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A literature survey on the field of non-linear vibrations of beams and thin panels has been
performed with the aim of identifying efficient and accurate techniques which might be used
in the aerospace industry. Attention is then focused on beam systems to allow candidate
methods to be assessed.

Empbhasis is placed on the study of geometrically non-linear vibration of isotropic slender
beams with simply-supported end conditions when exposed to external excitation. The Duff-
ing’s equation has been derived and its applicability in describing non-linear beam vibrations
is justified. The characteristics of non-linear harmonic vibration of the beam are studied.
The non-linear response is first approximated by the Harmonic Balance Method based on
the Duffing’s equation and then compared with three sets of published results. The single-
degree-of-freedom (SDOF) Duffing’s equation is solved by a time-domain numerical method.
An’ANSYS® Finite Element Analysis is carried out to simulate the vibration problem. These
solutions are compared with the Harmonic Balance results.

The non-linear response of a simply-supported beam to uniformly distributed random
white-noise pressure is further studied. The non-linear root-mean-square displacement re-
sponses are approximated by applying the Direct Equivalent Linearisation Method to the
SDOF Duffing’s equation. The accuracy of the approximation is assessed by comparing the
results with those obtained by the numerical integration of the SDOF Duffing’s equation
with simulated Gaussian white noise.

The total non-linear displacement response due to the first two modes of vibrations for the
simply-supported beam subjected to various excitations are computed-by solﬂring both the
uncoupled and coupled Duffing’s equations by a step-by-step numerical integration scheme.
The differences between the uncoupled and coupled responses are analysed.

Conclusions are drawn about the precision of the various methods of analysis and the

importance of mode-coupling in non-linear beam vibrations.



List of Contents

1 INTRODUCTION 1
1.1 The Need for the Prediction of Non-linear Random Response . . . . . . . 1
1.2 Brief Review of Acoustic Fatigue . . . .. ... .. .. ... ....... 2
1.3 Non-linearities in Structural Dynamics . . . . . .. .. ... ... .... 3
1.4 A Review of Non-linear Random Vibrations . . .. ... ......... 4
1.5 Review of Non-linear Response of Beams and Panels . . .. ... .. .. 7

1.5.1 Free Vibration Problems . . . . .. ... .. ... ... ..., 7
1.5.2 Harmonically Forced Vibration Problems . . . . . .. ... .. .. 9
1.5.3 Acoustic Random Forced Vibration Problems . .. ... .. ... 12
1.5.4 Damping Considerations . . . . .. .. ... .. ... ...... 16
1.6 Comments on the State-of-the-art . . . . . ... ... ... ... ... .. 18
1.7 Scope of The Present Work . . . . . ... ... ... ... ........ 19

2 EQUATION OF MOTION OF NON-LINEAR BEAM VIBRATIONS 21

2.1 General Multiple-Degree-of-Freedom Theory . . . . .. ... . ... ... 21
2.1.1 Transverse Vibrations of Beams . . . . . ... ... ... .. L. 22

2.1.2 Large Deflection Formulation . .. ... ... ... ........ 23

2.2 The One-Mode Duffing’s Equation . . . . .. ... .. .. ... ...... 29
2.3 Chapter Summary . . . . . . . o e e e 31

3 HARMONIC VIBRATIONS OF NON-LINEAR BEAM 32
3.1 The MDOF Undamped Equations of Motion . . . . . ... .. ... ... 32
3.2 Harmonic Response . . . . . . . . . .. Lo 33
3.2.1 Solution based upon the Harmonic Balance Method . . . . . . . . 33

LK.D.G. TANG 1



LIST OF CONTENTS

3.2.2 One-mode Non-linear Frequency Response Functions . . . . . .. 34

3.2.3 A Particular Example . . . . .. ... L 35

3.2.4 Results and Discussions . . . . .. .. ... .. ... 37

3.2.5 Remarks on Mode-coupling in Non-linear Harmonic Vibrations . . 48

3.3 Chapter Summary and Conclusions . . . . .. . ... ... ........ 53

4 RANDOM VIBRATIONS OF NON-LINEAR BEAM 55
4.1 Damped Large-deflection Beam Equations . . . .. . ... .. ... ... 55
4.2 Response to Non-linear Random Excitation . . .. .. ... ... .... 56
4.2.1 Solution Based upon the Equivalent Linearisation Technique . . . 56

4.2.2 Random Vibrations: Uniform Acoustic Pressure . . . . .. .. .. 59

4.2.3 A Particular Example: S-S Beam with Immovable End Conditions 61
4.2.4 Numerical Results and Discussions . . . .. ... ... .. .... 63

4.3 Chapter Summary and Conclusion . . . . ... ... ... .. ...... 80

5 ASSESSMENT OF MODE-COUPLING EFFECTS IN NON-LINEAR

BEAM VIBRATIONS 82
5.1 The Damped Two-degree-of-freedom Duffing’s Equation under Symmet-
ricLoads . . . . . . L 83

5.2 Non-linear Response to Spatially and Temporally Harmonic Excitation . 84
5.2.1 Load Case 1: Pressure Distribution Matching One Particular Re-

sponse Linear Mode Shape . . . . . .. . ... ... ... ... .. 84

5.2.2 Load Case 2: Pressure Distribution Matching The First and Third
Linear Mode Shapes of The Beam . . . . . . ... .. ... .... 89

5.3 Non-linear Response to Spatially Harmonic and Temporally Random Ex-
citation . . . . ... L e e 100

5.3.1 Load Case 3: Forcing Frequency Contents Covering the First Nat-
ural Frequency . . . . . . . .. L 101

5.3.2 Load Case 4: Forcing Frequency Contents Covering the First and
; the Third Natural Frequencies . . . . . ... ... ... ... ... 106
5.4 Chapter Summary and Conclusion . . . . . . . . . ... ... ...... 109

LK.D.G. TANG il



LIST OF CONTENTS

6 CONCLUSIONS AND FURTHER WORK 113
6.1 Background of Current Work . . . . . . . ... ... ... ... ... .. 113
6.2 Summary and Conclusions of Current Work . . . . . ... .. .. .... 114
6.3 General Conclusions . . . .. ... .. .. ... ..... P 116
6.4 Recommendations for Further Work . . . . . ... ... ... ... .... 117

A THE MULTI-DEGREE-OF-FREEDOM FORM OF THE DUFFING’S

EQUATION 130
A.1 Expansion of Modes . . . . . . . . . . . . . ... 130
A.1.1 The Case of Symmetric Forcing . . . .. .. ... ... .. .... 131

A.1.2 The Case of Asymmetric Forcing . . . . .. .. .. ... ... .. 131

A.2 Tterative Process in Harmonic Balance: Newton’s Method . . . . . . . .. 132

B SOLUTION OF THE SDOF DUFFING’S EQUATION 134

B.1 Frequency Response of The Primary Resonance of The SDOF Dufling’s

Equation . . . . . . . . e
B.2 Approximation of the Temporal Responses for a SDOF Duffing’s System 141

C NOTES ON NUMERICAL ANALYSIS TECHNIQUES 145
C.1 Non-linear Analysis by Finite Element Software ANSYS®: Undamped

Harmonic Vibrations . . . . . . . . . . . .. o 145

C.2 Simulation of Input Random Loads . . . . ... .. ... .. ... ... 146

D TABLE OF REFERENCES 148

LK.D.G. TANG iii



List of Figures

2.1 Beam with Hinged End Supports Axially Restrained under An Axial Force 22
2.2 Beam Stretched by Axial Force P . . . . . . . . . ... . ... ...... 24

3.1 Beam with Immovable Ends Simply-supported and Load at Mid-span . . 36
3.2 Harmonic Balance: Amplitude Versus Frequency for a S-S Beam with
Immovable End Conditions under Concentrated Force with Magnitudes
F§ =1 (fo=79182.59 N), F§=m/2 (fo = 124379.73 N and F§; =2 (f,=158365.20
N e 41
3.3 Harmonic Balance: Amplitude Versus Frequency for a S-S Beam with Im-
movable End Conditions under Uniformly Distributed Force with Mag-

nitudes Fg =1 (f,=49751.89 N/m), and F&=2 (f,=99503.78 N/m) ... 42
3.4 A Comparison of Amplitude |A4;| at Selected Frequency Ratios among

the Four Methods (Concentrated Load F&i=n/2) ... .......... 43
3.5 A Comparison Amplitude |A;| at Selected Frequency Ratios among the

Four Methods (Distributed Load F&=2) . . ... ... .......... 43
3.6 Comparison of Amplitudes |A;| = |wnq/R| at Selected Frequency Ratios

by Different Solutions in the Concentrated Load Case, F&=1. . ... .. 46
3.7 Comparison of Amplitudes |A,| = |wma/R| at Selected Frequency Ratios

by Different Solutions in the Distributed Load Case, Fg=2 . . . . . . . . 47

3.8 Non-linear Displacement Response at Selected Forcing Frequencies to

Harmonic Concentrated Loads . . . . . .. ... ... ... .. .....
3.9 Non-linear Displacement Response at Selected Forcing Frequencies to

Harmonic Uniformly Distributed Loads . . . . . . . .. .. ... ... ..

I.LK.D.G. TANG v



LIST OF FIGURES

3.10 Frequency Response of the First and Third Coupled Modes for a Simply-
supported Beam with Immovable End Conditions by Harmonic Balance

Method, with Results by ANSYS® at Selected Frequency Ratios (F§=1) 52

4.1 Simply-supported Beam with Immovable End Conditions Subjected to

Uniformly Random Loading . . . . . . .. .. .. ... ... ....... 62
4.2 Time history of input pressure SPL=90dB . . ... ... ... ..... 64

4.3 Non-linear Displacement Response Time Histories for overall sound pres-
sure levels of 70dB and 90dB overall . . . .. ... ... ... .. .... 67

4.4 Non-linear Displacement Response Time Histories for overall sound pres-
sure levels of 110dB and 130dB overall . . . . . . . .. ... ... .... 68

4.5 Fraction of Non-linear Mean-square Displacement Response (¢2,) to Lin-
ear Mean-square Displacement Response (02),) at Different SPLs . . .. 71
4.6 Snapshots of Response Time Histories at 70 dB overall . . . ... .. .. 73
4.7 Snapshots of Response Time Histories at 90 dB overall . . . . ... ... 74
4.8 Snapshots of Response Time Histories at 110 dB overall . .. .. .. .. 75
4.9 Snapshots of Response Time Histories at 130 dB overall . . . . .. .. .. 76

4.10 Fraction of Equivalent Linear Frequencies (k;) to Fundamental Linear
Frequencies (w;) at Different SPLs . . . . .. .. ... ... ... 7

4.11 Response Power Spectral Density obtained by Equivalent Linearisation
and from Random Response Time Histories: 70 dB and 90 dB . . . . . . 78

4.12 Response Power Spectral Density obtained by Equivalent Linearisation
and from Random Response Time Histories: 110 dB and 130 dB . . . . . 79

5.1 Simply-supported Beam with Immovable End Conditions Subjected to
Different Types of Harmonic Pressure . . . . . . .. . ... .. ... ... 85

5.2 Simply-supported Beam with Immovable End Conditions Subjected to
Excitation in Load Case 1A . . . . . . . . ... .. ..o 88

5.3 Simply-supported Beam with Immovable End Conditions Subjected to
89

Excitation in Load Case 1B . . . . . . . . . .. .. ..o
5.4 Simply-supported Beam with Immovable End Conditions with Load Case 2 90

LK.D.G. TANG v



LIST OF FIGURES

5.5 Non-linear Coupled and Uncoupled R.M.S. Displacement Responses and
Percentage Differences of Coupled Response Relative to Uncoupled Re-
sponses at Selected f3/f; (Load Case 2A). . . .. .. ... ... . .... 92

5.6 Non-linear Coupled and Uncoupled R.M.S. Displacement Responses and
Percentage Differences of Coupled Response Relative to Uncoupled Re-
sponses at Selected f3/f; (Load Case 2B). . . ... .. .......... 96

5.7 Simply-supported Beam with Immovable End Conditions Subjected to
Different Types of Random Pressure . . . ... .. ... ... ...... 102

5.8 Noun-linear Coupled and Uncoupled R.M.S. Displacement Responses and
Percentage Differences of Coupled Response Relative to Uncoupled Re-

- sponses at Selected f3/f; (Load Case 3). . . .. . . .. ... .. ... .. 105

5.9 Time Histories of Simulated Random Pressure P, overall SPL =140 . . 108

B.1 Frequency-response curves for the Duffing’s equation for a linear spring

(top) and a hardening spring (bottom). . . . . . . . .. .. ... .. ... 136
B.2 Frequency-response curves obtained by the numerical integration of the
Duffing’s equation: concentrated load Ff=1. ... ... ... .. .... 137
B.3 Frequency-response curves obtained by the numerical integration of the
Duffing’s equation: distributed load I”'_OE =2, e 138
B.4 Time Histories (top) and Power Spectrum (bottom) of Non-linear Dis-
placement Response at Q/w; = 0.4: Concentrated Load F—OE =1...... 139
B.5 Time Histories (top) and Power Spectrum (bottom) of Non-linear Dis-
placement Response at 2/w; = 0.45: Distributed Load }? =2 ...... 140

LK.D.G. TANG vi



List of Tables

3.1 Parameters Used for Analysis of Beam in the Particular Numerical Example 35
3.2 Free Vibration Frequency ratios Q/w; for a S-S Beam with Immovable

End Conditions for Selected Amplitudes 4; . . .. ... ... ... ... 37
3.3 Forced Vibration Frequency Ratios 2/w; for a S-S Beam with Immovable

End Conditions under a Harmonic Concentrated Force (FBCI =7/2,Qf =

Wi /2, fo=124379.73N) . . . . .. 38
3.4 Forced Vibration Frequency Ratios {2/w; for a S-S Beam with Immovable

End Conditions under a Harmonic Uniformly Distributed Pressure (Fé{ =

2, Q% = 2wk fo=99503.78N/m) . . . . ... 39
3.5 Percentage Differences of (2/w) between HBM results and Various Pub-

lished Results, c=concentrated loading, d=distributed loading (from Ta-

bles 3.2,3.3and 3.4) . ... .. . 40
3.6 Forced Vibration Amplitudes |A| = |wWpa,/R| for a S-S Beam with Im-

movable End Conditions under a Concentrated Force FE = 1(fo =

TOIBZBIN) o o oo e 44

3.7 Forced Vibration Amplitudes |A| = |wymez/R| for a S-S Beam with Im-
movable End Conditions under a Uniformly Distributed Load —FE =

2(fo =99503.78N/M) . . o . 45
3.8 Frequency Ratio at which the “Jump Phenomenon” Occurs for the Three

Analyses . . . .. e 47
3.9 Percentage Differences of Response Amplitudes 4, for Selected Frequency

Ratios between HBM Model and Time-domain Simulations, ¢ =concen-

trated load, d= distributed load (from Tables 3.6 and 3.7) . . . . . . . . 49

LLK.D.G. TANG vii



LIST OF TABLES

4.1
4.2
4.3

4.4

5.1

5.2

5.3

0.4

e
2

0.6

0.7

5.8
2.9

5.10 Summary of Results in Studies Outlined in Figure 5.1 and Figure 5.7 . .

B.1 Comparison of Frequencies Ratios in The Concentrated Load Case . . . .

Dimensions and material properties of beam used in section 4.2.3
Parameters for one digital simulation of white noise . . .. .. .. .. ..
Comparison of r.m.s w/R at eight selected SPL levels. FRM: Frequency
Response Method; SA: ANSYS® “Spectrum analysis”; N —3: Newmark-
Beta time-domain integration; EL: Direct Equivalent Linearisation . . . .

Analysis of r.m.s. values of w/R presented in Table4.3 . . .. ... ...

Effects of Mode-coupling and Initial Conditions on Behaviour of Non-
linear Harmonic Response of a Simply-supported Beam with Immovable
End Conditions (Load Case 1A) . . . . . ... ... ... ... ......
Comparison of Coupled and Uncoupled Non-linear R.M.S. Displacement
Responses u = (w/R) for Selected Ratios of f3/f1 (Load Case 24) . . . .
Comparison of Coupled and Uncoupled Non-linear R.M.S. Displacement
Responses u = (w/R) for Selected Ratios of fi/f3 (Load Case 2B) . . . .
Load Case 2C: Percentage Difference between Non-linear Coupled and
Uncoupled R.M.S. Displacement Responses u = (w/R) — Effects of
Phase Difference of Excitation on Non-linear Coupling (f; = f3 = 100Pa)
Load Case 2C: Percentage Difference between Non-linear Coupled and
Uncoupled R.M.S. Displacement Responses v = (w/R) — Effects of Non-
linearity (Phase difference=90°) . . . . .. ... ... ... ... .. ...
Percentage Difference between Non-linear Coupled and Uncoupled R.M.S.
Displacement Responses u = (w/R) at Two Levels of Noﬁ—linearity (Load
Case 2D) . . . . . L
Comparison of Coupled and Uncoupled Non-linear R.M.S. Displacement
Responses u = (w/R) for Selected Ratios of f3/f1 (Load Case 3) . . . . .
Parameters for One Digital Simulation of Input Pressure P . . . . . . . .
Coupled and Uncoupled Non-linear R.M.S. Displacement Responses (u =
w/R) and Percentage Difference of Coupled Response Relative to Uncou-

pled Response (Load Case 4) . . . . . . . . . .. . ... ... ... ....

62
65

69
70

87

91

95

99

LK.D.G. TANG viil



LIST OF TABLES

B.2 Frequencies Ratios in The Distributed Load Case

LK.D.G. TANG ix



ACKNOWLEDGEMENTS

The author would like to express his gratitude in particular to his supervisor Dr.

Guglielmo Aglietti for his friendly advice and guidance.

The author wishes to acknowledge Professor Robin Langley at Cambridge University,

for his technical suggestions and counsel have been a great support.

Financially, the author thanks the School of Engineering Sciences at the University

of Southampton in the United Kingdom for their sponsorship of the research program.

In Aeronautics and Astronautics at the University of Southampton, the author wishes
to show his gratitude to all his colleagues, especially Dr. Guo-Hua Xu for his opinion,
Ajay Modha for his succour, Dr. Paul Cunningham for his help and Mrs. Allison Gunn

for her assistance.

The author is indebted to his parents for their love and patience over the years. Their
continual support is very much appreciated. The gratefulness cannot be expressed in a

word.

Last, but not least, to all his family and friends, the author would love to say thank-

you for keeping him amused.



This work is dedicated to the

memory of my late grandfather.



Chapter 1

INTRODUCTION

1.1 The Need for the Prediction of Non-linear Ran-
dom Response

With the current interest in high-speed vehicles and the ever increasing need for stronger,
lighter structures, the problem of predicting the response of aircraft structures to ran-
dom acoustic excitation is being reconsidered, with the emphasis being placed on the
thermo-acoustic environment, and the non-linear response of lightweight panels. Since
the implementation of gas turbine engines in the aerospace industry, a considerable
amount of work has been carried out in an attempt to predict the stresses that could
be encountered in service due to the random acoustic loading produced by the gas tur-
bine engines. Most of the earlier methods employed to evaluate the response of aircraft
structures only consider the linear case and the response dominated by low frequency
dynamics. However some part of the aircraft structures, such as thin fuselage panels,
close to the engine outlet exhibit a highly non-linear behaviour. Negligence of large de-
flection effects has been recognised as a major factor for the huge disagreement between

measured test data and computed results.

In order to improve the prediction of acoustic fatigue damage, a better understanding

of the non-linear response of random vibration of structures is needed. This is because
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1.2 Brief Review of Acoustic Fatigue

acoustic fatigue life prediction methods generally include the prediction of the random
acoustic loads, the estimation of the stress response of the vibrating structure and the
forecast of the life from stress versus cycles to failure curves for the material and fastener

configuration [1]. The stress response becomes more non-linear and more difficult to

predict as the acoustic load becomes larger.

The development of the structural response prediction model, combined with the
understanding of acoustic sources will then enable the engineer to design against acoustic

fatigue.

Efficient analysis methods and techniques, with a certain high level of accuracy in

the prediction of the response due to the high level of acoustic loads, are necessary to

be developed.

1.2 Brief Review of Acoustic Fatigue

A method for predicting the response of acoustically excited metallic structures was
first developed by Miles [2]. He developed a cumulative damage hypothesis and used
it to estimate the fatigue life of the structures subjected to random excitation. Powell
[3] then carried out a general analysis of vibration of a structure caused by pressure
fluctuations random in time and space, using ideas of vibration theory and spectrum
analysis. He assumed that forced response of vibration could be approximated by the
composition of the motions of the uncoupled natural modes. He had also considered
multiple-modal effects. The results could be used to estimate fatigue life on the hy-
pothesis of cumulative damage, on assuming normal randomness. From Powell’s work,
Clarkson [4] concentrated on the problem of the estimation of the stresses induced in
typical structures by jet noise. The aim was to produce a single comprehensive design
chart for each type of construction. He presented a simplified theory of Powell’s work
for panel-type structures by assuming that the major part of the response results from
the contribution of one predominant mode. He carried out tests on flat plates, con-
trol surfaces and integrally stiffened skins to verify the applicability of the theory, and

[\]
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1.3 Non-linearities in Structural Dynamics

concluded that it was satisfactory. Some other investigators have also worked on the

problem since then.

As an extension to Miles’ work, Blevins [5] has developed approximate analytical
methods for the determination of linear response of plate and shell structures to surface
pressures associated with sound and turbulence. It is capable of predicting higher mode
response as well as response to both random and deterministic stationary surface pres-
sures. This is done by simultaneously considering the spatial characteristics of both the

structural modes and the sound field, and relating the two.

With improved computational power during the past forty years, some advanced
analytical tools such as the finite element method have been developed and employed
to tackle the problem of acoustic fatigue and estimate the response of aircraft panels
subjected to strong random acoustic loads. Zienkiewicz [6] , for example, has given
formulations for the properties of an element of a panel-type structure which undergoes

large-displacements of vibration.

For more topics on acoustic fatigue and random vibrations, the reader is referred to

excellent monographs such as references [7, 8, 9, 10].

