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This thesis discusses several ezamples of deformations of the AdS/CFT correspon-
dence and a direct proposal. N'=/4 SYM is first studied on the Coulomb branch, where
we find a simple parametrization of gauge theory operators in the corresponding grav-
ity solution. Next we consider N'=4 SYM where a supersymmetric mass term is added
to give a low energy N'=2 SYM. We try to make similar interpretations here, but find
there is some difficulty in the interpretation of ultraviolet remormalization. Then a
setup of wrapped branes is found to give a pure N =2 SYM theory in the infrared.
The operator parameterization works well in this case. In these N =2 theories, we
use a gauge theory result for the coupling to deduce the distribution of D branes in
the transverse space. Finally a non-supersymmetric mass term is added to produce @
more QCD like theory. The scalars are all given a mass which leaves pure glue in the

infrared, and we successfully find an explicit gravity dual that is consistent.
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Chapter 1

Introduction

1.1 Preliminaries

The AdS/C FT correspondence [4] has provided the first example of a fascinating du-
ality between a particular strongly coupled gauge theory and a weakly coupled gravity
background (to be described). It has immediately been of interest to extend the class
of such dualities to other gauge theories and gravity backgrounds to understand how
the duality manifests itself. A number of techniques have been used to push forward
these explorations; finite temperature may be included by compactification of the
time direction [5, 6], relevant deformations can be included by switching on appro-
priate supergravity fields that act as sources in the supersymmetric gauge theories
e.g. [57], and new D brane structures with different world volume theories and their
near horizon geometries may be constructed [70, 71]. It is natural to want to make
a deeper investigation of some of these dualities. In principle two theories which are
dual should simply be reparametrizations of the same “solution”. Thus if we know
the complete solution to some field theory the corresponding gravity dual should

be uniquely determined. Understanding how this encoding occurs in some simple



theories will hopefully lead to new tools for constructing a wider class of dualities.

The overview of this thesis is as follows. In this introductory chapter we give some
motivation for studying the AdS/CFT conjecture based on 't Hoofts work. Super-
gravity is then discussed together with Branes that will be used throughout this work.
One is required to make field theory connections so next the details of various SYM
theories are given. Then, a description of how the conjecture is realised together with
a discussion of using D = 5 supergravity. We conclude with a section on how and

why brane probing is a necessary procedure.

Chapter 2 gives the first practical example of looking at a non-trivial vacuum struc-
ture of the gauge theory i.e. the A'=4 Super Yang Mills (SYM) on the Coulomb
branch. We verify the D3- solution solves the field equations and check the amount of
supersymmetry. Then the D = 5 supergravity solutions are discussed and their lift to
D =10. A brane probe is used to show the no-force property. We then show how the
scalar vacuum expectation values (VEVS) are written in the harmonic functions and

discuss the distribution of D3-branes. The specific solution found is then generalized

to the whole of the moduli space.

Chapter 3 is in a similar spirit to the previous chapter. It should be thought of as
complementary. In addition to that case, we are considering a supersymmetric mass
term that has been added to the A'=4 theory so that in the infra red, we are left with
an N'=2 theory. We also brane probe this D = 10 solution and deduce the gauge
coupling from this. Additionally to the previous chapter, a gauge theory result that
gives the gauge coupling in terms of the scalar VEVS is used to aid computing the
distribution of D3-branes. In the ultraviolet one expects this to flow back to the A'=4

case, but we find additional logarithmic renormalization.

Chapter 4 is devoted to another N'=2 case. We discuss the wrapping of branes from

both the field theory and gravity point of view to get the desired theory. We then



solve the D = 7 fermion variations of supergravity variations and lift the solution to
D = 10. Again this is brane probed and follows the same procedure as the previous
chapter. We identify the gauge theory operators and rewrite the metric in terms of

these and deduce the distribution of D5-branes.

Chapter 5 gives an example of a non-supersymmetric deformation. An equal mass
is given to four of the scalars, whilst the two other scalars have the same tachyonic
mass, twice that of the four scalars. In the infrared these decouple and we are left
with a pure gauge theory. Numerical solutions are found in D = 5 supergravity. We
construct an ansatz for the gravity fields that lifts the corresponding supersymmetry
conditions in the minimal way. The field equations are then checked for consistency

which is a nontrivial procedure. A brane probe is then performed and the probe

potential deduced.

Chapter 6 gives a summary of what we have found and outlooks on what it would
be interesting to look at next. Finally there are three appendices that would have
interrupted the flow in the main text, but are interesting in themselves for some of

the deeper issues only touched upon in the main body.

1.1.1 Motivation

As a way of motivating the AdS/C FT correspondence, we shall outline two fundamen-
tal ideas due to 't Hooft [11, 12], that are answered somewhat by the correspondence;

namely large-N gauge theory [13] and holography. This discussion is based on [39].

As a motivation, we would like to be able to study Quantum Chromodynamics (QCD
see [9]) and its implications such as how do quarks confine. Instead of working with
SU(3) consider working with SU(N) (we now have an extra parameter that might be
useful for control). One can then try to express physical quantities as an expansion

in (1/N). Consider Fig. 1.1 It would be nice if the residual interactions between the
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Figure 1.1: Expected behaviour of hadronic residual interactions.

hadrons behaved like ~ (1/N). Then, one could separate the confinement problem
from the residual hadronic interactions in the N — oo limit. To this end let us
consider a general field theory with degrees of freedom A that transforms in the

adjoint representation of U(N) (M is any type of symmetry index). In the large IV
limit SU(N) differs from U(N) by a (1/N) factor and so are essentially the same (at

the classical level). A general action will look like
S[A} = /dDI’TT ((814]\/])2 -+ ngNpAMAN(ﬁAp) - QQhNUVPQA‘MANAPAQ) (11)

where g is a coupling constant and fynp, hvnvpg are structure constants determining

the interactions. We could also consider terms that involve derivatives. Now we con-
sider doing a perturbation theory analysis of this theory using Feynman diagrams [9].

What is relevant for evaluating the Feynman Diagram /NV-dependence is

1. how g appears in S[A],

2. Ajr are in the adjoint representation.



Let us introduce the 't Hooft parameter A = ¢?N, such that
N = oo, ¢* =0, \= fized. (1.2)
If we rescale the fields by Ay — Apr/g then the action Eqn. (1.1) becomes
S[A] = % [ dPaTr ((0400)* + frunr A An(OAP) + harvrg A AnApAg)  (13)
This leads to the following properties when we evaluate a Feynman diagram,;
1. a factor of (A/N) for each propagator.

2. a factor of (N/A) for each vertex.

3. a factor of 3°, 6%, = N for each loop of group indices.

To evaluate the N-dependence of the diagrams we make the following definitions;

e V = number of vertices
e I = number of propagators
e F' = number of group index loops
A Feynman diagram then contains the factor NV =P+ which tells us which diagrams

are dominant. Since the adjoint representation can be viewed as a direct product of

fundamental and anti-fundamental, a Feynman diagram becomes a simplex with the

identifications

e F' = number of faces

e [ = number of edges



e V = number of vertices

Recalling Euler’s Theorem [10] that
V-E+F=2-2H (1.4)

where H is the number of handles of the surface, one can see that a perturbative
expansion is organized into a sum over topologies! Consider a vacuum amplitude (a

diagram with no external legs); it will look like

A(N, ) = i N2 Ap (). (1.5)
H=0

We see for N — oo, the amplitude is given by a planar diagram.

This is suggestive of perturbative string theory, in which amplitudes are given by a
sum over two dimensional topologies [16, 18, 53]. The proposal of 't Hooft was that

a large N gauge theory should admit a string description [11]. The AdS/CFT goes

some way to realizing this.

We should now mention the second idea of 't Hooft [12] that is instrumental in the cor-
respondence. From the Bekenstein formula for black hole entropy Seneropy = A/4GN,
where A is the area of the boundary of the region, and G is Newton’s gravitational
constant. One finds that it is possible to violate [43] the second law of thermodynam-
ics. This relation implies that the degrees of freedom in the region enclosed by the area
grows as the area and not the volume. One is led to a “holographic” principle [14, 15]
which demands that for a quantum theory of gravity all the physics in the volume s to
be described by degrees of freedom on the boundary. To satisfy the Bekenstein bound,
there must be less than one degree of freedom per Planck area [12, 39, 43]. This then

is the second feature that is incorporated into the AdS/C F'T correspondence.



1.1.2 String Theory: Facts and Folklore

Having given a clear set of motivations for studying the AdS/CFT correspondence,
let us now give a lightning discourse of string theory (see [16, 18, 53]). The starting
point is to write down an action. The Nambu-Goto action is the natural one since
it is simply the worldvolume of the string worldsheet. However this is difficult to

quantize, and the classically equivalent Polyakov action
1 1 _
(X, 0] = o [ @0 XM 0Xu) + o= [ Eo(@ya, 1.6
STX, ¥ Tre a(n™ 0, X™ Oy 1\1)+47r d*o (Y™ 4" 0atbm) (1.6)

is preferred. A commentary on this action is as follows. The XM are coordinates in
the spacetime (a D-dimensional target space M) which are mappings from from the
string worldsheet with coordinates ¢* = (0!, 0?%). The metric on the worldsheet has
been fixed by diffeomorphism and Weyl invariance to the conformal gauge g.p = 7ab-
This then is made supersymmetric [40] by adding in the second term to have an
equal number of bosons and fermions. The ¥ are two dimensional Weyl-Majoranna
spinors, and the v* are 2d gamma matrices satisfying the Clifford algebra. Depending
on what boundary conditions we put on these fields will determine whether the strings
are open or closed. In particular closed ones must satisfy a periodicity condition
o' = o' + 27. The full action has other terms in it (such as the antisymmetric
tensor Bysn and the 2d Ricci scalar), but these are not important for the present
discussion [16, 18, 53]. The tension of the string is given by 7' = 1/2m¢’ and sets the

energy scale for the problem. If this is going to be a quantum theory of gravity, then

is must be the Planck scale.

Upon quantization one finds a different Hilbert space for the open and closed strings.
The closed string sector contains the graviton and leads to a low energy supergravity
theory, whilst the open strings contain a gauge field that is described at low energies

by Super Yang Mills (SYM) theory. Depending on the boundary conditions that



States Fields
Bosons (NS-NS) | 1528 ¢35 | &, By, Guw
Bosons (R-R) 1528 335 Ap, A,y Ay

Fermions (NS-R) | 8, & 56, i, AW
Fermions (R-NS) | 8, & 56, AW

Table 1.1: This shows the massless bosonic and fermionic content of the IIB string

theory.

are imposed on the Fermi fields (periodic or anti-periodic), one obtains the Ramond
(R) sector or the Neveu-Schwarz (NS) sectors; the Ramond boundary condition gives
fermionic states in spacetime. For closed string theory the Hilbert space of states

consists of pairings of the left and right moving modes that gives four distinct sectors

e NS-NS and R-R are bosonic states.

e N5-R and R-NS are fermionic states.

For consistent quantization, we require the spacetime dimension D = 10. The field
theory space consists of a finite number of massless states and an infinite number of
heavy states with a scale set by o’. At this stage there is a still a problem due to a
tachyon in the spectrum which the GSO projection solves and also ensures that we
now have spacetime supersymmetry as well. By choosing the R-groundstates of left
and right movers to have the same spacetime chirality, one obtains the IIB closed
string theory which we shall be using throughout. It has A'=2 supersymmetry. The
massless modes are then given by the covering group of the SO(1,9) little group
namely Spin(8) which are (8, @ 8.) x (8, ® 8.). These states and their corresponding
fields are given in Table 1.1. For the open string, the left and right moving modes
are reflected into one another to produce standing waves. The massless states then

are (8, @ 8.), and has the corresponding SYM fields (Aas, A).

This concludes what we want to know from string theory, the essential point being



b—

E=M,
T E=A
|
!
br— !
|
L E=0

Figure 1.2: The heavy modes are integrated out, above the cutoff A.

that the closed IIB string theory has a low energy gravity description, whilst the open

strings admit a SYM theory.

1.2 Supergravity and Branes

1.2.1 Low Emnergy Effective Theory

In this thesis we will be using string theory at low energies, which has its incarnation
as supergravity. By this we mean the following; we know from the consistency of the
superstring theory [16, 19] that we have a finite number of massless states (which
includes the graviton, labeled by ¢ ), and and infinite number of massive states
starting at the Planck mass (labeled by ¢g). From our knowledge of effective field
theory [9], we can say the following; suppose there exists a classical action S[¢r, ¢
Then we can obtain a low energy effective action by integrating out the massive

modes [17, 20] shown in Fig. 1.2 This is schematically given by

¢ Serrlon] /[d¢H]e—S[¢L,¢H] (1.7)

9




and should be much easier to work with than the full theory. Note that if we had
introduced a cutoff A slightly below the Planck mass, one would see there to be
infinitely many terms ! in the action. However, the immediate stumbling block which
occurs is that S[¢r, ¢y| is not known! How then can a low energy effective action be
obtained? Perturbative string amplitudes can be calculated for various processes [16,

18, 53]; if we restrict our attention to the purely massless sector, then the amplitudes
Amp = (final, &' |initial, ¢}), (1.8)

describe the interactions between different massless particles (the ¢ and 7 index the
massless fields). One can then try to write down a classical action of fields which repro-
duce the amplitudes at the tree level. In particular, in the extreme low energy limit,
the principal terms can be deduced by the symmetry of the system; gauge invariance
and local supersymmetry [17, 19]; the high amount of supersymmetry completely de-
termines the action. Following this prescription, the ITA and IIB supergravities were
deduced (see bibliography in [17]). The D = 11 supergravity [22] obviously couldn’t
be obtained from these amplitudes, but by a reverse argument, suggests a yet more
fundamental theory (M-theory) [21] exists of which D = 11 supergravity is its low
energy limit. From there we could pass to ITA supergravity by compactifying on a
circle [17]. At this stage, we would like to be able to write down supergravity actions

which describe this low energy physics.

1.2.2 Supergravity Actions and Equations of Motion

Let us start to outline how to construct these actions from first principles. This is
obviously a highly detailed process (for example, the precise form of the spin connec-

tion and four-Fermi terms etc, see [17, 23, 24]) but we can get quite far by ‘building’

T thank Stefano Arnone for clarifying a number of points on this.

10




upwards. Having got the idea of a supergravity theory from the string interactions
in D = 10, lets first address the D = 11 action. Obviously we have the graviton field
Garnv. This is the start of the local gauge invariance. Next, for supersymmetry we
need to include fermions and have to be able to count spinors. In D-dimensions, the
number of Dirac components is 2(P~1/2 in odd dimensions, and 2P/? in even dimen-
sions (for an excellent complete treatment of spinors see [25]). These are not minimal,
but are subject to Weyl and Majorana constraints in particular dimensions. These
minimal spinors are used in the construction of the fermionic part of the action. So
we know a minimal spinor in D = 11 has 32 real components 2. In the case of the
string supergravities, we know the degrees of freedom. We have to determine this
for the D = 11 case. The spin-3/2 gravitino has 128 physical degrees of freedom,
whilst the graviton has 44; 84 bosonic degrees of freedom are required, and this is

incorporated in a three form As. We can now proceed to write down the bosonic part

of the action

1

2
27,

1
Sy = / d"eV/G[R = SIF[] + Ses, (1.9)

where k%, = 8mG (i) and Gy is the D = 11 Newton constant. The last term
(known as the Chern-Simons term) is a consequence of making the action supersym-
metric; the other two terms correspond obviously to choosing a canonical form for the
action. There is also a corresponding fermion action involving the Rarita-Schwinger

term and a spin connection that has torsion [17].

Similarly, one can write down the supergravity actions in D = 10; In fact if the above

20One has to discuss consistency with D = 4. Since a supersymmetry transformation changes
the spin of the particle by 1/2, we want all the helicity states to be spin < 2 for consistency
of interactions. This means that the maximum amount of ertended supersymmetry (the number
of supersymmetry generators) is A/ = 8. Taking the minimal spinor in D = 4, having four real
components, gives us 32 real spinors. If we were viewing the D = 4 theory as descended from higher
dimensions, the constraint on the number of spinor components means that D = 11 is inevitably
found to be the highest dimension possible.

11




supergravity theory is compactified on S', we get precisely the supergravity theory
obtained from the tree level ITA string theory. This is the ITA supergravity; it has

N=2 supersymmetry and is non-chiral. In contrast, the IIB supergravity [27, 28]

_ —20 s 1o n
Sup = g [ VOIRA4(00) — 5|

~gur [ VEIEP + B + S|

+Cross Terms + Fermions, (1.10)

(where k}, = 8mGn(10) and Gy(i0y is the D =10 Newton constant) is chiral i.e. both
spinors are of the same chirality. This supergravity cannot be derived from the above
compactification, but it is T-dual to the IIA theory (see [18, 19, 53] for details on T-
duality). This action contains the field strengths of the fields in Table 1.1. The R-R
sectors are different in the two theories and they both have the same NS-NS sectors
(which is the first line in the above). It is worth commenting on a technical issue
that occurs for the 5-form, which is perhaps the most interesting case. In this case
the above action is not strictly correct because the 5-form is self dual in Minkowski

signature (see Eqn. (1.23) for a definition of the Hodge star)
F5 :*F5, (111)

which halves the degrees of freedom to agree with that of the string theory. This
is inconsistent with the above covariant action, so the proviso is to write the action
as usual and impose self-duality at the level of the field equations. See [26] for a

formulation where writing a covariant action is pursued.

In the following chapters we will consider situations where only one of the forms

is non-zero, so we will generally be considering actions of the form (where a, =

12




—(n —5)/2) [35]

U _ 1 _ }_ 2 - _}_ an® 2
510_2%/\/@[3 S(08)? = e (1.12)

which can be seen to be in the Einstein frame (in Eqn. 1.10, the action is in the
string frame, where a factor of the dilaton multiplies the Ricci scalar. The Einstein
frame is where this term is just the standard Einstein-Hilbert piece i.e. just the Ricci
scalar. To put the action into this frame one re-scales the string frame metric by
Gun(Einstein) = e"®2Gyn(string)). The important point is that it is a relatively

simple system. This will give us a set of field equations

1
Run = 53M@8N<D+

1 n—1
ﬁeaq)(nFMAz AnFNAQ---An — G]V[NF,f), (113)
VMo = L F?, (1.14)
ZNn.
Var(e?® pMAz=Any - — (1.15)

together with the Bianchi identity
dF, = 0. (1.16)

We will be interested in finding brane solutions of this system which are simple

generalizations of the familiar D = 4 extremal Reissner-Nordstrom black holes.

