] SLDE-resolution^ has been developed. SLDE-resolution extends 
the resolution calculus of [130] to deal with definite logic programs that are 
equipped with an equational theory. 

Def init ion 1.3.3 Let (_D, E) be a definite E-program. A selection rule R selects 
from every definite query <— Ai,..., A^ with m > 0 a particular subgoal A* 
("!<&< mj. 

An SLDE-resolution wrt an E-program {D,E) and a selection rule R leads from 
a G = i - . . . , A t , . . . , > 1^ (o a guer;/ C =<-

caZW an SLDE-resolvent, i / A t is 
the subgoal chosen by R of G and there is a variant A Bi,... ,Bi of some 
clause in D, such that 9 is an E-unifier of Ak and A. 

After having defined a single resolution step we may also apply SLDE-resolution 
repeatedly until we arrive at the empty goal. 

^Where Vars{<- Ai,..., Am) = IJ"li Vars{Ai). 
®SLDE is an abbreviation for "linear resolution with selection function on definite clauses 

with equality". 
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Definit ion 1.3.4 Let (Z),E) he a definite E-Program. Let Go be a definite query. 
Then, a sequence Go,Gi,G2, • • • is called SLDE-derivation for DU {Go} wrt 
a selection rule R if for every i = 1 ,2 , . . . , the query Gi is the result of the 
application of an SLDE-resolution to Gi-i. If such a derivation is finite and 
ends with = • (n > 0) it is ca/Zed SLDE-refutation of length n for DU{Go} 
wrt R. IfOi,... ,0n is the sequence ofE-unifiers used in the corresponding SLDE-
resolutions then the substitution {9i... On) | vars(Go) ^ called answer substitution 
corresponding to the SLDE-refutation. 

In [47, 66] soundness and completeness of SLDE-resolution has been shown: 

Propos i t ion 1.3.3 Let (D,E) be a definite E-program, R a selection rule and 
G a definite query, then 

1. Every answer substitution computed by SLDE — resolution for D U {G} 
wrt R is a correct answer substitution for G wrt (D,E). 

2. For every correct answer substitution 0 for G wrt (D, E) exists an an-
swer substitution a computed by SLDE-resolution for P U {G} wrt R with 
(cr <g^)|vaf»(G)' 

The following data structure is a convenient way to represent SLDE-derivations. 

Defini t ion 1.3.5 (SLDE-tree) Let (D, E) be a definite E-Program and G a 
definite query, R a selection rule. An SLDE-tree for {D,E), {G} and R is a tree 
T satisfying the following conditions: 

1. each node of T is a goal, 

2. the root of r is G, 

3. Let G' =i- Ai,..., Afc,... ,Afn (fn > 1) be a node in r and let Aj. be 
selected by R. Then, each SLDE-resolvent of G' wrt Ak is a child of that 
node. 

(Ae cZauae does cAiWren. 

If there is a non-empty goal in r where no atom in the body is selected r is called 
incomplete. 

Note that SLDE-trees are guaranteed to be finitely branching if the equational 
theory E is finitary. 

Note also that narrowing [60] is an efficient approach to solve certain equational 
theories, and can be integrated as part of unification into SLDE-resolution. 

For definite logic programs (E-programs where E is empty) we will write SLD-
resultion, SLD-tree, SLD-resolvent, SLD-refutation, SLD-derivation to highlight 
the special case. 
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Knowledge Representation 
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Chapter 2 

The Fluent Calculus 

In the following section we discuss some of the assumptions on which knowledge 
representation in the Fluent Calculus is based. Thereby we will also relate it to 
other AI approaches which model action and change. In contrast to other work 
in the field we do not intend to provide a purely intuitive way of understanding 
the notions of fluents, states, situations, and actions. Instead, we attempted 
to relate them to other abstract concepts known from, e.g., modal logics. The 
reason for this is that our work focuses on the analysis of the computational 
properties of Fluent Calculus domains, not on the representational issues. For 
example, despite of the considerable intuitive difference between the concept 
fluent in the Situation Calculus and the concept fluent in the Fluent Calculus, 
we can show that the latter can be used to model the first (but not vice versa). 
We believe that from an abstract point of view such relations can be recognised 
easier. 

2.1 Represen ta t ion of Action and Change 

To represent knowledge about the real world in a computer, we need some 
kind of formal language £. We may understand the relation describing which 
sentences of £ are conclusions of sentences of £ as the semantics of f . Note that 
the language ZZ with such a semantics is a logic. 

Which Language? 

Informally, the Fluent Calculus like the Situation Calculus defines classes of 
logical second-order languages with extended first-order semantics. Every Situ-
ation Calculus language is based on the concepts action, and 
Fluent Calculus languages extend this foundation by the concept atote. 

23 
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The structure the world is regarded to have influences the choice of a particular 
language for knowledge representation. This choice is not unique - firstly, be-
cause humans have not yet succeeded in developing a single consistent theory 
about the structure of the world that explains all observed phenomena. Instead, 
several theories, which are represented in different languages and which require 
different ways of reasoning, are considered to be valid at the same time, even 
when they occasionally produce contradictory results. Secondly, different lan-
guages might be equally expressive, but the complexity of representations of 
particular kinds of knowledge and the complexity of the reasoning about these 
representations might vary. E.g., a language A might allow short descriptions of 
some property a, but require long descriptions of some other property b while a 
language B allows short descriptions of b but needs long descriptions of a. 

To justify the choice of first-order logic for the original Situation Calculus it 
has been argued in [109] that the representation of the world as a system of 
interacting discrete finite automata is metaphysically adequate, i.e. propositions 
of interest in common sense reasoning do not contradict each other if the world 
is actually considered to be a system of interacting discrete finite automata. 
Thereby, a system of interacting discrete finite automata simply refers to a single 
discrete Gnite automaton where the set of states is split into disjoint subsets. 
Then, each subset 5 of states together with the set of transitions T leading to 
or from one of the states of S define a new automaton. The transitions of T 
which either lead to or originate from an element which is not in S are viewed 
as interactions with other automata of the system. 

Finite automata are usually described by providing a complete state/transition 
table. For automata with many states these tables become very large and the 
expression of ascertainable knowledge in this way is inappropriate. Another dif-
ficulty arises when our knowledge about the world is incomplete. Consequently, 
in general, our knowledge describes a class of possible automata rather than a 
single one. To overcome these difficulties the use of first-order logic as represen-
tational language has been proposed. The major advantages of first-order logic 
are its clear model theory and its well-understood proof theory. Additionally, 
first-order logic is very expressive and most proposed alternative representation 
languages are no stronger, for an overview see e.g. [14]. 

Several problems of this approach result from using a system of interacting 
finite automata as a representation of the world: Finite automata allow only 
the representation of finite domains. But the boundaries of a considered domain 
might be unknown or it might be even impossible to explore them. In these 
cases, humans often assume the size of the domain to be inGnite^. 

Fundamental concepts of finite automata are states and transitions. Thereby, 
transitions describe a relation between the states. If some part of the real world 
has to be represented by a finite automaton its states and transitions need to be 

'Since [109] doesn't contain a formal language definition, it is unclear whether the exclusive 
use of finite domains was intended. In [107], however, the use of domain specific function 
symbols and the possibility of reification has been discussed. 
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identified by observation. This is sometimes impossible. For example, we may 
attempt to describe the singing of a bird. Although we may in principle assume 
that each sound uttered by the bird is determined by some particular state of 
the bird, listening to the bird is not sufficient to identify these states. Instead, we 
may use different concepts to describe our observation. In case of the singing bird 
we might choose concepts like time and event. However, time is often considered 
to be continuous. Consequently, if we want to express knowledge using concepts 
like time we need to extend our view of the world being a system of interacting 
finite automata. 

Since first-order logic allows the definition of domain-specific recursive func-
tions, representations in the Situation Calculus of [109] are not restricted to 
finite domains. To enforce an interpretation of a sort to contain only certain 
constructively defined elements, it has been proposed [127] to extend knowledge 
representations in the Situation Calculus by second-order induction axioms. In-
duction axioms permit reasoning about enumerable sets. In general, however, 
first-order logics with such extensions can be incomplete, i.e. there are conse-
quences of the axioms which can not be proven within these logics [53]. 

To integrate knowledge which is expressed using different concepts from the ones 
originally defined in [109], the Situation Calculus has been augmented in several 
ways. Some of these extensions involve an additional sort which is interpreted 
in all models as the set of real numbers, e.g. [118, 143, 151]. This sort is used to 
describe time and space more accurately. Furthermore, a continuous time-line 
allows the representation of events, time intervals between events and other re-
lated notions. Based on the concepts of time and events another approach to 
represent action and change, called Event Calculus, has been developed [79]. 
Relations between the Situation Calculus and the Event Calculus have been 
discussed in detail, see e.g. [7]. Note however, since real numbers and opera-
tions on them are not axiomatised within the Event Calculus or the extensions 
of the Situation Calculus, respectively, reasoning about continuous domains is 
restricted. 

Using the concepts of state and transition and using the concepts of event and 
time are based on different assumptions about the world: a description using the 
notions of states and transitions is effective if dependencies between subsequent 
states exist, a description using the notions of time and events is elective for 
systems where few such dependencies exist. However, sometimes it is possible 
to translate knowledge from one system of concepts into another. On one hand, 
if time is considered to be discrete, it may be represented in terms of states 
and transitions by adding a dimension to the state space. Thereby we may re-
strict the dimension representing time, e.g. to ensure monotonicity. In such a 
representation events can be understood as particular transitions that depend 
only on this new dimension^. On the other hand, in general states and tran-
sitions can not be represented in terms of time and events. This is due to the 

^This is actually also the way, non-autonomous systems (i.e. systems which are described 
by difference equations that depend on time explicitly) are translated into autonomous systems 
(difference equations that do not depend on time explicitly). 
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assumed single time-line, i.e. a particular sequence of transitions represents one 
behaviour out of many possible ones while a sequence of events represents one 
actual behaviour of the world. 

Concepts: States, Situations, Histories 

Representations of knowledge in the Situation Calculus (and in the Fluent Ca-
clulus) are based on the notion of situations. In the original Situation Calculus 
a situation is considered to be a possible state or a "snapshot" of the world at 
a certain time. Later, it has been argued, e.g. in [62], tha t assuming separate 
systems always have a common state is unnecessarily complicated, particularly 
if the systems sparsely interact with each other. Moreover, two "snapshots" 
of the world might look the same although they have been made at different 
times. Another interpretation of a situation is the time between two actions 
where the world does not change [7, 117, 58]. In contrast to this, distinguish-
ing "snapshots" or time intervals according to their order of appearance can 
often be useful. For these reasons, in current versions of the Situation Cal-
culus every situation describes a particular history which is understood as a 
sequence of actions performed after an initial situation. In principle, different 
systems have different initial situations - corresponding to the system's first 
appearance - and, hence, different histories. An interaction of two or more 
systems is then understood as an "intersection" of their histories, i.e. a rela-
tion between situations of the interacting systems. This relation should induce 
a partial order on the possible histories of all the systems involved. For ex-
ample, let Si, Sj, sf and a^, Sj, denote the subsequent situations of some 
system 5i and % , respectively. Assume the relation describing the interactions 
of the two systems to be {(51,62), (a^iSg), (^1,62)}. The induced partial order 
is {(31,32) < (^1,^2), (^1,^2) < (^^^2)}- However, in this work we will only 
consider single systems without interactions. 

In the Situation Calculus, states are associated with a particular situation using 
the notion of fluents^. In the Situation Calculus a fluent can be understood as 
a function / partitioning the set of states into two disjoint sets - the set where 
/ maps to T (the set where property / holds), and the set where / maps to 
J_ (the set where / does not hold), respectively. For example, the partitioning 
of the world states into those where the sky looks blue over London and those 
where the sky does not look blue might be represented by the fluent bluesky. 
This notion of a fluent also corresponds to the definition of a modal property. 
Other partition functions can be defined in terms of fluents: e.g., the result of 
the conjunction of two fluents / i , /2 corresponds to the set of states resulting 
from intersecting the set where / i holds with the set where /2 holds. The result 
of negating a fluent / is the set of states where / does not hold. Other operators 
for fluents can be deflned accordingly. 

®Note that in the original Situation Calculus fluents are called propositional fluents and 
the term describing the performing of an action is called situational fluent, [109]. 
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Since in some versions (e.g., [109, 127]) of the Situation Calculus states are not 
objects of the language, the association of states to situations is rather implicit; 
Guents are represented as predicates where one parameter is of sort situation. 
In this case, first-order logic provides the boolean operations which allow the 
identification of particular state sets. Other versions (e.g., [98, 6, 99]) provide a 
dedicated sort used to represent fluents. The process of transferring predicates to 
the object level is called reification, [78, 107, 43]. The Fluent Calculus extends 
this idea by also representing state sets which result from combining fluents 
using certain operators, explicitly. The behaviour of these operators must be 
defined by additional axioms, which in case of the Fluent Calculus form an 
equational theory. 

Note, however, that calculi for first-order logic are in general not sensitive to the 
specific structure of states if they appear as objects (nor to any class of objects 
which contain more structure than a general first-order term). Respecting this 
structure is often very important for adequate reasoning, e.g. if an equational 
theory has to be considered [121]. Correspondingly, standard calculi have been 
extended to deal with specific theories, e.g. for logic programming, SLD- and 
SLDNF-resolution ([130] and [19], respectively) have been extended to respect 
certain equational theories ([47, 72, 66] and [137, 146], respectively). 

On the other hand, it is possible to integrate operators other than those provided 
by first-order logic directly into the logical language. This approach has led 
to the development of so called non-classical logics, which include, e.g., sub-
structural logics^ (introduced by [84, 51]), modal and temporal logics (introduced 
by [97] and [124], respectively and their semantics by [81, 82]). Some of these 
approaches have strong relations to representational and reasoning issues in the 
Situation Calculus and Fluent Calculus. Therefore, we will investigate and use 
these relationships to a great extent. 

Action and Change 

Another Assumption of the Situation Calculus and the Fluent Calculus is that 
great amounts of human knowledge about the world can be expressed as causal 
relationships between states, i.e. it is assumed that the fluents appearing in 
a particular state depend on temporally preceding states. Since situations are 
considered to be histories, time is represented implicitly by the partial ordering 
on histories; a situation s occurs later than another situation s' iff s contains 
s'. Moreover, the set of situations and the set of states associated with them is 
considered to be discrete: if a situation a' precedes a situation a, then there are 
only finitely many situations which occur after s' and before s. 

Causal dependencies are represented by actions which represent functions map-
ping from situations to situations. Associated with actions are axioms describing 
the relationship between the states which correspond to the situations. The ac-
tual change of states according to a particular action is called of the 

^See e.g. [134, 129] for introductions on sub-structural logics. 
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action. Note that , in the original Situation Calculus this relation between states 
depended also on a parameter describing the agent performing the particular ac-
tion. Later this parameter has been omitted and current versions of the language 
do not contain an explicit representation of agents^. 

The most famous representational problem in the field of Reasoning about Ac-
tion and Change was recognised in [109] and was christened the (representa-
tional) frame problem. It occurs if a state following the execution of an action 
can be characterised by similar properties as the state before the execution. In 
this case, instead of characterising the succeeding state by describing all of its 
properties, it is expected to be much easier to describe only those properties that 
do not persist. For example, if we want to describe the effects of lifting a cup 
from a table, we do not want to mention explicitly tha t the position of the table 
within the room is uneffected by the action. In the following, we will call such 
properties and fluents persistent, to emphasise the assumption to which they are 
subject. The axiomatisation which is required to support the specification of this 
kind of knowledge should be simple, i.e. small and easy to comprehend. Since 
the performance of a calculus decreases as more axioms have to be considered, 
the additional axiomatisation should be provided in a way tha t allows easy in-
tegration into a specialised calculus. To distinguish the latter requirement from 
the first one, which focuses on the representational aspect of the frame problem, 
it is also referred to as the inferential frame problem [13]. 

The search for a solution to the (representational and inferential) frame problem 
has led to the rise of a whole new research field called non~monotonic reasoning. 
It is based on the idea that frame axioms can be avoided if the entailment 
relation of the logic is extended, e.g. [108, 48, 19]. These extensions involve a 
violation of the monotonicity property of the entailment relation in first-order 
logic: adding knowledge to a database can prevent conclusions which are possible 
without it. Some of the proposed extensions have led to unexpected models, e.g. 
the Yale Shooting Problem [59] in the case of circumscription of [108]®. 

To solve the representational frame problem further assumptions about the 
structure of knowledge have been made. In the Situation Calculus, persistent 
fluents are considered to be independent in the sense tha t the conjunction of 
any such fluents does not imply another persistent fluent to hold. This assump-
tion enables for representation of states by sets of persistent fluents where the 
union operation on the sets corresponds to conjunction of the properties. Ac-
tions can be represented by functions which remove and add fluents f rom/ to the 
set, an idea proposed in [38] for a system called strips. If the independence 
is violated and the actions are not defined appropriately the succeeding state 
after executing an action can not be uniquely determined. E.g. let e, / , g be 
fluents which hold in some state and let e A / => 5 a relation between these 
fluents, then removing g from this state after executing some action implies 

®For the problems of Reasoning about Action and Change considered in this work such a 
parameter could easily be added. 

®A solution to this problem was given by using negation-as-failure for non-mono tonic 
reasoning instead of circumscription [37]. 
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tha t either e, or / , or e and / has/have to be removed as well to represent the 
succeeding state consistently. In [127], a procedure is given which transforms 
axioms describing the effects of the execution of actions into a set of axioms 
which entail the corresponding persistence assumptions if the persistent fluents 
are independent^. 

Note that to solve the representational frame problem persistent fluents are 
often assumed to be independent, even if they are actually dependent. In these 
cases the dependencies are represented as indirect effects of action executions. 
The representation of indirect effects is the subject of the ramification problem 
as described below. 

Another way of dealing with the frame problem is based on the reification of 
persistent Huents. How these Auents can be combined to represent states must 
be defined by an additional theory. This can be achieved by providing an equa-
tional theory. By integrating this equational theory into the calculus, a com-
putationally more adequate treatment of persistent fluents can be achieved, i.e. 
the inferential frame problem can be addressed as well. E.g., we may imagine 
a reified version of the solution to the frame problem given in [127] consist-
ing of one additional sort representing states, together with additional opera-
tor symbols. The additional operator symbols must allow to add and remove 
Huents &om a state representation. The ejects of executing actions can then 
be specified in terms of equations. The Fluent Calculus is based on this ap-
proach. As we show in Section 4.3, the Fluent Calculus approach is in some 
sense more expressive than the Situation Calculus approach of [127] as it allows 
multiple occurences of fluents in state representations. An equational theory 
defines some operator to be the union of multisets. The multiple occurrence 
of a fluent rather then just a single fluent forms a modal proposition. Intu-
itively, the multiple occurrence of a fluent in a state representation corresponds 
to the multiple occurrence of a resource in this state. More precisely, we de-
fine a resource to be a set of modal properties with an associated total or-
der. This ordered set is order isomorphic to the natural numbers. In the case 
of the Fluent Calculus the order is induced by the subset relation on mul-
tisets, e.g. for some fluent orange representing the availability of an orange, 
(orajige, orange, orange} C {orange, orange, orange, orange} implies that the set 
of states where {orange, orange, orange, orange} holds contains also the set of 
states where {orange, orange, orange} holds, but not vice versa. If a state repre-
sentation in the Fluent Calculus contains precisely n occurrences of some fluent 
/ then all modal properties where / occurs at most n times are considered to be 
valid. Whereas all modal properties where / occurs more than n times are con-
sidered to be not valid. For example, let n = 3 be the number of occurrences of 
the fluent orange in some state. Then the conjunction {orange, orange, orange} A 
-i{orange, orange, orange, orange} is valid, where the modal properties are de-

^Reiter's notion of independence is given by the assumption that the following axiom is 
true; a, s . 7 j ( x , a, s) A 'yp{x,a,s) . Here, 7J; and 7^ describe the conditions for fluent 
F to hold and F not to hold in some situation do{a,s), respectively. Both 'Yp{x,a,s) and 
7^(a;, a, s) may only refer to the values of fluents in situation s, not e.g. do{a,s). 
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fined by the ordered set {{}, {orange}, {orange, orange}, . . .} . Note however, that 
the solution to the frame problem in the Fluent Calculus relies on a similar as-
sumption as the solution to the frame problem in the situation calculus: modal 
propositions formed by multisets of different fluents are considered to be logi-
cally independent. 

Another important representational problem in Reasoning about Action and 
Change is the ramification problem [49]. It occurs if executing actions is con-
sidered to have effects which are not described explicitly. On one hand, certain 
persistent modal properties might be logically dependent although they are 
treated as independent by the frame axioms (aa described above). On the other 
hand, additional causal dependencies may exist, that are not stated as actions. 
In [149] it has been proposed to solve this kind of problems in the Fluent Cal-
culus by introducing a post-processing phase after each execution of an action. 
Clearly, the influence of this phase on the computational properties depends on 
the structure of the considered causal relations. In this work, we will not discuss 
the different effects of such dependencies in detail, and consider causal relations 
to be completely specified by axioms describing the direct effects of actions. 

Similarly, the executability of an action might depend on modal properties which 
are not specified explicitly. We may consider such indirect dependencies because 
in non-artificial domains it is impossible to specify the preconditions for execut-
ing an action completely. For example, we may not be able to start the engine 
of our car because there is a potato in the tail pipe. However, we do not check 
such unlikely circumstances before at tempting to execute an action unless there 
is additional evidence. The problem of representing such abnormal precondi-
tions is called the qualification problem [106]. As shown in [148], disqualifying 
evidence for executing an action may be represented as a particular modal prop-
erty which can be an indirect effect of executing other actions. Initially we may 
assume no disqualifying evidence, later the modal property representing such 
evidence might occur aa an indirect eSect during the post-processing phase used 
to solve the ramification problem. 

Many other extensions have been proposed to integrate different kinds of knowl-
edge about action and change into the Situation Calculus as well as the Fluent 
Calculus. These extensions include, for instance, in the case of the Fluent Calcu-
lus the representation of concurrent and simultaneous actions [15], the explicit 
representation of what an agent knows and how this knowledge can be improved 
by actions [152], non-deterministic actions [16], agent goals, rational actions, 
natural actions, continuous time and continuous change [151]. Many of these 
extensions may have a major impact on the computational properties of the 
reasoning method. We will briefly discuss the extensions by non-deterministic 
eSects and the use of a specificity relation in Section 2.8. 



What to infer? 

In the previous subsections we have described on what concepts the Fluent Cal-
culus is based and how these concepts are used to represent knowledge about 
action and change. The question of what should be derived from this knowledge 
has been left open so far. As a first choice it has been proposed, e.g. in [109] 
for the Situation Calculus, to consider knowledge which can be expressed in the 
same language as the language used to represent action and change. However, 
the form of knowledge that intelligent systems may directly acquire by observ-
ing the world is different from the form of knowledge they need to control their 
behaviour. This follows from the assumption that intelligent systems, like hu-
mans, actually perform deductive tasks. Furthermore, if the form of knowledge 
about action and change differs from the form of knowledge used for control 
we may also represent them using different languages which are optimised for 
their specific applications. We hope that for such a pair of optimised languages 
the development of powerful calculi is easier than for the more general language 
containing both. 

In the following we call the language for representing the knowledge which is 
used for control query language. It has been pointed out already in [114] that 
first-order languages are insufficient to represent some important temporal prop-
erties of dynamical systems (represented as programs in [114]). There it has been 
proposed to extend the language with (second-order) operofora. In the 
context of the Situation Calculus, a similarly extended query language was in-
troduced in [119] and [144]. In this work, we follow this approach in general. 
But, since we are interested in achieving lower bounds for undecidability and 
upper bounds for decidability, respectively, we will distinguish more restricted 
fragments of the general language. In particular, we define fragments which 
can be characterised by well known modal / temporal logics. The chosen logics 
are good candidates, since they have been used successfully for similar tasks -
the verification of dynamic systems. For such logics we define the most general 
problem of reasoning about a Fluent Calculus domain V: 

E n t a i l m e n t Prob lem: Let (f) be an arbitrary formula of the query logic. Is 0 
a logical consequence of D? 

We can hope to be able to decide the entailment problem for weak query lan-
guages and weak Fluent Calculus fragments, only. For powerful Fluent Calculus 
fragments the investigation has to be restricted further. To this end we will focus 
on a particular class of problems which can be formulated in all query languages 
considered here: 

P l a n n i n g Prob lem: Assume, an agent knows certain properties (Aq) of its 
current situation and it attempts to reach a situation with certain goal properties 
(Ae) by executing certain actions. Then, answering the following question is 
crucial: "Is there an initial situation with property Ao and is there a sequence of 
actions leading from this situation to some situation with property Ae?". If the 
answer to this question is "no" the agent must give up pursuing its goal. If the 
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answer is "yes" and sufficient information about the current situation is available 
the agent might proceed by computing an appropriate action sequence to reach 
its goals^. If the answer is "yes" but the current situation is not completely 
known the agent may try to gain more information about its current situation, 
or execute an action sequence that succeeds in some situations with the given 
properties, or investigate the extended planning problem described below. 

In AI research the planning problem has been considered to be one of the most 
important problems of Reasoning about Action and Change [55]. In fact the 
f /onmng has established itself as a whole research Held focusing on the design 
of efficient planning systems for domains of increasing complexity, e.g. [75]. Com-
pared with the deductive approach to planning we follow here, many planning 
algorithms proposed in this way have insufficiently defined semantics. Therefore, 
despite often being technically less sophisticated®, the development of deduc-
tive planning techniques may help with understanding what planning systems 
actually compute. Furthermore, in contrast to deductive planning systems, non-
deductive planning systems usually assume the initial s tate to be completely 
known. 

Since solving planning problems is still a very general task, we will concentrate 
on a more restricted version [18] in the third part of this work, where we develop 
an automatic reasoning method: 

Conjunct ive P l a n n i n g P r o b l e m ( C P P ) : Assume Aq to be a conjunction of 
negative or positive modal properties and Ae a conjunction of positive modal 
properties. Is there a finite sequence of actions which leads from a situation 
where Ao holds to a situation where Ag holds? 

Another version of the planning problem results from the assumption that the 
properties of the current situation might not be completely known: 

E x t e n d e d P l a n n i n g P r o b l e m ; Assume, that an agent has incomplete knowl-
edge (Ao) of its current situation and it has to verify whether for each situation 
where property Aq exists an action sequence such that the agent reaches its goal 
Ag. If this is the case the agent can be sure it is able to reach its goal by an 
appropriate action sequence. However, due to the uncertainty about the current 
situation there might be many potential but few successful sequences to choose 
from^°. 

Although in this work we focus on the above versions of the planning problem, 
many other problems have been considered to be particularly important if we 
aim to build intelligent systems. Some of them are characterised in the following 
list: 

®By applying deductive systems to solve planning problems one usually hopes to find an 
appropriate action sequence as a side effect. And in some cases (e.g. for T C p i , see Section 2.5 
and 5.3) such a sequence is indeed already computed by the considered decision procedure. 

®E.g., most deductive planning systems generate only linear plans, while non-deductive 
ones can also generate non-linear plans, e.g. [156]. 

^°We may also think of an even more extended planning problem: Is there a single plan 
which can be successfully applied in all situations where Ao holds? 
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Pred ic t i on Prob lem: Given the properties of the initial situation and a finite 
sequence of actions, which properties hold in the situation after executing this 
sequence? 

P o s t d i c t i o n P r o b l e m : Given some properties of some final situation and some 
properties of situations which occurred while executing some known action se-
quence, which properties must have been associated with the initial situation? 

General Exp lanat ion Prob lem: Like the postdiction problem, but assume 
the action sequence to be unknown. 

In the next section we present our Fluent Calculus framework formally. 

2.2 Signature and Domain Independen t Axioms 

Originally, in [68] the Fluent Calculus was represented as a scheme for specifying 
dynamic systems as logic programs together with SLDE-resolution as execution 
mechanism. To allow easier integration of extensions into a single approach and 
to be able to compare it with the standard approach of the Situation Calculus, 
a more general execution independent representation has been developed [150]. 
In this work, we will identify the Fluent Calculus {J^C) with this latter represen-
tation. Accordingly, the Fluent Calculus is - similar to the Situation Calculus 
of [117] - a scheme of specifying domains using second order languages. 

Def in i t ion 2.2.1 A signature is called a Fluent Calculus signature i f f it is a 
(upk (a-OAT, X, f [W, tuAere 

a'OTZT: AY, f f , 5'̂ , 06;; 
X: M 
FUN: sO Sit; 

do : Act X Sit —>• Sit; 
state : Sit —>• St; 
1 ° > St; 
o : St X St ^ St; 

A : 0 6 / : f Z , . . . , f f ; (j 6 and i i , . . . E M) 
ai : Obj''^ ->• Act,... ,ai : Obj^' Act; {I G IN"̂  and ki,... ,k[ € IN) 

0 6 ; , . . . , g o : OA;'"' 06;; ( o , m i , . . . , m g E I f ) 
REL: <: Sit x Sit; Poss : Act x Sit; {=s' S x S \ S £ SORT} 

The sort Sit is used to represent the set of situations. A situation is a history 
of action executions starting in some initial situation. This is reflected by the 
structure of terms of the sort Sit: Terms of sort Sit are recursively defined by 
applying the function do to a term of sort Act representing a set of actions and 
a term of sort The initial situation is represented by sO. Note that .9*̂ , 
do and the initial situation sO are also par t of the Situation Calculus. 
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By the function state a state of the world is associated with every situation. 
A state may only change if actions are executed. Formally, the function state 
maps to the sort St since in J^C domains world states are represented as partic-
ular terms. In contrast to this (see also the previous section), in the Situation 
Calculus the state associated with a situation is implicitly represented by the 
set of predicates that aj-e valid in this situation. Basic elements of state repre-
sentations are called fluents. Fluents are elements of the sort Fl. The properties 
of the function o : St x St St determine how fluents are combined to form 
state representations. Thereby, the term 1° represents an empty state. The in-
troduction of an explicit state representation enables simpler axiomatisation 
of properties shared by all fluents in all states. For instance, assume that a 
fluent should not appear or disappear unless it is a direct consequence of ex-
ecuting some action (i.e. the frame assumption). This can be easily expressed 
using an equation describing the dependency between the state after execut-
ing an action and the state before executing this action. In particular, this 
equation is independent of the fluents that are not effected. E.g., the equation 
state{s) o orange-juice = St state{do(squash, s)) o orange can be used to describe 
that the state associated with the situation after executing the action squash 
contains one more Huent oraage^mce and one fluent orange less than the situ-
ation s. In contrast to this, an axiomatisation of the frame assumption in the 
Situation Calculus requires axioms for each individual fluent. If the number of 
fluents is large compared to the number of actions in a domain the use of explicit 
s tate representations may decrease the size of the axiomatisation dramatically. 

The domain independent predicate symbols contain < which is intended to 
represent the temporal order of situations, i.e. the order given by the subsequence 
relation. Poss is a common auxiliary predicate describing the executability of 
actions in situations, i.e. whether executing an action in some situation leads to 
a valid successor situation. 

The functions o i , . . . , which map to sort define domain speciGc actions 
and the functions / i , which map to Fl, define domain specific fluents. 
With the help of additional elements of sort and functions over these el-
ements, the fluents themselves can be structured additionally. To this end we 
may define arbitrary functions gi,-..,go, which map to Obj. Then objects of 
sort Obj can be used as parameters of fluents. Note tha t according to the Flu-
ent Calculus signature scheme, functions with domain Obj may only depend on 
elements of Obj. The meaning of these elements is domain specific. Similarly, 
actions may depend on additional domain specific parameters and thereby sup-
ply situations with additional structure beyond the properties of the function 
do. 

E x a m p l e 2.2 .1 (Brick domain ) We define as a Fluent Calculus signa-
ture with the domain specific sorts XPos, YPos C Obj and the domain specific 
functions 
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brick-at : XPos x YPos -> Fl; 
bar_at: XPos x YPos x XPos x YPos ->• Fl; 
mv-brick : XPos x YPos x XPos x YPos —> Act. 

XPos and YPos are intended to represent coordinates in a two-dimensional grid. 
Correspondingly, the fluent brickbat G Fl represents the existence of a brick at 
a certain location, the fluent bar .a t G Fl represents the existence of a bar with 
a pair of coordinates describing start and end positions. The action mv-brick € 
Act represents the moving of some brick from one location to another. Then, 
for example, the situation after moving a brick from position location (1,1) to 
location (2,2) is represented by the term do(mv-brick(l, 1,2,2), sO). The state 
associated with this situation is represented by state(do(mv-brick(l, 1,2,2), sO)). 
By domain specific axioms we will ensure later that such a state can be identified 
with a term like brick-at{2,2) o bar_at(l, 1 ,3,3) . • 

E x a m p l e 2.2.2 (Airport ) Consider a very simple bay management and take-
off model of an airport. A number of small planes and a number of big planes 
may be queuing and requesting the permission to land. The fluents plane-qs 
(plane-Q-b, respectively) represent the queuing small (big) planes. The arrival 
of a new small (big) plane in the queue is represented by the action queues 
(queue-b, respectively). The bay capacity of the airport is modelled by the fluent 
bay. Landing is modelled by the actions land-b and lands for big and small 
planes, respectively. After granting the permission the appropriate space on the 
airport must be reserved for the landed plane, modelled by the fluents pianeJ-b 
and planeJs for each class of plane. Passengers leaving the airplane are mod-
elled by the fluent passenger. The airplane takeoff is described by the actions 
take-off-b (big plane) and take-oSs (small plane). The runway is modelled by 
the fluent runway. We define Sq as a Fluent Calculus signature with the follow-
ing domain specific functions: 

plane-qs :-4 Fl, plane-q-b :-4 Fl, planeJs Fl, planeJ-b Fl, 
passenger ;->• Fl, runway :-)• Fl, bay Fl; 
queues Act, gueue.b Act, land-b :-4 Act, lands Act, 
take-oS-b Act, take-offs Act. 

• 

To simplify the remaining presentation, we define terms of sort St that contain 
multiple copies of one particular fluent term, only. E.g., assume tha t the sets 
XPos and YPos in Example 2.2.1 are both interpreted as the natural numbers. 
Then the term brjck_at(2,4) o (bn'ck_at(2,4) o brjct_at(2,4)) contains only copies 
of brjct_at(2,4). 

Def in i t ion 2.2.2 We denote a term of the form /<=> (•••(/ ° /)•• •) containing 
n copies of f as /". We define /° = 1°. 

Furthermore, let \g,f\ denote the number of fluents f which occur in a term g 
of sort St. 
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As it will become clear later, a term g is completely defined up to equivalence 
wrt tfie equational theory ACl (see below) if, for all ground fluents / , \g,f\ is 
given. 

Domain Independent Axioms 

We define a domain description V for a !FC signature S to consist of a certain 
set of axioms. Some of these axioms are considered to be valid in all domain de-
scriptions for TC signatures, they are called domain independent and introduced 
in the following. The domain dependent axioms are defined as instantiations of 
a scheme which is presented in Section 2.5 and 2.8. The instantiation depends 
on the particular considered domain. 

The Fluent Calculus relies heavily on the use of equations, e.g. to describe 
dependencies between state representations. To ensure tha t a predicate = g : 
5 x 5 with 5 E SORT represents indeed an equational relation every domain 
description must contain the standard equality axioms (see Definition 1.1.12) for 
5 . We denote the set of standard equality axioms axioms for all sorts 5 E SORT 
byE=. 

The common basis of all !FC domains, i.e. the way state representations can 
be combined to form new state representations, is the definition of o as a com-
mutative monoid by the set of axioms ACl. Hence, the operator o can also be 
thought of as the multiset union. This enables the solution of the frame problem, 
since adding and removing of fluents, respectively, can be expressed without ex-
plicitly stating which fluents are not effected. Furthermore, the corresponding 
equational theory, i.e. the theory given by the axioms of ACl together with E^, 
can be integrated in the unification procedure. 

V(a;, 2/, z : 5(). (z o y) o z % o (y o z), 
V ( i , ; / : ^ t ) . a ; o y = g ( y o a ; , (ACl) 
V(z : 5^). r o 1° r. 

The following proposition (shown e.g. in [100]) is particularly important if we 
wish to reason about Fluent Calculus domains using standard calculi like reso-
lution: 

P r o p o s i t i o n 2.2.1 The equational theory ACl is finitary. 

Each domain description contains axioms defining a causal order over situations. 
For situations s i , S2) si < az is intended to be true iff 1) the action sequence 
leading from the initial situation sO to si is also prefix of the action sequence 
from sO to 82, and 2) every action of the sequence is actually executable in the 
corresponding situation (described by predicate f osa). In other words, si is part 
of the history of 32 -

Using the shortcut 3i < Sg (&i < 82 V 81 —git 82) we define: 
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V(si, S2 : Sit), (a : Act). 
(8i < jo(o, Sg) 4* 8i < 32 A aO < 8i A f033(0, 32)), (Ogif) 

V(3i,32 : (31 < 32 => -132 < 3i). 

On one hand, the axioms (Og.t) do not characterise the desired property sufB-
ciently, since they do not guarantee that different action names represent indeed 
different actions (i.e. unique name assumption). On the other hand, models may 
contain situations which can not be reached from sO by finite action sequences. 
Similarly, a fluent may have several names and infinite numbers of fluents may 
appear in elements of the interpretation of sort St, without violating (ACl) and 
the standard equality axioms. Additionally, it is often required to derive also 
inequality of objects, [19, 72, 70]. 

2.3 Herbrand-E^c-Models 

One way of ensuring both unique name assumptions for all sorts S 6 SORT 
and the possibility to derive inequality (see also the paragraph on unification 
completeness in Section 1.1), has been proposed in [70]. The approach relies 
on an set of axioms, called extended unique name assumptions (EUNA). These 
axioms play a similar role to the completion semantics for logic programs of 
[19] (the corresponding proof procedure is often also called negation as failure). 
There, the failure to derive some atom p from some formula tp is considered 
to be a proof for -ip. Correspondingly, the extended unique name aasumptlons 
ensure that whenever two terms can not be unified they are considered to be 
not equal. Since the equational theory ACl has to be taken into account, a finite 
axiomatisation of inequality in the style of [19] for the standard equality theory 
can not be achieved. Hence, a calculus for the Fluent Calculus can only implicitly 
deal with the axioms of EUNA. 

D e f i n i t i o n 2 .3 .1 Let S = {SORTFUN, REL) be a TC signature and E 
a set of equational theories. For every Eg E E with predicate = 5 6 REL and 
S e SORT we define the set Eg = Eg U Eg where Eg is given as the set of 
formulas which contains for all s,t £ Ts,-£{X) 

1. either -i3. (3 =s t) if s and t are not Es-unifiable 

orV. ( 3 = g f ^ 3Zg.(^=g)) 

9E Ue^ (s , i ) 

wAere Vars(3) U Vars(f) = { % / i , . . . - yi ri A - A 
with ZiO = ri for all i = 1 , . . . , t o and Zg is a sequence of variables zi,... ,Zk 
witA Vars(ri) U - U V^8(rt) = { z i , . . . , zt} . (a, denofea a 3et 0/ 
Es-unifiers of s andt. 

r/ie oa:iom3 caZW extended unique name assump-
tions wrt the TC signature E, 
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Since complete unification algorithms for the equational theory ACl exist, e.g. 
[17], the axioms EUNA ensure unification completeness according to Defini-
tion 1.1.20, i.e. EUNA defines inequality of terms in the sense tha t every Her-
brand-model of EUNA induces the smallest congruence relation on the Herbrand-
universe wrt E. Hence, EUNA ensures uniqueness of names if Herbrand-models 
are considered. Furthermore, in Herbrand-models the interpretations of sorts are 
inductively closed, e.g., the interpretation of Sit contains only elements definable 
by finite application of do on sO. However, since the interpretation of St should 
consist only of terms that can be built by (finite) application of o on fluents and 
1°, we must not allow state terms to be constructed using the function state. 
Instead, the function state is defined by domain specific axioms, as described in 
Section 2.4, and interpreted in the standard way of sorted first-order logic. 

Def in i t ion 2 .3 .2 Let H be a Fluent Calculus signature and denote the sig-
nature E without the definition of function state. An interpretation I of H is 
called Herbrand-EjFC-interpretation o/ S if I is a Herbrand-E-interpretation of 
E~. A Herbrand-Ej^c-interpretation I of T, is called Herbrand-Ejrc-model if I 
is an E-model. 

In the remainder of this work we will mean by model of a Fluent Calculus 
domain a model that is also a Herbrand-E^rc-model. However note tha t in E-
programs only pure Herbrand-interpretations can be considered. Therefore, if 
a Fluent Calculus domain has to be represented as an E-program, the domain 
specific function haa to be represented by a relation. See Section 6.2 where 
this is discussed in more detail. 

Instead of considering Herbrand-E^rg-models, unique name assumptions may be 
provided explicitly, depending on the considered domain. For example, if we 
want to specify tha t the fluent terms fi and must represent diff'erent objects, 
we simply write f i ^ s t f2- To ensure inductive closure of interpretations of sort 
Sit it has been proposed in [128] to use a second order induction axiom. Sim-
ilarly, instead of using the rigorous approach of unification completeness, the 
interpretation of sort St may be restricted using the axiomatisation of [142]. 
Again, the inductive closure of interpretations of sort St may be defined ex-
plicitly by a second order induction axiom. In [142] the new axiomatisation is 
called EUNA'^. An interpretation of the sorts Sit, St and of relations =st, =Sit, 
which fulfills EUNA^, the induction axiom of [128] and unique name assump-
tions and domain closure ax ioms" for elements of Act and El is isomorphic 
to their interpretation in any Herbrand-Ej-c-model of the domain description 
fulfilling EUNA. Consequently, the results presented here can be applied also if 
we use this alternative axiomatisation. 

These are axioms ensuring that sorts are interpreted only using explicitly named elements. 
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2.4 Domain Dependen t Axioms 

The domain dependent part of a Fluent Calculus domain description consists 
of state update axioms, which describe when and how a state associated with 
some situation depends on the state associated with the preceding situation. 
Formally, state update axioms define the function state. In this work we will 
investigate only domain descriptions where the state update ajdoms fit into the 
following scheme: 

Def in i t ion 2.4.1 Let V be a domain description for some signature S = 
{SORT, FUN, REL) and X a variable declaration wrt S. Let {a : Obj'' -> 
Act) £ FUN and Y C X, Y = Yi,...,Yk a sequence of the variable names 
of Y with {Yi : Obj) 6 Y for i = l,...,k. Let Sf^'^Stp^ E Tst,-E(Y) for 
j — 1,... ,m. A formula in V is a state update axiom i f f it has the form: 

V y . ( V ( a : a f ) . ( f o a 3 ( a ( y ) , a M . . 
V;=1 m aWe(do(a(y), a), g) o =Sf aWe(a) o 

By SUAx) we denote the set of all state update axioms in V. 

Informally, a state update axiom describes the relation between the state associ-
ated with s and the state associated with do{a{Y), s) if it is possible to execute 
an instance of action a in situation s. The relation is defined by a disjunction 
of state equations where for the I'th equation represents the fluents to be 
removed from the state associated with s and St^'^ represents the fluents to be 
added. The form of these state equations is crucial for the solution to the frame 
problem in the Fluent Calculus: only those fluents which are directly effected by 
executing action a must appear in the state equation. Note tha t the executability 
of action a in situation s is determined by the validity of Poss(a(Y),s). Thereby, 
Poss(a{Y), s) is defined by so called precondition axioms. Precondition axioms 
are domain dependent and their structure varies with the considered Fluent 
Calculus fragment. In the following section we will define the Fluent Calculus 
fragments and the corresponding structure of the precondition axioms we focus 
on in this work. 

In general one might wish to represent also "non-frame" fluents, e.g. fluents 
whose appearances and disappearances are not directly related to the effects 
of some action. Of course, computational properties of domain speciflcations 
containing non-frame fluents depend on their particular relations to effects of 
actions and to situations, respectively. So far there is no systematic approach 
for treating non-frame fluents in , consequently we focus here on persistent 
fluents only. 