1.3 Non-linearities in Structural Dynamics

The problem of non-linear dynamics has attracted a lot of investigators. In fact, almost
all natural problems are of a non-linear character. The most distinct difference between
linear and non-linear systems is that whilst the principle of superposition can be applied
to linear systems, it may no longer be applicable to non-linear systems. Moreover, there
are various phenomena such as the “drop-jump” phenomenon and internal resonance,
which do not exist in the linear systems. Some descriptions in non-linear dynamic analy-
sis of structures are documented in monographs such as Nayfeh [11] and Sathyamoorthy
[12].

In dynamic systems, non-linearities are classified into three major categories [13]:

1. Geometric non-linearity due to large deflections in elastic elements
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1.4 A Review of Non-linear Random Vibrations

2. Material non-linearity due to the case when Hooke’s Law is no longer valid, which

results in a hysteresis loop

3. Topological non-linearity where a discrete finite change in the basic form of the

differential equation occurs

The reason for the importance and sometimes puzzling effects of non-linearity is the
very sudden transition from conditions in which linear theory is valid, to a state in which
non-linear effects completely change the behaviour of a structure. The major effect of
non-linearity is to introduce instabilities which can completely alter the mode shape of
the vibrating structure [14]. Moreover, Ibrahim [13] indicated that despite many meth-
ods of solution exist there can be no universally applicable theory of predicting vibration
behaviour in the non-linear regime. Each particular problem has to be approached from

basic assumptions and a specific theory developed.

1.4 A Review of Non-linear Random Vibrations

In the study of forced vibration problems, two types of excitation are usually consid-
ered. They are deterministic and random excitation. The non-linear deterministic or
sinusoidal cases result in a “jump phenomenon”, the topic on which references (11, 15]
have discussions. The random excitation case usually results in stochastic chaos. How-
ever, it is also known that the steady-state response of a non-linear system subjected to
the harmonic forces may not only be harmonic, but also may be subharmonic, superhar-
monic, almost periodic or even chaotic, although the periodic responses often exist in a
full or nearly full range of excitation frequency. Caughey [16] thoroughly reviewed the
literature on non-linear random analysis prior to 1971. Thompson [17] has presented
the basic concepts of non-linear dynamics and chaos. Random processes are described

by many others in the literature [8, 18].

For engineering purposes, the random process is generally assumed to be stationary
or weakly stationary. The random process is said to be stationary if the probability

distributions obtained for the ensemble do not depend on absolute time. A stationary
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1.4 A Review of Non-linear Random Vibrations

process can be described as an ergodic process if, in addition to all the ensemble averag-
ing being stationary with respect to time, the averages along any sample are the same
as the ensemble averages [18]. Strictly speaking, a random process cannot be predicted

exactly in advanced.

According to Spanos [19], the problem of predicting non-linear random vibrations
has not been fully solved. The study of non-linear random vibrations raised great math-
ematical difficulties and to overcome these, four different principal methods have been
proposed. They are the use of the perturbation method, Fokker-Planck-Kolmogorov
(FPK) equations, the method of equivalent linearisation and the time-domain Monte-
Carlo approach. A perturbation technique to study random non-linear vibration prob-
lems was proposed and applied by Crandall [20]. It is an extension to random vibrations
of the perturbation method used for weakly non-linear deterministic systems. However,
this method generally only yields results of reasonable accuracy for the case of small
non-linearity. A new perturbation method where large parameters can be permitted has

recently been proposed by He [21].

The most general extension of the FPK equation to non-linear multi-degree-of-
freedom (MDOF') dynamic systems has been developed by Caughey [16, 22]. One advan-
tage of this method over all other approaches is that it gives an exact solution. However,
only for certain restricted classes of problems can the exact solutions of the steady-state
probability function be found [23]. For example, the Fokker-Planck method can only be
applied for the case of white noise random forces [24]. Lin [25] has introduced the pro-
cedures to obtain the stationary state solutions governed by the reduced Fokker-Planck

equations.

Caughey [26] applied the Krylov and Bogoliubov method of equivalent linearisation
[27] to a variety of non-linear random problems and compared the results with the exact
solutions of the Fokker-Planck equation. Booton [28] and Caughey have developed inde-
pendently the method of stochastic linearisation, which is the extension of the equivalent
linearisation. Various texts have described the technique [19, 29, 30]. The objective of
the equivalent linearisation method is to replace the non-linear elements in a model by
linear forms, where the coefficients of linearisation can be found using the specific crite-

rion of linearisation. Spanos [19] has given an in-depth discussion on the applicability
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1.4 A Review of Non-linear Random Vibrations

of this method in structural dynamics. This traditional method of equivalent lineari-
sation is also known as the force error minimisation method when a new stochastic
linearisation method based on potential (strain) energy error minimisation has recently
been proposed by Elishakoff et al. [31]. Statistical linearisation methods generally have
been wildly used [29, 32, 33, 34, 35] because of their ability to accurately capture the
response statistics over a wide range of response levels while keeping a comparatively
light computational load. However, the application is limited by the assumption that

the response has to be Gaussian, and that the system is not strongly non-linear [36].

Numerical simulation techniques give the response in the time domain, from which
the statistics of the random response may be retrieved. Vaicaitis [37] presented a review
and illustrated the application of various time domain approaches to solve a variety
of non-linear dynamic problems. The time-domain Monte Carlo method is the most

general time-domain approach. It consists of three basic steps:

1. Realisations of random inputs and/or random system parameters are generated

utilising simulation procedures of random processes [38, 39)].
2. The equations of motion are solved numerically for each realisation.

3. Quantities of the random response process are computed from the ensemble solu-

{ions.

However, when the complexity of the physical system to be investigated increases,

the computational expense gets dramatically higher.

Recently, Elishakoff and Colombi [36] have proposed a hybrid type of analysis by
combining a stochastic linearisation and numerical Monte Carlo techniques in the study

of non-linear systems under stochastic excitation.

The other widely used approximate methods [37] include the cumulant-neglect clo-
sure, stochastic averaging and energy dissipation balancing. It has to be noted, however,
that there can be no general rule about the suitability of any method for a particular
non-linear problem. Moreover, the application of different techniques to the same prob-

lem may lead to different results. Texts such as those by Blaquiére [40] as well as Dincd
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1.5 Review of Non-linear Response of Beams and Panels

and Teodosiu [30] have presented several approaches to find non-linear responses with

random inputs.

1.5 Review of Non-linear Response of Beams and
Panels

The non-linear response of thin panels has attracted the interests of numerous structural
engineers. For a background study on classical linear and non-linear plate theories, the
reader is referred to an excellent monograph by Leissa [41]. Leissa [42] and Reddy [43]
have also written review papers in which they have discussed non-linear problems of
plates of various geometries, composite laminated plates and sandwich plates. In cases
where the deflections are small compared to the plate thickness, the linear bending of
Timoshenko [44] is usually adequate. An overview of the subject of non-linear vibrations
of plates and shells, and a summary of the literature from the 1960s up to the early 1980s
were presented by Leissa [42]. Sathyamoorthy [12] published a comprehensive review of

the development on the non-linear vibrations of plates in 1987.

The reader is recommended to refer to the tables of references in Appendix D for a

brief description of the literature to be discussed in the following sections.

1.5.1 Free Vibration Problems

The geometric non-linear or large-amplitude vibrations of beams and plates have been
studied by a number of investigators using various approximate analytical and numerical

methods.

Woinowsky-Krieger [45] considered the free-oscillation problem of simply supported
beams with immovable ends. The effects of axial loading and pre-stressing were taken
into account the analysis. Expressing the solution as a product of a function of time
and a linear free-oscillation mode, he solved the non-linear equation for the temporal

function exactly using Jacobian elliptic functions.
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McDonald JR. and Rayleigh [46] worked with a similar problem but did not consider
axial pre-stressing. He treated the analysis by representing the deflection curve at any
instant by a Fourier expansion in terms of the linear free-oscillation modes. He was able
to solve the non-linear equations for the coefficients in terms of elliptic functions. He
suggested that the problem be inherently non-linear even for small-amplitude vibrations

and that there be always dynamic coupling of the modes.

Singh et al. [47] discussed the various formulations and assumptions, including
the finite element method for large-amplitude free vibrations of beams. The vibration
problem was formulated wherein the axial displacement is neglected and, further, the
quadratic term in the strain displacement relation was linearised. This formulation
would lead to the equation of motion which, when solved based on the simple harmonic
oscillation assumption, would give exactly the same non-linear frequency as would the
perturbation method, the Ritz-Galerkin method and the elliptical integral solution with

axial displacement included, without linearisation of non-linear terms and without the

harmonic oscillation assumption.

Benamar et al. [48] presented a method for calculating the first three non-linear mode
shapes and natural frequencies of simply-supported (S-S) and clamped-clamped (C-C)
beams at large amplitudes. A general model based on Hamilton’s principle and spectral
analysis for non-linear free vibrations occurring at large displacement amplitudes of fully
clamped beams was set up. Rectangular homogeneous and composite plates subjected

to the same problem were also developed [49, 50, 51].

Benamar et al. [52] studied the effects of large amplitudes on the fundamental mode
shapes of fully clamped plates. Aluminium alloy plates were studied both experimentally
and theoretically which exhibited a high degree of geometrical non-linearity. This was
attributed to high in-plane stiffness inducing a higher contribution of the axial strain
energy to the total strain energy at large displacement amplitudes. Even higher non-

linearities were obtained with composite plates.

Continuing Benamar’s work [49], El Kadiri et al. (53] calculated the second non-
linear mode shape of the non-linear free vibration of fully clamped rectangular plates

by the use of a hybrid method combining the steepest descent and Newton’s methods.
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They analysed the effect of non-linearity on the induced bending stresses associated with

the second non-linear mode shape.

Rao et al. [54] presented a finite element method for the large amplitude free flexural
vibration of plates and stiffened plates. The formulation assumes that the material of
the plate and the stiffener obeys Hooke’s law, that the lateral deflection is moderate and

that Mindlin’s hypothesis is followed.

Lee et al. [55] employed the Finite Element approach to derive a time-domain for-

mulation for large-amplitude free vibrations of generally laminated thin composite rect-

angular plates.

Reddy [43] has presented a review on the finite element method (FEM) of natural
vibrations of laminated composite plates from 1980 to 1985. A historical background of

the development of shear deformation theories was also presented in the article.

Moussaoui et al. [56] recently studied the non-linear free response of a circular
cylindrical shell of infinite length and determined the effects of large vibration ampli-

tudes on the first and second coupled transverse-circumferential mode shapes and their

corresponding natural frequencies.

1.5.2 Harmonically Forced Vibration Problems

There have been numerous theoretical and experimental analyses of non-linear vibrations
of beams and plates excited harmonically. In particular, the topic of non-linear vibration
of beams is of continuing interest, due to their frequent use as experimental test pieces
[1, 57]. They comprise the simplest case of a continuous system, since their motion
is expressed by one-dimensional partial differential equations in space. A well studied

non-linear equation of motion is the Duffing’s equation which has the form given in

equation (1.1).

d? d
Eg+ £+w§zinx3 = ¢ sin(§2%) (1.1)
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The parameter II is a function of wy and can be a positive (hardening spring) or a
negative (softening spring) constant. In the case of a positive value of II, the Duffing’s
equation can be used to describe the geometrically non-linear transverse vibrations of
a beam subjected to a sinusoidal force. In this case, the transverse displacement is
represented by z which is a function of time {. The parameter £ is a damping coeflicient,
wp is the natural angular frequency, and ¢ and 2 are the amplitude and frequency of
the external forcing function respectively. The equation includes damping and stiffness
with cubic non-linearity. The basic solution of the Duffing’s equation is the so-called

“backbone curve”. Many texts [11, 17, 40, 15, 58] have descriptions on the topic.

A number of approximate methods can be used to solve equation (1.1) analytically,

as the equation cannot be solved exactly in closed form. One of the most widely used
approach is by obtaining the perturbation method [30, 15].

Hsu [59] has presented analyses to find approximate solutions of a Duffing system to
forced vibration. As the free vibration response of a system whose equation of motion
is represented by equation (1.1) can be obtained exactly in the form of elliptic functions
[45], he suggested that, if the external excitation of equation (1.1) is a simple elliptic
forcing function, an elliptic function response can be obtained as the exact solution. By
using a multiple-term elliptic response, Hsu also concluded that the simple harmonic
forcing function and the corresponding perturbation solution was merely the first order
approximation of the simple elliptic forcing function and the associated elliptic function
response.

Srinivasan [60] applied a general modal approach to determine the response of beams
and plates havihg moderately large amplitude steady state oscillations.

Bennett and Eisley [61] studied the steady-state response and stability for large
deflection of a beam with clamped ends subjected to a concentrated harmonic force.
Elastic restraint of the ends was included to relate theory with experiment. He used
a multiple-mode (3 modes) analytical and numerical technique to obtain theoretical
solutions for both response and stability. He concluded that there were situations where
a multiple-mode analysis was essential to predict the observed results.

Azrar et al. [62] recently developed a semi-analytical approach to the non-linear dy-

narmic response problem for the vibration of beams to determine the amplitude-frequency
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dependence of S-S and C-C beams. He has developed a multi-dimensional form of the
Duffing’s equation having cubic non-linear stiffness for free and forced responses by us-
ing Lagrange’s equations. The free vibration equations resulted were identical to that
derived by Benamar [48] who used Hamilton’s principle. Extending Azrar’s work, Kadiri
et al. [63] recently came up with a more practical simple multi-mode theory based on
the linearisation of the non-linear algebraic equations, written on the modal basis, in
the neighbourhood of each resonance. The method has been applied to explicitly deter-
mine the non-linear steady-state periodic forced response of C-C and clamped-simply
supported (C-SS) beams for both small and large vibration amplitudes, excited harmon-

ically with concentrated and distributed forces.

Leung and Chui [64] studied the non-linear vibration of a square plate subjected to a
lateral symmetric sinusoidal force. Sherif [65] and Yamaki et al. [66] independently stud-
ied the non-linear vibration of a clamped circular plate to uniform distributed harmonic
force.

Finite Element Analysis has also been employed by a number of researchers. Busby
JR. and Weingarten [67] studied the multiple-modal forced responses of simply-supported
beams subjected to periodic loading. Lee et al. [68] employed the FEM approach to de-
rive a time-domain formulation and applied it for large-amplitude harmonically excited
forced vibrations of generally laminated thin composite rectangular plates, considering
also the effect of temperature. Chiang, Mei and Gray JR. [69] used a finite element
formulation for determining the large-amplitude free and steady-state forced vibration

of arbitrarily laminated anisotropic composite rectangular thin plates.

Ribeiro and Petyt [70] recently employed the hierarchical finite element method
(HFEM) to study the geometrically non-linear free and steady state forced vibrations of
uniform, slender beams with internal resonance. They concluded that the use of HFEM

could significantly reduce the computational time when compared with FEM.

For the steady state, geometrically non-linear, periodic vibration of thin rectangular
plates under harmonic external excitation, Ribeiro and Petyt [71, 72] presented and
analysed the model by applying the principle of virtual work and the hierarchical finite
element method. The stability of the obtained solutions was investigated. The conver-
gence studies indicate that the HFEM and the harmonic balance method (HBM) allow

LK.D.G. TANG 11



1.5 Review of Non-linear Response of Beams and Panels

one to model the geometrical non-linear, forced periodic vibrations of plates accurately

and with a small number of degrees of freedom.

1.5.3 Acoustic Random Forced Vibration Problems

Non-linear acoustic vibrations have been studied by many investigators. New theories
have been proposed, established analytical methods have been employed and experi-

mental work has been carried out to enhance the understanding of this topic.

Theoretical analysis

Vaicaitis [37] illustrated the application of the time domain approach to solve a variety
of problems such as the non-linear response of panels and fatigue of surface panels

subjected to high intensity turbulent flow and/or engine exhaust noise.

Herbert [33, 73] used the method of the Markoff process and the associated Fokker-
Planck equation to study the multi-mode response of non-linear beams and plates sub-
jected to purely random loading. However, he discovered that it was impossible to in-
vestigate the problem of whether the reduction of stresses due to the effect of membrane
force would be the same as that of the displacement. Using the method of equivalent
linearisation, he then carried on investigating the response of a non-linear beam sub-
jected to a realistic random loading-a random loading with finite power [74]. He could
then conclude that the percentage reduction of the mean square stresses could indeed be
substantially less than that of the mean square displacements, and that the difference
between the two percentage reductions would become greater as the spectral density of

the load got wider.

Seide [75] also employed the equivalent linearisation technique to investigate the
non-linear mean-square multi-mode stress add deflection responses of beams subjected
to uniform pressure which is not correlated in time. It was concluded that determination
of non-linear stresses would require many more modal functions than that of non-linear

deflections would.
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Prasad and Mei [76] studied the multiple-mode non-linear analysis for beams sub-
jected to acoustic excitation including the effects of both non-linear damping and large-
deflection. The effects have great influences on the deflections, strains and the modal
frequencies, especially the restraining influence of non-linear damping on the modal
frequencies. Schudt [77] investigated the non-linear response of beams to random ex-
citation using an externally excited “hardening Duffing oscillator” (see equation (1.1)).
Peak broadening phenomenon was studied by producing a family of typical response
characteristics. The effect of the damping and the cubic non-linearity coefficients is to

change the characteristics of the response peak in the Duffing oscillator.

Busby JR. and Weingarten [32] used the Finite Element Method to obtain the non-
linear differential equations of motion which are expressed in terms of normal-mode co-
ordinates. They studied the forced responses of the first two symmetric modes of simply-
supported and clamped-clamped beams by the equivalent linearisation method. They
concluded that if damping was included in the system, the effect of dynamic coupling
could be reduced. Mei and Chiang [78] also used the FEM approach to develop the
equations for the multi-modal representation of the large deflection random response
of beams and plates subjected to acoustic loading. The excitation is assumed to be
stationary, ergodic and Gaussian with zero mean; its magnitude and phase are uniform

over the panel surfaces.

Elishakoff et al. [31] recently employed a new stochastic linearisation technique based
on potential (strain) energy error minimisation for large amplitude random vibrations
of a simply-supported or a clamped beam on elastic foundation. The stochastic loading
acting on the beam is space-wise either (a) white noise or (b) uniformly distributed load
and time-wise white noise. By using a three-term approximation, they found the mean
square deflection at the mid-span of the beam for the various loading conditions. When
comparing the results with the Fokker-Planck equation method and the conventional
stochastic linearisation technique, they concluded that the proposed method was supe-
rior to the classical stochastic linearisation technique, especially in the high non-linearity

range of the parameters.

Hwang and Pi [79] used a conforming plate element together with a non-linear plate

stiffness element which is dependent on the modal response of the structure for the
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non-linear response analysis of plate structures. Numerical results are obtained for a
simply supported rectangular plate subjected to rain-drop type and uniform intensity
random acoustic loading. Ahmadi et al. [24] studied the response of non-linear simply
supported rectangular plates with stress free in-plane boundary conditions to stationary
random excitation. Using one term in Galerkin’s method, the resulting equation has
been solved by different methods. Mei and Paul [23] determined the large-amplitude
random response of clamped rectangular panels analytically,V with the inclusion of mul-
tiple modes in the analysis. They obtained accurate mean-square deflections with the
use of six terms in the Fourier-type series deflection function. Srinivasan and Krishnan
[80] applied the integral equation technique to a non-linear stationary random response

of an isotropic rectangular plate exposed to Gaussian white noise excitation.

Mei and Wentz [81], using series solution with one term, considered the geometric
non-linearity of large-amplitude response of anti-symmetric angle-ply laminated rect-
angular plates subjected to broadband random acoustic excitation. Gray JR. et al.
[82] presented an analytical solution for determining large deflection static bending,
large-amplitude free and forced vibrations, and large-amplitude random response of a
clamped, symmetrically laminated, rectangular, thin plate subjected to a uniformly

distributed transverse loading.

Vaicaitis and Kavallieratos [83] employed the time-domain Monte-Carlo approach
to study the non-lihear response of simply-supported rectangular fibre reinforced lami-
nated composite panel to random surface pressure with thermal heating. Vaicaitis and
Arnold [84] developed a time-domain analytical model for non-linear response and fa-
tigue life prediction of simple metallic and composite panels. Non-linear stresses have
been investigated, and an acoustic fatigue damage model of surface panels has been
constructed. Dhanaut et al. [85] recently developed a new analytical method using the
Finite Element method and numerical integration time-domain approach to predict the
non-linear random acoustic response of composite panels subjected to acoustic pressure
at elevated temperature. It was shown to be able to predict the three types of panel
motions, namely the linear random vibration about one of the buckled position, the
snap-through between the two buckled positions, and the non-linear random response

over the two thermally buckled positions.
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Dogan and Vaicaitis [86] have carried out an analytical study of non-linear flexural
vibrations of simply-supported cylindrical shells to random excitation, with the inclusion
of thermal effects for a uniform temperature rise through the shell thickness in the
formulation. A Monte-Carlo simulation technique of stationary random processes, multi-
mode Galerkin-like approach and numerical integration procedures have been employed

to find the non-linear response solutions

The time-domain Finite Element modelling has been widely used in recent decades.
Green and Killey [87] explain how this technique can be used to assist in the design of
aircraft against acoustic fatigue. They reasoned that although Finite Element Method
is computationally intensive, it enhances the understanding of complex vibrations, such
as the response of structures to spatially correlated jet noise excitations, or interactions

between sound pressure loads and thermal loads.

McEwan et al. [88] has recently proposed a combined modal/finite element analysis
technique for modelling large deflection forced response of a beam subjected to har-
monic excitation. The proposed method, which involves non-linear coupled multiple
vibration modes and imposes no linearisation scheme, has been applied to the case of
a homogeneous isotropic beam, with fully simply-supported and fully clamped bound-
ary conditions. The results have been shown to compare well with the standard direct

integration finite element approach, with a significant saving in computational expense.

Experimental analysis

Bennouna and White [57] studied the effects of large vibration amplitudes on dynamic
strain response, near to the fundamental resonance, of a clamped-clamped thin alu—
minium alloy beam excited sinusoidally and randomly. A set of fatigue experiments was
carried out. A statistical approach was used and this gave a good correlation between
predicted and measured fatigue life. High values of increase of beam curvatures were
noticed near the clamps of the structures with constrained ends, causing a highly non-
linear increase in bending strain with increasing deflections. It has also been shown that

such a non-linear effect may have a significant impact on the structural fatigue life.
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Wolfe et al. [1] carried out experiments to investigate the non-linear behaviour of
beams and plates excited in high levels of dynamic response and developed a method

for incorporating effects of multiple-modal response of simple structures.

