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The provision of healthcare services is perhaps one of the largest and most complex
industries worldwide. As one of the essential necessities to sustain life, it faces the
consequences of increasing demand in times of limited financial resources and
competing social needs. Providing the appropriate medical care involves decision-

making in terms of planning and management of healthcare resources.

There is currently a great need to evolve a framework in which necessarily detailed,
stochastic, flexible and user-friendly operational models, to aid both the planning and
management of hospital resources, can be developed. Such a framework is considered
and created within this research. Furthermore, detailed integrated simulation models
for the planning and management of hospital beds, operating theatres, workforce needs
and critical care services have been designed and built. An evolutionary development
methodology has been adopted whereby the research work and model development has

been guided by a number of steering groups within participating NHS Trusts.

The derived framework incorporates the need for sophisticated patient classification
techniques to be adopted. In order to capture the uncertainty and variability amongst
the patient population, a number of classification techniques have been considered and
evaluated for their relative performances and practical usefulness. Healthcare issues
representing both challenges and opportunities are explored in order to provide a basis
for tentative conclusions about the current state of operational modelling for healthcare.
A framework for the successful design and implementation of operational models in a

healthcare environment is proposed.
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Chapter 1 Introduction

Chapter 1 — Introduction

1.1 Chapter Introduction

The purpose of this chapter is to establish the general context of the work presented in
this thesis and provide a perspective into which the individual elements can be
integrated. Firstly there is a clear statement of the project objectives followed by the
general methodological approach adopted and research context. Details of the research
participants and project management arrangements are then presented. The chapter

concludes with an outline of the overall thesis structure, providing an overview of the

document as a whole.

1.2 Research Objectives

This thesis concerns the planning and management of healthcare resources. The

research work however may be broadly divided into the following distinct but

integrated objectives:

e To research the use of the simulation methodology in support of management
decision-making processes within the healthcare environment, with particular

emphasis on hospital beds, human resources and operating theatre capacities.

e To explore the use of various classification techniques with particular emphasis on
creating healthcare groupings. This will require an examination and comparison of

existing methodologies and the need to improve the current theoretical knowledge.

e To derive a generic framework for modelling of healthcare resources. This should
involve the linking of patient groupings from classification analyses with

operational models.
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e To develop necessarily detailed but flexible operational models to aid the chosen

study areas and demonstrate the value of such models through various case studies.

e To evaluate the effectiveness of the adopted methodology and developed

applications.

1.3 Research Context, Rationale and Methodology

As the NHS enters the new millennium, it does so as it faced its birth in 1948; an
astonishing vision of comprehensive healthcare for an entire population. Now, as then,
it is beset with controversies, both at local and national level. The nation it serves has
changed considerably from those post war years. The balance of population living in
large conurbations has changed, the age structure is different and people’s expectations

of the service they think it should provide change continuously.

As each year passes, the proportion of the population that can remember what
healthcare was like before the establishment of the NHS declines. For those born in the
fifties and afterwards, it is simply part of the way things are. Perhaps this, more than

anything else, explains why attitudes to it have changed.

It will face many new challenges in this third millennium. The need to balance a
supply driven service with finite funding, against demand fuelled by legitimate
expectations will not go away. Advances in our understanding of the very generic
chemistry of life will plunge the service into moral and ethical debates, the like of
which have never been seen. Expensive treatment for “self inflicted” illnesses related
to smoking and alcohol abuse will come increasingly into question. Some countries
have already introduced voluntary euthanasia into law and in Britain the debates will

continue to be heard.

Against this backcloth it would be absurd to assume that the delivery, planning and
management of healthcare will remain static. The state of the NHS has seen many

structural reforms by various governments since its birth and the continuing emphasis
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towards improved planning and management of resources within the NHS is clearly

visible,

The Conservative government under John Major in 1991 produced “The Health of The
Nation” reform document outlining their policies for the future role of the NHS
(Department of Health, 1991). Mr Waldergrave, then Secretary of State for Health
states, “A key feature of the reforms has been the establishment of a clear strategic role
for health authorities”. Later in the document he acknowledges the need to plan and
manage resources carefully as there is only a finite amount available and a key
objective is to make the best possible use of these resources. More recently, the
Labour government lead by Tony Blair defined what it saw as “The new NHS; a
Modern and Dependable Service” (Department of Health, 1997). Once again a key
objective within the new national performance framework, as outlined in the
document, is for “an evidence-based service in which change will be driven by
improving the performance and efficiency of NHS Trusts; a combined approach of
quality and efficiency to build a modern and dependable health service fit for the

twenty first century and fit for the people of this nation”.

The research topic concerns modelling for the planning and management of healthcare
resources. This thesis aims to demonstrate that healthcare planning and management
issues can be greatly benefited through an Operational Research approach. Together
with the research participants, it was decided to concentrate on the planning and
management of hospital capacities, which is currently a highly topical and important
issue. More specifically, this research will focus on hospital beds, human resources
and operating theatres capacities within a hospital environment. There is currently a
great need to research these three highly critical, complex and interlinking elements of

the hospital system. A generic framework for modelling of the hospital system is

required.

Capacity planning in hospitals is largely a strategic decision. For example the total
number of beds in a new hospital and the number of beds in various specialties are very
major concerns; here the planning horizon could be about ten years. Management of
available capacities could be from day to day or over longer periods such as winter

months and summer months. An example would be a planned transfer of surgical beds
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to elderly medical patients in winter. Appropriate detailed models that can evaluate a

variety of scenarios could be powerful tools for good planning and management

decisions.

A common current practice is to plan and manage hospital capacities through a simple
deterministic approach using average patient flows, average needs, average length-of-
stay, average duration of surgical operations etc. Patient flows, patient needs, and
utilisation of hospital capacities involve complexity, uncertainty, variability,
constraints, and scarce resources. Mathematically speaking, a hospital corresponds to
a complex stochastic system so that the common deterministic approach for planning
and managing the system can be expected to be inadequate. Typically the deterministic
approach will underestimate hospital requirements. The mathematical modelling
approach of Operational Research is ideal for dealing with complexity, uncertainty,
variability, constraints, and scarce resources and appropriate models can avoid the
dangers of planning on the basis of average values only. This research is concerned
with the development, solution, and validation of sufficiently detailed stochastic

models for planning and managing hospital capacities.

Appropriate classification methods, linked to routine databases that are easy to use are
needed. Classification methods such as Classification and Regression Tree (CART)
that use binary splits have a great practical appeal. There is a need to improve the
current theoretical knowledge about criteria for goodness of groupings and the effects
of transformations. There is a need to test the accuracy and practical usefulness of a
variety of classification methods for a number of variables. Examples include lengths
of stay, theatre operations and nursing needs. The necessary theoretical and practical
research for classification is an important element of this research. Various

classification techniques will be compared using illustrative hospital datasets.

A combination of classification and simulation modelling can be used to describe,
control, and monitor the flow of patients in a hospital. Patient flows correspond to
queues in networks and it is not surprising to find that queuing models have been used
extensively in the literature. Integer programming, forecasting, and simulation are
other commonly used techniques. Although often viewed with success, much of the

work to date has been project specific or has made highly simplifying assumptions.
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There is a great need for flexible and sufficiently detailed models that can be used in a
hospital at various levels. Such models will need to be stochastic in nature and take
uncertainty, variability, complexity and use of resources into account. Ease of use
including links with databases that are in common use is an important consideration.
The models will be too complex for analytical solutions and simulation will be needed
for solving the models. Validation and verification of complex models are clearly

important issues and careful attention is given to these matters.

Historically within Operational Research, simulation methods have been successfully
proven in manufacturing domains where processes can relatively easily be quantified
and assessed. Ease of measurement and data collection are key factors in the
construction and validation of the models used in such applications. In contrast to
manufacturing systems, the service sector presents particular challenges to the modeller
(Checkland, 1981). The potential benefit of the simulation methodology within the
service industries is considerable. Arguably the challenges of service sector modelling
are most acute in healthcare where issues of complexity, diversity and lack of
quantitative data create particular problems (Davies, 1985). Such rewards for
successful implementation of simulation within a healthcare environment provide
ample incentive for this research. Furthermore, the development of a generic

framework for simulation of hospital resources is paramount.

1.4 The Research Participants

The author worked closely with a number of healthcare organisations. A strong
relationship was forged between all of the participants throughout the duration of the
research work and permitted the evaluation of the research methodology and developed
applications in a real-life environment. Ultimately this resulted in the research work to

be of great practical use and benefit.
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1.4.1 The Author

The author completed a B.Sc. (Hons) honours degree in Statistics at the University of
Bath in 1995. He then went on to obtain a M.Sc. (with distinction) in Operational
Research at the University of Southampton during 1996. Since this time he has worked
for Cap Gemini Management Consultancy in London, before returning to Southampton

as a Research Assistant within the Operational Research Department.

1.4.2 Institute of Modelling for Healthcare /@ @é@u&f

The Institute of Modelling for Healthcare is a group within the Operational Research

Department in the Faculty of Mathematical Studies at the University of Southampton.
The Institute was established in the early 1990’s, under the directorship of Dr. A. K.
Shahani, due to the expansion of the healthcare modelling work following successful
efforts in collaborative work and increases in research funding.

The Institute is pursuing and co-ordinating research on modelling for a number of

healthcare areas. These areas include:

e Hospital capacity.

e Prevention, early detection and treatment of a particular disease.
e HIV/AIDS patient care.

e Intensive care capacity.

e Maternity care.

e Interventions for infectious diseases.

e Organisational issues such as interactions between primary and secondary care.

One of the aspects emphasised in the IMH approach is that developed models should
account for the variability found in the real world. This distinguishes them from other
more simplistic models that consider only average conditions, which often represents

an unrealistic simplification.
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Jmp

'l@‘f
1.4.3 The Royal Berkshire and Battle Hospitals NHS Trust (bw

The Royal Berkshire and Battle Hospitals NHS Trust is an acute district general
hospital based approximately 40 miles west of London in the Thames Valley. It serves
a population of around 500,000 in a mixture of urban and semi-rural setting. The
catchment population is on the whole relatively affluent and in good health, with

patches of deprivation within the two main towns in the area.

The Trust covers the usual range of acute specialties including maternity services, with
the exception of heart surgery and neurosurgery. The Trust treats approximately
260,000 outpatients, 65,000 inpatients and day cases and about 80,000 casualty

attendees annually. The beds complement is 800 and the Trust employs over 3,500

people.

The hospital was founded on its London Road site in central Reading in 1839. The
Battle Hospital, on Portman Road in west Reading, began life in 1891. The two
hospitals have worked closely together since the time of the First World War. In 1987
they were brought together as one management unit. The Royal Berkshire and Battle

NHS Trust was formed in April 1993.

During the middle of the 1990s the Trust, as did the whole of the NHS, came under a
considerable pressure to treat ever increasing numbers of patients through a
diminishing bed pool. The demand for certain surgical specialties was showing large

increases. At same time numbers of medical emergency admissions were on the rise.

Internally the Trust launched a programme of consolidation of services from the
current two locations within Reading to a single site. The building constraints meant
that the pressure on space would become even greater, so that the number of beds that
would be provided demanded higher bed utilisation and more accurate scheduling of

other associated services.

The Trust had to make some fundamental changes to its way of working in order to

meet these new challenges. An analysis of cost drivers confirmed what everybody
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intuitively felt; that any significant efficiencies could only be achieved through radical
systems review and redesign of the whole system. This recognition led to the launch of

a re-engineering programme within the Trust.

The Trust already had some limited experience of process oriented improvement
projects, and now took the bold step to run a Trust wide programme that would
approach the redesign from a strategic, whole system point of view. Very few
constraints were placed on the staff working on the project and a much simplified

organisational model was born (see Figure 1.1).

The model defined two categories of patients:

e Planned patients; and

e Unplanned patients.

Clinical
Module

Primary
Primary Care
Care Planned Process (including
| T Social
Services)

Unplanned Process

Staffing
- & Payroll
Contracting

& Invoicing Procurement &

Payment

Client Ui
Module Supplies
Module

Figurel.l: Royal Berkshire and Battle NHS Trust process model

This simplicity was a departure from the established groupings and at first was not

universally accepted. The logic behind the grouping, however, is straightforward. For
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‘planned’ patients we know in advance that they are coming in and why. We can
therefore plan, book, and schedule etc. what we are going to do. In fact the process
itself is not too dissimilar for the ‘unplanned’ patients. Although they present
unexpectedly, they still pass through more or less standard processes of diagnosis and

treatment.

Having developed a new process model the Trust wanted to test its validity using
established statistical and mathematical methods. The Trust also wanted to model and
evaluate detailed options within the new design. Apart from this ‘one off” application,
the Trust was also looking to develop a forecasting and planning tool that could be
used in long term planning and during the annual business planning cycle.

The Trust evaluated a number of approaches and decided to work jointly with the
Institute of Modelling for Healthcare at Southampton University. The main reasons for
choosing this particular establishment was their experience in building highly detailed

and realistic models both at global and detailed local levels.

1.4.4 Portsmouth Hospitals NHS Trust I?I.%_I

VT

BORTSMOUTH TALS
NHS TRUST

Portsmouth Hospitals NHS Trust is one of the largest in England, with an annual
income of around £240 million (2001/02). It provides acute healthcare services for
almost a million people; 550,000 covered by Portsmouth and South East Hampshire

and many more from the surrounding counties.

The Trust has a regional specialty in its Renal and Transplant Unit and is a designated
Cancer Centre. It is involved in the training of nurses and doctors at undergraduate

level from the University of Southampton and postgraduate teaching.

Based at two locations in the City of Portsmouth four miles apart, the Trust effectively
operates out of three main sites, as St Mary’s Hospital (SMH) is divided in two by a
main road. St Mary’s Hospital West Wing is an historic ‘workhouse’ hospital and St
Mary’s East Wing is a former infectious diseases hospital, both dating from the
nineteenth century. Queen Alexandra Hospital (QAH) is located in the north of the

city in Cosham. It largely comprises two tower blocks of seven floors opened in 1978.
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This is connected to the original 1908 military hospital, which is leased by Portsmouth

Healthcare NHS Trust to provide acute elderly services.

Separately, neither Queen Alexandra Hospital nor St Mary’s Hospital represents a full
District General Hospital (DGH), but together they provide the full range of services
expected of a DGH, albeit with services scattered around three sites. This leads to
duplication of services in some instances, and the current cross-site dislocation of such
services has a heavy cost premium of several million pounds per annum. The use of
inappropriately configured, ageing building stock contributes to these problems and
generates a backlog maintenance requirement estimated at £34 million (1994), without
providing better facilities for patients. This historically generated pattern of split site

working damages service delivery.

Internally the Trust launched a consolidation and reconfiguration programme of

facilities. The following key strategic objectives were identified:

o To re-engineer the Trust’s acute services to ensure the effective delivery of patient
care on a single acute hospital at Queen Alexandra Hospital.

o To rationalise existing sites and create a Community Hospital Plus on the St Mary’s
Hospital site (a community hospital with extended facilities).

e To secure investment for the redevelopment of facilities to support the Service
Development Strategy through the Private Finance Initiative (PFI).

e To provide specified services delivered by the Trust in local primary care and

community settings.

The Private Finance Initiative (PFI) programme is a government-run initiative to attract
private sector investment into health to permit the building of new hospitals and the
development of new services. The Trust, supported by the local health authority,
submitted a Strategic Outline Case (SOC), which demonstrated the benefits to the local
community of the PFL. Portsmouth’s application was successful, which represented a
major success to the Trust. Portsmouth were then asked to submit a fully costed
Outline Business Case (OBC), to appraise the options for delivering such benefits and

recommend a preferred option.
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A PFI proposal has to demonstrate value-for-money against the range of options
considered. In the case of Portsmouth, the preferred option is the development of a
single acute hospital on the Queen Alexandra Hospital site and the development of a
community hospital on the St Mary’s Hospital West Wing site. The prospects for a
successful PFI partnership and development are excellent. Adjacent to the new build
site is an additional 5.7 acres of land obtained from Portsmouth City Council as part of
a land exchange deal. The outline planning permission includes multi-level car parks
for patients and visitors and facilities for management of non-clinical services, such as

laundry, maintenance and clinical waste incineration.

The significant planned investment, through the PFI process, is intended to develop
Queen Alexandra Hospital as one of the most modern in this country and to deliver the
highest possible standards of care to patients. The PFI gives the Trust an excellent
opportunity to reconfigure the current structure of hospital processes and design the
layout of the new building development. The Trust launched a consolidation and
reconfiguration programme of facilities known as the Processes to Improve Care (PIC)
project. PIC initially concentrated on ways of improving the process of patient care to
deliver quality benefits, increase the number of patients treated, or reduce costs, or a
combination of all three. In order to submit a successful and realistic OBC, as required
under the PFI scheme, the Trust needed to quantify the benefit of re-configured
processes as identified during PIC. There was a vital need to calculate the likely bed

compliment for the entire hospital.

The Trust required an operational model to capture the flow of patients through the re-
configured hospital system. Various scenarios needed to be examined and numbers of
beds had to be quantified and costed. The Trust acknowledged that internally it did not
have the necessary personnel with the skills and expertise to undertake this critical
component of the OBC. Traditionally it had used simple spreadsheet calculations but
had grave misgivings about the accuracy of these in the past. They appreciated that a
more sophisticated and mathematically correct methodology was required in the form
of operational models to capture the complex and variable flows of patients through

Portsmouth Hospitals NHS Trust.
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1.4.5 Critical Care Units

A number of critical care units also participated in the work. Involvement ranged from
the transfer of knowledge regarding rules governing admissions and flows of patients
through a critical care unit, through to the supply of data for validation and use of the
developed model (see Chapter 8). For the purposes of this thesis, the participating

units wish to remain anonymous.

1.5 Supervisory Arrangements

The supervisory framework for the Ph.D. was provided from a number of sources. The
primary academic axes of supervision came from internal supervisors within the
Operational Research Department at the University of Southampton. Such supervisors
oversaw the development and advancement of methodologies as outlined in the general
research context. Alongside this academic source, a key motivation of the Ph.D. was to
test the efficacy of the developed methodologies by their application in the
development of realistic and practically useful applications for use by hospital
managers themselves. To meet this need, a more managerial supervisory role was
adopted by the participating hospitals themselves, namely the Royal Berkshire and
Battle NHS Trust (section 1.4.3), the Portsmouth Hospitals NHS Trust (section 1.4.4)
and participating critical care units (section 1.4.5). Considerable time was spent
working within the Trusts, enabling the author to fully understand local issues,
processes and to build strong relations with a number of key personnel within the
hospitals. Steering groups were established (Appendix A) which consisted of a number
of healthcare managers from different departments within each Trust, as well as the
academic supervisors from the University. Steering group meetings were held at
regular intervals throughout the duration of the research and a range of reports and

other documents were produced for the participating Trusts.

It is believed that the combination of academic and hospital supervisors enabled this
research to be of great practical use and benefit to the healthcare profession. As a
consequence of the generic framework and flexibility of the developed operational

models as discussed in this thesis, they have since been successfully used by a variety
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of Trusts across the UK and have been presented at a number of domestic and

international conferences.

1.6 Thesis Structure

The main body of the thesis is divided into ten chapters which are designed to follow a
logical sequence through the subject matter. Thus Chapters 1, 2 and 3 are used to set
the context for the work; Chapters 4 through to 8 describe the research work itself; and
Chapters 9 and 10 consist of the discussion of the research findings, conclusions and

recommended further research.

In general the first section of each chapter is used to introduce the content and the final
section gives a synopsis of the ground covered with salient points. Technical detail and
description relating to specific aspects of the research work are included in appendices

at the end.

Figure 1.2 below graphically depicts the thesis structure in terms of its components and

illustrates how the elements are logically integrated within the thesis as a whole.

1.7 Chapter Summary

The general research context and methodology has been outlined; that of the need for
the development, solution, and validation of sufficiently detailed stochastic models for
planning and managing healthcare resources. This research will focus on hospital beds,
human resources and operating theatre capacities within a hospital environment. There
is currently a great need to research these three highly critical, complex and
interlinking elements of the hospital system. A generic framework for modelling the
hospital system is required. Participating NHS Trusts provide the real-life context and

needs for developing operational models.
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Chapter 2 — Planning and Management of
Healthcare

2.1 Chapter Introduction

This chapter provides a review of the history and structure of the NHS. It will identify
the many structural reforms that the NHS has witnessed since its birth. Furthermore,
this chapter will establish the current issues that have resulted in the need for detailed

operational models for the planning and management of healthcare resources.

2.2 The Health of a Nation

The National Health Service (NHS) was founded in 1948, and since then has become
one of the institutions of the State. It is one of the best loved in principle, most vilified
in debate and least understood parts of the welfare provision of this country. We take
the NHS for granted now, but it is only just over 50 years ago that healthcare was a
luxury not everyone could afford. It is difficult today for us to imagine what life must
have been like without free healthcare and the difference that the arrival of the NHS
made to people’s lives. Many of the references provided in the following sections may
be found in Rivett (1998), which gives a more detailed description of the health of the
nation and the birth of the NHS.

2.2.1 Life before the NHS

Just before the creation of the NHS, the services available were, as you might expect,
the same as after; no new hospitals were built nor hundreds of new doctors employed.

What was different was that poor people often went without medical treatment, relying
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instead on dubious, and sometimes dangerous, home remedies or on the charity of
doctors who gave their services free to their poorest patients. Access to a doctor was
free to workers, who were on lower pay, but this didn’t necessarily cover their wives or
children, nor did it cover other workers or those with a better standard of living.
Hospitals charged for services, though sometimes poorer people would be reimbursed.

Even so, it meant paying for the service in the first place which not everyone could

afford.

The need for free healthcare was widely recognised, but was impossible to achieve
without the support or resources of the State. Throughout the nineteenth century,
philanthropists and social reformers working alone had tried to provide free medical
care for the poor. One such man was William Marsden, a young surgeon, who in 1828
opened a dispensary for advice and medicines. His grandly named London General
Institution for the Gratuitous Cure of Malignant Diseases, a simple four-storey house in
one of the poorest parts of the city, was conceived as a hospital to which the only
passport should be poverty and disease and where treatment was provided free of

charge to any destitute or sick person who asked for it.

The demand for Marsden's free services was overwhelming. By 1844 his dispensary,
now called the Royal Free Hospital, was treating 30,000 patients a year. With
consultant medical staff giving their services free of charge and money from legacies,
donations, subscriptions and fund-raising events, the Royal Free, now re-housed in
larger premises, struggled to fulfil Marsden's vision until 1920 when, on the brink of
bankruptcy, it was forced to ask patients to pay whatever they could towards their

treatment.

As well as the charitable and voluntary hospitals, which tended to deal mainly with
serious illnesses, the local authorities of large towns provided municipal hospitals,
maternity hospitals, hospitals for infectious diseases like smallpox and tuberculosis, as
well as hospitals for the elderly, mentally ill and mentally handicapped. Mentally ill
and mentally handicapped people were locked away in large forbidding institutions, not
always for their own benefit but to save other people from embarrassment. Conditions
were often so bad that many patients became worse, not better. Older people who were

no longer able to look after themselves also fared badly. Many ended their lives in the

16



Chapter 2 Planning and Management of Healthcare

workhouse, a Victorian institution feared by everyone, where paupers did unpaid work
in return for food and shelter. Workhouses changed their names to Public Assistance

Institutions in 1929, but their character, and the stigma attached to them, remained.

2.2.2 Towards a public health service

The foundations for a public health service could be said to have been laid in the
nineteenth century when in 1834 the Poor Law Amendment Act called for the
provision of sick wards in parish workhouses. Although intended for the people in the
workhouses, the wards soon became full with sick poor people from the parish in
general, prompting the State to assess how best this situation could be dealt with. In
1848, the Public Health Act created the General Board of Health, a centralised body
intended to review and reform provision for public health, but which, in fact, had little

power to do so.

By mid-century, voluntary hospitals, which tended to be more exclusive since they had
been created by the wealthy, charities and religious bodies and paid for by donations or
subscriptions, began accepting some of the more complicated cases from the
workhouses, indicating a further step towards public healthcare provision.

Another milestone during this time was the provision of separate institutional care for

smallpox, fevers, insanity and tuberculosis; first in London and later in the provinces.

While the skeleton of public access to health services was beginning to emerge, with
workhouses, voluntary hospitals, asylums and isolation hospitals, the level and
conditions of care were poor. At the beginning of the twentieth century, preventative
healthcare measures became a focus of attention since both the Boer and Crimean wars
had highlighted the poor health of soldiers; more had died from fevers and typhoid than

through actual warfare.

Any treatment received by wage earners tended to be paid for by their subscriptions to
trade unions or friendly societies who, in turn, paid the doctors. This system, however,
only covered the worker and not the family. Those who couldn’t afford to pay relied on

outpatient departments and dispensaries at local voluntary hospitals or simply did not
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receive treatment. Towards the end of the nineteenth century, voluntary hospitals,
unable to provide services on charitable donations alone, began charging for hospital

costs.

In 1905, the Minority Report of the Poor Law Commission pointed out the differences
in standards of healthcare services provided across the country and urged the
Government to make amends. It responded with benefits for the unemployed and
pensions for the elderly rather than a direct approach. The National Health Insurance
Act in 1911 ensured that workers at the bottom of the wage scale received free

treatment with their GP, but did little to improve the situation for the rest of the

population.

One of the biggest steps towards organising a National Health Service came in 1920
with the publishing of the Dawson Report. It recommended a comprehensive system,
from establishing a single authority to look after all medical and allied services to
providing standardised clinical records. The next landmark was made in 1926 when
the Royal Commission on National Health Insurance suggested separating the medical
service from the insurance system and setting up instead a service, which encompassed
all public health activities, paid for by public funds. Then the Second World War
brought more change. Although there were no statutory changes, the effects of war

brought about significant developments in healthcare provision.

The creation of the Emergency Medical Service gave central Government control over
both the voluntary and local authority hospitals as well as taking responsibility for
funding. This was the first time healthcare had not been paid for by local authority
rates, patient’s contributions or voluntary hospitals funds. In 1941 the Government
commissioned an independent inquiry to look at the discrepancies in provision of
hospital services across the whole country. It concluded that there were vastly

differing standards which would remain the case unless a comprehensive overhaul was

to take place.
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2.2.3 The birth of the NHS

With the voluntary hospitals permanently on the verge of financial collapse and the
municipal hospitals almost universally loathed, there was no shortage of pressure for
change. The first call for a National Health Service is usually attributed to Beatrice
Webb, who argued the case for a state medical service in a submission to the Royal
Commission on the Poor Law in 1909. Over the next 30 years the case for reform was
taken up and developed in a succession of reports from the Ministry of Health, the
British Medical Association and others, culminating in the groundbreaking Beveridge

report of 1942.

Sir William Beveridge had been appointed by the Government to chair an inter-
departmental committee to look into the existing National Insurance schemes. He made
no detailed recommendations about how a National Health Service should be run, but
by identifying healthcare as one of the three basic prerequisites for a viable social
security system, he laid the foundations for the NHS as we know it today. The
Beveridge report was followed by a White Paper, “A National Health Service”,
published in 1944, which stated: “everybody, irrespective of means, age, sex or
occupation shall have equal opportunity to benefit from the best and most up-to-date
medical and allied services available”. It added, “The services should be
comprehensive and free of charge and should promote good health as well as treating

sickness and disease”.

In 1945 came a second White Paper. The NHS Bill of March 1946 proposed the
nationalisation of all the voluntary and municipal hospitals and the creation of 14
regional hospital boards to control them. The National Health Service Act, steered
through Parliament by Aneurin Bevan, the then Minister of Health, became law on
November 6 1946. It laid the ground rules for the modern NHS. It was to be a
comprehensive health service designed to secure improvements in the physical and
mental health of the people of England and Wales and the prevention, diagnosis and

treatment of illness, funded through general taxation rather than National Insurance

contributions.
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Many compromises from many parties were still needed before the NHS could come
into being on the appointed day - 5 July 1948. The key to the success of the plan was

in winning over the various parties involved and it this with which Bevan is credited.

The NHS was born.

2.3 Healthcare Reforms

2.3.1 The need for structural reform

The purpose of the NHS is to secure through the resources available the greatest
possible improvement in the physical and mental health of the nation by: promoting
health, preventing ill-health, diagnosing and treating injury and disease and caring for
those with long term illness and disability who require the services of the NHS. The
field however in which the NHS is operating is in constant turmoil. The population that
it seeks to serve is always changing. Compared with its inception in 1948, there are
now far more elderly in the population, greater diversity of ethnic groups, and fewer
people living in the inner cities. Most noticeable is that healthcare has a political
dimension. Funded largely from national taxes, central Government has an intense
interest in its well being, the resources it consumes, and the service it provides. Public

accountability is desirable in any public service, but it does not bring stability.

Because of the political and socio-economic dimensions, the NHS has been subject to
many structural reforms by various Governments since its birth. There has been a
growing need for Governments to control the amount of spending on the NHS and to
be seen to be making a firm stance on providing an effieicient and effective service to
the nation in light of people’s changing expectations through the ages. It is an

organisation that constantly must change to keep pace with the demands placed upon it.

Initial estimates for the cost of the NHS in 1948 were greatly underestimated and as
such, resources were scarce. The first change to the NHS was made in 1951 when
Winston Churchill’s Government introduced prescription charges as a way to subsidise

the service. Other more radical changes to the NHS have been implemented since,
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notably in 1974 and 1982. It is the last decade however that has witnessed by far the
greatest number of overhauls to the system. Major structural reforms were made
throughout the last decade of the twentieth century by the Conservative Government

and since by the present Labour Government.

2.3.2 Reforms under the Conservative Government

The Conservative Governments of 1987 and 1992 oversaw far-reaching reforms of the
National Health Service, which created much controversy. Supporters claimed the
reforms brought increased efficiency and effectiveness, but opponents said they
undermined the founding principles of the health service. Under Margaret Thatcher,
the Government encouraged people to use private medical services (The Health Service
Act 1980 being the first step). However, the public remained committed to the NHS

and grew concerned when waiting lists increased and wards closed.

There was also concern about the level of spending on the NHS. With an ageing
population and increasing use of expensive new technology, experts said that the NHS

needed above inflation increases of at least 1% a year simply to stand still.

The Government, influenced by the Griffiths Report (1983), blamed inefficient
management and structures within the NHS for the cash problems. The National
Health Service and Community Act of 1990 was the proposed solution. It reformed
both management and patient care by introducing the concept of an internal market
(i.e. the division between purchasers and providers of care - Harrison, 1991). The
reforms represented a movement away from the principles of paternalism, collegiality
and egalitarianism, and towards the concepts of autonomy, entrepreneurialism and
differentiation within healthcare. Such reforms typified the nature of the Conservative

Government at this time. The creation of an internal market was designed to:

e Reduce inefficiencies in the UK state hospital system.

"

e Increase cost-effectiveness of health provision so that a greater "health output

could be achieved with a given budget.
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e Improve responsiveness to consumers/patients (healthcare to be demand-led rather
than supply-led).
e Introduction of competition on the supply-side to keep healthcare costs under more

control.

The reforms concerned the mode of provision and not the source of funding of

healthcare. In this respect, the reforms could not be classified as traditional

privatisation.

Under the reforms, ‘self governing’ NHS Hospital Trusts were created but remained in
the public sector. Trusts are run by a board of non-executive directors who report
directly to the Secretary of State, bypassing the district or regional Health Authorities'.
Each Trust received a block grant to cover expenditures. Other Trust income was
secured through competition for GP contracts. Trusts were permitted to set their own

pay levels, manage their assets and specialise in certain forms of treatments through:

e Acute services

o Community services

e Mental health and mental handicap services
e Ambulance services

e Specialist hospitals

A further reform, as part of the internal market system, was the introduction of GP
fundholders. GP fundholders are a collection of GP practices and allow individual GPs
to control their own budgets and to provide and buy a limited range of healthcare for
registered patients using contracts. GPs were allowed to shop around in the internal

market for standard and inexpensive treatments for their patients.

The central aim of the reforms was to produce a more cost-effective NHS. As well as
the internal market, contracting-out was introduced. This forced the NHS to put in-

house services out to tender and award contracts to the lowest bidder. The Private

" A Health Authority is an organisation at either a local or regional level designed to care for those
patients living within its boundary by ensuring that all the parts of the local NHS work together to plan
and deliver health service improvements for local people.
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Finance Initiative (PFI) (1992) involved private firms or consortia putting up the
capital for major NHS projects. Private firms could pay for the design, construction
and operation of buildings and support services. Health unions complained that PFI

was privatisation by the back door.

Under John Major, the Conservatives put forward policies which they claimed would
make the health service more accountable to patients. They introduced hospital
performance tables, the Patient's Charter which aimed to clarify health organisations'
duties towards patients (Department of Health, 1992) and A Code of Practice on
Openness in the NHS (Department of Health, 1995). They also extended the
jurisdiction of Health Service Commissioners (Department of Health, 1996). But, at
the same time, the Conservatives were blamed for reducing accountability by allowing

hospitals to bypass Health Authorities.

Other structural reforms saw the eight English Regional Health Authorities abolished
from April 1996 and replaced by eight regional offices of a new NHS Executive?,
based in Leeds. Likewise, 100 new Health Authorities (HAs) replaced the previous
structure of District Health Authorities and Family Health Service Authorities, the aim
being to reduce bureaucracy and improve services. With no regional structure in
Scotland, Wales and Northern Ireland, responsibility was left with health departments

at national and local trust level.

The Community Healthcare Reforms introduced from April 1993 changed the way
society cared for the elderly, the mentally ill, the physically disabled and people with
learning difficulties. The stated aim was to release people from long-stay institutions
and house them in the community where they could be more independent and have a
greater say in how they lived and the services they used. But there was criticism from
health and social care experts that the changes were not properly funded. They believe
care in the community is more expensive than hospital care and that the extra funding

has not been forthcoming.

? The NHS Executive was formally established in 1989 and is made up of a headquarters and eight
regional offices. It is responsible for advising Ministers and for formulating and insuring
implementation of policy on healthcare. It has a strategic rather than an operational role.
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Despite all the changes, the Conservatives argued that the NHS was “safe in their
hands” and that the basic principles of a universal and largely free healthcare service
had been preserved. Their critics, however, claimed they had created a two-tier health
system, whereby patients of some GP fundholders got faster access to healthcare and
where the NHS was starved of the resources it needed, with the result that those who
could afford to were encouraged to purchase private healthcare. The following lists
highlight some of the perceived positive aspects of the internal market reforms of the

nineties, and some of the criticisms levelled at the Conservatives:

Positive aspects of the internal market

e Competition among providers drove down real prices.

e Improved information about costs of health treatments.

e Decline in long term waiting lists.

e Increase in the numbers of patients treated.

e Decrease in average time spent by patients in hospital.

e Fall in public dissatisfaction with the NHS.

e GP fundholders invested heavily in new technology.

o Competition for patients among GPs may have led to improved standards of service
for patients.

e Emphasis on outcomes and appropriateness of treatment.

Criticisms of the internal market

e Resource crises - claims of "health rationing" and "priority setting".

e Closure of some hospital wards and banning of some non-essential operations.

e (Claims that a two-tier system of treatment emerged.

e Preferential "fast-track” treatment for patients of GP fundholders.

e Hybrid market - competition for routine treatment but little for non-routine,
expensive treatments.

o GP fundholders preferred taking on younger, healthier, low cost patients.

e Growth in bureaucracy and organisational turbulence.

e Some Health Authorities merged to give monopoly power.

e Concern about eligibility for care of those with terminal illnesses.

o Concern over quality of psychiatric patient care in the community.
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2.3.3 Post 1997 Labour reform

The fundamental changes of the nineties to the structure of the system of healthcare in
Britain, together with the rapid speed at which change took place, meant that many
people within the health service felt that many processes were irreversible. The Labour
Government, which came into power during 1997, had different ideas. They
immediately began to address the concerns in the system and launched their
programme of changes in “The new NHS; a Modern and Dependable Service”
(Department of Health, 1997). The main theme of the changes, as outlined in the
document, is to replace the competition engendered by the internal market with a new
ethos of co-operation. Ministers, like their predecessors in the Conservative

administration, were keen that GPs should drive reform in the NHS and decide where

resources should go.

Labour have scrapped the controversial GP fundholding scheme under which
individual GP practices were given direct control of large sections of their healthcare
budget. The Government is to replace fundholding with a system of primary care
groups (PCGs) designed to ensure that all patients are treated equally. GPs, together
with other health and social services professionals, will join forces in PCGs covering

approximately 100,000 patients to decide together how to purchase hospital services.

PCGs will have to work to a three-year Health Improvement Programme drawn up by
the local health authority to ensure a consistent approach across a locality. A National
Institute for Clinical Effectiveness will promote high quality guidelines for treatment
based on scientific research, and a Commission for Health Improvement will intervene

where local standards are failing.

The Labour Government has also stressed that hospitals, which under the Tories were
encouraged to compete for business, must now co-operate to ensure that patients get
the best care possible. Many hospital managers and GPs have welcomed the
introduction of PCGs and the scrapping of the internal market as way to reduce
inequality in the NHS. But they also fear that the new system could be a way for
politicians to shirk their responsibility for underfunding in the NHS. With finite
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resources available, and demand seemingly infinite, managers warn that it is inevitable
that some treatments will have to be rationed, particularly as the new system will

inherit the debts run up in previous years.

The new NHS will mean new roles and responsibilities for Health Authorities and NHS
Trusts and the Department of Health. Figure 2.1 summarises the new financing and

accountability arrangements compared with those of the internal market.
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Figure 2.1: Financing and accountability arrangements in the old and new NHS

Under the new Labour proposals, Health Authorities will be leaner bodies with

stronger powers to improve the health of their residents and oversee the effectiveness
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of the NHS locally. Over time, they will relinquish direct commissioning
responsibility. Working with local authorities, NHS Trusts and Primary Care Groups,
they will take the lead in drawing up three-year Health Improvement Programmes

which will provide the framework within which all local NHS bodies will operate.

The Department of Health, and within it, the NHS Executive, will shoulder
responsibility for action genuinely needed at a national level. It will work with the
clinical professions to develop new National Service Frameworks. National Service
Frameworks are a series of programmes designed to deliver an evidence-based health
service in which change will be driven by improving the performance and efficiency of

NHS Trusts.

