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{TAzg geueraZ ezampZes /IcfS/CfT correapon-

((ence ancf o (fzrec^ propogaZ. A/"=^ za on ArancA, wAere 

we y;n(f o g%mp/e parame^nza^wn 0/ ^au^e (Aeor^ operators m Âe corregpon(fm^ grau-

%(?/ goZu ẑ'on. #ea;^ we conaiWer 6"?^ wAere a gwpers^mme^n'c mags (erm zs a(f(fe(f 

(o a /ow ener^?/ A/'=^ 5"}^. M̂ e (0 ma/re az'mzZar mferpre^a^zona Aere, 

^Aere z'a aome m Âe m^erpre^a^zon 0/ renorma/gza^zon. TAen a 

ge^up 0/ wrappeff 6raneg za /oun(f ^me a pure A/'=^ 5 " } ^ ^Aeori/ m Âe m/rarecf. 

TAe operator parame^enza^wn worAia weH m (A%g case. 7n ^Aeae jV^=;g (Aeorzea, we 

wae a g'aw^e ^Aeory reawẐ  /or (Ae coupZm^ ô (fecfuce ĉ %â rz6'a(%on 0/ D 6ranea m 

(Ae ^ranauerge apace. FmaZZi/ a non-aupera;/mme(Mc maaa ^erm â a(f(fe(Z (o pro(fuce a 

more QCD Z%A;e ^Aeor^. TAe acaZara are aZZ g'zuen a maaa wAzcA Zeat;ea pure g'Zue m Âe 

m/rarecf, ancf we aucceaa/uHy an ezpZzcẑ  ^raw^y (fwaZ (Aa( â conaza^en^. 
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C h a p t e r 1 

In t roduc t i on 

1.1 Pre l iminar i e s 

The AcfS'/CFT correspondence [4] has provided the hrst example of a fascinating du-

ality between a particular strongly coupled gauge theory and a weakly coupled gravity 

background (to be described). It has immediately been of interest to extend the class 

of such dualities to other gauge theories and gravity backgrounds to understand how 

the duality manifests itself. A number of techniques have been used to push forward 

these explorations; finite temperature may be included by compactification of the 

time direction [5, 6], relevant deformations can be included by switching on appro-

priate supergravity fields that act as sources in the supersymmetric gauge theories 

e.g. [57], and new D brane structures with different world volume theories and their 

near horizon geometries may be constructed [70, 71]. It is natural to want to make 

a deeper investigation of some of these dualities. In principle two theories which are 

dual should simply be reparametrizations of the same "solution". Thus if we know 

the complete solution to some field theory the corresponding gravity dual should 

be uniquely determined. Understanding how this encoding occurs in some simple 



theories will hopefully lead to new tools for constructing a wider class of dualities. 

The overview of this thesis is as follows. In this introductory chapter we give some 

motivation for studying the conjecture based on 't Hoofts work. Super-

gravity is then discussed together with Branes that will be used throughout this work. 

One is required to make held theory connections so next the details of various SYM 

theories are given. Then, a description of how the conjecture is realised together with 

a discussion of using D = 5 supergravity. We conclude with a section on how and 

why brane probing is a necessary procedure. 

Chapter 2 gives the hrst practical example of looking at a non-trivial vacuum struc-

ture of the gauge theory i.e. the vV=4 Super Yang Mills (SYM) on the Coulomb 

branch. We verily the D3- solution solves the field equations and check the amount of 

supersymmetry. Then the D = 5 supergravity solutions are discussed and their lift to 

D = 10. A brane probe is used to show the no-force property. We then show how the 

scalar vacuum expectation values (VEVS) are written in the harmonic functions and 

discuss the distribution of D3-branes. The specihc solution found is then generalized 

to the whole of the moduli space. 

Chapter 3 is in a similar spirit to the previous chapter. It should be thought of as 

complementary. In addition to that case, we are considering a supersymmetric mass 

term that has been added to the A/̂ =4 theory so that in the infra red, we are left with 

an W=2 theory. We also brane probe this D = 10 solution and deduce the gauge 

coupling from this. Additionally to the previous chapter, a gauge theory result that 

gives the gauge coupling in terms of the scalar VEVS is used to aid computing the 

distribution of D3-branes. In the ultraviolet one expects this to flow back to the 

case, but we find additional logarithmic renormalization. 

Chapter 4 is devoted to another A/"=2 case. We discuss the wrapping of branes from 

both the field theory and gravity point of view to get the desired theory. We then 



solve the D = 7 fermion variations of snpergravity variations and lift the solution to 

D = 10. Again this is brane probed and foDows the same procedure as the previous 

chapter. We identify the gauge theory operators and rewrite the metric in terms of 

these and deduce the distribution of D5-branes. 

Chapter 5 gives an example of a non-supersymmetric deformation. An equal mass 

is given to four of the scalars, whilst the two other scalars have the same tachyonic 

mass, twice that of the four scalars. In the infrared these decouple and we are left 

with a pure gauge theory. Numerical solutions are found in D = 5 supergravity. We 

construct an ansatz for the gravity fields that lifts the corresponding supersymmetry 

conditions in the minimal way. The field equations are then checked for consistency 

which is a nontrivial procedure. A brane probe is then performed and the probe 

potential deduced. 

Chapter 6 gives a summary of what we have found and outlooks on what it would 

be interesting to look at next. Finally there are three appendices that would have 

interrupted the Sow in the main text, but are interesting in themselves for some of 

the deeper issues only touched upon in the main body. 

1.1.1 Motivation 

As a way of motivating the correspondence, we shall outline two fundamen-

tal ideas due t o ' t Hooft [11, 12], that are answered somewhat by the correspondence; 

namely [13] and This discussion is based on [39]. 

As a motivation, we would like to be able to study Quantum Chromodynamics (QCD 

see [9]) and its implications such as how do quarks confine. Instead of working with 

5'(7(3) consider working with (we now have an extra parameter that might be 

useful for control). One can then try to express physical quantities as an expansion 

in (1/A^). Consider Fig. 1.1 It would be nice if the residual interactions between the 



Hadrons , , , . 
residual interactions^-^ L)(l/yv j 

Figure 1.1: Expected behaviour of hadronic residual interactions. 

hadrons behaved like ^ Then, one could separate the confinement problem 

from the residual hadronic interactions in the TV — o o limit. To this end let us 

consider a general field theory with degrees of freedom that transforms in the 

adjoint representation of (M is any type of symmetry index). In the large 

limit differs from [ / ( # ) by a (1/A^) factor and so are essentially the same (at 

the classical level). A general action will look like 

where gf is a coupling constant and /MArf, Q ^re structure constants determining 

the interactions. We could also consider terms that involve derivatives. Now we con-

sider doing a perturbation theory analysis of this theory using Feynman diagrams [9]. 

What is relevant for evaluating the Feynman Diagram ^-dependence is 

1. how gr appears in 5"[A], 

2. are in the adjoint representation. 



Let us introduce t h e ' t Hooft parameter A = such tha t 

N —> oo, 0, A = (1-2) 

If we rescale the fields by ^M/g' then the action Eqn. (1.1) becomes 

5'[A] = ^ y (1-3) 

This leads to the following properties when we evaluate a Feyimian diagram; 

1. a factor of (A/A^) for each propagator. 

2. a factor of (A^/A) for each vertex. 

3. a factor of — # for each loop of group indices. 

To evaluate the ^-dependence of the diagrams we make the following definitions; 

e y = number of vertices 

# = number of propagators 

# F = number of group index loops 

A Feynman diagram then contains the factor which tells us which diagrams 

are dominant. Since the adjoint representation can be viewed as a direct product of 

fundamental and anti-fundamental, a Feynman diagram becomes a az'mp/ez with the 

identifications 

# F = number of faces 

# -G = number of edges 



# y = number of vertices 

Recalling Euler's Theorem [10] that 

y - ^ + F = 2 - 2 j 7 (1.4) 

where ^ is the number of handles of the surface, one can see that a perturbative 

expansion is organized into a sum over Consider a vacuum amphtude (a 

diagram with no external legs); it will look like 

CO 

A(Ar,A)= (1.5) 
g=o 

We see for N —oo, the amplitude is given by a pZanar diagram. 

This is suggestive of perturbative string theory, in which amplitudes are given by a 

sum over two dimensional topologies [16, 18, 53]. The proposal o f ' t Hooft was that 

a large gauge theory should admit a string description [11]. The goes 

some way to realizing this. 

We should now mention the second idea of ' t Hooft [12] that is instrumental in the cor-

respondence. From the Bekenstein formula for black hole entropy = A/4(9Ar, 

where A is the area of the boundary of the region, and is Newton's gravitational 

constant. One hnds that it is possible to violate [43] the second law of thermodynam-

ics. This relation implies that the degrees of freedom in the region enclosed by the area 

grows as the area and not the uoZwme. One is led to a "Ao/og'rapAzc" principle [14, 15] 

which demands that for a quantum theory of gravity all the physics in the volume is to 

be described by degrees of freedom on the boundary. To satisfy the Bekenstein bound, 

there must be less than one degree of freedom per Planck area [12, 39, 43]. This then 

is the second feature that is incorporated into the AcfS'/CFT correspondence. 



1.1.2 String Theory: Facts and Folklore 

Having given a clear set of motivations for studying the correspondence, 

let us now give a lightning discourse of string theory (see [16, 18, 53]). The starting 

point is to write down an action. The Nambu-Goto action is the natural one since 

it is simply the worldvolume of the string worldsheet. However this is difEcult to 

quantize, and the classically equivalent Polyakov action 

5'[x, V] = ^ / (1.6) 

is preferred. A commentary on this action is as follows. The are coordinates in 

the spacetime (a D-dimensional target space which are mappings from from the 

string worldsheet with coordinates cr'' = ((7^,cr^). The metric on the worldsheet has 

been hxed by dilfeomorphism and Weyl invariance to the conformal gauge 

This then is made supersymmetric [40] by adding in the second term to have an 

equal number of bosons and fermions. The are two dimensional Weyl-Majoranna 

spinors, and the are 2d gamma matrices satisfying the Clifford algebra. Depending 

on what boundary conditions we put on these fields will determine whether the strings 

are open or closed. In particular closed ones must satisfy a periodicity condition 

cr̂  ^ cr̂  + 27r. The full action has other terms in it (such as the antisymmetric 

tensor and the 2d Ricci scalar), but these are not important for the present 

discussion [16, 18, 53]. The tension of the string is given by T — l/27ra' and sets the 

energy scale for the problem. If this is going to be a quantum theory of gravity, then 

is must be the Planck scale. 

Upon quantization one hnds a different Hilbert space for the open and closed strings. 

The closed string sector contains the graviton and leads to a low energy supergravity 

theory, whilst the open strings contain a gauge field that is described at low energies 

by Super Yang Mills (SYM) theory. Depending on the boundary conditions that 



States Fields 
Bosons (NS-NS) 1 ® 28 © 35 

Bosons (R-R) 1 8 28 @ 35 Ao, Ag, A4 

Fermions (NS-R) 8a e 56, 
Fermions (R-NS) 8, @ 56a 

Table 1.1: This shows the massless bosonic and fermionic content of the IIB string 
theory. 

are imposed on the Fermi fields (periodic or anti-periodic), one obtains the Ramond 

(R) sector or the Neven-Schwarz (NS) sectors; the Ramond boundary condition gives 

fermionic states in spacetime. For closed string theory the Hilbert space of states 

consists of pairings of the left and right moving modes that gives four distinct sectors 

# NS-NS and R-R are states. 

e NS-R and R-NS are states. 

For consistent quantization, we require the spacetime dimension D = 10. The field 

theory space consists of a finite number of massless states and an infinite number of 

heavy states with a scale set by a ' . At this stage there is a still a problem due to a 

tachyon in the spectrum which the GSO projection solves and also ensures that we 

now have gpaceh'me supersymmetry as well. By choosing the R-groundstates of left 

and right movers to have the same spacetime chirality, one obtains the IIB closed 

string theory which we shall be using throughout. It has supersymmetry. The 

massless modes are then given by the covering group of the 5'0(1,9) little group 

namely 5'pm(8) which are (8^G8c) x (8i,@8c). These states and their corresponding 

fields are given in Table 1.1. For the open string, the left and right moving modes 

are reflected into one another to produce standing waves. The massless states then 

are @ 8c), and has the corresponding SYM fields , '^)-

This concludes what we want to know from string theory, the essential point being 



E — Mr, 

E = A 

E = 0 

Figure 1.2: The heavy modes are integrated out, above the cutoif A. 

that the closed IIB string theory has a low energy gravity description, whilst the open 

strings admit a SYM theory. 

1.2 Supe r gravi ty and Branes 

1.2.1 Low Energy Effective Theory 

In this thesis we will be using string theory at low energies, which has its incarnation 

as supergravity. By this we mean the following; we know from the consistency of the 

superstring theory [16, 19] that we have a finite number of massless states (which 

includes the graviton, labeled by and and infinite number of massive states 

starting at the Planck mass (labeled by From our knowledge of effective field 

theory [9], we can say the following; suppose there exists a classical action 

Then we can obtain a low energy effective action by integrating out the massive 

modes [17, 20] shown in Fig. 1.2 This is schematically given by 

[(f<;6jf]e (1.7) 



and should be much easier to work with than the full theory. Note that if we had 

introduced a cutoff A slightly below the Planck mass, one would see there to be 

infinitely many terms ^ in the action. However, the immediate stumbling block which 

occurs is that is not known! How then can a low energy effective action be 

obtained? Perturbative string amplitudes can be calculated for various processes [16, 

18, 53]; if we restrict our attention to the purely massless sector, then the amplitudes 

= (1-8) 

describe the interactions between different massless particles (the z and j index the 

massless helds). One can then try to write down a classical action of fields which repro-

duce the amplitudes at the tree level. In particular, in the extreme low energy limit, 

the principal terms can be deduced by the symmetry of the system; gauge invariance 

and local supersymmetry [17, 19]; the high amount of supersymmetry completely de-

termines the action. Following this prescription, the IIA and IIB supergravities were 

deduced (see bibliography in [17]). The D = 11 supergravity [22] obviously couldn't 

be obtained from these amplitudes, but by a reverse argument, suggests a yet more 

fundamental theory (M-theory) [21] exists of which D = 11 supergravity is its low 

energy limit. From there we could pass to HA supergravity by compactifying on a 

circle [17]. At this stage, we would like to be able to write down supergravity actions 

which describe this low energy physics. 

1.2.2 Supergravity Actions and Equat ions of iVlotion 

Let us start to outline how to construct these actions from first principles. This is 

obviously a highly detailed process (for example, the precise form of the spin connec-

tion and four-Fermi terms etc, see [17, 23, 24]) but we can get quite far by 'building' 

thank Stefano Arnone for clarifying a number of points on this. 

10 



upwards. Having got the idea of a snpergravity theory f rom the string interactions 

in D = 10, lets first address the D = 11 action. Obviously we have the graviton Held 

This is the start of the local gauge invariance. Next, for supersymmetry we 

need to include fermions and have to be able to count spinors. In D-dimensions, the 

number of Dirac components is in odd dimensions, and 2^ /̂̂  in even dimen-

sions (for an excellent complete treatment of spinors see [25]). These are not minimal, 

but are subject to Weyl and Majorana constraints in particular dimensions. These 

minimal spinors are used in the construction of the fermionic part of the action. So 

we know a minimal spinor in D = 11 has 32 real components In the case of the 

string supergravities, we know the degrees of freedom. We have to determine this 

for the D = 11 case. The 8pin-3/2 gravitino has 128 physical degrees of freedom, 

whilst the graviton has 44; 84 bosonic degrees of freedom are required, and this is 

incorporated in a three form Ag. We can now proceed to write down the bosonic part 

of the action 

'S'li = 2^2 y — 21^1^] + 'S'cs, (1-9) 

where = 87r(9Ar(ii) and is the D = 11 Newton constant. The last term 

(known as the Chern-Simons term) is a consequence of making the action supersym-

metric; the other two terms correspond obviously to choosing a canonical form for the 

action. There is also a corresponding fermion action involving the Rarita-Schwinger 

term and a spin connection that has torsion [17]. 

Similarly, one can write down the supergravity actions in D = 10; In fact if the above 

^One haa to discuss consistency with D = 4. Since a supersymmetry transformation changes 
the spin of the particle by 1/2, we want all the helicity states to be apm < 2 for consistency 
of intera^ctions. This means that the maximum amount of supersymmetry (the number 
of supersymmetry generators) is jV = 8. Taking the minimal spinor in D — 4, having four real 
components, gives us 32 real spinors. If we were viewing the D = 4 theory as descended from higher 
dimensions, the constraint on the number of spinor components means that D = 11 is inevitably 
found to be the highest dimension possible. 

11 



supergravity theory is compactified on 5"̂ , we get precisely the supergravity theory 

obtained from the tree level IIA string theory. This is the IIA supergravity; it has 

A/'=2 supersymmetry and is non-chiral. In contrast, the IIB supergravity [27, 28] 

1 f n^, —9* r . . / n \ 9 1 
SUB = + 4(8$) ' -

J-/GilFil'+ \Fsf + 

-|-Cros8 Terms-l-Fermions, (1-10) 

(where ^^d GAr(io) is the D = 10 Newton constant) is chiral i.e. both 

spinors are of the same chirality. This supergravity cannot be derived from the above 

compactihcation, it is T-dual to the IIA theory (see [18, 19, 53] for details on T-

duality). This action contains the held strengths of the fields in Table 1.1. The R-R 

sectors are different in the two theories and they both have the same NS-NS sectors 

(which is the first line in the above). It is worth commenting on a technical issue 

that occurs for the 5-form, which is perhaps the most interesting case. In this case 

the above action is not strictly correct because the S-form is self dual in Minkowski 

signature (see Eqn. (1.23) for a definition of the Hodge star) 

Fs = (1.11) 

which halves the degrees of freedom to agree with that of the string theory. This 

is inconsistent with the above covariant action, so the proviso is to write the action 

as usual and impose self-duality at the level of the field equations. See [26] for a 

formulation where writing a covariant action is pursued. 

