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The first chapter sets the scene for the empirical analyses that come later. In particular, we collect 
together some recent results on the representation, estimation and testing of cointegrated 1(2) systems. 
In particular, this survey chapter extends Haldrup [1998] by including some recent developments such 
as tests on the cointegration parameters of Kongsted [1998, 2000] and by examining in more detail the 
influence of deterministic components in the 1(2) model as well as providing an overview of the 
maximum likelihood procedure detailed in Johansen [1997]. 

In the second chapter we provide a cointegration analysis of UK money demand within a framework 
that allows for 1(2) variables. The presence of 1(2) variables is supported by a test for the integration 
indices of the model, which suggests two cointegrating relationships and one 1(2) trend. We also find 
evidence for a nominal-to-real transformation to real money demand and a polynomial term involving 
nominal money and prices. This is in contrast to the common transformation used in the extant 
literature where the polynomial term contains the price variable alone. The 1(1) analysis of the 
transformed information set provides two polynomial cointegrating vectors which are consistent with a 
real money demand and an excess demand relation that closely match those found from previous 
studies. Finally, we show that a parsimonious VAR that incorporates the two polynomial relations 
provides a good characterisation of the in-sample movements in real money demand and, moreover, 
provides superior out-of-sample forecasting power compared to a differenced VAR that excludes the 
long run relations. 

In the third chapter we provide the first empirical examination of the monetary exchange rate model 
that allows for the presence of 1(2) variables in the data. For the dollar-sterling exchange rate over the 
modern float we find support for the existence of two cointegrating relationships among the variables: 
the monetary exchange rate model; and a simple Taylor rule. Moreover, by formally testing for the 
number of 1(1) and 1(2) stochastic trends and finding evidence for two such 1(2) trends in the data, the 
stationary cointegrating relations found correspond to polynomial relations where the linear 
combination of the differences of the variables are required in order to provide a stationary 
relationship. Finally, we show that by specifying an equilibrium correction model that incorporates the 
disequilibrium errors from the estimated cointegrating relations we obtain a model that is well-
specified in-sample and, moreover, provides superior 1-step forecasting power compared to 
multivariate versions of simple autoregression models with drift. Thus, by careful attention to the time 
series properties of the variables in the monetary model we provide further evidence that Meese and 
Rogoffs [1983] criticism of the monetary model as a poor forecasting model should be laid to rest. 

The final chapter provides a re-examination of the Cagan model of money demand over the German 
hyperinflation period. By allowing for the presence of 1(2) variables we show that the restriction of 
long run price homogeneity in the Cagan model is not supported over the German hyperinflation 
period. Furthermore, we find support for the need to augment the model with both wages and foreign 
exchange rate depreciation as suggested by Michael et al. [1994] and Frenkel [1977] respectively. A 
key result is that we show that the Cagan model requires reinterpretation as a polynomial long run 
cointegrating relation in order to produce a stable equilibrium relation over the German hyperinflation. 
Finally, we find support for both prices and wages being weakly exogenous for the cointegration 
parameters over the period. 
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Chapter 1 

Cointegrated 1(2) Sys tems: Representat ion , Es t imat ion and 

Test ing 

In this introductory chapter we set the scene for the empirical analyses that come 

later. In particular, we collect together some recent results on the representation, estimation 

and testing of cointegrated 1(2) systems. A comprehensive survey of tests for 1(2) and an 

overview of cointegration in the 1(2) model has already been provided by Haldrup [1998]. 

However, this survey chapter extends Haldrup [1998] by including some recent developments 

such as tests on the cointegration parameters of Kongsted [1998, 2000] and by examining in 

more detail the influence of deterministic components in the 1(2) model as well as providing 

an overview of the maximum likehhood procedure detailed in Johansen [1997]. 



1.1 Represen ta t ion 

In this section we discuss the basic statistical vector autoregressive (VAR) model 

and show how a representation theorem (Johansen [1992]) de&nes the conditions mider 

which the model allows the observed process to be integrated of order two (which we denote 

hereafter as 1(2)). We continue by applying the representation theorem to yield a moving 

average (MA) representation of the 1(2) model and discuss the individual processes contained 

therein. We also consider some useful reparameterisations of the VAR model including 

various equilibrium correction models (Johansen [2000]), a transformation to the 1(1) model 

(Kongsted [2000]), and partial systems. These various representations are used later in the 

chapter when we consider estimation of the 1(2) model and tests on the components of the 

model. We conclude this section by discussing the inclusion of deterministic components 

in the 1(2) model through their impact on the moving average representation and on the 

individual processes in 1(0), 1(1) and 1(2) spaces (Paruolo [1994, 1996] and Rahbek aZ. 

[1999]). 

Throughout we make use of the following notation: A denotes the difference oper-

ator such that for any (p x r), r < p matrix a of rank r let o = o(G'a)"^such 

that a'o = Trj and let indicate a p x (p — r) matrix whose columns form a basis of the 

orthogonal complement of span(a) such that a'^a = 0, aj_ = 0 if r = p, and ax = /p if a = 0. 

1.1.1 B a s i c Stat i s t ica l M o d e l 

Consider the p-dimensional fcth order unrestricted VAR model given by 

A(Z,)%t = (1.1) 



where the errors, et, are assumed to be independently Gaussian distributed with mean zero 

and variance Q, positive definite. To motivate the following note that the lag polynomial 

v4(z) = ^ ^ 0 can be expanded around the point z — 1 to yield 

^(z) = A - (1 - + ^(1 - + (1 - W (1.2) 

where A(z) = dA(z)/dz and A(z) = and where A = v4(l), A = A(l) and 

A = A(l.). 

The conditions under which the process, is 1(2) are set out in Johansen [1992]. 

First, we require that the roots of the characteristic equation |A(z)| = 0 lie outside the unit 

circle in the complex plane or at the point z = I. (Thus, we exclude seasonal roots defined 

where |z| = 1,^ ^ 1, and explosive roots defined where |z| < 1.) Second, we require the 

following reduced rank conditions on the impact matrix A and first-order derivative A at 

z = 1: 

n = a/3' (1.3) 

has reduced rank r < p, where 11 = —^ and where a and are (p x r) matrices of fuD rank 

r; and 

= 7̂7' (1.4) 

has reduced rank gi < (p — r), where T = —A — 11 and where ^ and are (p x g )̂ matrices 

of full rank si. This assumption allows for orders of integration greater than one. Last, we 

require the following full rank restriction to ensure that at most 1(2) variables are generated; 

(1-5) 
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is of full column rank S2 = (p — r — s). If the above assumptions all hold then the process 

is 1(2). 

1 .1 .2 M o v i n g A v e r a g e Representa t ion 

Let = j8_Li7, j82 — <̂ 2 = Note that (a, 0:1,012) and 

(/),/3i,/32) are mutually orthogonal and that the parameter depends on the choice of 

whereas /̂ ^and /)2 independent of this choice. Under the conditions set out in Johansen's 

representation theorem discussed above, the process has the following moving average 

(MA) representation 
t s t 

Xt = C2 y ] ^ ^ £z + Ci ^ ]si + C*{L)et (1.6) 
s=l i=l i=l 

where C2 = /)'Ci = ^rC2, = a^(8C2 — 7p) and the lag poly-

nomial C*(z) = ^ roots strictly outside the unit circle. Prom Eq.(1.6) 

we can make some comments on the diEerent components of the process and their or-

ders of integration. First, will, in general, have 82 common stochastic trends given by 

l ] s=i (III particular, note that /32'(̂ 2 7̂  0. Thus is simply a linear com-

bination of the oig thereby is itself a S2-dimensional 1(2) trend.) Second, 

since (/3,/3i)';^2 = 0 it follows that (^,/)i)'C2 = 0 and hence (/),;0i)'reduces the integration 

order of Xt from two to one i.e. {P,PiyXt is 1(1). Third, Johansen [1995] shows that the 

1(1) linear combination of levels forms a polynomial cointegrating relationship with 

the 1(1) linear combination of diEerences such that 1(0) where 

6 = Oi'Tf32. (Furthermore, as a special case, consider the othogonal complement of 8 given 

by 6_L of dimension r x (r — ^2) such that ^62 = 0. It then follows that 1(0) and 



10 

thus we have direct, as opposed to multi-, cointegration from the 1(2) level down to sta-

tionarity.) Last, note that the number of unit roots in the process is 5% + 2̂ 2 = rank(/)i)+ 

rank(/32). 

1 .1 .3 Equi l ibr ium Correct ion M o d e l s 

Consider the following isomorphic representation of Eq.(l.l) where the impact ma-

trices 11 and F defined in section 1.1.1 are explicitly introduced into the model specification 

k - 2 

^ + Et (1.7) 
i=l 

where ^ The speciEcation given by Eq.(1.7) IS 

termed an equilibrium correction model (E q̂CM) and provides a clearer representation of 

the 1(2) VAR model given by Eq.(l . l) by specifying the model in terms of levels, differences 

and double diEerences. 

By introducing the reduced rank condition given by Eq.(1.3) the following repa-

rameterisation of the EqCM model in Eq.(1.7) is obtained 

k - 2 

A^%t = - rA%t_i + ^ (1.8) 
1=1 

where the cointegrating relations are clearly presented and where the parameter a 

is shown to be the adjustment to these relations. 

As shown in section 1.1.2 the relations are, in general, 1(1). To ensure 

that all the terms in the EqCM representation are stationary we make use of the following 
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reparameterisation 

(1.9) 

t - 2 

+fiQ:_L(Q:̂ fio;j_) ^ k ! T ' ^ ^ ^ X j — j + €t 

i=l 

where Johansen [1997] shows that Eq.(1.9) is a valid reparameterisation of Eq.(1.8) for 

/) = /)T of dimension (p x r), ^ of dimension (p — r) x gi, 7; = of dimension 

(p — r) X si and T = — o f dimension (p x p). The E]qCM rep-

resentation given in Eq.(1.9) has a number of advantages over the representation given by 

Eq.(1.8). First, all the terms entering the equation are stationary, namely the polynomial 

cointegrating term the direct cointegrating term T'A%t_i, and the 

double differenced terms Second, the parameters a and K' are now clearly 

shown as the adjustment coeScients to the disequilibrium errors -t- and 

- /AXt- i respectively. Last, ail the parameters a,p,'r,'^,r2,$%,...,$^-2 are now unre-

stricted. This feature is discussed in more detail later with reference to fuH information 

maximum likelihood estimation, see section 1.2.2 below. 

In section 1.1.2 it waa shown that the combination — c o i n t e g r a t e s 

directly to form a stationary relation. Under the new parameter definitions given in Eq.(1.9) 

we have the analogous result that d'^{p'T'Xt — 6 / ^ 2 = S'j^p'r'Xt ~ 1(0). This result is 

used in the following EqCM reparameterisation (see Engsted and Haldrup [1999]) such that 

A^Xf = + (1.10) 

t - 2 

4- floij_(o!^no!j_)'"^K')yAX't_i -I- ^ 4-
t— 1 

now shows three disequihbrium errors corresponding to the directly cointegrating relations 
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the polynomial cointegrating relations +6'&T^A%, and the station-

ary relations 

1.1,4 1(1) Transformat ions 

Kongsted [2000] discusses the conditions required for a valid transformation of the 

1(2) model to 1(1) while preserving the full set of cointegrating relations. This transformation 

is obviously of interest given that, if accepted, the analysis of the system can then proceed 

with the well known and comparatively simpler 1(1) model. 

Consider the EqCM model given in E]q.(1.9). The transformation that we consider 

is given by the following 

= (T% T^A%) (1.11) 

where the p x (r + ai) matrix T defines the linear combinations which, in general, reduce 

the order of integration from two to one; and the p x 2̂ matrix corresponds to the 

condition that can be obtained &om Yf and AY*. Kongsted [1999] shows that the 

conditions required for the transformation to be valid, while ensuring that the 1(2) trends 

are eliminated and the cointegrating relations retained, are given by 

% ; 8 i ) = 0 (1.12) 

Alternatively, if the loadings matrix to the 1(2) trends, (32, is equal to the known matrix 

T then the transformation is also valid. The testing procedure for the transformation is 

discussed in full in section 1.3.3. 

With the transformation in place we obtain the following 1(1) model 

k - 2 

AY^ - (T,T_L)'a(/,6)}^_i 4- + (T,T_L)'Et (1.13) 
i—1 
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where the coefficients are complicated functions of the parameters in the model. 

Note that the polynomial cointegrating coeGcient 6 = now forms part of the cointe-

grating vector in the 1 ( 1 ) model such that the number of cointegrating relations is greater 

than or equal to the number of polynomial cointegrating relations in the original 1(2) model. 

1.1.5 Part ia l S y s t e m s 

The Snal set of reparameterisations we consider is those of partial systems z.e. 

those that decompose the 1(2) VAR model into marginal and conditional models. Partial 

systems are used in both the two step reduced rank regression and fuU information maximum 

likelihood estimation procedures, see sections 1.2.1 and 1.2.2 respectively, and in deriving 

the conditions for weak exogeneity, see section 1.3.4. 

Consider the EqCM model given by Eq.(1.8). Now, by pre-multiplying the EqCM 

model by a' = (c/a)"^a: and respectively we obtain the following set of equations 

k - 2 

+ o'st (1.14) 
1=1 

and 

OLj^/^Xi — —OLjV/\Xi—\ + ^ ^ + ot^et (1.15) 
i=l 

The marginal model is simply that given by Eq.(1.15). The conditional model for a'A'^Xt 

given a^A^X t̂ and the set of past values can be easily derived from Eqs.(1.14)-(1.15) and 

is given by 

a'A^Xt - + (1-16) 

k - 2 

- ( o ' - wo![L)rAXt_i + ^ ( o ' - + (o/ - wo!̂ )Ef 
i=l 
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for w = ^Da!_L(cKĵ Oa_L)" .̂ Note that the error (a' — wc/|^)et = with 

variance Oi = and is independent of the error process in Eq.(1.15) which has a 

variance of ^2 = 

1.1.6 De termin i s t i c C o m p o n e n t s 

For ease of exposition we have so far ignored the possibility of deterministic com-

ponents entering into the 1(2) model. However, deterministic components may be required 

in order to adequately characterize movements in the process, both in the short run, through 

inclusion in the model specification, and in the long run, through correctly specified coin-

tegrating relations. In light of this, this section provides a review of the literature on de-

terministic components in the 1(2) model. In particular we focus on the eSect of including 

deterministic processes on the stochastic representation of the 1(2) observed process. 

Model with constant 

Paruolo [1994, 1996] extends the analysis of Johansen [1992] by allowing for the 

inclusion of a constant in the unrestricted VAR model such that 

-A.{L)Xt = ^ + £t (1.17) 

The author considers the following factorization of the constant 

jjL = a/iQ + aiHi + with /i^ = a'̂ jj. (1.18) 

whereby jj, is projected onto the spaces spanned by a , ai and a2 with dimensions r, si 

and S2 respectively and where /ig is a vector of intercepts in the stationary cointegrating 

relations with dimension (r x 1), is a vector of linear trend slopes of dimension (g^ x 1), 
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and //g is a vector of quadratic trend slopes of dimension (g2 x 1)- Paruolo [1994] considers 

the case where ^ 0, while Paruolo [1996] considers the case of a restricted constant where 

jj.2 = 0- The impact of the restriction on the time series properties of the components of the 

1(2) model are discussed below. 

Under Johansen's representation theorem, the MA representation of Eq.(1.17) is 

given by 

i s t 

Xt = C2 ^ ^ + /J-) + Ci ^ + ju) + C*{L)ei + g + 2̂̂ ^ (119) 
a=l i=l i=l 

t s t 

= + (7-2 + Cl/2 + /̂ gb)̂  + C2 ̂ + Cl + C*(i;)6i + a (1.20) 
s=li=l i=l 

where T2 = ^(^2// (c./. Eq.(1.6) where the dehnitions of Ci, C2 and C* are the same). Here 

the parameter o depends on C*(l)/^ ajid the initial values while parameter 6 depends on 

the initial values only. 

The MA representation given in Eq.(1.20) decomposes the process into quadratic 

and linear deterministic trends (T2̂ ^ and (T2 +Ci/^4-;82^)^ respectively), integrated and cu-

mulative stochastic trends (C2 Ci 6:̂  respectively) and a stationary 

process given by C*(f,)Ei. It is clear that, as in Paruolo [1994], an unrestricted constant 

gives rise to a quadratic trend with coeGcient 1-2- However, if /yg = 0 as in Paruolo [1996], 

the quadratic trend disappears. This follows from noting that C2 = 

T2 = = 2'̂ 2('̂ 2®/̂ 2) ^0i20i2fJ'2 ~ 0 J ^ 0. 

Considering the linear combinations we have that fS'Ci = a'TC2. If /i2 = 0 as in 

Paruolo [1996] then does not contain a linear trend and is dominated by the random 

walk C2 ^ 6;. However, if //g ^ 0 as in Paruolo [1994] 13'Xt now contains a linear trend 
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in addition to the 1(1) component and thus behaves as a random walk with drift. In both 

cases and are both dominated by the same random walk and are cointegrated 

with coefficient matrix 8 such that polynomial cointegration occurs. 

Regarding the linear combinations we have from above that — 

that is the quadratic trend and integrated random walk components cancel so that 

is dominated by the hnear trend. Note that under the additional restriction = 0 this 

linear trend disappears as = —/̂ i-

Finally, in the direction /)2 the process is dominated by the 1(2) stochastic compo-

nents ^ ^ Ei . 

Model with restricted trend 

Rahbek e( aZ. [1999] extend the analysis of Paruolo [1994, 1996] to allow for a 

linear regressor in the unrestricted "VAR model such that 

A{̂ L)Xt = /iQ + /iii + £t (1.21) 

In contrast to Paruolo [1994, 1996] the constant tq is factorized into the spaces spanned by 

a and its othogonal complement aj, to give 

To = + (122) 

= CiKg + 

If the observed process Xt is integrated of order two then, in general, the unrestricted 

hnear regressor cumulates to a cubic trend while, as above, the constant //q allows for 

a quadratic trend. However, the authors show that by placing certain restrictions on 
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and jjLi the observed process can be forced to display, at most, linear deterministic trends. 