2.3.4 Future challenges

The Prime Minister, Tony Blair, has set out five challenges that face the NHS as it
prepares to make best use of the four-year package of funding as announced in the

2000 Budget:

e Partnership - working together across the NHS to ensure the best possible care.

e Performance - taking action to review and deliver higher standards in the NHS.

e Professions and the wider NHS workforce - getting the right people to deliver the
right services for patients. Breaking down traditional barriers between health-care
professionals.

e Patient care - speed of access, and empowerment

» delivering fast and convenient care for patients, and
> listening to patients’ needs and letting them know their rights.
e Prevention - promoting healthy living across all sections of society and tackling

variations in care.

The current Government has announced the biggest sustained increase in the amount of
money available for the NHS since it was founded. This investment in health is
equivalent to an increase over the next four years from £1,800 per household to £2,800

(Creating a 21* Century NHS, Department of Health, 2000). The next step is to agree
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how to use the money for the greatest benefit. To meet this need, six Modernisation
Action Teams have been established. Each team draws together expertise from
frontline health professionals, patients and user groups, academics, policy makers, and
healthcare managers. A team is led by a Government minister and will come up with
suggestions for improving performance and standards across the whole of the NHS.
Staff in every NHS and Social Care organisation will be given the opportunity to
provide their views. Leaflets giving people the chance to have their say have been
distributed to supermarkets and high street pharmacists as well as places where NHS

services are available such as GP surgeries, hospitals and dentists.

The Secretary of State for Health, Alan Milburn stated in May 2000: "This is quite
simply the most important stage in providing excellent public healthcare since the NHS
was set up more than 50 years ago. We are building a new NHS upon the sure
foundation of NHS values of high quality public healthcare available to anyone
regardless of their wealth or status. The new NHS will be fast and convenient,
delivering healthcare that consistently matches the standards of the best in the world.
The NHS already delivers high quality care and as different parts of the system work
together more and more effectively the quality is becoming more consistent. The
unprecedented investment that the Government is making in public healthcare gives the
NHS the opportunity to respond by providing the kind of care that people have a right
to expect, a modern and dependable health service. This inclusive process will help the

NHS to come up with a plan that will re-establish it as the pride of the nation."

Under the Labour Government, the NHS has been set a tough and challenging
programme for the future. The Government claims that the programme will involve
evolutionary change rather than structural upheaval. The result, it hopes, is a NHS
responding to a changed and changing world where patients can expect services

quickly and of high quality; an NHS that is accessible and responsive which gets better

every year.
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2.4 Planning and Management of Resources

2.4.1 The enormity of today’s NHS

The scale of the National Health Service is awesome. As Europe's biggest
organisation, it has a workforce of around one million people who provide care and
treatment for many millions more every year. The NHS spends in excess of £42 billion
each year, representing the largest item of central Government expenditure after social
security. It occupies about 17,000 hectares of land, an area roughly equivalent to the
size of Liverpool (statistics from General and Personal Medical Service Statistics,

Department of Health, 1999).

During the financial year 1998/99, the NHS treated a staggering 11,983,983 finished
consultant e:pisodes3 (FCE), 3,420,795 day—cases4 and delivered 598,305 babies
(Hospital Episode Statistics, England 1998-1999, Department of Health, 2000). A

more detailed analysis by age of inpatient is shown in Figure 2.2.
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Figure 2.2: Hospital episodes by age of patient

? A period of continuous inpatient treatment under the care of a specific consultant. If, during a spell of
treatment, a patient is transferred from one consultant to another, a new Consultant Episode commences.

* A day case is an elective admission where the patient was treated during the course of a single day.
Most day cases are episodes involving minor surgical procedures.
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Of the total admissions to hospital, approximately five million were emergency patients

and seven million planned patients were admitted from waiting lists.

Table 2.1 presents health service activity over a number of years from 1983 to 1999
(Department of Health, 2000). This table helps to show the general increase in

admissions treated by the NHS. In particular, the rise in day-case surgery has been

dramatic.

Table 2.1: Health Service activity (1983 to 1999)

Hospital and Community Health Services

(Thousands) % Change
1983/84 1988/89 1993/94  1998/99 (1983 to 1998)

Ordinary Admissions

General and Acute 5,113 5,572 6,125 7,595 49

Geriatric 320 412 554 606 89

Maternity (births) 716 650 600 599 -16
All Specialties

FCEs (Inpatient) 5,900 6,577 7,984 11,984 103
Day Cases 787 1,005 2,080 3,421 335
New Outpatients 8,311 8,389 9,685 11,100 34

Average Length of

Stay (Days)

General and Acute 11.1 8.8 7.0 5.5 -50
Geriatrics 58.0 38.5 23.5 22.2 -62

The NHS is one of the largest employers in the world, employing over one million
people, including 350,000 nursing staff and 140,000 administrative and clerical staff.
The NHS needs to continually add to its complement of workers to meet the needs of
increasing admissions and to keep the service running 24 hours a day, 365 days a year.
The total number of hospital medical staff alone has risen from 43,957 in 1987 to
63,548 in 1999 (Department of Health, 2000). Figure 2.3 shows this trend over time.
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Figure 2.3: Number of hospital medical staff employed in the NHS

Over a quarter of administrative and clerical staff work in direct support to clinicians,

so allowing the medical professionals more time to concentrate their skills and

experience on direct patient care. General and senior managers account for only 2.6%

of the total NHS workforce and 3.6% of total NHS expenditure on salaries and wages.

Women make up approximately 80% of the total workforce.

2.4.2 The critical role of the NHS Trust

NHS Trusts continue to provide the focal point of healthcare in Britain. They offer a
wide range of hospital and community based services ranging from accident and
emergency (A&E), to delivering babies, and to providing care for people with long-

term illness or disability. People usually access non-emergency services from NHS

Trusts following a referral from their own general practitioner. The care and treatment

provided by Trusts remains free to patients. Hospital Trusts are found in most large
towns and cities, offering a general range of services to meet most people's needs.

Some Trusts also act as regional or national centres of expertise for more specialised

care, whilst some are attached to universities and meet teaching commitments. Trusts

also provide services in the community, for example through health centres, clinics or
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in people's homes. Together, NHS Trusts employ the majority of the NHS workforce
including nurses, doctors, dentists, pharmacists, midwives, health visitors and staff
from the professions allied to medicine (PAMs) such as physiotherapists,
radiographers, podiatrists, speech and language therapists, counsellors, occupational
therapists and psychologists. Many other staff work to keep the NHS running
continuously; receptionists, porters, cleaners, IT specialists, engineers, caterers,

domestic and security staff.

Under the new government proposals, NHS Trusts have been given devolved
operational responsibility, but are also party to the local Health Improvement
Programme. They will agree long-term service agreements with Primary Care Groups.
These services agreements will generally be organised around a particular care group
(such as children) or disease area (such as heart disease) linked to the new National
Service Frameworks. In this way, hospital clinicians will be able to make a more
significant contribution to service planning. NHS Trusts will also have new statutory
duties of quality and partnership and have to be more accountable to the public by
publishing details of their performance and their future strategic plans. They need to

demonstrate the development and involvement of staff.

THST

tegic Plan -

Figure 2.4: Royal Berkshire and Portsmouth NHS Trusts strategic plans
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The Conservatives' stated aim in creating NHS Trusts was to raise standards of care for
patients through devolving power and responsibility away from health authorities and
towards managers and medical staff. By April 1997, all NHS hospitals in Britain
(other than in the Scottish Islands) had become Trusts. However, concerns about the
accountability of Trusts led the new Labour Government to require all trusts to hold
their board meetings in public from June 1997. 1t is also seeking to ensure Trust

boards are more representative of the local community.

2.4.3 The need to plan and manage resources - a system in crisis

The performance of the health system in this country is more important than it has ever
been in the past. This is partly because of the massive use of resources needed to meet
the growing demands, but also because of the more sophisticated way we now look at

healthcare, taking greater note of health outcomes.

We now perceive the NHS more as a service and we assess it accordingly. As a result,
the management of the NHS needs to become more sophisticated with a far greater

emphasis on value for money and performance.

The Government has a big interest in what goes on in public services. With so many
other priorities that need to be addressed, and only a limited bag of resources, the
Government needs to be assured that its allocation of money is being used wisely and
in line with the polices it has laid out. The 1983 Griffiths Report led to the
introduction of general management in the NHS. Since this time, successive
Governments have placed more and more emphasis on the need for effective and
efficient use of resources consumed within the system. Instead of profit, the NHS’s
“bottom line” is that it must provide for the healthcare needs of the population.
Increasingly within this remit, Hospital Trusts have been given devolved operational
responsibility and greater local flexibility in their own planning and management
issues. It is the Trust’s own responsibility to plan accordingly and manage key hospital
resources, such as numbers of inpatient beds, numbers of operating theatres and the

size of its workforce.
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Chapter 2

In recent years, the system has been stretched to its very limits. Problems of provision
and use of hospital resources and health outcomes have clearly damaged the public’s
confidence in the NHS. Critics claim that the new NHS reforms have provided a way
for politicians to shirk their responsibility for underfunding in the NHS. With finite
resources available, and demand now seemingly infinite, managers must now, more

than ever, plan and manage their resources in the best way possible.

The flu outbreaks during the winters of 1999 and 2000 illustrated the fragility of the

current system. Although the outbreaks did not officially reached epidemic

proportions, the surge in demand, combined with factors including bed shortages and

staff problems, caused chaos.
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Figure 2.5: A system in crisis — newspaper headlines from Winter 1999/2000
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During the winter of 1999/2000, the impact of the crisis was clearly evident. The state
of the NHS made the news headlines on a regular basis (Figure 2.5). The urgent
situation was widespread and the repercussions were felt cross the country. Various
stories made their way into the newspapers and onto the television. The public

confidence in the system was shattered.

The Midlands was badly hit, with two hospitals having to use refrigerated lorries as
mortuaries because of lack of space and some doctors working double shifts. One
crematorium in Nottingham was forced to use floodlights to fit in more services and
another held Saturday services. Death rates over two weeks of the 1999 Christmas
break were at 520, compared with 200 for the same period in 1998. In Portsmouth,
relatives and friends of hospital patients were asked to wash, shave and feed them to
relieve pressure on staff. And in Torbay, hospital managers issued an urgent appeal for
people with nursing qualifications to come forward because of staff shortages. In the

North, most routine surgery was cancelled.

The NHS Confederation, which represents NHS managers, concluded in a statement to
the press, “There are many factors that led to the crises. These include nursing
recruitment problems and a ten year rise in emergency admissions, but the main
problem is a shortage of beds”. In January 1999, the Emergency Bed Service issued a
warning about bed shortages for the first time in its two-year history. The warning was
repeated a year later. It reported that there were only a handful of additional beds
available in England for hospitals that had reached capacity levels. “Bed numbers have
been cut around the country as part of efficiency savings by hospitals. The cuts began
under the Conservatives. In some cases, hospitals have mothballed entire wards.

Many health authorities and hospitals have gone over budget in recent years and each

year the problem gets worse as the budget deficits accumulate, leading to more cuts”.

Bed shortages have taken the brunt of the blame for the problems facing hospitals over
the winter periods. But the debate over bed numbers is a complex one, with some
arguing that a modern NHS will not need so many general medical beds because of
advances in technology. In the 1960s, there were more than 3,000 hospitals with

550,000 beds between them. By 1995, there were only 250,000 beds and now there are
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some 194,000, of which 108,000 are for acute patients.

Some health workers argued that the Government's concentration on getting waiting
lists down caused the problem. But a survey by the NHS Confederation concluded that
hospitals were suspending non-urgent operations to cope with the extra emergency

admissions.

Private finance initiatives (PFI) are likely to reduce bed numbers even further, although
patient numbers are increasing. The Government has heavily promoted its hospital
building programme, which includes an emphasis on PFI. A £2.5bn PFI programme
will build 30 new hospitals over the next few years, with the first PFI hospital expected
to be finished in the year 2001.

In the aftermath of the winter crisis, the Government published the long-awaited report
from National Beds Inquiry; an inquiry charged with looking into the future needs of
the health service. It warned that action is vital because hospitals have reached
bursting point. The decline in number of acute hospital beds per head of population
had put Britain towards the bottom of the league table in Europe. Only four other
comparable nations have lower bed numbers per head. It concluded that at least 24,000
extra NHS beds must be provided over the next 20 years, with 4,000 needed almost
immediately. “The days when health authorities could count on a continuing decline in
the length of stay to allow for the number of beds being cut are over,” commented the
report’s author Clive Smee, chief economic adviser to the Department of Health. He
claimed that occupancy levels have reached maximum limits with most hospitals
operating at up to 86% capacity. “The safety valve has been reached and occupancy

rates cannot go up any further”.

Intensive care beds, a critical part of the system, were also badly hit. The turn of the
new Millennium heralded the worst-yet crisis in emergency critical care provision, with
a severe shortage of intensive care beds and overwhelmed casualty departments. A
survey of available beds at midday on 5™ January 2000 revealed that there were no
intensive care beds for critically ill patients in the South East or West Midlands. In
London, doctors were told that the nearest bed was 60 miles away, in Eastbourne. On

Christmas Day, doctors were told to send patients recovering from serious operations
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200 miles away in an ambulance to Doncaster. An anaesthetist in a North London
hospital, who anonymously spoke to the press, said that the crisis was killing patients.
“] had someone who died who probably would have lived but for the fact that there was

not an intensive care bed available,” he said.

2.5 The Need for OR in Healthcare Management

The National Health Service in the United Kingdom has over the last decade
undergone major changes in its organisation and delivery, and this experience has to a
large degree been mirrored in most major western nations (World Bank, 1993 and
Ham, 1992). Increasingly large amounts of resources are being directed to support a
service which is strained sometimes to its limit under growing demands. The flu
outbreaks of 1999 and 2000 bear witness to a system in crisis. Changes in technology
and medical practice generally have led to shifting patterns of care which are often
difficult to predict. In addition, demographic shifts (for example, an increasingly
ageing population) also impact on healthcare demand (Saltman and von Otter, 1992).
In this context there is a growing need to tightly manage healthcare resources. Bed
usage in hospitals, for example, is a specific area where capacity management
techniques can be implemented more widely to even out monthly variations and other

fluctuations in demand (Yates, 1982).

In the UK there is little doubt that the complexity of healthcare management has been
compounded by Government led changes. Strategic initiatives, often instigated by
central Government, have been pursued by health authorities and need careful
management if they are to succeed (Estes and Swan, 1993). Such initiatives have a
radical impact on the shape of hospital services. Vetter (1995) for example, predicts a
scenario of secondary care very different from current practice. He identifies the

following four factors as central to shaping future service:

e Demographic pressures — changes in population patterns and corresponding health

needs.
e Technological pressures — changes in the way medicine is practised due to

technology.
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e Economic pressures — the increasing need for efficiency in the face of growing

demand.

e Patient pressures — the ever growing level of expectation present within the

population at large.

The management of healthcare at all levels has acknowledged the need to more
precisely monitor and control the use of expensive resources (Appleby, 1992). Old
tolerances for surplus capacity are increasingly questioned as the trend towards smaller
more efficiently run units is pursued. The political element of healthcare emphasises
the need for objective methods and tools to inform the debate and provide a better

foundation for decision-making.

The current Government has promised further cash injections into the healthcare
system to avoid a repetition of the winter pressures of 1999 and 2000. NHS Trusts
must now decide wisely how and where to best use the extra money in their planning
and management of the services they offer. This task should not be taken lightly nor its
complexity underestimated. NHS Trusts need to make fundamental changes to their
way of working in order to meet these new Government challenges. They are under
considerable pressure to treat ever increasing numbers of patients through a
diminishing bed pool. The demands for certain surgical specialties are showing large

increases. At the same time numbers of medical emergency admissions are on the rise.

Capacity planning in hospitals is largely a strategic decision. For example the total
number of beds in a hospital and the number of beds in various specialities are very
major concerns; here the planning horizon could cover a number of years.
Management of available capacities is from day to day or over longer periods such as
winter months and summer months. An example would be a planned transfer of
surgical beds to elderly medical patients in winter. A common current practice is to
plan and manage hospital capacities through a simple deterministic spreadsheet
calculation approach using average patient flows, average needs, average length-of-

stay, average duration of surgical operations etc.
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Mathematically speaking, the internal dynamics of a hospital corresponds to a complex

non-linear stochastic structure. Hospital managers must deal with:

e Thousands of patients
e Limited resources
e Variable patient-needs

e Uncertain demands

The common deterministic approach for planning and managing the system can be
expected to be inadequate in such a system. Typically the deterministic approach will
underestimate hospital requirements, the truth of which is witnessed during the regular
crises that hit the healthcare system. In the current climate of healthcare provision
there is a growing need for operational tools which can support management. The
mathematical modelling approach of Operational Research (OR) is ideal for dealing
with complexity, uncertainty, variability, constraints and scarce resources and
appropriate models can avoid the dangers of planning on the basis of average values
only. This research is concerned with the development, solution and validation of

sufficiently detailed stochastic models for planning and managing hospital capacities.

The participating NHS Trusts (see sections 1.4.3 and 1.4.4) expressed a great need for
evolving operational models to evaluate detailed options within proposed re-structuring
processes. Apart from ad-hoc queries regarding particular re-design projects and
management of resources, the Trusts were looking to develop a forecasting and
planning tool that could be used in mid-term planning and during the annual business
planning cycle. It was felt that such a model would greatly aid clinical and specialty
managers, allowing them to fully appreciate their local needs and for both at a local

level, and more globally at Trust level, to examine a number of “What if?” scenarios.

The developed capacity-planning tools must account for the complex internal dynamics
of a hospital. In particular, the Trusts identified the need to model in detail the use of
key hospital resources: hospital beds (including critical care beds), hospital operating
theatres and the hospital’s workforce. Theses three elements are intricately linked

together in real-life.
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The potential benefit of OR within the public services is considerable. Modernising
Government, the White Paper published in early 2000, sets out a programme for
reforming the way in which Government works. It gives some key aims and

commitments, notably:

e Ensuring that policy making is more joined-up and forward-looking.
e Delivering responsive, efficient and high quality public services.

e Using new technology to provide information age Government.

The benefits of an OR approach within a healthcare environment may be summarised

under the following three headings (Royston, 2000):

o Sharpening foresight — e.g. scenario planning to identify trends and discontinuities,
and assess the policy consequences of possible futures.

s [mproving hindsight — e.g. designing and conducting studies to assess the
effectiveness of a policy or programme.

o (Generating insight — e.g. devéloping dynamic simulation models to better

understand how systems work and the likely effect of changes to them.

The Modernising Government programme of public services, and within this remit that
of the NHS, calls for a more integrated approach to issues, working as necessary across
institutional boundaries and in partnership with a wide range of stakeholders. This
requires thinking and working with whole systems. Such an approach is not just about
ensuring that all key elements are recognised. Systems, especially human systems, are
more than the sum of their parts: their behaviour emerges from a dynamic interplay
between their components. This interplay is the source of much of the counter-intuitive

and surprising behaviour of complex systems, such as that of a hospital.

Modernising Government also calls for more forward-looking policy making.
Hospitals need to have the appropriate tools. They need tools to let them scan the
horizon ahead to spot the early weak signals that may be portents of things to come: to
build a coherent and plausible picture of possible futures, and to test and develop

policies and programmes that will be robust in an uncertain world. It is evident that the
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proposed operational modelling work, as described in this thesis, falls within the

objectives of the Modernising Government White Paper.

2.6 Chapter Summary

The scale of the NHS is awesome. From its inception in 1948, it has grown to become
Europe’s largest organisation. It is absurd to assume that the delivery and planning of
healthcare will remain static in this country. The political and socio-economic

elements of the healthcare system give rise to the need for structural reform. The NHS

has witnessed many such reforms since its birth.

Hospitals are increasingly under considerable pressure to treat ever increasing numbers
of patients through a diminishing bed pool. The system has witnessed a number of
crises in recent years surrounding the use and provision of resources. With devolved
operational responsibility and greater local freedom, NHS Trusts must now place
greater emphasis on planning and management of key hospital resources. The methods
of Operational Research are ideal for this purpose and the potential benefits of

modelling work considerable.
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Chapter 3 — Operational Modelling for
Healthcare

3.1 Chapter Introduction

In the current climate of healthcare provision, there is a growing need for operational
tools to support management. This chapter reviews the Operational Research (OR)
modelling approaches that have been applied to the planning and management of
healthcare resources. Initially a general overview of OR healthcare approaches, by
technique, will be reviewed before a more detailed study of developed OR models by
hospital application. This is followed by a summary and discussion of the literature
review. It will be shown that a number of key healthcare issues have not been fully
addressed by previously published work. Specifically, healthcare resource tools should
account for complexity, uncertainty, variability and limited resources whilst being
designed for utilisation at both the planning and management levels. Deterministic
models are too simplistic and stochastic models are required to meet these needs.
Computer simulations are particularly useful for solving the complexity of patient-

flows through a hospital.

3.2 OR Approaches to Modelling for Healthcare Planning and

Management

The perceived need to create and utilise models for a wide range of scenarios in
healthcare has spawned a vast array of different approaches. A survey of the literature
(as given below) reveals a wide range of OR modelling techniques which have at some
stage been used for the planning and management of healthcare resources. The

following summary gives example of some of the major modelling approaches adopted
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in the healthcare domain. The subsequent section explores in more detail different OR

models classified according to areas of planning and management application.

3.2.1 Queueing Theory

The principles of Queueing Theory have been available for a relatively long period,
and it is therefore not surprising to find its application to healthcare dating back many
years. Bailey (1952), for example, uses Queueing Theory to analyse the behaviour of
outpatient waiting lists under a range of operational conditions. A more recent study
along similar lines (Brahami and Worthington, 1991) uses Queueing Theory to analyse
the trade-off between outpatient waiting times and doctor idle times in the management
of outpatient lists. Further examples can be found in studies by Kao and Tung (1981)
who apply a Queueing Theory approach to bed allocation in healthcare delivery; Weiss
and McLain (1987) for acute care facilities; Worthington (1987, 1991) for hospital
waiting lists; Young (1962) for the control of hospital inpatient monitoring; and Keller

and Laughman (1973) who analyse outpatient queues and congestion.

3.2.2 Markov Models

Markov models have been extensively used in healthcare modelling. Hannan (1984),
for example, demonstrates the use of Markov models to examine the strategic
allocation of costs in hospitals. Liu ef al. (1991) use a Markov chain model in medical
storage. The mafin limitation of Markov models (as reported in Davies, 1985 and
Shahani et al., 1994) is that the transitional probability of a patient changing status is
taken to be independent of previous events, thus the likelihood of a patient remaining
in a specific state remains the same from one time unit to the next. Several models
have introduced subdivisions within treatment states (Davies ef al., 1975 and Farrow et
al., 1971). A much better approach is the use of semi-Markov processes (Shahani et
al., 1994, Brailsford et al., 1996 and Ridge et al., 1998). A detailed description of

semi-Markov processes is given in Appendix B.
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3.2.3 System Dynamics

System Dynamics (Forrester 1961, 1968) is currently experiencing a growing interest
in healthcare planning and management applications, largely attributable to its ability
to deal with operational feedback (see Roberts ef al., 1994 and Pidd, 1992).
Wolstenholme (1993) develops a revised framework called Systems Thinking, which
integrates information acquisition, quantitative and qualitative elements, and
archetypes and microworlds as a basis for facilitating discussion and knowledge
exchange between the disparate groups involved in the modelling process in healthcare.
More recently System Dynamics has benefited from the availability of modern
software (Richamond, 1990) and group processes (Lane, 1992), which are both more
technically representative and more persuasive to their users. As a consequence, more
recent successful applications include Lane (1999) on patient-flows through hospitals
and Lane et al. (2000) on modelling of patient-flows through an accident and

emergency department.

3.2.4 Mathematical Programming

There has been a limited use of Mathematical Programming techniques for healthcare
management. One of the major disadvantages of those models published is little
recognition of the stochastic nature of healthcare. Typically, models have been built to
aid managers as a higher level, more strategic, decision-making tool, such as nurse
rostering or regional planning. One early example is Ruth (1981) who developed a
Mathematical Programming model to aid regional planning of hospital inpatient
services. Other models include nurse requirement planning by Kao and Tung (1981)

and Miller et al. (1976) for nurse scheduling.

3.2.5 Simulation

The culture of the NHS leads to a focus on individual patients passing through the
healthcare system. It is not surprising therefore to find that many models have tended

to use a discrete event simulation (DES) approach. Simulation enables the modeller to
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handle patients with stochastically generated attributes. The simulation approach has
been used in a variety of healthcare applications for a number of years, with early
models including Goldman ef al. (1968) on the evaluation of bed allocation. More
recent models include Dumas (1984 and 1985) on hospital bed utilisation and planning;
Gove et al. (1995) on hospital caseload support; and Kalton et al. (1997) for

operational planning in a multi-disciplinary clinic.

3.2.6 Data Envelopment Analysis (DEA)

DEA (Charnes et al., 1978, 1995) has attracted a growing interest in the OR
community and examples of its application in healthcare are beginning to appear with
more frequency, especially in relation to cost and performance modelling.
Hollingsworth and Parkin (1995) use DEA to measure efficiency in acute hospitals in
Scotland; Ozcan and McCue (1996) have adapted a DEA model to provide a financial
performance index for hospitals; Kleinsorge and Karney (1992) show how DEA is used
in the management of nursing homes; Ozcan et al. (1998) examine the relationship
between healthcare provider and technical efficiency for stroke patients. A more
general review of DEA in the public sector can be found in Ball and Roberts (1998).
DEA has been extensively used to measure efficiency of healthcare systems, however
the technique does not appear to be well suited to the application of day-to-day
management tools where managers need to track individual patients through time.
Instead DEA has traditionally been used as a cost and performance tool with an

emphasis on comparing the efficiency of one hospital (or healthcare system) to another.

3.2.7 ‘Soft OR’ methods

Soft Systems Methodology (SSM), the most prominent of the ‘Soft-OR’ methods
(Checkland, 1981 and 1984), has been both advocated and adopted as a primary
approach in healthcare modelling (Checkland and Scholes, 1990). Lehaney and Paul
(1994, 1996) demonstrate the use of SSM in the specification and acceptance of a
computer model of outpatient care and conclude that the linkage between SSM and

simulation is worthy of further investigation. Other research (Roginski, 1995)
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discusses the successful use of Strategic Option Development Analysis (SODA), an

alternative to SSM within the NHS management context.

3.2.8 Other techniques

In addition to those listed above, many authors have utilised other OR approaches in
the study of healthcare systems. In some cases these entail the use of novel methods
and in other cases more established methods in combination. One such example of a
novel approach is by Eliasz et al. (1993) that firstly combines Structured Analysis and
Design Techniques (Marca and McGowan, 1988) and then Coloured Petri nets (Eliasz,
1992) as a basis for the development of dynamic simulations in community care. Other
techniques include Structured Systems and Design Methodology (SSADM), a long
time favoured approach of system analysts (Herbert and Willis, 1992, Ashwood and
Woodland, 1990); and Object Orientated Analysis (OOA) and Design (OOD) (Meyer,
1993, Kay, 1993 and Graeber, 1995).

3.3 OR Applications for the Planning and Management of

Hospital Resources

Any attempt to classify the disparate studies and application of OR methodologies in
healthcare planning and management is inevitably met with problems. A major issue,
in this context, is the selection of an appropriate dimension as a basis for classification.
For example, one could distinguish between strategic versus operational dimensions of
the developed models. Still another is the divide between research projects and
commercial applications. Invariably any classification is flawed by the numerous

examples of studies that cross category boundaries.

Despite these concerns, a survey of research literature of hospital resource models is
provided below. This is classified according to area of hospital application: inpatient
beds, operating theatres, workforce planning, critical care, outpatient services,
emergency services, waiting list management and hospital ancillary services. It

concludes with a discussion of the published work and the future direction of this
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research in response to the literature study and the needs of the participating hospital
NHS Trusts. More general reviews on OR hospital management may be found in

Shuman et al. (1975), Fries (1976, 1979) and Smith-Daniels (1989).

3.3.1 Hospital bed planning

The National Health Service in the United Kingdom has over the last decade
undergone major changes in its organisation and delivery. Central Government
strategic initiatives, pursued by health authorities, have had a radical impact on the
shape of hospital services. In this context, bed management is a particularly important
area of concern. A hospital must accommodate thousands of patients each year,
coupled with a complex case-mix, uncertain patients demands and variable patient
needs. It is not surprising to find many published papers concerning the planning and

management of hospital beds.

Interest in the provision and allocation of hospital beds dates back many years. An
early example can be seen in the recommendations of the Commission of Hospital Care

(1947), which concluded that the number of beds in a hospital should be calculated as

X+ 3(& ), where X denotes the expected average occupancy of the hospital. No
explanation is given for the formula. However it was widely recognised at the time
that the underlying assumptions included a Poisson distribution of census (people in
beds), random arrivals and a duty to accept all arrivals. This was the first known
attempt to mathematically derive the number of hospital beds required. It is clearly far

too simplistic to represent the complexity and diversity of real-life.

Goldman et al. (1968) appears to be the first paper to utilise computer simulation for
modelling hospital resources. The authors employ the technique, although in a
primitive way, to evaluate bed allocation policies. This paper, whilst acknowledging
the stochastic nature of healthcare, fails to account for differences in patient needs and
complex patient inter-arrival times, which are simply generated from the same negative
exponential distribution and take no account of the time-dependent nature of arrivals.
Once again, this model assumes that hospital departments can accept all arrivals, the

concept of which is flawed in practice.
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Ruth (1981) applied a mathematical programming approach to develop inpatient
services among hospitals within a region. The problem was formulated as a mixed
integer programme. The objective function was subject to accessibility (to ensure
distribution of beds throughout the region meets demand) and acceptability (to ensure
that increases in level or size of services are feasible). The model was used to examine
various population distributions across a region and the resulting needs. There is no
recognition of the stochastic nature of care provided by each level within each hospital.
Its purpose seems only to provide information for strategic management of care at a
global level. It lacks robustness at a more individual level of care and provides no

information on how to manage or indeed plan beds over time.

The first paper seemingly to recognise and identify an integrated decision making
process within hospital bed planning was by Butler ef al. (1992). It tries to encapsulate
the idea of linking bed planning decisions between the different levels of infrastructure
within the hospital. The authors build a model which, whilst finding optimal decisions
at each level, uses results from previous levels as part of an iterative procedure for
finding overall optimal and consistent solutions. For example, the authors state that it is
useless to find an optimal policy for providing extra beds for a department when there

is no room to accommodate them. Figure 3.1 shows the integrated stages of the model.

Bed planning, PP
capacity acquisition

v

Facility layout,  |q——
allocation mode!

v

Simulation model |g— |
of operations

v

Performance L
Measures

Figure 3.1: Multi-level based hospital bed planning approach (Butler et al., 1992)
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Long-term decisions on bed planning and capacity acquisition are incorporated into the
planning horizon. Information on the physical constraints of the layout (maximum
number of beds by hospital department) is used to generate various scenarios for the
distribution of beds across the hospital. There is very little information given on the
simulation model itself, raising doubts over the ability of the model to capture the
necessary details. As too often found in literature on this topic, the proposed model
seemingly fails to incorporate the necessary mathematical and operational details

governing the dynamics of individual patient-flows through the hospital system.

Other attempts to produce various hospital inpatient bed allocation tools have been
proposed by a variety of authors, including Blewett et al. (1972), Shonick and Jackson
(1973), Kao and Tung (1981), Cohen et al. (1980), Dumas (1984 and 1985),
Vassilacopoulos (1985), Dundas and Meechan (1986) and Wright (1987). All of these
papers examine how best to allocate beds between various hospital departments.
Again, most fail to recognise the many real-life complications inherent within the
workings of a hospital. For example, none recognise or incorporate daily arrival
patterns, nor do they sample length of stay from appropriate statistical distributions.
Indeed many use only a deterministic calculation for length of stay. All of the models
are hospital or department specific and correspondingly the methods and results are not
readily transferable to a wider hospital bed-planning context. In most cases, there is
little or no evidence that hospital managers have actually used any of these proposed

academic models themselves.

More recent papers (Gove and Hewitt, 1995, Bagust et al., 1999 and Lane et al., 2000)
have utilised the advancement of computing power to build more realistic hospital
simulation models. Lane ef a/ have examined the impact of hour-by-hour demand on
an accident and emergency department and resulting inpatient bed needs, with
particular emphasis on patient waiting times. There is however a need to study the
implications of the stochastic nature of demand on a daily basis as it affects the use of
bed stock. Bagust et al. go some way to addressing this need by developing a discrete-
event stochastic spreadsheet model which generates new arrivals each day as random
variations around a long-term trend line. The model is used to find the probability of
no beds being available in the hospital on any given day of the year. It is the first such

paper to critically examine the relationship between refusal rate (probability of a
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patient being refused admission because of no available bed) and occupancy rate
(indicator of how busy the hospital is). They conclude that when occupancy rates
exceed 85%, an acute hospital can expect regular bed shortages, and periodic bed crises
if bed occupancy rises to 90% or more. It is commonly known, by hospital managers
and consultants, that bed occupancies naturally vary between different hospital
departments. Occupancy itself is multi-dimensional, depending on the distribution of
emergency and elective (planned) patients, length of stay and case-mix. This paper,
although well received and publicised amongst the medical profession, takes no
account of these factors. Instead it has treated the hospital as a single entity and has
drawn generalised conclusion at the hospital level. Although daily variations have
been considered, a mean length of stay for all hospital admissions has been used. In a
complex stochastic system, this common deterministic approach can be expected to be

inadequate (Shahani, 1981). This is a major oversight of the work.

3.3.2 Operating theatres

An operating theatre is an expensive hospital resource, and therefore hospitals need to
maximise their utilisation. This equates to maximising the number of operations that
can be fitted in to each theatre whilst avoiding over-run in the theatre schedule. High
utilisation brings the benefits of reduced waiting lists for operations (a benefit for the
patient) and a reduction in overtime and under-utilised resources (a benefit for the
hospital). Many of the published papers on this topic have focussed on issues of

scheduling of patients into theatre.

A simple definition of theatre utilisation is the time that the theatre is occupied divided
by the time that the theatre is available. Intuitive though this might seem, it is
interesting to find various assumed definitions throughout the literature. For example,
McQuarrie (1981) uses the time used, excluding overtime and emergencies, divided by
the time available. The author suggests a normal utilisation figure for an efficiently run
hospital as above 60% but with peaks around 75%. However O’Donnell (1976)
indicates that a figure in excess of 50%would require extreme effort, and a level of
65% would be impossible to maintain without causing staff fatigue. Here the

utilisation is calculated in a different way. Comparisons of utilisation can only be
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made with the same method. Clearly the reader should be aware of the different

definitions as used by different authors.

Regardless of the method used to measure utilisation, it has been shown that increased
utilisation can be obtained through efficient scheduling of operations (Wright et al.,
1996 and Hackney et al., 1984). A study by Gordon et al. (1998) showed that
refinement of scheduling policies, including the use of computer scheduling, could lead
to much better utilisation of the available time. Improved scheduling of operations at

the hospital led to a reported increase in theatre throughput of 4.5%.

Hanson (1982) and Sier ef al. (1997) detail some of the constraints involved when
scheduling patients. These include the available surgeons, types of operations that
need to be done, and how much free theatre time is available. The scheduling process
generally involves fitting a number of elective patients into time slots in the available
operating theatres. Ideally, the objective is to schedule the patients in such a manner
that results in shorter patient waiting times, no overrunning, increased utilisation of the
theatres, less wasted time for surgeons, and a more even workload for the staff at the
hospital. This is a complex task, complicated further by the need to consider
emergency operations, which can severely disrupt schedules, as these need to be
inserted into the pre-planned schedule as soon as possible. Gerchak et al. (1996)

examines such problems in more detail.

Scheduling is often done with paper systems, with a schedule on which the operating
rooms and time slots allocated are displayed. Surgeons and anaesthetists play a key
role in estimating operation times. In this way, the accuracy of the schedule depends
on the skill and knowledge of the staff. Computer scheduling packages are now widely
used in hospitals (e.g. Surgiserver and Orbit Surgical Services Management Software)
although these are not always able to improve upon staff estimates (Wright et al.,

1996).

According to a survey carried out amongst a selection of operating room directors in
the US by Hamilton and Breslawski (1994), the five most important factors in

scheduling are:
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1. Number of theatres — the more theatres the greater flexibility in scheduling patients.

2. Equipment limitations — if an operation requires specialist equipment, but another
theatre is using it, the operation will be delayed for a significant amount of time.

3. Estimated surgery duration — if operation lengths are not estimated accurately, then
problems with either idle time or overtime will occur.

4. Hospital scheduling policy — depending on the system used, different effects will be
felt in the cancellation rate, the recovery unit utilisation, and the working practices
of the doctors.

5. Block time available — if the blocks are all allocated, then surgeons may have

problems obtaining a theatre to perform an operation.

Given these concerns, there are surprisingly relatively few published papers concerning
numbers and allocation of theatres. Instead, the vast majority of literature in this area
focuses on the prediction of operation times and scheduling of individual theatres.
Papers that attempt to address some of the above issues include Gibson (1998), Lowery
(1992) and Kwak ef al. (1975) who develop computer simulations to model patient-

flows through surgical suite areas.

There have been a number of studies that have investigated the estimation of operation
times, often as part of a wider examination of theatre scheduling. Very few however
seem to be of practical use. This could be attributed to the large data handling
requirements needed to produce estimates, the lack of recorded data, or high variability
in the estimates. Many studies, such as that by Magerlein and Martin (1978) involve
small sample sizes (212 cases in this example). Any detailed conclusions drawn from
these can be expected to lack robustness and reliability. Linear regression techniques
are employed by Magerlein and Martin to predict operation times. The paper reports
that the developed model accounts for only 44% of the total variation within operation
times. Another model for predicting surgical durations (Rose and Davies, 1984) uses
the Beta distribution combined with ideas from Critical Path Analysis. This formula
was used for a year at Morrison Hospital, Swansea, where it was found to produce
statistically significant reductions in the variance of operation lengths. However only
urology data was used and it is well known within the medical profession that such

operations generally exhibit low levels of variation.
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Other OR applications in this area include Carter ef al. (1992) and Murphy et al. (1985)
who adopt a computer simulation approach for patient scheduling. Luck ez al. (1971)
and Luckman (1971) present a simulation model of surgical resource use to assist in the
scheduling of patients through a unit in the Wessex region. As with most papers on
theatre scheduling, little or no account is taken of the stochastic nature of operation
times and the complex relationship of the hospital operating theatre to the planning and

management of hospital inpatient beds.