^^With the exception of fluents that change as indirect effects of actions to solve the (repre-
sentational) ramification problem. However, state equations describing these effects are usually 
considered to be of the above form [147]. 
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2.5 Determinis t ic Domain Descript ions 

In most of the following we consider only domain descriptions where every state 
update axioms contains precisely one state equation: 

vy. (V(g : af) . (f oas(o(y), a) => , . 
sWe( jo (o (y ) , a), 3) o 5"̂ ^ aWe(s) o 

where S f ^ , S f ^ , a, Y are defined as in Definition 2.4.1 for some action a 6 Act. 

Since a formula of the form in Equation 2.1 determines precisely the effects 
of an action, we call the state update axioms and the corresponding domain 
descriptions deterministic. Deterministic state update axioms are a special case 
of Definition 2.4.1. We call the state update axioms of Definition 2.4.1 and 
the corresponding domain descriptions non-deterministic. In Section 2.8 we will 
argue why we focus in this thesis on the deterministic case. 

To simplify the statement of modal properties, which will also be required to 
define precondition axioms in all Fluent Calculus fragments, we define the short-
cut 

Holds{g, s) : St).g o z =st state{s) (2.2) 

if g € Tst,-£{X) and s 6 Tsu^EiX). Informally, Holds{g,s) is true iff at least all 
fluents of g are available in the state associated with situation s. E.g. considering 
the brick domain of Example 2.2.1, Holds(bar-at{2,4) o bar_at(3,4), s) is valid if 
state{s) = bar_at(2,4) o bar_at(2,4) o bar_at(3,4), but is not valid if state(s) = 
bar_at(2,4) o bar_at(2,4). In other words, since o describes the multiset union, 
Holds{g, s) is true iff g is a sub-multiset of state{s). 

The fragments we will define in this work are strongly related to schemes tha t 
have been proposed to solve certain representational problems in Reasoning 
about Action and Change. To allow systematic investigation of the implied 
computational properties we will simplify and generalise the proposed schemes. 
Despite of these differences all results of this work can be applied equally to the 
corresponding original schemes. 

In the following we represent Fluent Calculus fragments in two groups which 
we call propositional and non-propositional, respectively. The distinction is a 
result of disallowing the use of domain specific sorts (i.e. subsets of 06;) in 
propositional fragments. Consequently, we may expect propositional fragments 
to be generally less expressive than their non-propositional counterparts. Fur-
thermore, due to the great expressive power of non-propositional fragments, an 
investigation of the propositional fragments might be more interesting, since we 
aim to find boundaries of what can be achieved by automatic reasoning methods. 
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Non-propositional Fragments 

TCl and the s imple F luent Calculus 

The Fluent Calculus was originally introduced in [68] as an equational logic 
programming scheme, which enabled for reasoning using SLDE-resolution. Since 
then it has been extended in several ways; we will refer to this original scheme 
as simple Fluent Calculus. 

The fragment T C i defined below is - compared to the simple Fluent Calculus 
- more independent of the applied reasoning method. However, as in simple 
Fluent Calculus domains, it is not possible in TCl to use negation to describe 
action preconditions. In case of the simple TC this limitation is a result of 
applying SLDE-resolution as reasoning method, which can handle definite logic 
programs, only. 

Precondition axioms of T C l are slightly more general than in the simple Fluent 
Calculus, as they may contain a conjunction of -ffoWs-predicates rather than only 
a single one. Note however that the simple .FC could be easily extended to cope 
with such conjunctions (without modification of the calculus). Furthermore, in 
Section 5.5 this generalisation will prove to be not essential. The result achieved 
there does not require the use of conjunctions in precondition axioms. Hence it 
will be applicable to the simple Fluent Calculus as well. 

Def in i t i on 2.5.1 Given a domain description V for some TC signature S = 
{SORT, X, FUN, REL) and X a variable declaration wrt S. V is called positive 
linear i f f for every action (a : Ohj^ -4 Act) G FUN there is a state update 
axiom SUA^ of the form: 

v y . (V(8 : g:(). ( f oaa(a(y), s) => 

aWe( j o ( o ( y ) , a), a) o 6"̂ ^ =g( aWe(s) o )) 

and there is an axiom of the form 

MY. (V(s : Sit). {Poss{a{Y),s) Holds{St~,s) A Ai=i,,..,,i„ HoldsiSf^^, s)) 

Thereby Y C X, Y = Yi,... ,Yk is a sequence of the variable names of Y with 
( i ; : 06;) E y /or i = 1 , . . . , - - -, E r A , E ( y ) . 

The set of all positive linear TC domain descriptions with appropriate signatures 
is denoted by TCi. 

Another difference between TCl and the simple Fluent Calculus is tha t ac-
cording to the latter it is possible to specify more than one clause describing 
different preconditions and effects of the same action. Thereby, according to 
the semantics of logic programs, several clauses may be alternatively applied to 
describe the eSects of some action. In .FCz, such domain descriptions can not 
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be represented directly since to this end disjunction in the precondition axioms 
is required in the Definition 2.5.1. However, such domains may be transformed 
into !FCl domains (see Section 2.8 for some details). 

The following example is intended to give an intuition of how domains can be 
specified in T C i using precondition axioms and state update axioms. 

E x a m p l e 2 .5 .1 (Brick domain cont inued) Consider the signature £(, of 
Example 2.2.1. Furthermore, let sx : XPos XPos, xO > XPos, sy : YPos 
YPos, yO > YPos be part of the signature describing some domain specific 
objects. Let the action precondition axioms be defined as 

V(a;i,r2 : XPos), (3/1,3/2 : YPog), (a : A() . 
(foa3(inv_bnck(a;i,!/i,i2,!/2),8) .H^o/ja(brjck_at(a;i,;/i),a)). 

Furthermore, let the state update axiom for mv-brick be defined such that the 
number of bricks at location (11,3/1) is decreased and the number of bricks at 
location (0:2,2/2) is increased, respectively, if mv-brick is executed: 

V(Z1,Z2 : Xfos ) , (3/1,3/2 : Yfos) , (a : 5'if). 
(foaa(jiiv_bnck(a;i, 3/1,12,3/2), s) => 

3We(jo(jnv_brjct(a;i,3/i,i2,y2),a)) o brjdc_at(zi,3/i) 
3ta(e(3) o brick_at(z2,3/2)) 

The resulting domain description is dearly a TCl domain description. • 

In the next example we introduce an abstract domain. It will allow us to simplify 
the presentation of some technical issues throughout this work. 

E x a m p l e 2.5.2 (Abstract !FCl domain) Consider a TCl signature S; con-
taining the fluents Fe, = {/I > Fl,f2 : Ob —> /S ; Ob —> M,/4 
Fl,f5 ;->• Fl} and the actions — {a l Act,a2 -> Act,a3 : Ob -4 Act,a4 : 
Ob -)• Act,a5 Act,a6 : Act}. Thereby, the domain specific sort Ob is defined 
by 0 :-4 Ob and foo : Ob —> Ob. 

Let 

V(a : ,?:(). ( foag(o l ,8 ) 4* .Eof(k(/l ,a)) 
V(s : Sit). {Poss{a2,s) 4* Holds{fl,s)) 
V(3/ : 06) , (a : 5'it). (foaa(o3(3/),a) .ffo/da(/2, a)) 
V(y : 06) , (a : 5'((). (foaa(a4(3/),a) .EoMa(/3(3/),a)) 
V(8 : ,9:^). ( f oaa(o5, a) .H^oZja(/4, a)) 
V(a : .9(f). (foaa(o6,a) 4* .Eofja(/5,a)) 
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he the precondition axioms and 

V(s : Sit). {Poss{al, s) => state{do{al, s)) o f l =st state{s) o /2(0)) 

V(s : Sit). {Poss{a2, s) => state{do{a2, s)) o f l =5^ state{s) o / 4 ) 

V(y : 06), (3 : (f 033(a3(i/), a) =* 
3We(do(o3(3/), 3)) o /2(!/) =5* 3We(3) o /3(/oo(3/)) o /3(/oo(/oo(y)))) 

V(!/: 06), (3 : ,?:(). (fo33(a4(3/), s) => 
3We(do(o4(y), 3)) o /3(!/) =s( 3We(3) o /2(2/)) 

V(8 : ^*t).(fo33(a5,3) ^ 3We(jo(o5,3)) o / 4 = g ( 3 W e ( 3 ) o /5^) 

V(s : Sit). {Poss{a6, s) => state{do{a6, s)) o / 5 =st state{s) o / 4 ) 

the state update axioms of the domain description T>i wrt signature E;. Note 
that the subsequent execution of a3{y) and a4{y) may strictly increase the size 
of the state associated with the initial situation, e.g. the state /2(0) is increased 
to f2{foo{0))o f3{foo{foo{0))). Thereby, the execution of a3{y) and a4{y) does 
not only add a new fluent / 3 but increases also the size of the sub-term parameter 
0 0/ /2 (o /oo(0). O 

J-Cl w i t h negat ive precondit ions: TCln 

With the development of SLDENF-resolution [137, 146] it became possible to 
reason about logic programming representations of domains tha t allowed the 
use of negation in action preconditions. Accordingly, we deGne an extension of 
fragment 

Def in i t ion 2.5.2 Given a domain description V for some TC signature S = 
{SORT, FUN, REL) and X a variable declaration wrt S . V is called linear 
i f f for every action (a : Obj^ —> Act) 6 FUN there is a state update axiom SUA|, 
of the form: 

vy. (V(3 : g:f). (f 033(o(y), 3) => 

3We(do(a(y), 3), 3) o 3We(3) o )) 

and there is an axiom of the form 

VF. (V(s : Sit). {Poss{a{Y),s) Holds{St~, s) A 

A;=1 

Thereby Y C X, Y = Yi,... ,Yk is a sequence of the variable names of Y with 

( y ; : 0 6 ; ) E y / o r i = % 6 
rst,2(y). 
The set of all linear TC domain descriptions with appropriate signatures is 
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The possibility of reasoning about non-definite programs gained by SLDENF-
resolution has been exploited for instance in [70], where it was proposed to 
represent a specificity relation between action descriptions by using negation. 
In Section 2.8 we will demonstrate how domain descriptions of [70] can be 
translated into TCln domains and vice versa. Consequently, the computational 
properties which will be investigated in Section 5.6 wrt TCln become almost 
immediately valid for the Fluent Calculus &agment of [70] as well. 

E x a m p l e 2 .5 .3 {J-Cln d o m a i n descript ions) Consider the signature and 
the state update axiom of Example 2.5.1. Note that it is impossible in !FCl to 
add the condition ^Holds{brick-at{x2,y2), s) to the action precondition axiom 
to ensure that the location (3:2,3/2) is empty before a brick can be moved there. 
In contrast to that in the fragment J-Cln we may simply define the following 
precondition axiom to ensure that mv-brick{xi ,yi, X2,y2) w not executable if 
there is a brick at the destination: 

V(g : ^:(), (a;i,a;2 = X f o s ) , (%/i,!/2 : YPos). 
(fos5(inv_bridc(a;i,!/i,Z2,%/2),3) 

(brict_at(a;i, ), 3) A (bridc_at(i2,3/2), a))-

• 

So far we have defined the two non-propositional fragments TCl and TCln-
In both fragments the state update axioms are of the form described in Def-
inition 2.4.1 and both fragments allow precondition axioms to contain a con-
junction of Holds{-,-) statements. tcln is more general in the sense tha t it 
also allows the conjunction to contain negative Holds{-,-) statements. In the 
following we define the fragments tcpi, ^ c p l n and tcp. 

Propositional Fragments 

The remaining fragments we consider in this work do not allow the use of domain 
specific sorts, i.e. sorts tha t are interpreted as subsets of the interpretation of 
Obj. Functions denoting fluents and actions are all constants. Consequently, the 
only variable that occurs in a precondition axiom or a state update axiom is 
a variable of sort Sit. We call Fluent Calculus fragments tha t are restricted in 
this way propositional. Thereby, the propositional version of TCln is denoted 
by tcpln and the propositional version of tcl is denoted by tcpl-

To enable straightforward translation from Situation Calculus domains to Fluent 
Calculus domains, in [150] it has been proposed to provide an axiom restricting 
states such that a fluent may occur at most once in a state. If we consider a 
propositional Fluent Calculus equipped with such an axiom as defined below as 
TCp, we may expect similar computational properties as shown in [145] for a 
propositional Situation Calculua^^. 

^^Independently of our work, this has also been investigated in [69]. See Section 5.7 for some 
details. 
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Def in i t ion 2 .5 .3 Given a domain description V for some TC signature S = 
{SORT, -<, FUN, REL) and X a variable declaration wrt S. 

V is called propositional linear i f f V is linear and, additionally, 

• all functions of FUN mapping to Fl are constants, and 

• all functions of FUN mapping to Act are constants. 

The set of all propositional linear J-C domain descriptions is denoted by J-CPLN• 

V is called propositional positive linear i f f V is positive linear and, additionally, 

1. all functions of FUN mapping to Fl are constants, and 

2. all functions of FUN mapping to Act are constants. 

The set of all propositional positive linear TC domain descriptions is denoted 
.FCf I , . 

V is called propositional i f f V is propositional linear and, additionally, 

1. V contains the axiom 

V(a : 5':^), (z, z : 5'̂ ). (aWe(3) =a( z o z o z => z =g( 1°) (NM) 

2. for all state update axioms SUA ,̂ and all fluents f E (0); 

< 1 , / I < 1 , < 1 , ! % , / ! < 1 , / O R O F H , 

The set of all propositional TC domain descriptions is denoted by TCp. 

The following two examples illustrate how domains can be specified in TCPL-
Again, in the second example we introduce an abstract domain. 

E x a m p l e 2 .5 .4 (Airport cont inued) Consider the signature Sq of Exam-
ple 2.2.2. Assume that new planes may arrive anytime as represented by action 
queue^b (queues, respectively). A plane may only land (actions land-b and 
lands) if there is sufficient bay area available on the ground and if the runway 
is free. Let a small plane get permission to land if one bay is available while 
for a big plane two bays are necessary. Additionally we assume that a big plane 
releases five passenger units while a small plane releases three (instead of rep-
resenting each passenger by one fluent a fluent represents a "passenger unit" 
where one unit may correspond to some fixed number of passengers). If a plane 
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takes off (actions take-off-b and take-offs) it requires again the runway to he 
free and it releases the previously acquired hay space. Let 

V(s : Sit). {Poss{queue-b, s) 4* T) 

V(s : Sit). {Poss{queue.s,s) T) 

V(s : Sit). {Poss{land-b, s) Holds{bay^ o plane.q-b o runway, s) 

V(s : Sit). {Poss{land-s, s) <#> Holds{bay o plane-qs o runway, s)) 

V(s : Sit). (Poss(take-oiF-b, s) Holds (plane-Lb o runway, s)) 

V(s : Sit). {Poss{take-oS-S, s) Holds {plane J s o runway, s)) 

be the precondition axioms and 

V(s : Sit). {Poss{queue-h,s) => 

jo(queue_b, a)) =g( atafe(3) o pjaae.g.b) 

V(s : Sit). {Poss{queues, s) => state{do{queue-b, s)) =st state{s) o plane-qs) 

V(s ; Sit). {Poss{land-b,s) => 

state {do {land-b, s)) o bay'^ o plane-q-b =st state{s) o planeJ-b o passenger^) 

V{s : Sit). {P0ss{land-s, s) => 
a^afe(do(Jand_s, a)) o bay o pjajie_g_s =g( o pjaneJ-s o passenger^) 

V(s : Sit). {Poss{take-ofF-b, s) => 

gWe( jo(take_oE.b, a)) o pjaneJ.b 3tafe(s) o bay^) 

V(s : Sit). {Poss{take-ofF-s, s) => 
3(afe(do(tate_ogL8, a)) o pjaiieJ_s afa(e(a) o obay) 

the state update axioms of the domain description % wrt signature Eq . 

Note that the subsequent execution ofqueue-b, land-b and take-off-b may strictly 
increase the state associated with some initial situation: E.g. if the initial state 
is plane-q-b^ oplane-qso runway obay'^, then after executing the above sequence 
the state would change to plane-q-h^ o plane-qs o runway o bay^ o passenger^. 

• 

E x a m p l e 2.5.5 (Abstract TCpl domain) Consider a J-Cpl signature Zp 
containing the fluents = { / I , • • •, / 5 } and the actions = { o l , . . . , a6}. 
Let 

V(s : Sit). {Poss{al, s) Holds{fl, s)) 
V(s : Sit). {Poss{a2, s) <#- Holds{fl, s)) 
V(s : Sit). (Poss(a3, s) 4* Holds{f2, s)) 
V(s : Sit). {Poss{a4, s) ** Holds{f3,s)) 
V(s : Sit). {Poss{a5, s) Holds{fA, s)) 
V(a : ( f 033(06, a) ** ^oM3(/5 ,3) ) 
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be the precondition axioms and 

V(s : Sit). {Poss{al, s) => state{do{al, s)) o f l =5^ state{s) o / 2 ) 
V(s : Sit). ( fosa (a2 , s) => state{do\a2, s)) o f l =st state{s) o / 4 ) 
V(8 : 5'*^). ( foaa(a3 ,3) ^ aWe(do(o3, a)) o / 2 aWe(3) o /3^) 
V(s : Sit). (Posslai, s) => state\do{aA, s)) o / 3 =st state{s) o / 2 ) 
V(s ; Sit). {Poss(a5, s) =*- state{do{a5, s)) o / 4 =st state{s) o /5^) 
V(s : (Poss(a6, s) => state{do{a6, s)) o / 5 =st state{s) o / 4 ) 

i/ie state update axioms of the domain description Vp wrt signature £p. 

Note that the subsequent execution of aS and a4 may again strictly increase the 
state associated with the initial situation, e.g. the state / 2 is increased to / 2 o / 3 . 

• 

The definition of fragment !fcp explicitly restricts the number of copies of each 
fluent a state may contain. In J^Cp the structure of the state update axioms must 
ensure that after executing an action in situation s, where the state associated 
with s contained every fluent not more than once, the state associated with 
the succeeding situation contains every fluent also at most once. Otherwise, the 
domain description does not have a model. 

E x a m p l e 2 .5 .6 (J-Cp d o m a i n descr ipt ion) Consider the signature Sa of 
Example 2.2.2. Let 

V(8 

V ( 3 

V(s 

V(a 

V(s 

V(s 

Sit). {Poss{queue-b, s) 4* -'Holds{plane-Q-b, s)) 

Sit). {P0ss{queue-s, s) -1 Holds{plane^qs, s)) 

Sit). {Poss{land-b, s) Holds{hay o plane-q-b o runway, s) 

Sit). {Pass{lands, s) O Holds{bay o pJane-Q-S o runway, s)) 

Sit). {Poss{take-ofF-b, s) o Holds{planeJ-b o runway, s)) 

Sit). {Poss{take-off-S, s) Holds {plane J s o runway, s)) 

be the precondition axioms and 

V(s : Sit). {Poss{queue-b, s) => 

a(a(e(do(gueue_b, a)) =gt g(afe(a) o p7ai]e_g_b) 

V(8 : ,?«(). (fo3s(gueue_a, a) => a^afe((fo(queue_b, a)) =gt afo(e(a) o pjane_g_s) 

V(a : Sit). {Poss{land-h,s) => 
state{do{land-b, s)) o bay o plane-q.b —st state{s) o planeJ-b) 

V(s : Sit). {Poss{land-s,s) => 
state{do{lands, a)) o bay o plane-qs =st state{s) o planeJs) 

V(s : Sit). {Poss{take-off-b, s) =» 

state{do{take^ofr^b, s)) o pIaneJ-b=st state{s) o bay) 

V(a : ( f o a a ( t a i : e _ o ^ , a) => 
afate(do(tate_o&j, a)) o =g( ata^e(8) o bay) 
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be the state update axioms of the domain description Vg wrt the signature Eq . 
These state update axiom ensure the above property by adding a fluent only if 
it does not occur in the state associated with the previous situation. If the state 
associated with sO contains only one copy of the fluents bay, planeJ-b, planeJs 
and at most one copy of each of the fluents runway, plane^q.b, plane-q.s, then 
it can be shown by induction that executing the given actions may not lead to a 
situation where the associated state contains multiple copies of some fluent, i.e. 
a model of the domain description exists (for the domain considered in [68] this 
has been done explicitly). 

Note that in TCp it is not possible to model the number of arriving passengers 
and the number of queueing planes since they are not bounded (in the TCp 
domain we decided to discard the fluent passenger and to restrict the number 
of queueing planes to one for each size of plane. On the other hand, in the 
TCph domain the number of landed planes is bounded by the available bay area 
which in turn is bounded by the state associated with sO. Although such finite 
boundaries could be hardwired in TCp (e.g., with four different fluents we could 
encode up to 16 different numbers) we decided to weaken the model further by 
allowing only one plane (small or big) to be at the airport. A similar problem 
occurs if the airport to be modelled has more than one runway. • 

Note that there are obvious relations depicted in Figure 2.1 between the .FC 
fragments of Definitions 2.5.1, 2.5.2 and 2.5.3. The symbol C denotes tha t every 
domain description of the fragment to the left of C is also a domain description 
of the fragment to the right of C. For instance, every TCpl domain description 
is also a .FCf, domain description and a domain description. If we com-
pare the fragments based purely on syntactical criteria then TCLN is the most 
expressive fragment we defined so far. 

TCLN 

TCPLN 

TCpL TCp 

Figure 2.1: Syntactical relations between TC fragments. 

In Section 2.7 we will develop a method that allows to compare particular do-
main descriptions based on the models they describe. Then we may also compare 
.FC fragments baaed on the sets of models they can describe. This will provide 
a more interesting meaning to the "expressibility" of a .FC fragment. 
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A Normal Form for Modal Properties 

For prepositional domains we may substitute the conjunction of Holds-state-
ments in each precondition axiom by an equivalent single ifoZds-statement. Due 
to the equational theory ACl which must be satisfied by every model M of any 
Fluent Calculus domain, if gi, . . a r e state terms containing only variable 
free fluents / i , . . . , / „ , and s is any situation in M then: 

This follows from the fact that whenever Holds(g,s) is valid then Holds{g',s) 
is also valid if A/f |= 3(z : o i.e. if the multiset represented by 
g contains the multiset represented by g' as a sub-multiset. A conjunction of 
statements Holds{gi,s) is equivalent to the statement Holds{g,s) where g rep-
resents the multiset which contains each multiset represented by some gi but 
not more. 

Consequently, it is sufficient to consider precondition axioms of j^cpi to contain 
a single ifoWs-statement, only: 

V(8 : g'it). ( f 03a(a, s) 4* o g)) (2.4) 

where , ' 9 ^ G Tg(,E(y). 

E x a m p l e 2 .5 .7 Consider the domain description % of Example 2.5.4- The 
third state update axiom could have been equivalently represented as: 

V(8 : (foa3(land_b, g) 
Holds {ba}^,s) A Holds {bay o pjane_q_b, s) A Holds {runway, s)) 

a 

However, if the fluents do not need to be variable free, as for the fragments 
TCL and TCLN, it is not always possible to find a single iJoZc/s-statement 
representing a conjunction of Holds-statements in this way. E.g., the conjunc-
tion Holds{f{x,y),s) A Holds{f{succ{z), succ{z)), s) can only be represented by 
Holds{f{succ{z),succ{z)) o f {x,y),s) if the disequation f{succ{z),succ{z)) ^ 
f{x,y) is fulfilled. This disequation is satisfied by the following infinite set 
T of instances of / ( z , 2/): {/(O, succ(3;)), /(8ucc(a;), 0), /(succ(O), succ(succ(z))), 
f{succ{succ{x)), succ{0)),...}. None of the elements of T is an instance of an-
other element and the generalisation of any two elements has instances which do 
not satisfy the disequation. Therefore, the disequation can not be represented 
by a finite disjunction of equalities and we can not substitute every precondition 
axiom of TCL or TCLN by a finite set of axioms in the style of Formula 2.4. 
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Due to the equational theory ACl the negative iJoWs-predicates appearing in 
action precondition axioms of TCpln can be rewritten using the following rela-
tion where g i s a state term containing only variable free fluents / i , . . . , /n and 
M. a model: 

To understand the modal properties described by boolean combinations of Holds-
statements, it is helpful to view a single Holds-statement as a conjunction of 
lower bounds on the number of fluents, e.g. Holds{fi 0 / 2 0 / 2 , 3 ) is valid in all 
situations a where the associated state contains at leaat one copy of and at 
least two copies of /g. In contrast to this, a negative Holds-statement represents 
a disjunction of upper bounds, e.g. -< jfoMs(/% 0 /20 /2 ,5 ) is valid in all situations 
a where the associated state contains no copy of / i or at most one copy of /2. 
To simplify the notation of a conjunction of upper bounds we introduce the 
following shortcut: 

/ \ (2.6) 
/ eMA|g , / |>0 

Informally, Holds {g,s) is true if the number of copies of a fluent / occur-
ring in the state associated with s is smaller then the number of copies in 
g, for all fluents in g. For example, if we consider again the brick domain, 
Holds{brick-at{2,4) o brick-at(2,3), s) is valid if state(s) = brick-at(2,5), but is 
not valid if aWe(3) — bnck_at(2,4). 

Since every boolean combination of Holds(g,s) formulas can be transformed 
into disjunctive normal-form, it follows using Equations 2.3 and 2.5 tha t every 
boolean combination of Holds (g, s) formulas where the fluents of g are variable 
free can be transformed into a disjunctive normal-form of Holds- and Holds-
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statements ( / i , . . . , /» are the Huents that appear in the state terms): 

V (A /\ 
0 < A < A : 0 < « < ( 0 < : < m 

iff 

VWH V ( A 
0<A<A: 0<«<f 

Y . . . V A 

(2.7) 
o<'0<» 0<<m<" 0<i<m 

91%̂  - -
ig 

M V V ' V 
0<A<t o<'o<" o<'m<" 

( '/o|''">l9f >/t)|) o • • • O >f" I Isfi/n I) 

A 
u - , , /r'»«n>o(|3j\,/o|,.,|3j%,,/o|) ,min>o(|3!\,A| 13-%.,Al) . . 
I f o f ( k ( / o = " o . . . o / n « - , g ) ) 

where we denoted fl^ ' ' by . The function min>o computes the minimal 
element of a set, but considers only elements that are greater then 0 and if all 
elements are 0 the result is 0. 

The Equation 2.7 enables us to rewrite any formula that consists only of 
Holds (g,s) statements referring to the same situation s into a disjunction of 
sets of upper and lower bounds for fluent occurrences in the state associated 
with s. 

Since an action precondition axiom which defines Poss by an arbitrary boolean 
combination of Holds{g, s) can be transformed using Equation 2.7 into the form 

V y . (V(3 : 5':f). ( f o a a ( o ( y ) , g) A i V . . . V A^)) 

for some finite n where each A, contains neither imphcit nor explicit disjunc-
tion, the domain description may be transformed into a domain description 
without use of disjunctive action precondition axioms by introducing a new ac-
tion and corresponding state update and action precondition axioms for each 
Aj . Consequently, it is sufficient in this work to consider precondition axioms 
of TCpLN where neither the explicit nor implicit (by -iHolds{g, s) according to 
Equation 2.5) use of disjunction is allowed (see also Section 2.8): 

v y . (V(3 : a^). (Poa3(o(y) , a) 4* 

Hof(b(^^-(y) O a) A HoZds(^f2M, a))) ^ 

So far we presented how dynamic systems can be described as Fluent Calculus 
domains. In the following section we define the language which is used to describe 
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temporal properties of such systems. We call this language the gwer;/ Zongwage 
ql. The semantics of qc is defined using the semantics of Fluent Calculus 
domains. 

2.6 The Query Logic 

Since we want to use the query logic to reaaon about temporal properties of 
a system, the propositions whose value depends only on the value of a single 
situation variable are particularly important. In the query logic such proposi-
tions are considered to be atomic. Formally, we define the set of these atomic 
propositions as the set of first-order formulas with a free variable of sort Sit. 
Additionally, all other variables occuring in such a formula are of sort different 
than Sit and they must be bounded by some quantifier: 

Def in i t ion 2.6.1 Let X be a variable declaration wrt some Fluent Calculus 
signature E. We define Xsu = {{x : Sit) | {x : Sit) E X} and Xsu = X \ Xsu, 
/or ony (y : 

I (;6 E U { ( % / : A ( ) } ) A V A R 8 ( , ^ ) = { ( % / : 

For example, if we consider the signature E j of Example 2.2.1, the formula 

V(yi : yPos). 3(2/2 : %fo8)..ffofda(brjcA:_at(3/2,3/i),r) 

of F(^x:Sit),Si,{{x,zi,Z2}) describes that in situation x in every row of the grid 
there exists at least one brick. 

Let (j) E -F(x:Sit),£6 ( 0 ^ ) ) then by fp[t], where ( is a term of sort Sit, we denote 
i/i{z i-> t}, . 

The set f(x-.sit)xi^) very powerful in the sense tha t an element may contain 
arbitrary first-order formulas. The value of these sub-formulas does not need to 
depend on the situation variable x. Since first-order logic is only semi-decidable 
we can not expect a logic which uses all elements of aa atomic 
propositions to be decidable. Consequently, to help to establish low bounds of 
undecidability, we define subsets F(^x:Sit),i:{X)- These subsets are particularly 
important for the propositional fragments of the Fluent Calculus: 

Def in i t ion 2.6.2 Let T, be a Fluent Calculus signature and Y be a variable 
declaration and (x : Sit) £ V a variable of sort Sit. Then we define 

| g € Ts(,E(y) A Z = Vars(g)}. 

je/ine A ,̂ q.. ryi aa (Ae o/ 

3̂/ applying AooZean operation. 
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For example, 3{z : XPos). Holds{brick-at{z,4),x) is an element of the language 
for the signature of Example 2.2.1 and (z : 6'f), ( i : 5':() E Y. 

Since every element ^ of -L(x:S!t),E6 (Y) contains precisely one free variable named 
X at the same position, we omit this variable when we refer to elements of 

e.g, instead of 3(z : XPo8).^oZda(brjct_at(z,4),i) we write sim-
ply 3(z : XPos). Holds{brick-at{z, 4)). Since in most contexts it is clear to which 
variable of sort Sit we refer to, we often omit the explicit definition of a name 
and write Z/z(y) or simply if F contains no other variables. 

The syntax of the most general query language we consider is given in the 
following definition. The atomic propositions of the logic are given by any subset 
of F(^x:Sit),s{X)- The query language is equivalent to the one of [119, 144] for the 
Situation Calculus. However, here we define its semantics using the semantics 
of Fluent Calculus domain descriptions. Note that we use an additional sort 
B in the defintion of the syntax. In the most general case defined below the 
interpretation of B is given by the power-set of the interpretation of sort Sit. 

Def in i t ion 2 .6 .3 Let T, be a Fluent Calculus signature, X a variable declara-
tion wrt T,, Y a variable declaration of the form {y : B). Let L C 
The query logic Q £ over E wrt X and Y and L is defined as follows: The set 
o/queries is the smallest set containing 

.Z. % 6 /or (r : 5'i() E X and (;/ : 5 ) E Y, 

&. Zi A r i , /or ( i i : (ig : At) E a E 7l4c(,z(0), 

<9- Zi < /or (zi : 6'i^), (a;2 : 5̂ :̂ ) E X , 

p /or p E .L and (z : E 

ui. <̂ i 1̂ , 3(3/ : 'B). /or gueriea (z : E 
(!/ : 5 ) E y . 

Let A4 be a model of some domain description ofT,,(pa query, B-^ = V{Sit 
: and : y B"^ valuations. Then 

M., 1 '^Sit , % 1= z E 3/ E %(;/) 
M, 1 '^Sit , 1= Zi A Zi i f f Ai 1= ( % t ( z i ) < do(o,i;gi((zi))A 

!;sit(z2) = a t do(o ,%((z i ) ) ) 
M; VSit; , fB 1= < Z2 i f f Af t= < %i((z2) 
M, | = P 1= p[%,t(z)] 
M, , f g 1= (/ll A <̂ 2 i f f 1= and 1̂ 2 
M, ,VB\= ^(t> A i , ^ </» 

M, i f f (Aere ia a.f. 
h <A ond /or aZZ 

(z : E Xgif z ^ z. 
M, vi3 1= 3{x : B). (j> tAere :a Hg : y -> a.t. 

and v'^{z) = VQ^z) for all {z : B) G Y with 
z ^ z. 



2 TEE FLt/ENT CALCt/Lt/S M 

Using this query language we may now precisely state the planning problem of 
Section 2.1 as determining the satisfiability of the following formula: 

3(s : Sit). (Ao[s] A 3(s' : Sit), {s' > s A Ae[s'])) (2.9) 

where Ao, Ag E ly) for some variable declaration Y wrt some Fluent 
ix:blt).S^ 

Calculus signature E and {x : Sit) E Y. 

Alternatively, we may also use the equivalent formula 

3 ( 3 : g i ( ) . ( A o [ a ] A A , [ a ] ) V . . 
3(a : ^:f) . (AoM A 3(8' : AY), (a' > s A A«[8'])) 

which consists of two sub-formulas that can be independently checked. The sub-
formula on the first line is satisfied in some model M if there is a situation in 
M where both Aq, and AG, are fulfilled. The sub-formula on the second line is 
satisfied in some model M if there is a situation in M where Aq holds and from 
where it is possible to reach a different situation (by executing a non-empty 
sequence of actions) where Ag holds. 

The conjunctive planning problem can be represented in the same way but Ag 
is restricted to be a conjunction of atoms oi L(^x-sit),T.{y). 

The extended planning problem can be expressed as the validity of the formula: 

V(3 : a t ) . (Ao(3) 3(3' : AY). ( / > g A A ^ / ) ) ) (2.11) 

The Figure 2.2 illustrates the relation between the problems described above. 
E.g., if we succeed in developing a calculus which allows to decide the entail-
ment problem we may apply this calculus to the other problems as well. Note 
furthermore that if Ao characterises precisely which fluents appear in the state 
associated with s then we may apply a calculus solving the extended planning 
problem to solve the planning problem. On the other hand, if we show that 
a planning problem with such a Aq is undecidable we can conclude tha t the 
extended planning problem is also undecidable. 

entailment problem 
c c 

planning problem extended planning problem 

c 

conjunctive planning problem 

Figure 2.2: Relations between the problem classes. 
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2.7 Models and Transi t ion Systems 

Highly specialised logics have been developed to describe the dynamic properties 
of systems. Many of them are derived from modal logics introduced in [97]. 
Modal logics extend classical logic by additional operators, so called modalities. 
In [83] it has been proposed to consider transition systems as models of such 
logics. Some of the more specialised logics derived from modal logics are often 
also called temporal logics [124, 123, 122, 2, 86, 31]. Modal logics can be used 
in two different ways; 

1. Modal formulas can be used to define the dynamic properties of a transi-
tion system. In this case, if we want to verify whether a transition system 
fulfills some dynamic property of interest, we have to derive the modal 
formula representing this property from the modal formulas defining the 
system. Often, however, the properties used to define the transition system 
and the properties which have to be verified require logical languages of 
different expressive power. Then the development of an appropriate modal 
logic can be very difRcuIt, since on one hand, the logic must be sufBciently 
expressive for both definition of the transition system and representation 
of properties of interest. On the other hand, to simplify the development 
of efficient calculi, the logic should not be more expressive than required. 

2. In the model checking approach [20] the dynamic system can be defined 
in a diSerent language than the one used to describe the properties to 
be verified. But it must be ensured that the semantics of the formula to 
be verified and the semantics of the system definition are given by com-
mon claases of dynamic systems. We may then verify a dynamic property 
by checking the intersection of the set of models associated with the sys-
tem description with the set of models associated with the formula to be 
verified for emptiness. 

In this work we will follow the second approach by relating domain descriptions 
to well known models of computation and formulas describing dynamic prop-
erties, e.g. the planning problem, to standard temporal logics. As the common 
class of models we will consider a combination of labelled transition systems 
(graphs where transitions carry action labels) and Kripke structures (graphs 
where nodes are labelled by propositions). This results in the following defini-
tion of a f - v a l u e d transition system as a mathematical representation of the 
possible behaviours of a dynamic system. Thereby f is a parameter denoting 
the set of propositions used to label the nodes of the transition system. 

Def in i t ion 2 .7 .1 A tuple Q = (5, — A , a) is called a P-valued transition sys-
tem 6̂  ia a non-emf o/ states, A ia a non-empf;/ aef o/ transition labels 

and —> is a family of relations such that for each t £ A, and -4c S xS. a 
is a mapping P x 5 - ^ { T , _ L } where P is a non-empty set called propositions. 
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A path TT in Q is defined as a (possibly infinite) sequence of states such that for 

any two subsequent states z, z' there exists t € A, such that z \ z'. By iXn the 

n-th element of tt is denoted for n € W. The subsequence of n starting in 7r„ is 

denoted by ir^n- A path tt is called a run i f f -k is of length to or, ifir* is the final 

state of IT, i.e. there is no z G S and t £ A such that n* z. 

9 is called rooted if there is a ZQ G S such that to every z £ S exists a path 
ZQZI . . .Z — Then, ZQ is called the root^'* of Q. A run n is called a branch of 
Q i f f Q is rooted and ttq is the root. 

To compare transition systems we use the notion of strong bisimulation (e.g. 
[64]). Strong bisimulation is of particular importance in this work, since the 
validity of any formula of modal logics we will consider here is invariant under 
strong bisimulation, i.e. proving a property for one system is sufficient to estab-
lish it for all strongly bisimilar systems. Since all bisimulations considered here 
are strong, we omit the word "strong". Since we want to be able to compare 
transition systems where the nodes are labelled by elements of different sets of 
propositions, we have to extend the common definition of bisimulation slightly 
by including also mappings $ i , between these sets. If we want to show that 
a Pi-valued transition system and a valued transition system are bisimilar 
then we have to show that both mappings, : Pi P2 and $2 : P2 Pi , are 
isomorphisms. Note that such bisimulations are also called zig-zags, [8]. 

Def in i t ion 2 .7 .2 (bis imulat ion) Let 61 = ( 5 i , { A i | a £ Ai},Ai,ai), 02 = 
(^i {A2I a £ Ag}, ^1,0:2) be Pi-valued and, respectively, P2~valued transition 
systems. Let ^ be a relation $ C 5'i x % . $ w called a bisimulation if there 
exist mappings $1 : Pi P2 and ^2 • P2 ^ Pi such that (21,^2) G $ implies 

.Z. /or o / n 6 Pi , a!i(Z,zi) = T :^a;2($i(Z),Z2) = T, 

/or ofN 6 pl;, a!2((,'Z2) = T :_g^a:i($2(0,;2:i) = T, 

Z2 -^2 .Zg, zi suc/i (^1,22) G # 

zi E Si and zg E S2 are called biaimiZar, written zi 22, if there is a bisim-
ulation $ such that (^1,22) E $ . 81 and 02 are called bisimilar if there is a 
bisimulation $ such that for all zi £ Si there exists 22 E S2 such tha t zi ~ Z2 
and for all Z2 £ S2 there exists zi £ Si such tha t zi ~ 2:2- Note, tha t for rooted 
transition systems it is sufficient to show the existence of a bisimulation for the 
root states. 

In the following we aim to characterise models of domain descriptions of the 
Fluent Calculus by transition systems. According to Definition 2.7.1, a transition 

' ' 'Note that according to this definition a transition system may have several roots, e.g. if 
the system contains two states 21, zg and there are transitions from zi to Z2 and from 22 to 
21, respectively. 
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system contains states, transition labels, relations describing transitions between 
states and state dependent propositions. An obvious choice might identify a state 
of the transition system with a state in the Fluent Calculus model (an element of 
the interpretation of the sort St in the model M). However, s ta te update 
axioms may in general also depend on the execution h i s t o r y w h i c h is not 
reflected in the structure of elements of S t ' ^ . Hence, we follow a more powerful 
approach by generating the unravelled (cf. [141]) transition system, i.e. elements 
of S i t ^ are considered to be states of the transition system. The set of transition 
labels is identified with Act"^ - the set of actions in model M- We define the 
transition relation to contain a pair (s, do^{a, s)) of situations if it is possible 
to execute some action a in s. Finally, the mapping from situation dependent 
propositions of in some situation s to { T , ± } reflects the validity 

of the proposition in s of the model M. 

Def in i t i on 2 .7 .3 Let M be a model of some domain description V wrt the Flu-

ent Calculus signature S . Let X he a variable declaration and L C i^(a;:Sii),E(-Y). 

TAen we de/ine tuAere o/ 

reWiona (3,8') EA/% s < a) and a' a), /or 
s,s' 6 Sit''^ and a € Act'^ For (j) £ L and s E Sit^ let a) = T i f f 
M 1= (j){x M- a}. 

Now we show tha t significant parts of a model of a domain description can be 
characterised as a transition system. This transition system has the form of a 
tree: 

L e m m a 2.7 .1 Given a domain description V for the Fluent Calculus signature 
S, a variable declaration X wrt S , a model M ofV, and L C F(^^.sit),'si^)-

1. K{M,L) is a L-valued transition system, 

2. K{M,L) is a (possibly infinitely branching) tree rooted in sO^. 

P r o o f 2 .7 .1 The first proposition follows directly from definition of K{M,Lt,) 
and Definition 2.7.1. 

Since only Herbrand-E^rg-models are considered, the set of situations is induc-
tively defined by d o ^ and s O ^ . From the axioms Osu follows tha t aO"^ is root 
and ancestor wrt. < of every other s E S i t ' ^ which can possibly be reached by 
executing actions. The axioms Dsn ensure tha t < is interpreted as an order on 
the execution history. Furthermore, from the extended unique name assumption 
follows that two situations ai , ag E S i t ' ^ are equivalent iff they consist of iden-
tical action sequences (note that these sequences are always finite). Since every 
situation s E Sif^ which is different from is of the form do'^(a,s'), for 
o E and a' E a has an unique predecessor a' wrt O 

^®Note that such systems do not fulfil the Markov property. 

^®Equally, we can define {s,s') iff |= Poss{a,s) and s' =sit do-'^{a,s), without 
considering the definition of <• 
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Note that we cannot associate a particular transition system with a domain 
description V as V does not determine the value of the function state for the 
initial situation sO in each model of V. However, once the interpretation of 
state{sQ) is given the interpretation of state for all other situations is completely 
characterised by the precondition and state update axioms of V. Consequently, 
V has as many models as there are interpretations of state{sO). 

The above lemma associates sets of transition systems with domain descriptions. 
By using the notion of bisimulation we may classify transition systems and, 
hence, also the domain descriptions describing these systems. Furthermore, the 
lemma provides the semantics we need to use well known modal / temporal logics 
as query languages for the Fluent Calculus. 

2.8 Othe r Fluent Calculus f ragments 

Here we show under which circumstances non-deterministic Fluent Calculus do-
main descriptions can be represented as deterministic ones and which properties 
are preserved. The result allows us in many cases to reduce planning problems 
for non-deterministic f C domains to planning problems for deterministic J^C do-
mains. We achieve the result by investigating the transition systems associated 
with TC domains. 

In [70] the simple Fluent Calculus has been extended by a specificity relation 
over the state update axioms (see below for a definition). We demonstrate how 
domains of this extended simple Fluent Calculus can be translated into 
domains. Thereby, the translation does not alter the set of transition systems as-
sociated with a domain description. We also show that there are domains 
that cannot be represented as simple Fluent Calculus domains with specificity 
relation. 

Non-deterministic Domain Descriptions 

According to Section 2.4 the effect of a state update axiom of a non-deterministic 
domain descriptions may be described by a disjunction of state equations: 

r = Ti V... V (2.12) 

where F i , . . . , Fm represent state equations. Thereby the effect of such a non-
deterministic state update axiom is determined by one of the s tate equations 
r J, j — 1 , . . . , 7Ti. 