Galea and White [89] determined the response of composite plates by exposing them
to broadband acoustic excitation at elevated temperatures. They compared the experi-
mental results with those predicted by the single, fundamental mode formula. An inves-
tigation was further carried out to find the variations in modal response of a clamped
plate with temperature effect. It was found that the natural frequencies of the composite
plates decreased slightly with increasing temperature. However, the elevated tempera-
ture did not noticeably changed the bending strain response of the plates tested under
broad-band acoustic excitation. It was also found that the single mode response method
accurately predicted the root-mean-square bending strains at room temperature and at

various elevated temperatures under broadband acoustic random excitation.

Chen et al. [90],using a finite element formulation combined with the equivalent
linearisation and normal mode methods, analysed the non-linear random response of
beams subjected to acoustic and thermal loads applied simultaneously and carried out
experiments to verify the analytical results. It was shown that the computed deflection
results were very close to the measured ones. However, the difference between the

computed and measured strains was much larger than the difference in deflection results.

Using theoretical and experimental approaches, Steinwolf, Ferguson and White [91]
have investigated the dynamic behaviour of a beam, subjected to stationary random
excitation for the situation in which the response is different from the model of a Gaus-
sian random process. The study was restricted to the case of symmetric non-Gaussian

probability density functions of beam vibrations.

1.5.4 Damping Considerations

It is known that damping is a major factor in determining the resonant peak response of
a structure [1]. However, there are no theoretical methods to derive the exact damping

factor of typical structures, and measurements have been relied upon to estimate the
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frequency average value. In non-linear systems, if the coefficients to the cubic coupling
terms are large, the phenomenon of “coupling resonance” [61] will appear which may
change the shape of the response curve. It is noted that if damping is included, the

effect of coupling resonance will be reduced remarkably [67].

A common approach to damping in the solution of dynamic problems is to include
only viscous damping in the modal equations so that the equations of motion are linear
in the damping term and thus economical to solve. The viscous damping coefficient is
often expressed as a certain percentage of the critical damping. The damping ratio in
most flight-vehicle structural members ranges from 0.005 to 0.04 [92]. In linear models,
this viscous damping coefficient used is sometimes chosen on the basis of the type of
material and system concerned in vibration. Richards and Mead [7] have discussions on

the damping of jet-excited structures.

Schudt’s studies [77] in the non-linear response of beams excited by random excita-
tion with damping included in the governing equation indicates that peak broadening

can be modelled by including cubic stiffness terms and also higher damping factors in

the equations of motion.

Some investigators have also carried out research in non-linear forced vibrations of
structures with non-linear damping. For example, Prasad and Mei [76] showed that
non-linear damping had the greatest influence on the first mode and that its effects
were significant on deflection as well as strains for small values. Strain response peaks

at high acoustic excitations was shown to become broad and rounded under the effect

of non-linear damping.

Ghanbari and Dunne [93] used an empirical three-term non-linear damping model
for use with a single-degree-of-freedom Duffing’s equation to describe the motion of
clamped-clamped beam vibrations. The beam has been driven with band-limited white-
noise excitation. The model has been calibrated by using experimental measurements.
Calibration has utilised a Markov moment method and finite element solutions of the
stationary Fokker-Planck equation. It has been shown that the individual parts within
the damping model have a profound effect on the accuracy of prediction, even at low level

response amplitudes. Comparison between measurement and prediction by using the full
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calibrated model shows excellent agreement for probability density functions associated
with the central beam displacement only up to moderately large amplitudes. At higher
amplitudes, the differences between the two sets of results are significant. Nonlinear
beam coupling was identified as the most likely cause for this difference. Furthermore,
it has been suggested that forced random vibrations of a clamped-clamped beam can
be accurately predicted with a singledegree-of-freedom model up to moderately large

amplitudes, but only a little beyond this a multiple-degree-of-freedom model is required.

1.6 Comments on the State-of-the-art

The non-linear vibration of beams and simple plates has been studied extensively. It
was suggested that neglecting the non-linear coupling terms and considering each mode
separately for the prediction of the response do not affect very much on the accuracy,
provided that the non-linear coupling is weak [62] and the excitation is harmonic [67].
It was found that the effect of non-linearity could be reduced by several ways, e.g., by

adding damping, but non-linear coupling cannot be neglected in all cases, especially

when non-linearity effect is large.

In random vibrations, particularly for a white-noise excitation, it was found that
considering the one-mode response could obtain a very good estimate of the maximum
displacement [75]. Thus, it can be seen that much research work on the non-linear
response of white-noise-excitation of beams and panels has considered only the fun-
damental mode, as non-linear coupling is weak for a white noise with uniformly spa-
tial distribution. However, in order to determine accurately the stresses, many more
modal functions are necessary. As a result, it is certainly worthwhile to investigate the
non-linear behaviour of higher response modes of forced vibration, especially with the

inclusion of mode-coupling effects, on the vibration response of beams and panels.

There is a concern about the use of linearisation techniques in solving response of
structures to high-level random loading. Time domain analyses have shown that due to
the presence of non-linearities, the response is non-Gaussian, whilst linearised analyses

would have predicted a Gaussian response [83, 84, 85]. Hence, some linearised methods
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which assume a Gaussian output response to a Gaussian input excitation should be used

with care.

1.7 Scope of The Present Work

Since a variety of problems regarding the structural strength of thin panels which arise
in modern aircraft constructions cannot be adequately analysed on the basis of the
classical linear theory of vibration, the development of a structural response prediction
model which would take into account the non-linear response behaviour in the treat-
ment of panel vibration is necessary. Moreover, although the phenomenon of “coupling-
resonance” due to the coupling of modes has been known for some time, its effect has

very often been neglected in the study of beam vibration problems.

The objective of the current study is to improve the understanding of the vibration
behaviour of non-linear response of thin aircraft beam structures when exposed to dif-
ferent loads by using several different methods, with effects of mode-coupling taken into
consideration. The investigation may serve as a background study for the development

of predicting non-linear vibrations of aircraft panel-type structures.

In Chapter 2, the equation of motion of the geometrically non-linear beam vibrations
is derived. The equation is then used in subsequent chapters to help understand vibra-
tion problems of beams in different excitation. In Chaptér 3, the non-linear responses
of a simply-supported beam under harmonic loading are obtained by various methods

and the solutions are studied. The accuracy of the use of the methods is justified.

The non-linear vibrations of a simply-supported beam in Gaussian white-noise ran-
dom pressure are investigated by analytical and numerical approaches. This study 1s
presented in Chapter 4. The single-mode solutions are studied. The use of approximate

analytical schemes is assessed on its accuracy to capture non-linear random response of

beams.

The coupling effects on non-linear response of simply-supported beams subjected to

harmonic and random pressures are investigated in Chapter 5 . Different excitations are
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investigated. The numerical solutions of the equations of motion including the first two

symmetric modes are studied. Conclusions are drawn.
Finally, conclusions of the current work are presented and future work proposed by

the author is given.
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Chapter 2

EQUATION OF MOTION OF
NON-LINEAR BEAM
VIBRATIONS

The case of a simply-supported isotropic beam can be regarded as a simplified case of the
more complex structural models used in the design of high-speed aircraft components
[88]. Moreover, the intense loading acting on the aircraft structures can affect fatigue life
by introducing large-deflection geometrical non-linearity, modal coupling and multiple-
mode participation [90]. In this chapter, the governing equations of motion is derived
for the geometrically non-linear forced vibration of a simply-supported isotropic beam.
This is a set of multiple-degree-of-freedom (MDOF') equation which is considered to be

a multiple-mode form of the very well-known Duffing’s equation.

2.1 General Multiple-Degree-of-Freedom Theory

Consider an inextensible slender beam. The end hinges of the beams are restrained

against both vertical and horizontal displacements. If one end moves away from the
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other horizontally, a tensile force is produced in the beam, which is proportional to
the amount of that motion. Similarly, if one end approaches the other one, the force
produced is compressive. The deflection of the beam does not need to be small when
compared with its transverse dimensions. However, the curvatures need to be restricted
to be small so that the approximate expression 8*w/8z? can be applicable to represent
the curvature of the beam. Here, w represents the transverse deflection of the beam at
any point z, and z is measured along the beam neutral axis. In the following analysis,

both shear deformations and longitudinal inertia are neglected.

2.1.1 Transverse Vibrations of Beams

Figure 2.1: Beam with Hinged End Supports Axially Restrained under An Axial Force

If the beam is subjected to an axial tensile force P as shown in Figure 2.1, the

differential equation of the deflection under static transverse loading is [94]:
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EI%Z—) =M + Pw (2.1)
where £ and I are the Young's Modulus and the second moment of inertia, and the
flexural rigidity of the beam is denoted by EI. M represents the bending moment
produced by a transverse loading of intensity s. By double differentiation of equation

(2.1) with respect to z, the following can be obtained:
d? d*w d*w
= (E]_..> =s+ P (2.2)

Furthermore, by substituting the inertial force per unit length for s, the general

differential equation for transverse vibrations can be expressed as:
52 0w 0w &w
— (B[ —P— = —p—— 2.3
12 ( Bz > 522 = Mo (2:3)

If the flexural rigidity of the beam is constant, equation (2.3) may be given by:

0w 5w 5w |
- = 2.4
Blgg Them ~ Vo =0 24)

2.1.2 Large Deflection Formulation

Assume a uniform and isotropic beam, i.e., ET and A are constant in Figure 2.1. From
equation (2.4), the partial differential equation describing the transverse vibration of a

beam which is axially restrained and in which large deflections are permitted is given

by:

*w Ow Pw
et fp— — (Py 4+ P)) o = 2.5
Bl ozt g2 (B 1)6:1:2 f(z1) (2:5)

where

= vibration mass per unit length of beam
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Py = initial axial tensile force of beam
P, = axial tensile force due to deflection
f = external load per unit length

This is a forced vibration problem. If the right-hand side of (2.5) is set to zero, the

problem becomes a free vibration one [45].

Figure 2.2: Beam Stretched by Axial Force P

The axial tensile force due to the deflection P, can be expressed in terms of the deflec-
tion w. If one support were free to move horizontally, the beam would be represented by
the dashed line in Figure 2.2. The amount of axial movement of both simply-supported

ends of the beam due to deflection is [45, 95]:

1/ ow)?
= il 2.6
Al 2/0 (B:U) dz (2.6)
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Equation (2.6) has been derived by numerous authors. For example, Langley [96] has
used an alternative procedure in which 511- fol (%%)2 dz 1s identified as the non-linear axial
Green’s strain which is assumed to be constant along the neutral axis. The constant

axial Green’s strain is given by:
B 1 (0w’
a = = = 2.
“= 5z i 2 (8:6) (2.7)
where u is the axial displacement of the beam neutral axis.

Integrating equation (2.7) with respect to = gives

—e +c--1-/m ouw*, (2.8)
U = €,T 5 ) \ 72 T )

where C is a constant of integration. Applying the boundary conditions u(0)=u(l) =0

gives an expression for ¢, in the form
1 [ ow)?
. = — — | dzx. 2.9
= o0 0 (B:E) ’ (2:9)

Now, assuming that Hooke's law applies, the axial force P; produces an elongation

of the beam, Al which is:

Pl ,
Al = ﬁ (2.10)
where [ = length of the beam
A = cross-sectional area of the beam
E = Young’s Modulus
Equating the equations (2.6) and (2.10), one gets the axial tensile force Pi:

EAAlL EA [*/ow\?
_ _ 2.11
b= 21 /0 (%) de (2.11)
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2.1 General Multiple-Degree-of-Freedom Theory

Then, substituting (2.11) into (2.5) gives a fourth-order partial differential equation
that describes the transverse vibrations of a beam which is axially restrained and in

which large deflections are permitted.

d*w EA Aw &*w w ow
BI2 - {PO /O (m) dz } o+ h + B = f(z, ) (2.12)

The boundary conditions associated with equation (2.12) are w(0) = 0 and w(l) = 0.
Equation (2.12) also includes damping and axial-prestressing. The damping coefficient
is denoted by 8. This equation is the basis for most of the studies of non-linear beam

vibrations [11].
In the case of no axial-prestressing, Fy in equation (2.12) is zero. The resulting

equation of motion is given by the expression (2.13) and has been used by a number of

investigators to study geometrically non-linear vibrations of isotropic beams [60, 74, 75,
76, 93].

otw EA ['/0w\? Pw  Ow ow
EBEr—— — |~ el — — — = 3 2.13
e [21 /0<8:1;) dz| gg thgm THG =1t (213)
The transverse deflection w can be represented by an expansion in terms of the linear

free oscillation modes ®,(z) so that

oo
w(z,t) =Y Ruy () ®a(z) (2.14)
n=1
where n=1, 2,3,..., R is the radius of gyration, and u, are functions of time only and

are to be determined.

Specify also that ®,(z) satisfies the associated linear problem:

dw  SPw -
gw_ 2.15
Elo— + 1 (%2 0 (2.15)

and the appropriate boundary conditions: ®,= d 422 —( at a simply-supported end.
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2.1 General Multiple-Degree-of-Freedom Theory

The following derivation procedures can also be found from various texts [11, 61, 75,
76]. Substituting (2.14) into equation (2.13) gives:

dQun dun
E’IRZund =+ Ry Z 7 O+ RE—1 0,

EAR2 > d®,, dd,,
Z umun/ - —2 dg RZun e flz,t) (2.16)

mn-—

Equation (2.16) can be approximated by applying Galerkin’s method [76], which
basically involves the multiplying of the entire equation by ®,, and then integrating it
over the length of the beam.

EIRZun/ P +RMZ/<I> @, “"

EAR2 = d®, d®, toda,
—~ > 3,—d
-%—Rﬂ /CI) D, dz unupuq/ — dz /0 s

n,p,g=1 0

=/ f(z, 1)@, dz (2.17)

The orthogonality relationships [97] are:

. d‘®,
/,u(I?(I)d:r.-O and /EI@ d“:O form#mn
{ d4(I) {
/EI@ i d:v—-wm,u/ P2 dz for m=n (2.18)
0 0

where wy, is the natural angular frequency which may be obtained from:

d*®,,

I
£ dz?

— i ®n =0

As a result,
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2.1 General Multiple-Degree-of-Freedom Theory

Pum = [(EAR? ['d®,dd, Loodo,
m= 5 d m”-; 5 i)
at? n£1< 5 ), Az dw ), e )“ Urtha
dum [ £)®,, d
+p—" ~ / B2 dz + w2 Mt = hi ‘”R z (2.19)
0
where M, is the generalised mass. Also, from the relation
Lo d*o, d®, Yd®,, d®,
b — b, = —Kmn 2.20
/0 dz? [ dz J o dr dz * (2.20)
where,
!
d®,, dd,
K= | —2 2.21
o dz dz (2.21)
the following set of non-linear ordinary differential equations results:
d*u,, g, dUum
M, TR +6/ 0] d:vd +w Mptum
EAR? & )P, d
? Z Ko KpqUmuptig = fo (SL' R) : (2.22)
n,p,g=1

Dividing (2.22) by M,, yields the following system of ordinary differential equations

d*u,,

dt?

-+ fm "f“ Cd mUm + Z Hmnpqunupuq
7p>Q"‘
fof () fo’ Fa(2) @y dt
= = 2.23
o Il Fon(t) (229)

where &, is the generalised damping and I, is the generalised non-linear stiffness
coefficient. Moreover, the external force has been decomposed into its magnitude fo,
the time function f(¢) and the space function f,,(z). The generalised force is denoted

by Fom(t). Alternatively, (2.23) can be written as:
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2.2 The One-Mode Duffing’s Equation

f(2)
GTTL

P,

dt?

AU
+En " + Wt + D = 22 = Fym(t) (2.24)

The notations in equations (2.23) and (2.24) are as follows.

EAR?
mnpg = menqu (2.25)
B[ FAR? &
€m = M;/O @fn dz ; I'm= 2] npzqzl Kmnquumupu? (2.26)
l
My, = ,u/ ®2, dr ; Gm = — RMp, 7 (2.27)
0 fO fm(IL‘)@m dz

Particularly, for the simply-supported (S-S) boundary conditions [76], where the

modal functions in equation (2.14) is ®,,(z) = sin(mnz/!) and,

P m;;r? if m=n;
" 0 if m#n.

ol { I 4
b = MB_/ (I)?n dr = é, M, = p,/ @7211 dz, wfn = E— (‘W}ZE) (2'28)
m JO U 0 H !

Hence the geometrically non-linear transverse vibrations of a slender beam can be
described by a set of second-order non-linear ordinary differential equations shown in

equation (2.23).

2.2 The One-Mode Duffing’s Equation

If only one mode is considered, then from equation (2.24), the single-degree-of-freedom
(SDOF) Duffing’s equation with cubic non-linearity and modal damping for simply-

supported end conditions, is given by:
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2.2 The One-Mode Duffing’s Equation

d?u du
dt? + gl—dt—l + w%ul + Hllllu? = FQ]_ (t) (229)
where
L= 5/#
s TEI
(..Ul = —IJIT—
TiEI
iy = W (2.30)

The corresponding Duffing’s equation without damping is expressed as:

d*u
_d—t—gi -+ wful -+ Hunu? = Fm (t) (2.31)

The single-mode Duffing’s equation has been adopted by a number of investigators to
study the non-linear vibrations of beams. Equation (2.31) can also be derived by using
the energies of the beam and the Lagrange’s equation [96]. The procedure is presented
briefly here. Assuming that the non-linear Green’s strain is constant along the neutral
axis of a simply-supported beam whose ends are restrained from axial movement, the

strain energy, V/, can be written as:

1 , 1 Lo2w\
— - °v 2.32
14 2EA160+2EI/0 (W) dz (2.32)

where €, has been defined in equation (2.7). Suppose the transverse deflection of the

beam w(z,t) can be expressed in the form:

w(z,t) = Ru(t)sin(rz/l). (2.33)

With the use of equations (2.33) and (2.9), equation (2.32) becomes:

= B (1) o B ) =
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2.3 Chapter Summary

The kinetic energy of the beam T' with longitudinal inertia neglected can be written

as:

1 L dw 1 o [ du 2
_— ——— g —_— 2.
T 2/1/0 (dt> dz 4,ulR (dt) (2.35)

By substituting equations (2.34) and (2.35) into the Lagrange’s equation given by:

d orT or ov

where f = R fDl f(z,t)sin(rz/l)dz is the generalised force caused by the external load,
the equations of motion of the beam which is the same as equation (2.31) can then be
obtained:

d2u1

_dt—Q— -+ cuful -+ Hun’u% = Fm(t) (237)

where the parameters have been defined in expressions in equation (2.30)

2.3 Chapter Summary

A multiple-degree-of-freedom model describing the geometrically non-linear transverse
vibrations of slender isotropic beams has been set up. The beam under consideration
has end hinges which are restrained against both vertical and horizontal displacements.

Both shear deformations and longitudinal inertia are neglected.

A fourth-order differential equation has been derived in which large-deflection and
axial-prestressing are included. The equation in which no axial-prestressing has been
further analysed. By utilising the Galerkin’s method and the orthogonality relationships,
a set of MDOF ordinary differential equations has been derived. The corresponding

SDOF Duffing’s equation has also been obtained.

It has been shown that the same single-mode Duffing’s equation can also be derived

using a different approach utilising the beam energies and the Lagrange’s equation.
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Chapter 3

HARMONIC VIBRATIONS OF
NON-LINEAR BEAM

The non-linear response of structures to harmonic excitation has been studied by nu-
merous researchers. One reason is that the understanding of the response of structures

to harmonic excitation provides insight into how the system will respond to other types
of forces.

In this chapter, the non-linear response of beams subjected to harmonic excitation is
investigated. The equations of motion derived in Chapter 2 are employed to study the

vibration behaviour of simply-supported beam with immovable end conditions. Both

analytical and numerical approaches are used to obtain the solutions of the non-linear

response.

3.1 The MDOF Undamped Equations of Motion

The non-linear undamped forced response of simply-supported beams with immovable

end conditions due to a time-domain harmonically varying load will be studied. The
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3.2 Harmonic Response

equations of motion for an undamped systems can be obtained by simply neglecting the

damping term in (2.23) and (2.24). The equations thus obtained are:

d* =
pEa wium + Z MnnpqUnlpty = Fom(2) (3.1)
n,p,q=1
d*u
dt;n + wfnum + T = F()m(t) (3'2)

The MDOF undamped large-deflection transverse vibrations of a slender beam can

be described by an expression either in the form of equation (3.1) or of equation (3.2).

3.2 Harmonic Response

3.2.1 Solution based upon the Harmonic Balance Method

Since there is no known exact analytical solution to (3.1), an approximate solution by
the harmonic balance method will be sought. This method can be found from various
texts such as Blaquiére [40]. Bennett and Eisley [61] have outlined the method briefly.

A solution of the mode u,,(¢) is assumed to have the form for harmonic forcing

Um(t) = Ay sin Q¢ (3.3)
where ()= angular frequency and A,,= constant to be determined.

Substituting (3.3) into (3.1), expressing sin® Qt = (3 sin Ot — sin 3Qt) /4, and neglect-

ing the terms that contain sin 3Q¢, the following is obtained:

3 J
“'Amﬂg + wanm + Z Z HmnqunApAq = m = Q[)m (34)

n,p,g=1

The negligence of the terms that contain sin 3Qt is merely one assumption of the

Harmonic Balance which states that any harmonics which arise in the substitution
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3.2 Harmonic Response

which are not included in the assumed solution (equation 3.3) are neglected. Equation
(3.4) only considers the first j modes. It is a set of j non-linear algebraic equations
relating the terms of A,,’s and (2. An iterative method (see Appendix A.2) can then be
employed to find the relations between the amplitudes 4,, and the angular frequency
2. The expression of equations (3.1) and (3.4) have been expanded up to the first three

modes and is shown in Appendix A.1.