3.3.3 Hospital workforce planning

The NHS is one of the largest employers in the world, employing over one million
people, including 350,000 nursing staff and 140,000 administrative and clerical staff
(Department of Health, 2000). The NHS needs to continually add to its complement of
workers to meet the needs of increasing admissions and to keep the service running 24
hours a day, 365 days a year. Managers need to quantify the number and type of
workforce required in order to successfully staff a hospital. Shortages in necessary
nurses, for example, can lead to the temporary closure of hospital wards. With beds in

constant demand, managers can ill-afford to have to take such action.

Wolfe and Young (1965) were early pioneers in developing OR tools to predict future
nursing requirements. They divided nursing activities into two categories: direct-care
(such as bedside care) and indirect-care (such as administrative duties). In order to
ascertain the number of nurses required, they evolved a classification scheme for rating
the severity of illness of a patient. This rating indicated the level of care required.
Many subsequent papers have utilised this early work to great effect leading to the
concept of patient dependency scores (Buist, 1994). The rating system of Wolf and
Young consisted of only three levels of care. No mention is made of how these levels
were derived. Indices were subsequently evaluated for each level of care to predict the
amount of care per eight-hour shift. These indices were simply estimated mean amount
of care required per patient level. The aggregated nursing requirement per shift, 7, was

then simply found by 7 = 0.5N, +1.0N, + 2.5N, , where N, N; and N; represent the

number of patients requiring care levels 1, 2 and 3 respectively. To discover the total

amount of nursing time required, including that of indirect-care, a survey by the
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authors found that for each eight-hour shift, twenty hours of total indirect nursing time
was required on the ward. Clearly the proposed model was only valid for the hospital
in question. It makes no attempt to address the different types of nurses required but
provided the first known application of OR, albeit on a simplistic scale, to quantify

hospital workforce needs.

Abernathy et al. (1973) proposed a hierarchical structure of hospital manpower
planning and scheduling. Linear Programming and Monte-Carlo techniques were

employed to solve the different tiers of the problem (see Figure 3.2).

The Staffing Decisions |4
(made annually)

l A
The Scheduling Decisions
(made every six weeks)

v

The Allocation Decisions |g—— |
(made each shift)

Figure 3.2: Hierarchical structure for nurse scheduling (Abernathy et al., 1973)

The model presented in Abernathy’s paper requires high levels of data and computing
power to have any benefit (such power was not readily available in 1973). Essentially
the developed model was too complex to be understood by the hospital managers
themselves and consequently does not appear to have been used in any hospital setting.
The mathematical complexity and lack of user-friendliness has proved to be the
downfall of a model that was initially designed to be used by hospital workforce

planners themselves.

Many of the other published papers in this area suffer from similar shortcomings.

Liebman et al. (1972), Maier-Rothe and Wolfe (1973), Miller et al. (1976), Kao and
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Tung (1981), Rossenbloom and Goertzen (1987), and Sifred and Benton (1992, 1994)
all fail to acknowledge and incorporate the stochastic nature of workforce planning.
Many are hospital or department specific. Few of the proposed models in the literature

review can realistically be expected to be of use to hospital managers.

More recent attempts include Dowsland (1998) and Dowsland and Thompson (2000)
who schedule nurse rosters with a combination of knapsack, networks and tabu search.
Weekly rosters may be produced which the authors report has minimised complaints of
unfair treatment by individual nurses. The paper however does not recognise the
fundamental aspect of patient demand that will undoubtedly impact on nursing needs
across different hospital wards over time. A prerequisite surely must be to consider
what the likely nursing needs will be, by grade of nurse over the scheduling period of
time, before employing a valuable methodology as described in this paper to schedule

the available nurses appropriately.

3.3.4 Critical care units

Critical care concerns the provision within a hospital of both intensive care and high
dependency care services. Intensive Care Units (ICU) provide a service for patients
who have “potentially recoverable conditions, who can benefit from more detailed
observation and invasive treatment than can be provided safely in an ordinary ward or
high dependency area” (Intensive Care Society, 1997). It is usually reserved for
patients with threatened or established failure of one or more organs, particularly
respiratory, cardiovascular or renal systems. Such failure normally arises as a result or
complication of an acute illness or trauma (emergency), or as a predictable phase in a

planned treatment programme (planned).

Patients often require technological support including mechanical ventilation and/or
invasive monitoring (Intensive Care Society, 1998). Intensive care is consequently
very expensive with a cost of between £1,000 and £1,800 per bed per day in the UK
(Sachdeva and Guntupalli, 1999). High Dependency Units (HDU) have been

introduced as a step between intensive care and ward care. They reflect a need for
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more suitable levels of care for patients and as a means for reducing some of the costs

of an ICU.

The provision of critical care has to meet the challenges of considerable uncertainty
and variability in the needs of the patients, high costs and scarce resources. The
demand for critical care beds arises from many sources as emergency or planned
admissions. The vast majority of the demand for intensive care is experienced as
emergencies. Patient’s lengths of stay, and the high cost of treating patients, are very

variable,

A report on intensive care by the Department of Health (Metcalfe and McPherson
1994) highlighted the uneven spread of intensive care beds between hospitals, and
showed that patient refusal rates were strongly linked to local bed allocation. Crosby
and Rees’ (1994) survey of eight UK acute general hospitals indicated that a significant
number of surgical patients need high dependency care but that the number of high
dependency beds is insufficient, with the result that many patients are unnecessarily

staying on more expensive intensive care units.

There is a great need to better plan and manage critical care beds at both a local and
regional level. The majority of published papers on this topic have concentrated on the
number of beds within a single intensive care unit. More recent examples include
Knighton et al. (1994) and Ridge et al. (1998). Many of the proposed models fail to
reflect the complexity of the critical care unit and are not sufficiently detailed for
providing the necessary information for critical care managers. Furthermore, none
have examined the relationship of high dependency and intensive care units, and the
allocation of beds between them, nor have they researched the allocation of beds or the

efficient use of shared capacities amongst a number of regional units.

In April 1999, the Department of Health established a review of adult critical care
services. The invited expert group outlined a far-reaching modernisation programme
and identified the necessary in-depth work required in many areas, including a need for
detailed capacity planning. The summary of findings, as given in the Department of
Health’s Comprehensive Critical Care document states “The current provision of

critical care in the UK is characterised by considerable variation in organisation and
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delivery, quality, funding and effectiveness. This situation is largely the product of
historic legacy and ad hoc development. The expert group believes that, while the
development of additional beds and services is crucial, the final shape and size can
only be determined through evaluation of the impact of the proposed changes,
supported by the assessment of need” (Department of Health, 2000 and Day, 2000).
Clearly there is a current need for appropriate operational models for capacity planning

of critical care units in the UK.

3.3.5 OQutpatient services

A literature review of hospital outpatient services reveals that many papers have been
written concerning waiting times and appointment systems. Vissers (1979) describes

any appointment system as having three characteristics:

| The number of patients given the same appointment time at the start of the clinic
(initial block).

2 The number of patients given the same appointment time during the clinic
(blocksize).

3 The number of minutes between two successive appointment times (appointment
level).

A simulation model was used to investigate relationship between the idle time of

physician and the waiting time of the patient.

A simulation by Fetter and Thompson (1966) examines the effects of varying different
factors on the clinic. Factors include appointment level, service time, number of
patients not arriving and interruptions to the clinic schedule. Other papers include
Arnold (1992) on modelling of an Orthopaedic clinic; Birchall et al. (1983), Freeman
(1992) and Gamlin (1997) for scheduling of ENT clinics; Aharonson-Daniel, Paul and
Hedley (1996) on the management of queues; and Klassen and Rohleder (1996) on

scheduling appointments in a dynamic environment.
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A Soft Systems modelling approach is described by Lehaney and Paul (1994, 1996),
and Lehaney, Clarke and Paul (1999) who discuss the benefit of linking the soft

systems methodology and discrete-event simulation approach.

Paul (1995) discusses the use of CLINSIM, a simulation package designed for
generalised use in outpatient clinic management. Taylor and Kuljis (1998) use this
package to model the outpatient services offered at Leeds General Infirmary. Other
examples of the simulation modelling include Levy ef al. (1989), Huebner and Miller

(1996) and Williams et al. (1967), all of who describe the re-organisation of outpatient

clinics.

Taylor and Kuljis (1998) state the importance of clinical staff and hospital
administrator involvement in any study of an outpatient system, so that operational

modelling “can make complex, chaotic systems comprehensible”.

3.3.6 Emergency services

Accident and Emergency (A&E) services represent, to a certain extent, a self-contained
unit within the hospital system. This has led to a large number of papers on the topic.
A&E models tend to focus on individual patients passing through the system and it is
not surprising therefore to find that many models have adopted a simulation approach.
Kirtland et al. (1995) discuss the issues surrounding the modelling of emergency

services.

Examples of the models themselves are numerous, and include Huang et al. (1995)
who simulate an A&E department at Plymouth NHS Trust; McGuire (1997) uses
simulation to reduce patient time in A&E; Clark ef al. (1994) simulate the location of
an emergency helicopter for emergency services in rural areas; Kilmer ef al. (1997)
incorporate simulation and neural networks in modelling an emergency department;
Schroyer (1997) redesigns an ambulatory surgery facility; and Muller and Muller
(1998) use a simulation model as a decision support system for the dispatch of

ambulances in Belgium.
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3.3.7 Waiting list management

The increasing focus of central Government on numbers of patients on waiting lists for
surgery and length of time spent waiting has raised concerns amongst the profession
that the clinical priorities of patients for their surgery is in danger of being forgotten in

the search for shorter waiting lists (BMA, 1998).

Recent announcements of additional funding to decrease the numbers on the waiting
list is likely to mean that the easier, shorter cases will be brought in for surgery. This
will achieve the political wish for fewer people on the list (in the short term) but those
remaining are likely to represent those with more complex conditions who are quite
likely to have waited longer. There is a need for a waiting list prioritisation scoring
system and improved management, at local hospital level, of waiting lists. Some
authors have tackled these concerns by adopting various OR techniques. These include
Worthington (1991, 1995) on the management of outpatient and inpatient waiting lists;
Croft et al. (1997) which outlines the CliniQueue model — a generic system to support
management of referrals to outpatient waiting lists; and Benneyan (1994, 1997) which
demonstrates a simulation model in the management and reduction of inpatient waiting

lists in hospitals.

New Zealand has achieved considerable success with a sophisticated national scoring
system for elective surgery (Handorn and Holmes, 1997, Dennett et al., 1998). The
system identifies “which patients are likely to derive substantial health benefit from
those services, bearing in mind competing claims on resources”. The established cost-
effectiveness plays a central part in the system. Other successful scoring systems are
currently in place in Canada and Sweden. The United Kingdom, as yet, has no
national-level system in place, although a number of waiting list priority systems have
been experimented with in various hospitals including Guy’s in London (Gudex et al.,
1990) and in Birmingham (Health Service Management Centre Birmingham Seminar,
October, 1998). A vast array of proposed prioritisation formulae may be viewed in
Mullen (1998). The author concludes that most attempts to produce priority-scoring
systems are too simplistic and in reality waiting list management requires both a micro

and macro-level approach to succeed.
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3.3.8 Hospital ancillary services

A number of other studies have focussed on auxiliary services provided in the hospital.
Moores (1987) tackles hospital car parking problems at the University Hospital of
Wales. Berchtold et al. (1994) use simulation to model different configurations of
clinical laboratories. Dankbar et al. (1992) evaluate automated path lab equipment and
Mukhejee (1991) models the management of operations in the hospital pharmacy.
Ceric (1990) uses simulation to assist in the planning of a hospital automatic guided

vehicle system. Studies have even focussed on operations of a hospital cafeteria

(Stout, 1995).

3.4 Discussion of Literature Review and Future Research

Needs

The provision of hospital resources, such as beds, operating theatres and nurses, is a
matter of considerable public and political concern and has been the subject of
widespread debate (Capewell, 1996, Blatchford et al., 1997 and Bagust et al., 1999).
For several years hospital managers have been under considerable pressure to reduce
hospital capacities and increase patient throughput in the name of operational
efficiency. More recently, public disquiet has arisen in cases where patients could not
gain ready access to their local hospital or were subjected to extended delays while
vacant beds were identified. This has pointed to the need for improved management of

resources. Recent flu outbreaks have highlighted a system in crisis (see section 2.4.3).

An appreciation of the dynamics of the hospital system in its ability to respond to
fluctuating demand, variable patient needs and complex case-mixes is important in
framing policy, determining appropriate levels of resource provision, and establishing
realistic performance monitoring criteria. The management of healthcare at all levels
has recognised the need to more precisely monitor and control the use of expensive
resources. Old tolerances for surplus capacity are increasingly questioned as the trend

towards smaller more efficiently run units is pursued. The political element of
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healthcare emphasises the need for objective methods and tools to inform the debate

and provide a better foundation for decision-making.

There is considerable scope for Operational Research methods to be widely used for
this purpose. There is a great need for necessarily detailed and realistic operational
tools to aid with the planning and management of hospital resources. The literature
study has revealed a vast array of papers on these topics, ranging from the allocation of

beds between hospital departments, through to the scheduling of patients for theatre.

The dynamics governing a hospital, and the flow of patients through it, means that the
necessary models should reflect the complexity, uncertainty, variability and limited
resources. Examples of these conditions are listed below. These key issues have not

been fully addressed in the existing literature.

o Complexity

> Rules governing patient admissions into hospital e.g. keep some beds free
for emergency patients only; elective patients may only be deferred so many
times before increasing their priority.

> Patient-flows through the hospital e.g. when there is no available bed, we
try to admit the patient into another suitable, and available, hospital bed
albeit on a different ward; intensive care patients may be discharged early to
high dependency care if, and only if, various complex criteria are satisfied.

» Constraints imposed by other hospital services e.g. patients cannot go to
theatre if there is no available inpatient bed for them in the first place;

operations themselves are subject to theatre space and surgeon’s hours.

e Uncertainty
> Demand is likely to be a function of time e.g. elective (planned) patient
arrivals can be controlled and are often therefore highly correlated with the
month of the year, day of the week, and hour of the day; Planned scheduled
admissions to hospital though must also account for emergency patients
who arrive at random, often in quick succession, and who must be admitted

with the minimum of delay.
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e Variability

> Patient length of stay (LoS) varies enormously between and within different
hospital specialties. For example, Paediatric care length of stay is
frequently biased towards shorter LoS, but occasionally a child might stay a
very long time, which can cause a disproportionate ‘blocking’ effect. LoS
for Geriatric care, however, can be expected to show very different
characteristics from that of Paediatric care. Here LoS is much larger and
the blocking effect can be extreme when elderly patients stay for months

rather than days and become so called ‘bed-blockers’.

e Limited resources
> Self-explanatory — hospitals must treat increasing number of patients
through diminishing bed numbers. There is a need to efficiently and
effectively plan and manage all hospital resources with particular emphasis
on inpatient beds, operating theatres, hospital workforce, and expensive

critical care resources.

Developed models should be able to aid with both the planning and management of
resources. Appropriate detailed models that can evaluate a variety of scenarios could

be powerful tools for good planning and management decisions.

e Planning tools

» Capacity planning in hospitals is largely a strategic decision. For example
the total number of beds in a new hospital and the number of beds in
various specialities are very major concerns; here the planning horizon
could be about 10 years.

» Planning tools should allow hospital staff to examine in detail the likely
capacities required over time, for example the annual hospital business
planning cycle each financial year. They should enable the user to identify
the likely consequences of changes in numbers, and distribution across the

hospital, of beds, theatres and workforce.
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> Planning for services across a region e.g. the number and location of
outpatient clinics to serve the population’s needs; the number and

distribution of critical care beds in a health authority.

e Management tools

> Management of available capacities could be from day to day or over longer
periods such as winter months and summer months. An example would be
a planned transfer of surgical beds to elderly medical patients in winter.

» Management tools should allow the user to examine resources in detail over
smaller time intervals in order to maximise their utilisation and provide a
more efficient use of healthcare resources. For example, the consequences
of changing daily arrival patterns for elective patients and re-scheduling of

nurses.

All of these features point towards a need for sophisticated hospital capacity models.
The literature review, as presented in the previous two sections of this chapter, has
profiled the vast amount of literature on this topic, which dates back many years and
has seemingly involved the spectrum of OR techniques. Given the wealth of work that
has already been done in this area, it is both surprising and disappointing that it has not
found greater application. The review has unfortunately highlighted many concerns
regarding the adopted methodologies and stated assumptions of various proposed
models that essentially make them redundant in a real-life setting. Some of the

common themes of concern are given below.

e QOver-simplistic — many models have failed to recognise the complexity of the
hospital dynamics, with assumptions proving far too restrictive. This raises
concerns over their applicability and the reliability of their conclusions. Examples
include: hospital wards accommodating all arrivals and so the concept of a refusal
does not exist; arrival rates taken from the same negative-exponential distribution
throughout time when in reality demand is known to be highly time-dependent in
many specialities (for example, a large surgical emergency demand on Monday
mornings; no planned activity over the weekend). With today’s improved

computing power, there is no longer a need to over simplify processes. The
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necessary complexity can be readily captured in the development of practical

operational models.

o Deterministic — a huge number of papers on the topic fail to acknowledge and
incorporate the stochastic nature of healthcare. Such models use average
conditions, for example average bed occupancy, average arrivals, and average LoS.
It is widely known that variability is high within a healthcare environment (for
example, LoS for different patient types have very different distribution profiles).
Such models can expect to under-estimate true resource needs (Shahani 1981,

Shahani ef al., 1994 and Davies 1985).

o Lacking flexibility — nearly all models have been designed for specific case studies,
for example a specifically named hospital ward, an individual operating theatre, or
for a particular hospital workforce. These models lack flexibility and
transferability of conclusions from one healthcare setting to another. This is
particularly unhelpful to the healthcare profession since great effort is seemingly
required to model individual elements within and between different hospitals. In
practice, high-level hospital processes are generic processes and widely transferable
from one hospital to another. There is a need to develop flexible models that allow
for the ‘fine-tuning’ of parameters to reflect local conditions but which can be used

by a variety of hospitals without the need for completely overhauling the model.

o Lacking granularity — many models suffer from an isolated approach to modelling;
namely that the models are built and experimented with for specific studies and
conclusions drawn at a localised level. This lack of granularity (being unable to
model at various interacting levels of the hospital system) has a great potential to
give misleading and unrealistic conclusions. For example, modelling the use of an
operating theatre is the subject of many published papers. An operating theatre
however is an intricate and delicately balanced part of the hospital system as a
whole - it is not necessarily possible to increase throughput in the theatre unless
there is an inpatient bed for the patient in the first instance. Many models fail to

recognise this obvious interdependency.
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o Lacking user-friendliness — practical models should be sufficiently accessible for
end-users (e.g. healthcare managers) to understand the workings of the model and
to use the model in an experimental way themselves. Many developed applications

clearly involve the ‘black-box’ misgivings and are too complex and/or too difficult

to use.

3.5 Chapter Summary

The provision of hospital resources is a matter of considerable public and political
concern and has been the subject of widespread debate. For several years hospital
managers have been under considerable pressure to reduce hospital capacities and
increase patient throughput in the name of operational efficiency. There is

considerable scope for Operational Research methods to be widely used for this

purpose.

The literature study has revealed a vast array of papers on this topic. The dynamics
governing a hospital, and the flow of patients through it, means that the necessary
models should reflect the complexity, uncertainty, variability and limited resources.
There is a great need for necessarily detailed and realistic operational tools to aid with
the planning and management of hospital resources. Many of the proposed models

have failed in a number of ways to meet this need.

A common current practice is to plan and manage hospital capacities through a simple
deterministic spreadsheet approach using average values only. It may be shown
mathematically that this deterministic approach can lead to significant bias and
inaccurate results, typically under-estimating the true resource needs (Appendix B). It
is evident that the necessary models will be stochastic in nature, flexible, integrated,
versatile and easy to use by various hospital managers to examine in detail different
local and global concerns. Of the reviewed methods, it would seem that Simulation
would best handle the key issues and needs that have been identified, and solve the

necessary complex models (Appendix C).
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The participating NHS Trusts, Royal Berkshire and Battle Hospitals, and Portsmouth
Hospitals (see section 1.4), requested the development of appropriately detailed models
to evaluate a variety of scenarios for good planning and management decisions. Royal
Berkshire and Battle Hospitals Trust wanted to model and evaluate detailed options
within the re-engineered hospital designs. Apart from this ‘one off” application, the
Trust was also looking to develop a forecasting and planning tool, for beds, theatres
and workforce, which could be used in long term planning and during the annual
business planning cycle. Portsmouth Hospitals NHS Trust required similar models for

use in its submission of the PFI outline business case.

Given the needs of the Trusts, the complexity, uncertainty, variability and limited
resources (as discussed earlier in this chapter), and in addition the requirement of a
planning and management tool, there is a need for sufficiently detailed and flexible
models for managing capacities. The following chapter proposes a generic framework

that specifically addresses these needs.
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Chapter 4 — Requirements, Methodology
and Generic Framework

4.1 Chapter Introduction

Previous chapters have highlighted the need for necessarily detailed, stochastic,
flexible and user-friendly operational models to aid with both the planning and
management of hospital resources. This chapter outlines the adopted general
methodology with reference to a list of user requirements from the participating
hospital NHS Trusts. A generic framework for modelling hospital resources is

proposed which forms a central aspect of the developed simulation models discussed in

subsequent chapters.

4.2 Forming a Structured Approach

The literature review in the previous chapter has illustrated the immense diversity of
possible methodological approaches for the planning and management of healthcare
resources. It has highlighted a need for necessarily detailed and flexible models that
can be easily and quickly fine-tuned to reflect local conditions by hospital managers
themselves. It is therefore important to delineate a coherent research and development

approach consistent with the stated objectives of the thesis and the needs of the

participating hospitals.

To meet this need, an evolutionary development methodology was adopted. This
approach requires a constant dialogue with the end-users (hospital consultants and
managers). Models may then be created and enhanced alongside the potential users

themselves and this clearly forms a more structured approach than developing models

67



Chapter 4 Requirements, Methodology and Generic Framework

in isolation and then attempting to fit real-life processes and needs into the assumed

framework.

Figure 4.1 illustrates the evolutionary approach adopted during the time spent with The
Royal Berkshire and Battle Hospitals NHS Trust. For a detailed description of

evolutionary system development see Jenkins (1985).

Stage 1 Identify the user’s basic
information needs

v

Statement of basic
needs and scope of

system

Develop the initial
Stage 2 prototype

y

Initial
prototype

Stage 3 Use prototype model to
refine user requirements

Operational Is the user satisfied Enhz;(qce
model with the prototype? WwOorKing
prototype
A

Working
prototype

v

Stage 4 Revise and enhance the
prototype

Figure 4.1: Evolutionary model development
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The iterative process identified attempts to avoid ultimate failure of the application by
involving end-users at all design stages. This is particularly important in a healthcare
environment where the operational researcher must gain the trust of hospital staff and
be able to demonstrate the benefits of the new technology to replace or enhance

existing methods. The evolutionary approach highlights two main components of the

research, which are both described in detail in the subsequent sections of this chapter.

e Identifying user requirements to inform the model development (Stage 1).

e A generic framework in which the models are built (Stages 2 to 4).

A considerable amount of time was spent working on-site at the hospitals and liaising
with specialty managers, consultants and other hospital staff including bed-managers
and nurses. The majority of time was spent sitting on various working groups and
within process re-design teams, although contact was sometimes informal and
unstructured. These meetings provided a rich source of insight into management
processes at different levels and consequently added to the understanding of hospital
needs and to designing a practically useful, but mathematically correct, planning and
manégement tool. A range of structured methods were used‘to elicit feedback when
necessary. Such techniques included questionnaires, structured interviews and more
soft-system OR methodologies for brainstorming and cognitive mapping activities. A

summary of knowledge elicitation is given below:

e Formal interview (specialty managers, consultants, nurses and other “system-
owners”) — structured examination of key aspects of care system often using

questionnaires, flow diagrams and demonstration of prototype models.

e Informal discussions (all applicable staff) — communication about particular

operations of the healthcare system.

e Observation — observing processes, for example accompanying the bed-managers

on their morning tour of the hospital wards.

o FExamination of data sets, literature and records — survey of collected and reported

data relating to specific healthcare services.
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4.3 Defining User Requirement Profiles

4.3.1 General requirements

Over a period of time the following set of criteria addressing user requirements was
identified. These user requirements form the basis for the design rationale that enabled
the development and enhancement of prototype models. The reader will note that
many of the criteria have previously been highlighted as those qualities lacking from
previous approaches, as detailed in the literature study in the previous chapter. This is
no coincidence and further stresses the need for an improved methodological approach

to the planning and management of healthcare resources.

o Flexibility and versatility — ability to model a number of different scenarios
within hospitals at various levels (from ward level to hospital as a whole) with
minimal effort. The model must allow the fine-tuning of parameters to reflect local
conditions but without the need for many different models (a flexible model with

modules as opposed to a suite of different models).

e Ease of use — sufficiently accessible for end-users to understand and readily use the

model to examine various what-if scenarios.

e Integration and granularity — a hospital wide approach to modelling of resources.
These must be the ability to model various inter-dependent hospital resources such
as beds, theatres and nursing needs within one granular model at different levels as
necessary. There is a need to model hospital bed requirements alone or in

combination with theatres and/or hospital workforce planning.

e Validity — confidence can only be gained once the model has been validated
against past data and experiences, and scenarios make clinical and managerial

sense.
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4.3.2 Hospital resource requirements

After informal and formal discussions with various hospital decision-makers, such as
specialty clinical managers, and the responses to a questionnaire (see Appendix E), the
following set of complicating factors were evolved. Necessarily detailed hospital
capacity models should account for such features and be able to provide appropriate

information for scenario modelling and decision-making.

e Emergency patients arrive at random and must be admitted with minimum delay

and with priority over elective patients.

e Patient demand may depend on time of the day, day of the week and month of the

year. Thus bed requirements should be considered over time and not assumed to

be static.

e Patient LoS is highly variable, incorporating short LoS patients and those who stay

a very long time.
¢ Different patient types have different LoS distributions.

e Patients cannot be admitted into a bed-pool if no beds are currently available.
However, bed managers will decide whether another suitable bed is free elsewhere
in the hospital. In effect, each patient has a priority list of suitable hospital bed-
pools that is used before either deferring (elective) or transferring (emergency)

patients.

e Different specialities have different rules for elective deferral times, ranging from
re-admission the next day to some weeks in the future. Likewise, for some
patients, only a pre-defined number of deferrals may be permitted before they are

given emergency status.

e There are different theatre sessions for different specialties within the hospital.

Furthermore, the number and duration of sessions may change by day of the week.
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Some of the patients admitted to inpatient beds require an operation and queue for

theatre (procedure patients) and some patients stay in the bed but do not require

theatre (non-procedure patients).

Patient operation time is highly variable. Different patient types have different

operation time distributions.

There are known hospital rules concerning the amount of time that a theatre session
may over-run. These rules have a direct bearing on whether to admit a patient to

theatre or whether to cancel the operation until the next available session.

The hospital day is divided into three shifts — early, late and night. Patients often

require different amounts of care over time. In turn this equates to the requirement

of different grades of nurse by shift and by day for each hospital bed-pool or ward.

Nurse-dependency varies between different patient groups within the hospital.

Nursing requirements are usually directly linked to the type of operation or clinical

diagnosis.

Furthermore, managers provided a provisional list of possible model applications. The
following set of criteria specifies the “what-if”” scenarios to be evaluated. A valid
operational model should allow decision-makers to evaluate (quantify) the

consequences of various planning and management decisions.

e Examine what the likely bed requirements for speciality bed-pools will be over

time and their relationship with other hospital speciality bed-pools.

e Analyse what effects changing various admission rules may have on the efficiency

of the bed-pool.

e Understand the consequences of various daily elective (planned) patient admission

schedules, in the light of daily bed provisions and a stochastic emergency demand.

e Evaluate various planning and management options, such as the effects of
temporary transfer of beds from a surgical ward to a medical ward, creating new

clinical groupings, and combining existing bed-pools. Important considerations in
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this evaluation include refusals (transferred or deferred patients), bed-pool

occupancy levels and the interaction between various care-units.

e Appraise different operating theatre scheduling options. For example, whether to
operate on a first come first served basis (FCFS), longest operations first (LF) or
shortest operations first (SF). Furthermore to evaluate the impact of separate
dedicated day-case theatres or whether to incorporate day-cases into existing

elective theatre sessions.

e Calculate likely nurse needs over time for each specialty bed-pool or hospital ward.
This should be by grade of nurse, by month, day of week and shift each day. This
must account for patient case-mix and resulting patient nursing dependencies over

time.

The desired user requirements and features of the hospital system point towards a need
for a sophisticated hospital resource capacity-planning tool. This should meet the
general criteria as specified by hospital decision-makers and potential end-users, as

discussed in the previous section.

4.3.3 Critical care requirements

Although a critical care unit (CCU) forms a part of the overall hospital system, to an
extent this unit exhibits distinctive planning and management challenges that are rarely
seen elsewhere in the hospital, thus the need for separately defined user requirements.
The extreme costs of critical care (section 3.3.4), the relatively few beds available and
the critical medical condition of the patients admitted intensify the planning and
management issues. There is currently a great need to better plan and manage critical
care beds at both a local and regional level (Department of Health, 2000). During
lengthy discussions with participating CCU personnel, the following set of!

characteristics concerning the flow of patients through a CCU were evolved:
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Some CCUs comprise of an intensive care unit (ICU) only whereas others have
both ICU and high dependency units (HDU). Currently in the UK the average
number of ICU beds is 6 but the range is at least 2 to 22. One third of Trusts did
not have high dependency beds in 1999 (Department of Health, 2000).

In those hospitals where both intensive and high dependency beds are available,
some have physically separate units and others have a combined unit. The
Department of Health critical care review recommended that that existing division
into high dependency and intensive care based on beds be replaced by a
classification that focuses on the level of care that individual patients need,

regardless of location.

For separate units, intensive care patients may only be admitted to ICU and not to
HDU. High dependency patients may be admitted to ICU if no bed is available in
HDU.

For a combined CCU, admission is limited by both numbers of beds and numbers

of available nurses. Typically one nurse can care for either one ICU patient or two

HDU patients.

Some units have holding beds where emergency patients can wait for a bed to

become available. Typically patients can only remain on this bed for a maximum

of 24 hours.

Patients may be discharged early from a bed if certain criteria are satisfied. These
usually consist of the patient having stayed a minimum time on the unit, they are on
their last day of stay and they will survive. ICU patients may be discharged early
to HDU although some may return direct to ward care. HDU patients are early
discharged to ward although some patients may deteriorate and require intensive

care.

If no bed is available for admission, and having already checked for possible early
discharges and the arriving patient having already stayed the maximum allowed
time on any available holding bed, emergency patients will then be transferred to

another CCU.
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o Elective patients are deferred for a certain time period, if, upon arrival at the CCU,
the number of free beds has fallen below a minimum level. This level accounts for

the provision of emergency-only beds.

e Elective patients can only be deferred for a maximum number of times after which a
elective patient is deemed to have emergency patient status. Emergency status

elective patients and ‘true emergency’ patients are always admitted if there is a free

bed.

e Emergency demand may depend on day of the week and month of the year. Thus

bed requirements should be considered over time and not assumed to be static.

Patient LoS is highly variable. Typically CCU LoS is biased towards shorter LoS

although occasionally some patients may stay a very long time.

e HDU case-mix and LoS is very different in nature to ICU. HDU usually
accommodates more elective, less severe patients whereas the majority of ICU

admissions are emergencies.

Different patient types have different LoS distributions.

e Some regional CCUs provide specialist beds, such as those for patients with major

head injuries. Other CCUs within the same region will send these patients to the

specialist unit.

e Within a region of co-operating CCUs, there often exists a priority matrix governing

the movement of transferred patients from one unit to another available unit.

There was an evident desire amongst the participants to permit any developed models
to examine the consequences of the following options on unit occupancy, transfer and

deferral rates:

e (Changes to the number of ICU and/or HDU beds.

e Changes to the number of available nurses in a combined CCU.
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e Changes to the number of holding beds for ICU, HDU or a combined CCU.
¢ Changes to the number of emergency-only beds.

¢ Changes to the rules governing early discharge.

e Changes to the distribution of beds within a region of co-operating CCUs.

e Changes to the sharing of capacities amongst CCUs, such as emergency-only beds

in some, but not all, units.

The complex characteristics of a CCU and region of CCUs, coupled with desired user
requirements, indicates a need for a sophisticated CCU capacity planning and
management tool. There is a likely need for a model for a single CCU and a further
model for co-operating CCUs within a region. Developed models should meet the

general criteria as specified by critical care service decision-makers and potential end-

US€rs.

4.3.4 Proposed model utilisation

The participating hospital Trusts requested models to evaluate detailed options within
the new hospital re-engineering and re-design processes. It is anticipated that there will
be a model for hospital inpatient resources (beds, theatres and workforce) and models
for critical care services. It was envisaged that all models could be readily used for ad
hoc studies within this framework. However the Trusts were also looking to develop a
forecasting and planning tool that could be used in long term planning and during the
annual business planning cycle. The multi-dimensional nature of the model utilisation
requires the development of flexible models that can be fine-tuned to reflect local
conditions. In turn this leads to a necessary generic framework in which various

project-based studies may be realised. Such a generic framework is discussed in the

following section.
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4.4 Developing a Generic Framework

The defined user requirements coupled with the increased knowledge of the hospital

processes and perceived model utilisation, led towards the evolution of a generic

framework. Detailed flexible stochastic models may be developed within this

framework. The generic framework is shown in Figure 4.2.

Inputs for models
Routine data. Hospital resources. Operating rules. Collaborative arrangements.

xr -
Statistical analysis of data
® Creation of clinically meaningful All Patients
and statistical homogeneous D o o
groups for chosen variable of
interest e.g. LoS, operation times,
hospital outcome, typically Elective Emergency

constructed from medical, physical
and socio-economic factors.

o .
o
0

® Other relevant statistical analysis. Day Case In-patient
e.g. probabilities for casemix and -
arrival patterns of emergency and o
planned patients. Statistical *
distributions: Elderly Care Adult Medicine
. Cardiolo: + ., Dermatolo
Arrival patterns (hourly, daily, monthly) Rehabilitg)tlion ** 9y

Probability over time
—

Monday Probability of arrival

July January

e.g. LoS (days), Operation Times (mins)

* -

Models take uncertainty and variability into account. Example of a basic patient-flow is illustrated

Transfer to
another bed
pool /hospital

Outside World Q. Patient has
emergency

status?

Q. Accept emergency | NO
patient x?

Patient type x
arrives at

Admit patient for

hospital Q. Accept planned 1
Ward / home patient x? LoS. Monitor
resource needs <+
+ NO Patient

Transfer to
another bed
pool

leaves

Death in

hospital / home Q. Defer Admission?

* 3

Outputs from the models

Outputs in graphical, tabular and report forms that include: aggregated results or results classified as
needed (e.g. functions of time); effects of changing operating rules of bed pools; effects of changes in
the number of beds over time (seasonality effect); effects of nurse availability; effects of collaborative
arrangements; impact of changes in surgical procedures, number and duration of theatre sessions etc.

Figure 4.2: Developed generic framework for modelling healthcare resources

77



Chapter 4 Requirements, Methodology and Generic Framework

Further detail on each stage within this generic framework is provided below:

Model inputs — routinely collected data, such as hospital admission and discharge
dates, time of arrival, LoS, emergency or elective status, operation time etc. Expert
data may be used if raw data is not available (see section 6.4). Hospital rules

governing use of resources are defined.

Statistical analysis of data — this stage plays a critical role in the success of
developed models. The automated rapid classification of patient groups forms a
key differentiator between this approach and other attempts to produce practical
capacity planning and management tools. A specially designed statistical analysis
program, called Apollo, has been developed to enable the creation of statistically
and clinically meaningful patient groups and to obtain information about particular
flows over time. Apollo can link with most databases that are used in hospitals and
extract the necessary data for the statistical analysis. Some of the helpful features

of Apollo are:

> Rapid classification of patients using a binary splitting method similar to
Classification and Regression Tree (CART) analysis.

> Analysis of patient arrival times for the detection of patterns in the arrivals
over time for any desired group of patients.

> Fitting appropriate distributions. For bed capacities, distributions for LoS
are important. For theatre capacities, distributions for operation times are
necessary.

» Linking the statistical analysis to the simulation model.

Apollo has been designed to link to the hospital simulation model, so that patient
groups can be created and the key information on arrival profiles and LoS fed
directly into the model. This is a major help to end-users in creating a clinically
and statistically correct model. Fitted distributions avoid the need for average
values (section 3.5.1). Patient arrival profiles acknowledge demand as a function
of time. See chapter five for a description of Apollo and patient classification

techniques.
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e Simulation model —developed simulation models within this framework take
individual patients through time as they pass through the chosen healthcare system
(Figure 4.3). This could be inpatient beds and operating theatres (for hospital
capacity model) or complex care-pathways in a critical care unit. Once again this
approach differentiates models described in this thesis from other more simplistic
models of aggregated patient flows. Patients staying within the healthcare system
take their attributes (arrival profiles, LoS, operation times, survival rates etc.) from
those described by Apollo during the previous stage. Within this framework, any
proposed system can be modelled. Such models capture uncertainty, complexity
and variability (section 3.4). Successful application requires a detailed
understanding of patient-flows, as typically captured in a flow diagram. This is
achieved through the evolutionary development process adopted within this work

that involved end-user involvement during all model development stages (section

4.).

Individual patient-flows through healthcare system

LoS?
Operating theatre? |
Nursing needs?

Discharge

Figure 4.3: Individual patient-flows

e  Model outputs — The simulation model should be designed to meet user
requirements (section 4.3) so that model outputs provide the necessary information
for end-users. Outputs may be in graphical, tabular and report forms that include

aggregated results or results classified as needed (e.g. functions of time).