If Vars (Fi ) , . . . , Vars(rm) are all disjoint^^, this non-deterministic domain de-
scription may be transformed into a deterministic domain description by intro-

they are not disjoint we have to solve disequations as described on Page 49. Thereby F 
can be transformed into a disjunction of F j such that their free variables are disjoint. However, 
this disjunction might then consist of an infinite number of elements and so does the resulting 
deterministic domain description. 
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ducing a new action and corresponding state update and action precondition 
axioms for each possible effect equation. In the following we define a mapping 
from a non-deterministic domain description 27 to a deterministic domain de-
scription v . 

Def in i t i on 2.8.1 Let V he some domain wrt the Fluent Calculus signature E = 
(SORT, X, FUN, REL) and X some variable declaration wrt S. For every state 
update axiom SUAf,, letV°- = FJ V • • • V denote the effect of SUAf, where 
each F", j = 1,... ,ma, denotes a state equation 

j o ( o ( y ) , a), a) o aWe(a) o 

Thereby (a : Obj'' -4 Act) E FUN, Y C X, Y = Yi,... ,Y}. is a sequence of the 
variable names ofY with (Yi : Obj) 6 Y fori = 1,... ,k. St~'^, 

V. (V(8 : a f ) . ( foaa(o(y) ,8) A)) 

denote the precondition axiom for action a. We associate a domain with 
T> as follows: We remove every pair of precondition axiom and state update 
axiom SUA^ where the number of disjuncts rua > 1 in SUAp and add for every 
j = 1,..., rua a, new pair of precondition axiom and (deterministic) state update 
oziom; 

V. (V(8 : ( f oa3(a;(y), g) A)) (2.13) 

V. (V(8 : git). ( f o s s ( a j ( y ) , 3 ) => F^)) (2.14) 

Thereby aj : Obj'' ->• Act is a new action for each j = 1,... ,ma. 

E x a m p l e 2 .8 .1 (Non-de termin i s t i c d o m a i n descr ipt ions) Consider a 
signature of !FCp containing the fluents f , g, h and the action a. Let 

V(s ; Sit). (Poss(a, s) o Holds(f, s)) 

be the precondition axiom and 

V(g : gif) . ( f oa3(a, a) (aWe(do(o, s)) o / =g( 3We(s) o g V 
state(do(a, s)) o / =sf state(s) o h)) 

the (non-deterministic) state update axiom of the domain description. After ap-
plying the transformation of Formula 2.13 the deterministic domain description 
consists of the precondition axioms 

V(s : Sit). (Poss(ai,s) Holds(f,s)) 
V(s : Sit). (Poss(a2,s) 4* Holds(f, s)) 
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and the state update axioms according to Formula 2.14 

V(8 : A'^). ( foaa(oi , a) => aWe(do(ai, a)) o / 3We(a) o g) 
V(3 : 5*^). ( f osa(o2, g) sWe(do(a2, a)) o / =g( atate(a) o /i) 

for the new actions ai and og • While the deterministic domain description has 
only one model where the state associated with the initial situation consists of 
one copy of fluent f , the non-deterministic domain description has two. 

Models of the non-deterministic domain domain description, where the arrows 
with label I denote the transition caused by executing action I according to Def-
inition 2.7.1: 

state{sO) =st f a(a(e(aO) =g( / 

aWe( aO)) =g( g aWe(do(o, aO)) =5* A 

Model of the deterministic domain description: 

atote(30) =s( / 

aWe(do(oi,aO)) =g( g state {do (02, sO)) =st h 

Note that in the deterministic case there exists an action sequence leading to 
a situation s where Ag = Holds{g,s) is true for all initial situations where 
Ao = Holds{f, aO) (extended planning problem). In the second model of the non-
deterministic case no such action sequence exists. • 

The new domain description is equivalent to the old P in the following sense; 

P r o p o s i t i o n 2.8.1 Let E be a Fluent Calculus signature and Y be a vari-
able declaration and {x : Sit) G Y a variable of sort Sit. Let V be a non-
deterministic domain description wrt E which can be transformed by Defini-
tion 2.8.1 and the corresponding result. Let Ao, Ag E ^{Y)- Then 

there is a model M of V, a situation a ^ E and an action sequence 

ao,..., an with a, E Act^ for i = 0 , . . . , n such that M (= Ao(s°) and M |= 

Ae(do(on,... do(oo, s°) - - )) w a ?7iodef 0 / o ai^wa^ion a ^ ^ € 

Sit'^ and an action sequence ..., with af € such that |= 

Ao(a°) and Ai'' |= Ae(do(On, - - - -' ))-

P r o o f 2 .8 .1 Since the initial situations in models of V and models of 
are not restricted we may And for every situation â vi of a model Ai of D a 
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model and a situation s_^d such that state-^{sm) = st state^"^{sj^d) (for 

example the model with initial situation gO"^ = s ^ a where per definition 

state-'^{sM) =st state^ (sO*^ )). Clearly, the same proposition holds vice versa 

for every situation in models of 

Let sm be a situation of some model M wrt V and M'' be a model wrt 
with situation such that Then, for every 
situation resulting from executing some action a in 

there exists a situation {a'',Sj^d) in M'^ resulting from execut-

ing some action a'^ in situation sj^d such that state-^{s'j^) =st state^"^if 
s t a t e ^ { s M ) =st s t a t e ^ {sj^d). This is due to the fact tha t the above construc-
tion ensures tha t for every possible effect Fj of some action a in P exists an 
action a, where the corresponding state update axiom in has precisely the 
effect Fj. Furthermore the precondition axioms describing when the state up-
date axiom for a has to be applied is equivalent to the one for applying Oj. Then 
if for situations E 3^^ 6 , by 
induction over the structure of situations follows that for every situation = 

. . . do^(ao, 3%,)...) in Ai exists a situation in with = 

j o ^ ( o ^ , . . . d o ' ^ ( a o , 3 ^ j ) . . . ) such that sWe"^(g[^)=g(gWe^' ' (3^j ) . 
Since Aq (Ag) may only depend on the state associated with some situation 
it can be either true for both, g ^ and g^d, or false for both, only. 

On the other hand, let sj^d be a situation of some model wrt V ' and Ai be a 

model wrt V with situation sm such that state^ ( g ^ j ) =st state^ (sm)- Then 

for every situation s'j^d = do'^ {a^, Sj^d) resulting from executing some action 

o'' in g t h e r e exists a model vW of D and some situation g ^ , = (a, g_\/|,) 

in Ai ' and g;w = do ' ^ ( a ,g^ i ) such tha t ( 3 ^ ' ) = a ( g W e ' ' ^ ( g ; ^ ) and 

gWe-^^g^^,) =s ( gWe"^ ' ' (g^d) . Accordingly if g W e ' ^ ( 3 ^ ) =gf 3 W e ' ^ ' ' ( g ^ d ) 

for situations g ^ € g^^ E , by induction follows tha t for every 

situation g ^ j in A "̂̂  with g ^ j = ( a ^ , . . . (a^, g ^ j ) . . . ) there exists a 

set of models A ^ o , . . . , Ain where gj^ = (oj, g ^ ^ ) and g ^ ^ = 

that gWe-^)(gj^.) =gf g W e ^ ' ' ( g ^ j ) and =gt 

for all 1 < j < n. Since the effects described by s tate update axioms only depend 
on the state associated with the immediately preceding situation, there is also a 
single model Ai of 2) with situation ĝ j}̂  = g%^)...) where 
g W e ^ ( g ^ ) =at g W e ^ ' ' ( g ^ j ) for all 0 < j < n. O 

As a consequence of Proposition 2.8.1 we may reduce planning problems (see 
Section 2.1) for some non-deterministic domain description (those which can be 
transformed using Definition 2.8.1) to planning problems for the correspond-
ing deterministic domain description. However, note that the executable action 
sequences in the deterministic domain description do not reHect the abilities 
of the agent as specified in the non-deterministic domain description: In the 
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non-deterministic domain the agent cannot choose which of the state equations 
applies when he executes an action. The choice is "external", i.e. it depends on 
the world the agent is interacting with. In contrast to this, in the determinis-
tic domain the agent may actually choose the state equation by executing the 
appropriate action. Hence, an action sequence which is a solution to some plan-
ning problem for the deterministic domain is successful in the world only if the 
choices of the agent correspond with the actual behaviour of the world. 

Furthermore, Proposition 2.8.1 cannot be generalised to hold for the extended 
planning problem of Section 2.1. The solution of the extended planning problem 
depends on all models corresponding to the initial situations fulfilling Aq. On 
one hand, every model of the deterministic domain description V contains all 
possible situations and their associated states that are reachable by some action 
sequence from the initial situation and, consequently, also those where Ag is 
fulfilled (if there are any). On the other hand, states associated with situations 
by a non-deterministic choice are apparent in some models of V but not in 
others, ag illustrated by Example 2.8.1. 

D i s j u n c t i o n s in P r e c o n d i t i o n s 

If disjunctions are allowed in precondition axioms as described in Section 2.5 
a very similar transformation to the one of Definition 2.8.1 can be applied: 
Consider the domain description contains a precondition axiom of the form 

V. (V(3 : A'f). ( f osa(o(y), s) Ai V - V A^)) 

Thereby (o : .4c^) E FLW, y c % , y = sequence of 
the variable names of F with E Y for i = 1 , . . . , A. A i , . . . ,An contain 
neither explicit nor implicit disjunctions as described in Section 2.5. 

If Vara(Ai),.. . ,Vkr8(An) are all disjoint this domain description may be trans-
formed into a domain description without disjunctions in precondition axioms 
by introducing a new action and corresponding state update and action precon-
dition axioms for each Aj: Let SUA|, be a state update axiom of some domain 
V wrt some action a. Let A of the precondition axiom for a be of the form 
as defined above and Vkrs(Ai) n Vars(A;;) = 0 for all pairs 6 
and i j. Let F denote the state equation of SUA^. Then we transform V into 
V'' by removing SUAj, from V and adding for every z = 1 , . . . , n a new pair of 
precondition and state update axioms 

V. (V(8 : git). ( foag(oXy) , a) 4* A^)) (2.15) 

V. (V(8 : a t ) , ( fosa (o i (y ) , a) => F)) (2.16) 

Thereby .Act is a new action for every % = 1 , . . . , n. 
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This transformation is less critical than the one from non-deterministic domain 
descriptions to deterministic domain descriptions, since a state associated with 
some situation is reachable in V iff it is a reachable state associated with some 
situation in V^. In other words, it is irrelevant which of the preconditions A, 
enabled for changing the state associated with some situation, i.e. every reach-
able state of every model of V has an equivalent state in a corresponding model 
of V ' and vice versa. 

E x a m p l e 2 .8 .2 (Dis junct ive precondi t ions) Consider a TCp signature 
containing the fluents f , g, h and the action a. Let 

V(s : Sit). (Poss(a, s) <=> Holds{f o h,s) V Holds{g o h, s)) 

be the precondition axiom and 

V(s : (foga(o, g) ^ a)) o A s(ofe(a)) 

the state update axiom of the domain description. After applying the above trans-
formation the deterministic domain description consists of the precondition ax-
ioms 

V(s : Sit). {Poss{ai, s) Holds{f, s)) 

V(s : Sit). {Poss{a2, s) <=> Holds{g, s)) 

and the state update axioms 

V(8 : ( f a ) s)) o =g( aWe(a)) 
V(3 : ^if). (f 053(0,3) => 3We(do(a, 3)) o sWe(8)) 

for the new actions ai and og. 

Consider the three models of the original domain description where the state as-
sociated with the initial situation consists of foh, goh, and fogoh, respectively: 

state{sO) = St f ° h state{sQ) = st 9 ° h state{sO) = st f ° 9 ° h 

3We(do(o ,gO))=g( / 3We(do(a, 3 0 ) ) = g ( g 3We(do(a, 3 0 ) ) = g t / o g 

For each of the above models there exists also a model of the deterministic do-
main description: 



2 TEE FI,(7ENT CAf/Ct / l t /S 64 

state{sO) =st f ° h state{sO) =st g°h 

afafe (do (oi, aO)) = g( / afok ((fo (og, sO)) = g 

state{sO) =st f ° 9 ° h 

Ol 

state{do{ai,sO)) =st f ° 9 state{do{a2, sO)) =st f ° 9 

The only dijferences between models of the original domain and the models of 
the corresponding deterministic domain follow from the changed action names. 
Consequently, if a formula of the query logic does not refer to a particular action 
name it is valid (satisfiahle) in the original domain i f f it is valid (satisfiahle) in 
the deterministic domain. This applies, for example, to all planning problems 
and also all extended planning problems. However note, that we can not establish 
bisimularity. • 

The Simple Fluent Calculus with Specificity 

In [70] the simple Fluent Calculus has been extended to address the following 
representational issue; Even if an action description in the simple Fluent Calcu-
lus proposes valid effects in general and incorrect eSects for only few exceptional 
situations, the whole action description has to be modified to cope with these 
minor cases. Instead [70] proposes the introduction of a specificity relation over 
pairs of precondition and state update axioms. This specificity relation enables 
for incremental development of domain descriptions; First, the effects of an ac-
tion can be specified for a large set of situations. Later, if for some subsets of 
these situations the specification turns out to be incorrect, a new action descrip-
tion that "overrules" the old one in these situations can simply be added to the 
domain description. 

In the following we call the Fluent Calculus of [70] simple Fluent Calculus with 
specificity, abbreviated as TCl<- Instead of presenting formally as a logic 
programming scheme as it was introduced in [70] we will define its syntax and 
semantics in our calculus-independent framework. Then we will demonstrate 
how J-Cln domain descriptions may be seen as generalisations of !FCl< if the 
associated transition systems are considered. Note however, tha t J^Cln does 
not solve the above representational problem addressed by the simple Fluent 
Calculus with specificity. 
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Def in i t ion 2.8.2 Given a domain description V for some TC signature S = 
{SORT, <, FUN,REL) and X a variable declaration wrt E. V is a TCi,< do-
main i f f for every action a exists a set of pairs cpj, j = 1 , . . . , n consisting 
of a state update axiom and a precondition axiom of the form 

v y . (V(8 : a t ) . ( foaa(a(y) ,3 ) 4* 
v y . (V(a : ( f oaa(o(y), s) => 

aWe(do(o(y) , a), a) o sWe(s) o 5'̂ ^ 

where {a : Ohj^ -> Act) E FUN, Y C X, Y = Yi,... ,Yk is a sequence of the 
variable names ofY with {Yi : Obj) £ Y fori = 1,... ,k. Sf^'^, Sf^'^ € Tst,'E{Y) 
for all j = 1,..., n. 

Thereby, the valid pair of axioms of P%, is chosen wrt some situation s of a 
model M. To this end, let St^{(/)) denote the term Sf^ of axiom pair ^ E P^ . 
Then cp is valid in s i f f 

1. M \= Holds{St~{(/)), s)a for some substitution a, and 

2. there is no (p' £ Pg such that M \= Holds{St^{(p'),s)a' for some substitu-
fion cr' and 5"̂ ^ (î )cr o ^ wAere ^ 1°. 

E x a m p l e 2 .8 .3 {J-Cl< d o m a i n descr ipt ions) Consider the signature and 
the state update axioms of Example 2.5.1. Instead of restricting the executabil-
ity of action mv-bnck{xi,yi,x2,y2) as in Example 2.5.3, we may overrule the 
pair of precondition and state update axiom by a more specific one which can be 
applied if the location 2/2) is not empty: 

V(a:i,i2 : Xfos),(!/i,3/2 : y f o a ) , ( 3 : 
(fogg(n]v_brjct(zi,yi,Z2,3/2),a) 4*̂  

Holds{brick-at{xi ,2/1)0 brick-at{x2,y2), s)). 

We may specify the state associated with the succeeding situation to be un-
changed, e.g. in this case 

V ( i i , r 2 : XPos), (;/i,y2 : yPos), (3 : Af ) . 
(fo3a(n]v_brick(zi,yi,a:2,3/2),s) => 

3We(do(inv_brjck(a;i,3/1,3=2,^2),3)) —st af(ife(a)). 

• 

Note that by Definition 2.8.2 we may imagine a domain description and a sit-
uation where more than one pair of precondition and s tate update axiom is 
valid. This causes contradictions if the state equations of the valid s tate update 
axioms are not equivalent. To prevent such contradictions it should be ensured 
by the design of the domain description tha t the chosen precondition axiom is 
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unique in all considered situations. To design domain descriptions in such a way 
can be difficult and this problem is also referred to by the qualification problem, 
see [106]. 

Domain descriptions with a specificity relation may be translated into domain 
descriptions without a specificity relation requiring negation in action precon-
ditions. Thereby the basic idea is to rewrite each pair ^ of precondition and 
state update axiom in such a way tha t the precondition axiom reflects both the 
condition of applying cp and all the exceptions where another action description 
"overrules" cj). To this end we consider for all pairs of elements {j ^ i) of 

the complete set {cr i , . . . , of unifiers for 5'̂ ^ ((̂ )̂ (<Aj) ° Since 
ACl is finitary (by Proposition 2.2.1) this set is always finite. However, it has to 
be ensured that we only consider those substitutions where St^{4>i) is a genuine 
sub-multiset of (^j) o t;: If some substitution a of the complete set of unifiers 
substitutes v by 1° then a must not be considered and hence has to be removed. 
Otherwise, if a substitutes v by some other variable x then a has to be removed 
and instead a set 

{(cr \ M- x}) U {i! M- fi{xi) o Ui} \ ( f i :f Fl) e FUN with fresh Xi,yi} 

of unifiers has to be added. Since there is only a finite number of fluent symbols 
in a Fluent Calculus signature the set of unifiers is still finite. Then, using the 
resulting substitutions } for all % ^ we have a new axiom of the 
following form for each E P^: 

V. (V(3 : AY), ( f oss(a(y) , s) 4= 
Holds{g{(j)j),s) A 

, g) A - A , a) A 

g) A - A , s) A 

a) A - A , a)) 

These axioms can be rewritten in the form as defined for the fragment J^Cln 
if we ensure that there is only one precondition axiom for each action a in the 
domain. This can be achieved by substituting the term a{Y) in the Axiom 2.17 
for the pair with aj{Y) for the new action aj : Obj'^ -4 Act (see the previous 
subsection for details on the effect of such a transformation). Then, by the 
completion semantics of logic programs with negation (as used in [70]) we have 
to substi tute in the Axiom 2.17 4= by 4* to represent it using the semantics of 
Section 2.3. The resulting axiom is the precondition axiom for action a j in the 
new TCLN domain. The new state update axiom is simply defined as 

Vy. (V(a : AY). (Poaa(oj(y), a) => 
aWe(do(oj (y) , a), a) o =gt a W e (a) o Aj"'-')) 
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E x a m p l e 2 .8 .4 {!FCL< d o m a i n descr ipt ions cont inued) The following 
two pairs of precondition and state update axioms are result of translating the 
J-CL< domain of Example 2.8.3 into TCLN according to the above procedure: 

V(a : Af), (%i,Z2 : Xfos), (1/1,2/2 : YPoa). 

( f oas(mv-bncki (ri , ;/i, I2,2/2), a) 
Holds{brick-at{xi, t/i), s) A 
-iHolds{brick^at(xi,yi) o bricJc_at(a;2,2/2), s ) ) 

V(s : 5':(),(ii,Z2 : XPo8),(!/i,!/2 : YPos). 

(foaa(mv_brjct2(a;i,%/i,Z2,2/2),a) 
j7o!(k(brjck_at(zi,2/i) o brjck_at(a;2,i/2),a)) 

V(a : (zi,a;2 : Xfos), (3/1,3/2 : YPos). 

(foaa(mv_brjdci(zi,2/i,a;2,y2),a) ^ 
a^a^e( jo(mv_brjck(a;i,yi, 12,3/2), a)) o brjck_at(ii,3/1) 

=S( g(ote(a) o bri(±_at(a:2,3/2)) 

V(s : .9:̂ ), (ri,Z2 : XPos), (3/1,3/2 : YPos). 

(Poaa(mv_brjck2(ri,3/i,Z2,3/2),3) => 
s^a^e(do(niv_brjcA:(a;i,3/i,Z2,3/2), &)) =S( aWe(a)) 

• 

As a consequence of the translation described above, in terms of the associated 
transition systems J-CLN domains are at least as expressive as J-CL< domains. 
In fact, the possibility to use negation in precondition axioms of TCln enables 
restricting not only the applicability of a particular state update axiom but 
also the executability of some action. According to [70] in JFC2,< an action is 
executable wrt some situation s iff there is some pair (p of precondition and 
state update axiom such that its positive precondition is fulfilled in s. Instead, 
in !FCln an action is executable in some situation s iff there is some precondition 
axiom cj) such that its positive and negative preconditions are fulfilled in s. 

E x a m p l e 2.8.5 {TCLN VS. !FCL<) Let a set of transition systems be defined 
by the following J-Cln domain description: 

V(g : 5'i(). (Poaa(a,3) 4:̂  Ho((k(/, s) A -'Ho(da(/ o /,«)). 

V(s : iSif). (Poss(a, a) ̂  aWe(do(a, a)) =g( a W e ( a ) o /). 

We may depict the only model M of this domain where the initial situation has 
a successor situation (as defined by <) as follows: 

a(a(e(aO) / 

a(a(e( jo(o, aO)) =gf / o / 



This set of transition systems is not definable in !FCl<. This is due to the 
fact that every action a that can be executed in sO and which leads to a state 
state{do(a,sO)) containing state{sQ) as a sub-multiset must be also executable 
in do{a,sO). • 

2.9 S u m m a r y 

In this chapter we have introduced the concepts of representing action and 
change in the Fluent Calculus. Our introduction is based on the most important 
historical roots of the Fluent Calculus: the Situation Calculus and the frame 
problem. We have also introduced the reasoning problems we want to focus on 
in this thesis. However, the approach we propose for analysis of Fluent Calculus 
domains is not limited to these problems. 

Our formal presentation of the Fluent Calculus is very similar to the presen-
tations given in recent work by other authors [150, 67] for the Fluent Calculus 
and [145, 119] for the Situation Calculus. According to these approaches the 
language used to specify a domain may be different from the language used 
to specify the reasoning problem. The domain specification consists of domain 
independent axioms and domain dependent axioms. Different fragments of the 
Fluent Calculus are defined by the structure of the domain dependent axioms. 
The fragments we have deAned are inspired by previous work on representa-
tional issues, adapted to our framework. However, our approach for analysing 
Fluent Calculus domains is not limited to these fragments. 

Our main contribution in this chapter is a general approach of associating tran-
sition systems to models of Fluent Calculus domains. So far, this has been done 
only for specific domains. The most important achievement of the general ap-
proach is the generic applicability of numerous results from the field of model 
checking to investigate decidability questions in the Fluent Calculus (see Chap-
ter 5). However, the approach allows us also to compare the expressiveness of 
different Fluent Calculus fragments. This idea has proven fruitful as we achieved 
several new results in this chapter. We showed tha t under some circumstances 
non-deterministic domains can be transformed into deterministic ones and that 
solutions to the planning problem are (but solutions to the extended planning 
problem are not) invariant under this transformation. Similarly, we showed that 
under some circumstances domains with disjunctive precondition axioms can 
be transformed into domains without such axioms and that solutions to the 
planning problem and the extended planning problem are invariant under this 
transformation. Finally, we showed that !FCLN is strictly more expressive than 
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Chapter 3 

Temporal Properties in the 
Fluent Calculus 

In this section we discuss our approach for developing reasoning methods for 
the Fluent Calculus. At the same time, the section provides an overview of the 
second part of the thesis. 

3.1 Reasoning by Model Checking 

As mentioned before, the separation of an intelligent system into heuristic and 
epistemological components has been justified by introspection. Furthermore, it 
allows us to develop methods for each of the components independently. How-
ever, this separation can cause problems. Knowledge that is stored in the inter-
nal representation might have a strong influence on the reasoning process. But 
this knowledge can not control the reasoning appropriately, since the reasoning 
component is developed independently. On the other hand, we may "hardwire" 
the knowledge needed for control into the reasoning mechanism and thereby 
restrict the applicability of the heuristic component to previously defined do-
mains. Then, instead of aiming to develop a single reasoning mechanism for all 
domains, we may develop several specialised sub-mechanisms such that each 
of them performs well only for a particular domain. Although none of these 
sub-mechanisms is powerful enough to solve every problem, all sub-mechanisms 
together might perform adequately^ for a wide range of problems even if the 
represented knowledge as a whole is not structured in a particular way. 

A Grst sensible step to develop such specialised sub-mechanisms is to investi-
gate the general possibility for automatic reasoning in particularly interesting 
domains. In other words, we investigate whether the satisfiability/validity of 

^Here we mean "adequate" in the sense of [12]. 
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queries about some domain description can be decided effectively by a com-
puter. Of course, one could argue that even if a certain query were decidable it 
might be impossible to compute the answer efficiently. However, decidability is 
a first issue and future models of computing, e.g. quantum computing, might 
change today's view of what is actually feasible. 

So far we have defined a number of Fluent Calculus fragments of different syn-
tactic expressiveness as depicted in Figure 2.1. We have also defined a number 
of problem classes which we wish to solve automatically in these fragments, see 
Figure 2.2. To investigate decidability of these tasks we aim to apply results of 
model checking^ and as mentioned in Section 2.7. There we have also already 
demonstrated how to view models of Fluent Calculus domains as transition sys-
tems. This enables us to interpret formulas of modal / temporal logics, i.e. the 
common languages in the area of model checking, over models of Fluent Calculus 
domains. Wha t is missing is the characterisation of formulas of the query logic 
by formulas of modal / temporal logics. Such a characterisation will allow us to 
reduce decidability questions for Fluent Calculus domains directly to decidabil-
ity questions in model checking. To this end we show in the following sections 
that the query logic of Definition 2.6.3 corresponds to the monadic second order 
logic over trees. Formulas of monadic second order logic that are invariant un-
der bisimulation can be characterised by the propositional //-calculus. Smaller 
fragments of the bisimulation invariant monadic second order logic over trees 
correspond to other well known temporal logics. The relations we will establish 
between these modal/temporal logics and the query logic for .FC will not only 
enable us to apply model checking results, they will also allow us to specify 
many important system properties in the simpler modal/temporal logics. Since 
these logics are highly specialised their formulas are much easier to understand 
than the corresponding formulas of the more general f C query logic. Hence, 
after having shown the correspondences formally in the next sections we will 
represent query logic formulas by their modal/temporal logic counterparts. 

After succeeding in describing the considered reasoning taaks aa problems of 
model checking, we need to investigate what results we may apply. To this end 
some common properties of most Fluent Calculus domains can guide our search. 
The most important properties follow from the fact that states are represented 
as commutative monoids (i.e. o can be read as the multiset union). Since the 
set of multisets even wrt. a finite alphabet is infinite, the set of states associated 
with a model of a Fluent Calculus domain is in general infinite as well. Model 
checking of infinite systems is inherently difficult and the interest in the field 
has recently grown. Despite of the difficulties some classes of systems have been 
studied, e.g. systems characterised by context-free processes, Petri nets, process 
algebras, and well-structured transition systems. Among these, Petri nets are 
particularly promising candidates for establishing relations with Fluent Calcu-
lus domains. This follows from the fact that their states are defined by multisets 

^Although model checking is a well-known area of research we are not aware of a similar 
attempt to reduce reasoning about action and change explicitly to model checking problems. 
However, in [67] and in particular in [145] model checking results are applied implicitly. 
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as well. Hence, in Chapter 7 we define Petri nets formally and present a well 
known reasoning method based on the construction of the Karp-Miller tree. Fur-
thermore, we show how the Fluent Calculus fragments TCph and !FCp relate 
to Petri nets. The relations are established by means of bisimulation. Since all 
modal / temporal properties we consider here are invariant under bisimulation 
this provides a very tight correspondence. Finally in Chapter 5, we exploit this 
correspondence by investigating its consequences for decidability of the rea-
soning tasks of Figure 2.2. For the investigation of some of the tasks we will 
additionally consider classical models of computations like counter machines. 

In this work we show that some reasoning task is actually decidable for some 
class of Fluent Calculus domains by reducing the task to a problem for which 
a decision procedure has been already provided. Such a decision procedure to-
gether with the reduction procedure is a calculus for the particular reasoning 
task of the Fluent Calculus. However, by applying the knowledge we gained from 
our investigation of decidability we may a t tempt to design a new decision pro-
cedure tha t can be applied directly to Fluent Calculus domains. We may hope 
tha t this new procedure is simpler as it does not require an additional reduction 
process. The development of such a specialised reasoning procedure is the goal 
of the third part of the work. Thereby we restrict ourselves to the development 
of a decision procedure for conjunctive planning problems in T C p i -

3.2 Monadic Second-Order Queries 

A second order logic where quantification over predicates is restricted to those 
having arity 1 is usually called monadic second order logic (MSOL), e.g. [126]. A 
predicate of arity 1 represents a set of individuals. Consequently, quantification 
over unary predicates may be replaced by quantification over sets of individuals 
and the use of the relation € between individuals and sets of individuals. 

If all individuals are interpreted as nodes of a tree and the signature of the MSOL 
contains special predicates R to denote ancestor and successor relations and a 
set P of unary first-order predicates then we denote the corresponding MSOL 
by MSOL{R, P). For example, let K{M,L) = { S i t ^ , a M ) denote 
the Z,-valued transition system associated with some model yW of a Fluent Cal-
culus domain V with signature S. Then MSOL{{<^} U { - ^ m \ a G j4c i '^} ,L) 
denotes the monadic second-order logic over the tree defined by K{M,L) with 
the ancestor relation < ^ , the successor relations { - ^ m \ « E v4ci'^} and the set 
L of unary first-order predicates. 

Now we show that the query language of Definition 2.6.3 can be viewed as a 
monadic second-order logic. This helps us to apply some results relating (frag-
ments of) monadic second order logic to well known modal / temporal logics. 
Formulas of these logics may then be used to characterise formulas of the query 
logic. 
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P r o p o s i t i o n 3 .2 .1 (Monadic Second Order Logic) Given a domain des-
cription V for some Fluent Calculus signature S , X some variable declaration 
X wrt E, Y some variable declaration of the form {y : B), and L C 
Furthermore, let M be a model ofV and = V{Sit'^). Then, the query logic 
over E wrt X and Y and L is the monadic second order logic MSOL{{<-'^} 
U { — G Act'^}, L). 

P r o o f 3 .2 .1 As has been shown in Lemma 2.7.1, K{M.,L) defines a L-valued 
transition system with root sO'^. K{M,L) represents a tree with the nodes 
Sif'^. For all propositions p E L, the value of p only depends on the instantia-
tion of some variable of sort Sit. Furthermore, according to Definition 2.6.3, all 
variables in formulas of the query logic are either bound in a formula of L or 
they are interpreted as elements of S i t ' ^ or V { S i t ^ ) , respectively. • 

The most expressive propositional modal logic tha t is considered for model 
checking in the literature is the propositional ji-calculus [80]. The great expres-
sive power is a result of the use of an operator v representing the greatest 
fixpoint of some monotonic functional describing the behaviour of a system in a 
particular state. For example, let p denote some modal property and a a transi-
tion. By (p A (a)r) we describe the greatest set of states such that the modal 
property p is invariant under the transition labelled o. 

Def in i t ion 3.2.1 Let P be a set of propositions and A a set of transitions. 
Then the propositional //-calculus wrt P and A is defined as follows. The set of 
formulas of the propositional ^-calculus is the smallest set L containing P, X, 

lA V', luAere X ia a o/ ^ /ormWoa in Z,, 
G E A. 

Let Q = A, a ) he a P-valued transition system. A valuation V assigns 
to each variable x E X a subset of S. Then we define a mapping ||-||y from 
formulas of L to sets of states as follows: 

l|p|lv = { 3 | 8 6 5 A a ( p , 8 ) = T} 

Iv = 
|8 _ ll̂l I© n I!./,! |0 

ll(®)9^llv ~ I E S. s s' A s' E | |0 | |v} 

A closed formula (p is valid in 0 , 0 |= 0, i f f for all states s of Q, s E ||<^||®. 

By showing that every formula of the propositional /t-calculus corresponds to 
some formula of the query logic we demonstrate the expressive power of the 
query logic. Furthermore, we may express reasoning tasks like the planning 
problem as formulas of the propositional //-calculus. 
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Note also that the prepositional //-calculus respects bisimularity, i.e. if a for-
mula is valid for some transition system it is also valid in all bisimilar systems. 
Assume we want to prove the validity of some formula cj) of the query logic for 
the transition system K{M,L) associated with some model M of some Fluent 
Calculus domain description. To this end we may prove the validity of some for-
mula (j)' of the propositional /x-calculus which characterises cj) for any transition 
system that is bisimilar to K{M,L). 

Corol lary 3 .2 .2 Given a model M of some domain description of the Flu-
ent Calculus with signature £, X some variable declaration X wrt E, Y some 
variable declaration of the form {y : B). For every closed formula (p of the propo-
sitional ii-calculus wrt some L C Act^ there exists a formula 
0' in the query logic over E wrt X and Y and L, such that K{M,L) ^ i f f 
JVl (j)'. 

P r o o f 3.2 .2 From Proposition 3.2.1 follows tha t the above query logic is the 
monadic second order logic MSOL{{<^} U {-^m\ a E Act''^},L). In [73] it 
has been shown that for every class C of transition systems deSnable by some 
closed formula of the //-calculus there exists a P ) formula deAning 
C, where .R denotes denotes an ancestor and a set of successor relations and 
F a set of unary first-order predicates. Consider K{M,L) |= (j). Then, with 
R = { < ^ } U { A x l a e Acf'^} and F = L holds M [= (6'. On the other hand, 
clearly, if vW 1= î ', then Z,) E C. O 

Note tha t it can also be shown using [73] that for every formula of the bisimu-
lation invariant fragment of the query logic of Proposition 3.2.1 there exists an 
equivalent formula in the propositional //-calculus. 

3.3 Monadic P a t h Queries 

The interpretation of sets of individuals in a monadic second-order logic 
MSOL{R, F) may be restricted to those which form branches of the tree. The 
corresponding logic is called monadic path logic [57], denoted MPL{R, F). Since 
the notion of a branch can be defined in MSOL{R, F) the monadic path logic 
MFL{R, F) is a fragment of MSOL{R, F). 

As a direct consequence of Proposition 3.2.1 and the restriction of to 
branches follows: 

Corol lary 3.3.1 (Monadic P a t h Logic) Given a domain description T> for 
the Fluent Calculus with signature E, X some variable declaration wrt S and Y 
a variable declaration of the form {y : B) and L C F(^^.sit),j:{X). Furthermore, 
let M be a model ofV and B^ be the set of all branches in K{M, L). Then, the 
query logic over E wrt X and Y and L is the monadic path logic MPL{{<-'^} 
U { — I G E Act"^^, L). 
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Another popular temporal logic used for model checking is CTL* [33], also 
called full branching temporal time logic. It is strictly less expressive than the 
prepositional /i-calculus. However, formulas of CTL* are usually much easier 
to understand than their /i-calculus counterparts since the definition of the 
semantics of CTL* formulas does not require the notion of fixpoint operators. 

Here we present CTL* as in [112] considering finite and infinite runs. However, 
since in !FC systems are described in an action oriented style, we consider a 
relativised next operator (a) instead of the unrelativised X. 

Def in i t ion 3 .3 .1 Let A be a set of transitions and P a set of propositions. 
Then the computational tree logic CTL* wrt a and A is defined as follows. The 
set of formulas of CTL* is the smallest set containing P, (pUtp, 
E(/), where (j), ij) are formulas and a £ A. 

Let 0 = {S,-^,A,a) be a P-valued transition system, t a run and s a state in 
0 . Then 

8 , 8 | = p = T 

0 , s 1= (-'(^) ig' 8 , 8 ^ ^ 

3. Q, s \= {(j) f\ ij)) i f f Q, s ^ (f) and Q,s \= ip 

4. 0 , s 1= Ecp i f f there is a run t' such that s = t'g and 8, f |= 

J. 8 , f | = p = T 

6. 8 , ^ |:= 8 , f ^ 

7. Q,t \= {(/) Alp) i f f Q,t \= ^ and Q,t \= ip 

& 8 , ^ 1= (o)i^ «j8''8,t>i )= ^ and ^1, 

9. Q,t \= (pUip i f f there is some i > 0 such that 8, t>i |= ip and for each j, 
if 0 < j < i then 0, t>j |= cp 

A formula (p is valid m 0 , 0 |= (p, i f f for all states s of Q, Q,s \= (p. (p is 
satisfiable in 0 i f f there is a state s of Q, such that Q,s \= (p. 

The following abbreviations will be used; TUcp, Gcp A(p 
(-tE(-'(^)). 

Just as formulas of the prepositional /i-calculus correspond to formulas of MSOL, 
CTL* formulas correspond to formulas of the monadic path logic. Consequently, 
we may use CTL* to characterise a weaker fragment of the query logic. 
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Corol lary 3.3.2 (CTL*) Given a model M of some domain description of 
the Fluent Calculus with signature T,, X a variable declaration wrt T,, L C 
F{x-.Sit),j:{X). For every formula cf) of the temporal logic CTL* wrt L and Act^ 
there exists a formula cj)' in the query logic of Corollary 3.3.1, such that 
Ar(;W, i ) ,80^ 1=^'. 

P r o o f 3 .3 .1 In [57] it has been shown, tha t for every finitely branching tree t 
with root e and for every CTL* formula 0 exists a formula (p' in MPL{{<^] 
U {-4/%I a G Act^},L), such tha t t,e\= cj) t \= (j)'. This result has been gen-
eralised to include infinitely branching trees in [112]. Since K{M,L) represents 
a tree with root sQ-^ and with Corollary 3.3.1, K{M, L), \= 4> iW M \= ij)'. 

• 

Again, it can be shown using the expressive completeness result of [112] that 
for every formula of the bisimulation invariant fragment of the query logic of 
Corollary 3.3.1 there exists an equivalent formula in CTL*. 

3.4 CTLu Queries 

If quantification over sets of individuals or predicates, respectively, in MSOL is 
not allowed, the resulting logic is a first-order logic, called first-order logic over 
trees, denoted FOL(R, P), where P and R are defined as for the general MSOL. 
Since f ^ } U { 4 ; ^ | o e is a fragment of ^ } U { I 
o 6 Act^},L) we can follow from the restriction to first-order predicates and 
Proposition 3.2.1: 

Corol lary 3 .4 .1 (First Order Logic) Given a domain description V for the 
Fluent Calculus with signature T,, X a variable declaration wrt S and Y = %, 
L C F(^x-.Sit),^{X). Furthermore, let M be a model ofV. Then, the query logic 
over E wrt X and Y is the first order logic over trees denoted by FOL{{<-^] 

o E Act'^}, L). 

Since the notion of a run is not definable in first order logic (as the set of 
runs is not enumerable), it is difficult to compare branching time temporal 
logics like CTL* to FOL. However, some interesting formulas in CTL* do not 
require to distinguish between runs. In particular, both the planning problem 
and the extended planning problem can be stated as satisfiability and validity, 
respectively, of CTL* formulas tha t do not require the notion of a run. In the 
following we define an appropriate fragment of CTL*, or more precisely of CTL 
[33]. We call this fragment CTLu as the use of the operator U is restricted. 

Def in i t ion 3 .4 .1 (CTLu) Let A be a set of transitions and P a set of propo-
sitions. Then the logic CTLu wrt A and P is defined as follows. The set of 
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formulas of CTLy is the smallest set containing P, -xp, (pAip, E{a)(f>, EcpUtp, 
where (j), ip are formulas and a G A. 

The semantics of the operators is defined as in Definition 3.3.1. 

To show tha t CTLu formulas indeed characterise some FOL formulas we define 
the following mapping: 

Def in i t ion 3 .4 .2 We define A, mapping CTLu formulas and atomic proposi-

fiona o / p 6 Z, Z, C (o /ormWas o/ U {A;V(| o E 
Act'^},L) as follows. 

0(p ,3) = 

0(E(o)^ ,8 ) = 3(8' :g: ( ) . (8 4 8'A 0(^,8')) , 
$(E, / , [ /^ , 8) = 3(8' : Af ) . (8 < 8' A $(V', 8') A 

V(s" : Sit), (s < s" A s" < s' => $ ( ^ , s"))). 

The following proposition enables for characterisation of some first order for-
mulas of the query logic by CTZ,[/. Thereby the proposition gives a hint to the 
expressive power of the (first-order) query logic originally proposed for Fluent 
Calculus and Situation Calculus domains [109]. 

P r o p o s i t i o n 3.4.2 Given a model M of some domain description of some Flu-
enf CaZcuW signature E, % a i;oriaWe decforafion iwf 2 , 2, C E(a;;Si(),2(X). 
For every formula (j) of the temporal logic CTLu wrt L and Act''^ there ex-
ists a formula cj)' in the logic FOL{{<-'^] U { A x | a G Act"^}, L), such that 
j i r (Ai ,^ ) ,80^ 1=^ 1=^'. 

P r o o f 3 .4 .1 Consider a mapping A of CTL* formulas to MPL{{<-^} U { -^m \ 
a £ Act^},L) as in [57]. Then the following equivalences ensure tha t E(a) can 
be expressed without referring to branches in the tree: 

K{A4, L), s 1= E(o)i^ 

iS Ai , 2/1-4 8 1= 3 (1 : B). (;/ E z A 3(8' : ^lY). (8' E z A y -% 8' A A(< ,̂ a'))) 

iff M, y 1-4 s [= 3(8' : Sit). (3/ -4 s' A A(0, s')) 

iff vW,y 1-4 8 1= 0(E(a)^ , ! / ) 

The simplification is valid since from y A 3' and follows tha t there is a branch 
X £ B such that y £ x and s' £ x (as B contains all branches of the tree). 

Similarly E<^[/^ can be expressed without referring to branches in the tree: 

K{M, L),s \= E4>U'ip 
iff M, y ^ s \= 3{x : B).{y £ X A 3(s ' : Sit), {s' £ x Ay < s' A A{ip, s') A 

V(8" : 6":^). (8 < 8" A s" < a' A(^, a")))) 
iff M,y -4 g 1= 3(8' : Sit), (y < s' A A(^, s') A 

V(a" : (a < 8" A a" < a' A((^, a"))) 
iff 
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Again, the simplification is valid since from y 4 s i , si ^ S 2 , . . . , s „ _ i ^ s' 
follows that there is a branch x E B such that y 6 x,si Ex,... ,s' E x. 

Let be a formula of then for the formula = 3(r : (V(8 : Af ) . r < 
s A 0((^, r)) holds clearly K{M, L), SOM |= iff • 

Using the logic CTLy we may represent the planning problem as defined by 
Query 2.9 by satisfiability of the simple formula 

AoAEFAe. (3.1) 

The extended planning problem of Query 2.11 may be represented by validity 
of 

Ao => EFAe (3.2) 

E x a m p l e 3.4 .1 (Airport cont inued) Consider our airport domain of Ex-
ample 2.5.4- Assume that in the initial state no plane has landed, no passenger 
has arrived yet, one runway and four bays are available (the number of planes 
queueing is unknown). We would like to know whether there is an action se-
quence that causes precisely 22 passenger units to arrive. This planning problem 
can be encoded as a CTLu formula as follows: 

Holds (runway o bay^) A 

.5^0/jg (runway^ o o paasenger o pJaneJ.b o pjaneJ-s) A 
EE(.Eofd3(pagseager^^) A IfoMa(pasaengei^^)). 

jy u;e onfi/ Hke to knou; luhether an oction sequences eiisfa wAick cauaea of (eaaf 

22 passenger units to arrive then the question can be represented as a conjunctive 
planning problem, i.e. a planning problem without negative propositions in the 
goal: 

Holds (runway o hay^) A 

Holds (runway"^ o bay^ o passenger o plane J-b o planeJs) A 
EF Holds (passengei^'^). 