1.2.3 Branes in Supergravity

A Dp-brane is a BPS object that preserves one-half of the spacetime supersymmetries
and has an open string ending on it. It carries charge with respect to the (p+1)-form
gauge potential from the R-R sector of type II superstring theory; their existence is

required by non-perturbative string dualities [45]. When we consider /N coincident
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branes the gauge group is enhanced from a U(1) — U(N) gauge theory on the world
volume, reflecting the N? possibilities of how open strings can begin and end on the
stack of branes. There are two aspects to looking at branes in string theory that we
want to focus on here. Firstly how are these accounted for in a supergravity solution,
their dynamics and coupling. Parallel to this, we want to know how branes enter into

string theory. Let us first draw on gravitational aspects [30, 31, 32].

Unless otherwise stated, the brane solutions that are considered are flat translation-

invariant static metric ansatze of the form
ds® = A*(y*)n, detdx” + B*(y™)8apdy™dy®. (1.17)

Next we use the fact that the p-brane (where p refers to the number of spatial di-
mensions of the brane) is charged with respect to the R-R gauge potential A,,;; this

means the charge density @, of the p-brane is given by following covariant integral

Q, = /Sd_l WF s (1.18)

where d is the dimension of the transverse space and d + p + 1 = 10. In a brane
solution which is extremal (this is when the horizon is at the origin), this charge is
what will enter into the metric ansatz once it has been solved and so will give a scale
to the problem. The above is the electric charge of the brane. A brane can also
have magnetic charge (this is based on [29]’s account of electric and magnetic brane

charges). For N p-branes we would simply have N times this basic charge.

In general, a p-brane couples to a p + 1-form [29] with (in the language of differential

forms)

Api1 = Aper + dA,, (1.19)

14




as the gauge transformation and
Fop =dA,, (1.20)

from which the Bianchi identity

dF,y =0 (1.21)

follows immediately. In the absence of other interactions, the equation of motion for

the p + 1-form potential is

d*FIO-(p—i-Q) =" JlO—(p+1)7 (122)

where the source J is a p+ 1-form. Here we have introduced the Hodge dual operation
* which converts a p + 1-form into a 10 — (p 4+ 1)-form, e.g.
Y, ]- A
(**])MlMglio_d = _‘SMlMgWUlOJMm—dH""M10> (1'23)

T d!

where eMiMio i the 10-dimensional alternating symbol with %179 = 1.

Just as the usual Maxwell’s equations imply the presence of an “electric” charge, 1.e.
a p-brane but no “magnetic” charge, we can choose to restore the duality symmetry

by introducing a (D — d — 3)-brane. We must then modify Eqn.( 1.20) to
Fpya = dApy1 + wpia, (1.24)
so that the Bianchi identity becomes

dFpi2 = Xpis, (1.25)

with

Xp_|_3 = dwp+2. (126)
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X may be singular

Xi23p43 = Pro-(p+0" (1), (1.27)

or may be smeared out so as to be regular at the origin. We then have

Qp = / "Fro-(pr2) = / “J10-(p+1); (1.28)
§10-(p+2) M0 (p41)

Pro—(p+2) = / Fpia = / Xp+3- (1.29)
Sp+2 Mpt+3

Lets now give some discussion of the fundamental dynamics of branes, with the goal of
writing down the Dirac-Born-Infeld (DBI) action [18, 19, 53, 54]. It is natural to use
the worldvolume of the brane in a similar fashion to the string action. Generalizing
the Nambu-Goto action to p spatial dimensions gives an action proportional to the

world volume

S, = -T, /de“f\/—det[P(GMN)]

DXM XN
_ p+1 _ AN e .
T, /Wd fJ det (G’MN s gb) (1.30)

ll

Here, &% are the coordinates on the brane with world volume W, XM are the ten
dimensional coordinates of the spacetime and P(Gan) = Gl is the pullback of the
metric. They in fact define an embedding into the spacetime, XM : W — M. As
already mentioned, it is an electrically charged object so the Wess-Zumino (WZ) term

needs to be added to describe the coupling

Sy = =T, [ a1e=detl(Cull + Qy | Apra. (1.31)

This is quite close to the form we want, but we must recall a couple of string theory
facts. First, we know that open strings end on a D-brane and therefore the low energy

description is a U(1) gauge field A,. We also know from perturbative string theory
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that this low energy description is a (1) gauge theory so a term must be added to
reproduce the gauge theory kinetic term. To fix it uniquely, one can use an argument
based on T-duality invariance [18, 53] of the action to determine how it should be
included. We should change the pullback to G, — G + 27’ F,, to achieve this.
There is a further factor of the dilaton to be included since e~® ~ g7 occurs in the
open string tree level action [18, 53] and this must coincide with the classical action.

Finally we have for the bosonic part of the action [37]

S, =-T, /W dp“fe“@\/— det[(Gap + 21 Fop)] + @) /W Ap+1 (1.32)

which has all the features required (in addition there can also be a pullback term B,
coming from the antisymmetric tensor in string theory, but we shall omit this since it
is zero for the examples we look at). It possesses various symmetries; gauge invariance
and diffeomorphism invariance on the world sheet. Later we will be required to do

some gauge fixing to render a Super Yang Mills (SYM) interpretation possible.

1.2.4 D branes and Open Strings

To answer the second aspect raised earlier about branes in string theory, we make the
following definition. A Dp-brane is a (p + 1)-dimensional hypersurface where open
string ends are confined, that carries R-R charge @),. The open string ends satisfy
a Dirichlet boundary condition [18, 19, 53]. Its low energy description is a SYM
theory Fig. 1.3. In the last section we saw charges for the Dp-branes entering into the
discussion. A string theory input has to be made to relate this to quantities in the
string theory, so that the previous gravity solutions mean something in string theory
(we have to fix the energy scale of the gravity solution in terms of the string scale

o). We now collect a number of facts.
Polchinksi’s [36] calculation gives a relation between the Dp-brane charge and its
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Open String

J

The hypersurface Wr+!

Figure 1.3: An open string ends on a Dp-brane.

tension,
Qp = Tp\/167rGN(1o) (1.33)

and these are respectively given by a string theory calculation as

27
T = ———— 1.34
P (2ml,)PHig, ( )

167Gnaoy = (27l)%g2. (1.35)

where g, is the string coupling constant. Also note the following definitions which are

used throughout

2 = o (1.36)

S

167TG10 = 2/5%0. (137)

The final specification in the scale is to just take account of the number of branes
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which implies
2 Gy .
— = = N. 1.38
Tp\/ 167FG10 ( )

1.3 Gauge Theory

In this section, we would like to make clear a set of gauge theory basics that will
show up, not only in the construction of the AdS/CFT correspondence, but also in
the subsequent investigations of other proposed dual solutions. Principally in this
section, we would like to describe some of the properties of both N/ =4 and N = 2
(SYM) gauge theory. We shall discuss field content, symmetries, operators, and ways

the action can be written. This is based on [38, 39, 40, 43].

1.3.1 N =4 super Yang-Mills theory

Non-supersymmetric 1+3 dimensional pure Yang-Mills theory is scale invariant, but
it has 8(g) # 0 (where 3 = dg(A)/dA [9], with g(A) the gauge coupling and A the
renormalization group scale) at the quantum level [38, 41]. An interesting question
is whether there are versions of this gauge theory that retain scale invariance even at
the quantum level. The AV = 4 SYM is known to have this property, so we shall now

give some of the details that go into giving this remarkable result.

A natural starting point is to ask what fields go into making this SYM theory. The

degrees of freedom of the theory are as follows:

i) A vector field A, in the adjoint representation of a gauged SU(N) which is a singlet

under the global symmetry SO(6).

ii) Six real scalars X" in the 6 vector representation of SO(6), which transform in the
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adjoint representation of SU(N).

iii) Four Weyl fermions A? transforming in the adjoint of SU(N) and the 4 spinor
representation of SO(6) (corresponding to the fundamental representation of SU(4),

the covering group of SO(6)).

Notice that the bosonic and fermionic states balance on-shell. Next we should detail
the symmetries of this gauge theory. It contains 16 supercharges, which under the
Lorentz group transform as four spinors (Q4, le), A= 1,2,3,4, where (,, Qg are
Weyl spinors. This gives us A/ = 4 supersymmetry in D = 4. An SU(4) rotation
of the four spinors is an automorphism of the supersymmetry algebra. As a result,

the Lagrangian is invariant under SU(4) global transformations (R-symmetry) on the

fermions, whilst the scalars transform under SO(6).

The Lagrangian of the theory can be derived by dimensional reduction of D = 10

N =1 super Yang-Mills theory:

£::—_—;—T%Hﬁﬂvamﬂ——<;4THXFMI%WA] (1.39)
20¥Mm Iym

Here X is a Majorana-Weyl 16 spinor of SO(1,9). Upon reduction, we have the

decomposition

SO(1,9) — SO(1,3) x SO(6)

under which

16 = (2,4) ® (2,4)

The ten-dimensional gauge field gives rise to a 4d gauge field plus six scalar fields:
‘4]\/1 - (A;MXZ) ) M = (N?Z) )

0=01,23, i=4,..9.
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The dimensionally reduced Lagrangian is then obtained as usual by assuming that

fields depend only on z#. Performing this splitting of indices the Lagrangian reduces

to
1 ; _ _
L=———1Tr (FMVF“”+2DﬂXiD“X¢ — [Xi,Xj]:)) — QZ Tr (AF“DM)\Jri/\I‘i[Xi, /\D
29vm 9ym

(1.40)

It also has superconformal invariance [38]. This means that the Poincaré group is
enlarged to the conformal group ( we include dilatations and special conformal trans-
formations) which in turn implies that the supersymmetry algebra is enlarged to

account for these new generators. Thus we have the super-conformal group.

This action can also be written in an A'=1 formalism [42], with three chiral superfields

®' and a vector superfield V as

E = ACgauge +£scala7’
3
— Im /d?@(fwawa Y H.C) +Z/d?&d?é(lm(r)@}e"qm
=1

- / 2072, 3,0, + H.C. (1.41)

The 7 function occurring in here is a combination of the gauge coupling and the theta

angle
. 47 0[

T=1— —,
gy 2m

(1.42)

To analyze the dynamical behavior of A'=4 theory, we look at the potential energy

ferm,

! S TriX, X (1.43)

V(X)) =
() 29}2/]\/[ i

In view of the positive definite behaviour of the Cartan - Killing form on the compact
gauge algebra SU(N), each term in the sum is positive or zero. When the full

potential is zero, a minimum is thus automatically attained corresponding to a N'=4
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supersymmetric ground state. In turn, any N'=4 supersymmetric ground state is of

this form,

There are two classes of solutions to this equation,

e The superconformal phase, for which (X*) = 0 for all 1 = 1,---,6. The gauge
algebra is unbroken. The superconformal symmetry SU(2,2/4) is also unbroken.
The physical states and operators are gauge invariant (i.e. SU(N)-singlets) and

transform under unitary representations of SU(2, 2|4).

o The spontaneously broken or Coulomb phase (the Coulomb branch), where
(X)) # 0 for at least one i. The detailed dynamics will depend upon the degree
of residual symmetry. Generically, SU(N) — U(1)™~!, in which case the low
energy behavior is that of N — 1 copies of A'=4 U(1) theory. Superconformal
symmetry is spontaneously broken since the non-zero vacuum expectation value

(X) sets a scale.

One usually speaks of branches in field theories; by having non-zero vacuum expecta-
tion values (VEVS), one can have a Higgs branch (where all the gauge bosons become
massive) whilst as in this case, if some U(1) subgroups remain massless we are on

the Coulomb branch. The moduli space M, where V' = 0 for this theory is simply

M =R

Conformal invariance persists even to the quantum level (3(g) = 0 to all orders). An
outline of the 1-loop calculation is as follows; we know how to compute the QCD 3
function using dimensional regularization [9]. We also know that to obtain the d =4
Lagrangian we just perform a dimensional reduction of the D = 10 Lagrangian. This
fact lets us do the calculation simply, because we can “embed” the calculation in

D = 10. Pretend we are doing QCD in D = 10 to evaluate the divergent pieces
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and then make the split to obtain the scalar contribution. For example, suppose we
evaluate the self energy of the gauge field. We can obtain the scalar loop contribution
by taking the Feynman diagram of a gluon loop, and then replacing the vector indices
with SO(6) indices. This amounts to replacing the spacetime metric with the SO(6)
metric, 1, — da, and dropping any factors of momentum with vector indices. By
this method we can get all the additional diagrams contributing with relative ease. In
addition, the fermion contribution has to be adjusted to ensure we are working with

the right type of spinors i.e. a degree of freedom count, but once this is done the 3

function at one loop is found to vanish 2.

1.3.2 Conformal group

The conformal group is the set of transformations that preserve the metric up to
a position dependent scale factor, g, (z) — g, (2)Q*(z). This group incorporates
Poincaré transformations and scale transformations. The generators are the usual
Lorentz generators M, the Poincaré translation operators P,, and in addition gen-

erators D and K. The conformal group is isomorphic to SO(d,2), with the identifi-

cation

M, =M, , Ma, = (P, - K,),
-A/lu(d-l—l) = %(PM + A’M) , -/Vld(d-l—l) =D.

The conformal (scaling) dimension A of an operator O(z) is dictated by the trans-

formation rule under scaling of coordinates:

D: "= X", Ox)— Of(z)=A0(\)

31 thank Nick Evans for suggesting calculating this A-function some time ago, and being reminded
of it as one of the problems in [3§]
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To combine the conformal algebra with the supersymmetry algebra, additional fermionic
generators Q must be included, which arise from [K,, Q] ~ Q. As a result, the num-
ber of fermionic generators in the superconformal algebra is doubled with respect to
the non-conformal case. For example, for a field theory with particles of spin < 1,
the maximal number of supercharges of the supersymmetry algebra is 16, and the
maximal number of fermionic generators in a superconformal field theory is 32. All
structure relations are rather straightforward, except the relations between the su-
percharges, which we now spell out. To organize the structure relations, it is helpful

to make use of a natural grading of the algebra given by the scaling dimension of the

generators,

[D] = [Lu] = [T = 0 P=41  [K]=-1
Q=412 [S]=-1/2  (145)

N

Thus, we have

{an Q%} = {Sozay S,Bb} = {QZ, 52} =0
{sz Qﬁb} = 2Jsﬁ'P;55ba
{Saar S5} = 20", K,8.

1 L
{QSpe} = canl0D +T§) + 56 Lol (1.46)

It is now appropriate to make some definitions of the types of operators that one

encounters in classifying representations of the superconformal algebra

Definition 1 A Conformal Primary Operator is the lowest dimension operator that

satisfies [K,, 0] =0, O £ 0.

Definition 2 A Super-Conformal Primary Operator (a Chiral Primary Operator) is
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the lowest dimension operator that satisfies [S,0] =0, O # 0.

Note that the conformal primary operators are defined by a weaker condition.

It is instructive to have explicit forms for the superconformal primary operators in
N = 4 SYM. The construction is most easily carried out by using the fact that a
superconformal primary operator is not the @-commutator of another operator. Thus,
a key ingredient in the construction is the @) transforms of the canonical fields. We

shall need these here only schematically,

{Q, 2} = F" +[X, X] @, X]=A
{Q,)} = DX [Q,F] = DA (1.47)

A local polynomial operator containing any of the elements on the right hand side of
the above structure relations cannot be primary. As a result, chiral primary operators
can involve neither the gauginos A nor the gauge field strengths F'*. Being thus only
functions of the scalars X, they can involve neither derivatives nor commutators of .X.
As a result, superconformal primary operators are gauge invariant scalars involving

only X in a symmetrized way.
The simplest are the single trace operators, which are of the form
Tr </\/\ . A) (1.48)

where 7;, 7 = 1,---,n stand for the SO(6)r fundamental representation indices.
Here, “T'r” denotes the symmetrized trace over the gauge algebra and as a result of
this operation, the above operator is totally symmetric in the SO(6)g-indices ¢;. In
general, the above operators transform under a reducible representation (namely the
symmetrized product of n fundamentals) and irreducible operators may be obtained

by isolating the traces over SO(6)g indices. Since TrX*® = 0, the simplest operators
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are

> TrX‘X" ~ Konishi multiplet

sTrX'X? ~ supergravity multiplet (1.49)
where s7T'r stands for the traceless part only.

More complicated are the multiple trace operators, which are obtained as products
of single trace operators. Upon taking the tensor product of the individual totally
symmetric representations, we may now also encounter (partially) anti-symmetrized
representations of SO(6)r. There is a one-to-one correspondence between chiral pri-
mary operators and unitary superconformal multiplets, and so all state and operator

multiplets may be labeled in terms of the superconformal chiral primary operators.

The unitary representations of the superconformal algebra SU(2,2|4) may be labeled

by the quantum numbers of the bosonic subgroup, listed below,

S0(1,3) x SO(1,1) x SU(4)r
(54,5-) A [r1,72, 73] (1.50)

here s. are positive or zero half integers, A is the positive or zero dimension and

[r1,72, 73] are the Dynkin labels of the representations of SU(4)g.

Two and three-point correlation functions of primary fields are entirely determined

by conformal symmetry. For example, for an operator @ with dimension A one finds

1

Ix _ $/|2A )

(O(z)O(z")) = const.
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1.3.3 N =2 Super Yang-Mills Theory

We will be interested in looking at the duals of A’'=2 SYM. Just as for the A'=4
theory we can enumerate and classify all the fields in a similar manner. This system
has 8 supercharges. The global R-symmetry group is now SU(2)g x U(1)r so the

fields are classified as follows:

i) A vector field A, in the adjoint representation of a gauged SU(N) which is a singlet
under SU(2)r x U(1)g.

ii) A complex scalar X in the fundamental representation of U(1)g, which transform

in the adjoint representation of SU(N).

iii) 2 Weyl fermions A% transforming in the adjoint of SU(N) and the 2 spinor rep-

resentation of SU(2)g.

Their degrees of freedom (bosonic and fermionic) match on shell. We can assemble
these into a vector superfield V' and a single chiral superfield ®. The Lagrangian

looks like in the A'=1 superspace formalism
1 _ -
= —Im <T/d29wawa +HC. +/429429<1>T62V<1>> . (1.51)
T

There is a similar moduli space here as for the A'=4 case given by the potential energy

1

V(X) = TriXt X)? (1.52)
29y M
vanishing. Since we have two scalars the moduli space is simply M = C. Note

that there are two different versions of this theory. There is the standard A'=2 SYM
which is as above, and the A/ = 2* theory were a term m?(®7 + ®3) is added to the
N'=4 theory. This then flows to an infrared A'=2 theory at low energy, and we also

recover the standard A'=2 theory as m — oo. One should be careful to make this
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distinction. The size of the ’t Hooft coupling has important consequences for the
low energy theory. When it is large, the strong interaction scale at which we get the
low energy theory is comparable to m, whereas when the coupling is small there is

logarithmic running and the strong scale is much smaller than m. This means that

the two theories are not equivalent.