If the external force, f(z,t) is assumed to be harmonic in the time domain, then it
can either be a concentrated force, f¢(z,t) = f§sin(Q¢)d(z — zy) at a particular point
zp along it, or a distributed uniform load, f%(z,t) = fosin(Qt)f%(z), across the span.

The generalised forces F§,(¢) and Fg,(¢) to be implemented in (3.1) for each case are

respectively:
¢ Jo .
FE.(t) = 303 sin(Qt) @, (xo) (3.5)
!
F& () = Rf\? sin(Qt)/O f(2)Pm(z) dz (3.6)

3.2.2 One-mode Non-linear Frequency Response Functions

The beam is approximated by an equivalent single-degree-of-freedom (SDOF) Duffing
oscillator derived from equation (3.1). Equation (3.7) presents the Duffing’s equation

with only the first mode considered.

—&_ﬁ— = —wlul - Hnu’ul -+ FOl (t) (37)
The excitation, Fy(t), varies harmonically with time and can be obtained from

equations (3.5) and (3.6). From (3.4),

3 Fou(t
-A4,0% + wal + anlllA? = siixlﬂz = Qo (3-8)
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3.2 Harmonic Response

Rearranging equation (3.8) gives the following frequency-amplitude relation approx-

imation:

2 2 2

Q 31 A7 Fou(t) 34! Qu
wy \/1 T3 WiA sinQt 1+ B (3.9)

The force parameter Qy; is independent of time and related to the actual force by the
expression Qg = [ﬁ%ﬁ fol ®, fo(z) d:v], where fy and f(z) specify the force magnitude
and force spatial mode respectively. After obtaining the values of 2 for the correspond-
ing values of pre-defined A, and the force parameter Qy,, the frequency-amplitude-force
relation curves can be plotted, and the time dependent function u,(¢) can also be ap-

proximated if desired (see Appendix B.2).

3.2.3 A Particular Example

In the numerical example, the beam shown in Figure 3.1 studied is studied and has a
circular cross section. Its properties is given in Table 3.1. The use of such a beam is
merely for the purpose of comparing the solutions by the various computational methods

and the published results.

Young’s Modulus | 207 x10° Pa Length of beam { | 2.5 m

E

Radius of gyration | 0.025 m 27 moment of | 4.909 x107% m*
R inertia [/

Density of beam p | 7850 kg/m? diameter d 0.1 m

Table 3.1: Parameters Used for Analysis of Beam in the Particular Numerical Example

From (2.14), let ®,,(z) = sin(mwz/l), so that

w(z,t) = Run(t)sin m;”’ (3.10)
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3.2 Harmonic Response

Figure 3.1: Beam with Immovable Ends Simply-supported and Load at Mid-span

where m is an integer. This example involves ounly a single mode so that m is equal
to 1 in equation (3.10). Moreover, from equation (2.25) and expressions in (2.28), the

following can be obtained:

T El ul Tt El
= — IM = — 2 = .
W At 1 9 Wy K

(3.11)

Now, consider two loading cases. In one case, an external concentrated force Ff (t) =
&1 8in(Qt) with normalised magnitude Q§, = —QR% is applied at the mid-span of the
beam. In the second case, a uniformly distributed force which acts on the beam can

take the form of the expression

. ! . T 4f0 .
FAL () = Q2 sin(Q) /0 sin(57) do = £ sin(2)

Hence, substituting (3.11) into (3.9) and the forcing functions for each case as Fpi(t) In

(3.9) will result in the following expressions for the frequency-amplitude relation:

{ 3 2fol3 3 Fg
— =1k Ao i Sy S 3.12
<w1>cancentrated \/ * 16 ' 7F4EIRA1 T 16 L Al ( )
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3.2 Harmonic Response

Q / 3 4 fol* 3 Fd
- = 1 ___AQ — e ——— = o422 01 .
<wl)distributed 16" mEIRA, \/l - 16A1 A (3.13)

Here, A = |Wmaz/R|, and Wpqe is the maximum amplitude response for the single
mode. Figures 3.2 and 3.3 are typical response curves for the hard spring Duffing’s
oscillator. They can be found by plotting the frequency ratio in (3.12) and (3.13) as a

function of A4;.

3.2.4 Results and Discussions

Table 3.2 compares the free vibration frequency ratios for pre-defined response ampli-
tudes with the exact theoretical solutions given by the elliptic function solutions [45, 98].
The Harmonic Balance solutions overestimates the solutions in free vibrations. The dif-
ferences between the two solutions increase with increase in amplitude. However, their

differences are acceptable, as the Harmonic Balance is simply an approximation to the

Duffing’s equation.

Elliptic function || HBM lequation
solution [45, 98] || (3.9) with Qo = 0]
A N Q/w Q/w; % difference
1 1.0892 1.089725 0.048
2 1.3178 1.322876 0.385
3 1.6257 1.639360 0.840
4 1.9760 2.000000 1.215
5} 2.3501 2.384848 1.479

Table 3.2: Free Vibration Frequency ratios Q/w; for a S-S Beam with Immovable End

Conditions for Selected Amplitudes A,

In the case of forced vibrations, the numerical results and other published results

are shown in Tables 3.3 and Tables 3.4 for selected values of A;. Figures 3.2 and 3.3 are
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3.2 Harmonic Response

the “backbone curves” for the concentrated loading case and the uniformly distributed
loading case respectively. As only the fundamental mode is concerned, the forcing
frequencies have been chosen to be lower than and away from the next responding

resonance frequency.

Elliptic so- || Perturbation| F.E.M. HBM
lution [59, || solution (98] [equation
98] [98] (3.12)]
Ay Q/uwn /w Q/w; Q/w
-1 1.6607 1.6608 1.6425 1.660812
+ 2 0.9695 0.9821 0.8497 0.982141
1.5894 1.5923 1.5143 1.592293
+ 3 1.4519 1.4710 1.217 1.471021
1.7815 1.7920 1.6326 1.791954
+ 4 1.8711 1.8993 1.6229 1.899290
2.0751 2.0959 1.8485 2.095877
+5 2.2801 | 2.3181 1.9621 2.318047
2.4179 2.4498 2.1165 2.449828

Table 3.3: Forced Vibration Frequency Ratios {1/w; for a S-S Beam with Immovable

End Conditions under a Harmonic Concentrated Force (Fy = 7/2, Q§, = win/2,

fo=124379.73N)

Tables 3.3 and 3.4 are represented graphically by Figures 3.4 and 3.5 respectively.
When compared to the first two published results by the classical methods in Table
3.5, the present SDOF model matches very well with the elliptic and perturbation solu-
tions, but not the F.E.M. solutions by reference [67], in both the concentrated and the

distributed forced vibration case.

Since the methods to generate the published results are not exact, the accuracy can-

not be verified. Hence, the time domain response amplitudes from the Finite Element
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3.2 Harmonic Response

Elliptic so- || Perturbation| F.E.M. HBM
lution [59, || solution [98] [equation
98] (98] (3.13)]

A, Q/uw Q/w, Q/wy Q/uw

-1 1.7852 1.7854 1.7856 1.785357107

+ 2 0.8472 0.8660 0.8460 0.866025404
1.6557 1.6583 1.6512 1.658312395

=3 1.4003 1.4126 1.3760 1.421560176
1.8217 1.8314 1.8002 1.831438415

+4 1.8413 1.8708 1.7846 1.870828693
2.1013 2.1213 2.0495 2.121320344

+5 : 2.2606 2.2995 2.1619> 2.299456458
2.4361 2.4673 2.3432 2.467285958

Table 3.4: Forced Vibration Frequency Ratios Q/w; for a S-S Beam with Immovable

End Conditions under a Harmonic Uniformly Distributed Pressure (Fg = 2, Q¢, = 2w?,

fo = 99503.78N/m)
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3.2 Harmonic Response

A; || Perturbation| Elliptic F.E.M. | Perturbation| Elliptic F.EM.
method, ¢ || solution, ¢ || [98], ¢ || method, d || solution, d || [98], d
(%) (%) (%) (%) (%) (%)
-1 -0.0674 -0.00674 -1.10239 || +0.0024 -0.0088 +0.014
-2 || -0.18169 -0.18169 -4.89816 || -0.00075 -0.16 -0.43
-3 -1.29985 -0.58339 -8.89275 || -0.0021 -0.83 -1.71
-4 | -0.99133 -0.99133 -11.7553 || -0.00096 -0.94 -3.39
-5 -0.00114 -1.30328 -13.6062 || +0.00057 -1.26 -5.03
+2 | -0.00417 -1.28709 -13.4849 || -0.0029 -2.17 -2.31
+3 || -0.00143 -1.29985 -13.5498 | -0.63 -1.50 -3.20
+4 || 0.000527 - -1.48425 -14.5523 || +3.46 +1.83 -1.31
+5 | 0.002286 -1.63702 -15.3555 || 4+0.0019 -1.69 -5.98

Table 3.5: Percentage Differences of (2/w) between HBM results and Various Published
Results, c=concentrated loading, d=distributed loading (from Tables 3.2, 3.3 and 3.4)
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Amplitude |A|

o] 0.5 1, 1'.5 é 2‘.5 3
Frequency ratio(2/my)

Figure 3.2: Harmonic Balance: Amplitude Versus Frequency for a S-S Beam
with Immovable End Conditions under Concentrated Force with Magnitudes Fg =1

(fo=79182.59 N), F§=m/2 (f, = 124379.73N and F§ =2 (f;=158365.20 V)

software ANSYS®) have been obtained to further check the validity of the present vibra-
tion model (2.13) (See Appendix C.1). This approach generally consists of three phases,
the “Preprocessor” phase which generates the model, the “Solution” phase which anal-
yses the model and calculates the solutions and the “Postprocessor” phase where the
numerical results are retrieved. In the current study, linear solutions have been obtained
through the use of “Harmonic” and “Transient” analysis within the “Solution” phase in
ANSYS®. In ANSYS® 5.7, “Harmonic” can only perform frequency domain analysis
without geometrically non-linearity effects. With the inclusion of non-linear effects but

solutions in the time domain have been obtained via “Transient” analysis.

The time domain first-mode amplitude response has also been calculated by numer-

ical integration of the governing ordinary differential equation (3.7) with the use of a
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31

2.5 A

Amplitude |Aj|

"
n
A

0 1 2 3

Frequency ratio (2/w,)

Figure 3.3: Harmonic Balance: Amplitude Versus Frequency for a S-S Beam with Im-
movable End Conditions under Uniformly Distributed Force with Magnitudes Egzl
(fo=49751.89 N/m), and Fg =2 (f,=99503.78 N/m)

Newmark-Beta time integration method [99, 100]. This would give the exact solution
of the first-mode response, if equation (3.7) were an exact interpretation of the motion
of the beam under investigation. This approach checks the accuracy of the use of the

Harmonic Balance Method which applies to equation (3.7).

The frequency response curve can be constructed from solutions obtained by the nu-
merical methods. For each pre-defined forcing frequency (2, the numerical analysis (both
by ANSYS® “Transient” analysis and by Newmark-Beta time integration method) is
performed and the steady-state maximum amplitude of the displacement response, |A]
is obtained. The time-domain numerical approaches give only the stable solutions of
the differential equation although the present method using HBM is able to calculate all

three (two stable and one unstable) solutions. Nevertheless, only the appropriate stable
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Figure 3.4: A Comparison of Amplitude |4;| at Selected Frequency Ratios among the
Four Methods (Concentrated Load F§,=m/2)
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Figure 3.5: A Comparison Amplitude |4;] at Selected Frequency Ratios among the Four
Methods (Distributed Load Fg=2)
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solution will be used for the purpose of comparison.

(Q/wi) |A| (HBM) |A]  (ANSYS® | |A| (Newmark-
time-domain) Beta time-domain)

0.0152 0.8747 0.856 0.848

0.0967 0.8803 ” 0.8400 0.8513

0.4243 0.9946 1.014 1.1820

0.856 1.4777 1.518 1.508

1.0957 1.9504 2.000 1.984

1.3035 2.4332 2.429 2.4751

1.4162 2.7079 2.742 2.7543

1.5716 0.7299 0.580 0.7289

1.7005 0.5446 0.480 0.5438

1.7033 0.5416 0.460 0.5408

2.0203 0.3266 0.325 0.3261

2.096 0.2961 ' 0.268 0.2957

2.3778 0.2153 0.168 0.2150

2.6987 ‘ 0.1593 0.124 0.1591

Table 3.6: Forced Vibration Amplitudes |A| = |wpez/R| for a S-S Beam with Immovable
End Conditions under a Concentrated Force Fy, = 1(fy = 79182.59N)

Table 3.6 and Figure 3.6 show some results in the concentrated forcing case while
Table 3.7 and Figure 3.7 show those in the uniformly distributed loading case. Figures
3.6 and 3.7 show the simulated backbone curves by the two time-domain analyses,
together with that by the present model. Table 3.8 summarises the areas on the plots of
Figures 3.6 and 3.7, where the “jump” phenomenon happens to occur (see Appendix B).
To use the Harmonic Balance Method to estimate the frequency at which the “jump”
occurs, the first derivative of equations (3.12) or (3.13) is set to zero. The value of

|A1| is then obtained and by substituting |4;| back to equations (3.12) or (3.13), the
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3.2 Harmonic Response

(Q/wr) |A| (HBM) || |4] (ANSYS® [ |[4A]  (Newmark-
time-domain) Beta time-domain)

0.0155 1.4402 1.3540 1.365

0.4330 1.5694 1.5000 1.7000

0.8660 2 1.9858 2.0800

1.1713 2.5 2.3285 2.5600

1.4216 3 2.4287 3.066

1.5 3.1677 1.9300 3.2373

1.6583 3.516 3.548 3.5920

1.7854 3.8404 3.825 3.8843

1.8314 0.9095 0.7554 0.9076

1.8718 0.8438 0.7080 0.8433

2.1213 [ 0.5820 0.5054 0.5815

2.2465 0.5 0.4385 0.4994

2.2894 0.4763 0.4194 0.4760

3.0020 0.25 0.2600 0.2497

Table 3.7: Forced Vibration Amplitudes |A| = |wye./R| for a S-S Beam with Immovable
End Conditions under a Uniformly Distributed Load ?g = 2(fy = 99503.78N/m)
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3.2 Harmonic Response

resulting value of (£2/w;) corresponds to the frequency ratio where the backbone curve
is vertical. This is where the jump of the amplitude should occur. The precise value of
the “jump” frequency ratio has not been obtained from the numerical solutions given
by the Newmark-Beta integration and ANSYS®) results. This is because an excessively
large number of numerical computation would be needed in order to generate enough

data points to retrieve an exact value of (Q2/w,).

It can be seen that when predicting the frequency when this jump phenomenon takes
place, the Harmonic Balance method will give a higher value than that by the ANSYS®
FEA, and a lower one than that predicted by solving the SDOF Duffing numerically by

Newmark-Beta time-domain approach.

% ANSYS Time-domain simulation )
+ Time-—domain numerical integration of {3.7) :
4.5]._0 Harmonic Balance Method Qe

0 0.5 1 1.5 2 2.5 3
Frequency ratio (Q/mﬁ)

Figure 3.6: Comparison of Amplitudes |A;| = |wmae/R| at Selected Frequency Ratios
by Different Solutions in the Concentrated Load Case, F§ =1

Table 3.9 gives the difference in percentage between amplitudes given by the Newmark-
Beta numerical integration method and by HBM, as well as that between amplitudes
by ANSYS® and by HBM. It can be seen that, in general, the solutions by HBM agree

better with those obtained by the numerical integration approach than with those by
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3.2 Harmonic Response

x  ANSYS Time-domain simulation j i
+ Time-domain numerical integration of (3.7) :
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Figure 3.7: Comparison of Amplitudes |A;| = |Wmaz/R| at Selected Frequency Ratios
by Different Solutions in the Distributed Load Case, E{:Q

Newmark-Beta ANSYS®  time | Harmonic Balance
time-domain domain simulation || Method
Point Force | (2/w;) = 1.52 112 < (Q/wy) < || (Q/w) =1.44
Fg=1 1.32
Distributed || 1.80 < (Q/wi) < | 143 < (Q/w1) < || (Q/wy) =1.65
Load Fd=2 || 1.83 1.50

Table 3.8: Frequency Ratio at which the “Jump Phenomenon” Occurs for the Three

Analyses
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3.2 Harmonic Response

ANSYS® simulation. This could be due to the fact that both the HBM and Newmark-
Beta time-domain method solve the SDOF Duffing’s equation whilst ANSYS® utilises
the Finite Element Approach to model and solve the beam vibration problem. The
damping which has to be employed in the ANSYS@® analysis and the Newmark-Beta
integration scheme to remove transient effects also affects the results when compared

with the undamped solutions by HBM, especially near resonance.

3.2.5 Remarks on Mode-coupling in Non-linear Harmonic Vi-

brations

Finite Element Analysis by ANSYS® has been used to obtain the linear and non-linear
responses subjected to harmonic excitation. The solutions are compared with those
obtained by solving the Duffing’s equation. Some of the solutions are compared and
shown in the graphs in Figures 3.8 and 3.9 for different forcing conditions. The effects
of non-linearity can indeed be identified from the diagrams. It can be seen that the
effects of mode-coupling are not significant in the cases under investigation. This is
deduced by the closeness between the numerical time-domain solutions of the SDOF
Duffing’s equation and the ANSYS® non-linear solutions which takes into account of
all the responding modes. This implies that the effect of the resonances of the third and
of subsequent modes are very small compared to that of the first mode. This finding,

without any surprise, has widely been accepted for weakly non-linear systems.

However, it has to be borne in mind that for forcing frequencies close to the natural
resonance, the response is very dependent on the amount of damping applied. Although
no damping is considered in the analytical model, some damping has to be introduced

when running the time-domain integration analysis in order to remove the “transients”.

Figure 3.10 shows the frequency response curves for the first two symmetric modes
(first and third) in the concentrated loading case, obtained using the Harmonic Balance
Method and an iterative scheme (Appendices A.1.1 and A.2). Solutions obtained by
ANSYS® non-linear time-domain analysis are also presented at selected frequency ratios

(Q/wy). It can be seen that the total response is indeed affected by resonances of both the
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3.2 Harmonic Response

(Q/w) || Time Time  do- | (Q/wy) || Time Time  do-
domain main  sim- domain main  sim-
Newmark- ulation, o Newmark- ulation, d
Beta, ¢ | (ANSYS®) Beta, d || (ANSYS®)
(%) (%) (%) (%)

0.0152 | 3.15 2.14 0.0155 || 5.22 5.99

0.0967 || 3.41 4.58 0.4330 || 8.39 1.9:5

0.4243 || 15.9 1.95 0.8660 || 4.00 0.7093

0.856 2.00 0.156 1.1713 | 2.40 2.40

1.0957 || 1.69 6.48 1.4216 || 2.20 2.60

1.3035 || 1.69 0.173 1.5 2.156 - 2.88

14162 | 1.68 1.26 1.6583 |l 2.12 0.893"

1.5716 | 0.137 26.8 1.7854 (| 1.13 0.533

1.7005 | 0.147 23.6 | 1.8314 || 0.209 7.64

1.7033 || 0.148 23.9 1.8718 || 0.0593 5.19

2.0203 || 0.153 21.6 2.1213 || 0.0859 13.2

2.096 0.135 21.6 2.2465 || 0.120 10.8

23778 | 0.140 22.0 2.2894 | 0.0630 13.6

2.6987 | 0.126 22.2 3.0020 || 0.120 4.00

Table 3.9: Percentage Differences of Response Amplitudes A; for Selected Frequency
Ratios between HBM Model and Time-domain Simulations, ¢ =concentrated load, d=

distributed load (from Tables 3.6 and 3.7)
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3.2 Harmonic Response
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Figure 3.8: Non-linear Displacement Response at Selected Forcing Frequencies to Har-

monic Concentrated Loads
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Figure 3.9: Non-linear Displacement Response at Selected Forcing Frequencies to Har-

monic Uniformly Distributed Loads

LK.D.G. TANG ol
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Figure 3.10: Frequency Response of the First and Third Coupled Modes for a Simply-
supported Beam with Immovable End Conditions by Harmonic Balance Method, with

Results by ANSYS® at Selected Frequency Ratios (F§,=1)
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3.3 Chapter Summary and Conclusions

first and the third modes, and the results agree well with ANSYS®) solutions. Moreover,
the total coupled response (mode 1 + mode 3) reveals that the first mode is dominant
when the forcing frequencies are near to the first natural frequency. This agrees with
previous findings obtained by the time-domain numerical methods. However, the total
response is dominated by the third mode when the forcing frequencies are close to the

third natural frequency.

It can be deduced that the uncoupled equations can give good approximations to
the total response of the beam when the forcing frequencies are near to the natural
frequency. In other words, when {2 is near to w;, the uncoupled SDOF Duffing’s equation
including only the first mode (equation (3.7)) can be used. When Q) is near to ws, the
corresponding SDOF Duffing’s equation including only the third mode can be employed.
However, for  which is between the resonances of the two modes, e.g. 5 < Q/w; < 7
in Figure 3.10, the equations including coupling of the modes should be used in order

to obtain a valid overall response.

3.3 Chapter Summary and Conclusions

Non-linear transverse displacement response of a simply-supported beam with immov-
able end conditions when subjected to a harmonically varying excitation has been cal-
culated using a linearisation technique called the Harmonic Balance Method. Two cases

have been studied, a concentrated load at mid-span and a uniformly distributed pressure

across the span.

Published results utilising several other approaches, namely the elliptical solutions,
the perturbation solutions and the solutions by a Finite Element Method (F.E.M.) for-
mulation [98] which has included the effects of longitudinal deformation and longitudinal
inertia, are compared with solutions by the present harmonic balance method. All but
the F.E.M. solutions [98] are based on the single-mode Duffing’s equation (3.7). The
solutions have also been obtained by the numerical integration of the single-mode Duff-
ing’s equation. Simulation of the vibration problem using the ANSYS® time-domain

Finite Element Analysis has also been carried out. The harmonic balance solutions have
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3.3 Chapter Summary and Conclusions

been compared with both the ANSYS® Finite Element solutions and solutions by the

numerical integration of the single-mode Duffing’s equation.