Now let us assume that in the above initial state the exact number of avail-
able bays is unknown, but there is at least one. We would like to know whether 
there is an action sequence for each possible initial state that causes precisely 
22 passenger units to arrive. This is an extended planning problem which can 
be represented in CTLu as follows: 

Holds (runway o bay) A 

Holds (runway"^ o passenger o plane J-b o planeJs) => 

EE(A'oZ(k(passei]ger^^) A .ffoWs(pa88enger^^)). 

• 
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Note that a decision procedure for satisfiabihty o f ^ A E F i p may also be used to 
decide validity of ^ and a decision procedure for validity of 0 =J> E F ^ 
to decide satisfiability o f ^ A kG-^xjj. 

The characterisation of models of TC domain descriptions by transition systems 
together with the characterisation of queries by expressions of modal/temporal 
logics we are now ready to investigate suitable classes of transition systems, i.e. 
classes that suggest strong relations to particular TC fragments and for which 
many results concerning model checking have been achieved. 



Chapter 4 

The Fluent Calculus and 
Petri nets 

The formal and graphical language of Petri nets has been developed in [116]. 
Petri nets are used to model concurrent systems. They allow the specification 
of infinite state systems and are true generalisations of finite state automata. 
After many years of research about Petri nets their theory is well developed. 
In this chapter we will establish tight relationships between !FCpl, TCp and 
classes of Petri nets. As we will show in Chapter 5, these relationships are very-
fruitful since they allow us to answer many decidability problems in the Fluent 
Calculus theory with the help of their Petri net counterparts. 

4.1 Pe t r i ne ts 

In the following, basic concepts of Petri net theory are defined. The underlying 
idea is that a concurrent system consists of processes. For execution a process 
requires certain system resources. During execution the required resources are 
blocked by the executed process, i.e. they can not be used by other processes. 
After execution some of the blocked resources may not be available any more 
and new resources may have been created. 

Def in i t ion 4 .1 .1 A tuple V = {P,T,E,W,mo) is called a Petri net if 

1. P andT are non-empty finite disjoint sets of vertices, elements of P are 
called places and elements ofT are called transitions. E C {PxT)U{TxP) 

a o/ edgea. 

2. W •. E JN"*", which is called a weight function. 

80 
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3. A mapping m : P ^ M is called a marking, mo is a marking, called 
the initial marking. The set IN"̂  of vectors is understood as the set of all 
markings. 

The set of transitions in Petri nets is used to model processes of the concur-
rent system and places represent different types of system resources. The weight 
function together with the set of edges expresses how many resources of what 
type are blocked, used and generated by some process. The actual amount of 
available resources of each type is modelled by a marking. Consequently, a mark-
ing denotes the state of a concurrent system where only the available resources 
are considered. 

Petri nets are usually represented graphically by depicting places and transitions 
as vertices and edges as directed connections between them. Weights of edges 
are represented as labels if different from 1. The number associated with a place 
by a marking is depicted by an appropriate number of so called tokens on this 
place. 

E x a m p l e 4 .1 .1 (Airport cont inued) Consider the airport model of Exam-
ple 2.2.2 and Example 2.5.4- The number of small planes and big planes queueing 
is represented by the places plane^qs and plane.q-b. The transitions queues 
and queue-b model the arrival of the planes. The bay capacity is represented 
by the tokens on place bay. Landing is modelled by the transitions land-b and 
lands for big and small planes, respectively. The tokens on the places planeJ-h 
and planeJs model the number of planes at the airport. Passenger units are 
modelled by the tokens on the place passenger. The takeoff is described by the 
transitions take-off-h (big plane) and take-offs (small plane). The runway is 
modelled by the place runway. In Figure 4-1 we consider the state of an airport 
system where three planes are queueing (two big planes and one small plane), 
four bays are available, no plane has got permission to land and one runway is 
available for takeoff. • 

The actual meaning of condition, effect and changing depends on the chosen 
semantics for Petri nets. Here, we consider only the most popular semantics in 
Petri net theory - interleaving. As it turns out, interleaving corresponds to the 
standard semantics of action execution in the Fluent Calculus. 

Interleaving 

In the following we will also denote a marking as a vector m G IN'^. We will also 
use a partial ordering on vectors of integers: m > m' for two markings m and 
m' iff m(p) > m'{p) for all places p e P. 

According to the interleaving semantics, a marking may change only if there is 
a single transition causing this change. 
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queuejb plane_q_b 

l i 
lanclj) i I 

land_s 

xz> Tf 
queue_s plane_q_s 

XD: 
runway 

planej_s 

I 
1 

Figure 4.1: The airport example as Petri net. 

Def in i t ion 4 .1 .2 (Interleaving semant ics ) Let {P,T,E,W,mo) be a Petri 
net. Condition, effect and change are defined for each transition t £ T and 
place p £ P by 

. r ( p ) = M^((p,^)), 

" ^+(p) = M:(((,p)), 

• 5t{p) = (+(p) — t~{p), respectively. 

A transition t £ T is enabled at a marking m i f f t " < m. If an enabled transition 
t is fired, for the new marking m' holds m' = m + St. 

In the Example 4.1.1, the condition land-b~ of firing transition land-b is given 
by land-b~{bay) — 2, jand-b"(pjane_q_b) = 1, Iand-b~(runway) = 1, and 
land-b" (p) = 0 for p e {plane-qs,planeJ-b,plane-Lb,passenger}. 

The effect land-b'^ is defined by land-b'^ (runway) = 1, land-b'^ (passenger) = 5, 
land-f^ (planeJ-b) = 1, and land-b'^(p) = 0 for all other places p. 

Consequently, for the change Sland-b follows that 61and-b(passenger) = 5, 
Sland-b(bay) = - 2 , Sland-b(plane-q-b) = - 1 , Sland^b(plane-Lb) = 1, and 
51and-b(p) = 0 for all other places p. 

The above definitions can be generalised to describe the subsequent execution 
of several transitions. Like t~ describes the minimal marking for the transition t 
to be enabled r " describes the minimal marking for a sequence r of transitions 
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to be enabled. For r to be enabled in some marking the first transition must be 
enabled and the remaining transition sequence must be enabled after execut-
ing the first transition. Consequently, the minimal marking r " is given by the 
minimal marking enabling both (characterised mathematically by component-
wise max) the first transition and the remaining sequence adjusted by the effect 
of the first transition (which may produce or consume tokens required for the 
remaining sequence). 

Def in i t ion 4 .1 .3 Let {P, T, E, W, mo) be a Petri net and t € T. The transition 
of the marking m to m' by firing the enabled transition t is denoted as m[t)m'. 

For finite transition sequences T = TI • • - TN with TI e T for 1 < i < n we define 
5, J', inductively: 

1. if n = 0, T is enabled in any marking m, 6T = T" = T~^ = 0, 

2. if n > 0, r " = max(ij", {t2 - • • tn)~ — 6ti), ST = Sti -|- S{t2 • • • t„), r + = 
ST + T^. T is enabled in the marking m i f f ti is enabled in m and <2 • • • in 
is enabled in m 4- Sti 

We write mMm' i f f m ' = TU + ST and r is enabled in m. [r) denotes the relation 
on IN"̂  X IN such that (m,m') G [r) i f f m[T)m'. 

Characterisations of Petri nets 

All possible behaviours of a Petri nets system can be described by the notion 
of the reachability tree of the system if an initial marking is given. The set of 
reachable markings of a Petri net, which is part of the information contained in 
the reachability tree, is often used to classify the system. 

Def in i t ion 4 .1 .4 Let V = (P, T, E, W, mo) be a Petri net. We define the reach-
ability tree, RT{V), inductively as follows: 

1. Let mo be the marking of the root node. 

2. For every node n of RT{V) labelled by some marking m and for every 
transition t which is enabled in m, add a node n' marked m' such that 
m[t)m' and add an arc from n to n' labelled t. 

The set 9?(mo,P) of all markings of RT{V) is called the reachability set ofV. 

If the behaviour of a Petri net has to be investigated, many propositions about 
markings can be reduced to the question whether the marking covers another 
one as defined in the following: 
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Def in i t ion 4 .1 .5 Let {P,T,E,W,mo) be a Petri net. Then the mapping a : 
X ]N^ —> { T , ± } is defined for m,n E as follows: a{m,n) = T i f f 

m <n. We say also n covers m. 

Let K{V,¥i^) = (3R(mo, P ) , — r , a ) , where -4 denotes the set of relations -4 

with eA i f f m[t)m' for m,m' G 'St{mo,V). 

The significance of covering of some marking m in Petri nets results from the 
fact that whenever a transition sequence can be fired in m it can be fired in 
all markings m' which cover m, for example land-b can be fired in all markings 
covering m with m(bay) = 2, m{plane-q-b) = 1, m(runway) = 1, and m{p) = 0 
for all other places p. 

Clearly, a Petri net defines a Isf^-valued transition system according to Defini-
tion 2.7.1: 

P r o p o s i t i o n 4.1.1 Let V = {P,T,E,W,mQ) be a Petri net. Then 
is a -valued transition system. 

To distinguish an element m of IN'^ with its algebraic properties from the propo-
sition m in a M^^valued transition system we write instead covered (m) if we 

refer to m being a proposition (where a!(co«ered(m),n) =^a!(m, n)). 

In the following subsections we show correspondences between different Fluent 
Calculus fragments and appropriate instances of Petri nets. In particular, we will 
use the following definition of 1-safe Petri nets as it can be found in, e.g. [10]. 

Def in i t i on 4.1 .6 A Petri net {P,T, E,W,mo) is called 1-safe i f f 

.Z. Vm 6 < 1 

Ve e E. M"(e) = 1 

We describe a l-safe Petri net also as a tuple {P,T, E,mo). 

4.2 Coverabili ty Analysis of Pe t r i ne ts 

The coverability problem is a classical problem in Petri net theory and is also 
sometimes referred to as the control-state reachability problem. The question is: 
given a marking m is there a marking m' in R{mo,V) which covers m, i.e., 
m' > TO. We may represent this problem as a particular conjunctive planning 
problem wrt. the IN^-valued transition system associated with some Petri net: 

covered{mo) A -i( \ / covered{mo + e'')) A EFcovered{m) (4.1) 
pef 
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Thereby denotes the mapping P —> IN where ef(g) = 0 for all g € P with q ^ p 
and eP(p) = 1. Consequently, the sub-formula mo A ^ (Vpep covered{mo + e?)) 
of Formula 4.1 before the temporal operator is valid for some marking m' of the 
transition system iff mo = m'. The sub-formula EF covered (m) states that there 
is a branch where m is covered, eventually. 

This and many other interesting properties of Petri nets can be investigated 
using the so-called Karp-Miller tree resulting from the following algorithm^, first 
defined in [76]. The Karp-Miller tree is a finite abstraction of the set of reachable 
markings 5K(mo,P) in the sense that every element of the possibly infinite set 
of reachable markings of the Petri net V is represented by some node in the 
finite Karp-Miller tree of V. On the other hand, a node of the Karp-Miller 
tree may also represent markings that can not be reached. However, we can 
decide whether it is possible to cover some arbitrary marking m' in V simply by 
checking whether a node in the Karp-Miller tree covers m' . Relevant information 
is not lost since a node in the Karp-Miller tree represents only a marking m that 
cannot be reached if a marking m' can be actually reached which covers m. Also, 
from the Karp-Miller tree we cannot find the set of smallest covering markings, 
but we can 6nd some covering marking if one exiats. 

The Karp-Miller tree uses abstract markings, called pseudo-markings to repre-
sent certain sets of markings. Pseudo-markings are functions from P to INUfw}. 
We also define Vn e IN : w > n and w + n = w — n = w4-w = w. Using this we 
also extend the notation m[ti • • • tk)m' for such markings in the obvious way. 

A l g o r i t h m 4 .2 .1 {Karp-Miller Tree) 

Input: a Petri net V = (P, T, E, W, mo), a name r for the root node 

Output : a tree RT of nodes labelled by pseudo-markings 

Init ial isat ion: set U ;= {norfe(r, mo)} of unprocessed nodes 

while [ 7 / 0 

select some (t , m) E (7; 

if there is no ancestor node {ki,mi) of (&, m) with m = mi t h e n 

mg = m; 

for all ancestors {ki,mi) of {k,m) such tha t m i < m do 

for all places p € P such tha t mi{p) < m{p) do m2{p) = w; 

m := mz; 

for every transition t such tha t m[t)m' do 

create node 

create arc labelled t from {k,m) to (fc',m'); 

U := U U (k', m'); 

' The algorithm presented here differs slightly from the original. 
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The main idea of the algorithm is to simulate a Petri net V until one reaches 
a marking which is greater or equal than a preceding one. If the marking is 
strictly greater, then one will generalise the marking by inserting w's for all 
places where the number of tokens has actually increased. Simulation will then 
proceed using this new pseudo-marking. For example, if one can reach a marking 
7712 = (1 ,3 ,2 ,2) from mi = (1,0 ,2 ,1) by firing a certain sequence of transitions 
ti •••tn, the algorithm will proceed from the pseudo-marking (1,w,2,w). The 
introduction of w's is justified by the monotonicity of Petri nets. I.e. whenever 
a transition sequence r with > 0 is enabled in some marking m, then r is 
enabled in the marking m' with m[T)m'. If, additionally, 5T{P) > 0 for some 
place p, then by repeatedly firing r we may increase the number of tokens at 
place p arbitrarily. In the above example, the repeated firing of the sequence 
ii • • • tn can be used to generate arbitrarily large number of tokens in the places 
2 and 4. 

4.3 TCpL and Pe t r i nets 

Now we are ready to define a mapping from models M of domain descriptions 
V to Petri nets. Basically, fluents are mapped to places and actions are mapped 
to transitions. However, the weight function has to reflect both conditions and 
(positive and negative) effects of the execution of actions. Note tha t we cannot 
map domain descriptions to Petri nets, since they do not associate a particular 
state with the initial situation sO. 

Def in i t ion 4 .3 .1 {J-CpL —> Petr i nets ) Let V be a domain description in 
J-CpL and let M be a model of V. Then, by 'P{T>,M) we define a mapping 
of M and V to a Petri net {P,T, E,W,mo), such that 

1 = r = 

2. let Fl{g) denote the set of all fluents occurring in g £ St^. For each 
SUAp 6 SUAc we define with the help of F~ = Fl{St'^), F+ = Fl{St^), 
F^ = Fl{St'^) the edges of the Petri net: 

u ( f - u f r ) x w u u w x ( f r u f + ) 

,9. /or eocA(/,o) 6 E, iy((/,a)) = + eocA(/,a) E E, 

M^((/,a)) = | ^ e , / l + I ^ C , / | . 

For each g £ SIm « marking m/%(g) : SIm JN'^ is defined as follows: 

= {/ -> n I / 6 A n - |g,/|} 

Accordingly, for each s £ SitM o. marking my^(a) : SUm -> is defined as 
= m ; w ( a W e ^ ( a ) ) . i n particWor, mo » 771^(80*^). 
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T h e fo l lowing t h e o r e m es tabl i shes c o r r e c t n e s s of t h e a b o v e m a p p i n g , t h e r e b y en-

a b l i n g t h e r e d u c t i o n of m a n y p r o b l e m s c o n c e r n i n g m o d e l s of .FCf i , -descr ip t ions 

t o p r o b l e m s of P e t r i n e t t h e o r y ! N o t e t h a t t h e t r a n s i t i o n s y s t e m a s s o c i a t e d w i t h 

a m o d e l M. of s o m e TCPL d o m a i n V a l w a y s f o r m s a t r e e . B u t t h e t r a n s i t i o n 

s y s t e m a s s o c i a t e d w i t h t h e P e t r i n e t c o r r e s p o n d i n g t o V a n d M. u s u a l l y does 

n o t . H e n c e , t h e t r a n s i t i o n s y s t e m s a r e in g e n e r a l n o t i s o m o r p h i c b u t b i s imi l a r . 

T h e o r e m 4 . 3 . 1 Let M be a model of some domain description T> in J-CpL 

with signature S . Let V = {P,T, E,W,mo) = V{V,M) be the corresponding 

Petri net. Then K{M,Ls) and IN^) are bisimilar. 

P r o o f 4 . 3 . 1 T o s h o w b i s i m u l a r i t y we n e e d t o p r o v e 1) t h e e x i s t e n c e of a p p r o -

p r i a t e m a p p i n g s b e t w e e n t h e p r o p o s i t i o n s of t h e t w o t r a n s i t i o n s y s t e m s , 2) t h a t 

fo r e a c h s t a t e of t h e f i r s t t r a n s i t i o n s y s t e m ex i s t s a b i s im i l a r s t a t e of t h e sec-

o n d s y s t e m , a n d 3) t h a t fo r e a c h s t a t e of t h e s e c o n d t r a n s i t i o n s y s t e m ex i s t s a 

b i s i m i l a r s t a t e of t h e f i rs t s y s t e m . 

1) M a p p i n g s . L e t ' s cons ide r t h e m a p p i n g s : L^ and : IN 

b e t w e e n propos i t ions of and 

^•p{covered{m)) Holds{f^^^^^ o o - o 

w h e r e { / i , / 2 , • • • , / f c } = P, Holds{g) € -Le and m 6 IN^ . S ince we cons ide r 

H e r b r a n d - E j F c - m o d e l s only, t h e s i t u a t i o n gO"^ ex i s t s in e v e r y M a n d is p r e d e -

cessor (wrt of ail o ther g E hence is a r o o t e d trans i t ion 

s y s t e m . S ince is roo ted as well (in mo(gO'^) ) , it sufBces t o 

s h o w the ex i s tence of a b i s imulat ion $ wi th (gO"^,mo(gO'^)) 6 0 a n d the con-

s i s tency of the m a p p i n g s and . 

F i r s t , we s h o w t h a t for eve ry s i t u a t i o n s € Sit^, aM[Holds{g),s) w i t h g E 

S t ' ^ is t r u e iff a ( ^ M { H o l d s { g ) ) , m M { s ) ) is t r u e . F r o m t h e e q u a t i o n a l t h e o r y 

for t h e s o r t S t ^ , wh ich m u s t b e ful f i l led in e v e r y m o d e l of V , fo l lows t h a t 

A i J = Holds{g,s) iff fo r all g' E St^, s u c h t h a t \g',f\ = \g,f \ fo r al l / E 

Fl , A i 1= Holds{g', s). F u r t h e r m o r e , f r o m t h e de f in i t i on of Holds{g, s) fo l lows 

t h a t M 1= Holds{g,s) iff \g,f\ < \stateM{s), f \ for all / E Fl^. F r o m t h e 

d e f i n i t i o n of t h e c o r r e s p o n d i n g P e t r i n e t fo l lows ( m ^ ( a ) ) ( / ) = \state-^{s), f \ 

for all / E a n d for m a r k i n g s m' w i t h covered{m') = M{Holds{g)) = 

coi;ered(m;Vi(g)) ho lds m ' ( / ) = | g , / | for all / E Hence , A4 ^ jifo!dg(g,g) 

i E m < m/%(g) w i t h coi;ered(m) = $ ; v i ( ^ o / d g ( g ) ) , i.e. (by def in i t ion of and 

a a:^(E^oZdg(g),g) is true iff o : ( $ A i ( - ^ o f ( f a ( g ) ) , m ^ ( s ) ) is true. 

Simi la r ly , fo r eve ry m E 3t{mo,V) a n d eve ry m ' : P —> IN, a{covered(m'),m) 

is t r u e iff a{^-p{covered{m')),s) is t r u e w h e r e s E a n d m = m,M{s). 

T h i s fo l lows f r o m t h e d e f i n i t i o n of ^-p a n d t h e f a c t t h a t eve ry s E Sit''^ w i t h 
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m = m x ( s ) fulfils |s(a(e^^(g),p| = m(p) for all p £ P: ^-p{covered{m')) = 

Holds{p^ o o • • • o p™ = Holds{g), aM{Holds{g),s) is true for 

s G Sit^ iff \g,p\ < \state-^{s),p\ for all p 6 Fl^. 

2) Bis imi lar i ty I. Now let ( s ,m) G $ C S i t ^ x ^{mo,V) such tha t mM{s) = 
m. We prove that , for every action a € and s -%m s', there exists a 
marking m' such that niMis') = m' and m -4 m' . From the state update axioms 
follows for s' = do'^{a, s) that M |= state{do{a, s))oSt^ =st state{s)oSt'^ (since 
M (= Holds{St~ o if s A-m a')-

From the above arguments follows M |= Holds{St'^ o St'^js) iff \St~,p\ + 
,p| < m{p) for all p £ P. From the definition of P we conclude tha t there 

is a transition a £ T such that W{p,a) = ,p | + Hence, a is en-
abled in rriMis) iff Ai |= Holds{St'^ o St^,s). Furthermore, according to the 
state update axiom for a £ Act'^ for all / G Fl^: \state-^{do'^{a,s)), f\ = 
| aWe'^(8 ) , / | - , / | + ,y | . If the transition o is Bred in f , m A m', 
then for m ' and all / E F l ' ^ holds 

= , / l = | s W e ^ ( s ' ) , / | 

3) Bis imi lar i ty II. Analogously, for every transition t £T and m -4 m', there 
exists s' £ Sit'^ and a £ Act^ such tha t = m' and s' = do^{a,s). 
This follows from the one-to-one mapping of Ts,^ct(0) to T and from the above 
bidirectional correspondences. Since, for (aO- îTTio) = ?7io holds (see 
definition), it follows by induction that aO"^ ~ mo- • 

E x a m p l e 4 .3 .1 {TCpi —> Petr i net ) Let Ma he a model of T>a of Exam-
;8.5.^ aucA (Aaf 3We'^(80^) bay^opjaae_g_b^opJane_g_sorunway. T/ien 

V{Va, Ma) is isomorphic to the Petri net V of Example 4-i-l where fluent 
names correspond with place names, and action names correspond with transi-
tion names. K{Ma, and if('P,]N^) are hisimilar. • 

The above theorem will be applied in Section 5.3 to reduce satisfiability of 
the planning problem, i.e. the satisfiability of formulas like Aq A EFAg, to the 
(decidable) reachability problem in Petri nets. 

However, the question arises whether we can establish a similar correspondence 
in the opposite direction, i.e. we want to show that for every Petri net, there 
exists a corresponding model of a domain description in .FCfi,. To this end, we 
use the following mapping. Note that in this mapping we do not hard-wire the 
initial marking mo of a Petri net; this will enable us to examine richer classes 
of problems later on. 

Def in i t ion 4 .3 .2 (Petri ne t s -4- TCPL) Let V = {P,T,E,W,mo) be a Petri 
net. Then by V(V) a mapping from a Petri net V to a domain description V is 
defined as follows: 
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1. The signature of V is given by a J-Cpi signature where the elements of 
Act and Fl are given by FUN: {{p :->• Fl) \ p E P}, {{t Act) | t E T}} 

2. Let for each transition t 
o.= _ max(0,w((,pi)-vy(pi,()) max(0,W((,p&)-M'(p&,()) 

— Pi ° ° Pk 
O ' ' o 

W(f,pi,)-max(0,M/(t,pt)-ty(pk,()) 
Pk 

_ ^jy(pi,()-max(0,W(t,pi)-W(pi,t)) Q . . . Q 
^(V(pi,,()-max(0,M/((,Pk)-W(p&,()) 
f t 

for {pi,... = P- For every t G T, V{V) contains the following pair 
of precondition and state update axioms: 

V(s : Sit). {Poss{t, s) O Holds{St~[ o Stf,s)) 
V(s : Sit). {Poss{t, s) => state{do(t, s)) o St^ =st state{s) o S t f ) 

Furthermore, for every domain description D, we assume the domain indepen-
dent axioms described in Section 2.2. 

The following theorem establishes correctness of the above embedding of Petri 
nets into !FCpl and it will be the main tool to prove the undecidabihty of the 
J-CpL entailment problem in Section 5.2. (The reason why the theorem does not 
hold for all models of V is that the Fluent Calculus encoding does not contain 
the initial marking of the Petri net. However, as evident from the proof, the 
particular model ^ can be isolated eaaily.) 

T h e o r e m 4.3.2 For every Petri net V = {P,T,E,W,m,o), there exists a do-
main description V wrt some signature E in J-Cpi and a model Ai ofD, such 
that the transition system K[M,L^) and K{V,1N^) are bisimilar. 

P r o o f 4 .3 .2 We consider the Herbrand-EjFc-models defined by the marking 

mo: 1= 3We(80) o " where f = { p i , . . . , p t} . 

1) M a p p i n g s . Furthermore, the mappings and describe the mappings 
between labels of K{M,L-£) and K { V , f ^ ^ ) . 

2) B i s i m i l a r i t y I. Now let ( s ,m) E $ C Sit"^ x %(mo, P ) such tha t s E 

Sit'^im) where Sit^{m) denotes the set of all situations s such tha t mM{s) = 

m. We prove that for every transition t £T and m -4 m' , there exists a situation 

s' such tha t mM{s') = m ' and s -4/% s' for all s E Sit'^{m). From the definition 

of V follows for the marking m' ,\i m m', 

m'(p) = m(p) + t) 

for all p € P, since = W{p, t) < m{p) for all p E P. 
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From the definition of Holds{g,s) follows that M |= Holds{g,s) with g E St'^ 
iff \g,p\ < rnM{s){p) for all p E P. From the definition of V we conclude that 
there is a state update axiom SUA^ with t £ T^,Act(.9): 

V(s : Sit). {Holds{StJ o StJ ,s) =*- state{do{t, s)) o St^ =st state{s) o S t f ) 

where, in every model of V, 

Pt 

Hence, M. [= H o l d s o • • • o s) iff t is enabled in m. 

If t is fired, according to the state update axiom for t, for all p € Fl'^-. 

\state-'^{do''^{t, s)) ,p | 
= |aWe"^(3) ,p | - |5 ' f^ ,p | + |5'(^,p| 
= |afa(e"^(a),pi - f) - max(0, f))) 

+PF((,p) - max(0, ())) 
= | a W e ^ ( s ) , p | + 

3) Bis imi lar i ty II. Analogously, for every action a £ Act'^ and s A x s', 
there exists m' E %(mo,7^) and t £ T such that myn(s') = m' and m -4 m'. 
This follows from the one- to-one mapping of T to T^,Act{9) and from the above 
bidirectional correspondences. 

For ( sO^ ,mo) holds mM(sO-^) = nio- By induction follows sO'^ ~ mo- • 

It is well known that the class CFA of transition systems defined by finite au-
tomata without acceptance condition is strictly contained in the class of transi-
tion systems defined by Petri nets [116]. As a consequence of the above theorem, 
CjPA is also strictly contained in the class of transition systems defined by TCpl 
domains. In [145] it has been shown that the set of transition systems definable 
by a restricted Situation Calculus fragment corresponds to CFA - Hence, in terms 
of the associated transition systems T C p i domains are strictly more expressive 
than Situation Calculus domains of [145]. 

4.4 TCp and 1 - sa fe Pe t r i nets 

As we show in this section a similar correspondence as between models of T C p l 
domains and Petri nets can be established between models oi TCp domains and 
1-safe Petri nets. 
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Def in i t ion 4 .4 .1 {TCp —> 1—safe Petr i nets ) LetV be a domain description 
in TCp and let M be a model ofV. Then, by VCD, M) we define a mapping of 
M and V to a Petri net (P, T, E, W, mo): 

A P = { 7 | / e P / u e n ^ ^ } U P f ^ , 

T = {o e 

3. let Fl{g) denote the set of all fluents occurring in g £ St^ and let a £ 

= PZ(.S'(r), ), 
omd G = {/ I / 6 G } /or some ae( G C 7%en (Ae 

edges of the Petri net are defined as: 

^ = U ( p - u p r u ^ ) x w u 

aeAct^ 
U w x ( ( ( p ^ u p j ^ ) \ p + ) u p + u p r ) 

aeAct-^ 

/or eocA e 6 E, W^(e) = 1. 

For each g 6 a marking ruMig) '• St"^ -4 IN^ is defined as follows: 

= {/ -^ |g,/| I / e p r } u {/ -> 1 - |g,/| I / 6 Pf^} 

Accordingly, for each s E Sit''^ a marking m x ( s ) ; Sit''^ -> ]N^ is defined as 
mM(s) = 'mM{state^{s)). In particular, toq is given by m^(gO-^). 

Instead of considering the set of basic propositions as in Definition 4.1.1 we 
will use a restricted set of propositions which we define as IN^^. Each element 
of P f i s a function of the form: 

{/ n I / e p/^ A M e N } u {/ -> 0 I / e PZ^}. 

In the following we will show that in the Petri net resulting from the above map-
ping the place / is marked iff / is not marked. As a consequence, all propositions 
covered {m) of IN"̂  mapping / to a number different from zero can be expressed 
by propositions of f^pi using negation, e.g., covered{m) with m ( / ) = 1 can be 
expressed by cowered(m) A -'CO«ered(m') where = m'(p) for all p € Pf"^ 
and p ^ f and m'{f) = 1. 

The following theorem establishes correctness of the above mapping and ensures 
that the result is indeed a 1-safe Petri net. 

T h e o r e m 4 .4 .1 Let M be a model of some domain description V in TCp with 
signature S . Let V = {P,T,E,W,mQ) = V{V,M) be the corresponding Petri 
net. Then 
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1. K{M,Lj:) and K{V,N^) are bisimilar, 

2. V is 1-safe. 

P r o o f 4 .4 .1 
1) Mappings . We consider the mappings '• and 
between propositions oi K{M,Ls) and K{V,N^): 

co«ered({/ | p , / | | / E 

^•p{covered(m)) Holds{f^''^^^ o o • • • o 

Since K{M,L^) and K{V{V, M),I^^) are both rooted, it suffices to show the 
existence of a bisimulation $ with (50-^,7^0(30-^)) E 0 and the consistency of 
the mappings ^-p and 

First, we show that for every situation s e aM{Holds{g),s) with g € 
St'^ is true iff a{^M{Holds{g)),mMis)) is true. From the equational the-
ory for the sort follows tha t .M .ffof(k(g,a) iS for all g' 6 
such that Iff ' , /! = Iff,/I for all / G Fl^, M |= Holds{g',s). Furthermore, 
from the definition of Holds{g,s) follows that M Holds{g,s) iff \g,f\ < 
\state-^{s), f\ for all / 6 Fl^. Prom the definition of the corresponding Petri 
net follows ( m ^ ( g ) ) ( / ) = \state-'^{s), f\ for all / £ and for markings 
m' with covered{m') = M{Holds{g)) holds m ' ( / ) = \g,f \ for all / 6 Fl^. 
Since m'{f) = 0 for all / £ F l ' ^ , these places do not influence the value 
of a . yW 1= Holds{g,s) iff for m' with covered{m') = ^M{Holds{g)) holds 
m ' < mM{s), i.e. (per definition of um and a) aM{Holds{g),s) is true iff 
a{'^M{Holds{g)),mM{s)) is true. 

Similarly, for every m 6 5R(mo,'P) and every m' G a{covered{m'),m) 

is t rue iff a{^p{covered{m')),s) is true where s E and m = mM{s)-

This follows from the definition of $73 and the fact tha t every s £ Sit^ with 
m = m/x ( s ) fulfils | aWe '^ (6 ) ,p | = m(p) for all p E PZ"^: $p(coi;ered(m')) = 
.H^oZds(p|" o ° ° — ^oZ(k(g), a;//|(.ffofck(g), s) is t rue for 

8 E iff |g,p| < | 3We '^ (3 ) ,p | for all p E P Z ^ . 

2) B i s i m i l a r i t y I. Now let (3, m) E $ C Sit^ x %(mo, P ) such tha t m/%(3) = 
m. We prove that , for every action a £ Act'^ and s -^M S', there exists a 
marking m' such that mM{s') = m' and m A m'. From the state update axioms 
follows for s' = do''^{a, s) that M |= state{do{a, s))oSt~ =st state{s)oSt'^ (since 
M 1= Holds{St~ o St^,s) if s Ayn s'). 

From the above arguments follows M |= Holds{St~ o ,s) iff ,p | + 

|5 '(^,p| < m{p) for all p £ Fl^. Furthermore, M |= Holds{St'^ o 5 i " , s ) iff 

m(p) < |6^fa,p| for all p E P Z ^ and m(p) < 5 ni(p)-

Prom the definition of P we conclude tha t there is a transition o E T such 
that M^(p,a) = |6 ' fa ,p | + I'S'C.Pl and W^(p,a) = for all p E PZcafM-
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Hence, a is enabled in mM{s) iS M \= Holds{St'^ o SV2,s) A Holds{St2,s). 
Furthermore, according to the state update axiom for a € Act for all / € Fl"^: 
\state-^{do^{a,s)),f\ = \state-^{s), f\ - \St~,f\ + , / | . If the transition a 
is fired in V, m m', then for m' and all / G holds 

m'( / ) = + + 
= m ( / ) - 1 % , /I + |5'(+, /I = |aWe^(a' ) , / | 

and 

m'(7) = + + 
= m ( / ) + , / I - |.9f+, / I = 1 - | a W e ^ ( a ' ) , / | = 1 - m ' ( / ) 

3) Bis imi lar i ty II. Analogously, for every transition i 6 T and m A m', there 
exists s' e Sit''^ and a 6 Act'^ such that (a') = m' and s' = do'^(a,s). 
This follows from the one-to-one mapping of T^^Acti^) to T and from the above 
bidirectional corresponcknces. Since, for (sO'^,mo) ( m x ( s O - ^ ) ) ( / ) = mo( / ) 
holds and (toa4(sO-^))(/) = mo( / ) for all fluents / E F l ' ^ (see definition), it 
follows by induction that ^ mo-

Finally, by axiom (NM) in TCp it follows mM{sO-^){f) < 1 for all models M 
in the corresponding Petri net V. By definition of tum and the above equation 
m'{f) = 1 - m ' ( / ) which holds after firing any transition in V for all fluents 
/ G Fl'^, the Petri net V is 1-safe. • 

This theorem will be applied in Section 5 to reduce satisfiabihty of formulas of 
the propositional //-calculus for TCp domains to satisfiability for 1-safe Petri 
nets. 

E x a m p l e 4 .4 .1 {!FCp -> 1 - s a f e Petr i net ) Consider the domain of Exam-
ple 2.5.6 and the model Mo where state(sO) =st runway o bay o plane-q-b o 
plane-Q-S. The corresponding 1-safe Petri net is depicted in Figure 4-2. Note in 
particular the places plane-q-b and plane-qs which represent the non-existence 
o/ pjane_g_b on j p^ane_g_8. O 

Again, we want to establish a similar correspondence in the opposite direction, 
i.e. we want to show tha t for every 1-safe Petri net, there exists a corresponding 
model of a domain description in TCp. To this end, we use the mapping given 
in Definition 4.3.2. It remains to be shown that axiom (NM) is fulfilled for all 
1-safe Petri nets. 

T h e o r e m 4 .4 .2 For every l-safe Petri net V = {P,T, E,mo), there exists a 
domain description T> in TCp and a model M ofV, such that K{M,Ly:) and 

are hisimilar. 
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Figure 4.2: The l - sa fe Petri net corresponding to the domain of Example 2.5.6. 

P r o o f 4 .4 .2 Consider the Herbrand-Efc-models defined by the marking mo: 

M t= state{sO) =stpT°''''^^ ° where P = {pi,... ,p&}. Furthermore, 

the mappings 'ifM and of Proof 4.3.1 describe the mappings between labels 

of K{M,Ls) and KIV,!^^). Following the Proof 4.3.1 for a marking m' with 

m -4 m', m'ip) = m{jp) + W{t,p) - TV(p, t) and 

| aWe"^(do"^( f , s ) ) ,p | = |a(a(e"^(8),p| + W(^,p) -

if m'{p) = \state-'^{s),p\ for all p G P and all s £ Sit^• Consequently, 
\state^{do^{t,s)),p\ < 1 iff" m'{p) < 1 and axiom (NM) is valid if V is 1-safe. 

• 

As a consequence of this theorem, TCp is equally expressive as a further re-
stricted fragment of TCp where precondition axioms must not contain expres-
sions of the form Holds {g, s). This follows from the above proof where the map-
ping from 1-safe Petri nets to TCp is defined using the mapping from Petri nets 
to .FCpi. 

In this chapter we have shown tha t propositional Fluent Calculus domains, in 
particular TCpl and TCp domains, are strongly related to Petri nets. It is 
well known (e.g., [141]) that the propositional //-calculus cannot distinguish 
between strongly bisimilar transition systems, i.e. all formulas that are valid 
for one transition system are also valid in all bisimilar systems. As we proved 
bisimulation equivalence between models of these Fluent Calculus domains and 
Petri nets, we can reduce satisfiability problems (of the propositional //-calculus) 
for .FCf and .FCf i to/&om satisfiability problems in Petri nets. 



Chapter 5 

Decidability of Reasoning in 
the Fluent Calculus 

In this chapter we investigate the possibilities for automatic reasoning in the 
Fluent Calculus using the concepts introduced in the previous chapters. In the 
following four sections we apply the correspondences between Fluent Calculus 
domains and Petri nets. We start by proving decidability of satisfiability of 
the most powerful class of query logic formulas for the weakest Fluent Calculus 
fragment considered here - TCp . Then we show tha t satisfiability of the weakest 
query logic - CTLu - is already undecidable for !FCpl ~ the fragment of J^C tha t 
is more expressive than J^Cp but weaker than all other fragments considered 
here. Having established boundaries for decidability of the entailment problem 
in this way, we prove in Section 5.3 and Section 5.4 decidability of the planning 
problem and the extended planning problem, respectively, for domains. 
In Section 5.5 we show that these problems are not decidable in .FCi, domains. 
To this end we show tha t the halting problem for any deterministic two-counter 
machine can be reduced to a planning problem for a !FCl domain. Similarly, 
in Section 5.6 we extend the result on undecidability of planning in J-Cpln 
domains of [67] to a propositional version of 

5.1 Enta i lment in TCp 

T h e o r e m 5.1.1 Let V be a domain description V in TCp with signature E and 
(p a formula of the propositional ^-calculus wrt L^, and TAct,T,{^)- Let (/>' denote 
the formula of the query logic corresponding to (/> according to Corollary 3.2.2. 
Then it is decidable whether (j)' is satisfiable by some model A4 ofV. 

P r o o f 5 .1 .1 To every 1-safe Petri net V is associated a bisimilar finite au-
tomaton A-p where A-p consists simply of the reachability graph of IP, i.e. the 

95 
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graph resulting from identifying nodes labelled by equivalent markings in the 
reachability tree of V. This is due to the fact tha t there exist only possible 
markings in a 1-safe Petri net with P the set of places. Consequently, a finite 
automaton is also associated with every model ^ of a .FCf domain descrip-
tion V. Furthermore, since every model is up to bisimularity determined by 
the initial state, every domain description has only finitely many non-bisimilar 
models. As a consequence of [126] it follows that for any given finite automaton 
the satisfiability of any formula (j) of the propositional /i-calculus is decidable 
(for a discussion of algorithms cf. [30]). By Corollary 3.2.2 satisfiability of 0' 
can be reduced to satisfiability of cj). • 

Clearly, the decision procedure for satisfiabihty of some formula ^ may be also 
used to decide validity of -̂ 4>. 

Instead of using the correspondence between T C p domain descriptions and 1 -
safe Petri nets of Theorem 4.4.1, we may prove the above also by establishing 
a direct link between TCp and finite automata. However, for 1-safe Petri nets 
efficient and more specialised model checking methods have been developed, 
e.g. [36]. By applying Theorem 5.1.1 we may apply these methods to TCp 
domains with little additional effort. 

5.2 Enta i lment in TCpl 

In this section we show that entailment for TCpl, the second weakest fragment 
investigated here, is already undecidable, even if we only consider the first order 
queries (formulas characterised by CTLy). As the Fluent Calculus fragments 
y^CpLN, ^ C l and TCln, respectively, are strictly more expressive than !FCpl, 
it follows tha t entailment of CTLu is undecidable in these fragments as well. 

T h e o r e m 5.2.1 Let V be a TCpl domain description with signature S and (p 
a CTLu-formula wrt Ls and TAct,s{9). The question whether rj) is satisfiahle 
by T>, is undecidable. 

P r o o f 5 .2 .1 In [34] with a correction in [35] the undecidabiUty of the model 
checking problem of the following formula has been shown for Petri nets V = 

TT = AG(E(fyig)T => E ( W ) E F D e a d ) 

where tAB 6 T, Dead = - iE(i)T. The formula can be read as: Whenever the 
teT 

transition tAB is enabled then eventually after firing tAB a marking is reached 
where no tranisition is enabled. 
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The model checking problem for a Petri net P = ( f , T, E, IV, nio) is deGned as 
the problem to decide whether the associated transition system K{V, W'^) with 
the initial marking mo satisfies a formula (j). Hence, to prove the claim, it is 
sufficient to show that for every Petri net there is a domain description V and 
a formula tt' such that a model M of V satisfies ir' iff i f ( 'P , ]N^) satisfies tt in 
mo. 

Note that the labels IN'^ of the transition system can only repre-
sent lower bounds on the number of tokens of some marking. However, we 
may express upper bounds by using negation. Consequently, an initial mark-
ing m can be completely characterised as the set of all markings n such that 
for all p G P, m{p) < n{p) A -i(m(p) < n{p)) where m(p) = m{p) 4- 1. I.e., if 
V = (P, T, E, W, mo) and V = (P, T, E, W, m'o) are two Petri nets and both as-
sociated transition systems satisfy for all p E P, m{p) < n{p) A < n{p)) 
in mo and m'o, respectively, it follows mo = m^ = m and P and V are equiva-
lent. Let g denote the term o . - for pi e f , 1 < i < n. 

Assume, that D(P) is the domain description which corresponds to the Petri 
net constructed in Section 4.5 of [35]. Then a model M satisfies 

tt' = Holds (g) A Holds (g) A 
AG(E((^a)T => E(t;&a)EF ° 

where Holds{g) = $ p ( m ) using the mapping of Proof 4.3.1 and g 6 ] i : , a (0 ) , in 

situation SM iff there is a model M' of Z)(P) such tha t sO'^ satisfies tt' (note, 

t h a t a n y t w o i - l a b e l l e d t r a n s i t i o n s y s t e m s for %)(P) r o o t e d in SM a n d , 

respectively, where Istate-^' (sO^ ) , / | = \state-^{sM), f \ for all / G 

are isomorphic). The transition system K{M',L^) is bisimilar to 
hence it satisAes 7r' iff .fr(P, satisfies vr. O 

Corol lary 5.2.2 Let V he a J-Cpi domain description with signature E and (f) 
a CTLu-formula wrt Le and TAct,si9)- The question whether cf) is entailed by 
V, is undecidable. 

P r o o f 5.2 .2 This follows easily from the fact, that for the above Petri net 

tt" = {Holds(g) A Holds(g)) => 

AG(E((y&g)T E ( £ ^ b ) E F A j g t ' ^Holds{St f o St^ )) 

is entailed by V iff tt' is satisfied by V (due to the isomorphism mentioned in 
the previous proof). • 

Note that the property described by the formula vr" in the above proof can 
be characterised as follows: "Whenever a certain action a is executable, after 
the execution of a, it is possible to reach a terminal s tate". Such propositions 
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could, e.g., be of interest if the resource management of an operating system has 
to be verified. Furthermore, we can imagine a train entering a fail-safe mode. 
We might want to know, whether the train, after entering this mode, cannot 
change certain parameters anymore, e.g. increasing of speed is impossible. The 
undecidability of the entailment problem restricts the possibility of automated 
verification of such properties. 

Note that the proof in [34] reduces undecidability of the above problem to 
undecidability of the question whether two Petri nets have the same reachability 
sets. This result has been shown by Rabin and a proof can be found in [56]. As 
a consequence of this result, equivalence between domain descriptions wrt some 
initial states is in general undecidable as well. 

5.3 P lann ing Prob lems in TCpl 

Despite of the above undecidable entailment problems, important classes of 
CTLjy-formulas can be decided. To simplify the presentation of the following 
results we define the set A-hoUs as a subset of the boolean combinations of labels 
L s (see Definition 2.6.2). 

Def in i t ion 5 .3 .1 Let T, be a TC signature. 