1.4 Statement of the AdS/CFT Correspondence

Having collected some background thoughts, we can now discuss the AdS/CFT cor-
respondence. In this section it will be essential to discuss some features that go into

the correspondence and what makes it useful. This is based on [43, 44, 38].

As we have seen in Section(1.2.3), Dp-branes are (p + 1)-dimensional hypersurfaces
where open strings can end. They have a tension that behaves like 7}, ~ 1/g,. There

are two descriptions of this system that show different facets of it.

o The massless spectrum of the open strings living on the world-volume is a U(1)

gauge theory in (p + 1)-dimensions.

e Dp-branes can be considered as embeddings of p-brane solutions into supergrav-

ities, (i.e. into string theory) as they carry the same RR-charges.

Lets consider type 1IB string theory in flat D = 10 Minkowski space with a stack
of N parallel D3-branes that are very close to each other. As remarked earlier, if
we consider the system at low energies (< 1/l,) only massless string states can be

excited and an effective Lagrangian description can be given in terms of two types of

excitations:

o Massless closed string states living in the bulk — type IIB Supergravity.
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e Massless open string states — N=4, U(N) SYM.

With this we can write down a schematic action *
Slef fective] = S[bulk] 4+ S[brane] + Slinteraction]. (1.53)

The bulk action is the type IIB supergravity + higher order derivatives, whilst the
brane action is the SYM + higher order corrections. The massive modes can be
figuratively thought of as having been integrated out. Consider a graviton fluctuation

Gan = nun + khyny that we put into the bulk action to get schematically
S[bulk] = -2-25/\/63 ~ [(OR)? + wh(@h) + 1. (1.54)
For the brane action one has in similar fashion
Slbrane] = S[N = 4 SY M] + higher derivative corrections x . (1.55)

Now take the low energy limit [, — 0 (so that o’ — 0, k — 0). This is done whilst
keeping all the dimensionless parameters fixed, so that all higher order terms and
interactions vanish. This decouples the system into two; free gravity in the bulk
and 1 + 3 SYM living on the brane. Now let us consider this same system in the

supergravity description. Firstly, write down the extremal D3 solution (where the

horizon is at r = 0)

ds* = H™Y?(n,,dz*dz”) + H'Y?*(dr* + r?dQ2), (1.56)
L4
Ay = H'da®A---da®, (1.58)

4In reality the metricenters the brane action as couplings, so the separation of the action is
heuristic.
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where

L* = 4rg,No” (1.59)
NQ, = /55*F5. (1.60)

The number of branes is N € Z and is subject to a Dirac quantization condition. This
expression then gives the length scale L in terms of the RR charge; going further we
can use the the relation Eqn. (1.33) to put in the string content giving Eqn. (1.59).
Since the SYM gauge coupling is identified with the string coupling g, = 2mg%,,,
we see that the length scale is given in terms of the 't Hooft parameter A = ¢g&,,N.
Note the choice of asymptotics in the solution - for » > L the solution returns to
flat D = 10 spacetime. We also see there is a large red-shift factor for an observer
at infinity, due to the Gog component having a non-trivial r-dependence. Let FEqy be
the energy of an object measured by an observer at r = ry and E., be the energy of
an object measured by an observer at infinity. Then the red-shift factor between the

two energies is

T r
— By~ —

EOQ — GHEO - H_1/4E0 ~ l 52

(Eols). (1.61)

This implies that an excitation with an arbitrary energy at r = 0 will look massless
for an observer at infinity. Therefore, at low energies there are two regions of exci-
tations; massless excitations in the asymptotically flat space which are described by
supergravity, and excitations near the horizon. Any excitation close to the horizon
will look like a low energy fluctuation to an outside observer because of this red-shift
factor. The low energy fluctuations on the D3-branes are determined by the SYM
theory. We now want to take the same low energy limit ({; — 0) in the metric in

such a way as to retain some interesting structure. One can keep

" (1.62)

Il

,
o
fixed so that r — 0 and H — L*/r*. The coordinate u is kept fixed because we
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Asymyptotically R

- 5 N

~—

/ Throat r — 0
<— Asymptotically AdSs x S°

Figure 1.4: The different asymptotic’s of the D3 brane solution.

want to keep fixed the energies of the objects in the throat region Fgl; =fixed which

implies that E, is finite. Putting this limit into the metric gives

r 2

T S L2
d32 = —L_Zn‘wdxﬁ dz -+ ;—2-617'2 + LQng (l63)

which is precisely AdSs x S® (both with a length scale L)! See Appendix A.l for a

discussion of various aspects of AdS spaces. If we put this in the u-coordinates we

have

u?l? u?

ds® = —=%n,, dz"dz" + \/47r)\l§(d

T % + d02). (1.64)

It is also worthwhile to mention the absorption cross-section [44] for a scalar particle.
When it comes from infinity, it is found that ¢ ~ E® and hence the cross-section
vanishes as we go to lower and lower energies. If one examines the potential energy
of a particle in this “near horizon” limit, the potential barrier becomes very high so
that the modes inside the horizon can’t get out. This implies that at low energies
the supergravity in the bulk and the fluctuations near the horizon decouple from one

another.

The above discussion makes it clear what decouples from what in the the two different
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descriptions in Fig 1.4. We are led to conclude that in the string description
(SUPERGRAVITY in the BULK) + (N=4, SU(N) SYM)

is exactly equivalent to the supergravity description
(SUPERGRAVITY in the BULK)+(Excitations near AdSs x 5°).

Therefore subtracting out the wordy expressions above we are led to Maldacena’s

conjecture [4] (the AdS/CFT correspondence) that
(N=4, SU(N) SYM) = (Type IIB String Theory on AdSs x 5°).

This statement immediately implies a number of features. The gravity theory here is
5-dimensional and is being described in terms of a boundary 4-dimensional field theory
- it is a holographic description (however a cutoff should be introduced in the fifth
direction [46] in order for the action to remain finite). The gauge theory is defined
non-perturbatively, so this can be thought of as a non-perturbative formulation of
M-theory. We could also have chosen to look at M2 and M5 branes in D = 11
supergravity in which case we would have found spaces of the form AdS; x S* and
AdSy x S7. We could also replace the S° with a compact positive curvature Einstein
space X°; the effect of doing this would be to reduce the amount of supersymmetry
preserved. The perturbative description of the SYM will be reliable when g3, N < 1,
whilst the supergravity description is valid when g;N > 1. This is because for
supergravity to be valid, the length scale must satisfy L >> [, so that we can’t resolve
the string length. This means necessarily we are working at large 't Hooft coupling.
These two different regions of couplings do not intersect, so there is no apparent
contradiction. It is a strong/weak coupling duality and so a direct comparison of

correlation functions is not possible, since one can’t use perturbation theory at strong
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coupling. In addition since the string theory is perturbatively defined, it would not be

possible to prove this conjecture in the manner of a standard mathematical theorem.

What is important, as evidence in support of the conjecture is that the symmetries

match on both sides

1. Both the type IIB and the SYM have an SL(2,Z) duality group.

2. The number of supersymmetries (32 real spinor parameters), The D3-solution
has 16, as the brane halves the supersymmetry. This is enhanced to 32 asr — 0
as a property of the AdS space, and the gauge theory acquires 16 more which

are the superconformal charges,

3. The SO(6) isometry of the S® corresponds to the SU(4) R-symmetry of the
SYM.

4. The SO(2,4) isometry of the AdSs corresponds to the conformal symmetry
group of the SYM, S0(2,4) = SU(2,2)/Z,

The AdS/CFT conjecture can be interpreted at different levels of strength. At the
weakest level one would say that the gravity theory is equivalent to SYM for large g, /V.
A slightly stronger version of this would be to say that it is valid for g, N = finite,
but N — co limit holding as well. The strongest form says that the two theories are

exactly equivalent for all values of g; and N (see Table 1.2).

At this point in setting up the correspondence we have a proposal for a duality
symmetry, but lack a specification of how to compute quantities in this picture. This
was made precise in [5, 8], where an identification between the partition function of
the string theory with appropriate boundary conditions was made with the generating

functional of connected Green’s functions of the corresponding CF'T,

Zotring|(OAS) = o] = (exp ( / d%%(@@@))cw (1.65)
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e V' =4 conformal SYM e I'ull Quantum Type 1IB string
all N, gym & theory on AdSs x S°
® g = Gy o [* =4ng,Na" B
| & ‘t Hooft limit of A" =4 SYM e Classical Type IIB string theory
A=giyN fixed, N 5 | & on AdSs x S°
e 1/N expansion e g, string loop expansion
o Large A limit of ' =4 SYM e Classical Type IIB supergravity
(for N — o0) & on AdSs x S°
o \~1/% expansion e o' expansion

Table 1.2: The three forms of the AdS/C F'T conjecture in order of decreasing strength

where JAdSs is the AdS boundary. A C'F'T does not have asymptotic states nor an
S-matrix so the natural objects to consider are its operators. When the supergravity

limit holds we have

Zstr'ing (¢0) = exp(_Ssupergravity<¢O)) (1 66)

This prescription immediately allows one to calculate CF'T correlation functions; sim-
ply take functional derivatives on the supergravity partition function with respect to
¢o and then set them to zero. One might wonder when using the IIB theory, that
there might be some problem with a lack of a covariant action. This is not trou-
blesome, since to obtain n-point Green’s functions we regard these as coming from
(n—1)th variation of the covariant field equations. Also note that only relative scales

are meaningful; o’ is not really a parameter, it simply sets the scale in string theory.

Let us also remark on some tests of the conjecture. We have already talked about
the symmetries matching. In addition there are some correlation functions which
are protected from quantum corrections and do not depend on A. There is also
the spectrum of chiral operators and the qualitative behaviour of the theory upon

deformations (see [43] for general references on this).

There are five consistent string theories which are related to one another by various
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duality symmetries [45]. These are thought of as a moduli space of a yet more
fundamental M-theory which livesin D = 11. The AdS/C F'T hints at a possible way

to define theses theories in a non-perturbative fashion.

1.4.1 Normalizable or Non-Normalizable?

On the AdS side, we shall decompose all 10-dimensional fields onto Kaluza-Klein
towers on 5%, so that effectively all fields ¢(r,x) are on AdSs, and labeled by their
dimension ma (the different quantum numbers are implicit). Away from the bulk
interaction region, it is assumed that the bulk fields are free asymptotically (just as
this is assumed in the derivation of the LSZ formalism in flat space-time quantum
field theory). The free field then satisfies (0445 + M3 )Pr—s0o = 0 for scalars. For the
AdS metric (here we are using a different r-coordinate to that used in the previous

section. They are related by a logarithmic mapping; see Appendix A.1)

ds? = egT/Ldm“dx# + dr? (1.67)
the scalar field equation is
H 4 !
é + E¢ = mi¢ (1.68)
that has the solution
¢ = Ae AE - Bem U= A)/L (1.69)
with
ma = A(A — 4). (1.70)

This last relation is a very important test of AdS/CFT because it relates masses
of supergravity scalars, to the conformal dimension of the SYM operators that the

scalars are dual to. The two independent solutions are characterized by the following
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asymptotics as r — 00,

e=Ar/L normalizable

Go(r,z) = (1.71)

e~ (4=28)r/L  pon-normalizable

For A > 4 this is appropriate terminology. We further restrict by considering only
A > 2 (note the system has the symmetry of A — 4—A).Returning to the interacting
fields in the fully interacting theory, solutions will have the same asymptotic behaviors
as in the free case. The normalizable modes determine the vacuum expectation values
of operators of associated dimensions and quantum numbers. The non-normalizable
solutions on the other hand do not correspond to bulk excitations because they are not
properly square normalizable. Instead, they represent the coupling of external sources
to the supergravity or string theory. The precise correspondence is as follows [5]. The
non-normalizable solutions ¢y define associated boundary fields & by the following

relation
B(z) = lim gy n(r,z)e =L, (1.72)

Given a set of boundary fields ¢(x), it is assumed that a complete and unique bulk

solution to string theory exists. We denote the fields of the associated solution ¢.

To capture the features of operator insertions or VEVS, we generalize the above.
The simplest possibility is to consider non-trivial dynamics for a scalar field in the
5d supergravity theory. We only allow the scalar to vary in the radial direction in
AdS with the usual interpretation that this corresponds to renormalization group

(RG) running of the source . We look for solutions where the metric is described

SThe radial direction in the AdS space should have a field theory interpretation. It has the
scaling dimension of energy in the field theory; together with other arguments, this should be dual
to the energy scale [15, 46, 50] of the field theory thereby giving a prescription to study RG flow in
the field theory.
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by [47, 84, 48, 49, 50, 51, 52]
ds? = A0/ Ldatdz, + dr? (1.73)
and the scalar field has a Lagrangian
L= (00 ~ V() (1.74)

There are two independent, non-zero, elements of the Einstein tensor (Ggo and G,.,)
giving two equations of motion plus there is the usual equation of motion for the

scalar field

1 ! av
; f = = 1.
¢ +4A'p 5 (1.75)
6A7 =2 — 2V (o) (1.76)
—3A" —6A% = 7+ 2V () (1.77)

In fact only two of these equations are independent but it will be useful to keep track

of all of them.

In the large r limit, where the solution will return to AdSs at first order and ¢ — 0
and V — m?¢*, only the first equation survives with solution Eqn.(1.69) and the mass
relation Eqn. (1.70). If the solution retains some supersymmetry then the potential

can be written in terms of a superpotential [57]

2

110w
V‘§‘5§s’

_ %]WP (1.78)
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Figure 1.5: Branes distributed throughout the transverse space, with a single brane

feeling the geometry.

N

and the second order equations reduce to the first order system

, 10w ) 1
— A =—=W. L.79

These first order equations have an important dual meaning, as they describe RG
flow. The scalar equation describes the RG flow of the field operators, whilst the

A(r) function can be used to establish a c-theorem [38].

1.5 Brane Probing

A very important tool in the study of any gauge-gravity dual is the use of a brane
probe [53]. Simply put, when some configuration of branes are present in a spacetime
thereby producing a particular geometry, a single brane can be separated off the
main configuration. This single brane will “feel” the background geometry without
disrupting it when it is moved in a gentle way (see Fig. 1.5). The Dp-brane is described
by the DBI action which takes a background spacetime metric, and produces a low

energy U(1) gauge theory on its worldvolume. A low energy U(1) gauge theory lives
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on the surface and what this method provides is a way of determining gauge theory

quantities, principally the three

e The gauge coupling
o The moduli space

e The physical coordinates.

It therefore provides a transparent link between a given supergravity background and
the dual gauge theory. This is very much in the spirit of an experimental situation.
If one thinks of measuring charges in electrostatics, or internal structure in say an
atom, one has to use a smaller part of that system (electrons or photons), a probe,
to determine the interactions. The idea then is to determine a low energy effective

action that comes from the branes action.

Firstly then we must write down an action for the brane (with world volume W)

Shrane = SppI+ Swz (1.80)

— /W AP Jdet(Gay + Fup) + Q, / Apir. (1.81)
w

As already remarked, this action captures the necessary features of a D-brane. Since
we have diffeomorphism invariance one should gauge fix the action to get the physical

degrees of freedom. The gauge chosen will always be the static gauge where

¢ = o

o= X™(1) (1.82)
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If we feed a metric into the pullback and put it into the static gauge we see the scalar

part of the action is

S[X] = -T, /W "/~ det(gan)e™ (1 = g X* X7 [g00)/? + Q /W A (1.83)

where g, are the D = 10 metric components in the brane directions. At this point,
an approximation is required to simplify matters to usual field theory; one considers a
slow moving limit (the branes are moved slowly around the main brane configuration)
where quadratic is the highest order retained in the expansion of the square root.
Collecting the non-dynamical piece here (the “1” in the expansion) with the WZ
gauge potential coupled to the brane, gives a potential for the scalar fields that

schematically looks like V(X)) = Ag1..p41/4/— det(gas) — 1. This then determines the

moduli space of the theory, where
V(X)=0. (1.84)

That this is possible is due to the relation of the p-brane tension with its electrical
charge, as stated earlier. We can answer the other two points, that of the gauge
coupling and the “physical” coordinates by making the expansion of the [, term;

this just produces the usual gange kinetic piece

S[A] = /W &2 /— det(gay) e Fu, . (1.85)

One can read off the gauge coupling from the above. This should then be contrasted
with the scalar piece, which will generally show that a change of coordinates is neces-
sary. It is required that the scalar and gauge kinetic normalizations should coincide
for it to be physical; the given scalars can then be reparametrized to make this so.
We should qualify this here by saying that we can use this only for the case of N'=2
and 4, because its only here that there exists a relation between the normalizations

of the scalar and gauge kinetic terms. The U(1) gauge coupling is the same as the
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Yang-Mills coupling, because of the two way process that there are no self interac-
tions to change it, and the SYM fields are singlets with respect to the U(1). Clearly

a brane probe is a useful object for studying any gauge-gravity system.

Let us also comment on this when the background and gauge theory are supersym-
metric. In this case generally W will have a flat world volume (see Appendix B.1.1)
and so will support covariantly constant spinors. When we find a moduli space in the
brane probe, and hence a no force property, this can be translated to the fact that
the branes are BPS states [53]. A BPS condition sets a bound on the central charges
with respect to the masses. For example, one can embed black holes into different
supergravity theories [55], and these are found to satisfy a BPS condition. The brane
has both a tension and a RR charge, and the BPS condition is the equality of these

thereby saturating the bound.
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Chapter 2

N=4 on the Moduli Space

Having now described the general structure of the correspondence, it is instructive
to consider a specific example. As mentioned in Section 1.4, there are two parts to
moving away from the canonical case. Either an operator deformation or a vacuum
expectation value of that operator can be considered, and the latter shall be looked
at in this chapter. In particular we will begin by revisiting the gravity duals of N'=4

SYM on moduli space [57].

Let us overview this chapter. The first section gives an explicit demonstration of
the D3-solution. This is intended both to demonstrate the multi-centre nature of
the solutions in gravity language, and to give a precise meaning for it in the gauge
theory picture. Having gained experience here, one is ready to look at systems where
a particular (O) is switched on. This is done firstly at the d = 5 level where the
dual supergravity field is identified and supersymmetric solutions can be found. The
solution can then be lifted to D = 10 by consistent truncation. Then, gauge theory
questions can be addressed by brane probing (see Section 1.5). At this point the
physical set of coordinates are identified, and we can now make a comparison with

the multi-center solutions. The 5d supergravity solutions only describe a subset of



the possible moduli space but the full set of 10d supergravity solutions needed to

describe the full moduli space may be deduced. These metrics are indeed solutions

of the 10d supergravity equations of motion.