In the following chapters we will consider situations where only one of the forms 

is non-zero, so we will generally be considering actions of the form (where = 
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—(M — 5)/2) [35] 

which can be seen to be in the Einstein frame (in Eqn. 1.10, the action is in the 

string frame, where a factor of the dilaton mnltipHes the Ricci scalar. The Einstein 

frame is where this term is just the standard Einstein-Hilbert piece i.e. just the Ricci 

scalar. To put the action into this frame one re-scales the string frame metric by 

The important point is that it is a relatively 

simple system. This will give us a set of held equations 

(1.14) 

= 0, (1.15) 

together with the Bianchi identity 

= 0. (1.16) 

We will be interested in finding brane solutions of this system which are simple 

generalizations of the familiar D = 4 extremal Reissner-Nordstrom black holes. 

1.2.3 Branes in Supergravity 

A Dp-brane is a BPS object that preserves one-half of the spacetime supersymmetries 

and has an open string ending on it. It carries charge with respect to the (p-t- l)-form 

gauge potential from the R-R sector of type II superstring theory; their existence is 

required by non-perturbative string dualities [45]. When we consider TV coincident 
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branes the gauge group is enhanced from a (7(1) — g & ^ g G theory on the world 

volume, rejecting the possibilities of how open strings can begin and end on the 

stack of branes. There are two aspects to looking at branes in string theory that we 

want to focus on here. Firstly how are these accounted for in a supergravity solution, 

their dynamics and coupling. Parallel to this, we want to know how branes enter into 

string theory. Let us Arst draw on gravitational aspects [30, 31, 32]. 

Unless otherwise stated, the brane solutions that are considered are Aat translation-

invariant static metric ansatze of the form 

Next we use the fact that the p-brane (where p refers to the number of spatial di-

mensions of the brane) is charged with respect to the R-R gauge potential this 

means the charge density Qy of the p-brane is given by following covariant integral 

gd-i 

where is the dimension of the transverse space and <i-)-p-t-l = 10. In a brane 

solution which is extremal (this is when the horizon is at the origin), this charge is 

what will enter into the metric ansatz once it has been solved and so will give a scale 

to the problem. The above is the electric charge of the brane. A brane can also 

have magnetic charge (this is based on [29]'s account of electric and magnetic brane 

charges). For p-branes we would simply have # times this basic charge. 

In general, a p-brane couples to a p 4- 1-form [29] with (in the language of differential 

forms) 

^ (1-19) 
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as the gauge transformation and 

= c(Ap, (1.20) 

from which the Bianchi identity 

= 0 (1.21) 

follows immediately. In the absence of other interactions, the equation of motion for 

the p + 1-form potential is 

^io-(p+2) =* (1.22) 

where the source J is a 1-form. Here we have introduced the Hodge dual operation 

* which converts a p + 1-form into a 10 — (p 4- l)-form, e.g. 

/* T\MiM2---MiQ_ci — ^ MiM2---Mio J /1 
I ^Mio_d+i -Mio, 1,1./Jyl 

where -^lo 10-dimensional alternating symbol with 6°^ = 1. 

Just as the usual Maxwell's equations imply the presence of an "electric" charge, i.e. 

a p-brane but no "magnetic" charge, we can choose to restore the duality symmetry 

by introducing a (D — — 3)-brane. We must then modify Eqn.( 1.20) to 

fp+2 = c(^p+l+^p+2, (1-24) 

so that the Bianchi identity becomes 

((-^+2 — ^p+3, (1.25) 

with 

vYp+3 = c(Wp_|_2- (1.26) 
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may be singular 

^123 ..p+3 = (1-27) 

or may be smeared out so as to be regular at the origin. We then have 

Qp = y *^io-(p+2) = y Vio_(p+i), (1.28) 
_glO-(p+2) ;^lo-(p+l) 

'^io-(p+2) = y f^+2 = y ^p+3. (1.29) 
SP+z MP+s 

Lets now give some discussion of the fundamental dynamics of branes, with the goal of 

writing down the Dirac-Born-Infeld (DBI) action [18, 19, 53, 54]. It is natural to use 

the worldvolume of the brane in a similar fashion to the string action. Generalizing 

the Nambu-Goto action to p spatial dimensions gives an action proportional to the 

world volume 

5"̂  = -2 ;y^ ( f+^^y-de t [P (GMAr) ] 

- det j 

Here, are the coordinates on the brane with world volume ly , are the ten 

dimensional coordinates of the spacetime and P(GMN) = is the pullback of the 

metric. They in fact define an embedding into the spacetime, As 

already mentioned, it is an electrically charged object so the Wess-Zumino (WZ) term 

needs to be added to describe the coupling 

6"̂  = -Tp / (fP+:^y-det[(G,&)] + 0p / A^+i. (1.31) 

This is quite close to the form we want, but we must recall a couple of string theory 

facts. First, we know that open strings end on a D-brane and therefore the low energy 

description is a (7(1) gauge held We also know from perturbative string theory 
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that this low energy description is a (7(1) gauge theory so a term must be added to 

reproduce the gauge theory kinetic term. To fix it uniquely, one can use an argument 

based on T-duality invariance [18, 53] of the action to determine how it should be 

included. We should change the pullback to Gab —̂  Gag, + to achieve this. 

There is a further factor of the dilaton to be included since ^ occurs in the 

open string tree level action [18, 53] and this must coincide with the classical action. 

Finally we have for the bosonic part of the action [37] 

Sp = —Tp [ ^"J — det[(Ga(, + Fab)'\ + Qp [ ^p+i (1.32) 

Jw JW 

which has all the features required (in addition there can also be a pullback term 

coming from the antisymmetric tensor in string theory, but we shall omit this since it 

is zero for the examples we look at). It possesses various symmetries; gauge invariance 

and diffeomorphism invariance on the world sheet. Later we will be required to do 

some gauge fixing to render a Super Yang Mills (SYM) interpretation possible. 

1.2.4 D branes and Open Strings 

To answer the second aspect raised earlier about branes in string theory, we make the 

following definition. A Dp-brane is a (p + l)-dimensional hypersurface where open 

string ends are confined, that carries R-R charge Qp. The open string ends satisfy 

a boundary condition [18, 19, 53]. Its low energy description is a SYM 

theory Fig. 1.3. In the last section we saw charges for the Dp-branes entering into the 

discussion. A string theory input has to be made to relate this to quantities in the 

string theory, so that the previous gravity solutions mean something in string theory 

(we have to fix the energy scale of the gravity solution in terms of the string scale 

a'). We now collect a number of facts. 

Polchinksi's [36] calculation gives a relation between the Dp-brane charge and its 
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Open String 

The hypei-suiface 

Figure 1.3: An open string ends on a Dp-brane. 

tension, 

Qp = 2j,yi67rGAr(io) 

and these are respectively given by a string theory calculation as 

27r 

167r(? N ( 1 0 ) 

(27rZ,)P+i^, 

(27rZ,)^^^. 

(1.33) 

(1.34) 

(1.35) 

where is the string coupling constant. Also note the following dehnitions which are 

used throughout 

/? = a 

167rGio = 

(1.36) 

(1.37) 

The hnal specification in the scale is to just take account of the number of branes 
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which implies 

1.3 G a u g e T h e o r y 

In this section, we would like to make clear a set of gauge theory basics that will 

show up, not only in the construction of the correspondence, but also in 

the subsequent investigations of other proposed dual solutions. Principally in this 

section, we would like to describe some of the properties of both W" = 4 and A/" = 2 

(SYM) gauge theory. We shall discuss held content, symmetries, operators, and ways 

the action can be written. This is based on [38, 39, 40, 43]. 

1.3.1 y\r = 4 super Yang-Mills theory 

Non-supersymmetric 1+3 dimensional pure Yang-Mills theory is scale invariant, but 

it has ^ 0 (where = c(g (̂A)/(̂ A [9], with g'(A) the gauge coupling and A the 

renormalization group scale) at the quantum level [38, 41]. An interesting question 

is whether there are versions of this gauge theory that retain scale invariance even at 

the quantum level. The A/" = 4 SYM is known to have this property, so we shall now 

give some of the details that go into giving this remarkable result. 

A natural starting point is to ask what Aelds go into making this SYM theory. The 

degrees of freedom of the theory are as follows: 

i) A vector held in the adjoint representation of a gauged 6'C/(A^) which is a singlet 

under the global symmetry 5'C)(6). 

ii) Six real scalars in the 6 vector representation of 5'0(6), which transform in the 
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adjoint representation of 6'[/(7V). 

iii) Four Weyl fermions transforming in the adjoint of and the 4 spinor 

representation of 5'0(6) (corresponding to the fundamental representation of 6'[/(4), 

the covering group of 5'0(6)). 

Notice that the bosonic and fermionic states balance on-shell. Next we should detail 

the symmetries of this gauge theory. It contains 16 supercharges, which under the 

Lorentz group transform as four spinors ^ — 1,2,3,4, where Qa, are 

Weyl spinors. This gives us — 4 supersymmetry in Z) = 4. An 6'C/(4) rotation 

of the four spinors is an automorphism of the supersymmetry algebra. As a result, 

the Lagrangian is invariant under (4) global trajisformations (R-symmetry) on the 

fermions, whilst the scalars transform under 5'0(6). 

The Lagrangian of the theory can be derived by dimensional reduction of D = 10 

A/" = 1 super Yang-Mills theory: 

- ^ T r [ A r ^ D M A ] (1.39) 

Here A is a Majorana-Weyl 16 spinor of 6'0(1,9). Upon reduction, we have the 

decomposition 

5'0(1,9) -)^;90(1,3) x ^ 0 ( 6 ) 

under which 

16 = (2,4) @ (2,4) 

The ten-dimensional gauge held gives rise to a 4d gauge field plus six scalar fields: 

^ i ) , M = ()U, z) , 

/̂  = 0,1,2,3 , % = 4,..., 9 . 
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The dimensionally reduced Lagrangian is then obtained as usual by assuming that 

fields depend only on Performing this splitting of indices the Lagrangian reduces 

to 

r = + - ^ r r [ A r ' ' D ^ A + a r , [X, ,AA 
^ / 5YM ^ / 

(1.40) 

It also has superconformal invariance [38]. This means that the Poincare group is 

enlarged to the conformal group ( we include dilatations and special conformal trans-

formations) which in turn implies that the supersymmetry algebra is enlarged to 

account for these new generators. Thus we have the super-conformal group. 

This action can also be written in an A/'—1 formalism [42], with three chiral superfields 

and a vector superheld y as 

— ^gauge 4" ̂ scalar 

2 = 1 

- y + ^ . c . (1.41) 

The T function occurring in here is a combination of the gauge coupling and the theta 

angle 

7 = 2 - ^ + ; ^ . (1-42) 
27r 

To analyze the dynamical behavior of A/"=4 theory, we look at the potential energy 

term, 

y ( X ) = ; ^ ^ r r [ x % x ^ y (1.43) 

M i^j 

In view of the positive definite behaviour of the Cartan - Killing form on the compact 

gauge algebra 5'[/(A^), each term in the sum is positive or zero. When the full 

potential is zero, a minimum is thus automatically attained corresponding to a A/ —4 
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supersymmetric ground state. In turn, any vV'=4 supersymmetric ground state is of 

this form, 

= = (1.44) 

There are two classes of solutions to this equation, 

# The gwpercon/ormaZ pAase, for which = 0 for all z = 1, - - - ,6. The gauge 

algebra is unbroken. The superconformal symmetry 5'(7(2, 2|4) is also unbroken. 

The physical states and operators are gauge invariant (i.e. 5'[/(7V)-singlet8) and 

transform under unitary representations of 5'[/(2, 2|4). 

# The 6roA;en or pAage (the Coulomb branch), where 

(%') ^ 0 for at least one z. The detailed dynamics will depend upon the degree 

of residual symmetry. Generically, 5'f/(A^) —(7(1)^"^, in which case the low 

energy behavior is that of # — 1 copies of A^=4 (7(1) theory. Superconformal 

symmetry is spontaneously broken since the non-zero vacuum expectation value 

(%') sets a scale. 

One usually speaks of branches in held theories; by having non-zero vacuum expecta-

tion values (VEVS), one can have a Higgs branch (where all the gauge bosons become 

massive) whilst as in this case, if some (7(1) subgroups remain massless we are on 

the Coulomb branch. The space vW, where y = 0 for this theory is simply 

VW = 

Conformal invariance persists even to the quantum level (/^(^r) = 0 to all orders). An 

outline of the 1-loop calculation is as follows; we know how to compute the QCD 

function using dimensional regularization [9]. We also know that to obtain the = 4 

Lagrangian we just perform a dimensional reduction of the D = 10 Lagrangian. This 

fact lets us do the calculation simply, because we can ^'embed" the calculation in 

D = 10. Pretend we are doing QCD in D = 10 to evaluate the divergent pieces 
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and then make the split to obtain the scalar contribution. For example, suppose we 

evaluate the self energy of the gauge field. We can obtain the scalar loop contribution 

by taking the Feynman diagram of a gluon loop, and then replacing the vector indices 

with 6'0(6) indices. This amounts to replacing the spacetime metric with the 190(6) 

metric, and dropping any factors of momentum with vector indices. By 

this method we can get all the additional diagrams contributing with relative ease. In 

addition, the fermion contribution has to be adjusted to ensure we are working with 

the right type of spinors i.e. a degree of freedom count, but once this is done the 

function at one loop is found to vanish 

1.3.2 Coiiformal group 

The conformal group is the set of transformations that preserve the metric up to 

a position dependent scale factor, This group incorporates 

Poincare transformations and scale transformations. The generators are the usual 

Lorentz generators the Poincare translation operators and in addition gen-

erators D and The conformal group is isomorphic to 5'0((Z, 2), with the identifi-

cation 

, 

The conformal (scaling) dimension A of an operator 0(a;) is dictated by the trans-

formation rule under scaling of coordinates: 

D : , 0 ( z ) -4̂  0%$) = A^O(Aa;) 

thank Nick Evans for suggesting calculating this /^-function some time ago, and being reminded 
of it as one of the problems in [38] 
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To combine the conformal algebra with the supersymmetry algebra, additional fermionic 

generators Q must be included, which arise from Q] ^ Q. As a result, the num-

ber of fermionic generators in the superconformal algebra is doubled with respect to 

the non-conformal case. For example, for a field theory with particles of spin < 1, 

the maximal number of supercharges of the supersymmetry algebra is 16, and the 

maximal number of fermionic generators in a superconformal field theory is 32. All 

structure relations are rather straightforward, except the relations between the su-

percharges, which we now spell out. To organize the structure relations, it is helpful 

to make use of a natural grading of the algebra given by the scaling dimension of the 

generators. 

[D] = = IT-"] = 0 [P"] = +1 [ / I j = - 1 

[0] — 4-1/2 [5"] = —1/2 (1-45) 

Thus, we have 

1 
+ + (1-46) 

It is now appropriate to make some definitions of the types of operators that one 

encounters in classifying representations of the superconformal algebra 

Definition 1 A Con/orma/ f rzmari/ Operator zg operator 

O] = 0, O ^ 0. 

Definition 2 Operator CAzraZfMmari/ 
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dzmenswn operator [5", O] — 0, O ^ 0. 

Note that the conformal primary operators are defined by a weaker condition. 

It is instructive to have explicit forms for the snperconformal primary operators in 

= 4 SYM. The construction is most easily carried out by iising the fact that a 

snperconformal primary operator is not the Q-commntator of another operator. Thus, 

a key ingredient in the construction is the Q transforms of the canonical fields. We 

shall need these here only schematically, 

{0 , A} = F + + [%,%] [Q,%] = A 

{0,A} = D X [ 0 , F ] ^ D A (1.47) 

A local polynomial operator containing any of the elements on the right hand side of 

the above structure relations cannot be primary. As a result, chiral primary operators 

can involve neither the gauginos A nor the gauge field strengths F""". Being thus only 

functions of the scalars they caa involve neither derivatives nor commutators of %. 

As a result, superconformal primary operators are gauge invariant scalars involving 

only % in a symmetrized way. 

The simplest are the single trace operators, which are of the form 

(1.48) 

where j = 1 , ' ' - ,M stand for the 5'0(6)B fundamental representation indices. 

Here, "Tr" denotes the symmetrized trace over the gauge algebra and aa a result of 

this operation, the above operator is totally symmetric in the 5'0(6)A-indices In 

general, the above operators transform under a reducible representation (namely the 

symmetrized product of n fundamentals) and irreducible operators may be obtained 

by isolating the traces over 5'0(6)B indices. Since = 0, the simplest operators 
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are 

^ Konishi multiplet 
i 

^ supergravity multiplet (1-49) 

where aTr stands for the traceless part only. 

More complicated are the muitjpje trace operatofg, which are obtained as products 

of single trace operators. Upon taking the tensor product of the individual totally 

symmetric representations, we may now also encounter (partially) anti-symmetrized 

representations of 5'0(6)B. There is a one-to-one correspondence between chiral pri-

mary operators and unitary superconformal multiplets, and so all state and operator 

multiplets may be labeled in terms of the superconformal chiral primary operators. 

The unitary representations of the superconformal algebra 6'[/(2,2|4) may be labeled 

by the quantum numbers of the bosonic subgroup, listed below, 

^0(1 ,3) X ̂ 0(1 ,1) x^(7(4)B 

(5+,5_) A [ri,r2,r3] (1.50) 

here are positive or zero half integers, A is the positive or zero dimension and 

[ri,r2,r3] are the Dynkin labels of the representations of 5'[/(4)j%. 

Two and three-point correlation functions of primary fields are entirely determined 

by conformal symmetry. For example, for an operator O with dimension A one finds 

(0(a;)0(a;')) = 
X — 
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1.3.3 A/'=2 Super Yang-Mills Theory 

We will be interested in looking at the duals of V\/̂ =2 SYM. Just as for the 

theory we can enumerate and classify all the fields in a similar manner. This system^ 

has 8 supercharges. The global R-symmetry group is now x so the 

fields are classified as follows: 

i) A vector field in the adjoint representation of a gauged which is a singlet 

under X 

ii) A complex scalar A" in the fundamental representation of which transform 

in the adjoint representation of 5'(7(A^). 

iii) 2 Weyl fermions transforming in the adjoint of and the 2 spinor rep-

resentation of 5'(7(2)j%. 

Their degrees of freedom (bosonic and fermionic) match on shell. We can assemble 

these into a vector superfield y and a single chiral superheld $. The Lagrangian 

looks like in the A/'=l superspace formalism 

= ^ I m y + y ^2.51) 

There is a similar moduli space here as for the W=4 case given by the potential energy 

vanishing. Since we have two scalars the moduli space is simply vW = C. Note 

that there are two different versions of this theory. There is the standard A^=2 SYM 

which is as above, and the A/" = 2* theory were a term + $2) added to the 

^^=4 theory. This then flows to an infrared A/̂ =2 theory at low energy, and we also 

recover the standard VV"=2 theory as m ^ 00. One should be careful to make this 

27 



distinction. The size of the 't Hooft coupling haa important consequences for the 

low energy theory. When it is large, the strong interaction scale at which we get the 

low energy theory is comparable to whereas when the coupling is small there is 

logarithmic running and the strong scale is much smaller than m. This means that 

the two theories are not equivalent. 