The framework was used to design and build a hospital capacity simulation model

(Chapters 6 and 7) and critical care models (Chapter 8).
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4.5 Chapter Summary

It is important to delineate a coherent research and development approach consistent
with the stated objectives of the thesis and the needs of the participating hospitals. To
meet this need, an evolutionary development methodology was adopted with
involvement of hospital staff from the outset of the research. A range of structured
methods were employed to obtain information and feedback whilst visiting a
participating NHS Trust. Lists of complicating factors governing the flow of patients
through hospitals were identified. Necessarily detailed hospital capacity models need
to account for these features and be able to provide appropriate information for
scenario modelling and decision-making. Provisional lists of model applications aided

model enhancement alongside the potential end-users.

A generic framework has been evolved in the light of perceived user-needs and real-
life hospital processes. Developed models for hospital resources and critical care units
should be designed within this framework. A specially designed statistical analysis
program has been developed to enable the creation of statistically and clinically
meaningful patient groups and to obtain information about particular flows over time.
This automated rapid classification of patient groups forms a key differentiator
between this approach and other attempts to produce practical capacity planning and
management tools. Developed simulation models within this framework take
individual patients through time as they pass through the chosen healthcare system.

These models take uncertainty, variability and complexity into account properly.

The generic framework has been shown to be applicable to many different NHS Trusts.
Originally it was evolved at The Royal Berkshire and Battle Hospitals NHS Trust but
was then adopted by Portsmouth Hospitals NHS Trust who recognised that the
structure applied to them. Other Trusts have since approached the author expressing an

interest in the framework and developed models.
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Chapter 5 — Patient Classification
Techniques

5.1 Chapter Introduction

The evolved generic framework (Chapter 4) incorporates the need for sophisticated
patient classification techniques to be adopted. Necessary patient groupings may then
be fed into developed simulation models and individual patients from each group
passed through the particular healthcare system of concern. In order to capture the
uncertainty and variability amongst the patient population, a number of classification
techniques are considered and evaluated for their relative performances and practical
usefulness. A statistical package incorporating a symbolic tree-based algorithm,

CART, has been developed for use within the modelling process.

5.2 The General Classification Problem

As a direct consequence of individuality, patients typically differ in a number of
medical, physical and socio-economic chéracteristics, for example by age, severity of
illness, complications and speed of recovery. Groups of patients with healthcare needs,
whether they represent those who suffer from a particular disease or those who are
rushed into hospital as emergencies, are usually considered as groups of patients with
similar needs. In fact these groups are typically heterogeneous and require more
detailed modelling for classification. Resulting healthcare needs and corresponding
resources vary from patient to patient within each group. The subsequent uncertainty
and variability in the healthcare system can place great stress on the efficient and

effective planning and management of resources.
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From both a clinical and operational perspective, it is desirable to be able to divide this
heterogeneous group into smaller homogeneous (in terms of some measure) sub-
groups. Homogeneity brings the benefits of increased certainty in individual patient
needs and resource utilisation. For example, given an individual patient we can
classify them into a patient sub-group in which we know, from past experience and
data, that their LoS in hospital is likely to be within a certain range of time with a given
confidence. The LoS for this patient group will typically substantially differ from the
predicted LoS of other groups. The purpose of classification in this example would be
to produce tight LoS bands with high confidence. Thus with the added knowledge and
confidence of how long individual patients are likely to stay in the hospital system, the
potential for improved efficiency and effectiveness in hospital planning and

management 1S vast.

An important criterion for a good classification procedure is that it not only produces
accurate classifiers (within the limits of the data) but that it also provides insight and
understanding into the predictive structure of the data (Breiman et al., 1984). For
example, finding which socio-economic and medical characteristics contribute to the -
risk of a particular disease not only provides valuable assistance in classifying
individuals into risk groups with some certainty, but more generally has advanced the

knowledge and understanding of the disease.

There are two elements to a general classification problem. Measurements are made on
some case or object (for example a patient in a hospital setting with measurements
including age, sex, clinical diagnosis, LoS, outcome etc.) and based on these
measurements a prediction is made as to which class a case is in. The prediction is

made following a pre-defined classification rule.

In mathematical terms we define X to be the measurement space containing

x = (xJ, x3,...Xn), the measurement vector, where each x; is a measurement taken on a
case. The method should, given any x in X, have a classification rule to assign one of
the classes (1,2,3,...J) to x, where J is the number of classes. The classifiers are based
on past experience using a combination of expert knowledge and past data with their

relevant outcomes. For example, the classifiers to be defined could come from a
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hospital database combined with the expert knowledge of the consultants, specialty

managers and other medical staff.

Each measured variable is continuous, nominal or ordinal in nature. A variable is
continuous if the measured value is a real number (e.g. LoS, age, height). A variable is
nominal if it is a finite categorical set with no natural ordering (e.g. sex, hospital ward,

clinical diagnosis). A variable is ordinal if it is a finite categorical set with a natural

order.

5.3 Comparison of Classification Algorithms

There exist many different classification algorithms, but their relative merits and
practical usefulness for healthcare problems in particular remain unclear. Thus a need
arises to evaluate their relative performances. Intrasubject comparisons have been
considered in the past, for example, within statistics (Remme et al., 1980), within

symbolic learning (Clark and Boswell, 1991) and within neural networks (Xu et al.,

1991).

Other authors, for example King et al. (1995), have compared different algorithms for
non-healthcare datasets, but little or no research has been conducted on the relative
merits of various techniques for healthcare problems and in particular consideration of

the practical usefulness for (use by and interpretation of) medical personnel.

5.3.1 Algorithms and datasets

Four techniques have been considered, with the intention of representing the spectrum

of classical statistical and more recent advances in computer-based approaches:

e Discriminant Analysis

e Regression Models (Multiple and Logistic)
o Tree-based Algorithms (CART)

o Artificial Neural Networks
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In considering suitable datasets, the primary criterion was that chosen datasets were of
real-world interest to the medical profession. In order to evaluate how the different
classification approaches perform on different types of data, a number of datasets were
chosen with the intention of representing those with different sizes (number of
records), number of variables (fields), the level of variance or deviance (an indicator of

how “messy” the data is) and the ratio of continuous to categorical variables in the

dataset.

The four selected datasets are described in Table 5.1. A summary of the classification

studies is shown in Table 5.2.

Table 5.1: Dataset descriptions

Dataset | Description

A An intensive care dataset containing routinely collected ICU data within
the UK. Information on a number of socio-economic and medical
variables. Primary interest in predicting LoS and outcome.

B Routinely collected data from a hospital patient management system for
predicting LoS on the ward.

C A comprehensive maternity dataset collected as part of a commissioned
study on predicting complications at birth. Contains a number of socio-
economic and medical variables.

D A large diabetes dataset, containing information on various diabetic
complications collected for over 30 years from a leading unit in the UK.
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Table 5.2: Summary of classification studies
Study | Dataset | Dependent Variable Number | Variance/ | Number of
Description | Nature | of Records | Deviance variables
1 A LoS in Cts 582 11.8 7
ICU (mean 2.4) (2 Cts, 5 Cat)
(days)

2 A Outcome Cat 582 0.13 7
(death or (13%) (2 Cts, 5 Cat)
survival)

3 B LoS in Cts 17,974 56.6 5
hospital (mean 4.3) (2 Cts, 3 Cat)

(days)
4 C Chance of Cat 2,402 0.24 16
complicated (24%) (8 Cts, 8 Cat)
delivery

5 D Predicting Cat 4,056 0.33 14

onset of (33%) (12 Cts, 2 Cat)
Retinopathy

(Cts = continuous variable; Cat = categorical variable)

5.3.2 Evaluation criteria

The algorithms are evaluated using four criteria. Two are objectively measurable: the

accuracy and the computing time taken to produce results. There are also two

subjective criteria: the comprehensibility of the results and the ease of use of the

algorithm to relatively naive medical users.

Accuracy

There is no generally accepted measure or agreement on the appropriate loss function

or accuracy of a classification tool. Therefore to compare the relative performances of

each of the four techniques, accuracy has been measured as the percentage of cases

(patients) that the algorithm classifies correctly with a categorical dependent variable

or the correlation coefficient () between the observed and predicted responses with a

continuous dependent variable.
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Run-Time Speed

Training and testing times were calculated. Training time is the time taken to learn plus
the time taken to classify the training data. Test time is the time it takes to classify the
test data. All algorithms were performed on the same PC with a Pentium III processor

of speed 600MHz with 128 Mb RAM.

Comprehensibility and Ease of Use

This is a measure of the extent to which the algorithm produces comprehensible results
that are easy to interpret and understand, particularly by medical staff. This was
measured by consulting various medical personnel within the participating NHS Trusts.
They were also asked to estimate the ease of use of each technique. This is based on
the amount of time required to understand the algorithm and prepare the data, the

amount of tuning necessary and the time required to produce correct results.

The subsequent four sections of this chapter describe in turn each of the four chosen
classification algorithms. This is followed by a presentation of how each performed on
the dataset together with a critical comparison. The majority of time was spent
researching and developing CART and Neural Network tools, thus the emphasis on the
description of these two techniques as opposed to the more classical, and generally

wider understood, discriminant analysis and regression analysis approaches.
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5.4 Discriminant Analysis

(Canonical) Discriminant Analysis (DA) is a technique using least squares methods to
separate data into two or more groups. Data points are characterized by several
variables; the optimal discriminant function is assumed to be a linear function of the
variables and is determined by maximizing the between group sum of squares for fixed
within group sum of squares. This technique is well described (for example in Manly,

1998) and a detailed discussion will not be given here.

DA is primarily used to classify cases into the values of a categorical dependent,
usually a dichotomy. If it is effective for a set of data, the classification table of correct
and incorrect estimates will yield a high percentage correct. In general there are

several purposes for DA:

o To investigate differences between groups.

e To determine the most parsimonious way to distinguish between groups.
e To discard variables which are little related to group distinctions.

e To classify cases into groups.

e To test theory by observing whether cases are classified as predicted.

Discriminant analysis shares all the usual assumptions of correlation, requiring linear
and homoscedastic relationships and untruncated interval or near interval data. Like
multiple regression, it also assumes proper model specification (inclusion of all
important independents and exclusion of extraneous variables). DA also assumes the
dependent variable is a true dichotomy since data which are forced into dichotomous

coding are truncated, attenuating correlation.

DA is an earlier alternative to logistic regression (see 5.5.3), which is now frequently
used in place of DA as it usually involves fewer violations of assumptions, is robust,

and has coefficients which many find easier to interpret.
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5.5 Regression Algorithms

Regression analysis is concerned with investigating the relationship between several
variables in the presence of random error. In particular we build a model in which one
of the variables (the dependent variable) is expressed as a linear combination of the
remaining variables (which are referred to as the independent or explanatory

variables).

The method of least squares is used to estimate the parameters of the model from a
given data set. This process of estimation is often referred to as fitting the model. The
following description is intended to provide an introduction to the topic. The reader is

referred to Draper and Smith (1966) for a comprehensive examination of the subject.

5.5.1 General model with additive error

We seek a model which will enable us to represent the relationship between the
dependent variable, y, and the set of independent variables x;, x, ...,x;. In general this
relationship will not be completely deterministic and the relationship will contain a
random experimental error term, €. In order to investigate the relationship a value of y,
¥j, 1s determined when x, x3,...,.x; take the values xy;, x5 ...,.x); respectively. This is

repeated for j = 1,...,n. The general model used to represent the relationship is of the

form:

Y =@, Xy e Xy )+ € j=1..,n

where @ denotes some function of the x’s and contains unknown parameters which

have to be estimated.

Attention is usually limited to the general linear model in which @ is a linear function

of the unknown parameters, such that:

y;=a+ fx; + fxy +ot fx, + & Jj=L..,n
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5.6.2 General model with multiplicative error

In some situations it is more appropriate for the model to include a multiplicative error

term rather than the additive term used above. The general model then becomes:

V; = QXX 50 %,)0;
where §; denotes the random experimental error term.

This model is often appropriate for data for which the relationship between the
variables is clearly non-linear. In this case a suitable logarithmic transformation can
sometimes be applied to achieve an approximately linear relationship with an additive

error term.

5.5.3 Logistic regression

Binomial (or binary) logistic regression is a form of regression that is used when the
dependent is a dichotomy and the independents are continuous variables, categorical
variables, or both. Multinomial logistic regression exists to handle the case of
dependents with more classes. Logistic regression applies maximum likelihood
estimation after transforming the dependent into a logit variable (the natural log of the
odds of the dependent occurring or not). In this way, logistic regression estimates the

probability of a certain event occurring.

Logistic regression has many analogies to ordinary least squares (OLS) regression: the
standardized logit coefficients correspond to beta weights and a pseudo R’ statistic is
available to summarize the strength of the relationship. Unlike OLS regression,
however, logistic regression does not assume linearity of relationship between the
independent variables and the dependent, does not require normally distributed
variables, does not assume homoscedasticity and in general has less stringent
requirements. The success of the logistic regression can be assessed by looking at the
classification table, showing correct and incorrect classifications of the dichotomous,
ordinal, or polytomous dependent. Goodness-of-fit tests are available as indicators of

success as is the Wald statistic and other tests of the model's significance.
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5.6 Classification and Regression Trees (CART)

5.6.1 The foundations of CART

Classification and Regression Trees (CART) is a classification method that has been
successfully used in many healthcare applications. Example applications include
creating case-mix groups (Smith et al., 1992), minimum data requirements (Hornberger

et al., 1995), cancer survival groups (Garbe et al., 1995) and Intensive Care (Ridley et

al., 1998).

Breimen et al (1984), the founders of the technique, use the following University of
California study as a means of introducing the reader to the technique. The study uses
measurements recorded when a heart attack patient is admitted to hospital and attempts
to classify the patients into low-risk and high-risk groups. Nineteen variables are
recorded in the first twenty-four hours, including age, blood pressure and seventeen
other ordinal and binary variables summarising the patient’s condition. The CART
method produces a tree that, by answering a series of yes/no questions, can be used to
classify the patient. The authors found that it was possible to identify a high risk group
of those patients not surviving more than 30 days based on minimum systolic blood
pressure, age and whether sinus tachycardia was present. Figure 5.1 shows the tree

produced in the study. In the tree, the letter F indicates low risk and G for high risk.

Is the mmimum systolic blood pressure over the
initial 24 hour period > 912

no
ves

Is age > 62.5

no
ves

Is sinus tachycardia
present ? A

yes no

Figure 5.1: CART analysis of cardiac patients (from Breimen et al., 1984)
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5.6.2 The method

The first step in producing a tree is to decide which variable is to be predicted (LoS,
operation times, survival rates etc.). If the variable is ordinal then the variance is used
to measure the purity in the group, if the variable is categorical then deviance is used.
An algorithm is used to split the original dataset into sub-populations of increasing
purity (decreasing variance or deviance). At each junction of the tree is a node. A
terminal node is a node at the end of the branch of the tree. At each node in the tree the
algorithm searches through each of the independent variables in turn. For each variable
it finds the best binary split that produces a node with the smallest variance or
deviance. Then it selects the variable that has produced the best binary split (best of
the best). The parent node will thus be split on this variable with the split as defined.
This may have the effect of leaving one of the child nodes with a higher
variance/deviance than the parent node. The algorithm however continues to branch

from each of these child nodes until defined stopping rules have been fulfilled.

An issue in CART analysis is when to stop the partitioning, i.e. when do we say that
the variance has not significantly reduced? It would be possible to create a tree where
each terminal node has zero variance by having just one case in each node. However
this would be statistically irrelevant and practically useless. It is necessary therefore to
introduce stopping rules so that terminal nodes have sufficient size to yield reasonable

and statistically robust results. Stopping rules include:

e Stop when nodes contain a certain number of cases.
e Stop when reduction of variance is below a certain threshold.

e Stop when a maximum number of terminal nodes (or layers) have been produced.

Care must be exercised when defining stopping rules and should account for the
number of cases in the dataset. A terminal node with less than 30 cases, for example,
can be expected to yield little predictive power and lack statistical robustness.
Standard bounds are no less than 50 cases per node, a significance level of 1% on the
reduction of variance in order to split a node, and a maximum of around 10 terminal
nodes. Once a tree is constructed statistical summaries can be produced at the terminal

nodes which can be used to form the classes.
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5.6.3 CART components

There are 4 components required to construct a regression tree:

1. A set of questions of the form: Does x; belong to the set 4. The answer to such
questions induces a split of the predictor space, cases associated with 4 and those
with the complement of 4. The sub-samples form the nodes.

2. A goodness of split criterion ®(s, f) that can be evaluated at any split s at any node
I3
A means of determining the appropriate size of the tree.

4. Statistical summaries at terminal nodes of the tree, for example, node averages and

frequency distributions.

5.6.4 Validating the trees

Once a tree has been produced it should be validated to give an estimate of the
accuracy of its classifications. The same data that is used to construct the tree cannot
be used to test the classifications, as the estimate will be over-optimistic. This is
overcome by splitting the data into two sets, 4 and B. The cases in 4 must be
independent and identically distributed to the cases in B. This has the drawback that it
reduces the sample size used in the construction of the tree. Set A can be used to train
the data and build the tree (training set) and set B to test the robustness and validity by

forcing the data through the tree (testing set).

For smaller samples there is a technique called V-fold cross validation. This involves

three stages:

1. Split data into v sub-sets
2. Classify on 4-A, for each v

3. Cross validate over all samples, combine miss-classification rates to measure

accuracy
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Standard statistical methods can be used to compare the values of the training set and

test set at any node. The significance test to compare data sets can be described as the

following:

Let n; = number in group at node from training set

ny = number in group at node from test set

(A) Categorical dependent variable

Let »; = number responding ‘yes’ in group at node from training set

r, = number responding ‘yes’ in group at node from test set

Let 7 and 7, be the true proportions responding ‘yes’ in the training and testing

populations respectively.

For a large sample (>20) 7, 1s approximately normal distributed with mean »,7, and

variance nz,(1— ), and r2 with mean n,7,and variance n,7,(1-7,).

Under the null hypothesis of z; = 7, = 7 we obtain:

Variance{i—r—zjz 7(1-7) + 7(l-r)

n, n, n, n,
and
. 7, 7
Expectation) — -2 =0
n] nZ
. . ¥, +F
where 7 is estimated by p = 1—%
n, +n,

A 95% confidence interval for ; — m, is given by:

r_]__gil.%\/p,(l-p‘)Jrpz(l—pz)

n, n,
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(B) Ordinal (continuous) dependent variable

Let x, = the mean value within the group at node from training set

X, = the mean value within the group at node from test set
s? = the estimated group variance at node from training set

s; = the estimated group variance at node from test set

Let p; and pp be the true means in the training and testing populations respectively.

Leto}and o7 be the true variances in the training and testing populations respectively

estimated by s/ and s> for large n; and n,.

Under the null hypothesis of z = x4, we derive:

n,

Variance(x, — x,) =
n +n, =2

and

Expectation(x, — x,) = 0

Hence a 95% confidence interval for z — 4, is calculated as:

(n, = 1)s? + (n, —1)s? ]{L

1
4+ —
s

_ n —Ds> +(n, —Ds? Y 1
X, — X, iza/Z,(n,-\an—Z)\/(( I ) l ( : ) 21—+
n +n,—2 n,

1

nz/

Confidence intervals can be used to judge whether or not the two data sets are

statistically the same. If the interval produced at any given node contains zero then it

suggests the test data supports the training data; if zero is not contained in this interval

then the node should be treated with caution.
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5.6.5 The CART algorithm details

Classification

. For the current group calculate the total variance within the group.

. For each value of independent variable, calculate the total value of the dependent
variable in that group ( Zx), the total value squared (sz ), and the number of

items of data in that group (N).

. Sort the values of the independent variable into increasing order of the mean value

of the dependent variable.

. For each independent variable calculate the best point at which to split the sorted

mean values to produce the minimum variance.

. Split the data based on the best independent variable in order to reduce the total

g |z

variance calculated as:

all groups

Total observations

. Choose a suitable sub-group of the data as the current group, and repeat the above
steps until either the data is split into groups of size less than a minimum number, or

the reduction in variance obtained by a split of the data is below a minimum value.

Regression

1. For each pair of adjoining subgroups, calculate the change in variance resulting

from the amalgamation of these two groups.
2. Combine the sub-groups whose combination will result in the least gain of variance.

3. Repeat the above steps until the desired numbers of sub-groups are obtained.
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5.6.6 Computational time issues

With uncensored data numerated covariates, for example patient age, these are ordered
such that the analysis is carried out on (< x , > x) and is performed » times, where # is
the number of individual ages. We have O(#n) computations to make. Enumerated
covariates, A, B, C and D with X = {A, B, C, D}, are ordered such that E(A) < E(B) <
E(C) < E(D). Therefore it is logical to look at the groupings {A}, {B, C, D}; {A, B},
{C,D}; {A, B, C}, {D} etc., with order O(#n-1)

With censored or categorical data numerated covariates, analysis is carried out with
order O(n). However if we are analysing an enumerated split, for example hospital
specialties A, B, C and D with X={A, B, C, D}, we have to investigate all possible
groupings: {A}, {B,C,D}; {A,B}, {C,D}; {A,B,C},{D}; {B},{A,CD}; {B,C},
{A,D}; {C}, {A,B,D}; {A,D}, {B,C} with order O(2"" - 1) for nominal and O(n*- 1)
for ordinal variables. The computation time for the construction of the tree sequence
for censored data is of obvious concern, although a possible solution for large number

of enumerated types would be the use of factorial designed experiments.

5.7 Artificial Neural Networks

Artificial neural networks are parallel computing devices consisting of many
interconnected simple processors. In essence they are attempting to mimic the
behaviour of the most powerful asset known to man, the human brain. Although each
processor is quite simplistic, a collection of these units (a network) gives rise to a
powerful computational tool. Each processor in the network is only aware of signals it
periodically receives and the signal it periodically sends to other processors, and yet
such simple local processors are capable of performing complex tasks when placed

together in a large network of orchestrated cooperation.

Artificial neural networks have their roots in work performed in the early part of the
twentieth century, but only during the 1990s, after the breaking of some theoretical

barriers and the advances in computing power, have these networks been widely
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accepted as useful tools. A plethora of books and papers have been published on
artificial neural networks. This section aims to provide the reader with a general

overview of the topic. For a more comprehensive and exhaustive description, the
following references are useful starting points: Anderson (1995), Haykin (1999),
Callan (1999) and Kay and Titterington (1999).

5.7.1 The basic components

The neural network is the collection of units that are connected in some pattern to
allow communication between the units. These units, also referred to as neurons or
nodes, are simple processors whose computing ability is restricted to a rule for
combining input signals and an activation rule that takes the combined input to
calculate an output signal. Output signals may be sent to other units along connections
known as weights. The weights usually excite or inhibit the signal that is being

communicated. The net input of weighted signals received by a unit j is given by

n
netj =W, + Zw,.x,.

i=l

where wy is the biasing signal, w; the weight on input connection i/, x; the magnitude of
signal on input connection i/ and # is the number of input connections to unitj. An

illustrative schematic of a single network unit with three incoming signals is shown in

Figure 5.2.
wy
Incoming Tl Outgoing
| Transfer .
Signals "2 /: Z Function Signal
_

w3

Figure 5.2: A single network unit
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The summed value net is passed on to a second processor within the unit, the transfer

Jfunction, which computes the output value of unit j determined by:
0, = f(net;)

where oj is the unit output and f{') is the output transfer function. Common transfer

functions include the step, sigmoid and hyperbolic tangent sigmoid functions.

One of the intriguing aspects of neural networks is that although they have units with
limited computing capability, when many of these units are connected together, the
complete network is capable of performing a complicated task. Figure 5.3 illustrates
an example of a simple two-layered feedforward network (the input layer is not

normally regarded as a layer as its purpose is simply to enter the input values).

Input 1

Input 2

Output
Input 3

Input 4

Figure 5.3: A two-layered feedforward network

5.7.2 The backpropagation network

As opposed to a traditional and rigorous programming approach, where the developer
blueprints every command to be executed, a neural network is left to itself to learn the
underlying theories of the problem and the procedures required for solving it. This
process of learning is known as network training. The knowledge obtained by the

network is stored in its weights and biasing values.

A popular training algorithm for feedforward networks is the backpropagation
algorithm. Feedforward networks that are trained using this approach are commonly

known as backpropagation networks (BPN). The general concept of this technique is
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to constantly perform corrections to the individual weights and bias values, with the
objective of reducing the output error, corresponding to the magnitude it has
contributed to the output error. In other words, the algorithm redistributes the “blame”

to the individual weights and biases according to their contributions to the overall error.

The backpropagation algorithm is a supervised learning method in which the developer
first selects a set of training data from historical records. The training data would
consist of samples of inputs, 7, together with a corresponding set of targeted output(s),
t. For each data point in the training set, the algorithm sweeps through the network
twice. The forward sweep first propagates the input vectors through the network to
compute the output values at the output layer (with the weights and biasing values of
the network initialised to small arbitrary values). The unit’s total output error, e,
obtained by summing the individual differences between the network’s output and the
targeted outputs (7-0), are then in turn propagated backwards through the network to
determine how the weights are to be changed during training. Common error functions

used include the sum of squared error (SSE) and the mean squared error (MSE).

An epoch is a complete cycle through each data point in the training set. Network

training terminates when the sum of all errors is below a predefined target error.

The main parameter of the backpropagation algorithm is the networks learning rate, r.
In order to make the effect of weight changes smoothly, the transfer function of the
units must be smooth. The learning rate should be kept low to allow a smooth and
steady descent on the error surface. A commonly adopted learning rate is the logistic

sigmoid function:
1

(—nerj )

0. =
7 1+e

The amount of correction that is to be made on a particular weight connected to the

output layer is computed using the following equation:
ow; =re,0,(1-0,)I,

where 0w is the weight change, r the network learning rate and e; the SSE of unit /.
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Thus the new value of the weight is found by:

W = W,y +OW

new

Further discussions on the backpropagation algorithm may be found in Mehrotha et al.

(1997).

5.7.3 Architecture selection

An important consideration affecting the likely success or failure of a neural network is
the choice of the number of units in the input, hidden and output layers. With prior
knowledge of the dataset, respectable initial values may be chosen. For most problems
however, the initial values are unclear and often further complicated by the curse of’
dimensionality which states that the number of data points required for training

increases non-linearly as each input variable is added.

The choice of the number of units to be used in the hidden layers also strongly affects
the generalisation capability of the network. Generalisation in the neural network
context refers to the ability of a network to arrive at a configuration that is able to
correctly process input data that has never been presented to it before. As a general
rule of thumb (Callan, 1999), start with a two-layered network comprising of 30% to
50% of the total number of units in both the input and output layers in the hidden layer.
While the lack of units in the hidden layers would obviously cause the network to be
insufficiently powerful to model the problem at hand, the presence of too many units
may cause the network to overfit. Under such circumstances, the network has begun to
memorise the training set and will not allow for flexibility in processing new input sets.
Overfitting is observed when a higher test error is observed when compared to the final

training error.

Another issue is that of overtraining. This occurs when the training data is presented to
the network on too many occasions, which will result in the network memorising the
training set. A practical solution is to periodically test the network with a separate data

set known as the validation set.
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5.7.4 Dataset selection

The choice in the dataset used for training, validation and testing is an important factor
for the success in network training and generalisation. The dataset must firstly be
representative of the problem. Specifically, the data must include all previously
observed eventualities. A guideline by Baum and Haussler (1989) in determining the

training set size is found by calculating:

N > —

where N is the number of training data points required, # is the total weight and

biasing values in the network and ¢ is the proportion of allowed errors in testing.

The numeric values of training data may also need to be pre-processed prior to
application. For example, the data will usually need to be scaled so as to prevent
domination by variables that are computationally larger in magnitude. A crude method
of scaling would be to divide the observations of a particular variable set by the largest

observation. This then limits the largest value within the set to unity.

5.7.5 Avoidance of local minima

The backpropogation training algorithm is a gradient descent method. If the output
errors were plotted against the possible range of weights and biasing values, a two-
dimensional view of that graph would be similar to that shown in Figure 5.4. This

graph is known as the network error surface.

Figure 5.4: An example of network’s error surface
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The algorithm aims to minimise the error by taking the steepest descent on the error
surface. However, as the above figure shows, the error surface will consist of a
combination of uphill and downhill slopes and valleys. It is therefore possible for the

algorithm to be trapped in one of the many local minima.

The inclusion of a momentum constant can help overcome this event whilst in the
process of searching for a global minimum. This constant provides additional
magnitude in the error descent by simply adding a fraction of the previous weight
change to the current computed change. Thus, if the previous weight change resulted
in a large downbhill shift in error and the network is now in a local minima, the previous

weight change can help the network to overcome the small valley(s).

The amount of correction that is to be made on a particular weight connected to the

output layer is thus modified to include a momentum constant .

ow,(n+1)=re0,(1-0,)I; +aow,(n)

5.8 Results of the Comparison Study

5.8.1 Summary of results

Initial time was spent randomly splitting each of the four datasets into training and
testing datasets (with approximately half the total number of observations in each).
The same training and testing datasets were used for each of the classification
techniques in each study. The discriminant and regression models were built using
SPSS (version 10). The CART trees were constructed using a developed package
Apollo (section 5.9). NeuroSolutions (version 3) was used to build, train and test the
neural networks. For each study, the models were trained and then tested. Their

accuracy and run-time were recorded. Further details may be found in Appendix D.
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Table 5.3 summarises how each of the classification techniques performed in each of
the five studies. Recall that with a categorical dependent variable, the percentage of
correctly classified cases is presented (rescaled as a number between 0 and 1). Witha
continuous dependent variable, the value of the correlation coefficient (#) is given. The
time taken to test the models is shown in seconds. Appendix D contains more detailed

information with illustrative results for each of the four techniques.

Table 5.3: Performance of the different classification techniques

Study | Discriminant Regression CART Neural Nets
Accuracy | Time | Accuracy | Time | Accuracy | Time | Accuracy | Time
1 0.23 12 0.29 1 0.32 1 0.33 39
2 0.67 6 0.81 1 0.87 2 0.87 39
3 0.45 165 0.62 5 0.60 20 0.34 620
4 0.54 7 0.68 2 0.78 6 0.79 165
5 1 0.73 3 0.75 2 0.79 12 | 0.74 129

5.8.2 Discussion of research findings

Discriminant Analysis (DA)

DA is used to classify cases into the values of a categorical dependent. A large amount
of set-up time was therefore required to split the continuous dependent variables into
necessary groups. For this purpose, groups were derived using percentile splits with a

total of ten groups constructed.

DA consistently gave the lowest accuracy and took a longer time to run than both the
Regression and CART approaches, although it was faster than the Neural Network tool.
DA’s poor performance may be explained by its linear structure that seems unable to
tune itself to the structure of the datasets. In contrast, for example, regression models
may be tuned to the dataset through the use of interaction terms. In DA the

assumptions of a linear structure appear too restrictive. DA performed particularly
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poorly for predicting LoS (studies 1 and 3). The LoS data has high skew and kurtosis

which appears to severely disrupt the performance of the discriminants.

The resulting discriminant functions and their coefficients were not always easier to
interpret and often shed little light on the structure of the data. A survey of healthcare
professionals revealed that they often struggled to make clinical sense of the

discriminant functions. This is a further downfall of the technique.

Regression Models

Models with both additive and multiplicative error terms were examined and the best
accuracy recorded. When the number of variables is large, and thus running a full-
factorial model is unfeasible, regression models ideally require that the user has at
minimum a general understanding of the variables and may therefore evaluate suitable
interaction terms. As a consequence, a large amount of time should be afforded to the

consideration of appropriate model terms. Various models may then be built and

evaluated.

The accuracy was typically comparable with that of CART and Neural Network
approaches. It tended to do better when the number of records (data points) was large
and actually produced the best correlation coefficient  for predicting hospital LoS
(0.62). For studies 1 and 3 (continuous dependent variables) the best results were
obtained after a logarithmic transformation was applied to the dependent, although a

number of other transformations were also evaluated.

Careful selection of interaction terms were considered and this process was greatly
aided by the results from CART. Tree-based structures graphically illustrate the
variables that cause the tree to split and branch, with nested variables (parent and
resulting child branches further down the tree) providing a good initial indication of
potential interaction terms to include in the regression model. Further detail of the
usefulness of CART in the appreciation of possible interaction terms may be found in
Appendix D. Once the desired model had been chosen, the actual run-time was the
quickest of all of the techniques. Even with 17,974 records (study 3) it only took 5

seconds to run.
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Logistic regression performs particularly poorly compared to CART and Neural
Networks when there are a high number of categorical independent variables (study 3).
This is consistent with what is known about the properties of the discriminant and
logistic regression algorithms; the properties of high skew (>1) and kurtosis (>7) along
with the presence of binary/categorical variables disrupts the performance of these
algorithms (King et al., 1995). Such conditions are well suited to symbolic learning

algorithms, as observed by the performances of CART and Neural Networks (study 3).

When considering ease-of-use and interpretability, regression models are fairly
straightforward to interpret and understand although there is a large set-up time and a
need to run a number of different models accounting for interaction terms and

transformations to the dependent variable as necessary.

CART

The performance of CART was consistently as good as, or better than, Regression and
Neural Networks models and always more accurate than Discriminant Analysis. It
appeared to perform well over all datasets, indicating that the number of records or
number of variables does not affect its relative accuracy compared to the other
techniques. It performed particularly well on datasets with high skew and kurtosis,
indicating that they are furthest from the (multivariate) normal. Symbolic learning
tools, like CART, are generally non-parametric. That is, they do not make any
assumptions about the underlying distributions. This is why we observe a consistently
good performance relative to the other approaches. Although run time is a potential
concern for tree-based methods, the observed times were low even for larger datasets

and those with a high proportion of categorical explanatory variables.

The CART output is simple and straightforward to interpret. Surveyed healthcare
professionals particularly favoured the clear pictorial way in which the tree was
constructed and captured on screen. It was found that this technique was the easiest to
clinically interpret, allowing the user to discover which variables were of importance
and furthermore their relative importance and quantifying the point at which to split on
each variable. Such a method can challenge perceived beliefs or reinforce existing

clinical judgements. A great practical advantage of this tool is the ability to combine
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expert clinical/managerial knowledge with the power of statistical analysis. From any
node in the tree, it is possible for the user to split the node on a user-selected
explanatory variable. The CART algorithm may then be continued from the created
child nodes. The combination of CART and local expert clinical knowledge proved to

be a powerful tool during discussions with, and use of the tool by, the surveyed

medical staff.

Neural Networks

The performance of the Neural Net varied throughout the study depending on the
features of the dataset, although overall it performed well. A large amount of initial
effort was required to train and validate the models. Run time was by far the slowest of
the studied classification tools, because of the large number of parameters, with the
neural net taking over 10 minutes to train the largest dataset (study 3). Improvement in

the speed of neural networks is a large research area (for example see Fahlman, 1999).

A major drawback of neural networks is that they are difficult to set up to produce
good results. For example, to run backpropogation properly, a number of parameters
needed to be adjusted. For example, an important decision concerns the number of
layers and the initial step-size and momentum rates of the backpropogation network.
Any small changes in these parameters can decrease the performance substantially.
After running a number of networks and gaining an appreciation of the tool, an insight
was made on choosing suitable starting conditions. These appeared to indicate an
initial step-size of 0.7, a momentum rate of 0.5 and a network with two-hidden layers
although there is no guarantee that the results are the best that could be achieved. An
automatic method of parameter selection for backpropogation is another important

current research topic.

Accuracy was restricted (especially when comparing the results with those obtained
from CART and Regression models) when the network was handling datasets with
high variance or deviance (studies 3 and 5). The tool was equally or more accurate

than all of the other tools in studies 1 and 2 with the smallest dataset (582 records).
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As with Regression and DA, Neural Networks are not always easier to interpret.
Coupled with the large set-up time, long run-times and multitude of possible network
configurations, this tool is perhaps best suited to an experienced user. Extreme care
should be exercised if intending to give the tool to a healthcare professional with

limited statistical and Neural Network knowledge.

5.8.3 General conclusions

In order to capture the uncertainty and variability amongst the patient population, a
number of classification techniques have been considered and evaluated for their
relative performances and practical usefulness in predicting various healthcare
indicators using a number of real-life datasets. This research has indicated that in
practice there is no single best classification tool but instead the best technique will
depend on the features of the dataset to be analysed and any preferences of end-users.
The research has made a start in investigating what these features are with particular

emphasis on healthcare data. A summary of the main findings are as follows:

e Overall the results were very promising with each tool making a statistically
significant contribution in each study (values of » and the percentage correctly

classified were all significant at the 99% level).

e Regression models consistently had the fastest run-times, although the difference in
times compared to CART and DA is likely to be insignificant in practice. Neural

Networks require significantly more time to train and validate models.

e In general CART, Regression and Neural Network classification approaches gave
similar accuracies, although CART was the only tool to give consistently good

results. DA performed poorly throughout the study.

e CART was well suited to datasets with large skew (>1) and kurtosis (>7) and where
there were a large proportion of categorical independent variables. CART makes
no assumption about the underlying distribution, hence why CART performed

consistently well. In contrast, these conditions limit the performance of
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discriminant and regression models, where the data is furthest from the

(multivariate) normal.

e Neural Networks produced the best accuracy when dealing with smaller datasets
but performed slightly disappointingly when handling dependent variables with

high levels of variability or deviance.

e Ifease of use and human understanding are high priority, symbolic algorithms such

as CART should be chosen.

¢ A number of healthcare professionals were surveyed for ease of use and
interpretability of the four techniques. The main concern focussed on the form of
the DA discriminant function and the associated coefficients and weights of the
Regression and Neural Network models respectively. Typically these were of seen

to be difficult to interpret and often shed little light on the structure of the data.

A survey of hospital staff from the participating NHS Trusts has revealed that tree-
based tools, such as CART, do have a greater practical appeal than that of the other
tested techniques. This is a measure of the extent to which the CART algorithm
produces comprehensible results that are generally easier to interpret by medical staff
than the results of other algorithms, and on the time it took for hospital staff to
understand the technique, prepare the data and actually perform the analysis to produce

correct and meaningful results.

In practice clearly a balance must be made between the accuracy and interpretability of
a proposed technique. Accuracy is undoubtedly important, especially when
considering a number of healthcare variables such as predicting death or survival. We
might however wish to avoid a situation in which we are obtaining accurate predictions
but where the form of the classifier is complex and little confidence and knowledge is
gained on the data structure. Such a black box approach is limited in producing
interpretable classification rules both for understanding the prognostic structure and for

the planning and management of healthcare in general.
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The evolved generic framework incorporates the need for a patient classification
technique to be adopted. Derived patient groupings may then be fed into developed
simulation models and individual patients from each group passed through the
particular healthcare system of concern. In order to capture the uncertainty and
variability amongst the patient population, it was decided that a tree-based
classification tool be utilised. CART performed well in the research and was
particularly well received by the participating NHS Trusts. A statistical package

incorporating a CART tree-based algorithm has been developed for use within the

modelling process.