These restrictions correspond to 

j i i = Q!/3q (1.23) 

where of dimension r x 1; and 

^ (1 24) 

where rĵ  = — (/3_l7?)'ti = —/3'iTi of dimension Si x 1 . 

With these two restrictions in place the MA representation of the model is given 

by 
t s t 

Xt = C2 ^ yy ^ + Cl ^ + C*{L)£i + To + Tit (1.25) 
s=li=l i=l 

where the vectors tq and t i are functions of both the initial values and the parameters of 

the YAR model such that 

( 1 2 6 ) 

/)'To — ' —(Ko4-ai'r/3i?)Q + (7r + a:'r/3)/)Q=^ (1-27) 

Rahbek et al. op. cit. provides the proof and full expressions for tq and t i . 

From Eqs.(1.25)-(1.27) we can see that has at most linear trends in all direc-

tions. SpeciRcally, we have: —(,80;%)'^ linear combinations (/),/3i)'^t; for 

the 1(2) linear combinations and (ĵ ot + l ) for the polynomial cointegrating relations 

Finally, note that only is a function of the initial values. 
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1.2 Es t imat ion 

In this section we begin by providing a detailed discussion of the two step estima-

tion procedure of Johansen [1995]. Our focus on this procedure stems from the availability 

of code in the CATS for RATS computer package (Hansen and Juselius [1992]) that imple-

ment the tests discussed later. As a result, the two step estimation procedure is employed in 

the empirical studies in the rest of this thesis. Next, in addition to the procedure outhned 

in Johansen [1995] we also consider in detail the inclusion of deterministic components. We 

conclude this section with an overview of the umestricted maximum likelihood procedure 

of Johansen [1997]. The maximum likelihood procedure is not employed in this thesis as 

the implementation of the tests is still under development. However, it would clearly be of 

interest to employ these procedures when documented code becomes available. 

1 .2 .1 T w o S tep R e d u c e d R a n k Regress ion 

A two step estimation procedure model that requires only regression and reduced 

rank regression is provided by Johaiisen [1995]. In the Erst step, estimators of a, and 

together with the rank of H are obtained by reduced rank regression. This is equivalent 

to the standard 1(1) reduced rank analysis with a restricted hnear term, see Johansen 

[1996, Section 6.2]. However, in contrast to the 1(1) case, the estimators are not maximum 

likelihood but are asymptotically efficient in the sense that they have the same asymptotic 

limiting distribution as the maximum likelihood estimator. In the second step, estimators 

for the remaining parameters 77, ^ and are provided from the reduced rank regression 

of conditional on the estimates of a, and obtained from the 6rst step. A detailed 
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discussion of these two steps is provided below. 

Consider the EqCM representation given by Eq.(1.8) such that 

= a(3'Xi_i — + St (1.28) 

where we have defined The analysis begins by concentrating the 

parameters in out of the likehhood function by regressing A%t_i and %t-i on 

Zt yielding the residuals Aot, and Azt and the equation 

Rot = ri?if + a(3' R2t + St (1.29) 

Note that Aot and are stationary even though from section 1.1.2 we have that TZzt = 

%f_iis 1(2) and that and AX* are 1(1). Thus, the estimate of /) is super-superconsistent 

as the linear combination of (3'R2t transforms the process from 1(2) to 1(0). 

In the Erst step, the procedure is performed under the restriction H = a/)' while 

ignoring the reduced rank restriction on F. The Erst step then corresponds to the reduced 

rajik regression of on corrected for .Rit which is solved by the (p + l)-dimen8ional 

eigenvalue problem 

|AM22.i — i | = 0 (1.30) 

where and for z, j, A = 0,1,2 are con-

ditional and unconditional sample product moment matrices respectively. The solution to 

the eigenvalue problem given in Bq.(1.30) provides ordered eigenvalues 1 > Ai > . . . > Ay > 

0, Ap+i = 0 with corresponding eigenvectors V = . . . , t ^ i ) . The resulting estimators 
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of a, and D are given by 

f3 = (y\,..., f r ) j 

a = Mo2.ii80'M22.i;8)-"; (1.31) 

Q, = Mqq-I — oioi 

In the second step a, and f] are assumed known and equal to the estimated 

values from the Arst step. The analysis proceeds by considering the partial system given 

by Eqs.(1.15)-(1.16) which splits the EqCM model into a marginal model for and 

a conditional model for a'A^%( given However, we augment the marginal model 

by explicitly introducing the reduced rank condition on T, given by Eq.(1.4), to yield the 

following partial system 

a^A^Xt = + + (1.32) 

^A^Xt = + + (1.33) 

where we have made use of the identity Tp = As in the first step the parameters 

in are concentrated out of the likelihood function by regressing Â Ĵ Ct, A%t_i and %(_i 

on Zt yielding the residuals Sot and the equations 

+ (1.34) 

o'Sot = + (1.35) 

The likelihood analysis then proceeds as a reduced rank regression of on 

corrected for which is solved by the (p — r + l)-dimensional eigenvalue problem 

f—1 
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for ordered eigenvalues 1 > > . . . > > 0, = 0 with corresponding eigenvec-

tors l y = (wi , . . . ,'Wp_r+i) and where the subscripts and ^ refer to the variables 

and respectively. The estimators of 7;,̂  and are then given by 

? = (1.37) 

OijVL(y._[_ = Maj_aj_-p 

Treatment Of Deterministic Terms 

The model of Paruolo [1994, 1996] is defined by the equations 

= cif3' Xt—i — + /i + et 

= 7̂7' (1.38) 

= a//Q4-a!i/zi + a!2;/2, = 

The caae analyzed by Paruolo [1994] where the constant is completely unrestricted 

such that ^ ^ 0 can be trivially covered by concentrating the constant out of the likelihood 

function in addition to the parameters in Thus in both steps we simply need to regress 

and on both Z* and a constant and the rest of the analysis remains 

unchanged. 

The cage analyzed by Paruolo [1996] covers two cases where the parameter on the 

constant is restricted to yield a linear trend (/i^ ^ 0) and no linear trend (//^ = 0). As in 

the case for no deterministics we begin by concentrating the parameters in out of the 

likelihood function by regressing A^%(, AJ^(_i,%(_i and the constant on Zt yielding the 
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residuals and Q and the equation 

= ^ T i t + a(3'T2t + {ô Ĵ•Q + oiii i-^Ct + Vt (1.39) 

where we have imposed the restriction = 0 (c./. Paruolo [1994]). 

Consider the Srst case where ^ 0. In the Erst step of the procedure the constant 

is Etted unrestrictedly by regressing 7bt,Tit,T2t on Q obtaining the residuals aiid 

Emd the equation 

% = rC/it + + wt (1.40) 

Comparing Eq.(1.40) with Eq.(1.29) it is clear that one can proceed with the analysis 

discussed for the model with no deterministics save for substituting the residuals 

and [/2t for the residuals and A2t-

Fixing CK and from the Erst step, the second step considers the equation 

= - (̂,7% / . i ) [Kri , )% Q] + 

= (1.41) 

where dt = [(;8j_?it)%Ct] and ?)* = (7/,/^i)\ The likehhood analysis of Eq.(1.41) for Exed 

a and /) corresponds to a reduced rank regression of on df for Exed which is 

solved by the eigenvalue problem 

pMh.^ - = 0 (1.42) 

for ordered eigenvalues 1 > ^̂  > . . . > > 0, = 0 with corresponding eigenvectors 

^ = (? i , . . . ,^_r+i) where the superscript * indicates that the moment matrix involves the 
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residuals % &nd the subscript ^ and refer to the variables and respectively. 

Comparing Eq.(1.42) with Eq.(1.36) it is clear that the estimators for and are 

given by 

V ^ (^1, • • • ) ^si)i 

^ i (1-43) 

Consider the second case where = 0. In the first step we start by substituting 

fj-i = 0 into Eq.(1.39) to obtain 

Tot = TTit + cxj3'T2t + UHQCI + vt 

= + + % (1.44) 

where and The statistical analysis of Eq.(1.44) for unrestricted 

r can be performed by a reduced rank regression of Tot on A for Exed Ti* which is solved 

by the eigenvalue problem 

= 0 (1.45) 

for ordered eigenvalues 1 > ^^ > . . . > ^^ > = 0 with corresponding eigenvectors 

G = (gi , . . . ,5p+i)- From comparing Eq.(1.45) with Eq.(1.30) it is clear that the estimators 
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of CK, and 2̂ are given by 

a = (1.46) 

= - ^ 0 1 " 

The model of Rahbek e( oZ. [1999] is deEned by the equations 

A.'^Xt — ct/5'̂ i—1 — + ^Zt -{- fiQ -\- 0.(3^1 + Et 

= ,̂7' (1.47) 

By concentrating the parameters in out of the hkehhood function and deSning = 

(-X'(_i,t)' and = (,8%/)o)' we obtain the residuals and V2t and the equation 

+ o:,0*'V2( 4- % (1-48) 

The first step then corresponds to the reduced rank regression of Vot on V2t corrected for 

which is solved by the eigenvalue problem 

1^^221 — -%o = 0 (1 49) 

The solution to the eigenvalue problem given in Eq.(1.49) provides ordered eigenvalues 

1 > > . . . > > 0,0p+i = 0 with corresponding eigenvectors D = (di , . . . ,(fp+i). The 

resulting estimators of a, 0̂* and f) are given by 

/)* = (^,...,^); 

a = Mo2.i/3(/) M22.i^)"^; (1.50) 

Vl = -Moo-i ~ 
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Fixing a, 8̂ and /̂ Q from the Erst step, the second step considers the equation 

(1.51) 

where the restriction on /ig is imposed. The statistical analysis of Eq.(1.51) can be performed 

by a reduced rank regression of on Gxed which is solved by the 

eigenvalue problem 

0 (1.52) 

for ordered eigenvalues 1 > Ki > . . . > /^ > 0, ̂ - r + i = 0 with corresponding eigenvectors 

^ = ( / i i , . . . , /ip_r+i). It follows that the estimators for 7;*,̂  and &re given by 

? = (1.53) 

1.2.2 Full In format ion M a x i m u m Likel ihood (FIML) 

An analysis of the likelihood function of the 1(2) model together with an algorithm 

for calculating the maximum likelihood estimator is provided by Johansen [1997]. In the 

following we provide an overview of the unrestricted maximum likelihood estimation pro-

cedure. Further details together with a discussion of tests within the maximum likelihood 

procedure can be found in Johansen [2000]. 
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To begin, consider the reparameterisation of the 1(2) model given in Eq.(1.9): 

= a ( / T % _ i + ^ ' A % t _ i ) (1.54) 

k - 2 

-\-Q.(y.x_{oi^Q,a±) ^ K ' T ' ^ + £t 
i=l 

where the parameters in the model 0 = ^t-2) v&ry unrestrictedly given 

the full rank restriction on holds, see E]q.(1.5). 

The algorithm for calculating the maximum likelihood estimator consists of two 

steps. In the first step a, and thus aj^, is determined by Gxing T and solving an eigenvalue 

problem while the other parameters are found by regression. In the second step, the para-

meters estimated in step one are Gxed and T is determined by generalized least squares. By 

switching between these two steps until convergence the maximum likelihood estimator can 

be calculated. Note that by using a general result about consistency of the maximum likeli-

hood estimator in a non-linear regression with independent Gaussian errors (Johansen [1997, 

Theorem Al]) it can be shown that the maximum likelihood estimator in the 1(2) model 

defined by Bq.(1.9) is consistent. Furthermore, while the parameters 

are estimated consistently, the parameters and f are superconsistent. 

The asymptotic distribution of the superconsistent estimators are proved to be 

asymptotically mixed Gaussian while those of the consistent estimators are asymptotically 

Gaussian. Moreover, as a corollary of the proof it is shown that the limiting distributions 

of o: and ^ in the maximum likelihood analysis of the 1(2) model are the same as those for 

the reduced rank estimators of 01 and in the 1(1) model. Thus, the two step estimation 

procedure discussed in section 1.2.1 is efficient for the estimation of a and (3 and one can 

ignore the second reduced rank condition, see Eq.(1.4), and simply fit the 1(1) model as given 
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by the reduced rank condition on H, see Eq.(1.3). The efficiency of the two step procedure 

for the estimation of the remaining superconsistent parameters is given in Paruolo [1999]. 

A discussion of the asymptotic distributions of the maximum likelihood estimators of /3, ^ 

and T is provided in Johansen [1997]. 

1.3 Test ing 

In this section we discuss tests of various hypotheses of interest in the 1(2) model. 

We begin by de&ning the hypothesis of cointegration and present the test for the deter-

mination of the integration indices in the 1(2) model by Rahbek of. [1999]. Next we 

consider various restrictions on the parameters of the 1(2) model. After noting the similar-

ity of tests on a and with the standard 1(1) model we cover tests on all the cointegrating 

relations as provided by Kongsted [1998]. Finally, we discuss the tests for weak exogeneity 

in cointegrated 1(2) systems derived by Paruolo and Rahbek [1999]. 

1.3.1 D e t e r m i n a t i o n Of Integrat ion Indices 

Following Johansen [1995] let ^ denote the vector of parameters in , . . . , on 

and below the main diagonal of and in turn let E = p.d.jdenote the unconditional 

parameter space. With these definitions in place we can consider the following submodels 

of the 1(2) model. First consider the submodel with the reduced rank restriction 11 = 

in place which we denote as 

= = (1.55) 
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Ag a special case consider the submodel within where a and are of full rank r such 

that 

2° = ^ E Sr, rank(a!) — rank(/)) = r} (1.56) 

Thus we have that Er = - o = "0, ^ and Hq C Hi C . . . C Next 

consider the submodel with the reduced rank restriction = 7̂)' in place which we 

denote 

s , , , , = {^: ( E s° , 77 e (1.57) 

Again we consider the special case of the submodel within Sr,3i where ^ and are of fuU 

rank s such that 

2° = ^ e 5° g, rank(^) — rank(7y) = 5} (1.58) 

Thus we have that ^r,s — Ui=0 "r,0 ~ ^r,s ~ "r,Si\"r,s—1 <md .̂ r,0 C Sr-,1 C . . . C 

2r,s. We are now in a position to construct the relationships between the various submodels 

shown below 
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-0,0 C S o , l C • • • C So , r = = Ho 

n 
:i,o C --- C = Sg C Si 

n 
r—1,0 C —1,1 — 1,1 C ^ r—1 

n 

The hypotheses above of the form ^r,ai : ̂  G Sr,3^ correspond to varying integration indices 

in the 1(2) model. SpeciEcally, we have r stationary cointegrating relations, si common 1(1) 

trends and thus the number of (p — r — si) = S2 common 1(2) trends. In particular, the 

hypothesis of cointegration is given by ATr.si against jifr : ^ G 2 i e. the unrestricted case. 

With the nesting of models given above Rahbek et al. [1999] show that the hkeli-

hood ratio test of rank(n)< r against rank(n)< p is given by 

p 

Qr = - r Y ] ki(l - ĝ ) (1.59) 
i=r+l 

from Eq.(1.49) above. Similarly the hkehhood ratio test of rank(a!j^r/3j^) < ai against 

rank(o!j^r/3j^) < p — r is given by 

p 

Qai = - r g ln(l - K̂ ) (1.60) 
i=r+l 
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from Eq.(1.52). Finally, Rahbek et al. [1999] show that the joint test for the hypothesis 

i^r.si against Hp is given by the union of the individual tests such that 

"Sr.ai = Qr 4- (1 61) 

1 .3 .2 H y p o t h e s e s O n a and /3 

Following Johansen [1995] and Paruolo [1999] it can be shown that the asymptotic 

distribution of tests on a and in the 1(2) model are still Thus one can ignore the second 

reduced rank condition given by Eq.(1.4) and calculate likelihood ratio tests of parameter 

restrictions on a and ,8 exactly as in the standard 1(1) model (see Johansen [1996, Section 

7.2.1). 

1 .3 .3 H y p o t h e s e s O n r 

The hypothesis we consider on T is that given by Kongsted [1998] of which a special 

case is the transformation to the 1(1) model (Kongsted [2000]) discussed in section 1.1.4. 

Following Kongsted [1998], consider the hypothesis that all cointegrating relations in the 1(2) 

model are subject to p — g linear restrictions contained in the p x (p — g) matrix 6 such that 

b'-r = 0 which is equivalent to 6'(;8,/3i) = 0. Now, consider the following parameterisation 

of 

(3 = B(p, B — b± (1.62) 
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where y is a (r x g) matrix of freely varying parameters. The orthogonal complement of ^ 

can then be constructed as 

= (Bi,6) (1.63) 

With the parameterisation in place b'f3i can then be formulated as a restriction on rj in 

Eq.(1.4) such that 

(l.C 

where for the special case of Kongsted [2000] we have that b'/?! = 0. 

A test of = 0 that uses the two step estimation procedure discussed in 

section 1.2.1 is provided in Kongsted [1998]. The Erst step estimates the model unrestrict-

edly as well as subject to the restriction on As discussed in section 1.3.2 this step is 

equivalent to testing restrictions on (3 in the standard 1(1) model. Thus the likelihood ratio 

test, denoted Qbi, is asymptotically distributed as with (p — g) x r degrees of freedom 

subject to = 0. 

In the second step, conditional on the estimates of a: and in the Erst step, 

the model is estimated unrestrictedly as well as subject to the restriction on rj such that 

h'Pi = 0. The restriction is imposed in the second step by considering the parameterisation 

of 7] such that 77 = H9 with H = {Iq-r,Oy and 9 being a (q — r) x si matrix of freely varying 



32 

parameters. By defining 
/ \ 
1 ^ 0 

= (1.65) 

\ ® ^ / 

the second step corresponds to solving the eigenvalue problem 

for ordered eigenvalues 1 > Kbi > . . . > K(,p > 0, K(,p_r+i = 0 with corresponding eigen-

vectors J = (ji,... ,jp_r4-i). The restricted estimates are then and 

where 0 = ( j i , . . . , ). Given the 5rst step estimates of a and /) the likelihood ratio test of 

= 0 is given by 

which is asymptotically distributed as with (p — g) x ai degrees of freedom subject to 

6'(/),;8i) = 0 given that is mixed Gaussian. Given the sequential nature of the test 

Kongsted [1998] suggests that one considers a rejection region that is the union of the 

rejection regions for and Qb2- Thus, given a rejection region of size f the size of each 

Individual test can be chosen as 'L;/2. As the separate tests are consistent, the sequential 

procedure is consistent against the alternative &'(/), Ẑ )̂ ̂  0. 

