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A literature survey on the iield of non-linear vibrations of beams and thin panels has been 

performed with the aim of identifying efficient and accurate techniques which might be used 

in the aerospace industry. Attention is then focused on beam systems to allow candidate 

methods to be assessed. 

Emphasis is placed on the study of geometrically non-linear vibration of isotropic slender 

beams with simply-supported end conditions when exposed to external excitation. The Buff-

ing's equation has been derived and its applicability in describing non-linear beam vibrations 

is justified. The characteristics of non-linear harmonic vibration of the beam are studied. 

The non-linear response is first approximated by the Harmonic Balance Method based on 

the Buffing's equation and then compared with three sets of published results. The single-

degree-of-freedom (SDOF) Buffing's equation is solved by a time-domain numerical method. 

An ANSYS® Finite Element Analysis is carried out to simulate the vibration problem. These 

solutions are compared with the Harmonic Balance results. 

The non-linear response of a simply-supported beam to uniformly distributed random 

white-noise pressure is further studied. The non-linear root-mean-square displacement re-

sponses are approximated by applying the Birect Equivalent Linearisation Method to the 

SBOF Buffing's equation. The accuracy of the approximation is assessed by comparing the 

results with those obtained by the numerical integration of the SDOF Buffing's equation 

with simulated Gaussian white noise. 

The total non-linear displacement response due to the first two modes of vibrations for the 

simply-supported beam subjected to various excitations are computed-by solving both the 

uncoupled and coupled Buffing's equations by a step-by-step numerical integration scheme. 

The differences between the uncoupled and coupled responses are analysed. 

Conclusions are drawn about the precision of the various methods of analysis and the 

importance of mode-coupling in non-linear beam vibrations. 
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Chapte r 1 

I N T R O D U C T I O N 

1.1 The Need for the Prediction of Non-linear Ran-

dom Response 

With the current interest in high-speed vehicles and the ever increasing need for stronger, 

lighter structures, the problem of predicting the response of aircraft structures to ran-

dom acoustic excitation is being reconsidered, with the emphasis being placed on the 

thermo-acoustic environment, and the non-linear response of lightweight panels. Since 

the implementation of gas turbine engines in the aerospace industry, a considerable 

amount of work has been carried out in an attempt to predict the stresses that could 

be encountered in service due to the random acoustic loading produced by the gas tur-

bine engines. Most of the earlier methods employed to evaluate the response of aircraft 

structures only consider the linear case and the response dominated by low frequency 

dynamics. However some part of the aircraft structures, such as thin fuselage panels, 

close to the engine outlet exhibit a highly non-linear behaviour. Negligence of large de-

flection effects has been recognised as a major factor for the huge disagreement between 

measured test data and computed results. 

In order to improve the prediction of acoustic fatigue damage, a better understanding 

of the non-linear response of random vibration of structures is needed. This is because 



1.2 Brief Review of Acoustic Fatigue 

acoustic fatigue life prediction methods generally include the prediction of the random 

acoustic loads, the estimation of the stress response of the vibrating structure and the 

forecast of the life from stress versus cycles to failure curves for the material and fastener 

configuration [1]. The stress response becomes more non-linear and more difficult to 

predict as the acoustic load becomes larger. 

The development of the structural response prediction model, combined with the 

understanding of acoustic sources will then enable the engineer to design against acoustic 

fatigue. 

Efficient analysis methods and techniques, with a certain high level of accuracy in 

the prediction of the response due to the high level of acoustic loads, are necessary to 

be developed. 

1.2 Brief Review of Acoustic Fatigue 

A method for predicting the response of acoustically excited metallic structures was 

first developed by Miles [2], He developed a cumulative damage hypothesis and used 

it to estimate the fatigue life of the structures subjected to random excitation. Powell 

[3] then carried out a general analysis of vibration of a structure caused by pressure 

fluctuations random in time and space, using ideas of vibration theory and spectrum 

analysis. He assumed that forced response of vibration could be approximated by the 

composition of the motions of the uncoupled natural modes. He had also considered 

multiple-modal effects. The results could be used to estimate fatigue life on the hy-

pothesis of cumulative damage, on assuming normal randomness. From Powell's work, 

Clarkson [4] concentrated on the problem of the estimation of the stresses induced in 

typical structures by jet noise. The aim was to produce a single comprehensive design 

chart for each type of construction. He presented a simplified theory of Powell's work 

for panel-type structures by assuming that the major part of the response results from 

the contribution of one predominant mode. He carried out tests on fiat plates, con-

trol surfaces and integrally stiffened skins to verify the applicability of the theory, and 
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1.3 Non-linearities in Structural Dynamics 

concluded that it was satisfactory. Some other investigators have also worked on the 

problem since then. 

As an extension to Miles' work, Blevins [5] has developed approximate analytical 

methods for the determination of linear response of plate and shell structures to surface 

pressures associated with sound and turbulence. It is capable of predicting higher mode 

response as well as response to both random and deterministic stationary surface pres-

sures. This is done by simultaneously considering the spatial characteristics of both the 

structural modes and the sound field, and relating the two. 

With improved computational power during the past forty years, some advanced 

analytical tools such as the finite element method have been developed and employed 

to tackle the problem of acoustic fatigue and estimate the response of aircraft panels 

subjected to strong random acoustic loads. Zienkiewicz [6] , for example, has given 

formulations for the properties of an element of a panel-type structure which undergoes 

large-displacements of vibration. 

For more topics on acoustic fatigue and random vibrations, the reader is referred to 

excellent monographs such as references [7, 8, 9, 10]. 

1.3 Non-linearities in Structural Dynamics 

The problem of non-linear dynamics has attracted a lot of investigators. In fact, almost 

all natural problems are of a non-linear character. The most distinct difference between 

linear and non-linear systems is that whilst the principle of superposition can be applied 

to linear systems, it may no longer be applicable to non-linear systems. Moreover, there 

are various phenomena such as the "drop-jump" phenomenon and internal resonance, 

which do not exist in the linear systems. Some descriptions in non-linear dynamic analy-

sis of structures are documented in monographs such as Nayfeh [11] and Sathyamoorthy 

[121. 

In dynamic systems, non-linearities are classified into three major categories [13]: 

1. Geometric non-linearity due to large deflections in elastic elements 
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1.4 A Review of Non-linear Random Vibrations 

2. Material non-linearity due to the case when Hooke's Law is no longer valid, which 

results in a hysteresis loop 

3. Topological non-linearity where a discrete finite change in the basic form of the 

differential equation occurs 

The reason for the importance and sometimes puzzling effects of non-linearity is the 

very sudden transition from conditions in which linear theory is valid, to a state in which 

non-linear effects completely change the behaviour of a structure. The major effect of 

non-linearity is to introduce instabilities which can completely alter the mode shape of 

the vibrating structure [14]. Moreover, Ibrahim [13] indicated that despite many meth-

ods of solution exist there can be no universally applicable theory of predicting vibration 

behaviour in the non-linear regime. Each particular problem has to be approached from 

basic assumptions and a specific theory developed. 

1.4 A Review of Non-linear Random Vibrations 

In the study of forced vibration problems, two types of excitation are usually consid-

ered. They are deterministic and random excitation. The non-linear deterministic or 

sinusoidal cases result in a "jump phenomenon", the topic on which references [11, 15] 

have discussions. The random excitation case usually results in stochastic chaos. How-

ever, it is also known that the steady-state response of a non-linear system subjected to 

the harmonic forces may not only be harmonic, but also may be subharmonic, superhar-

monic, almost periodic or even chaotic, although the periodic responses often exist in a 

full or nearly full range of excitation frequency. Caughey [16] thoroughly reviewed the 

literature on non-linear random analysis prior to 1971. Thompson [17] has presented 

the basic concepts of non-linear dynamics and chaos. Random processes are described 

by many others in the literature [8, 18]. 

For engineering purposes, the random process is generally assumed to be stationary 

or weakly stationary. The random process is said to be stationary if the probability 

distributions obtained for the ensemble do not depend on absolute time. A stationary 
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1.4 A Review of Non-linear Random Vibrations 

process can be described as an ergodic process if, in addition to all the ensemble averag-

ing being stationary with respect to time, the averages along any sample are the same 

as the ensemble averages [18]. Strictly speaking, a random process cannot be predicted 

exactly in advanced. 

According to Spanos [19], the problem of predicting non-linear random vibrations 

has not been fully solved. The study of non-linear random vibrations raised great math-

ematical difficulties and to overcome these, four different principal methods have been 

proposed. They are the use of the perturbation method, Fokker-Planck-Kolmogorov 

(FPK) equations, the method of equivalent linearisation and the time-domain Monte-

Carlo approach. A perturbation technique to study random non-linear vibration prob-

lems was proposed and applied by Crandall [20]. It is an extension to random vibrations 

of the perturbation method used for weakly non-linear deterministic systems. However, 

this method generally only yields results of reasonable accuracy for the case of small 

non-linearity. A new perturbation method where large parameters can be permitted has 

recently been proposed by He [21]. 

The most general extension of the FPK equation to non-linear multi-degree-of-

freedom (MDOF) dynamic systems has been developed by Caughey [16, 22]. One advan-

tage of this method over all other approaches is that it gives an exact solution. However, 

only for certain restricted classes of problems can the exact solutions of the steady-state 

probability function be found [23]. For example, the Fokker-Planck method can only be 

applied for the case of white noise random forces [24]. Lin [25] has introduced the pro-

cedures to obtain the stationary state solutions governed by the reduced Fokker-Planck 

equations. 

Caughey [26] applied the Krylov and Bogoliubov method of equivalent linearisation 

[27] to a variety of non-linear random problems and compared the results with the exact 

solutions of the Fokker-Planck equation. Booton [28] and Caughey have developed inde-

pendently the method of stochastic linearisation, which is the extension of the equivalent 

linearisation. Various texts have described the technique [19, 29, 30]. The objective of 

the equivalent linearisation method is to replace the non-linear elements in a model by 

linear forms, where the coefficients of linearisation can be found using the specific crite-

rion of linearisation. Spanos [19] has given an in-depth discussion on the applicability 
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1.4 A Review of Non-linear Random Vibrations 

of this method in structural dynamics. This traditional method of equivalent lineari-

sation is also known as the force error minimisation method when a new stochastic 

linearisation method based on potential (strain) energy error minimisation has recently 

been proposed by Elishakoff et al. [31]. Statistical linearisation methods generally have 

been wildly used [29, 32, 33, 34, 35] because of their ability to accurately capture the 

response statistics over a wide range of response levels while keeping a comparatively 

light computational load. However, the application is limited by the assumption that 

the response has to be Gaussian, and that the system is not strongly non-linear [36]. 

Numerical simulation techniques give the response in the time domain, from which 

the statistics of the random response may be retrieved. Vaicaitis [37] presented a review 

and illustrated the application of various time domain approaches to solve a variety 

of non-linear dynamic problems. The time-domain Monte Carlo method is the most 

general time-domain approach. It consists of three basic steps: 

1. Realisations of random inputs and/or random system parameters are generated 

utilising simulation procedures of random processes [38, 39]. 

2. The equations of motion are solved numerically for each realisation. 

3. Quantities of the random response process are computed from the ensemble solu-

tions. 

However, when the complexity of the physical system to be investigated increases, 

the computational expense gets dramatically higher. 

Recently, Elishakoff and Colombi [36] have proposed a hybrid type of analysis by 

combining a stochastic linearisation and numerical Monte Carlo techniques in the study 

of non-linear systems under stochastic excitation. 

The other widely used approximate methods [37] include the cumulant-neglect clo-

sure, stochastic averaging and energy dissipation balancing. It has to be noted, however, 

that there can be no general rule about the suitability of any method for a particular 

non-linear problem. Moreover, the application of different techniques to the same prob-

lem may lead to different results. Texts such as those by Blaquiere [40] as well as Dinca 
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and Teodosiu [30] have presented several approaches to End non-linear responses with 

random inputs. 

1.5 Review of Non-linear Response of Beams and 

Panels 

The non-linear response of thin panels has attracted the interests of numerous structural 

engineers. For a background study on classical linear and non-linear plate theories, the 

reader is referred to an excellent monograph by Leissa [41]. Leissa [42] and Reddy [43] 

have also written review papers in which they have discussed non-linear problems of 

plates of various geometries, composite laminated plates and sandwich plates. In cases 

where the deflections are small compared to the plate thickness, the linear bending of 

Timoshenko [44] is usually adequate. An overview of the subject of non-linear vibrations 

of plates and shells, and a summary of the literature from the 1960s up to the early 1980s 

were presented by Leissa [42]. Sathyamoorthy [12] published a comprehensive review of 

the development on the non-linear vibrations of plates in 1987. 

The reader is recommended to refer to the tables of references in Appendix D for a 

brief description of the literature to be discussed in the following sections. 

1.5.1 Free Vibration Problems 

The geometric non-linear or large-amplitude vibrations of beams and plates have been 

studied by a number of investigators using various approximate analytical and numerical 

methods. 

Woinowsky-Krieger [45] considered the free-oscillation problem of simply supported 

beams with immovable ends. The effects of axial loading and pre-stressing were taken 

into account the analysis. Expressing the solution as a product of a function of time 

and a linear free-oscillation mode, he solved the non-linear equation for the temporal 

function exactly using Jacobian elliptic functions. 
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1.5 Review of Non-linear Response of Beams and Panels 

McDonald JR. and Rayleigh [46] worked with a similar problem but did not consider 

axial pre-stressing. He treated the analysis by representing the defection curve at any 

instant by a Fourier expansion in terms of the linear free-oscillation modes. He was able 

to solve the non-linear equations for the coefficients in terms of elliptic functions. He 

suggested that the problem be inherently non-linear even for small-amplitude vibrations 

and that there be always dynamic coupling of the modes. 

Singh et al. [47] discussed the various formulations and assumptions, including 

the finite element method for large-amplitude free vibrations of beams. The vibration 

problem was formulated wherein the axial displacement is neglected and, further, the 

quadratic term in the strain displacement relation was linearised. This formulation 

would lead to the equation of motion which, when solved based on the simple harmonic 

oscillation assumption, would give exactly the same non-linear frequency as would the 

perturbation method, the Ritz-Galerkin method and the elliptical integral solution with 

axial displacement included, without linearisation of non-linear terms and without the 

harmonic oscillation assumption. 

Benamar et al [48] presented a method for calculating the first three non-linear mode 

shapes and natural frequencies of simply-supported (S-S) and clamped-clamped (C-C) 

beams at large amplitudes. A general model based on Hamilton's principle and spectral 

analysis for non-linear free vibrations occurring at large displacement amplitudes of fully 

clamped beams was set up. Rectangular homogeneous and composite plates subjected 

to the same problem were also developed [49, 50, 51]. 

Benamar et al. [52] studied the effects of large amplitudes on the fundamental mode 

shapes of fully clamped plates. Aluminium alloy plates were studied both experimentally 

and theoretically which exhibited a high degree of geometrical non-linearity. This was 

attributed to high in-plane stiffness inducing a higher contribution of the axial strain 

energy to the total strain energy at large displacement amplitudes. Even higher non-

linearities were obtained with composite plates. 

Continuing Benamar's work [49], El Kadiri et of. [53] calculated the second non-

linear mode shape of the non-linear free vibration of fully clamped rectangular plates 

by the use of a hybrid method combining the steepest descent and Newton's methods. 
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They analysed the effect of non-linearity on the induced bending stresses associated with 

the second non-linear mode shape. 

Rao et al. [54] presented a finite element method for the large amplitude free flexural 

vibration of plates and stiffened plates. The formulation assumes that the material of 

the plate and the stiffener obeys Hooke's law, that the lateral deflection is moderate and 

that Mindlin's hypothesis is followed. 

Lee et al. [55] employed the Finite Element approach to derive a time-domain for-

mulation for large-amplitude free vibrations of generally laminated thin composite rect-

angular plates. 

Reddy [43] has presented a review on the finite element method (FEM) of natural 

vibrations of laminated composite plates from 1980 to 1985. A historical background of 

the development of shear deformation theories was also presented in the article. 

Moussaoui et al. [56] recently studied the non-linear free response of a circular 

cylindrical shell of infinite length and determined the effects of large vibration ampli-

tudes on the first and second coupled transverse-circumferential mode shapes and their 

corresponding natural frequencies. 

1.5.2 Harmonically Forced Vibration Problems 

There have been numerous theoretical and experimental analyses of non-linear vibrations 

of beams and plates excited harmonically. In particular, the topic of non-linear vibration 

of beams is of continuing interest, due to their frequent use as experimental test pieces 

[1, 57]. They comprise the simplest case of a continuous system, since their motion 

is expressed by one-dimensional partial differential equations in space. A well studied 

non-linear equation of motion is the Buffing's equation which has the form given in 

equation (1.1). 

^ + <^^ + Woa;±n:c^ = g8in(nf) (1.1) 
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The parameter 11 is a function of ojq and can be a positive (hardening spring) or a 

negative (softening spring) constant. In the case of a positive value of H, the Duffing's 

equation can be used to describe the geometrically non-linear transverse vibrations of 

a beam subjected to a sinusoidal force. In this case, the transverse displacement is 

represented by x which is a function of time t. The parameter ^ is a damping coefficient, 

uiq is the natural angular frequency, and q and Q are the amplitude and frequency of 

the external forcing function respectively. The equation includes damping and stiffness 

with cubic non-linearity. The basic solution of the Duffing's equation is the so-called 

"backbone curve". Many texts [11, 17, 40, 15, 58] have descriptions on the topic. 

A number of approximate methods can be used to solve equation (1.1) analytically, 

as the equation cannot be solved exactly in closed form. One of the most widely used 

approach is by obtaining the perturbation method [30, 15]. 

Hsu [59] has presented analyses to find approximate solutions of a Duffing system to 

forced vibration. As the free vibration response of a system whose equation of motion 

is represented by equation (1.1) can be obtained exactly in the form of elliptic functions 

[45], he suggested that, if the external excitation of equation (1.1) is a simple elliptic 

forcing function, an elliptic function response can be obtained as the exact solution. By 

using a multiple-term elliptic response, Hsu also concluded that the simple harmonic 

forcing function and the corresponding perturbation solution was merely the first order 

approximation of the simple elliptic forcing function and the associated elliptic function 

response. 

Srinivasan [60] applied a general modal approach to determine the response of beams 

and plates having moderately large amplitude steady state oscillations. 

Bennett and Eisley [61] studied the steady-state response and stability for large 

deflection of a beam with clamped ends subjected to a concentrated harmonic force. 

Elastic restraint of the ends was included to relate theory with experiment. He used 

a multiple-mode (3 modes) analytical and numerical technique to obtain theoretical 

solutions for both response and stability. He concluded that there were situations where 

a multiple-mode analysis was essential to predict the observed results. 

Azrar et al. [62] recently developed a semi-analytical approach to the non-linear dy-

namic response problem for the vibration of beams to determine the amplitude-frequency 
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dependence of S-S and C-C beams. He has developed a multi-dimensional form of the 

Dufhng's equation having cubic non-linear stiffness for free and forced responses by us-

ing Lagrange's equations. The free vibration equations resulted were identical to that 

derived by Benamar [48] who used Hamilton's principle. Extending Azrar's work, Kadiri 

et al. [63] recently came up with a more practical simple multi-mode theory based on 

the linearisation of the non-linear algebraic equations, written on the modal basis, in 

the neighbourhood of each resonance. The method has been applied to explicitly deter-

mine the non-linear steady-state periodic forced response of C-C and clamped-simply 

supported (C-SS) beams for both small and large vibration amplitudes, excited harmon-

ically with concentrated and distributed forces. 

Leung and Chui [64] studied the non-linear vibration of a square plate subjected to a 

lateral symmetric sinusoidal force. Sherif [65] and Yamaki et al. [66] independently stud-

ied the non-linear vibration of a clamped circular plate to uniform distributed harmonic 

force. 

Finite Element Analysis has also been employed by a number of researchers. Busby 

JR. and Weingarten [67] studied the multiple-modal forced responses of simply-supported 

beams subjected to periodic loading. Lee et al. [68] employed the FEM approach to de-

rive a time-domain formulation and applied it for large-amplitude harmonically excited 

forced vibrations of generally laminated thin composite rectangular plates, considering 

also the effect of temperature. Chiang, Mei and Gray JR. [69] used a finite element 

formulation for determining the large-amplitude free and steady-state forced vibration 

of arbitrarily laminated anisotropic composite rectangular thin plates. 