Integration of the mathematical modelling work and statistical analysis is demonstrated
with the hospital resources and critical care modelling work (Chapters 6, 7 and 8). The
successful integration has been enabled by the software development constructed in

object-orientated code within the Windows environment. The developed classification

package, Apollo, is presented in the next section of this chapter.
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5.9 The Apollo Statistical Package

A statistical package, Apollo, has been developed as part of the evolved generic
framework for modelling healthcare resources. Apollo incorporates a tree-based
algorithm, similar to CART, that assists in the production of clinically and statistically
meaningful healthcare groupings. For example, these could be patient groupings
based on LoS, operation times or survival rates. Derived groupings may be
automatically saved and fed in to developed simulation models within the genetic

framework.

Apollo has been designed to enable healthcare personnel to create appropriate
groupings of patients and carry out the necessary statistical analysis. At the highest

level of functionality, Apollo may be used as a:

e Data exploratory tool, allowing the user to explore and understand in greater detail
their data. For example, Apollo permits manual splitting of the data into desired
groupings and the rapid extraction of a number of key statistics, time-dependent

profiles and continuous distribution fitting.

e Tree-based algorithm tool for classification and prediction, allowing the user to
derive statistically meaningful, easy to interpret homogeneous groupings. This
aids understanding of the structure of the data, enabling the user to define

interpretable classification rules as necessary.

In the context of the planning and management of hospital resources, likely patient
groups would be based on LoS as the dependent variable. Independent variables could
include any routinely collected, or other, data such as patient age, sex, status, specialty
and clinical diagnosis (HRG). Apollo has been specifically designed to enable users to
create groups of patients, capture the necessary statistical information for each group,
namely demand profiles and LoS fitted distributions, and then automatically fed these
into a hospital capacity simulation model. Apollo has been designed for ease of use

with screens designed in a Windows environment using Delphi software, and the
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ability to save patient groupings for loading into a developed simulation model

(Chapter 6).

A high-level appreciation of the functionality of Apollo is given in Figure 5.5.

File Analyse »| Results Comparison |
Open Select Dept. Var. Summary Open File E
View Data Analysis View Results Summary
Clear Nodes View Nodes View Results
Save Results View Nodes
- Calculate Statistics
Manually Spht Data Arrival Profiles
Remove Split _ Discrete Analysis
Perform CART Analysis Record Groupings +—
Continuous Analysis —
¢ Quick Summary & Save -
—

[~

Figure 5.5: High-level Apollo functionality diagram

The subsequent sections of this chapter illustrate different aspects of this functionality

through various screen-shots and discussions.
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5.9.1 Loading, viewing and constructing a tree

Data files may be loaded in to Apollo from a current choice of .dbf or Excel formats.
Figure 5.6 shows the main screen which forms the central control of the program.
Through this menu the user can load and save data, view the data table and resulting

tree and perform the necessary splits to construct a tree.

1] APOLLO - C:\Oncology.dbf - [Node Tree - Dependent Variable: LOS ]
B File Analyse Results Comparison Window Help =18 x|

Q] rlrlr\lrrlcl iLJ

(D)
2 @
View results
o V\ Tree

View nodes

View data

Split data
Figure 5.6: Apollo main screen

Having chosen the dependent variable from those available in the data table, the user
can commence the splitting of the data (binary splits) adopting either a manual or
CART approach, or a combination of both from the list of independent variables
(Figure 5.7). For example, splitting the whole dataset (node 1) into two subgroups

(nodes 2 and 3) representing those less than 50 years of age and those aged 50 or over.

Analysis - Dependent Variable: LOSCE [ %]

Groups Categ | N ical Variables

METHADM
SEX
PRIMARYDIA

CESPECIALT

HRG i
Mapual TaTlS Llst of
split CATEGORY independent
SPECIALTY .
variables

+ } Manually Add Split - § Remove Split I & Classmcaﬁon{—l——\
; X Ext |
CART

Figure 5.7: Splitting the data to construct a tree
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5.9.2 CART analysis

If the tree-based algorithm is selected, the user will need to provide the necessary
information in order to construct a tree. The dependent variable has already been
selected. Independent variables to use in the classification algorithm must be chosen
from the list of those available (e.g. sex, age, specialty). These may be nominal
(categorical) or scale (continuous) variables. Additional information required includes
the desired number of final groups and the minimum number of patients in each group.

Available independent variables Selected variables to be used in
the CART algorithm

CART Analysis - Dependent Yariable: LOSCE

List of available vdriables Choosen variables Parameters

CATEGORY Nominal AGE Scale

CESPECIALT ¢ Scale HRG ¢ Nominal pUrReroninalorouRs
COUNTER Scale SEX Nominal I1 0

INTMAN Scale SPECIALTY Nominal

STATUS Nominal Max number of groups
PRIMARYDIA Nominal 1000
TIMEIN Scale
; <
Minimum group size

i

Significance Level (%)

— |

¥ Select Kl A <€De-select l R start I X Exit l ‘
N/
I Additional
Select and de-select variables Start CART Parameters

Figure 5.8: CART parameters

5.9.3 Viewing the results

A number of statistical indicators are available for each node within the tree. These
include group mean, variance and inter-quartile range (for a continuous dependent
variable) or percentage split and deviance (for a categorical dependent variable),
together with rapid access to arrival profiles (for month, day and hour) and distribution
fitting of continuous variables. A summary of nodes form provides easy access to node

results (Figure 5.9).
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Key statistics and information

List of Nodes -

Dependent Variable: LOSCE

List of nodes Details Records 8 Variance
1 Field: STATUS 2] [1e258 d 51.52
2 Enumerate lit
E
4 mergeney Summary Information
5 Records: 16258 =]
Mean: 4.94
Variance: 51.52
Minimum: 0.50
Maximum: 225.00
Distribution
fitting
¥ Showall Groups [~ Show Path
Continuous Analysis @ Arrival Profile I 15l Discrete Analysis I
\ Record Groupings | B calculate Statistics | + Close Screen |

Save patient group for use in PROMPT model

/6} CHEEMATE AT l (arrival profiles and fitted distributions)

Quick summary and save Monthly, daily and hourly profiles

Figure 5.9: Summary of nodes form

The quick summary and save button allows the user to rapidly view and save the key
results for use within the developed hospital capacity model (Chapter 6). For the
planning and management of hospital beds, LoS distributions and patient arrival

profiles are of particular help (Figure 5.10).

Amival Profile: Node 4
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|
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| [x]
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i | 27726 & ]
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'::’:";""'R““m‘ e e Distribution Properties—————
" e 136.0000

Lognormal  v| |

it Tie UG g Sssey = e Lognormal Fi |
t o B M ek Mean [ooosso0
8120 } 100 ' 606 ® e 0005500 l
900 | St Dev 1422823 |
600 | Py > |
30 i ¥ Calculated Mean [27669 {
000 ! E 3 |
S on Wed Tha g

5% Value 05000 |
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050 2083 4115 6147 8180 10213 12245 (QIUSS ! |
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Figure 5.10: Patient group arrival profile and fitted LoS distribution
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5.10 Chapter Summary

The research has explored the use of classification techniques for the creation of patient
groupings. Necessary patient groupings may then be fed into developed simulation
models and individual patients from each group passed through the particular
healthcare system of concern. In order to capture the uncertainty and variability
amongst the patient population, a number of classification techniques have been
considered and evaluated for their relative performances and practical usefulness.
Research has shown that there is not necessarily a single best classification tool but
instead the best technique will depend on the features of the dataset to be analysed.

The research has made a start in investigating what these features are with particular

emphasis on healthcare data.

A survey of healthcare staff has however revealed that symbolic, tree-based tools, such
as CART, do have greater practical appeal than that of the other tested techniques.
This is a measure of the extent to which the CART algorithm produces comprehensible
results that are generally easier to interpret by medical staff than the results of other
algorithms and on the time it took for hospital staff to understand the technique,

prepare the data and actually perform the analysis to produce correct and meaningful

results.

A statistical package, Apollo, has been developed as part of the evolved generic
framework for modelling healthcare resources. Apollo incorporates the CART tree-
based algorithm that assists in the production of clinically and statistically meaningful
healthcare groupings. For example, these could be patient groupings based on LoS,
operation times or survival rates. Derived groupings may be automatically saved and

fed in to developed simulation models within the framework.
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Chapter 6 — A Simulation Model for Hospital
Resources

6.1 Chapter Introduction

This chapter outlines the development, structure and validation of a simulation model
for hospital resources, PROMPT, that has been developed in conjunction with the
Royal Berkshire and Battle Hospitals NHS Trust. The model has been designed within

the evolved generic framework for modelling of healthcare resources (Chapter 4).

P
6.2 PROMPT lzl

6.2.1 Developing PROMPT

During the initial phase of work with the Royal Berkshire and Battle Hospitals NHS
Trust, it was decided that a working title of the model would be desirable. For this
purpose the acronym PROMPT — Patient and Resource Operational Management
Planning Tool was chosen. This helped give the work an identity and facilitated easy
reference to the model. The operational modelling approach captured in PROMPT can
help to evaluate the implications of various options for patient care. In particular, the

model allows what if..? scenarios to be examined for:

e Hospital beds (Core model)
e Operating theatres (Add-on module)
e Use of human resources, such as nurses, doctors and anaesthetists (Add-on

Module)
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PROMPT was developed within the evolved generic framework as detailed in section

4.4. A high-level summary on constructing a PROMPT model is shown in Figure 6.1.

Hospital Data Extraction Modelling
Database | (Apollo) (PROMPT)
S :
Beds

T~

Theatres [€ T ®] Workforce

V

Demand Profiles by Patient Group y

Example Model Outputs

Bed
Needs
Over
Time

AMUJJASONDUJF

Sunday

Monday

Statistical Distributions by
Patient Group

Probability over time
V‘/\

LoS (days), Operation time (mins)

Occupancy
Esas

Number of Beds

Figure 6.1: Constructing a PROMPT model

The statistical module, Apollo, links directly to the hospital database. The necessary
statistical analysis is conducted within Apollo, including the creation of patient groups
with demand profiles and distributions derived for each group. These groups are then
directly fed into the PROMPT simulation model, and individual patients pass through
the hospital system through time. Patient demand and LoS/operation time distributions
are sampled from the appropriate patient group statistics. Bed needs together with
optional workforce and theatre needs are assessed during each run of the simulation.
Example outputs include daily numbers of beds in use, number of refusals over time,

workforce rosters and theatre session utilisation.
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6.2.2 PROMPT functionality

Over-time, and with an increasing knowledge of the hospital processes and perceived
model utilisation, a schematic diagram of patient-flows though a hospital system was
developed. This is suitably generic, allowing for the model to be readily used by other
hospitals. Figure 6.2 identifies the structure of the developed simulation model. This
diagram was evolved together with hospital staff, and so reflects their requirements and
re-enforces their knowledge of the model structure. It draws together the various

elements of the PROMPT model.

. Set the overall maximum
! capacity possible for beds |
' and theatre time (even if

Set overall
capacity <
constraints

y

. Forecast operating plan is based on tﬁe Forecast operating Forecast customer
. hospital experience over recent years. plan P N demand and
' Forecast customer requirements take | by activity, X g casemix
. into account additional external factors’ by specialty requirements

e e e e . 4 4
/ Caleulates the number of beds * Theatre
+ within the relevant bed pools and Bed requirements .
. . - . : < » requirements by
., theatre time required for that by specialty .

. . ' specialty

' particular casemix

<The relevant dependencies

. are calculated outside of | Dependencies by N >
' the model and input as casemix "
parameters
e e e e e e 2 = 4 A
: Staffing requirements : High level staffing High [evel staffing
, calculated here do not take, R requirements by
. requirements by p
‘ into account staff ' h theatre session
! o : ward and by shift
availability ,
AAAAAAAAAAAAAAA h 4
." An assessment is made
. against staff availability | Assess against
' and the ability to obtain staffing constraints
. additional staff, if required,

Negotiate a change
in requirements
and test through

the model

Agree service with
customers

the right
staff?

.’ Discuss options for changes in the services with customers and keep passiﬁg
* through the model until an agreement can be reached. This has to take into,
account operational viability of the options, i.e. it would have be a sensible
‘chunk’, so we can actually run that service. ,

Figure 6.2: Schematic workings of the capacity model
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PROMPT was developed in a Delphi environment using a three-phase simulation shell
TOCHSIM (Hawkins et al., 1992), developed at the University of Southampton
(Appendix G). The use of Delphi enables the model to be easily tailor-made for the
hospital, whilst the resulting familiarity of a Windows environment aids ease of use.
The TOCHSIM simulation shell can reflect the experiences of the hospital very
rapidly. For example, one year of hospital time corresponds to a few seconds of

TOCHSIM time.

The model simulates the flow of patients through user-defined care-units, which may
represent a ward, a specialty bed-pool or the hospital as a whole. Bed numbers for
each care-unit are entered into the model. The bed numbers can be changed monthly
and daily to represent the step-up and step-down of seasonal bed requirements and
those wards which have some beds in use on a part-time basis. User-defined patient
groups capture the hourly, daily and monthly arrival rates and reflect the observed (or
other) demand patterns. For each hospital specialty, patient categorisation techniques
were employed to capture the necessary variability in LoS and estimate the appropriate
statistical distributions. A particularly useful classification method is the Classification
and Regression Tree analysis (CART — see Chapter 5). Each specialty manager
supplied the necessary information on admission rules and deferral times, whilst the

bed-managers constructed patient priority listings (Appendix E).

The developed model takes individual patients through time as they arrive and pass
through the hospital. For an arrival at the hospital, the model will attempt to acquire a
suitable bed. Each patient has a defined priority list of suitable hospital bed-pools that
they may stay in. Acquiring a bed is achieved by assessing the current bed situation for
each of the defined care-units in turn on the priority-list and admitting, if possible, the
patient into an free bed. Patients are classified as outliers if they stay in beds from a
care-unit other than the first appropriate choice (for example, a general medicine
patient stays in a general surgical bed). If no bed can be found, then a patient is
allowed to wait for a user-defined time for a bed to become available. After this time,
if still unsuccessful, an emergency patient will be transferred (out of the hospital)
whilst an elective patient will be deferred and told to come back after a user-defined
number of days {or a random time up to a maximum time limit). The user may also

specify that a given number of beds be only accessible to emergency patients.
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Throughout the admission process, emergency patients are always given priority over

elective patients.

Once a patient has acquired a bed, the LoS is sampled from an appropriate statistical
distribution (current choice is from a Weibull, lognormal, normal, gamma or negative-
exponential). The patient will be discharged on completion of their LoS and the bed

will become available.

6.2.3 Evaluating bed capacity options

Hospital managers requested a number of key statistical indicators, tables and graphs.
The results collected are broadly at two levels; those at the care-unit level, such beds in

use over time, transfers and deferrals, and those at the patient level, such as LoS and

patient waiting times.

Bed utilisation is one of the most important measures of each specialty's workload.

Bed occupancy, which is used in the model, calculates the proportion of time that a bed

is occupied.

number of bed days used *100%
0

Bed Occupancy = -
number of bed days available

An important concept about bed utilisation that is often sadly forgotten or
misunderstood is that of its relationship with the refusal rate. A refused admission

occurs when no bed is available for an arriving patient.

Refusal Rate = number of refused adrr;iséons £100%
total number of referrals (or admissions + refusals)

As patient demand increases, both bed occupancy and refused admissions increase. It
is important to understand how bed allocation and bed capacity planning effect both

bed occupancy and refusals. Refused emergency admissions will typically be found a
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bed in another hospital specialty and will become an outlier. Outliers put stress on
other specialties, as they are in effect an unexpected emergency demand. Refused
elective admissions result in patient deferrals and distress to the patient as well as
having a consequence on elective waiting lists. Case studies later in this chapter will
demonstrate the complex relationship between occupancy and refusals, and the

implications on hospital resources.

6.2.4 Operating theatre module

Building on the foundation of the bed capacity model, as described above, an add-on
operating theatre module was developed. This module helps the user to evaluate
operating theatre capacities. It is necessary to refer back to the provision of beds when
considering the planning and management of theatres, since without a bed in the first
place, an in-patient cannot be sent to theatre. Two classes of patients now exist:
procedure patients (who require an operation) and non-procedure patients (who do not
require an operation). Non-procedure patients stay in the bed and are discharged on
completion of their LoS. The flow of procedure patients is now considered in more
detail: patients acquire a bed, queue for theatre, have an operation, return to the
hospital bed and stay for a LoS before discharge. As with LoS, the patient operation
time will vary between patients, and thus needs to be captured using a statistical
distribution rather than an average time in the PROMPT model. Various theatre

session and patient scheduling options may be examined.

Numbers and durations of theatre sessions are defined in the model. These are likely to
vary according to the day of the week. A number of theatre scheduling rules have been
incorporated to meet expressed user requirements. These are first come first served
(FCFS), longest operation times first (LTF), shortest operation times first (STF) and
longest time first followed by shortest first after a user-defined cut-off time (LTSC,
also known as top-down bottom-up scheduling). Furthermore, the user can examine
the effects of scheduling day-case patients first in any session before elective in-patient
operations. Each speciality manager supplied the necessary information on numbers

and duration of theatre sessions together with current scheduling rules (Appendix E).
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6.2.5 Evaluating theatre capacity options

Hospital managers requested a number of key statistical indicators, tables and graphs
from the theatre module. Examples include graphs of number of patients in theatre,

operation time distributions and patient waiting times for theatre.

Session utilisation is a key measure of the theatre's workload. Session utilisation,

which is used in the model, calculates the proportion of time that the theatre is busy.

. e total time theatre in use during session
Session Utilisation = - - ‘g —*100%
total time theatre available during session

Other key statistical indicators include the under and over-run time distributions. An
over-run occurs when a patient’s operation is not completed until after the official
theatre session closing time. This will depend on theatre admission rules governing the
latest time an operation may commence in light of the expected operation time and
session end time. The model reflects these rules by incorporating a user-defined
maximum over-run time permitted (as a percentage of the total session time) and by
considering the patient’s expected operation time as sampled from the appropriate
statistical distribution. Under-runs (when a theatre closes early) can be avoided by
careful scheduling of operations. Various theatre session and patient scheduling
options may be considered and their impact on theatre utilisation, under-run and over-

run times examined.

6.2.6 Workforce planning module

Quantifying hospital workforce needs over time, such as the required number of nurses
by grade, is a non-trivial exercise. Workforce needs are influenced by many different
factors, such as patient case-mix and patient demand. Using the bed model as a basis
for simulating patients passing through the hospital (arrival, LoS, discharge), an add-on
workforce module for PROMPT enables the user to further evaluate workforce needs
over time (down to monthly, daily and shift needs). During their LoS, patients might

pass through different stages of care-needs. Initially, for example, a patient may be
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classed "high dependency" and remain in this state for a day. Then they might move
into an "Intermediate dependency" stage for the next 48 hours, before moving onto
"low dependency" for the remainder of their stay. Care-needs will obviously differ
between each dependency stage, as one would expect intense care for high dependency

patients, with the level of care gradually becoming less intense during their stay (Figure

6.3).

24 hrs 48 hrs Remainder of LoS LoS
| |
R e
Y Y
High Intermediate Low

Figure 6.3: Illustrative patient nursing dependency states

Workforce requirements will depend on the following variables:

o Number of dependency states a patient experiences.
e How long a patient stays within each of these states.

e Patient-to-Resource dependencies (or ratios) for each state (see below).

The model allows any workforce resources to be defined (for example, Grade A nurse,
Grade B nurse, Skilled Nurse, Untrained Nurse, Porter etc.). For each patient group in
the model, necessary workforce needs are structured for the patient during their stay in
hospital. The participating Trusts agreed that these needs should be provided in the
form of patient-to-resource dependencies (or ratios). For example, a ratio of 2 for a
grade A nurse indicates that a grade A nurse can care for 2 patients from this group
who stay in hospital - or equivalently, one patient requires 0.5 grade A nurses. These

dependencies are provided for each workforce resource.

The user may create as many dependency states as necessary, together with the
expected percentage of time that the patient will stay in that state (as a percentage of
their expected total LoS). For each state, dependency ratios may then be entered
against each resource. Furthermore, the ratios should be defined for each hospital shift

- early, late and night. This reflects the varying care-needs across the day. During the
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night, for example, whilst a patient sleeps, the necessary level of care may be less than

when the patient is awake during the daytime.

The workforce module calculates likely workforce needs (rosters) over time for each
specialty bed-pool or hospital ward. The resulting needs are displayed by resource and
further broken down by month, day of week and shift each day. Because the module is
linked to the bed capacity model, and operating theatre module if so desired, the
consequences of changes to other hospital capacities, such as the number of beds and
duration of theatre sessions, will be reflected in the workforce rosters. This integrated
and granular approach is essential to reflect real-life complex patient flows through a
hospital and avoids many of the failings of existing approaches as discussed in the
literature review (section 3.4) and furthermore meets the expressed needs of a

sufficiently detailed and flexible hospital capacity model (section 4.3.1).

6.2.7 Data requirements

Access was given to the hospital's patient management system. This large database
contained information on individual patients, including episode admission date,
episode discharge date, LoS, operation time, specialty, admission method (emergency
or elective) and management intent (day-case or inpatient). Apollo is used to create
statistically and clinically meaningful patient groups and to obtain information about
particular flows over time. Apollo can link with most databases that are used in

hospitals and extract the necessary data for the statistical analysis.

6.2.8 Novel features

The PROMPT model has been designed with the needs of the hospital and review of
existing literature in mind. The review (Chapter 3) highlighted the need for a
sophisticated dynamic hospital resource model and PROMPT has been evolved to
avoid a number of issues that have made previous models essentially redundant in a
real-life setting. Some of the novel features of this work, which help provide its place

in literature include:
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e The stochastic nature recognises and incorporates the complexity of hospital
dynamics. The model uses statistical distributions to help capture the large amount
of variability, for example in length of stays and operation times. Arrival profiles

help to mimic complex monthly, daily and hourly arrival patterns.

o The flexible structure permits the model to be fine tuned to reflect local conditions,
which can be used by a variety of hospitals. This avoids the development of
hospital or ward specific models. For example, the concept of a Care Unit was
derived alongside hospital managers to represent any configuration of hospital care,
such as a specialty bed-pool, day-case unit or ward. Many different patient groups
may be defined, enabling a variety of different hospital case-mixes to be captured.
Virtually all hospital parameters may be changed to reflect current conditions and

for ease of use in scenario modelling by healthcare managers.

» An integrated approach helps to capture the wider, more global picture of
healthcare provision. For example, PROMPT models the use of beds, theatres and
human resources and is unique in examining all three major hospital resource
components in a single simulation tool. Many other models suffer from an isolated
approach in that they ignore the complex integrated system and instead draw
conclusions at a localised level. Clearly this has the potential to provide misleading

and unrealistic conclusions.

o PROMPT has been designed for ease of use in mind. Practical models should be
sufficiently accessible for end-users who are not experts in simulation, such as
healthcare managers and clinicians. Ease of use has been achieved through
development in a Windows environment (Delphi) and through the evolutionary
development methodology (section 4.2), which created prototype models alongside

end-users.

o The use of Apollo for creating patient groups and automatically feeding them into
the simulation model is novel. This aims to provide the user with an easy to use
interface and to help in the creation of statistically and clinically meaningful

groups.
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e Detailed hospital resource models should aid managers with both planning and
management issues. PROMPT has been developed with these needs in mind. For
example, it may be used to examine the consequences of different daily theatre
schedules (management decision) or the total bed needs for the forthcoming

financial year (planning issue).

Together, the above features help to demonstrate that Apollo and PROMPT have a

unique place in healthcare modelling.

6.3 Simulation Structure

A patient-flow through the hospital is assumed to consist of a finite number of states.
For example, the LoS in the hospital bed or the operation time in the theatre. Patients
have to queue before making the transition between states. For example, queueing for
a bed to become free or queueing for a theatre session. The simulation model follows
individuals as they progress through the hospital system, from the first time they arrive

in an attempt to obtain a bed until they leave the hospital having completed their stay.

In order to simulate the passage through the hospital, information on dwelling times in
the various states and transition probabilities are required. In other words a semi-
Markov structure has been chosen to model patient-flows (Appendix B). A number of
distribution functions are available for use in the program to sample transition times:
Lognormal, Weibull, Normal, Exponential and Gamma. The Weibull distribution is

frequently used when data availability is limited (see section 6.4).

PROMPT was developed in a Delphi environment using a three-phase simulation shell
TOCHSIM (Appendix G). The three-phase approach consists of two different events:
Bound (B) events and Conditional (C) events. The necessary events for the PROMPT

structure are:
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® Bound events

> Generate initial arrival times and cause next arrivals within each patient group.

» Check, and if necessary adjust, bed numbers to reflect step-up and step-down of
beds over time (daily and monthly event).

> Open theatre sessions as necessary (daily event).

> Cause post-operation LoS to commence when patient arrives back from theatre
to ward.

> Cause patient to leave hospital on completion of their LoS or cause re-admission

arrival time for deferred elective patients.

e Conditional events
> Start patient stay (having already found an available and suitable hospital bed).
> Start operation in theatre (having queued and been admitted in to a suitably

available and open theatre session).

Appendix G provides further information on the TOCHSIM shell with pseudo-code for
the PROMPT model. '

An object-orientated programming (OOP) approach was adopted within the three-
phase structure. OOP is a natural evolution from earlier innovations to programming
language design (for example see Hirata and Paul, 1996). It is more structured and

more modular than previous approaches. Three main properties characterise an OOP

language:

e FEncapsulation — combining a record with the procedures and functions that

manipulate it to form a new data type, called an object.

o [nheritance — defining an object and then using it to build a hierarchy of descendant

objects, with each descendant inheriting access to all its ancestors’ code and data.

s Polymorphism — giving an action one name that is shared up and down an object
hierarchy, with each object in the hierarchy implementing the action in a way

appropriate to itself.
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TOCHSIM with Objects has benefited from the language extensions to give the full
power of OOP: more structure and modularity, more abstraction and reusability built

into the simulation shell.

An object type is a structure consisting of a fixed number of components. Each
component is either a field, which contains data or a particular type, or a method, which
performs an operation on the object. Similar to a variable declaration, the declaration
of a field specifies the field’s data type and an identifier that names the field. Similar
to a procedure or function declaration, the declaration of a method specifies a

procedure, function, constructor, or destructor heading.

An object type can inherit components from another object type. If T2 inherits from

T1, then T2 is a descendant of T1, and T1 is an ancestor of T2.

Inheritance is transitive in nature. If T3 inherits from T2, and T2 inherits from T1, then
T3 also inherits from T1. The domain of an object type consists of itself and all its

descendants.

The inherited object is the generic simulation object used by the following objects in
TOCHSIM: queues, resources, all statistic objects, the simulation timer, and the

simulation model.

6.4 Probability Distributions for LoS and Operating Times

The necessary distributions for use within PROMPT, namely LoS and operation times,
can be represented by a number of statistical distributions. Within the Apollo statistical
add-on package, distributions can be fitted and parameters passed across for use in the
simulation. Individual patient LoS and operation times may then be sampled from the
appropriate distributions within the model. This automated process is particularly
useful for end-users. An illustrative Apollo patient group fitted LoS distribution is

shown in Figure 6.4,
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Figure 6.4: Illustrative fitted LoS distribution (Apollo screen-shot)

Complex hospital models must deal with circumstances when LoS and/or theatre data
is absent or limited. When detailed data is not available, information through
aggregated data or through expert opinion, such as a likely mean value and/or
percentage points, may be the only source of input for the model. Rapid choice of
distributions and the use of different distributions in a sensitivity analysis are needed in

practical simulation modelling work.

Typically a choice is made from a number of standard statistical deviates, such as

Normal, Exponential, Weibull, Gamma or Lognormal. In the absence of data, Weibull

variates are particularly useful.

We discuss a method for estimating the parameters from the Weibull distribution
function. This method has been used within PROMPT and allows the user to rapidly
fit LoS and operation time distributions. Currently Normal, Lognormal, Weibull,
Negative Exponential and Gamma have been implemented (Appendix F), although

other variates, including discrete distribution, can be easily included if necessary.
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6.4.1 Point estimation for the Weibull distribution

Several methods of point estimation for Weibull parameters are given by Orman

(1995). For a density f{x) the maximum likelihood function of a sample n (x, ...,x,) is

given by:
L(xy,nx,) = [ [ f(x)
i=1

The maximum likelihood estimates of the parameters o, § can be obtained by solving:

L 1 n -
@’ ==>"x/
n o
and

" -
foﬁlnx
] 1 1 n

—_d=r Inx

1
D n - m<
Y 3 i/ i

i=1
The Newton-Raphson method can be used to estimate the parameters. The maximum
likelihood method is the preferred approach when data is available. In the absence of
data, Weibull variates are particularly useful and point estimation is possible with a

mean value and/or percentile points as described below.

6.4.2 Point estimation for the Weibull distribution given mean and one
percentage point

With ease of use in mind, Orman (1995) gives an algorithm that calculates an estimate
of the parameters of the Weibull distribution from a defined mean value and one

percentage point.

The user defines a mean value m and a percentage value for which F(x) = p. The user

provides the value of p.
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With g = 1 — p, the starting values of the two parameters are

ay, =m and ﬂ() = ll}(_—_liq_)
In(x/a,)
At the next iteration,
o, = _.___ﬁ_____ nd /51 — ln(_ In Q)
r(1+1/4,) In(x/a,)
The ith iteration, i >0, gives
a’i puwed .—Z.n.——. and i = M
rd+1/4._) In(x/ea,,)

Care must be exercised for percentiles in the neighbourhood of 63% where the
algorithm does not always converge. This feature is the result of the mathematical
nature of the probability density function of the Weibull variate (Shahani ez al., 1994)

since p = 0.63 = 1 — 1/e and leads to the condition:

mn[-’-) )
24

which shows that oo = #, V B. Thus this value of p will not discriminate between
different values of § and so the range around this value should be avoided when trying

to solve for B.

6.4.3 Point estimation for the Weibull distribution given two percentage points

Dubey (1967) describes a method for estimating the parameters o and B of the Weibull
distribution using two percentages from a sample set of data points. The information

given corresponds to the equations:

Fx))=p;,  F(x2)=p;,
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The parameters can be obtained by solving these two equations to get:

bt = p)]- o[- 1n( - py)]
B In(x,) —In(x,)

and

a= eprW In(x,)+(1-W)In(x, )”

where

In(~In(1- p,)

vl In[-In(1 - p,)]- In[- In(1 - p,)]

6.4.4 Algorithm AS47

A simplex optimising algorithm (Nelder, 1965 and O’Neil, 1971) has been selected for
estimating the parameters of a chosen distribution. The parameters are estimated by
minimising a helpful second degree function, the Chi-square value. The simplex
optimising algorithm was chosen as it is computationally easy to implement and use of
the Chi-squared value is asymptotically equivalent to the maximum likelihood function

(Jones, 1997).

The user may define a mean and/or one or more percentile values for Weibull, Gamma,
Lognormal, Normal and Exponential. Other distributions may be added if necessary.
The AS47 algorithm for solving the two dimensional problem in which a function f{x)
is minimised with respect to two parameter values is described below. The simplex

routine minimises the Chi-square value and converges to provide a solution.

Algorithm AS47 is built into both the Apollo and PROMPT models to enable the user
to fit the necessary statistical distributions. This may be an automated process within

Apollo so that the chosen distribution and parameters are fed into PROMPT, or within
the PROMPT model itself to fit a distribution with a mean and/or percentile values

only. Either way, it permits the simulation model to reflect the inherent variability
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amongst the population of patients who stay at the hospital and thus avoids the dangers

of using deterministic average values only.

Algorithm AS47

STEP 1. Start with three initial points x,, x,, x; where x;= (P; (i), P2 (i)) and P;

represents the parameter .
STEP 2.  Calculate the function value at these points y;= f{(x;).

STEP 3. Find the reflection, xg, through the centroid x¢, of the point with the

maximum function value, say x;.

STEP 4. If the reflection value, yg, is minimum then expand to xgz. The minimum

of yr and y; determines which point replaces x,uqy.

STEP 5. If the reflection value, yg, is maximum then contract to x4 or x3,

depending on whether y, or y; is lower, and replace xz.

STEP 6.  The iteration, steps 3 to 5, continues with the simplex distorting in shape
according to the slope it encounters, until the variance of the values y; are

less than a determined level.

6.5 Capturing Patient Demand Profiles

Alongside the necessary statistical distributions, additional information is required to
allow PROMPT to reflect observed (or other) patient demand patterns. An automated
process within the Apollo statistical module captures the hourly, daily and monthly
arrival rates which are fed directly into the PROMPT simulation model. An

illustrative Apollo patient group monthly demand profile is captured in Figure 6.5.
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Figure 6.5: Illustrative monthly patient demand (Apollo screen-shot)

In the model observed (or other) arrival patterns are entered for each month, day and
four-hour time block within each day. This is necessary to reflect in detail fluctuating
demand over time. Expected annual total numbers of patients are provided for each
group. Individual patient group arrival profile numbers need not sum to the
corresponding annual total but instead represent a profile of relative demands. For
example, if the total number of annual patients was six hundred and every month had a
monthly profile value of one, then we would expect the same demand of fifty patients
per month across the year. If January had a value of two and every other month a value
of one, then we would now expect double the demand in January relative to the other
months (92 patients in January and 46 every other month). This methodology has been
adopted since it is likely that hospitals will use a number of previous years demand
profiles but wish to change the total number of predicted patients for scenario

modelling whilst preserving the observed demand structure.

In general let m; be the demand profile entered for month 7 (i = 1,...,12), d; for day j
(j = 1,..,7) and A for hour-block & (k = 1,..,6). Furthermore let n be the annual total

number of patients for a particular patient group.
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Inter-arrival times for arrivals from within each patient group are sampled from the
Negative Exponential distribution. The expected number of arrivals, A;;x for any given

month 7, day j and four hour-block £ is given by:

12
nmi/Zm,. 74 h
6
Yi Zdj ;hk

where y; indicates the number of days in month i (28, 29, 30 or 31).

The probability of » arrivals within a given four-hour block may be calculated by using

the Poisson distribution, such that:

r=0,1,2,...
7!

P(R=r)=

6.6 Model Validation and Verification

Throughout the research work constant validation and verification was conducted in
order to increase confidence in the model operations. Essentially verification ensures
that you are solving the problem correctly and validation ensures that you are solving
the correct problem. Validation was largely achieved through the use of the generic
framework and the adopted evolutionary model development. This ensured that end-
users contributed to the model development at all stages and ensured that the

simulation model reflected the original conceptual schema.

For model verification, a range of techniques was used including statistical
comparisons of simulated output against real data. The following summary lists the
validation and verification techniques that have been adopted. These techniques are

described in Sargent (1991).
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Animation: The model’s operational behaviour is displayed graphically as the model
moves through time. An optional run-time graphical display shows the current
simulation time, numbers of patients stayed, numbers of refusals and occupancy rate
for each care-unit within the hospital. This is particularly useful to verify that the
simulation behaviour (e.g. numbers of arrivals and beds in use each day) matches real-
life behaviour. Graphical displays, such as the one developed in PROMPT, are
becoming increasingly popular amongst simulation end-users. Graphics provide more
confidence as the user can see the processes on screen which prevents a “black-box”
approach. Graphics however can considerably slow down run-time and so the user
may turn off the graphical display at any time during the simulation run. Other
graphics available on completion of the run include plots of patient arrivals over time.
Such graphs also permit model verification. Figure 6.6 shows the graphical display

during a simulation run of the PROMPT model.

[ =] 3 ||
Simulation Model Running Care Unit Information
COLLECTING RESULTS Occupancies: Stayed: Refused:
Current Run:

Medicine 56
Total Runs:

Surgery 33
Day: 43
Current Month: May Orthop < 2
Current Day:  Monday
@ Turn off Graphics | [ X Abort Simulation ]

Figure 6.6: Animation within PROMPT

Comparison to other models: Various simulation results may be validated by
comparison to other models. As an example simpler cases of the simulation model
may be compared to known results of an analytical model. Validation of PROMPT has
included the comparison of the developed simulation model against some queueing

models. Further details may be found in section 6.7.

Degenerate tests: The degeneracy of the model’s behaviour is tested by an appropriate

selection of values for the input and internal parameters. For example, running the
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simulation with arrivals only on a Monday but an operating theatre session only on
Thursday. Suitable checks are made to ensure that all patients are waiting until

Thursday for their operation and then returning to ward for re-commencing their LoS.

Extreme-condition tests: The model structure should be plausible for any extreme and
unlikely combination of levels of factors in the system. As examples: providing no
beds in the hospitals for a 100% refusal rate; no theatre sessions so that operations are
not permitted and patients can wait all year in bed; no arrivals and so 0% care-unit

occupancy.

Historical data validation: In the presence of historical data, part of this is used to

build the model and the remaining data used to determine if the model behaves as the

system does.

Internal validity: Several replications of a stochastic model are made to determine the
amount of variability in the model. Inconsistency in the results should cause concern
over the model’s validity. Graphical plots are used in PROMPT to display standard
deviation from the multiple simulation runs that can be used to gauge the run-to-run

simulation variability.

Traces: The behaviour of different types of specific entities in the model are traced
through the model to determine if the model’s logic is correct. Examples include
tracing a patient through PROMPT to ensure that they follow the correct care-pathway

and receive the correct resources (theatre and nursing) as necessary.

Parameter variability — Sensitivity analysis: This validation technique consists of
changing the values of the input and internal parameters of a model to determine the
effect upon the model behaviour and output. For example: shortening LoS should
reduce occupancy and refusals; examining the relationship between numbers of beds,
occupancy and refusal rates; sensitivity of predicted demand on Trust’s performance.
Sensitivity analysis, and in particular the design of experiments, is a major topic of
research. Currently there is a great need for more research in this area (Cheng and

Holland, 1997, Cheng and Kleijnen, 1999 and Cheng and Lamb, 2000).