The closeness of the HBM response to the time-domain numerical-integration re-
sponse implies that the linearisation technique in harmonic balance does give good

approximation to the solution of the Duffing’s equation.

The difference between the solutions based on the Duffing’s equation and the ANSYS®
ones may be explained by the fact that ANSYS® analysis does not solve the vibration
problem based on the governing equation of motion (3.1), with the negligence of the
longitudinal and rotary inertia. The ANSYS® Finite Element Approach simulates the
entire beam when subjected to the prescribed excitation, thus taking into account of
all the physical characteristics of the beam. Nevertheless, when comparing the two
time-domain solutions, their closeness to each other indicates that equation (2.13) is an

acceptable representation of the beam-vibration problem under investigation.

Finally, in the case of a simply-supported beam with immovable end conditions
subjected to a symmetric loading with forcing frequencies lower than and well away
from the third response mode, the non-linear response is predominantly due to the first
resonance, and mode-coupling effects on the dominant first mode due to responses by
subsequent modes are insignificant. As a result, the single-degree-of-freedom Duffing’s
equation is a good-model to study the geometrically non-linear deflections of a simply-

supported beam.
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Chapter 4

RANDOM VIBRATIONS OF
NON-LINEAR BEAM

In aerospace applications, excitation by jet or rocket engine noise and convected turbu-
lence flow ought to be treated by probabilistic methods. The structures in the vicin-
ity of jet or rocket engine exhaust are excited dynamically by acoustic pressure. The
unfavourable outcome of this excitation are acoustic fatigue and possible damage or

malfunction of operating electronic equipment placed on the excited structure.

4.1 Damped Large-deflection Beam Equations

When there is no axial prestressing, the governing equation of motion of an axially
restrained beam subjected to transverse vibration, where large deflections are accounted

for, has been presented in Chapter 2 by equation (2.13) which is replicated here.

Ow
oz*

EA [*(ow\® | w  Pw  ow
v (%) dm}b‘?”ﬁﬁ*‘ 7 =0
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4.2 Response to Non-linear Random Excitation

This forth-order partial differential equation can be represented by a set of second-
order ordinary differential equations with cubic non-linearity, in the form of equation

(2.24) which is restated here:
Py, . dug, f(2)

—Ei.tﬂi—dihfm? +§uf,tum+Fm=a~— = Fom(t)

The symbols in the equations have been defined previously in Chapter 2. Moreover
in equation (2.24), the damping coefficient &, is related to the damping factor ¢ by the
expression ¢ = &, /2w,. The damping factor is the ratio of the actual damping to the

critical damping [7].

4.2 Response to Non-linear Random Excitation

4.2.1 Solution Based upon the Equivalent Linearisation Tech-
nique

When the excitation is a stationary and ergodic random function of time, and has a
zero mean, an approximation to find the solution of equation ( 2.24), called the Direct
Equivalent Linearisation Technique [29, 76] can be used. The approximated solution will
also be stationary and ergodic. Moreover, it will be assumed that only the displacement

term, I',,,, is non-linear.

Equation (2.24) is a set of non-linear coupled equations and represents a multiple-

degree-of-freedom non-linear system of the form

g (84,3) = £y (4.1)

where 7 is the generalised displacement vector, g, (ﬁ, , ﬂ') is the total internal force act-
ing in the i-th degree-of-freedom direction and F"(t) is the stationary Gaussian random

excitation vector, with zero mean.
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4.2 Response to Non-linear Random Excitation

It will be assumed that a stationary Gaussian solution to (4.1) exists.

Replace equation (2.24) by a linearised second-order ordinary differential equation:

d*u,, A, 9 f(t)
Pon goltn =10 - 5 “2)

where kp, is the equivalent linear natural angular frequency, and defining the following

set of linear equations

Mi+Cu+ K = F(t) (4.3)

where the matrices M, C and K are arbitrary mass, damping and stiffness matrices to
be determined such that the solution of (4.3) will give an approximate solution to (4.1).
Since the non-linear equation (4.1) has been replaced by the linear equation (4.3), there

will be an error which can be written as

é:g(ﬁ,ﬁ,ﬁ) ~Mi+Ci+Ka (4.4)

The criterion to obtain a good approximation is that the mean-square value of the

error is a minimum. The necessary conditions will be

- %%: <£ b u:_) | (4.5)

E[...] represents the expectation operator. Applying equation (4.5) on (2.24), pro-
vided that,
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4.2 Response to Non-linear Random Excitation

_ {fm if m=j;
ij:

0 if m#j.
_ a , o [Owiiuy ol

for m,n,p,q,7 =1,2,3,...

Emj = LU?n(Sm]' + FE

EAR? 0 [ <«
““——QZMm é—’l:l,—; ( Z Kmnquunupuq)J

n,p,q=1

EAR? e OK n K poUn U U
—-m..___?m. el E mn L3 pgtn lip g
Rmj = Wy 0m; + 51 ( . { Bty ])-I—
n,p,g=1
EAR? [ & OK yn K pglinUp iy EAR* [ & O K K pgUnUplig
20, (Z B [ B, } | 2 E { By
n,p,g=1 n,p,q=1
B EAR? [ & >
Fomg = w2 0mj + i (;Z KomjKpgElupug +2 KmnKij[unup]) (4.7)
)q=1 n’p:]“

The Kronecker delta 6,,; = 1 for m = j, otherwise, d,,; = 0.

Since K, = 0 when m # n, K,; = 0 when p # ¢ and K,; = 0 when p # 7,

_ ) EAR? [ & 2
Kmj = Wy 0mj + W Z Kinj Kpp Euy) + 2 K K5 B [umus] (+8)
p=1

The linearised equations have modal coupling as the term Efupmu;] # 0. This term

will become zero when Efu,,] and E[u,] are statistically independent from each other.

LK.D.G. TANG 58



4.2 Response to Non-linear Random Excitation

4.2.2 Random Vibrations: Uniform Acoustic Pressure

In the response of linear systems, there is generally low modal overlapping. Hence,
the mass, damping and stiffness matrices are completely uncoupled. In the following
analysis, the non-linear response is assumed to have low modal overlapping as well. In
consequence, equation (4.3) is completely uncoupled in the mass, damping and stiffness

madtrices.

Let the beam be subjected to an acoustic pressure. The load is a stationary band-
limited white-noise random pressure with zero mean and has a deterministic spatial
distribution which is uniformly distributed across the span. Therefore, the spectral
density function is independent of the forcing frequency and can be denoted by the
magnitude, Sp. The mean square response of each mode can thus be expressed in terms

of the spectral density function S¢(Q2) of the random load f(¢),

o - w Sk w5
Bl = [ S @lHa@Pd s A - T ot (ag)

If k,, is replaced by w,,, equation (4.9) represents the m-th mode linear mean square

response. The frequency response function, H,,(Q2), is given by

1

H,.(Q) = 4.10
With m = j, equation(4.8) becomes
EAR?
R = W2, + e (Z Knm KppE [62] + 2K mm Ky B [ufn]> (4.11)
p_

Here, as the distribution is uniform, even modes are not excited, i.e. p = odd. For

the case where m =1,

R = wl EAR {KuKuE [Urﬂ + K11K33E[U§J +...+ KllKNNE[u?v] + ZKELE[U%]}

Fu = o+ 2 (8 2] + 9 [uf] +... + N [u})]) (£12)
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4.2 Response to Non-linear Random Excitation

Denoting ki = %, the mean square displacement, o2, , is thus given by:

5
o5 = E [uf] = Zéf_ffk—f (4.13)

Substituting equation (4.12) into equation (4.13) and tidying up give the following

polynomial in terms of the variance o2,

4
where S, = 75/ (4G, wi).

3 1 .
—(c2)? + [1 +3 (9023 + 25005 + ... + N%2y) | 02 — S1, =0 (4.14)

In the same manner, as shown for the first mode, the mean square deflection for

subsequent modes can be determined by the general format in equation (4.15).

3 2 =

Smt (o2 )+ miol, + T N%*g2y — S =0 (4.15)

4 um u 4 ulN )

N=1,2,3,.,N#m
where, S
o0
S = ———— m = mode number.
' 4G & pw?

Since there is coupling in the coefficients of the polynomial, the mean square deflec-
tions have to be solved for by using an iterative method. First the quadratic equations
(in 02,) are solved for o2, by neglecting the coupling in the coefficients. These values
are used as the starting values for subsequent iterations. The iteration process is com-
pleted when a convergence criterion is met. Convergence is considered achieved for each

mode, whenever |[(0um)i — (Tum)i-1]/(0um)i] < 107% , where ¢ is the iteration number.

The total mean square deflection can be expressed as:

S0 = RS 8 (2)o%n() (4.16)

If only the first mode is considered, m = 1, the single-mode Duffing’s equation can

be derived from equation (2.24) and is given in equation (4.17).
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4.2 Response to Non-linear Random Excitation

f(t)

d?u du
-+ gld—tl +wiu+ Mynud = =% = Fy (1) (4.17)

di?

The equivalent linear natural frequency can be derived from equation (4.8) and is

given by:

I’Cl = \/Cd% + SHHHO'ZI ‘ (418)

Substituting equation (4.18) into equation (4.13), the non-linear mean square dis-

placement for the first mode can be obtained and is given by:

. \/1 + 12802 — 1

ul
6H1111
Wy

(4.19)

)

where o2y, is the corresponding linear mean square displacement response of the first

mode.

4.2.3 A Particular Example: S-S Beam with Immovable End

Conditions

An isotropic beam which is rectangular in cross section is used in this example. Its
properties are shown in Table 4.1. A uniformly distributed pressure as described in
section 4.2.2 is applied on the beam with immovable simply-supported end conditions.
Figure 4.1 should be referred to. The beam is subjected to five overall sound pressure
levels (SPL) of 60, 70, 80, 90, 100, 110, 120 and 130 dB (Ref. 2 x 10~° N/m?). The
corrected sound spectrum level, SSL is related to the SPL by the expression SPL =
SSL — 10log(DW), where DW is a finite bandwidth and is equal to 250 Hz. Ounly

linear structural damping will be considered.

As loading is symmetrically applied and the beam is simply supported, all even-

numbered modes do not respond. Moreover, only the first mode will be included in the

study.
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4.2 Response to Non-linear Random Excitation

Figure 4.1: Simply-supported Beam with Immovable End Conditions Subjected to Uni-
formly Random Loading

Young’s modulus £ 70.395 GPua Length of beam [ 0.3048 m
Beam thickness A 0.001626 m Width of beam b 0.0508 m
Density of beam p || 2765.7606 kg/m?® | Damping factor ¢ = & /2w, 0.01

Table 4.1: Dimensions and material properties of beam used in section 4.2.3
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4.2 Response to Non-linear Random Excitation

Here, ®;(z) = sin %%, hence the root-mean-square (r.m.s.) displacement response

ow(z,t) is:
. TT
ow(z,t) = Roy, (£) sin - (4.20)
For this loading condition,
R
G, = 54—% (4.21)

To relate the specified SSL in dB with spectral density function Sf({2), equation
(4.22) can be used, provided that ; < Q < Q., where Q; and Q, is the lower and upper
cut-off frequencies respectively [92, 101, 102]. Sy is zero for all values of Q2 outside this

range.

Plms. = PLp10089) = S,(Q) AQ (4.22)

Here, p..s is the pressure corresponding to the “zero” noise level, i.e., SSL = 0 dB.

It is usually assumed that prey = 2 X 107°N/m?. The resulting r.m.s. pressure, Pr.m.s.
is simply the square root of the value S¢(Q2) - AQ. Readers should seek further details

from reference [101].

The linear and non-linear r.m.s deflections due to the response of the first mode will
be obtained. The equivalent linear natural frequencies and the mean square displace-
ment can be obtained from equations (4.18) and (4.19). The response spectrum of the

displacement o, is given by

4.2.4 Numerical Results and Discussions

It is possible to obtain non-linear solutions in virtually all cases by the step-by-step

time-domain Monte-Carlo numerical integration scheme, provided that the nature of
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4.2 Response to Non-linear Random Excitation

the excitation and the equations of motion are known. It is therefore generally accepted
to consider the solutions by the Monte-Carlo numerical scheme to be the benchmark

when assessing the accuracy of solutions obtained by approximate analytical methods.

In order to assess both the accuracy and the efficiency of using the Direct Equiv-
alent Linearisation as an approximation method, the analytical linear and non-linear
solutions of random beam vibrations by this linearisation method have been compared
with solutions obtained by the time-domain Monte-Carlo numerical method. Both the
analytical and numerical approaches are based on solving the SDOF non-linear Duffing’s
equation. ,

As the input random load is a uniformly distributed band-limited stationary and
Gaussian white noise, the technique of Inverse Fast Fourier Transform can be adopted

to simulate it in the time domain. The procedures can be found in Appendix C.2.

The random input loads were simulated using parameters shown below in Table 4.2.

Figure 4.2 shows time history of a 90 dB input pressure.

Pressure (Pa)

J-) SO P B I

-3 :

Time (seconds)

Figure 4.2: Time history of input pressure SPL = 90dB

The modal frequencies of the simply-supported beam are w; = 251.57rad/s (40.04
Hz) and wy = 2264.15rad/s (360.52Hz) . The frequency bandwidth of the input has
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4.2 Response to Non-linear Random Excitation

Overall SPL (dB)
Selected frequency bandwidth DW (Hz)
Input SSL (dB)
PSD S;(Pa?/Hz)
Area under spectrum density graph (Pa?), [I]
Calculated r.m.s. pressure prms(Pa), [II]
Number of simulated points, M

Frequency sampling interval dw(H z)

90
250 (1 to 251)
66.02
1.6 x 1073

0.40012
0.63245
262144
0.07660

Length of Time history (s)
Time interval (s)
Mean square value of simulated pressure (Pa?), [111]
R.M.S. value of simulated pressure (Pa), [IV]
% difference between [I] and [III]
% difference between [II] and [IV]

13.0550
4.9801 x107°
0.40003
0.63248
0.02
0.005

Table 4.2: Parameters for one digital simulation of white noise
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4.2 Response to Non-linear Random Excitation

been chosen so as not to excite the third mode. Once the white-noise excitation has
been simulated, the displacement response of the beam can be obtained in the time
domain. This correspond to the centre of the beam, i.e., z/I = 0.5 This has been done

by a step-by-step numerical analysis of the SDOF Duffing’s equation (4.17)

For linear numerical analysis, the cubic non-linear coefficient II,;;; is set to equal
zero. The Newmark-Beta time integration method [99, 100] is used. For non-linear
analysis, the Newton-Ralphson method is used in conjunction with the Newmark-Beta
method [99, 100]. To check convergence, the response is obtained with a certain time-
step. Then the size of the time-step is halved and the response is obtained. Convergence
of the solution is attained when the resulting response time-histories do not vary with

further decrease of time-step size.

The displacement response time histories have been developed from the random input
pressure. The time histories of the non-linear displacement responses for excitations of
70 dB, 90 dB, 110 dB and 130 dB are shown in Figure 4.3 and Figure 4.4. The numerical
values of the steady-state r.m.s. solutions by different methods in the linear and non-
linear cases are presented in Table 4.3. Note that the first 1.0 second has been omitted

in retrieving these r.m.s. values as only steady-state solutions are required.

In reference to Table 4.4, the parameter F1 shows that the use of only one single
mode can give excellent predictions in the linear case, which is a well-known fact. Pa-
rameter F2 indicates that the time-domain Newmark-Beta scheme has successfully been
implemented to evaluate the r.m.s. value of the 1st mode displacement response in the
linear case. It validates the accuracy of the time-domain solutions when compared to

the frequency-domain solutions in the linear case.

In Table 4.4, parameter F3 gives the ratio of the non-linear r.m.s. response given
by the Equivalent Linearisation to the corresponding linear r.m.s response. As the
excitation magnitude increase, the value of F3 decreases. For the case of 60 dB, non-
linearity effects are not expected to be severe, and the non-linear system should behave
like a linear system. Non-linearity effects becomes quite significant as the excitation
increases to 90 dB. At 130 dB, the non-linear r.m.s. response is approximated to be only
about 16 % of its predicted linear counterpart. A check using the numerical solutions is

given by parameter F4.
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Q.2 T T T T T T

time (s)

Figure 4.3: Non-linear Displacement Response Time Histories for overall sound pressure

levels of 70dB and 90dB overall
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110 dB

w/R

Figure 4.4: Non-linear Displacement Response Time Histories for overall sound pressure

levels of 110dB and 130dB overall
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4.2 Response to Non-linear Random Excitation

SPL || LINEAR | LINEAR || LINEAR || NON- NON-
FRM (1||SA, [l | N -3 (1| LINEAR | LINEAR
mode), mode), EL 1) N-581(1
1] [I11] mode), mode),[V]

[1V]

60 dB | 0.01331 || 0.01332 0.01330 0.01331 0.01330

70 dB || 0.04208 || 0.04211 0.04205 0.04205 0.04198

80 dB || 0.1331 || 0.1332 0.1330 0.1322 0.1327

90 dB || 0.4208 || 0.4211 0.4205 0.3979 0.3848

100 | 1.331 1.332 1.330 1.004 0.9577

dB

110 | 4.208 4.211 4.205 2.059 2.308

dB

120 | 13.31 13.32 13.30 3.836 3.969

dB

130 || 42.08 42.11 42.05 6.923 6.840

dB

Table 4.3: Comparison of r.m.s w/R at eight selected SPL levels. FRM: Frequency
Response Method; SA: ANSYS® “Spectrum analysis”; N — §#: Newmark-Beta time-

domain integration; EL: Direct Equivalent Linearisation
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4.2 Response to Non-linear Random Excitation

—SPL F1=% F2=% F3= F4= F5= %

(dB) || difference | difference || [IV]/[I] [V1]/[1] difference
between [I] | between [I] between
and[I1] and [IIT] F3 and F4

60 0.08 0.08 0.9999 1.0 0.01

70 0.08 0.07 0.9993 0.9983 0.10

80 0.08 0.08 0.9935 0.9977 0.42

90 0.08 0.07 0.9455 0.9151 3.22

100 0.08 0.08 0.7546 0.7201 4.57

110 0.08 0.07 0.4892 0.5489 10.88

120 0.08 0.08 0.2882 0.2984 3.42

130 0.08 0.07 0.1645 0.1627 1.11

Table 4.4: Analysis of r.m.s. values of w/R presented in Table 4.3

By using parameter F5 to compare parameters F3 and F4, it can be shown how
the technique of the Equivalent Linearisation performs in the approximation of non-
linear response of the displacement. The Direct Equivalent Linearisation method would
give good predictions for highly non-linear situations, when solving the SDOF Duffing’s
equation.

The fraction of the mean-square value of the non-linear response to that of the linear
response, i.e., the squared values of parameter F5, are plotted for various input sound
pressure levels in Figure 4.5.

It is shown that a single-mode solution is sufficient to provide reasonably accurate
displacement responses.

Figures 4.6 to 4.9 show some snapshots of the time-domain displacement responses
of the beam when the simulated white noises, with overall pressure levels of 70 dB, 90
dB, 110 dB and 130 dB respectively, act uniformly across the span. It can be confirmed
again, by careful examination, that for a relatively weak loading (70 dB), the non-

linear system basically behaves like a linear system, as the response oscillates with the
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Figure 4.5: Fraction of Non-linear Mean-square Displacement Response (¢2,) to Linear

Mean-square Displacement Response (02),) at Different SPLs
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4.2 Response to Non-linear Random Excitation

linear resonant frequency of the system. For a moderate level of excitation (90 dB),
non-linearity effect becomes more apparent and the non-linear system starts to behave
differently when compared to its linear counterpart. This can be seen by the fact that
the response oscillates with a frequency different from the linear resonant frequency of
the system. For a strong excitation (130 dB), the non-linear response time histories are
completely different from the linear ones. Note that although Figures 4.6 to 4.9 share
the same scale in the horizontal axis, the scales on the vertical axes are different to

accommodate the different response magnitude.

The frequencies of oscillations in the non-linear response time histories can be re-
trieved from its frequency spectrum. The equivalent linearisation method calculates
what is known as the “equivalent natural frequencies” which is the resonance frequencies
of the equivalent linear differential equations (4.2). The first-mode resonance frequencies
of the non-linear system at different sound pressure levels, are obtained by the equivalent
linearisation solutions and from the frequency spectra of the time-domain displacement
response. The fractions of the equivalent linear frequencies, &, to the fundamental lin-
ear frequencies, w; are are reported in Figure 4.10. From this graph, it can be deduced
that, unlike the linear case where the resonance frequency remains the same regardless
of the change in the input excitation, the non-linear stiffness has the effect of shifting

the resonance frequency to higher values as the level of sound pressure increases.

As non-linearity increases with the rising SPL level, the amount of the shift increases,
together with the increase in the response. This phenomenon can be seen in Figures 4.11
and 4.12. The graphs compare the power spectral densities of the non-linear displace-
ment response obtained by equivalent linearisation and from the time domain response
time-histories. As it can also be seen from the charts in Figure 4.11, the frequency-
response curves given by the time-domain integration solutions drop suddenly at 250
Hz, since this is the upper cut-off frequency of the band-limited white-noise excitation
where its pressure spectral density drops to zero. However, this drop in power spectral
density cannot be found in the response curves obtained by equivalent linearisation, de-
scribed by equation (4.23), since the pressure spectral density is assumed to be constant

at all frequencies in this case.

At higher excitation levels, the equivalent linearisation predicts that the frequency
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4.3 Chapter Summary and Conclusion

response of non-linear systems would have distinct peaks like those in linear systems.
This contradicts to the time-domain integration results which show that sharp peak
characteristics of linear vibrations are no longer evident. The characteristic distinct
peaks merge into one broader peak which tends to flatten. As a result, the values of the
equivalent linear frequencies obtained from the frequency spectrum of the time-domain
displacement response are only approximations, and the range of uncertainty on where
exactly the resonance peak occurs grows with increasing non-linearity. The graphs in

Figures 4.11 and 4.12 clearly illustrate the phenomena.

For the time-domain integration results, a reason for the broadening of the resonance
peak at highly non-linear regimes may be due to the leakage of energy. With small
non-linearity, the energy of the response is concentrated at the natural frequency. As
non-linearity increases dramatically to a high level, the energy concentration is distorted
and energy starts to leak to the neighbouring frequency domain. Hence responses are

being picked by the neighbourhood of the resonance, and a flat peak response is resulted.