Ribeiro and Petyt [70] recently employed the hierarchical finite element method 

(HFEM) to study the geometrically non-linear free and steady state forced vibrations of 

uniform, slender beams with internal resonance. They concluded that the use of HFEM 

could significantly reduce the computational time when compared with FEM. 

For the steady state, geometrically non-linear, periodic vibration of thin rectangular 

plates under harmonic external excitation, Ribeiro and Petyt [71, 72] presented and 

analysed the model by applying the principle of virtual work and the hierarchical finite 

element method. The stability of the obtained solutions was investigated. The conver-

gence studies indicate that the HFEM and the harmonic balance method (HBM) allow 
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one to model the geometrical non-linear, forced periodic vibrations of plates accurately 

and with a small number of degrees of freedom. 

1.5.3 Acoustic Random Forced Vibration Problems 

Non-linear acoustic vibrations have been studied by many investigators. New theories 

have been proposed, established analytical methods have been employed and experi-

mental work has been carried out to enhance the understanding of this topic. 

Theoretical analysis 

Vaicaitis [37] illustrated the application of the time domain approach to solve a variety 

of problems such as the non-linear response of panels and fatigue of surface panels 

subjected to high intensity turbulent flow and/or engine exhaust noise. 

Herbert [33, 73] used the method of the Markoff process and the associated Fokker-

Planck equation to study the multi-mode response of non-linear beams and plates sub-

jected to purely random loading. However, he discovered that it was impossible to in-

vestigate the problem of whether the reduction of stresses due to the effect of membrane 

force would be the same as that of the displacement. Using the method of equivalent 

linearisation, he then carried on investigating the response of a non-linear beam sub-

jected to a realistic random loading-a random loading with finite power [74]. He could 

then conclude that the percentage reduction of the mean square stresses could indeed be 

substantially less than that of the mean square displacements, and that the difference 

between the two percentage reductions would become greater as the spectral density of 

the load got wider. 

Seide [75] also employed the equivalent linearisation technique to investigate the 

non-linear mean-square multi-mode stress add deflection responses of beams subjected 

to uniform pressure which is not correlated in time. It was concluded that determination 

of non-linear stresses would require many more modal functions than that of non-linear 

deflections would. 
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Prasad and Mei [76] studied the multiple-mode non-linear analysis for beams sub-

jected to acoustic excitation including the effects of both non-linear damping and large-

deflection. The effects have great influences on the deflections, strains and the modal 

frequencies, especially the restraining influence of non-linear damping on the modal 

frequencies. Schudt [77] investigated the non-linear response of beams to random ex-

citation using an externally excited "hardening Duffing oscillator" (see equation (1.1)). 

Peak broadening phenomenon was studied by producing a family of typical response 

characteristics. The effect of the damping and the cubic non-linearity coefficients is to 

change the characteristics of the response peak in the Duffing oscillator. 

Busby JR. and Weingarten [32] used the Finite Element Method to obtain the non-

linear differential equations of motion which are expressed in terms of normal-mode co-

ordinates. They studied the forced responses of the first two symmetric modes of simply-

supported and clamped-clamped beams by the equivalent linearisation method. They 

concluded that if damping was included in the system, the effect of dynamic coupling 

could be reduced. Mei and Chiang [78] also used the FEM approach to develop the 

equations for the multi-modal representation of the large deflection random response 

of beams and plates subjected to acoustic loading. The excitation is assumed to be 

stationary, ergodic and Gaussian with zero mean; its magnitude and phase are uniform 

over the panel surfaces. 

Elishakoff et al. [31] recently employed a new stochastic linearisation technique based 

on potential (strain) energy error minimisation for large amplitude random vibrations 

of a simply-supported or a clamped beam on elastic foundation. The stochastic loading 

acting on the beam is space-wise either (a) white noise or (b) uniformly distributed load 

and time-wise white noise. By using a three-term approximation, they found the mean 

square deflection at the mid-span of the beam for the various loading conditions. When 

comparing the results with the Fokker-Planck equation method and the conventional 

stochastic linearisation technique, they concluded that the proposed method was supe-

rior to the classical stochastic linearisation technique, especially in the high non-linearity 

range of the parameters. 

Hwang and Pi [79] used a conforming plate element together with a non-linear plate 

stiffness element which is dependent on the modal response of the structure for the 
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non-linear response analysis of plate structures. Numerical results are obtained for a 

simply supported rectangular plate subjected to rain-drop type and uniform intensity 

random acoustic loading. Ahmadi et al. [24] studied the response of non-linear simply 

supported rectangular plates with stress free in-plane boundary conditions to stationary 

random excitation. Using one term in Galerkin's method, the resulting equation has 

been solved by different methods. Mei and Paul [23] determined the large-amplitude 

random response of clamped rectangular panels analytically, with the inclusion of mul-

tiple modes in the analysis. They obtained accurate mean-square deflections with the 

use of six terms in the Fourier-type series deflection function. Srinivasan and Krishnan 

[80] applied the integral equation technique to a non-linear stationary random response 

of an isotropic rectangular plate exposed to Gaussian white noise excitation. 

Mei and Wentz [81], using series solution with one term, considered the geometric 

non-linearity of large-amplitude response of anti-symmetric angle-ply laminated rect-

angular plates subjected to broadband random acoustic excitation. Gray JR. et al. 

[82] presented an analytical solution for determining large deflection static bending, 

large-amplitude free and forced vibrations, and large-amplitude random response of a 

clamped, symmetrically laminated, rectangular, thin plate subjected to a uniformly 

distributed transverse loading. 

Vaicaitis and Kavallieratos [83] employed the time-domain Monte-Carlo approach 

to study the non-linear response of simply-supported rectangular fibre reinforced lami-

nated composite panel to random surface pressure with thermal heating. Vaicaitis and 

Arnold [84] developed a time-domain analytical model for non-linear response and fa-

tigue life prediction of simple metallic and composite panels. Non-linear stresses have 

been investigated, and an acoustic fatigue damage model of surface panels has been 

constructed. Dhanaut et al. [85] recently developed a new analytical method using the 

Finite Element method and numerical integration time-domain approach to predict the 

non-linear random acoustic response of composite panels subjected to acoustic pressure 

at elevated temperature. It was shown to be able to predict the three types of panel 

motions, namely the linear random vibration about one of the buckled position, the 

snap-through between the two buckled positions, and the non-linear random response 

over the two thermally buckled positions. 
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Dogan and Vaicaitis [86] have carried out an analytical study of non-linear flexural 

vibrations of simply-supported cylindrical shells to random excitation, with the inclusion 

of thermal effects for a uniform temperature rise through the shell thickness in the 

formulation. A Monte-Carlo simulation technique of stationary random processes, multi-

mode Galerkin-like approach and numerical integration procedures have been employed 

to find the non-linear response solutions 

The time-domain Finite Element modelling has been widely used in recent decades. 

Green and Killey [87] explain how this technique can be used to assist in the design of 

aircraft against acoustic fatigue. They reasoned that although Finite Element Method 

is computationally intensive, it enhances the understanding of complex vibrations, such 

as the response of structures to spatially correlated jet noise excitations, or interactions 

between sound pressure loads and thermal loads. 

McEwan et al. [88] has recently proposed a combined modal/finite element analysis 

technique for modelling large deflection forced response of a beam subjected to har-

monic excitation. The proposed method, which involves non-linear coupled multiple 

vibration modes and imposes no linearisation scheme, has been applied to the case of 

a homogeneous isotropic beam, with fully simply-supported and fully clamped bound-

ary conditions. The results have been shown to compare well with the standard direct 

integration finite element approach, with a significant saving in computational expense. 

Experimental analysis 

Bennouna and White [57] studied the effects of large vibration amplitudes on dynamic 

strain response, near to the fundamental resonance, of a clamped-clamped thin alu-

minium alloy beam excited sinusoidally and randomly. A set of fatigue experiments was 

carried out. A statistical approach was used and this gave a good correlation between 

predicted and measured fatigue life. High values of increase of beam curvatures were 

noticed near the clamps of the structures with constrained ends, causing a highly non-

linear increase in bending strain with increasing deflections. It has also been shown that 

such a non-linear effect may have a significant impact on the structural fatigue life. 
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Wolfe a/. [1] carried out experiments to investigate the non-linear behaviour of 

beams and plates excited in high levels of dynamic response and developed a method 

for incorporating effects of multiple-modal response of simple structures. 

Galea and White [89] determined the response of composite plates by exposing them 

to broadband acoustic excitation at elevated temperatures. They compared the experi-

mental results with those predicted by the single, fundamental mode formula. An inves-

tigation was further carried out to find the variations in modal response of a clamped 

plate with temperature effect. It was found that the natural frequencies of the composite 

plates decreased slightly with increasing temperature. However, the elevated tempera-

ture did not noticeably changed the bending strain response of the plates tested under 

broad-band acoustic excitation. It was also found that the single mode response method 

accurately predicted the root-mean-square bending strains at room temperature and at 

various elevated temperatures under broadband acoustic random excitation. 

Chen et al. [90],using a finite element formulation combined with the equivalent 

linearisation and normal mode methods, analysed the non-linear random response of 

beams subjected to acoustic and thermal loads applied simultaneously and carried out 

experiments to verify the analytical results. It was shown that the computed deflection 

results were very close to the measured ones. However, the difference between the 

computed and measured strains was much larger than the difference in deflection results. 

Using theoretical and experimental approaches, Steinwolf, Ferguson and White [91] 

have investigated the dynamic behaviour of a beam, subjected to stationary random 

excitation for the situation in which the response is different from the model of a Gaus-

sian random process. The study was restricted to the case of symmetric non-Gaussian 

probability density functions of beam vibrations. 

1.5.4 Damping Considerations 

It is known that damping is a major factor in determining the resonant peak response of 

a structure [1], However, there are no theoretical methods to derive the exact damping 

factor of typical structures, and measurements have been relied upon to estimate the 
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frequency average value. In non-linear systems, if the coeScients to the cubic coupling 

terms are large, the phenomenon of "coupling resonance" [61] will appear which may 

change the shape of the response curve. It is noted that if damping is included, the 

effect of coupling resonance will be reduced remarkably [67]. 

A common approach to damping in the solution of dynamic problems is to include 

only viscous damping in the modal equations so that the equations of motion are linear 

in the damping term and thus economical to solve. The viscous damping coefficient is 

often expressed as a certain percentage of the critical damping. The damping ratio in 

most flight-vehicle structural members ranges from 0.005 to 0.04 [92]. In linear models, 

this viscous damping coefficient used is sometimes chosen on the basis of the type of 

material and system concerned in vibration. Richards and Mead [7] have discussions on 

the damping of jet-excited structures. 

Schudt's studies [77] in the non-linear response of beams excited by random excita-

tion with damping included in the governing equation indicates that peak broadening 

can be modelled by including cubic stiffness terms and also higher damping factors in 

the equations of motion. 

Some investigators have also carried out research in non-linear forced vibrations of 

structures with non-linear damping. For example, Prasad and Mei [76] showed that 

non-linear damping had the greatest influence on the first mode and that its effects 

were significant on deflection as well as strains for small values. Strain response peaks 

at high acoustic excitations was shown to become broad and rounded under the effect 

of non-linear damping. 

Ghanbari and Dunne [93] used an empirical three-term non-linear damping model 

for use with a single-degree-of-freedom Buffing's equation to describe the motion of 

clamped-clamped beam vibrations. The beam has been driven with band-limited white-

noise excitation. The model has been calibrated by using experimental measurements. 

Calibration has utilised a Markov moment method and finite element solutions of the 

stationary Fokker-Planck equation. It has been shown that the individual parts within 

the damping model have a profound effect on the accuracy of prediction, even at low level 

response amplitudes. Comparison between measurement and prediction by using the full 
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calibrated model shows excellent agreement for probability density functions associated 

with the central beam displacement only up to moderately large amplitudes. At higher 

amplitudes, the differences between the two sets of results are significant. Nonlinear 

beam coupling was identified as the most likely cause for this difference. Furthermore, 

it has been suggested that forced random vibrations of a clamped-clamped beam can 

be accurately predicted with a single-degree-of-freedom model up to moderately large 

amplitudes, but only a little beyond this a multiple-degree-of-freedom model is required. 

1.6 Comments on the State-of-the-art 

The non-linear vibration of beams and simple plates has been studied extensively. It 

was suggested that neglecting the non-linear coupling terms and considering each mode 

separately for the prediction of the response do not affect very much on the accuracy, 

provided that the non-linear coupling is weak [62] and the excitation is harmonic [67]. 

It was found that the effect of non-linearity could be reduced by several ways, e.g., by 

adding damping, but non-linear coupling cannot be neglected in all cases, especially 

when non-linearity effect is large. 

In random vibrations, particularly for a white-noise excitation, it was found that 

considering the one-mode response could obtain a very good estimate of the maximum 

displacement [75]. Thus, it can be seen that much research work on the non-linear 

response of white-noise-excitation of beams and panels has considered only the fun-

damental mode, as non-linear coupling is weak for a white noise with uniformly spa-

tial distribution. However, in order to determine accurately the stresses, many more 

modal functions are necessary. As a result, it is certainly worthwhile to investigate the 

non-linear behaviour of higher response modes of forced vibration, especially with the 

inclusion of mode-coupling effects, on the vibration response of beams and panels. 

There is a concern about the use of linearisation techniques in solving response of 

structures to high-level random loading. Time domain analyses have shown that due to 

the presence of non-linearities, the response is non-Gaussian, whilst linearised analyses 

would have predicted a Gaussian response [83, 84, 85]. Hence, some linearised methods 
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which assume a Gaussian output response to a Gaussian input excitation should be used 

with care. 

1.7 Scope of The Present Work 

Since a variety of problems regarding the structural strength of thin panels which arise 

in modern aircraft constructions cannot be adequately analysed on the basis of the 

classical linear theory of vibration, the development of a structural response prediction 

model which would take into account the non-linear response behaviour in the treat-

ment of panel vibration is necessary. Moreover, although the phenomenon of "coupling-

resonance" due to the coupling of modes has been known for some time, its effect has 

very often been neglected in the study of beam vibration problems. 

The objective of the current study is to improve the understanding of the vibration 

behaviour of non-linear response of thin aircraft beam structures when exposed to dif-

ferent loads by using several different methods, with effects of mode-coupling taken into 

consideration. The investigation may serve as a background study for the development 

of predicting non-linear vibrations of aircraft panel-type structures. 

In Chapter 2, the equation of motion of the geometrically non-linear beam vibrations 

is derived. The equation is then used in subsequent chapters to help understand vibra-

tion problems of beams in different excitation. In Chapter 3, the non-linear responses 

of a simply-supported beam under harmonic loading are obtained by various methods 

and the solutions are studied. The accuracy of the use of the methods is justified. 

The non-linear vibrations of a simply-supported beam in Gaussian white-noise ran-

dom pressure are investigated by analytical and numerical approaches. This study is 

presented in Chapter 4. The single-mode solutions are studied. The use of approximate 

analytical schemes is assessed on its accuracy to capture non-linear random response of 

beams. 

The coupling effects on non-linear response of simply-supported beams subjected to 

harmonic and random pressures are investigated in Chapter 5 . Different excitations are 
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investigated. The numerical solutions of the equations of motion including the first two 

symmetric modes are studied. Conclusions are drawn. 

Finally, conclusions of the current work are presented and future work proposed by 

the author is given. 
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Chapte r 2 

E Q U A T I O N OF M O T I O N OF 

N O N - L I N E A R B E A M 

V I B R A T I O N S 

The case of a simply-supported isotropic beam can be regarded as a simplified case of the 

more complex structural models used in the design of high-speed aircraft components 

[88]. Moreover, the intense loading acting on the aircraft structures can affect fatigue life 

by introducing large-deflection geometrical non-linearity, modal coupling and multiple-

mode participation [90]. In this chapter, the governing equations of motion is derived 

for the geometrically non-linear forced vibration of a simply-supported isotropic beam. 

This is a set of multiple-degree-of-freedom (MDOF) equation which is considered to be 

a multiple-mode form of the very well-known Buffing's equation. 

2.1 General Multiple-Degree-of-Freedom Theory 

Consider an inextensible slender beam. The end hinges of the beams are restrained 

against both vertical and horizontal displacements. If one end moves away from the 
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other horizontally, a tensile force is produced in the beam, which is proportional to 

the amount of that motion. Similarly, if one end approaches the other one, the force 

produced is compressive. The deflection of the beam does not need to be small when 

compared with its transverse dimensions. However, the curvatures need to be restricted 

to be small so that the approximate expression d'^w/dx^ can be applicable to represent 

the curvature of the beam. Here, w represents the transverse deflection of the beam at 

any point x, and x is measured along the beam neutral axis. In the following analysis, 

both shear deformations and longitudinal inertia are neglected. 

2.1.1 Transverse Vibrations of Beams 

Figure 2.1; Beam with Hinged End Supports Axially Restrained under An Axial Force 

If the beam is subjected to an axial tensile force P as shown in Figure 2.1, the 

differential equation of the deflection under static transverse loading is [94]: 
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= JdT + f tu (2.1) 

where E and I are the Young's Modulus and the second moment of inertia, and the 

flexural rigidity of the beam is denoted by EI. M represents the bending moment 

produced by a transverse loading of intensity s. By double differentiation of equation 

(2.1) with respect to x, the following can be obtained; 

' h (2.2) 

Furthermore, by substituting the inertial force per unit length for s, the general 

differential equation for transverse vibrations can be expressed as: 

If the flexural rigidity of the beam is constant, equation (2.3) may be given by; 

< " > 

2.1.2 Large Deflection Formulation 

Assume a uniform and isotropic beam, i.e., EI and A are constant in Figure 2.1. From 

equation (2.4), the partial differential equation describing the transverse vibration of a 

beam which is axially restrained and in which large deflections are permitted is given 

by: 

where 

/i = vibration mass per unit length of beam 
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Pq — initial axial tensile force of beam 

Pi = axial tensile force due to deflection 

/ = external load per unit length 

This is a forced vibration problem. If the right-hand side of (2.5) is set to zero, the 

problem becomes a free vibration one [45]. 

P 

A/ 

/ 
' — 

Figure 2.2; Beam Stretched by Axial Force P 

The axial tensile force due to the deflection Pi can be expressed in terms of the deflec-

tion w. If one support were free to move horizontally, the beam would be represented by 

the dashed line in Figure 2.2. The amount of axial movement of both simply-supported 

ends of the beam due to deflection is [45, 95]: 

AZ = ( 2 . 6 ) 
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Equation (2.6) has been derived by numerous authors. For example, Langley [96] has 

used an alternative procedure in which ^ ( |^ )^ dx is identified as the non-linear axial 

Green's strain which is assumed to be constant along the neutral axis. The constant 

axial Green's strain is given by: 

du 1 /dw^ ^ 
8 x ^ 2 ( ^ 1 

where u is the axial displacement of the beam neutral axis. 

Integrating equation (2.7) with respect to x gives 

u-e,x + C~lJ^ ( ^ ) dx (2 .8 ) 

where C is a constant of integration. Applying the boundary conditions u{0) = u{l) = 0 

gives an expression for CQ in the form 

'""A/ {^) ''''' 
Now, assuming that Hooke's law applies, the axial force Pi produces an elongation 

of the beam, A/ which is: 

= (210) 

where I = length of the beam 

A = cross-sectional area of the beam 

E = Young's Modulus 

Equating the equations (2.6) and (2.10), one gets the axial tensile force Pi: 
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Then, substituting (2.11) into (2.5) gives a fourth-order partial differential equation 

that describes the transverse vibrations of a beam which is axially restrained and in 

which large deflections are permitted. 

d' w 

91^ 
Pq + 

21 

dvj 

dx 
dx 

The boundary conditions associated with equation (2.12) are w(0) = 0 and w{l) = 0. 

Equation (2.12) also includes damping and axial-prestressing. The damping coefficient 

is denoted by This equation is the basis for most of the studies of non-linear beam 

vibrations [11]. 

In the case of no axial-prestressing, Pq in equation (2.12) is zero. The resulting 

equation of motion is given by the expression (2.13) and has been used by a number of 

investigators to study geometrically non-linear vibrations of isotropic beams [60, 74, 75, 

76, 93]. 