T h e o r e m 5.3 .1 Let V be an arbitrary domain description in TCpl- Then, the 
satisfiability of any formula of the form tt = Aq A EFX^ where Aq, Ae 6 AhoUs 
is decidable. 

P r o o f 5 .3 .1 In this proof we construct a domain V and a finite set of formulas 
IT, such tha t V satisfies some formula tt' e IT iff D satisfies tt. Then, we show 
that the question whether V satisfies tt' is decidable by reduction to the Petri 
net reachability problem which is known to be decidable ([103]). 

Consider Qq to be the term g^, gg the term g" of the formula Aq and to be the 
term the term g" of the formula Ag respectively. Again, by g we denote 

for every state term g the term o • • • o for all / j of Fl. 

We define Gg to be the set of fiuents not occurring in gq and Gp the Suents not 
occurring in g^. These sets contain those fluents which can appear arbitrarily 
often in the initial state described by Aq and in the final state described by 
Ag. Now, we introduce a new signature S ' containing the signature 2 of D and 
additionally, two sets, Aq = {oq | / E Gq} and Ae = {a{ | / E G"}, of new 
constants of type Act. We augment the domain description V by the following 
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pairs of precondition axiom and state update axiom and call the resulting do-
main description^ V: 

V(s ; Sit). (Pass{a, s) ^ T) 

V(a : (foss(o, a) aWe(do(a^,a)) =gt aWe(8) o /) 

for each / E Gg, and 

V(s : Sit). {Poss{a,s) O Holds{f,s)) 
V(3 : (f oas(a, a) ̂  / o a(a(e( jo(o/, g)) =g( aWe(a)) 

for each / E G " . 

We call the first set of state update axioms (those for Gq ) SUAq and the second 
set of state update axioms (those for G") SUAg. Now, let II' be the set of formulas 

Holds{g'Q) A Holds{g'Q) A 'EF{Holds{g'^) A Holds{g'g)) 

for ail E TE,gt(0) with > | g g , / | for all / E 7E,F((0) where 
/ 0 Gg and |g^, / | = jgg, / | for all / E Gg, and |gp, / | > |g^, / | > |gP, / | for all 
/ E (0) where / 0 G^ and jg,, / | = |gP, / | for all / E G^. 

Since for every n > 0 and fluent / , / " contains fluent / at least once, it follows 
that the set of all g such that V(z ; St). o z J^st is finite (by 
definition of Holds{-, -)), hence 11' is finite. 

Now, we show that whenever V satisfies tt there is a tt' E H' such that V 
satisfies tt'. Assume, V satisfies tt, i.e. there is a model M and a sequence of 
situations so ,s i , in K{M,L^) such that Aq is true in sq and Ag is true 
in s„. Since we did not remove any state update axioms it suffices to show, that 
there is a tt' £ H' , with the corresponding Aq , Ag denoted as AJ' and X f , and a 
model M' of V such that 

1. there is a situation â , with a!_m a!_i ag such 

tha t Ag' holds in aL^ and | a W e ^ ( a o ) , / | = | aWe*^ ' ( ao ) , / | for all / E 

TE,Fz(0), and 

2. there is a situation a^^j^ with a% ^ a%_,_i " " 4 " ' 

such that Ag' holds in â _,_;̂  and | a W e ' ' ^ ( a n ) , / | = jaWe- '^Xa^) , / ! 
for all / E TE,F,(0). 

Assume, there is a situation sq fulfilling Aq and for a situation s '_„ € Sit"^ for 

some model M' of V the number n / of each fluent / occurring in state^' (s '_^) 

is given by | g g , / | < n / < if / E Go, and | g g , / | < » / < | g g , / | + 1 
otherwise (clearly, such a model exists if a model M exists). Then a situation 

^Note tha t in all models and for all situations Holds{l°, s) is assigned T. 
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Sq £ Sit''^ such that \state-'^{so), f\ — \state'^ (sg), / | for all fluents / can be 
reached by a finite number of transitions defined by axioms of SUAq (describing 
the actions a _ i , . . . , a_m)- Similarly assume, there is a situation s„ fulfilling Ag 
and for a situation € Sit^ for some model M' of V the number n / of 
each Guent / in is given by | gP , / | < ny < | g P , / | if / E and 

Iffe'/I < " / < \9e'f\ + 1 otherwise (again, the M' exists if there is a model 
M). Then a situation sj, 6 such that | s i a i e ^ ( s „ ) , / | = \state-^' f\ 

for all fluents / leads by a finite number of transitions defined by axioms of 
SUAE (describing actions an, • • • , an+k- i ) to the situation According to 

construction of 11', there is a tt' 6 11' such tha t Aj' and Ag determine the 
number of fluents correspondingly. 

As a second step, we prove that whenever there is a tt' G H' such tha t V 
satisfies tt', V satisfies tt. Suppose, that there is a model M' and a situation 

( O n + t - 1 , ( O n + t - 1 , . - - , ( G - m , s L m ) - - ) ) i ^ A i ' S U C h t h a t 

A g ' i s t r u e i n a ! _ m , i s t r u e i n a n d t o d e t e r m i n e d e n o t e s 

the number of transitions which are described by axioms of SUAq , k denotes the 
n u m b e r o f t r a n s i t i o n s w h i c h a r e d e s c r i b e d b y a x i o m s o f S U A g a n d n d e n o t e s t h e 

n u m b e r o f t r a n s i t i o n s w h i c h a r e d e s c r i b e d b y a l l r e m a i n i n g s t a t e u p d a t e a x i o m s . 

Then, the following propositions hold: 

1. There is a situation SQ e Sit^ such tha t g", —> S_rr, -4 • • • —> 

-4^ SQ where represent exactly those actions in 
with descriptions in SUAq and M' |= state{s'^„^) =st state{s'_^). This is 
due to the fact, tha t an application of an axiom of SUAq strictly increases 
the number of some fluent, only. Hence, applications of axioms which were 
possible in situations containing smaller amounts of this fluent, are still 
possible after increasing the number. Furthermore, clearly, Aq is true in 
all such SQ. 

2. There is a situation g% E such tha t g% ^ 

gj^+t where 0 ^ , . . . , represent exactly those actions in 

g^+t with descriptions in SUAg and g% with gg ^ g" ^ g{(_i 

s'n where o'Q, . . . , represent exactly those actions in with descrip-
tions in SUA in the same order as they appear in This is due to the 
fact, tha t an application of an axiom of SUAg strictly decreases the number 
of some fluent, only. Hence, applications of axioms which were possible in 
situations containing greater amounts of this fluent, are still possible be-
fore decreasing the number. Note, that M' \= state{s'^_^_i.) =st state{s'^j^^) 
and clearly, Ag is true in all such g%. 

Since, SQ ^ s'/ ^ g((_i g% contains only actions of V and any 
pair sjj and SQ fulfils Aq and Ag, respectively, there is a model M of V and 
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So E Sif^ and s„ E Sit''^ such that \state^(sq), f\ = \state-'^' {SQ), f\ and 

| aWe'^(3n) , / | = |5We^'(3%), / | for all Suents / and 80 ^ 3% n^2 

Sn-l S„. 

Finally, for every model M' of V which satisfies some tt' E 11' there is a 
model M" where tt' is satisfied in aO"^ . Hence, there exists a Petri net where 
V{V', M") = (P, T, E, W, mo) such that using the mappings of Proof 4.3.1, 

< m o ( / ) < 

for all fluents / (i.e. mo = rnM"{9o))- The formula tt' is true in M" iff there 
is a sequence of actions o o , . . . , On-i with n E such that Ag' holds in 6 

Sit''^ with -4 3i -4 • • • s„^ i s„. Due to bisimularity, such 
an action sequence exists iff there is a corresponding transition sequence in 

V such tha t mo % mi % • • • and m"{Holds{g'^)){f) < me{f) < 
(i.e. me = ^^^"(ge)). The latter problem is called 

the reachability problem for Petri nets and is known to be decidable [103]. • 

Corol lary 5.3.2 LetV be an arbitrary domain description in J-CpL- Then, the 
satisfiability of any formula of the form tt = Aq A EFX,, where Aq, Ae E is 
decidable. 

P r o o f 5.3 .2 From Equation 2.7 it follows that for propositional J-C domains 
any formula of A i^ , i.e. the language of boolean combinations of elements of 
L e (see Definition 2.6.2), can be represented as a finite disjunction of formu-
las of a holds- Consequently, any planning problem for ! f c p l domains can be 
represented by a finite set of instances of the problem tt = Aq A EFAg where 
Ao,Ae E ahous- These problems are decidable by Theorem 5.3.1. • 

Note tha t the algorithm of [103] to decide Petri net reachability problems also 
allows the computation of a transition sequence which leads from the initial 
marking to the final marking. It can thus be applied to compute an actual 
action sequence which solves the planning problem. 

Since the conjunctive planning problem is an instance of the planning problem 
we may apply the Petri net reachability algorithm also to decide the conjunctive 
planning problem. However, the complexity of this algorithm is very high and 
precise complexity boundaries for solving the reachability problem are not yet 
established. Instead, to solve the conjunctive planning problem we can also use 
the much simpler Procedure 4.2.1 of Karp-Miller. In Chapter 7 we propose an 
appropriately adapted method to this end and we show the completeness of the 
method for conjunctive planning problems for T C p i domains. 

Another question is whether it is possible to decide the extended planning prob-
lem in TCpL - Deciding the extended planning problem is particularly interesting 
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when the initial situation is not completely known. In this case from the solution 
to the planning problem it might follow that there is a successful plan for some 
initial state. From the solution to an extended planning problem we may con-
clude whether there is a successful plan for every initial state. The decidability 
of the extended planning problem for TCpi is examined in the next section. 

5.4 Ex tended P lanning P rob lems in T C p l 

T h e o r e m 5.4.1 Let V be an arbitrary domain description in J-Cpl- Then the 
validity of any formula of the form tt = Aq ^ EFXe where Aq, Ae E A Holds is 
decidable. 

P r o o f 5 .4 .1 Again, consider to be the term gP, the term g" of the formula 
Ao and gP to be the term g^, g" the term g" of the formula Ag respectively. By 
g we denote a state term associated with state term g as defined in Proof 5.3.1. 

We prove the claim by constructing a finite set 0 = {V'l,..., V'n} of Petri nets 
P'i = 7 '̂, Ej, , m|), 1 < 1 < n, such that vr is true in all models of D iS 
the union of the reachability sets ^{m[ ,V ' ) for all 1 < i < n contains the set 
S of all markings m with |gg, / | < m { f ) < [gg, f\ for all fluents / occurring in 
go and | g o , / | < m ( / ) , otherwise. The latter problem is decidable due to the 
following results. 

According to [56], for every finite set Q of Petri nets with equivalent places P 
there exists a Petri net 7̂ ® = ( f ® , IV®, m®) such that , 7^®)|f = 

where is Gnite. Consequently, the 

above problem can be reduced to the question whether for P®, 5i(m®,P®)|p 
contains S {containment problem). 

Note that 5 can be represented as a finite union of linear sets (i.e., S can be 
represented by a semi-linear set - for definitions of linear and semi-linear, see 
[29]) of markings given by the above conditions. Furthermore, for every linear 
set L it is straightforward to construct a Petri net VL = (PL ,TL , EL^WLJTUL) 
such tha t % ) = L. As in [85] it is possible to effectively construct for 
every such Petri net Vl a Petri net Vf = {Pf ,Wf , m f ) such tha t 

where is finite. 
Since % ) is linear for all Vl and due to the construction of Vf in [85], 
R { m f , P f ) must be semi-linear if = 5 i (mf , P®)|pL. Hence, the 
containment problem is decidable by using the following propositions which were 
shown in [85, 61]: 

1. It is decidable whether the reachability set of an arbitrary Petri net is 
semi-linear, and 

2. if the reachability set is semi-linear, it can be efi'ectively computed. 
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Finally, the equivalence of semi-linear sets can be decided (see, e.g. [50]). Hence, 
it is possible to decide whether contains for every 
linear set iL of S by verifying that 

Now, we present the construction of the finite set 0 of Petri nets, such that 
the first claim holds. To this end note that there is a symmetry fulfilled by 
every domain description V of TCpl, namely for every domain description V 
there is a reverse domain description V such that for every model M. of V, 
situation s G a € and s A s', there is a vW of V, situation 
s € Sit"^, a £ Act^ and a -% a' such tha t \state^{s), f \ = \state-^{s'), f\ and 
\state-^(s'), f\ = \state-'^{s), f\ for all fluents / . V is given by the signature of 
V where each action symbol a is substituted by some action symbol d. Every 
pair of precondition and state update axiom 

V(s : Sit). {Poss{a, s) Holds(St^ o s)) 

V(s : Sit). (Poss{a, s) => state{do{a, s)) o St~ =st state{s) o S f ^ ) 

in V is substituted by 

V(s : Sit). {Poss{a, s) 4* Holds{St'^ o St^^^s)) 
V(s : ( f 03a(o, a) => afak(do(o, s)) o =g( s(a(e(3) o 

From this and some observations given in the proof of Theorem 5.3.1 in this 
work, we conclude, the formula tt is valid in V iff for every number rif of fluents 
given by | g o , / | > " / > |go, / l / occurs in and > | gg , / | otherwise, 

exists a model M oiV and situations Se, sO"^ such tha t 

1. aO'^ ^ Si 4 " Sm-i ^ and gg E for actions 6 o , . . . , Om E 

and 

2. \state-^{se), f\ = Uf for all fluents / , and 

3. | g r , / | > | s W e ^ ( 8 0 ^ ) , / | > |gP, / | if / occurs in 13(0(6^(30"^),/| > 
\g^,f\ otherwise. 

The set of initial states described by the third condition may be not finite. To 
be able to reduce the above problem to a finite number of questions for Petri 
nets (where the initial marking corresponds to the initial state s(a(e'^(30'^) of 
a particular model M) we apply the idea of the Proof 5.3.1 and construct a new 
domain description ^ by adding a set of new actions and appropriate pairs of 
precondition and state update axioms of the form: 

V(s : ,9:f). ( fo sa (a , a) T) 
V(g : Si^). ( foas (o , a) => aWe(do (a / , a ) ) —gf aWe(a) o / ) 
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for all f E Gg and G" = { / | / £ FlA\g^, f\ = 0}. And finally, we investigate the 

(obviously finite) set 6 of Petri nets V{fi', M'), where g = state^' (sQ-^ ) fulfils 

| ge , / l < |g , /I < |ge,yi + 1 for all fluents / . The state term g determines the 
initial marking oiV{'D' ,M'). Then, tt is valid iff the union of the reachability sets 
of Petri nets of © contains all markings corresponding to the second condition, 
i.e. all markings m such that m ( / ) = n / for all fluents / and all possible n / . • 

Corol lary 5 .4 .2 Let V be an arbitrary dovfiain description in TCpl- Then, 
the validity of any formula of the form w = Xq => EFXg where Aq, Ag E is 
decidable. 

P r o o f 5 .4 .2 As for the planning problem, from Equation 2.7 it follows tha t any 
formula of for TCpl can be represented as a finite disjunction of formulas 
oi A Holds- Consequently, any extended planning problem for TCpl domains can 
be represented by a finite set of instances of the problem tt = Aq EFAg where 
Ao,Ae e Auoids- These problems are decidable by Theorem 5.4.1. • 

E x a m p l e 5 .4 .1 (Airport cont inued) For the airport domain of Exam-
ple 2.5.4 the queries of Example 3.4-1 are decidable. • 

5.5 P lann ing Prob lems in TCl 

Unfortunately, as we show next for non-propositional Fluent Calculus domains 
the planning problem is undecidable. 

T h e o r e m 5.5 .1 Let V be a !FCl domain description wrt signature S, X some 
variable declaration and -k he a planning problem, i.e. a formula of the form 
Ao A EFXe with Aq, Ag G A^^^x)- The satisfiability of ix is undecidable. 

We will prove the theorem by reducing the halting problem of deterministic 
two-counter machines to the above satisfiability problem. For deterministic two-
counter machines the halting problem is undecidable [110]. Informally, a two-
counter machine consists of two counters and a program which describes how 
the counters are decremented or incremented. 

Def in i t ion 5 .5 .1 A two-counter machine is a system M = {2,Q,6,qo,qf), 
where Q is a nonempty finite set of internal states, qo E Q is an initial state, 
and qj E Q is a final state. M uses {Z,P} as a tape alphabet. 6 is a move 
relation which is a subset of Q x {1 ,2} x {Z,P,—,Q,+} x Q (where "0", 
and "+" denote left-shift, no-shift, and right-shift of a head, respectively). Tapes 
are one-way (rightward) infinite. The leftmost squares of the tapes contain the 
symbol "Z", and all other squares contain "F". Each element of 5 is of the form 

wAere 6 Q, i 6 {1 ,2} , a 6 { Z , f , - , 0 , 4 - } . 
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A configuration of M is a tuple (g, n i ,n2 ) E <3 x IV^. The transition relation 
-^M over configurations of M is defined as follows: 

( g , m , n 2 ) - > M ( 9 ' , n ^ , n 2 ) an(f ( g , n i , n 2 ) ^ M ( g ' , n i , n 2 ) 

i f f one of the conditions 1-5 is satisfied. 

1. [q, i, Z, q'] E S and m = n'^ = 0. 

2. [q, i, P, q'] E 5 and rij = n- > 0. 

3. [q, i, -,q'] £ S and rij - 1 = n-. 

4- [q, i, 0, q'] £ 6 and m = n[. 

J. [g, 2, + , g'] E ond + 1 = 

Let c = (g, 711,712) be a configuration and let 5ft(c, M) denote the set {d | c A m 
c'}. c is called accepted i f f there exists {q,n[,n'2) £ K(c, M) such that q = qj. 

M is cdZW deterministic if for all distinct elements [qi,ii,xi,q[], [92,(2,^2,^2] £ 
5 holds 

91 = 92 (%i =: 12 A n ^ 372 A a;i,a;2 E { Z , f } ) 

A two-counter machine characterises a I/M-valued transition system. To this 
end we consider a set Lm of atomic propositions to consist of some propositions 
that allow us to define the acceptance condition"^. 

= QU{(g,7i, <,%) I g E Q A n E N A i E {1,2}} 

Then we define the mapping a : Lm x 5R(c, M) -4- {T, ± } accordingly such that 
a : ( ( 9 ) , " 2 ) ) = T iff g = g', a!((g,n,<, i) , (g' ,n^,n^)) = T i g g = g' and 
n < n-, for i E {1,2}. 

Clearly, K{M,Lm) = (%(c, M),-^m,S,a) is a LM-valued transition system. 

The halting problem for a two-counter machine M is the problem to decide 
whether a configuration c = (g, ni, ^2) is accepted by M. It can be expressed as 
the satisfiability of the formula 

(g,Til, < , l)A-,(g,7ii4-l, < , l)A(g,7%2, <, 2)A-'(g,712 + 1, < ,2)AEF(g;) (5.1) 

To show tha t there exists a domain description such tha t satisfiabiUty of tt 
is undecidable we show that a deterministic two-counter machine M can be 

^Our choice of Lm is based on its simplicity and its sufficient expressive power wrt a subset 
of L s . 
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encoded into a domain description V{M) of !FCl- To this end we consider the 
.FCf, signature Ec which contains the domain speciGc sort N and the functions: 

{fq Fl \ q E Q}; fi '• N ^ Fl; f2 : N Fl; 
oz Op : iV -> N; {a^ : N ->• Act \ r £ 6 A r [q,i, Z, g']}; {a^ Act | 
r E A r = [g,i,Z,g']}. 

1. For every r = [q,i,Z, q'] £ S of the above form we add the axioms: 

V(a : AY). ( foss(or ,a) o / , , 8 ) ) 
V(8 : ( foa3(or , a) ^ aWe(do(or , s)) o / , sWe(8) o 

2. For every r = [q, i, P, q'] G 5 of the above form we add the axioms: 

V(3 : (z : N) . ( foaa(or (z ) , s) E^oZda(/{(op(z)) o g)) 
V(3 : (r : AT), ( f oa3(ar W , 

3tafe(do(Or W , ^)) ° /g sWe(3) o 

3. For every r = [q, i,-,q'] € S of the above form we add the axioms: 

V(a : 5'if), (z : AT). (foa3(or(a;),8) ** W ) o /g,3)) 
V(s : At) , ( i : N) . (Poss(ar(3:), a) => 

3We(( fo (o rW, a)) o / , o / i (o f W ) =a( a W e (a) o o 

4. For every r = [g, i, 0, g'] E of the above form we add the axioma: 

V(3 : (r : N) . (fo88(ar(r), a) noWg(/, , a)) 
V(8 : : N) . ( f o s 8 ( o r W , ^ ) ^ 

8We(do(or(z),a)) o / , aWe(a) o 

5. For every r — [g, i, + , g'] E J of the above form we add the axioms: 

V(a : (z : AA). ( f o s 8 ( o r W , ^ Ho/da(/i(i) o / , , 3 ) ) 
V(a : 5'if), (z : AT). (foaa(Or(r),a) => 

aWe( jo(ar(z), a)) o o /^(z) =g( aWe(8) o o / i (op(z))) . 

P r o o f 5 .5 .1 To prove soundness of the above embedding we show tha t for any 
deterministic two-counter machine M with initial configuration cq = (g° ,n° ,n2) 
and the model M of D ( M ) with 

aWe"^(aO'^) = / ,o o / i ( o p ( . . . O f ( o 2 ) . . . ) o / 2 ( o f ( . . . o f ( o g ) . . . ) 
^ "v- ^ "v 

"i "2 

fr(A/(,Z,2^(X)) and A'(M, are bisimilar. 

Thereby we define the subset (AT) of Z,2^ (X) as follows 

I g e Q} 
o / , ) I g e Q A 2 e {1 ,2} A f 6 2^ ,2 . (1° ) } 

{3(z : N) . HoMa(/i(of (- - - (of W ) - )) o / , ) 
' v ' 

I g e Q A i 6 {1,2} A n 6 N } 
{3(z,2/: N) . j7oZda(/Xa:) o A W ) | i E {1,2}} 
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The mappings -> Lm and $M : Lm between propositions of 
Ar(A<, 1,2 ) and A'(M, ^M) for i E {1 ,2} and g 6 Q: 

= (g ) , 

» /%(3(a ; :N) . .goM3( / i (o f ( - ( o f W ) . . . ) ) o / , ) ) - (g,M, <,%) 
" v ' 

'^A<(3(i ,2/:N). .goZ(k(/i(a;)o/i(2/))) = ± 

- .a'oZda(/,), 
< ,z) = 3 ( r : N ) . I f o f ( k ( / i ( o f ( . . . ( o f W ) . . ) ) o / , ) 

Clearly and $ m are bijections and $_ax = 4'm except for the mapping 
of 3 (z ,y ; N). Holds{fi{x) o fi{y)) for i £ {1,2}. As we will show in the fol-
lowing, in a model where state^{sQ^) does not contain several copies of fi{-) 
there is no state associated with a subsequent situation of which contains 
several copies of /,(_). Consequently, by restricting to only those models any 
proposition of the form : N). Holds{fi{x) o fi{y)) is assigned ± in every 

state. The appropriate restriction of the set of models is expressed in the query 
corresponding to the halting problem. 

Furthermore, let c = (g ,ni ,n2) be a configuration and 

sWe"^(c) = / , o ( . . .Of ( o z ) . . . ) o/2(of (. . Of (oz) - - ) -

Then, from the definition of Holds follows for any p E Lm, ot{p,c) = T iff 
a!('$'M(p), 3 W e ^ ( c ) ) = T. And, vice versa, for any p E aWe"^(c)) = 
T iff a!($/%(p),c) = T. 

Since K{M,L'^J and K{M, Lm) are rooted in too(sO-^), it suffices to show the 

existence of a bisimulation $ with (sO'^, (g°, Mg)) 6 0 . 

Now let (3,c) E $ C x %(c, M) such that s E where 
denotes the set of all situations s where state^{s) = state-^{c). We prove 

that for every transition f E and c ->M c', there exists a situation a' such 
that state^{s') = state-^{c') and s %m a' for all s £ Sit'^{c). To this end 
we investigate all cases of the transition relation in Definition 5.5.1 with c = 

1. Let r = [q,i,Z,q'] and c A m c'. Then rij = 0 and n\ = Q and state^{c) 
contains fi{oz) and fg, i.e. M \= Holds{fi{oz) ° fq,s). Furthermore, 
is applicable and s ta te^{do- '^{ar ,s)) contains and and /2(<2) 

unchanged (for terms ^2, but not Consequently, s' = jo'^(or,8) 
and s(a^e'^(c'). 
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2. Let r = [q,i,P,q'] and c -^m c'. Then m > 0 and n[ — rii and state^{c) 
contains fi{op{t)) (for some term t), i.e. M |= Holds{fi{op{t)) o / , , a ) . 
Furthermore, a^it) is applicable and state- '^{do'^{ar{t)),s) contains fg> 
and and /2(f2) unchanged (for some terms and fg), but not 
Consequently, a' = j o ^ ( a r M , 8 ) &nd aWe-^(a' )=s( sWe'^(c'). 

3. Let r = [q,i,-,q'] and c A m c'. Then > 0 and n- = - 1 and 
state-'^{c) contains fi{op{t)) (for some term t), i.e. M |= Holds{fi{op{t))o 
fq,s). Furthermore, ar{t) is applicable and state-'^{do^{ar{t), s)) con-
tains / , / and / i ( ( ) (/2(f)) and /2((2) respectively) unchanged (for 
some terms ti and (2), but not Consequently, s' = do^{ar{t),s) and 
state^{s') =st state^{c'). 

4. Let r = [q,i,Q,q'] and c A m c'. Then = m and state^{c) con-
tains fq, i.e. M 1= Holds{fq,s). Furthermore, ar{ti) is applicable and 
s ta te ' ^{do^{ar{ t i ) , s ) ) contains / , / and / i ( i i ) and /2(i2) unchanged (for 
some terms and (2), but not Consequently, a' = do"'^(or((«),&) and 
aWe'^(a') aWe'^(c'). 

5. Let r = [q,i,-,q'] and c A m c'. Then n- = + 1 and state-'^{c) con-
tains fi{t) (for some term t), i.e. M |= Holds{fi{t) o a). Furthermore, 
ar(t) is applicable and state^{do'^{ar{t), s)) contains and fi{op{t)) 
( /2(of(( ) ) ) and /2((2) respectively) unchanged (for some terms 
and (2), but not fg. Consequently, s' = do'^{ar{t),s) and state-'^{s') =st 
aWe'^(c'). 

Analogously, let cm(s) for s G Sit'^ denote the configuration {q,n} ,n^) such 
that 

a W e ^ ( a ) =gf o / i ( o f (. . .Of ( o z ) . . . ) 0 /2 (0^ ( . . . Of ( o z ) . . . ) . 

Then for every action a G Act'^ and s A/% s', there exists c' G SR(co,M) and 
t e 5 such that cm{s') — d and c A m c'. This follows from the one-to-one 
mapping of <5 to TAct,i:W and from the fact that $M and are bijections. 
Furthermore, from the definition of the state update axioms it follows tha t there 
exists no situation where two distinct actions may be both executable, hence 
there is always a unique transition ( 6 6 associated with the execution of some 
action a: by definition, the state associated with the initial situation contains 
exactly one fluent with q E Q.ln every state update axiom exactly one fluent 
fq is removed and exactly one fluent / , / with q,q' E Q is added. By induction it 
holds that every state associated with a reachable situations contains precisely 
one fluent fg with q e Q. Consequently, only actions where the precondition 
axioms contain the same fluent (g £ Q) may be executable simultaneously. 
By definition of deterministic two-counter machines and their embedding in 
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TCl two actions a i , ag may only share / , in the precondition axiom if the 
precondition axiom of ai contains additionally fi{oz) while the precondition 
axiom of og contains additionally fi{op{x)) with i G {1,2}. Since there is no 
ground term t of sort St''^ such that fi{oz) and fi{op{x)) are unifiable with 
t, ai must correspond to the transition [q,i,Z,q'] G S for some q' G Q, and 02 
must correspond to the transition [q, i, P, q'] e S for some q' E Q. 

For (sO'^.co) holds c^(gO-^) = cq. By induction and the above relations it 
follows tha t ~ cq. 

Finally, the halting problem of two-counter machines can be encoded as a plan-
ning problem for V{M) using the mapping $M: 

Holds{fi{op{. _ (op(a:)) . . . )) ° fq) A 

Ml 
( . . . (of ( z ) ) . . o / , ) A -<3(1,3/ = ^ ) - .^oZ(k(/i(a;) o / i (y ) ) A 

ni + 1 
^oZ(k(/2(of ( . . . (of (a:)).. )) o A 

712 
- '^oZ(k(/2(of (. y (of (a:)) .)) o A ) A -<3(1,2/ : j!^^oZda(/2(r) o /2(!/)) A 

" 2 + 1 

AreQAr^^, A E F ^ o Z ( k ( / , J 

Thereby the negative sub-formulas^ ensure that the initial state does not contain 
/ i ( - ) , /2(-) multiple times, that the fluents / i ( - ) , /2(-) are uniquely determined, 
and that fq is the only fluent representing an element of Q. • 

Corol lary 5 .5 .2 Let V be a TCl domain description wrt signature S, X some 
variable declaration and let n be a formula describing a conjunctive planning 
problem, i.e. n is of the form XQ A EFXe with Aq £ ^LS{X) (^rid Ag — h A - • • Aln 
with h,... ,ln £ LsiX). The satisfiability of tt is undecidable. 

P r o o f 5.5 .2 This follows simply from the fact tha t the planning problem of 
the above proof is also a conjunctive planning problem with Ae = Holds{fgj). 

• 

Corollary 5 .5 .3 Let V be a TCl domain description wrt signature S, X some 
variable declaration and let TT be a formula describing an extended planning 
problem, i.e. tt is of the form Ao => EFXi, with Xo,Xe E Al^(x)- The validity of 
n is undecidable. 

®Note that instead of allowing atomic propositions based on Holds{-) only, we may addition-
ally consider state equations in L'^ . Then we may simply write e.g. state{s) = / i{op{oz))o 
f2(oz) ° fq to define the initial state. It would be interesting to investigate whether such 
expressions actually increase the expressive power of L^. 
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P r o o f 5 .5 .3 Note that in the planning problem representing the halting prob-
lem of Proof 5.5.1 the initial state is completely specified. Hence, we may state 
the halting problem for two-counter machines also as the validity of 

(9 ,n i , < , 1 ) 4 - 1 , < , 1 ) A (g,n2, < , 2 ) A -'(g,M2 + 1 , < , 2 ) => EF(g/ ) , 

Using the mapping we can transform this formula into a formula tt. Decid-
ing the validity of tt is an extended planning problem. Hence, from the proof 
of undecidability of the planning problem for TCl domains follows also the 
undecidability of the extended planning problem for J-Cl domains. • 

Furthermore, in the Proof 5.5.1 the state term associated with sO"^ may not 
contain any fluent more than once. Since none of the state update axioms may 
increase the number of copies of some fluent to become greater than one, it fol-
lows that the axiom (NM) of Definition 2.5.3 is fulfilled in all models of interest 
of domain D(M). Consequently, the planning problem as well as the extended 
planning problem are undecidable even if !FCl is additionally restricted by ax-
iom (NM). 

5.6 P lann ing Prob lems in T C p l n 

It has been shown tha t the use of negation in precondition axioms is already 
sufRcient to describe computationally complete systems: 

P r o p o s i t i o n 5.6.1 Let V be a TCpln domain description wrt signature £, X 
some variable declaration and tt be a planning problem, i.e. a formula of the 
form Ao A EFXg with Aq, Ae 6 Ai^(^x)- The satisfiability of tt is undecidable. 

A proof of this theorem is given in [67]. Similarly to the proof of Theorem 5.5.1 
it relies on the reduction of the halting problem of two-counter machines to 
^CpLN domains. Since only constant fluents are allowed in !FCPLN the counter 
value Tij 6 IN with i G {1,2} is represented by a term fi o • • • o fi. 

m 

Incrementing and decrementing of the counter is represented as adding and re-
moving of a single fluent / j , respectively. In contrast to TCpl domains the test 
of the counter for zero can be expressed using negation: Holds{fi, s). Conse-
quently, this feature can be understood aa being responsible for the expressive 
power gained by wrt .FCfi . 

Note that for the same reason as for .FCi, domains the extended plaiming prob-
lern and the conjunctive planning problem are both undecidable for TCPLN 
domains as well. 
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The simple Fluent Calculus with specificity 

As has been argued in Section 2.8, TCln is more expressive than the simple Flu-
ent Calculus with specificity relation !FCL< of [70]. Furthermore, for TCPLN, 
the propositional version of !FCLN, the planning problem has been shown to 
be undecidable. On the other hand, it is clear from Section 5.5 that since any 
two-counter machine can be represented as a !FCi domain, it can also be rep-
resented as a domain of the simple Fluent Calculus with specificity and, hence, 
the planning problem is undecidable in J^CL< as well. However, for !FCPL, the 
propositional version of TCl, we have shown in Section 5.3 tha t the planning 
problem is in fact decidable. The question arises whether the planning problem 
is also decidable in the propositional version TCPL< of TCL< (we define TCPL< 
domains simply as domains where all fluents and actions are constants). 

In the following we will show that this is not the case. To this end we will rep-
resent TCphN domains as TCPL< domains. We will show bisimularity between 
the transition systems associated with models of the TCpln domains and re-
stricted versions of the transition systems associated with models of the !FCL< 
domains. Such a restricted version results from removing all situations s from a 
transition system where a particular fluent (/c) does not occur in state{s). Then 
we show that every formula describing a planning problem for a J-CPLN domain 
V can be extended to characterise the above restriction. Since it turns out that 
this extended formula describes a planning problem for the J-CpL< domain that 
corresponds to V, it follows that every planning problem for a TCPLN domain 
can be represented as a planning problem for a TCPL< domain. 

We define a !FCPL< domain to be a TCi< domain (see Definition 2.8.2) where 
all fluents and actions are constants. Now we describe how TCPLN domains are 
translated into TCpl< domains. 

Def in i t ion 5.6.1 {TCPLN ^CpL<) Let V be a domain description in 
^CpLN wrt some signature E. We define S< as the signature S together with 
the additional definition fc > Fl where fc does not appear in E. Furthermore, 
we define P < to denote a TCplk domain wrt S < , such that for every action a 
and every pair of precondition and state update axioms of T> of the form 

V(s : Sit). {Poss{a, s) 4* Holds{St^ o St^ , s) A Holds{St^, s)) 
V(s : Sit). {Poss{a, s) => state{do{a, s), s) o St~ =st state{s) o 

where for those fluents fx,.. •, fk of Tl with \St2, fi\ > 0 (i — 1,... ,k) Ui = 
/ i | - o > 0 dko AoZda, %)< confatm (Ae 2* 4-1 patra 
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of axioms: 

V(s : Sit). {Poss{a, s) <#» Holds{fc ° St~ o St~,s)) 

V(8 : At), (f 053(0,3) => 3We(do(o, 3), 3) o 3 W e ( 3 ) o 

V(3 : ( f 033(0, 3) 4* .EoZj3(/c o -S'fa O O , 3)) 
V(3 : ( f 033(0,3) => 3We(do(o, 3), 3) o =g( 3We(3)) (5.3) 

V(3 : ( f 033(0,3) .̂ oZd3(/c o o ° ° ° /&"", s)) 
V(3 : A() . (fo33(a, 3) => 3We( jo(o, 3), 3) o 3We(3)) 

The idea behind this mapping is based on viewing a statement like Holds{St'2, s) 
as a set of exceptions for the executabihty of action a. For every fluent fi oc-
curing in St^ with rii > 0, Holds{St^,s) describes one exception, i.e. the upper 
bound |5i" , fi\ of copies of fluent fi that must not be reached. Note tha t if rij < 0 
for some fluent fi then f 033(0, s) is not valid for every situation s and the action 
a is never executable. In TCpl< the case where no exception applies is repre-
sented by the precondition axiom which contains only the Holds{St'^ o St'^,s) 
statement of the corresponding precondition axiom of the TCpln domain. For 
every exception this axiom is overruled by another more specific precondition ax-
iom. Since several exceptions may apply simultaneously we have to ensure tha t 
there is always one unique most specific precondition axiom for every combina-
tion of exceptions. However, in TCL< (and TCPL<) domains it is not possible 
to prevent the executability of an action (see Section 2.8) explicitly. To label the 
situations tha t are not reachable in models of the J-Cpln domain we introduce 
an additional fluent fc which is removed from a state whenever an exceptions 
has applied. Then, for every situation in a model for the !FCPLN domain there 
exists a situation "labeled" by fc in the corresponding model of the TCPL< 
domain. 

P r o p o s i t i o n 5 .6 .2 Let V he a J-CPLN domain description and M. be a model 
ofV. Let M.< denote the model of the !FCPL< domain D< where for all f 6 

\state-'^i{sO-'^i), f\ = |aWe-^(gO-^), /| and |aWe-^< (gO'^^), / d = 1-
Let Kc{M<,Ly,^) denote the transition system which is the result of removing 
all those situations s from K{M<, where state^^ (s) does not contain the 
fluent fc- Then Kc{M<, L^^) and K{M,L^) are bisimilar. 

P r o o f 5.6 .2 Note first that none of the actions of V is executable in some 
situation 3 if 3^0(6^^(3) does not contain /c. Consequently, those situations 
are leaves of Ar(Ai<,I}E(.) and, hence, Arc(Ai<,Z,E<) also forms a tree. 

Furthermore, there may be several pairs of axioms describing preconditions and 
eEects of some action o. According to the specificity relation the first pair is 
chosen in some situation s iS Holds{fcoSt~ oSt"^, s) is satisfied but not Holds{fcO 



5. DECIDABILfTY OF REASONTNG M THE ff,Z7ENT CAI,C[;Z,[/S 113 

<9̂ 0 o 'S'C ° 0 - 0 , a) for any { i i , . . . , w } G { ! , . . . , A}, i.e. i 5 with 
Mi = |5 ' f"o o /^| + i = 1 , . . . , t 

.^oZda(/c o o A g ) A o . . . o , s) (5.4) 

is satisfied. Another pair is chosen iff Holds{fc°St~ o St^, s) but Proposition 5.4 
is not satisfied. In this case the chosen pair is unique since for any set of pre-
condition axioms 

V(s : Sit). {Poss{a, s) Holds{fc o St~ o St^ o Fi,s)), 

: (5.5) 

V(s : Sit). {Poss{a, s) Holds{fc o St~ o St^ o F„, s)) 

that are satisfied in s there exists another pair of axioms with precondition 

V(a : 6'*^). ( f oaa(o, a) ** j^oMa(/c o 6'^^ o o o . . . o g)) 

which is satisfied and which overrules each precondition of the Set 5.5. 

We consider the following mappings -> and Li;< 
between propositions of Kc(Ai<,Z,2<) and K(/7(,Z,E) for any g e m > 1: 

^{Holds{g)) = Holds{g), 
$Zg( f fo ( (k ( / c0 9)) = .H^oW8(g), 

$E<(.B^of(k( /^og)) = ± 

^•s{Holds{g)) = Holds{g) 

Note tha t Holds{fcog, s) is satisfied in a situation s of Kc(M<, L^) iSHolds{g, s) 
is satisfied. This is due to the fact that all states associated with situations 
of Kc{M<, L s ^ ) contain precisely one copy of fc- As another consequence, 
Holds{f^ o g,s) is not satisfied in K c { M < , Ls^) for any m > 1. Since We< 
respects these relations, (p), a) = T iff a{p, s) = T for all p 6 Z,E< and, 
clearly, a ( $ g ( p ) , (s)) = T iff a{p, state^{s)) = T for all p £ L-£. 

Since A7c(//(<,Z,E<) and Ar(Ai,Z,i;) are rooted in and aO" ,̂ respectively, 
it suffices to show the existence of a bisimulation $ with ( sO '^ - , sO '^ ) E $ . 

We denote by Sit^{s<) for s< 6 Sit^^ the set of all situations s G Sit''^ such 

that for all / G Fl^ \state-'^{s), f\ = \state^^{s<), f\. 

Now let ( s , s<) G $ C x Sit"^^ such that s G Sit-^{s<). We prove that 

for every action a E Act''^ and s< Aa4< s<, there exists a situation s' such 

that s s' and for all / G \state^{s'), f\ = | s W e ' ^ ( 3 < ) , / | . Since the 

Formula 5.4 is satisfied in some situation s and some action a iff the precondition 

of Axioms 5.2 is satisfied, we have the following cases: 
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1. Formula 5.4 is satisfied and, hence, the first pair of Axioms 5.3 is valid. 

Consequently, s< for some situation s<. Due to Axioms 5.2, 

s A x s' for some s'. Furthermore for all / 6 Fl^ holds 

| 3 W e " ^ ( s ' ) , / | = | a W e - ^ ( 3 ) , / | - | 5 ' ^ ; ' , / | + |6^f+,/ | 
= | a W e ^ s ( a < ) , / | -

2. Formula 5.4 is not satisfied, but (at least) one of the preconditions of the 
Axioms 5.3 is satisGed. Then a is executable in 8< of but 
\state-^i{s'^), fc\ = Istate-'^^ {s<), fc\ - 1 = 0. Hence, by definition of 
KciM<,L-£^) , a is not executable in s< oi Kc{M<, L^^) . 

3. Formula 5.4 is not satisfied and none of the preconditions of the Axioms 5.3 
is satisfied. Then a is not executable in Kc{M<, Lj:^) nor in K{M,L^). 

On the other hand, we denote by Sit'^{s) for s £ Sit^ the set of all situations 
s< £ Sit^^ such that for all / £ Fl'^ \state-'^i{s<), f\ = \state^{s), f\. 

Then, for every action o E and a a', there exists a situation a< 

such tha t s< AyVf and for all / E Fl^ \state^^{s'^), f\ = \state^{s'), f\. 
This is a consequence of 

1. the fact tha t every state associated with some situation s of Kc{M<, ) 
contains precisely one copy of fc, 

2. the above mentioned correspondence between Formula 5.4 and the pre-
condition of Axioms 5.2, and, 

3. the relation between successor states of Case 1, 

By induction and the above relations follows aO"̂  ~ sO"^^ for K{M. ,L^) and 
Kc(M<,Lz^). • 

Now, to show that every planning problem cp = Xq A EFAg of domain V can 
also be represented as a planning problem 4>' of D<, we have to find a CTLu 
formula that reflects both, the planning problem of domain V and the restric-
tion of the considered situations of K(M<, to those tha t appear also in 
Kc{M<, Since for every model M of V exists a model M< such that 
K{M,Ly,) ~ Kc{M<, Ly,^) and with (we apply VPs on a formula A by 
substituting every atomic proposition p occurring in A by 

j< r ( / / f , ^E) |=AoAEFA« iS A r , ( A / ( < , . L E j | = $ z ( A o ) A E F ^ 2 ( A « ) 

However, the formula î ' has to take the following into account: 
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1. The formula should only be satisfied by those models M of V<{'D) 
where Istaie-^5 ( s O - ^ s ) J I — 1. This is to ensure that i i 'c(A^<,//e<) is de-
fined and every branch of Kc{M<, _L%:<) is also a branch in K{M<, ). 

2. The formula 4>' should only be satisfied by those paths ir of K { M < , L s ^ ) 
where each state associated with some situation on tt contains /c- Clearly, 
every such path of K { M < , L s ^ ) is also a pa th of K c { M < , L s ^ ) - Only the 
state associated with the last situation on a path may not contain fc-

A formula which fulfils these requirements is given as follows. 

= $E(Ao) A A A EF($E(Ag) A 

The additional statement Holds ( f c ) A Holds ( f ^ ) ensures tha t the initial situation 
is "labeled" by precisely one copy of fc, i.e. it represents indeed a situation 
of some model M of the TCpln domain. The statement Holds{fc) after the 
temporal operator E F ensures that the final situation represents also a situation 
of Af. Since /c may only disappear at a leaf of all situations on 
the path from the initial situation to the final situation represent situations of 
M. Hence, the formula (j>' is satisfied in V< iff the planning problem 4> is satisfied 
in D. 