2.1 The D3-brane Solution

Since a distribution of parallel D3-branes has a low energy description in terms of
Yang-Mills theory (their separation placing the theory on its moduli space), it is
interesting to see what the corresponding supergravity solution is. In fact this will
turn out to be essential for understanding the latter findings of this chapter. In-
spired by the work [38], let us verify the D3 solution. The fields we consider are

Gun, ®, Ay, Argy). We now make an ansatz of the form:
(0)5 “3(4)

dsfo = H‘zo‘nwda:“dx” + chgabdy"’dyb,

Ay = H™7dz® A da* A da? A da®,
® = 0,
A = 0. (2.1)

This is a solution of the IIB field equations provided H is a harmonic function on the

transverse space RS

62
0, H() = 5o HY) =0, (22)

and that we can fix the three constants (a, 3,7) by the consistency of the field equa-
tions with respect to the ansatz. Firstly, taking the dilaton and axion to be zero

throughout all the field equations is consistent, as may be seen from Section 1.2.

43



Next we should write down the remaining field equations:

1
RM, = ﬁFMABCDFNABC‘Dy (2.3)

(VG FMABCD) = g, (2.4)

In addition the 5-form field strength must be self-dual, and satisfy the Bianchi identity

F5 = dA4 + *CZA4, (25)

Substituting the ansatz into Eqn. (2.4), and taking the (0123) component we get

d, [H—4a+6/3<H~2l3)H—v—laaHJ =0 (2.7)

O,H(y*) = 0, for

do+43 —~—1 = 0. (2.8)

The Bianchi identity is also satisfied by virtue of it “secretly” containing the field
equation for A(;). What now needs to be verified is that the Einstein field equations
also contains this operator O, together with additional constraints on the constants.
When calculating the Ricci tensor, two types of terms will be generated; one involving
(0*H), and one involving (0 H)?. This latter piece will have to cancel the piece coming

from the energy momentum tensor.

We should now calculate the Ricci tensor. This will be done by using the Cartan
structure equations, as familiarity with the vielbein formalism is essential [38]. The

vielbein basis used is (hatted letters denote flat indices whilst unhatted indices are
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spacetime indices)

et = H ™ %dz*,

et = HPdz" (2.9)

Using Cartan’s first structure equation (together with the torsion free condition w® =

_wéd)

de® +wi A e’ =0, (2.10)

we obtain the spin connection
Wit = —o(H'7P) 0" Hda® (2.11)
W = BHTVO Hdy" — 0*Hdy'] (2.12)

Using Cartan’s second structure equation
ab ab i d_ Lpab s d
R = dw® +wi Aw :§R et N et (2.13)

the Riemann tensor and by contraction the Ricci tensor can be found. The non-zero

pieces contributing are

Ao = a(l+a+ B H ) HI He' A+ (90H)term  (2.14)

do™ = —BH)[0.H" HE® — 0.HO" HE|e® A e
+(00H )term (2.15)
WA = —aB(HT)0,HO Hy" — (OH)?5%n"]e” A e, (2.16)

We can now perform a simple piece of dimensional analysis, to further constrain the
constants. Calculating the energy-momentum tensor for the spatial indices M = p,

observe the behaviour

45



1
O—ZUFMABCDFNABCD ~ [H]Sa—Qﬁ—Qv—2(8H>2‘ (217)

From the pieces contributing to the Ricci tensor, they all behave as

RM ~ (00H term + H™*"** (0 H)?. (2.18)
If the corresponding pieces are to cancel, this clearly forces the constraint

da=v = [f=1/4. (2.19)

Since the ansatz is a ‘warped’ product manifold, the Ricci tensor will split into parallel

and perpendicular pieces to the brane. For the parallel part one obtains

RA((OHY?) = (H ) [a(l + o+ 28)0HOH — afs%(0H)2n e A e’
=

—RA(GHY) = () (O, (2.20)

Now calculating the corresponding piece of the energy-momentum tensor

Th = ()R el (O H )
= 200K (2.21)

which is precisely R*,. So we see that the field equations in the D3-brane directions
are consistent, and that these do not constrain the constants at all. Now considering

directions transverse to the brane

R*((OH)?) = —B(H*2P)[0.HO HS, — O.HO HE)e* A ¢

=
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1 a —2— a a c
SES(OH)Y) = (HT7)[-0"HO,H(=p) — (0H)*54(5)] (2.22)
Doing the same as above for the energy momentum tensor

TY = o (H )B4l HOH — 840 H))

= 8a2[0*HO,H — (0H)*s2]. (2.23)

The normalizations must match on both sides which implies 3 = 4a?. This gives
a = £1/4. The sign ambiguity is fixed by considering the normalization of the 5-
form and demanding that it is positive (this is what counts the number of branes

involved) which gives ¥ > 0. Hence we find that a consistent solution exists for

g = 1/4
v = 1
a = 1/4 (2.24)

This completes the demonstration that the Einstein field equations reduce to the
harmonic wave equation Eqn. (2.2). The non-singular solutions of this are just the

familiar multi-centre solutions

N L4

Hy) = 1450 =

N = i Ny (2.25)

I=1

The “1” in the above expression is a boundary condition, so that asymptotically the
solution returns to flat space. This has a very simple brane picture interpretation.
The solution represents a collection of N D3-branes that are positioned throughout
the transverse space with positions y; € RS; it is just a generalization of the Reissner-

Nérdstrom solution when it is extremal, to branes in higher dimensions. In addition
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Figure 2.1: Branes distributed throughout the transverse space RS.

the L factor occurring here is the size of the space we are dealing with (in our case

it would be the size of AdSs). This had to be included in the above expression on

dimensional grounds.

The multi-centre solution above can easily be generalized to describe a continuous

distribution of D3-branes by taking a continuum limit where one finds

) = 1+ [ oty (2.26)

N = / d®y'o(y), (2.27)
M
where o(y') is the density distribution of D3-branes over a space M C RS. This

shows something interesting for the correspondence of the six scalars in N'=4 SYM

and the positions y; of the D3-branes; one can write
yr = (X) (2.28)

where the X € Cartan-subalgebra. There appears to be a mismatch in this map,
since there are only N — 1 generators in the SU(N) Cartan-subalgebra. Had we

been more careful one would remember that initially one has a U(N) gauge group
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coming from the Chan-Paton factors of the open strings, and that in addition to the

above identification, one should identify the U(1) C U(N) with the centre of mass

coordinate

1N
you. = ~ > Ny, (2.29)
N I=1

which isn’t dynamical [38]. In the infrared, the U(1) theory is free.

2.1.1 Supersymmetry preservation

Given we have found this simple solution to the field equations, it is necessary to ask
how much supersymmetry is preserved [58]. Generally a solution will have to be very

special if it is to admit a Killing spinor. To coincide with the notation in [29] we write

the ansatz as

ds* = e*n,detde” + *B6,dy™ dy”, (2.30)
¢ (2.31)

Aoz = e,

and we shall put in the specific form of the solution that was found in the last section.
If this is a supersymmetric solution then we must have that dip; = 0 and éA = 0 for
the IIB gravitino and complex spinor. From Appendix C.1 we see that the complex

spinor equation is trivial, whilst the gravitino is not,

Sar = Vare + ﬁFAPBFCFDFE(FMe)FABCDE =0, (2.32)

The spinor parameter is complex and subject to the IIB chirality condition
Fllé = —¢€. (233)

We can divide this evaluation into two steps, one is to evaluate the spin connection,

and the other is to put in the field strength. From Eqn. (2.1) and using the conversion
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wfPda™ = wAP the non vanishing spin connection is

Wit = P AS, (2.34)

Wi = 9"B&™ — 0" BE”. (2.35)
This allows us then to evaluate the covariant derivative given in Section C.1 as

Ve = 5‘LL6+%(0mA)(FM’yme), (2.36)

Ve = 8me+%(amB)e—l—%(@nB)(F”'yme). (2.37)

Next we should compute the second term in Eqn. (2.32). In this we have to use

Fs = dA; + x(dA,4) for it to satisfy the self dual relation. The first piece is simple,
TTOT 203 (T are) (Bae”). (2.38)

Because it is self dual, we might expect the extra piece would just simply be a “dou-

bling” of this, but we should work through to see if this so;

1 .
(*dA)apcpE = 5\/5 exnrorapepp FNERR (2.39)
(xdAso123) = g~ iAT4B E€mnpgr (&160) (2.40)

where m,n .-+ # a. We can put these two terms together and we find
[[eTOTIT2DS e~ AF4Bm o PP (Dpre) (Ope”) (2.41)

we now want to make use of an identity used in [56] to convert the transverse space

quantity to the brane directions;

1 N
GF]VHNJVIN F 2.42
Ve (10 — N)! 8 (242

(—I)N(N—l)/QeMlmMm L TRV



For our case this reduces to

6_4‘4+4BFanFquFT = “G—SA_QBFQFOIH F2F3F11
= MF“FOWFZFSFH. (243)

Then simply anticommute the I';; and Iy, impose the chirality condition Eqn. (2.33),

and we are left with the simple doubling that we guessed. The explicit variations then

read

0P, = au€‘|'%(amA)(Fu’YmE)—i—fg(raFOF1F2F3)(FH6)(2&160), (2.44)
T 8me—|—%(8mB)e—l—%(8aB)(Fa7me)

—|—ZZZ(F“POFIFZFB)(Fme)(28aec). (2.45)

So these are the equations that need to be solved for the Killing spinors. Let us now
turn to the symmetry content of the solution. Firstly to have SO(1,3) invariance we
must have d,¢ = 0. Next, a projection has to be made to make the system algebraic;
this is

iTOTIT23e = . (2.46)
It is this condition that halves the total supercharges preserved. Thus the variation

equations become

0, = (F“F‘Lé)[%—(aa/l) - '21_4(8_4Aaa60)] =0, (2.47)
1

S = 5’me+%(@WB)e—(FmFae)[%(ﬁaB)+2'4(6_4’15&60)}:O. (2.48)

These can now be solved by inspection; e = ¢*4, B = — A; in addition the 4-6 split

can be made € = ¢ @ ¢/® and the Killing spinor is found to be

€= eA/2eg4) ® 686) (2.49)

51



This is all consistent with what was found from solving the field equations previously
and identifying e* = H~!. Thus the multi-centre solutions preserve 16 supercharges,

which is the same number as for the A'=4 theory.

2.2 D=5 Gauged Supergravity and its lift to I11B

In this section, we will study gravity solutions describing AM=4 super Yang-Mills
(SYM) theory on moduli space resulting from 5d supergravity [57]. We wish to study
the gauge theory in the presence of a non-zero VEV for the scalar operator sTr X' X7
(see Section 1.3). This operator is symmetric and traceless, and transforms as the 20
of the global SU(4)r symmetry of the theory. In the 5d truncation of IIB supergravity
on AdSs x S® [59, 60] the lightest state is a scalar, o, in the 20 that acts as the source
for (sTrX*X7) in the AdS/CFT correspondence. One may look for solutions of the
5d supergravity equations of motion with non-zero o and interpret them as gravity
duals of the A'=4 theory with a scalar VEV switched on. In fact, considerable work
is needed to arrive at the equations of motion since the scalars live in the coset

Ee/USp(8), the subtleties of which are discussed in [57]. We shall present the final

results only here.

As an example let us consider the case of switching on (s7'rX*X7) = diag(1,1,1,1 —
2,—2). The appropriate supergravity scalar has been identified in [57]. In the super-
gravity theory the metric is dynamical and the scalar VEV cannot be considered in

isolation. We parametrize the metric as
ds* = #400y  datde? + dr? (2.50)

where 2 describe four dimensional Minkowski space slices through the deformed AdS

space, r Is the radial direction, and in the AdS limit A(r) = r/L with L the radius
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of the AdS space. The resulting supersymmetric equations of motion (for which the

fermionic shifts vanish, see section C.1) are first order(where p = €%),

op 1 (1 . 0A 2 (1 pt ,
et = e [ ) 2.5
or 3L (p P ) ’ or 3L (,02 + 2 (2:51)

These equations may be solved in the p — A plane since

op 1 fp—p
op _1P=p 9.52
0A 2<1+§ (2:52)

with solution
2 4
E_»p (2.53)

24 _
c _ﬁ/)‘a—l

with [?/L? a constant of integration. At this level the connection to the dual gauge

theory is somewhat opaque.

Remarkably the solution has been lifted back to a D = 10 solution [57, 85] which

takes the form

X1/2 X1/2 2 , in?o 6 29
ds? = 2 A0y datda” + dr? + = |ag? + 2 Tt 1 252 02| )
p p? X X
(2.54)
where dQ3 is the metric on a 3-sphere and
X =cos? 0+ p°sin? 0 (2.55)
For consistency there must also be a non-zero A4 potential of the form
et X
Ay = 5 dz® A dzt A d2? A dz? (2.56)
gsp

Again any relation to a dual theory is well hidden. In fact in [57] this metric was de-
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termined to be equivalent to the near horizon limit of a multi-centre solution around
a D3 brane distribution. We wish to make the need for the transformation to these
coordinates clear within the context of the duality. There are many coordinate redefi-
nitions one could make and only a single set of coordinates can manifestly display the
field theory duality. By brane probing this background one can find these coordinates

and thereby show the physical parameterization.

2.3 Brane Probing The Solution

Brane probing [53] is most transparent in the original D3 brane construction for the
AdS/CFT correspondence. Here there is a stack of N D3 branes at the origin with
the N'=4 SYM as their world volume theory and AdSs x S° as their near horizon
geometry. If we imagine moving a single D3 brane from the stack and moving it in
the space then, to first order, it will not effect the background metric. From the world
volume field theory point of view, by separating a D3 brane we have introduced an
adjoint scalar VEV breaking SU(N) — U(1) x SU(N — 1). The magic of D-branes
is that the scalar fields’ VEVS in the field theory are precisely identified with the
position of the D3 brane in the surrounding spacetime. This is expressed by the

Dirac Born Infeld (DBI) action for a D3 brane,

Sprobe = —15 d*z det[Gy + 2ma’e™ 2 F ) 2 4 Q3/ Ay, (2.57)
./Vl4 M4

where Gy is the pull back of the spacetime metric, F,, the gauge field on the probes
surface, @ the dilaton (which is a constant in this solution) and 75 = Q3/g,. Thus the
DBI action allows us to translate the background metric to a potential for the scalar
fields in the field theory. It is easy to identify the dimension of the field theory moduli
space implied by the metric from where the DBI potential vanishes. In addition since

the U(1) theory lives on the probe’s surface and is a non-interacting theory (photons
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do not self interact and there is only adjoint matter which for a U(1) is chargeless),
its coupling is that of the SU(N) theory at the scale of the breaking VEV. The probe

also therefore lets us determine the functional form of the coupling on moduli space.

We proceed to brane probe the 10d metric above by substituting (5.14)-(5.16) in
(2.57). Allowing the brane to move slowly and concentrating on the scalar sector, we

find the DBI action corresponds to the field theory,

(s Xe?4 L?e?4 . ) . )
s=-2 2 X607 +sin20 §% + pfcos?0 O2)| . (258
59, I, T 2 7+ pe (X0° +sin* 6 ¢° + p°cos 3) (2.58)
The immediate result is that we see there is no potential against motion of the probe
in the full 6 dimensional transverse space corresponding in the field theory to the
scalars having a 6d moduli space. This matches with our expectations for the N'=4
SYM theory where the six scalars have a potential of the form #r[X?, X7]* and so

taking the VEVS to be in the Cartan sub-algebra, the six scalars may take arbitrary

values.

The kinetic terms should be interpreted as the kinetic terms of the field theory scalars
which in the A'=4 theory are given by (1/87)Im(r®'®)|p (in N'=1 notation). The
coefficient of the kinetic terms are therefore the gauge coupling which is known to be
conformal in the A'=4 theory. We should expect the metric that the probe sees on
moduli space to be flat which it manifestly isn’t in (2.58). This is our hint as to the
coordinate change we should make in order to pass to those coordinates where the
duality is manifest. Forcing this relation we find a change of coordinates that makes

the probe metric flat
(r,0) = (u,a) (2.59)

such that
24
u? cos?a = L?e*p? cos? 0, u?sin® o = L? — sin® 6. (2.60)
P
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A small calculation shows that the metric in these coordinates takes the form

g = _ @s / dix [ug + uQ(dQ +sin?a g_gg + cos’ Qg)} . (2.61)
2g5 My

This is a unique choice of coordinates and if the duality is to be manifest it must be in
these coordinates where the coupling is seen to have the correct conformal property.

It is therefore interesting to write the full metric in these coordinates

p? ~1/2 2 /2 6
v 2 ’
ds? = (W) nudatdz” + <X€4A) Z(du@) (2.62)
i=1

This is of the familiar form,

1
Hg,

6
ds* = H™ Y, detdet + HY? > du?, Ay = dz® A dz' A da® Ada® (2.63)

=1

From the coordinate transformations (2.60) and using (5.9), we can obtain an explicit

expression for p in terms of (u, «)

2

2 2 2
%— sin? o p'? + (%— cos® o — %2— sin? o — 1) p® — % cos*a =0 (2.64)

2.4 The Uses of Harmonic Functions

In [57] it was shown that in these coordinates H(u) can be written as a multi-centre

solution with a D3 density, o,

4

(2.65)

H(u) = /d% o(z) T
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Figure 2.2: D3-branes distributed as a disk in the § = /2 plane (an R* C R®).

In this case the density is a 2 dimensional disk (see Fig. 2.2) of uniform density in

the § = 7/2 plane
o(z) = —0(1* — 2?) (2.66)

K
We wish to make the connection to the field theory and instead consider the large u
limit of (2.64) from which we obtain

ZS

u8

2 2\? 2\°
p6:1+-;+ ( ) (1—sin2a)+ (—;) (1—38i112a+28in4a)+@( ). (2.67)
02

u? u?

and hence from (2.62)

L4 2 .y » 14 9 4 L4Z6
Hu)=— |14+ —=Bsin*a—1)+ —(1 = 8sin®a+ 10sin* «) | + O( 10

7 o2 = ). (2.68)
In this form it is possible for us to identify field theory operators [62]. The radial
coordinate u has the scaling dimension of mass [5] so in each term in the expansion we
can assign a scaling dimension to the coefficient. Further each term in the expansion
is associated with a unique spherical harmonic'; the angular function in the 1/u® term
is the spherical harmonic in the 20 of SU(4)g, that in the 1/u® term the harmonic in
the 50 and so forth. Note that by using the orthonormality of the spherical harmonics

it is easy to show that each harmonic occurs only in a single term in the expansion.

IThe spherical harmonics may be found by writing the 6 dimensional representation as a unit
vector in the transverse space and then finding the symmetric traceless products 6 x 6 = 20 + ..,
6x6x6x6=>50+..,cetc
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We can therefore identify the nth coefficient as having the dimension and symmetry
properties of the field theory operator (s7rX") and further that the operator is not
renormalized since there is no further function of u associated with the operator.