E7 
a" w 

21 Vo 
dx 

The transverse deflection w can be represented by an expansion in terms of the linear 

free oscillation modes #„(x) so that 

w (2.14) 
n = l 

where n= l , 2,3,. . . , i? is the radius of gyration, and zi„ are functions of time only and 

are to be determined. 

Specify also that $^(3) satisfies the associated linear problem; 

and the appropriate boundary conditions; $ ^ = ^ ^ = 0 at a simply-supported end. 

(2.15) 
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2.1 General Multiple-Degree-of-Freedom Theory 

The following derivation procedures can also be found from various texts [11, 61, 75, 

76]. Substituting (2.14) into equation (2.13) gives; 

m^=l 771=1 

Equation (2.16) can be approximated by applying Galerkin's method [76], which 

basically involves the multiplying of the entire equation by and then integrating it 

over the length of the beam. 

EIRJ2u„ / t ^ — d x + RnV] / 4„<5, 

t t Jo ^ Jo 

• • 

n,p,g=l 
I 

(2.17) 

The orthogonality relationships [97] are: 

/•' r ' 
/ dx — 0 and / El^rn , ? = 0 for m ^ n 

Vo Jo dar 

dr = 771 = 7% (2.18) 
0 JQ 

where is the natural angular frequency which may be obtained from: 

As a result, 
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2.1 General MuItiple-Degree-of-Freedom Theory 

n,p,q=l 

+ (2.19) 

where Mm is the generalised mass. Also, from the relation 

'0 

where, 

dx 
= (2.20) 

Q jQ dx dx 

Kr^n = f dx (2.21) 
^0 dr cfa; 

the following set of non-linear ordinary differential equations results: 

M J ^ + Df^ 

. + ^ E K^nK„u^n,n, = (2.22) 
n ,p ,g= l 

Dividing (2.22) by Mm yields the following system of ordinary differential equations 

d'̂ Um . dUjji 2 \—^ T-T 
^̂ 2 ^ ^ ^rn^Tn + / Hmnpĝ n'̂ p'̂ ĝ 

n , p , g = l 

= ^ (2.23) 

where is the generalised damping and Umnpq is the generalised non-linear stiffness 

coefficient. Moreover, the external force has been decomposed into its magnitude /o, 

the time function f{t) and the space function The generalised force is denoted 

by fom(^)- Alternatively, (2.23) can be written as: 
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2.2 The One-Mode DuSng's Equation 

+ Tm — = fomM (^-24) 
(f(2 Cm 

The notations in equations (2.23) and (2.24) are as follows. 

^mnpg — 21M (2.25) 

P / " ' EAR^ °°^ 

tm — dx ; ^ ] K n̂jiKpgUmUpUq (2.26) 
n,P,,=l 

M^ = ^ f <S>16; G„ = (2.27) 
-/o 

Particularly, for the simply-supported (S-S) boundary conditions [76], where the 

modal functions in equation (2.14) is #^(a;) = sin(m7rx/l) and, 

_ , 4 f if m = n; 
•^m.n — \ 

0 if m ^ n. 

•""m Jo Jo /i \ 1 ' 

Hence the geometrically non-linear transverse vibrations of a slender beam can be 

described by a set of second-order non-linear ordinary differential equations shown in 

equation (2.23). 

2.2 The One-Mode DufRng's Equation 

If only one mode is considered, then from equation (2.24), the single-degree-of-freedom 

(SDOF) Buffing's equation with cubic non-linearity and modal damping for simply-

supported end conditions, is given by: 
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2.2 The One-Mode DufRng's Equation 

+ '^i~7r +<^1^1 + riiiiiWi = -foi(i) (2.29) 
df^ dt 

where 

& = 

n u n = ^ (2.30) 

The corresponding Buffing's equation without damping is expressed as: 

72 
+ tv^ui + Huiiuf = Foi(^) (2.31) 

The single-mode Duffing's equation has been adopted by a number of investigators to 

study the non-linear vibrations of beams. Equation (2.31) can also be derived by using 

the energies of the beam and the Lagrange's equation [96]. The procedure is presented 

briefly here. Assuming that the non-linear Green's strain is constant along the neutral 

axis of a simply-supported beam whose ends are restrained from axial movement, the 

strain energy, V, can be written as; 

+ (2.32) 

where has been defined in equation (2.7). Suppose the transverse deflection of the 

beam w{x,t) can be expressed in the form; 

w(z, ()=J2ii(^)gm(7rz/Z). (2.33) 

With the use of equations (2.33) and (2.9), equation (2.32) becomes; 
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2.3 Chapter Summary 

The kinetic energy of the beam T with longitudinal inertia neglected can be written 

as: 

By substituting equations (2.34) and (2.35) into the Lagrange's equation given by; 

where f — Rj^ f{x,t)sin(irx/l)dx is the generalised force caused by the external load, 

the equations of motion of the beam which is the same as equation (2.31) can then be 

obtained: 

;2 

^^2 + r i i i i iu j = (2.37) 

where the parameters have been deGned in expressions in equation (2.30) 

2.3 Chapter Summary 

A multiple-degree-of-freedom model describing the geometrically non-linear transverse 

vibrations of slender isotropic beams has been set up. The beam under consideration 

has end hinges which are restrained against both vertical and horizontal displacements. 

Both shear deformations and longitudinal inertia are neglected. 

A fourth-order differential equation has been derived in which large-deflection and 

axial-prestressing are included. The equation in which no axial-prestressing has been 

further analysed. By utilising the Galerkin's method and the orthogonality relationships, 

a set of MDOF ordinary differential equations has been derived. The corresponding 

SDOF Duffing's equation has also been obtained. 

It has been shown that the same single-mode Duffing's equation can also be derived 

using a different approach utilising the beam energies and the Lagrange's equation. 
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Chapte r 3 

H A R M O N I C V I B R A T I O N S OF 

N O N - L I N E A R B E A M 

The non-linear response of structures to harmonic excitation has been studied by nu-

merous researchers. One reason is that the understanding of the response of structures 

to harmonic excitation provides insight into how the system will respond to other types 

of forces. 

In this chapter, the non-linear response of beams subjected to harmonic excitation is 

investigated. The equations of motion derived in Chapter 2 are employed to study the 

vibration behaviour of simply-supported beam with immovable end conditions. Both 

analytical and numerical approaches are used to obtain the solutions of the non-linear 

response. 

3.1 The MDOF Undamped Equations of Motion 

The non-linear undamped forced response of simply-supported beams with immovable 

end conditions due to a time-domain harmonically varying load will be studied. The 
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3.2 Harmonic Response 

equations of motion for an undamped systems can be obtained by simply neglecting the 

damping term in (2.23) and (2.24). The equations thus obtained are: 

(fiu 
^^2 ^ "I" ^ ] ^mnpq^n'^p'^q — Fomif) (3.1) 

n,p,q~l 

= fom(^) (3-2) 

The MDOF undamped large-deflection transverse vibrations of a slender beam can 

be described by an expression either in the form of equation (3.1) or of equation (3.2). 

3.2 Harmonic Response 

3.2.1 Solution based upon the Harmonic Balance Method 

Since there is no known exact analytical solution to (3.1), an approximate solution by 

the harmonic balance method will be sought. This method can be found from various 

texts such as Blaquiere [40]. Bennett and Eisley [61] have outlined the method briefly. 

A solution of the mode 'Um(̂ ) is assumed to have the form for harmonic forcing 

sin (3.3) 

where 11= angular frequency and Am= constant to be determined. 

Substituting (3.3) into (3.1), expressing sin^ Vtt = (SsinQi — sin30t)/4, and neglect-

ing the terms that contain sin 3ili, the following is obtained: 

— + Ul'^Ajn -f - ^ 2 ^mnpgA-nApAg = ——= Qom (3-4) 
4 — smiit 

The negligence of the terms that contain sin dVlt is merely one assumption of the 

Harmonic Balance which states that any harmonics which arise in the substitution 
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3.2 Harmonic Response 

which are not included in the assumed solution (equation 3.3) are neglected. Equation 

(3.4) only considers the first j modes. It is a set of j non-linear algebraic equations 

relating the terms of and An iterative method (see Appendix A.2) can then be 

employed to find the relations between the amplitudes and the angular frequency 

Q. The expression of equations (3.1) and (3.4) have been expanded up to the first three 

modes and is shown in Appendix A.l. 

If the external force, f{x,t) is assumed to be harmonic in the time domain, then it 

can either be a concentrated force, = fQsin{Qt)S{x — %) at a particular point 

xo along it, or a distributed uniform load, f^{x,t) = /osin(fii)/'^(x), across the span. 

The generalised forces f ^ ( f ) and FQ^{t) to be implemented in (3.1) for each case are 

respectively: 

= (3.5) 

^ % /(a;)$m(z) (iz (3.6) 

3.2.2 One-mode Non-linear Frequency Response Functions 

The beam is approximated by an equivalent single-degree-of-freedom (SDOF) Duffing 

oscillator derived from equation (3.1). Equation (3.7) presents the Buffing's equation 

with only the first mode considered. 

^̂ 2 ~ —tOiUi — Iliiixtii + -foi(^) (3-7) 

The excitation, Foi(i), varies harmonically with time and can be obtained from 

equations (3.5) and (3.6). From (3.4), 

+ wMi + %nuii = Qoi (3.8) 
4 8in & 
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3.2 Harmonic Response 

Rearranging equation (3.8) gives the following frequency-amplitude relation approx-

imation; 

Q I ^ 3 FoiM 
cufAi sin Clt 

= A/1 + s n u i i ^ ? Qoi 
w? 

(3.E0 

The force parameter Qoi is independent of time and related to the actual force by the 

expression Qoi = Jo ' where /o and / ( z ) specify the force magnitude 

and force spatial mode respectively. After obtaining the values of f2 for the correspond-

ing values of pre-defined Ai and the force parameter Qoi, the frequency-amplitude-force 

relation curves can be plotted, and the time dependent function ui{t) can also be ap-

proximated if desired (see Appendix B.2). 

3.2.3 A Particular Example 

In the numerical example, the beam shown in Figure 3.1 studied is studied and has a 

circular cross section. Its properties is given in Table 3.1. The use of such a beam is 

merely for the purpose of comparing the solutions by the various computational methods 

and the published results. 

Young's Modulus 

E 

207 xlO^ f o Length of beam I 2.5 m 

Radius of gyration 

R 

0.025 m 2"^ moment of 

inertia 1 

4.909 xlO-G 

Density of beam p 7850 kg/w? diameter d 0.1 m 

Table 3.1; Parameters Used for Analysis of Beam in the Particular Numerical Example 

From (2.14), let = sm{m7rx/l), so that 

w(3;,() = sin ra-KX 
~ r 

(3.10) 
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3.2 Harmonic Response 

Figure 3.1: Beam with Immovable Ends Simply-supported and Load at Mid-span 

where m is an integer. This example involves only a single mode so that m is equal 

to 1 in equation (3.10). Moreover, from equation (2.25) and expressions in (2.28), the 

following can be obtained: 

n 1111 4^^ 
Ml 

jjl 
(3.11) 

Now, consider two loading cases. In one case, an external concentrated force FQi(t) = 

Qgi sin(fi£) with normalised magnitude ^ is applied at the mid-span of the 

beam. In the second case, a uniformly distributed force which acts on the beam can 

take the form of the expression 

= 0018in((]Z) -
4/0 

Rh-K 
sm{Qt) 

Hence, substituting (3.11) into (3.9) and the forcing functions for each case as foi(f) in 

(3.9) will result in the following expressions for the frequency-amplitude relation: 

Wl concentrated 

3 2/.P 
^ + 1 6 " ' " ^'EIRA, 1 Ek 

A, 
(3.12) 
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3.2 Harmonic Response 

CJi distributed 

1 + W = 1/1 + 
A, 

(3.13) 

Here, Ai = \wm,ax/R\, and Wmax is the maximum amplitude response for the single 

mode. Figures 3.2 and 3.3 are typical response curves for the hard spring Buffing's 

oscillator. They can be found by plotting the frequency ratio in (3.12) and (3.13) as a 

function of Ai. 

3.2.4 Results and Discussions 

Table 3.2 compares the free vibration frequency ratios for pre-defined response ampli-

tudes with the exact theoretical solutions given by the elliptic function solutions [45, 98]. 

The Harmonic Balance solutions overestimates the solutions in free vibrations. The dif-

ferences between the two solutions increase with increase in amplitude. However, their 

differences are acceptable, as the Harmonic Balance is simply an approximation to the 

Buffing's equation. 

Elliptic function HEM [equation 

solution [45, 98] (3.9) with Qoi = 0] 

Ai Q,/ui n/cui % difference 

1 1.0892 1.089725 0.048 

2 1.3178 1.322876 0.385 

3 1.6257 1.639360 0.840 

4 1.9760 2.000000 1.215 

5 2.3501 2.384848 1.479 

Table 3.2: Free Vibration Frequency ratios H/wi for a S-S Beam with Immovable End 

Conditions for Selected Amplitudes Ai 

In the case of forced vibrations, the numerical results and other published results 

are shown in Tables 3.3 and Tables 3.4 for selected values of Ai. Figures 3.2 and 3.3 are 
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3.2 Harmonic Response 

the "backbone curves" for the concentrated loading case and the uniformly distributed 

loading case respectively. As only the fundamental mode is concerned, the forcing 

frequencies have been chosen to be lower than and away from the next responding 

resonance frequency. 

Elliptic so- Perturbation F.E.M. HBM 

lution [59, solution [981 [equation 

98] [98] (3.12)] 

Ai n/cJi Cl/u)i Q/wi 

-1 1.6607 1.6608 1.6425 1.660812 

± 2 0.9695 0.9821 0.8497 0.982141 

1.5894 1.5923 1.5143 1.592293 

± 3 1.4519 1.4710 1.217 1.471021 

1.7815 1.7920 1.6326 1.791954 

± 4 1.8711 1.8993 1.6229 1.899290 

2.0751 2.0959 1.8495 2.095877 

± 5 2^W01 2.3181 1.9621 2.318047 

2.4179 2^W98 2.1165 2.449828 

Table 3.3: Forced Vibration Frequency Ratios H/wi for a S-S Beam with Immovable 

End Conditions under a Harmonic Concentrated Force = 7r/2, = Wi7r/2, 

/o = 124379.73jV) 

Tables 3.3 and 3.4 are represented graphically by Figures 3.4 and 3.5 respectively. 

When compared to the first two published results by the classical methods in Table 

3.5, the present SDOF model matches very well with the elliptic and perturbation solu-

tions, but not the F.E.M. solutions by reference [67], in both the concentrated and the 

distributed forced vibration case. 

Since the methods to generate the published results are not exact, the accuracy can-

not be verified. Hence, the time domain response amplitudes from the Finite Element 
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3.2 Harmonic Response 

Elliptic so- Perturbation F.E.M. HBM 

lution [59, solution ^8] [equation 

98] [98] (3.13)1 

0/UJi f2/wi Cl/uji 

-1 1.7852 1.7854 1.7856 L785357107 

± 2 0.8472 0.8660 0.8460 0.866025404 

1.6557 1.6583 1.6512 1.658312395 

± 3 1.4003 1.4126 1.3760 1.421560176 

1.8217 1.8314 1.8002 L831438415 

± 4 1.8413 1.8708 1.7846 1.870828693 

&1013 &1213 &0495 2.121320344 

± 5 2.2606 2.2995 2.1619 2.299456458 

2.4361 2.4673 2̂ W:32 2.467285958 

Table 3.4: Forced Vibration Frequency Ratios O/wi for a S-S Beam with Immovable 

End Conditions under a Harmonic Uniformly Distributed Pressure = 2, Q] 

/o = 99503.78^/m) 

2w2, 
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3.2 Harmonic Response 

^1 Perturbation 

method, c 
(%) 

j Elliptic 

solution, c 

(9%) 

F.E.M. 

[98], c 
(%) 

Perturbation, 

method, d 

(%) 

Elliptic 

solution, d 
(%) 

F.E.M. 

[98], d 
(%) 

-1 -0.0674 1 -0.00674 -1.10259 -H0.0024 -0.0088 +0.014 

-2 -0.18169 1 -0J.8169 -L89816 -0.00075 -0.16 -0.43 

-3 -1.29985 1 4158339 -8.89275 -0.0021 -&53 -1.71 

-4 -0.99133 1 4199133 -11.7553 -0.00096 -&94 4139 

-5 -0.00114 1-1.30328 -13.6062 +0.00057 -L26 -5.03 

+2 -0.00417 1 -1.28709 -13.4849 -0.0029 -2.17 -2^1 

+3 -0.00143 -1.29985 -13.5498 -&63 -L50 -&20 

+4 0.000527 -1.48425 -14.5523 +3.46 fL83 -1.31 

+5 0.002286 -1.63702 -15.3555 +0.0019 -169 -&98 

Table 3.5: Percentage Differences of (H/w) between HBM results and Various Published 

Results, c=concentrated loading, d=distributed loading (from Tables 3.2, 3.3 and 3.4) 
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1.5 2.5 

F r e q u e n c y ratio(£l /coi) 

Figure 3.2: Harmonic Balance; Amplitude Versus Frequency for a S-S Beam 

with Immovable End Conditions under Concentrated Force with Magnitudes 

(/o=79182.59 jV), :%=7r/2 (/o = 124379.73Ar and :%=2 (/o=158365.20 N) 

software ANSYS® have been obtained to further check the validity of the present vibra-

tion model (2.13) (See Appendix C.l). This approach generally consists of three phases, 

the "Preprocessor" phase which generates the model, the "Solution" phase which anal-

yses the model and calculates the solutions and the "Postprocessor" phase where the 

numerical results are retrieved. In the current study, linear solutions have been obtained 

through the use of "Harmonic" and "Transient" analysis within the "Solution" phase in 

ANSYS®. In ANSYS® 5.7, "Harmonic" can only perform frequency domain analysis 

without geometrically non-linearity effects. With the inclusion of non-linear effects but 

solutions in the time domain have been obtained via "Transient" analysis. 

The time domain first-mode amplitude response has also been calculated by numer-

ical integration of the governing ordinary differential equation (3.7) with the use of a 
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0 1 2 3 

F r e q u e n c y ratio (^l/oo-,) 

Figure 3.3: Harmonic Balance; Amplitude Versus Frequency for a S-S Beam with Im-

movable End Conditions under Uniformly Distributed Force with Magnitudes 

(/o=49751.89 N/m), and ^ = 2 (/o=99503.78 N/m) 

Newmark-Beta time integration method [99, 100]. This would give the exact solution 

of the first-mode response, if equation (3.7) were an exact interpretation of the motion 

of the beam under investigation. This approach checks the accuracy of the use of the 

Harmonic Balance Method which applies to equation (3.7). 

The frequency response curve can be constructed from solutions obtained by the nu-

merical methods. For each pre-defined forcing frequency O, the numerical analysis (both 

by ANSYS® "Transient" analysis and by Newmark-Beta time integration method) is 

performed and the steady-state maximum amplitude of the displacement response, ] A] 

is obtained. The time-domain numerical approaches give only the stable solutions of 

the differential equation although the present method using HBM is able to calculate all 

three (two stable and one unstable) solutions. Nevertheless, only the appropriate stable 
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0 elliptic solution 
0 perturtmtlon method 

. 0 F.E.M 
* HBM 

I r o 

0 oO# 

1—a 08 C9| r o 

0 oO# 

1̂  2 
Frequency ratio (Q/m ) 

Figure 3.4; A Comparison of Amplitude \Ai\ at Selected Frequency Ratios among the 

Four Methods (Concentrated Load F§^=7r/2) 

—I 1 1 • 0#O C@| 

4.5 

0 eUlpbc solution 
O perturbation method 
a F.EM. 
* HBM 

< 

#25 

c# 

aC#. :a# 

Figure 3.5; A Comparison Amplitude | ^ i | at Selected Frequency Ratios among the Four 

Methods (Distributed Load f ^ = 2 ) 
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3.2 Harmonic Response 

solution will be used for the purpose of comparison. 