Due to the different shape and character of the response spectra predicted by the
two methods, different values would result in the prediction of resonance frequency of a

structure when severely excited by random load.

4.3 Chapter Summary and Conclusion

In the vibrations of aircraft panels induced by jet noise, the major damage to the panels
is known to occur during takeoff, when the jet engines are operated at maximum power.
During the maximum engine power run, the generated acoustic pressure measured at a

given point on the structure can be assumed to be a white noise which exhibits a weakly

stationary pattern [92].

Based on the equations of motion developed from Chapter 2 for large deflections of
simply-supported beam with immovable end conditions subjected to external load, the
solution for the non-linear random response has been formulated by an approximate

method called the Direct Equivalent Linearisation Technique. The loading type under
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consideration is a uniformly distributed white noise excitation. For the special case of
a uniformly distributed random surface pressure, the non-linear response solutions are
known to be dominated by a single mode. Root-mean-square non-linear displacements at
the mid-span have béen obtained for a single-degree-of-freedom system. The results by
equivalent linearisation have been compared with those obtained by numerical analysis.
A good agreement of the root-mean-square response has been obtained between the
Direct Equivalent Linearisation and the time-domain step-by-step numerical integration
approach for severely exciting situations. Moreover, when the excitation is so large
that the vibration problem becomes non-linear, non-linear stiffness shifts the resonance
frequency to higher values. The amount of shift increases with the increase of non-

linearity due to the rising sound spectrum level, and the peak of the resonance broadens.

The equivalent linearisation solutions have been able to demonstrate the charac-
teristics of the non-linear r.m.s. displacement response predicted by the time-domain
numerical solutions even at high levels of excitations. Hence, it is believed that the ap-
plication of the Direct Equivalent Linearisation to a SDOF Duffing’s equation to obtain
the large-deflection displacement response of a simply-supported beam with immovable

end conditions due to a uniformly distributed white noise can indeed give reasonably

good results.

The non-linear response spectrum obtained by the Direct Equivalent Linearisation
method predicts that the characteristic distinct peaks in linear vibrations would be
retained in the non-linear system even at high excitation. This differs from the results
obtained from the time-domain numerical integration solutions, in which the peaks in
the spectrum are relatively flat. This has concern for the prediction of fatigue life of the
structure. This is because for two responses having the same r.m.s. value but different

response power spectral densities, their fatigue lives will be different.

Finally, it has been shown that classical linear theory of vibrations can be an over-
conservative means to predict the random response of beam vibration. To obtain a more
factual description of the non-linear beam response under intensive acoustic pressure,

non-linear theory of vibrations should be employed.
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Chapter 5

ASSESSMENT OF
MODE-COUPLING EFFECTS IN

NON-LINEAR BEAM
VIBRATIONS

From previous studies in non-linear harmonic vibrations, it has been shown that the
single-degree-of-freedom Duffing’s equation is a good tool to describe the geometrically
non-linear vibrations of simply-supported beams with immovable end conditions. It has
also been shown that mode-coupling effects are insignificant when the external harmonic
excitation is a uniformly distributed pressure or a symmetrically applied point load. In
those cases, the spatial distribution of excitation has excited all odd-numbered modes

of response, whilst the forcing frequencies have been chosen to excite mainly the first
mode of response only.
However, the aerodynamic loading may excite the panel structure in such a way

that typical frequencies of excitation caused by large-scale turbulence are close to some

of the natural frequencies of the structure. At the same time the pressures over the
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5.1 The Damped Two-degree-of-freedom Duffing’s Equation under Symmetric Loads

surface of the structure are spatially matched to the linear mode shapes of some other
vibration responses of the structure. It is interesting to see which modes of response will
prevail over the others. Blevins [5] has studied the multiple-mode response of panel-
type structures subjected to surface pressures associated with sound and turbulence.

However, the study was limited to the linear case.

In this chapter, the non-linear vibration of a simply-supported beam which has the
properties given Table 4.1 is studied. The spatial distribution of the load and the fre-
quency content to match and excite different modes of response. For example, the spatial
distribution of the load has a shape which matches the first linear mode shape of the
beam whilst the forcing frequency is equal to the third-mode natural frequency of the
beam. Moreover, only non-linear responses to loads which are symmétrically applied
across the beam are considered here. The damped two-degree-of-freedom (2DOF) Duff-
ing’s equations including the first two symmetric modes (1°¢ and 37¢) will be employed
to study the non-linear vibrations of simply-supported beams with immovable end con-
ditions. By considering the 2DOF Duffing’s equations with and without mode-coupling
terms, the significance of the phenomenon of “coupling resonance” due to non-linear

coupling is investigated in various loading conditions.

5.1 The Damped Two-degree-of-freedom Duffing’s

Equation under Symmetric Loads

With reference to equations (2.24 to 2.28), the non-linear coupled differential equations

including the first and third modes can be expressed by equations (5.1) and (5.2) as:

d*u du t

dtZl + flwc—i%l + w%ul + Hnnu‘;’ -+ H1133U1U§ = flé;ll( ) = Fgl (t) (51)
d*u du fafs(t )
dt23 + 53‘;{;: + wiug + Massaug + Magnugu] = —%i(—) = Fp3(2) (5.2)

In this work, these will be referred to as the 2DOF damped Duffing’s equations with

coupling. The coupling terms in these two simultaneous ordinary differential equations

LK.D.G. TANG 83



5.2 Non-linear Response to Spatially and Temporally Harmonic Excitation

are 1) 33u, 43 and Tl33;,u3u’. By neglecting these coupling terms, the resulting equations
(5.3, 5.4) in this work will be referred to as the 2DOF damped Duffing’s equation without

coupling.
d?u du t
_dﬁl_ + 513# + wfu; + M) = flgl( ) = Fyu(2) (5.3)
d*u du t
—d—;f—;: + 53—8’;‘ + wgug + Hggggug = f3é33( ) = F03(t) (54)

5.2 Non-linear Response to Spatially and Tempo-

rally Harmonic Excitation

With a symmetrically distributed harmonic pressure acting across the span of the simply-
supported beam with immovable end conditions, the mid-span displacement response
time histories of the beam are obtained by the step-by-step time-domain numerical
integration of the equations of motion (5.1, 5.2) and (5.3, 5.4), with the harmonic
pressure simulated in the time domain. The results are observed and the steady-state
solutions are retrieved by ommitting the first 1.0 second of the time history. Different
types of harmonic. pressure are studied and analysed. The cases under investigations

are summarised in Figure 5.1.

5.2.1 Load Case 1: Pressure Distribution Matching One Par-

ticular Response Linear Mode Shape

In this case study, two scenarios will be looked at. In the first scenario, the external
pressure which varies sinusoidally with time has a forcing frequency (2) which is equal
to ws whilst its spatial distribution is spatially matched to the first linear mode shape
of the system, so that the generalised force in all other modes is zero. The pressure
with this type of spatial distributed will be denoted by the symbol P1 and its amplitude
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2A/
2C

——4

Figure 5.1: Simply-supported Beam with Immovable End Conditions Subjected to Dif-

ferent Types of Harmonic Pressure
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by fi. In the second scenario, the forcing frequency is set to equal the first natural
frequency and the spatial distribution coincides with the linear mode shape of the third-
mode response, so that the generalised force in all but the third mode is zero. The

pressure with this type of spatial distributed will be denoted by the symbol P3 and its
amplitude by fs.

Load Case 1A: Q = w3

The spatial distribution of the pressure matches exactly the function of the first-mode

response in the space domain. However, the harmonic excitation has a forcing frequency

equal to the natural frequency of the third mode of the system. In other words, the
s

forcing function can be expressed in the form of fysin(%2)sin(wst), where fy is the

magnitude of excitation.

It can be deduced from equation (2.27) that Fy, and Fy3 on the right-hand side
of equations (5.1, 5.2, 5.3 and 5.4)’are equal to %sm(wg,t) and 0 respectively. The
magnitude of excitation, f; = 100Pa, has been selected so that significant non-linearity
should be present when the beam is excited. A graphical representation of the loading

can be seen from Figure 5.2.

It is well-known, and thus expected, that when the mode-coupling terms in the
coupled Duffing’s equations are neglected in this type of excitation, the steady-state
displacement response of the third mode will be zero. This is the result obtained when

the uncoupled Duffing’s equations (5.3) and (5.4) are solved.

Now, the coupled equations (5.1) and (5.2) are solved numerically with different

initial conditions. Observations are made and the results are summarised in Table 5.1.

As expected, under this loading condition, the steady-state displacement response
consists of only the contribution from the first mode, as seen in Table 5.1. For instance,
the steady-state root-mean-square (r.m.s.) displacement responses (u = w/R) of the
first and third modes with zero initial displacement and velocity at mid-span are 0.1317

and 0 respectively.
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State | Initial Displace- Initial Velocities | Behaviour of Displacement

ments Response

I uy, = 0juz, =0 | U, =0;u, =0 | 1% mode:Steady-state oscil-
lates with frequency of ws;

37 mode: stays zero

II uy, = 0jus, =1 | 4y, = 0;%s, =0 || 15 mode:Steady-state oscil-
lates with frequency of ws;
3¢ mode: decays exponen-

tially to zero.

T {luy, = Ojus, = | @y, =01 =0 | As in State II
10
v u, = O;us, = | u, =0;%3, =1 || As in State II
10 -
\% Uy, = l;uz, =1 |, =1;1u3, =1 || 1° mode: as in State I;3"

mode: as in State II

Table 5.1: Effects of Mode-coupling and Initial Conditions on Behaviour of Non-linear

Harmonic Response of a Simply-supported Beam with Immovable End Conditions (Load

Case 14)
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Figure 5.2: Simply-supported Beam with Immovable End Conditions Subjected to Ex-

citation in Load Case 1A

Following the above study, it is reasonable to suggest that, in the case of a sinusoidal
load with spatial distribution matching only the linear mode shape of the first mode and
with forcing frequency equal to any other higher natural frequencies, the steady-state
non-linear displacement response would have a shape equal to the linear mode shape of
the first mode. Its frequency would equal to that of the applied load. The steady-state

non-linear responses of any other modes would be zero.

It may also be deduced that if the spatial distribution of the pressure matched
exactly the linear mode shape of the third resonance of the system, and that if the
forcing frequency of the excitation were equal to the first natural frequency, only the
third mode would respond in the steady-state condition. In fact, this second deduction
can be confirmed by carrying out a similar analysis to that in Load Case 1A. This

situation is investigated in Load Case 1B which follows in the next section.

Load Case 1B: Q2 = w;

The right-hand side of equations (5.1) and (5.2) are now equal to 0 and %sz’n(wlt)
respectively, with f3 = 100Pa. The loading can be represented in Figure 5.3.
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Figure 5.3: Simply-supported Beam with Immovable End Conditions Subjected to Ex-

citation in Load Case 1B

The steady-state r.m.s. displacement responses (u = w/R) of the first and third
modes with zero initial displacement and velocity at mid-span are 0 and 0.12952 respec-
tively.

As a result, it can be concluded that the general behaviour of the coupled system
is the same as the corresponding uncoupled system under the stated types of loading.
In the presence of large excitation effecting non-linearity in the mode-coupled Duffing’s
equations, the unexcited modes do not respond under the influence of the excited mode
due to the presence of the coupling terms. If the spatial distribution of the excitation
just matches the linear mode shape of one particular resonance, only that mode will be

excited and its steady-state response will oscillate at the forcing frequency of excitation.

5.2.2 Load Case 2: Pressure Distribution Matching The First
and Third Linear Mode Shapes of The Beam

In this case, the pressure of the excitation will be modelled in such a way that it aims

to excite both the first and third-mode responses of the system. The pressure can be
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described by the forcing function [fisin(ZE) + fysin(22)]sin(Qt), where f, and f3 are
magnitudes of excitation. A graphical interpretation of the loading is shown in Figure

0.4.

Figure 5.4: Simply-supported Beam with Immovable End Conditions with Load Case 2

Load Case 2A: Q = ws; fixed fi, varying f3

In Load Case 1A, it was shown that the third mode of the beam had no response
due to the absence of an excitation with pressure which matched only the third linear
mode shape of the beam, P3. Hence an increasing amount of the pressure level of
P3 (f; = 1,10,100,1000 and 10000Pa) is now introduced. The pressure of a fixed
magnitude of f; = 100Pa which only excited the first spatial response mode of the
system in Load Case 1A, P1, is retained. Moreover, the two harmonic pressures, P1 and

P3, oscillate in phase with each other at exactly the same forcing frequency (£ = ws).

From equation (2.27), it can be shown that the terms Fp; and Fys on the right-hand

side of equations (5.1- 5.4) are now equal to %sm(w?,t) and %sin(wgt) respectively.

The two sets of 2DOF equations (5.1, 5.2) and (5.3, 5.4) are solved numerically. The

non-linear r.m.s. displacement responses at mid-span for values of f3/f; = 0.01,0.1,1,10
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and 100, together with the percentage difference between the coupled responses and the
uncoupled ones, are presented in Table 5.2. The results are expressed in the graphs
in Figure 5.5. The first graph shows the steady-state non-linear r.m.s. displacement

responses, and the second one reflects the difference between the coupled and uncoupled

responses in percentage.

£/ o 0.01 |01 1.0 10 100

Uncoupled 0.1317 || 0.1317 || 0.1317 || 0.1317 || 0.1317
(un)(1]

Uncoupled 0.06432| 0.3134 || 0.6983 || 1.487 2.923

(us) (1]

Uncoupled (u; + || 0.1452 || 0.2107 || 0.5694 || 1.358 2.812

ug)[I1]

Coupled (u;)[IV] || 0.1318 || 0.1321 || 0.1340 || 0.1441 | 0.2264
Coupled (u3)[V] || 0.06424] 0.3116 | 0.6973 || 1.487 | 2.923
Coupled (u; + | 0.1445 || 0.2087 || 0.5657 || 1.343 | 2.726
uz)[VI]
% Difference [I] || 0.08 0.30 1.7 9.4 72
and [IV]
% Difference [II] || 0.12 0.57 0.14 0.00 0.00
and [V]
%  Difference || 0.48 0.95 0.65 1.1 3.1
[111] and [VI]

Table 5.2: Comparison of Coupled and Uncoupled Non-linear R.M.S. Displacement
Responses u = (w/R) for Selected Ratios of f3/f; (Load Case 2A)

In both cases, the steady-state responses oscillates at the forcing frequency which
is equal to the third-mode natural frequency, w;. Except for f3;/fi = 0.01 where the

loading introduced to excite the third mode is small, the dominating response comes
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Figure 5.5: Non-linear Coupled and Uncoupled R.M.S. Displacement Responses and

Percentage Differences of Coupled Response Relative to Uncoupled Responses at Se-

lected f3/f, (Load Case 2A).

IL.LK.D.G. TANG 92
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from the contribution of the third-mode response.

In the case without mode-coupling, the r.m.s. values of u; remain the same regardless
of the value of f3. This is simply because the amplitude of the input loading into the
first mode, fi, remains constant. However, there is an increase in the r.m.s. value of u;
due to the increase in the magnitude of the force into the third mode, f5. As expected

from previous studies in non-linear harmonic vibrations, the increase in us is not linearly

proportional to that in fs.

When comparing the uncoupled first-mode response in this case and that in Load
Case 1A, it is interesting to see that they are in fact identical. This confirms again
that mode-coupling in the stiffness term in fact has no influence on the response of the

unexcited modes in Load Case 1A.

With mode-coupling terms now included, an increase in f3 causes both u; and uz to
build up. The increase in coupled u; can be explained by examining the coupled terms
in equations (5.1) and (5.2). As the third mode response is increasing with the input
P3, the coupling term in equation (5.1) is more and more dominated by uj. Hence the

extra response adds to the original uncoupled first-mode response.

Furthermore, when comparing the r.m.s. responses with and without coupling, it can
be seen that values of ug with coupling are always less than those without coupling. As
when the third mode is dominant (u3 > u), the coupled equation (5.2) can be viewed as
a system which has got a higher stiffness (& w3 +1I33;;) than has the uncoupled equation
(5.4). This in turn explains why the third-mode-dominant total coupled responses (u, +

u3) are less than the uncoupled ones at all times.

By looking at the percentage difference between the coupled and uncoupled re-
sponses, it can be seen that the dominant response, i.e., the third mode, is quite unaf-
fected by the presence of the first mode. However, as far as the subordinate first-mode
response is concerned, it becomes progressively affected by the coupling of the third-
mode response as us is gaining increasing significance with increasing f3/f1, and the
behaviour of the coupled equation (5.1) deviates from that of the uncoupled equation
(5.3). The degree of overestimation in the resultant displacement by the uncoupled

system when compared to the coupled one also increases with f3/f;. Nevertheless, as
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stated again, since the resultant response mainly consists of the third-mode response,

this percentage difference remains small.

In short, the response of the dominant mode is less affected than that of the subordi-
nate mode by the coupling terms. These findings agree with those obtained in Chapter 3
when the excitation is a uniformly-distributed pressure where all odd-numbered modes

are excited.

Results in Load Case 2A shows that mode-coupling does not play an important
role. The most likely reason for this behaviour is the fact that the forcing frequency
is above that of the resonating modes, i.e, the first mode. In this case, the response
is mass~doininated, as opposed to stiffness-dominated when the forcing frequency is
below the resonance frequency. It is suspected that as mode-coupling arises from the
stiffness components of the system, its effect would be more significant when the excited
system were stiffness-dominated. Hence, the forcing frequency is set to equal the natural

frequency of the first mode, i.e., ) = w;.

Load Case 2B: () = w;; fixed f3, varying f)

The beam is now excited so that the response is stiffness-dominated. Moreover, as seen
in Load Case 1B, the first mode of the beam did not respond to the pressure which was
not spatially matched to the first linear mode shape of the beam. Hence an increasing
amount of pressure load of fi = 1,10,100,1000 and 10000Pa is now added, of which
the spatial distribution aims to excite specifically the first mode of the system. The
pressure of a fixed magnitude of f3 = 100Pa which excited just the third mode of the
system in Load Case 1B, P3, will remain to act on the beam. The pressures Pl and
P3 oscillate in phase with each other at exactly the same forcing frequency {1 = w;.
The procedure of the numerical analysis is repeated in a likewise manner as in Load
Case 2A and the results are presented in Table 5.3 and Figure 5.6. The differences, in

percentage, between the coupled displacement responses and the uncoupled responses

are also included.

The r.m.s. value of the uncoupled u3 stays the same for all ratios of f,/f3 whilst that

of u; increases with f1/f3;. The total uncoupled displacement response is dominated by
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fi/fs 0.01 0.1 1.0 10 100
Uncoupled 0.64951) 1.3887 || 2.7742 || 6.8348 14.578
(u){1]

Uncoupled 0.12952)| 0.12952)| 0.12952]| 0.12952 | 0.12952
(us) (1]

Uncoupled (u; + || 0.77819| 1.5181 || 2.8919 || 6.9458 14.692
) IT1]

Coupled (u)[IV] || 0.57529|| 1.3589 || 2.7594 || 6.8855 || 14.547

Coupled (u3)[V] || 0.12780]| 0.12030) 0.10166} 0.078236) 0.054380
Coupled (u; + || 0.70208) 1.4789 || 2.8428 || 6.9313 || 14.565

ug)[V]]
% Difference [I] || 11 2.2 0.53 0.74 0.21
and [IV]
% Difference [II] || 1.3 7.1 21 40 58
and [V]
%  Difference || 9.8 2.6 1.7 0.21 0.86
[IT1] and [VI]

Table 5.3: Comparison of Coupled and Uncoupled Non-linear R.M.S. Displacement
Responses u = (w/R) for Selected Ratios of f,/f3 (Load Case 2B)
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Figure 5.6: Non-linear Coupled and Uncoupled R.M.S. Displacement Responses and
Percentage Differences of Coupled Response Relative to Uncoupled Responses at Se-

lected f3/f1 (Load Case 2B).
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the first mode at all times. Again, when comparing the uncoupled third-mode responses
with those in Load Case 1B, their same values confirms once again that mode-coupling
in the stiffness term in fact has little contribution to the characteristics of the system
in that case.

However, for the coupled system into which the input excitation f is increasing,
the third-mode response starts to fall off and deviates progressively from its uncoupled
counterpart. As the first-mode response becomes more and more significant relative
to that of the third mode, u; dominates the coupling term in equation (5.2). As the
contribution of the coupling term in equation (5.2) becomes increasingly significant,
its behaviour would deviate more and more away from that of the uncoupled system
governed by equation (5.4).

With decreasing influence of uj over the coupled term ITjj33u,u? in equation (5.1),
the mode-coupling effects in this equation decrease. Thus, as f; increases, the coupled
system governed by equation (5.1) would start to behave as if it were an uncoupled
system represented by equation (5.3) as the third-mode response gives way to the first-
mode response. Hence the percentage difference between the coupled and uncoupled u,
falls. |

The non-linear first-mode coupled response builds up but is still smaller than the
uncoupled ;. This is due to an addition stiffness contribution from the mode-coupling
term I, 33u u3 in equation (5.1). Here, v, is of first order but dominant, and usz is of
second order but very small. As equation (5.1) defines a system which has a higher
stiffness than that characterised by equation (5.3), one would expect that the coupled
responses be smaller than the uncoupled ones.

Finally, the coupled total displacement response consists of mainly the first-mode
contribution. It is interesting to note that the degree of overestimation varies for the
two scenarios studied. In the mass-dominated excited system in Load Case 24, the
increase in mode-coupling effect would cause an increase in the level of overestimation.
In the stiffness-dominated excited system in Load Case 2B, however, this severity of

response overestimation tends to decrease with increase in mode-coupling effect.

From the second graph of Figure 5.6, it can be seen that a significant difference

between the uncoupled and the coupled total displacement response arises at fi/f; =
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0.01. It may be interesting to see if an increasing non-linearity effect would change the
phenomenon of resonance-coupling in this situation when the amplitude of the excitation
with the first linear mode shape of the beam is maintained at one-tenth that of the

excitation with the third linear mode shape. This can be done by increasing amplitudes

of both f; and f3, whilst keeping f1/f; = 0.01.