137



Chapter 6 A Simulation Model for Hospital Resources

6.7 Comparison of Queueing Models and Developed
Simulation

As a necessary part of the model validation process, the developed simulation has been
compared to analytical queueing models. As the complexity of the healthcare system
increases, correspondingly analytical models become harder to formulate and solve.
Thus only two queueing models have been built for illustrative validation purposes. A
simulation model enables the programmer to incorporate far more complexity,
variability and uncertainty within the stochastic framework. Analytical models fail to
capture many of the necessary processes, but nevertheless permit validation for a

number of simplistic scenarios, as detailed below.

6.7.1 Queueing models

A number of queueing models, adapted from work by Cohen (1956), Saaty (1961) and
Erlang (1917), were considered. A description of each model and the relevant steady-
state solutions are provided. The corresponding simulation runs are shown alongside
for validation. Example data values (numbers of patients and LoS) have been taken

from the Royal Berkshire and Battle NHS Trust’s database.

Key to queueing models

: Number of beds (fixed)

: Arrival rate of patient type i

: Service rate (1/LoS) of patient type i

: Traffic intensity (Mu)

: Average length of the i’th patient queue (number of patients)
: Average waiting time on the i’th patient queue (days)

: Average total time spent in hospital by i’th patient type (days)

b~ =
@ﬁég'@N,?“

: The steady-state, or equilibrium probability, of state j

138



Chapter 6 A Simulation Model for Hospital Resources

6.7.2 M/M/s/GD /= /> queueing model

Model description

e All patient admissions to a single care-unit taken from a single queue, Q,.

e All patients have a mean LoS of 6.2 days.

e DPatients are referred at a rate of 1,100 per year.

e LoS and inter-arrival times are assumed to have Negative-Exponential
distributions.

e There is an infinite population of patients.

o There is no limit on the length of the arrival queue.

e Arrivals are taken from the queue on a first come first served basis (FCFS).

Analytical solution

The model state transitions are shown in the transition diagram of Figure 6.7.

@ represents the state in which there are X patients in the system (care-unit)

Figure 6.7: Transition diagram for M /M /s / GD /o / o queueing model
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If j servers (beds) are occupied, service completions occur at a rate g7+ 2+ g/ +... = Jju
Thus: J

A, =41 (j =0,...,00)

M= Ju (j =0,..,5)

My =su (j=s+1,...,0)

Substituting these expressions into the following basic queueing theory formulae,

_ A A
T = 7C; where ¢, = ———/—
VY R
gives:
P = 4 «a 1
- 0= - i s
sp Sz‘(sp) LGP
i ! si(1-p)
GspYrz, . (spYm, ..
7y = (= hess), =Rt (= s+ ],0)
J! sls
P(X 2 S) = (S/O)sﬂ-o 5 = ma
sl(1- p) T 1-p
L P(X 2 >
WQ[I: Qa: (X S)’ m:WQH+i:M+i
A Sp—A Sp—A

M
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Hlustrative queueing model results

Table 6.1: Illustrative results froma M /M /s/ GD /o /o queueing model

s P P(X=s) LQO, WQ, W,
20 0.94 0.69 10.09 3.35 9.56
21 0.89 0.51 4.17 1.38 7.59
22 0.85 0.37 2.09 0.69 6.90
23 0.81 0.26 1.13 0.37 6.58
24 0.78 0.18 0.63 0.21 6.42
25 0.75 0.12 0.36 0.12 6.37

Figure 6.8 shows the complex relationship between beds and a number of hospital

system indicators.
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Figure 6.8: Relationship between number of beds, queue waiting time, queue length,

and time in hospital using M /M /s / GD / ® / o« model
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Simulation model

The developed simulation model was run under the same assumptions as for the

queueing model. Figure 6.9 shows the corresponding simulation activity flow diagram.

Patient
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world

Patient
arrives
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Figure 6.9: Activity flow diagram for M /M /s / GD /o /o simulation model

Model comparisons

The simulation was run for one-year with a five-year warm-up and for a total of fifty

runs.

Table 6.2: Comparison of models fora M /M /s/GD /o /o queue

Model s LO, WO, We
Queueing 25 0.35 0.12 6.37
Simulation 25 0.36 0.11 6.36

Although the assumptions are very limiting, this model permits a first approximation to
real-life and is useful for validating the simulation. It becomes possible, and with
increased confidence, to progress on to more complex and realistic queueing models

for validation purposes.
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6.7.3 M;/M/s/NPRP/~ /> queueing model

Model description

e All patient admissions to a single care-unit taken from two queues, Q, for
emergency patients and Q, for planned (elective) patients.

e All patients have a mean LoS of 6.2 days.

o Emergency patients are referred at a rate of 850 per year.

o Planned patients are referred at a rate of 250 per year.

e LoS and inter-arrival times are assumed to have Negative-Exponential
distributions.

e There is an infinite population of patients.

e There is no limit on the length of the arrival queue.

o Emergency patients always have priority over planned patients when both queues

are not empty; arrivals are then taken from the queue with priority on a FCFS basis.

Analytical solution

Let (x) be the state in which x beds (0 < x < s) are occupied, f(x) be the probability
of state (x) and / be the average LoS. Cohen (1956) can be adapted for this model to

produce the following helpful functions:

s=4,—4, (A, +4)
sore| i)
s=A, =4, + (4L +A)E(s,4,+4,) ) | XXN(s,4,+ 1))

where

a X b(l
N(a,b)= ) b'/i! and F(a,b)=———
(a,b) Z / (a,b) AV @D

sE(s, A, +4,)
s=A, A, +(4 +A,)E(s, 4, +4,)

P(X >25)=
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hP(X =2 s ShP(X = s
o, < X2 -y o AT Z)
. s—4, (S—/le)(s—/ie-/lp)
L0, - APX25) 5 s4,P(X 2 5)
s—A, P (s—/ie)(s—/le—/ip)
Model results

Table 6.3: Illustrative results from a M; /M /s / NPRP / « / © queueing model

s p |Px=s)| Lo. | LO, wO. WO, W, W,

20 0.94 0.69 1.81 8.28 0.78 12.10 6.99 18.31

21 0.89 0.51 1.13 3.04 0.48 4.45 6.69 10.66

22 0.85 0.37 0.70 1.38 0.30 2.02 6.51 8.23

23 0.81 0.26 0.44 0.69 0.19 1.01 6.40 7.22

24 0.78 0.18 0.27 0.36 0.12 0.52 6.33 6.73

25 0.75 0.12 0.16 0.19 0.07 0.28 6.28 6.49

Simulation model

The developed simulation model was run under the same assumptions for the queueing

model. Figure 6.10 shows the corresponding simulation activity flow diagram.

) ;

Plar‘med . Patient \
patient Patient st
; ays \
arrives queues
Outside
world \ Beds
J—

Emergency Patient Patient \
patient queues /
arrives

Figure 6.10: Activity flow diagram for M, /M /s / NPRP / « / o simulation model
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Model comparisons

The simulation was run for one-year with a five-year warm-up and for fifty runs.

Table 6.4: Comparison of models for a M;/M /s /NPRP /o /% queue

Model s L0, L0, WO, WO, W, W,

Queueing 25 0.16 0.19 0.07 0.28 6.28 6.49

Simulation 25 0.16 0.20 0.08 0.23 6.29 6.44

As part of the model validation process, the developed simulation has been compared
to two analytical queueing models. Consecutive runs of the PROMPT model have
demonstrated excellent reproductively of the analytical solutions and has imparted the
necessary confidence for model use. Slight discrepancies, particularly with planned
patient queues, arise because the PROMPT model permits an unconstrained length on
this queue. Further validation against a number of more complex queueing models
would be desirable. Analytical models however become harder to formulate and solve
when moving beyond the M/ M / s/ NPRP / o / oo queueing model presented. The
validation process has additionally granted an insight into necessary warm-up times
and numbers of simulation runs required for PROMPT to reach a steady state. To
avoid a significant warm-up bias, it was observed that a warm-up of at least three years

was necessary, although to be sure it is proposed that five years should be used.

6.8 Designing a User-friendly Simulation

The adopted evolutionary model development approach (section 4.2) involved potential
end-users from the outset of model development. Many of the users are likely to have
limited experience or practice in using computer simulation models. This adopted
process however enabled hospital personnel to play a major role in the “look and feel”
of the final model. Delphi software enabled the simulation to be readily tailor-made
for the hospitals within a familiar Windows environment. PROMPT has also been

designed to link to spreadsheets and other Windows programs so that model outputs
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can be copied into other software. This results in a system for solving a wide range of

healthcare problems.

Some illustrative PROMPT screen-shots are shown within subsequent sections of this
chapter. These are divided into distinct model elements: PROMPT menu, the main
screen and file management; how to create care units, patient groups, human resources

and operating theatres; simulation parameters and outputs.

6.8.1 PROMPT menu

The menu screen forms the central control of the program, through which various
options may be selected. Through this menu (Figure 6.11), the user may access (by
clicking on the icons) either the Apollo statistical package or various PROMPT
modules, namely: beds, beds and human resources, beds and operating theatres, or

beds, human resources and operating theatres. These options may be activated within

the model itself at a later time.

Bed module (core model) Theatre and/or Resource modules (add-ons)

£ Prompt Main Menu
1

Apollo statistical package

Figure 6.11: PROMPT menu screen
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6.8.2 The main screen

Having selected the desired PROMPT module, the user will be presented with the main
screen (Figure 6.12), which forms the central control in building a model of the
healthcare system. The familiar Windows environment allows for easy selection of
options and facilitates the construction of the necessary care-units and patient groups

before running the simulation.

Speed bar (icons)

Link to Apollo Simulation parameters

Main menu

iption  Patient Groups  Classificallb : V_lon SumrrfafyS;aﬁsﬁcs _Gv_r,aghe) ﬂm*ﬂelp p o :
HEE sﬁwemmﬂ | @ Hospital Summary | [ £ Resources | [ ©naw | (e |

) ) Create/edit Create/edit
Create/edit Create/edit resources theatre sessions

care-units patient groups (if module activated) (if module activated)

Figure 6.12: PROMPT main screen

6.8.3 File management

There are three main types of file that can be loaded and saved in PROMPT.

e Patient groups (*.pat) — Information on individual patient groups. The user can
save a patient group in Apollo and directly load it into PROMPT. All patient group

files have the extension .pat

e Care units (*.loc) — Information about each care unit (level of care) including bed
numbers, resources and operating rules. All level of care files have the extension

Jdoc

e Prompt files (*.prm) — Load and save all information (patient groups, care units,
theatres and resources). This should be used once all parameters have been entered

into the model. PROMPT files have the extension .prm
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6.8.4 Care units

A care unit is defined to be any appropriate unit within the hospital where patients
receive care. Typically this will be a speciality bed pool (e.g. General Medicine, ENT,
Oncology) but may be an individual ward or the hospital as a whole (as one large care
unit). The way in which a care unit is set-up by the user will depend on the nature of
the study. For example, if we wish to plan bed numbers at the speciality level (e.g. 80

General Surgery beds, 50 Paediatric beds) then speciality bed-pool care-units should be
defined.

One or more care units can be created depending on whether the user is interested in
examining in detail one care-unit or the dynamics between care-units. This is achieved
via the various patient groups in the model and their associated care unit priority list.
Different patients in hospital require different care units. As an example, for a cardiac
patient only a cardiac care unit bed may be appropriate, whereas for a general medicine
patient, a general surgical bed may suffice on an occasion where no general medicine
beds are available. Providing each care unit has been defined, any number of priority
lists may be used. Use of beds, occupancy rates and outlier relationships can be
studied (an outlier being a patient who couldn’t be given a bed in their first choice care

unit but is found a bed in another suitable care unit from their priority list).
The following variables are defined for each care unit:

e Bed numbers: user-defined bed numbers by month of year and day of week.

e Operating rules:

» Permitted waiting times: how long a patient may wait for until a bed becomes

free.

» Operating rules for elective patients: deferral time and number of deferrals

allowed before patient is given emergency status

» Emergency-only beds: the number of reserved beds for emergency patients only.
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Edit Details of Care Unit: General Medicine

Bed Numbers T Operating Rules€ }

Care-unit 1
I~

talie ] Care unit

operating rules

Care Unit Name: IGeneraI Medicine

Select Month: Select Weekly Profile:
IAII Year _v_" Weekend Change _v_l
Every Day of Week

Weekend Change

Daily Change
/
: < i
Step-up and Number of Beds Mon - Fri: 150 {
£ Confim
down beds o
(monthly Number of Beds Sat and Sun:  [120 e
i €
and daily) Bed

[  OK I(Xéance|l| ?ﬂelpl

Figure 6.13: Care unit parameters

6.8.5 Patient groups:

Fundamentally, there are two types of patient in the model:

e  With procedure patients - those who require surgery.

e  Without procedure patients - those who don’t require surgery.

If the theatre module is turned off, then the user will only see details on without
procedure patients. Furthermore, for each of these patient types, patients are either
emergency or elective. An emergency patient always has priority in the model over
elective patients (for example, if one bed is available and both an elective and

emergency patient are waiting, then the bed would be given to the emergency patient).
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Emergency Elective
T R = Cardiology
Dermatology Elderly Care 0 New & Load
Elderly Care General Medicine
Elderly Care Rehab Gen Med Daycases
General Medicine = | [Neurology Edit H save
Neurology Rehabilitation
Rehabilitation ———— |Rheumatology
Rheumatology <= % DBIBIB ? HEIP
 Done
Patient Groups

Figure 6.14: Illustrative list of patient groups

A patient group is described by:

Patient group general: the group name, type and a text description.

Length of stay (LoS): the LoS distribution governs the probability of the length of

time a patient is likely to remain in the hospital bed.

Operation time (with procedure patients only): the operation time distribution

governs the probability of the time a patient is likely to spend in theatre.

Arrival rate profiles: the arrival rate profiles describe how the patients arrive. The
group’s arrival pattern will depend on the month of the year, day of the week and
potentially hour of the day. The yearly average arrival rate governs the number of
patients that will be referred to the hospital for the time period being studied

(typically one financial year).

Deferral rules (elective patient types only): elective patients also have defined
deferral rules (information used for when it becomes necessary to defer an elective
patient), which may be at the patient level or care unit level. The rules incorporate
deferral time (how long into the future before the patient should try again to obtain
a bed) and deferrals until emergency (number of times a patient may be deferred

before receiving emergency status with priority).
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e (Care details: each patient group is given a care unit priority list. When a patient is
admitted, they will attempt to acquire a bed in the care unit(s) listed. One or more
of the defined care units may be placed onto the priority list in the order of
preference. In the case where no bed can be found from any of the listed care units,

elective patients will be deferred and emergency patients transferred.

e Resource needs: if the resource module is turned on, the user will have access to

this page. Further information may be found in section 6.8.6.

Set up Medical patients [x] Set up Medical patients [¥]

{[_Patient Group General | Anival Profiles | Length OfStay | a Care Details ]

Care Details ] [ Patient Group General _|* [Artival Profiles} I Length Of Stay
I [ “Monthly [ Daily I Hourly
-Care Priority List = L
1 Set up Radiotherapy
|
| Priority List for Patients ' [ Care Details | AdmissionRules | Yearly Average:
| (admisslon Into care unit- prior Patient Group General I Arrival Profiles T Length Of Stay :
! # | 318 14500
| [General Medicine ~Length of Stay (Days)
: General Surgery | ; F
| Orthopaedics C Weibull ;
: o
| = [Lognomal il
|

€ Exponential 4—
: AT C Gamma
Mean [0.755800 i P
o ; ,—]1‘323500 | £ FitDistribution I - P
7 (‘, St Dev ! Cancel {7 Help |
Change {

Minimum Length Of Stay J‘; ‘
Maximurm Length Of Stay - e foo ] ,

Priority- {‘/ o | ’ P lI T ] Arrival
. ance ? Hel . .
lists ! i information
LoS
information

Figure 6.15: Patient group parameters

6.8.6 Human resources

For each patient group, the user may define the necessary resource needs for the patient
during their stay in hospital. These needs are provided in the form of patient-to-
resource ratios (or dependencies). These dependencies may be provided for each
defined resource. Dependencies may also be defined for different stages during the

patient's stay.
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The user may create as many dependency states as necessary, together with the
expected percentage of time that the patient will stay in that state (as a percentage of
their expected total LoS). For each state, dependency ratios may then be entered
against each resource. Furthermore, the ratios should be defined for each nurse shift
shown - early, late and night. This reflects the varying care-needs across the day.
During the night, for example, whilst a patient sleeps, the necessary level of care may

be less than when the patient is awake during the daytime

Add, edit and delete
patient dependency
states

Patient Set up Major Knees/Hips/Spinal
dependency states [ Patient Group General | Arival Profiles I Length Of Stay
x Care Details | Admission Rules |© Resource Needs
Patient Dependency (%)
—> T
4 I Intermediate 5 ——
L 90 .
ek O [ ®Eat
\ l e
[ - Delete |

Enter dependency states and percentage
of expected total LoS patient remains in state

Enter Resource-to-Patient Dependency Ratios (e.g. 4 = one resource for four patients)
[ Early [Late [Night

rained 4 6
/ ntrained 8 8 10 < \
Resource-to-

Human resources patient ratios
(by shift)

]

J/ OK I X Cancel

Figure 6.16: Workforce parameters

6.8.7 QOperating theatres

When a with procedure patient arrives at the hospital and acquires a bed, the patient
will then queue for theatre. When the theatre becomes free, the patient will be operated

on. This process depends on a number of variables:

o Theatre times: the user must enter a start time and duration of each theatre session.
More than one session may run in parallel. The number of theatre sessions is likely

to depend on day of the week and possibly month of the year. As with defining bed
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numbers, the session times for the theatre are entered via month and weekly profile

drop-down-boxes.

o Session operating rules: the user should define the maximum time that a session

may overrun. This should be as a percentage of the total session time.

e Session scheduling rules: the user must chose from a number of session

scheduling techniques.

The user may also define any number of appropriate theatre resources. For each
resource, a resource description and quantity is defined. Each time a session opens
these resources will be used. For example, an Anaesthetist with quantity one will result
in one Anaesthetist being used for every session. Summary statistics of resource use

over time and other key measures will be generated.

Session Details Theatre Rules | __ Resources ﬁ Sosion Detals| | BRNThE a2 RuE S I REtouees
Session Operating Rules
. [Surgical Theat,
Maximum % time session is allowed to overrun : % Theatre Name/Group: [Surgical Theatres ]
(as a % of total session time available) 3
) 2 Select Month: Select Weekly Profile:
~Session Scheduling Rules > lAn Year ;H IDaily Change _:ﬂ
Scheduling rule for each theatre session:
€ First Come First Served (FCFS)
) Longest Time First (LTF) Session Details ~ EEE|
" Shortest Time First (STF) : g * Fi G) | Sin
| ¢ Longest Then Shortest Cut-Of LTSC Please define session start and session duration below:
~Day-case Scheduli use 24hr clock e.g. 0930, 1445 20 @ 4
it i duration time in minutes only
4 Ule dav-cases firstin session |
Start Time [Duralion (mins)
3 [ .
T Esal. || o |xots][1m]
0830

/ 130 <1 Remove I

Scheduling rules

Define daily sessions

! v 0K l | X Cancel l ¥— Session start times
and durations

Figure 6.17: Operating theatre parameters
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6.8.8 Simulation parameters

These screens allow the user to edit the simulation parameters and to run the model.
The model has been designed to simulate one financial year (1% April to 31% March).

The user has the possibility to change the following variables:

o  Warm up time: the time (in years) that the model will run without collecting data.

e  Number of runs: each run comprises of the warm up time plus one year where data

is collected.

e First day of financial year: given an initial starting day (first day of financial year),
the model calculates how many of each day there are in each month. For example,
if April 1* is a Monday, then given April has 30 days, there will be 5 Mondays and
Tuesdays in April and only 4 Wednesdays, Thursdays, Fridays, Saturdays and
Sundays (the model will similarly calculate the number of each day for each month

of the year).

e Cap patient LoS (check-box): for each defined patient group, there is a minimum
and maximum length of stay (LoS). These values are used in the random sample of
LoS for each patient from the given distribution. Thus the model will only sample
LoS values that fall within this minimum and maximum interval. A further use of
the model is to cap LoS. When we cap LoS, we effectively say that any LoS above
the defined maximum will be set to the maximum LoS. This is useful, for example,
in studies to evaluate the distribution of acute and post-acute bed needs whereby

patients are transferred out of the ward after a certain cut-off LoS.

e Module options: there are two modules available - Theatres and Resources. The
user may turn on/off these modules. The model will only give the user access to

the relevant parts of the model depending on which options are currently activated.

o Graphics: the PROMPT model may be run with or without a graphical display.
The graphics show the occupancy rates, and numbers of patients who stayed and
who were refused in each care unit. This is particularly useful in validating the

model, but is much slower than running the model with the graphics turned off
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(default). At any stage during the running of the model, with the graphics on, the
user may turn off the graphical display. The user, through this option, can enable

or disable the graphical display.

Once the required simulation parameters have been set, the simulation may be run.

Simulation Parameters [ |

Warm up time (years)
Number of runs

Eirst day of financial year

I~ Cap patient Length of Stay (to max defined)

v OK X cancel ? Help

Figure 6.18: Simulation parameters

6.8.9 Simulation outputs

A number of statistics and graphs are available on completion of the simulation run(s).

These are broadly at the patient level and care unit level, and include:

Graphs

e Beds in use over time.

e Patient frequency.

e Emergency transfers and elective deferrals over time.
e Deferral frequency.

e Number of patients moved over time (outliers).

e Patient LoS distributions.

e Number of operations over time.

e Patient waiting times for theatre.
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Statistics

e Bed-days used.

e Occupancy rate, transfers, deferrals and outliers.

e Monthly occupancy and refusal rates.

e Workforce needs over time.

e Patient waiting times.

e Observed LoS.

§ PROMPT - C:\HEALTH=2\CAPACI~1\PROMPT\PC\ICU2.PAM - [Monthly Summary] 18]
(] Ele Hosphal Descripion Patient Groups Classiication Simulation  Summary Siatisics Graphs Window  Help =18 x|
B [e[E] [¢8 cuotn] [ S raions | [[@ Hopial surmr | 6 ==
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|
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Apr [7211 218 155 76 54.00 200
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Figure 6.19: Illustrative model outputs

6.9 Chapter Summary

An operational model for hospital resources, PROMPT (Patient and Resource

Operational Management Planning Tool), has been developed within the evolved

generic framework for modelling of healthcare resources. PROMPT was developed in

a Delphi environment using a three-phase simulation shell TOCHSIM. Over-time, and

with an increasing knowledge of the hospital processes and perceived model utilisation,

a schematic diagram of patient-flows though a hospital system was developed and

incorporated into the model. This is suitably generic, allowing for the model to be
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readily used by other hospitals. This has been witnessed by the adoption of the
framework by Portsmouth Hospitals NHS Trust who recognised that the structure
applied to them. Other Trusts have since approached the author expressing an interest.
The developed simulation takes individual patients through time as they arrive and pass
through the hospital, whilst capturing and monitoring the necessary resource needs,

such as operating theatres and nursing needs.

Throughout the research work constant validation and verification was conducted in
order to increase confidence in the model operations. Verification was largely
achieved through the use of the generic framework and the adopted evolutionary model
development. This ensured that end-users contributed to the model development at all
stages and ensured that the simulation model reflected the original conceptual schema.
Validation techniques include the comparison of the simulation to analytical queueing

models.

Many of the potential end-users are likely to have limited experience or practice in
using computer simulation models. Delphi software enabled the simulation to be
readily tailor-made for the hospitals within a familiar Windows environment for ease of
use. The resulting practical simulation model incorporates the necessary complexity,
uncertainty and variability, for solving a wide range of hospital planning and
management issues. Chapter 7 will demonstrate PROMPT in use at the participating

NHS Trusts.
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Chapter 7 — Hospital Case Studies

7.1 Chapter Introduction

Previous chapters have discussed the development, structure and validation of an
operational model, PROMPT, for the modelling of hospital resources. This chapter
demonstrates model applications through case studies undertaken during the time spent

with the participating NHS Trusts.

Expressed user needs and requirements helped to mould the model structure throughout

its development. In particular, PROMPT has been designed to be used:

e as a tool for evaluating ad-hoc studies, such as the creation of a new care unit,
hospital consolidation plans or changes to patient-flows through the hospital

system.

e asa management and planning tool that can be used in long-term planning and

during the annual business planning cycle.

During the time spent with both the Royal Berkshire and Battle Hospitals NHS Trust
and Portsmouth Hospitals NHS Trust, the model played a fundamental role in a
number of hospital studies to evaluate hospital process re-design options. It was also
used in the annual business planning cycle with specialty managers to assess the likely
scenarios for the forthcoming financial year, and as a tool for agreeing customer
service levels with GP Fundholders, local Health Authorities, and in the case of

Portsmouth, for the outline business case of the PFI project.

The primary purpose of the studies is to assess the general methodology in the context
of the genuine concerns of healthcare managers. The experience of using the
operational models and the evaluation of their effectiveness in a practical setting is

therefore the primary objective in the research. Only a few case studies out of the
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many undertaken are presented in this chapter. It is hoped however that the selected

studies will allow the reader to appreciate the spectrum of possible model uses.

7.2 Case Study One — Modelling the Provision of Adult
Medicine Beds

One of the major specialties within the Royal Berkshire and Battles Hospitals NHS
Trust, and indeed within any Trust, is Adult Medicine. This specialty has witnessed
the largest growth in emergency demand over recent years and plays a pivotal role in
the rest of the hospital system. Table 7.1 summarises the various patient groups who
use the medical beds together with their status (emergency, elective, day-case or all in-
patients), mean length of stay, length of stay inter-quartile range and observed demand

(referrals in finished consultant episodes) for the 1996/97 financial year.

Table 7.1: Adult Medicine patient groups

Patient Group Status Mean LoS Inter-quartile Range Referrals
(days) (days)
Cardiology Emergency 32 1.0-4.0 1,603
Elective 2.7 1.0-3.0 196
Dermatology In-patients 15.7 58-19.8 27
Elderly Care Emergency 10.9 4.0-13.0 2,062
Elective 18.1 3.8-200 17
Elderly Rehab In-patients 17.3 7.0-21.0 1,430
Gastroenterology Emergency 1.5 10-18 500
Elective 23 1.0-2.0 205
General Medicine Emergency 53 1.0-6.0 6,890
Elective 29 1.0-2.0 1,098
Day-case 0.7 05-0.8 194
Neurology Emergency 9.9 28-12.3 68
Elective 4.7 20-5.0 33
Rehabilitation Emergency 57.0 24.8 -89.5 74
Elective 55.0 14.8-69.3 35
Rheumatology Emergency 9.6 1.0-133 248
Elective 11.2 6.0-14.0 205
Thoracic Medicine Emergency 5.0 1.0-7.0 154
Elective 1.7 1.0-2.0 48
Totals - 7.1 1.0 - 8.0 15.087
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Table 7.1 illustrates the large variation in length of stay within and between patient
groups. Traditional capacity planning methodology would have involved the overall
mean LoS for emergencies and electives, equating to 7.5 and 4.3 days respectively.
This fails to capture the inherent variability in LoS, and as this case study shall show,
fails to estimate the true bed requirements. It is therefore necessary to obtain LoS
distributions for each of the patient groups above. Furthermore, hourly, daily and
monthly referral profiles are obtained for each patient grouping and used within the
model, thus incorporating the necessary daily and seasonal variations. Using a constant
daily arrival rate that is independent of time greatly increases the likelihood of

producing misleading bed requirements.

The PROMPT model was run with observed referrals for one financial year for the

following scenarios:

1. Using the developed model that captures demand over time and uses LoS
represented by appropriate statistical distributions.

2. With demand over time but using only average LoS for each of the patient groups
shown in Table 7.1.

3. With demand over time but using only an average LoS for emergency and elective
patient groups (7.5 and 4.3 days respectively).

4. Assuming constant arrival pattern (no seasonal effect) and with average LoS for

emergency and elective patient groups.

Clinical managers at the hospital typically employ method 4 to estimate bed
requirements. Figure 7.1 shows how each of these bed-planning options compare
against the observed admissions for 1996/97. Given that bed occupancy varies within
each month, only the monthly mean occupied bed number is shown. Table 7.2 shows
how each method compares with the prediction of overall bed occupancy and refused

admission rate.

Figure 7.1 and Table 7.2 illustrate how the use of average LoS results in misleading
forecasts of bed requirements. The developed simulation model performs well against
the observed 1996/97 occupancy and refusal rates. Up to 5,600 bed days are

underestimated using scenario 3. Occupancy and refusal rates for average LoS
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scenarios are consistently lower than those observed. For scenario 4, the summary

statistics given in Table 7.2 do not capture the large mismatch between planned beds

and bed needs.

Table 7.2: Comparison of bed planning performance measures

Method Occupancy (%) Bed-days used Refusal Rate (%)
Observed 93.5 106,500 2.6

1 93.6 106,600 2.7

2 89.2 101,600 1.5

3 88.6 100,900 1.4

4 91.3 104,000 1.1

The seasonal bed requirements are readily appreciated from Figure 7.1. Standard

capacity planning techniques, where monthly and daily variation are not incorporated,

would produce deceptive results. This is seen in scenario 4 where demand is assumed

to be constant over time.- Such a prediction would greatly under and over estimate

actual requirements during different periods of the year. Given the stochastic nature of

the model, it is possible to determine confidence intervals around these predictions. To

illustrate this, error bars (95%) are shown for model prediction (method 1).
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Figure 7.1: Observed and predicted Adult Medicine bed needs
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Table 7.3: Comparison of different Adult Medicine bed configurations

Bed Configuration Occupancy (%) | Refusal Rate (%)
Current (310 beds all year) 93.6 2.7

300 beds all year 94.9 4.7

320 beds all year 914 1.6

310 (current) with extra 20 beds Dec — Feb 93.0 1.9

320 beds Dec — May; 290 beds Jun — Nov 93.1 3.2

330 beds Jan — Feb; 290 Jun — Oct 93.9 33

310 Nov, Dec, Mar — May;

The developed bed-planning tool may also be used to examine the relationships

between bed numbers, occupancy and refusal rates. Figure 7.2 and Table 7.3 illustrate

how this relationship is complex and non-linear. Capacity planning options need to be

explored in light of these sorts of calculations.

100

Occupancy

% .\.\K‘\
90 +— <

Refusals

~

85

Occupancy (%)

350

Number of Beds

1000

- 800
- 600
- 400

- 200

K/ A
80—
75— ——— l
70 Y , . B e |
300 310 320 330 340

(s304) suoissiwpy pasnjoy

Figure 7.2: Beds, occupancy and refusals for Adult Medicine

162




Chapter 7 Hospital Case Studies

7.3 Case Study Two — Creating a New Clinical Grouping

One great advantage of the flexible nature of the model is that the user is able to
investigate the likely consequences of changes in capacities and hospital practices.
This may be through changing current configuration of existing wards or through the
creation of new clinical groupings or units. For this latter purpose, this case study
outlines the pivotal role that the model played in helping managers at the Royal
Berkshire hospital to investigate the care-needs of a proposed new clinical unit,
respiratory medicine, and its likely effect on the remainder of the hospital system.
Managers and clinicians needed to fully understand the consequences before

implementation. They were particularly interested in the following:

e The bed needs of the new respiratory unit.

e Whether to ring-fence these beds or to share with other specialties, such as general
medicine.

e The effect of removing respiratory patients from adult medicine and other hospital
specialties and the corresponding potential bed-day savings, if any, from the
creation of this unit.

e Bed-day savings and reduced bed needs as a result of likely reductions in LoS of

respiratory patients.

Using the developed statistical module, it was possible to rapidly access and analyse
information on respiratory patients, based on clinical coding, from the large hospital
database. Respiratory patient groupings were created and demand profiles and LoS
distributions were obtained. These patient groupings were then passed through a
respiratory unit in the capacity model and the likely bed needs were evaluated (Figure
7.3). Furthermore, the adult medicine and respiratory bed-pools were considered
together in the model in order to examine the consequences of removing the respiratory
patients from the adult medicine bed-pool. The bed needs shown in Figure 7.3 show a
marked seasonal demand. This graph indicates that beds could be stepped up and
down over the year. It is noted with interest that before the model was used, managers

had provisionally decided on a capacity of 25 beds kept constant across the year, based
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primarily on rough deterministic calculations. Their opinion was greatly changed after

the modelling study.
70 - T
—&— Median |
= & Mean /. Tl
60 . g

- 9- 5th Percentile

- #- 95th Percentile

50

40 4

Required Number of Beds

20

Apr May Jun Jul Aug Sep Oct Nov Dec Jan Feb Mar
Figure 7.3: Respiratory bed-needs over time

The motivation behind the provision of a new clinical group is to provide focussed care
to a particular class of patients. At the time of the study, respiratory patients could be
found in up to 15 different wards across the hospital, many of which were outside of
the general medicine specialty. It was hoped that the LoS for this group of patients
would decrease, over time, within a dedicated unit. The flexible nature of the

developed model enabled a number of different LoS reduction scenarios to be easily

and rapidly explored.

It was decided that a realistic method was to attempt to achieve a proportional
reduction in LoS because this proportional approach means that we have a greater
chance of a larger LoS reduction in the upper range of LoS than for those who stay a
short time in hospital. The scenarios of 10%, 20 and 30% reductions were chosen and

the model was used to calculate the resulting bed needs (Table 7.4).
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Table 7.4: Respiratory patient LoS reduction and resulting hospital bed-day savings

LoS Adults Elderly Overall | Bed-day
Reduction | Mean LoS | 95% Value | Mean LoS | 95% Value | Mean LoS | Savings
Current 5.7 16.0 11.8 33.0 8.7 -
% | s2 | 145 | 06 | 300 | 17| 1,000 |
20% 4.8 13.0 9.5 26.5 6.8 2,500
30% 3.9 11.5 8.8 23.0 5.9 3,600

Table 7.4 shows the revised mean LoS, 95% point of this LoS distribution, and
predicted hospital bed-day savings under the 10, 20 and 30% LoS reductions. This
Table helps show that bed-day savings is not a linear function of LoS reduction given

the stochastic nature of queues in the hospital system.

7.4 Case Study Three — Hospital Consolidation and
Reconfiguration.

Portsmouth Hospitals NHS Trust is one of the largest in England, with an annual
income of around £240 million (2001/02) and providing acute healthcare services for
almost a million people. Internally the Trust launched a consolidation and
reconfiguration programme of facilities. The Trust successfully applied for PFI status
and was asked to submit a fully costed Outline Business Case (OBC), to appraise the
options for delivering PFI benefits. The Trust needed to calculate the likely bed needs
for the consolidated hospital and examine various reconfiguration plans, such as the

effects of curtailing acute LoS and increasing the capacity of post-acute beds.

Working within the evolved modelling generic framework, the first phase included the
necessary extraction and analysis of the large hospital database using Apollo. This
database included five years worth of individual patient data, including LoS, episode
start and end dates, hospital specialty, HRG (procedure code), emergency or elective

status and inpatient or day-case episode. Portsmouth required a number of options to
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be explored. These included the bed-needs by existing hospital specialty (General

Medicine, Orthopaedics, Paediatrics etc.) and additionally by re-designed hospital

clinical groupings derived primarily by clinical procedure (for example hips, knees and

neck of femur as one clinical grouping). There were nine such groups in total.

Apollo was used to create the necessary patient groupings under both scenarios.

Groups were formed using specialty and/or HRG fields in the database. Table 7.5

shows an example group created within Apollo, with a number of key statistical

indicators and fitted LoS distributions. Monthly and daily arrival profiles for each

group were readily captured using episode start date and this information saved

alongside the LoS distributions for use in PROMPT.

Table 7.5: Example hospital consolidation clinical grouping

Patient Group Status Episodes | Mean LoS | Fitted Distribution
(1998/99) | (1998/99)

Vascular Surgery Emergency 600 8.8 Weibull (7.23, 0.73)
Elective 663 4.6 Lognormal (0.53, 1.44)

Vascular Medicine Emergency 470 2.7 Gamma (0.15, 17.98)
Elective 44 29 Weibull (1.04, 0.42)

Poisoning Emergency 892 1.7 Lognormal (0.01, 10.6)

Thoracic Procedures | Emergency 93 2.0 Weibull (0.33, 0.32)
Elective 31 1.7 Weibull (0.55, 0.41)

Thoracic Medicine Emergency 3,882 5.7 Weibull (5.10, 0.81)
Elective 428 3.5 Lognormal (0.05, 1.58)

Evolved patient groups were loaded into the PROMPT model and the necessary

admission and patient-flow rules defined. Bed-needs were captured for each specialty

and then for each clinical grouping. Various sensitivity analyses were then examined

by hospital managers to assess their impact on the overall costing for the PFI. Initially

these included changing the demand and LoS. Sensitivity on LoS was aided by

examining LoS over-time (five years worth of data was available) and forecasting

likely LoS percentage increases or reductions. Access was also given to peer group

hospitals LoS. These LoS figures came from ten similar size hospitals across the UK
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and allowed for comparison of Portsmouth LoS to the peer group average and best peer
group performance (lowest LoS for a given procedure). Figure 7.4 shows how
PROMPT was designed to allow end-users to easily change the shape of the LoS

distribution using a percentage increase or decrease. This avoids the need to re-fit the

distribution in Apollo.
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Figure 7.4: LoS sensitivity analysis by shifting the LoS distribution

An illustrative LoS shift of 15% (decrease) for a Portsmouth Oncology patient group is
presented in Figure 7.5. The mean LoS was 5.12 days with a 95™ percentile point of 16
days. The fitted distribution was Lognormal with mean 0.765 and standard deviation
of 1.324. After the 15% shift the LoS is 4.35 days and 95" point at 13.6. The revised

fitted distribution has a mean of 0.593 and standard deviation unchanged at 1.324.
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Figure 7.5: Illustrative percentage shift to a patient group LoS distribution
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A matrix of bed-needs was created under a number of LoS scenarios. This allowed
hospital managers and financial personnel to agree on achievable LoS and hence read-
off the corresponding hospital bed-needs. A subset of the full hospital matrix is shown

in Table 7.6 below.
Table 7.6: A matrix of hospital bed-needs by LoS scenario

Changes in number of beds

Speciality
% LoS reduction/increase (4)

Deter?;;mstlc PR(()ZI\)IIPT Bes(; ;.oS 59% 10% : ‘.’ 20%
Cardiology 3 3 3 0 0 1
Dermatology 10 11 10 0 1 2
General Medicine 270 282 236 10 22 47
Thoracic Medicine 1 1 1 0 0 0
Haematology 8 9 7 0 1 2
Orthopaedics 149 159 148 7 14 30
A&E 9 9 9 0 1 2
Rheumatology 23 26 21 1 2 5
General Surgery 137 143 132 6 12 25
ENT 18 20 17 1 2 4
Ophthalmology 6 6 3 0 0 1
Oral Surgery 8 9 7 0 1 1

(1): Beds required for 85% occupancy using a spreadsheet deterministic calculation.
(2): Beds required for 85% occupancy using the PROMPT model.