Clearly, 0' is itself a planning problem for domain V<. Consequently, any plan-
ning problem of TCpin and, hence, also the halting problem for two-counter 
machines can be represented as a planning problem in TCpL<-

5.7 S u m m a r y of Resul ts 

The Table 5.1 summarises the results we proved in this chapter. Every position 
in the table determines a decision problem. The column determines a Fluent 
Calculus fragment and the line determines the class of queries considered. The 
character "-H" represents a positive result, i.e. decidability of the decision prob-
lem. The character " represents general undecidability of the problem class. 
The results we have explicitly proven in this chapter are marked by 9 and 
®, respectively. The frame surrounding some lines and columns shows how the 
decidability/undecidability of other decision problems depends on the proven 
result. E.g., as a consequence of the undecidability of the planning problem in 
J^Cl the extended planning problem in TCln is also undecidable. However, 
due to the two dimensions of the table, some dependencies could not be repre-
sented, e.g. undecidability of the extended planning problem in TCln is also a 
consequence of undecidability of planning in !FCpl<-

As mentioned before the undecidability of the planning problem for TCpln 
domains (marked by "0*") has been shown in [67], which waa developed inde-
pendently of our work. The decision problems marked by "*" in the table are 
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TCLN ^CL ^CpLN ^CpL< 
E n t a i l m e n t (//) _ * _ — * — - 8 

E n t a i l m e n t {CTLjj) _ * _ 
- * - 8 4-

E x t e n d e d P l a n n i n g —* — _ * _ 8 4-
P l a n n i n g - * 8 8 * 8 8 

C o n j u n c t i v e P l a n n i n g _ * _ 
- * - 4- + 

F r a g m e n t S y n t a c t i c P r o p e r t i e s 

l inear , pos i t ive a n d n e g a t i v e p r e c o n d i t i o n s 

linear, positive preconditions 
p r o p o s i t i o n a l , l inear , pos i t ive a n d n e g a t i v e p r e c o n d i t i o n s 

p r e p o s i t i o n a l , l inear , pos i t ive p r econd i t i ons , specif ic i ty 

p ropos i t i ona l , l inear , pos i t ive p r e c o n d i t i o n s 

p r o p o s i t i o n a l , pos i t ive ( a n d nega t ive ) p r e c o n d i t i o n s 

^Cln 

^CpiN 
^Cph< 

T a b l e 5.1: T h e t a b l e on t o p c o n t a i n s a s u m m a r y of ou r r e su l t s a n d some of the i r 

consequences . T h e t a b l e be low recal ls t h e s y n t a c t i c p r o p e r t i e s of t h e f r a g m e n t s 

cons ide red here . 

a lso consequences of th i s r e su l t . Also in [67], i t h a s b e e n s h o w n t h a t m o n a d i c 

s e c o n d - o r d e r quer ies a r e dec idab le for a so-cal led restricted Fluent Calculus. T h i s 

Sragment does not allow the expression of the kind of state equations as used 
in t h e Def in i t ion 2.4.1 of s t a t e u p d a t e ax ioms . I n s t a t e f o r m u l a s of [67] the i r 

exp re s s ion requ i res two f ree var iab les , b u t only one is a l lowed in t h e r e s t r i c t e d 

F l u e n t Ca lcu lus . Hence , t h e dec idab i l i ty r e su l t s c o n c e r n i n g t h e r e s t r i c t e d F lu -

en t Ca l cu lus can n o t b e c o m p a r e d wi th ou r resu l t s . Final ly , i t h a s b e e n shown 

in [67], t h a t first-order quer ies a re dec idab le for p r o p o s i t i o n a l F l u e n t Ca lcu lus 

f r a g m e n t s e q u i p p e d w i t h t h e A x i o m (NM). For t h e f r a g m e n t TCp t h i s r e su l t is 

a lso a consequence of t h e dec idab i l i ty of t h e s t r i c t ly m o r e express ive /x-calculus 

queries. 

T h e p l a n n i n g p r o b l e m for J^Cp ( m a r k e d by -H**) ha s a l so b e e n a d d r e s s e d in 

[69]. T h e r e it ha s been s h o w n t h a t t h e p l a n n i n g p r o b l e m w h e r e t h e in i t ia l s t a t e 

is c o m p l e t e l y specif ied is dec idab le . T o p rov ide efficient dec is ion p r o c e d u r e s a 

r e p r e s e n t a t i o n us ing b i n a r y decis ion d i a g r a m s has b e e n p r o p o s e d . 
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Chapter 6 

Fluent Calculus Domains as 
Logic Programs 

6.1 Au toma t i c Conjunct ive P lanning 

F r o m a n a u t o m a t i c r e a s o n i n g p o i n t of v i ew t h e m o s t i n t e r e s t i n g r e s u l t s of T a -

ble 5 .1 a r e t h o s e c o n c e r n i n g t h e d e c i d a b i l i t y of ( e x t e n d e d / c o n j u n c t i v e ) p l a n n i n g 

problems for the fragment This is in particular the case if we keep in 
m i n d t h a t TCpl a l lows t h e d e s c r i p t i o n of a m u c h r i cher c lass of s y s t e m s t h a n 

T C p o r t h e s i t u a t i o n ca l cu lus f r a g m e n t of [145], w h i c h e n a b l e t h e r e p r e s e n t a t i o n 

of finite state machines, only. However, as the proo6 of decidability of reach-
ab i l i t y in [103] a n d s emi - l i nea r i t y in [85, 61] for P e t r i n e t s , r e spec t ive ly , show, 

t h e dec i s ion a l g o r i t h m s a r e c o m p l i c a t e d a n d c o m p u t a t i o n a l l y v e r y e x p e n s i v e (in 

f a c t , a t t h e t i m e of w r i t i n g t h e c o m p l e x i t y b o u n d a r i e s a r e n o t e v e n suf f i c ien t ly 

e x p l o r e d ) . I n c o n t r a s t t o th i s , t h e e x i s t e n c e of a c o m p a r a t i v e l y s i m p l e dec i s ion 

p r o c e d u r e for t h e c o n j u n c t i v e p l a n n i n g p r o b l e m is g u a r a n t e e d by i t s c o r r e s p o n -

d e n c e (see S e c t i o n 6.3) t o t h e cove rab i l i t y p r o b l e m for P e t r i n e t s , wh ich c a n 

b e so lved b y A l g o r i t h m 4 .2 .1 (see S e c t i o n 4 .2) . H e n c e , in t h i s l a s t p a r t of t h i s 

w o r k we f o c u s o n d e v e l o p i n g a n a u t o m a t i c r e a s o n i n g p r o c e d u r e t o dec ide t h e 

c o n j u n c t i v e p l a n n i n g p r o b l e m for T C p i d o m a i n s . 

T o e n a b l e g e n e r a l a u t o m a t i c r e a s o n i n g a b o u t F l u e n t C a l c u l u s d o m a i n desc r ip -

t i ons , i t h a s b e e n p r o p o s e d in [68] t o r e p r e s e n t F l u e n t C a l c u l u s d o m a i n s as 

d e f i n i t e E - p r o g r a m s (i.e. de f in i t e logic p r o g r a m s w i t h a n e q u a t i o n a l t h e o r y , see 

D e f i n i t i o n 1 .3 .1 in S e c t i o n 1.3). D e f i n i t e E - p r o g r a m s d o n o t a l low t h e u s e of 

n e g a t i o n in t h e de f in i t i on of c lauses . C o n s e q u e n t l y , o n l y d o m a i n d e s c r i p t i o n s 

of TCl a n d i t s p r o p o s i t i o n a l f r a g m e n t TCpl can b e r e p r e s e n t e d in t h i s way. 

H o w e v e r , a s we d e m o n s t r a t e in t h i s c h a p t e r , even for TCpl t h e a p p l i c a t i o n of 

a s t a n d a r d ca l cu lu s for de f in i t e E - p r o g r a m s like S L D E - r e s o l u t i o n d o e s n o t l ead 

to satisfying results, in particular it does not provide a decision procedure for 
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t h e C P P . B e c a u s e of t h i s , t h e m e t h o d w e will d e v e l o p i n C h a p t e r 7 is b a s e d 

o n p r o g r a m t r a n s f o r m a t i o n t e c h n i q u e s f o r d e f i n i t e log ic p r o g r a m s . H e n c e , we 

m a y a p p l y i t a l s o t o s o m e !FCl d o m a i n s . F u r t h e r g e n e r a l i s a t i o n w o u l d r e q u i r e 

s i g n i f i c a n t e x t e n s i o n s of t h e u n d e r l y i n g p r o g r a m t r a n s f o r m a t i o n t e c h n i q u e s . 

6.2 TCl domains as definite E-programs 

A c c o r d i n g t o S e c t i o n 2 . 3 w e c o n s i d e r o n l y H e r b r a n d - E j r c - i n t e r p r e t a t i o n s ( see 

S e c t i o n 2 .3 ) fo r F l u e n t C a l c u l u s d o m a i n d e s c r i p t i o n s . H e n c e , in c o n t r a s t t o 

H e r b r a n d - E - i n t e r p r e t a t i o n s , t h e f u n c t i o n state c a n b e i n t e r p r e t e d f r ee ly , r a t h e r 

t h a n b y t h e m a p p i n g t o t h e t e r m s e t {state{s) | s E a c c o r d i n g t o 

Definition 1.1.10. Since for definite E-programs only Herbrand-E-interpretations 
are considered the function has to be represented in a diSerent way. It is 
well known that any function may be equivaiently represented as a relation be-
t w e e n t h e d o m a i n a n d t h e c o - d o m a i n . A s H e r b r a n d - E - i n t e r p r e t a t i o n s a l l o w t h e 

f r e e i n t e r p r e t a t i o n of p r e d i c a t e s w e m a y r e p r e s e n t t h e f u n c t i o n state i n d e f i n i t e 

E - p r o g r a m s b y s o m e f r e s h p r e d i c a t e AssSt : Sit x St. 

W e m a y n o w r e w r i t e t h e d o m a i n i n d e p e n d e n t a x i o m s O a t ( see S e c t i o n 2 .2 ) i n 

a l og i c p r o g r a m m i n g s t y l e , w h e r e w e d e n o t e t h e r e p r e s e n t a t i o n of e a c h F l u e n t 

C a l c u l u s p r e d i c a t e b y a s u b s c r i p t 1 {Less r e p r e s e n t s t h e p r e d i c a t e < ) . 

.Le3ai(8i,32) 32 = . .. 

.Le33i(3i,S2)<-a2 = do (a ; , 8 ) , f oa s i ( r , g ) , i e sa i (8 i , g ) . 

D u e t o P r o p o s i t i o n 1 .3 .1 s h o w n in [72], e v e r y d e f i n i t e E - p r o g r a m h a s a s m a l l -

e s t H e r b r a n d - E - m o d e l . N o t e t h a t i n t h e s m a l l e s t H e r b r a n d - E - m o d e l t h e s e c o n d 

a x i o m of Qsu a n d t h e " - > " - p a r t of t h e first a x i o m of Qsu are b o t h v a l i d . 

F u r t h e r m o r e , if t h e s e l e c t i o n r u l e of S L D E - r e s o l u t i o n a l w a y s s e l e c t s t h e s u b -

g o a l t h a t is l e f t m o s t t h e n t h e s e c o n d c l a u s e d e f i n i n g Lessi c a n b e v i e w e d a s a 

backward interpreter i n t h e s e n s e t h a t in e v e r y S L D E - r e f u t a t i o n of s o m e q u e r y 

L e s s i { s i , S2) w e h a v e a n o r d e r e d s e q u e n c e of s i t u a t i o n s l e a d i n g f r o m 82 t o s i 

r e p r e s e n t e d b y t h e s u b g o a l s , a s d e p i c t e d i n F i g u r e 6 . 1 w h e r e a i , . . . , a „ a r e s o m e 

a c t i o n t e r m s a n d s ' , . • • s o m e s i t u a t i o n t e r m s . T h e g o a l s i t u a t i o n is d e c r e a s e d 

u n t i l i t is a s u c c e s s o r of t h e i n i t i a l s i t u a t i o n . 

I n s t e a d of r e p r e s e n t i n g Qgit a s a b a c k w a r d i n t e r p r e t e r w e m a y e q u a l l y c h o o s e a 

forward interpreter, o r a n y c o m b i n a t i o n of t h e t w o . I n t h e f o l l o w i n g c h a p t e r we 

will b e p a r t i c u l a r l y i n t e r e s t e d in a p p l y i n g t h e f o l l o w i n g f o r w a r d i n t e r p r e t e r : 

2)6881(81,32) 82 = j o ( r , 3 i ) , f o 3 8 i ( a ; , 3 i ) . . g. 
Less'i{si,s2) s = do{x,Sl),PosSl{x,Sl),Less'-^{s,S2)• 

T \ l e u S L D E - r e f u t a t i o n s of s o m e q u e r y Less'i ( s i , 32) c o n t a i n t h e o r d e r e d s e q u e n c e 

of s u b g o a l s d e p i c t e d in F i g u r e 6 .2 . 
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•<— Lessi{si, S2) 

{32 /^0 (01 ,3 ' ) } 

<- Lessi(si,s') 

{ 3 / ^ 0 ( 0 2 , 3 " ) } 

•f— Lessi ( s i , s " ) 

4 - Z^e3a i ( s i , 8 ( " ) ) 

{ 3 ( " Y d o ( a n , 3 i ) } 

• 

F i g u r e 6.1: T h e s equence of s u b g o a l s encountered for query ILeaai(3i ,a2) us ing 

a b a c k w a r d interpreter. 

In o r d e r t o r e p r e s e n t t h e d o m a i n d e p e n d e n t a x i o m s we will r e d e f i n e t h e s h o r t c u t 

Holds of E q u a t i o n 2.2 t o u se t h e p r e d i c a t e AssSt i n s t e a d of f u n c t i o n state. W e 

cal l t h e n e w shor tcut Holdsi: 

Holdsi{z, s) AssSti{s, zi),z ov =st zi. (6 .3) 

E v e r y a c t i o n p r e c o n d i t i o n a x i o m of s o m e TCl d o m a i n a s d e f i n e d in Def in i -

t i o n 2 .5 .1 is r e p r e s e n t e d in t h e fo l lowing s t r a i g h t f o r w a r d w a y : 

f o s 3 i ( z , s ) z = o ( y ) , . 5 ^ o Z ( k i ( S ( a ( ? ) , & ) , , . 

Holdsi{St'^i,s),... ,Holdsi{St'^„^^,s). 

T h e r e p r e s e n t a t i o n of t h e s t a t e u p d a t e a x i o m s , w h i c h d e f i n e t h e f u n c t i o n state, 

c a u s e s s e v e r a l d i f f icu l t i es . O n o n e h a n d , we h a v e t o e n s u r e t h a t AssSt is in-

t e r p r e t e d as a f u n c t i o n . I .e . if t h e r e a r e s t a t e s zi, Z2 s u c h t h a t AssSt{s,zi) 

a n d AssSt{s,Z2) a r e in t h e m o d e l , t h e n Zi zg. O n t h e o t h e r h a n d , in t h e 

s m a l l e s t H e r b r a n d - E - m o d e l AssSt r e p r e s e n t s o n l y a p a r t i a l f u n c t i o n , s ince i t is 

o n l y d e f i n e d for t h o s e s i t u a t i o n s do{x,s) w h e r e Poss{x,s) is va l id . T h e l a t t e r 
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<— Less'i (si, S2) 

<- l e sa^ ( jo (an , a i ) , a2 ) 

f - i ;esa^( jo(an- i , ( fo(on,8i ) ) ,a2) 

Z,esa2(jo(o2, . . . do(an,8i) . . .),32) 

• 

Figure 6.2: The sequence of subgoals encountered for query (81,82) using 
a f o r w a r d i n t e r p r e t e r . 

d o e s n o t i m p o s e a s e r ious r e s t r i c t i o n , s ince in t h e D e f i n i t i o n 2 .7 .3 of t h e asso-

c i a t e d t r a n s i t i o n s y s t e m , o n l y s i t u a t i o n s do(x,s) w h e r e Poss{x,s) is va l id a r e 

c o n s i d e r e d . 

A88gfl(8,z) <- 8 = d o ( a ( y ) , 8 i ) , f o 3 8 i ( o ( y ) , 3 i ) , A 8 8 % ( 3 i , Z l ) , . . 

By these axioms the state associated with some situation is determined precisely 
b y t h e s t a t e a s s o c i a t e d w i t h t h e p r e c e d i n g s i t u a t i o n . B u t t o e n s u r e t h a t AssSt is 

i n t e r p r e t e d a s a f u n c t i o n we h a v e t o spec i fy t h e s t a t e a s s o c i a t e d w i t h t h e in i t i a l 

situation: 

A s 3 ^ ( l ( 8 , z ) < - 3 = 30, (6.6) 

W h e r e g s h o u l d b e a g r o u n d t e r m of s o r t St. If g w o u l d i n s t e a d c o n t a i n va r i ab le s , 

all i n s t a n c e s of g a r e val id s t a t e s a s s o c i a t e d w i t h sO, a n d h e n c e , AssSt c a n n o t 

b e i n t e r p r e t e d a s a f u n c t i o n . C o n s e q u e n t l y , in t h e a b o v e r e p r e s e n t a t i o n of TCl 

d o m a i n s i t is n o t pos s ib l e t o solve p l a n n i n g p r o b l e m s w h e r e t h e in i t i a l s t a t e is 

n o t c o m p l e t e l y k n o w n . 

D e s p i t e t h i s , i t is a l so p o s s i b l e t o r e p r e s e n t t h e f u n c t i o n state in d e f i n i t e E-

p r o g r a m s impl i c i t ly r a t h e r t h a n exp l i c i t ly by t h e p r e d i c a t e AssSt. N o t e t h a t 

eve ry p r e d i c a t e wh ich d e s c r i b e s a r e l a t i o n % o n a s e t S of s i t u a t i o n s a n d se t s 

O i , . . . of other objects induces also a relation on 5', the states associated 
w i t h S, a n d O i , . . . , 0 „ w h e r e ( s i , o i , . . . , o„ ) 6 7?. iff ( s i , state{si),oi,..., On) E 

TV. C o n s e q u e n t l y , we m a y e x t e n d eve ry p r e d i c a t e s u c h t h a t i t c o n t a i n s for ev-

e r y p a r a m e t e r wh ich r e p r e s e n t s a s i t u a t i o n a lso a p a r a m e t e r r e p r e s e n t i n g t h e 

a s s o c i a t e d s t a t e . H o w e v e r , we h a v e t o e n s u r e t h a t t h i s s t a t e i n d e e d c o r r e s p o n d s 

t o t h e o n e a s s o c i a t e d by t h e f u n c t i o n state. 
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Since s t a t e u p d a t e a x i o m s de f ine a p a r t i c u l a r r e l a t i o n b e t w e e n s t a t e s t h a t a r e 

a s s o c i a t e d w i t h s u b s e q u e n t s i t u a t i o n s , we m a y a lso v i ew t h e m a s d e f i n i n g a 

r e l a t i o n S u c c : Sif x S t x S*( x S f , w h e r e ( 3 i , z i , 8 2 , % ) E S u c c if z i = s W e ( 3 i ) , 

zz = a W e ( 8 2 ) , 82 = d o ( a , 3 i ) a n d f o a a ( i , 8 , z i ) fo r s o m e a c t i o n t e r m z . U s i n g 

t h i s r e l a t i o n we r e p r e s e n t Osit a s t h e fo l lowing f o r w a r d i n t e r p r e t e r ( t h e s u b s c r i p t 

2 d e n o t e s t h i s n e w r e p r e s e n t a t i o n ) ; 

IeaS2(3l,Zl,S2,'Z2) <-SwCC2(Sl,Zi,82,Z2). 
Z,esa2(8l,Zl,82,Z2)<-SlfCC2(8l,Zi,S,z),^e8a2(3,'Z,82,^2). ' 

W e a l so de f ine Holds 2 w h i c h r ede f ine s t h e s h o r t c u t Holds t o c o n t a i n a n add i -

t i o n a l p a r a m e t e r t o r e p r e s e n t t h e s t a t e a s s o c i a t e d w i t h s i t u a t i o n a. 

^ o f ( k 2 ( z i , 3 , z ) = ^ ( z i o t , = g ( z ) . (6.8) 

N o t e t h a t t h e p a r a m e t e r s is a c t u a l l y n o t used in t h e d e f i n i t i o n of Holds2-

All a c t i o n p r e c o n d i t i o n a x i o m s w h i c h de f ine t h e r e l a t i o n Pass a r e r e d e f i n e d t o 

e x t e n d Poss w i t h t h e a d d i t i o n a l s t a t e p a r a m e t e r . T h e n e w p r e d i c a t e is cal led 

foaag: 

f o s 3 2 ( r , 3 , z ) f - a; = a ( y ) , . f f o Z ( k 2 ( S t a , 8 , z ) , qx 

g^oZ(k2(S(=i ,3 ,z ) , . . . , f fo f (k2(St r ,m. ,8 ,4 -

A g a i n , t h e p a r a m e t e r s is a c t u a l l y n o t r e q u i r e d t o d e f i n e t h e r e l a t i o n Poss2-

T h i s is d u e t o t h e f a c t t h a t in TCl d o m a i n s t h e e x e c u t a b i l i t y of a n a c t i o n m a y 

n o t d e p e n d o n t h e h i s t o r y of a c t i o n e x e c u t i o n s ( M a r k o v p r o p e r t y ) . 

F ina l l y , t h e s t a t e u p d a t e a x i o m s h a v e t o b e m o d l G e d t o deGne t h e r e l a t i o n Succ 

r a t h e r t h a n t h e f u n c t i o n state: 

SuCC2(3l,Zl,82,Z2) 4- 3 = d o ( a ( y ) , 3 i ) , f o 3 3 2 ( a ( y ) , 3 i , Z i ) 
Z2 O S C =g( S C = . 9 ( Z i o S f + . ' ' 

D u e t o t h e M a r k o v p r o p e r t y , e v e r y a c t i o n s e q u e n c e l e a d i n g f r o m s o m e s i t u a t i o n 

w i t h a s s o c i a t e d s t a t e t o s o m e o t h e r s i t u a t i o n w i t h a s s o c i a t e d s t a t e Z2 is 

a l so e x e c u t a b l e in a n y o t h e r s i t u a t i o n w i t h a s s o c i a t e d s t a t e z i a n d a l so l e ads t o 

s o m e s i t u a t i o n w i t h s t a t e zg • C o n s e q u e n t l y , i t is su f f i c ien t t o d e f i n e t h e p r e d i c a t e 

Less in t e r m s of a c t i o n s e q u e n c e s a n d t h e s t a t e s a s s o c i a t e d w i t h t h e in i t i a l a n d 

t h e goa l s i t u a t i o n , r e spec t ive ly . T h i s a l lows u s t o s i m p l i f y t h e a b o v e de f in i t e 

E - p r o g r a m f u r t h e r . T h e i n t e r p r e t a t i o n of Succ in a H e r b r a n d - E - m o d e l (of t h e 

a b o v e r e p r e s e n t a t i o n of a TCl d o m a i n ) d o e s n o t d e p e n d o n t h e s t r u c t u r e of 

t h e s i t u a t i o n s i b u t o n t h e l a s t e x e c u t e d a c t i o n in s i t u a t i o n sg. H e n c e , we 

m a y s i m p l i f y i t s r e p r e s e n t a t i o n b y o m i t t i n g t h e s i t u a t i o n p a r a m e t e r s a n d a d d a 
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n e w p a r a m e t e r which r e p r e s e n t s t h e las t e x e c u t e d ac t i on . T h e p r e d i c a t e Lesss 

redef ines Less2 accord ing ly ; 

Z,ea33(si,zi,a2,Z2) <-82 = d0(z,3i),5'ucc3(zi,a;,z2). 
I ,e3a3(3l ,Zi,a2,Z2)+-8=do(l ,Sl) ,5 'uCC3(Zi,Z,z),I 'eaS3(3,Z,32,Z2). 

S u p p o s e we a re p a r t i c u l a r l y i n t e r e s t ed in quer ies Lesssisi, zi, S2, Z2) w h e r e s i 

a n d 32 a re u n i n s t a n t i a t e d , i.e. we only w a n t t o k n o w w h e t h e r t h e r e exist s i t ua -

t i ons Si a n d 32 such t h a t t h e r e is a n ac t ion sequence l e a d i n g f r o m s i t o 32 a n d 

t h e s t a t e s a s soc i a t ed w i t h s i a n d S2 a re z i a n d zg, respect ive ly . T h e n we m a y 

a lso def ine a b i n a r y r e l a t i on Reachable a s 

7Zeoc/ia6k(zi,Z2) <- ^6333(31,^1,32,^2). 

which m a y equiva len t ly b e def ined w i t h o u t r e f e r r ing t o Less: 

jZeacAa6Ze(zi,Z2) 5'ucc3(zi,%,z2)-
E e a c / i o 6 k ( z i , Z 2 ) < - ' ? « c c 3 ( z i , z , z ) , A e o c A o 6 k ( z , Z 2 ) -

W e will use t h e l a t t e r de f in i t ion of Reachable t o s i m p h f y t h e p r e s e n t a t i o n of o u r 

a p p r o a c h for solving t h e C P P . 

As m e n t i o n e d b e f o r e t h e def in i t ion of t h e s h o r t c u t Holds does n o t d e p e n d on 

t h e s i t u a t i o n p a r a m e t e r , hence , we m a y o m i t i t : 

E^ofd33(z i ,z )=^zioz2=s(z- (6.13) 

Equa l ly , we m a y s imp ly o m i t t h e s i t u a t i o n p a r a m e t e r in all r e p r e s e n t a t i o n s of 

p r e c o n d i t i o n a x i o m s Poss: 

f0333 ( l , z ) +- r = o(y),.EoZj33(5'fa ,z) , , .X 
^0M33(^C,1, 4 , . . . , ̂ 0Ms3(^C,m. , ^ ^ ^ 

T h e successor s t a t e a x i o m s a r e r ep re sen t ed , as a r g u e d above , w i t h o u t s i t u a t i o n 

p a r a m e t e r s a n d a n a d d i t i o n a l a c t i o n p a r a m e t e r x. 

gucc3(zi ,z ,z2) ^ z = a (y ) , f0333(1 ,^1) , 

In t h e fol lowing c h a p t e r we will focus on two p a r t i c u l a r c lasses of such r ep re sen -

t a t i o n s of J-Cl d o m a i n s . T h e first class is t h e one wh ich c o r r e s p o n d s t o TCpi 

d o m a i n s , i.e. t h o s e TCl d o m a i n s where a c t i o n s a r e c o n s t a n t s ( t he sequences Y 

of var iab les in all p r e c o n d i t i o n a n d successor s t a t e a x i o m s a re e m p t y ) . In th i s 

case we may use simpler clauses of the form 

f0333(1, z) <r- X = a, Holds^{St'2 ° St~,z). (6.16) 
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b a s e d o n t h e F o r m u l a 2 .4 t o def ine f o s s g F r o m Sec t ion 5.3 we k n o w t h a t 

t h e p l a n n i n g p r o b l e m a n d in p a r t i c u l a r t h e c o n j u n c t i v e p l a n n i n g p r o b l e m a r e 

dec idab l e for such d o m a i n s . T h e second class is t h e one wh ich c o r r e s p o n d s t o 

s imp le F l u e n t Ca l cu lus d o m a i n s , i.e. t hose J^Cl d o m a i n s w h e r e for every a c t i o n 

a all t e r m s ^ t h a t a p p e a r in t h e p r e c o n d i t i o n axiom^ of a a r e equa l t o 1°. 

However , f r o m Sec t ion 5.5 we k n o w t h a t b o t h , p l a n n i n g p r o b l e m a n d c o n j u n c t i v e 

p l a n n i n g p r o b l e m , a r e undec idab l e . 

E x a m p l e 6 .2 .1 (Airport d o m a i n as def ini te E-program) Consider the 
!FCpL domain description of Example 2.5.4- may represent this domain as 
the following definite E-program (we assume additionally the domain indepen-
dent Clauses 6.11 and the shortcut defined in Formula 6.13): 

fosg3(gueue_b, z) ^ T. 
foa33(queue_s,z) T . 
foaa3(7ajid_b,z) f - o pjane.g.b o runway,z). 
PossaQand-s, z) Holds (bay o plane-qs o runway, z). 
Poss3(take-ofF..b, z) Holds{planeJ-b o runway, z). 
Poss3(take-ofF.s, z) Holds (plane J s o runway, z). 

5'ncc3(zi,i,z2) <- z = gueue_b, foaa3(a;,Zi),Z2 zi o p.;aj]e_q_b. 

Succ3(zi,z,Z2) ^ I = gueue_8, f0^^3(1,zi) ,zg =gt zi op7ane_g_5. 

Succ3(zi,a:,z2) <- i = fand .b , foss3 ( i , z i ) , 

Z2 o bay^ o pjaiie_g_b =g( zi o pJaneJ.b o passenger^. 

Succ3(zi ,z,z2) <- I = 7and_s,foa53(a:,zi), 

Z2 o bay o pjane_q_s =s( zi o pjaaeJ_s o paasenger^. 

5'ucc3(zi,a;,zg) z = take_oE_b,f0553(2,zi), 
Z2 o p janeJ_b=g( 3^0(6(3) o bay^. 

Succ3(zi,3;,Z2) <- I = tate-O&g,^0333(2;,zi), 
Z2 o p7aj]eJ_s=s( 3(0^6(3) o obay. 

• 

E x a m p l e 6 .2 .2 (Abs trac t TCpi d o m a i n as def in i te E-program) The 
following definite E-program (together with the usual domain independent clau-
ses) corresponds to the TCpl domain Vp of Example 2.5.5 wrt signature Sp. 

f0333(z ,z ) <- Z = a l , . g o f j S 3 ( / l , Z 
f0333(1, z) ^ X = a2, Holds3(fl, z 
f0333(z ,z) i - Z = o3, jFfo!d33(/2,Z 
P0SS3 (x, z) r = a4 , Holds^ (f2>, z 
f0333(1,z) <- z = a5,77of j33( /4 ,z 
f0333(z ,z) Z = 06, .ffoZj33(/5,Z 

^Note that due to Equation 2,3 T C p i domains may also be represented in this way. The 
corresponding precondition and state update axioms are defined by S t ' " = Sta o St^ and 
a('+ = g(+ o a = . 
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^ucc3(zi ,z ,z2) ^ z = a l , f o a s 3 ( r , z i ) , Z 2 o / l = s f Zi o / 2 . 
5'UCC3(Z1,Z,Z2) f - Z = o2,foa33(r ,Zi) ,Z2 O / l = S t Z ] , O / 4 . 
6'wcc3(zi,z,z2) <- z = a3,fosa3(a: ,zi) ,Z2 o / 2 = g ( Z i o / 3 o / 3 . 
6 'ucc3(zi, i ,z2) f - r = o4 , fos s3 ( r , z i ) ,Z2 o / 2 . 
5'ucc3(zi,a;,z2) ^ z = a5, foa33(z,'Zi),'Z2 o / 4 = g t zi o / 5 o / 5 . 
6'ucc3(zi,z, Z2) <- r = a6,fosa3(a; ,zi) ,Z2 o / 5 =g( Zi o / 4 . 

• 

E x a m p l e 6 .2 .3 (Brick d o m a i n as def ini te E-program) Consider the TCi 
domain description of Example 2.5.1. We may represent this domain as the 
following definite E-program: 

fo333(a;,z) f - r = mv_brjcjc(ii,2/1,12,^2), 

6'ucc3(zi,z,z2) ^ z = a]v_brjck(zi,;/i,a;2,3/2),fos33(a:,'Zi), 
Z2 o bn'ct_at(ri,2/i) =g( zi o Wct_at(a;2,!/2). 

• 

E x a m p l e 6 .2 .4 (Abstrac t !FCl domain as def in i te E-program) The 
following definite E-program (together with the usual domain independent clau-
ses) corresponds to the TCl domain X>; of Example 2.5.2 wrt signature S;. 

fo333(z, z) +-a; = a l , .EoZ(k3(/ l ,z) . 
f o s a 3 ( i , z ) <- I = o3(!/) ,no(da3(/2,z) . 
f o a a 3 ( r , z ) 4- 1 = o4(3/),E^oZ(k3(/3(2/),z). 

^WCC3(Z1,Z,Z2) <- z = o l , f o a s 3 ( z , z i ) , 2 2 o / l = S ( Z i o / 2 ( 0 ) . 

5'UCC3(Z1,2:,Z2) <- r = o3(3/),fo3a3(a:,zi), 

% o / 2 W ° /3(/oo(2f)) o /3( /oo( /oo(! / ) ) ) . 

Succ3(zi,2;,z2) <- z = a4(! / ) , f0ag3(z ,z i ) ,z2 o /3(; /) = s (Z i o /2(2/). 

• 

6.3 Conjunct ive P lanning by SLDE-resolut ion 

I n [68] i t h a s b e e n s h o w n t h a t S L D E - r e s o l u t i o n is s o u n d a n d c o m p l e t e for a n in-

s t a n c e of C P P in s i m p l e TC d o m a i n s , i.e. e v e r y s o l u t i o n of s u c h a C P P is e n t a i l e d 

by S L D E - r e s o l u t i o n . H o w e v e r , even for TCpl d o m a i n s r e p r e s e n t e d a s d e f i n i t e 

E - p r o g r a m s t h e S L D E - t r e e m a y c o n t a i n i n f i n i t e d e r i v a t i o n s a n d c o n s e q u e n t l y , 

t h e s e a r c h for a p l a n m a y n o t t e r m i n a t e . T o d e m o n s t r a t e t h i s we r e p r e s e n t t h e 

F o r m u l a 2 .10 wh ich is u s e d t o s t a t e p l a n n i n g p r o b l e m s as t w o que r i e s . If t h e r e is 
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a c o r r e c t a n s w e r t o o n e of t h e m , t h e C P P c a n b e so lved a n d t h e c o r r e s p o n d i n g 

p l a n c a n b e d e d u c e d f r o m t h e c o r r e s p o n d i n g S L D E - r e f u t a t i o n . He re , we de f ine 

t h e p a r t i c u l a r c lass of C P P ' s c o n s i d e r e d in [68] b y t w o que r i e s . L e t gi a n d gg 

d e n o t e s t a t e t e r m s w h i c h d e s c r i b e t h e in i t i a l a n d t h e goa l s t a t e , r e spec t ive ly . 

T h e first q u e r y h a s a c o r r e c t a n s w e r s u b s t i t u t i o n iff t h e in i t i a l s t a t e is a l r e a d y 

a goa l s t a t e ( in t h i s c a se t h e p l a n is e m p t y ) : 

^ =stZ2. (6.17) 

T h e s e c o n d q u e r y h a s a c o r r e c t a n s w e r s u b s t i t u t i o n iff t h e r e is a s i t u a t i o n s i 

a n d a s i t u a t i o n ag s u c h t h a t s i < S2 a n d gi is t h e s t a t e a s s o c i a t e d w i t h s i a n d 

.H^o/ja3(g2,Z2) where Z2 is the state associated with 82-

=gt gi,Z2 =s ( 92 o z,EeacAoWe(zi,Z2). (6.18) 

I n T C p L d o m a i n s gi a n d 52 shou ld b e b o t h g r o u n d . T h e r e i t is a l so suf f ic ien t 

to consider the single ground term 92 as a description of the goal state, since by 
E q u a t i o n 2 .3 a n y c o n j u n c t i o n of i f o W s - s t a t e m e n t s , w h i c h m a y c h a r a c t e r i s e t h e 

goa l s t a t e , c a n b e t r a n s f o r m e d i n t o a s ingle o n e {Holds3{g2, Z2) 4* zg =st 92° z 

in t h e que r i e s for C P P ) . O n t h e o t h e r h a n d , if gi is c o n s i d e r e d t o c o n t a i n s o m e 

v a r i a b l e z' s u c h t h a t gi =st 9i ° z', t h e n t h e C P P w o u l d b e t r iv i a l ly so lvab le 

a c c o r d i n g t o t h e first q u e r y : t h e r e s u l t i n g e q u a t i o n g[ oz' =st 92 °z h a s a l w a y s a 

s i m p l e c o r r e c t a n s w e r s u b s t i t u t i o n {z'/g2,z/g[}. I n f a c t , a n y c o n j u n c t i v e p l a n -

ning problem wrt .FCf;; domains using the atomic propositions Z/g can be re-
d u c e d t o a finite n u m b e r of Q u e r i e s 6 .17 a n d 6 .18: A c c o r d i n g t o S e c t i o n 5.3 

i t is suf f ic ien t t o c o n s i d e r a finite n u m b e r of ( c o n j u n c t i v e ) p l a n n i n g p r o b l e m s 

where each initial state description is of the form .Eof(k(gP) for some 
g r o u n d s t a t e t e r m s 5 ^ , 5 " . A d d i t i o n a l l y , f r o m t h e P r o o f 5 .3 .1 we k n o w t h a t a n 

T C p L d o m a i n c a n b e t r a n s f o r m e d s u c h t h a t o n l y a finite n u m b e r of r e a c h a -

b i l i ty p r o b l e m s ( w h e r e t h e in i t i a l m a r k i n g is c o m p l e t e l y spec i f i ed) n e e d s t o b e 

checked^ . 

T h e fo l lowing e x a m p l e d e m o n s t r a t e s t h a t t h e r e a r e i n d e e d in f in i t e d e r i v a t i o n s 

pos s ib l e if c o n j u n c t i v e p l a n n i n g p r o b l e m s h a v e t o b e so lved . 

E x a m p l e 6 .3 .1 ( E x a m p l e 6.2.2 cont inued) Let gi = / 2 and 92 = / 4 . If 
we repeatedly apply the actions as and 04 in alternation, we obtain an infinite 

^Recall; For every fluent / not bounded by Holds{g^) we introduce a new action producing 
/ and introduce a new limit for / by modifying g". Then we check all initial markings defined 
by the lower bounds and the new upper bounds on the fluents for reachability. 
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derivation for the second CPP query (we use the leftmost selection rule): 

<- Reachablei f2. / 4 o z) 
Swcc3(/2,1, z), JZeocAaWe(z, / 4 o z') 

{z/a3,z / /3 o /s} 

<r- Reachable( f3 o / 3 , / 4 o z') 

f - Succsf/S o / 3 , z, z), Z,eag3(z, / 4 o z') 

{z/a4, z / / 2 } 

<— Reachable( f3 o / 2 , / 4 o z') 
f - SuccsifS o / 2 , X, z), Reachable{z, / 4 o z') 

{x/a3, z / f 3 o / 3 o / 3 } 

• 

Indeed , for b u t t h e m o s t t r iv ia l examples , S L D E - r e s o l u t i o n will loop if n o p l a n 

exis ts , a n d will (due t o d e p t h - f i r s t exp lo ra t i on ) o f t e n fail t o f ind a p l a n if one 

exis ts . N o t e t h a t t h e p r o b l e m is n o t specific t o S L D E - r e s o l u t i o n . A n a l t e r n a t i v e 

way of i m p l e m e n t i n g d o m a i n s would b e t o r e p r e s e n t t h e e q u a t i o n a l t h e o r y 

as a rewrite system [4] a n d t h e n use narrowing. B u t , for t h e s a m e r e a s o n s as 

S L D E - r e s o l u t i o n , n a r r o w i n g will n o t a lways t e r m i n a t e . O n one h a n d , inf in i te 

de r iva t ions can b e c a u s e d by app ly ing a c t i o n s equences wh ich do n o t a l t e r t h e 

s t a t e of t h e s y s t e m . I n p r inc ip le , such loops cou ld b e a u t o m a t i c a l l y d e t e c t e d 

a n d avo ided , for i n s t a n c e by tabling methods [133]. B u t , o n t h e o t h e r h a n d , t h e 

a b o v e e x a m p l e shows t h a t de r iva t ions m i g h t b e in f in i te even w h e n t h e y do n o t 

c o n t a i n th i s k ind of loops . In f in i t e de r iva t ions as in E x a m p l e 6.3.1 m a y occu r d u e 

t o t h e p o t e n t i a l l y in f in i te s t a t e space in J-Cpl- t h e n u m b e r of t e r m s of so r t St 

t h a t a r e no t equ iva len t w r t t h e e q u a t i o n a l t h e o r y ACl is n o t b o u n d e d . If in t h e 

a b o v e e x a m p l e t h e a c t i o n sequence a3 , o4 is e x e c u t e d n - t i m e s in a s i t u a t i o n w i t h 

a s soc i a t ed s t a t e / 2 , t h e s t a t e a s soc ia t ed w i t h t h e f inal s i t u a t i o n s is equ iva len t 

to / 2 o /3". 

To e n a b l e t h e so lu t ion of t h e C P P or s imi lar p r o b l e m s d e s p i t e of p o t e n t i a l l y 

inf in i te S L D E - d e r i v a t i o n s we p r o p o s e in t h e n e x t c h a p t e r t o use c e r t a i n p r o g r a m 

t r a n s f o r m a t i o n t e chn iques . 



Chapter 7 

Conjunctive Planning by 
Partial Deduction 

In recent years there haa been considerable interest in model checking of systems 
with inAnite state spaces, also called :n^n:fe modeZ cAec&ing (e.g., [1, 111, 35, 
32, 157, 26]). S ince the c o n j u n c t i v e p l a n n i n g p r o b l e m for TCpl d o m a i n is a 

particular model checking problem of a certain class of infinite state systems, 
g e n e r a l r e s u l t s a b o u t i n f in i t e m o d e l check ing a p p l y a lso t o C P P for !FCpl-

O n e of the key i s sues of m o d e l check ing of i n f in i t e s y s t e m s is abstraction [21]. 

A b s t r a c t i o n a l lows t o a p p r o x i m a t e a n in f in i t e s y s t e m by a f in i t e one , a n d if 

p r o p e r c a r e is t a k e n t h e r e s u l t s o b t a i n e d fo r t h e f in i t e a b s t r a c t i o n will b e val id 

for t h e i n f i n i t e s y s t e m . Howeve r , a n i m p o r t a n t q u e s t i o n w h e n a t t e m p t i n g t o 

p e r f o r m in f in i t e m o d e l check ing in p r a c t i c e is: H o w c a n o n e automatically ob -

t a i n a n a b s t r a c t i o n w h i c h is finite, b u t s t i l l as p r e c i s e as r e q u i r e d ? A p o t e n t i a l 

s o l u t i o n t o t h i s p r o b l e m is t o a p p l y e x i s t i n g t e c h n i q u e s for t h e automatic con -

t ro l of (logic) program specialisation [91] a n d m a n y o t h e r s . T h e a i m of p r o g r a m 

s p e c i a l i s a t i o n is t o i m p r o v e t h e eff ic iency of a p r o g r a m b y p r e - e v a l u a t i n g i t fo r 

particular parameters. In the context of logic programming program special-
i s a t i o n is a l so ca l led partial deduction. S i m i l a r t o m o d e l c h e c k i n g of i n f in i t e 

s y s t e m s , in program spec ia l i sat ion in g e n e r a l a n d p a r t i a l d e d u c t i o n in p a r t i c -

u l a r , o n e faces t h e fo l lowing ( q u i t e e x t e n s i v e l y s t u d i e d ) p r o b l e m ; T o b e ab l e 

t o p r o d u c e ef f ic ient spec ia l i s ed p r o g r a m s , infinite c o m p u t a t i o n t r e e s h a v e t o b e 

a b s t r a c t e d in a finite b u t a l so as precise a s p o s s i b l e way. 