(n/wi) |A| (HBM) |A| (ANSYS® 

time-domain) 

|A| (Newmark-

Beta time-domain) 

0.0152 0.8747 0.856 0.848 

0.0967 0.8803 0.8400 0.8513 

0.4243 0.9946 1.014 1.1820 

0.856 1 1.4777 1.518 1.508 

1IW57 1 1.9504 2.000 1.984 

1^W35 1 2.4332 2.429 2.4751 

l j^62 1 2.7079 2.742 2.7543 

L5716 1 Ou l̂99 0.580 0.7289 

1.7005 1 0^1446 0.480 0.5438 

1.7033 1 0^W46 0.460 0.5408 

2.0203 1 0.3266 0.325 0.3261 

2IW6 1 0^861 &268 0.2957 

2.3778 1 (12153 0T68 0.2150 

2^W87 1 0.1593 0T24 0J591 

Table 3.6: Forced Vibration Amplitudes \A\ = Iw^ax/R] for a S-S Beam with Immovable 

End Conditions under a Concentrated Force = l(/o = 79182.59iV) 

Table 3.6 and Figure 3.6 show some results in the concentrated forcing case while 

Table 3.7 and Figure 3.7 show those in the uniformly distributed loading case. Figures 

3.6 and 3.7 show the simulated backbone curves by the two time-domain analyses, 

together with that by the present model. Table 3.8 summarises the areas on the plots of 

Figures 3.6 and 3.7, where the "jump" phenomenon happens to occur (see Appendix B). 

To use the Harmonic Balance Method to estimate the frequency at which the "jump" 

occurs, the first derivative of equations (3.12) or (3.13) is set to zero. The value of 

| ^ i | is then obtained and by substituting |Ai| back to equations (3.12) or (3.13), the 
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(n/wi) |A| (HBM) |A| (ANSYS® 

time-domain) 

\A\ (Newmark-

Beta time-domain) 

0.0156 1.4402 1.3540 1.365 

0.4330 1.5694 1.5000 1.7000 

0.8660 2 1.9858 2.0800 

1.1713 1 2.5 2.3285 2.5600 

1.4216 1 3 2.4287 3.066 

1.5 I 3.1677 1.9300 3.2373 

1.6583 3.516 3.548 3.5920 

1.7854 1 3.8404 3.825 3.8843 

1.8314 1 0.9095 0.7554 0.9076 

1.8718 1 0.8438 0.7080 0.8433 

2.1213 1 0.5820 0.5054 0.5815 

2.2465 1 0.5 0.4385 0.4994 

2.2894 1 0.4763 0.4194 0.4760 

3.0020 1 0.25 0.2600 0.2497 

Table 3.7; Forced Vibration Amplitudes | A| = \wmaxlR\ for a S-S Beam with Immovable 

End Conditions under a Uniformly Distributed Load = 2(/o = 99503.78iY/rri) 
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3.2 Harmonic Response 

resulting value of corresponds to the frequency ratio where the backbone curve 

is vertical. This is where the jump of the amplitude should occur. The precise value of 

the "jump" frequency ratio has not been obtained from the numerical solutions given 

by the Newmark-Beta integration and ANSYS® results. This is because an excessively 

large number of numerical computation would be needed in order to generate enough 

data points to retrieve an exact value of (O/oji). 

It can be seen that when predicting the frequency when this jump phenomenon takes 

place, the Harmonic Balance method will give a higher value than that by the ANSYS® 

FEA, and a lower one than that predicted by solving the SDOF Duffing numerically by 

Newmark-Beta time-domain approach. 

X ANSYS Time-domain simulation 
+ Time-domain numencal integration of (3.7) 
0 Harmonic Balance Method 

C f 

* 

6 

* 

6 

+ 
0 

? 9 -f-

* + 

1 2 
Frequency ratio (A/coJ 

Figure 3.6: Comparison of Amplitudes |Ai Wr. c/E| at Selected Frequency Ratios 

by Different Solutions in the Concentrated Load Case, ^^^=1 

Table 3.9 gives the difference in percentage between amplitudes given by the Newmark-

Beta numerical integration method and by HBM, as well as that between amplitudes 

by ANSYS® and by HBM. It can be seen that, in general, the solutions by HBM agree 

better with those obtained by the numerical integration approach than with those by 
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X ANSYS nme-dommin simulation 
+ Time-domain numehcal integratkin of (3.7) 
0 Harmonic BaWnce Method 

1 ••••• -

- -• # 

, § 

-

J . 

+ 
_ . .9 

+ 

8 9 + 

* % 

1 1 ^ 2 
Frequency rafio (O/m.) 

2.5 

Figure 3.7: Comparison of Amplitudes |Ai| = \wmax/R\ at Selected Frequency Ratios 

by Different Solutions in the Distributed Load Case, 

Newm ark-Beta 

time-domain 

ANSYS® time 

domain simulation 

Harmonic Balance 

Method 

Point Force (n/cji) = 1.52 1.12 < (n/wi) < 

1.32 

iyt/oji) — 1.44 

Distributed 

Load Fqi=2 

1.80 < (n/wi) < 

1.83 

1.43 < (n/wi) < 

1.50 

(n/wi) = 1.65 

Table 3.8; Frequency Ratio at which the "Jump Phenomenon" Occurs for the Three 

Analyses 
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3.2 Harmonic Response 

ANSYS® simulation. This could be due to the fact that both the HBM and Newmark-

Beta time-domain method solve the SDOF Buffing's equation whilst ANSYS® utilises 

the Finite Element Approach to model and solve the beam vibration problem. The 

damping which has to be employed in the ANSYS® analysis and the Newmark-Beta 

integration scheme to remove transient effects also affects the results when compared 

with the undamped solutions by HBM, especially near resonance. 

3.2.5 Remarks on Mode-coupling in Non-linear Harmonic Vi-

brations 

Finite Element Analysis by ANSYS® has been used to obtain the linear and non-linear 

responses subjected to harmonic excitation. The solutions are compared with those 

obtained by solving the Buffing's equation. Some of the solutions are compared and 

shown in the graphs in Figures 3.8 and 3.9 for different forcing conditions. The effects 

of non-linearity can indeed be identified from the diagrams. It can be seen that the 

effects of mode-coupling are not significant in the cases under investigation. This is 

deduced by the closeness between the numerical time-domain solutions of the SBOF 

Buffing's equation and the ANSYS® non-linear solutions which takes into account of 

all the responding modes. This implies that the effect of the resonances of the third and 

of subsequent modes are very small compared to that of the first mode. This finding, 

without any surprise, has widely been accepted for weakly non-linear systems. 

However, it has to be borne in mind that for forcing frequencies close to the natural 

resonance, the response is very dependent on the amount of damping applied. Although 

no damping is considered in the analytical model, some damping has to be introduced 

when running the time-domain integration analysis in order to remove the "transients". 

Figure 3.10 shows the frequency response curves for the first two symmetric modes 

(first and third) in the concentrated loading case, obtained using the Harmonic Balance 

Method and an iterative scheme (Appendices A. 1.1 and A.2). Solutions obtained by 

ANSYS® non-linear time-domain analysis are also presented at selected frequency ratios 

(O/wi). It can be seen that the total response is indeed affected by resonances of both the 

I.K.B.G. TANG 48 



3.2 Harmonic Response 

(0/wi) Time Time do- (Q/uii) Time Time do-

domain main sim- domain main sim-

Newmark- ulation, c Newmark- ulation, d 

Beta, c (ANSYS ®) Beta, d (ANSYS®) 

(%) (%) (%) (%) 

0.0152 &15 214 0.0155 &22 5.99 

(X0967 3.41 4.58 0.4330 8.39 L95 

0.4243 1&9 L95 0.8660 4.00 0.7093 

&856 2.00 &156 1.1713 2^0 2.40 

1.0957 1.69 6.48 1.4216 2.20 2.60 

1.3035 1.69 0.173 1.5 Z15 2.88 

1.4162 1.68 L26 1.6583 Z12 0.893 

1.5716 0J j7 26.8 1.7854 1.13 0^i53 

1.7005 0J47 23.6 1.8314 0.209 7.64 

1.7033 0J48 23.9 1.8718 0.0593 5J9 

2.0203 0J^3 2L6 2.1213 0.0859 1&2 

2.096 0J^5 2L6 2.2465 &120 1&8 

2.3778 0140 22^ 2.2aM (10630 1&6 

2.6987 0J^6 2Z2 3.0020 OJ^O 4.00 

Table 3.9: Percentage Differences of Response Amplitudes Ai for Selected Frequency 

Ratios between HBM Model and Time-domain Simulations, c =concentrated load, d = 

distributed load (from Tables 3.6 and 3.7) 
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5̂ .1 

10 N concenlraled load at mid-span 
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Figure 3.8; Non-linear Displacement Response at Selected Forcing Frequencies to Har-

monic Concentrated Loads 
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Figure 3.9: Non-linear Displacement Response at Selected Forcing Frequencies to Har-

monic Uniformly Distributed Loads 
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Figure 3.10; Frequency Response of the First and Third Coupled Modes for a Simply-

supported Beam with Immovable End Conditions by Harmonic Balance Method, with 

Results by ANSYS® at Selected Frequency Ratios 

I.K.D.G. TANG 52 



3.3 Chapter Summary and Conclusions 

first and the third modes, and the results agree well with ANSYS® solutions. Moreover, 

the total coupled response (mode 1 + mode 3) reveals that the first mode is dominant 

when the forcing frequencies are near to the first natural frequency. This agrees with 

previous findings obtained by the time-domain numerical methods. However, the total 

response is dominated by the third mode when the forcing frequencies are close to the 

third natural frequency. 

It can be deduced that the uncoupled equations can give good approximations to 

the total response of the beam when the forcing frequencies are near to the natural 

frequency. In other words, when D. is near to wi, the uncoupled SDOF Buffing's equation 

including only the first mode (equation (3.7)) can be used. When Q. is near to wg, the 

corresponding SDOF Buffing's equation including only the third mode can be employed. 

However, for 0 which is between the resonances of the two modes, e.g. 5 < H/wi < 7 

in Figure 3.10, the equations including coupling of the modes should be used in order 

to obtain a valid overall response. 

3.3 Chapter Summary and Conclusions 

Non-linear transverse displacement response of a simply-supported beam with immov-

able end conditions when subjected to a harmonically varying excitation has been cal-

culated using a linearisation technique called the Harmonic Balance Method. Two cases 

have been studied, a concentrated load at mid-span and a uniformly distributed pressure 

across the span. 

Published results utilising several other approaches, namely the elliptical solutions, 

the perturbation solutions and the solutions by a Finite Element Method (F.E.M.) for-

mulation [98] which has included the effects of longitudinal deformation and longitudinal 

inertia, are compared with solutions by the present harmonic balance method. All but 

the F.E.M. solutions [98] are based on the single-mode Buffing's equation (3.7). The 

solutions have also been obtained by the numerical integration of the single-mode Buff-

ing's equation. Simulation of the vibration problem using the ANSYS® time-domain 

Finite Element Analysis has also been carried out. The harmonic balance solutions have 
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3.3 Chapter Summary and Conclusions 

been compared with both the ANSYS® Finite Element solutions and solutions by the 

numerical integration of the single-mode Buffing's equation. 

The closeness of the HBM response to the time-domain numerical-integration re-

sponse implies that the linearisation technique in harmonic balance does give good 

approximation to the solution of the Buffing's equation. 

The difference between the solutions based on the Buffing's equation and the ANSYS(g 

ones may be explained by the fact that ANSYS® analysis does not solve the vibration 

problem based on the governing equation of motion (3.1), with the negligence of the 

longitudinal and rotary inertia. The ANSYS® Finite Element Approach simulates the 

entire beam when subjected to the prescribed excitation, thus taking into account of 

all the physical characteristics of the beam. Nevertheless, when comparing the two 

time-domain solutions, their closeness to each other indicates that equation (2.13) is an 

acceptable representation of the beam-vibration problem under investigation. 

Finally, in the case of a simply-supported beam with immovable end conditions 

subjected to a symmetric loading with forcing frequencies lower than and well away 

from the third response mode, the non-linear response is predominantly due to the first 

resonance, and mode-coupling effects on the dominant first mode due to responses by 

subsequent modes are insignificant. As a result, the single-degree-of-freedom Buffing's 

equation is a good model to study the geometrically non-linear deflections of a simply-

supported beam. 
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Chap te r 4 

R A N D O M V I B R A T I O N S OF 

N O N - L I N E A R B E A M 

In aerospace applications, excitation by jet or rocket engine noise and convected turbu-

lence flow ought to be treated by probabilistic methods. The structures in the vicin-

ity of jet or rocket engine exhaust are excited dynamically by acoustic pressure. The 

unfavourable outcome of this excitation are acoustic fatigue and possible damage or 

malfunction of operating electronic equipment placed on the excited structure. 

4.1 Damped Large-deflection Beam Equations 

When there is no axial prestressing, the governing equation of motion of an axially 

restrained beam subjected to transverse vibration, where large deflections are accounted 

for, has been presented in Chapter 2 by equation (2.13) which is replicated here. 

/„ IW ^ 21 
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4.2 Response to Non-linear Random Excitation 

This forth-order partial differential equation can be represented by a set of second-

order ordinary differential equations with cubic non-linearity, in the form of equation 

(2.24) which is restated here: 

^ + r „ = ^ = F^(t) 

The symbols in the equations have been defined previously in Chapter 2. Moreover 

in equation (2.24), the damping coefficient is related to the damping factor ( by the 

expression ( = The damping factor is the ratio of the actual damping to the 

critical damping [7]. 

4.2 Response to Non-linear Random Excitation 

4.2.1 Solution Based upon the Equivalent Linearisation Tech-

nique 

When the excitation is a stationary and ergodic random function of time, and has a 

zero mean, an approximation to find the solution of equation ( 2.24), called the Direct 

Equivalent Linearisation Technique [29, 76] can be used. The approximated solution will 

also be stationary and ergodic. Moreover, it will be assumed that only the displacement 

term, is non-linear. 

Equation (2.24) is a set of non-linear coupled equations and represents a multiple-

degree-of-freedom non-linear system of the form 

(4.1) 

where u is the generalised displacement vector, -u, u j is the total internal force act-

ing in the i-th degree-of-freedom direction and F{t) is the stationary Gaussian random 

excitation vector, with zero mean. 
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4.2 Response to Non-linear Random Excitation 

It will be assumed that a stationary Gaussian solution to (4.1) exists. 

Replace equation (2.24) by a linearised second-order ordinary differential equation; 

d Urn (• dUjjfi 2 
(4.2) 

where km is the equivalent linear natural angular frequency, and defining the following 

set of linear equations 

Cii-k JS/U = j7(f) (4X3) 

where the matrices M, C and K are arbitrary mass, damping and stiffness matrices to 

be determined such that the solution of (4.3) will give an approximate solution to (4.1). 

Since the non-linear equation (4.1) has been replaced by the linear equation (4.3), there 

will be an error which can be written as 

e = g (u,u,u) — Mil -f- Cib + Ku (4.4) 

The criterion to obtain a good approximation is that the mean-square value of the 

error is a minimum. The necessary conditions will be 

d j = E 

5gj(u,u,u) 

(«,",") 
diij 

U E (4.5) 

E[...] represents the expectation operator. Applying equation (4.5) on (2.24), pro-

vided that, 

'^mj — 

1 if m = j\ 

0 if j. 
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4.2 Response to Non-linear Random Excitation 

if ^ — 3) 

0 if m ^ j. 

^mj — ^ 
I d 

duj 
"I" r ĵi) = E 

duj 
+ E 

duj 

for = 1 ,2 ,3 , . . . . 

(4.6) 

a / ™ 
I ^ ] KmfiKpqUjiUpUq 

^mj — ^m^'rn.j 
2ZMm E ^ 

\n,p,q=l 
dxij—n 

+ 

f 
\n,p,q=l 

,m, I E ^ 
dICfyijiKpqtlflUpUg 

dUj:, 
+ ^ | ^ E 

2fMn 
\n,p,q-l 

dK^jrijiKpgllfiUpUg 

duj^ 

K. ^m^mi 4" mj — '^rn"rnj f ^ ] KrjfijKpqE îip'iiĝ  "f" 2 ^ ^ KjjijiKpjE^UjiUp 
\p,9=l n,p=l 

(4^0 

The Kronecker .delta Smj = I fox m — j, otherwise, 5mj = 0. 

Since Kmn = 0 when m ^ n, Kpg = 0 when p ^ q and Kpj = 0 when p ^ j, 

— ^m^mj + ^j2 ] KfYijKppE[Up\ 4" 2iKmmKjjE\uTririUj] (4^0 

The linearised equations have modal coupling as the term E[umUj] ^ 0. This term 

will become zero when E[ura] and E[uj] are statistically independent from each other. 
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4.2 Response to Non-linear Random Excitation 

4.2.2 Random Vibrations: Uniform Acoustic Pressure 

In the response of linear systems, there is generally low modal overlapping. Hence, 

the mass, damping and stiffness matrices are completely uncoupled. In the following 

analysis, the non-linear response is assumed to have low modal overlapping as well. In 

consequence, equation (4.3) is completely uncoupled in the mass, damping and stiffness 

matrices. 

Let the beam be subjected to an acoustic pressure. The load is a stationary band-

limited white-noise random pressure with zero mean and has a deterministic spatial 

distribution which is uniformly distributed across the span. Therefore, the spectral 

density function is independent of the forcing frequency and can be denoted by the 

magnitude, Sq. The mean square response of each mode can thus be expressed in terms 

of the spectral density function SF{Q) of the random load f(t), 

If kjn is replaced by w^, equation (4.9) represents the m-th mode linear mean square 

response. The frequency response function, is given by 

With m = j, equation(4.8) becomes 

^mm ^rn 

2 / N 

^ [ul] + 2 K „ „ K „ „ E [ < ] (4.11) 

Here, as the distribution is uniform, even modes are not excited, i.e. p = odd. For 

the case where m = 1, 

Kii = uif+ {Ki iKi iE [uf] 4- KiiK^-^E [u'̂ ] -t-. . . 4-

Kii = ^ (3E 9 + . . . + [2^ ]̂) (4.12) 
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4.2 Response to Non-linear Random Excitation 

Denoting = /Cn, the mean square displacement, is thus given by: 

== (4.13) 

Substituting equation (4.12) into equation (4.13) and tidying up give the following 
.2 polynomial in terms of the variance , 

4-
4 

where Sio — •KSo/i^Gf^iuf). 

1 4- - (SkT̂ a 4-25cr^5 f . . . 4- ^ui " ^lo — 0 (4-14) 

In the same manner, as shown for the first mode, the mean square deflection for 

subsequent modes can be determined by the general format in equation (4.15). 

q 2 
4- -- == 0 (4.1(5) 

N=l,2,3,...,N^m 

where, 

Sm = /•"—9 ^ = mode number. 

Since there is coupling in the coefficients of the polynomial, the mean square deflec-

tions have to be solved for by using an iterative method. First the quadratic equations 

(in a l^ ) are solved for by neglecting the coupling in the coefficients. These values 

are used as the starting values for subsequent iterations. The iteration process is com-

pleted when a convergence criterion is met. Convergence is considered achieved for each 

mode, whenever |[((7um): — i(^um)i-i]/{o'um)i\ < 10'^ , where i is the iteration number. 

The total mean square deflection can be expressed as: 

^ ^ ^m(:c)a^^(t) (4.16) 
m = l 

If only the first mode is considered, m — 1, the single-mode Buffing's equation can 

be derived from equation (2.24) and is given in equation (4.17). 
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4.2 Response to Non-linear Random Excitation 

^ + n u n u f = ^ = (4.17) 

The equivalent linear natural frequency can be derived from equation (4.8) and is 

given by: 

A:i = y (4.18) 

Substituting equation (4.18) into equation (4.13), the non-linear mean square dis-

placement for the first mode can be obtained and is given by: 

ct: 
1 + - 1 

"1 (4 19) 

where (T„q̂  is the corresponding linear mean square displacement response of the first 

mode. 

4.2.3 A Particular Example: S-S Beam with Immovable End 

Conditions 

An isotropic beam which is rectangular in cross section is used in this example. Its 

properties are shown in Table 4.1. A uniformly distributed pressure as described in 

section 4.2.2 is applied on the beam with immovable simply-supported end conditions. 

Figure 4.1 should be referred to. The beam is subjected to five overall sound pressure 

levels (SPL) of 60, 70, 80, 90, 100, 110, 120 and 130 dB (Ref. 2 x 10'^ W/m^). The 

corrected sound spectrum level, SSL is related to the SPL by the expression SPL — 

SSL — lOlog(DPF), where DW is a finite bandwidth and is equal to 250 Hz. Only 

linear structural damping will be considered. 