(3): Beds required for 85% occupancy using PROMPT and best peer group LoS
(4): Change to the number of beds required under various LoS percentage shifts.

Of particular concern amongst hospital managers was the distribution between acute
and post-acute beds. There is a growing acknowledgement within the medical
profession that for many categories of patients within the hospital, the acute LoS (time
in the hospital) is unnecessarily long. On discharge, many of these patients move to
beds within local community hospitals (post-acute stay). Unfortunately due to existing
limited post-acute capacities, many patients have to wait some time in hospital before
transferring to more suitable (and possibly cheaper) post-acute care. The distribution
therefore between acute and post-acute bed capacities plays an important role in the

planning and management of NHS Trusts.

To understand and model the system, PROMPT was used to examine a number of

patient-care scenarios. Working with specialty managers, we were able to identify
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groups of patients who would benefit from a post-acute phase and less time within the
hospital itself (typically elderly patients). Furthermore using Apollo we were able to
examine current practice in detail (LoS distributions for these groups) and challenge
existing protocols of care. Using expert opinion, PROMPT was used to model various
“discharge cut-off times” for different groups within the Trust. Essentially these times
refer to the maximum permitted time that a patient from this group may spend in the
hospital. If a patient is still in a bed at this time, they will be transferred to post-acute
care. Thus we were able to monitor both acute and post-acute bed needs over time
under various clinical and managerial patient-care decisions. The Trust was able to
gain a system-wide view of both the Trust and community care needs and incorporate

these into the developed PFI outline business case.

7.5 Case Study Four — General Surgery Theatre Needs

Like many other NHS Trusts, Royal Berkshire and Battle Hospitals needed to re-
evaluate their theatre capacities in light of existing capacities, forecasted patient case-
mix and a constant shift in the distribution between in-patients and day-case surgery.
To guide this work, a multi-disciplinary working group was created and tasked with
evaluating a variety of theatre options. Concerns included the numbers of theatre
sessions by specialty, the daily distribution of these sessions and the scheduling of
patients within the sessions. Essentially the task group was looking to make better use
of existing capacities through improved theatre management. In addition they required

a tool to assess a number of longer-term planning decisions.

After various discussions with the group, a number of objectives were defined. In
essence the hospital must find efficient and effective policies that account for the
complex nature of patient care. For example the policies must account for the daily
number of available hospital beds before considering theatre needs. Clearly it would
an oversight to examine the numbers of possible operations without accounting for the
necessary bed capacities to accommodate this patient population. The objective is two-

fold:
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e  Maximise theatre session utilisation (daily event)
Adopt a scheduling policy that will prevent session under-run and large over-run,
giving greater utilisation (time theatre in use divided by time theatre open).

Utilisation will depend on patient operation times.

e Optimise bed utilisation (across the week)
Adopt an admission policy that will allow maximum utilisation of beds. This will
depend on post-operation LoS. For example, on which day(s) of the week should
we admit the major operations (those who will subsequently stay a long time on the

ward)? There is a need to examine outlier and deferral rates as a measure of policy

benefit.

Combined, these two objectives should help to maximise throughput (number of
patients we can see in a year) and help to flatten out occupancy levels over the week,
thus avoiding extremely busy and slack periods in the bed-pool. In turn this should

reduce hospital refusal rates and theatre cancellations.

PROMPT was used to examine all surgical specialties within the Trust. Each specialty
brought its own complexities, such as differing case-mixes and theatre needs. As an
illustration of the PROMPT model in use, the General Surgery case study is discussed

below.

The results also account for non-surgical patients in the General Surgery bed-pool,
such as medical outliers and those surgical patients not requiring theatre (accounting
for 27% of all patients in General Surgery). These without procedure patients are
additionally captured within PROMPT and are passed through the bed-pool to reflect
true bed-needs accounting for all admissions. This is a necessary condition of a

practical hospital bed and theatre capacity model.

Royal Berkshire and Battle Hospitals NHS Trust categorise all surgical patients into
one of three classes: minor, intermediate and major patients. The categories reflect the

severity of the operation (procedure) and consequently act as an indicator to likely
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workforce needs and patient post-operative LoS. Apollo was used to examine current

General Surgery practice by class of patient (Table 7.7 and Figure 7.6).

Table 7.7: General Surgery patient statistics

Patient Patient Number of Av. Operation Average Post-op
Status Category Operations Time (mins) LoS (days)
Day-Case Minor 197 20 <1
Intermediate 608 32 <1
Major 85 44 <1
Overall 920 30 <1
Elective Minor 194 21 2.0
Intermediate 879 32 2.0
Major 1,469 89 4.8
Unclassified 266 - -
Overall 2,808 63 34
Emergency Minor 201 23 2.0
Intermediate 199 46 2.7
Major 920 81 6.0
Overall 1,320 61 4.6
All Data Overall 5,048 54 3.0
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Figure 7.6: General Surgery operation day profiles
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Figure 7.6 helps to illustrate the large daily variation in numbers of operations. These
peaks and troughs throughout the week are largely influenced by historical theatre
schedules and preferred working patterns of surgeons who have a significant say in
when different types of operation are performed. The corresponding impact on bed-
needs is complex and non-trivial, depending on the estimated post-operative LoS of
each patient. Furthermore, because of restricted bed-capacities on the wards, current
emergency demand should be acknowledged when planning and managing elective

theatre schedules.

The nine with-procedure patient groups shown above, together with their LoS and
operation time distributions and current admission profiles were used in PROMPT.
Two care units were created: a surgical inpatient bed-pool and a day-case centre.

Existing theatre scheduling rules and numbers and durations of daily theatre sessions

were defined.

Various scheduling methods were experimented with in an attempt to better manage
existing capacities and meet the stated objectives. The following conclusions concern
only the management and planning of existing bed and theatre capacities. The model
however has also been used to examine a number of options, including the increase of

bed and theatre capacities.

Scheduling of general surgery theatre sessions

Schedule expected large operations first followed by the smaller operations later in the
session i.e. major first, then intermediate and then minor. The larger operations
generally have the most variability in operation times. By scheduling these first and
smaller ones later, there is less chance of closing the session early and thus increasing

throughput and utilisation.

Adopting LTF (Longest Time First) strategy:
Current session occupancy = 88%, Current refusal rate = 5.0%

Predicted LTF session occupancy = 85%, Predicted LTF refusal rate = 3.8%
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Essentially, this shows that under a LTF policy, we can still achieve the same number
of operations but reduce occupancy. Put another way, we can improve efficiency of
our sessions by maintaining current throughput but on average saving session time
under a different session schedule. This extra saved time could be used to operate on
more patients, thus increasing throughput without the need for extra resources (i.e. beds
and theatre time). In fact, this reduced occupancy equates approximately to an extra 60
hours a year operating time (current total operation times approximately 3,800 hours)
plus a drop in the refusal rate. In turn, this equates to potential 1.6% increase in
throughput (or around an extra 70 patients operated on per year) without the need for

extra resources.

Day-case and inpatient sessions

Generally it is best to keep day-case patients in the same theatre as in-patients. As
day-cases typically have shorter and less variable operation times, it makes logical
sense to include these patients with other in-patient theatre sessions if we are primarily
concerned with session utilisation. Where possible, some day-cases could be placed
towards the end of the sessions to reduce potential under-run and wasted time (as LTF
above). For example, the majority of day-cases could go towards the end of the
morning sessions. This might well help keep the time that day-case ward needs to open
down to a minimum as well. Practical considerations will dictate how late in the day a

day-case patient may commence their operation.

Weekly profiling

So far we have only examined the effects of scheduling patients within a session. This
has assumed that the day-to-day scheduling of patients remains unchanged. So, for
example, do we admit major patients early or late on in the week, or does it not make
any difference when these patients are admitted? This should help to “even-out” busy
and slack times in the bed-pool, making optimal use of beds whilst helping to reduce
refusal rates. We will now need to consider pre and post-operation LoS. Post-op LoS
for each patient group is shown in Table 7.7. The data revealed that 6% of minor, 11%

of intermediate and 47% of major patients needed to be admitted the day prior to their
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operation on clinical grounds. This profile, based on hour of arrival, was reflected in

the model.

From the many possible schedules examined together with hospital personnel and the

working group, and whilst respecting constraints such as surgeon’s availability, the

schedule shown in Table 7.8 was produced which gave a benefit of a flatter occupancy

across the week, which helped the overall refusal rate drop from 5 to 3%.

Table 7.8: Proposed General Surgery weekly scheduling profile

Patient Group Operation Day

Minor Early in week (majority on Monday)

Intermediate Early to Mid Week (majority Tuesday & Wednesday)
Major Mid to Late Week (majority Thursday & Friday)

Figure 7.7 and Table 7.9 show the current and proposed occupancy rates by day of the

week. Please note that the occupancy rate shown is the occupancy at the start of the

day before admissions on that day.
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The logic behind this schedule is that the major patients are now very likely to stay in
the bed across the whole weekend (days 3, 4, or 5 of their stay). This is a time when
there are no (or little) admissions, thus utilising beds when perhaps weekends might be
less busy than early to mid week currently. The majority of these patients would then
be discharged during Monday in time for the short LoS Minors and all discharged
before Intermediates in the mid week. This is shown in Table 7.9 and Figure 7.7 by the
flattening out of occupancy, and hence probability of a bed being free for admitting
patients in that day, across the days. Essentially we attempt to reduce peaks and
troughs in occupancy over the week and hence reduce the likelihood of all beds being

full and refusing patients.

Table 7.9: General Surgery occupancy and likely bed availability for
current and proposed scenarios

Start of Occupancy in bed-pool (%) | Probability of a free bed (%)
Day Current Proposed Current Proposed
Monday 54 64 46 36
Tuesday 69 77 31 23
Wednesday 82 76 18 24
Thursday 83 81 17 19
Friday 86 84 14 16
Saturday 81 81 19 19
Sunday 64 72 36 28

The model has highlighted a number of areas for potential improvement. Some of
these policies equally apply to other specialties within the hospital and indeed to other
NHS Trusts. The general message from this modelling work is that an operational
modelling approach, through necessarily practical and detailed capacity tools, can be
used to experiment with the system helping to improve existing planning and

management of hospital theatre resources.
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7.6 Case Study Five — A Study of Trauma and Orthopaedic
"Nursing Needs

The NHS is one of the largest employers in the world, employing over one million
people, including 350,000 nursing staff and 140,000 administrative and clerical staff
(Department of Health, 2000). The NHS needs to continually add to its complement of
workers to meet the needs of increasing admissions and to keep the service running 24
hours a day, 365 days a year. Managers need to quantify the number and type of
workforce required in order to successful staff a hospital. Shortages in necessary
nurses, for example, can lead to the temporary closure of hospital wards. With beds in

constant demand, managers can ill-afford to have to take such action.

To illustrate the workforce module, this case study outlines the role of the model in the
planning of Trauma and Orthopaedic nursing needs within The Royal Berkshire and
Battle NHS Trust. Apollo was used to derive the appropriate patient groups using a
combination of statistics (CART) together with clinical knowledge based on defining
patient groups with homogeneous hospital nursing needs. This process produced the

following five distinct clinical groupings:

e Hips

e Knees

e Spinal (decompositions and fusions)

e Discectomies, minor hands/knees, head of femur, spinal lesions, dissolving discs

e Shoulders, other major joints

The workforce module builds on the foundations of the bed capacity model: patients
from each group arrive, attempt to obtain a bed and stay for a LoS before discharge.
Additional information is now required governing the care of patients during their stay

in hospital.

For each patient group, necessary resource needs for the patient during their stay on a
Trauma and Orthopaedic ward were defined. These needs were provided in the form
of patient-to-resource ratios (or dependencies). Dependencies were defined for

different stages during a patient's stay together with the expected percentage of time
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that the patient will stay in that state (as a percentage of their expected total LoS). For
each state, dependency ratios were entered against each resource. Furthermore, the
ratios have been defined for each nurse shift - early, late and night. This reflects the

varying care-needs across the day.

An illustrative resource needs profile for a hip replacement patient is shown in Table
7.10. For this procedure clinicians, nurses and hospital managers defined three
dependency states: High, Intermediate and Low. Nursing needs for two types of
workforce resource are studied: Trained Nurse and Untrained Nurse. Ratio figures

indicate the number of patients that one nurse may care for in a given shift.

Table 7.10: Resource needs profile for a hip replacement patient

Dependency State: High (5% of LoS)

Resource / Shift Early Late Night
Untrained Nurse 5 5 6
Trained Nurse 3 4 5
Dependency State: Intermediate (10% of LoS)

Resource / Shift Early Late Night
Untrained Nurse 3 4 6
Trained Nurse 3 4 6
Dependency State: Low (85% of LoS)

Resource / Shift Early Late Night
Untrained Nurse 3 4 5
Trained Nurse 5 5 6

Figure 7.8 illustrates how hospital configuration (beds and admission rules) and patient

information (LoS and resource needs) are combined to form an integrated workforce

planning and management approach using the PROMPT methodology.
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Figure 7.8: An integrated approach: modelling hospital workforce requirements

The above structure was adopted to predict likely nursing needs for Trauma and
Orthopaedic wards in the Royal Berkshire and Battle hospital. The model enables
managers to simulate patients through time whilst assigning corresponding care needs,
allowing for the rapid production of workforce rosters for each resource by month,
which are further broken down to day and shift levels. Because workforce needs will
vary between simulation runs and during the same shift/day combination within a

month, the mean number of resources required is displayed with 95% confidence

intervals.

The model was used by the hospital to ascertain nursing needs for various wards and
specialty bed-pools across the Trust. Because of the integrated PROMPT model,
managers and human resource personnel were able to evaluate the impact on necessary
staffing levels as a consequence of changes to a number of hospital variables,

including:

e Changes to the number of ward beds.
e Changes in patient demand.
e Changes to the number of contracted local health authority elective episodes.

e Changes to the number of theatres and durations of sessions.
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7.7 Chapter Summary

The work presented in the case study reports helps illustrate the wider experience of
addressing real and practical needs of health service professionals using the developed
generic framework and the PROMPT methodology. This experience played a key
element in helping to structure and develop the Apollo and PROMPT models. The
various projects undertaken within the participating Trusts and the spectrum of
planning and management issues provided a rich source of input into the evolution of

the prototype versions of the models.

Each case study details how the methodology was integrated into managerial processes
of NHS Trusts and the way in which the simulation and its interface responded to user
requirements. The case studies help illustrate the wide use of the model in the planning
and management of hospital beds, theatres and workforce. It has been successfully
used within the participating hospitals to help mangers and clinicians understand and
quantify the consequences of planning and management policies (see Appendix H).
The model has highlighted to the participating hospitals the need for incorporating the
necessary detail when calculating resource requirements. Monthly, daily and hourly
demand and meaningful statistical distributions that capture the inherent variability in
LoS, workforce dependencies and operation times are important in the development
and use of planning tools for hospital capacities. Healthcare resource allocations
should obviously be made in light of both bed and theatre occupancies and refused
admission rates. The relationship between beds, occupancy and refusals is complex
and often overlooked. The developed model can be used to study a variety of hospital
planning issues and it has demonstrated to the hospitals that it is possible to improve

efficiency and effectiveness of the available limited resources.

Many challenges were encountered during the work and were very real in the sense that
authentic solutions were being sought for genuine managerial and clinical concerns.
Many critical issues became apparent and were brought into sharp contrast, such as
data availability and quality, and the political dimension of the NHS. These
challenges, together with the author’s experience and perceived modelling

opportunities are discussed in greater detail in Chapter 9.
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Chapter 8 — Simulation Models for Critical
Care Services

8.1 Chapter Introduction

Although a critical care unit (CCU) forms a part of the overall hospital system, to an
extent this unit exhibits distinctive planning and management challenges that are rarely
seen elsewhere in the hospital. The extreme costs of critical care (section 3.3.4), the
relatively few beds available and the critical medical condition of the patients admitted
intensify the planning and management issues. There is currently a great need to better
plan and manage critical care beds at both a local and regional level (Department of
Health, 2000). In response, two simulation models for the planning and management of
critical care services have been developed within the evol\}ed generic framework for
modelling of healthcare resources (Chapter 4). The first simulation models the
complex flow of patients through an individual unit (intensive and/or high-dependency
care). The second simulation models a number of critical care units within a region.
Both models have been built using Simul8 (Visual Thinking International), a standard
off-the-shelf simulation package, and enhanced through the use of Visual Logic and an
Excel front and back-end. The deliberate use of Simul8 allows for a comparison
between standard software packages with an adopted programming approach such as
the development of the TOCHSIM shell. A discussion is presented in Chapter 9. This
chapter outlines the development, structure and validation of these two critical care

models with illustrative case studies.

8.2 Towards a Critical Care Unit Model

Although a critical care unit (CCU) forms a part of the overall hospital system, to an

extent this unit exhibits distinctive planning and management challenges that are rarely
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seen elsewhere in the hospital. The extreme costs of critical care, coupled with the
relatively few beds available and the critical medical condition of the patients admitted
intensify the planning and management issues. Critical care concerns the provision
within a hospital of both intensive care and high dependency care. An Intensive Care
Unit (ICU) bed is usually reserved for patients with threatened or established failure of
one or more organs, particularly respiratory, cardiovascular or renal systems. High
Dependency Unit (HDU) beds have been introduced as a step between intensive care
and ward care. They reflect a need for more suitable levels of care for patients and as a

means for reducing some of the costs of an ICU.

The provision of critical care has to meet the challenges of considerable uncertainty
and variability in the needs of the patients, high costs and scarce resources. The
demand for critical care beds arises from many sources as emergency or planned
admissions. The vast majority of the demand for intensive care and high dependency is
experienced as emergencies and electives respectively. Patient’s lengths of stay and

the large costs of treating patients are highly variable.

A recent Department of Health review of adult critical care services (Department of
Health, 2000) concluded that there is a great need to better plan and manage CCU beds
at both a local (individual) and regional level. The review reinforced and reiterated the
beliefs and concerns amongst CCU managers and consultants participating with this
research. During initial lengthy discussions with the working group, and building on
previous work by IMH (Ridge et al., 1998), a number of characteristics concerning the
flow of patients through a CCU were evolved (section 4.3.3). There was an evident
desire amongst the participants to model in detail an individual unit followed by a
model of a number of co-operating units within a region. Accordingly these research
aims complement the Department of Health’s directives, although it should be noted

that the work commenced before the publication of the Department of Health’s report.

There are a number of critical variables within a CCU that must be effectively and
efficiently managed on an hour-to-hour, day-to-day basis. In particular, the working

group expressed the need to examine the following key questions:
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1. How many CCU beds do we need? (local, regional and national levels)
What is a good mix of ICU and HDU beds? (distribution of beds within a CCU)
Are the internal rules good enough? (admission and discharge rules etc.)

Is the geographical distribution of CCU beds right? (across a region/the nation)

S

Can we pool resources from different CCUs? (more efficient use of resources)

Both the individual and regional models have been designed and built within the
Simul8 package (version 5), an off-the shelf simulation tool that is now widely used in
both business and educational establishments. It would be possible to develop these
models within TOCHSIM, the simulation shell in which PROMPT (Chapter 6) has
been constructed. It was felt however that the use of Simul8 would permit the
comparison between standard software packages with adopted programming

approaches. This is discussed in Chapter 9.

8.3 Simul8

Simul8 (Visual Thinking Ltd.) was first used in industry in 1995. It is now used by
thousands of users worldwide in enterprises such as Ford and Hewlett Packard. Much
of its success can be attributed to its relative cheapness (compared to other simulation
packages commercially available), its use of Windows™ "point & click' technology to
make Simul8 easy to use, and the ability for non-experienced simulation users to begin
building simple models with very little training and in minimal time. Simul8 has built
on the growing success of Visual Interactive Simulation (VIS) tools now used in many

sectors of business and education. VIS technology is discussed in section 8.4.

Simul8 adopts the process-based approach to discrete-event modelling (section 3.6.2).
It allows the user to create a visual model of the system being investigated by drawing
objects directly on the screen. Typical objects may be queues or service points. The
characteristics of the objects can be defined in terms of, for example, capacity or speed.
The basic philosophy of Simul8 is to represent a system graphically, using icons to
represent the various elements of the model. The flow of entities through the system is
made by connecting these elements; the rules governing this flow can be made very

complex. When running the simulation, the flow of work around the system is shown
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through animation on the screen so that the appropriateness of the model can be
assessed. Once the structure of the model has been confirmed, a number of trials can
be run and the performance of the system described statistically. Statistics of interest

may include average waiting times, utilisation of facilities or resources, etc.

A Simul8 model consists of objects (items such as storage bins (queues) and work
centres) on the screen with a default structure (routing) between them and work items
which flow around the model. These work items are the entities that move around the
system, for example patients in a hospital, products in a factory or invoices in an
accounts department. Work items can have associated attributes (for example age, sex,
diagnosis). Each individual work item can have different values for each of its
attributes. Values of attributes may be changed and used by work centres. An
important type of object is a resource which can be used at the work centres. For

example, if work centres are machines, they might need recourses called people to

operate them.

The basic Simul8 building blocks are summarised below (with default graphics,
although these may be edited or replaced by images from a Simul8 graphics library).

Corresponding illustrative CCU activities and objects are provided in brackets.

@ Work Item — an object (entity) that moves around the system (patient).

- . .
Work Entry Point — a place where work items first appear in the system

(patient arrives).

Storage Bin — a place where work to be done can wait until appropriate

resources or work centres are available i.e. a queue (patient waits for a bed).

ﬁ:—[ Work Centre —where work takes place on work items (bed).

ﬁ Resource — items in the simulation model which are required at work centres in

order for the work centre to work on an item (nurse, doctor etc.).

é Work Complete — a place where work that is complete (or otherwise “finished”)

leaves the model (patient leaves).
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In order to capture complex patient-flows through a CCU, extensive use was made of
Visual Logic within the Simul8 software. The use of Visual Logic acts as an internal
programming language allowing the modeller to incorporate rules governing the
movement of entities and behaviour of objects within the simulation that are outside
the scope of standard commands and parameters. For example, Visual Logic can be
used to test for a number of conditions before deciding whether to admit an arriving
patient. Figure 8.1 shows a Simul8 Visual Logic window for a work centre
encapsulating the necessary code governing the rules of early discharge of patients on

the CCU in order to free beds for arriving patients.

¢ SIMUL8 Visual Logic: Time Up Route-In After Logic

;. Time Up Route-in Atter Logic
= SET CanAdmit = 1
. Get from EXCEL  OutcomeofiCU24 , "ICU xIs]JICU Patierds” | 11 , PatCourt+6 , 1, 1
= IF RANDOM[O] > [OutcomeoftCU24)/100
F 1L O0P 1 =»»= LoopCourter »>» 16
+ SET BedVar = "Bed"+LoopCourter
+ “IF BedVar Count Conterts = 1
. : Select Currerd Work tem  BedVar , 1
= IF [Simulation Time]-[Timeln] >= [MinLoSICU}*24
=1 #F {Simulation Time)}-[Timeln} » L0S-24
- Get from EXCEL  OutcomeofiCU , “{ICUxISJICU Patierts™ , 10, PatCount+6, 1, 1
2 IF RANDOM[O] > [OutcomeofiCU]M00
+ SET Priortty = 1
- Select Current Wark tem  Time Up , 4
SET CanAdmit = 2
i LOOP 17 »»» LoopCounter2 »>= 32
. SET BedVar2 = "Bed"+LoopCourter2
= IF BedVar2.Court Cortents = 1
- Select Currerd Work fem  BedVar2 , 1
=F ,[Simulation Time]-[Timein} »= [MinLoSHDUJ*24
1= IF [Simulstion Time)-[Timein} » LoS-24
; Get from EXCEL OutcomeotHDU , "[iCU xIs]HDU Pstients” | 10, PatCourt+6, 1, 1
2 IF RANDOM[O] > {OutcomeotHDUO0
+ -SET Priorty = 1
. Select Current Work tem  Time Up , 1
SET CanAdmit = 2

Figure 8.1: Visual Logic code

Simul8 may also be linked to MS-Excel using a Visual Basic connection. This has the
advantage of using Excel as a user-friendly front and back-end to the simulation model.
Simul8 currently has very poor facilities for displaying user-specified results and is
particularly limited in allowing end-users to easily change parameter values without the
need to reference objects and entities within the model. Standard Visual Logic
commands can send and receive information to and from specified cells in the
spreadsheet. Visual Basic code built within Excel, employing the use of a Simul8
library of functions, may be used to perform a number of operational activities, for
example instructing Simul8 to start a run, end a run or simply change the parameter

values of various Simul8 objects.
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8.4 Visual Interactive Simulation (VIS)

Visual interactive simulation (VIS) originated with the discrete event work of Robert
Hurrion in the late 1970°s (Hurrion, 1978). Before that time, although simulation was
seen by many as an attractive tool in Management Science and Operational Research, it
was hampered by the complexity and lack of transparency inherent to many of the
models used (Bell and O’Keefe, 1987). In addition, the limitations of computer

technology had contributed to a general lack of accessibility.

Before VIS, simulation models were often characterised as black-boxes which typically
could not easily be verified, validated or even understood by many who could benefit
from them. Accessibility to such models was generally limited to technical specialists
within the larger organisations who were able to afford the computer technology
required for their operations. VIS represented an important development since it
effectively broke the black-box image of simulation. Use of computer graphics and
animation, for example, allowed the flow of entities through the system to be visually
represented on screen. Numerous studies have since demonstrated the importance of a

visual aid in the decision making process (Dickson et al., 1986 and Chau and Bell,

1995).

Since the 1970’s, VIS has benefited from the confluence of many developments in

computing and other external factors including:

o Continuing increases in computer performance.

e Rapidly falling costs of hardware.

e Cheaper and improved colour displays (VDU’s and LCD projectors)

e Increasing number of commercial VIS products and services —current VIS packages
on the commercial market include Witness, Simul8 and Arena.

o Increasing recognition of computer tools in management.

e (reater accessibility due in part to a recent fall in VIS software costs — for example,
Simul8 is now sold at $495 per license or a one-off site-license price of $999 for
educational establishments. As a result, Simul8 is rapidly becoming a popular tool

to use on Management Science and OR degree courses.
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8.5 A Simulation Model for an Individual CCU

8.5.1 Capturing the flow of CCU patients

The complex characteristics of an individual CCU, coupled with desired user

requirements, indicated a need for a sophisticated local CCU capacity planning and

management tool. Working alongside managers and consultants from a number of

critical care units, a detailed understanding of patient-flows was acquired. The

corresponding activity flow diagram is presented in Figure 8.2. Patient-flows are

appropriately generic as specified in the evolved operational modelling framework of

healthcare resources (section 4.4). Suitable use of model parameters allows the

simulation to be fine-tuned to reflect local individual CCU conditions.
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Figure 8.2: Activity flow diagram depicting patient-flows through a CCU
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8.5.2 CCU configuration

The operational modelling approach used in the CCU model can help to evaluate the
implications of various options for CCU patient care. What if..? scenarios may be

examined by changing the following unit configuration parameters:

(A) For separate ICU and/or HDU, or combined CCU

e Beds — number of ICU and HDU beds either on separate units or combined CCU.
Patients will stay in the bed for a sampled LoS unless they are early discharged (see

below).

e Holding Beds — number of ICU, HDU or combined CCU holding beds (trolleys).
A holding bed is used to accommodate arriving emergency patients when no main
bed is available. During the time spent on the holding bed, every effort will be
made to make available a bed by means of early discharge. If a bed becomes free
then the waiting patient will be moved provided that they will survive their stay on
the holding bed (a user-defined probability of death on the holding bed is necessary
as this initial time on the unit is critical and holding beds typically do not provide
the comprehensive facilities of a main bed on the unit. A separate probability of

death once on the unit is also defined in the model).

o Maximum Time on Holding Bed — the maximum permitted time an emergency
patient may spend on the holding bed whilst waiting for a bed to be made available.
If at the end of this time no bed is free, the patient will be transferred out of the

hospital.

e Number of Emergency-Only Beds — some beds may be reserved for emergency
only patients (for example, one emergency-only bed on a six bedded unit: arriving

elective patients will not be admitted if five or more beds are occupied).

e  Number of Elective Deferrals — elective patients that cannot be admitted will be
deferred. They will need to return at a later date (see below). Elective patients may
only be deferred up to a permitted number of times before receiving upgraded

status and high priority for admission.
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o Deferral Waiting Time — The time between an elective being refused admission

and re-attempting admission at a later date.

e  Minimum LoS for Early Discharge — patients may be discharged from the unit
provided they satisfy a number of criteria: they will survive; they are currently on
their last day of LoS; they have stayed at least X days, where X represents a user-
defined minimum LoS. The minimum LoS appears to vary between units

(although is typically 2 days), hence the need to parameterise.

(B) For a combined CCU only

e  Move to ICU from HDU — percentage chance that a high dependency patient will

deteriorate and need intensive care.

e  Move to HDU from ICU — percentage chance that early discharged intensive care

patients will subsequently need to stay on HDU (alternative being to move directly

to ward care).

The above unit configuration parameters are displayed on a worksheet in the Excel

front-end so that they may be easily referenced and edited by end-users (Figure 8.3).

E3 Microsoft Excel - ICU.xls [_[&] ]
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Figure 8.3: Excel front-end CCU configuration parameters
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8.5.3 Patient profiling

In order to characterise the uncertainty and variability in CCU patient needs, the model
allows up to six patient groups for each of ICU and HDU elective and emergency
patients. The necessary statistical analysis is conducted in Apollo (Chapter 5),
including the creation of these patient groups with demand profiles and LoS
distributions derived for each group. Currently the CCU model reflects demand
profiles through quarter yearly demand and daily profiles. Patient LoS is sampled from
a number of statistical distributions (Lognormal, Weibull, Gamma and Normal). Two
additional pieces of information are required: the probability of the patient dying
during a stay on a holding bed (emergency patients only), and the probability of dying

on the unit.

Intensive and high dependency patent information is included on separate worksheets
within the Excel front-end. Figure 8.4 shows illustrative intensive care patient

information with five emergency and two elective groups.

E1 Microsoft Excel - ICU_xls [-15] ]
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I
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Figure 8.4: Patient group information

Entering and editing daily demand profiles for each group is facilitated by the use of
daily variation graphs (Figure 8.5). The user may drag-up or down the bars on the

graph as necessary until the desired demand profile is depicted. Based on the
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simulation time during the year, patient group inter-arrival times are calculated using
the total yearly demand, current quarter yearly demand and relative daily demand (see

section 6.5 for greater detail).

B4 Microsoft Excel - ICU.xls [=[5]%]
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Figure 8.5: Excel graph capturing patient daily demand profile

8.5.4 Nursing constraints within a combined unit

Within a combined CCU, admissions are restricted by both the number of beds
(accounting for emergency-only beds) and nursing constraints. Because of their critical
nature, intensive care patients require a one-to-one ratio of nursing care. High
dependency patients are currently given a one-to-two ratio of nursing care (one nurse

can care for two patients).

Consider a combined CCU comprising of / intensive care beds, A high dependency
beds and E emergency-only beds. At most the unit will have (/ + 0.5H) nurses. Let i
denote an intensive care patient and /4 a high dependency care patient staying on the

unit. The CCU must satisfy the following conditions:

i+0.5h<1+0.5H (Nursing constraint)
and

i+h<I+H (Bed constraint)
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Furthermore, for all arriving elective patients:

i+h<I+H-FE (Emergency-only beds constraint)

8.5.5 Running the Simul8 model

Having configured the CCU and provided the necessary patient information, the

Simul8 model may be run for one year for a user-defined number of simulation runs.

Extensive use of animation within the package allows the user to monitor the CCU
status throughout the runtime. A number of statistics are displayed during each

simulation run, including the number of patients who have survived and died, the

number of patients on holding beds and numbers of deferred elective patients currently

waiting to be re-admitted. Figure 8.6 illustrates the Simul8 model during runtime for

separate intensive and high dependency care units with 8 and 6 beds respectively.
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Figure 8.6: Individual CCU Simul8 model
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8.5.6 Simulation results

A number of statistics are collected during each simulation run and sent back from
Simul8 to the Excel back-end on competition of each run. Statistics are grouped at the
intensive care and high dependency care levels, with a detailed breakdown for each

patient group. Statistics include:

e Admissions, number survived and number died.

e Bed-days used and unit occupancy rates.

e Emergency transfers and elective deferrals.

e Holding bed admissions and average waiting time.
e Number of early discharges.

e Number of elective patients with upgraded status.

Figure 8.7 shows the Excel overall simulation results worksheet with illustrative

output. A run results worksheet displays a results table for each simulation run.
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Figure 8.7: Illustrative simulation results
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8.6 Validating and Verifying the Simul8 Model

As a necessary part of simulation development, validation and verification techniques
have been utilised to ensure that the CCU simulation is behaving in the desired manner
and to increase confidence in the model operations. The working group contributed to
the model development at all stages and ensured that the simulation model reflected the
original conceptual schema. A number of validation and verification techniques, as

described by Sargent (1991) and discussed in section 6.6, were adopted.

Simul8 represents the system graphically on screen and the flow of work around the
system is animated so that the appropriateness of the model can be assessed and the
behaviour of the system’s objects over time examined. This is a major benefit of VIS
tools in aiding the validation and verification process. By stepping through the
simulation, moving entities (patients) through the CCU one-by-one, it was possible to

check that the Visual Logic code governing the flow of patients was functioning in the

desired way.

8.6.1 M/G/s/GD/s/« (blocked customers cleared) queueing model

In addition to various verification techniques, including degenerate tests, extreme-
condition tests and tracing, a simplified version of the Simul8 model has been
compared to an analytical queueing model. In many queueing systems, an arrival who
finds all servers (beds) occupied is, for all practical purposes, lost to the system. We
call such a system a blocked customers cleared, or BCC, system. Assuming that inter-
arrival times are exponential, such a system may be modelled as an
M/G/s/GD/s/xsystem. It would be too complex to formulate and solve the
necessary analytical model to capture all of the complex rules governing real-life flows
of patients (for example, incorporating early discharge rules, holding trolleys and
movements between HDU and ICU). Hence simulation model parameters have been

tuned to represent a simple single unit system described below:
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Model description

e A single unit with admissions taken from a single queue.

e Arrivals are taken from the queue on a FCFS basis.

o Inter-arrival times are assumed to have negative exponential distributions.

e Once all beds are occupied, subsequent arrivals are transferred out of the hospital.
e All patients have a mean LoS of 4.0 days.

o There is a patient demand of 600 per year.

Analytical solution

Assume that at time 0 all beds are free. The probability that » out of the s beds are

occupied is given by Erlang’s Loss formula:

py
n!

P = s a
1+ 4+ A+...+ A
where
A
p==
y7i
such that
> Pi)=1
i=0

It follows that in a unit with s beds, the percentage chance that a patient will be

transferred occurs when all beds are occupied, i.e. P(s)*100%.

Queueing model results and simulation comparison

The queueing model has been used to find the transfer rate in a unit with varying

numbers of beds. The analytical solution has then been compared to results from the

corresponding simulation model (Table 8.1).
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Table 8.1: M/ G/s/GD /s /e queueing model and Simul8 model results

s % Transfers — % Transfers —
Queueing Model Simulation Model
5 39.9 38.5
6 30.4 29.8
7 222 213
8 15.4 15.5
9 10.1 10.4
10 6.3 5.7
11 3.6 3.2

The simulation model performs very well against the analytical solution. The Simul8

model was also configured to mimic the real-life complexity of the CCU in question,

including the use of emergency-only beds, patient groupings and early discharges.
Using recorded data from the unit, the observed transfer rate was calculated and

compared to the results of the Simul8 model ‘( 15.9% and 15.5% observed and

simulated transfer rates respectively). This is an additional and necessary verification

process.

Validation, through the use of the generic framework and the adopted evolutionary

model development (section 4.2), and verification methods such as the comparison

with the above queueing model and observed data, help to increase confidence with the

Simul8 model and ensure that it is sufficiently accurate and necessarily detailed. It

becomes possible to use the model to examine a number of options for the care of

patients in a CCU.
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8.7 Model Applications

The individual CCU Simul8 model has been used by a number of different Critical
Care Units across the UK as a decision-making aid for consultants and managers. It
has been used to examine various configurations of care at a local CCU level. An
illustrative list of model applications is provided below. This is not intended to be an

exhaustive list of possible uses.

» Bed capacities — the current Government has indicated a desire for combined units
to replace existing divisions between ICU and HDU. There is a need for each unit
to model current bed needs and the consequences, where relevant, of moving

towards a combined bed-pool.

» Nursing needs — a combined CCU is restricted by both bed capacities and nurse
availability. It is important to quantify the required nurse-mix and to understand

how various nursing levels impact of the unit’s efficiency and effectiveness.

> Holding bed capacities — to appreciate the benefit of holding beds and to quantify

how different numbers of holding beds affects transfer and deferral rates.

» The provision of emergency-only beds — to examine the relationship between the
numbers of emergency-beds provided and the unit transfer, deferral and occupancy

rates.

» CCU operating rules — examine in detail the consequences of changes to a number
of unit operating rules, such as the impact of early-discharges and maximum time

allowed on a holding bed.

» Re-configuration of care-pathways — in addition to modelling the redesign of
separate ICU and HDU to a combined unit, the model may examine other
configurations of care, for example allowing ICU patients to stay on HDU beds and

preventing HDU patients from moving to ICU beds.
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8.8 A Simulation Model for a Region of Co-operating CCUs

There is currently a great need to better plan and manage CCU beds at a regional level.
The Department of Health’s review of adult critical care services highlighted the lack
of co-operation between units within a region. Improved planning and management of
resources within a region of co-operating units has the potential to greatly benefit both
CCU healthcare professionals and patients alike. For example, given that two
neighbouring units both reserve one emergency-only bed, the consequences of just one
“floating” emergency-only bed shared between the two units needs to be fully
examined and understood. This scenario would likely cause a drop in the elective
deferral rates (increased capacity for elective patients) but could unwittingly cause a
small but significant rise in the emergency transfer rate. Such a critical issue
demonstrates the power and value of an operational modelling approach. It is possible
for managers and consultants to simulate various polices on a computer as opposed to
potentially placing lives at risk by real-life experimentation with unit configurations
and admission rules. Furthermore, often within a region of CCUs (such as those in a
large city), some units are desighated specialist centres for the treatment and care of
patients with critical conditions such as major head injuries. It is therefore important to
capture this detail in a model of co-operating units by simulating the transfer of

specialist group patients from one unit to another.