1 .3.4 Test ing W e a k E x o g e n e i t y 

Paruolo and Rahbek [1999] investigate weak exogeneity with respect to the cointe-

gration parameters in the 1(2) model. Consider the EqCM representation given in E]q.(1.7) 

such that 

- rAXt_i + eZf + Et (1.68) 
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where we have deSned 6 = , ̂ k-2) and Zt — A^%f_2,..., 

as before. To motivate the conditions required for weak exogeneity we make use of the 

following decomposition of r A X t _ i in Eq.(1.68) 

rA%t_i = a6/%A%t_i + (gi,g2)(/),;8i)'AXt_i (1.69) 

where = T/), i;2 = and where we have made use of the property = 0. 

Inserting Eq.(1.69) into Eq.(1.68) yields 

A^Xt = + % A X ( _ i ] + (gi, ;2)[(;8, /) i) 'AXt_i] + 8 Z t + (1.70) 

which shows that we have the adjustment coeScient a to the stationary polynomial coin-

tegrating relation given in the Erst square bracket and the adjustment coeSicients ('̂ 1,̂ 1) 

to the stationary linear combinations in the second square bracket. Note that we may also 

define the second set of adjustment coefficients as (?i,Q!i) since a±Q'^(,2 — = 

:= a i . 

Paruolo and Rahbek [1999] show that under Johansen's representation theorem 

with r > 0, g > 0 a subset of is weakly exogenous for the cointegration parameters 

^ = (/),/)i,6) if and only if 

6 ' ( a , o : i , g i ) = 0 (1.71) 

Note two special cages: if r = 0,g > 0 we require only that (/(ai,i;i) = 0; while for 

r > 0, s = 0 we require only that b'a = 0, that is the condition collapses to that in the 

standard 1(1) caae. 

The first condition, h'a = 0, implies that the polynomial cointegrating combina-

tions do not appear in the equations for 6'A^%( and ensures asymptotic efficiency of the 

estimator for in the first step of the two step reduced rank regression procedure. 
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The second condition 6'o!i = 0 implies that the stationary combinations 

win be absent from the equations for Taking the conditions 6'(o!, a i ) = 0 together 

results in the eGcient estimation of the polynomial cointegrating parameters and guarantees 

that the cumulated iimovations from Eq.(1.6) form the common stochastic 

1(2) trends in the system. 

The last condition = 0 ensures that the stationary combinations remain 

absent from the equations for 

Paruolo and Rahbek [1999] suggest a sequential testing strategy for weak exogene-

ity based upon the two step reduced rank regression procedure discussed in section 1.2.1 so 

that departures from the maintained hypotheses can be identiSed. 

The Hrst hypothesis b'oi = 0 is tested within the first step of the two step reduced 

rank regression procedure. Specifically, we consider the model of conditional on 6'Xt 

where is a (p x m)-dimensional matrix. In the Grst step the estimates of a and are 

subject to a = and are obtained by reduced rank regression of on %t_i corrected 

for A^%( and Zt as dehned in Eq.(1.28). Denoting the eigenvalues that solve the restricted 

eigenvalue problem under a = as AJ, under the hypothesis that 6'a: = 0 the likelihood 

ratio test is given by 

= (1-72) 

The restricted estimate of a and the estimate of are retained for use in the second step. 

The second hypothesis b'ai = 0 makes use of the partial systems representation 
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presented in section 1.1.5. First, we construct the orthogonal complement of a such that 

a_L = 

= (^1,6) (1.73) 

Thus, since a i = a_L^ we have that 

. J , A 
(1.74) = (^1,6) 

y 

where under the restriction b'ai = 0, = 0. With this parameterisation in place, the 

restricted estimate of ^ is obtained from the conditional model given by Eq.(1.16) by re-

duced rank regression of on corrected for Z* and The 

likelihood ratio test under the hypothesis 6'ai = 0, denoted Qag, is then distributed as 

with (p — m) X 8i degrees of freedom under the condition 6'(o:, a i ) = 0. 

The Snal hypothesis f/gi = 0 is also tested in the second step but makes use of the 

marginal model given by E]q.(1.15). Paruolo and Rahbek [1999] show that the hkelihood 

ratio test of b'Ti — 0 with 6xed from the Erst step is simply a test of exclusion of some 

of the regressors in the marginal model. SpeciScaily, defining Sw, as the residual product 

moment matrix corresponding to OLS of 6'A^%t on similarly as the residual 

product moment matrix corresponding to OLS of 6'A^Xt on ;8'AXt_i and the likelihood 

ratio test under the hypothesis h'qi = 0 is given by 

Qa3 = ^(ln|S'w,|-ln|^w,.^|) (1-75) 

and is distributed as with (p —m)r degrees of freedom under the condition 6'(a, 0=1,̂ 1) = 

0. 
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Chapter 2 

A n 1(2) Cointegrat ion Analys i s Of U K M o n e y D e m a n d 

2.1 Introduct ion 

The current commitment to price stability provides a suitable backdrop for re-

visiting the literature on the speciScation of a money demand function for the UK. The 

importance of providing a money demand equation that displays both parameter constancy 

and is robust to changes of regime is that, though targeting money growth is no longer 

used as an exphcit strategy for guiding the adjustment of interest rates in pursuit of price 

stability, a well-specified money demand equation stills provides an important role in the 

conduct of monetary policy. In fact, the current period of inflation targeting is not unique 

in requiring a robust money demand relationship. The estimation of econometric models 

of the demand for money have been a major focus of empirical monetary economics since 

the 1970s and it has received considerable focus through its use ag the model of choice 

for the proponents of the general-to-specific methodology of Hendry [see Hendry [1995]). 

Turning to the econometric literature, early studies on this methodology estimated single 
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equation models of UK money demand (Hendry [1979, 1985, 1988] and Hendry and Eric-

sson [1991]). However, more recently attention has been paid to the long run properties 

of money demand functions examined through cointegration (Ericsson et al. [1990, 1994], 

Hendry and Mizon [1993] and Hendry and Doornik [1994]). These studies have provided 

evidence that a cointegrating vector can be found that is interpretable as a money demand 

function and furthermore which satisSes certain restrictions suggested by economic theory. 

However, a weakness in this literature remains. To avoid the consequences of modelhng 

nominal money and prices as 1(2) variables, a transformation (long run price homogeneity) 

is imposed in order to proceed with the standard techniques of the 1(1) model. In Hght of 

this, a number of recent studies have relaxed this restriction and tested for the number of 

cointegrating relations and 1(2) trends within a cointegrated 1(2) model (Johansen [1992], 

Paruolo [1996] and Rahbek et al. [1999]). In common with the 1(1) studies support is found 

for a cointegrating relation that matches the theoretical propositions underpinning money 

demand functions. However, the evidence also suggests the presence of two 1(2) trends. The 

importance of this result can be seen by noting that there are only two candidates for 1(2) 

variables in the dataset, namely nominal money and prices. Thus, with two 1(2) trends the 

price homogeneity restriction employed in the 1(1) studies will not be suEicient to reduce 

the model down to the 1(1) level. 

The contribution of this chapter is to provide a formal test of the restriction 

employed by Hendry and Mizon [1993] and Hendry and Doornik [1994] in specifying an 

information set with long run price homogeneity imposed. In addition, we extend the 

analyses of Johansen [1992], Paruolo [1996] and Rahbek et al. [1999] by examining the 
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dataset of Hendry and Mizon [1993] which includes certain dummy variables in the dataset 

(see below). In particular, we provide a long run stationary relation for money demand and 

show how the incorporation of this relation in a vector autoregression yields a parsimonious 

and congruent representation of the data over the full sample period. Finally, we show 

that this equilibrium correction model provides superior out-of-sample forecasting power 

compared to a multivariate autoregression model. 

The structure of the Chapter is as follows. The rest of this section discusses the 

economic model and the choice of variables therein. Section 2.2 then presents the empirical 

analysis including testing for the appropriate integration indices of the model together with 

tests of parameter restrictions on the stationary relation and on the common trends in the 

system. We continue the empirical analysis by estimating an equilibrium model over the full 

sample period and show that it is congruent with respect to the dataset. The final empirical 

section provides evidence on the parameter constancy of the cointegrating relations and on 

the forecasting power of the equilibrium correction model compared to a simple multivariate 

time series model. Section 3 concludes. 

2 .1 .1 T h e E c o n o m i c M o d e l 

A long run money demand speciEcation that is consistent with both inventory-

theoretic and portfolio choice models of money demand can be represented in semi-log 

functional form by 

= (2.1) 



41 

where m is nominal money demand, p is the price level, ^ is a scale variable and R is a 

vector of returns on various assets. The function /(•) is increasing in p, y and R for the set 

of assets included in m and decreasing for the set of assets excluded from 

As discussed above a common restriction applied to the function form in Eq.(2.1) 

is long run price homogeneity. In addition, studies that employ this restriction include 

inflation among the parameter set in /(•). It is clear that with price homogeneity imposed 

one can either include or exclude inflation from the model. However, excluding inflation 

imposes the further restriction that short-run and long-run elasticities of money demand 

with respect to prices are equal, a restriction that is rejected in Hendry and Ericsson [1991]. 

The scale variable used in the studies discussed above is real total final expenditure 

and its use derives from the fact that narrow money is mainly held for transactions purposes. 

Increases in real income will lead to a rise in the demand for nominal money to satis^ 

increases in aggregate consumption and also because of individuals wishing to hold a certain 

proportion of their wealth in liquid form (though this will be mitigated through progress 

in transactions technology which will force cash and other Enancial assets to be closer 

substitutes). The actual choice of scale variable is not clear and a number of alternatives 

have been used in the empirical literature including GDP and retail sales^. 

Our opportunity cost variable is the differential between the rate of return on 3 

month local authority deposits and a learning adjusted rate of return on checkable interest-

bearing accounts at conunercial banks. The use of an interest rate differential is a natural 

measure of the excess return on an asset outside of Ml (3 month local authority deposits) 

^Indeed the choice of scale variable may impact on the conclusion of the existence or otherwise of coin-
tegration among the variables (see Juselius and Hargreaves [1992]). 
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compared to the return on the interest bearing component of Ml (checkable interest-bearing 

accounts at commercial banks). Following Hendry and Ericsson [1991], the introduction of 

interest-bearing sight deposits in 1984Q3 is modelled through an ogive weighting function 

L given by 

Lt ~ (1 exp[o — h(t — T\ + 2)]) \ t > Ti (2.2) 

and zero otherwise and where 7% = 1984Q3. With the weighting function our opportunity 

cost measure is then 

A; = (2.3) 

where and represent the rate of return on 3 month local authority deposits and 

the rate of return on checkable interest-bearing accounts at commercial banks respectively. 

As in Hendry and Ericsson [1991] the coeGcients of the weighting function are assumed 

known and set at a = 5 and 6 — 1.2^. 

In addition to the variables discussed above, cointegration analyses since Hendry 

and Mizon [1993] have included certain deterministic components in the money demand 

model. First, a linear trend is Included to approximate the growth in real income from the 

impact of growth in human and physical capital and proxy for changes in money velocity 

caused by cash-economising innovations in transactions technology. Thus, by including a 

linear trend one can avoid direct measures of financial innovation which are difficult to 

measure and may well be endogenous through their relationship with interest rates and 

income. The inclusion of a linear trend aSects the limiting distribution of estimators and 

tests through its role as a nuisance parameter. However, Doornik aZ. (1998) find that 

^Ericsson [1998] es t imates t he coefficients by recursive nonlinear least squares and finds t h a t a = 3.2 and 
b = 0.75. However, he shows t h a t the pa ramete r s of t he equil ibrium correction model es t imated in Hendry 
and Ericsson [1991] are not sensitive to t he choice of coefficients in the weighting funct ion. 
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restricting the trend to the cointegration space provides improved power and size of standard 

tests for the cointegration rank compared to the unrestricted case. Second, the studies cited 

above have included a number of impulse dummies representing exogenous shocks to the 

economy over the sample period (these dummies are defined and further discussed in Section 

2 below). Though motivated by specific economic events such as the Heath-Barber boom 

and the two oil price shocks their purpose is to improve the fit of the system by accounting 

for the largest residuals over the sample. The inclusion of the impulse dummies is not 

trivial given their relative size compared to the regression residuals (one of the dummies is 

approximately \/lOO times the standard deviation of the model errors). However Doornik 

et al. [1998] show that if one enters the dummies unrestrictedly one can avoid severe size 

distortions. 

2.2 Empirical Analys i s 

2.2.1 T h e D a t a 

The variables in the dataset Eire quarterly and seasonally adjusted and cover the 

period 1963Q1 through 1989Q2. The variables correspond to nominal money (denoted m) 

as measured by the narrow monetary aggregate Ml; real total Enal expenditure (i/); its 

corresponding deflator (p) and a measure of the net opportunity cost of holding money 

(i?*) which includes an adjustment for the learning process following the introduction of 

interest-bearing checking accounts in 1984Q3 (see Hendry and Ericsson [1991] and Section 

2.1 above for details). The variables in lower-case letters are in logs, while jZ* is in fractions. 

In addition to the stochastic variables in the information set, we also include a 
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constant, time trend and two dummy variables. The dummy variables are the same as 

those constructed by Hendry and Mizon [1993]. Specifically, we denote the first dummy as 

Dy which takes the value unity in 1972Q4, 1973Q1 and 1979Q2 to account for the so-called 

"Barber Boom" and the impact of the first Thatcher government on output. The other 

dummy is denoted Do and takes the value unity in 1973Q3, 1973Q4 and 1979Q3 to account 

for the two oil price crises and the VAT increase for inSation. Thus, our full information 

set is given by Xf = (m,2/,p, A*, 1, t, Do). 

Figure 2.1 provides plots of the data in levels, first differences and second differ-

ences. We also present certain transformations of the data used in the literature correspond-

ing to real money (m — p) and the inverse velocity of money (m — p — i/). We note here that 

the plots of nominal money and prices in differences display evidence of non-stationarity 

with httle evidence of mean reversion over long periods across the sample. In addition, im-

posing common restrictions corresponding to long run price homogeneity (to yield (ni —p)) 

together with long run Income homogeneity (to yield (ni — p — does not seem to render 

the series stationary. Finally, the plot of real income in levels suggests the need for a linear 

trend in the information set. 

2.2.2 T h e Unres tr i c t ed Vector Autoregres s ion 

We begin by modelling the joint distribution of the variables within an unrestricted 

vector autoregression (VAR). By modelling the joint distribution it allows us test hypotheses 

both on the long run relationships between the variables m the form of restrictions on 

the cointegrating relations and on the loadings to these relationships to investigate the 

exogeneity status of the variables using the techniques discussed in Chapter 1.3.4. 
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The unrestricted VAR takes the form: 

k 
Xt = A j X t - j + + et (2.4) 

j=i 

where = (7Ti,?/,p, A*) is the four-dimensional vector containing our variables of interest; 

Df is a vector of deterministic variables containing a constant, a trend and the two event 

dummies defined above; and is an innovation process which is independently distributed 

with mean zero and variance-covariance matrix E. 

We begin the analysis by estimating unrestricted VAJR for and 72* given by 

Eq.(2.4) with A; = 5 lags over the full sample from 1963Q1 to 1989Q2 (less observations used 

for lags)^. Given the frequency of the data an unrestricted VAR with Eve lags was assumed 

to be a sulEciently general starting point for the empirical analysis. This initial general 

system had therefore 106 unrestricted coe&cients including the error variance-covariance 

matrix. (As in Hendry and Doornik [1994] the two regime shift dummies Do and Dy 

were entered unrestricted.) A hkelihood ratio test for the appropriate lag length of the 

unrestricted VAR, suggested that A; = 3 lags was su&cient (the test statistic for A: = 3 lags 

against the alternative A: = 5 being % (̂32) = 40.5 with a p-value > 0.14) . 

Table 2.1 provides descriptive and diagnostic statistics for the estimated unre-

stricted VAR. The diagnostics correspond to p-values of the Lagrange multiplier test of resid-

ual serial correlation against 4th-order autoregression (Godfrey, [1978]) denoted .Fkr(', ); the 

RESET test of functional form (Ramsey, [1969]) denoted f^eaet(, ); the Jarque-Bera chi-

square test of normality of regression residuals (Jarque and Bera [1980]) denoted 

^The calculations and numerical results in the tex t were obta ined using the computer packages CATS in 
RATS (Hansen and Juselius [1995]) and Microfit 4.0 (Peseran and Peseran [1997]). 
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ajid an equality of error-variances test denoted ). The table shows that the initial 

system is generaDy well-speciGed with the only evidence of non-congruency coining from 

the interest rate equation in the form of heteroscedastic errors. Further evidence on the 

congruency of the initial system is provided by Figure 2.2 which plots the actual and fitted 

values and residuals for each equation. In particular, the residuals show no evidence of time 

dependency, consistent with stationary behaviour, with only isolated examples outside the 

error bands. 

The dynamic properties of the unrestricted VAR are illustrated by the moduli of 

the eigenvalues of the companion matrix. The Hrst eight of these are 

(0.978,0.953,0.953,0.791,0.791,0.515,0.515,0.451) (2.5) 

where the roots of the characteristic polynomial are the inverses of these eigenvalues. The 

eigenvalues suggest the presence of three, or perhaps Eve, unit roots in the dynamic system. 

Evidence on the roots of the characteristic equation is of direct use since conditioning on the 

dummy variables is hkely to change the asymptotic distribution of the test for integration 

indices (see Chapter 1.3.1) to some (unknown) extent. 

2 .2 .3 1(2) C o i n t e g r a t i o n A n a l y s i s 

Testing for the integration indices 

We now proceed to formally test for the integration indices in the system ie . the 

number of r cointegrating vectors together with the number of si 1(1) trends and thus 

the number of (p — r — si) = S2 1(2) trends using the test presented in Rahbek et al. 