As loading is symmetrically applied and the beam is simply supported, all even-

numbered modes do not respond. Moreover, only the first mode will be included in the 

study. 
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fff J 
/ \ / / \ / \ / \ 

EIA 

V 
w 

Figure 4.1; Simply-supported Beam with Immovable End Conditions Subjected to Uni-

formly Random Loading 

Young's modulus E 70.395 GPo Length of beam I 0.3048 m 

Beam thickness h 0.001626 m Width of beam b 0.0508 m 

Density of beam p 2765.7606 Damping factor C = 6 /2wi 0.01 

Table 4.1: Dimensions and material properties of beam used in section 4.2.3 
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Here, $ i (z) = sin 3^, hence the root-mean-square (r.m.s.) displacement response 

(];,() is: 

<) = (t) sin ^ (4.20) 

For this loading condition, 

Gi = ~ (4.21) 

To relate the specified SSL in dB with spectral density function Sf{Q.), equation 

(4.22) can be used, provided that Qi ^ Q ^ Qy,, where Q.i and Qu is the lower and upper 

cut-off frequencies respectively [92, 101, 102]. 5 / is zero for all values of H outside this 

range. 

j'L... = p ? . / i o ' ^ ' = S / ( n ) A n (4.22) 

Here, pref is the pressure corresponding to the "zero" noise level, i.e., SSL = 0 dB. 

It is usually assumed that pref = 2 x 10~^A^/m^. The resulting r.m.s. pressure, Pr.m.s. 

is simply the square root of the value 5 / (0 ) • AO. Readers should seek further details 

from reference [101]. 

The linear and non-linear r.m.s deflections due to the response of the first mode will 

be obtained. The equivalent linear natural frequencies and the mean square displace-

ment can be obtained from equations (4.18) and (4.19). The response spectrum of the 

displacement a^i is given by 

4.2.4 Numerical Results and Discussions 

It is possible to obtain non-linear solutions in virtually all cases by the step-by-step 

time-domain Monte-Carlo numerical integration scheme, provided that the nature of 
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4.2 Response to Non-linear Random Excitation 

the excitation and the equations of motion are known. It is therefore generally accepted 

to consider the solutions by the Monte-Carlo numerical scheme to be the benchmark 

when assessing the accuracy of solutions obtained by approximate analytical methods. 

In order to assess both the accuracy and the efficiency of using the Direct Equiv-

alent Linearisation as an approximation method, the analytical linear and non-linear 

solutions of random beam vibrations by this linearisation method have been compared 

with solutions obtained by the time-domain Monte-Carlo numerical method. Both the 

analytical and numerical approaches are based on solving the SDOF non-linear Buffing's 

equation. 

As the input random load is a uniformly distributed band-limited stationary and 

Gaussian white noise, the technique of Inverse Fast Fourier Transform can be adopted 

to simulate it in the time domain. The procedures can be found in Appendix C.2. 

The random input loads were simulated using parameters shown below in Table 4.2. 

Figure 4.2 shows time history of a 90 dB input pressure. 

Time (seconda) 

Figure 4.2: Time history of input pressure SPL — 9QdB 

The modal frequencies of the simply-supported beam are wi = 251.57ro(i/s (40.04 

Hz) and wg = 22QA.lbrad/s (360.527fz) . The frequency bandwidth of the input has 
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4.2 Response to Non-linear Random Excitation 

Overall SPL (dB) 90 

Selected frequency bandwidth DW {Hz) 250 (1 to 251) 

Input SSL (dB) 66.02 

PSD S X f 1.6 X 10-^ 

Area under spectrum density graph {Po?), [I] 0.40012 

Calculated r.m.s. pressure prms(Pa) , [II] 0.63245 

Number of simulated points, M 262144 

Frequency sampling interval d'w{Hz) 0.07660 

Length of Time history (s) 13.0550 

Time interval (s) 4.9801 xlO-^ 

Mean square value of simulated pressure (Pa^), [HI] 0.40003 

R.M.S. value of simulated pressure (Pa), [IV] 0.63248 

% difference between [I] and [III] 0.02 

% difference between [II] and [IV] 0.005 

Table 4.2: Parameters for one digital simulation of white noise 
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4.2 Response to Non-linear Random Excitation 

been chosen so as not to excite the third mode. Once the white-noise excitation has 

been simulated, the displacement response of the beam can be obtained in the time 

domain. This correspond to the centre of the beam, i.e., xjl = 0.5 This has been done 

by a step-by-step numerical analysis of the SDOF Buffing's equation (4.17) 

For linear numerical analysis, the cubic non-linear coefficient Ilnii is set to equal 

zero. The Newmark-Beta time integration method [99, 100] is used. For non-linear 

analysis, the Newton-Ralphson method is used in conjunction with the Newmark-Beta 

method [99, 100]. To check convergence, the response is obtained with a certain time-

step. Then the size of the time-step is halved and the response is obtained. Convergence 

of the solution is attained when the resulting response time-histories do not vary with 

further decrease of time-step size. 

The displacement response time histories have been developed from the random input 

pressure. The time histories of the non-linear displacement responses for excitations of 

70 dB, 90 dB, 110 dB and 130 dB are shown in Figure 4.3 and Figure 4.4. The numerical 

values of the steady-state r.m.s. solutions by different methods in the linear and non-

linear cases are presented in Table 4.3. Note that the first 1.0 second has been omitted 

in retrieving these r.m.s. values as only steady-state solutions are required. 

In reference to Table 4.4, the parameter F1 shows that the use of only one single 

mode can give excellent predictions in the linear case, which is a well-known fact. Pa-

rameter F2 indicates that the time-domain Newmark-Beta scheme has successfully been 

implemented to evaluate the r.m.s. value of the 1st mode displacement response in the 

linear case. It validates the accuracy of the time-domain solutions when compared to 

the frequency-domain solutions in the linear case. 

In Table 4.4, parameter F3 gives the ratio of the non-linear r.m.s. response given 

by the Equivalent Linearisation to the corresponding linear r.m.s response. As the 

excitation magnitude increase, the value of F3 decreases. For the case of 60 dB, non-

linearity effects are not expected to be severe, and the non-linear system should behave 

like a linear system. Non-linearity effects becomes quite significant as the excitation 

increases to 90 dB. At 130 dB, the non-linear r.m.s. response is approximated to be only 

about 16 % of its predicted linear counterpart. A check using the numerical solutions is 

given by parameter F4. 
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-0.05 

90 dS 

time (s) 

10 ^ 

10 ^ 

Figure 4.3: Non-linear Displacement Response Time Histories for overall sound pressure 

levels of 70dB and 90dB overall 
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time (#) 

130 dS 

Figure 4.4: Non-linear Displacement Response Time Histories for overall sound pressure 

levels of llQdB and l3QdB overall 
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4.2 Response to Non-linear Random Excitation 

SPL LINEAR LINEAR LINEAR NON- NON-

FRM (1 S/L, [II] N - ^ (1 LINEAR LINEAR 

mode), mode), EL (1 iV — (1 

[I] [III] mode), 

[IV] 

mode),[V] 

60 dB 0.01331 0.01332 0.01330 0.01331 0.01330 

70 dB 0.04208 0.04211 0.04205 0.04205 0.04198 

80 dB 0.1331 0.1332 0.1330 0.1322 0.1327 

90 dB 0.4208 0.4211 0.4205 0.3979 0.3848 

100 1.331 1.332 1.330 1.004 0.9577 

dB 

110 4.208 4 j ^ l 4.205 2.059 Z308 

dB 

120 13.31 13.32 13.30 3.836 3.969 

dB 

130 4&08 4211 4&05 6.923 6.840 

dB 

Table 4.3: Comparison of r.m.s vjjR at eight selected SPL levels. FRM: Frequency 

Response Method; SA: ANSYS® "Spectrum analysis"; N — Newmark-Beta time-

domain integration; EL: Direct Equivalent Linearisation 
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4.2 Response to Non-linear Random Excitation 

SPL 1 Fl=% F2=% F3= F4= F5= % 

(dB) difference difference [v]/[in] difference 

between [I] between [I] between 

and [II] arui [III] F3 and F4 

60 1 &08 &08 0.9999 1.0 0.01 

70 1 &08 &07 0.9993 0.9983 1 OJ^ 

80 1 &08 0.08 0.9935 0.9977 1 0.42 

90 1 &08 0.07 0.9455 0.9151 1 3.22 

100 1 0.08 0.08 0.7546 0.7201 1 4.57 

110 1 0.08 0.07 0.4892 &5489 1 1&88 

120 1 0.08 0.08 0.2882 0.2984 1 3.42 

130 0.08 &07 0T645 &1627 1 I J ^ 

Table 4.4; Analysis of r.m.s. values of w/i? presented in Table 4.3 

By using parameter F5 to compare parameters F3 and F4, it can be shown how 

the technique of the Equivalent Linearisation performs in the approximation of non-

linear response of the displacement. The Direct Equivalent Linearisation method would 

give good predictions for highly non-linear situations, when solving the SDOF Buffing's 

equation. 

The fraction of the mean-square value of the non-linear response to that of the linear 

response, i.e., the squared values of parameter F5, are plotted for various input sound 

pressure levels in Figure 4.5. 

It is shown that a single-mode solution is sufficient to provide reasonably accurate 

displacement responses. 

Figures 4.6 to 4.9 show some snapshots of the time-domain displacement responses 

of the beam when the simulated white noises, with overall pressure levels of 70 dB, 90 

dB, 110 dB and 130 dB respectively, act uniformly across the span. It can be confirmed 

again, by careful examination, that for a relatively weak loading (70 dB), the non-

linear system basically behaves like a linear system, as the response oscillates with the 
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Figure 4.5; Fraction of Non-linear Mean-square Displacement Response (crh) to Linear 

Mean-square Displacement Response (cr̂ Q )̂ at Different SPLs 
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4.2 Response to Non-linear Random Excitation 

linear resonant frequency of the system. For a moderate level of excitation (90 dB), 

non-linearity effect becomes more apparent and the non-linear system starts to behave 

differently when compared to its linear counterpart. This can be seen by the fact that 

the response oscillates with a frequency different from the linear resonant frequency of 

the system. For a strong excitation (130 dB), the non-linear response time histories are 

completely different from the linear ones. Note that although Figures 4.6 to 4.9 share 

the same scale in the horizontal axis, the scales on the vertical axes are different to 

accommodate the different response magnitude. 

The frequencies of oscillations in the non-linear response time histories can be re-

trieved from its frequency spectrum. The equivalent linearisation method calculates 

what is known as the "equivalent natural frequencies" which is the resonance frequencies 

of the equivalent linear differential equations (4.2). The first-mode resonance frequencies 

of the non-linear system at different sound pressure levels, are obtained by the equivalent 

linearisation solutions and from the frequency spectra of the time-domain displacement 

response. The fractions of the equivalent linear frequencies, ki to the fundamental lin-

ear frequencies, uji are are reported in Figure 4.10. From this graph, it can be deduced 

that, unlike the linear case where the resonance frequency remains the same regardless 

of the change in the input excitation, the non-linear stiffness has the effect of shifting 

the resonance frequency to higher values as the level of sound pressure increases. 

As non-linearity increases with the rising SPL level, the amount of the shift increases, 

together with the increase in the response. This phenomenon can be seen in Figures 4.11 

and 4.12. The graphs compare the power spectral densities of the non-linear displace-

ment response obtained by equivalent linearisation and from the time domain response 

time-histories. As it can also be seen from the charts in Figure 4.11, the frequency-

response curves given by the time-domain integration solutions drop suddenly at 250 

Hz, since this is the upper cut-off frequency of the band-limited white-noise excitation 

where its pressure spectral density drops to zero. However, this drop in power spectral 

density cannot be found in the response curves obtained by equivalent linearisation, de-

scribed by equation (4.23), since the pressure spectral density is assumed to be constant 

at all frequencies in this case. 

At higher excitation levels, the equivalent linearisation predicts that the frequency 
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Figure 4.6: Snapshots of Response Time Histories at 70 dB overall 
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Figure 4.7: Snapshots of Response Time Histories at 90 dB overall 
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Figure 4.8; Snapshots of Response Time Histories at 110 dB overall 
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Figure 4.9: Snapshots of Response Time Histories at 130 dB overall 
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Figure 4.10: Fraction of Equivalent Linear Frequencies (&i) to Fundamental Linear 

Frequencies (cui) at Different SPLs 
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Figure 4.11: Response Power Spectral Density obtained by Equivalent Linearisation and 

from Random Response Time Histories: 70 dB and 90 dB 
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Figure 4.12; Response Power Spectral Density obtained by Equivalent Linearisation and 

from Random Response Time Histories; 110 dB and 130 dB 
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4.3 Chapter Summary and Conclusion 

response of non-linear systems would have distinct peaks like those in linear systems. 

This contradicts to the time-domain integration results which show that sharp peak 

characteristics of linear vibrations are no longer evident. The characteristic distinct 

peaks merge into one broader peak which tends to flatten. As a result, the values of the 

equivalent linear frequencies obtained from the frequency spectrum of the time-domain 

displacement response are only approximations, and the range of uncertainty on where 

exactly the resonance peak occurs grows with increasing non-linearity. The graphs in 

Figures 4.11 and 4.12 clearly illustrate the phenomena. 

For the time-domain integration results, a reason for the broadening of the resonance 

peak at highly non-linear regimes may be due to the leakage of energy. With small 

non-linearity, the energy of the response is concentrated at the natural frequency. As 

non-linearity increases dramatically to a high level, the energy concentration is distorted 

and energy starts to leak to the neighbouring frequency domain. Hence responses are 

being picked by the neighbourhood of the resonance, and a flat peak response is resulted. 

Due to the different shape and character of the response spectra predicted by the 

two methods, different values would result in the prediction of resonance frequency of a 

structure when severely excited by random load. 

4.3 Chapter Summary and Conclusion 

In the vibrations of aircraft panels induced by jet noise, the major damage to the panels 

is known to occur during takeoff^, when the jet engines are operated at maximum power. 

During the maximum engine power run, the generated acoustic pressure measured at a 

given point on the structure can be assumed to be a white noise which exhibits a weakly 

stationary pattern [92]. 

Based on the equations of motion developed from Chapter 2 for large deflections of 

simply-supported beam with immovable end conditions subjected to external load, the 

solution for the non-linear random response has been formulated by an approximate 

method called the Direct Equivalent Linearisation Technique. The loading type under 
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4.3 Chapter Summary and Conclusion 

consideration is a uniformly distributed white noise excitation. For the special caae of 

a uniformly distributed random surface pressure, the non-linear response solutions are 

known to be dominated by a single mode. Root-mean-square non-linear displacements at 

the mid-span have bden obtained for a single-degree-of-freedom system. The results by 

equivalent linearisation have been compared with those obtained by numerical analysis. 

A good agreement of the root-mean-square response has been obtained between the 

Direct Equivalent Linearisation and the time-domain step-by-step numerical integration 

approach for severely exciting situations. Moreover, when the excitation is so large 

that the vibration problem becomes non-linear, non-linear stiffness shifts the resonance 

frequency to higher values. The amount of shift increases with the increase of non-

linearity due to the rising sound spectrum level, and the peak of the resonance broadens. 

The equivalent linearisation solutions have been able to demonstrate the charac-

teristics of the non-linear r.m.s. displacement response predicted by the time-domain 

numerical solutions even at high levels of excitations. Hence, it is believed that the ap-

plication of the Direct Equivalent Linearisation to a SDOF Duffing's equation to obtain 

the large-deflection displacement response of a simply-supported beam with immovable 

end conditions due to a uniformly distributed white noise can indeed give reasonably 

good results. 

The non-linear response spectrum obtained by the Direct Equivalent Linearisation 

method predicts that the characteristic distinct peaks in linear vibrations would be 

retained in the non-linear system even at high excitation. This differs from the results 

obtained from the time-domain numerical integration solutions, in which the peaks in 

the spectrum are relatively fiat. This has concern for the prediction of fatigue life of the 

structure. This is because for two responses having the same r.m.s. value but different 

response power spectral densities, their fatigue lives will be different. 

Finally, it has been shown that classical linear theory of vibrations can be an over-

conservative means to predict the random response of beam vibration. To obtain a more 

factual description of the non-linear beam response under intensive acoustic pressure, 

non-linear theory of vibrations should be employed. 
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Chapte r 5 

A S S E S S M E N T O F 

M O D E - C O U P L I N G E F F E C T S IN 

N O N - L I N E A R B E A M 

V I B R A T I O N S 

Prom previous studies in non-linear harmonic vibrations, it has been shown that the 

single-degree-of-freedom Buffing's equation is a good tool to describe the geometrically 

non-linear vibrations of simply-supported beams with immovable end conditions. It has 

also been shown that mode-coupling effects are insignificant when the external harmonic 

excitation is a uniformly distributed pressure or a symmetrically applied point load. In 

those cases, the spatial distribution of excitation has excited all odd-numbered modes 

of response, whilst the forcing frequencies have been chosen to excite mainly the first 

mode of response only. 

However, the aerodynamic loading may excite the panel structure in such a way 

that typical frequencies of excitation caused by large-scale turbulence are close to some 

of the natural frequencies of the structure. At the same time the pressures over the 
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5.1 The Damped Two-degree-of-freedom DufSng's Equation under Symmetric Loads 

surface of the structure are spatially matched to the linear mode shapes of some other 

vibration responses of the structure. It is interesting to see which modes of response will 

prevail over the others. Blevins [5] has studied the multiple-mode response of panel-

type structures subjected to surface pressures associated with sound and turbulence. 

However, the study was limited to the linear case. 

In this chapter, the non-linear vibration of a simply-supported beam which has the 

properties given Table 4.1 is studied. The spatial distribution of the load and the fre-

quency content to match and excite different modes of response. For example, the spatial 

distribution of the load has a shape which matches the first linear mode shape of the 

beam whilst the forcing frequency is equal to the third-mode natural frequency of the 

beam. Moreover, only non-linear responses to loads which are symmetrically applied 

across the beam are considered here. The damped two-degree-of-freedom (2D0F) Buff-

ing's equations including the first two symmetric modes and 3'"'̂ ) will be employed 

to study the non-linear vibrations of simply-supported beams with immovable end con-

ditions. By considering the 2 B 0 F Buffing's equations with and without mode-coupling 

terms, the significance of the phenomenon of "coupling resonance" due to non-linear 

coupling is investigated in various loading conditions. 

5.1 The Damped Two-degree-of-freedom Duffing's 

Equation under Symmetric Loads 

With reference to equations (2.24 to 2.28), the non-linear coupled differential equations 

including the first and third modes can be expressed by equations (5.1) and (5.2) as: 

^ + 6 ^ 4 - ujIU, + (5-1) 

+ ^3^3 + 113333 ̂ 3 + n33ii!!3«^ = ^ = •̂ 03(̂ ) (5-2) 

In this work, these will be referred to as the 2D0F damped Buffing's equations with 

coupling. The coupling terms in these two simultaneous ordinary differential equations 
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5.2 Non-linear Response to Spatially and Temporally Harmonic Excitation 

and By neglecting these coupling terms, the resulting equations 

(5.3, 5.4) in this work will be referred to as the 2D0F damped DufRng's equation without 

coupling. 

=-PoiW (5.3) 

+ ^3"^ + ^3^3 + 03333^3 = ^ = fo3(<) (5.4) 

5.2 Non-linear Response to Spatially and Tempo-

rally Harmonic Excitation 

With a symmetrically distributed harmonic pressure acting across the span of the simply-

supported beam with immovable end conditions, the mid-span displacement response 

time histories of the beam are obtained by the step-by-step time-domain numerical 

integration of the equations of motion (5.1, 5.2) and (5.3, 5.4), with the harmonic 

pressure simulated in the time domain. The results are observed and the steady-state 

solutions are retrieved by ommitting the first 1.0 second of the time history. Different 

types of harmonic, pressure are studied and analysed. The cases under investigations 

are summarised in Figure 5.1. 

5.2.1 Load Case 1: Pressure Distribution Matching One Par-

ticular Response Linear Mode Shape 

In this case study, two scenarios will be looked at. In the first scenario, the external 

pressure which varies sinusoidally with time has a forcing frequency (O) which is equal 

to Wg whilst its spatial distribution is spatially matched to the first linear mode shape 

of the system, so that the generalised force in all other modes is zero. The pressure 

with this type of spatial distributed will be denoted by the symbol P I and its amplitude 
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Figure 5.1; Simply-supported Beam with Immovable End Conditions Subjected to Dif-

ferent Types of Harmonic Pressure 
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by / i . In the second scenario, the forcing frequency is set to equal the first natural 

frequency and the spatial distribution coincides with the linear mode shape of the third-

mode response, so that the generalised force in all but the third mode is zero. The 

pressure with this type of spatial distributed will be denoted by the symbol P3 and its 

amplitude by /a. 