1.4 S t a t e m e n t of t h e AdS/CFT C o r r e s p o n d e n c e 

Having collected some background thoughts, we can now discuss the cor-

respondence. In this section it will be essential to discuss some features that go into 

the correspondence and what makes it useful. This is based on [43, 44, 38]. 

As we have seen in Section(1.2.3), Dp-branes are (p + l)-dimensional hypersurfaces 

where open strings can end. They have a tension that behaves like Tj, ^ l/g's- There 

are two descriptions of this system that show different facets of it. 

# The massless spectrum of the open strings living on the world-volume is a (7(1) 

gauge theory in (p -|- l)-dimensions. 

# Dp-branes can be considered as embeddings of p-brane solutions into supergrav-

ities, (i.e. string theory) as they carry the same RR-charges. 

Lets consider type IIB string theory in flat D = 10 Minkowski space with a stack 

of parallel D3-branes that are very close to each other. As remarked earlier, if 

we consider the system at low energies (<^ 1/L) only massless string states can be 

excited and an effective Lagrangian description can be given in terms of two types of 

excitations: 

# Massless closed string states living in the bulk — t y p e IIB Supergravity. 
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# Massless open string states —VV^=4, [ / ( # ) SYM. 

With this we can write down a schematic action ^ 

5'[ey/ec^%^;e] = 5'[6'u/A;] + + 5'[%n^erGC^20»]. (1.53) 

The bulk action is the type IIB snpergravity + higher order derivatives, whilst the 

brane action is the SYM + higher order corrections. The massive modes can be 

figuratively thought of as having been integrated out. Consider a graviton Suctuation 

that we put into the bulk action to get schematically 

^ - y + KA(aA)' + ...]. (1.54) 

For the brane action one has in similar fashion 

6'[6rG)2e] = = 4 5'yM] + higher derivative corrections x a'". (1.55) 

Now take the low energy limit 0 (so that a ' —0, K —0) . This is done whilst 

keeping all the dimensionless parameters fixed, so that all higher order terms and 

interactions vanish. This decouples the system into two; free gravity in the bulk 

and 1 + 3 SYM living on the brane. Now let us consider this same system in the 

supergravity description. Firstly, write down the extremal D3 solution (where the 

horizon is at r = 0) 

+ + (1.56) 

H = 1 + ^ , (1.57) 
J.4 

^4 = (1.58) 

'̂ In reality the metricenters the brane action aa couplings, so the separation of the action is 
heuristic. 
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where 

(1.59) 

(1-60) 

The number of branes is TV G Z and is subject to a Dirac quantization condition. This 

expression then gives the length scale in terms of the RR charge; going further we 

can use the the relation Eqn. (1.33) to put in the string content giving Eqn. (1.59). 

Since the SYM gauge coupling is identified with the string coupling g', = 

we see that the length scale is given in terms of t h e ' t Hooft parameter A = 

Note the choice of asymptotics in the solution - for r ;$> Z, the solution returns to 

Sat D = 10 spacetime. We also see there is a large red-shift factor for an observer 

at infinity, due to the Goo component having a non-trivial r-dependence. Let Eo be 

the energy of an object measured by an observer at r = ro and be the energy of 

an object measured by an observer at infinity. Then the red-shift factor between the 

two energies is 

- p ^ o - ^ ( & L ) . (1.61) 

This implies that an excitation with an arbitrary energy at r = 0 will look massless 

for an observer at infinity. Therefore, at low energies there are regions of exci-

tations; massless excitations in the asymptotically 8at space which are described by 

supergravity, and excitations near the horizon. Any excitation close to the horizon 

will look like a low energy 8uctuation to an outside observer because of this red-shift 

factor. The low energy Suctuations on the D3-branes are determined by the SYM 

theory. We now want to take the same low energy limit (/^ -4̂  0) in the metric in 

such a way as to retain some interesting structure. One can keep 

— = « (1.62) 

fixed so that r — 0 and ^ The coordinate is kept fixed because we 
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TAroot 7 

x 5'̂  

Figure 1.4: The diEerent asymptotic's of the D3 brane solution. 

want to keep Axed the energies of the objects in the throat region —hxed which 

implies that ^oo is Anite. Putting this limit into the metric gives 

I , r2^n2 
12 

Tjdx'^ -f- ——dv -j" L (1.63) 

which is precisely AcZS's x 5"̂  (both with a length scale _L)! See Appendix A.l for a 

discussion of various aspects of spaces. If we put this in the if-coordinates we 

have 
, ,272 ^ J 2 

+ \/47rA/g(—^ 
\/47rA u-

(1.64) 

It is also worthwhile to mention the absorption cross-section [44] for a scalar particle. 

When it comes from infinity, it is found that cr and hence the cross-section 

vanishes as we go to lower and lower energies. If one examines the potential energy 

of a particle in this "near horizon" limit, the potential barrier becomes very high so 

that the modes inside the horizon can't get out. This implies that at low energies 

the supergravity in the bulk and the Suctuations near the horizon decouple from one 

another. 

The above discussion makes it clear what decouples from what in the the two different 
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descriptions in Fig 1.4. We are led to conclude that in the string description 

(SUPERGRAVITY in the BULK) + (Ar=4, SYM) 

is exactly equivalent to the supergravity description 

(SUPERGRAVITY in the BULK)+(Excitations near x 5" )̂. 

Therefore subtracting out the wordy expressions above we are led to Maldacena's 

conjecture [4] (the AcfS'/CFT correspondence) that 

(Ar=4, ^[/(TV) SYM) = (Type IIB String Theory on AdS's x 5" )̂. 

This statement immediately implies a number of features. The gravity theory here is 

5-dimensional and is being described in terms of a boundary 4-dimensional field theory 

- it is a holographic description (however a cutoff should be introduced in the fifth 

direction [46] in order for the action to remain finite). The gauge theory is defined 

non-perturbatively, so this can be thought of as a non-perturbative formulation of 

M-theory. We could also have chosen to look at M2 and M5 branes in D — 11 

supergravity in which case we would have found spaces of the form x 5"̂  and 

X 5"̂ . We could also replace the 5"̂  with a compact positive curvature Einstein 

space the effect of doing this would be to reduce the amount of supersymmetry 

preserved. The perturbative description of the SYM will be reliable when ^ 

whilst the supergravity description is valid when 1. This is because for 

supergravity to be valid, the length scale must satisfy so that we can't resolve 

the string length. This means necessarily we are working at la rge ' t Hooft couphng. 

These two different regions of couplings do not intersect, so there is no apparent 

contradiction. It is a strong/weak coupling duality and so a direct comparison of 

correlation functions is not possible, since one can't use perturbation theory at strong 
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coupling. In addition since the string theory is perturbatively defined, it would not be 

possible to prove this conjecture in the manner of a standard mathematical theorem. 

What is important, as evidence in support of the conjecture is that the symmetries 

match on both sides 

1. Both the type IIB and the SYM have an Z) duality group. 

2. The number of supersymmetries (32 real spinor parameters). The D3-solution 

has 16, as the brane halves the supersymmetry. This is enhanced to 32 as r 0 

as a property of the space, and the gauge theory acquires 16 more which 

are the superconformal charges, 

3. The 5'0(6) isometry of the 5"̂  corresponds to the 5'(7(4) R-symmetry of the 

SYM. 

4. The 5'0(2,4) isometry of the corresponds to the conformal symmetry 

group of the SYM, ^0(2 ,4) ^ ^(7(2,2)/Z2 

The conjecture can be interpreted at different levels of strength. At the 

weakest level one would say that the gravity theory is equivalent to SYM for large A .̂ 

A slightly stronger version of this would be to say that it is valid for 

but > oo limit holding as well. The strongest form says that the two theories are 

exactly equivalent for all values of g's and (see Table 1.2). 

At this point in setting up the correspondence we have a proposal for a duality 

symmetry, but lack a specification of how to compute quantities in this picture. This 

was made precise in [5, 8], where an identification between the partition function of 

the string theory with appropriate boundary conditions was made with the generating 

functional of connected Green's functions of the corresponding CFT, 

= <̂ o] = (exp cMa;(;6o(z)0(a;)^)cfT (1.65) 
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# W = 4 conformal SYM e Full Quantum Type HB string 
theory on AcZS's x 5"̂  

• L'̂  = AixgsNa''̂  

# 't Hooft limit of A/" = 4 SYM 
A = fixed, # oo 

# l / # expansion 
<#> 

e Classical Type IIB string theory 
on X 5"̂  

# string loop expansion 

# Large A limit of W" = 4 SYM 
(for # —> oo) 

# A"^/^ expansion 

# Classical Type IIB supergravity 
on X 5"̂  

• a ' expansion 

Table 1.2: The three forms of the conjecture in order of decreasing strength 

where is the boundary. A C F T does not have asymptotic states nor an 

S-matrix so the natural objects to consider are its operators. When the supergravity 

limit holds we have 

^stringi^o) — exp( S super gravity ( 1 .66 ) 

This prescription immediately allows one to calculate CFT correlation functions; sim-

ply take functional derivatives on the supergravity partition function with respect to 

<̂0 and then set them to zero. One might wonder when using the IIB theory, that 

there might be some problem with a lack of a covariant action. This is not trou-

blesome, since to obtain M-point Green's functions we regard these as coming from 

— l) th variation of the covariant field equations. Also note that only relative scales 

are meaningful; a ' is not really a parameter, it simply sets the scale in string theory. 

Let us also remark on some tests of the conjecture. We have already talked about 

the symmetries matching. In addition there are some correlation functions which 

are protected from quantum corrections and do not depend on A. There is also 

the spectrum of chiral operators and the qualitative behaviour of the theory upon 

deformations (see [43] for general references on this). 

There are Ave consistent string theories which are related to one another by various 
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duality symmetries [45]. These are thought of as a moduli space of a yet more 

fundamental which lives in D = 11. The A(f6'/C.FT hints at a possible way 

to dehne theses theories in a non-perturbative fashion. 

1.4.1 Normalizable or Non-Normalizable? 

On the side, we shall decompose all lO-dimensional helds onto Kaluza-Klein 

towers on 5"̂ , so that effectively all fields <;6(r, a;) are on AcZS's, and labeled by their 

dimension (the different quantum numbers are implicit). Away from the bulk 

interaction region, it is assumed that the bulk fields are free asymptotically (just as 

this is assumed in the derivation of the LSZ formalism in Eat space-time quantum 

held theory). The free field then satisfies (O^dg + m^)(^r->^oo = 0 for scalars. For the 

AffS" metric (here we are using a different r-coordinate to that used in the previous 

section. They are related by a logarithmic mapping; see Appendix A.l) 

the scalar field equation is 

that has the solution 

with 

(1-67) 

<6" + (1.68) 

(1.69) 

m i = A ( A - 4 ) . (1.70) 

This last relation is a very important test of because it relates masses 

of supergravity scalars, to the conformal dimension of the SYM operators that the 

scalars are dual to. The two independent solutions are characterized by the following 
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asymptotics as r —oo, 

normalizable 

<^o(r ,z)-< (1-71) 

g-(4-A)r/z, non-normalizable 

For A > 4 this is appropriate terminology. We further restrict by considering only 

A > 2 (note the system has the symmetry of A 4 — A) .Returning to the interacting 

fields in the fully interacting theory, solutions will have the same asymptotic behaviors 

as in the free case. The normalizable modes determine the vacuum expectation values 

of operators of associated dimensions and quantum numbers. The non-normalizable 

solutions on the other hand do not correspond to bulk excitations because they are not 

properly square normalizable. Instead, they represent the coupling of external sources 

to the supergravity or string theory. The precise correspondence is as follows [5]. The 

non-normalizable solutions define agsociated boundary by the following 

relation 

= ^Im (1-72) 

Given a set of boundary fields < (̂a;), it is assumed that a complete and unique bulk 

solution to string theory exists. We denote the fields of the associated solution 

To capture the features of operator insertions or VEVS, we generalize the above. 

The simplest possibility is to consider non-trivial dynamics for a scalar field in the 

5d supergravity theory. We only allow the scalar to vary in the radial direction in 

AcZS" with the usual interpretation that this corresponds to renormalization group 

(RG) running of the source We look for solutions where the metric is described 

^The radial direction in the Ads' space should have a Aeld theory interpretation. It has the 
scaling dimension of energy in the field theory; together with other arguments, this should be dual 
to the energy scale [15, 46, 50] of the field theory thereby giving a prescription to study RG Gow in 
the field theory. 
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by [47, 84, 48, 49, 50, 51, 52] 

(1.73) 

and the scalar field has a Lagrangian 

= (1-74) 

There are two independent, non-zero, elements of the Einstein tensor (Goo a-nd Grr) 

giving two equations of motion pins there is the nsnal equation of motion for the 

scalar field 

+ 4A'< '̂ = — (1.75) 

6v4" = , ^ " - 2 y ( , ^ ) (1.76) 

- 3 A " - 6 / ^ = + 2y(<^) (1.77) 

In fact only two of these equations are independent but it will be useful to keep track 

of all of them. 

In the large r limit, where the solution will return to at first order and 0 

and y —> only the hrst equation survives with solution Eqn.(1.69) and the mass 

relation Eqn. (1.70). If the solution retains some supersymmetry then the potential 

can be written in terms of a superpotential [57] 

v = i 
2 
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Trsnsverse Space 

\ \ 
\ \ / 

Single Probe Brane y / 

D-brane Stack 

Figure 1.5: Branes distributed throughout the transverse space, with a single brane 
feeling the geometry. 

and the second order equations reduce to the first order system 

= n-
1 w. (1.79) 

2 ' " 3 

These first order equations have an important dual meaning, as they describe RG 

Sow. The scalar equation describes the RG 8ow of the field operators, whilst the 

A(r) function can be used to establish a c-theorem [38]. 

1.5 B r a n e P r o b i n g 

A very important tool in the study of any gauge-gravity dual is the use of a brane 

probe [53]. Simply put, when some configuration of branes are present in a spacetime 

thereby producing a particular geometry, a single brane can be separated off the 

main configuration. This single brane will "feel" the background geometry without 

disrupting it when it is moved in a gentle way (see Fig. 1.5). The Dp-brane is described 

by the DBI action which takes a background spacetime metric, and produces a low 

energy [/(I) gauge theory on its worldvolume. A low energy (7(1) gauge theory lives 
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on the surface and what this method provides is a way of determining gauge theory 

quantities, principally the three 

# The gauge coupling 

e The moduli space 

# The physical coordinates. 

It therefore provides a transparent linl( between a given supergravity background and 

the dual gauge theory. This is very much in the spirit of an experimental situation. 

If one thinks of measuring charges in electrostatics, or internal structure in say an 

atom, one has to use a smaller part of that system (electrons or photons), a probe, 

to determine the interactions. The idea then is to determine a low energy effective 

action that comes from the branes action. 

Firstly then we must write down an action for the brane (with world volume 

'S'wne = (1.80) 

= - T p / (f+:^e-^ydet(G',6 + F.;,) + Qp / A^+i. (1.81) 

As already remarked, this action captures the necessary features of a D-brane. Since 

we have diffeomorphism invariance one should gauge hx the action to get the physical 

degrees of freedom. The gauge chosen will always be the static gauge where 

f 

^ g 2 ) 
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If we feed a metric into the pnllback and put it into the static gauge we see the scalar 

part of the action is 

det(g.6)e-^(l - + Q / (i.gg) 

where are the D = 10 metric components in the brane directions. At this point, 

an approximation is required to simplify matters to usual field theory; one considers a 

slow moving limit (the branes are moved slowly around the main brane configuration) 

where quadratic is the highest order retained in the expansion of the square root. 

Collecting the non-dynamical piece here (the "1" in the expansion) with the WZ 

gauge potential coupled to the brane, gives a potential for the scalar helds that 

schematically looks like y ( ^ ) = v4oi...p+i/y— det(gfa6) — 1- This then determines the 

moduli space of the theory, where 

y ( X ) = 0. (1.84) 

That this is possible is due to the relation of the p-brane tension with its electrical 

charge, as stated earlier. We can answer the other two points, that of the gauge 

coupling and the "physical" coordinates by making the expansion of the Fg;, term; 

this just produces the usual gauge kinetic piece 

( F + ' z y - d e t ( ^ . 6 ) e - ^ F ^ , F ^ \ (1.85) 

One can read off the gauge coupling from the above. This should then be contrasted 

with the scalar piece, which will generally show that a change of coordinates is neces-

sary. It is required that the scalar and gauge kinetic normalizations should coincide 

for it to be physical; the given scalars can then be reparametrized to make this so. 

We should qualify this here by saying that we can use this only for the case of A/'=2 

and 4, because its only here that there exists a relation between the normalizations 

of the scalar and gauge kinetic terms. The (7(1) gauge coupling is the same as the 
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Yang-Mills coupling, because of the two way process t h a t there are no self interac-

tions to change it, and the SYM fields are singlets with respect to the (7(1). Clearly 

a brane probe is a useful object for studying any gauge-gravity system. 

Let us also comment on this when the background and gauge theory are supersym-

metric. In this case generally IV will have a Sat world volume (see Appendix B.1.1) 

and so will support covariantly constant spinors. When we find a moduli space in the 

brane probe, and hence a no force property, this can be translated to the fact that 

the branes are BPS states [53]. A BPS condition sets a bound on the central charges 

with respect to the masses. For example, one can embed black holes into different 

supergravity theories [55], and these are found to satisfy a BPS condition. The brane 

has both a tension and a RR charge, and the BPS condition is the equality of these 

thereby saturating the bound. 
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C h a p t e r 2 

A/'=4 on t h e Modul i Space 

Having now described the general strncture of the correspondence, it is instructive 

to consider a specific example. As mentioned in Section 1.4, there are two parts to 

moving away from the canonical case. Either an operator deformation or a vacuum 

expectation value of that operator can be considered, and the latter shall be looked 

at in this chapter. In particular we will begin by revisiting the gravity duals of A/^=4 

SYM on moduli space [57]. 