[1999] and discussed in detail in Chapter 1.3.1. For our particular dataset we need to 
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be careful when applying the formal test. Our model has relatively few observations and 

moreover contains two event dummies and Dg. Thus using the asymptotic critical 

values from Rahbek et al. [1999] on their own may lead us to an accept an inappropriate 

set of integration indices. To help us in choosing the correct speci&cation we Srst note that 

univariate analysis of the integration order of the single series suggests that we have up to 

two 1(1) trends corresponding to real income and our interest rate and one or two 1(2) trends 

corresponding to nominal money and prices (Hendry and Doornik [1994]). Moreover, the 

existing literature suggests that up to two cointegrating relations can be supported by the 

dataset: a money demand relation and an excess demand relation (Hendry and Mizon [1993], 

Hendry and Doornik [1994] and Hendry [1995]). Together, with the evidence from the 

eigenvalues of the companion matrix our prior is that two possibilities present themselves. 

First, that we have one cointegrating relation, a single 1(1) trend, and two 1(2) trends (ie. 

Sve unit roots in the 1(2) model) as suggested by Paruolo [1996] and Rahbek oZ. [1999]. 

Second, that two cointegrating relationships exist with one 1(1) trend and one 1(2) trend 

(z.e.three unit roots) as suggested by Johansen [1992]. 

With this prior information in mind we now turn to the formal test. The test 

statistics for all combinations of r and together with the 95% quantiles of the asymptotic 

test distributions taken from Rahbek a/. [1999, Appendix C, Table 4] are presented in 

Table 2.2. (As indicated above, the reported quantiles do not take into account the presence 

of the two event dummies Do and Dy.) Following, Paruolo [1996] and Rahbek et al. [1999] 

the test statistics are calculated under the assumption that the data may contain linear 

but not quadratic trends. This is consistent with the plots of the data in Figure 2.1 which 



shows that the variables display a zero mean in their second differences. 

To determine the appropriate integration indices we start by testing the most 

restricted hypothesis, given by (r, 51,52) = (0,0,4), then, if this hypothesis is not rejected, 

we test successively less and less restricted hypotheses by continuing to the end of the Erst 

row and then by proceeding row-wise from left to right until the first rejection is found. The 

first submodel hypothesis corresponding to (r, 5%, 82) = (0,0,4) is easily rejected. In fact, all 

submodels for r = 0 are rejected. The first non-rejection is for the case (r, si , S2) = (1,1,2) 

with a test statistic of 62.2 which is below the 95% critical value of 68.2 (p-value of > 10%). 

Though a non-rejection one has to be careful with the low p-value of this particular submodel 

due to the inclusion of the two event dummies and the small sample. That said, we find 

some support for the case for one cointegrating relation and two 1(2) trends as suggested 

by Paruolo [1996] and Rahbek oZ. [1999] for the model without dummies. As alluded to 

above this particular submodel corresponds to -|- 2^2 = 5 unit roots and thus matches the 

results presented above on the roots of the characteristic polynomial. The next two non-

rejections corresponding to (r, 81,53) = (1,2,1) and (r,51,52) = (2,0,2), both contain only 

51 + 252 = 4 unit roots, a result that is di&cult to square with the roots of the characteristic 

polynomial reported in Eq.(2.5). However, the submodel representing our second prior of 

(r, 5i, 52) = (2,1,1) is also a non-rejection with a test statistic of 21.9 which is well below 

the 95% critical value of 34.4 (p-value of > 50%). 

Imposing the rank restrictions consistent with (r, 51,52) = (1,1,2) the first eight 

eigenvalues of the companion matrix are 

(1,1,1,1,1,0.362,0.038,0.037) (2.6) 
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where it is clear that there are no remaining unit roots unaccounted for. Evidence that the 

Sfth unit root is related to an 1(2) trend and not to the rank deSciency of H (deGned in 

Chapter 1.1.1) can be seen by imposing p — r = 3 in the 1(1) model. In this case the first 

seven eigenvalues become (1,1,1,0.860,0.834,0.527,0.492) and we see two further near-unit 

roots emerge. 

Similarly, imposing the model (r, 51,52) = (2,1,1) the first eight eigenvalues of the 

companion matrix are 

(1,1,1,0.591,0.353,0.245,0.070) 

where, as for the submodel above, there seems to be no unit roots present. Again, we End 

evidence that the third unit root is related to an 1(2) trend and not to the rank deBciency of 

n (defined in Chapter 1.1.1) by imposing p — r = 2 in the 1(1) model. In this case the first 

seven eigenvalues become (1,1,0.944,0.744,0.744,0.506,0.506) with one, or perhaps three, 

further near-unit roots appearing. 

The above formal test for the integration indices of the 1(2) model and the re-

sulting eigenvalues of the companion matrix provide little discriminatory evidence on the 

appropriate integration indices for our dataset. Thus, we continue by presenting the unre-

stricted estimates from the two-step estimation procedure of Rahbek et aZ. [1999] based on 

Johansen [1995] for both submodels (r, 51,82) = (1,1,2) and (r, 51,52) = (2,1,1). 

Imposing the integration indices (r, 5i,52) — (1,1,2) yields the unrestricted para-

meter estimates in Table 2.3. The estimates have been decomposed into their respective 

1(0), 1(1) and 1(2) spaces and, for ease of exposition, we have normalised the vector on 

narrow money m. The 1(0) space corresponds to the estimate of the polynomial relation 
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— 6 ^ / 3 2 p r o v i d e d in the Erst two columns in the top panel. Turning to the levels 

variables Erst, we see some evidence of long-run price homogeneity with strong inter-

est rate eSects while the small value of the parameter estimate on t indicates the possible 

absence of a deterministic trend in the polynomially cointegrating relation as in Paruolo 

[1996] and Rahbek oZ. [1999]. With respect to the diEerenced variables the 

estimates suggest that maybe only the diEerences of narrow money and prices are needed 

to achieve stationarity. and furthermore that they might enter restricted as real money 

balances i e . A(m — p). The adjustments to the disequihbrium error defined by the poly-

nomial relation, denoted a , are presented in the first column of the bottom panel. They 

show that the polynomial relation has the strongest weight in the money demand equation 

which matches a pnon expectations. In addition to the relations and the 

1(1) space contains the vectors a i and As discussed in Chapter 1.1.2 the linear com-

bination corresponds to a cointegrating relation that reduces the order of integration 

from two to one i e . a CI(2,1) relation, while the vector provides the stochastic 1(1) 

trend component. Both sets of estimates pick out the real income variable as the dominant 

force in this direction. The estimates of the two common 1(2) trends are given by \ and 

0!2_2 (see Chapter 1.1.2 for a discussion of this component and which see below). 

However note that the largest weights in the 1(2) trends come from the twice cumulated 

residuals from the interest rate ( 0 : 2 1 ) and prices (o:2_2) - It seems that by allowing two 

1(2) trends in the model the interest rate is identified as an 1(2) variable, a result which is 

extremely counterintuitive and serves to weaken the case for this particular submodel. For 

completeness we EnaDy note the estimate of the weight with which the 1(2) trends inEuence 
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the variables of the system is given by /)2 i /)2 2- condition for a variable z in 

to be 1(2) is that ^ 0 for j = 1 , . . . , 52 as expected a prioTi the estimates of 

seem to indicate that the 1(2) trends are primarily driving nominal money and prices. 

We next turn to the unrestricted parameter estimates derived from imposing the 

integration indices (r,51,82) = (2,1,1), which are reported in Table 2.4. Note that since 

r > 52 we now have one direct, as opposed to polycointegrating, relation from the 1(2) level 

down to stationarity given by (see Chapter 1.1.2) and one polynomial relation given 

by — 6'6/32^^f- Following Hendry [1995] we have normalised the first cointegrating 

relation on nominal money and the second on real income. Comparing these unrestricted 

estimates from those in Table 2.3 under the submodel (r, 51,52) = (1,1,2) we see that the 

levels terms in the first cointegrating relation are broadly unchanged i. e. there is evidence of 

long-run price homogeneity with strong interest rate eEects. The second relation matches 

the spirit of the excess demand relation posited in Hendry [1995] though the difference terms 

suggest a role for money as well as prices here. Moving on to 1(1) space we see evidence 

that the CI(2,1) relation is formed by a real money demand term with smaller eEects 

from real income and the interest rate. The notable difference here with the first case is 

the large fall in the coe&cient on real income. More importantly, we End that the estimate 

of the common 1(2) trend given by 012 points to nominal prices as the dominant variable. 

This finding sits better with our priors on the integration order of the individual series and, 

as a result, is evidence for (r, 51,52) = (2,1,1) as the correct integration indices for our 

dataset. Finally, as in the first case, the estimate of the weight of the 1(2) trend given by 

;82 indicates that the 1(2) trends drive nominal money and prices alone. 
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Though there is little concrete evidence for or against the two alternative sub-

models, the identification of the interest rate as an 1(2) variable in the submodel given 

by (r, 51,82) = (1,1,2) is, in our minds, hard to justify from economic considerations and 

from the existing evidence on the time series properties of this variable. As a result, the 

submodel corresponding to (r, s i , S2) = (2,1,1) is maintained for the rest of the analysis. 

Testing T h e Nomina l To Real Transformation 

The unrestricted estimates presented in Table 2.4 suggest a number of tests of 

restrictions on the parameters of the cointegrating relations. Though the order of testing is 

not clear, we Erst test for whether the 1(2) system can be reduced to 1(1) through a so-called 

nominal to real transformation proposed by Kongsted [2000] and summarised in Chapter 

1.1.4. This is obviously of immediate interest since, if accepted, one can proceed with the 

standard 1(1) framework which lends itself more readily to tests of parameter restrictions 

on the cointegrating relations and loadings. 

The nominai-to-real transformation we examine is the hypothesis of long-run price 

homogeneity as imposed by a number of studies on this dataset (Hendry and Mizon [1993], 

Hendry and Doomik [1994] and Hendry [1995]) . The hypothesis corresponds to the set of 

parameter restrictions 

= ( 1 , - 1 , * , * ) , 2 = l , . . . , r 

= (1 , -1 ,* ,* ) , j = l , . . . , 5 i (2.7) 

P2I ~ (1)1; 0 ,0) , l = l,...,S2 

where, as discussed above, and deEne the CI(2,1) relations and ;82 is the loading matrix 
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of the common 1(2) trends in the system. Thus, the hypothesis implies that all cointegrating 

relations deSned either by or can be expressed as 

/ 

T = Hlf = 

V 

1 0 0 

- 1 0 0 

0 1 0 

0 0 1 

\ / \ 

(fa 

/ 

(2.8) 

where T = (/),/)i)-

Before we test formally for the real-to-nominal transformation note that when 

normalised on. m, we obtain the following point estimates for and jOg from the two-

step estimation 

= (1,-0.838,2.10,10.23) 

/;_2 = (1,-1.47,-7.03,2.54) 

= (1,-0.906,0.252,-0.223) 

= (1,1.08,-0.081,0.000) 

Thus the point estimates in each of the cointegrating relations ^ = 1,2 and together 

with those from the loadings to the 1(2) trend 8̂2 appear close to their theoretical values 

under the nominal-to-real hypothesis. With this in mind we now move on to the formal test 

of long-run price homogeneity proposed by Kongsted [1998,2000] and discussed in Chapter 

1.3.3. We End that the Erst part of the test corresponding to the hypothesis = 0 is 

easily accepted with a test statistic given by = 2.94 with a corresponding p-value of 

0.23. With the Erst step restriction in place the overall hypothesis is also accepted with 
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Qb2 = 0 07 with a p-value of 0.79. Thus, as suggested by the point estimates in the various 

vectors we End that a nominal-to-real transformation to the 1(1) model is valid. 

2 .2 .4 1(1) Cointegrat ion Ana lys i s 

Following Kongsted [1998], with the nominal-to-real transformation in place the 

polynomial relations can be examined in a transformed 1(1) VAR for Xt where Xt = 

Thus, we have that 

where the polynomial component of the cointegrating relation is given by A(m-t-p)(. Note 

the di&rence with the transformed information set used by Hendry and Doornik [1994] 

ie . = (mt — A p t ) . Our results suggest that the inclusion of Am is required to 

provide a valid transformation to the 1(1) model. Indeed, we find that the test for excluding 

A(m-|-p)t from the cointegration space of the transformed 1(1) VAR is Ermly rejected with 

a test statistic of x^(2) = 24.1 (p-value < 0.00). 

The exactly identi^ng representation of the two cointegrating relations are pro-

vided in Table 2.5, Panel A. Following the previous literature and the point estimates from 

Panel A we test for a number of overidenti^ng restrictions given in Table 2.6. The Erst 

set of restrictions correspond to identifying a money demand relation with no trend (Hi), 

long run real income homogeneity to form the inverse money velocity relationship m — p — 

{H2), and a semi-elasticity of real money demand with respect to the interest rate of 7 

as in Hendry and Doomik [1994] (.Zfs). The second set of restrictions dehne an excess 

demand relationship which excludes real money (̂ ^4), and assumes proportionality with 
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respect to the the interest rate (^5) and homogeneity with respect to the polynomial term 

(Hq). Table 2.6 shows that individually each restriction is accepted; taken together the 

set of restrictions is easily accepted with a test statistic of %^(4) = 2.03 with corresponding 

p-value of 0.73. 

With the restrictions in place, Table 2.5, Panel B provides the overidentifying 

structure of the polynomdal relations with the standard errors on the unrestricted parameters 

in brackets. The Erst relation defines a real money demand equation of the form 

Pi = rn — p ~ y + 7R* + S.lAm + S.lAp 

Hendry and Mizon [1993], Hendry and Doornik [1994] and Hendry [1995] End a similar 

cointegration relation given by 

ci = m — p —1/ + 7_R* 4- 7Ap 

Indeed, a plot of these two relations show that they track very closely, rejecting the strong 

correlation between money and prices over the period analysed. The second relation cor-

responds to what Hendry and Mizon [1993] term an excess demand relationship of the 

form 

P2 = 2/ + jR* — Am — Ap — 0.0067t 

where the parallel relation in the above 1(1) cointegration studies is given by 

C2 = 3/ + 1.8A* — 3.4Ap — 0.0063( 

The difference in the excess demand relation between our study and that from the 1(1) liter-

ature is more marked. Notably, we find smaller effects from the interest rate and infation. 
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but now the change in nominal money appears in the long run relationship. Though note 

that the weight on the hnear trend is broadly unchanged between speciScations. Figure 2.3 

provides plots of the cointegrating relations and p2 together with the 1(2) trend given by 

b'Xt = mt+Pt- The stationarity of the polynomial relations is apparent while the common 

1(2) trend displays the characteristic smooth time dependency of 1(2) variables. 

2.2.5 M o d e l l i n g T h e 1(0) P V A R 

Kongsted [1998] shows that under the hypothesis y(^,;8^) = 0 an BqCM for the 

transformed process can be specified as 

_ 
A.Xt ~ ck/3 ^ ^ Ti/S.Xt-.i + + St (2.9) 

This specification is termed a parsimonious vector autoregression (PVAR) given the impo-

sition of rank two on the cointegrating space and the reduction in lag length from t = 3 

to (A — 1) — 2. Here we have Xt = (mt + Pt)), -Dt = (l,t,D^,Do) and 

(Pi,P2)'. 

Estimation of Eq.(2.9) over the full sample (less initial observations for construct-

ing the Erst differences and the lag) yielded the diagnostics reported in Table 2.7. The table 

shows that the congruence of the original unrestricted VAR is maintained with only the real 

money demand equation showing evidence of misspeciScation. 

One of the advantages in specifying a PVAR is that it provides a suitable framework 

for testing alternative models through parsimonious encompassing, see Hendry and Mizon 

[1993]. Testing whether simpler models can parsimoniously encompass the PVAR avoids 

the use of models that overly sample dependent and are not invariant to regime changes. 



57 

Specifically, we test whether a VAR in differences (DVAR) parsimoniously encompasses the 

PVAR by testing whether 5 = 0 in Eq.(2.9). This would result in a model that excludes 

the long run relationships estimated for the system given by the two cointegrating relations. 

The likelihood ratio test statistic for set of eight restrictions is given by % (̂8) = 71.5 (p-value 

< 0.00) and thus we reject that the DVAR parsimoniously encompasses the PVAR. This 

result implies that the zero frequency information contained in the cointegrating relations 

is required to model our variables of interest. 

2.2.6 P a r a m e t e r C o n s t a n c y A n d Forecast Per formance 

In this Enal section we provide evidence on the constancy of the PVAR through 

an examination of the comparative forecast performance of our PVAR against a DVAR 

that does not contain the cointegrating relations. Following Hendry and Doornik [1994] we 

estimate multivariate dynamic 1-step ahead forecasts for the period from 1984Q3 to 1989Q2. 

The chosen forecast sample is a natural one to use given the regime shift brought about 

by the advent of interest-bearing sight deposit accounts. Note that in order to abstract 

from improvement in the PVAR's forecast performance as a result of the inclusion of the 

full sample estimates of the cointegrating relations (which incorporate information on the 

regime shift), we re-estimated the relations over the sample period 1963Q1 to 1984Q2 and 

retained these in the PVAR. The subsample estimates of the cointegrating relations are^ 

= 771 — p — y-\-7R -|-S.ISAttt.-|-3.18/Xp 

P2 = y + R* Am — Ap — 0.0066* 

^The restrictions corresponding to H i to He in Table 2.7 were accepted with a test statistic of 1.27 with 
a corresponding p-value of 0.87 



58 

A comparison of the above sub-sample estimates against those over the full sample dis-

cussed above shows that there is little difference in the estimates across the alternative 

sample periods. This is obviously of interest in itself given that it shows that the estimated 

cointegrating relations display parameter constancy over time. 

Returning to the forecast comparison, Tables 2.8-2.9 report the in- and out-of-

sample predictive performance for the DVAR and PVAR respectively. To compare the 

forecasting performance of our various competing models we employ the commonly used 

Root Mean Square Error (RMSE) loss function. Clements and Hendry [1993] show that one 

must be careful about using such a measure when comparing models that are simple non-

singular scale-preserving linear transformations of a conamon linear system. In particular, 

they show that MSFE-type measures (of which RMSB is one) are not invariant to common 

transformations of linear systems such as VARs, EqCMs and cointegrating relations. In 

other words, MSFE-based measures can yield diEerent rankings of the forecast models 

depending whether the level, diSerence or cointegrating relations are used as the basis of 

forecasting. Such problems carry over to the 1(2) case as the model and restrictions therein 

are again non-singular scale-preserving linear transformations as discussed in Chapter 1.1. 