Load Case l A : 0 = wg 

The spatial distribution of the pressure matches exactly the function of the first-mode 

response in the space domain. However, the harmonic excitation has a forcing frequency 

equal to the natural frequency of the third mode of the system. In other words, the 

forcing function can be expressed in the form of fQsin(^)sin{LU3t), where /o is the 

magnitude of excitation. 

It can be deduced from equation (2.27) that Fqi and F03 on the right-hand side 

of equations (5.1, 5.2, 5.3 and 5.4) are equal to ^sin{u)zt) and 0 respectively. The 

magnitude of excitation, / i = lOOPa, has been selected so that significant non-linearity 

should be present when the beam is excited. A graphical representation of the loading 

can be seen from Figure 5.2. 

It is well-known, and thus expected, that when the mode-coupling terms in the 

coupled Buffing's equations are neglected in this type of excitation, the steady-state 

displacement response of the third mode will be zero. This is the result obtained when 

the uncoupled Buffing's equations (5.3) and (5.4) are solved. 

Now, the coupled equations (5.1) and (5.2) are solved numerically with different 

initial conditions. Observations are made and the results are summarised in Table 5.1. 

As expected, under this loading condition, the steady-state displacement response 

consists of only the contribution from the first mode, as seen in Table 5.1. For instance, 

the steady-state root-mean-square (r.m.s.) displacement responses {u = w/R) of the 

first and third modes with zero initial displacement and velocity at mid-span are 0.1317 

and 0 respectively. 

I.K.B.G. TANG 86 
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State Initial Displace-

ments 

Initial Velocities Behaviour of Displacement 

Response 

I «io = 0; %i3o = 0 uio = 0; USQ = 0 1'* mode:Steady-state oscil-

lates with frequency of Wg; 

3'"'̂  mode: stays zero 

II = 0; ̂ 3o = 1 wio = 0; ""So = 0 1'* mode:Steady-state oscil-

lates with frequency of W3; 

mode: decays exponen-

tially to zero. 

III y-io = 0; 3̂o = 

10 

^lo = 0; ̂ 3o = 0 As in State II 

IV ""lo = OjUso = 

10 

= 0; ̂ 3o = 1 As in State II 

V •"lo = 1; ^̂ 30 = 1 Wlo = 1; W3o = 1 1"* mode: as in State 

mode: as in State II 

Table 5.1; Effects of Mode-coupling and Initial Conditions on Behaviour of Non-linear 

Harmonic Response of a Simply-supported Beam with Immovable End Conditions (Load 
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Figure 5.2: Simply-supported Beam with Immovable End Conditions Subjected to Ex-

citation in Load Case lA 

Following the above study, it is reasonable to suggest that , in the case of a sinusoidal 

load with spatial distribution matching only the linear mode shape of the first mode and 

with forcing frequency equal to any other higher natural frequencies, the steady-state 

non-linear displacement response would have a shape equal to the linear mode shape of 

the first mode. Its frequency would equal to that of the applied load. The steady-state 

non-linear responses of any other modes would be zero. 

It may also be deduced that if the spatial distribution of the pressure matched 

exactly the linear mode shape of the third resonance of the system, and that if the 

forcing frequency of the excitation were equal to the first natural frequency, only the 

third mode would respond in the steady-state condition. In fact, this second deduction 

can be confirmed by carrying out a similar analysis to that in Load Case lA. This 

situation is investigated in Load Case IB which follows in the next section. 

Load Case IB: f2 Ui 

The right-hand side of equations (5.1) and (5.2) are now equal to 0 and ^sm(cui i ) 

respectively, with /a = lOOPa. The loading can be represented in Figure 5.3. 
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Figure 5.3: Simply-supported Beam with Immovable End Conditions Subjected to Ex-

citation in Load Case IB 

The steady-state r.m.s. displacement responses {u = w/R) of the first and third 

modes with zero initial displacement and velocity at mid-span are 0 and 0.12952 respec-

tively. 

As a result, it can be concluded that the general behaviour of the coupled system 

is the same as the corresponding uncoupled system under the stated types of loading. 

In the presence of large excitation effecting non-linearity in the mode-coupled Buffing's 

equations, the unexcited modes do not respond under the influence of the excited mode 

due to the presence of the coupling terms. If the spatial distribution of the excitation 

just matches the linear mode shape of one particular resonance, only that mode will be 

excited and its steady-state response will oscillate at the forcing frequency of excitation. 

5.2.2 Load Case 2: Pressure Distribution Matching The First 

and Third Linear Mode Shapes of The Beam 

In this case, the pressure of the excitation will be modelled in such a way that it aims 

to excite both the first and third-mode responses of the system. The pressure can be 
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are described by the forcing function where and /s 

magnitudes of excitation. A graphical interpretation of the loading is shown in Figure 

5.4. 

6 

Figure 5.4; Simply-supported Beam with Immovable End Conditions with Load Case 2 

Load Case 2A: H = W3; fixed / i , varying /a 

In Load Case lA, it was shown that the third mode of the beam had no response 

due to the absence of an excitation with pressure which matched only the third linear 

mode shape of the beam, P3. Hence an increasing amount of the pressure level of 

P3 (/a = 1,10,100,1000 and lOOOOPa) is now introduced. The pressure of a fixed 

magnitude of f i = lOOPa which only excited the first spatial response mode of the 

system in Load Case lA, PI, is retained. Moreover, the two harmonic pressures, P I and 

P3, oscillate in phase with each other at exactly the same forcing frequency ((1 = W3). 

From equation (2.27), it can be shown that the terms Pqi and P03 on the right-hand 

side of equations (5.1- 5.4) are now equal to and -^sinlu^t) respectively. 

The two sets of 2D0F equations (5.1, 5.2) and (5.3, 5.4) are solved numerically. The 

non-linear r.m.s. displacement responses at mid-span for values of /3//1 = 0.01, 0.1,1,10 
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5.2 Non-linear Response to Spatially and Temporally Harmonic Excitation 

and 100, together with the percentage difference between the coupled responses and the 

uncoupled ones, are presented in Table 5.2. The results are expressed in the graphs 

in Figure 5.5. The first graph shows the steady-state non-linear r.m.s. displacement 

responses, and the second one reflects the difference between the coupled and uncoupled 

responses in percentage. 

/3 / /1 l&oi 0.1 1.0 
1 

100 

Uncoupled &1317 0J317 (11317 &1317 [L1317 

Uncoupled 

("3)111) 

1 0.06432 0.3134 0.6983 1.487 2.923 

Uncoupled {ui + 

lis) [HI] 

1 0J.452 0.2107 0.5694 1 ]L358 2.812 

Coupled (iii)[IV] 1 0.1318 0.1321 0.1340 1 0.1441 0.2264 

Coupled (1/3 )[V] 0.06424 0.3116 0.6973 1.487 2.923 

Coupled {ui -1-

^3) [VI] 

0.1445 0.2087 0.5657 L343 2L726 

% Difference [I] 

and [IV] 

0.08 0.30 1.7 9.4 72 

% Difference [II] 

and [V] 

&12 0.57 0.14 0.00 0.00 

% Difference 

[III] and [VI] 

0.48 0.95 0.65 1.1 3.1 

Table 5.2: Comparison of Coupled and Uncoupled Non-linear R.M.S. Displacement 

Responses u = (w/R) for Selected Ratios of /3/ /1 (Load Case 2A) 

In both cases, the steady-state responses oscillates at the forcing frequency which 

is equal to the third-mode natural frequency, W3. Except for /3//1 = 0.01 where the 

loading introduced to excite the third mode is small, the dominating response comes 
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Figure 5.5: Non-linear Coupled and Uncoupled R.M.S. Displacement Responses and 

Percentage Differences of Coupled Response Relative to Uncoupled Responses at Se-

lected (Load Caae 2A). 
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from the contribution of the third-mode response. 

In the case without mode-coupling, the r.m.s. values of Ui remain the same regardless 

of the value of /a. This is simply because the amplitude of the input loading into the 

first mode, / i , remains constant. However, there is an increase in the r.m.s. value of 

due to the increase in the magnitude of the force into the third mode, /a. As expected 

from previous studies in non-linear harmonic vibrations, the increase in U3 is not linearly 

proportional to that in /s. 

When comparing the uncoupled first-mode response in this case and that in Load 

Case lA, it is interesting to see that they are in fact identical. This confirms again 

that mode-coupling in the stiffness term in fact has no influence on the response of the 

unexcited modes in Load Case lA. 

With mode-coupling terms now included, an increase in causes both ui and to 

build up. The increase in coupled ui can be explained by examining the coupled terms 

in equations (5.1) and (5.2). As the third mode response is increasing with the input 

P3, the coupling term in equation (5.1) is more and more dominated by %. Hence the 

extra response adds to the original uncoupled first-mode response. 

Furthermore, when comparing the r.m.s. responses with and without coupling, it can 

be seen that values of «3 with coupling are always less than those without coupling. As 

when the third mode is dominant (^3 ui), the coupled equation (5.2) can be viewed as 

a system which has got a higher stiffness -j-nggij than has the uncoupled equation 

(5.4). This in turn explains why the third-mode-dominant total coupled responses {ui + 

U3) are less than the uncoupled ones at all times. 

By looking at the percentage difference between the coupled and uncoupled re-

sponses, it can be seen that the dominant response, i.e., the third mode, is quite unaf-

fected by the presence of the first mode. However, as far as the subordinate first-mode 

response is concerned, it becomes progressively affected by the coupling of the third-

mode response as is gaining increasing significance with increasing /3//1, and the 

behaviour of the coupled equation (5.1) deviates from that of the uncoupled equation 

(5.3). The degree of overestimation in the resultant displacement by the uncoupled 

system when compared to the coupled one also increases with /3//1. Nevertheless, as 
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stated again, since the resultant response mainly consists of the third-mode response, 

this percentage difference remains small. 

In short, the response of the dominant mode is less affected than that of the subordi-

nate mode by the coupling terms. These findings agree with those obtained in Chapter 3 

when the excitation is a uniformly-distributed pressure where all odd-numbered modes 

are excited. 

Results in Load Case 2A shows that mode-coupling does not play an important 

role. The most likely reason for this behaviour is the fact that the forcing frequency 

is above that of the resonating modes, i.e, the first mode. In this case, the response 

is mass-dominated, as opposed to stiffness-dominated when the forcing frequency is 

below the resonance frequency. It is suspected that as mode-coupling arises from the 

stiffness components of the system, its effect would be more significant when the excited 

system were stiffness-dominated. Hence, the forcing frequency is set to equal the natural 

frequency of the first mode, i.e., 0 = wi. 

Load Case 2B: 0 = wi; fixed /a, varying f i 

The beam is now excited so that the response is stiffness-dominated. Moreover, as seen 

in Load Case IB, the first mode of the beam did not respond to the pressure which was 

not spatially matched to the first linear mode shape of the beam. Hence an increasing 

amount of pressure load of fi = 1,10,100,1000 and lOOOOPa is now added, of which 

the spatial distribution aims to excite specifically the first mode of the system. The 

pressure of a fixed magnitude of = lOOPa which excited just the third mode of the 

system in Load Case IB, P3, will remain to act on the beam. The pressures P I and 

P3 oscillate in phase with each other at exactly the same forcing frequency Q = tui. 

The procedure of the numerical analysis is repeated in a likewise manner as in Load 

Case 2A and the results are presented in Table 5.3 and Figure 5.6. The differences, in 

percentage, between the coupled displacement responses and the uncoupled responses 

are also included. 

The r.m.s. value of the uncoupled U3 stays the same for all ratios of /1 / /3 whilst that 

of increases with / 1 / / 3 . The total uncoupled displacement response is dominated by 
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/ 1 / / 3 &01 l & l 1.0 10 100 

Uncoupled 0.64951 j 1.3887 2.7742 6.8348 14.578 

Uncoupled 

( ^ 3 ) [11] 

0.12952 0.12952 0.12952 0.12952 C112952 

Uncoupled (i/i -f- 0.77819 I 1.5181 2.8919 6.9458 14.692 

Coupled ('Ui)[IV] 0.57529 1.3589 2.7594 6.8855 14.547 

Coupled (%i3)[V] 0.12780 0.12030 0.10166 0.078236 0.054380 

Coupled (ui 4- 0.70208 1.4789 2.8428 6.9313 14.565 

% Difference [I] 

and [IV] 

11 2.2 0.53 0.74 0.21 

% Difference [II] 

and [V] 

1.3 7.1 21 40 58 

% Difference 

[III] and [VI] 

9.8 2.6 1.7 0.21 0.86 

Table 5,3: Comparison of Coupled and Uncoupled Non-linear R.M.S. Displacement 

Responses u = [w/R) for Selected Ratios of /1 / /3 (Load Case 2B) 
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Figure 5.6: Non-linear Coupled and Uncoupled R.M.S. Displacement Responses and 

Percentage Differences of Coupled Response Relative to Uncoupled Responses at Se-

lected /3//1 (Load Case 2B). 
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the first mode at all times. Again, when comparing the uncoupled third-mode responses 

with those in Load Case IB, their same values confirms once again that mode-coupling 

in the stiffness term in fact has little contribution to the characteristics of the system 

in that case. 

However, for the coupled system into which the input excitation fi is increasing, 

the third-mode response starts to fall off and deviates progressively from its uncoupled 

counterpart. As the first-mode response becomes more and more significant relative 

to that of the third mode, ui dominates the coupling terra in equation (5.2). As the 

contribution of the coupling term in equation (5.2) becomes increasingly significant, 

its behaviour would deviate more and more away from that of the uncoupled system 

governed by equation (5.4). 

With decreasing influence of U3 over the coupled term IlxiaaiiiUg in equation (5.1), 

the mode-coupling effects in this equation decrease. Thus, as fi increases, the coupled 

system governed by equation (5.1) would start to behave as if it were an uncoupled 

system represented by equation (5.3) as the third-mode response gives way to the first-

mode response. Hence the percentage difference between the coupled and uncoupled Ui 

falls. 

The non-linear first-mode coupled response builds up but is still smaller than the 

uncoupled ui. This is due to an addition stiffness contribution from the mode-coupling 

term HugaUiUg in equation (5.1). Here, Ui is of first order but dominant, and U3 is of 

second order but very small. As equation (5.1) defines a system which has a higher 

stiffness than that characterised by equation (5.3), one would expect that the coupled 

responses be smaller than the uncoupled ones. 

Finally, the coupled total displacement response consists of mainly the first-mode 

contribution. It is interesting to note that the degree of overestimation varies for the 

two scenarios studied. In the mass-dominated excited system in Load Case 2A, the 

increase in mode-coupling effect would cause an increase in the level of overestimation. 

In the stiffness-dominated excited system in Load Case 2B, however, this severity of 

response overestimation tends to decrease with increase in mode-coupling effect. 

From the second graph of Figure 5.6, it can be seen that a significant difference 

between the uncoupled and the coupled total displacement response arises at /1/ /3 = 
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0.01. It may be interesting to see if an increasing non-linearity effect would change the 

phenomenon of resonance-coupling in this situation when the amplitude of the excitation 

with the first linear mode shape of the beam is maintained at one-tenth that of the 

excitation with the third linear mode shape. This can be done by increasing amplitudes 

of both f i and /a, whilst keeping / i / / s = 0.01. 

Results show that the percentage difference between the coupled and uncoupled U3 

response hardly changes with increasing non-linearity. The third mode is in general 

playing a more significant role in the contribution to the total displacement response. 

However, as non-linearity increases, the contribution by the first mode to the total 

response increases. At the same time, mode-coupling has a growing effect on the response 

Ui. As a result, very high non-linearity effects, with the influence of mode-coupling is 

likely to have an impact on the total response of the beam. 

Load Case 2C: PI oscillating 90° out of phase with P3 

So far, when the two harmonic pressures, PI and P3, excited the beam simultaneously, 

they were oscillating in phase with each other at exactly the same forcing frequency, 

even if they had different spatial distributions. The phenomenon of resonance coupling 

is further investigated when the pressures are oscillating with a phase difference of 90° 

with each other. 

The generalised forces -Foi(i) and on the right-hand side of equations (5.1— 

5.4) now become fQsin{~)sin{uJzt) and fzsin{'^)sin{ijj^t + 'K/2) respectively. Here, the 

magnitude of the pressure PI is set to equal that of P3, i.e, / a /A = 1. 

From the numerical solutions of the Buffing's equations (5.1— 5.4), it is shown in 

Table 5.4 that when the two pressures are 90° out of phase with each other, the coupling 

effects on the r.m.s. displacement response will decrease significantly. Moreover, from 

Table 5.5, it can be predicted that the differences between the r.m.s. coupled and r.m.s. 

uncoupled displacement responses are insignificant, even when the level of non-linearity 

is high. 
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Mode 1 (%) Mode 3 (%) Total (%) 

In phase 1.7 0T4 0.65 

90° out of phase 0.038 0^W6 0.35 

Table 5.4: Load Case 2C: Percentage Difference between Non-linear Coupled and Un-

coupled R.M.S. Displacement Responses u = (w/R) — Effects of Phase Difference of 

Excitation on Non-linear Coupling ( / i = /a = lOOPa) 

Level of Non-linearity A M A f f o ) Mode 1 (%) Mode 3 (%) Total (%) 

Low 100 100 0.038 0^W6 0.35 

High 100000 10000 1.9 24 2.7 

Table 5.5: Load Case 2C: Percentage Difference between Non-linear Coupled and Un-

coupled R.M.S. Displacement Responses u = (w/R) — Effects of Non-linearity (Phase 

difference=90°) 

Load Case 2D: Hi = wg, O3 = 

This loading situation can be viewed as a combination of Load Case lA and Load 

Case IB. In other words, the harmonic pressure P I excites the beam with a forcing 

frequency, Qi, at the third natural frequency whilst at the same time P 3 excites it 

with a frequency, fls, at the first natural frequency. The amplitudes of the non-linear 

uncoupled displacement responses ui and are predefined in this study. The level of 

excitation of the pressures P I and P 3 has been chosen so that the resulting uncoupled 

ui is of the same order of magnitude as the corresponding uncoupled u^. Only two 

levels of excitation are studied here, one of which would produce a small amount of 

non-linearity in the system whilst another would cause a strong non-linear effect. As 

before, both the coupled and uncoupled Duffing's equations are solved numerically and 

the solutions are studied. 

The results of the displacement response show that when the magnitude of the load 

does not produce a significantly non-linear response, the difference between the coupled 

and uncoupled displacement responses is minimal. With high non-linearity effect, the 
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difference between the coupled and uncoupled dominant first-mode responses is relatively 

small whilst that between the coupled and uncoupled subordinate third-mode responses 

is much more significant. Nonetheless, this difference for the total displacement response 

is still not noteworthy. The percentage differences are tabulated in Table 5.6. 

Level of Non-linearity A M Mode 1 (%) Mode 3 (%) Total (%) 

Low 100 100 0.46 0.043 0.057 

High 100000 10000 1.8 2.4 1.8 

Table 5.6: Percentage Difference between Non-linear Coupled and Uncoupled R.M.S. 

Displacement Responses u = (w/R) at Two Levels of Non-linearity (Load Case 2D) 

Conclusion of Studies in Load Case 2 

Various types of harmonic excitation across the non-linear beam have been studied. 

Under certain circumstances, the mode-coupling terms in the Duffing's system can cause 

noticeable effects in the total displacement response of the beam in highly non-linear 

harmonic vibrations. This especially concerns the loading conditions when the forcing 

frequencies of the pressures are equal to the lowest natural frequency of the beam, and 

the pressures are in phase with one another. With a comparatively large excitation 

which only excites a subordinate mode of a system with mode-coupling, the response of 

the dominant mode of this system can be significantly different from what is predicted 

by a Duffing's system without mode-coupling. In general, the Duffing's system without 

mode-coupling terms would overestimate the resultant response in harmonic vibrations. 