Results show that the percentage difference between the coupled and uncoupled us
response hardly changes with increasing non-linearity. The third mode is in general
playing a more significant role in the contribution to the total displacement response.
However, as non-linearity increases, the contribution by the first mode to the total
response increases. At the same time, mode-coupling has a growing effect on the response
u;. As a result, very high non-linearity effects, with the influence of mode-coupling is

likely to have an impact on the total response of the beam.

Load Case 2C: P1 oscillating 90° out of phase with P3

So far, when the two harmonic pressures, P1 and P3, excited the beam simultaneously,
they were oscillating in phase with each other at exactly the same forcing frequency,
even if they had different spatial distributions. The phenomenon of resonance coupling
is further investigated when the pressures are oscillating with a phase difference of 90°

with each other.

The generalised forces Foi(t) and Fp3(¢) on the right-hand side of equations (5.1—
5.4) now become fysin("E)sin(wst) and fzsin(%E)sin(wst + 7 /2) respectively. Here, the

magnitude of the pressure P1 is set to equal that of P3, i.e, f3/fi = 1.

From the numerical solutions of the Duffing’s equations (5.1— 5.4), it is shown in
Table 5.4 that when the two pressures are 90° out of phase with each other, the coupling
effects on the r.m.s. displacement response will decrease significantly. Moreover, from
Table 5.5, it can be predicted that the differences between the r.m.s. coupled and r.m.s.
uncoupled displacement responses are insignificant, even when the level of non-linearity

is high.
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Mode 1 (%) | Mode 3 (%) || Total (%)
In phase 1.7 0.14 0.65
90° out of phase 0.038 0.046 0.35

Table 5.4: Load Case 2C: Percentage Difference between Non-linear Coupled and Un-
coupled R.M.S. Displacement Responses v = (w/R) — Effects of Phase Difference of
Excitation on Non-linear Coupling (f; = f; = 100Pa)

Level of Non-linearity || f1(Pa) || f3(Pa) || Mode 1 (%) || Mode 3 (%) || Total (%)
Low 100 100 0.038 0.046 0.35
High 100000 |} 10000 1.9 24 2.7

Table 5.5: Load Case 2C: Percentage Difference between Non-linear Coupled and Un-
coupled R.M.S. Displacement Responses v = (w/R) — Effects of Non-linearity (Phase
difference=90°)

Load Case 2D: Ql = w3,Q3 =W

This loading situation can be viewed as a combination of Load Case 1A and Load
Case 1B. In other words, the harmonic pressure P1 excites the beam with a forcing
frequency, €1, at the third natural frequency whilst at the same time P3 excites 1f
with a frequency, 3, at the first natural frequency. The amplitudes of the non-linear
uncoupled displacement responses u; and uz are predefined in this study. The level of
excitation of the pressures P1 and P3 has been chosen so that the resulting uncoupled
u, is of the same order of magnitude as the corresponding uncoupled uz. Only two
levels of excitation are studied here, one of which would produce a small amount of
non-linearity in the system whilst another would cause a strong non-linear effect. As
before, both the coupled and uncoupled Duffing’s equations are solved numerically and
the solutions are studied.

The results of the displacement response show that when the magnitude of the load

does not produce a significantly non-linear response, the difference between the coupled

and uncoupled displacement responses is minimal. With high non-linearity effect, the
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difference between the coupled and uncoupled dominant first-mode responses is relatively
small whilst that between the coupled and uncoupled subordinate third-mode responses
is much more significant. Nonetheless, this difference for the total displacement response

is still not noteworthy. The percentage differences are tabulated in Table 5.6.

—

Level of Non-linearity || fi(Pa) | f3(Pa) || Mode 1 (%) || Mode 3 (%) || Total (%)
Low 100 100 0.46 0.043 0.057
High 100000 || 10000 1.8 24 1.8

Table 5.6: Percentage Difference between Non-linear Coupled and Uncoupled R.M.S.
Displacement Responses u = (w/R) at Two Levels of Non-linearity (Load Case 2D)

Conclusion of Studies in Load Case 2

Various types of harmonic excitation across the non-linear beam have been studied.
Under certain circumstances, the mode-coupling terms in the Duffing’s system can cause
noticeable effects in the total displacement response of the beam in highly non-linear
harmonic vibrations. This especially concerns the loading conditions when the forcing
frequencies of the pressures are equal to the lowest natural frequency of the beam, and
the pressures are in phase with one another. With a comparatively large excitation
which only excites a subordinate mode of a system with mode-coupling, the response of
the dominant mode of this system can be significantly different from what is predicted
by a Duffing’s system without mode-coupling. In general, the Duffing’s system without

mode-coupling terms would overestimate the resultant response in harmonic vibrations.

5.3 Non-linear Response to Spatially Harmonic and

Temporally Random Excitation

In this study, the distribution across the span of the beam is the same as that of Load

Case 2 studied in section 5.2.2. In other words, the pressure has a spatial distribution
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which matches only and exactly the first and third linear mode shapes of the beam, so
that the generalised force in all other modes is zero. This pressure is applied with a
time history which corresponds to a band-limited temporal white noise. Two loading
scenarios with two different input pressure spectra are studied. First, as an extension
to Load Case 2B, the frequency content of the excitation is centred around the natural
frequency of the first mode of the beam. Then, another type of band-limited white-
noise random pressure of which the frequency contents cover frequencies including the
first and the third natural frequencies will be employed. Figure 5.7 should also be
referred to. In both cases, the non-linear mid-span coupled and uncoupled displacement
response time histories will be obtained from the equations of motion (5.1, 5.2) and
(5.3, 5.4) by the step-by-step numerical integration scheme. The steady-state solutions
are then retrieved by ommitting the first 1.0 second of the time history. The non-linear
coupled and uncoupled r.m.s. responses are obtained, and any differences between the

two responses will be studied.

5.3.1 Load Case 3: Forcing Frequency Contents Covering the

First Natural Frequency

For an overall sound pressure level of SPL; = 90dB, the input band-limited white-
noise pressure simulated and used earlier in Chapter 4 has been adopted and used in
this loading scenario. The frequency range was between 1Hz and 251Hz. However,
the spatial fluctuation of the input pressure, P3, has a distribution matching the third
linear mode shape of the beam, so that the generalised force in all other modes is
zero. The load is also characterised by parameters such as the sound pressure level
(SPLs = 90dB), the r.m.s. pressure (r.m.s. f3 = 0.6325Pa) and the frequency sampling
interval (dw = 0.0766 Hz). Data concerning P3 can be found in section 4.2.4 of Chapter
4,

The pressure with spatial distribution matching the first linear mode shape of the
beam, P1, has a similar time history as that of P3. This pressure P1 is implemented here

to aim to excite the first-mode response of the beam and its pressure level is increasing
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Load
Case

Figure 5.7: Simply-supported Beam with Immovable End Conditions Subjected to Dif-

ferent Types of Random Pressure
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according to the sound pressure levels, SPL; = 50,70,90,110 and 130dB, whereas the
pressure amplitude, f3, of P3 is always kept to have a pressure level of 90dB. The ratio

of their r.m.s. value is denoted by fi/fs.

After the two sets of 2DOF equations (5.1, 5.2) and (5.3, 5.4) have been solved
numerically, the non-linear r.m.s. values of the displacement responses at mid-span for
various fi/f; are presented in Table 5.7. These results, together with the percentage
differences between the coupled displacement responses and the uncoupled responses,

are also given for various values of f3/f) in this table and in Figure 5.8.

Based on the results in Table 5.7 and Figure 5.8, and by referring to Table 5.3 and
Figure 5.6, some similarities regarding both the uncoupled and coupled r.m.s. responses,
uy,u3 and (u; + u3), can be identified between the solutions of random response and
those of harmonic response as seen in Figure 5.6. Like the case of non-linear harmonic
vibrations without mode-coupling, the non-linear random r.m.s. uncoupled response
increases whilst the uncoupled u3 remains constant with increase in f,/ f3. Moreover, the
first mode dominates in the resultant displacement response. With mode-coupling effects
considered, the trend of the change of the non-linear coupled response u; with increasing
f1/f3 is similar to that of the corresponding uncoupled response. The dominant mode
in the resultant displacement response is still the first mode. The coupled response u3

deviates from its uncoupled counterparts with increasing levels of excitation f.

However, in contrary to that in harmonic vibrations in Load Case 2B of section 5.2.2,
the coupled response us increases at higher levels of excitation f,. In addition, the degree
of overestimation by a system without mode-coupling intensifies with increasing fi / f3,
as opposed to that observed in Load Case 2B. This distinction in the behaviour of the

responses may be due to the different type of excitation concerned.

In harmonic vibration (Load Case 2B), due to non-linearity effect, the resonance of
the first mode moved away from the forcing frequency with the increase of the ratio
fi/fs. Overall, the coupled response u, increased by roughly 25 times whilst fi/f3
increased by 10000 times, with f3 held constant. Due to the coupling effect, the stiffness

controlling the coupled response of uj, as explained above, causes it to decrease with

increasing fi/fs.
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1 fs 0.0 |01 1.0 10 100
Uncoupled 3.3056 || 3.3020 |} 3.3321 || 1.8136 || 6.2190
(u1)[Y] x1073 || x107% || x107!
Uncoupled 1.4546 || 1.4546 | 1.4546 || 1.4546 | 1.4546
(us)[IT] x107% || x1073 || x1073 || x107% | x1073
Uncoupled (u; + || 3.6165 | 3.3058 | 3.3321 | 1.8136 || 6.2191
us) 1] x103 || x103 | x107!

Coupled (u)[IV] || 3.3056 | 3.3020 | 3.3320 || 1.8641 | 6.0265
x1073 || x10~2 || x107!

Coupled (u3)[V] || 1.4546 || 1.4545 || 1.4488 | 1.5274 | 3.2462
x1073 | x1073 || 1073 || x1073 | x10°3
Coupled (u1 -+ || 3.6165 || 3.3056 || 3.3320 || 1.8641 | 6.0266

us)[VI] x10~% | %1072 || x10°!

% Difference [I] || 0.0 0.0 4.5 2.8 3.1
and [IV] x1073

% Difference [II] || 0.0 4.6 0.40 5.0 123
and [V] x107?

% Difference || 0.0 4.6 4.5 2.8 3.1
[I11] and [VI] ><10*3J x1073

Table 5.7: Comparison of Coupled and Uncoupled Non-linear R.M.S. Displacement
Responses u = (w/R) for Selected Ratios of f3/f, (Load Case 3)
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Figure 5.8: Non-linear Coupled and Uncoupled R.M.S. Displacement Responses and
Percentage Differences of Coupled Response Relative to Uncoupled Responses at Se-

lected f3/f; (Load Case 3).
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Now in random vibration (Load Case 3) with increasing f,/fs, the first mode is
always being excited, as the equivalent linear frequencies, even if increasing, are still
within the frequency content of excitation. The response u, now increases by nearly
2000 times with f;/f3 increasing by 10000 times. ‘Although the argument on the increase
in stiffness in the third mode and its tendency to lower us is still valid, the enormous
amount of contribution due to the first mode into the third mode through the mode-

coupling terms has an effect of overriding this tendency and causes u3 to amplify.

Nevertheless, the dominant mode is the first mode and the total displacement re-

sponse is very little affected by this different behaviour of the response of the third

mode.

5.3.2 Load Case 4: Forcing Frequency Contents Covering the
First and the Third Natural Frequencies

The coupling effect on the non-linear random vibration of the beam is further studied
when the frequency content of the input random pressure spectrum includes both the
first and the third natural frequencies. The pressure in the time domain, P, is digitally
simulated and has an r.m.s. magnitude f. This corresponds to a band-limited Gaussian

white-noise random pressure of which the characteristics can be found in Table 5.8 and

Figure 5.9.

The pressure which possesses a spatial distribution matching that linear mode shape
of the third-mode resonance of the system, P3, has an r.m.s. magnitude f3. The
ram.s. magnitude of the pressure P1, which has a spatial distribution matching the
linear mode shape of the first resonance of the system, is chosen so that the resulted
non-linear uncoupled r.m.s. u, is of the same order of magnitude as the corresponding
uncoupled r.m.s. u3. This would give the value of f3 which is bigger than fi, and
fs/fi = /1000 ~ 32. The sound pressure level of the pressure P is also selected so that

significant non-linearity is present in the response.

The non-linear r.m.s. displacement responses are obtained, again from the numerical

solutions of the coupled and uncoupled equations (5.1, 5.2) and (5.3, 5.4). The solutions
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I Overall SPL (dB), ref.2 x 107° 140
Selected frequency bandwidth DW (Hz) 800 (1 to 801)
Input SSL (dB) 111
PSD S¢(Pa*/Hz) 50
Area under spectrum density graph (Pa?), [I] 40006
Calculated r.m.s. pressure (Pa), [II] 200
Number of simulated points, M 524288
Frequency sampling interval dw(Hz) 0.1222
Length of Time history (s) 8.1818
Time interval (s) 1.5605 x107°
Mean square value of simulated pressure (Pa?), [II1] 40004
r.m.s. value of simulated pressure, f (Pa?), [IV] 200.0089
% difference between [I] and [II] 0.0064
% difference between [II] and [IV] 0.0044

Table 5.8: Parameters for One Digital Simulation of Input Pressure P
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Figure 5.9: Time Histories of Simulated Random Pressure P, overall SPL = 140

are shown in Table 5.9.

Mode 1 || Mode 3 || Modes 1+3
Uncoupled 1.1823 || 1.4186 1.8463
~ Coupled 1.2230 || 1.4273 1.8801
Percentage Difference 3.4 0.61 1.8

Table 5.9: Coupled and Uncoupled Non-linear R.M.S. Displacement Responses (u =
w/R) and Percentage Difference of Coupled Response Relative to Uncoupled Response
(Load Case 4) '

The non-linear coupled r.m.s. first-mode response, uy, is of the same order of mag-
nitude as the corresponding r.m.s. third-mode response, us. By comparing the coupled
and uncoupled r.m.s. responses, it is found the percentage differences between the two
responses are small. Hence, it can be deduced that in this type of excitation, the effect
of mode-coupling under large non-linearity does not have a large influence over the total

response of the vibration of the beam.
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The non-linear coupled r.m.s. displacement responses are greater than the corre-
sponding ﬁncoupled ones. This behaviour could not been found in any of the case in
which the excitation was harmonic in the time domain. However, based on the findings
regarding the increase in the third mode response in random vibrations (Load Case 3 of
section 5.3.1), explanations can be sought. Here, the resonances of both modes 1 and
3 are always within the frequency content of excitation. Even though the tendency of
response reduction as a result of stiffening due to mode-coupling still exists, the greater
amount of the response addition through the coupling term will overpower. Unlike in
non-linear harmonic vibrations, the uncoupled Duffing’s equation would underestimate
the displacement response of the beam when subjected to a broad-band random pres-

Sure.

5.4 Chapter Summary and Conclusion

The non-linear forced vibrations of simply-supported beams with immovable end con-
ditions have been studied. The 2DOF Duffing’s equations with and without coupling
terms have been solved numerically. The steady-state non-linear displacement response
of the beam when subjected to different types of symmetrically distributed pressure has
been obtained. Only the first two symmetric modes have been included in the response

of the beam. The findings are summarised in Table 5.10.

From studies in Load Cases 1A and 1B, the harmonic pressure has a spatial distri-
bution matching one of the linear mode shapes of the beam and has a frequency equal
to the natural frequency of the other mode. It has been shown that the shape of the dis-
placement response is the same as that linear mode shape being matched by the spatial

distribution of the pressure. The response oscillates at the frequency of excitation.

In Load Case 2A, the beam is excited by two harmonic pressures in phase with each
other at its third natural frequency. One of the pressures, P1, has spatial distribution
matching the first linear mode shape of the beam whilst the other one, P3, is spatially
matched to the third linear mode shape. The amplitude of excitation of the former

pressure is fixed and that of the latter varying. In Load Case 2B, the beam is excited

LK.D.G. TANG 109



5.4 Chapter Summary and Conclusion

L

oad

Cases

Excitation Types

Effects of Mode-coupling in
Non-linear R.M.S. Displace-

ment Responses

1A

Harmonic, P1 at w3

Response due to mode 1 only

1B

Harmonic, P3 at w;

Response due to mode 3 only

2A

Harmonic, P14+ P3 at ws, fi
fixed, f; varying

Coupling has large effect on u;

which has small contribution

2B

Harmonic, P1+P3 at wy, f3
fixed, f, varying

Coupling has large effect on us

which has small contribution

Harmonic, P1 + P3 at ws,
90° out of phase, f3/fi =1

Coupling has small effect on

both u; and us

2D

Harmonic, P1 at ws; P3 at

Wy, f3/f1 =1

Coupling has large effect on u;

which has small contribution

‘Random white-noise con-

taining w,, Pl + P3, f3
fixed, fi varying

Coupling has large effect on u3

which has small contribution

Random white-noise con-
taining wy + ws, Pl + P3,

f3/fi = /1000

Coupling has small effect on

both u, and us

Table 5.10: Summary of Results in Studies Outlined in Figure 5.1 and Figure 5.7
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5.4 Chapter Summary and Conclusion

by the pressures P1 and P3 in Load Case 2A. The forcing frequency, however is equal
to the first natural frequency of the beam. The amplitude of excitation of P3 is fixed

and that of P1 varying.

A similar study to Load Case 2A has been carried out. In this case, referred to as
Load Case 2C, the pressures P1 and P3 are 90° out of phase and their amplitudes are
the same. In another study, designated as Load Case 2D, the pressure P1 excites the
beam at its third natural frequency. The other pressure P3 has a frequency equal to

the first natural frequency of the beam. The amplitudes of the two loads are equal to

each other.

In all these cases, results have indicated that mode-coupling can cause large effects

on one of the modes, but the effects on the overall beam displacement response are

small.

Two further cases have been studied, which concentrates on the mode-coupling on
the non-linear vibrations of S-S beams with immovable end conditions subjected to
acoustic pressure. In Load Case 3, the beam is subjected to the pressures P1 and P3.
The frequency content of excitation is centred around the first natural frequency of the
beam. With the amplitude of P1 varying whilst keeping that of P3 fixed, the non-linear
beam displacements have been obtained. Furthermore, a similar study has been carried
out in Load Case 4, in which the random white-noise load contains both the first and
the third natural frequencies. The amplitudes of P1 and P3 have also been selected so
that the non-linear uncoupled first- and third-mode displacement responses are of the

same order of magnitude. It has been discovered that there are only small effects caused

by non-linear coupling.

The SDOF Duffing’s equation has been known to be a reliable tool to describe the
behaviour of a simply-supported beam with immovable end conditions in geometrically
non-linear vibrations. Through the current studies, it has been confirmed that in many
cases, negligence of mode-coupling in the Duffing’s system does not cause significant
effects in the total displacement response. Nevertheless, the absence of coupling terms
will overestimate the response. Moreover, it has been found that severe non-linearity can

cause noticeable coupling effects in the overall beam response. As a result, the Duffing’s
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equation without mode-coupling should be treated with care when it is intended for

describing beam vibrations in very non-linear situations.
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Chapter 6

CONCLUSIONS AND FURTHER
WORK

6.1 Background of Current Work

A variety of problems regarding the structural strength of thin panels which arise in
modern aircraft constructions cannot be adequately analysed on the basis of the clas-
sical linear theory of vibration. Since the panel deflections experienced are not small
in comparison with the size of the panel and in particular its thickness, the basic as-
sumptions of the linear theory are violated. Therefofe, the development of a structural
response prediction model which would take into account the non-linear response be-
haviour in the treatment of panel vibration is necessary. Moreover, the phenomenon of
“coupling-resonance” due to the coupling of modes has been known for some time. Its

effect, however, has very often been neglected in the study of beam vibration problems.

The objective of the study is to improve the understanding of the vibration behaviour
of non-linear response of thin aircraft beam structures subject to different loads in flight
by several different approaches, with effects of mode-coupling taken into account. The
study will serve as a background for the development of the prediction of non-linear

vibrations of aircraft panel-type structures.
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6.2 Summary and Conclusions of Current Work

A literature review in the field of non-linear vibrations of slender beams and thin panels
has been presented. A review in the topic of non-linear free vibrations of these structures
has also been reported. The survey has focused on the non-linear forced response of

beams and plates. The types of excitation are harmonic and random loads.

The focus of this study has been on the behaviour of the response in the geomet-
rically non-linear forced vibration of simply-supported isotropic slender beams. The
geometrically non-linear response of the forced vibration of a slender beam with simply-
supported end conditions has been analysed. The Duffing’s equation has been derived
and utilised to study the motion of non-linear beam vibrations. The types of excitation

are concentrated mainly on uniform harmonic load and white-noise random pressure

Harmonic Vibrations

Two cases have been studied, in one of which a point force is applied at the mid-span
of the beam. In the second case, a uniformly distributed pressure is applied across
the span of the beam. In either case, the load is varying harmonically with time and
has forcing frequencies around the first natural frequency but well separated from the
next higher resonance. Approximated solutions by the analytical Harmonic Balance
Method (HBM) have been compared against results obtained through the time-domain
numerical integration of the SDOF Duffing’s equation, those through ANSYS® Finite

Element Analysis, as well as several published analytical results.

1. The Finite Element Analysis has indicated that the non-linear mode-coupling ef-

fects due to higher resonating modes are minor in this case.

2. The SDOF Duffing’s equation has shown to be capable of describing the large-

deflection forced vibration motion of the beam.

3. The analytical technique Harmonic Balance Method has been found to give sat-
isfactory approximation and that it can be used efficiently in analysing large-

deflection harmonic vibrations of a simply-supported beam.
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6.2 Summary and Conclusions of Current Work

Random Vibrations

The non-linear vibration of simply-supported beams has been further analysed. The
study aimed to determine the suitability of applying the Direct Equivalent Linearisation
Technique in the analysis of highly non-linear response of the beam when subjected to
a uniformly distributed band-limited white-noise pressure. In this case, only a SDOF
system has been investigated and the SDOF Duffing’s equation was employed. The
solutions by the equivalent linearisation method have been compared with those obtained

by the numerical time-domain Monte-Carlo approach.