Thus these solutions suggest the general form

H(u) = %(1 +ZMYn). (2.69)

un
where Y, is the spherical harmonic obtained from the product of n 6 dimensional

reps.

It is worth noting that at the level of the 5d supergravity theory we introduced only a
VEYV for the dimension 2 operator (sTrX?) yet after the 1ift to 10d the solution was
forced to possess VEVS for higher dimension operators. If we returned to 5d the trun-
cation would again remove these operators. The 5d supergravity metric gives specific
relations between the operators as is explicit in (2.68) whilst in the field theory they
are expected to be arbitrary reflecting the 6 dimensional moduli space. One may
therefore try substituting the expansion with arbitrary coefficients into the super-
gravity field equations and they indeed turn out to be solutions [62]. Of course in this
context this is no surprise because it is already known that the multi-centre solutions
are solutions of the field equations for arbitrary D3 brane distributions. However, it
is encouraging in this simplest case that one can deduce a full gravity description of
the field theory from the 5d supergravity solutions. Further it is appealing that the
metric is indeed seen to be a rewriting of the field theory solutions and it is of interest
to see how this generalizes in theories with more complicated RG flow. In the next

chapter we will study aspects of this generalization for the A'=2 theory.

Before moving on though we wish to note the power of the brane probing technique
since it in fact is capable of deriving the above solutions on its own. In the N=4

case if we wished to write down a metric dual to a point on moduli space we might
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begin by writing down an arbitrary 10d metric. If we then require the 6 dimensional
moduli space and conformal coupling after a brane probe the metric is forced to take
the form in (2.63). The supergravity field equations with this ansatz reduce to the

transverse flat space Laplacian in 6 dimensions [38] ,
O,H(u) =0 (2.70)

Which produces the multi-centre solutions. We see again that when we know sufficient

information about the field theory the supergravity dual is uniquely determined.

2.5 Précis

This chapter has shown a very clean test of the AdS/C FT and has allowed us to build
up a collection of tools that we can now use in more interesting situations. Having
used the AdS/CFT map we have looked at D = 5 supergravity solutions that have
been lifted by consistent truncation to D = 10. We are able then to brane probe
this background and we recover the simple multi centre solutions. To identify a dual
field of a gauge theory quantity and then to determine its (RG) properties from the

supergravity point of view is quite non trivial.
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Chapter 3

N=2* SYM: an Operator

Deformation

To test whether the encoding prescription is generic we move the techniques from the
previous chapter across to the gravity dual of the A'=2* theory (the A'=4 theory with
a mass term that breaks supersymmetry to N'=2 in the IR) which has more interesting
RG flow properties. This is an example of an operator deformation L — L+ O and
complements the previous chapter. The solutions are produced by including relevant
deformations in the 5d supergravity theory [63, 65, 66]. These can again be lifted to
10d by consistent truncation [85]. The connection to the gauge theory of this set of
solutions is far from apparent after the lift. The use of a brane probe to uncover the
links was made in [66, 67]. The metric indeed describes the expected 2d moduli space
of the field theory. The gauge coupling function on the moduli space is also revealed
and, when the solution is placed in appropriately A'=2 coordinates, matches to field
theory expectations. The set of solutions describe different points on moduli space
with one corresponding to a singular point on moduli space where in the IR the gauge
coupling diverges. This solution is of interest because it provides an example of the

enhangon mechanism [68, 69] (there are points in the space where the tension of the
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probe falls to zero).

The content of this chapter is similar to that of the previous one with simple additions
which will allow for it to describe this more difficult example. In the first section we
look at the inclusion of the operator into the field theory, and the subsequent dual
solution in D = 10. Then we go on to look at brane probing this background and
write the metric on moduli space in the coordinates applicable to the field theory
where it takes the form of a single function as in the A'=4 metrics multiplied by the
gauge coupling function. It is natural to interpret the outstanding function according
to the same prescription as in the A/'=4 solution and read off field theory operators. In
the field theory the gauge coupling encodes the only RG flow whilst the supergravity
solution appears to describe additional renormalization of the scalar operators. In
addition in the far UV the solution does not return to the A'=4 form but contains
logarithmic renormalization. In the next section we highlight the discrepancy by
following the prescription in [67] for deducing the D3 brane distribution from the
expected field theory gauge coupling, as a function of position on moduli space, and
the supergravity form for the coupling. We thus deduce the distribution for all the 5d
supergravity lifts and can then calculate the expected scalar operators which again
do not match with the function in the metric. Presumably there is some discrepancy

in the prescription in this more complicated theory that has not yet been discovered.

3.1 The D =10 Gravity Solution

We have seen that in the A'=4 duality there is a simple mapping between the field
theory operators and the form of the metric. It would be interesting to understand
how this mapping occurs in a more complicated theory with non-trivial renormal-
ization group flow. The theory we choose to investigate in this light is the A'=2*

theory where a mass term is introduced into the A'=4 theory that leaves an N'=2
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supersymmetric theory in the IR. The operator deformation considered is

together with the vacuum structure

H

6
(Oy) = Z (XIXT) =23 Tr( X7 X))

(3.1)

(3.2)

as before. The 5d supergravity theory with the appropriate supergravity field defor-

mations switched on was studied in [63, 65, 66]. Two supergravity scalars are needed,

one describing the mass term and the other the possible VEV for the remaining two

real scalar fields. The fields m, A and p = e¢* are the supergravity fields given by the

5d supergravity equations of motion

da 1 /1
5 = 3l (— —p cosh(?m))
0A 2 1 1
o = 3r ( + 3P cosh(?m))
am 1 4.
o = T31f sinh(2m)
which have solutions
2
6A —k : P

sinh(2m)

inh m
5 — cosh(2m) + sinh?(2 o
p° = cosh(2m) + sinh*(2m) | v + log o

(3.6)

(3.7)

Although some connections were made between the field theory and these solutions

the duality remained fairly opaque at the 5d level. A lift of this solution to 10d
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supergravity has again been provided [85, 65] and the summary of the solution is

20?7 do? o? 2 20
ds? = Q*(e**n,, detdz” + dr?) + L (—— + p®cos? O( + 2 + 02) S dg?)
2 C/\z Xl ~
(3.8)
where
0?2 = (X1 X2) 4 p, ¢ = cosh 2m (3.9)
X; = cos® 0 + pSesin? 6, X, = ccos? 0 + p®sin? (3.10)
4AX1
Ay = dz® A dz' A da* A da? (3.11)
gsp®
The dilaton is non-trivial too. We write a complex scalar A = Cy + ie”® and
(1-B b/t — 1/ X, .
A Z<1+B>’ B (61/4—]—6_1/4)’ cosh(?m)X (3.12)

The solution also has non-zero 2-forms [85] but they are zero in the § = 7/2 plane

which we will analyze below.

3.2 Brane Probing the Solution

Again brane probing is a necessity to make the duality with the field theory clear.
In [67, 64] it was observed that after substituting the above 10d solution into the
DBI action the potential vanishes in the § = 7/2 plane. The moduli space for brane
motion therefore matches the expected 2d moduli space of the N'=2* field theory
which has two massless real scalars. From now on we will restrict our attention to
this plane. Placing a brane probe off the moduli space corresponds in the field theory
to giving a VEV to a massive scalar which is neither a vacuum of the theory nor
supersymmetric. We know of no field theory results in the presence of such VEVS so

there are no checks of the duality we can make.
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On the moduli space a brane probe reveals the U(1) field theory

L?p* cosh(2m)e?4

/)S

o4 e : 1
L= % <p4 cosh(2m)e**r? 4 ¢2> + ZT3(271”0:')26"®F“"FW (3.13)

In these coordinates the connection to the A'=2* theory is hidden but we can now
find coordinates where the duality is manifest. The two scalar fields should have the
same kinetic term with a common coefficient given by the gauge theory’s running

coupling, 1/g¢ (). The first of these can be achieved by the change of coordinates

Y (3.14)
cosh2m — 1

such that

v _r, (3.15)

and we have

1 k212 cosh 2m

- 2 sinh%2m v?

(0% + v24?) (3.16)

The solutions depend on two constants k and v which correspond to the mass term
and the scalar VEV [67] respectively. It is interesting to discuss the anatomy of these
solutions at fixed k as a function of v in the v coordinates. As in previous work [63,
64, 66, 67] we only consider v < 0 since we can offer no physical interpretation of
positive 7. Although, as we will see, v — ¢ are not the physical coordinates for the
duality they have the benefit of an SO(2) symmetry in ¢ as can be seen from (3.16).
The solutions with different choice of the parameter v differ in the radial position at
which the metric has divergences as a result of p — 0. From (3.7) and (3.14) one may

express v in terms of this radius [ as
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Z2 2

’y:—erj?%»lnl/L (3.17)
We expect the divergence in the metric to be associated with the presence of a disc D3
brane source and hence solutions with larger negative v correspond to larger VEVS
in the field theory. When ~ = 0 the spacetime is good down to a radius v =1 = L
where cosh2m — oo and hence the coeflicient of the scalar kinetic term falls to
zero. This is the enhangon locus where the probes tension falls to zero (or in the
field theory the coupling diverges) and according to lore [68, 69] we must excise the
solution within. Only for this metric can the enhancon point be reached since the
other, v < 0, solutions have p — 0 at a larger radius where the scalar kinetic terms

coefficient is still regular.

As pointed out in [67] we can not yet formally make the connection to the gauge
coupling because the U(1) theory is not in an A'=2 form since the coefficient of the

F?2, term is given by

_& (&
_ 3.18
‘ gs|cos ¢ + icsin @|? (3.18)

To obtain an A'=2 form we must make a holomorphic change of variables in the

v — ¢ plane to equate the coefficients of the scalar and gauge field kinetic terms. The

transformation is [67]

kL V L
Y =

5T+ V) (3.19)

where V = ve'®, Y = ye' are complex parameters on the 2d space. The low energy

theory is then of the desired form with

1 ) .
L= VP +Im (r(F™F, +iF*™F,,) (3.20)
() (r(F*E, )



with 47 /gy, (Y) = Im7 where

7 Y2
T = v rer (3.21)
3.3 What the New Coordinates Say
In these coordinates the background takes the form
1 _
ds* = —— (H™y,,da*da” + H'?dYdY) (3.22)
gy m
2
A, = IM 0 A det A da? A da®, (3.23)
Hg,
1
Ts(2md)’e™® = — (3.24)
Iy m
with
sinh® 2m
Q;ZfMH = (3.25)

k*p'2 cosh 2m

All other fields are zero in the § = /2 plane. In fact the brane probe does not
uniquely fix the form of H since it can be rescaled by an arbitrary power of the
Yang Mills coupling and still return the same probe theory. Since the coupling in
(3.21) does not contain logarithms such a rescaling will not resolve the discrepancies

discussed below.

We claim to have identified the unique coordinates in which in the § = 7 /2 plane a
brane probe correctly matches the expected form for an N =2 supersymmetric theory.
In these physical coordinates we would expect the remainder of the metric to be a
parametrization of field theory operators. To see the predictions for these operators

we can expand the H function at large radius in these coordinates.

We note that the final transformation in (3.19) is rather strange since the circle v = L
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is mapped to the real line of length 2k and everything interior is mapped to exterior
points to the line in Y space. Thus the V coordinates are a double cover of the ¥
space. In the v coordinates one can not take a probe through the enhancon so one

should exclude the region v < 1.

At large y the v coordinate, from (3.19), is given by

2y kcos2n k3
=— — 1 - 2
v=— 2 + 32y3( 5 cos 4n) + (3.26)

Thus at large y we find, using (3.7) (3.19) and (3.25)

LAE* Lok 2 212
H = ool I 5(2
T653 + 64y6( 2+ 72 B + 81In(y/l) + 6 cos(2n))

Lgks l? L2
+ 25, [3(1 — — + — +41In(y/L) — 2 cos 2n)*

L‘Z’ [2
12 2
+2cos 2n(—2 + QF — 2;2— +81n(y/1))
12 2

L :
+(3 + Qﬁ — 2—12— —81In(y/L) — 8cos2n + 1dcos4n)] 4+ ...  (3.27)

Finally we have arrived at the form for the metric we’re interested in. The metric
on moduli space, when written in the physical coordinates that explicitly display
N'=2 supersymmetry in the brane probe, has two functions in it. One is the gauge
coupling of the theory and the other, H, remains to be interpreted. We can read off
the symmetry properties of operators from H using the same prescription as for the
N'=4 solution; every factor of y carries mass dimension 1 and the n dependence can be
interpreted as SO(2) harmonics cos nny with charge n. Thus one would naturally like
to interpret the coefficient of cos nn, which has U(1) charge n, as the operator (1'rX™)

(with X the massless, two component, complex scalar field) and would expect it to
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be associated with a factor of y(**%. The charge zero coefficients would correspond
to (I'r|X|") again associated with a factor of y"**. There are also mixed operators
of the form of a product of these two operator types as can be seen from the presence
of a cos 2y term at order 1/y®. The presence of logarithms, though, undermines this
interpretation. In the [ — oo limit one would expect the A'=2* theory to be on the
edge of its moduli space and return to looking like the N'=4 metric. In fact at large [
the leading terms in [ do indeed take the form in Eqn. (2.68) but we can not neglect
the logy terms in this limit which are absent from the A'=4 theory. There appears
therefore to be UV logarithmic renormalization. Given that there is logarithmic

renormalization we can not rule out power like renormalization either which would

further confuse the interpretation.

We will make this discrepancy more manifest in the next section where we deduce
the D3 brane distributions from the form of the gauge coupling and show that it does
not predict the above form for the field theory operators. In the discussion we will

suggest a few possible resolutions of the discrepancy.

3.3.1 D3 Distributions

To highlight the discrepancy between field theory expectations and the H function
found in the N'=2* metric we will determine the D3 brane distribution function for
spacetimes with different v assuming the standard one loop renormalized expression
for the prepotential governing the IR of the theory. The field theory is reviewed in [67]
(see also Section 4.7) and the authors followed this logic for the special case v = 0,
where in Y space the D3 branes are distributed on a line. We extend the analysis to

all 7. The prepotential for the A'=2* theory is expected to be

F = LS [Z(ai —a;)%In (w—;ﬁf—) —> (¢ —a;+m)’In < . P

i#j

68



(v, ¢) plane

Figure 3.1: This shows the enhancon locus at v = L, and the branes distributed out

to v =1,

where a; are the scalar VEV eigenvalues and p an RG scale. In the supergravity
description of the A'=2* theory we expect the difference of the scalar VEVS to be large
with respect to the mass term, and that the non-perturbative instanton corrections

do not survive the large N limit [67]. With these assumptions the continuum limit

found is
2

(YY) = — + ——/ d*ac(a —‘a) (3.29)
where a is a complex 2d integral in Y space and o the density of VEVS/D3 branes. To
match with the supergravity we make the identification m? = k?r/L? [67]. Using this
ansatz we can determine the distributions that reproduce the supergravity solution
expression for 7. In fact this is all but impossible in Y space since there is no spherical

symmetry but we know that in V' the distributions are circular out to [ and cut off

inside at v = L (see Fig. 3.1).

Remarkably, a simple form for the density, o, for each of the solutions, labelled by v
or equivalently /, can then be found by rewriting Eqn. (3.29) in V space using (3.19)

and using

o, (V)vdvdeg = o,(Y)ydydn (3.30)
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Expanding the resulting expression as a power series at large y and inserting an

expansion in powers of 1/v for (V') one can show to all orders in the expansion that

o, (V) = m(l + L*/v* — 2L? cos(2¢) /v?) (3.31)

reproduces the supergravity expression (3.21). Note that this result agrees with that
of [67] for v = 0, { = L; integrating with a measure vdv from v = L to [ and then

taking the [ — L limit we obtain an expression for the number of D3 branes of the

form

N = o /W(l — cos 20)db (3.32)
0

™

Changing variables to y = kL cos 8 this reproduces the line density in [67]

2
o, (V) = (k2L — 2 (3.33)

m

Having identified the density we can then predict the expected scalar operators. Since
the only renormalization in the N'=2* theory is that of 7 we would expect the N'=4
expression for the metric quantity H when evaluated in the § = 7/2 plane to display
the full set of operators. Thus using (2.65) (with y rescaled to 2y/k), performing the

integration after a change of variables to V' space using

kL L

ycosn = (v+1/v)cos ¢, ysing = 5 (1/v —v)sin¢ (3.34)
2 k2L 2 2 N

y© = ——4——(1} +1/v* 4+ 2cos ¢ — 2sin @) (3.35)

and further expanding at large y and evaluating the expression in the § = /2 plane

we obtain a prediction for H
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Lik* LSKS 212 2[2
16y* + 64y6(ﬁ+ E

kSLS l4 L4 12 L4
+ 25 (3(;; 44 77) + 1677 (1 + 77) cos 2 + 20 cos 477> (3.36)

H = + 6cos(2n))

F4

This expression does not match that in (3.27) highlighting the apparent discrepancy
in the interpretation of the coefficients as the scalar operators. There appears to
be extra logarithmic and power renormalization in the supergravity theory that this

simple field theory analysis has not explained.

3.4 Précis

Having learnt some useful techniques in the previous chapter to analyse dual solutions,
we have applied it to the A'=2* gravity dual. Brane probing the solution reveals the
2d moduli space and, identifying the unique coordinates in which the U(1) theory on
the probe takes an N'=2 form, the gauge coupling on that moduli space. These should
be the physical coordinates in which the duality to the field theory is manifest in the
rest of the metric. The metric indeed takes a form on the moduli space analogous to
the metric on moduli space in the A'=4 theory except that the running of the gauge
coupling is also encoded. There is one other function in the metric from which we
can read off operators by their scaling dimension and their symmetry properties. In
the field theory we expect the gauge coupling to be the only renormalized quantity
and the operators (TrX™) and (| X|") to emerge as in the N'=4 case. In fact we

find further renormalization including UV logarithmic renormalization.

The appearance of this extra renormalization is frustrating because it stops us from

completely understanding the prescription for creating a gravity dual to a field theory
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even in the next simplest case to the A'=4 theory. The form of the metric on moduli
space in (3.22) is highly suggestive that the prescription is to encode the running
coupling as shown and then parametrizes the scalar VEVS in the field theory through
H. It may be that the discrepancies we have seen are complications brought in by
the 5d supergravity approach to constructing the dualities. One possibility is that we
have not only introduced a mass term into the field theory. In the A'=4 theory when
one attempts to introduce a dimension 2 operator at the level of 5d supergravity, after
the lift to 10d, a whole host of higher dimension operators are found to be present to
make the solution consistent (as can be seen in Eqn. (2.68)). Something similar may
be happening here and the A'=2* solution is encoding both the field theory scalar

vevs and this unknown tower of deformations.