Let us overview this chapter. The hrst section gives an explicit demonstration of 

the D3-solution. This is intended both to demonstrate the multi-centre nature of 

the solutions in gravity language, and to give a precise meaning for it in the gauge 

theory picture. Having gained experience here, one is ready to look at systems where 

a particular (O) is switched on. This is done firstly at the = 5 level where the 

dual supergravity field is identified and supersymmetric solutions can be found. The 

solution can then be lifted to D — 10 by consistent truncation. Then, gauge theory 

questions can be addressed by brane probing (see Section 1.5). At this point the 

physical set of coordinates are identified, and we can now make a comparison with 

the multi-center solutions. The 5d supergravity solutions only describe a subset of 
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the possible moduli space but the full set of lOd supergravity solutions needed to 

describe the full moduli space may be deduced. These metrics are indeed solutions 

of the lOd supergravity equations of motion. 

2.1 T h e D3-b rane Solut ion 

Since a distribution of parallel D3-branes has a low energy description in terms of 

Yang-Mills theory (their separation placing the theory on its moduli space), it is 

interesting to see what the corresponding supergravity solution is. In fact this will 

turn out to be essential for understanding the latter Andings of this chapter. In-

spired by the work [38], let us verify the D3 solution. The fields we consider are 

(GMAT, A(o), A(4)). We now make an ansatz of the form: 

A A A 

$ = 0, 

= 0. (2.1) 

This is a solution of the IIB field equations provided ^ is a Aormonzc function on the 

transverse space R® 

= 0. (2-2) 

and that we can fix the three constants (a , / ) ,^) by the consistency of the Aeld equa-

tions with respect to the ansatz. Firstly, taking the dilaton and axion to be zero 

throughout all the held equations is consistent, as may be seen from Section 1.2. 
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Next we should write down the remaining field equations: 

oM ^ ipMABCD tp (0 9^ 

= 0. (2.4) 

In addition the 5-form field strength must be self-dual, and satisfy the Bianchi identity 

f s — (ZA4 -t- (2-5) 

(Zfs = 0 (2.6) 

Substituting the ansatz into Eqn. (2.4), and taking the (0123) component we get 

a . = 0 (2.7) 

0,77(2/") = 0, / o r 

4o: -)- 4/? — ^ — 1 = 0. (2-8) 

The Bianchi identity is also satisfied by virtue of it "secretly" containing the field 

equation for ^(4). What now needs to be verified is that the Einstein field equations 

also contains this operator O,, together with additional constraints on the constants. 

When calculating the Ricci tensor, two types of terms will be generated; one involving 

(^^j7), and one involving (^^)^. This latter piece will have to cancel the piece coming 

from the energy momentum tensor. 

We should now calculate the Ricci tensor. This will be done by using the Carfan 

as familiarity with the vielbein formalism is essential [38]. The 

vielbein basis used is (hatted letters denote flat indices whilst unhatted indices are 

44 



spacetime indices) 

(2.9) 

Using Cartan's first structure equation (together with the torsion free condition = 

-w^^) 

(fe" + w%Ae'' = 0, (2.10) 

we obtain the spin connection 

(2.11) 

(2.12) 

Using Cartan's second structure equation 

A A (2.13) 

the Riemann tensor and by contraction the Ricci tensor can be found. The non-zero 

pieces contributing are 

= a( l+a-t- ;8)(^-^-^^)(96;7^ ' ' j7e^Ae^-k(a,9^)^erm (2.14) 

-t-(^^^)^erm (2.15) 

w ^ A w " = (2.16) 

We can now perform a simple piece of dimensional analysis, to further constrain the 

constants. Calculating the energy-momentum tensor for the spatial indices M = //, 

observe the behaviour 
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(2.17) 

From the pieces contributing to the Ricci tensor, they all behave as 

(2.18) 

If the corresponding pieces are to cancel, this clearly forces the constraint 

4a = "Y ^ — 1/4. (2.19) 

Since the ansatz is a 'warped' product manifold, the Ricci tensor will split into parallel 

and perpendicular pieces to the brane. For the parallel par t one obtains 

-]:R'A{dHf) = (2.20) 

Now calculating the corresponding piece of the energy-momentum tensor 

= -2a ' (dHf r i> ; (2/21) 

which is precisely So we see that the held equations in the D3-brane directions 

are consistent, and that these do not constrain the constants at all. Now considering 

directions transverse to the brane 
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(2.22) 

Doing the same as above for the energy momentum tensor 

T\ = - S\(dHf) 

= ia'ld'HdtH - (dH)H\]. (2.23) 

The normalizations must match on both sides which implies /? = 4o: .̂ This gives 

a = ±1/4. The sign ambiguity is fixed by considering the normalization of the 5-

form and demanding that it is positive (this is what counts the number of branes 

involved) which gives -y > 0. Hence we find that a consistent solution exists for 

= 1/4 

7 — 1 

a = 1/4 (2.24) 

This completes the demonstration that the Einstein field equations reduce to the 

harmonic wave equation Eqn. (2.2). The non-singular solutions of this are just the 

familiar solutions 

N 
# = ^ # 7 . (2.25) 

J = 1 

The "1" in the above expression is a boundary condition, so that asymptotically the 

solution returns to flat space. This has a very simple brane picture interpretation. 

The solution represents a collection of D3-branes that are positioned throughout 

the transverse space with positions G it is just a generalization of the Reissner-

Nordstrom solution when it is extremal, to branes in higher dimensions. In addition 
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Figure 2.1: Branes distributed throughout the transverse space R^. 

the ^ factor occurring here is the size of the space we are dealing with (in our case 

it would be the size of This had to be included in the above expression on 

dimensional grounds. 

The multi-centre solution above can easily be generalized to describe a continuous 

distribution of D3-branes by taking a continuum limit where one hnds 

^(2/) = 1 + / 
J M 

N = 

Ai 

« „ , / 

vw -
cr (^0 (2.26) 

(2.27) 

where (7(2/') is the density distribution of D3-branes over a space vW C R^. This 

shows something interesting for the correspondence of the six scalars in VV̂ =4 SYM 

and the positions of the D3-branes; one can write 

2/} = (2.28) 

where the % E Cartan-subalgebra. There appears to be a mismatch in this map, 

since there are only — 1 generators in the 5 ' [ / (#) Cartan-subalgebra. Had we 

been more careful one would remember that initially one has a (7(A^) gauge group 
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coming from the Chan-Paton factors of the open strings, and that in addition to the 

above identification, one should identify the (7(1) C with the centre of mass 

coordinate 
1 N 

2/c.M. = (2.29) 

which isn't dynamical [38]. In the infrared, the (/(I) theory is free. 

2.1.1 Siipersymmetry preservation 

Given we have found this simple solution to the field equations, it is necessary to ask 

how much supersymmetry is preserved [58]. Generally a solution will have to be very 

special if it is to admit a Killing spinor. To coincide with the notation in [29] we write 

the ansatz as 

+ (2.30) 

^0123 — 6^, (2.31) 

and we shall put in the specific form of the solution that was found in the last section. 

If this is a supersymmetric solution then we must have tha t = 0 and (̂ A = 0 for 

the IIB gravitino and complex spinor. From Appendix C . l we see that the complex 

spinor equation is trivial, whilst the gravitino is not, 

+ ^ r ^ r ^ r ^ r ^ r ^ ( r M e ) 7 ^ A B C D ^ ; = o. (2.32) 

The spinor parameter is complex and subject to the IIB chirality condition 

Tne = - e . (2.33) 

We can divide this evaluation into two steps, one is to evaluate the spin connection, 

and the other is to put in the field strength. From Eqn. (2.1) and using the conversion 
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= cu the non vanishing spin connection is 

^ (2.34) 

(2.35) 

This allows ns then to evaluate the covariant derivative given in Section C.l as 

v„£ = a,.£ + i ( a „ . 4 ) ( r , 7 - £ ) , (2.36) 

V,„e = dmi: + (2-37) 

Next we should compute the second term in Eqn. (2.32). In this we have to use 

Fg = (fv4.4 + ^((^^4) for it to satisfy the self dual relation. The first piece is simple, 

r r ° r ^ r " r " ( r M e ) ( a . e ^ ) . (2.3s) 

Because it is self dual, we might expect the extra piece would just simply be a "dou-

bling" of this, but we should work through to see if this so; 

(:Ar(fv4)̂ gC'Dg = (2.39) 

(-*-dAaOi23) = 6 (2.40) 

where m, M a. We can put these two terms together and we find 

^p.pOplp2p3 (2.41) 

we now want to make use of an identity used in [56] to convert the transverse space 

quantity to the brane directions; 

= - ( i Q 2 ( 2 . 4 2 ) 
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For our case this reduces to 

= - r r ^ r ^ r ^ r ^ F i i . (2.43) 

Then simply anticommutethe Tn and PM, impose the chirality condition Eqn. (2.33), 

and we are left with the simple doubling that we guessed. The explicit variations then 

read 

e) 4- ^ ( r r r ' r ' r ' ) ( r ^ e ) ( 2 8 . e ' ' ) , (2.44) 

= a ^ e + ^ ( a _ B ) 6 + l ( ^ . B ) ( r ^ ^ e ) 

+ ^ ( r r ° r ^ r ' r " ) ( r _ E ) ( 2 . 9 . e ^ ) . (2.45) 

So these are the equations that need to be solved for the Killing spinors. Let us now 

turn to the symmetry content of the solution. Firstly to have 5'(9(1, 3) invariance we 

must have ^^6 = 0. Next, a projection has to be made to make the system algebraic; 

this is 

-p6pip2p3g ^ ^ ^2.46) 

It is this condition that AaZues the total supercharges preserved. Thus the variation 

equations become 

= (r^r ' 'e)[-(^aA) — ^ ( 6 = 0, (2.47) 

+ -(^m-B)e — (rmr"e)[ —(^g^) + — 0. (2.4b) 

These can now be solved by inspection; = e ^ , B = —A; in addition the 4-6 split 

can be made c = (g) and the Killing spinor is found to be 

(2.49) 
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This is all consistent with what was found from solving the field equations previously 

and identifying Thus the multi-centre solutions preserve 16 supercharges, 

which is the same number as for the W"=4 theory. 

2.2 D = 5 Gauged S u p e r gravi ty a n d its lift to I IB 

In this section, we will study gravity solutions describing vV=4 super Yang-Mills 

(SYM) theory on moduli space resulting from 5d supergravity [57]. We wish to study 

the gauge theory in the presence of a non-zero VEV for the scalar operator 

(see Section 1.3). This operator is symmetric and traceless, and transforms as the 20 

of the global (4);% symmetry of the theory. In the 5d truncation of IIB supergravity 

on X 5"̂  [59, 60] the lightest state is a scalar, a, in the 20 that acts as the source 

for in the correspondence. One may look for solutions of the 

5d supergravity equations of motion with non-zero a and interpret them as gravity 

duals of the v\/"=4 theory with a scalar VEV switched on. In fact, considerable work 

is needed to arrive at the equations of motion since the scalars live in the coset 

^6/C/'5'p(8), the subtleties of which are discussed in [57]. We shall present the Anal 

results only here. 

As an example let us consider the case of switching on = diag(l, 1,1,1 — 

2, —2). The appropriate supergravity scalar has been identified in [57]. In the super-

gravity theory the metric is dynamical and the scalar VEV cannot be considered in 

isolation. We parametrize the metric as 

(̂ 2̂ _ ^ ^^2 ^2.50) 

where a; describe four dimensional Minkowski space slices through the deformed 

space, r is the radial direction, and in the AcfS" limit A(r) = r / i , with the radius 
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of the space. The resulting supersymmetric equations of motion (for which the 

fermionic shifts vanish, see section C.l) are first order(where /) = 

fr = ii {I - + 2") • 

These equations may be solved in the p — A plane since 

1 / /) — 

gA 2 U + f 
(2.52) 

with solution 

with a constant of integration. At this level the connection to the dual gauge 

theory is somewhat opaque. 

Remarkably the solution has been lifted back to a D = 10 solution [57, 85] which 

takes the form 

yl/2 yl/2 / r2 
+ M r ' + ^ + "^dal 

A A (2.54) 

where is the metric on a 3-sphere and 

% = cos^g4- / s i i i ' ' ^ (2.55) 

For consistency there must also be a non-zero A4 potential of the form 

A4 = (2.56) 

Again any relation to a dual theory is well hidden. In fact in [57] this metric was de-
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termined to be equivalent to the near horizon limit of a multi-centre solution around 

a D3 brane distribution. We wish to make the need for the transformation to these 

coordinates clear within the context of the duality. There are many coordinate redefi-

nitions one could make and only a single set of coordinates can manifestly display the 

held theory duality. By brane probing this background one can And these coordinates 

and thereby show the physical parameterization. 

2.3 B r a n e P r o b i n g T h e Solut ion 

Brane probing [53] is most transparent in the original D3 brane construction for the 

correspondence. Here there is a stack of D3 branes at the origin with 

the A/'=4 SYM as their world volume theory and x 5"̂  as their near horizon 

geometry. E we imagine moving a single D3 brane from the stack and moving it in 

the space then, to Arst order, it will not effect the background metric. From the world 

volume field theory point of view, by separating a D3 brane we have introduced an 

adjoint scalar VEV breaking -4 (7(1) x — 1). The magic of D-branes 

is that the scalar fields' VEVS in the field theory are precisely identified with the 

position of the D3 brane in the surrounding spacetime. This is expressed by the 

Dirac Born Infeld (DBI) action for a D3 brane, 

'Spro6e = " 2 3 / G(̂ 3:det[(?ab + 27ra;'e / ^4, (2.57) 

where is the pull back of the spacetime metric, the gauge field on the probes 

surface, $ the dilaton (which is a constant in this solution) and Tg = Qs/g'a. Thus the 

DBI action allows us to translate the background metric to a potential for the scalar 

fields in the field theory. It is easy to identify the dimension of the field theory moduli 

space implied by the metric from where the DBI potential vanishes. In addition since 

the [/(I) theory lives on the probe's surface and is a non-interacting theory (photons 
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do not self interact and there is only adjoint matter which for a (7(1) is chargeless), 

its coupling is that of the theory at the scale of the breaking VEV. The probe 

also therefore lets us determine the functional form of the coupling on moduli space. 

We proceed to brane probe the lOd metric above by substituting (5.14)-(5.16) in 

(2.57). Allowing the brane to move slowly and concentrating on the scalar sector, we 

find the DBI action corresponds to the held theory, 

4̂ 
f " + + sin" g / cos" g 

/ 
!.58) 

The immediate result is that we see there is no potential against motion of the probe 

in the full 6 dimensional transverse space corresponding in the field theory to the 

scalars having a 6d moduli space. This matches with our expectations for the A/"=4 

SYM theory where the six scalars have a potential of the form and so 

taking the VEVS to be in the Cartan sub-algebra, the six scalars may take arbitrary 

values. 

The kinetic terms should be interpreted as the kinetic terms of the held theory scalars 

which in the A/"=4 theory are given by (l/87r)/)?%(r$t$)|g (in notation). The 

coeScient of the kinetic terms are therefore the gauge coupling which is known to be 

conformal in the A/'—4 theory. We should expect the metric that the probe sees on 

moduli space to be flat which it manifestly isn't in (2.58). This is our hint as to the 

coordinate change we should make in order to pass to those coordinates where the 

duality is manifest. Forcing this relation we find a change of coordinates that maikes 

the probe metric hat 

( r ,g) ->-(u ,a) (2.59) 

such that 
p2A 

^/"cos^a^Zf^e^'^p^cos"^, ?^"8in"a:=Z,"—^sin"^. (2.60) 
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A small calculation shows that the metric in these coordinates takes the form 

/ + sin^ a + cos^ a 0^) . (2.61) 
J A4a 

G _ I J4. 

2^5 J Ai^ 

This is a unique choice of coordinates and if the duality is to be manifest it must be in 

these coordinates where the coupling is seen to have the correct conformal property. 

It is therefore interesting to write the full metric in these coordinates 

/ 2 \ - i / 2 / 2 \ i/2 6 
^ j (2.62) 

This is of the familiar form, 

6 1 
^̂ 4 = - p ; — A A A (2.63) 

From the coordinate transformations (2.60) and using (5.9), we can obtain an explicit 

expression for /) in terms of (w, a) 

^ sin^ o; cos^ ^ ^ " W a = 0 (2.64) 
\ r / /-

2.4 T h e Uses of H a r m o n i c F u n c t i o n s 

In [57] it was shown that in these coordinates ^(w) can be written as a multi-centre 

solution with a D3 density, c, 

L 
^( i f ) = / (7(3;) Tz;—IT- (2.65) 

J \u — a; r 
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Figure 2.2: D3-branes distributed as a disk in the ^ = 7r/2 plane (an C R^). 

In this case the density is a 2 dimensional disk (see Fig. 2.2) of uniform density in 

the ^ = 7r/2 plane 

(2.66) 
1 

^(:r) = ^ ^ ( / ' - :r') 

We wish to make the connection to the field theory and instead consider the large it 

limit of (2.64) from which we obtain 

= l + ( l - s i n ^ a ) + ^ ^ ^ ( l - 3 s i n ^ o ; + 2sin^a!) + 0 ( ^ ) . (2.67) 
w 

and hence from (2.62) 

r4 / 72 /4 \ r4;6 
^ ( u ) = — I 1 -I—^(3 a — 1) -I—^(1 - 8 sin^ a + 10 sin^ a) j + (2.68) 

u 

In this form it is possible for us to identify field theory operators [62]. The radial 

coordinate M has the scaling dimension of mass [5] so in each term in the expansion we 

can assign a scaling dimension to the coefBcient. Further each term in the expansion 

is associated with a unique spherical harmonic^; the angular function in the term 

is the spherical harmonic in the 20 of 817(4)^, that in the term the harmonic in 

the 50 and so forth. Note that by using the orthonormality of the spherical harmonics 

it is easy to show that each harmonic occurs only in a single term in the expansion. 

^The spherical harmonics may be found by writing the 6 dimensional representation as a unit 
vector in the transverse space and then Anding the symmetric traceless products 6 x 6 =: 20 + 
6 x 6 x 6 x 6 = 5 0 + etc 
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We can therefore identify the nth coefhcient as having the dimension and symmetry 

properties of the field theory operator and further that the operator is not 

renormalized since there is no further function of associated with the operator. 

Thus these solutions suggest the general form 

= + (2-69) 

where is the spherical harmonic obtained from the product of M 6 dimensional 

reps. 