5.3 Non-linear Response to Spatially Harmonic and 

Temporally Random Excitation 

In this study, the distribution across the span of the beam is the same as that of Load 

Case 2 studied in section 5.2.2. In other words, the pressure has a spatial distribution 
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which matches only and exactly the first and third linear mode shapes of the beam, so 

that the generalised force in all other modes is zero. This pressure is applied with a 

time history which corresponds to a band-limited temporal white noise. Two loading 

scenarios with two different input pressure spectra are studied. First, as an extension 

to Load Case 2B, the frequency content of the excitation is centred around the natural 

frequency of the first mode of the beam. Then, another type of band-limited white-

noise random pressure of which the frequency contents cover frequencies including the 

first and the third natural frequencies will be employed. Figure 5.7 should also be 

referred to. In both cases, the non-linear mid-span coupled and uncoupled displacement 

response time histories will be obtained from the equations of motion (5.1, 5.2) and 

(5.3, 5.4) by the step-by-step numerical integration scheme. The steady-state solutions 

are then retrieved by ommitting the first 1.0 second of the time history. The non-linear 

coupled and uncoupled r.m.s. responses are obtained, and any differences between the 

two responses will be studied. 

5.3.1 Load Case 3: Forcing Frequency Contents Covering the 

First Natural Frequency 

For an overall sound pressure level of SPL^ = 90dB, the input band-limited white-

noise pressure simulated and used earlier in Chapter 4 has been adopted and used in 

this loading scenario. The frequency range was between IHz and 25lHz. However, 

the spatial fluctuation of the input pressure, P3, has a distribution matching the third 

linear mode shape of the beam, so that the generalised force in all other modes is 

zero. The load is also characterised by parameters such as the sound pressure level 

(SPL3 = 90dB), the r.m.s. pressure (r.m.s. /a = 0.6325Pa) and the frequency sampling 

interval {dw = 0.0766Hz). Data concerning P 3 can be found in section 4.2.4 of Chapter 

4. 

The pressure with spatial distribution matching the first linear mode shape of the 

beam. P i , has a similar time history as that of P3. This pressure P I is implemented here 

to aim to excite the first-mode response of the beam and its pressure level is increasing 
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Load 
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Figure 5.7: Simply-supported Beam with Immovable End Conditions Subjected to Dif-

ferent Types of Random Pressure 
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according to the sound pressure levels, SPLi = 50,70,90,110 and IZQdB, whereas the 

pressure amplitude, /s, of P3 is always kept to have a pressure level of 90dB. The ratio 

of their r.m.s. value is denoted by /1//3. 

After the two sets of 2D0F equations (5.1, 5.2) and (5.3, 5.4) have been solved 

numerically, the non-linear r.m.s. values of the displacement responses at mid-span for 

various /1//3 are presented in Table 5.7. These results, together with the percentage 

differences between the coupled displacement responses and the uncoupled responses, 

are also given for various values of /3/ /1 in this table and in Figure 5.8. 

Based on the results in Table 5.7 and Figure 5.8, and by referring to Table 5.3 and 

Figure 5.6, some similarities regarding both the uncoupled and coupled r.m.s. responses, 

«!, % and (ui + U3), can be identified between the solutions of random response and 

those of harmonic response as seen in Figure 5.6. Like the case of non-linear harmonic 

vibrations without mode-coupling, the non-linear random r.m.s. uncoupled response ui 

increases whilst the uncoupled U3 remains constant with increase in /1//3. Moreover, the 

first mode dominates in the resultant displacement response. With mode-coupling effects 

considered, the trend of the change of the non-linear coupled response ui with increasing 

/1//3 is similar to that of the corresponding uncoupled response. The dominant mode 

in the resultant displacement response is still the first mode. The coupled response 

deviates from its uncoupled counterparts with increasing levels of excitation f i . 

However, in contrary to that in harmonic vibrations in Load Case 2B of section 5.2.2, 

the coupled response ^3 increases at higher levels of excitation f i . In addition, the degree 

of overestimation by a system without mode-coupling intensifies with increasing f i / f 3 , 

as opposed to that observed in Load Case 2B. This distinction in the behaviour of the 

responses may be due to the different type of excitation concerned. 

In harmonic vibration (Load Case 2B), due to non-linearity effect, the resonance of 

the first mode moved away from the forcing frequency with the increase of the ratio 

/i/Zs- Overall, the coupled response ui increased by roughly 25 times whilst /1 / /3 

increased by 10000 times, with /a held constant. Due to the coupling effect, the stiffness 

controlling the coupled response of U3, as explained above, causes it to decrease with 

increasing /1//3. 
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/1//3 &01 l & l 1.0 10 100 

Uncoupled 3.3056 

xlO-3 

1 3.3020 

| x l O - 2 

3.3321 

xlO-i 

1.8136 6.2190 

Uncoupled 

("3) [11] 

1.4546 

xlO'3 

1 1.4546 

| x l O - 3 

1.4546 

xlO-s 

1.4546 

xlO-3 

1.4546 

xlQrS 

Uncoupled {ui + 

7̂ 3) [in] 

3.6165 

xlO-3 

[3.3058 

{xlO'S 

3.3321 

xlO-i 

1.8136 6.2191 

Coupled 3.3056 

xlO-3 

1 3.3020 

| x l O - 2 

3.3320 

xlO-i 

1.8641 6.0265 

Coupled (723) [V] 1.4546 

xlO-3 

1.4545 

xlO-3 

1.4488 

xlO-3 

1.5274 

xlO'S 

3.2462 

xlO'3 

Coupled {ui + 

lis) [VI] 

3.6165 

xlO-3 

3.3056 

xlO-2 

3.3320 

xlO-i 

1.8641 6.0266 

% Difference [I] 

and [IV] 

0.0 0.0 4.5 

xlO'S 

2.8 3.1 

% Difference [II] 

and [V] 

0.0 4.6 

xlO-3 

0.40 5.0 123 

% Difference 

[III] and [VI] 

0.0 4.6 

xlO-3 

4.5 

xlO-3 

2.8 3.1 

Table 5.7: Comparison of Coupled and Uncoupled Non-linear R.M.S. Displacement 

Responses u = {w/R) for Selected Ratios of /3 / /1 (Load Case 3) 
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Figure 5.8: Non-linear Coupled and Uncoupled R.M.S. Displacement Responses and 

Percentage Differences of Coupled Response Relative to Uncoupled Responses at Se-

lected /3//1 (Load Caae 3). 
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Now in random vibration (Load Case 3) with increasing / 1 / / 3 , the first mode is 

always being excited, as the equivalent linear frequencies, even if increasing, are still 

within the frequency content of excitation. The response ui now increases by nearly 

2000 times with /1/ /3 increasing by 10000 times. Although the argument on the increase 

in stiffness in the third mode and its tendency to lower is still valid, the enormous 

amount of contribution due to the first mode into the third mode through the mode-

coupling terms has an effect of overriding this tendency and causes W3 to amplify. 

Nevertheless, the dominant mode is the first mode and the total displacement re-

sponse is very little affected by this different behaviour of the response of the third 

mode. 

5.3.2 Load Case 4: Forcing Frequency Contents Covering the 

First and the Third Natural Frequencies 

The coupling effect on the non-linear random vibration of the beam is further studied 

when the frequency content of the input random pressure spectrum includes both the 

first and the third natural frequencies. The pressure in the time domain, P , is digitally 

simulated and has an r.m.s. magnitude / . This corresponds to a band-limited Gaussian 

white-noise random pressure of which the characteristics can be found in Table 5.8 and 

Figure 5.9. 

The pressure which possesses a spatial distribution matching that linear mode shape 

of the third-mode resonance of the system, P3, has an r.m.s. magnitude /a. The 

r.m.s. magnitude of the pressure P I , which has a spatial distribution matching the 

linear mode shape of the first resonance of the system, is chosen so that the resulted 

non-linear uncoupled r.m.s. ui is of the same order of magnitude as the corresponding 

uncoupled r.m.s. if3. This would give the value of /a which is bigger than / i , and 

/3 / /1 = -v/ToOO % 32. The sound pressure level of the pressure P is also selected so that 

significant non-linearity is present in the response. 

The non-linear r.m.s. displacement responses are obtained, again from the numerical 

solutions of the coupled and uncoupled equations (5.1, 5.2) and (5.3, 5.4). The solutions 
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Overall SPL (dB), ref.2 x 10 ^ 140 

Selected frequency bandwidth DW {Hz) 800 (1 to 801) 

Input SSL (dB) 111 

PSD 50 

Area under spectrum density graph {Pa?), [I] 40006 

Calculated r.m.s. pressure (Pa), [11] 200 

Number of simulated points, M 524288 

Frequency sampling interval dw{Hz) 0J222 

Length of Time history (s) &1818 

Time interval (s) 1.5605 xlO-s 

Mean square value of simulated pressure {Pa^), [HI] 40004 

r.m.s. value of simulated pressure, / {Pa?), [IV] 200.0089 

% difference between [I] and [III] 0.0064 

% difference between [II] and [IV] 0.0044 

Table 5.8; Parameters for One Digital Simulation of Input Pressure P 
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3 4 5 
Time (second*) 

Figure 5.9: Time Histories of Simulated Random Pressure P, overall SPL = 140 

are shown in Table 5.9. 

Mode 1 Mode 3 Modes 1+3 

Uncoupled L1823 1.4186 1.8463 

Coupled :L2230 1.4273 1.8801 

Percentage Difference 3.4 0.61 1.8 

Table 5.9: Coupled and Uncoupled Non-linear R.M.S. Displacement Responses {u = 

w/R) and Percentage Difference of Coupled Response Relative to Uncoupled Response 

(Load Case 4) 

The non-linear coupled r.m.s. first-mode response, Ui, is of the same order of mag-

nitude as the corresponding r.m.s. third-mode response, U3. By comparing the coupled 

and uncoupled r.m.s. responses, it is found the percentage differences between the two 

responses are small. Hence, it can be deduced that in this type of excitation, the effect 

of mode-coupling under large non-linearity does not have a large influence over the total 

response of the vibration of the beam. 
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The non-linear coupled r.m.s. displacement responses are greater than the corre-

sponding uncoupled ones. This behaviour could not been found in any of the case in 

which the excitation was harmonic in the time domain. However, based on the findings 

regarding the increase in the third mode response in random vibrations (Load Case 3 of 

section 5.3.1), explanations can be sought. Here, the resonances of both modes 1 and 

3 are always within the frequency content of excitation. Even though the tendency of 

response reduction as a result of stiffening due to mode-coupling still exists, the greater 

amount of the response addition through the coupling term will overpower. Unlike in 

non-linear harmonic vibrations, the uncoupled Buffing's equation would underestimate 

the displacement response of the beam when subjected to a broad-band random pres-

sure. 

5.4 Chapter Summary and Conclusion 

The non-linear forced vibrations of simply-supported beams with immovable end con-

ditions have been studied. The 2D0F Buffing's equations with and without coupling 

terms have been solved numerically. The steady-state non-linear displacement response 

of the beam when subjected to different types of symmetrically distributed pressure has 

been obtained. Only the first two symmetric modes have been included in the response 

of the beam. The findings are summarised in Table 5.10. 

From studies in Load Cases lA and IB, the harmonic pressure has a spatial distri-

bution matching one of the linear mode shapes of the beam and has a frequency equal 

to the natural frequency of the other mode. It has been shown that the shape of the dis-

placement response is the same as that linear mode shape being matched by the spatial 

distribution of the pressure. The response oscillates at the frequency of excitation. 

In Load Case 2A, the beam is excited by two harmonic pressures in phase with each 

other at its third natural frequency. One of the pressures, P I , has spatial distribution 

matching the first linear mode shape of the beam whilst the other one, P3, is spatially 

matched to the third linear mode shape. The amplitude of excitation of the former 

pressure is fixed and that of the latter varying. In Load Case 2B, the beam is excited 
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Load Excitation Types Effects of Mode-coupling in 

Non-linear R.M.S. Displace-

ment Responses 

lA Harmonic, PI at wg Response due to mode 1 only 

IB Harmonic, P 3 at ui Response due to mode 3 only 

2A Harmonic, P 1 + P3 at W3, / i 

gxed, /a varying 

Coupling has large effect on ui 

which has small contribution 

2B Harmonic, P 1 + P 3 at Wi, /g 

Gxed, varying 

Coupling has large effect on 

which has small contribution 

2C Harmonic, P I + P 3 at wg, 

90° out of phase, /3/ /1 = 1 

Coupling has small effect on 

both Ui and 1/3 

2D Harmonic, P I at W3; P3 at 

wi, /3/ /1 = 1 

Coupling has large effect on ug 

which has small contribution 

3 Random white-noise con-

taining oji, P I + P3, /a 

fixed, / i varying 

Coupling has large effect on uz 

which has small contribution 

4 Random white-noise con-

taining W1 + W3, P I 4- P3, 

/3//1 = Viooo 

Coupling has small effect on 

both Ui and U3 

Table 5.10: Summary of Results in Studies Outlined in Figure 5.1 and Figure 5.7 
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by the pressures f 1 and f 3 in Load Case 2A. The forcing frequency, however is equal 

to the Brst natural frequency of the beam. The amplitude of excitation of f 3 is Sxed 

and that of P I varying. 

A similar study to Load Case 2A has been carried out. In this case, referred to as 

Load Case 2C, the pressures PI and P 3 are 90° out of phase and their amplitudes are 

the same. In another study, designated as Load Case 2D, the pressure PI excites the 

beam at its third natural frequency. The other pressure P3 has a frequency equal to 

the first natural frequency of the beam. The amplitudes of the two loads are equal to 

each other. 

In all these cases, results have indicated that mode-coupling can cause large effects 

on one of the modes, but the effects on the overall beam displacement response are 

small. 

Two further cases have been studied, which concentrates on the mode-coupling on 

the non-linear vibrations of S-S beams with immovable end conditions subjected to 

acoustic pressure. In Load Case 3, the beam is subjected to the pressures P I and P3. 

The frequency content of excitation is centred around the first natural frequency of the 

beam. With the amplitude of P I varying whilst keeping that of P3 fixed, the non-linear 

beam displacements have been obtained. Furthermore, a similar study has been carried 

out in Load Case 4, in which the random white-noise load contains both the first and 

the third natural frequencies. The amplitudes of P I and P 3 have also been selected so 

that the non-linear uncoupled first- and third-mode displacement responses are of the 

same order of magnitude. It has been discovered that there are only small effects caused 

by non-linear coupling. 

The SDOF Buffing's equation has been known to be a reliable tool to describe the 

behaviour of a simply-supported beam with immovable end conditions in geometrically 

non-linear vibrations. Through the current studies, it has been confirmed that in many 

cases, negligence of mode-coupling in the Buffing's system does not cause significant 

effects in the total displacement response. Nevertheless, the absence of coupling terms 

will overestimate the response. Moreover, it has been found that severe non-linearity can 

cause noticeable coupling effects in the overall beam response. As a result, the Buffing's 
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equation without mode-coupling should be treated with care when it is intended for 

describing beam vibrations in very non-linear situations. 
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Chapte r 6 

C O N C L U S I O N S A N D F U R T H E R 

W O R K 

6.1 Background of Current Work 

A variety of problems regarding the structural strength of thin panels which arise in 

modern aircraft constructions cannot be adequately analysed on the basis of the clas-

sical linear theory of vibration. Since the panel deflections experienced are not small 

in comparison with the size of the panel and in particular its thickness, the basic as-

sumptions of the linear theory are violated. Therefore, the development of a structural 

response prediction model which would take into account the non-linear response be-

haviour in the treatment of panel vibration is necessary. Moreover, the phenomenon of 

"coupling-resonance" due to the coupling of modes has been known for some time. Its 

effect, however, has very often been neglected in the study of beam vibration problems. 

The objective of the study is to improve the understanding of the vibration behaviour 

of non-linear response of thin aircraft beam structures subject to different loads in flight 

by several different approaches, with effects of mode-coupling taken into account. The 

study will serve as a background for the development of the prediction of non-linear 

vibrations of aircraft panel-type structures. 
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6.2 Summary and Conclusions of Current Work 

A literature review in the field of non-linear vibrations of slender beams and thin panels 

has been presented. A review in the topic of non-linear free vibrations of these structures 

has also been reported. The survey has focused on the non-linear forced response of 

beams and plates. The types of excitation are harmonic and random loads. 

The focus of this study has been on the behaviour of the response in the geomet-

rically non-linear forced vibration of simply-supported isotropic slender beams. The 

geometrically non-linear response of the forced vibration of a slender beam with simply-

supported end conditions has been analysed. The DufBng's equation has been derived 

and utilised to study the motion of non-linear beam vibrations. The types of excitation 

are concentrated mainly on uniform harmonic load and white-noise random pressure 

Harmonic Vibrations 

Two cases have been studied, in one of which a point force is applied at the mid-span 

of the beam. In the second case, a uniformly distributed pressure is applied across 

the span of the beam. In either case, the load is varying harmonically with time and 

has forcing frequencies around the first natural frequency but well separated from the 

next higher resonance. Approximated solutions by the analytical Harmonic Balance 

Method (HBM) have been compared against results obtained through the time-domain 

numerical integration of the SDOF Buffing's equation, those through ANSYS® Finite 

Element Analysis, as well as several published analytical results. 

1. The Finite Element Analysis has indicated that the non-linear mode-coupling ef-

fects due to higher resonating modes are minor in this case. 

2. The SDOF Duffing's equation has shown to be capable of describing the large-

deflection forced vibration motion of the beam. 

3. The analytical technique Harmonic Balance Method has been found to give sat-

isfactory approximation and that it can be used efficiently in analysing large-

deflection harmonic vibrations of a simply-supported beam. 
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Random Vibrations 

The non-linear vibration of simply-supported beams has been further analysed. The 

study aimed to determine the suitability of applying the Direct Equivalent Linearisation 

Technique in the analysis of highly non-linear response of the beam when subjected to 

a uniformly distributed band-limited white-noise pressure. In this case, only a SDOF 

system has been investigated and the SDOF Duffing's equation was employed. The 

solutions by the equivalent linearisation method have been compared with those obtained 

by the numerical time-domain Monte-Carlo approach. 

1. From the comparison of the root-mean-square displacement beam response, it has 

been shown that the Direct Equivalent Linearisation approximation agrees well 

with the solutions by the Monte-Carlo approach, even with the presence of a high 

level of non-linearity. 

2. The phenomenon of the rise in resonance frequency with increase of non-linearity 

has been observed by using both the Direct Equivalent Linearisation and time-

domain Monte-Carlo methods. 

3. In high levels of non-linearity due to intense excitation, results obtained by the 

time-domain Monte-Carlo approach indicate that resonance peaks of the displace-

ment response merge into one flat peak. However, solutions from equivalent lin-

earisation show that the non-linear system would have the characteristic distinct 

peaks of a linear system regardless of the level of non-linearity. 

Mode-coupling EflFects on Non-linear Vibrations 

Using the two-degree-of-freedom DufEng's equations with only the first and the third 

modes included, the impact of different excitation on mode-coupling effects in the non-

linear vibrations of simply-supported beams has been assessed. 

1. Under symmetric harmonic loads across the span of the beam, the crucial factor 

governing which modes of response are to be excited is the shape of the spatial 
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distribution possessed by pressure fluctuations. For example, if the pressure is 

spatially matched to the first linear mode shape, so that the generalised force in 

all other modes is zero, only the first mode of the beam will respond. The forcing 

frequencies have only effect of controlling the frequency content of the excited 

response. 

2. A Buffing's oscillator without coupling would overestimate the total displacement 

response in harmonic excitation, when compared to one with mode-coupling terms 

accounted for. 

3. For a harmonically excited non-linear Buffing's system which is stiffness-dominated, 

the level of overestimation decreases with increasing mode-coupling effects, whilst 

for one which is mass-dominated, the level increases with the mode-coupling ef-

fects. 

4. When the beam is subjected to a random band-limited white-noise pressure of 

which the frequency spectrum is centred around the first resonance, the non-linear 

Buffing's equations predicts that the beam would respond in a similar fashion as 

one being harmonically excited. 

5. In the case when the frequency spectrum of the random pressure covers both the 

first and third resonances, the overall random response behaviour is different from 

the total response in harmonic excitation. A system without coupling underesti-

mates the total displacement response in random excitation, when compared to 

one including mode-coupling terms. 

6.3 General Conclusions 

In the study of non-linear vibrations of simply-supported slender beams, the Buffing's 

equation has been proved to be a reliable tool to describe the vibration behaviour. 