Bearing these difficulties in mind Tables 2.8-2.9 show that on the basis of the RMSEs of the 

forecast errors the best model for forecasting real money demand is the PVAR which retains 

the long run relations estimated above. The improvement is considerable with a 50 per 

cent reduction in the RMSE. Thus we have satisfied an important criterion of econometric 

modelling, namely that in speci^ng models for policy use we should aim to show that 

such models provide improved forecast performance compared to simple sample generated 
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time-series models such as the DVAR. 

2.3 Conclus ion 

In this chapter we provide a cointegration analysis of UK money demand within a 

framework that allows for 1(2) variables. The presence of 1(2) variables is supported by a 

test for the integration indices of the model, which suggests two cointegrating relationships 

and one 1(2) trend. We also find evidence for a nominal-to-real transformation to real 

money demand and a polynomial term involving nominal money and prices. This is in 

contrast to the common transformation used in the extant literature where the polynomial 

term contains the price variable alone. The 1(1) analysis of the transformed information 

set provides two polynomial cointegrating vectors which are consistent with a real money 

demand and an excess demand relation that closely match those found from previous studies. 

Finally, we show that a parsimonious VAR that incorporates the two polynomial relations 

provides a good characterisation of the in-sample movements in real money demand and, 

moreover, provides superior out-of-sample forecasting power compared to a diEerenced VA.R 

that excludes the long run relations. 
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m p y R 

0.999 0.999 0.997 0.882 

a &014 &007 0X%0 0X%3 

F.r(4,83) [0.178] [0.496] [0.506] [0.616] 

Fre^et(l,86) [0.710] [0.220] [0.503] [0.304] 

X2_^(2) [0.462] [0.225] [0.982] [0.100] 

F/^((l,101) [0.062] [0.650] [0.086] [0.002] 
Table 2.1. UVAR. Diagnostics 
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p - r r 

4 0 244.3 175.3 122.9 104.5 98.7 
137.0 113.0 92.2 75.3 62.8 

3 1 122.4 62.2 50.9 44.7 
8&7 6&2 5&2 4&7 

2 2 33J 2L9 rAO 
47^ 344 2&4 

1 3 1L6 &7 
1&9 125 

S2 4 3 2 1 0 
Table 2.2. Formal test for integration indices 
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a' Pi /̂ 2 1 ^2 2 
in 1 — 15.23 0.77 O.Gl 
p -0 .84 1A27 -31.59 -&56 0J8 
y 2J^ -5 .60 -126.86 -&08 
R 10.23 3.81 2L26 -0 .17 OIW 
t -&03 

a 0!2 1 a!2 2 
m -&06 0.00 0J4 0.37 

P 0.02 0.00 -&16 0^^ 
y -0 .01 -&01 Ô W 0J4 
R 0.01 0.00 0^# 0.07 

Table 2.3. Estimates of 1(0), 1(1) and 1(2) spaces 

(r,gi,52) = (1,1,2) 



6 ' % /?i 
m 1 0.087 0.859 -45.7 0.679 

P -0.863 -0.016 0.927 41.4 0.733 
y 1.75 1 -0.070 -11.5 -0.055 
R 9.94 1.58 0.006 10.2 0.000 
t -0.022 -0.009 

a 1 a 2 ai ai2 
m -0.014 0.246 0.000 —0.199 

P -0.002 0.203 -0.000 -0.814 
y 0.007 -0.342 0.000 -0.467 
R -0.003 0.191 0.000 0.283 

Table 2.4. Estimates of 1(0), 1(1) and 1(2) spaces 

(r,gi,S2) = (2,1,1) 
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Panel A m — p y R* A{m + p) t 

Money demand 1 0.514 8.83 1.76 —0.011 

Excess demand —0.160 1 —0.225 —1.54 0.005 

Panel B m — p y R* A{m + p) t 

Money demand 1 — 1 7 3.15 0 

(&49) 
Eace^denuuM 0 1 1 —1 —0.007 

(0.000) 

Table 2.5. Cointegrating Relations of Transformed 1(1) Model 



Hypothesis Test Stat. do/ p-value 

Hi /?01 = 0 0.00 1 0.99 
H2 7 l l + 721 = 0 1.21 1 0.27 
H3 731 - = 0 0.12 1 0.73 
Ha 712 = 0 0.00 1 0.99 
-ffs 722 - 732 = 0 0.21 1 0.65 
He 722 + 742 = 0 0.49 1 0.48 

2.03 4 0.73 

Table 2.6. Hypotheses on Cointegrating Relations 
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A{m —p) Ai/ A2(m 4-p) 

I f 0.63 0.42 0.06 0.58 

a OIW 0.11 0.01 OIG 

F.r(4,85) [0.56] [0.78] [0.69] [0.571 

Preset (1,88) [0.20] [0.28] [0.10] [0.82] 

XnormC )̂ [0.44] [0.51] [0.21] [0.80] 

F/^(l ,100) [0.06] ^^9] [0.85] p^5] 
Table 2.7. PVAR. Diagnostics 
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DVAR 

A{m — p) Ay AR* A^(m + p) 

1963Q4-1984Q2 
Mean 0.000 0.000 0.000 0.000 
RMSE 0.017 0.011 0.012 0.017 

1984Q3-1989Q2 
Mean 0.029 0.005 -0.003 0.001 
RMSE 0.035 0.009 0.014 0.019 

Table 2.8. DYAR. Forecast performance 
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PVAR 

A{m~p) Ay AR* A^(m + p) 

1963Q4-1984Q2 
Mean 0.000 0.000 0.000 0.000 
RMSE 0.015 0.010 0.012 0.015 

1984Q3-1989Q2 
Mean 0.010 -0.005 -0.011 0.005 
RMSE 0.017 0.009 0.017 0.013 

Table 2.9. PVAR. Forecast performance 
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1863Q1 1Q8503 198801 1B7003 1873Q1 197603 197801 188003 198301 18MQ3 1988Q1 1988Q2 

Figure 2.1(a) Plot of m 1963Q1-1989Q2 

198301 198503 198801 197003 197301 197503 197801 198003 198301 198603 19880I 

Figure 2.1(b) Plot of Am 1963Q2-1989Q2 

1983Q1 198803 196801 197003 1973Q1 197503 197801 198003 1983Q1 198603 198801 

Figure 2.1(c) Plot of A^m 1963Q3-1989Q2 
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106301 198603 1B68Q1 197003 1973Q1 197503 197801 108003 108301 100603 108801 108002 

Figure 2.1(d) Plot of p 1963Q1-1989Q2 

H 1 1 . 106301 108603 108801 107003 107301 107503 107801 108003 106301 1086Q3 108801 108002 

Figure 2.1(e) Plot of Ap 1963Q2-1989Q2 

106603 1068Q1 107003 107301 107603 1078Q1 108003 196301 108603 108801 108002 

Figure 2.1(f) Plot of A^p 1963Q3-1989Q2 
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1963Q1 186G03 108801 197003 1973Q1 197503 197B01 198003 188301 188G03 1088Q1 

Figure 2.1(g) Plot of?/ 1963Q1-1989Q2 

108603 108801 197003 1973Q1 197503 197801 198003 188301 198603 1888Q1 

Figure 2.1(h) Plot of Ai/ 1963Q2-1989Q2 

1963Q1 190603 198801 1970Q3 1973Q1 197503 197B01 198003 1983Q1 19M03 198801 

Figure 2.1(i) Plot of 1963Q3-1989Q2 
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1B83Q1 1 9 K 0 3 1M801 197003 1B73Q1 1B7503 197001 1M005 1BWQ1 198603 19WQ1 198002 

Figure 2.1(j) Plot of A* 1963Q1-1989Q2 

198301 198S03 198801 197003 197301 197503 197801 198003 198301 198603 198801 

Figure 2.1(k) Plot of 1963Q2-1989Q2 

198301 198603 196801 197003 197301 197603 197801 198003 198301 19M03 198801 

Figure 2.1(1) Plot of A^j^* 1963Q3-1989Q2 
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196301 196804 197003 197402 197801 198104 198503 

Figure 2.1(m) Plot of (m — p) 1963Q1-1989Q2 

0.08r 

0.03:-
0.C&: 

O.OZr-

0.034-

0.05-i-
196301 196604 197003 197402 197801 198104 198503 

Figure 2.1(n) Plot of A(m — p) 1963Q2-1989Q2 

196301 196604 1970Q3 197402 197801 198104 198503 

Figure 2.1(o) Plot of A (̂7?2 —p) 1963Q3-1989Q2 
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1963Q1 196604 197003 1974Q2 1978Q1 198104 198503 196908 

Figure 2.1(p) Plot of (m — p — i/) 1963Q1-1989Q2 

0.08T 
0.0G--

D.04--
0.Q2--

0 . 0 6 - -

196301 196604 1970Q3 197402 197801 198104 

Figure 2.1(q) Plot of A(m — p — 2/) 1963Q2-1989Q2 

0.15T 

0 . 1 0 " 

0.05--

0.05--

0.10--

196301 196604 197003 197402 197801 198104 198503 

Figure 2.1(r) Plot of — p — 3/) 1963Q3-1989Q2 
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1 9 6 3 0 4 1 9 G 6 Q 2 1 9 6 8 0 4 1 9 7 1 0 2 1 9 7 3 Q 4 1 9 7 6 0 2 1 9 7 8 0 4 1 9 8 1 0 2 1 9 8 3 0 4 1 9 8 6 Q 2 1 9 8 8 0 4 

Figure 2.2(a) UYAR. Actual and Etted 1963Q^1989Q2 

0 . 0 4 -

1 9 6 3 0 4 1 9 6 6 0 2 1 9 6 8 0 4 1 9 7 1 0 2 1 9 7 3 0 4 1 9 7 6 0 2 1 9 7 8 0 4 1 9 8 1 0 2 1 9 8 3 0 4 1 9 8 6 0 2 1 9 8 8 0 4 

Figure 2.2(b) UVAR. Residuals ± 2 ? 1963Q4-1989Q2 
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1 9 6 3 Q 4 1 9 6 6 Q 2 1 9 6 8 Q 4 1 9 7 1 0 2 1 9 7 3 Q 4 1 9 7 6 0 2 1 9 7 8 0 4 1 9 8 1 0 2 1 9 8 3 0 4 1 9 8 6 0 2 1 9 8 8 0 4 

Figure 2.2(c) UVAR. Actual and Gtted 1963Q4-1989Q2 

0.025-1-

0 . 0 1 0 - -

0.005- -

0.000 

0.005 

0.010--

0.015 

1 9 6 3 0 4 1 9 6 6 Q 2 1 9 6 8 0 4 1 9 7 1 0 2 1 9 7 3 0 4 1 9 7 6 0 2 1 9 7 8 0 4 1 9 8 1 0 2 1 9 8 3 0 4 1 9 8 6 0 2 1 9 8 8 0 4 

Figure 2.2(d) UVAR. Residuals ± 2 ? 1963Q4-1989Q2 
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H 1 h 110 
1 9 6 3 0 4 1 9 G 6 0 2 1 9 6 8 0 4 1 9 7 1 Q 2 1 9 7 ^ 1 9 7 6 0 2 1 9 7 ^ ) 4 1 9 8 1 0 2 1 9 B 3 0 4 1 9 8 ^ 1 9 8 8 0 4 

4 k H 1 

Figure 2.2(e) UVAR. yt Actual and fitted 1963Q4-1989Q2 

0.030-1-

0.025— 

0.020- = 

0.015— 

0 .010— 

0.005 

0.000 

0.005 

0.020- = 

1 9 6 3 0 4 1 9 6 6 0 2 1 9 6 8 0 4 1 9 7 1 0 2 1 9 7 3 0 4 1 9 7 6 0 2 1 9 7 8 0 4 1 9 8 1 0 2 1 9 8 3 0 4 1 9 8 6 0 2 1 9 8 8 0 4 

Figure 2.2(f) UVAR. i/t Residuals 1963Q4^1989Q2 
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0.20-r 

i 1 1 1 
196304 196602 196804 197102 197304 197602 197804 198102 198304 198602 198804 

Figure 2.2(g) IJVAR. Actual and Stted 1963Q4-1989Q2 

0.03 

0.02-

-0.04^ 4 1 ^ ^ 
196304 196602 196804 197102 197304 197602 197804 198102 198304 198602 198804 

Figure 2.2(h) UVAR.A^ Residuals ±23= 1963Q4-1989Q2 
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198901 1B8G03 IMKM 1Q70Q3 1973Q1 1B7S03 187801 108003 1983Q1 19M03 198801 1 9 * 0 2 

Figure 2.3(a) Polynomial cointegrating relation 

i s e a o i 108803 108801 197Q03 1973Q1 197303 197801 198003 198301 198803 198801 198902 

Figure 2.3(b) Polynomial cointegrating relation pg 

198301 198503 198801 197003 197301 197503 1978Q1 198003 1983Q1 198S03 1988Q1 

Figure 2.3(c) Common 1(2) trend 
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Chapter 3 

Test ing T h e M o n e t a r y Exchange R a t e M o d e l W i t h i n A 

Cointegrated 1(2) S y s t e m 

3.1 Introduct ion 

Since its conception in the 1970s the monetary exchange rate model has become 

the dominant theoretical model of exchange rate determination. However, empirical testing 

of the model has produced disappointing results. The common Ending in empirical work 

is that the monetary model is plagued by unstable regression coeScients in terms of sign 

(Hayes and Stone [1981]), magnitude and significance. Furthermore, in a widely cited paper 

by Meese and RogofF [1983] the authors show that a random walk with drift outperforms 

the monetary model in out-of-sample forecasting ability. 

Recently, attention has shifted towards the ability of the monetary exchange rate 

model to adequately characterise long run movements in the exchange rate. In particular, 



following the work of Engle and Granger [1987], studies have been conducted to test the long 

run properties of the model using cointegration analysis. Unless such long run relationships 

exist, it is inappropriate to use the monetary model for forecasting and policy purposes. 

These studies can be separated into two broad strands: those that use relative variables^ in 

the cointegrating vector; and those that include the variables without restriction. Studies 

that have used relative variables tend to find no evidence of a cointegrating vector [see 

Messe [1986], Boothe and Classman [1987], Bailie and Selover [1987], Meese and RogoS 

[1988], McNown and Wallace [1989] and Sarantis [1995]). In contrast, studies that use 

unrestricted variables 6nd evidence of numerous cointegrating vectors [see MacDonald and 

Taylor [1991, 1994], Chrystal and MacDonald [1995] and Kanas [1997]) but these relations 

do not display the anticipated signs as suggested by the monetary model and often have 

extremely large magnitudes that are difficult to reconcile with economic theory. In spite of 

these diSiculties, attention has continued to be paid to the monetary model. In particular, 

there is emerging evidence that equihbrium correction models based upon the monetary 

exchange rate model provide superior forecasting power compared to a random walk, with 

the degree of outperformance increasing as the forecast horizon is extended (see MacDonald 

and Taylor [1994] and Tawadros [2001]). 

Our motivation for re-examining the monetary exchange rate model builds upon 

increasing evidence that variables used in the monetary model may well be integrated of 

order two. In particular, recent empirical work on modelling money demand functions 

suggest that UK nominal money over this period is 1(2) .̂ If this is the case then existing 

relative variable corresponds to t he restr ict ion t h a t domestic and foreign variables are equal and of 
opposite sign. 

^See Johansen [1992], Ha ld rup [1994], Paruolo [1996] and Rahbek et al. [1999]. 
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cointegration analyses of the monetary model will provide misleading results. This can be 

made clear by noting in the 1(1) model the cointegrating vectors take the form 1(0) 

while from Chapter 1.1.2 we know that in the 1(2) model we have polynomial cointegration 

such that 1(0). SpeciEcally, the relation is now 1(1) and requires a 

linear combination of the differenced variables AXt to achieve stationarity. 

To the authors knowledge only two studies have entertained the possibihty of 1(2) 

variables in the monetary model. Of note, Diamandis oZ. [1998] provides an analysis of 

three US dollar bilateral exchange rates, including the doUar-sterhng rate, using the 1(2) test 

of Paruolo [1996] discussed in Chapter 1.2.1. However, the study Ends no evidence in support 

for the presence of 1(2) trends and so continues with a standard 1(1) cointegration analysis. 

In addition, in an earlier paper McNown and Wallace [1994] End that the dollar exchange 

rate and nominal monies for Argentina, Chile and Israel over the modern Soat are integrated 

of order two. In order to avoid the di&culties of analysing the model using 1(2) techniques 

the authors impose the untested restriction of long run domestic price homogeneity with 

respect to the exchange rate and again continue with the standard 1(1) model. 

In hght of this it is clear that a thorough examination of the monetary model 

that uses recent techniques for estimating and testing restrictions on cointegrating relations 

that allow for the presence of 1(2) variables is warranted. This Chapter provides such an 

analysis. The structure of the Chapter is as follows. In the remainder of this introduction 

we discuss the theoretical basis for the monetary exchange rate model and present the 

model to be used in the empirical section of the Chapter. In Section 3.2 we present an 

empirical analysis of the monetary model within a cointegrated 1(2) system for the sterling-
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dollar exchange rate over the period 1976Q1 to 1999Q3. The section begins by specifying a 

congruent unrestricted vector autoregression for the dataaet. Then, we test for the number 

of cointegrating relations and common 1(1) and 1(2) trends in the data using the test of 

Rahbek et aZ. [1999]. We continue by testing for some overidenti^ng restrictions on 

the cointegrating relations and give some intuition for the specifications we find support 

for. Finally, we provide a reparameterisation of the unrestricted vector autoregression that 

incorporates the cointegrating relations and analyse its forecasting ability compared to 

simple multivariate time series. Section 3.3 concludes. 