It is worth noting that at the level of the 5d supergravity theory we introduced only a 

VEV for the dimension 2 operator yet after the lift to lOd the solution was 

forced to possess VEVS for higher dimension operators. If we returned to 5d the trun-

cation would again remove these operators. The 5d supergravity metric gives specific 

relations between the operators as is explicit in (2.68) whilst in the field theory they 

are expected to be arbitrary rejecting the 6 dimensional moduli space. One may 

therefore try substituting the expansion with arbitrary coefficients into the super-

gravity field equations and they indeed turn out to be solutions [62]. Of course in this 

context this is no surprise because it is already known that the multi-centre solutions 

are solutions of the field equations for arbitrary D3 brane distributions. However, it 

is encouraging in this simplest case that one can deduce a full gravity description of 

the field theory from the 5d supergravity solutions. Further it is appealing that the 

metric is indeed seen to be a rewriting of the field theory solutions and it is of interest 

to see how this generalizes in theories with more complicated RG 8ow. In the next 

chapter we will study aspects of this generalization for the A/"=2* theory. 

Before moving on though we wish to note the power of the brane probing technique 

since it in fact is capable of deriving the above solutions on its own. In the 4 

case if we wished to write down a metric dual to a point on moduli space we might 
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begin by writing down an arbitrary lOd metric. If we then require the 6 dimensional 

moduli space and conformal coupling after a brane probe the metric is forced to take 

the form in (2.63). The supergravity Held equations with this ansatz reduce to the 

transverse Sat space Laplacian in 6 dimensions [38] , 

= 0 (2.70) 

Which produces the multi-centre solutions. We see again that when we know suihcient 

information about the field theory the supergravity dual is uniquely determined. 

2.5 Prec i s 

This chapter has shown a very clean test of the F T and has allowed us to build 

up a collection of tools that we can now use in more interesting situations. Having 

used the AdS/CFT map we have looked at D = 5 supergravity solutions that have 

been hfted by consistent truncation to D = 10. We are able then to brane probe 

this background and we recover the simple multi centre solutions. To identify a dual 

field of a gauge theory quantity and then to determine its (RG) properties from the 

supergravity point of view is quite non trivial. 
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C h a p t e r 3 

J\f=2* SYM: an O p e r a t o r 

De fo rma t ion 

To test whether the encoding prescription is generic we move the techniques from the 

previous chapter across to the gravity dual of the theory (the A/'—4 theory with 

a mass term that breaks supersymmetry to A/"—2 in the IR) which has more interesting 

RG Aow properties. This is an example of an operator /Z — + O and 

complements the previous chapter. The solutions are produced by including relevant 

deformations in the 5d supergravity theory [63, 65, 66]. These can again be lifted to 

lOd by consistent truncation [85]. The connection to the gauge theory of this set of 

solutions is far from apparent after the lift. The use of a brane probe to uncover the 

links was made in [66, 67]. The metric indeed describes the expected 2d moduli space 

of the field theory. The gauge coupling function on the moduli space is also revealed 

and, when the solution is placed in appropriately A/'=2 coordinates, matches to held 

theory expectations. The set of solutions describe different points on moduli space 

with one corresponding to a singular point on moduli space where in the IR the gauge 

coupling diverges. This solution is of interest because it provides an example of the 

enhangon mechanism [68, 69] (there are points in the space where the tension of the 
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probe falls to zero). 

The content of this chapter is similar to that of the previous one with simple additions 

which will allow for it to describe this more di&cnlt example. In the first section we 

look at the inclusion of the operator into the field theory, and the subsequent dual 

solution in D = 10. Then we go on to look at braiie probing this background and 

write the metric on moduli space in the coordinates applicable to the field theory 

where it takes the form of a single function as in the ^ "=4 metrics multiplied by the 

gauge coupling function. It is natural to interpret the outstanding function according 

to the same prescription as in the A/"=4 solution and read off field theory operators. In 

the Aeld theory the gauge coupling encodes the only RG Eow whilst the supergravity 

solution appears to describe additional renormalization of the scalar operators. In 

addition in the far UV the solution does not return to the A/"=4 form but contains 

logarithmic renormalization. In the next section we highlight the discrepancy by 

following the prescription in [67] for deducing the D3 brane distribution from the 

expected field theory gauge coupling, as a function of position on moduli space, and 

the supergravity form for the coupling. We thus deduce the distribution for all the 5d 

supergravity lifts and can then calculate the expected scalar operators which again 

do not match with the function in the metric. Presumably there is some discrepancy 

in the prescription in this more complicated theory that has not yet been discovered. 

3.1 T h e D = 10 Grav i ty Solut ion 

We have seen that in the A/"=4 duality there is a simple mapping between the held 

theory operators and the form of the metric. It would be interesting to understand 

how this mapping occurs in a more complicated theory with non-trivial renormal-

ization group Sow. The theory we choose to investigate in this light is the A/"=2* 

theory where a mass term is introduced into the A/"=4 theory that leaves an VV=2 
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supersymmetric theory in the IR. The operator deformation considered is 

i=l,2 
(3.1) 

together with the vacuum structure 

(Oi) = 
J=1 j=5 

(3,2) 

as before. The 5d supergravity theory with the appropriate supergravity held defor-

mations switched on was studied in [63, 65, 66]. Two supergravity scalars are needed, 

one describing the mass term and the other the possible VEV for the remaining two 

real scalar fields. The fields m, v4 and p — are the supergravity fields given by the 

5d supergravity equations of motion 

i - / cosh(2m) 

1 1 

3^ 
cosh(2m) 

1 
sinh(2m) 

(3.3) 

(3.4) 

(3.5) 

which have solutions 

= A: 
sinh(2m) 

(3.6) 

= cosh(2m) + sinh^(2m) I ̂  + 
sinh m 

cosh m 
(3.7) 

Although some connections were made between the field theory and these solutions 

the duality remained fairly opaque at the 5d level. A lift of this solution to lOd 
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supergravity has again been provided [85, 65] and the summary of the solution is 

P' c CA2 Ai A2 
(3.8) 

where 

c = cosh 2m (3-9) 

J ^ i = c o s ^ ^ + p^csin^^, %2 = ccos^^ + /)^8in^^ (3.10) 

g4A V 
A4 — A c(a;̂  A (Za;̂  A (3.11) 

The dilaton is non-trivial too. We write a complex scalar A = Co + and 

A = . ( i ^ ) . ^ = c o s h ( 2 ™ ) | (3.12, 

The solution also has non-zero 2-forms [85] but they are zero in the ^ = 7r/2 plane 

which we will analyze below. 

3.2 B r a n e P r o b i n g t h e Solut ion 

Again brane probing is a necessity to make the duality with the Aeld theory clear. 

In [67, 64] it was observed that after substituting the above lOd solution into the 

DBI action the potential vanishes in the ^ — 7r/2 plane. The moduli space for brane 

motion therefore matches the expected 2d moduli space of the A/'=2* held theory 

which has two massless real scalars. From now on we will restrict our attention to 

this plane. Placing a brane probe off the moduli space corresponds in the held theory 

to giving a VEV to a massive scalar which is neither a vacuum of the theory nor 

supersymmetric. We know of no held theory results in the presence of such VEVS so 

there are no checks of the duality we can make. 
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On the moduli space a brane probe reveals the (/(l) held theory 

Z = 1 ^/co8h(2m)e""^r" + (3.13) 

In these coordinates the connection to the A/"=2* theory is hidden but we can now 

find coordinates where the duality is manifest. The two scalar helds should have the 

Scime kinetic term with a common coefEcient given by the gauge theory's running 

coupling, l/a'yM('")' The first of these can be achieved by the change of coordinates 

such that 

(3.15) 

and we have 

l F L ' c . o s h 2 m (3.16) 
2 sinh^ 2m ^ ^ ^ 

The solutions depend on two constants A; and ^ which correspond to the mass term 

and the scalar VEV [67] respectively. It is interesting to discuss the anatomy of these 

solutions at fixed A: as a function of -y in the f coordinates. As in previous work [63, 

64, 66, 67] we only consider 'y < 0 since we can offer no physical interpretation of 

positive y. Although, as we will see, u — <̂  are not the physical coordinates for the 

duality they have the beneht of an S0(2) symmetry in (;6 as can be seen from (3.16). 

The solutions with different choice of the parameter differ in the radial position at 

which the metric has divergences as a result of 0. From (3.7) and (3.14) one may 

express -y in terms of this radius Z as 



We expect the divergence in the metric to be associated with the presence of a disc D3 

brane source and hence solutions with larger negative --y correspond to larger VEVS 

in the field theory. When ^ = 0 the spacetime is good down to a radius ;̂ = Z = 

where cosh 2m —> oo and hence the coefhcient of the scalar kinetic term falls to 

zero. This is the enhangon locus where the probes tension falls to zero (or in the 

Aeld theory the coupling diverges) and according to lore [68, 69] we must excise the 

solution within. Only for this metric can the enhangon point be reached since the 

other, "-y < 0, solutions have p — 0 at a larger radius where the scalar kinetic terms 

coefhcient is still regular. 

As pointed out in [67] we can not yet formally make the connection to the gauge 

coupling because the U(l) theory is not in an A/"=2 form since the coefficient of the 

term is given by 

e ^ = —j T — 1 — ( 3 . 1 8 ) 
ga| cos (P + %csm 

To obtain an A/'=2 form we must make a holomorphic change of variables in the 

t; — plane to equate the coefBcients of the scalar and gauge field kinetic terms. The 

transformation is [67] 

+ P-19) 

where y = = T/e"' are complex parameters on the 2d space. The low energy 

theory is then of the desired form with 

^ (3.20) 
a'YMU j 
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with 47r/py;^(y) = ZmT where 

% / 
r = — 1 

y y2 _ ^2 (3.21) 

3.3 W h a t t h e New Coord ina tes Say 

In these coordinates the background takes the form 

+ (3.22) 

A4 = A A (Za;̂  A (3.23) 

7^(27ra')"e-^ = (3.24) 
5'yM 

with 

= W ^ u 

AD other Aelds are zero in the ^ = 7r/2 plane. In fact the brane probe does not 

uniquely Ax the form of ^ since it can be rescaled by an arbitrary power of the 

Yang Mills coupling and stiD return the same probe theory. Since the coupling in 

(3.21) does not contain logarithms such a rescaling will not resolve the discrepancies 

discussed below. 

We claim to have identified the unique coordinates in which in the ^ = 7r/2 plane a 

brane probe correctly matches the expected form for an A/"—2 supersymmetric theory. 

In these physical coordinates we would expect the remainder of the metric to be a 

parametrization of held theory operators. To see the predictions for these operators 

we can expand the function at large radius in these coordinates. 

We note that the Anal transformation in (3.19) is rather strange since the circle = 2, 



is mapped to the real line of length and everything interior is mapped to exterior 

points to the line in F space. Thus the y coordinates are a double cover of the y 

space. In the coordinates one can not take a probe through the enhangon so one 

should exclude the region < 1. 

At large the f coordinate, from (3.19), is given by 

2?/ A; cos 2?; A; 3 

V — -T" — —z H ——— (1 — 5 COS 4? )̂ -)- — (3.26) 
A; 2?/ 32;/ 

Thus at large we And, using (3.7) (3.19) and (3.25) 

r4L4 r6L6 /2 nr2 
" = W ^ ^ M + 2 - - - + 8 I „ ( , / 0 + 6cos(2.,)) 

rSL8 /2 r2 
[ 3 ( 1 - — + — + 41n(2//Z,)-2cos2,;)^ 

282/8 ̂  ^ ' /2 
72 p r 2 

+2 COS 2)̂ (—2 + 2— 8 ln(i//Z)) 

72 r 2 

+ (3 + 2— — 2—— 8 ln(i//i}) — 8 cos 2?̂  + 14 cos 4//)] + ... (3.27) 

Finally we have arrived at the form for the metric we^re interested in. The metric 

on moduli space, when written in the physical coordinates that explicitly display 

VV=2 supersymmetry in the brane probe, has two functions in it. One is the gauge 

coupling of the theory and the other, jif, remains to be interpreted. We can read olf 

the symmetry properties of operators from ^ using the same prescription as for the 

4 solution; every factor of carries mass dimension 1 and the yy dependence can be 

interpreted as 6'0(2) harmonics cosM?y with charge M. Thus one would naturally hke 

to interpret the coefhcient of cos M?;, which has (7(1) charge », as the operator 

(with % the massless, two component, complex scalar field) and would expect it to 
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be associated with a factor of The charge zero coe@cients would correspond 

to again associated with a factor of There are also mixed operators 

of the form of a product of these two operator types as can be seen from the presence 

of a cos 2// term at order The presence of logarithms, though, undermines this 

interpretation. In the Z —oo limit one would expect the VV̂ =2* theory to be on the 

edge of its moduli space and return to looking like the A/'=4 metric. In fact at large Z 

the leading terms in Z do indeed take the form in Eqn. (2.68) but we can not neglect 

the log?/ terms in this limit which are absent from the W"=:4 theory. There appears 

therefore to be UV logarithmic renormalization. Given that there is logarithmic 

renormalization we can not rule out power like renormalization either which would 

further confuse the interpretation. 

We will make this discrepancy more manifest in the next section where we deduce 

the D3 brane distributions from the form of the gauge coupling and show that it does 

not predict the above form for the field theory operators. In the discussion we will 

suggest a few possible resolutions of the discrepancy. 

3.3.1 D3 Distributions 

To highlight the discrepancy between held theory expectations and the jFf function 

found in the ^^"=2* metric we will determine the D3 brane distribution function for 

spacetimes with different -y assuming the standard one loop renormalized expression 

for the prepotential governing the IR of the theory. The field theory is reviewed in [67] 

(see also Section 4.7) and the authors followed this logic for the special case --y = 0, 

where in y space the D3 branes are distributed on a line. We extend the analysis to 

all 'y. The prepotential for the W"=:2* theory is expected to be 

- E(°.- - % + " O ' l n ( ' " • y*"'' 
(3.28) 



plane 

Figure 3.1: This shows the enhangon locus at i; = and the branes distributed out 
to %; = L 

where a, are the scalar VEV eigenvalues and // an RG scale. In the supergravity 

description of the A/"—2* theory we expect the difference of the scalar VEVS to be large 

with respect to the mass term, and that the non-perturbative instanton corrections 

do not survive the large # limit [67]. With these assumptions the continuum limit 

found is 

"(1'̂ ) = 1-
m-

(3.29) 
27r ^ 

where a is a complex 2d integral in y space and c the density of VEVS/D3 branes. To 

match with the supergravity we make the identification [67]. Using this 

ansatz we can determine the distributions that reproduce the supergravity solution 

expression for T. In fact this is all but impossible in y space since there is no spherical 

symmetry but we know that in y the distributions are circular out to Z and cut off 

inside at v = ^ (see Fig. 3.1). 

Remarkably, a simple form for the density, cr, for each of the solutions, labelled by 

or equivalently Z, can then be found by rewriting Eqn. (3.29) in y space using (3.19) 

and using 

O", (3.30) 
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Expanding the resulting expression as a power series at large ^ and inserting an 

expansion in powers of l /u for one can show to all orders in the expansion that 

a.{V) = + L'h' - 2L' cos{24,)/v-') (3.31) 

reproduces the supergravity expression (3.21). Note that this result agrees with that 

of [67] for -y — 0, Z = integrating with a measure fcZt; from to / and then 

taking the Z —2} limit we obtain an expression for the number of D3 branes of the 

form 
^ /"TT 

# = — / (l-cos2^)(Zg (3.32) 
TT Vo 

Changing variables to i/ = cos ^ this reproduces the line density in [67] 

<t,(K) = (3.33) 

Having identified the density we can then predict the expected scalar operators. Since 

the only renormalization in the v\/"=2* theory is that of T we would expect the A/'=:4 

expression for the metric quantity when evaluated in the ^ = 7r/2 plane to display 

the full set of operators. Thus using (2.65) (with ^ rescaled to 2^/A;), performing the 

integration after a change of variables to y space using 

A;// 
2/co8?y = —('u + l/'(;)cos<^, ?/sin7y = - ^ ( l / u —'u)sin<^ (3.34) 

(%;̂  + l / f ^ + 2co8(^ —2sin<^) (3.35) 

and further expanding at large i/ and evaluating the expression in the ^ = 7r/2 plane 

we obtain a prediction for ^ 
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L 8 r 8 / /4 r 4 ^2 ^ 4 \ 

3(yr + 4 + —) + 16—(1 + i z ) I (3.36) 283/8 \ '14 ' ' /4 / ' 14^ ' 4̂ 

This expression does not match that in (3.27) highlighting the apparent discrepancy 

in the interpretation of the coefhcients as the scalar operators. There appears to 

be extra logarithmic and power renormalization in the supergravity theory that this 

simple held theory analysis has not explained. 

3.4 Prec i s 

Having learnt some useful techniques in the previous chapter to analyse dual solutions, 

we have applied it to the A^=2* gravity dual. Brane probing the solution reveals the 

2d moduli space and, identifying the unique coordinates in which the U(l) theory on 

the probe takes an A/̂ =2 form, the gauge coupling on that moduli space. These should 

be the physical coordinates in which the duality to the field theory is manifest in the 

rest of the metric. The metric indeed takes a form on the moduli space analogous to 

the metric on moduli space in the A/"=4 theory except tha t the running of the gauge 

coupling is also encoded. There is one other function in the metric from which we 

can read off operators by their scaling dimension and their symmetry properties. In 

the held theory we expect the gauge coupling to be the only renormalized quantity 

and the operators and to emerge as in the A/"=4 case. In fact we 

find further renormalization including UV logarithmic renormalization. 

The appearance of this extra renormalization is frustrating because it stops us from 

completely understanding the prescription for creating a gravity dual to a held theory 
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even in the next simplest case to the A/"=4 theory. The form of the metric on moduli 

space in (3.22) is highly suggestive that the prescription is to encode the running 

coupling as shown and then parametrizes the scalar VEVS in the Aeld theory through 

It may be that the discrepancies we have seen are complications brought in by 

the 5d supergravity approach to constructing the duahties. One possibility is that we 

have not only introduced a mass term into the field theory. In the A/'=4 theory when 

one attempts to introduce a dimension 2 operator at the level of 5d supergravity, after 

the lift to lOd, a whole host of higher dimension operators are found to be present to 

make the solution consistent (as can be seen in Eqn. (2.68)). Something similar may 

be happening here and the A/"=2* solution is encoding both the held theory scalar 

vevs and this unknown tower of deformations. 