An alternative possibility is that the 5d supergravity solution was created in the
coordinates V which are a double cover of the physical coordinates Y. We have excised
the solution interior to v = L but possibly there is additional interior structure which
in the Y coordinates is projected to large y. Possibly in the physical coordinates there

are D3 branes through out the whole space!

As a final remark, note the holomorphic change of coordinates Eqn (3.19). We will
see in the next chapter a pure N'=2 SYM theory that arises from a totally different

construction, but that has this same change of coordinates.
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Chapter 4

N=2 SYM from Wrapped 5-Branes

Having considered a larger class of field theories by deforming the original N'=4 SYM
with relevant operators, it is also interesting to look at direct proposals of other field
theories with dual gravity descriptions. In this respect, we will discuss a proposal
that is based on the little string theory [70, 71, 72, 73] which captures the features of
a gauge theory in its IR limit (see also [74, 75]). Consequently, in the the UV limit it
returns to being a string theory (contrast this with the original conjecture where the

gauge theory remains intact at all energies).

Let us remark briefly here the features which will be discussed in detail subsequently.
Firstly, facts about the little string theory will be reviewed so the proposal should
have context. Then we discuss how branes are wrapped and appropriate Calabi-
Yau theory [72] together with why the theory should be twisted so as to preserve
supersymmetry. At this point we discuss gauged D = 7 supergravity [73], a consistent
truncation which allows an unambiguous D = 10 solution. We talk about obtaining
specific solutions by looking at the supersymmetry variations, and then analyzing the
solution by brane probing and comparison to N'=2 gauge theory results. The end

result is seeing that the supergravity fields are shown to parametrize the gauge theory
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Figure 4.1: Two open strings on the brane come together to form a closed string,
which is subsequently emitted into the bulk.

operators that have switched on.

4.1 Little String Theory (LST)

The starting point is to consider the decoupling limit of N parallel stacked NS5-
branes [76, 77] that takes place in a vacuum of type IIB string theory. The five-branes
halve the amount of supersymmetry from 32 to 16. To decouple the dynamics on the
brane from that in the bulk a limit is chosen where modes on the brane that are

emitted into the bulk as closed strings are suppressed (see fig. 4.1) i.e.

gs — 0;

El, = fized. (4.1)

Here, the emission process is at an energy E. Since the amplitudes for emission are

proportional to g, they will vanish. By considering the low energy limit on the branes
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we find an interacting QFT. This is D = 6 SYM with 16 supercharges *. So the full

theory on the branes must be interacting. Compare this to the limit which is taken

for D-brane physics; to decouple from the bulk a low energy limit is taken

E
El;

— 0.

= fized;

(4.2)

This is the decoupling limit of a QFT from gravity. If instead of a single D-brane,

there were IV, a similar decoupling limit to the LST is

Gs
El;

gs N

= fixed.

— 0

= fized

(4.3)

Here, g, N is the open string coupling constant and is fixed, so the theory on the open

strings is interacting.

What can we write down as regards the little string theory? To study this theory

a holographic dual description is used - this is a generalization of the AdS/CFT

correspondence. It asserts that the LST is equivalent to 10d string theory in the

background of five-branes. Therefore we must write down the metric, dilaton and NS

B-field for the stack of NS5-branes [76]

2 2 Nao 2 2 102
ds* = dxg+ (1 + > Wdr® + r2dQ23)
N/
S = G+ o) (4.4)
Hijk - —qjklal@. (45)

1One can see that this decoupling limit motivates the field theory. However, standard field
theory in D = 6 does not make sense, since it’s not renormalizable. The UV completion of this to
an interacting string theory is able to fill out the sickness of the D = 6 SYM
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This we see gives a breaking of the global symmetry group
SO(1,9) = SO(1,5) x SO(4), (4.6)

which matches the D = 6 field theory requirements; the SO(4) is the R-symmetry

group for the 4-scalars (these parametrize brane motion in the transverse space) and

the S-fermions.

We now want to take the decoupling limit but to do so, the near horizon geometry

r — 0 needs to be taken at the same rate as the decoupling. With the change of

coordinates r = g,e” this limit yields,

ds* = dazf + No'(dp® +dQ3)

Here the B-field has been omitted. This concludes the discussion of the LST, the

essential fact being the form of the metric and dilaton above in the decoupling limit.

4.2 NS5-Branes on S?

So far, we have considered a brane whose world-volume is R, and this is where the
interacting SYM with 16 supercharges lives at low energy (in the UV, it is the non-
local LST). To obtain a D = 4 theory, we dimensionally reduce this on a 2-cycle (a
2d compact submanifold ¥)

R — R*x %, (4.8)

In fact the 2-cycle is chosen to be S? for reasons to be discussed [72]. The metric to

consider is then

da? = da? 4+ No/eM) 52, (4.9)
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This embodies the above topology and that the N 5-branes have been wrapped on
the ¥. The ) is a factor which will be given by the specific theory we want to
study. For the moment though let us stick with ¥, and discuss when it’s 5* later.

There are now two relevant points to ensure that we are really studying N'=2 SYM:

e How to ensure the field theory has A'=2 supersymmetry in d = 4, given that

we are now on a partially compact manifold [70]

e what this means in the embedding of this in the supergravity derived from string

theory [72].

The first is answered by making the field theory twisted, whilst the second is given

by five-branes wrapping a 2-cycle in a Calabi-Yau 2-fold. These we now discuss.

4.2.1 Field Theory Considerations

Suppose we have a supersymmetric field theory, and we then allow it to be on a
curved manifold. Then generically supersymmetry is no longer preserved as covari-

antly constant spinors are not necessarily admitted [70]
Ve = (0m +wnm)e # 0. (4.10)

Something has to be added to kill off the spin connection. Since the field theory we

want to consider has a global R-symmetry group SU(2)r we can gauge this symme-

try and thereby introduce an external gauge field which couples to the R-symmetry

current. A new covariant derivative is formed

Ve = (O +wp — Ane, (4.11)
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and for wyy = Ap, we now can find a covariantly constant spinor i.e. just a constant
spinor. This theory is said to be “twisted” (our case is partially twisted because we
are only twisting on the compact part of the product manifold) in that it changes
all the spins of the fields, so the supersymmetry parameter becomes a scalar (for a
fuller discussion of how a field theory is “twisted”, see appendix B.1.1). This can
be seen by noticing the N’'=2 R-symmetry index becomes spinorial under the twist
(in anticipation, this mechanism of branes wrapping cycles in string theory, is what
allows some supersymmetry to be preserved [78]). Next we should ask about the

details of this and how to retain the right amount of supersymmetry.

Firstly, the flat 5-branes preserve 16 supercharges. Next we perform the wrapping on

the 52, so the global symmetry groups are reduced to

SO(1,5) x SO(4) — SO(1,3) x SO(2) x SO(4). (4.12)

Now the details of the twist are required. Following the approach of [70], we want
to pick a SO(2) in SO(4) such that the breaking is SO(4) — SO(2); x SO(2),.
These will rotate the 4 coordinates in the 12-plane and 34-plane respectively. Now,
write down a covariant derivative for a field ¥ that has spin s under the SO(2)y spin
connection, and charge ¢ under the U(1) = SO(2); of the external gauge field. Then

the covariant derivative in the X directions for the field is
V.U = (0, + tsw, +igA,)¥. (4.13)

For spinors with s = —¢ and A, = w,, it can be covariantly constant. So the
twisting procedure turned them into scalars as the covariant derivative became a
partial derivative. The tangent and normal bundles symmetry group SO(1,5)x.SO(4)
is decomposed to SO(1,3) x SO(2)x xU(1) x SO(2)3. The preserved spinors transform
as (4,+,F, 2), so there are 8-spinors left as required to have A'=2 in d = 4. We now
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Figure 4.2: The genus g = 0 surface is rigid, and 2 of the 4 scalars have massive
fluctuations; whilst for the torus, the interior circle can fluctuate giving 4 massless

scalars.

need to check the scalars. These transform as 4 of SO(4) that after twisting become
(2,1) @& (1,2) of SO(2); x SO(2),. The S? is rigid so the first set of scalars have
no zero modes; that is they can’t fluctuate. The latter 2 scalars can so we get two
massless d = 4 scalars. In the field theory this is clear, because the U(1) “gauge field”
we introduced will act as a mass term, whilst there is no such factor occurring for
the SO(2), symmetry. The gauge field on the S? also has no zero modes, so we are
left with pure A'=2, SYM. If wrapping had been done on some genus-g 2-cycle, X,
there would now be zero modes both from fluctuations of it and the gauge field. This

would lead to g-additional hypermultiplets in the adjoint representation.

4.3 Gravity Considerations for Twisting

Having given a field theory description of how to obtain the gauge theory, this now
needs to be translated into a gravity and brane picture; that is we want to move off
the branes and into the bulk! This is going to be based on the discussion in [72, 78].

Firstly note for the case of a 5-brane whose world volume is W in the D = 10
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Figure 4.3: This shows how the tangent bundle is decomposed into normal and parallel

pieces.

spacetime manifold M, we can decompose the tangent bundle as
TM=TW & Nw (4.14)

that is a normal bundle and “parallel” bundle. See Fig. 4.3. In fact if we recall that a
section of a fiber bundle is a map from the fiber to the base space, we see that the 4
scalars are precisely the sections on the Ny. The normal bundle is dimension 4 and
has an SO(4) symmetry group (if we considered the spin connection here it would
be a SO(4) gauge field). This symmetry group corresponds to the SO(4)r symmetry
group of the previous stated field theory. We wish to perform the same split here as

was done for the field theory twisting. So one wishes to perform a split
SO(4) = SO(2)k x SO(2)r. (4.15)

The last factor is going to describe the remaining flat directions in the transverse
space, which is the remaining R-symmetry, whilst the first factor is going to allow
us to perform the twist in a gravity context. This then is going to be a question of

supersymmetry preserving, and immediately brings to the front the issue of Calabi-
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Yau compactification [78].

Suppose we consider a spacetime of the form
M =R"x K°. (4.16)

It is clear since we are considering 5-branes, that the cycle ¥, on which the branes

are wrapped must be in the manifold K
¥, C K° (4.17)

At this point, the supersymmetry mapping between the two systems need to be laid
down. The 3, needs to be a supersymmetric cycle, so that supersymmetry is preserved
on it. From the split made in Eqn. (4.15) and that we want 8 supercharges to be
preserved, it is necessary that the cycle be in a Calabi-Yau 2-fold, so the geometry

looks locally like
M= R4 X (C.Y.)Q_fold X RZ. (4.18)

The Calabi-Yau condition, that the holonomy group of the 2-fold is SU(2) and not
U(2) (the SO(4) symmetry of the normal bundle has the proper subgroup U(2),
which would be the holonomy group). The extra U(1) piece, which can be seen to
be the SO(2)x of the split, should therefore have its tangent bundle identified with
the SO(2)s tangent bundle on the ¥,. This is what corresponds to the field theory
twisting, and we can easily see that they match up; the SO(2) spin connection on the
sphere is obvious, whilst the R-symmetry gauge field is the connection for the two

normal directions to the brane in the Calabi Yau 2-fold.
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4.4 The N'=2 Supergravity Solutions

4.4.1 The 7d Background

At this point in the construction the field theory and holographic dual features are
clear. It is necessary now to follow the approach in [70, 71] in order to capture the
details of the dual solution; namely, 7d gauged supergravity is used (we want to work
with the gauged version because it will be these gauge fields that will allow us to
perform the twisting in the supergravity theory) to find the specific solution, and
then this can be lifted to 10d [79] by consistent truncation, to exhibit the full dual

nature of the solution.

Let us collect here the relevant facts about the supergravity solutions obtained in [72,
73], using the conventions of [73]. The seven dimensional metric ansatz is (in the

string frame)

ds? = dz? + No'e®*dQ2 + No'dp?, (4.19)

and to work with the supergravity, this should be put into the Einstein frame
ds? = ledxi 4 No/ezgdﬂg + No/ledpQ, (4.20)

with f = —=2®;/5 and g = h — 20,/5.

By looking at the supersymmetry variations of the fermionic fields, and setting these
to zero, first order equations can be obtained [73] for the bosonic fields describing
N'=2 preserving deformations (see Appendix C.1 for the general ideas). Differently
in [72], a first order Hamiltonian approach is used to obtain these first order equations,
and the amount of supersymmetry preserved is checked at the 10-d level. The fields
considered in [72, 73] are the scalars (A1, Az, ):2), the U(1) gauge field A;(})7 a second
U(1l) gauge field ALQ) that is generally broken, and the metric ansatz Eqn. (4.20)
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(which is used in an obvious vielbein form to derive the spin connection). There
are now two ways to obtain the D = 7 Lagrangian and supersymmetry variations.
We could work directly with the D =7, SO(4) gauged supergravity in [82], just as
would be done with the usual AdS/C FT picture. Or slightly non-obviously, we could
perform a singular limit [80] in M-theory with M5-branes to reduce it to type IIB
with NS5-branes [73]. The M-theory sector to consider initially is the truncation to
D =7 SO(5) gauged supergravity [81, 70]. This arises from compactifying on 54,

and the singular limit to perform is [80]
S5t — S x R. (4.21)

This limit then has to be applied to the supersymmetry variations, which are found

to be
k
Sy = Ve+ §(A§}>F12 + AP
1 1 ~
_}_57‘/)/1/81)(/\1 + é‘(Az + )\2))6
1 1 -
+§’)’U6_2/\1FS/)F12€ + §7UG—A2" 2EE?I’?"%
SA = —37“8#(3& + Ay + /\Nz)e — %’y“”e‘z’\lFﬁ)Fue + %e”le
1 -
AP = = 2yt0,(20 + 2N + a))e + %e%e
SAB) = +similar(Az ¢ /\~2) (4.22)

Inserting into these variations the form of the metric and the twisting conditions (all
gauge fields taken to be zero except the AEE) field), as well was imposing a specific

projection ansatz on the spinors [73] reduces this system to a simple system of first

order coupled equations

Ao’ + 5\’2

= -+ =5, (4.23)
PYUNE (|
g = —(M+ 2; 2)+ﬁef-2g—%, (4.24)

83



- 1 ;
)\21 + 2)\/2 + 2)\1/ — ______ef‘f‘z/\:)’ (425)

A
< 1
20 + M 2N = —Xefmz, (4.26)
. 1 1
3NN+, = —Kef“"%l + ﬁef—Qg—QAI. (4.27)

A prime indicates differentiation with respect to the radial coordinate p, and A is a
dimensionful constant (in fact it can be seen from the LST that A? = N¢o/, which will

play the role of the strong coupling scale in the dual field theory).

Note that Ay and X, enter the equations in a symmetrical way. This full set of
equations was studied in [73] whilst in [72] only the case \; = X; was considered.
Defining the dimensionless radial coordinate u, and making the change from p — u;

= o (4.28)

?

At —1/200+X2) (4.29)

We can extract solutions for a number of quantities we shall use later. It is straight-

forward to show, from the field equations above, that

- 2u 2
et L €Y (4.30)

e2u — p2 .
where b is an integration constant, and

6_4/\1_2/\2_4;2 = ce” (€2u — 62)2 (4.31)

where ¢ is an integration constant, which only appears as an overall factor in the

analysis below so we set it to one.

The final solution we will need is an expression for the function H which satisfies the

equation
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dH? (1 e 4 bt |
(e () o "

We can explicitly solve this finding

e4u - b4 uAZ 64u . b4

4u 4 7 2u
H () = F__tf’._ _ % L 25 ( € )} _ (4.33)

where K is again an integration constant (we have scaled K by A so it has the correct
dimensions below). Note that when Ay = ), as investigated in [72] b= 0 and in this

limit we recover their solution

1 2Ke
lim H2 () =1 — — + — (4.34)

b—0 Qu uA?2

4.4.2 The 10d Background

To brane probe these solutions they must be lifted to D = 10 [79]. The lift was

performed in [73] and we have the string frame solution

d32 _ ClS? + 62/\1+/\2+)\~2A—1[6—2)\1[dlui + d,LL% + C082 9('“? n M%)d(bQ

—2c0s O(pydpg + padpy )de) + e 2 2 dud + e_gxgduﬂ, (4.35)

with
€2® — 66/\1+3/\2+3/\~2A—1 (4.36)
A = EN(ul+pd) + €l + e (4.37)
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The additional 5® parameterization is given by the coordinates y;, such that Sl =

1. These can be written in terms of the usual three angles,

(1, pp2) = sinep(cos ¢1,sin ¢y) (4.38)

(s, pa) = costp(cos ¢g,sin ¢s) (4.39)

These solutions describe the near horizon geometry of NS5 branes wrapped on S2.
To convert from a NS5 solution to a D5 solution (which is more appropriate in the

IR) one performs the S-dual transformations [73]

op = —0,

ds%y = e®Pdsig. (4.40)

There is also a 6 form potential for which the D5 branes are sources. The full ex-
pression is not given in [73] but the components in the D5 world volume, when

p1 = pe = 0, relevant to the brane probe analysis below is given by

Ag = R*¢*®py day A dQ, (4.41)

At this point then, we have the string frame D5 solution, which we can now proceed

to brane probe. The full details of these solutions and lifts can be found in [73].
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4.5 The D =2 Moduli Space and Distributions

Fach geometry, corresponding to a solution of (4.27), is expected to be dual to the
N =2 SYM theory at a point on its 2d moduli space. Since the A" = 2 SYM theory
has a moduli space, each of these solutions should then display a 2d space in which
a probe D5 brane sees a flat potential. This corresponds to the theory knowing that
any individual scalar vev may be changed at will on the moduli space whilst keeping
a vacuum. At large N the changing of such a single VEV, or position of a D5, will
leave the geometry unchanged. In [73] it was shown that such a D = 2 moduli space

does indeed exist for all of these solutions.

For a single wrapped D5-brane, we have the low energy effective Born-Infeld action

Sprete = =T [ A2 /=det(Guy + Fur) + Qs [ Ao, (4.42)

where £ are coordinates on the brane, G, is the pullback of the 10d spacetime metric,

Fup is the surface gauge field strength and Ts = Q5977

As in [73], setting p1 = s = 0, and substituting in the background we find the gauge
potential cancelling against the leading term from the expansion of the square root.
Thus the (u, ¢3) plane is the moduli space. From henceforth we restrict ourselves to
this moduli space since only on this space can we use field theory intuition in the

probe world volume theory to find the correct coordinates in which to interpret the

duality.