3 .1 .1 T h e M o n e t a r y E x c h a n g e R a t e M o d e l 

The asset approach continues to represent the dominant theory for explaining 

movements in the nominal exchange rate. Within the asset approach there are two con-

ceptually distinct approaches to the importance of non-money assets in determining the 

exchange rate. The monetary approach is based on the assumption of perfect substitutabil-

ity of non-money assets so that the exchange rate is determined only by relative excess 

money supplies. In contrast, the portfolio balance approach assumes that non-money as-

sets are imperfect substitutes and drive movements in the exchange rate through economic 

agents maximising the expected return from their portfolio of assets. In this Chapter we 

concentrate only on the monetary class of exchange rate models and in particular on the 

flexible price monetary model which we outline below. 

The standard monetary model used in the empirical literature was formulated 

by Frenkel [1976] and combines domestic and foreign money demand functions which a 

purchasing power parity identity to obtain a reduced form bilateral exchange rate function. 



87 

In addition, the model assumes that the income and interest rate elasticities for money 

demand are identical in the domestic and foreign countries and that the money supply 

is determined exogenously. With all these assumptions in place, the three behavioural 

equations take the form 

= pt + 

77%; = (3.1) 

= Pt - P* 

where & is the spot exchange rate dehned as the price of the domestic currency per unit 

of foreign currency; m is nominal money; p is the domestic price level; is domestic real 

income and r is a suitably defined domestic short-term interest rate. In addition, lower 

case letters denote variables in logarithms and a superscript asterisk denotes the variables 

in the foreign country. Solving the money demand equations with respect to pt and and 

substituting into the purchasing power parity (PPP) identity yields the following reduced 

form exchange rate equation 

at = - 77^) - - Z/D + - r^) (3.2) 

Note that as a result of the PPP identity we have implicitly imposed one other restriction, 

namely that the coefficient on {mt — m^) is unity i.e. there is a proportionate relationship 

between the nominal exchange rate and the relative money supply. 

The assumptions embedded in Eq.(3.1) are extremely strong and have not been 

supported in the empirical literature. First, studies on modelling the demand for money 

in the UK and US (see Hendry and Ericsson [1991]) show that the response of money 



demand to changes in real income and interest rates are signiScantly different in the UK 

compared to the US. Second, PPP is a simple economic hypothesis that dehnes the long 

run equilibrium in the goods market. However, when used for empirical modelling, the 

eSect of such issues as temporal aggregation and weak correspondence between theoretical 

and observed variables necessitates a more Hexible specification than that given above. 

In particular, Dornbusch [1989] suggests that due to differing productivity trends in the 

tradeable and non-tradeable goods sectors and inter-country differences in consumption 

patterns, a secular decline in domestic prices relative to foreign prices could appear as a 

linear trend in the P P P relationship. In light of the above, we relax the restrictions in 

Eq.(3.1) to yield 

TTit = dipt 4- - 6 m 

= (̂ 2?! + a22/r - 627-* (3.3) 

- 02?* + Tt 

As before, we solve the money demand equations in Eq.(3.3) with respect to pt and p* and 

substitute these into the modihed PPP relationship in Eq.(3.3) to obtain our reduced form 

for the empirical analysis 

St = ( I ) " (I) " C?) + C?) 
which we simplify to 

gf = anit - + /)*;/* + 3/^ - + Tt (3.5) 

for suitable parameter definitions. Note that this unrestricted reduced form allows us to 



test whether the restrictions implied by the standard monetary model (corresponding to 

a = a*, = /)*, 'y — 7* and t = 0) are supported for our dataset. 

3.2 Empirical Analys i s 

3.2 .1 T h e D a t a 

The variables in the dataset are quarterly observations covering the post Bretton-

Wbods period from 1976Q1 to 1999Q3. The variables correspond to the spot sterling-dollar 

exchange rate^ (denoted a); the UK monetary aggregate MO and the US monetary aggregate 

Ml'̂  (m and respectively); UK and US real GDP at market prices (?/ and ?/* respectively); 

and 3-month UK and US interest rates (r and r* respectively). All the variables are in 

natural logarithms. In addition to the stochastic variables in the information set, we also 

include a constant, time trend and four dummy variables. The dummy variables take the 

value unity in 1978Q2, 1979Q2, 1980Q3 and 1982Q4 to account for the largest outliers in 

the unrestricted VAR (see below). 

3 .2 .2 T h e Unres t r i c t ed Vector Autoregres s ion 

Our analysis begins by modelling the joint distribution of the variables within an 

unrestricted vector autoregression (VAR)^. The unrestricted VAR takes the form: 

^Sources for the d a t a can be found in Appendix A. 

' 'Note t h a t the UK M l mone ta ry aggregate was not used due to discontinuity in the measure caused by 
the s teady conversion of UK building societies to public limited companies f rom 1989 {e.g. in July 1989 the 
conversion of t he Abbey Nat ional building society increased M l by 16% overnight). 

®The calculations and numerical results in the text were obta ined using the computer packages CATS in 
RATS (Hansen and Juselius [1995]) and Microfit 4.0 (Peseran and Peseran [1997]). 
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k 
Xt = y ^ AjXt^j + + £t (3.6) 

i=i 

where = (a, m,f»*,2/,2/*, ^*) is the seven-dimensiona] vector containing our variables of 

interest; D* is a vector of deterministic variables containing a constant, a trend and the four 

dummies given above; and Sf is an innovation process which is independently distributed 

with mean zero and variance-covariance matrix S. 

The unrestricted VAR for X'^ given by Eq.(3.6) was estimated with k = 3 lags 

over the full sample from 1976Q1 to 1999Q3 (less observations used for lags). Given the 

frequency of the data it would have been natural to begin the analysis with Eve lags. This 

would ensure that the dynamics were rich enough to adequately characterise the persistence 

in the variables of interest. However, given the size of the system and the number of available 

observations one has to be careful to avoid over-6tting and mitigate the risk of small sample 

dependence. In hght of these competing constraints we set a compromise choice of A: = 3 lags 

so that the initial general system hag 31 unrestricted coeSicients including the error variance-

covariance matrix in each equation which corresponds to approximately three observations 

per parameter. A likelihood ratio test for the lag length of the unrestricted VAR suggested 

that t = 3 is required (the test statistic for A = 2 lags against the alternative /c = 3 being 

X^(49) = 101.8 with ap-value < 0.001). 

Table 3.1 provides descriptive and diagnostic statistics for the estimated ume-

stricted VAR. The diagnostics correspond to p-values of the Lagrange multipher test of resid-

ual serial correlation against 4th-order autoregression (Godfrey, [1978]) denoted f]ir(', -); the 

RESET test of functional form (Ramsey, [1969]) denoted f^eae((',')i the Jarque-Bera chi-
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square test of normality of regression residuals (Jarque and Bera [1980]) denoted ); 

and an equality of error-variances test denoted ). The table shows that the initial 

system is generally well-specified, with only marginal evidence of non-congruency in the 

equation for domestic income. In light of this, we continue with the unrestricted VA.R as a 

valid general framework for our empirical analysis. 

The dynamic properties of the uiurestricted VAR are illustrated by the moduli of 

the eigenvalues of the companion matrix. The Erst eleven of the (t x n) = 21 are 

(0.990,0.936,0.927,0.927,0.918,0.918,0.754,0.754,0.703,0.611,0.611) (3.7) 

where the roots of the characteristic polynomial are the inverses of these eigenvalues. The 

eigenvalues suggest the presence of at least six unit roots in the dynamic system and possibly 

eight. Evidence on the roots of the characteristic equation is used in parallel with the formal 

test of the integration indices (see below) since conditioning on the dummy variables may 

well change the asymptotic distribution of the test. 

3 .2 .3 Cointegrat ion Analys i s 

We continue by formally testing for the integration indices in the system i.e. the 

number of r cointegrating vectors together with the number of 1(1) trends and thus the 

number of (p — r — ai) = 1(2) trends using the test presented in Rahbek oZ. [1999] 

and discussed in detail in Chapter 1.3.1. Rahbek oZ. [1999] show that the integration 

indices (r, si) should be determined jointly since the sequential approach of testing for the 

cointegration rank and then proceeding to test for the number of 1(1) trends does not, 

in general, yield the correct asymptotic size for the test. 
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The test statistics for all combinations of r and si together with the 95% quantiles 

of the asymptotic test distributions taken from Rahbek et al. [1999, Appendix C, Table 

4] are presented in Table 3.2. Note that the 95% quantiles are not adjusted to account 

for the presence of the dummies. However, Doomik et al. [1998, Figure 4 and discussion] 

show that entering dummies unrestrictedly to the model when they are not present in the 

DGP has little impact on the tests for integration indices in the 1(1) model and thus in 

the first step of the formal test for the integration indices of the 1(2) system. In addition, 

following Paruolo [1996] and Rahbek aZ. [1999] the test statistics are calculated under 

the assumption that the data contain at most linear trends. 

To determine the appropriate integration indices we start by testing the most 

restricted hypothesis, given by (r, 81,52) = (0,0,7), then, if this hypothesis is not rejected, 

we test successively less and less restricted hypotheses by continuing to the end of the Erst 

row and then by proceeding row-wise from left to right until the 6rst rejection is found. 

The Erst submodel hypothesis corresponding to (r, 81,62) = (0,0,7) is easily rejected. In 

fact, all submodels for r = 0 are rejected. The Erst non-rejection is for the submodel 

(r, 51,82) = (2,2,3) with a test statistic of 128.0 compared against the 95% critical value 

of 142.2. This non-rejection is a fairly strong one with a p-value of over 25%. Note also 

that this particular submodel corresponds to si 4- 2^2 = 8 unit roots which matches the 

results on the roots of the characteristic polynomial presented above. However, since the 

asymptotic tables may not provide a close approximation of the actual test distribution 

we also consider some of the other hypotheses to the right and below. The next two 

non-rejections correspond to (r, 81,82) = (2,3,2) and (r, 51,82) = (3,1,3) and thus imply 



93 

Si + 2s2 = 7 unit roots which does not sit with roots of the characteristic polynomial in 

E]q.(3.7). In addition, there is no economic or empirical reason why these hypotheses should 

be preferred to the first non-rejection submodel. 

Imposing the rank restrictions consistent with (r, S2) = (2,2,3) the first eleven 

eigenvalues of the companion matrix are 

(1,1,1,1,1,1,1,1,0.59,0.56,0.56) (3.8) 

where it seems that we have accounted for all the unit roots in the system. Evidence in sup-

port of the need for allowing 1(2) trends in the model can be seen by imposing p—r = 5 in the 

1(1) model. In this case the Erst nine eigenvalues become (1,1,1,1,1,0.95,0.95,0.86,0.59) 

and thus we see three further near-unit roots appear. Thus, we proceed with (r, 51,52) = 

(2,2,3) as our maintained model. 

Imposing the submodel corresponding to (r, 51,52) = (2,2,3) yields the unre-

stricted parameter estimates in Table 3.3. In the Erst four columns of the top panel of the 

table we have the estimates of the two polynomial cointegrating relations 

(where we have normalised the vector on 5). It is clear from the estimates of the levels 

variables that a number of the parameter values exhibit large magnitudes and signs 

that are in variance with those predicted by the monetary model. Furthermore, the esti-

mates do not seem to lend any support for the basic monetary model where the domestic 

and foreign variables are entered in relative form. In order to provide more formal evidence 

we continue by testing for the validity of the parameter restrictions suggested by the basic 

monetary model i.e. a = a*, /? = /3*, 7 = 7* and t = 0 in Eq.(3.5). The results of the tests, 

reported in Table 3.4, show that each of the restrictions is strongly rejected. 
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In order to impose some overidenti^ng restrictions on our polynomial cointegrat-

ing relations we also consider tests for excluding variables from each of the two cointegrating 

relations and tests for weak exogeneity. Table 3.5 presents the results. We can see that the 

Srst cointegrating relation seems to be a combination of only domestic money, income and 

the interest rate, perhaps representing a simplified money demand function or monetary 

authority reaction function. We return to this later when we examine the speciSc form 

of the first cointegrating relation. More importantly, the monetary model of the exchange 

rate is identified by the second cointegrating relation. 

The results from testing for weak exogeneity of the variables of interest with respect 

to the cointegrating parameters show that both domestic and foreign income are weakly 

exogenous with test statistics of 3.83 (p-value of 0.15) and 2.02 (p-value of 0.36) respectively. 

A joint test for weak exogeneity of both variables (not shown in the table) results in a test 

statistic of 6.88 with a corresponding p-value of 0.14. 

In summary, the above tests suggest that we can employ a series of overidenti^ng 

restrictions on our cointegrated system given by 

Hn = 

^ 0 0 0 1 0 0 0 ^ 

O O O O l O O y 
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and 

/ ^ O l O O O O O O ^ 

0 0 0 1 0 0 0 0 

0 0 0 0 0 1 0 0 

= 

y O O O O O O O l y 

/ \ 
1 0 0 0 0 0 0 0 

0 1 0 0 0 0 0 0 

0 0 1 0 0 0 0 0 

0 0 0 1 0 0 0 0 

v / 

0 0 0 0 1 0 0 0 

0 0 0 0 0 1 - 1 0 

The eight overidentifying restrictions are excepted with a test statistic of 10.02 (p-value > 

0.25). 

The restricted parameter estimates are presented in Table 3.6. For ease of expo-

sition we have normalised the first cointegrating relation on the domestic interest rate and 

the second relation on the exchange rate. The Erst relation seems to correspond to a simple 

Taylor rule (a form of monetary authority reaction function, see Taylor [1993]) whereby the 

domestic interest rate changes positively in response to both inflation (domestic money is 

our proxy here) and output. Taylor [1993] suggests a response coefficient of 1.5 on inBation 

and 0.5 on output. As we can see &om Table 3.6 the coeScient on domestic money is fairly 

close to 1.5, though the coefficient on income is a factor of ten larger. 

The second cointegratiug relation can be identiEed as the monetary exchange rate 

model, though the equilibrium relationship suggested by the monetary exchange rate model 

holds in a theoretically weaker sense given that the linear combination of the level variables 

is integrated of order one. Unfortunately, inkeeping with the extant empirical literature the 

magnitude and signs on the cointegrating parameters do not conform to their theoretical 

values. 



In the rest of the top panel in Table 3.6 we have the estimates of the two CI(2,1) 

relations given by jS'iXt together with the estimates of the weight with which the 1(2) trends 

inSuence the variables of the system is corresponding to J = 1,2,3. It is interesting 

that the 1(2) trends seem to be driving a number of the variables in the system as represented 

by the condition that ^ 0 for j = 1,2,3. 

Moving on to the bottom panel of Table 3.6 we have the adjustments to the 

disequilibrium error deSned by the polynomial relation together with the estimates of the 

stochastic 1(1) and 1(2) trend components given by a , , a n d 0:2respectively for z = 1,2 

and j = 1,2,3. We note here that the largest weight in the two 1(1) trends come from the 

cumulated residuals in the exchange rate, while we have that the twice cumulated residuals 

from both domestic and foreign money supply and real income are the main components 

for the 1(2) trends. 

3.2 .4 M o d e l l i n g T h e 1(0) P V A R 

In the absence of any further possible tests of restrictions on the polynomial re-

lations we continue by specifying a parsimonious reparameterisation that maps the system 

from 1(2) to 1(0) space. The specification follows Chapter 1.1.3 Eq.(1.9) in that we define 

an equilibrium correction model of the form 

t-2 

+ g + et (3.9) 
i=l 

where from Chapter 1.1.3 Eq.(1.9) we have that /) — pr, "V' T = (;8,)8i). This 

speciScation, denoted a parsimonious vector autoregression (PVAR), imposes the reduced 
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rank condition on the cointegrating space and the reduction in lag length from A: = 3 to 

(A — 2) = 1. Note that the cointegrating relations in Eq.(3.9) are given by — 

and / X t = 

The PVAR was estimated over the full sample (less initial observations for con-

structlng the second diEerences and the lag) and yielded the summary statistics and diagnos-

tics reported in Table 3.7. The table shows that the initial system is generally well-specified, 

with only marginal evidence of non-congruency in the equation for domestic income and 

the foreign interest rate. A further test of the PVAR is provided by examining whether 

a model which excludes the long run relations i e . a VAR in double diEerences (denoted 

a DDVAR) parsimoniously encompasses the PVAR following Hendry and Mizon [1993]. 

Testing whether simpler models can parsimoniously encompass the PVAR avoids the use 

of models that overly sample dependent and are not invariant to regime changes. The 

test corresponds to a likelihood ratio test for deleting the cointegrating relations such that 

a = — 0 in Eq.(3.9). The test statistic for the set of restrictions is given 

by % (̂42) = 377.1 [0.00]^ and hence we reject that the DDVAR parsimoniously encompasses 

the PVAR. This result gives further support for the importance of the polynomial cointe-

grating relationships together with the other CI(2,1) relations when modelling our variables 

of interest. 

®The individual test statist ics, d is t r ibuted as for excluding the two polynomial cointegrating re-

lation and each of the four directly cointegrat ing vectors are 75.2 [0.00], 55.8 [0.00], 43.4 [0.00], 35.3 [0.00], 
64.4 [0.00] and 70.1 [0.00] respectively. 



3.2.5 Forecast ing Per formance 

As discussed in the introduction to this chapter an important criticism levelled at 

the monetary exchange rate model is its poor forecasting ability when compared to simple 

time series models such a random walk with drift (Messe and Rogoff [1983]). However, 

recent studies have suggested that by incorporating the monetary model within an equi-

librium correction model one can obtain increased forecasting power compared to a simple 

random walk. In light of this, we now provide a comparison of the forecasting performance 

of our monetary exchange rate model driven PVAR with two multivariate examples of au-

toregression models with drift, namely our unrestricted VAR and the DDVAR. Specifically, 

we obtain multivariate dynamic 1-step ahead forecasts over the period 1995Q1 to 1999Q3. 