Among the various approaches to obtain the non-linear response due to external exci-

tation, the time-domain numerical methods can almost always give solutions with high 
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levels of accuracy and thus may act as a benchmark. However, the employment of such 

methods should be restricted to relatively simple systems because when a more phys-

ically complex aircraft structure is to be analysed, where a lot of degrees of freedom 

is required or when high accuracy is paramount, the cost of the heavy computational 

workload could be extremely large. Even for simpler structures such as beams, the 

amount of resources spent in computation might still be significant. Less complicated 

but reliable approximate analytical techniques are attractive and should be considered, 

as they are very often able to capture the key features of the behaviour of the response. 

It has been shown that, in general, mode-coupling effects on the non-linear forced 

response of simply-supported beams under symmetric loads are relatively small. This 

means that the use of a SDOF uncoupled Buffing's equation is valid for approximation, 

but when very high accuracy is required, or when the excitation has more complicated 

characteristics, its use should be treated with care. 

6.4 Recommendations for Further Work 

The Buffing's equation has been investigated by numerous researchers over the past few 

decades. However, the forcing functions which have been used to simulate the actual 

acoustic load on aerospace structures are mainly restricted to stationary Gaussian white 

noise with a deterministic spatial distribution across the surface of the beam. Moreover, 

as a white noise with uniform spatial distribution is not a very good reflection of the 

excitation concerned in reality the random process of the non-linear analysis of response 

of aircraft panel-type structures due to acoustic loading which is uncorrelated in both 

time-wise and space-wise should be investigated. The excitation can be visualised as an 

aircraft skin exposed to a turbulence flow (a convected pressure) and acoustic pressures 

simultaneously. 

Certainly, the employment of some numerical Monte-Carlo approaches can obtain 

very accurate solutions in the non-linear response of beams. Nevertheless, the useful-

ness of the application of approximation schemes as an analytical tool should not be 
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undervalued, and their use to understand the non-linear response behaviour of beams 

subjected to more complex random loads should be investigated. 

The cases when severe mode-coupling effects are present in highly non-linear vi-

brations of various panel-type structures under different types of excitation need to be 

investigated. For instance, the severity of mode-coupling effects in a non-linear beam 

with multiple supports under random excitation could be studied analytically or numer-

ically. This can simulate a stiffened aircraft panel in rigorous flight conditions. 
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Appendix A 

THE 

MULTI-DEGREE-OF-FREEDOM 

FORM OF THE BUFFING'S 

EQUATION 

A . l Expansion of Modes 

If equation (3.2) in Section 2.1.2 is expanded up to the first three modes, it becomes 

2 n n 
+ cJiZii + Fi — Fqi 

<f%2 2 n n 
+ WgUg + 12 — Fq2 dt"^ 

+ WgMg + Fg — î 03 (A.l) 
df^ 

The coefficients within the terms Fi, Fg and F3 contain coupling terms and can 

be evaluated from the second of equation (2.26). However, due to different boundary 

conditions, several of these coefficients are in fact zero. 
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A.l Expansion of Modes 

A. 1.1 The Case of Symmetric Forcing 

In the case of a symmetric forcing, i.e., if a point force acts at the mid-span of the beam 

or if a distributed load acting across the beam has a symmetric distribution about the 

mid-span of the beam, the even numbered modes would not respond, so that the second 

equation of (A.l) will be zero. 

The term dx in equation (2.20) of Section 2.1.2 governs the nth mode 

coupling in the mth equation. Hence, it can then be shown in equation (2.21) in that 

section that for all choices of m ^ this term is identically zero for the simply-supported 

boundary conditions. Thus, expanding (A.l) up to three modes, the following equations 

result: 

Cf Zll n _ q _ o 

^̂ 2 + - | - n i i 3 3 ' U i « 3 = -Foi 

(Pu 
^̂ 2 "f" ^3^3 + -H 113333̂ 3 — -Fo3 (A.2) 

By the method of harmonic balance in section 3.2.1, the following equations are 

obtained. 

- | - - 1 - - I lu i i / lJ -111133^1^43 — Qqi 

3 3 
— + Wg A3 + -113311^^^3 + ^1^3333^3 == 003 (^'^) 

The harmonic response for the first two symmetric modes (mode one and mode 

three) under these specified conditions can be found by solving the equations in (A.3) 

by an iterative method such as the Newton's method [103]. 

A.1.2 The Case of Asymmetric Forcing 

When the beam is asymmetrically excited, even-numbered modes enter into the re-

sponse. Hence, in this case, all terms representing the even-numbered modes within 
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A.2 Iterative Process in Harmonic Balance: Newton's Method 

all three equations in (A.l) have to be considered. The three equations (A.l) for the 

simply-supported end conditions with asymmetric forcing conditions, expanded up to 

and including the third mode, would become: 

cPii 
+ Lului + + (Hi 122 If 2 + riiissUg)?/! = -̂ 01 

dt'^ 
dPu 

+ UJ2U2 + TI2222U2 + + 112233 2/3 )'U2 = FO2 

(Pu 
^̂ 2 (̂ 3311^1 + 03322̂ 2)̂ 3̂ + 03333^3 = Fo3 (A.4) 

A.2 Iterative Process in Harmonic Balance: New-

ton's Method 

An iterative process such as the Newton's Method could be used when solving the 

coupled non-linear algebraic equations (A.3) when employing the Harmonic Balance 

Method. Reformulate equations (A.3) so that they become: 

3 3 
+uIAi + + —111133^4.1^3 — Qoi = ^ 

3 3 
+ ^n33U^1^3 + ^03333^3 — QoS = V' (A-5) 

From the equations in (A.5), set all the coupling terms to zero and solve for Ai 

and A3, namely Ai_o and ^3,0 which are the initial guesses for the next approximated 

solutions Ai_i and ^3,1. This is done by employing the expressions: 

,43, = ] (A.6) 
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A.2 Iterative Process in Harmonic Balance: Newton's Method 

w h e r e = 9,^/9^1, <̂ [4̂  = 81^/8^3 audi = 1 ,2 ,3 , . . . . 

The values of the next approximated solutions Aî 2 and ^3,2 are then calculated by 

using the previous set of solutions and Agj) as initial guesses. The process is 

terminated when ( - 1 < TOL and - 1 < TOL, where TOL is a pre-

defined tolerance and should be small. The resultant values will be the solutions of Ai 

and ^3 in equations (A.3). 
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Appendix B 

SOLUTION OF THE SDOF 

BUFFING'S EQUATION 

B . l Frequency Response of The Primary Resonance 

of The SDOF DufRng's Equation 

Consider the SDOF Buffing's equation (3.7) which is reformulated with the subscripts 

dropped. 

= —ui'̂ u — IIu^ + i^o(i) (B.l) 

The solutions of equation (B.l) can be described by the frequency-response curve 

known as the "backbone curve". It represents the frequency response in the non-linear 

cases and can be thought of as arising from the response curve for the linear case by 

bending it to the right for a hardening spring and to the left for a softening spring. 

The solutions for the undamped frequency response can be obtained by using equa-

tion (3.9). With subscripts dropped, it is reformulated and given by equation (B.2). 
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B.l Frequency Response of The Primary R^onance of The SDOF Du&ag's Equation 

A typical response curve or backbone curve is shown in Figure 3.2. The response 

curves for a linear spring (11 = 0) and for a hardening spring (H > 0) with damping are 

shown in Figure B.l. The effect of damping controls the "peak" of the curve. 

For particular values of frequency ratio (H/w) there are three corresponding values 

of response amplitude \A\ on the backbone curve. However, only two of the three 

amplitudes are regarded as the stable solutions. These are the amplitudes which exists 

in reality. Moreover, which stable amplitude will exist at a particular {Q/cu) depends on 

the initial conditions of excitation. The behaviour is known as "jump" phenomenon. 

For instance, when the amplitude of excitation is held constant and its frequency 

(H) is far above the natural frequency (w) and is monotonically decreasing, the response 

amplitude |v4.| increases slowly and moves along the curve from point A towards point B, 

as indicated in Figure B.l. At a particular (Q/o;) (point B), |A| "jumps" spontaneously 

to the top curve. For further decrease in Q, \A\ decreases slowly along that curve towards 

point D. 

On the other hand, when the forcing frequency is initially far below w and mono-

tonically increasing, |A| increases and moves from point D via point C towards point E. 

With damping, after passing the peak of the curve (point E), \A\ "drops" spontaneously 

to the bottom curve at point F. The amplitude |A| continues to decrease slowly and 

moves towards point A. The sudden drop in amplitude from points E to F would be 

inexplicable on the basis of the corresponding backbone curve with no damping included 

[15]. The regions where the amplitude \A\ never exists in reality, bounded by the curves 

between points E and B, contain the unstable solutions of the DufRng's equation. 

When the Buffing's equation including the first mode is solved numerically for \A\ at 

each value of D,/loi, the backbone curve can also be constructed. The curves have been 

presented in Figures 3.6 and 3.7 for responses due to concentrated and distributed loads 

respectively. Observations of the graphs reveal that the values of |A| at Q/u i = 0.4243 

for the concentrated load case and at Q/u i = 0.433 for the distributed load case do 
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B.l Frequency Response of The Primary Resonance of The SDOF Puffing's Equation 

fi/co 

Figure B.l; Frequency-response curves for the Buffing's equation for a linear spring 

(top) and a hardening spring (bottom). 
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B.l Frequency Response of The Primary Resonance of The SDOF Du&ng's Equation 

not agree with the corresponding Harmonic Balance and the ANSYS® solutions. As 

a result, equation (B.l) is solved numerically for |A| at several values of H/oJi in the 

region concerned. The results are shown in Figures B.2 and B.3. 

1.6 

1.5 

1.4 

1.3 

< 1.2 

1.1 

1 

0.9 

0.856 

( 1.4 

rtfj 

\ o . 4243 

3.5 

/ u . a b 

0.3 0.4 1.5 0.6 

Frequency ratio QJa, 

0.7 0.8 

Figure B.2: Frequency-response curves obtained by the numerical integration of the 

Buffing's equation: concentrated load F§ = 1 

It is suggested that the peaks are due to a non-linear phenomenon called superhar-

monic resonance of the non-linear system [11]. This happens when the resonance fre-

quency is about three times the forcing frequency. In a superharmonic oscillation, the 

overall steady-state response is a superposition of two components: the free-oscillation 

and the forced-oscillation responses. The steady-state forced-oscillation response has the 

same period as the external load, the behaviour of which is the same as that in a linear 

system. The free-oscillation response oscillates at a frequency which is three times the 

forcing frequency. However, unlike a linear system, the amplitude of the free-oscillation 

response in a non-linear system at superharmonic resonance does not decay to zero in 

spite of the presence of damping [15]. 
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B.l Frequency Response of The Primary Resonance of The SDOF DnfGmg's Equation 

2.2 
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Frequency ratio £1/0), 
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Figure B.3: Frequency-response curves obtained by the numerical integration of the 

DufSng's equation: distributed load Fq = 2 
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B.l Frequency Response of The Primary Resonance of The SDOF Buffing's Equation 

To verify if the suggested reason is valid, the frequency spectra of the time histories 

of the displacement response are obtained. In particular, the time histories and power 

spectra of the non-linear responses for O/wi = 0.4 in the concentrated load case and 

for fi/cui = 0.45 in the distributed load case are presented in Figures B.4 and B.5 

respectively. 

Time (s 

Q 10 

10 ' 15 20 25 30 
Frequency (Hz) 

35 J, 40 
" n l 

Figure B.4; Time Histories (top) and Power Spectrum (bottom) of Non-linear Displace-

ment Response at H/wi = 0.4: Concentrated Load = 1 

From the resulted frequency spectra, it is found that besides a distinct peak at the 

forcing frequency, there is another peak at a higher frequency, denoted by Wni, whose 

power spectral density (PSD) is significant relative to the PSD at il. By obtaining the 

ratio between the forcing frequency and Wni at each fl/uii for the two loading cases, it 
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B.l Frequency Response of The Primary Resonance of The SDOF Du&ng's Equation 

Time (s) 

30 
Frequency (Hz) 

Figure B.5: Time Histories (top) and Power Spectrum (bottom) of Non-linear Displace-

ment Response at O/tui = 0.45: Distributed Load = 2 
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B.2 Approximation of the Temporal Responses for a SDQF Puffing's System 

can be seen that these values of Wni are about 30. Hence the frequency Wni is thought 

to be the frequency of the free-oscillation response in superharmonic resonance. It is 

also noticed that the value of w^i increases with increasing O/wi in this region of the 

curve. A comparison of different frequency ratios is given in Table B.l and B.2. 

(1/wi ^nl/^ ^/^nl 

0.35 LOS 3.000 0.333 

0.4 1.20 3.000 0.333 

0.4243 L27 3.003 0.333 

0.5 1.50 2.994 0.334 

Table B.l: Comparison of Frequencies Ratios in The Concentrated Load Case 

Q/loi ^nl/^ 0/^nl 

0.35 1.05 3.002 0.333 

0.433 1.30 3.000 0.333 

0.45 1.35 3.000 0.333 

0.5 1.50 3.000 0.333 

Table B.2; Frequencies Ratios in The Distributed Load Case 

It is thus believed that the small peaks found on the backbone curves in Figures B.2 

and B.3 are due to superharmonic resonance. 

B.2 Approximation of the Temporal Responses for 

a SDOF DnfRng^s System 

The time-dependent displacement response u(t) in equation (B.l) can be obtained by 

numerical methods. However, an approximated method can also be obtained by many 

analytical methods, and the iteration method from reference [15] will be outlined here. 
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B.2 Approximation of the Temporal Responses for a SDOF DuSng's System 

Note that this is valid when 11 is small and when Fq is of the same order of magnitude 

of n. In theory, for weakly non-linear systems, the value of H should be small. After 

rearranging and adding an extra term Q^u to equation (B.l), it becomes: 

^ + = + (B.3) 

Note in equation (B.3) that the value of cj need not be small and that Fq = f l F . 

Now, the single mode analogy to equation (3.3) is 

ui(t) = As inf i i (B.4) 

The parameter uj is the first approximation of the solution of u, and A is supposed to 

be given. Substituting the expression of ui{t) of (B.4) and its derivatives into the right 

hand side of (B.3), followed by the use of the identity sin^fii = (3sinQi — sin3Qi)/4 , 

gives the following differential equation: 

(n - w^)A - + nf" sin fit + sin 3Qt (B.5) 
dt"^ 

where Uji is the refined approximation to u. 

To ensure that u u is periodic, the coefficient of sin Hi has to be zero [15] so that: 

This is analogous to equation (B.2), and HF = Qo . By integrating equation (B.5) 

and setting the constants of integration to zero, the next approximation of the solution 

of u{t), which is harmonic with period 27r/f2, will be: 

'^//(t) = /I sin + ^^2 sin 3f]^ (B.7) 

Making the subject of equation (B.6) and substituting it into (B.7), the following 

can be obtained: 
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B.2 Approximation of the Temporal Responses for a SDOF Dn&ng's System 

uii{t) = A sin Clt + 
36 

sin (B.8) 

This is an analytical approximated value for the single-degree-of-freedom time-varying 

displacement Ui{t). 

Once the values of Um{t) are known, the maximum bending and the total axial 

(membrane) strains for a selected set of amplitudes, Am and frequencies, Q, can be 

obtained. 

For a multiple-degree-of-freedom system, from equations (2.6) and (2.14), the average 

axial (membrane) strain, ea(t), is given by: 

- 1 
T " ^ 9a; 

(B.9) 
m,n—l 

The bending strain due to curvature has a maximum value at the top or bottom 

surfaces and occurs at the mid-span of the simply-supported beam. The maximum 

bending strain is denoted by eb{t) and is given by: 

h d'^w 

,=,/2 2 
(B.IO) 

The total strain is the sum of the two strains with the use of equations (B.9) and 

(B.IO). 

et(i) — 6a(() + efa(i) (B. l l ) 

For the one-mode case with simply-supported end conditions, $(%) = sin(7rx//) 

and hence, 

ô(̂ ) — •"i(i)^ (B.12) 
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B.2 Approximation of the Temporal Responses for a SDOF DufBng's System 

'"iW (B.13) 

where could be given in equation (B.8) as or the displacement response 

time-histories obtained in a time-domain numerical analysis. 
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Appendix C 

NOTES ON NUMERICAL 

ANALYSIS TECHNIQUES 

C.l Non-linear Analysis by Finite Element Software 

ANSYS®: Undamped Harmonic Vibrations 

The non-linear displacement response of the beam due to a harmonic load can be ob-

tained by building a finite element model of the beam and then carrying out "transient" 

analysis in ANSYS®. The procedure is outlined briefly here. 

In the "Preprocessor" phase (/PREP7) in ANSYS®, a three-dimensional elastic 

beam element BEAM4 is used. The element BEAM4 is a uni-axial element with tension, 

compression, torsion, and bending capabilities. The element has six structural degrees 

of freedom at each node: three translational and three rotational. Stress stiffening and 

large deflection capabilities are included. A consistent tangent stiffness matrix option 

is available for use in large deflection (finite rotation) analyses. Shear deflection effects 

can be included. 

The properties of the beam such as the cross-sectional area, the second moment of 

inertia, the beam thickness, the Modulus of Elasticity and the density are defined. The 
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C.2 Simulation of Input Random Loads 

model of the beam is then meshed into a finite number of elements along the length of 

the beam in such a way that the highest linear mode shape can be captured whilst at 

the same time the mesh is not too fine that computational resources are wasted. In the 

current study, eight elements have been found to be adequate to capture the third linear 

mode shape. 

In the "Solution" phase (/SOLU), ANTYPE,TRANS is used. To account for the 

effects of geometrical non-linearity, the mode NLGEOM,ON should be present. The 

boundary conditions are then defined. A "loadstep-by-loadstep" approach is carried out 

to obtain the response due to an external sinusoidal load. 

It should be noted that even when no damping is considered in the work, some damp-

ing has been carefully implemented in order to remove the "transients" in the results. 

As the current analysis type TRANS does not allow the use of a constant damping 

ratio, the proportional damping constants ALP HAD and BETAD are used. Damping 

attributed to stiffness-proportional damping (BETAD) increases with increasing fre-

quency whilst damping attributed to mass-proportional (ALPHAD) damping decreases 

with increasing frequency. 

Finally, the results are retrieved from the "Postprocessor" phase (/POST26). 

C.2 Simulation of I n p u t R a n d o m Loads 

Stationary and Gaussian random processes can be simulated by employing the technique 

of Inverse Fast Fourier Transform [38, 39]. 

For a uniformly distributed band-limited Gaussian white noise, the random pressure, 

P'^{t) can be simulated as 

M 

(C.l) 

n=l 
where are independent random phase angles uniformly distributed between 0 and 

27r, LJn's are the frequencies at which the value of spectral density, 5 / are selected, 
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C.2 Simulation of Input Random Loads 

M = 2̂  is the number of simulated points in time, z is a positive integer, tp = pAi 

where At is the time interval, p = 1 , 2 , M , and 

The spectral density is defined in equation (4.22) in Section 4.2.3 of Chapter 4. 

In order to ensure that the simulated pressure describes its frequency domain counter-

part, its mean square value should be close to the integral area under the corresponding 

frequency spectrum density curve. The root-mean-square value of the simulated pres-

sure should also be the same as the prescribed one calculated from the SPL value, as 

the process has a mean of zero. 
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Appendix D 

TABLE OF REFERENCES 

The table of references shown in this section represents a brief description of the litera-

ture cited throughout the thesis. In the table, notations are used and their meaning is 

explained below: 

P: Plate-type structures 

S: Shells or curved panels 

SP; Stiffened plates 

Sine: Excitation varies sinusoidally with time 

random: Random Excitation 

PT: Point load 

DIST: Distributed load 

harmonic: Harmonic Excitation 

periodic: Periodic Excitation 

thermal: effects of elevated temperature 
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MM.BeWOUNÂiWtO. WMTE PT-siiie, rar»lom 
CHAYAMR. 

AVSRINIVASAN Iwnmmme 
jABBWIT̂ IFEISLEY Wwumc 
LAZRAR.RBB«AMARgalRO WHITE iiuinoiiic 
Ma.KAOmLR. BENAMARmodRa WHITE iviniwiiic 
AYTLEUNOWSK.CHU 
Hj\.SHERr Iwnmô  
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