An alternative possibility is that the 5d supergravity solution was created in the 

coordinates y which are a double cover of the physical coordinates y . We have excised 

the solution interior to = 2} but possibly there is additional interior structure which 

in the y coordinates is projected to large i/. Possibly in the physical coordinates there 

are D3 branes through out the whole space! 

As a hnal remark, note the holomorphic change of coordinates Eqn (3.19). We will 

see in the next chapter a pure A^=2 SYM theory that arises from a totally different 

construction, but that has this same change of coordinates. 
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C h a p t e r 4 

Af—2 S Y M f r o m W r a p p e d 5-Branes 

Having considered a larger class of Held theories by deforming the original ;\/"=4 SYM 

with relevant operators, it is also interesting to look at direct proposals of other field 

theories with dual gravity descriptions. In this respect, we will discuss a proposal 

that is based on the [70, 71, 72, 73] which captures the features of 

a gauge theory in its IR limit (see also [74, 75]). Consequently, in the the UV limit it 

returns to being a string theory (contrast this with the original conjecture where the 

gauge theory remains intact at all energies). 

Let us remark brieSy here the features which will be discussed in detail subsequently. 

Firstly, facts about the little string theory will be reviewed so the proposal should 

have context. Then we discuss how branes are wrapped and appropriate Calabi-

Yau theory [72] together with why the theory should be twisted so as to preserve 

supersymmetry. At this point we discuss gauged D = 7 supergravity [73], a consistent 

truncation which allows an unambiguous D = 10 solution. We talk about obtaining 

specific solutions by looking at the supersymmetry variations, and then analyzing the 

solution by brane probing and comparison to W=2 gauge theory results. The end 

result is seeing that the supergravity fields are shown to parametrize the gauge theory 
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Figure 4.1: Two open strings on the brane come together to form a closed string, 
which is subsequently emitted into the bulk. 

operators that have switched on. 

4.1 Li t t le S t r ing T h e o r y (LST) 

The starting point is to consider the decoupling limit of parallel stacked NS5-

branes [76, 77] that takes place in a vacuum of type IIB string theory. The hve-branes 

halve the amount of supersymmetry from 32 to 16. To decouple the dynamics on the 

brane from that in the bulk a limit is chosen where modes on the brane that are 

emitted into the bulk as closed strings are suppressed (see fig. 4.1) i.e. 

d s 0 ; 

(4.1) 

Here, the emission process is at an energy Since the amplitudes for emission are 

proportional to they will vanish. By considering the low energy limit on the branes 
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we find an interacting QFT. This is D = 6 SYM with 16 supercharges So the full 

theory on the branes must be interacting. Compare this to the limit which is taken 

for D-brane physics; to decouple from the bulk a low energy limit is taken 

g'a = 

E/a -4̂  0. (4.2) 

This is the decoupling limit of a QFT from gravity. If instead of a single D-brane, 

there were a similar decoupling limit to the LST is 

9s —^ 0; 

EZg = 

(4-3) 

Here, is the open string coupling constant and is fixed, so the theory on the open 

strings is interacting. 

What can we write down as regards the little string theory? To study this theory 

a holographic dual description is used - this is a generalization of the 

correspondence. It asserts that the LST is equivalent to lOd string theory in the 

background of five-branes. Therefore we must write down the metric, dilaton and NS 

B-field for the stack of NSS-branes [76] 

6̂ 5̂  = (fzg + (1 + 

e 20 _ _2 

(4.5) 

^One can see that this decoupling limit motivates the field theory. However, standard field 
theory in D = 6 does not make sense, since it's not renormalizable. The ( / y completion of this to 
an interacting string theory is able to fill out the sickness of the D = Q SYM 
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This we see gives a breaking of the global symmetry group 

^ 0 ( 1 , 9 ) ^ 0 ( 1 , 5 ) X 6 ' 0 ( 4 ) , ( 4 . 6 ) 

which matches the D = 6 held theory requirements; the 5'0(4) is the R-symmetry 

group for the 4-scalars (these parametrize brane motion in the transverse space) and 

the 8-fermions. 

We now want to take the decoupling limit but to do so, the near horizon geometry 

r ^ 0 needs to be taken at the same rate as the decoupling. With the change of 

coordinates r = this limit yields, 

$ = - p . (4 .7 ) 

Here the B-held has been omitted. This concludes the discussion of the LST, the 

essential fact being the form of the metric and dilaton above in the decoupling limit. 

4.2 NS5-Branes on 5^ 

So far, we have considered a brane whose world-volume is and this is where the 

interacting SYM with 16 supercharges lives at low energy (in the UV, it is the non-

local LST). To obtain a D = 4 theory, we dimensionally reduce this on a 2-cycle (a 

2d compact submanifold 2) 

- 4 X 2 , (4 .8 ) 

In fact the 2-cycle is chosen to be 5"̂  for reasons to be discussed [72]. The metric to 

consider is then 

+ (4 .9) 
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This embodies the above topology and that the N 5-branes have been wrapped on 

the 2. The is a factor which will be given by the specific theory we want to 

study. For the moment though let ns stick with E, and discuss when it's 6"̂  later. 

There are now two relevant points to ensure that we are really studying A/'=2 SYM: 

# How to ensure the field theory has ^^=2 supersymmetry in = 4, given that 

we are now on a partially compact manifold [70] 

# what this means in the embedding of this in the supergravity derived from string 

theory [72]. 

The first is answered by making the field theory twisted, whilst the second is given 

by five-branes wrapping a 2-cycle in a Calabi-Yau 2-fold. These we now discuss. 

4.2.1 Field Theory Considerations 

Suppose we have a supersymmetric field theory, and we then allow it to be on a 

curved manifold. Then generically supersynmietry is no longer preserved as covari-

antly constant spinors are not necessarily admitted [70] 

(4.10) 

Something has to be added to kill off the spin connection. Since the field theory we 

want to consider has a global R-symmetry group (2)^ we can gauge this symme-

try and thereby introduce an external gauge field which couples to the R-symmetry 

current. A new covariant derivative is formed 

+ WM — (4-11) 
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and for cuM = we now can And a covariantly constant spinor i.e. just a constant 

spinor. This theory is said to be "twisted" (our case is partially twisted because we 

are only twisting on the compact part of the product manifold) in that it changes 

all the spins of the fields, so the supersymmetry parameter becomes a scalar (for a 

fuller discussion of how a field theory is "twisted", see appendix B.1.1). This can 

be seen by noticing the ^^^=2 R-symmetry index becomes spinorial under the twist 

(in anticipation, this mechanism of branes wrapping cycles in string theory, is what 

allows some supersymmetry to be preserved [78]). Next we should ask about the 

details of this ajid how to retain the right amount of supersymmetry. 

Firstly, the Sat 5-branes preserve 16 supercharges. Next we perform the wrapping on 

the 6"̂ , so the global symmetry groups are reduced to 

5'0(1,5) X 5-0(4) ^ 6'0(1,3) x ^ 0 ( 2 ) x ^ 0 ( 4 ) . (4.12) 

Now the details of the twist are required. FoDowing the approach of [70], we want 

to pick a 5'0(2) in 5'0(4) such that the breaking is 6 '0(4) — 5 ' 0 ( 2 ) i X 5'(9(2)2. 

These will rotate the 4 coordinates in the 12-plane and 34-plane respectively. Now, 

write down a covariant derivative for a held $ that has spin a under the 5'0(2)2 spin 

connection, and charge g under the (7(1) = 6'0(2)i of the external gauge held. Then 

the covariant derivative in the S directions for the held is 

= (^^ + (4-13) 

For spinors with a = —g and — w^, it can be covariantly constant. So the 

twisting procedure turned them into scalars as the covariant derivative became a 

partial derivative. The tangent and normal bundles symmetry group 6'0(1,5) x 5'C)(4) 

is decomposed to 5'0(1,3) x 5'(9(2)2 x [/(I) x 5'0(2)2. The preserved spinors transform 

as (4, d:, :F, 2), so there are 8-spinors left as required to have W = 2 in = 4. We now 
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Figure 4.2: The genus ^ = 0 surface is rigid, and 2 of the 4 scalars have maasive 
fluctuations; whilst for the torus, the interior circle can fluctuate giving 4 massless 
scalars. 

need to check the scalars. These transform as 4 of 5'0(4) that after twisting become 

(2,1) @ (1,2) of 5 '0(2)i X 6'0(2)2. The 5"̂  is rigid so the first set of scaiars have 

no zero modes; that is they can't Suctuate. The latter 2 scalars can so we get two 

massless — 4 scalars. In the field theory this is clear, because the (7(1) "gauge held" 

we introduced will act as a mass term, whilst there is no such factor occurring for 

the 5'0(2)2 symmetry. The gauge field on the 5"̂  also has no zero modes, so we are 

left with pure A/"=2, SYM. If wrapping had been done on some genus-g^ 2-cycle, 2^, 

there would now be zero modes both from fluctuations of it and the gauge field. This 

would lead to ^-additional hypermultiplets in the adjoint representation. 

4.3 Grav i ty Cons idera t ions for T w i s t i n g 

Having given a field theory description of how to obtain the gauge theory, this now 

needs to be translated into a gravity and brane picture; that is we want to move oH 

the branes and into the bulk! This is going to be based on the discussion in [72, 78]. 

Firstly note for the case of a 5-brane whose world volume is TV in the D = 10 
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Figure 4.3: This shows how the tangent bundle is decomposed into normal and parallel 
pieces. 

spacetime manifold M, we can decompose the tangent bundle aa 

(4.14) 

that is a normal bundle and "parallel" bundle. See Fig. 4.3. In fact if we recall that a 

section of a fiber bundle is a map from the hber to the base space, we see that the 4 

scalars are precisely the sections on the The normal bundle is dimension 4 and 

has an 5'0(4) symmetry group (if we considered the spin connection here it would 

be a 5'0(4) gauge Aeld). This symmetry group corresponds to the 5'0(4)^ symmetry 

group of the previous stated field theory. We wish to perform the same split here as 

was done for the held theory twisting. So one wishes to perform a split 

6-0(4) ^0(2)K X 6'0(2)T. (4.15) 

The last factor is going to describe the remaining flat directions in the transverse 

space, which is the remaining R-symmetry, whilst the first factor is going to allow 

us to perform the twist in a gravity context. This then is going to be a question of 

supersymmetry preserving, and immediately brings to the front the issue of Calabi-
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Yau compactification [78]. 

Suppose we consider a spacetime of the form 

M = X (4.16) 

It is clear since we are considering 5-branes, that the cycle Eg on which the branes 

are wrapped must be in the manifold 

Eg C (4.17) 

At this point, the supersymmetry mapping between the two systems need to be laid 

down. The needs to be a supersymmetric cycle, so that supersymmetry is preserved 

on it. From the split made in Eqn. (4.15) and that we want 8 supercharges to be 

preserved, it is necessary that the cycle be in a Calabi-Yau 2-fold, so the geometry 

looks locally like 

M = X (C.y.)2_/oM X R ^ (4.18) 

The Calabi-Yau condition, that the Ao/onom?/ group of the 2-fold is 5'(7(2) and not 

(7(2) (the 5'0(4) symmetry of the normal bundle has the proper subgroup (7(2), 

which would be the holonomy group). The extra (7(1) piece, which can be seen to 

be the 5'0(2)A: of the split, should therefore have its tangent bundle identified with 

the 6'0(2)2 tangent bundle on the Eg. This is what corresponds to the held theory 

twisting, and we can easily see that they match up; the 5'0(2) spin connection on the 

sphere is obvious, whilst the R-symmetry gauge held is the connection for the two 

normal directions to the brane in the Calabi Yau 2-fold. 
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4.4 T h e J\f=2 Supergrav i ty So lu t ions 

4.4.1 The 7d Background 

At this point in the construction the Aeld theory and holographic dual features are 

clear. It is necessary now to follow the approach in [70, 71] in order to capture the 

details of the dual solution; namely, 7d gauged supergravity is used (we want to work 

with the gauged version because it will be these gauge fields that will allow us to 

perform the twisting in the supergravity theory) to And the speciAc solution, and 

then this can be lifted to lOd [79] by consistent truncation, to exhibit the full dual 

nature of the solution. 

Let us collect here the relevant facts about the supergravity solutions obtained in [72, 

73], using the conventions of [73]. The seven dimensional metric ansatz is (in the 

string frame) 

+ TVa'cZ/, (4.19) 

and to work with the supergravity, this should be put into the Einstein frame 

(4.20) 

with / = —2$7/5 and ^ — 2$7/5. 

By looking at the supersymmetry variations of the fermionic fields, and setting these 

to zero, Arst order equations can be obtained [73] for the bosonic fields describing 

A/'=2 preserving deformations (see Appendix C.l for the general ideas). Differently 

in [72], a first order Hamiltonian approach is used to obtain these first order equations, 

and the amount of supersymmetry preserved is checked at the 10-d level. The fields 

considered in [72, 73] are the scalars (Ai,A2,A2), the (/(I) gauge field Aj/), a second 

[/(I) gauge field that is generally broken, and the metric ansatz Eqn. (4.20) 
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(which is used in an obvious vielbein form to derive the spin connection). There 

are now two ways to obtain the D = 7 Lagrangian and supersymmetry variations. 

We could work directly with the D = 7, 5'0(4) gauged supergravity in [82], just as 

would be done with the usual picture. Or slightly non-obviously, we could 

perform a singular limit [80] in M-theory with M5-branes to reduce it to type IIB 

with NS5-branes [73]. The M-theory sector to consider initially is the truncation to 

D = 7 6'0(5) gauged supergravity [81, 70]. This arises from compactifying on 5"̂ , 

and the singular limit to perform is 

X R . (4.21) 

This limit then has to be applied to the supersymmetry variations, which are found 

to be 

+ -(A2 + Ag))^ 

4 6 4 

= ——'ŷ <9̂ (2Ai + 2A2 + A^))^ -|— 
4 4 

= +5%m%ZGr(A2 f-> A 2 ) . (4.22) 

Inserting into these variations the form of the metric and the twisting conditions (all 

gauge fields taken to be zero except the Aj/) held), as well was imposing a specific 

projection ansatz on the spinors [73] reduces this system to a simple system of first 

order coupled equations 

/ ' = (4.23) 

9' = + + (4.24) 



A2' + 2A^ + 2A/ = (4.25) 

2A2' + Â  + 2A/ = (4.26) 

SAi' + Ag' + Ag = + 

A prime indicates diEerentiation with respect to the radial coordinate p, and A is a 

dimensionful constant (in fact it can be seen from the LST that A^ = 7Va% which will 

play the role of the strong coupling scale in the dual field theory). 

Note that A2 and A2 enter the equations in a symmetrical way. This full set of 

equations was studied in [73] whilst in [72] only the case A2 = A2 was considered. 

Defining the dimensionless radial coordinate w, and making the change from w; 

u = (4.28) 

— ^ = Y\^g^i-l/2(A2+A2) 

We can extract solutions for a number of quantities we shall use later. It is straight-

forward to show, from the held equations above, that 

= ^ 5 7 ^ - ("-30) 

where 6 is an integration constant, and 

^_4Ai-2A2-4A2 ^ g2) 

where c is an integration constant, which only appears as an overall factor in the 

analysis below so we set it to one. 

The final solution we will need is an expression for the function which satisfies the 

equation 



+ ) = 2 , (4.32) 
6̂ !/ \ K \ e^" — 6̂  

We can explicitly solve this finding 

+ (4.33) 
g4u _ ()4 2t( — 6̂ ^ 

where TiT is again an integration constant (we have scaled A" by A so it has the correct 

dimensions below). Note that when A2 = A2 as investigated in [72] 6 = 0 and in this 

limit we recover their solution 

4.4.2 The lOd Background 

To brane probe these solutions they must be lifted to D = 10 [79]. The lift was 

performed in [73] and we have the string frame solution 

—1 cos 6{^j.Lidjj,2 ~1~ /i2'i/ii)'^<^] ~l~ 6 -|- e (4.35) 

with 

20 6Ai+3A24-3A2 A—1 e = e A - \ (4.36) 

A = + jUg) + (4.37) 
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The additional 6"̂  parameterization is given by the coordinates such that = 

1. These can be written in terms of the usual three angles, 

(^1,^2) = sin'^(co8<^i,8in(^i) (4.38) 

()U3,)U4) = cos'^(cos<;62,sin<;^2) (4.39) 

These solutions describe the near horizon geometry of NS5 branes wrapped on 5"̂ . 

To convert from a NS5 solution to a D5 solution (which is more appropriate in the 

IR) one performs the 5'-dual transformations [73] 

(4.40) 

There is also a 6 form potential for which the D5 branes are sources. The full ex-

pression is not given in [73] but the components in the D5 world volume, when 

= 0, relevant to the brane probe analysis below is given by 

Ag = A c(il2 (4-41) 

At this point then, we have the string frame D5 solution, which we can now proceed 

to brane probe. The full details of these solutions and lifts can be found in [73]. 



4.5 T h e D = 2 Modu l i Space a n d Dis t r ibu t ions 

Each geometry, corresponding to a solution of (4.27), is expected to be dual to the 

A/" = 2 SYM theory at a point on its 2d moduli space. Since the A/" = 2 SYM theory 

has a moduli space, each of these solutions should then display a 2d space in which 

a probe D5 brane sees a Eat potential. This corresponds to the theory knowing that 

any individual scalar vev may be changed at will on the moduli space whilst keeping 

a vacuum. At large the changing of such a single VEV, or position of a D5, will 

leave the geometry unchanged. In [73] it was shown that such a D = 2 moduh space 

does indeed exist for all of these solutions. 

For a single wrapped D5-brane, we have the low energy effective Born-Infeld action 

'Sprote = —?5 det(Ga{, + + Qg Ag. (4.42) 

where are coordinates on the brane, Gat is the pullback of the 10(Z spacetime metric, 

^ 6 is the surface gauge held strength and 7^ — 

As in [73], setting = /̂ 2 = 0, and substituting in the background we And the gauge 

potential cancelling against the leading term from the expansion of the square root. 

Thus the (t ,̂ <^) plane is the moduli space. From henceforth we restrict ourselves to 

this moduli space since only on this space can we use field theory intuition in the 

probe world volume theory to And the correct coordinates in which to interpret the 

duality. 