(The chosen forecast sample is arbitrarily set to correspond to approximately 20% of the 

available sample which is considered sufRcient to compare the predictive power of the various 

models.) Tables 3.8-3.10 provide estimates of the Grst two moments of the forecast errors 

as given by the mean and the root mean squared error (RMSE) for each of the three mod-

els. As discussed in Chapter 2 we reiterate here that one needs to careful when employing 

MSFE-type measures (of which RMSE is one) when comparing the forecast performance 

of models that are simple transformations of linear systems such as VARs, EqCMs and 

cointegrating relations. This is due to the fact that MSFE-based measures can yield differ-

ent rankings of the forecast models depending whether the level, difference or cointegrating 

relations are used as the basis of forecasting. With that in mind, Tables 3.8-3.10 show that 

the forecasting performance of the unrestricted VAR is poor. Not only is there evidence 

of under- and over-forecasting as measured the means but in addition the RMSE are seen 
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to be in some cases fifty times that of the in-sample errors. Moving on to the DDVAR 

we see that the forecasting performance is much improved with little evidence of under- or 

over-forecasting and RMSEs in most cases similar or even lower than those of the in-sample 

errors. The DDVAJR clearly poses a strong test for the PVAR in terms of forecasting power. 

However, as shown by Table 3.10 the forecasting performance of the PVAR matches that 

of the DDVAR. In particular, for our variable of interest, the dollar-sterling exchange rate, 

the PVAR provides a RMSE some 30% lower than the DDVAR and nearly half that of the 

unrestricted VAR. 

The increased forecasting power of the PVAR compared to the unrestricted VAR 

is shown in Figure 3.1. As the Sgure shows, the unrestricted VAR not only consistently 

overforecasts the exchange rate but also mischaracterises the movement of the exchange rate 

over the forecast period. However, the PVAR provides a much closer fit over the period and 

generally tracks well the not insignificant volatile of quarterly movements in the series. In 

short, we have shown by specifying a congruent model that allows for the presence of 1(2) 

variables we can generate forecasts of the exchange rate that compare well with multivariate 

versions of autoregression models with drift. Moreover, as the model incorporates the long 

run information in the data it is consistent with the theoretical basis for exchange rate 

movements as described by the monetary exchange rate model. 

3.3 Conclus ion 

In this chapter we have provided the Erst empirical examination of the monetary 

exchange rate model that allows for the presence of 1(2) variables in the data. We sum-
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marise our Endings as foUows. For the dollar-sterling exchange rate over the modem Boat 

we find support for the existence of two cointegrating relationships among the variables: the 

monetary exchange rate model; and a simple Taylor rule. Moreover, by formally testing for 

the number of 1(1) and 1(2) stochastic trends and finding evidence for two such 1(2) trends 

in the data, the stationary cointegrating relations found correspond to polynomial relations 

where the linear combination of the differences of the variables are required in order to 

provide a stationary relationship. Finally, we show that by speci^ng an equihbrium cor-

rection model that incorporates the disequilibrium errors from the estimated cointegrating 

relations we obtain a model that is weH-speciSed in-sample and, moreover, provides superior 

1-step forecasting power compared to multivariate versions of simple autoregression models 

with drift. Thus, by careful attention to the time series properties of the variables in the 

monetary model we provide further evidence that Meese and Rogoff's [1983] criticism of 

the monetary model as a poor forecasting model should be laid to rest. 
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s 77% y y* r r* 

le 0.865 &999 0.999 0.998 0.999 0.912 0.956 

0II52 0IW6 0IW8 0.007 0.006 0.103 0.084 

Far (4, 83) [0.555] [0.244] [0.146] [0.009] [0.532] [0.932] [0.358] 

Freaef(l,86) [0.938] [0.772] [0.006] [0.102] [1.000] [0.384] 

Xnormi'^) [0.088] [0.636] [0.914] [0.266] [0.468] [0.807] 

Fhet ( l ,10 l ) [0.952] [0.123] [0.045] [0.281] [0.960] [0.511] 

Table 3.1. UVAR. Diagnostics 
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p — r r Qr 

7 0 522.1 424.1 358.8 31L7 27^7 24^6 237.4 23L7 
35L6 31L2 274^ 24L2 21L6 186.1 164^ 146.8 

6 1 3W&4 313.0 24&0 20&1 17&5 16&4 15&8 
269.2 23&8 202.8 174.9 15L3 130.9 115.4 

5 2 23^9 17^3 12&0 10&6 10&4 1026 
198.2 1&A9 142.2 119.8 10L5 87^ 

4 3 13^9 77.0 66.6 62.3 62.2 
137.0 133.0 922 7^3 628 

3 3 12&6 72.0 44.3 38.9 
8&7 6&2 5&2 427 

2 5 55.7 22.7 17.5 
4A6 34.4 2&4 

1 6 7.7 2.7 
1&9 125 

S2 7 6 5 4 3 2 1 0 

Table 3.2. Formal test for integration indices 
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/? 1 /5 2 % 1 2 /?i 1 2 ^2 1 /^2 2 ^2 3 
s 1 1 -21.31 -16.86 -11.80 -17.91 0.686 -0.061 0.023 
m 23.20 16.94 6.920 0.054 34.01 -59.64 -0.106 0.135 0.000 

-0.136 -1.606 3.642 27.28 -8.282 -16.36 -0.643 -0.468 -0.151 
y 44.56 1.121 3.322 -2.174 -7.425 11.97 -0.000 0.040 0.150 
y* -13.57 -13.58 5.394 -4.171 41.71 -70.50 0.010 0.078 0.248 
r -5.905 1.317 30.21 -8.428 -17.92 16.14 -0.270 0.409 0.775 
r* —1.888 -3.271 18.44 -5.086 -6.276 -3.064 -0.177 0.764 -0.540 
t -0.537 -0.131 

a 1 a 2 1 2 <12 1 «2 2 0:2 3 
s -0.004 -0.011 -0.039 -0.019 0.053 0.022 -0.000 

0.003 -0.001 0.000 -0.000 -0.520 -0.383 -0.590 
771* -0.003 0.003 0.000 -0.000 0.076 -0.817 0.558 
y 0.001 -0.005 -0.000 0.000 -0.575 -0.183 -0.021 
y* 0.000 0.004 0.000 -0.000 -0.624 0.390 0.581 
r 0.059 -0.128 0.000 0.000 0.023 -0.000 0.047 
r* 0.064 0.126 -0.000 -0.000 0.021 -0.000 0.013 

Table 3.3. Estimates of 1(0), 1(1) and 1(2) spaces 
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Hypothesis /3 v Test statistic p-value 

Ha (*, 1,—1, *,*,*,*, *) 2 18.5 0.00 

Hp (*,*,*, 1,—1, *,*, *) 2 21.2 0.00 

H j (* ,* ,* ,* ,* , 1,—1, *) 2 28.3 0.00 

t = 0 0) 2 28.5 0.00 

Table 3.4. Tests for overidentifying restrictions 
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g rn 1/ ^ r r f 

Exclusion 
= l 0.81 4.78 0.01 19.21 1.44 15.94 1.04 14.76 

%2(2),r = 2 4.34 18.19 4.87 19.79 7.50 29.16 13.98 28.46 

Weak exogeneity 

%2(2),r = 2 7.14 5.57 3.83 2.02 14.62 19.82 

Table 3.5 Tests for exclusion and weak exogeneity 
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P 1 P 2 a^2 2 Pi 1 2 /̂ 2 1 ^2 2 A 3 
s 0 1 1.508 - 1 4 . 2 4 - 1 6 . 8 4 1&33 - 0 . 1 7 5 - & 1 ^ 0.553 

- 1 . 8 8 0 9.593 - 0 . 9 4 5 - & 2 ^ 19.47 44^4 0.066 0J.51 - & 0 ^ 
m* 0 - 1 . 1 8 3 1_7%1 33.75 - & 9 0 1&70 - 0 . 1 9 0 - & 1 6 1 - 0 . 8 2 1 
y - 6 . 1 6 3 - 1 2 . 4 9 - 0 . 4 3 6 - & o n - & 6 1 -16 .90 0.129 - 0 . 0 5 0 0.000 
y* 0 - & 2 M - 0 . 9 3 1 - 6 . 8 1 4 40.70 90.40 0.261 - 0 . 0 9 4 0.089 
r 1 2^'30 - 4 . 4 6 5 - 1 3 . 2 9 - 1 6 . 4 6 - 2 0 . 4 2 0.919 - 0 . 0 2 7 - 0 . 0 8 6 
r* 0 - 2 . 7 3 0 - 3 . 8 9 3 - & 1 % - 4 . 2 9 9 5.682 - 0 . 0 1 7 0^153 - 0 . 0 1 8 
t 0.070 0 

a 1 O! 2 0!l 1 Cti 2 ag 1 a!2 2 0:2 3 
s 0.062 - 0 . 0 2 0 - 0 I W 3 0.012 -0 .025 0.000 0 I # 6 
m - 0 . 0 2 9 0.004 OIWO OIWO 0.808 - 0 . 3 5 2 0.016 
m* 0.010 0IW5 0.000 OIWO 0.230 0.917 0.200 
y 0 0 - 0 . 0 0 0 -0 .000 0W87 0II71 - 0 . 3 9 9 
y* 0 0 - 0 . 0 0 0 0.000 - & 1 ^ 0J.68 - & 8 M 
r - 0 . 1 8 7 - 0 . 1 2 3 0.000 —0.000 - 0 . 0 0 0 0.043 0.000 
r* —0.654 0 J 6 0 - 0 . 0 0 0 0.000 - & 0 M 0.017 0 1 0 ] 

Table 3.6 Restricted estimates of 1(0), 1(1) and 1(2) spaces 
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A^s A^m A^m* A^y A^y* A^r A^r* 

# 0.462 0.271 0.402 0.638 0.613 0.449 0.773 

a 0.054 0.007 0.008 0.007 0.006 0.124 0.104 

Far(4,69) [0.746] [0.440] [0.722] [0.095] [0.333] [0.562] [0.050] 

Fre«et(l,72) [0.690] [0.815] [0.677] [0.005] [0.462] [0.858] [0.001] 

[0.442] [0.020] [0.986] [0.097] [0.798] [0.000] [0.994] 

F,^t(l,90) [0.953] [0.572] [0.273] [0.021] [0.976] [0.800] [0.268] 

Table 3.7. PVAR. Diagnostics 
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Unrestricted VAR 

s 7% ^ ^ r r 

1976Q4-1994Q4 
Mean 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
RMSE 0.044 0.005 0.006 0.005 0.004 0.083 0.072 

1995Q1-1999Q3 
Mean -0.052 0.037 -0.218 0.024 0.014 -0.070 0.525 
RMSE 0.058 0.046 0.263 0.033 0.026 0.275 0.580 

Table 3.8. UVAR. Forecast Performance 



113 

DDVAR 

A^s A^m A^m* A^y A^y* A^r A^r* 

1976Q4-1994Q4 
Mean 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
RMSE 0.070 0.008 0.008 0.009 0.007 0.139 0.143 

1995Q1-1999Q3 
Mean -0.000 -0.001 -0.000 -0.001 -0.001 -0.021 -0.005 
RMSE 0.047 0.007 0.009 0.004 0.006 0.077 0.089 

Table 3.9. DDVAR. Forecast Performance 
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PVAR 

1976Q4-1994Q4 
Mean 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
RMSE 0.051 0.007 0.007 0.007 0.005 0.121 0.098 

1995Q1-1999Q3 
Mean 0.007 0.001 -0.003 0.003 -0.003 -0.000 -0.059 
RMSE 0.034 0.006 0.009 0.005 0.007 0.060 0.098 

Table 3.10 PVAR. Forecast Performance 
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Figure 3.1(b). PYAR. actual (—) and forecast 
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Chapter 4 

Tes t ing C a g a n ' s M o n e y D e m a n d M o d e l Over T h e G e r m a n 

Hype r in f l a t i on 

4.1 I n t r o d u c t i o n 

The 1920s are of particular interest to the applied economist since they mark 

the Erst hyperinHationary period where rehable data exist to test a range of economic hy-

potheses. In particular, following Cagan (1956) a great deal of attention has been paid 

to modelling the demand for money during the German hyperinEation period. The early 

literature (see Sargent and Wallace [1973], Sargent [1977], Frenkel [1977, 1979], Abel et aZ. 

[1979], Salemi [1979] and Salemi and Sargent [1979]) investigated the conditions required 

to identi^ the semi-elasticity parameter on expected inflation. These studies culminated 

in Salemi and Sargent [1979] who showed that three assumptions were required for iden-

tiEcation, namely the exogeneity of the money supply, rational expectations on behalf of 

economic agents and random walk velocity shocks to money demand. Following Salemi and 

Sargent [1979] studies on the German hyperinflation period concentrated on testing for the 
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presence of price bubbles^ in the data. While early studies were inconclusive (c./. Flood 

and Garber [1980] and Burmeister and Wall [1982]) later studies showed that when the 

assumptions on the exogeneity of money and the random walk for the velocity shock are 

relaxed the presence of bubbles is generally rejected and thus it is summised that market 

fundamentals were responsible for driving the German hyperinflation (see Casella [1987], 

Imrohoroglu [1993])^. The more recent empirical literature has focused on testing the long 

run properties of the Cagan model through cointegration (see Taylor [1991], Engsted [1993, 

1994] and Michael aZ. [1994]). Taylor [1991] shows that by simply assuming that agents 

expectational errors are stationary one can formulate the Cagan model as a cointegrating 

regression between real money balances and inflation^. Furthermore, if the hypothesis of 

cointegration holds then a superconsistent estimate of the elasticity parameter is obtained 

that is robust to simultaneity or omitted variables bias. The studies cited tend to And 

support for a cointegrating relation amongst the variables in the Cagan model though Tay-

lor [1991] and Michael oZ. [1994] End that the model needs to be augmented by other 

economic variables (for a discussion see below). 

This Chapter extends these studies by re-examining Cagan's money demand model 

in light of recent work on modelling 1(2) variables i.e. those variables which require di@er-

encing twice to achieve stationarity. In particular, we provide the Srst test of long run 

price homogeneity that is imposed in Cagan's model and also show that the model requires 

^Flood and Garbe r [1980] define a price bubble where "self-fulfilling expectat ions of price changes drive 
actual price changes independent ly f rom marke t fundamenta l s" {op. cit. p.??). 

^There is considerable evidence in suppor t for t he endogeneity of the money supply over the German 
hyperinflat ion per iod (see Sargent and Wallace [1973], Sargent [1977], Salemi and Sargent [1979] and a more 
recent t r e a t m e n t by Vazquez [1994]). 

^Engsted [1993, 1994] shows t h a t by imposing the fu r ther assumptions of ra t ional expectat ions, no bubbles 
and s ta t ionary velocity shocks a fu r the r cointegrat ing relat ionship between real money balances and money 
growth can be derived. 
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reinterpretation as a polynomial long run cointegrating relation in order to produce a stable 

equilibrium relation over the German hyperinBation 

The structure of this Chapter is as follows. Below we outline Cagan's [1956] model 

of money demand during hyperinSation and discuss the extensions to the model that we 

employ in the empirical analysis. In section 4.2 we present our analysis of the Cagan model 

within a cointegrated 1(2) model. After testing for the integration indices we present tests 

on certain parameter restrictions suggested by the model and Snally discuss the final form 

of the cointegrating relations and common trends within the system. Section 4.3 concludes. 

4.1 .1 T h e D e m a n d For M o n e y D u r i n g Hyper inf la t ion 

Our model of money demand during the German hyperinRation follows that of 

Cagan [1956] who posits that real money balances in period t is related to the expected 

rate of inflation in period (t 4-1) and a stochastic variable that represents shocks to money 

demand or velocity such that 

(m - ^ a - - pt) + i/f (4.1) 

where (m — p) denotes real money demand, p corresponds to the price level and z/ is the 

shock variable. To motivate the following discussion of alternate time series interpretations 

note that we can rewrite Eq.(4.1) as 

(m - p)t = a - Ap(+i + (4.2) 

where = (pt+i—Efp^+i) — represents the serially uncorrelated rational expec-

tations error in period (t + 1). The extant empirical literature suggests that both money 
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balances and prices are well described as 1(2) variables. If this is true then it is clear that 

Eq.(4.2) deSnes a cointegrating regression such that testing the stationarity of becomes 

a test of cointegration between real money balances and inflation. If this test is not rejected 

then the parameter of interest /), corresponding to the semi-elasticity of real money de-

mand with respect to expected inHation, is estimated super-consistently (Stock [1987]) and 

is robust to simultaneity and omitted variable bias (Engle and Granger [1987]). 

In early studies of Cagan's model of money demand during hyperinHation it was 

assumed that velocity shocks followed a random walk such that -t- gf as a re-

sult of the strong serial correlation observed in z/f and also to facihtate tests for adaptive 

and rational expectations. It is clear from the preceding discussion that this assumption 

exphcitly precludes the possibihty of cointegration between real money balances and ex-

pected inEation or money growth, perhaps indicating the omission of an 1(1) variable in the 

cointegrating regression. 

One such variable to be proposed in the literature (Frenkel [1977]) is the expected 

rate of currency depreciation which is usually proxied by the forward foreign exchange 

premium. The subsequent literature has proposed three rationales for the inclusion of the 

foreign exchange premium. First, the premium is a natural proxy for the expected rate of 

inHation in that, following the hterature on purchasing power parity, prices and exchange 

rates should move closely together during hyperinEations. Second, it has been argues that 

the true form of substitut ability hes not between goods and money but rather between 

domestic and foreign monies. Last, it may well be that both goods and external assets would 

be considered as alternatives to holding domestic money such that both expected inEation 
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and the forward premium should be included in the information set that determines real 

money balances. 

An addition variable proposed in the literature is real income. In early studies, 

following Cagan [1956] and Frenkel [1977], it was felt that real income could be abstracted 

from the set of variables that influence real money balances as the relatively small movement 

in incomes over the hyperinflationary period were completely swamped by the large fluctu-

ations in real money holdings and thus would provide little explanatory power. However, 

Michael a/. [1994] argues that this skein of logic is based upon the unreliable income 

data that was available to the authors of these early studies. In contrast, recently available 

data from the International Bureau of Labour shows a halving of real income between 1921 

and the end of 1923. In summary then, a general form of the Cagan model can be given as 

(m - p)f = a - /3Apt+i + 3̂ % - - a)t_i +14 (4.3) 

where denoted real income and ( / — corresponds to the forward foreign exchange 

premium. Below we provide an analysis of Eq.(4.3) though we relax the restriction of long 

run price homogeneity. This now becomes a testable hypothesis on the parameter space in 

the 1(2) model following Kongsted [2000]. 