If we allow the probe brane to move slowly on the moduli space and also allow small
gauge fields on its surface we can find the leading kinetic terms in the probe world
volume theory. Passing to a new radial coordinate u = In(z/A), we may write the

kinetic piece in the form
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@WM=~nw/ﬂmfu: (4.43)
where

L= MG_4A1_2A2_4X2 [cos? g + e~ 22222 gip? B (3 + z2¢.22)

(z/A)?
+£12111(Z/A)F“"FW. (4.44)

Note that it was the choice of coordinate transformation in (4.29), which allowed us

to factor out the scalar terms between the coordinate u and the angular pieces i1, fi2.

Using the field equations in (4.30)(4.31) we can evaluate this to be

In(z/A)

Sl PN

[(22/A* = b%)% cos® ¢y + (2% /A? + %)% sin” ¢y](2* + 22%?)

-f—AlIln(Z/A)F"”FW, (4.45)

which can be written in terms of the complex coordinate Z = ze'?? as

eoto () (122 (- 2] i b () por s

This form for the solution does not display the explicit A~ = 2 form of the field theory.

To find such a form we need to pass to a new set of coordinates, W, such that the

scalar and gauge kinetic pieces appear with the right normalization

1 2 L
£:£56ﬁ<mq+zF@Q (4.47)

The appropriate Jacobian and hence the appropriate holomorphic change of vari-

ables [73] may be seen from (4.46)
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W =Z+bA*/Z. (4.48)

The gauge coupling now reads

,
) = COSh—l(;ZT) + Inb. (4.49)

4.6 The Geometry of the Moduli Space and D5

Distributions

We have identified the unique set of coordinates on the moduli space, W, where the
field theory duality is manifest. For the brane probe to leave the world volume theory

(4.47) the geometry in the sub-space corresponding to the moduli space must take

the form

ds? = e®0[de? 4+ ———— R*d0% + e 220 dW dW (4.50)
b o |
1
Ag = RQGZ(I)D',)—CZ.f A dS2 (451)
gy u(W) ! ’

The background is described by two functions. One we have identified as the gauge
coupling whilst the other, ¢®P, remains to be interpreted. We may find an explicit ex-
pression for the dilaton from the metric element ,,,, which is GG,, times the Jacobian

for the transformation. We find in the z coordinates

20, _ H2A2

22

e [(22/A% — b*)? cos® ¢y + (22 /A2 + b%)? sin’ ¢y). (4.52)
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and our solution for H from (4.33) in these coordinates is

N P/ TR 25 22
) = | 5 " ) G/ (%441\4)] (4.53)

To attempt to interpret this function in terms of the field theory we must translate it
to the coordinates appropriate to the duality, W. In fact, simply following through

the holomorphic change of coordinates, we find

200 _ WI/VGI/ZG”? 14+ G1/2§;1/2 B 1
A2 G1/2 + G1/2 g2 (W)
2K 2
. - - 4.54
T W) (WW(GI/? T GW)H ’ 54
where
4b2A\?
G=1- (4.55)

Let us now consider the anatomy of the solution in both the Z and W coordinates.
Firstly looking in the Z coordinates the solution has no ¢y dependence so the D5
brane distribution must be symmetric in the Z plane. As can be seen from (4.53)
there is always a singularity in the metric at z = b. For large K though there can be

a singularity at larger z. In fact we can trade the parameter K for the radius of the

singularity zg

4 _ 74 4 474
K=t — In(z/A) <M> (4.56)

422 222
The function In(zo/A) when translated to the physical W coordinates has the simple
interpretation of 1/¢%,; evaluated at the position of the singularity and we will write

it henceforth as 1/gy ,(sing).

We shall interpret the singularity as indicating the position of the D5 branes. Note

that any given solution only describes the space zg < z < oco. A probe is therefore
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restricted to this space and thus only for zo = b = 1 can it reach the enhancon locus
(a circle here) where the coupling diverges. That distribution must correspond to a

singular point on the field theory moduli space.

For large zo we may neglect b and the distribution is essentially a circle in the physical
W coordinates (since Z ~ W). As zo reduces, the coordinate transformation to W in
(4.48) distorts the circle by squashing it in the imaginary W direction. When zp = b

the singularity lies on the real line between w = +2b.

4.7 Gauge Theory Coupling

We would like to find the explicit distribution function for the D5 branes o, (W) in the
physical coordinates. We can attempt to do this using the supergravity expression for
g% and the form of the N = 2 field theory prediction for the coupling as a function

of scalar VEVS. To this end we now give some discussion following [72, 67].

Suppose we consider an SU(N) Gauge Theory on the Coulomb Branch. The mod-
uli space is then parameterised by the (N — 1) scalar expectations in the Cartan

Subalgebra,

() = diag(ar,--,ax), @€ C

>a = 0. (4.57)

This shows that generally the gauge group undergoes breaking to SU(N) — U(1)V~!

and gives a low energy effective action

1

| o L
G - 4o — Oatdad - AT ¥
S = o /d :c( Im[r;0a"0a’ ] + 2Re [, (i F*F7 + F'F )]), (4.58)

where the coupling is determined by the holomorphic prepotential
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0?F
Tid da*da? ( )
There is both a perturbative part coming from an exact 1-loop result, and a non-
perturbative part that comes from instanton corrections. This was argued in [67] to

vanish in the large NV limit (that is provided |a; — aj| > O(1/N)). The perturbative

expression for the prepotential is then

7

B

(a; — a;)*In [(ai - aj)g//\z} : (4.60)
#j
Going back to the brane probe in the previous section, there the gauge breaking was

SU(N +1) — U(1)N=1 x U(1) where the last factor is the brane probe. In terms of

its position u the VEV can be written as

(®) = diag(u, a1 — u/N,---,ay — u/N) (4.61)

If we now compute the gauge coupling and take the large N limit, we get the simple

expression

7(u) = aaf = i > n [(u = a:)?/A?]. (4.62)

This can now be taken to a continuum limit since NV is large giving

W) = 5, dediota)in [fu- ]

N = /dadda(a). (4.63)
M

We are now in position to make comparisons between the two systems. From the

above we can read off
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(4.64)

i - %/dAd/_l ou(A) m(

A — W)
EI%M(W

However, given the complicated shape of the distribution in W it is easier to transform

this equation to the Z coordinates where we know we have spherical symmetry

(4.65)

4 1 _ 74+ BA
== [d2dZ 0.(2)n Tz
gyu(W) ‘ A

A degree of guess work is required to find the appropriate o, that reproduces the
coupling in (4.49). In fact the simple guess that the distribution is just a ring at

z = zg reproduces the supergravity result. Thus

0.(Z) =2m6(z — =) (4.66)

At this stage one must take on faith that the field theory expression is relevant to
the supergravity solution. In other words we have assumed the duality to obtain
this result. We will now explore the scalar operators encoded in the supergravity
solution and show that they are consistent with this distribution function providing

a non-trivial cross check of the duality.

4.8 Gauge Theory Operators

We have written the background on the moduli space of the theory in coordinates
where the gauge coupling takes the explicit form expected in the dual field theory.
The background involves one other function given by (4.54) in these coordinates. If
the theories are truly dual we would expect them to be different parametrizations of

the same information. We should therefore be able to interpret (4.54) in terms of
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field theory quantities.

The coordinate W transforms under two symmetries. The first is the scaling symme-
try of the 4d gauge theory, familiar from the usual AdS/CFT. It is also present in
this case, as can be seen from the way that W enters the gauge coupling as an energy
scale or from the requirement of a consistent scaling of the metric, but it is broken by
a number of parameters. Thus |W| has mass dimension one. W also transforms under
the U(1) symmetry of the 2d plane which corresponds in the field theory to the U(1)
symmetry on the complex scalar. So looking in (4.54) we can identify the symmetry
properties of the constants and hence match them to field theory quantities. A has
mass dimension one and is a U(1) symmetry invariant - it plays the role of the strong
coupling scale in the field theory as is apparent from its appearance in the coupling
(4.49). K has dimension two and is uncharged under the U(1) symmetry - it con-
tains two components which we will shortly show can be written as chargeless scalar
operators or equivalently as moments of the D5 distribution. Finally the function &

contains a dimension 2 operator of charge two which we shall again match to a scalar

operator.

The N = 2 field theory on moduli space should be described by the running coupling
and the scalar operators. We have deduced the distribution function for the vevs o,
above (4.66) from the form of the running coupling and hence can calculate these
functions to see if they match those in (4.54). There are two dimension two operators
we can calculate corresponding in the field theory to the chargeless s7'r|X|? and the

charge two s7TrX?% We must calculate these operators in the physical coordinates,

Ww.

1 2 T 1 2 > 2492 .
. 242 . \
Oy = /aw(I/V)W AWdW = /UZ(Z)W(Z) dZdZ = 26°A (4.67)

s
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1 4A4

! i _ b*A
%:E/%WWWMMW:EJ@@WMWMM:%+f (4.68)

0

Pleasingly these functional forms precisely match the coefficient of the gauge coupling
in K (4.56) and the operator in G (4.55). We are left to explain the form of the first

term in K which is not one of these moments. However, it is clear from (4.54) that

the solution contains the quantity v/sTrX2sTrX 12 which is chargeless and dimension
two. This first term can be written as a combination of the two chargeless operators.

Thus we can write
K = =(/02 — 0,0}) - ————0 (4.69)

and

G=1-"2. (4.70)

The encoding of the operators in (4.34) is quite complicated but it is encouraging
that the correspondence can be made between the two duals. It is also nice that the
distribution function determined above from the gauge coupling does indeed match
to the functional form of the operators parametrized by the rest of the background.
Note that this constitutes the first cross check of the assumption in (4.64) that the
coupling of the probe world volume theory in the supergravity background is indeed

governed by the field theory expression for the running coupling.

4.9 Précis

We have studied the supergravity solutions found in [72, 73] which were obtained by

studying 7d gauged supergravity and then lifting the solutions to 10d. The solutions
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are expected to be the near horizon geometries of D branes wrapped on S? and to be
dual to N = 2 SYM theory in 4d. We have identified the unique coordinates in which
the theory on the world volume of a probe D5 brane takes A = 2 form. Restricting to
the subspace of the background that describes the field theory’s moduli space where
these coordinates are known, we have shown that the background is described by
two functions. One of these is the running gauge coupling of the field theory whilst
we have shown the other parametrizes the field theory operators. Using the field
theory expectation for the form of the running gauge coupling as a function of the
D5 distribution, that distribution can be determined. We have shown that the scalar
operators corresponding to the moments of this distribution function match the form
of the parameters in the second function determining the background. The end result
is remarkably clean showing that the two dual descriptions do indeed encode the same
physical content, as has been previously observed in /' = 4 SYM on moduli space
and its gravity dual. The result also confirms that the supergravity background is

controlled by the gauge theory dynamics and that the only renormalization is through

the gauge coupling.

Understanding how the gravity background encodes the dual field theory operators is
hopefully a major step towards enlarging the class of known solutions. In particular
the function G in the background (4.54) looks ripe to be interpreted in general as
an harmonic function of the two dimensional Laplacian. To confirm whether such
an extension of the solution is possible requires more work than that presented here
since to test a solution of the supergravity equations one needs more than a restricted
subspace of the solution as we have. Understanding these backgrounds off the field
theory moduli space, where the field theory is less well understood, is an important

challenge for the future.
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Chapter 5

A Non-Supersymmetric

Deformation of N'=4

In this chapter we return to deforming the original AdS/C FT correspondence. We
will in fact introduce a mass term of the form (X1X! + X2X?% 4+ X3X3 + X*X* —
2X5X5 — 2X%X5) which is naively unbounded. This is precisely the operator O =
sTrX'X? studied in Chapter 2 as a VEV, but considered here now as an operator
insertion £ — £ + O. Our interest is in developing the technology to find and lift
these solutions to 10d so we will not be so concerned by the runaway behaviour
(although the 10d solution we provide correctly reproduces the expected behaviour).
One might hope that there would be such backgrounds that are really stable since
an SO(6)g singlet scalar mass term is not visible in the supergravity solution as it
is not in a short multiplet. Its presence could stabilize the solution. Note that the
supersymmetric deformations [84, 85, 86] already mentioned require this operator to
be present. In fact our brane probe potential reveals the operator not to be present in
our 10d lifts. Our solution is also of interest since it is probably the simplest example
of a non-supersymmetric deformation; only the metric and four potential fields are

non-zero. See also [87, 88, 89, 90].
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In the next section we will discuss the introduction of our deformation at the 5d
supergravity level. We then lift the full solution to 10 dimensions. Brane probing
the background with a D3 brane shows that asymptotically the background indeed
includes the operator we hoped to introduce showing the consistency of the techniques.

Finally we plot the potential seen by the probe for the full solution.

5.1 Deformations in 5d Supergravity

5.1.1 A Scalar Operator

Let us now make a particular choice for the scalar field we will consider. We take a
scalar from the multiplet in the 20 of SO(6)r as in chapter 2. In particular we will

choose the scalar corresponding to the operator

4 4
O=> X'X'-2> X'X* (5.1)
1=1

=3
This scalar has been studied in chapter 2 already in its role of describing an N = 4
preserving scalar VEV and as a mixture of a mass term and a VEV in the N = 2*

gauge theory of chapter 3. The potential for the scalar, which we will write as

p= eMVE g given by

1
and the three equations of motion become
" 1y 2 i av
’)——<p—> paly P9V (5.3)
p p p 6 dp
N 2
6A2 — 6 <'°—> 1% (5.4)
p



A= —4 (p—I)Q (5.5)

The last of these is the sum of (1.76) and (1.77). The asymptotic (r — co) solutions

take the form

A= Ae™ + Bre™¥ (5.6)
with A the scalar VEV and B a mass term for the operator O.

In the special case where only the first part of the solution is present the deformation

preserves N' = 4 supersymmetry. The superpotential is

op 1(1 . PA 2(1 1,
e === 5.8
Jr 3<p ,0), r 3<p2+2p (5:8)
with solution [57]
4
2,4_[2 P 5.9
- (59

with [* a constant of integration.

5.1.2 Non-supersymmetric First Order Equations

In [91] it was pointed out that using Hamilton Jacobi theory the second order equa-
tions could be replaced by a system of first order equations. They further stated that
a “superpotential”, W, could be found which resulted in the equations (1.79) even
for the non supersymmetric solution with only B switched on. A similar result was
obtained in [92, 93] but as a requirement for the RG flow solution to be stable. Re-

ducing the equations to first order would be very helpful, but the system we discuss
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here can not be.

Consider the UV of the theory where, expanding (5.2)

v:~3w2/\2+1/%/\3+... (5.10)

we can attempt to find a superpotential W that reproduces this potential via the trial

form

W =a-+b\+c)\+ .. (5.11)

Working to quadratic order one finds
a=—3, b= —2 (5.12)

The solution for b comes from a quadratic equation with degenerate roots hinting
at the two forms of the solution. However, it is then easy to show that at higher
orders there is a unique series (eg ¢ = \/ﬁ) and it is simply the supersymmetric
solution. We have therefore not been able to find a superpotential that describes the
non-supersymmetric solution and are forced to numerically solve the second order
equations. Of course our geometry is intrinsically unstable since we have introduced
an unbounded operator in the field theory. Apparently the stability of the flow is

essential for the system to reduce to first order.

5.1.3 Numerical Solutions

The second order equations of motion are easily solved. In figure 1 we show the
numerical behaviour of p. For this plot we fix p(r = Ayy) and vary the derivative.
The purely VEV supersymmetric solution (B = 0) and purely masslike case (A = 0)
are labelled. The three regions (bounded by the A = 0 and B = 0 curves) correspond

to
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1.01r

1.005¢

0.995¢

Figure 5.1: Plots of p vs r for a variety of initial conditions on p. The VEV only
initial condition solution is marked with B = 0 and mass only initial condition with
A = 0. The marked regions are explained in (5.13).

A B
I +4ve —ve (5.13)
Il +ve “4wve
Il —ve Hwve

In each case the function A(r) deviates from A(r) ~ r by a small amount so a plot is
unrevealing. Note that most of these solutions become singular before r = 0. When
lifted to 10d this singular point is expected to correspond to the position of the D3
brane sources in the transverse space. For most of these solutions there is a scalar
VEV and so the D3 branes are expected to have moved away from the origin. The
mass only solution (A = 0) on the other hand can be extended to r = 0 which is

consistent with the D3 branes being pinned at the origin.

It has proven difficult to extract aspects of the field theory from the 5d supergravity
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backgrounds. More success has been had at the 10d level where techniques such as
brane probing can be used to connect to the field theory. We shall therefore move to

discussing the lift of these solutions to 10d in the next section.

5.2 The 10d Background

To lift the 5d solution to 10d requires the procedure outlined in [94]. Finding the
metric is complicated but we will be able to short cut the process since the lift of
the 5d solution where the A = 4 theory is on moduli space has already been written
down. In particular the solution where our scalar corresponds to a VEV has been
studied in [57, 1] (it is also the limit of the metrics in [85, 86] with some of the fields

switched off). That solution is given by

. X1/2 X1/2 2 in? g 6 29
ds? = 22400, denday 4 (dﬂ + Lﬁ-g- [dGQ + 2 e+ 252 Taz|

p p X X
(5.14)
where df)% is the metric on a 3-sphere and
X =cos? 0 + p°sin? 0 (5.15)
For consistency there must also be a non-zero Ay potential of the form
X o 2 3
Ay = —dz" A dzt A dz? A dx (5.16)
gsp”

Note that the solution has the same SO(2) x SO(4) symmetry as our operator

Eqgn. (5.1).

Clearly the lift of the full solution of the second order equations has this as a limit.
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In fact the procedure for finding the form of the metric does not depend on the su-
persymmetric solution and we may take it over directly to our case. The A4 potential

though will change since the supersymmetric first order equations of motion were

used in its derivation [57, 85].

In fact the 10d supergravity equations of motion we must concern ourselves with are

relatively few since only the metric and Ay are non-zero. There are the Einstein

equations

1
Ryn =Tun = 5 v Fporsm (5.17)

and

Fisy =" Fs), dFs =0 (5.18)

The self duality condition can be imposed by using the ansatz
=F 4+ F, F =daz Ada' A dz? A de® A dw (5.19)

where w(r, ) is an arbitrary function.

There are three independent non-zero elements of Rysy which factorize into the useful

equations
1 ) Hw\?

ROO—}‘RT _ gOOQIIQ 293397“7" (520)

2 or

1 ow
0 _ pr 00 11 _22 33 00 591
Ry — R, 299999(89> (5.21)

L 00 11 22 33 dw dw
”" 5.22
Ro=759"9"9"9"9" | 555" (5.22)

These are straightforward but laborious to explicitly calculate. We then use the sec-

ond order equations of motion to eliminate p”, A” and A"2. The resulting background
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will therefore reproduce the full second order equations of motion. The middle of the

above equations can be used to find the angular dependence of w giving

e 3sin?fpetA
w(r, ) = — — Eh N M E(r) (5.23)
p p
Note that the supersymmetric limit corresponds to F(r) = 0 and p’ replaced using
the supersymmetric first order equation of motion (5.8). We should not be surprised
that derivatives of p enter directly into the solution since introducing a mass term

corresponds explicitly to introducing an extra degree of freedom via precisely this

derivative.