If we allow the probe brane to move slowly on the moduli space and also allow small 

gauge helds on its surface we can And the leading kinetic terms in the probe world 

volume theory. Passing to a new radial coordinate w = ln(z/A), we may write the 

kinetic piece in the form 

87 



y (4.43) 

where 

^ (̂ 2 + sin^ < 2̂](ẑ  + 
iz/A)^ 

+ l ln (z /A)F ' " 'F^ , . (4.44) 

Note that it was the choice of coordinate transformation in (4.29), which allowed us 

to factor out the scalar terms between the coordinate it and the angular pieces //i,^2. 

Using the field equations in (4.30)(4.31) we can evaluate this to be 

/: = [(^VA^ - 6^)^ cos^ (̂ 2 + (z^/A^ + 6^)^ sin^ < 2̂](ẑ  + 

+ ^ ln(z /A)f^ ' 'F^ , , (4.45) 

which can be written in terms of the complex coordinate Z = as 

£ = l „ ( f iZ r + ^ l n f H j f ' ^ ' f ^ , . (4.46) 

This form for the solution does not display the explicit A/̂  = 2 form of the held theory. 

To And such a form we need to pass to a new set of coordinates, 14̂ , such that the 

scalar and gauge kinetic pieces appear with the right normalization 

The appropriate Jacobian and hence the appropriate holomorphic change of vari-

ables [73] may be seen from (4.46) 



M/ = Z + (4.48) 

The gauge coupling now reads 

= 1 . = c o A - ' ( ^ ) + 1 . 5 . (4 .49) 

4.6 T h e G e o m e t r y of t h e M o d u l i Space and D 5 

Dis t r ibu t ions 

We have identified the unique set of coordinates on the moduli space, where the 

field theory duality is manifest. For the brane probe to leave the world volume theory 

(4.47) the geometry in the sub-space corresponding to the moduli space must take 

the form 

(4.50) 

As = 2 A (4.51) 

The background is described by two functions. One we have identified as the gauge 

coupling whilst the other, , remains to be interpreted. We may find an explicit ex-

pression for the dilaton from the metric element which is times the Jacobian 

for the transformation. We find in the z coordinates 

77^ A ^ 
= — ^ [ ( z ^ / A ^ - 6 )̂̂  cos^ ^2 + (/Z^/A^ -t- 6^)^ sin^ <;62]. (4.52) 
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and our solution for jif from (4.33) in these coordinates is 

= 

z^/A^ — 6̂  ln(z/A) ^ ln(z/A) — ^^A^ 
(4.53) 

To attempt to interpret this function in terms of the Held theory we must translate it 

to the coordinates appropriate to the duality, In fact, simply following through 

the holomorphic change of coordinates, we find 

where 

A2 
g,l/2^1/2 1 + 

+ (?i/2 

2 

G = l -
46^A^ 

(4.54) 

(4.55) 

Let us now consider the anatomy of the solution in both the Z and VF coordinates. 

Firstly looking in the Z coordinates the solution has no <̂2 dependence so the D5 

brane distribution must be symmetric in the Z plane. As can be seen from (4.53) 

there is always a singularity in the metric at z = 6. For large TiT though there can be 

a singularity at larger z. In fact we can trade the parameter for the radius of the 

singularity zo 

K 
4zg 

ln(zo/A) 
'z^ + 6'̂ A '̂ 

2zn 
(4.56) 

The function ln(zo/A) when translated to the physical coordinates has the simple 

interpretation of evaluated at the position of the singularity and we will write 

it henceforth as l/g'y^(sing). 

We shall interpret the singularity as indicating the position of the D5 branes. Note 

that any given solution only describes the space zo < z < 00. A probe is therefore 
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restricted to this space and thus only for Zo = 6 = 1 can it reach the enhangon locus 

(a circle here) where the coupling diverges. That distribution must correspond to a 

singular point on the field theory moduli space. 

For large zo we may neglect 6 and the distribution is essentially a circle in the physical 

IV coordinates (since Z ly). As zo reduces, the coordinate transformation to in 

(4.48) distorts the circle by squashing it in the imaginary TV direction. When zo = 6 

the singularity lies on the real line between w = ±26. 

4.7 Gauge Theo ry Coupl ing 

We would like to find the explicit distribution function for the D5 branes cr^,(l/F) in the 

physical coordinates. We can attempt to do this using the supergravity expression for 

and the form of the A/" = 2 held theory prediction for the coupling as a function 

of scalar VEVS. To this end we now give some discussion following [72, 67]. 

Suppose we consider an 6 '[ /(#) Gauge Theory on the Coulomb Branch. The mod-

uli space is then parameterised by the (A^ — 1) scalar expectations in the Cartan 

Subalgebra, 

($) = - - -, G;v), G C 

= 0. (4.57) 
% 

This shows that generally the gauge group undergoes breaking to 5 ' [ / (#) —(7(1)^'^ 

and gives a low energy effective action 

^ ^ y (ZS (^-Im + ^Re j , (4.58) 

where the coupling is determined by the holomorphic prepotential 
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= <9":̂  
(4.59) 

There is both a perturbative part coming from an exact 1-loop result, and a non-

perturbative part that comes from instanton corrections. This was argued in [67] to 

vanish in the large # limit (that is provided > 0(1/7V)). The perturbative 

expression for the prepotential is then 

((̂ : - (4.60) 
OTT "7^ J 

Going back to the brane probe in the previous section, there the gauge breaking was 

5'(/(A/^ + 1) —> [ / ( l ) ^ " ^ X (7(1) where the last factor is the brane probe. In terms of 

its position u the VEV can be written as 

($) = (fzo^('u, oi — « / # , " -, Gjv — 'u/A/') (4.61) 

If we now compute the gauge coupling and take the large N limit, we get the simple 

expression 

^ ^ E [(M - /A^] . (4.62) 

This can now be taken to a continuum limit since TV is large giving 

''"(^) " 77" / c(G(ZGi7(G)ln (ẑ  —a)^/A^ 
zSTT Jj\4 

= / (Za(fG(7(a). (4.63) 
Jm 

We are now in position to make comparisons between the two systems. Prom the 

above we can read oE 

92 



47r 1 /" - (A. — ly \ 
y In ( — ( 4 . 6 4 ) 

However, given the complicated shape of the distribution in t y it is easier to transform 

this equation to the Z coordinates where we know we have spherical symmetry 

^ I (4.65) 

A degree of guess work is required to find the appropriate cr̂  that reproduces the 

coupling in (4.49). In fact the simple guess that the distribution is just a ring at 

z = zo reproduces the supergravity result. Thus 

(7^(Z) = 27r(^(z — zo) (4.66) 

At this stage one must take on faith that the field theory expression is relevant to 

the supergravity solution. In other words we have assumed the duality to obtain 

this result. We will now explore the scalar operators encoded in the supergravity 

solution and show that they are consistent with this distribution function providing 

a non-trivial cross check of the duality. 

4.8 Gauge T h e o r y Ope ra to r s 

We have written the background on the moduli space of the theory in coordinates 

where the gauge coupling takes the explicit form expected in the dual field theory. 

The background involves one other function given by (4.54) in these coordinates. If 

the theories are truly dual we would expect them to be different parametrizations of 

the same information. We should therefore be able to interpret (4.54) in terms of 
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field theory quantities. 

The coordinate l y transforms under two symmetries. The first is the scaling symme-

try of the 4d gauge theory, familiar from the usual It is also present in 

this case, as can be seen from the way that 14̂  enters the gauge coupling as an energy 

scale or from the requirement of a consistent scaling of the metric, but it is broken by 

a number of parameters. Thus has mass dimension one. PK also transforms under 

the U(l) symmetry of the 2d plane which corresponds in the held theory to the U(l) 

symmetry on the complex scalar. So looking in (4.54) we can identify the symmetry 

properties of the constants and hence match them to field theory quantities. A has 

mass dimension one and is a U(l) symmetry invariant - it plays the role of the strong 

coupling scale in the held theory as is apparent from its appearance in the coupling 

(4.49). -fT has dimension two and is uncharged under the U(l) symmetry - it con-

tains two components which we will shortly show can be written as chargeless scalar 

operators or equivalently as moments of the D5 distribution. Finally the function 

contains a dimension 2 operator of charge two which we shall again match to a scalar 

operator. 

The = 2 held theory on moduli space should be described by the running coupling 

and the scalar operators. We have deduced the distribution function for the vevs 

above (4.66) from the form of the running coupling and hence can calculate these 

functions to see if they match those in (4.54). There are two dimension two operators 

we can calculate corresponding in the held theory to the chargeless ajid the 

charge two We must calculate these operators in the physical coordinates, 

O2 = ^ / (7z(z)ty(^)"(^z(^z = 26^A^ (4.6?) 
' X /1 '"X / i 
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1 r _ I f _ A4 A 4 
Oo = — / = ^o + - ^ (4-68) 

47r V 47r V Zo 

Pleasingly these functional forms precisely match the coefEcient of the gauge coupling 

in A' (4.56) and the operator in G (4.55). We are left to explain the form of the hrst 

term in A" which is not one of these moments. However, it is clear from (4.54) that 

the solution contains the quantity which is chargeless and dimension 

two. This hrst term can be written as a combination of the two chargeless operators. 

Thus we can write 

(4.69) 

and 

G = 1 - . (4.70) 

The encoding of the operators in (4.54) is quite complicated but it is encouraging 

that the correspondence can be made between the two duals. It is also nice that the 

distribution function determined above from the gauge coupling does indeed match 

to the functional form of the operators parametrized by the rest of the background. 

Note that this constitutes the first cross check of the assumption in (4.64) that the 

coupling of the probe world volume theory in the supergravity background is indeed 

governed by the field theory expression for the running coupling. 

4.9 Prec i s 

We have studied the supergravity solutions found in [72, 73] which were obtained by 

studying 7d gauged supergravity and then lifting the solutions to lOd. The solutions 
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are expected to be the near horizon geometries of D branes wrapped on and to be 

dual to W = 2 SYM theory in 4d. We have identified the unique coordinates in which 

the theory on the world volume of a probe D5 brane takes A/" = 2 form. Restricting to 

the subspace of the background that describes the field theory's moduh space where 

these coordinates are known, we have shown that the background is described by 

two functions. One of these is the running gauge coupling of the field theory whilst 

we have shown the other parametrizes the field theory operators. Using the field 

theory expectation for the form of the running gauge coupling as a function of the 

D5 distribution, that distribution can be determined. We have shown that the scalar 

operators corresponding to the moments of this distribution function match the form 

of the parameters in the second function determining the background. The end result 

is remarkably clean showing that the two dual descriptions do indeed encode the same 

physical content, as has been previously observed in — 4 SYM on moduli space 

and its gravity dual. The result also confirms that the supergravity background is 

controlled by the gauge theory dynamics and that the only renormalization is through 

the gauge coupling. 

Understanding how the gravity background encodes the dual held theory operators is 

hopefully a major step towards enlarging the class of known solutions. In particular 

the function G in the background (4.54) looks ripe to be interpreted in general as 

an harmonic function of the two dimensional Laplacian. To confirm whether such 

an extension of the solution is possible requires more work than that presented here 

since to test a solution of the supergravity equations one needs more than a restricted 

subspace of the solution as we have. Understanding these backgrounds off the field 

theory moduli space, where the field theory is less well understood, is an important 

challenge for the future. 



C h a p t e r 5 

A N o n - S u p e r s y m m e t r i c 

De fo rma t ion of A^=4 

In this chapter we return to deforming the original correspondence. We 

will in fact introduce a mass term of the form — 

2^^%^ — which is naively unbounded. This is precisely the operator O = 

studied in Chapter 2 as a VEV, but considered here now as an operator 

insertion + O. Our interest is in developing the technology to find and lift 

these solutions to lOd so we will not be so concerned by the runaway behaviour 

(although the lOd solution we provide correctly reproduces the expected behaviour). 

One might hope that there would be such backgrounds that are really stable since 

an S0(6);t singlet scalar mass term is not visible in the supergravity solution as it 

is not in a short multiplet. Its presence could stabilize the solution. Note that the 

supersymmetric deformations [84, 85, 86] already mentioned require this operator to 

be present. In fact our brane probe potential reveals the operator not to be present in 

our lOd lifts. Our solution is also of interest since it is probably the simplest example 

of a non-supersymmetric deformation; only the metric and four potential helds are 

non-zero. See also [87, 88, 89, 90]. 
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In the next section we will discuss the introduction of our deformation at the 5d 

supergravity level. We then lift the full solution to 10 dimensions. Brane probing 

the background with a D3 brane shows that asymptotically the background indeed 

includes the operator we hoped to introduce showing the consistency of the techniques. 

Finally we plot the potential seen by the probe for the full solution. 

5.1 De fo rma t ions in 5d S u p e r g r a v i t y 

5.1.1 A Scalar Operator 

Let us now make a particular choice for the scalar held we will consider. We take a 

scalar from the multiplet in the 20 of 6'0(6)B as in chapter 2. In particular we will 

choose the scalar corresponding to the operator 

O - (5.1) 
1=1 i=3 

This scalar has been studied in chapter 2 already in its role of describing an A/' = 4 

preserving scalar VEV and as a mixture of a mass term and a VEV in the A/" = 2* 

gauge theory of chapter 3. The potential for the scalar, which we will write as 

/) = ig given by 

y = - 2 / (5.2) 

and the three equations of motion become 

+ = (5.3) 

6 / ^ - 6 I ^ = - 2 y (5.4) 



A" - -4 (5.5) 

The last of these is the sum of (1.76) and (1.77). The asymptotic (r -4 oo) solutions 

take the form 

A = (5.6) 

with X the scalar VEV and 5 a mass term for the operator O. 

In the special case where only the first part of the solution is present the deformation 

preserves A/" = 4 supersymmetry. The superpotential is 

P ^ 

and the second order equations reduce to the first order equations 

with solution [57] 

e'-" = (5.9) 

with a constant of integration. 

5.1.2 Non-supersymmetric First Order Equat ions 

In [91] it was pointed out that using Hamilton Jacobi theory the second order equa-

tions could be replaced by a system of first order equations. They further stated that 

a ^superpotential", ty , could be found which resulted in the equations (1.79) even 

for the non supersymmetric solution with only 5 switched on. A similar result was 

obtained in [92, 93] but aa a requirement for the RG Sow solution to be stable. Re-

ducing the equations to first order would be very helpful, but the system we discuss 
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here can not be. 

Consider the UV of the theory where, expanding (5.2) 

y = - 3 - 2 A " + ^ A ^ + ... (5.10) 

we can attempt to find a snperpotential W" that reproduces this potential via the trial 

form 

V^ = G + 6Â  + cA^ + ... (5.11) 

Working to quadratic order one finds 

a = —3, b = —2 (5.12) 

The solution for 6 comes from a quadratic equation with degenerate roots hinting 

at the two forms of the solution. However, it is then easy to show that at higher 

orders there is a unique series (eg c = ^ ^ 2 7 ) and it is simply the supersymmetric 

solution. We have therefore not been able to find a superpotential that describes the 

non-supersymmetric solution and are forced to numerically solve the second order 

equations. Of course our geometry is intrinsically unstable since we have introduced 

an unbounded operator in the field theory. Apparently the stability of the fow is 

essential for the system to reduce to first order. 

5.1.3 Numerical Solutions 

The second order equations of motion are easily solved. In figure 1 we show the 

numerical behaviour of p. For this plot we fix /)(r = A[/y) and vary the derivative. 

The purely VEV supersymmetric solution (B = 0) and purely masslike case (.A = 0) 

are labelled. The three regions (bounded by the / l = 0 and 5 = 0 curves) correspond 

to 
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B=0 

P 
1 . 0 0 5 

1. 01 

0 . 9 9 5 -

Figure 5.1: Plots of p vs r for a variety of initial conditions on /)'. The VEV only 
initial condition solution is marked with 5 = 0 and mass only initial condition with 
^ = 0. The marked regions are explained in (5.13). 

A B 

I — (5.13) 

II 4-ue 

/ / / —ue +ue 

In each case the function v4(r) deviates from A(r) ^ r by a small amount so a plot is 

unrevealing. Note that most of these solutions become singular before r = 0. When 

lifted to lOd this singular point is expected to correspond to the position of the D3 

brane sources in the transverse space. For most of these solutions there is a scalar 

VEV and so the D3 branes are expected to have moved away from the origin. The 

mass only solution (yl = 0) on the other hand can be extended to r = 0 which is 

consistent with the D3 branes being pinned at the origin. 

It has proven dilEcult to extract aspects of the held theory from the 5d supergravity 
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backgrounds. More success has been had at the lOd level where techniques such aa 

brane probing can be used to connect to the field theory. We shall therefore move to 

discussing the lift of these solutions to lOd in the next section. 

5.2 T h e lOd Background 

To lift the 5d solution to lOd requires the procedure outlined in [94]. Finding the 

metric is complicated but we will be able to short cut the process since the lift of 

the 5d solution where the A/' = 4 theory is on moduli space has already been written 

down. In particular the solution where our scalar corresponds to a VEV has been 

studied in [57, 1] (it is also the limit of the metrics in [85, 86] with some of the fields 

switched off). That solution is given by 

y l / 2 y l / 2 / r 2 

-| f —-
A A 

(5.14) 

where is the metric on a 3-sphere and 

% = cos"g + / s i n ^ ^ (5.15) 

For consistency there must also be a non-zero v44 potential of the form 

p4v4 Y 
A4 = A A (Za:" A (5.16) 

Note that the solution has the same 5'C)(2) x 5'0(4) symmetry as our operator 

Eqn. (5.1). 

Clearly the lift of the full solution of the second order equations has this as a limit. 
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In fact the procedure for hnding the form of the metric does not depend on the su-

persymmetric solution and we may take it over directly to our case. The ^4 potential 

though will change since the supersymmetric first order equations of motion were 

used in its derivation [57, 85]. 

In fact the lOd supergravity equations of motion we must concern ourselves with are 

relatively few since only the metric and are non-zero. There are the Einstein 

equations 

(5.17) 

and 

F(5) =* = 0 (5.18) 

The self duality condition can be imposed by using the ansatz 

where K;(r, ^) is an arbitrary function. 