4.2 Empi r i ca l Analys is 

4.2 .1 T h e D a t a 

In this Chapter we use the standard database for analysing the German hyperin-

flation period beginning in February 1921 (the start of the float after the gold standard) 
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and ending in June 1923. The data on nominal money balances (denoted m), wholesale 

prices (p), the index of skilled public workers real wages (w) and the expected depreciation 

in the exchange rate (defined as the ratio of the forward over the spot exchange rate and 

thus denoted ( / — a)) are taken &om Michael aZ. [1994, p. 20]. 

4 .2 .2 D o u b l e U n i t R o o t Tes ts 

When analysing the Cagan model of hyperinflation it is a distinct possibility that 

some of the variables are explosive. This is a particular problem when analysing 1(2) 

systems since in small samples the properties of explosive processes mimic those of 1(2) 

series (see Haldrup [1998]). In light of this we employ three tests for double unit roots that 

have power against the explosive alternative. These are the parametric tests of Hasza and 

Fuller [1979] and Sen and Dickey [1987] together with the semi-parametric test of Shin and 

Kim [1999]. 

The Hasza-Fuller test uses the generalised ADF auxiliary regression 

= (oil — l)xt^i + (62 1) jj -i-Uf (4.4) 
j=i 

where the joint hypothesis jifo : ai = 012 = 1 corresponds to being 1(2). The joint 

hypothesis is tested by a standard two-sided F—test which provides power against being 

1(0), 1(1) or explosive. 

Sen and Dickey [1987] consider a symmetric version of the Hasza-Fuller F—test 
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given by the SURE regression model 

y—i. 

+ (62 — 1) Axj—i + ^ ^ 6j/^xi-j + Ut, t — p 1,..., 

p-2 
« . 9 . ^ 

i=i 

(4.5) 

p—2 
I^xt — (&! — l)x^_i — (&2 ~ l)Axf_i + ^ ^^6 jl^ Xjj-j Vj, t — —p + 2 

j=i 

with the constraint that the parameters a i , ag aJid are the same in each equation. The 

joint hypothesis Ho : ai = a2 = 1 for xt being 1(2) is again tested by a standard two-sided 

test. However, Sen and Dickey show that due to the test's symmetric nature power gains 

are achieved against stationary and explosive alternatives compared to the Hasza-PiiDer test. 

The Enal test we use is the semi-parametric test of Shin and Kim [1999]. Shin 

and Kim derive a semi-parametric version of the Sen-Dickey test discussed above where the 

jointly-estimated regressions take the form 

= (61 - l)zt_i -I- (62 — 1)Aa;f_i 4- t — 3 , . . . , m 

Â â f = (ai — l)a:t_i — (0:2 — 1) Az(_i + z*, t = 3 , . . . , M (4.6) 

i e . Bq.(4.5) but with no lagged second diEerences. The speciEc form of the dependent and 

independent variables as well as the definition of the semiparametric f—testor is given in 

Shin and Kim [1999] and Haldrup [1998]. Shin and Kim show in a Monte Carlo study that 

their test improves on the size distortions found in other semiparametric tests such as that 

of Haldrup [1994] and Phillips and Perron [1988]. 

Table 4.1 reports the results from the double unit root tests on our variables of 

interest and ( / — 5). In order to obtain power against a range of deterministic 

alternatives the tests are employed with a constant, trend and quadratic trend in the re-
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gressions. The colunm headings in the Table determine which deterministic components 

were included. We find evidence in favour of the 1(2) null for both nominal money and 

prices. This matches the results found by Haldrup [1998] using these and other tests. We 

also End some support for ( / — s) being 1(2), though here the parametric and semipara-

metric tests disagree. Finally, the results for w are somewhat clearer suggesting that real 

wages are at most 1(1). The results from the double unit root tests are of use for when we 

formally test for the integration indices of the 1(2) system. In short, we find evidence for 

two or three 1(2) and one or perhaps two 1(1) components. 

4 .2 .3 T h e Unres t r i c t ed V A R 

We begin our investigation of the augmented Cagan model of money demand given 

by Eq.(4.3) by modelling the joint distribution of the variables within an unrestricted vector 

autoregression (VAR). The unrestricted VAR takes the form: 

k 

g (4.7) 

where ( / — 5)t_i) is the four-dimensional vector containing our variables 

of interest; Dt is a vector of deterministic variables containing a constant and a trend; 

and et is an innovation process which is independently distributed with mean zero and 

variance-covariance matrix 2. 

Given the small sample size and the comparatively large information set for an 

analysis of this period the dimension of the VAR was restricted by assuming at most k = 2 

lags. Estimating the unrestricted VAR over the period from February 1921 to May 1923^ 

^Estimation t ha t included the last da ta point of June 1923 resulted in explosive roots which invalidate 
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resulted in the descriptive and diagnostic statistics presented in Table 4.2^. The diagnostics 

correspond to p-values of the Lagrange multiplier test of residual serial correlation against 

4th-order antoregression (Godfrey [1978] denoted jp^r(', )i the RESET test of functional 

forin (Ramsey [1969]) denoted f^eaet(', ); the Jarque-Bera chi-square test of normality of 

regression residuals (Jarque and Bera [1980]) denoted ')i ^ equality of error-

variances test denoted f w ( ' , ' ) - The table shows that the restricted system is generally 

well-specified, though there is some evidence of non-congruency in the equation for the 

expected exchange rate depreciation. 

The dynamic properties of the unrestricted VA.R are illustrated by the moduli of 

the eigenvalues of the companion matrix which are given by 

(1.000,0.917,0.917,0.827,0.827,0.514,0.514,0.228) (4.8) 

where the roots of the characteristic polynomial are the inverses of these eigenvalues. The 

eigenvalues suggest the presence of at least three, and probably Eve, unit roots in the 

dynamic system. Evidence on the roots of the characteristic equation is used in parallel 

with the formal test of the integration indices below given the small sample size and that 

the test statistics in the formal test are derived asymptotically. 

4 .2 .4 Co integrat ion Analys i s 

We continue by formally testing for the integration indices in the system i.e. the 

number of r cointegrating vectors together with the number of si 1(1) trends and thus the 

number of (p — r — si) = gg 1(2) trends using the test presented in Rahbek oZ. [1999] 

Johansen ' s representa t ion theorem for 1(2) models (see Chapte r 1.1.1). 
®The calculations and numerical results in the tex t were obta ined using the computer packages CATS in 

RATS (Hansen and Juselius [1995]) and Microfit 4.0 (Peseran and Peseran [1997]). 
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and discussed in detail in Chapter 1.3.1. Rahbek et al. [1999] show that the integration 

indices (r, si) should be determined jointly since the sequential approach of testing for the 

cointegration rank and then proceeding to test for the number of si 1(1) trends does not, 

in general, yield the correct asymptotic size for the test. 

The test statistics for all combinations of r and together with the 95% quantiles 

of the agymptotic test distributions taken from Rahbek o/. [1999, Appendix C, Table 

4] are presented in Table 4.3. Following Paruolo [1996] and Rahbek et al. [1999] the test 

statistics are calculated under the assumption that the data contain at most linear trends. 

To determine the appropriate integration indices we start by testing the most 

restricted hypothesis, given by (r, 51,52) = (0,0,4), then, if this hypothesis is not rejected, 

we test successively less and less restricted hypotheses by continuing to the end of the Arst 

row and then by proceeding row-wise from left to right until the first rejection is found. The 

Erst near non-rejection is found for the submodel (r, 81,82) = (1,1,2) with a test statistic 

of 69.3 compared against the 95% critical value of 68.2. Though this particular submodel 

is only signiEcant at the 10% level it does correspond to 4- 2^2 = 5 unit roots which 

matches the results on the roots of the characteristic polynomial presented above. The next 

non-rejection corresponds to the submodel (r, 51,82) = (1,2,1) and therefore 51 4- 28% = 4 

unit roots. Though this submodel has a test statistic of 46.5 compared to the 95% critical 

value of 53.2 the conclusion of four unit roots does not tally with that suggested by the 

roots of the characteristic polynomial. Given the small sample size we conclude in favour 

of the submodel corresponding to (r, 5i, 82) = (1,1,2). Evidence in support of the need for 

allowing 1(2) trends in the model can be seen by imposing p — r = 3 in the 1(1) model. 
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In this case the Erst eight eigenvalues become (1,1,1,0.861,0.779,0.779,0.347,0.057) and 

three further near-unit roots appear. 

4.2 .5 Tes ts for P a r a m e t e r Res tr ic t ions 

We next consider tests of parameter restrictions on the various components of 

the model. First, we test the hypothesis of a nominal-to-real transformation following 

Kongsted [2000] and discussed in Chapter 1.1.3. The hypothesis corresponds to long run 

price homogeneity which is commonly used in empirical studies of Cagan's money demand 

model. The test starts by considering the validity of the restriction on given by /) = 

(1, —1, *, *). We End that the restriction is strongly rejected with a test statistic given by 

= 7̂  98 with a corresponding p-value of < 0.001. Thus, we have provided the Erst 

evidence that the imposition of long run price homogeneity in the Cagan money demand 

model may not be a valid restriction. In light of the rejection of long run price homogeneity 

we next test whether long run wage homogeneity is an acceptable trans&rmation for our 

dataset. The Erst subhypothesis such that = (1,*,—1,*) is easily accepted with Qbi = 

0.04 with a corresponding p-value of 0.83. Following Kongsted [2000] we now test for the 

second subhypothesis such that — (1,*,—1,*) and /?2 = However, the test 

statistic for the second subhypothesis is given by Qf,2 = 11.89 with a corresponding p-value 

of < 0.001. Thus, we reject the overall hypothesis of long run wage homogeneity. Our Enal 

test is for the absence of the linear trend in the cointegrating relation. The hypothesis is 

strongly accepted with a test statistic of x^(l) = 0.22 with a corresponding p-value of 0.64. 

Thus, we exclude the linear trend from the /3 vector. 

Our second set of tests for parameter restrictions corresponds to testing for the 
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validity of weak exogeneity of the variables of interest for the cointegration parameters 

0 f ) . The form of the test is discussed fully in Chapter 1.3.4. To summarise, given 

the VAR model 

(4.9) 

where 8 = ( $ 1 , 1 ^ ^ 2 , a n d Z* = (A^Xt_i,A^Xt_2,. Paruolo and 

Rahbek [1999] show that under Johansen's representation theorem with r > 0,81 > 0 a 

subset of is weakly exogenous for the cointegration parameters ^ = (̂ 8, 6) if and 

only if 

6'(o!,a:i,(;i)=0 (410) 

where gi = Choosing valid exogeneity restrictions is important since it results in 

a reduction in the number of short run variables in the EqCM and thus may avoid the 

need to model any complex stochastic properties exhibited in the marginal model due to 

interactions among the variables of interest. In addition, weak exogeneity tests enable the 

applied econometrician to learn more about the short run adjustment mechanisms within 

the general system. This is especially useful if the model is to be used as a tool to shed 

light on the short run implications of particular economic pohcies. The results of the tests 

from the sequential testing procedure are given in Table 4.4 where the individual test size is 

set at 1.67% to limit the overall test size at the conventional 5% level. The results provide 

strong evidence for and marginal evidence for the other variables that the Erst sub-

hypothesis Ha : b'a = 0 is satisfied. This would suggest that there is no level feedback 

from the cointegrating relation to any of our variable of interest. Moving on to the second 

sub-hypothesis : b'ai = 0 we see that the restriction is rejected for rrit and ( / — s)t-i 
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but accepted for pt and wt- This suggests that the common 1(2) trends are driven by the 

innovations to prices and wages. Finally, we tmrn to the sub-hypothesis : f/gi = 0 where 

again the test accepts the hypothesis for the wt and provides marginal support for pt. Thus, 

we conclude that wages, and perhaps prices, are weakly exogenous for the cointegration 

parameters of the money demand model. 

4 .2 .6 Cointegrat ing relat ions and c o m m o n trends 

We conclude our analysis of the Cagan money demand model within a cointe-

grated 1(2) system by presenting the restricted parameter estimates of the cointegrating 

relations and common 1(1) and 1(2) trends following the tests of parameter restrictions 

above. SpeciScally, we impose weak exogeneity of prices and wages in a and long run wage 

homogeneity and the absence of a linear trend in /). Finally, imposing the submodel cor-

responding to (r;gi,S2) = (1,1,2) yields the restricted parameter estimates in Table 4.5. 

The first two columns give the estimate of the polynomial cointegrating relation where we 

have normalised the vector on narrow money m. Turning to the levels variables 

Erst, we see evidence of a strong eSect from the foreign exchange rate depreciation variable 

while with respect to the differenced variables we see that the impact derives 

mainly from money, prices and wages. The adjustments to the disequihbrium error defined 

by the polynomial relation are presented in the first column of the bottom panel. Given the 

restrictions on a we have that the polynomial relation enters only the money demand and 

foreign exchange rate depreciation equations. Moving on to the linear combination (3'iXt 

which corresponds to a cointegrating relation that reduces the order of integration from 

two to one, i.e. a CI(2,1) relation, we have that money and prices virtually cancel to leave 
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wages as the dominant component of the relation. This cancelling effect is also present in 

the a i vector which provides the stochastic 1(1) trend component. Though the exchange 

rate depreciation variable has more of an eEect here. The estimates of the two common 1(2) 

trends are given by ag i and 0=2 2 seem to be generated by a broadly equal weighting 

from the twice cumulated residuals from each variable . Finally, the estimate of the weight 

with which the 1(2) trends in&uence the variables of the system is given by 1 g. 

Here we find that the 1(2) trends seem to drive only money, prices and wages which would 

appear to identify the foreign exchange rate depreciation as an 1(1) variable. 

A plot of the polynomial cointegrating relation together with the CI(2,1) relation 

is given in Figure 4.1. The plot clearly shows that the polynomial relation accounts 

for the extreme conditions at the end of the sample in contrast to the 1(1) cointegrating 

relation which drops away markedly. 

4.3 Conclus ion 

This chapter has provided a re-examination of the Cagan model of money demand 

over the German hyperinflation period. By allowing for the presence of 1(2) variables we 

show that the restriction of long run price homogeneity in the Cagan model is not supported 

over the German hyperinBation period. Furthermore, we End support for the need to 

augment the model with both wages and foreign exchange rate depreciation as suggested 

by Michael et al. [1994] and Frenkel [1977] respectively. A key result is that we show that 

the Cagan model requires reinterpretation as a polynomial long run cointegrating relation 

in order to produce a stable equilibrium relation over the German hyperinflation. Finally, 
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we find support for both prices and wages being weakly exogenous for the cointegration 

parameters over the period. 
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lags c c,t c,Z,f2 

H F - F q i q 2 4 5.56 &64 9J0 
4 3.04 4IK 4.77 
8 2A9 7.44 16.51 

3 3.08 3.91 12.50 
Pt 3 I j ^ 1.41 194 

s K - z ( f : % ) 8 0.66 4.53 6&24 

HF-Faia2 1 13.81 17.81 17.66 

Wt s D - f : % 1 3&20 2^96 &L41 
8 63^8 168.61 197.48 

2 2.82 4IW 3.82 
C f - a ) 2 9.59 9.61 10.78 

8 24^6 88.13 307.25 
Table 4.1. Double unit root tests 
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77% Pt Wt ( / - «)t-

le 0.999 0.997 0.456 0.923 

&032 &127 0J42 0.015 

F.X12,4) [0.376] [0.586] 

Freset (Ij 15) [0.318] [0.049] [0.651] 

Xnorm(2) [0.776] [0.373] [0.864] 

F w ( l , 2 4 ) ^L74^ [0.862] [0.710] 
Table 4.2. UVAR. Diagnostics 
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p-r r Qj_ 

4 0 206.3 147.7 107.4 81.4 78.9 
137.0 113.0 92.2 75.3 62.8 

3 1 110.3 69.3 46.5 43.6 
86.7 68.2 53.2 42.7 

2 2 2^6 1&4 
47.6 34.4 25.4 

1 3 &6 &0 
19.9 12.5 

52 4 3 2 1 0 
Table 4.3. Formal test for integration indices 
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Statistic i; pt lUt ( / — &)( 

Q.i 1 0.09 [0.77] 4.96 [0.03] 2.48 [0.11] 7.02 [0.01] 

0 . 2 1 17.1 [0.00] 1.72 [0.19] 1.55 [0.21] 19.3 [0.00] 

1 - 6.35 [0.01] 0.20 [0.65] 

Table 4.4. Tests for weak exogeneity 
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% Pi /̂ 2 1 /̂ 2 2 
1 -&40 -&05 0.508 -0.500 

Vt -0 .54 - 2 1 7 5.01 0.644 -0.321 
- 1 - L 1 6 0.572 0.803 

( / - g)(-i 
t 

-%15 -&10 - 0 ^ 8 -0.018 -0.048 

a ai CKg 1 0!2 2 
-0.053 -0.052 0XW8 -0.295 

Vt 0 0X#2 -0.132 -0.888 

Wt 0 -&077 -0.719 -Oj%l 
( / — 5)(_i 0.056 -0.049 Ox#6 - & 2 ^ 

Table 4.5. Restricted estimates of 1(0), 1(1) and 1(2) spaces 
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1921M1 1921M6 1921M11 1922M4 1922M9 1923M2 1923M7 1923M8 

Figure 4.1. Polynomial ( ) and CI(2,1) (—) cointegrating relations 
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Appendix A 

Data definitions for Chapter 2 

All data were downloaded from Datastream© (codes are in brackets) 

DeEnition: reciprocal of the dollar-sterhng spot exchange rate (USDOLLR) 

m 

DeEnition: UK MO monetary aggregate, seasonally adjusted (UKMO....B) 

m 

Definition: US Ml monetary aggregate, seasonally adjusted (USM1....B) 

y 

DeSnition: UK real GDP at market prices (1990=100), seasonally adjusted (UKGDP...D) 

y" 

Definition: US real GDP at market prices (1992=100), seasonally adjusted (USGDP...D) 

Definition: UK 3-month London Interbank Ofi'er Rate (LDNIB3M) 

Definition: US 3-month Treasury Bill (FRTBS3M) 