To apply partial deduction the system to be veriGed has to be modelled as a logic 
p r o g r a m b y m e a n s of a n i n t e r p r e t e r [52, 96]. T h e r e b y , t h e i n t e r p r e t e r d e s c r i b e s 

h o w t h e s t a t e s of t h e s y s t e m c h a n g e by e x e c u t i n g t r a n s i t i o n s . B y a p p l y i n g p a r -

t i a l d e d u c t i o n t o t h e i n t e r p r e t e r we e x p e c t a finite a b s t r a c t i o n of t h e p o s s i b l y 

in f in i t e s t a t e s p a c e of t h e s y s t e m t o be g e n e r a t e d . T h i s a b s t r a c t i o n m a y t h e n 

b e u s e d t o ve r i fy s y s t e m p r o p e r t i e s of i n t e r e s t . T h i s a p p r o a c h p r o v e d a l r e a d y 

t o b e q u i t e p o w e r f u l a s i t was poss ib le t o o b t a i n dec i s ion p r o c e d u r e s fo r t h e 
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cove rab i l i t y p r o b l e m , if " typ ica l " e x i s t i n g s p e c i a l i s a t i o n a l g o r i t h m s a r e a p p l i e d 

t o logic p r o g r a m s t h a t e n c o d e P e t r i n e t s [94]. I t is even p o s s i b l e t o p rec i se ly 

m i m i c well k n o w n P e t r i n e t a l g o r i t h m s (by K a r p - M i l l e r [76] a n d b y F i n k e l [39]) 

w h e n t h e p r o g r a m s p e c i a l i s a t i o n t e c h n i q u e s a r e s l igh t ly w e a k e n e d . T h e r e s u l t s of 

[94] re fe r t o forward a l g o r i t h m s only, i.e. a l g o r i t h m s wh ich c o n s t r u c t , b e g i n n i n g 

f r o m s o m e in i t i a l s t a t e , a n a b s t r a c t r e p r e s e n t a t i o n of t h e w h o l e r e a c h a b i l i t y t r e e 

of a P e t r i n e t . H o w e v e r , for s o m e c lasses of s y s t e m s s u c h e x h a u s t i v e a l g o r i t h m s 

a r e n o t n e c e s s a r y or e v e n n o t p r ec i s e e n o u g h t o dec ide cove rab i l i t y [1, 40, 41]. 

I n s u c h cases p a r t i a l d e d u c t i o n m a y o f t e n b e succes s fu l ly appl ied a s well [93], 

t h e r e b y m i m i c k i n g well k n o w n backward algorithms [40]. 

A c c o r d i n g t o S e c t i o n 4.3, we m a y t r y t o a p p l y a l g o r i t h m s f r o m t h e P e t r i n e t 

t h e o r y t o T C p i d o m a i n s in o r d e r t o t a c k l e t h e c o n j u n c t i v e p l a n n i n g p r o b l e m . 

W e m a y a l so a p p l y t h e p a r t i a l d e d u c t i o n m e t h o d s of [93, 94] t o t h e logic p r o -

g r a m m i n g r e p r e s e n t a t i o n ^ of t h e P e t r i n e t t h a t c o r r e s p o n d t o t h e ! F C p l d o m a i n 

in q u e s t i o n . T h e d i s a d v a n t a g e of t h e s e a p p r o a c h e s is t h a t t h e y h a r d l y s ca l e u p 

t o o t h e r TC d o m a i n s . I n c o n t r a s t t o th i s , t h e p a r t i a l d e d u c t i o n a p p r o a c h in g e n -

eral applies to any system that can be represented as a deHnite logic program. 
Applying partial deduction directly on logic programming representations of .FC 
d o m a i n s is t h u s m o r e p r o m i s i n g , as it is n o t r e s t r i c t e d t o T C p i d o m a i n s , b u t 

works with any .FC domain that can be represented as a deEnite logic program 
( a l t h o u g h i t m i g h t n o longer p r o v i d e a dec i s ion p r o c e d u r e ) . T h u s , t h e i d e a of 

t h i s c h a p t e r is t o a p p l y p a r t i a l d e d u c t i o n t o f l u e n t c a l c u l u s d o m a i n s in o r d e r t o 

decide the conjunctive planning problem for speciGcations and to provide 
a u s e f u l p r o c e d u r e for m o r e g e n e r a l T C d o m a i n s . T o t h i s e n d , t h e r e a r e severa l 

problems that need to be solved for this approach to work: 

• T C d o m a i n s re ly o n ACl -un i f i ca t ion , b u t u n i f i c a t i o n u n d e r a n e q u a t i o n a l 

t h e o r y is n o t d i r e c t l y s u p p o r t e d by p a r t i a l d e d u c t i o n as u s e d in [94] a n d 

o n e w o u l d h a v e t o a p p l y p a r t i a l d e d u c t i o n t o a m e t a - i n t e r p r e t e r i m p l e -

m e n t i n g ACl -un i f i ca t ion . A l t h o u g h t h i s is t h e o r e t i c a l l y feas ib le , t h i s is s t i l l 

p r o b l e m a t i c in p r a c t i c e for efBciency a n d p rec i s ion r e a s o n s (see, e .g. , [92]). 

A m o r e p r o m i s i n g a p p r o a c h is t o e x t e n d p a r t i a l d e d u c t i o n so t h a t it c a n 

h a n d l e a n e q u a t i o n a l t heo ry . 

A n o t h e r p r o b l e m is c o n n e c t e d t o a n i n h e r e n t l imi ta t ion of "c lass ica l" p a r -

t i a l d e d u c t i o n , w h i c h relies o n a r a t h e r c r u d e d o m a i n for e x p r e s s i n g calls: 

in e s sence a t e r m r e p r e s e n t s all i t s i n s t a n c e s . T h i s w a s suf f ic ien t fo r h a n -

d l i n g P e t r i n e t s in [94] ( w h e r e a t e r m s u c h a s [ 0 , s ( X ) ] r e p r e s e n t s al l P e t r i 

net markings with no tokens in place 1 and at leaat 1 token in place 2), 
b u t i t is n o t suf f ic ien t t o h a n d l e TC d o m a i n s w h o s e s t a t e e x p r e s s i o n s a r e 

m o r e invo lved . T o solve t h i s we p r o p o s e t o u s e so ca l led abstract partial 

deduction [90] w i t h a n a b s t r a c t d o m a i n b a s e d u p o n r e g u l a r t y p e s [158], 

a n d e x t e n d i t t o c o p e w i t h e q u a t i o n a l t h e o r i e s . 

^ A program which contains another program (e.g., a Petri net) as data is also called Meta-
program. See for example [65] for applications of Meta-programming in artificial intelligence 
using logic programs. 
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A l t h o u g h in t h i s w o r k we a r e m a i n l y i n t e r e s t e d in a p p l y i n g p a r t i a l d e d u c t i o n 

t o t h e T C d o m a i n s b a s e d u p o n ACl, we p r e s e n t t h e g e n e r a l i s e d p a r t i a l d e d u c -

t i o n i n d e p e n d e n t l y of t h e p a r t i c u l a r e q u a t i o n a l t h e o r y (as l ong as i t is f i n i t a r y ) . 

H o w e v e r , t h e u s e of t h i s g e n e r a l m e t h o d in p r a c t i c e rel ies o n a n ef f ic ient un i -

f i c a t i o n p r o c e d u r e . If s u c h a p r o c e d u r e c a n n o t b e p r o v i d e d a n d / o r o n e w i shes 

t o spec ia l i se t h e u n d e r l y i n g e q u a t i o n a l t h e o r y , o t h e r a p p r o a c h e s , e .g. , b a s e d o n 

n a r r o w i n g [60, 3], s h o u l d b e cons ide r ed . T h e r e a s o n we e x t e n d c lass ica l p a r t i a l 

d e d u c t i o n for S L D E - r e s o l u t i o n r a t h e r t h a n b u i l d i n g o n t o p of [3], is t h a t we 

a c t u a l l y d o n o t w i sh t o m o d i f y t h e u n d e r l y i n g e q u a t i o n a l t h e o r y . A s we will 

see l a t e r in t h i s c h a p t e r , t h i s l eads t o a s i m p l e r t h e o r y w i t h s i m p l e r c o r r e c t -

ness r e s u l t s , a n d a l so r e s u l t s in a t i g h t e r l ink w i t h c lass ica l p a r t i a l d e d u c t i o n 

u s e d i n [94]. T h i s a l so m e a n s t h a t i t is m o r e s t r a i g h t f o r w a r d t o i n t e g r a t e a b -

s t r a c t d o m a i n s a s d e s c r i b e d in [90] (no a b s t r a c t spec ia l i sat ion e x i s t s a s of ye t 

fo r narrowing-based a p p r o a c h e s ) . 

I n t h e r e m a i n d e r of t h e c h a p t e r , we t h u s d e v e l o p a p a r t i a l d e d u c t i o n m e t h o d 

w h i c h c o n s i d e r s b o t h e q u a t i o n a l t h e o r i e s a n d r e g u l a r t y p e i n f o r m a t i o n . T h e 

method will then enable us to solve conjunctive planning problems in the simple 
F l u e n t C a l c u l u s . I n p a r t i c u l a r , we s h o w t h a t o u r m e t h o d is a c t u a l l y c o m p l e t e for 

c o n j u n c t i v e p l a n n i n g p r o b l e m s in TCph- W e be l i eve t h a t o u r a p p r o a c h c a n a l so 

be used for more complex systems, without changing much of the algorithm, e.g., 
in cases w h e r e c o m p l e t e n e s s c a n n o t b e g u a r a n t e e d d u e t o g e n e r a l u n d e c i d a b i l i t y . 

N o t e t h a t i t h a s b e e n p r o p o s e d t o u s e p a r t i a l d e d u c t i o n a l r e a d y i n [24] for t h e 

f a i l u r e d e d e c t i o n in t h e o r e m p r o v i n g , a n d in [25] spec i f ica l ly for t h e d e t e c t i o n 

of u n s o l v a b l e c o n j u n c t i v e p l a n n i n g p r o b l e m s a n d t o solve p o s t d i c t i o n p r o b l e m s 

in t h e F l u e n t C a l c u l u s . S imi l a r ly t o o u r a p p r o a c h , t h e m e t h o d ut i l ises t h e i d e a 

of r e g u l a r a p p r o x i m a t i o n . Howeve r , a l t h o u g h [25] c a n on ly dea l w i t h T C p i 

d o m a i n s , i t is n o t a dec i s ion p r o c e d u r e for c o n j u n c t i v e p l a n n i n g p r o b l e m s . I n 

contrast to that, our approach provides a decision procedure and scales up to 
n o n - p r o p o s i t i o n a l d o m a i n s ( t h e s i m p l e TC). 

7.1 Pa r t i a l Deduct ion for defini te E-Programs 

T h e g e n e r a l i d e a of p a r t i a l d e d u c t i o n of o r d i n a r y logic p r o g r a m s [101] is t o 

c o n s t r u c t , g i v e n a q u e r y <- Q' of i n t e r e s t , a f i n i t e n u m b e r of f in i te b u t p o s s i b l y 

i n c o m p l e t e S L D - t r e e s w h i c h "cover" t h e p o s s i b l y in f in i t e S L D - t r e e for D U {<-

Q'} ( a n d t h u s a l so all S L D - t r e e s for all i n s t a n c e s of < - Q'). T h e d e r i v a t i o n s t e p s 

in t h e s e S L D - t r e e s a r e t h e c o m p u t a t i o n s w h i c h h a v e b e e n p r e - e v a l u a t e d a n d 

t h e c l ause s of t h e spec i a l i s ed p r o g r a m a r e t h e n e x t r a c t e d b y c o n s t r u c t i n g o n e 

spec ia l i sed c l a u s e (ca l led resultant) p e r b r a n c h . 

W h i l e t h e in i t i a l m o t i v a t i o n for p a r t i a l d e d u c t i o n was p r o g r a m s p e c i a l i s a t i o n , 

o n e c a n a lso u s e p a r t i a l d e d u c t i o n a s a top-down flow analysis of t h e p r o g r a m 

u n d e r c o n s i d e r a t i o n . I n d e e d , p a r t i a l d e d u c t i o n will u n f o l d t h e in i t i a l q u e r y of 

i n t e r e s t u n t i l i t s p o t s a d a n g e r o u s g r o w t h , a t w h i c h p o i n t i t will g e n e r a l i s e t h e 



o f f e n d i n g cal ls a n d r e s t a r t t h e u n f o l d i n g f r o m t h e t h u s o b t a i n e d m o r e g e n e r a l 

cal l . P r o v i d e d a s u i t a b l y r e f ined c o n t r o l t e c h n i q u e is u s e d (e.g. , [95, 23]), o n e 

c a n g u a r a n t e e t e r m i n a t i o n as well a s a p rec i se flow a n a l y s i s . As w a s s h o w n in 

[93] s u c h a p a r t i a l d e d u c t i o n a p p r o a c h is p o w e r f u l e n o u g h t o p r o v i d e a dec i s ion 

p r o c e d u r e for cove rab i l i t y p r o b l e m s for ( rese t ) P e t r i n e t s a n d b e a r s r e s e m b l a n c e 

t o t h e K a r p - M i l l e r p r o c e d u r e [76]. I n t h e c o n t e x t of t h e C P P , t h e in i t i a l q u e r y 

of i n t e r e s t wou ld b e Q u e r y 6 .18 (we d o n o t n e e d t o c o n s i d e r Q u e r y 6 .17 as i t 

c a n n o t r e su l t in a n in f in i t e d e r i v a t i o n ) 

-f- Reachable{gi, g2 o z). 

w h e r e gi a n d gz a r e t h e in i t i a l a n d t h e goa l s t a t e r e s p e c t i v e l y a n d o n e wou ld 

h o p e t o o b t a i n as a r e s u l t a flow a n a l y s i s f r o m w h i c h i t is c lea r w h e t h e r t h e 

C P P has a solut ion. 

T h e a b s t r a c t i o n in "c lass ica l" p a r t i a l d e d u c t i o n t e c h n i q u e s rel ies o n t h e r e l a t i o n 

" i n s t a n c e - o f " a n d t h e a s s o c i a t e d m o s t speci f lc g e n e r a l i s a t i o n . 

D e f i n i t i o n 7 . 1 . 1 Let 2 = {SORT, FUN, REL) be a signature, X a variable 

declaration wrt S . Furthermore, let P C A-£{X). We call some p £ A^{X) a 

m o s t speci f ic g e n e r a l i s a t i o n (msg) of P if 

1. every q £ P is an instance of P, and 

&. i / / o r aome G ^ ^ ( X ) g 6 f ia on (Aen p w o k o 
instance of p'. 

For a n y t w o a t o m s of t h e s a m e p r e d i c a t e t h e r e e x i s t s a l w a y s a u n i q u e ( u p t o 

variants) m o s t specif lc general isat ion. For example , we have t h a t the mag of 

{jDeaa(zero, aucc(zero)) , 2^633(26?^, aucc(a i fcc(zero)) )} is i )ea3(zero, aucc (r ) ) . T h e 

mag c a n be easi ly c o m p u t e d [120, 87]; th is process is a l so referred t o aa anf i -

unification or least general generalisation. I t h a s t h e i m p o r t a n t p r o p e r t y , t h a t 

fo r e v e r y a t o m A, t h e r e a r e n o in f in i t e cha in s of s t r i c t l y m o r e g e n e r a l a t o m s [71]. 

U n f o r t u n a t e l y , as i t h a s b e e n d e m o n s t r a t e d in [93] a m o n g o t h e r s , "c lass ica l" 

p a r t i a l d e d u c t i o n t e c h n i q u e s m a y n o t b e p rec i se e n o u g h if s t a t e d e s c r i p t i o n s 

a r e c o m p l e x . S imi la r p r o b l e m s o c c u r if s t a t e s a r e r e p r e s e n t e d u s i n g n o n - e m p t y 

e q u a t i o n a l t heo r i e s , s ince a b s t r a c t i o n s j u s t b a s e d o n t h e " i n s t a n c e - o f " r e l a t i o n 

a n d t h e a s s o c i a t e d m o s t spec i f ic general i sat ion m a y b e t o o c r u d e (c.f. , a l so [90]). 

E x a m p l e 7 . 1 . 1 ( E x a m p l e 6 . 2 . 2 c o n t i n u e d ) The msg of Reachable{f 2, zi) 

and Reachable{f2>o f2,Z2) is Reachable{f2ox,z'). This is quite unsatisfactory, 

as X can represent a n y term, i.e., also terms containing other fluents such as / 4 . 

In the context of CPP this means that any action can potentially be executed from 

/ 2 o X, and we have thrown away too much information for the generalisation 

to be useful. For example, if our goal state is / 4 , we would not he able to prove 

that we cannot solve the CPP from the initial state f 2 . • 
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I n c lass ica l p a r t i a l d e d u c t i o n t h e r e is n o w a y of o v e r c o m i n g t h i s p r o b l e m , d u e 

t o i t s i n h e r e n t l i m i t a t i o n t h a t a cal l m u s t r e p r e s e n t all i t s i n s t a n c e s ( t h e s a m e 

h o l d s for n a r r o w i n g - b a s e d p a r t i a l e v a l u a t i o n [3]). F o r t u n a t e l y , t h i s r e s t r i c t i o n 

h a s b e e n l i f ted, e .g. , in t h e a b s t r a c t p a r t i a l d e d u c t i o n f r a m e w o r k of [90] a n d 

[45]. I n essence , p a r t i a l d e d u c t i o n a n d c o n j u n c t i v e p a r t i a l d e d u c t i o n [23] a r e 

e x t e n d e d by w o r k i n g o n abstract conjunctions o n wh ich abstract unfolding a n d 

abstract resolution o p e r a t i o n s a r e d e f i n e d : 

• A n a b s t r a c t c o n j u n c t i o n is l i nked t o t h e c o n c r e t e d o m a i n of " o r d i n a r y " 

c o n j u n c t i o n s v i a a c o n c r e t i s a t i o n f u n c t i o n 7 . I n c o n t r a s t t o c lass ica l p a r t i a l 

d e d u c t i o n , 7 c a n b e m u c h m o r e r e f i ned t h a n t h e " i n s t a n c e - o f " r e l a t i o n . 

Fo r e x a m p l e , a n a b s t r a c t c o n j u n c t i o n c a n b e a c o u p l e {Q,T) c o n s i s t i n g 

of a c o n c r e t e c o n j u n c t i o n Q a n d s o m e type^ i n f o r m a t i o n r , a n d 7 ( ( Q , t ) ) 

w o u l d b e al l t h e i n s t a n c e s of Q w h i c h r e s p e c t t h e t y p e i n f o r m a t i o n T. W e 

cou ld t h u s d i sa l low t o b e a n i n s t a n c e of x in E x a m p l e 7 .1 .1 by de f in ing 

t h e t y p e of x t o b e t h e se t of t e r m s wh ich c a n b e c o n s t r u c t e d u s i n g t h e 

c o n s t a n t / a a n d t h e f u n c t i o n o, only. 

• An abstract unfolding operation maps an abstract conjunction A to a set 
of concrete resultants 8^, which have to be totally correct for ail 
possible calls in 7(.4). 

• Fo r e a c h s u c h r e s u l t a n t H i B i t h e a b s t r a c t r e s o l u t i o n will p r o d u c e 

a n abstract c o n j u n c t i o n Q i a p p r o x i m a t i n g all t h e p o s s i b l e r e s o l v e n t goa ls 

w h i c h c a n o c c u r a f t e r r e so lv ing a n e l e m e n t of 7 ( A ) w i t h H i B , . 

I t is t o t h i s f r a m e w o r k , s u i t a b l y a d a p t e d t o c o p e w i t h S L D E - r e s o l u t i o n , t h a t 

we t u r n t o r e m e d y o u r p r o b l e m s . W e will a c t u a l l y on ly c o n s i d e r a b s t r a c t a t o m s 

c o n s i s t i n g of a c o n c r e t e a t o m t o g e t h e r w i t h s o m e t y p e i n f o r m a t i o n . T h e l a t t e r 

will b e r e p r e s e n t e d by deterministic regular unary logic (RUL) programs [158, 

46] e x t e n d e d for e q u a t i o n a l t heo r i e s . T o e x t e n d RUL p r o g r a m s t o a n S L D E -

s e t t i n g , we w a n t t o t a k e t h e s t a n d a r d d e f i n i t i o n of a n RUL p r o g r a m a n d s i m p l y 

e x a m i n e i t in t h e c o n t e x t of o u r e q u a t i o n a l t h e o r y . U n f o r t u n a t e l y , t h i s is s l igh t ly 

p r o b l e m a t i c . I n d e e d , t a k e a s i m p l e RUL p r o g r a m R t h a t r e p r e s e n t s t h e t y p e 

{ / I o / 2 } . N o w , t h e i n t e r p r e t a t i o n of R in ACl will r e p r e s e n t t h e t y p e { / I o 

/ 2 , / 2 o / I } , w h i c h is n o t t u p l e - d i s t r i b u t i v e ^ (i t d o e s n o t c o n t a i n / I o / I n o r 

/ 2 o / 2 ) . T h i s will h a v e i m p l i c a t i o n s for dec idabi l i ty a n d ef f ic iency ( t h e m a i n 

r e a s o n for u s i n g RUL p r o g r a m s ) a n d we solve t h i s by u s i n g j u s t t h o s e RUL 

p r o g r a m s w h e r e t h e e q u a t i o n a l t h e o r y is a l r e a d y c o m p i l e d in: 

D e f i n i t i o n 7 . 1 . 2 A c a n o n i c a l r e g u l a r u n a r y c l ause is a clause of the form 

t o ( / ( z i , . . . ,a;n)) f i ( z i ) A - A 

type is simply a decidable set of terms closed under substitution. 
® A set T of terms is tuple-distributive if whenever /{a, b), f(c, d) 6 T, also / ( a , d), f{b, c) G 

T holds. 
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where n > 0 and x i , . . . , a;„ are distinct variables. A canonical regular u n a r y 
logic (RUL) p r o g r a m is a program R consisting of a finite set of regular unary 

clauses, in which no two different clause heads have a common instance. 

Let E he an equational theory. We call R E-compatible if for all terms s, when-
ever R 1= t{s) then for all terms s' with s =e S', also R |= t{s'). 

The set of ground terms r such that R \= t{r) is denoted by TR{t). A ground 
term r is of type t in R i f f r 6 TR{t). Given a (possibly non-ground) conjunction 
T, we write R |= V(T) i f f for all ground instances T' o f T , R\J {<— T ' } has an 
SLD-refutation. 

So, t o solve E x a m p l e 7.1.1 one could use t h e fo l lowing AC 1 - c o m p a t i b l e RUL 

p r o g r a m , r e p r e s e n t i n g all s t a t e s us ing j u s t t h e fluent / 3 , a n d give t h e va r i ab le 

X in E x a m p l e 7.1.1 t h e t y p e ty. 

G iven two i ? [ / £ - p r o g r a m s t h e r e exis t eff icient p r o c e d u r e s for checking 

inclusion, computing the intersection and computing an upper bound using well 
k n o w n a l g o r i t h m s on c o r r e s p o n d i n g a u t o m a t a [158]. B e c a u s e of ou r def in i t ion , 

we c a n s imply r e -use t h e first t w o p r o c e d u r e s t o eff icient ly dec ide inc lus ion a n d 

c o m p u t e t h e i n t e r s ec t i on of RUL p r o g r a m s ( t h e i n t e r s ec t i on of E - c o m p a t i b l e 

RUL p r o g r a m s will still b e E-compa t ib l e ) . G i v e n t w o RUL p r o g r a m s 

a n d two t y p e s t i , t 2 , we will d e n o t e by ( i ? i , i i ) D ( % , ( 2 ) t h e coup le ( % , ( 3 ) 

obtained by the latter procedure (i.e., we have H T-^;(f2)). 
W e will n o t m a k e use of t h e u p p e r b o u n d a n d p r o v i d e o u r own gene ra l i s a t i on 

m e c h a n i s m . 

D e f i n i t i o n 7 . 1 . 3 Given some RUL program R, a t ype con junc t ion (in i?) is 

simply a conjunction of the form ti{xi) A • • • A tn{xn), where all the Xi are 
variables (not necessarily distinct) and all the ti are defined in R. We also 
define the notation typesj^{x) = {tj | tj{x) E atoms(T)}. 

E.g. , let T = t{x) A t'{z) b e a t y p e c o n j u n c t i o n , w h e r e t a n d t' a r e def ined by 

s o m e RUL p r o g r a m R. T h e n t y p e s = {('}. 

W e now def ine t h e a b s t r a c t d o m a i n used t o i n s t a n t i a t e t h e f r a m e w o r k of [90]: 

Def in i t ion 7 .1 .4 We define the RULE-domsin {AQ,'y,E) to consist of an 
equational theory E, a b s t r a c t con junc t ions of the form (Q,T,R) G AQ where Q 

is a concrete conjunction, R an E-compatible RUL-program, and T a type con-
junction in R such thatT — ti{xi)A- • •At„ (x„) , where Vars(Q) = { z i , . . . , Xn}-'^ 

The c o n c r e t i s a t i o n f u n c t i o n 7 is defined by: ^{{Q,T,R)) — {Q9 j R \= V(r0)}. 

4When writing, e.g., Vars(Q) = {xi,... ,Xn} we assume that all x, are distinct. 
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W e now def ine s impl i f ica t ion a n d p r o j e c t i o n o p e r a t i o n s for t y p e c o n j u n c t i o n s . 

T h i s will a l low us t o a p p l y s u b s t i t u t i o n s t o a b s t r a c t c o n j u n c t i o n s as well as 

to deGne an (abstract) unfolding operation. As the above deGnition requires 
every va r i ab le t o have exac t ly one t y p e , t h e t y p e of a va r i ab le z o c c u r r i n g in a 

s u b s t i t u t i o n such as {x/z,ylz} h a s t o b e d e t e r m i n e d by t y p e i n t e r sec t i on . 

Def in i t ion 7.1.5 Let R he some RUL program. The relation which maps 
type conjunctions to type conjunctions is defined as follows: 

• ti A £2 SI A 32 if ti SI, t2 S2, Si ^ fail, and 82 

• t{x) '^R t{x) if X is a variable 

• t(c) '^R true if c is a constant with c E TR^t) 

. , r n ) ) ' ^ A 3 i A - Aan ( ( / ( z i , . . . , a ; n ) ) < - ^ i ( a ; i ) A - A 
6 A and ({(n) Si, /or % = 1 , . . . ,n 

• t{r) -^R fail otherwise. 

de/tne o projection m/iick projects a ti/pe con^nction T m the conteit 0/ o 
RUL program on a concrete conjunction Q, resulting in new abstract conjunc-
tion: proj{Q,T,R) = {Q,S',R'), where T -^r S and 

• S' = S, R' = $ if S = fail or Vars(Q) = 0, 

• otherwise S' = t i (x i )A - • •At„(x„) where Vars(Q) = { x i , . . . ,Xn} and with 
typeag(ii) = { f i i , . . . / or i = 1 , . . . , n . 
Ln this case i?' = i?i U • • • U i?„. 

We now define the application of substitutions to abstract conjunctions: 

( Q , T , A ) g = p ro j (Qg , r , 7 ( ) . 

For e x a m p l e , us ing t h e RUL p r o g r a m R above , we have t^{fiozoz) '^r true A 

(3(2) A talz). We would thus have for d = { x / ( f 3 0 2 0 z)} tha t {p{x), tz{x),R)9 
= ( p ( / 3 o z o z ) , t 3 ( z ) , A ) . 

To e x t e n d t h e n o t i o n of i n s t a n t i a t i o n p r e - o r d e r of Def in i t ion 1.1.16 t o a b s t r a c t 

conjunctions the subset relation between types has to be considered: 

Def in i t ion 7.1 .6 Let A = {Q,T,R), A! = {Q',T',R') be abstract conjunctions 
in the RULE domain ( .4Q,7,E) . We call A' a RULE-instance of A, denoted 

1. there exists a substitution 9 such that AO = {Q',T",R") and 
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u;e 2. for all X £ Vars{Q') with typesj;{x) = {t'} and typeS'j,„{x) = {t"}, 
have TRi{t') C TE"{t"). 

1/Fe define =A[/i,g accordingly. 

In the above example, ( p ( / 3 o z o z ) , ( 3 ( z ) , ^ ) (p(z),(3(a;),E). 

Def in i t ion 7 .1 .7 An unfolding rule is a function which, given a definite E-
program {D,E) and a goal <— Q, returns a finite, non-triviaf and possibly in-
complete SLDE-tree for (Z),E) and •(— Q. 

Let T be a finite (possibly incomplete) SLDE-tree for (f) , E), f - Q. Let <— Gi,..., 
Gm be the goals in the leaves of the non-failing branches o f r . Let 0i,...,#» 

he the computed answer substitutions of the SLDE-derivations from i- Q to 
f - G i , . . . Gn, respectively. Then the set o / S L D E - r e s u l t a n t s , resultants{t), 

is defined to be the set of clauses {QOi G i , . . . , Q9n f - Gn}-

We can now define an abstract unfolding and an abstract resolution in the 
RULE-domam. W h e n a c o n j u n c t i o n of t h e RULE d o m a i n is un fo lded , t h e 

i n f o r m a t i o n c o n c e r n i n g t h e t y p e s of var iab les c a n b e used t o r e d u c e t h e n u m b e r 

of r e s u l t a n t s . Add i t iona l ly , we will use Def in i t ion 7.1.5 t o d e t e r m i n e t h e t y p e s 

of leaf c o n j u n c t i o n s . 

Def in i t ion 7.1.8 Let (D,E) be a definite E-program, (Q,T,R) an abstract con-
junction in the RULE domain ( .4Q,7,E), U an unfolding rule. We define the 
abstract unfolding and resolution operations aunf{-), ares(-) as follows: 

. a W ( ( Q , 7", A ) ) = {Qg g I Qg ^ B e reauk(ink([/(Q)) A Tg 76}^ /oiZ} 

. are3((Q,r ,^)) = | Qg ^ B E oun/((Q,T, j%))} 

T h e fol lowing is a gener ic a l g o r i t h m for a b s t r a c t p a r t i a l d e d u c t i o n , which s t r u c -

tu res the a b s t r a c t con junc t ions to be specialised in a global tree (see also e.g. 

[95]). T h e a b s t r a c t c o n j u n c t i o n a s soc ia t ed w i t h s o m e n o d e L is d e n o t e d by 

label{L). T h e a l g o r i t h m is p a r a m e t r i s e d by a cover ing t e s t covered, a whistle 

d e t e c t i n g p o t e n t i a l in f in i t e loops , a n a gene ra l i s a t i on o p e r a t i o n abstract a n d a 

f u n c t i o n partition t o s e p a r a t e c o n j u n c t i o n s i n to s u b - c o n j u n c t i o n s . 

A l g o r i t h m 7.1.1 {generic partial deduction algorithm) 

I n p u t : a def in i te E - p r o g r a m ( D , E), a n a b s t r a c t c o n j u n c t i o n A of {AQ,'y,E). 

O u t p u t : a se t of a b s t r a c t c o n j u n c t i o n s A, a spec ia l i sed p r o g r a m D ' , a g lobal 

tree A 

trivial SLDE-tree has a single node where no literal has been selected for resolution. 
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I n i t i a l i s a t i o n : A ; = a "g loba l" t r e e w i t h a s ingle u n m a r k e d n o d e , l a b e l l e d A 

repeat 

p i c k a n u n m a r k e d or a b s t r a c t e d leaf n o d e L in A 

i f covered {L, A) t h e n m a r k L a s p r o c e s s e d 

else 

if whistle{L, X) = T t h e n 

m a r k L a s a b s t r a c t e d 

label{L) := abstract{L, A) 

else 

mark 2/ aa processed 

for all A 6 ares {label {L) ) do 

for all A' 6 partition{A) do 

a d d a n e w u n m a r k e d chi ld C of L t o A 

label{C) := A' 

u n t i l all n o d e s a r e p r o c e s s e d 

output A := {aunf {label{A)) | A 6 A}, D' := {aunf{A) | A € A}, and A 

N o w , we d e f i n e a p a r t i c u l a r i n s t a n c e of t h e a b o v e a l g o r i t h m w h i c h is s u i t a b l e 

t o solve c o n j u n c t i v e p l a n n i n g p r o b l e m s for F l u e n t C a l c u l u s d o m a i n s . T o t h i s 

e n d we i n s t a n t i a t e t h e A l g o r i t h m 7.1 .1 in s u c h a w a y t h a t i t i m i t a t e s t h e Algo-

r i t h m 4 .2 .1 . I n S e c t i o n 7.2 we will p r o v e t h a t o u r i n s t a n t i a t i o n is i n d e e d c o r r e c t . 

A l g o r i t h m 7 . 1 . 2 (a p a r t i a l d e d u c t i o n a l g o r i t h m for t h e F l u e n t C a l c u l u s ) 

unfolding 

A c c o r d i n g t o D e f i n i t i o n 7.1.8, aunf(-) r e q u i r e s a n u n f o l d i n g r u l e U{-). I n t e r m s 

of m o d e l check ing t h e u n f o l d i n g of a goa l t h a t r e p r e s e n t s a s t a t e of s o m e ( inf in i te ) 

s t a t e s y s t e m d e s c r i b e s wh ich i m m e d i a t e succes so r s t a t e s t h e s y s t e m m a y r e a c h 

a n d h o w t h i s c a n b e achieved®. Fo r t h e F l u e n t C a l c u l u s we u s e t h e fo l lowing 

s i m p l e u n f o l d i n g ru le ; L e t {Q,T,R) b e a n a b s t r a c t c o n j u n c t i o n i n t h e RULE 

d o m a i n a n d {D,E) b e a de f in i t e E - p r o g r a m . W e de f ine U{Q) t o b e t h e m a x i m a l 

S L D E - t r e e r s u c h t h a t e v e r y p r e d i c a t e p e x c e p t t h e e q u a l i t y s y m b o l d e f i n e d by 

E ( = s t in t h e e x a m p l e ) is se lec ted a t m o s t o n c e in eve ry b r a n c h of r . C lear ly , 

t h e r e s u l t i n g S L D E - t r e e is finite if t h e e q u a t i o n a l t h e o r y is finitary. 

®In general unfolding may also preselect states that do not have to be processed. 
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F i g u r e 7.1: T h e i n c o m p l e t e S L D E - t r e e fo r E x a m p l e 7.1.2. CO 
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E x a m p l e 7 . 1 . 2 ( E x a m p l e 6 . 2 . 2 c o n t i n u e d ) We define as the RULE 

domain {AQ,^,kCl) where every abstract conjunction C € AQ is of the form 

{Reachable{g,v),T,R}. Thereby v = 2/1 0 - 03/5 where each variable yi for 

i = is restricted by the type conjunction T such that t f i 6 atoms{T). 

The term g is of sort St and for all variables x E Vars{g), t f { x ) 6 atoms{T) for 

some fluents f 6 Fls^- R consists of predicates ( t f ) for each fluent f E Flj:^: 

( / ( 1 ° ) . 

( / ( z o y ) < - ( ; (%) A f / ( 3 / ) . 

The SLDE-tree computed by U (using the leftmost selection rule) for the ab-

stract conjunction {Reachable{fl,yi o • • o%^) ,Z/ i (y i ) A • • • Atf5{y5),R) wrt the 

definite E-program corresponding to domain Vp is depicted in Figure 7.1 (we 

use Definition 6.12 of Reachable{-,-)). • 

W i t h th i s p a r t i c u l a r u n f o l d i n g ru l e we e n s u r e t h a t e v e r y g o a l of t h e f o r m 

Reachable{gi, g2) is u n f o l d e d in such a way t h a t e v e r y i n c o m p l e t e leaf n o d e 

of t h e r e s u l t i n g S L D E - t r e e cons i s t s of a s u b g o a l of t h e s a m e f o r m . I n t h e n e x t 

sec t ion we will use this property t o prove c o m p l e t e n e s s of our part ia l deduc-

t i o n a l g o r i t h m b y s h o w i n g a c o r r e s p o n d e n c e b e t w e e n t h e s u b g o a l s of t h e f o r m 

Reachable(gi, g2) w i t h p s e u d o - m a r k i n g s in P e t r i n e t a l g o r i t h m s . 

covered 

In p a r t i a l d e d u c t i o n a l g o r i t h m s t h e f u n c t i o n covered is u s e d t o check w h e t h e r 

s o m e s u b g o a l h a s b e e n a l r e a d y e n c o u n t e r e d b e f o r e . T h i s e n s u r e s t e r m i n a t i o n 

of t h e a n a l y s i s a n d , if covered is de f ined a p p r o p r i a t e l y , i t o f t e n m a y r e d u c e t h e 

n u m b e r of s u b g o a l s t o b e v i s i t ed , cons ide rab ly . He re , we d e f i n e covered s i m p l y 

using the equivalence re lat ion o n abstract conjunct ions t o ensure terminat ion: 

Le t 1/ b e a n o d e l a b e l l e d by a n a b s t r a c t c o n j u n c t i o n in t h e RULE d o m a i n 

{AQ, 7 , E) a n d A a t r e e l abe l l ed b y e l e m e n t s of AQ. T h e n we d e f i n e covered{L, A) 

as t r u e iff t h e r e is a n a n c e s t o r L' of L s u c h t h a t label {L') =rule label (L). 

I n s t e a d of u s i n g t h i s check for equ iva l ence w i t h a n c e s t o r s , only, we m a y use 

a m o r e r e f ined a p p r o a c h . O n o n e h a n d , we m a y c o m p a r e t h e s u b g o a l L t o all 

s u b g o a l s L' in t h e t r e e . O n t h e o t h e r h a n d , in ! F C p l d o m a i n s i t is suf f ic ien t 

t h a t label{L') <rule label(L) fo r L t o b e covered . T h i s is p o s s i b l e d u e t o t h e 

m o n o t o n i c i t y p r o p e r t y of P e t r i n e t s (see [39] a n d [94] for d e t a i l s ) . I t h a s b e e n 

s h o w n t h a t t h i s m o r e s o p h i s t i c a t e d a p p r o a c h m a y h e l p r e d u c i n g t h e size of t h e 

f ina l t r e e e n o r m o u s l y . 

whistle 

T h e f u n c t i o n whistle is u s e d t o d e t e c t w h e t h e r t h e r e p e a t e d e x t e n s i o n of a n 

i n c o m p l e t e d e r i v a t i o n (by u n f o l d i n g t h e l a s t s u b g o a l ) m i g h t r e s u l t in a n in f in i t e 
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der iva t ion . D u e t o t h e undec idab i i i t y of t h e h a l t i n g p r o b l e m , wh ich can b e en-

coded as a de f in i t e logic p r o g r a m , it is n o t a lways poss ib le t o precise ly p r e d i c t 

in f in i te de r iva t ions^ . Consequen t ly , t o e n s u r e t h a t all in f in i te S L D E - d e r i v a t i o n s 

a r e d e t e c t e d (which is r equ i red for t h e p a r t i a l d e d u c t i o n a l g o r i t h m t o t e r m i -

n a t e ) whistle will have t o recognise u n f o l d i n g of some s u b g o a l s as d a n g e r o u s , 

even w h e n t h e y d o n o t r e su l t in inf in i te de r iva t ions . To t h i s end , for p a r t i a l de-

d u c t i o n t h i s " o v e r - a p p r o x i m a t i o n " is is o f t e n def ined in t e r m s of a homeomorphic 

embedding relation [140]. T h e h o m e o m o r p h i c e m b e d d i n g r e l a t i o n is def ined on 

t h e se t of a t o m s of t h e def in i te logic p r o g r a m . In pr inc ip le , we could e m p l o y th i s 

r e l a t i on in a F l u e n t Ca lcu lus s e t t i n g as well. However , as we use a n e q u a t i o n a l 

theory , i t is m o r e n a t u r a l t o e x t e n d t h e h o m e o m o r p h i c e m b e d d i n g accord ing ly : 

D e f i n i t i o n 7 . 1 . 9 Let A = (Q,T,R),A' = {Q',T',R') be abstract conjunctions 

in the RULE domain {AQ,j,E). For the purposes of this definition we suppose 

that A is handled by E as an associative, commutative and idempotent function 

symbol. Let =s be the equality symbol defined by E. We say that A is h o m e o -

m o r p h i c a l l y e m b e d d e d in A', A A', i f f Q <e Q' where <e on expressions is 

inductively defined as follows: 

&. c <E y for all variables y and constants c, with a E T/{(typeSf,(y)) 

,9. r / ( 8 i , . . . , 8 n ) i / (Aere e i ia ta a ' witA E |= a ' = g r a n d (Aere er iafa 

for some 1 < i < m 

/ ( n , - g ( 3 i , . , 8 n ) t/iGre e i w t s E |= 

and V; E {1, r- < e s[. 

N o t e t h a t for p o i n t 3. we m a y have n = 0, a n d for p o i n t 4. m,n,k c an b e 0. 

In tu i t ive ly , s <e t, m e a n s t h a t we c a n o b t a i n s f r o m t by " s t r i k i n g o u t " c e r t a i n 

s u b - t e r m s a n d by us ing t h e e q u a t i o n a l t h e o r y t o r e -wr i t e s a n d t. E .g . , for E 

equa l s ACl, we h a v e a n d fog<Eg°hox fov typeSf,{x) =tf w h e r e 

R' is a RUL p r o g r a m as in E x a m p l e 7.1.2. N o t e t h a t in gene ra l , a n e q u a t i o n a l 

t h e o r y m i g h t def ine two t e r m s also t o b e equa l even w h e n t h e y a r e c o n s t r u c t e d 

us ing d i f fe ren t f u n c t i o n symbols . T h i s is t a k e n i n to a c c o u n t in Def in i t ion 7.1.9 

by cons ide r ing a f u n c t i o n / ' in p o i n t 3. a n d 4. 

Of course , <e will b e q u i t e expens ive t o c o m p u t e ([102]). A l t h o u g h in t h e 

c o n t e x t of ACl a n d in p a r t i c u l a r J-Cpi we m a y i n t r o d u c e a lot of o p t i m i s a t i o n s 

t o o b t a i n a n eff icient i m p l e m e n t a t i o n (e.g. s o r t i n g fluents a n d de f in ing a n o r m a l 

f o r m for t e r m s ) , t h e r e will be a t r ade -o f f b e t w e e n t h e c o m p u t a t i o n a l e f for t t o 

''Note that for T C p i domains it is in fact possible to predict precisely when a derivation 
is potentially infinite while already for simple TC domains it is not. 
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d e t e c t i n f i n i t e d e r i v a t i o n s , w h i c h m a y r e d u c e t h e s ize of t h e r e s u l t i n g t r e e , a n d 

the speed of the partial deduction algorithm. 