1. From the comparison of the root-mean-square displacement beam response, it has
been shown that the Direct Equivalent Linearisation approximation agrees well
with the solutions by the Monte-Carlo approach, even with the presence of a high

level of non-linearity.

2. The phenomenon of the rise in resonance frequency with increase of non-linearity
has been observed by using both the Direct Equivalent Linearisation and time-

domain Monte-Carlo methods.

3. In high levels of non-linearity due to intense excitation, results obtained by the
time-domain Monte-Carlo approach indicate that resonance peaks of the displace-
ment responsé merge into one flat peak. However, solutions from equivalent lin-
earisation show that the non-linear system would have the characteristic distinct

peaks of a linear system regardless of the level of non-linearity.

Mode-coupling Effects on Non-linear Vibrations

Using the two-degree-of-freedom Duffing’s equations with only the first and the third
modes included, the impact of different excitation on mode-coupling effects in the non-

linear vibrations of simply-supported beams has been assessed.

1. Under symmetric harmonic loads across the span of the beam, the crucial factor

governing which modes of response are to be excited is the shape of the spatial
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distribution possessed by pressure fluctuations. For example, if the pressure is
spatially matched to the first linear mode shape, so that the generalised force in
all other modes is zero, only the first mode of the beam will respond. The forcing

frequencies have only effect of controlling the frequency content of the excited

response.

2. A Duffing’s oscillator without coupling would overestimate the total displacement

response in harmonic excitation, when compared to one with mode-coupling terms

accounted for.

3. For a harmonically excited non-linear Duffing’s system which is stiffness-dominated,
the level of overestimation decreases with increasing mode-coupling effects, whilst

for one which is mass-dominated, the level increases with the mode-coupling ef-

fects.

4. When the beam is subjected to a random band-limited white-noise pressure of
which the frequency spectrum is centred around the first resonance, the non-linear
Duffing’s equations predicts that the beam would respond in a similar fashion as

one being harmonically excited.

5. In the case when the frequency spectrum of the random pressure covers both the
first and third resonances, the overall random response behaviour is different from
the total response in harmonic excitation. A system without coupling underesti-
mates the total displacement response in random excitation, when compared to

one including mode-coupling terms.

6.3 General Conclusions

In the study of non-linear vibrations of simply-supported slender beams, the Duffing’s
equation has been proved to be a reliable tool to describe the vibration behaviour.
Among the various approaches to obtain the non-linear response due to external exci-

tation, the time-domain numerical methods can almost always give solutions with high
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levels of accuracy and thus may act as a benchmark. However, the employment of such
methods should be restricted to relatively simple systems because when a more phys-
ically complex aircraft structure is to be analysed, where a lot of degrees of freedom
is required or when high accuracy is paramount, the cost of the heavy computational
workload could be extremely large. Even for simpler structures such as beams, the
amount of resources spent in computation might still be significant. Less complicated
but reliable approximate analytical techniques are attractive and should be considered,

as they are very often able to capture the key features of the behaviour of the response.

It has been shown that, in general, mode-coupling effects on the non-linear forced
response of simply-supported beams under symmetric loads are relatively small. This
means that the use of a SDOF uncoupled Duffing’s equation is valid for approximation,
but when very high accuracy is required, or when the excitation has more complicated

characteristics, its use should be treated with care.

6.4 Recommendations for Further Work

The Duffing’s equation has been investigated by numerous researchers over the past few
decades. However, the forcing functions which have been used to simulate the actual
acoustic load on aerospace structures are mainly restricted to stationary Gaussian white
noise with a deterministic spatial distribution across the surface of the beam. Moreover,
as a white noise with uniform spatial distribution is not a very good reflection of the
excitation concerned in reality the random process of the non-linear analysis of response
of aircraft panel-type structures due to acoustic loading which is uncorrelated in both
time-wise and space-wise should be investigated. The excitation can be visualised as an
aircraft skin exposed to a turbulence flow (a convected pressure) and acoustic pressures

simultaneously.

Certainly, the employment of some numerical Monte-Carlo approaches can obtain
very accurate solutions in the non-linear response of beams. Nevertheless, the useful-

ness of the application of approximation schemes as an analytical tool should not be
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undervalued, and their use to understand the non-linear response behaviour of beams

subjected to more complex random loads should be investigated.

The cases when severe mode-coupling effects are present in highly non-linear vi-
brations of various panel-type structures under different types of excitation need to be
investigated. For instance, the severity of mode-coupling effects in a non-linear beam
with multiple supports under random excitation could be studied analytically or numer-

ically. This can simulate a stiffened aircraft panel in rigorous flight conditions.
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Appendix A

THE
MULTI-DEGREE-OF-FREEDOM

FORM OF THE DUFFING’S
EQUATION

A.1 Expansion of Modes

If equation (3.2) in Section 2.1.2 is expanded up to the first three modes, it becomes

dQ'Uq

‘dt_2' + wful -+ Fl = FOI

d?

dtléz -+ wqu -+ FQ = F02

d*u

‘EtTS + w§U3 + Fg = Fg3 (Al)

The coefficients within the terms T';, T's and T'; contain coupling terms and can
be evaluated from the second of equation (2.26). However, due to different boundary

conditions, several of these coefficients are in fact zero.
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A.1 Expansion of Modes

A.1.1 The Case of Symmetric Forcing

In the case of a symmetric forcing, i.e., if a point force acts at the mid-span of the beam
or if a distributed load acting across the beam has a symmetric distribution about the
mid-span of the beam, the even numbered modes would not respond, so that the second

equation of (A.1) will be zero.

The term fol @m%@gﬁ dz in equation (2.20) of Section 2.1.2 governs the nth mode
coupling in the mth equation. Hence, it can then be shown in equation (2.21) in that
section that for all choices of m % n, this term is identically zero for the simply-supported
boundary conditions. Thus, expanding (A.1) up to three modes, the following equations

result:

d*u

dth +wiug + Munu) + Mysswiuy = Fo

d*us 2 2 3

— Twsus Hssnnujus + Hassauy = Fos (A.2)

By the method of harmonic balance in section 3.2.1, the following equations are

obtained.

3 3
—-A QP +uwiA + ZHHUA? + 1H1133A1A§ = Qun
3 3
—A5Q% Wi Ay + STl AT Ay + TTgss 43 = Qus (4.3)

The harmonic response for the first two symmetric modes (mode one and mode
three) under these specified conditions can be found by solving the equations in (A.3)

by an iterative method such as the Newton’s method [103].

A.1.2 The Case of Asymmetric Forcing

When the beam is asymmetrically excited, even-numbered modes enter into the re-

sponse. Hence, in this case, all terms representing the even-numbered modes within
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A.2 Tterative Process in Harmonic Balance: Newton’s Method

all three equations in (A.1) have to be considered. The three equations (A.1) for the
simply-supported end conditions with asymmetric forcing conditions, expanded up to

and including the third mode, would become:

d*u

dt2l + wful + Hllnu? + (HHQQU% + H1133U§)u1 = FOl

d?u

‘g{zz + wiug + Magooud + (Moo uf + Mopsgud)uy = Fp

dQU3 2 9 ) ,

422 + wsuz + (Mza11u; + Masoaus)us + Magszuy = Fog (A.4)

A.2 TIterative Process in Harmonic Balance: New-

ton’s Method

An iterative process such as the Newton’s Method could be used when solving the
coupled non-linear algebraic equations (A.3) when employing the Harmonic Balance

Method. Reformulate equations (A.3) so that they become:

3 3

~A.Q% + wal + ZHnuA? + ZH1133A1A§ -Qun = ¢
3 3
"‘A3Q2 -+ M§A3 + ZHBBHA?AS -+ ZH3333A§ - Q03 = ’g/} (A5)

From the equations in (A.5), set all the coupling terms to zero and solve for A;
and Az, namely A, and A3y which are the initial guesses for the next approximated

solutions 4, ; and Ajs,. This is done by employing the expressions:

¢y, — Yy, ]

7 7 / !

A1¢A3 - A3¢A1 Ar=A1i-1,43=A3,i-1
Yol — vy,

/ I / }
AlwA3 A3wA1 A=Ay i, 43=A31

]

A = Al,i—l"‘{

(A.6)

Az; = As,i—l“‘[
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A 2 Tterative Process in Harmonic Balance: Newton’s Method

where ¢y, = 0Y/0A, W)y, = 0 /0A;, ¢y, = 0¢/0A,, ¢y, = 8¢/0Asandi = 1,2,3,. ...

The values of the next approximated solutions 4,, and Aj. are then calculated by
using the previous set of solutions (A;; and A;,;) as initial guesses. The process is
terminated when (Aft_l) -1 < TOL and (A—/:i:) —~1 < TOL, where TOL is a pre-

defined tolerance and should be small. The resultant values will be the solutions of A4,

B

and Aj in equations (A.3).
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Appendix B

SOLUTION OF THE SDOF
DUFFING’S EQUATION

B.1 Frequency Response of The Primary Resonance

of The SDOF Duffing’s Equation

Consider the SDOF Duffing’s equation (3.7) which is reformulated with the subscripts
dropped.

2 .
%tl:— = —wu — [T’ + Fy(t) (B.1)

The solutions of equation (B.1) can be described by the frequency-response curve
known as the “backbone curve”. It represents the frequency response in the non-linear
cases and can be thought of as arising from the response curve for the linear case by

bending it to the right for a hardening spring and to the left for a softening spring.

The solutions for the undamped frequency response can be obtained by using equa-

tion (3.9). With subscripts dropped, it is reformulated and given by equation (B.2).

LLK.D.G. TANG 134



B.1 Frequency Response of The Primary Resonance of The SDOF Duffing’s Equation

W 4 w?  WPAsin(Qt) 4 w? w24

A typical response curve or backbone curve is shown in Figure 3.2. The response
curves for a linear spring (II = 0) and for a hardening spring (II > 0) with damping are
shown in Figure B.1. The effect of damping controls the “peak” of the curve.

For particular values of frequency ratio ({2/w) there are three corresponding values
of response amplitude |A| on the backbone curve. However, only two of the three
amplitudes are regarded as the stable solutions. These are the amplitudes which exists
in reality. Moreover, which stable amplitude will exist at a particular (Q2/w) depends on

the initial conditions of excitation. The behaviour is known as “jump” phenomenon.

For instance, when the amplitude of excitation is held constant and its frequency
() is far above the natural frequency (w) and is monotonically decreasing, the response
amplitude |A| increases slowly and moves along the curve from point A towards point B,
as indicated in Figure B.1. At a particular (Q/w) (point B), |A| “jumps” spontaneously

to the top curve. For further decrease in (2, |A| decreases slowly along that curve towards

point D.

On the other hand, when the forcing frequency is initially far below w and mono-
tonically increasing, |A| increases and moves from point D via point C towards point E.
With damping, after passing the peak of the curve (point E), |4] “drops” spontaneously
to the bottom curve at point F. The amplitude |A| continues to decrease slowly and
moves towards point A. The sudden drop in amplitude from points E to F would be
inexplicable on the basis of the corresponding backbone curve with no damping included
[15]. The regions where the amplitude |A| never exists in reality, bounded by the curves

between points E and B, contain the unstable solutions of the Dufling’s equation.

When the Duffing’s equation including the first mode is solved numerically for |A| at
each value of 2/w,, the backbone curve can also be constructed. The curves have been
presented in Figures 3.6 and 3.7 for responses due to concentrated and distributed loads
respectively. Observations of the graphs reveal that the values of |4] at Q/w; = 0.4243
for the concentrated load case and at /w; = 0.433 for the distributed load case do
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B.1 Frequency Response of The Primary Resonance of The SDOF Duffing’s Equation

Qlw

[1>0

Qlw

Figure B.1: Frequency-response curves for the Duffing’s equation for a linear spring

(top) and a hardening spring (bottom).
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B.1 Frequency Response of The Primary Resonance of The SDOF Duffing’s Equation

not agree with the corresponding Harmonic Balance and the ANSYS® solutions. As
a result, equation (B.1) is solved numerically for |A] at several values of Q/w; in the

region concerned. The results are shown in Figures B.2 and B.3.

0.856

~.
N
g

=12 0.4243

0.9 rﬁ/ U35

0.8

0.3 0.4 0.5 0.6 0.7 0.8
Frequency ratio Ve,

Figure B.2: Frequency-response curves obtained by the numerical integration of the

Duffing’s equation: concentrated load F§ =

It is suggested that the peaks are due to a non-linear phenomenon called superhar-
monic resonance of the non-linear system [11]. This happens when the resonance fre-
quency is about three times the forcing frequency. In a superharmonic oscillation, the
overall steady-state response is a superposition of two components: the free-oscillation
and the forced-oscillation responses. The steady-state forced-oscillation response has the
same period as the external load, the behaviour of which is the same as that in a linear
system. The free-oscillation response oscillates at a frequency which is three times the
forcing frequency. However, unlike a linear system, the amplitude of the free-oscillation

response in a non-linear system at superharmonic resonance does not decay to zero in

spite of the presence of damping [15].
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B.1 Frequency Response of The Primary Resonance of The SDOF Duffing’s Equation
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Figure B.3: Frequency-response curves obtained by the numerical integration of the

Duffing’s equation: distributed load I_?'Oz =2
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B.1 Frequency Response of The Primary Resonance of The SDOF Duffing’s Equation

To verify if the suggested reason is valid, the frequency spectra of the time histories
of the displacement response are obtained. In particular, the time histories and power
spectra of the non-linear responses for 2/w; = 0.4 in the concentrated load case and

for Q/w; = 0.45 in the distributed load case are presented in Figures B.4 and B.5

respectively.

1.5 T T T T T T T T T

ey

o
m
T

Response amplitude u(t)
o
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10 r T T T T T T T

! i ! ! !
15 20 25 30 35
Frequency (Hz) ni

Response Power Spectral Density (unit‘?/Hz)

Figure B.4: Time Histories (top) and Power Spectrum (bottom) of Non-linear Displace-

ment Response at /w; = 0.4: Concentrated Load F§ = 1

From the resulted frequency spectra, it is found that besides a distinct peak at the
forcing frequency, there is another peak at a higher frequency, denoted by wp;, whose
power spectral density (PSD) is significant relative to the PSD at Q. By obtaining the

ratio between the forcing frequency and wy,; at each Q/w; for the two loading cases, it
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B.1 Frequency Response of The Primary Resonance of The SDOF Duffing’s Equation
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Figure B.5: Time Histories (top) and Power Spectrum (bottom) of Non-linear Displace-

ment Response at /w; = 0.45: Distributed Load fuf_‘ =2
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B.2 Approximation of the Temporal Responses for a SDOF Duffing’s System

can be seen that these values of wy are about 3Q2. Hence the frequency wy is thought
to be the frequency of the free-oscillation response in superharmonic resonance. It is
also noticed that the value of wy increases with increasing Q/w; in this region of the

curve. A comparison of different frequency ratios is given in Table B.1 and B.2.

Q/uwn Wi /w1 Wt/ Q/wn
0.35 1.056 3.000 0.333
0.4 1.20 3.000 0.333
0.4243 1.27 3.003 0.333
0.5 1.50 2.994 0.334

Table B.1: Comparison of Frequencies Ratios in The Concentrated Load Case

Q/uwy Wnt /wy wnt /€2 Q/wn
0.35 1.05 3.002 0.333
0.433 1.30 3.000 0.333
0.45 1.35 3.000 0.333
0.5 1.50 3.000 0.333

Table B.2: Frequencies Ratios in The Distributed Load Case

It is thus believed that the small peaks found on the backbone curves in Figures B.2

and B.3 are due to superharmonic resonance.

B.2 Approximation of the Temporal Responses for

a SDOF Duffing’s System

The time-dependent displacement response u(t) in equation (B.1) can be obtained by
numerical methods. However, an approximated method can also be obtained by many

analytical methods, and the iteration method from reference [15] will be outlined here.
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B.2 Approximation of the Temporal Responses for a SDOF Duffing’s System

Note that this is valid when IT is small and when Fj is of the same order of magnitude
of II. In theory, for weakly non-linear systems, the value of II should be small. After

rearranging and adding an extra term Q%u to equation (B.1), it becomes:

o
dt?

Note in equation (B.3) that the value of w need not be small and that Fy = IIF.

+ Q% = (Q — wHu — TTw® + TTF sin (i (B.3)

Now, the single mode analogy to equation (3.3) is

ur(t) = AsinQu (B.4)

The parameter uy is the first approximation of the solution of u, and A is supposed to
be given. Substituting the expression of us(t) of (B.4) and its derivatives into the right
hand side of (B.3), followed by the use of the identity sin® Q¢ = (3sin Q¢ — sin 3Q¢)/4 |

gives the following differential equation:

dQUU
dt?

+ Q% = [(Q — WA - 2HA3 + HF] sin Ot + ixﬁn sin 30t (B.5)

where uy; is the refined approximation to w.

To ensure that u;; is periodic, the coefficient of sin Q¢ has to be zero [15] so that:

Q \/ 31A2  TIF
=1+ = - B.6
w T 4 w? W24 (B.6)

This is analogous to equation (B.2), and IIF = @, . By integrating equation (B.5)
and setting the constants of integration to zero, the next approximation of the solution

of u(t), which is harmonic with period 27/, will be:

3

36022

urr(t) = AsinQt + sin 302t (B.7)

Making 2% the subject of equation (B.6) and substituting it into (B.7), the following

can be obtained:
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B.2 Approximation of the Temporal Responses for a SDOF Duffing’s System

1143

1
un()-—431th+~— 3HA2 (..F.)
A

36

J sin 3¢ (B.8)

This is an analytical approximated value for the single-degree-of-freedom time-varying
displacement u, ().

Once the values of u,(t) are known, the maximum bending and the total axial
(membrane) strains for a selected set of amplitudes, A,, and frequencies, Q, can be
obtained.

For a multiple-degree-of-freedom system, from equations (2.6) and (2.14), the average

axial (membrane) strain, ¢,(t), is given by:

AL 1 ow(z, t) i

mn-‘

The bending strain due to curvature has a maximum value at the top or bottom
surfaces and occurs at the mid-span of the simply-supported beam. The maximum

bending strain is denoted by ¢,(¢) and is given by:

e(t) = ig {%}} e i—— (—) }: M (t (B.10)

The total strain is the sum of the two strains with the use of equations (B.9) and

(B.10).

e(t) = €a(t) + €(t) (B.11)

For the one-mode case with simply-supported end conditions, ®(z) = sin(wz/l) ,

and hence,
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B.2 Approximation of the Temporal Responses for a SDOF Duffing’s System

Rh /my\2
- (7) i (2) (B.13)
where u,(t) could be given in equation (B.8) as uss(¢), or the displacement response

time-histories obtained in a time-domain numerical analysis.

ILK.D.G. TANG 144



Appendix C

NOTES ON NUMERICAL
ANALYSIS TECHNIQUES

C.1 Non-linear Analysis by Finite Element Software

ANSYS®: Undamped Harmonic Vibrations

The non-linear displacement response of the beam due to a harmonic load can be ob-
tained by building a finite element model of the beam and then carrying out “transient”

analysis in ANSYS®. The procedure is outlined briefly here.
In the “Preprocessor” phase (/PREP7) in ANSYS®, a three-dimensional elastic

beam element BEAM4 is used. The element BEAM4 is a uni-axial element with tension,
compression, torsion, and bending capabilities. The element has six structural degrees
of freedom at each node: three translational and three rotational. Stress stiffening and
large deflection capabilities are included. A consistent tangent stiffness matrix option
is available for use in large deflection (finite rotation) analyses. Shear deflection effects

can be included.

The properties of the beam such as the cross-sectional area, the second moment of
inertia, the beam thickness, the Modulus of Elasticity and the density are defined. The
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model of the beam is then meshed into a finite number of elements along the length of
the beam in such a way that the highest linear mode shape can be captured whilst at
the same time the mesh is not too fine that computational resources are wasted. In the

current study, eight elements have been found to be adequate to capture the third linear

mode shape.

In the “Solution” phase (/SOLU), ANTYPE,TRANS is used. To account for the
effects of geometrical non-linearity, the mode NLGEOM,ON should be present. The
boundary conditions are then defined. A “loadstep-by-loadstep” approach is carried out

to obtain the response due to an external sinusoidal load.

It should be noted that even when no damping is considered in the work, some damp-
ing has been carefully implemented in order to remove the “transients” in the results.
As the current analysis type TRANS does not allow the use of a constant damping
ratio, the proportional damping constants ALPHAD and BETAD are used. Damping
attributed to stiffness-proportional damping (BETAD) increases with increasing fre-

quency whilst damping attributed to mass-proportional (ALPHAD) damping decreases

with increasing frequency.

Finally, the results are retrieved from the “Postprocessor” phase (/POST26).

C.2 Simulation of Input Random Loads

Stationary and Gaussian random processes can be simulated by employing the technique

of Inverse Fast Fourier Transform [38, 39].

For a uniformly distributed band-limited Gaussian white noise, the random pressure,

P"(t) can be simulated as

M
P"(t,) = Re[) | Aneitneints] (C.1)
n=1

where ¢,’s are independent random phase angles uniformly distributed between 0 and

27, wy's are the frequencies at which the value of spectral density, Sy are selected,
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M = 2% is the number of simulated points in time, z is a positive integer, ¢, = pAt

where At is the time interval, p =1,2,..., M, and

An =1/[25¢(wy)Auw] (C.2)

The spectral density is defined in equation (4.22) in Section 4.2.3 of Chapter 4.

In order to ensure that the simulated pressure describes its frequency domain counter-
part, its mean square value should be close to the integral area under the corresponding
frequency spectrum density curve. The root-mean-square value of the simulated pres-
sure should also be the same as the prescribed one calculated from the SPL value, as

the process has a mean of zero.
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Appendix D

TABLE OF REFERENCES

The table of references shown in this section represents a brief description of the litera-

ture cited throughout the thesis. In the table, notations are used and their meaning is

explained below:
P: Plate-type structures
S: Shells or curved panels
SP: Stiffened plates
Sine: Excitation varies sinusoidally with time
random: Random Excitation
PT: Point load
DIST: Distributed load
harmonic: Harmonic Excitation
periodic: Periodic Excitation

thermal: effects of elevated temperature
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