There are three independent non-zero elements of which factorize into the useful 

equations 

R \ + R ' r = ' (5.20) 

1 nn 11 AA / ^ i °o - f l ' v = 5 » ° v y v y M ^ (5.21) 

= (5.22) 

These are straightforward but laborious to explicitly calculate. We then use the sec-

ond order equations of motion to eliminate /)", A" and The resulting background 
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will therefore reproduce the full second order equations of motion. The middle of the 

above equations can be used to find the angular dependence of w giving 

3sin^^/)'e 4A 
= — (5.23) 

Note that the super symmetric limit corresponds to F ( r ) = 0 and p' replaced using 

the supersymmetric first order equation of motion (5.8). We should not be surprised 

that derivatives of p enter directly into the solution since introducing a mass term 

corresponds explicitly to introducing an extra degree of freedom via precisely this 

derivative. 

f can then be found using either of the other two equations (the third equation 

providing a check on the consistency of the solution). It is the solution of 

- 2 - 2 / = + 4 / F A ' + / F ' + 2 p / (5.24) 

We have not been able to solve this equation explicitly but in the UV limit the solution 

takes the form 

F = - — P + .... (5.25) 

which clearly vanishes in the supersymmetric limit given (5.8). For a general nu-

merical solution of the second order equations of motion we can set the boundary 

conditions on F using this asymptotic form and hence And F numerically. 

The solution then faces its strongest test since must also satisfy its bianchi identity 

(5.18). At first sight this appears to be a challenge; since w contains a derivative of 

/) the bianchi identity is a third order equation. In fact explicit computation shows 

that the second order equations of motion are a solution of this third order equation 
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Figure 5.2: The probe potential plotted over the r — ^ plane for the mass only case 
= 0 ) . 

and the solution survives. 

Given the complete lOd lift of our non-supersymmetric solutions we can study the 

background for signals that it correctly encodes the field theory dynamics. 

5.3 B r a n e P r o b e Po ten t i a l 

It is now an automatic procedure to substitute this into the DBI action. The resulting 

scalar potential is given by 

„4A % 3 sin^ 1 — + ^ + f 
p 

(5.26) 

It is illuminating to evaluate this potential at leading order in the UV with 

(5.27) 
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W e find 

y = m^e^"(2-6sin^g) + ... (5.28) 

The scalar VEV vanishes from the potential at this order consistent with the existence 

of the A/" = 4 moduli space. The mass term reproduces precisely the mass operator 

we expected in Eqn. (5.1), and we conclude that the lOd background shows all the 

correct behaviour to be dual to the non-supersymmetric gauge theory with scalar 

masses. 

Finally we numerically plot the probe potential in the r — ^ plane for the mass 

only solution ( ^ = 0) in Figure 5.2. The plot hts well with the claim that the 

mass operator Eqn. (5.1) is present. The supersymmetric solutions (5 = 0) give 

a flat probe potential. Other non-supersymmetric solutions reproduce the form of 

Figure 5.2 up to a sign change dependent on the sign of B. 

5.4 Prec i s 

We conclude that we have successfully found the lOd gravity dual of this simple 

non-supersymmetric deformation of the Correspondence. Whilst it may 

appear an unphysical example, it has been an important step in constructing a non-

supersymmetric dual example and a step closer to a QCD duality. It has also shown a 

novel feature, in the form of the ansatz for the 4-form gauge potential, and in moving 

away from a known supersymmetric case in a minimal way. 
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C h a p t e r 6 

Overview and Conclus ions 

We have now reached the end of our road. What the previous chapters have shown 

is that the conjecture is a very concrete proposal, but not without its 

difBculties. One can see that when it is in the conformal phase, it is a very perfect 

system, but when we move away from here, complications set in. This is clearly 

illustrated in chapters 2 and 3. Everything is very clear when we are looking at the 

A^=4 Coulomb branch, but there are diSculties when we try and study non-conformal 

theories such as by an operator insertion. The direct proposal of a duality that we 

looked at for another non-conformal SYM didn't have the problems of chapter 3, and 

seemed to be a good example of a low energy SYM, albeit that very particular VEVS 

are switched on; it would be good to make a similar generalization as is Chapter 2, 

as an expansion of the harmonic function. 

It also raises interesting questions for our outlook. In all that was considered, one 

noticed that certain quantities were renormalized, whilst others weren't. The general 

idea is that the radial coordinate in should correspond to the energy scale in 

the field theory. This is somewhat of a vague notion, and I believe it is of high 

importance to make this identification precise. In [95], an approach is followed that 
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is based on the local coupling approach in field theory. Local couplings have a very 

natural interpretation in as they are simply supergravity fields. It is 

understood in the conformal case, so the next step would be to make it clear in a 

non-conformal setting. One then may be able to make precise statements for field 

theories by using their gravity dual. 

One might also wonder about QCD, and how it could be obtained from some dual 

picture. To this end, we have been looking at a non-supersymmetric deformation 

where all the gauginos are given a mass. The scalars then also get masses from 

loop corrections, so that in the 772 we are left with pure glue. It should be stressed 

the level of complexity at hand as there are many fields switched on, and trying to 

find a solution without some special ansatze looks a hopeless task. If it does work 

however, it will provide a very good hrst step to looking at QCD. Some progress 

has been made at introducing quarks in [96], which is very interesting 

phenomenologically because one may hope to compute a meson spectrum in a similar 

manner to computations of the gluebaU spectrum [43]. 
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A p p e n d i x A 

A . l Max ima l ly S y m m e t r i c Spaces 

Consider a spacetime of dimension D with a cosmological term. Then the vacuum 

Einstein held equations are [97, 35, 43, 34, 44, 98] 

- gGMN-R = (A.l) 

which implies that 

= - g _ (A.2) 

Spaces of this type, where the Ricci tensor is proportional to the metric tensor are 

called Einstein spaces. Clearly, there are a large claas of solutions, so we make the 

further restriction to look at maximally symmetric solutions where 

(A.3) 

By considering this minimal construction of the Riemann tensor out of the metric (in 

terms of its symmetry properties), it can be seen the solutions admitted will be highly 

symmetric. In fact they are spheres, 5"^, de Sitter spaces, (A > 0), and anti de 
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Sitter spaces, (A < 0). They are maximally symmetric, homogeneous, isotropic 

solutions.The sphere is obviously a highly symmetric space, so in what follows it is 

useful to consider spheres at the same time. At each point on the way then there is a 

more familiar space to help us understand these new hyperbolic spaces and 

their properties. 

H we were to consider spherical spaces, we usually start by defining them via embed-

ding in a space of one higher dimension. For a sphere we would embed the surface 

+ XI + Z X,' = L' 
4 = 1 

in the Sat D + 1 dimensional space with metric, 

D-l 

% = 1 

Similarly, this is done for the hyperbolic space by embedding the surface, 

= K 4 ) 

i= l 

in the Sat D + l-dimensional space in complete analogy. This space has the Sat metric 

D-l 

(fa" = + E - (A-^) 
i=l 

Just as the sphere inherits its metric from from the Euclidean embedding space, this 

also happens for To obtain this metric we need to 'solve' (A.4), and put 

this constraint into the embedding space metric. If this were done for the case of the 

sphere, we would solve by using trigonometric functions at a constant radius Here, 

since there are two minus signs, it may be seen the need to use hyperbolic functions 
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Figure A.l: The space via embedding. 

as well [43], justifying why we call it a hyperbolic space. Doing this we find 

(fg (—cosh pc^r'-l-tZp' + sinh (A.6) 

These coordinates (called the global coordinates), cover the whole sub-manifold 

once (see Fig A.l, when p > 0 and 0 < r < 27r. Although it looked like there was 

two time-like directions, the above shows there is only one. Looking in the region 

/) = 0 (where we see the topology of the space is 5"̂  x in the r direction 

there are closed time-like curves (note that this space is not simply connected), which 

aren't usually allowed. If we unwrap this, the spacetime becomes causal (the universal 

covering space). 

Let us discuss the symmetries of these spaces. Clearly the isometry group of 

is 5 '0(2,D — 1), since both the embedding space metric and (A.4) are invariant. 

Note that this is the conformal group in (D — 1) dimensions. There will therefore be 

D(D -|-1)/2 Killing vectors. Any theory dehned on this space, will have an invariance 

group just as large as more familiaj theories on Aat spaces of the same dimension (the 

Poincare group). The maximal compact subgroup is 5'0(2) x 5'0(Z) — 1), and these 

111 



can be used to give representations to a particle spectrum (e.g. singletons [44]). 

There are yet more interesting properties; let us discuss the of this space 

(assuming we have conformally compactified it), which is a projective boundary. Sup-

pose we consider a point % G which is very large with respect to the length 

scale of the space. Dehne new coordinates 

(A.7) 

s.t. y > oo. Therefore we see that the boundary must be 

+ 3;^ - 12 a;? = 0, (A.8) 
i = l 

subject to the projective equivalence class 

a; ^ Acc. (A.9) 

This means that the boundary is (D — l)dimen8ional, as required [35]. It has the 

topology of (5"̂  X 5'^"^)/Z2 [5, 99]; we found that the space having the topology 

5"̂  X which for p — 0 0 explains the boundary topology. If we consider the 

universal cover then the boundary becomes x We should consider points 

at infinity, as we need to discuss conformal compactification. This is where we con-

formally rescale the metric such that, points at infinity, which are not points in the 

original metric are brought into finite distance in the new metric. With these points 

added, we have conformally compactihed the spacetime. If we take R ^ and add a 

point at infinity, this yields 5"^. Similarly, R^ x 5"^"^ is the conformal compactifica-

tion of D — 1 Minkowski spacetime (a point at spacelike infinity has been added). This 

is relevant because, when looking at conformal field theories in Minkowski spacetime, 

its conformal compactification must be used; conformal transformations can map an 

ordinary point to infinity [5]. What we see is that the boundary of is precisely a 
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7r/4 

9 = -K12 

Figure A.2: The AcfS" Poincare patch. 

Minkowski spacetime of one lower dimension, appropriate for a conformal Aeld theory. 

Let us discuss some different coordinate systems, used to describe This is an 

essential requirement, as one frequently encounters different coordinate systems in 

the literature. It will also help clarify the causal structure of the spacetime to follow. 

Define coordinates, 

^0 I vD 

X' /, = 0 , . . . , D - 1. 

(A.IO) 

(A.l l) 

(A.12) 

The idea here is to switch to a radial coordinate, and scale it out from a Minkowski 

looking line element. This explains the last definition, from which the first two can 

be deduced from consistency of the embedding equation. The metric then becomes 

(A.13) 

known as the Poincare metric with (see Fig. A.2) as its Poincare patch [44]. Because 
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of the type of exponential mapping, only half of the space gets covered, due to the 

positive definite coordinate changes (A.10, A.11). We can pass to another form of 

the metric by the radial redefinition (7 = which gives 

== (A.14) 

This has the boundary structure of the single point (7 = 0, plus the plane at (7 = oo, 

which is the Minkowski space So the boundary of AcfS' space is really identical 

to the conformal compactification of Minkowski spacetime. Yet another is obtained 

by setting z = 1/(7, with the metric 

(̂ 6̂  = (A.15) 

The boundary consists of a plane at z = 0, and a point at z = oo; it is located at an 

infinite distance from any point of the space. A final set of coordinates, which can be 

obtained from (A.6), by passing to a new angular variable, as we do when looking at 

Minkowski space. Define 

tan^ = sinhp, 0 < ^ < 7r/2, (A.16) 

from which (A.6) becomes 

+ sin" g(Zn^_2). (A.17) 
cos 

So there are different sets of coordinates in which to describe the space, not all of 

which are a complete cover; let us conformally compactify (A.17) to look at the causal 

structure. This is because it looks like the Einstein static universe, which we can draw 

a Penrose diagram for. Rescaling by the conformal factor yields 

da" = ( - ( f r " + + sin" ^c(flg_2). (A. 18) 
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e = o 1+ 

Figure A.3: The space is put into the Einstein static Universe. 

Since 0 < ^ < 7r/2, the conformal mapping is only into half of the conformal com-

pactification (the Einstein static universe, see Fig. A.3). 

This serves as a dehnition for the asymptotic regions of AdS"; a space-time is agi/mp-

if its conformal compactihcation has a boundary structure the same 

as one half of the Einstein static universe. This is a useful definition, for when de-

formed metrics are considered, they should have this asymptotic form. Considering 

a spacelike hypersurface, the boundary is at ^ = 7r/2, with a topology of how-

ever the full boundary extends in the time like direction, so the Cauchy problem 

requires specification by giving a boundary condition on the R x 5"^"^ submanifold. 

From [97], note the following; we cant make a conformal transformation that brings 

time-like infinity to a finite point, so we represent them by the disjoint points 

(see Fig. A.4). 

There is no Cauchy surface, so whilst we can put initial data on a spacelike hypersur-

face 2, prediction past the Cauchy development D"'"(S) is hampered by the arrival of 

fresh information from [100]. 

115 



1+ 

Figure A.4: Timelike infnity is represented by separate points. 

As a closing remark, it is also apparent that massive particles moving along geodesies, 

can never reach the boundary, whilst light rays can reach the boundary and come 

back in hnite time (as observed by an observer moving on a time-like geodesic). From 

Eq.( A.6), we see the coordinate time to reach the boundary is 

CO 2 

0 ^cosh(/)) 
= 7r/2. (A.19) 

So light rays can travel from the centre of space to the boundary and back 

again in a time 7r (with suitable boundary conditions). Had we looked at time-like 

geodesies, we would have found an infinite result. 

116 



A p p e n d i x B 

B . l Twis t ed Field Theor ies 

B.1.1 The Basics 

In tMs appendix, we give more details of the twisting which occurs in the snpersym-

metric field theories in 4. This is based on [101], where its connection to Donaldson-

Witten theory is discussed. 

Firstly consider the global symmetry group of A/^=2 SYM in R^. The Lorentz covering 

(Euclideanised) group is 

5'pw(4) = X (B.l) 

In addition, there is the R-symmetry group 

7^ = ^[/(2)BX(7(l)A. (B.2) 

With these, the supercharges can be classified i.e. they transform as 

G (B.3) 
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0/6 G ^0, - j (B.4) 

In addition, they satisfy the algebra 

{QL 0J/3} = (B-5) 

We are now in a position to give a clear definition of twisting. 

Def ini t ion 3 TAe ^Aeon/ zs wAere (Ae zg (o 6e j5'(7(2)^ x 

5'(7(2)_, wAere 6'(7(2)^ zg gu6 r̂o%fp o/5'[/(2)+ x 5'f/(2)B. 

So the global symmetry index, 7, becomes a spinorial index a, that is and 

(^a/3' Clearly, there is a trace which can be defined as well Q = These new 

charges transform under the new global symmetry group 6'[/(2)^ x 5'[/(2)_ x (7(1)^ 

as 

0(a/3) G (1,0)^ (B.6) 

0 G (0,0)' (B.7) 

GrJ e ( i . i ) (B-S) 

At this point, all that has been done to the theory, is a fancy rearrangement of 

the symmetry groups with the appearance of a scalar symmetry generator Q. But 

this appearance is important because we can now pass to a curved manifold (e.g. 

covariant derivatives do not require a connection). If the energy momentum tensor 

can be written as some quantity under a Q transformation [101] then the theory is 

topological (twisted theories are regarded as Euclidean theories. The twisted algebra 

is now 

(G'9) 
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{ 0 , 0 } = 0, (B.IO) 

and shows this to be a necessar;/ condition for it to be a topological theory. In models 

studied this is in fact true for the whole energy momentum^ tensor. In fact the algebra 

is precisely the basic equations that occur in a topological quantum field theory. 

Now let us address the system on a general manifold. Whilst on the original and 

twisted theories are equivalent, this is not true on a curved space because the energy 

momentum tensors are different [101, 102, 103]. The spin of the helds change since 

the R-symmetry index becomes spinor valued due to the twist. This implies that the 

couplings to the background metric M are altered. It may be viewed as arising from 

firstly the this has the eEect of coupling the new gauge field to the 

R-symmetry current and thus the Lagrangian is changed 

r r + / A , . (B.l l ) 

Clearly then this will change the energy momentum tensor. At this point quantities 

like correlators depend both on the spin connection and the gauge held. Identifying 

the gauge connection with the gpm connection on M, will produce diagonal (topo-

logical) correlators [103]. That this is equivalent foUows from noting the diEerence in 

energy momentum differs by a term involving the current This different coupling 

to gravity implies field's charges with respect to the current then must change their 

transformation law! Sequentially it produces a change in the spin connection and 

therefore the energy momentum tensor, and then in turn changes the couplings of 

the fields to gravity. See also [102]. When the gauge fields are set equal to the spin 

connection, covariant derivatives are modified so as to be compatible with the original 

twisted energy momentum tensor. 
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Let us state how the W"=2 Aelds are changed under the twisting operation; 

A i a ^ - , 0 , ^ , 7 7 ( 0 , 0 ) (B.13) 

A i a ( 0 , - > ' (^-14) 
1 i V , / I 

2 ' 2 ; ^ ^ ^ 4 2 ' ^ 

B(0,0,0)-" ^ A(0,0)- \ (B.15) 

^*(0,0,0)+" 4 0 , 0 ) + \ (B.16) 

D,,(0,0,1)° ^ G.X1,0)°. (B.17) 

In Section 4, we are considering a twisted theory; our world volume M is 

a product manifold M = x S, and the twisting is performed on 2. This then 

enables us to preserve some supersymmetry (there are killing spinors) and also have 

the usual field theory in the R^. 
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A p p e n d i x C 

C . l S u p e r s y m m e t r i c B a c k g r o u n d s 

In this section, we would like to make to some general remarks on how some su-

persymmetry is preserved in a given background. This is very much in the spirit of 

chapter 15 of [17]. 

Suppose we consider local supersymmetry so the infinitesimal spinor supersymmetry 

parameter is some function of the coordinates To this there corresponds a 

conserved supercharge An unbroken supersymmetry, is given by the condition 

O»|0), (C.l) 

where |0) is the vacuum state. This can be rephrased in terms of its behaviour with 

some other operator [/. The above condition implies 

(0|[Q,[/]±|0) = (^[/ = 0. (C.2) 

When is bosonic, this condition is simply satisfied by setting the fermions to zero. 

For a fermionic operator this gives a non-trivial equation. At tree level when <̂ (7 and 
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coincide for string theory, this amounts to solving two types of equation; one 

for the gravitino and one for the 8pin-l/2 fermions. As an example of these, we shall 

write down the IIB variations (which are used in chapter 2). These are [29] 

4.4.5! 

— 9r^^(7MArp)e'' + (Fermz)^ (C-3) 
3.4! 

<̂A = + (C.4) 

These equations have a variety of uses, in finding particular solutions to the super-

gravity field equations. Into these one can put an arbitrary metric and dilaton ansatz 

in trying to And a supersymmetric solution = 0 a-nd = 0), whilst the held 

strengths must satisfy certain Bianchi identities. 
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