F' can then be found using either of the other two equations (the third equation

providing a check on the consistency of the solution). It is the solution of
—2—2p% = —4p? A" + 4p*FA + p*F 4 2pp' (5.24)

We have not been able to solve this equation explicitly but in the UV limit the solution

takes the form

1/1 /

F= —(——ps) —p + ... (5.25)
3\p

which clearly vanishes in the supersymmetric limit given (5.8). For a general nu-

merical solution of the second order equations of motion we can set the boundary

conditions on F' using this asymptotic form and hence find F' numerically.

The solution then faces its strongest test since F5y must also satisfy its bianchi identity
(5.18). At first sight this appears to be a challenge; since w contains a derivative of
p the bianchi identity is a third order equation. In fact explicit computation shows

that the second order equations of motion are a solution of this third order equation
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Figure 5.2: The probe potential plotted over the r — § plane for the mass only case
(A=0).
and the solution survives.

Given the complete 10d lift of our non-supersymmetric solutions we can study the

background for signals that it correctly encodes the field theory dynamics.

5.3 Brane Probe Potential

It is now an automatic procedure to substitute this into the DBI action. The resulting

scalar potential is given by

Ve 22 !
_ea | X + 3sin bp % + F (5.26)

p? P P

‘/probe -
It is illuminating to evaluate this potential at leading order in the UV with

p=1+ve ¥ +mire™® + .. (5.27)
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We find
V= mzezr(Q — 6sin? g) + ... (5.28)

The scalar VEV vanishes from the potential at this order consistent with the existence
of the N/ = 4 moduli space. The mass term reproduces precisely the mass operator
we expected in Eqn. (5.1), and we conclude that the 10d background shows all the

correct behaviour to be dual to the non-supersymmetric gauge theory with scalar

masses.

Finally we numerically plot the probe potential in the r — 6 plane for the mass
only solution (A = 0) in Figure 5.2. The plot fits well with the claim that the
mass operator Eqn. (5.1) is present. The supersymmetric solutions (B = 0) give
a flat probe potential. Other non-supersymmetric solutions reproduce the form of

Figure 5.2 up to a sign change dependent on the sign of B.

5.4 Précis

We conclude that we have successfully found the 10d gravity dual of this simple
non-supersymmetric deformation of the AdS/CFT Correspondence. Whilst it may
appear an unphysical example, it has been an important step in constructing a non-
supersymmetric dual example and a step closer to a QCD duality. It has also shown a
novel feature, in the form of the ansatz for the 4-form gauge potential, and in moving

away from a known supersymmetric case in a minimal way.
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Chapter 6

Overview and Conclusions

We have now reached the end of our road. What the previous chapters have shown
is that the AdS/CFT conjecture is a very concrete proposal, but not without its
difficulties. One can see that when it is in the conformal phase, it is a very perfect
system, but when we move away from here, complications set in. This is clearly
illustrated in chapters 2 and 3. Everything is very clear when we are looking at the
N'=4 Coulomb branch, but there are difficulties when we try and study non-conformal
theories such as by an operator insertion. The direct proposal of a duality that we
looked at for another non-conformal SYM didn’t have the problems of chapter 3, and
seemed to be a good example of a low energy SYM, albeit that very particular VEVS
are switched on; it would be good to make a similar generalization as is Chapter 2,

as an expansion of the harmonic function.

It also raises interesting questions for our outlook. In all that was considered, one
noticed that certain quantities were renormalized, whilst others weren’t. The general
idea is that the radial coordinate in AdS should correspond to the energy scale in
the field theory. This is somewhat of a vague notion, and I believe it is of high

importance to make this identification precise. In [95], an approach is followed that
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is based on the local coupling approach in field theory. Local couplings have a very
natural interpretation in AdS/CFT, as they are simply supergravity fields. It is
understood in the conformal case, so the next step would be to make it clear in a

non-conformal setting. One then may be able to make precise statements for field

theories by using their gravity dual.

One might also wonder about QCD, and how it could be obtained from some dual
picture. To this end, we have been looking at a non-supersymmetric deformation
where all the gauginos are given a mass. The scalars then also get masses from
loop corrections, so that in the FR we are left with pure glue. It should be stressed
the level of complexity at hand as there are many fields switched on, and trying to
find a solution without some special ansitze looks a hopeless task. If it does work
however, it will provide a very good first step to looking at QCD. Some progress
has been made at introducing quarks in AdS/CFT [96], which is very interesting
phenomenologically because one may hope to compute a meson spectrum in a similar

manner to computations of the glueball spectrum [43].
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Appendix A

A.1 Maximally Symmetric Spaces

Consider a spacetime of dimension D with a cosmological term. Then the vacuum

Einstein field equations are [97, 35, 43, 34, 44, 98]

1 1
Rywv — ”Q“GMNR = —5AGMN, (A.1)

which implies that

A
5 DGMN- (A.2)

Ryny = —

Spaces of this type, where the Ricci tensor is proportional to the metric tensor are
called Einstein spaces. Clearly, there are a large class of solutions, so we make the

further restriction to look at maximally symmetric solutions where

R

Rynpg = m(GNQGMP — GneGug)- (A.3)

By considering this minimal construction of the Riemann tensor out of the metric (in
terms of its symmetry properties), it can be seen the solutions admitted will be highly

symmetric. In fact they are spheres, S”, de Sitter spaces, dSp (A > 0), and anti de
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Sitter spaces, AdSp (A < 0). They are maximally symmetric, homogeneous, isotropic
solutions.The sphere is obviously a highly symmetric space, so in what follows it is
useful to consider spheres at the same time. At each point on the way then there is a

more familiar space to help us understand these new (AdSp) hyperbolic spaces and

their properties.

If we were to consider spherical spaces, we usually start by defining them via embed-

ding in a space of one higher dimension. For a sphere we would embed the surface

D1
X2+ Xb+ Y XP= I

1=1
in the flat D + 1 dimensional space with metric,
D-1
ds* = dXg +dXp+ > dX}.
i=1
Similarly, this is done for the hyperbolic space AdSp by embedding the surface,
D-1
Xo+Xp-D> X2=1° (A.4)

i=1

in the flat D+ 1-dimensional space in complete analogy. This space has the flat metric
D—1

ds* = —dX? — dX3 4 3 dX2. (A.5)
=1

Just as the sphere inherits its metric from from the Euclidean embedding space, this
also happens for AdSp. To obtain this metric we need to ‘solve’ (A.4), and put
this constraint into the embedding space metric. If this were done for the case of the
sphere, we would solve by using trigonometric functions at a constant radius R. Here,

since there are two minus signs, it may be seen the need to use hyperbolic functions
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Figure A.1: The AdS space via embedding.

as well [43], justifying why we call it a hyperbolic space. Doing this we find
ds® = L*(— cosh® pdr? + dp? + sinh? pdQ0%,_,). (A.6)

These coordinates (called the global coordinates), cover the whole AdS sub-manifold
once (see Fig A.1, when p > 0 and 0 < 7 < 27. Although it looked like there was
two time-like directions, the above shows there is only one. Looking in the region
p = 0 (where we see the topology of the space is St x RP7!), in the 7 direction
there are closed time-like curves (note that this space is not simply connected), which
aren’t usually allowed. If we unwrap this, the spacetime becomes causal (the universal

covering space).

Let us discuss the symmetries of these spaces. Clearly the isometry group of AdSp
is SO(2,D — 1), since both the embedding space metric and (A.4) are invariant.

Vote that this is the conformal group in (D — 1) dimensions. There will therefore be
D(D +1)/2 Killing vectors. Any theory defined on this space, will have an invariance
group just as large as more familiar theories on flat spaces of the same dimension (the

Poincare group). The maximal compact subgroup is SO(2) x SO(D — 1), and these
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can be used to give representations to a particle spectrum (e.g. singletons [44]).

There are yet more interesting properties; let us discuss the boundary of this space
(assuming we have conformally compactified it), which is a projective boundary. Sup-
pose we consider a point X € AdSp which is very large with respect to the length

scale of the space. Define new coordinates

XM = M (A7)
s.t. v — oco. Therefore we see that the boundary must be
D-1 ‘
ro+ap— ), 2l =0, (A.8)
1=1
subject to the projective equivalence class

T~ Az, (A.9)

This means that the boundary is (D — 1)dimensional, as required [35]. It has the
topology of (S x §P=2)/Z, [5, 99]; we found that the AdS space having the topology
St x RP~! which for p — oo explains the boundary topology. If we consider the
universal cover then the boundary becomes R' x SP~2. We should consider points
at infinity, as we need to discuss conformal compactification. This is where we con-
formally rescale the metric such that. points at infinity, which are not points in the
original metric are brought into finite distance in the new metric. With these points
added, we have conformally compactified the spacetime. If we take R” and add a
point at infinity, this yields SP. Similarly, R' x SP~2 is the conformal compactifica-
tion of D —1 Minkowski spacetime (a point at spacelike infinity has been added). This
is relevant because, when looking at conformal field theories in Minkowski spacetime,
its conformal compactification must be used; conformal transformations can map an

ordinary point to infinity [5]. What we see is that the boundary of AdS is precisely a
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Figure A.2: The AdS Poincaré patch.

Minkowski spacetime of one lower dimension, appropriate for a conformal field theory.

Let us discuss some different coordinate systems, used to describe AdS. This is an
essential requirement, as one frequently encounters different coordinate systems in
the literature. It will also help clarify the causal structure of the spacetime to follow.

Define coordinates,

X0+ xP = Lelt (A.10)
X0 - XP = pet ety atat (A.11)
Xt o= ety u=0,---,D—1. (A.12)

The idea here is to switch to a radial coordinate, and scale it out from a Minkowski
looking line element. This explains the last definition, from which the first two can

be deduced from consistency of the embedding equation. The metric then becomes
ds? = dr® + ¥y, da" da” (A.13)
known as the Poincare metric with (see Fig. A.2) as its Poincare patch [44]. Because
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of the type of exponential mapping, only half of the space gets covered, due to the
positive definite coordinate changes (A.10, A.11). We can pass to another form of
the metric by the radial redefinition U = ¢"/%, which gives

dIJ2
ds® = LQ—U% + U277Wd:c”d:c”. (A.14)

This has the boundary structure of the single point U = 0, plus the plane at U = oo,
which is the Minkowski space R”~!. So the boundary of AdS space is really identical

to the conformal compactification of Minkowski spacetime. Yet another is obtained

by setting z = 1/U, with the metric
1 v
(182 = ;E(L2d22 + nuudxudw )' (‘A]'S)

The boundary consists of a plane at z = 0, and a point at z = oo; it is located at an
infinite distance from any point of the space. A final set of coordinates, which can be

obtained from (A.6), by passing to a new angular variable, as we do when looking at

Minkowski space. Define

tan = sinhp, 0 <8 < 7/2, (A.16)
from which (A.6) becomes
2
ds? = (—dr? + d* + sin® 0dQF_,). (A.17)
cos? 0 =

So there are different sets of coordinates in which to describe the space, not all of
which are a complete cover; let us conformally compactify (A.17) to look at the causal
structure. This is because it looks like the Einstein static universe, which we can draw

a Penrose diagram for. Rescaling by the conformal factor yields

ds? = (—=dr* + df* + sin® 0d0%_,). (A.18)

114



—

0 =rn/2

//\ﬁ/
/

|

-

Figure A.3: The AdS space is put into the Einstein static Universe.

Since 0 < § < w/2, the conformal mapping is only into half of the conformal com-

pactification R»P~1 (the Einstein static universe, see Fig. A.3).

This serves as a definition for the asymptotic regions of AdS; a space-time is asymp-
totically AdS if its conformal compactification has a boundary structure the same
as one half of the Einstein static universe. This is a useful definition, for when de-
formed metrics are considered, they should have this asymptotic form. Considering
a spacelike hypersurface, the boundary is at § = 7 /2, with a topology of SP~%; how-
ever the full boundary extends in the time like direction, so the Cauchy problem
requires specification by giving a boundary condition on the R x $P~% submanifold.
From [97], note the following; we cant make a conformal transformation that brings
time-like infinity to a finite point, so we represent them by the disjoint points Z7,Z~

(see Fig. A.4).

There is no Cauchy surface, so whilst we can put initial data on a spacelike hypersur-
face X, prediction past the Cauchy development DT (X)) is hampered by the arrival of

fresh information from Z~ [100].
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Figure A.4: Timelike infinity is represented by separate points.

As a closing remark, it is also apparent that massive particles moving along geodesics,
can never reach the boundary, whilst light rays can reach the boundary and come
back in finite time (as observed by an observer moving on a time-like geodesic). From

Eq.( A.6), we see the coordinate time to reach the boundary is

oo 1
T :/0 dpcosh(p) =7/2. (A.19)

So light rays can travel from the centre of AdS space to the boundary and back
again in a time 7 (with suitable boundary conditions). Had we looked at time-like

geodesics, we would have found an infinite result.
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Appendix B

B.1 Twisted Field Theories

B.1.1 The Basics

In this appendix, we give more details of the twisting which occurs in the supersym-

metric field theories in 4. This is based on [101], where its connection to Donaldson-

Witten theory is discussed.

Firstly consider the global symmetry group of A’'=2 SYM in R*. The Lorentz covering

(Euclideanised) group is
Spin(4) = SU(2)y x SU(2)_. (B.1)
In addition, there is the R-symmetry group
R=5SU2)r x U(1)r. (B.2)
With these, the supercharges can be classified i.e. they transform as
QL ¢ <1 0 1>1 (B.3)
o 27772 '
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~ 1 1\7! ,
- —, = B.
Qla € (0, 97 2) ( 4)
In addition, they satisfy the algebra
{Qi @y} = 65P,5 (B.5)

We are now in a position to give a clear definition of twisting.

Definition 3 The twisted theory is where the rotation group is taken to be SU(2)T x
SU(2)_, where SU(2)T is the diagonal subgroup of SU(2). x SU(2)r.

So the global symmetry index, I, becomes a spinorial index «, that is Q% — Q7 and
Q5 = G5 Clearly, there is a trace which can be defined as well @ = Q5. These new
charges transform under the new global symmetry group SU(2)T x SU(2)- x U(1)r

as

Qup € (1,0) (B.6)
Q € (0,0) (B.7)
1 1y\!

At this point, all that has been done to the theory, is a fancy rearrangement of
the symmetry groups with the appearance of a scalar symmetry generator (). But
this appearance is important because we can now pass to a curved manifold (e.g.
covariant derivatives do not require a connection). If the energy momentum tensor
can be written as some quantity under a ¢ transformation [101] then the theory is

topological (twisted theories are regarded as Euclidean theories. The twisted algebra

1s NOwW
{QévQJﬁ'} = 5§Paﬁ - {QaGaﬁ} = Pgﬁ? (BQ)

118



{Q,Q} = 0, (B.10)

and shows this to be a necessary condition for it to be a topological theory. In models
studied this is in fact true for the whole energy momentum tensor. In fact the algebra

is precisely the basic equations that occur in a topological quantum field theory.

Now let us address the system on a general manifold. Whilst on R* the original and
twisted theories are equivalent, this is not true on a curved space because the energy
momentum tensors are different [101, 102, 103]. The spin of the fields change since
the R-symmetry index becomes spinor valued due to the twist. This implies that the
couplings to the background metric M are altered. It may be viewed as arising from
firstly gauging the SU(2)g; this has the effect of coupling the new gauge field to the

R-symmetry current and thus the Lagrangian is changed
L— L+ JA,. (B.11)

Clearly then this will change the energy momentum tensor. At this point quantities
like correlators depend both on the spin connection and the gauge field. Identifying
the gauge connection with the spin connection on M, will produce diagonal (topo-
logical) correlators [103]. That this is equivalent follows from noting the difference in
energy momentum differs by a term involving the current J¢. This different coupling
to gravity implies field’s charges with respect to the current then must change their
transformation law! Sequentially it produces a change in the spin connection and
therefore the energy momentum tensor, and then in turn changes the couplings of
the fields to gravity. See also [102]. When the gauge fields are set equal to the spin
connection, covariant derivatives are modified so as to be compatible with the original

twisted energy momentum tensor.
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Let us state how the A'=2 fields are changed under the twisting operation;

11 \° 1 1\°
A .<_7_7 ) A <_7—'> ) B
o\zpY) 7 Ailpa (B.12)
1 1\° . .
Aia (‘2-,0,'2'> — Xap(1,0)7, n(0,0)7", (B.13)
. 1 1\! 1 1\! ‘
ALle Y ) oy 3 Uy 3 B14
(O > 2> = Vg (2 2) (B.14)
B(0,0,0)7% — A(0,0)72, (B.15)
B*(0,0,0)** — $(0,0)*%, (B.16)
D:;(0,0,1)° —  Gap(1,0)°. (B.17)

In Section 4, we are considering a partially twisted theory; our world volume M is
a product manifold M = R* x ¥, and the twisting is performed on ¥. This then
enables us to preserve some supersymmetry (there are killing spinors) and also have

the usual field theory in the R*.
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Appendix C

C.1 Supersymmetric Backgrounds

In this section, we would like to make to some general remarks on how some su-
persymmetry is preserved in a given background. This is very much in the spirit of

chapter 15 of [17].

Suppose we consider local supersymmetry so the infinitesimal spinor supersymmetry
parameter is some function of the coordinates ¢,(z). To this there corresponds a

conserved supercharge @),. An unbroken supersymmetry, @, is given by the condition

Qal0), (C.1)

where |0) is the vacuum state. This can be rephrased in terms of its behaviour with

some other operator UU. The above condition implies

(0][Qa U)£|0) = §U = 0. (C.2)

When U is bosonic, this condition is simply satisfied by setting the fermions to zero.

For a fermionic operator this gives a non-trivial equation. At tree level when U and
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{|[6U)0) coincide for string theory, this amounts to solving two types of equation; one
for the gravitino and one for the spin-1/2 fermions. As an example of these, we shall

write down the IIB variations (which are used in chapter 2). These are [29]

Sy = Ve ZZZ"BTFABGDEFMGFABCDE +
1 , .
m(FN[NPQGNPQ - QIﬂVPG']\/ij)6)K + (Fermz)2 (CS)
oA = iFME*HM — %FN[NPGG]\/[NP -+ <F€T77Li)2 (C4)

These equations have a variety of uses, in finding particular solutions to the super-
gravity field equations. Into these one can put an arbitrary metric and dilaton ansatz
in trying to find a supersymmetric solution (d¢pr = 0 and §A = 0), whilst the field

strengths must satisfy certain Bianchi identities.
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