T h e o r i g i n a l h o m e o m o r p h i c r e l a t i o n ( a n d , if C is a w e l l - q u a s i o r d e r o n t h e s e t 

of t y p e s , a l so o u r r e f i n e d h o m e o m o r p h i c r e l a t i o n of D e f i n i t i o n 7 .1 .9) is a well-

q u a s i o r d e r a n d c a n t h u s b e u s e d t o e n s u r e t e r m i n a t i o n of p r o g r a m s p e c i a l i s a t i o n 

t e c h n i q u e s [140]. W e a p p l y <e as fo l lows. L e t L b e a n o d e l a b e l l e d b y a n a b s t r a c t 

c o n j u n c t i o n in t h e RULE d o m a i n ( ^ Q , 7 , E ) a n d A a t r e e l a b e l l e d b y e l e m e n t s 

of AQ. W e d e f i n e whistle^^ (L, \ ) = T iff L is n o t m a r k e d a s a b s t r a c t e d a n d 

t h e r e is a n a n c e s t o r L' of L s u c h t h a t lahel{L') <e label(L). 

abstract 

If a n i n c o m p l e t e d e r i v a t i o n w a s r e c o g n i s e d as b e i n g " d a n g e r o u s " b y t h e f u n c t i o n 

whistle, s o m e of t h e p o s s i b l y i n f i n i t e d e r i v a t i o n s n e e d t o b e r e p r e s e n t e d in a 

f i n i t e way. H o w e v e r , fo r m o s t a p p l i c a t i o n s of p a r t i a l d e d u c t i o n c o n s i d e r e d so 

f a r i t is su f f i c i en t t o r e p r e s e n t o n l y t h e ( p o s s i b l y i n f i n i t e ) s e t of s u b g o a l s -

t h e i n f o r m a t i o n a b o u t t h e i r o r d e r a s d e s c r i b e d b y a n y p a r t i c u l a r d e r i v a t i o n is 

d i s c a r d e d . T o r e p r e s e n t t h i s s e t of s u b g o a l s in a finite w a y a s ing le , m o r e g e n e r a l 

s u b g o a l is u s e d . T h i s s u b g o a l is c h o s e n b a s e d o n t h e c o n d i t i o n t h a t m a n y of 

t h e s u b g o a l s o c c u r r i n g o n a n i n f i n i t e d e r i v a t i o n (as p r e d i c t e d b y whistle) s h o u l d 

be instances of the new more general subgoal. On one hand, this condition 
s h o u l d e n s u r e t e r m i n a t i o n b y a l l o w i n g o n l y a finite n u m b e r of g e n e r a l i s a t i o n 

steps before all subgoals are covered. On the other hand, if the new subgoal 
is chosen such that it covers also many subgoals which do not occur on an 
i n f i n i t e d e r i v a t i o n (as p r e d i c t e d b y whistle), i m p o r t a n t i n f o r m a t i o n a b o u t t h e 

a c t u a l l y r e a c h a b l e s u b g o a l s m i g h t b e los t . I n c lass ica l p a r t i a l d e d u c t i o n t h e 

n e w s u b g o a l is a n a t o m w h i c h r e p r e s e n t s t h e m o s t spec i f i c g e n e r a l i s a t i o n w r t 

a subset of the subgoals encountered on the "dangerous" derivation. As we 
h a v e a r g u e d , t o a d a p t t h e a p p r o a c h t o t h e F l u e n t C a l c u l u s , we h a v e t o i n c r e a s e 

t h e p r e c i s i o n of t h e m o s t spec i f i c g e n e r a l i s a t i o n b y i n t r o d u c i n g a t y p e s y s t e m . 

S ince o u r a b s t r a c t i o n m e c h a n i s m m a y in g e n e r a l i n t r o d u c e n e w t y p e s d u r i n g t h e 

p a r t i a l d e d u c t i o n p r o c e s s we h a v e t o e n s u r e t h a t a b s t r a c t i o n s of t y p e s m a y o c c u r 

o n l y finitely o f t e n , i .e. t h e t y p e s y s t e m s h o u l d b e well-founded. A d d i t i o n a l l y , t o 

ensure that is a well-quasi order, the relation C must be a well-quasi order 
on the type system. 

Def in i t ion 7 .1 .10 Let E be an equational theory and T a set of tuples {t,R) 
where R is a RUL program and t a predicate defined in R. We call T a well-
formed type system 

L there is no infinite sequence (ii, i?i), (i2,-R2), • • • of elements of T such 
that TR-{ti) C (ii+i) for all i > 1, and 

2. there is no infinite sequence {ti,Ri),(t2,R2), • • • of elements of T such 

7-% (^i) 2 TVZ, /or off i ^ j . 
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N o w we c a n def ine a g e n e r a l i s a t i o n a n d a m o s t specif ic g e n e r a l i s a t i o n in t h e 

RUL£^-domain for s o m e we l l - fo rmed t y p e s y s t e m : 

D e f l n i t i o n 7 . 1 . 1 1 Let E be an equational theory, T he a well-formed type sys-

tem and A a set of abstract conjunctions in (AQ, 7 , E). The abstract conjunction 

M = {Q,T,R) is called a RULE-geneialisation of A wrt T i f f 

1. for all t{x) G T we have {t,R) G T , 

2. for all A G A, A <RIJLE M . 

Furthermore, M is called a m o s t specif ic i ?C/LjB-genera l i sa t ion of A wrt T , 

denoted by M E msgf{A), i f f there exists no M' such that conditions 1, 2 hold 

/ o r M ' and M ' M . 

For e x a m p l e , A = {{fZ,true,%), { / 3 o f?,,true,%)] a n d u s i n g t h e s ingle t y p e 

de f ined by t h e RUL p r o g r a m i? for (3 we ge t = {{f^°x,tz{x),R)}. 

A g a i n , for o t h e r e q u a t i o n a l t heo r i e s t h a n (ACl) a n d m o r e c o m p l i c a t e d t y p e 

s y s t e m s a m o s t specif ic g e n e r a l i s a t i o n m i g h t be d i f f icul t t o c o m p u t e ( a n d m a y 

n o t b e u n i q u e ) . T o a c c e l e r a t e conve rgence ( a n d t o s imp l i fy o u r c o m p l e t e n e s s 

p r o o f for C P P l a t e r o n ) , we a c t u a l l y choose a n e l e m e n t M' = {Q,T,R) of 

msg-j-{A) a n d t h e n r e m o v e t h e m a x i m u m n u m b e r of s u b - t e r m s f r o m Q so t h a t 

t h e r e s u l t i n g a b s t r a c t c o n j u n c t i o n is still m o r e g e n e r a l t h a n M' ( in t h e sense of 

We will denote the result by For example , we would instead 

of us ing M ' = ( / 3 o a ; , ^ 3 ( z ) , use the more general = (a;,f3(a;), A) . 

Th i s loses some precision, but convergence is accelerated, and actual ly no vital 

i n f o r m a t i o n for t h e C P P is lost! 

L e t i be a n o d e l abe l l ed b y a n a b s t r a c t c o n j u n c t i o n in t h e RULE d o m a i n 

( . 4 2 , 7 , E) a n d A a t r e e l abe l l ed by e l e m e n t s of AQ. L e t £ d e n o t e t h e se t of all 

a n c e s t o r s of L in A s u c h t h a t L ' 6 £ iff label{L') <e label{L). F u r t h e r m o r e , let 

A d e n o t e t h e se t of l abe l s of £ . T h e n we def ine abstract{L, X) = nrnsg-j-iA). 

partition 

For de f in i t e logic p r o g r a m s in gene ra l , t h e u n f o l d i n g of s o m e a t o m r e p r e s e n t i n g 

a s u b g o a l m i g h t r e s u l t in a t r e e w h e r e s o m e leaf is l abe l l ed by a c o n j u n c t i o n of 

a t o m s r a t h e r t h a n b y a s ingle a t o m . However , by us ing t h e u n f o l d i n g ru le a s 

de f ined a b o v e all leaf n o d e s a r e g u a r a n t e e d t o b e s ingle a t o m s in F l u e n t C a l c u l u s 

d o m a i n s . C o n s e q u e n t l y , we def ine partition{-), wh ich is u s e d in c lassical p a r t i a l 

d e d u c t i o n t o spl i t t h e c o n j u n c t i o n s i n to a t o m s , s i m p l y as fol lows: 

D e f i n i t i o n 7 . 1 . 1 2 Let A = {Q,T,R) be an abstract conjunction in ( y l g , 7 , E) 

and T a well-formed type system. Then partition{A) = atoms{nmsg'j-{{A})). 

T o solve t h e p r o b l e m of c o n j u n c t i o n s a p p e a r i n g in leaf n o d e s in a m o r e gene ra l 

way, we m a y follow al ternat ive ly the approach of parfiaZ Jeduc-

tion [23]. 
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7.2 Completeness wrt TCpi 

I n S e c t i o n 4 . 3 we h a v e s h o w n t h a t P e t r i n e t a l g o r i t h m s c a n b e u s e d t o d e c i d e 

t e m p o r a l p r o p e r t i e s of p r e p o s i t i o n a l F l u e n t C a l c u l u s d o m a i n s . I n p a r t i c u l a r , t o 

e v e r y p r o p o s i t i o n a l T C d o m a i n w i t h c o m p l e t e l y d e f i n e d i n i t i a l s t a t e t h e r e ex-

i s t s a b i s i m i l a r P e t r i n e t . F u r t h e r m o r e , t h e c o n j u n c t i v e p l a n n i n g p r o b l e m fo r t h e 

p r o p o s i t i o n a l TC c a n b e e x p r e s s e d as a f o r m u l a in t h e t e m p o r a l logic CTL {CTL 

r e s p e c t s b i s i m u l a t i o n ) . T h e s a m e f o r m u l a is k n o w n t o d e s c r i b e c o v e r a b i l i t y p r o p -

e r t i e s of P e t r i n e t s . C o v e r a b i l i t y p r o b l e m s c a n b e d e c i d e d u s i n g t h e Karp-Mil ler 

t r e e (see S e c t i o n 4 .2 ) . I n t h i s s e c t i o n w e will s h o w t h a t t h i s t r e e c a n a l so b e 

g e n e r a t e d b y t h e p a r t i a l d e d u c t i o n A l g o r i t h m 7 .1 .1 u s i n g t h e i n s t a n t i a t i o n s of 

A l g o r i t h m 7 .1 .2 . B y d o i n g so, we p r o v e t h a t t h e p r o p o s e d p a r t i a l d e d u c t i o n 

m e t h o d is c o m p l e t e fo r c o n j u n c t i v e p l a n n i n g p r o b l e m s fo r T C p i d o m a i n s . 

T h e o r e m 7 . 2 . 1 Let V be a TCpi domain description wrt some signature S , 

A the RULE domain (.4Q,7, ACl) where every abstract conjunction C £ AQ 

is of the form {Reachable{g, v),T, R). Thereby v — yi o ••• o where for each 

/ i 6 = 2 2 , F ! ( 0 ) , 6 a f o m a ( ! r ) 

term g be of sort St and for all variables x E Vars{g), t f { x ) 6 atoms{T) for some 

fluent f E 7 E , f ( ( 0 ) . R consists of predicates ( i / ) for each fluent f E Te . fU®)- ' 

Furthermore, let Stinu be some ground term of sort St and M a model of V 

where state-'^{sO'^) =st Stinit- Then the partial deduction algorithm applied to 

the definite E-program ( P , E) representing V , A and A = {Reachable ( S t o 

• • -ovn), ( f i ) A • • • A f / „ {vn),R) will produce a global tree X which is isomorphic 

to a Karp-Miller coverability tree of the Petri net V{V, M ) . 

W e wil l n o w f o r m a l l y p r o v e t h a t t h e a l g o r i t h m 7 .1 .1 w i t h t h e i n s t a n t i a t i o n of 

A l g o r i t h m 7 .1 .2 c a n b e u s e d t o d e c i d e c o v e r a b i l i t y p r o b l e m s . F o r t h i s we n e e d t o 

es tab l i sh a l ink b e t w e e n p s e u d o - m a r k i n g s in t h e Karp-Mil ler tree and abs trac t 

c o n j u n c t i o n s p r o d u c e d b y p a r t i a l d e d u c t i o n . 

Le t V b e s o m e TCpi d o m a i n w r t s i g n a t u r e E , ( D , E) t h e d e f i n i t e E - p r o g r a m 

correspond ing t o D a n d A i s o m e m o d e l of D . Let 7 i ; ,F((0) = { / i , . . . , / » } b e 

t h e fluents a n d Ts.yictC®) = Om} t h e a c t i o n s d e f i n e d in 2 . A c c o r d i n g t o 

S e c t i o n 4.3 , t h e P e t r i n e t V{V,M) = {P,T,E,W,mo) is g i v e n b y a s s o c i a t i n g 

a n u n i q u e p l a c e P ( / ) E F t o e a c h / £ T o e v e r y s t a t e u p d a t e a x i o m 

T>, a n d t h e r e b y t o e v e r y p a i r of c l auses c l a u s e of t h e f o r m 

f o a 3 3 ( a ; , z ) + - z = a , o , z ) . 

5 'wcc3(z i , a ; , z2 ) a: = a , f 0 a a 3 ( z , z i ) , z 2 o o 
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in {D,E), for a 6 T-s,Acti^) & t r a n s i t i o n T ( a ) e T is a s s o c i a t e d . T h e se t E of 
edges a n d t h e weight f u n c t i o n W a r e def ined w r t t h e fluents a p p e a r i n g in t h e 

s t a t e u p d a t e a x i o m s as de sc r ibed in Sec t ion 4.3. 

L e t A b e t h e RULE d o m a i n ( ^ Q , 7 , A C 1 ) where every a b s t r a c t c o n j u n c t i o n 

C G AQ is of t h e f o r m {Reachable{g, v), T, R) w h e r e f = y i o • • • ^ is a t e r m 

of s o r t St a n d for all va r iab les x E Vars{g) a n d y E Vars{v) t f { x ) E atoms (T) 

a n d t f ' { y ) E atoms (T) for s o m e fluents / , / ' E R cons i s t s of t h e c lauses 

defining (^/) for each Huent / E 2 2 , f f ( 0 ) - Then, we define the pseudo-marking 
C such t h a t for each / E 

f P ' / f ] _ f ^ if 3a;. (x E Vars{g) A t f { x ) E atoms{T)) 

1 | g , / I o t he rwi se 

Accord ing ly , t h e in i t ia l m a r k i n g c o r r e s p o n d i n g t o some g r o u n d s t a t e t e r m Stinit 

is g iven by 

!/i o " o 3/n), (z/i) A - A (;/»), A ) ' ' 

Add i t iona l ly , we a s soc ia t e w i t h every p s e u d o - m a r k i n g m a n d RULE p r o g r a m 

R as def ined a b o v e a n a b s t r a c t c o n j u n c t i o n m " = {Reachable{g, v), T, R) such 

t h a t for every fluent / E the t e r m g c o n t a i n s / e x a c t l y m{P{f)) 

t i m e s if m{P{f)) ^ w. For every / £ T^,fi{9) w i t h m{P{f)) = uj, g con ta in s a 

variable z and T a type declaration Additionally, i; = %/i o - o ; /» and 

tfi{yi) E atoms{T) for all 1 < z < n . 

To p rove t h a t t h e t r ee g e n e r a t e d by o u r p a r t i a l d e d u c t i o n a l g o r i t h m is i somor -

ph ic t o t h e K a r p - M i l l e r t ree , we show t h a t a n y n o d e g e n e r a t e d by t h e p a r t i a l 

d e d u c t i o n p r o c e d u r e is also g e n e r a t e d by t h e K a r p - M i l l e r p r o c e d u r e a n d vice 

versa . T o th i s end we e s t ab l i sh c o r r e s p o n d e n c e s b e t w e e n t h e r e l a t i ons used in 

t h e de f in i t ion of A l g o r i t h m 7.1.2 a n d t h e r e l a t ions used in t h e de f in t ion of Algo-

r i thms 4.2.1. T h e n we show that the s teps performed by one a lgori thm are also 

p e r f o r m e d by t h e o t h e r . 

L e m m a 7 . 2 . 2 Let Li,L2 be some nodes of the tree A which is labelled by ab-

stract conjunctions of A. Let Ci = {Reachable{gi,v),Ti,R) = label{Li) and 

Cg = (Aeac/ ioWe(g2, i ' ) ,T2, A) = faW(Z,2)- TAen C i ^ 2 = Cg ' ' . 

P r o o f 7 . 2 . 2 T h i s follows us ing t h e m a p p i n g s a n d b e t w e e n m a r k i n g s a n d 

a b s t r a c t c o n j u n c t i o n s as def ined a b o v e a n d t h e f ac t t h a t ( C ) " =RULB C for 

m a r k i n g s C = {Reachable{g, v), T, R) a n d f r o m t h e De f in i t i on 7.1.6, Ci =RULB 

C2 iff for all fluents / ho lds e i t he r 1. t h e n u m b e r of / in gi a n d gg m u s t b e 

equa l , or 2. t h e r e are va r iab les x in gi a n d y in 52 such t h a t t f { x ) E Ti a n d 

t / W E I z . o 

L e m m a 7 . 2 . 3 LetL be some node of the tree A which is labelled by abstract con-

junctions of A. Let C = {Reachable (g, v), T, R) — label{L) and Co,Ci,... ,Cn 
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is the sequence of labels of the ancestors of L in A where Co is the label of the 
root node. whistle{L, X) — T i f f there is some Lk labelled Ck, 0 < k < n, with 

P r o o f 7 . 2 . 3 A c c o r d i n g t o t h e def in i t ion , whistle r e t u r n s T iff t h e r e is some an -

ces to r LK of L l abe l led Ck such t h a t C* C . If g does n o t c o n t a i n a va r i ab le 

of t y p e tf for f luen t / 6 TE,FI{$) a n d CK <B C, t h e n f r o m case 4 of t h e defini-

t i on of <£• follows CK'^{P{f)) < C^{P{f)), o the rwise , by case 1 a n d 2, follows 

CK^{P{f)) < C^{P{f)) if t h e c o r r e s p o n d i n g s u b t e r m of CK cons i s t s only of / 

or s o m e va r i ab le of t y p e t f . Now, let Ck = {Reachable {gk,Vk),Tk,R) b e a n ab -

s t r a c t c o n j u n c t i o n in A g w i t h CK C. T h e n e i the r , for each fluent / , case 4 

c a n b e app l ied Ck^{P{f)) t imes , or case 1 or 2 can b e a p p l i e d w h e r e x is of 

t y p e t f . C o n s i d e r i n g t h e e q u a t i o n a l t h e o r y ACl, case 4 c a n on ly b e app l i ed if 

b o t h f u n c t i o n s y m b o l s a r e ident ica l , i.e. C^{P{f)) c o n t a i n s / a t l eas t CK^{P{f)) 

t imes . O n t h e o t h e r h a n d , case 1 or 2 can b e app l i ed on ly if C^{P{f)) = ui a n d 

if t h e c o r r e s p o n d i n g s u b t e r m of Ck cons is ts on ly of copies of / or of a var iab le 

o f ^ ' p e ^ : . O 

L e m m a 7.2 .4 Let L be some node of the tree X which is labelled by abstract 
conjunctions of A. Let C = {Reachable{g,v),T, R) = label{L) and {Ci,...,C„} 
is the sequence of labels of ancestors ofL in X such that C{<gC for alll < i < n. 
Let the type system T consist of all pairs {t, R) such that t is a predicate in R. 
C = abstract{L, X) iffC"^ = m' andm' is defined as follows: if for some fluent f 
f/iere an o / C in A aucA C*** < and 
m ' ( / ) = w, ofAerwiae m ' ( / ) = 

P r o o f 7 . 2 . 4 N o t e t h a t T is a f in i te set such t h a t for a n y t w o {ti, R), {t2,R) E T, 

n 7-^(^2) = 0- Furthermore, every with (f, A) 6 7" consists only of 
terms constructed by combining one particular Auent / E using o. 
Hence , f r o m t h e de f in i t ion of abstract a n d nmsgj- fol lows t h a t C" c o n t a i n s a 

va r i ab le of t y p e tf iS t h e r e is s o m e a n c e s t o r Lk of L l abe l l ed Ck such t h a t 

Ck C a n d < C ^ { f ) . O n one h a n d , c o n d i t i o n 2 in Def in i t ion 7.1.11 

e n s u r e s t h a t C a n d Ck are b o t h i n s t ances of C = {Reachable{g',v), T',R). T h i s 

is t r u e iff Ck^if) < C ' ^ { f ) a n d C ( / ) < C ' ^ { f ) a n d hence , g' m u s t con t a in a 

va r i ab le of t y p e tf if < C ^ { f ) . F u r t h e r m o r e , f r o m def in i t ion of nmsg-j-, 

a fiuent / m u s t n o t o c c u r in g' if g' c o n t a i n s a va r i ab le of t y p e t f . O n t h e o t h e r 

h a n d , f r o m Def in i t ion 7 .1 .11 follows, t h a t g' m u s t n o t c o n t a i n a va r i ab le of t y p e 

i / if Ck^if) = C ^ { f ) for all a n c e s t o r s w i t h l abe l Ck and Ck'^ < C . In t h i s 

case, since C C", the same number of copies of Buent / occur in g' as in g. 
• 

L e m m a 7.2 .5 Let Li,L2 be some nodes of the tree A which is labelled by ab-
stract conjunctions of A. Let Ci = {Reachable{gi,v),Ti,R) = label{Li) and 
C2 = = Wef(i}2)- "̂2 € p(i)i;(ion(area(oun/(Z,i))) 
there is an action a such that Ci^{T{a))C2^. 
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P r o o f 7 . 2 . 5 T h e p r o c e d u r e s aresQ a n d aunf{) c a n b e s impli f ied, s ince a var i -

a b l e m a y n e v e r h a v e t w o or m o r e t y p e s , c o n j u n c t i o n s of t y p e s d o n o t h a v e t o 

b e c o m p u t e d , aresi) a n d aunfi) u n f o l d a n d e n s u r e t y p e of va r i ab l e s , only. Ac -

c o r d i n g t o t h e u n f o l d i n g ru le , wh ich u n f o l d s u n t i l e v e r y o c c u r r i n g p r e d i c a t e is 

u n f o l d e d once , a n a t o m Reachable{gi,v) c a n b e u n f o l d e d iff t h e r e is a n a c t i o n 

a s u c h t h a t Poss3{a, gi) is fulf i l led (i.e. i t is u n f o l d e d i n t o t h e e m p t y goa l ) . If 

Reachable{gi, v) c a n b e u n f o l d e d , t h e n t h e s ing le s u b g o a l Reachable{g'l, v) w h e r e 

gi =st V o a n d g'l =st v o is g e n e r a t e d . A c c o r d i n g t o t h e ACl u n i f i c a t i o n , 

P o a a 3 ( o , g i ) i s f u l f i l l e d i E g i = s ( i ' o ^ f - o 5 : f = i S e i t h e r | 5 ' ( g , / | 4 - | 5 ' f = , / | < | g i , / | 

or t h e r e is a v a r i a b l e of t y p e tf in gi, fo r e a c h / e C o n s e q u e n t l y , by 

d e f i n i t i o n of W fo r P ( D , M ) in Sec t i on 4.3, gi =st v o 'st~ o iff T{a) is en -

a b l e d in Ci'^. F u r t h e r m o r e , if g\ does n o t c o n t a i n a v a r i a b l e of t y p e i / , i t h o l d s 

\g'i,f\ = \gi,f\ - ) / l + O t h e r w i s e , t h e c o - d o m a i n of a n y mgeu fo r 

gi a n d v o St~ m u s t c o n t a i n a v a r i a b l e x s u c h t h a t t f { x ) . L e t T / b e t h e se t 

of s u c h t y p e d e c l a r a t i o n s . T h e n , w i t h Q = {Reachable{g[, v), Tl, R), i t fo l lows 

C i ' ^ [T{a ) )C[ ' ^ . H o w e v e r , g[ m a y c o n t a i n copies of a fluent / e v e n if t h e r e is a 

v a r i a b l e x in g'l w i t h t f ( x ) 6 T{. U s i n g t h e p a r t i t i o n f u n c t i o n w i t h nmsg-j-, g2 

is de f ined as g'l w h e r e s u c h a d d i t i o n a l cop ies a r e r e m o v e d . B y t h i s i t is e n s u r e d 

t h a t fo r eve ry m a r k i n g m w i t h Ci^[T{a))m, m " =RULE Cg. • 

Fina l ly , u s i n g t h e l e m m a s a b o v e we c a n p r o v e t h e m a i n t h e o r e m b y s h o w i n g t h a t 

o u r p a r t i a l d e d u c t i o n p r o c e d u r e i m i t a t e s e a c h s t e p of t h e Karp-Mil ler p r o c e d u r e . 

P r o o f 7 . 2 . 1 ( T h e o r e m 7 . 2 . 1 ) A c c o r d i n g t o d e f i n i t i o n of A l g o r i t h m 4 .2 .1 h o l d s 

[ / = {node(r,TTio)} where we set mo = N o w , we s h o w the correspondence 

b e t w e e n each s tep in A l g o r i t h m 4.2 .1 and A l g o r i t h m 7.1.2. First , b o t h algo-

r i t h m s t e r m i n a t e if n o u n p r o c e s s e d n o d e s r e m a i n . S e c o n d , in A l g o r i t h m 7.1.2 a 

se lected node .L is marked processed if couered(iL, A) is true. Let (k, m ) b e the se-

l e c t ed n o d e b y A l g o r i t h m 4 .2 .1 w i t h m = lahel{LY. A c c o r d i n g t o L e m m a 7.2.2, 

covered{L, \ ) iff t h e r e is a n a n c e s t o r n o d e w i t h m = mi. I n t h i s case 

{k,m) is m a r k e d p r o c e s s e d by A l g o r i t h m 4 .2 .1 (i.e. r e m o v e d f r o m t h e l ist of u n -

p r o c e s s e d n o d e s ) . T h i r d , A l g o r i t h m 7.1.2 cal ls abstract{L, X) if whistle{L, X) = 

T . U s i n g L e m m a 7 .2 .3 whistle{L, X) = T iff t h e r e is s o m e a n c e s t o r Lfc of L 

s u c h t h a t lahel{LkY 5 label{L). I n A l g o r i t h m 4 .2 .1 , a b s t r a c t i o n is p e r f o r m e d 

for e v e r y a n c e s t o r {ki,mi) of {k,m) w i t h mi < m. S ince t h e ca se mi = m a n d 

label{Lk) =RULE label{L), r e spec t ive ly , h a s a l r e a d y b e e n checked , i t r e m a i n s t o 

b e s h o w n , t h a t C = abstract{L, X) iff' C"' = m' a n d m' is d e f i n e d as fol lows: if 

fo r s o m e fluent / t h e r e ex i s t s a n a n c e s t o r Lk of L in A s . t . lahel{LkY < label{LY 

a n d label(Lk)'^if) < label{LY{f), m { f ) — w, o t h e r w i s e m { f ) = label{L)^{f). 

T h i s h a s b e e n s h o w n in L e m m a 7.2.4. F ina l ly , f r o m L e m m a 7.2.5 fo l lows t h a t 

C2 E partition{ares{aunf (Li))) iff t h e r e is a n a c t i o n A s u c h t h a t Ci^[T{a))C2'^• 
a 



7.3 Applicat ions 

Conjunctive Planning Problems in J^Cpl 

Now we are ready to apply our partial deduction Algorithm 7.1.2 to !FCPL do-
mains. To encode conjunctive planning problems we use the scheme of 
Clause 6.18. Since the definition of predicate Reachable^-, _) by the Clauses 6.12 
describes a forward interpreter the unfolding performed by our algorithm will 
only depend on the first parameter, never on the second. Consequently, instead 
of encoding the goal state in the second parameter we may simply apply our 
algorithm to {Reachable{gi,v),T, R), where gi is the ground term describing 
the initial state, v describes the set of all state terms, i.e. it is a term of the 
form xi o ... o Xn which contains precisely one variable Xj for each fluent fi 
of the domain. Accordingly, T is a type conjunction ti{xi) A • • • A tn{xn) and 
R contains a RUL program describing t j as in Example 6.2.2 for each fluent 
/ . Then, the global tree A generated by our partial deduction algorithm will 
in fact contain the solutions to all CPP's for the initial state gi. To verify if 
there is a plan leading from gi to a particular state gz o z we simply check for A 
containing a node L such that {Reachable{g2, v), T, R) <e label{L) (where v, T, 
R are defined as above). If there is such a node L, then the CPP has a solution. 

Example 7.3.1 (Example 6.2.2 continued) We define the type system T — 
{{tf,R) I / 6 f f zp} . Additionally to the actions of Example 6.2.2 and the 
domain independent clauses, let the initial state be defined as gi = fl- Then, 
the tree of Figure 7.2 is generated by our partial deduction algorithm with input 
Sp, Asp and initial abstract conjunction {Reachable{fl,yi o • • • o y^),tfi{yi) A 
" A f /5(y5) ,^) . 

To simplify the picture the RUL programs and some of the type information 
have not been represented. The RUL programs do not change in this example 
for the initial abstract conjunction and the type information has been depicted 
as follows: v represents yi o • • • oy^ and the type conjunction Tj for each node 
labelled {Reachable j {u, v), Tj, R) contains T = tfi{yi)A- • - A^/s (%). t f i , . . . ,Z/5 
are defined by the corresponding RUL programs of Example 7.1.2. 

For example, we can conclude from the tree that every fluent can be generated 
arbitrary often. But, e.g., it is impossible to reach a state where both, fluents 
/ 2 and / 4 exist. Furthermore, we can conclude that it is impossible to reach a 
state containing / 4 from the state / 2 (Example 6.3.1) as none of the descendent 
nodes of {Reachable{f 2, v),T,R) is labelled by an abstract conjunction L such 
that {Reachable{f 4, v),T, R) L. • 

How to compute a plan 

If a CPP has a solution as indicated by some node L then the substitutions 
on the path from the root node to L describe the actions which have to be 
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Figure 7.2: Example 7.3.1. 
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executed. However, this sequence of actions does not represent a correct plan 
since it might contain subsequences that have to be executed several times to 
actually reach some of the states characterised by label (L). More precisely, every 
introduction of a new variable by abstract on the path from the root node to L 
is justified by some action sequence which can be executed arbitrary often. E.g., 
in Figure 7.2 abstract has introduced a new variable in node {Reachahleii{f2 o 

ii), !rA^/3(z3), based on the fact that executing the action sequence o3, a4 
increases the number of copies of / 3 in any state that contains at least one / 2 . 
Furthermore, even when an action sequence can be executed arbitrary often, the 
number of possible executions might depend on the number of executions of some 
other action sequence that can be executed arbitrary often. E.g., in Figure 7.2 
the action a4 may be executed arbitrary often in the states represented by 
{Reachableii{f2 o xi,v),T Atf3{x3),R), thereby creating an unlimited number 
of copies o f / 2 . However, as executing o4 arbitrarily often requires an unlimited 
number of copies of / 3 , the number of previous executions of the sequence a3, a4 
determines how often o4 may be executed at most. 

Consequently, in order to compute an actual plan, we have to 

1. identify those action sequences on the path from the root to L that can 
be executed arbitrarily often, and 

2. determine how often each repeatable action sequence has to be executed to 
fulfil the constraints imposed by subsequent repeatable action sequences 
and the goal state. 

The first step can be realised simply by collecting some information during the 
execution of our partial deduction algorithm. In the following, let each Bi, for 
i = 1 , . . . , m, denote the action sequence which justifies the introduction of some 
variable, in the order of there appearance, of type tf^ where f i is a fluent. 

For the second step we represent each action sequence described by the path 
from the root to L in the global tree as follows 

Thereby Aj (i = 1 , . . . , m + 1 ) are action sequences such tha t , . . . , Am+i is the 
sequence of actions on the pa th from root to L and the end of each subsequence 
Ai {i = 1 , . . . ,m) is determined by the node where a new variable has been 
introduced. 

Let a be some action sequence ai,... ,ak and / some fluent. Then, we define® 

k 

®This is equivalent to St{p) for the interleaving semantics in Petri nets, see Section 4.1. 
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\A, f\ simply denotes the change of the number of fluents / if A is executed. 

Then, to fulfil the constraints described above, we solve a system of inequations, 
i = 1 , . . . , m : 

. 192, Al - |gi, Al) - min(0, 

Clearly, a set of n i , . . . , nm exists, since the system of inequalities haa triangular 
form. Note that we may simpli^ the system further, e.g. by omitting the divisor 
\Bi, fi\. However, the solutions may become bigger which might be undesirable. 

E x a m p l e 7.3.2 (Example 6.2.2 continued) Consider again the domain of 
Example 6.2.2. Let o /2®, According to the tree of Figure 7.2 the 
conjunctive planning problem has several solutions, some of them are represented 
by the node L labelled {Reachablei4{xiox2,v),TAtf^{xi)Atf^{x2),R). The action 
sequences from the root node to L can be represented by 

= olo3o4(o3o4)"'o3o4(o4)"' 

Thereby, note that A3 is an empty sequence. With 

1^1,/3I = 1 , |AI , /2 | = 1, 1^2,/3I = 1, 1^2,/2I = 0, 
i-Blj/sj = l , | S i , / 2 | = 0, 1^2,/sI = - 1 , I-B2, /2I = 1 

we can derive the following system of inequations: 

Til > 13 + ng 
ng > 9 

A solution is ng = 9, ni = 22, which results in the plan 

ala3a4(a3a4)^^a3a4(a4)® 

that leads to the state /3^^ o /2^°, which contains the goal /3^^ o /2®. • 

E x a m p l e 7.3.3 (Airport d o m a i n continued) Consider the airport domain 
of Example 2.5.4 the conjunctive planning problem of Example 3.4.1. From 
the tree (not depicted due to its size) generated by our partial deduction algorithm 
we can find a successful action sequence from the root node {Reachable{runwayo 
hay^,v),T,R) (where v, T, R are defined as in the previous example but for all 
the fluents of the Airport domain) to some node {Reachable {runwayohay^ 0x1 o 

^2)1 ' ) ) T A tplnne-q-bi^l) ^ t passenger {^2) j R) . 

= gueue_b"X^^d_btake_o^"' 
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Thereby, note that Ai,A2,A3 are empty sequences. With 

|Bi,p7ane_g_b| = 1, \Bi,passenger\ = 0, 
|B2,P^azie_g_b| = - 1 , |g2,paaseager| = 5 

we can derive the following system of inequations: 

ni > 732 
712 > 22 

A solution is ng = 5, ui = 5, which results in the plan 

queue_b® (land-b take^off)^ 

that leads to the state passengeP^ o runway o bay'®, which contains the goal 
passengei^^. • 

Conjunctive Planning Problems in the simple JFC 

We may also apply our partial deduction Algorithm 7.1.2 to some simple J"C do-
mains. To encode conjunctive planning problems we use the scheme of 
Clause 6.18. However, there are conjunctive planning problems for simple J-C 
domains using atomic propositions of i s that can not be expressed in this way 
as of Clause 6.18 must be ground. We might relax this condition by allowing 
gi to contain variables which must be typed appropriately in T of the initial 
abstract conjunction {Reachable{gi ,v),T,R). But in general the set of formulas 
defined in this way is strictly weaker than (as defined in Section 2.6). In 
the following we assume gi to be ground. 

Similarly to TCpl domains v in {Reachable{gi,v),T, R) describes the set of all 
state terms, e.g. it might be a term of the form xi o ... o Xn which contains 
precisely one variable Xi for each fluent function fi : Obf —Fl of the domain. 
But, since we can not provide a complete method for simple TC, we have to 
choose a structure of v which appears to be reasonable for the particular CPP 
(see Example 7.3.4). Accordingly, T is a type conjunction and R consists of 
appropriate RUL programs. Again, the global tree A generated by our partial 
deduction algorithm will contain the solutions to several CPP 's for the initial 
state gi. To verify if there is a plan leading from gi to a particular state gg o z we 
have to check for A containing a node L such that (Reachable{g2, v), T, R) <e 
label{L) (where v, T, R are defined as above). Note that in contrast to TCpl 
domains, the term 52 might contain variables as well. If there is such a node L, 
then the CPP has a solution. 

Example 7.3.4 (Example 6.2.4 continued) Additionally to the actions as 
defined in Example 6.2.4 the domain independent clauses, let the initial 
state be defined as Stinu = fi - By Fls, we denote the set of fluents in Z,. 
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We define Ag, to be the RULE domain {AQ, 7, ACl) where every abstract con-
junction C € AQ is of the form (Reachable{g,v),T,R). Thereby v = yi°- • •oy5, 
g is a term of sort St and for all variables x E V&rs{g) and y G Vars{v), 
tfiyx) G atoms(T) or tfooix) € atoms(T), and tf'{y) G atoms(T) for some flu-
ents / , / ' G . R consists of {tfi) of Example 7.1.2 for i = 1,4,5, and for 
i = 2,3 and tfoo, respectively: 

(/«(-^)) • " t f o o i X ) . t f o o ( s ( X ) ) t f o o i X ) . 

tf.{Y o X ) t f o o ( Y ) , t f . ( X ) . 

Assume that we are not interested in whether we can reach particular instances 
of tf2- Instead we want to answer questions like: Is it possible to reach a state 
where at least four fluents f2{ti), f2{h), f2{h), 72(^4) exist, butti,... ,t4 might 
represent different sub-terms? In this case we could specify the goal state simply 
oa gz = /2 (z i ) o /2(a;2) o/2(z3) o /2(r4) o z. By de/imng our fyjpe ayafem occord-
ingly, we may abstract away from the particular instance o//2(-). To this end 
we define the type system as T = {{tf,R) | / G f f g , } U {{tfoo,R)}- Then, the 
tree in Figure 7.3 is generated by our partial deduction algorithm with input Z,, 
As. and initial abstract conjunction {Reachable{Stinit,yi o • • • o yn),tfi{yi) A 
" A t/5(3/5),^), 

Again, to simplify the picture the RUL programs and some of the type informa-
tion have not been represented. RUL programs do not change in this example 
and the type information has been depicted as follows: v represents 2//1 o • • - oy/s 
and the type conjunction Tj for each node labelled {Reachablej{u, v), Tj, R) con-
(mna atoma T = A - A are defined 63/ (Ae 
corresponding RUL programs {tf-) and {tfoo)-

For example, we can conclude from the tree that it is indeed possible to generate 
states containing four, and in fact arbitrary many, instances of the fluent /2 
(for example by the node labelled 13 / But we cannot conclude whether we can 
generate a state containing arbitrary many copies of one particular instance 

0 / / 2 . O 

What we get for "free" 
Since the partial deduction method proposed in this chapter is a program trans-
formation technique the result is a new program. Like the old program, this new 
program represents a sound and complete forward interpreter for the original 
domain description. It is specialised for the chosen particular initial state (or set 
of initial states) characterised by the initial abstract conjunction. Hence, once 
we have computed the global tree A for some domain and some initial state 
then, on one hand, we have an accelerated interpreter, and on the other hand, 
the solutions for any CPP (some CPP's, in case of the simple TC) can easily be 
extracted from A. 
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Conclusion 

The main goal of this thesis was the investigation of the possibilities for au-
tomatic reasoning in the Fluent Calculus. To achieve this goal we pursue a 
systematic approach for the analysis of reasoning about Fluent Calculus do-
mains. The approach relates reasoning about Fluent Calculus domains to model 
checking of dynamic systems. To this end we have distinguished between the 
representation of knowledge describing a dynamic system and the representa-
tion of knowledge describing dynamic properties we wish to infer. The former 
knowledge is represented using a scheme of extended first-order languages {TC 
domains). The latter knowledge is represented using a scheme of monadic sec-
ond order languages over trees (query logic Q£). Both schemes are connected 
by common semantics, namely Herbrand-Efc-models. We have defined several 
fragments of TC domains by their syntactic properties and their relation to 
Fluent Calculus fragments proposed in the literature. We have focused on de-
terministic domains. The most general JFC fragment we have considered is the 
non-propositional fragment which allows the use of negation in precon-
dition axioms. The fragment of TCln where negation in precondition axioms 
is disallowed has been defined as fCi , . The propositional versions of and 
.FCz, have been denoted as and respectively. By restricting the 
state terms to contain only single copies of fluents we have deSned .FCf as a 
fragment of 

As we have shown, Herbrand-E^^c-models can be characterised by a class of 
transition systems where transitions as well as states carry labels. Most dy-
namic properties of interest in reasoning about dynamic systems are invariant 
for bisimilar transition systems. Hence, we have proposed to compare the mod-
els of Fluent Calculus domains by means of bisimulation to investigate their 
expressive power. Applying this idea we have proven that TCln domains are 
more expressive than TCl domains equipped with a specificity relation { T C l < 
domains). We have also shown that if we are interested only in the solutions of 
planning problems many non-deterministic domain descriptions can be trans-
formed into deterministic ones. 

In the second part of this work we have demonstrated that the characterisation of 
Herbrand-EjFc-models by transition systems and the notion of bisimulation can 
also be used, on one hand, to establish relations between TC domains and well-

153 
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known computational models, and on the other hand, to characterise formulas 
of the query logic by formulas of modal/ temporal logics. Although we believe 
these relations are already interesting themselves we have applied them to show 
several new results concerning the possibilities of automatic reasoning about 
Fluent Calculus domains; 

1. By using the equivalence of the prepositional ^-calculus and the bisimula-
tion invariant fragment of QC and the bisimulation equivalence between 
models of TCp domains and 1-safe Petri nets we have shown that the en-
tailment of formulas of the propositional /^-calculus is decidable for J^Cp 
domains. 

2. By characterising a first-order fragment of Q £ by the temporal logic CTLy 
and by applying the bisimulation equivalence between models of T C p i 
domains and Petri nets we have proven that the entailment of first-order 
formulas for all TC fragments except TCp is undecidable. We have pub-
lished this result in [88]. 

3. Again, by applying the bisimulation equivalence between models of TCpl 
domains and Petri nets we have shown tha t both the planning problem 
and the extended planning problem (which can be expressed in CTLu) 
are decidable. The result on the decidability of the planning problem has 
also been published in [88]. 

4. We have shown tha t the halting problem for any deterministic two-counter 
machine can be expressed ag planning problems for a domain, a 
TCl domain and a TCpl< domain (the propositional version oi TCi<), 
respectively. For all three fragments follow as consequences tha t the plan-
ning problem, the extended planning problem and the conjunctive plan-
ning problem are undecidable. 

In the third par t we have developed a method for solving conjunctive planning 
problems in logic programming representations of T C i and T C p l domains. 
The method is based on an approach for checking coverability of Petri nets by 
partial deduction which we have published in [94]. To apply partial deduction 
on TC domains we have extended the approach to handle an equational theory 
and to incorporate regular type approximation. By proving tha t our algorithm is 
complete for TCpl domains, we have provided the first complete automatic rea-
soning method that solves conjunctive planning problems in !FCPL. Of course, 
as we have shown, to solve conjunctive planning problems in .FCfz, it is also 
possible to apply the Karp-Miller procedure to .FCfi, domains translated into 
Petri nets. However, in contrast to the Karp-Miller procedure, our partial de-
duction method scales up to !FCl domains. Although it is impossible to find a 
general method to decide conjunctive planning problems in TCh domains, par-
tial deduction can produce useful results. As a side-effect our partial deduction 
method can also be applied to automatically generate optimised interpreters for 



!FCpL and J^Cl domains which are specialised for particular (sets of) initial 
situations. We have published these results in [89]. 

We hope tha t our results, based on the analysis of the computational proper-
ties implied by the structure of the represented knowledge in Fluent Calculus 
domains, may indeed help to develop effective highly specialised automatic al-
gorithms for important problems of common sense reasoning. 

Fur the r Work 

There are several areas in which this work can be continued. The Fluent Cal-
culus has been extended to allow the representation of many more aspects of 
action and change than the ones investigated here. The extensions by indirect 
effects [149] and actions tha t cause continuous change [151] seem to be particu-
larly interesting from an automatic reasoning point of view. Furthermore, there 
are many dynamic properties which are of interest in common sense reasoning 
(some of them have been mentioned in Section 2.1) while our work has been 
focused only on (extended/conjunctive) planning problems. If we wish to infer 
dynamic properties of continuous systems (e.g., if actions tha t cause continuous 
change are considered) it might also be necessary to extend the query logic. 

Considering the similarities between propositional Fluent Calculus fragments 
and Petri nets it is promising to analyse the relation between non-propositional 
Fluent Calculus fragments and more powerful net models, e.g. predicate transi-
tion systems and coloured Petri nets. On the other hand, it might be interesting 
to investigate whether Fluent Calculus fragments defined by their relation to 
certain computational models can be used for common sense reasoning. For ex-
ample, many dynamic properties like the planning problem are decidable for 
pushdown automata. The corresponding decision procedures could be easily 
adapted for an appropriately defined Fluent Calculus fragment. 

Our partial deduction method of the last part can be extended as well. In 
[93] we have shown that partial deduction can be used to decide coverability 
for more general systems, e.g. Petri nets with reset arcs and well-structured 
transition systems. Hence, we might be able to improve our method to handle 
more complicated Fluent Calculus domains. Additionally, we have shown in [94] 
tha t partial deduction cannot only be used to calculate the Karp-Miller tree but 
also to generate the so-called minimal coverability graph. This graph contains 
similar information as the Karp-Miller tree but is often considerably smaller. 
For practical applications an adaption of our method of Pa r t III to generate the 
minimal coverability graph could be very important. 

In Section 3.4 we showed tha t certain formulas of the first-order logic over trees 
can be characterised by the temporal logic c t l y . It would be interesting to 
find out whether the whole bisimulation invariant fragment of this first-order 
logic can be characterised by a simple temporal logic like ctlu-
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