Given the desired needs of the working group and the real-life complexities
surrounding the flow of patients within a region of CCUs, it was decided to build on
the foundations of the individual Simul8 model and evolve a model for up to six units
within a given area. The regional model follows the same basis as the individual unit
model, namely that the same configuration parameters must be defined for each of the
six units together with the necessary information on emergency and elective patient

group demand profiles, LoS distributions and survival probabilities.

In order to incorporate the role of the specialist centres, information for a number of
specialist patient groups are entered on to a worksheet in the Excel front-end. Figure
8.8 illustrates a patient group for head injuries and includes the expected annual

number of patients, LoS distribution and a preference matrix of which unit they should
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be sent to (more than one CCU may admit major head injuries and so the user may

express an ordered preference to where patients should be sent).
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Figure 8.8: Specialist patiént group worksheet

Within the individual CCU model, transferred patients will be sent to another hospital.
In practice this will be to the nearest CCU with an available bed. The movement of
transfers within an area is included in the regional model through a transfer preference
matrix. These preferences will typically reflect distance, or other factors, between
transferring units. Preferences are numerically ordered (first choice, second choice
etc.) with transferred patients attempting to find an available bed in a unit starting with
the highest priority (preference). An Excel worksheet captures the user-specified

preference matrix (Figure 8.9).
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Figure 8.9: A preference matrix governing the movement of transfers between units

If no suitable available bed can be found in the area, the patient will be transferred to a

hospital outside of the region. This statistic is displayed on screen when running the

model (Figure 8.10). Other statistics, as indicated in the individual model, are shown

on a run-by-run basis in the Excel back-end.
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Figure 8.10: Regional CCU Simul8 model
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8.9 Advocating Change Through Improved Co-operation

The regional CCU Simul8 model has been used to highlight a number of ways in which
CCUs could improve patient-care through improved co-operation amongst a number of
regional units. Using “hands-on” workshops and demonstrations, the model has helped
consultants and managers to appreciate the value of co-operation and to fully
understand and quantify the benefits. The regional model has shown that careful
planning and management of a number of CCU variables can significantly impact on
the effectiveness and efficiency of a number of co-operating units. These include, but

are not limited too:

> Improved planning

e Unit re-configuration — planning and provision of beds for each unit whilst
acknowledging patient case-mix across the region and specialist centres.
Consequences of a mixture of combined and separate units and the effect of
changes in bed and nurse capacities on the care of patients within the region as

a whole.

o Transfer preferences — evaluation of changes to the transfer preferences of units

and the impact on the necessary number of CCU resources.

> Improved management

o Shared bed capacities — greater flexibility in the provision of beds between
units provides a responsive environment in which bed supply more closely
matches bed needs over time. For example, provision of one emergency-only
bed between two units as opposed to one emergency-only bed per unit. This

will help eliminate redundant capacity and reduce deferrals.

o [lexible admission/discharge rules — greater flexibility achieved through
improved communication between units can help reduce daily transfer and
deferral rates and correspondingly increase the overall occupancy rate. For

example the early discharge or transfer of patients from one unit to another.
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8.10 Chapter Summary

The extreme costs of critical care, coupled with the relatively few beds available and
the critical medical condition of the patients admitted intensify the planning and
management issues. A recent Department of Health review concluded that there is a
great need to better plan and manage CCU services at both a local (individual) and
regional level. In planning for CCU capacities we need information for answering the

following types of question:

¢ What are the effects of changing the number of intensive care and high dependency

beds in a particular unit?
e What are the effects of changes in the casemix of the patients?
e What are the effects of changes in the lengths of stay of the patients?

e What are the advantages, and disadvantages, of formal co-operative arrangements

for the care of patients in a group of units?

To help meet this need and provide the necessary detailed information, two detailed
models for the planning and management of CCU services have been developed within
the Simul8 package, an off-the-shelf simulation tool. The first model considers
resources within individual units whilst the second models co-operating regional units.
The developed models take individual patients through time as they pass through the

complex care-pathways within the CCU.

Both simulations have been utilised in a number of ways by the working group (a team
of CCU managers and consultants who have guided the work) to aid them in evaluating
the implications of various options for patient care. With these models it is possible to
have any arrival patterns, for example, winter pressures, and any casemix of patients.
Thus the models can be tuned to capture the important, different, features of the various
critical care units, the current practice, and possible changes in the current practice, can
be reflected in the models. The modelling process has highlighted different approaches
to help improve patient care by taking appropriate action at the individual unit level

and through improved co-operating between regional units.
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Chapter 9 — Moving Forward: Challenges
and Opportunities

9.1 Chapter Introduction

This chapter draws together the research themes of previous chapters and aims to
provide a synthesis of the research, practical work and issues raised. In many respects
the work may be regarded as a feasibility study into the potentials of operational
modelling for the planning and management of healthcare resources. During the period
of research, working alongside a number of healthcare personnel from the participating
hospitals, a number of central themes have emerged. The purpose of this chapter is to
explore these issues representing both challenges and opportunities, in order to provide
a basis for tentative conclﬁsions about the current state of modelling for healthcare.
Against the backcloth of the literature review, and based on personal experiences of
working with the hospitals and the lessons learned from the research work itself, an
attempt is made to present a framework for the successful design and implementation

of operational models in a healthcare environment.

9.2 Identifying Critical Issues and Challenges

During the course of the case study work, a number of issues defining the primary
challenges faced by the modeller in this field have emerged. It is fair to say that their
resolution determines the likely success or failure of healthcare modelling in general.

This section explores these key challenges under a series of subject headings.
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9.2.1 Complexity

Anyone who has experienced the richness of interaction and activity of a district
hospital, for example, will readily empathise with the inherent complexity of the
system. You cannot fail to be impressed by the elaborate organisational structure and
systems entailed in its operation. Complexity exists at all levels of the health service,
from the society of disparate individuals who comprise the staff and patients, to the

organisational and strategic relationships that exist both within and between the service

providers.

The field in which the NHS is operating is in constant turmoil. It is absurd to assume
that the delivery and planning of healthcare will remain static in this country. The
political and socio-economic elements of the healthcare system give rise to the need for
structural reform. In the UK there is little doubt that the complexity of healthcare
management has been compounded by government led changes. Some of the multi-

dimensional factors contributing to the general complexity of the system include:

e Demographic change
e Social change

e Organisational change
e Political change

e Strategic change

e Technological change
e (Clinical change

e Inherent variation and uncertainty in treating individuals

Often a change at one level of an organisation can impact in an unforeseen way on
other levels of operation. For example, changes to the number of beds will impact on
the number of necessary theatre sessions. Thus organisational and strategic changes

cannot be considered in isolation from the complex network of inter-and intra-relating

hospital services.

In such circumstances, it is important to ask whether quantitative operational tools,

such as the simulation models presented in this thesis, can play a useful role in the
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context of healthcare management. It is evident that a common current practice is to
plan and manage hospital capacities through a simple deterministic spreadsheet
calculation using average patient flows, average needs, average length-of-stay, average
duration of surgical operations etc. Mathematically speaking, a hospital corresponds to
a complex stochastic system so that the common deterministic approach for planning
and managing the system can be expected to be inadequate. It has been shown that the
deterministic approach will typically underestimate hospital requirements. With great
advances being made in computing power and technologyi, it is fair to conclude that the
need to create simplistic unrealistic models is unnecessary and outdated. The
mathematical modelling approach of OR, and in particular simulation methodology, is
ideal for dealing with complexity, uncertainty, variability, constraints, and scarce
resources. Appropriate models can avoid the dangers of planning on the basis of
average values only. This research has identified the benefits and opportunities of the
development, solution, and validation of sufficiently detailed stochastic models for

planning and managing hospital capacities.

9.2.2 Diversity

Diversity exists at all levels in the health service and forms a central aspect of the NHS
culture. It is a reflection of a number of factors including the diversity between
individuals at work within the NHS, between the management of the service providers,
between the information systems employed and between the populations that each

institution seeks to serve.

The majority of NHS management is borne by the administration of local service
providers themselves. For example, a hospital will plan and manage patient care at a
local level, independently of other hospitals in the UK. Current Labour Government
policy appears to be promoting this cause, with policies directed at giving greater
managerial flexibility at a local Trust level. It may be argued that this helps to ensure
that past inefficiencies of the NHS are avoided by giving increased responsibilities and
incentives, together with the penalties that come with poor performance, to effectively
privatised parts of the healthcare system. The result however is that healthcare

institutions, although conforming to national standards, often have their own
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idiosyncratic methods and operations. It is amazing to contemplate that between
hospitals, even separated in distance by a few miles, the differences are clearly evident.
For example, there are different ranges of specialities, different arrangement of wards

and different ways of collecting and analysing data within the Trusts.

From a modelling perspective, this represents a clear challenge. One approach could
be to focus research at the level of individual service providers and to limit findings to
particular institutions. This approach seems to have been adopted by the vast number
of papers reviewed during the literature search as detailed in Chapter 3. The major
downside to this approach is the large overheads entailed in producing institutional
specific models with irrelevance to a wider NHS context. Modelling tools that are
targeted for specific areas of healthcare application are limited by the focused scope of
the models. Unfortunately many of the proposed models suffer from this fate of over-

specificity to one scenario of care.

More generic models, that may be applied to a number of healthcare providers and
used to model a number of patient-care scenarios, bring obvious benefits. The
development of the generic framework for the modelling of hospital resources
exemplifies one variant of the generic approach. Whilst acknowledging the challenges
of diversity and complexity, models within this framework incorporate generic
processes with the ability to fine-tune the model to reflect local conditions. Hence we
obtain one operational model for many healthcare settings as opposed a hospital-
specific suite of programs. Unfortunately there is little evidence of their widespread
adoption at the management levels in the NHS. Hopefully over time, funding bodies
such as NHS Executive and MRC will come to appreciate and fund more projects
aimed at developing operational models to deliver research findings applicable to the
widest possible healthcare audience. Such models represent excellent value for money

in terms of grant expenditure versus advancement and transfer of knowledge across the

NHS.
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9.2.3 Credibility

An operational modelling approach is likely to be unfamiliar to the vast majority of
healthcare managers and clinicians in the NHS. It is often consequently treated with
caution and slight contempt. The adopted evolutionary development approach taken in
this research goes some way to easing the fears of the client. This approach requires a
constant dialogue with the end-users (hospital consultants and mangers). Models may
then be created and enhanced alongside the potential users. It is fair to say that
confidence in the model is only gained through verification and validation techniques.
This ensures that the model is right (behaves as required) and that it is the right model
(1s modelling the true real-life system). This should be considered as a stepwise
process; an ongoing dynamic in which both the modeller’s and client’s confidence is
gradually increased. Hopefully there will come a time when the model is trusted

enough by the client to accurately represent the real system to a degree that is sufficient

for the purposes at hand.

Validation and verification must be recognised as fundamental to the modelling and
development of healthcare resources. Given the political sensitivities that often
accompany the decision making process in healthcare management (section 9.2.5), this
becomes especially important. Managers and clinicians appear only to gain confidence
and trust after the model has been used and is seen to be validated by mimicking

observed results over time.

9.2.4 Data availability and quality

The old adage “garbage in,; garbage out” is nowhere more relevant than in the context
of modelling and simulation. A model is only as good as the data that informs its
development. Within the healthcare domain, the range of data required varies
enormously according to the nature of the model and its purpose. Confidence in the
data however, is prerequisite to a model’s credibility; a necessary condition (but not

itself sufficient).
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Although there is undoubtedly an enormous quantity of data collected in one form or
another within the health services, it is less certain that this always forms the basis for
useful decision support. More recently NHS Trusts have responded with the creation
of departments given grand names such as Hospital Strategic Analysis or Trust
Information Team. Now more than ever there is a need for evidence-based hospital
planning and management by utilising the vast data supply to deduce meaningful
hospital information for managers. One of the main factors inhibiting the efficient use
however is the multiple classes of data that are collected and the wide range of interest
groups and objectives that need to be served. Financial, contractual, clinical,
personnel, operational, audit and strategic needs all place different demands on the data
collection exercise. Partly in response to this need, the systems used for collection vary
widely, ranging from manual systems such as nurse diaries and operating theatre
logbooks, through to specialised departmental databases and hospital information

systems.

In hospitals, the primary source of patient information is the Patient Administration
System (PAS) or Patient Management System (PMS). This is used to routinely collect
information on every patient who passes through the hospital. Typical fields include
the patient name, address, date of birth, admission date, discharge date and diagnosis
(HRG). Much of this data formed a central role in the case studies (Chapter 7). With
such a large source of data, often in the region of 70,000 inpatient records of
information per year for a typical medium sized NHS hospital, it is so bewildering and
frustrating that the NHS often seems starved of information with limited use of

evidence-based management at the Trust level.

The issue of data quality is clearly central to building confidence in the modelling
process. Accuracy unfortunately can rarely be assumed. The recording of clinical
data, for example, is an area where problems of classification are particularly acute.
Likewise, the recording of medical activity, especially within hospitals, is fraught with
problems. The use of the FCE (Finished Consultant Episode) as the standard activity
measure for instance, has widely been criticised although an alternative is not
forthcoming. There is a strong suspicion that FCE measurements can be too easily
manipulated for contractual purposes, for example, by amplifying the total number of

FCEs by transferring the same patient around different hospital specialities.
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In many respects the problems of attaining high data quality in healthcare is a reflection
of the inherent difficulties and complexities as discussed in previous sections of this
chapter. Clinical coding for example is beset with difficulties and often coding clerks
may have little clinical knowledge. Databases themselves are often incomplete with
missing values and erroneous data entries in many of the fields. For example, it was
common during the course of this work to find within provided datasets negative ages,
clinical codes that do not exist and patients who were apparently discharged before
they were admitted. Data quality represents a major challenge to the modeller.

Extreme care must be exercised when handling and analysing hospital data.

9.2.5 Politics

The political dimension of healthcare plays a major role in the management and
decision-making processes within the organisation. It seemingly permeates every level
of the service and becomes quickly obvious to anyone involved in the management and
planning of resources. The NHS i1s one of the best loved in principle, most vilified in
debate and least understood parts of the welfare provision of this country. Funded
largely from national taxes, central government has an intense interest in its well being,
the resources it consumes, and the service it provides. This political element
significantly impacts the way decisions are made and how they are presented. At local
level public opinion often manifests itself as opposition to changes to its service. At

the national level government policy is frequently a subject of much debate.

It is important that modellers understand the politics of the environment in which they
are working. It is unlikely that operational models will be perceived in a neutral light

given the pervasive nature of the political dimension in the NHS. Precautions must be
taken to safeguard against distortion and misuse of the models, for example by

managers trying to use the model to prove their own beliefs.

The political element was never more evident than when the model was being used to
examine the way in which the operational effectiveness and efficiency of the system
could be improved by changing the working culture of hospital consultants. There still

persists in today’s NHS a them and us working culture, with consultants often in
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conflict with specialty managers attempting to bring managerial changes to the running
of wards. Hospital managers often saw the simulation as a tool to potentially influence
change. It should be stressed that operational modelling tools have a large role to play
in that they can quantify the impact of change and help in objective, as opposed to

subjective, decision-making. There is however a need to be aware of any specific sub-

group agendas so that the modelling process is not railroaded by external political

factors.

9.3 Identifying Opportunities

The previous section has highlighted potential challenges that may impede an
operational modelling approach for the planning and management of healthcare. The
work however has also identified a number of opportunities for simulation modelling to

make a significant impact on the way in which healthcare is delivered within the NHS.

9.3.1 Application

There is a vast range of areas in which simulation could be applied in healthcare. Even
within a specific area of research, there are a number of ways in which simulation
could be utilised. Some of these themes will be picked up within the further research
discussion in Chapter 10. Below is a list of potential simulation projects within a
hospital capacity modelling context. This list was evolved from discussions with

participating NHS Trust managers.

e Planning bed numbers

e Workforce rostering

e Planning operating theatre needs

e Scheduling operations

e Management of ward beds on a day-to-day basis (diary-planner)
o Costing resources

e Contingency planning

o Management of waiting lists
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e Resource planning for new configurations of care
e Planning and management of outpatient resources
o Qutpatient clinic scheduling

e Resource planning for a health authority (movement of patients within a region)

In addition to the many areas of application, it is possible to define various fypes of its
use. Model utilisation will often dictate which form of simulation is necessary. For
example, VIS could be used when it is desirable to visualise the movement of patients;
perhaps suitable for bed planning but unnecessary for a waiting list management
simulation tool. Potential types include operational simulation (what-if scenario
tools), educational simulation tools (to facilitate understanding of a particular system)

and real-time simulations (decision support tools).

In addition to what may be termed patient-flow simulation models, which capture the
movement of patients through healthcare organisations (hospitals, outpatient clinics,
GP surgeries etc.), are patient-progress models which capture the movement of
patients through the natural history of a disease or medical complication. The Institute
of Modelling for Healthcare (IMH) has a wealth of experience in building models for
this purpose. These including simulation tools to examine the care of patients with
asthma and HIV/AIDS, and screening models for colorectal cancer and breast cancer.

There is an endless list of possible applications for the modelling of diseases.

9.3.2 Emerging technologies

Advances in simulation software and technology are only now beginning to be applied
in new areas of healthcare. This has been aided by dramatic falls in the cost of
computing hardware. Access to powerful simulation tools is no longer restricted to
large businesses with large research budgets. Instead, for as little as under £300,
hospitals may purchase easy to use simulation packages for their own purposes,

provided of course they have suitably qualified personnel to work them.

More recent advances in simulation include ‘Virtual Reality’ (VR) applications which

are now becoming more widely used in healthcare, primarily to allow consultants to
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rehearse complex surgery on a three-dimensional computer-generated human body.
Other applications of VR include 3D graphics built into simulation software to allow
the user to model a hospital building (for example the WITNESS software by Lanner
Group).

Real-time systems also have a major role to play in the future of healthcare
management. For example, the use of decision support systems (DSS) to assist in the
daily running of a hospital. Such tools represent a large opportunity to the OR
community. Although there has been some evidence of their use in recent use (Rojas
and Martinez, 1998), there is however a great need for similar and more advanced

models for use in a wider healthcare setting.

9.3.3 Promoting the cause

Key to the success of the future role of operational models is the ability to extend the
user base; to encourage and promote the methodology. This may be achieved through
successful projects being given the acknowledgment they deserve in publications that
provide the widest possible readership to healthcare professionals (e.g. BMJ).
Academics tend to limit publications to more technical and subject specific audiences
through mathematical, operational research and computing journals. There is a real
need for the transfer of knowledge to potential healthcare “clients”. Experience has
shown that many managers are simply not aware of an operational approach and in
particular that of simulation. It is only through discussions and presentations of

existing models that they are able to understand and appreciate the potential benefits.

9.4 Selecting an Appropriate Simulation Tool

The research work as described in this thesis has utilised different simulation
approaches for the modelling of healthcare resources. The deliberate choice of
different techniques allows for a discussion on the advantages and disadvantages of

each approach. In general, careful consideration should be given to selecting the
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appropriate simulation tool for the project in hand. The choice will likely depend on a

number of factors, such as:

e (lient preference

o Cost

e Time

o Size of simulation (estimated number of simulated entities) and complexity

o Available computer hardware (to develop on and that of the end user to run on) and
software, and existing client IT infrastructure and support

o Expertise/skills of the modeller

e Speed of simulation (runtime)

e The importance of a visual representation (VIS)

o Whether the model will be handed over to client

e Ease of use by end user

In essence, the modeller must choose between building the simulation from scratch
themselves (a programming approach) as opposed to making use of existing simulation
tools (off-the-shelf approach). Furthermore, if the off-the-shelf approach is chosen, it
may be possible for the modeller to adapt the model in the desired manner by
incorporate some programming elements outside of the software package itself (e.g.

combining Visual Basic with Simul8 via an Excel front and back-end).

The PROMPT model (Chapter 6) was developed using the programming approach.
This was built within the TOCHSIM simulation shell using Object Orientated Coding
in a Delphi software environment. The CCU simulation models (Chapter 8) however
have been built using the commercial software package Simul8 and enhanced through
Excel, Visual Logic and Visual Basic. Based on the author’s experience of creating a
number of healthcare simulation tools, the purpose of this section is to highlight the
key benefits and limitations of both the programming and off-the-shelf approaches.
These points are intended to act as issues to consider when proceeding with a
simulation-modelling project. Clearly there is no right or wrong answer to the question
of which approach to select. Instead, the final choice of tool will likely depend on the

modeller’s personal preferences, model utilisation, the factors bulleted above and the

issues raised below.
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@
9.4.1 The programming approach (‘

v Benefits

e The model can be design to meet the exact specification

e It may be tailor-made for the end user

e It does not require the client to buy commercial software — only the programmed
executable is required to run the model

e The simulation may be readily designed to read in data from / output data to
existing client systems

e Provided models are constructed using a suitable simulation shell (e.g. Three-phase
or event-based approach), run-time speeds are typically very fast

e There are no constraints to the possible size of simulation (numbers of entities,

resources, activities etc.)

o Concerns

e Takes a long time to code and build models (more suited for mid to long-term
projects rather than for quick solutions)

e VIS elements may take a long time to design and code

e Requires modeller with skills in computer programming

9.4.2 The off-the-shelf approach %

v Benefits

e Rapid time to design prototypes and final model

e Requires little programming skills as most packages use Windows ‘point and click’
technology (create the model by selecting appropriate simulation objects from the
menu toolbar)

e Possible to build the model ‘in front’ of end user (design and draw processes
directly onto the computer screen interactively with end user)

e (Can enhance model by linking to other packages (e.g. MS-Excel which most clients

are familiar with)
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o Concerns

e Model may not meet exact user requirements (for example, limited functionality of
objects within software may not mimic exact real-life processes)

o Difficult to give a tailor-made appearance (for example no main menu, problems
with customised data input and summary sheets, limited number of graphs
permitted within software package etc.)

e Requires the client to buy the commercial software (issues with cost, license

problems and number of machines that will run the software)

9.5 Towards a Framework for Successful Operational

Modelling for Healthcare

Healthcare modelling projects will typically be varied in their nature, according to the
needs of the client and the hospital system under consideration. Based on the author’s
experiences of working with a number of healthcare clients, some general conclusions
and issues however have emerged. The following list has consequently been evolved
and is intended to provide points for discussion within a framework for the successful
implementation of healthcare operational models. Each of these issues should be given
the due attention they deserve, as they will ultimately determine the likely success or

failure of the project. This framework is intended for use when embarking on a new

study.

The thirteen discussion points are described below. A framework has been evolved to
show the natural order and causal relationships between these issues. Each healthcare
project may be divided into three high-level components: Pre-model, Model and Post-
model stages. The presented framework illustrates the positioning of the thirteen issues

within the modelling project as a whole, together with inter-dependences and natural

orderings.
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1. Form a steering group

Identify appropriate hospital personnel to form a group to steer the direction of the
work. This group should meet at agreed regular intervals and should discuss project
management issues. Members should be made up from relevant areas of the hospital
who should act as key contact points for information or provide access to other staff.

Appoint one member of the steering group to act as Chairperson.

2. Conduct a feasibility study

A critical part of any project: scope out the project and create a project brief to be
agreed by the steering group. Identify what is required and crucially what are the
project deliverables and time scales. Check for any potential obstacles such as lack of
necessary data or access to key hospital staff. If deemed feasible, a comprehensive

feasibility study lays an excellent foundation for a successful project.

3. Spend time collecting the necessary data and information

A considerable amount of time should be spent working on-site at the hospital and
liaising with hospital “process-owners”. Much of this contact may be informal and
unstructured, although time should also be spent sitting on any existing and appropriate
working groups and within process re-design teams. These meetings provide a rich
source of insight into management processes at different levels and consequently add to
the understanding of hospital. A range of structured methods should also used to elicit
feedback as necessary. Such techniques could include questionnaires, structured
interviews and more soft-system OR methodologies for brainstorming and cognitive
mapping activities. Raw data may be obtained from the relevant hospital data sources

(such as Patient Management Systems).

4. Pay attention to data quality

Having obtained the necessary data and information, never assume completeness or
quality. Check issues that might have biased the contents (such as a sudden surge in
day-case surgery to meet government targets). Carry out necessary preliminary data

quality checks and analysis to identify any outliers, data entry errors or anomalies.
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5. Think carefully about the level of detail

One tension that exists within healthcare modelling is the extent to which it is possible
to abstract the processes of care and still retain a level of accuracy within a model
capable of producing useful results. A trade-off needs to be recognised between the

need to simplify processes and the need to retain detail to accurately reflect the real

system.

6. Select the appropriate tools

Initially spend necessary time to decide on the most appropriate tool(s). The OR
practitioner should call upon their toolkit of OR techniques and select those which best
meet the needs of the problem with the end user in mind. For example this could
involve simulation models (with careful selection of the best methodology as discussed
in section 9.4) coupled with suitable data analysis packages and databases. Bear in
mind the desired end product which will influence the appropriate tools. For example,

if a graphic representation of the system is required then this will narrow the range of

potential approaches.

7. Design for wide use

Develop models with flexibility in mind. For example, where possible parameterise
variables so that they may be readily changed by end-users at the hospital and indeed to
reflect conditions at other hospitals (potential clients). This level of flexibility avoids

the misgivings of institutional specific models with irrelevance to a wider NHS

context.

8. Involve end-users at all times

Maintain strong links with the client and make the necessary visits to the hospital to
meet key personnel. Prototype models should be developed alongside end-users and
not independently from them. A successful project involves a powerful combination of
OR practitioners and medical experts. Be aware that if at the end of the work you are
planning to propose change, there has to be a top-down emotional case for change as
well as a bottom-up rational case for change. Hospital politics are likely to be

entangled within this process of change (see later point).
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9. Build credibility
Spend time getting to know key personnel and understand their role within the
organisation. Presentation of prototype models to targeted individuals will build

credibility over time if the models can be seen to be meeting expressed user needs and

reflecting real-life processes.

10. Acknowledge the politics
Seek and acknowledge any political sub-agendas. Maintain a non-biased objective
view throughout the work. Try to keep a safe distance from political issues but

understand and accept political relationships within the organisation. Use these to your

own benefit.

11. Allocate resources
A successful project will need the necessary resources allocated to the project both
within the hospital and back at base (practitioners organisation). These are not only in

terms of human resources but should include computing hardware, software and other

resources as relevant.

12. Foster relationships
Keeping the client happy with good working relationships and a successful outcome

will likely lead on to future projects with the same client or useful endorsements when

approaching other healthcare organisations.

13. Promote the results

Ensure that successful projects are promoted both within the hospital and to a wider
healthcare audience. This may be achieved through presentations of the work at

healthcare meetings, conferences and through publications.
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........................................................................................................................................
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Figure 9.1: A causal diagram for successful implementation of healthcare models
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9.6 Chapter Summary

Healthcare modelling is beset with many challenges. It is important that careful
consideration is given to these issues, ranging from politics through to data quality and
availability. In order for a healthcare operational modelling project to succeed, a
number of points should be borne in mind both before commencing and during the
work with the healthcare organisation. A framework towards successful
implementation has been evolved through the author’s own experiences. This shows
that many of the inherent challenges may be overcome by adopting suitable working
methods and standards. Most of these reflect issues that are unique to, or intensified in,

the healthcare environment.

With greater emphasis now on efficient and effective healthcare to meet the needs of
our nation, these are surely exciting times for healthcare OR. There is so much to be
done and endless possibilities and opportunities. It is crucial however that the
necessary steps are taken to ensure that the future generation ofiwork meets the true
needs of managers and clinicians. n particular, careful thought should be given to
selecting the appropriate operational tools. Successful projects should be promoted to

a wider healthcare audience.
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Chapter 10 — Conclusions and Further
Research

10.1 Chapter Introduction

The provision of healthcare services is perhaps one of the largest and most complex
industries worldwide. As one of the essential necessities to sustain life, it faces the

consequences of increasing demand in times of limited financial resources and

competing social needs.

The current policy in the United Kingdom focuses on appointing responsibilities and
decision making to regional and district health authorities rather than the centralisation
of power. It is expected that in this way the needs of the populatioh in each region will
be successfully met, thus leading to the improvement of the NHS performance.
Providing the appropriate medical care involves decision-making in terms of planning
and management of the healthcare services and the resources contain within. However,
such decisions occur in a larger context that includes ethical, economical, social and
legal considerations. Issues surrounding planning and management of healthcare

services are varied and include:

e The need for appropriate level of care.
e Supply of adequate resources, including beds, operating theatres and workforce.
e Measurement of resource consumption.

e The need of effective monitoring of the provision of care.

To help meet these needs, the research as described in this thesis has explored many
issues and has proposed various frameworks and models for use within the healthcare
profession. The purpose of this chapter is to review the ground covered and to outline

the future direction of research in this field.
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10.2 Thesis Review

This thesis concerns the planning and management of healthcare resources. The
purpose of this section is to discuss whether the research objectives, as discussed in

section 1.2, have been met and to summarise the main conclusions from the research

work.

10.2.1 Simulation methodology as a tool for decision support

Within the healthcare environment, it is clearly apparent that there is a great need for
detailed quantitative management tools to aid decision-making. This has been evident
through the expressed needs of steering groups and through the magnitude of possible
model applications, some of which have been described through case studies (Chapter
7). To many in the profession, the use of operational tools such as the adoption of a

simulation methodology represents a new and untested concept.

A common current practice is to plan and manage hospital capacities through a simple
deterministic spreadsheet approach using average patient-flows, average needs, average
length-of-stay and average duration of surgical operations. Patient-flows, patient needs
and utilisation of hospital capacities involve complexity, uncertainty, variability,
constraints and scarce resources. Mathematically speaking, a hospital corresponds to a
complex stochastic system so that the common deterministic approach for planning and

managing the system can be expected to be inadequate.

Unlike deterministic models, stochastic models provide a more accurate and realistic
model by incorporating uncertainty and variability through the use of probabilities and
random variables. In particular it has been shown that such models contain desirable
properties for the modelling of healthcare resources, in which the time between
transitions of states can occur after any positive time spent in a state and where this

transition time can depend on the transition that is made.

The analytical solution of stochastic models, as necessary for the modelling of hospital

capacities, presents a formidable challenge. Unless restricting assumptions are applied,
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many stochastic models are impossible to solve analytically. Numerical methods are
needed for solving realistic stochastic models. A computer simulation need not make
such stringent simplifying assumptions and is an ideal tool for modelling hospital
capacities. It is hoped that this thesis has demonstrated the power of computer
simulation in support of management decision-making processes for a variety of

healthcare resources.

10.2.2 Classification techniques

The research has explored the use of classification techniques for the creation of patient
groupings. Necessary patient groupings may then be fed into developed simulation
models and individual patients from each group passed through the particular
healthcare system of concern. In order to capture the uncertainty and variability
amongst the patient population, a number of classification techniques have been
considered and evaluated for their relative performances and practical usefulness.
Research has shown that there is not necessarily a single best classification tool but
instead the best technique will depend on the features of the dataset to be analysed.

The research has made a start in investigating what these features are with particular

emphasis on healthcare data.

A survey of healthcare staff has however revealed that tree-based tools, such as CART,
do have a greater practical appeal than that of the other tested techniques. This is a
measure of the extent to which the CART algorithm produces comprehensible results
that are generally easier to interpret by medical staff than the results of other algorithms
and on the time it took for hospital staff to understand the technique, prepare the data

and actually perform the analysis to produce correct and meaningful results.

A statistical package, Apollo, has been developed as part of the evolved generic
framework for modelling healthcare resources. Apollo incorporates the CART tree-
based algorithm, that assists in the production of clinically and statistically meaningful
healthcare groupings. For example, these could be patient groupings based on LoS,
operation times or survival rates. Derived groupings may be automatically saved and

fed in to developed simulation models within the framework.
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10.2.3 Evolving a generic framework

A generic framework has been evolved in the light of perceived user-needs and real-
life hospital processes. Developed models for hospital resources and critical care units
should be designed within this framework. A specially designed statistical analysis
program Apollo (as described above) has been developed to enable the creation of
statistically and clinically meaningful patient groups and to obtain information about
particular flows over time. This automated rapid classification of patient groups forms
a key differentiator between this approach and other attempts to produce practical
capacity planning and management tools. Developed simulation models within this
framework take individual patients through time as they pass through the chosen
healthcare system. These models take uncertainty, variability and complexity into

account properly. Figure 10.1 illustrates the inter-linking components of the proposed

approach.
p q Environmental
ropose factors and
scenarios constraints
Data extraction, " Developed Quantitative
Hospital | | analysis and patient | | simulation ?nodels _p| evaluation of
databases classification (e.9. PROMPT) proposed
(Apolio) 9 scenarios
Agreed hospital Management
configuration / il decision-making
delivery of service processes

Figure 10.1: Framework components

The framework was critical to the success of developed simulation models. Integrated
models for the planning and management of hospital beds, theatres and workforce
(PROMPT) and for critical care services have been developed within the evolved
framework. Each model is suitably generic to allow for the models to be readily used

by other hospitals, helping to promote the benefits of detailed and flexible computer

simulation tools.
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10.2.4 Towards successful implementation

In many respects the work may be regarded as a feasibility study into the potentials of
operational modelling for the planning and management of healthcare resources.
During the period of research, working alongside a number of healthcare personnel
from the participating hospitals, a number of central themes emerged representing both
opportunities and challenges to the operational modeller. It is fair to say that the
resolution of a number of issues determines the likely success or failure of healthcare
modelling in general. To this end, a framework towards the successful implementation
of modelling tools in healthcare is proposed. Each of the issues raised within the

framework should be given the due attention they deserve.

The deliberate choice of different simulation tools throughout the research has allowed
for a discussion on the advantages and disadvantages of each approach. In essence, the
modeller must choose between building the simulation from scratch themselves (a
programming approach) as opposed to making use of existing simulation tools (off-the-
shelf approach). In general, careful consideration should be given to selecting the
appropriate simulation tool for the project in hand. The choice will likely depend on a

number of factors.

10.3 The Direction of Future Research

Working closely with the participating NHS Trusts has revealed a number of
opportunities for operational modelling to make further significant impacts on the way
in which healthcare is delivered within the NHS. At present the use of operational
tools within the profession is limited and successful applications are often not given the
wide publicity they deserve. There is considerable scope for further work. Some

proposals are described in the subsequent sections of this chapter.

224



Chapter 10 Conclusions and Further Research

10.3.1 Modelling the wider environment

Critical issues within the hospital setting have highlighted the need to research and
model a wider environment incorporating the population structure that the hospital
serves and the delicate balance of links to other healthcare institutions within the
region. For example, the number of bed-blockers (elderly patients who should not be
in hospital but in a more suitable care setting), and the great stress that such patients
place on bed capacities, points towards the need for an integrated region-wide model
examining the flows of patients between hospital, elderly day-centres, nursing homes
and home-care facilities. This potentially powerful model could help to structure mid
to long-term plans for the provision and distribution of elderly care places within
society. With an ageing population, the country can ill-afford to misjudge future
elderly needs. The government, with the aid of necessarily detailed, integrated and
valid operational models, should begin to plan to avoid placing the healthcare system

into further crisis and to avoid potentially placing lives at risk.

The PROMPT model illustrates the benefit of simulation tools for examining the link
between hospital beds, theatres and workforce needs. The PROMPT model and
similar capacity models do however need to be enhanced to incorporate information on
the population that it seeks to serve. The developed models are currently independent
of community needs and in practice planning should be a regional issue accounting for
the demographic and socio-economic composition of the surrounding population and
resulting healthcare needs. For example, current projections on the forecasted number
of patients expected to require hospital care are conducted outside of the PROMPT
model and then fed in as a user input for scenario analysis. Future work should
concentrate on developing a total integrated package linking capacity models to the
necessary forecasting tools. This tool would link the demographic structure with other
important factors, such as the health of the surrounding population, to predict referral
rates and feed them directly into the simulation model. In this way, intervention
policies and health improvement programmes within the region may be monitored,
their consequences captured in the model and their impact on hospital resources

measured.

225



Chapter 10 Conclusions and Further Research

10.3.2 Hospital data sources and databases

It was necessary to access a number of hospital data sources during the period of
research. Perhaps no other system within the NHS displays the levels of diversity as
hospital data sources. The problem arises from the huge assortment of data collection
and storage methods that are in use at both hospital-wide and departmental levels
across the UK. Based on personal experiences of working with various NHS Trusts,

current data storage methods may be categorised under the following three headings:

e Paper-based records — despite the availability of cheap and reliable computer
systems, some hospital departments still only keep paper records of patients.

Accessibility and analysis of this data is a painful process.

¢ OQOut-sourced databases — databases by external software consultancy groups.
Built and implemented often at great financial expense to the hospital, most are out
of the control of the hospital themselves. So, for example, if an extra field or an
extra report is required, the hospital must pay for the consultancy group to carry out
the necessary modifications. It is possible that the data legally belongs to the
consultancy group who demand extra money to give access to the raw data for
analysis. All too often there is mismatch between hospital requirements and the

consultancy deliverables.

¢ In-house databases — depends on the skills of the personnel within the hospital IT
department. All too often though, due to the failure to attract the right calibre of IT
staff (salaries are ridiculously low compared to other IT jobs), in-house databases

are limited in number and quality.

Some of the current critical issues surrounding the majority of existing databases in use

across UK hospitals appear to include:

e Lacking of ease of use — many systems are still in DOS and are complicated to

work with and difficult to use.

¢ Lacking validation — most do not include self-validating rules so that the quality is

prone to missing values or erroneous entries by the data entry clerk.
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e Out of the hospital control — healthcare user requirements evolve over time, but
without access to the source code, it is not possible for the hospital to re-configure

different components of the database without reference to the software developers.

o Lacking integration — hospitals may have various data collection sources, both at
the hospital-level and for further research needs at a departmental level. Typically
however there is no integration between different levels of databases and

correspondingly there is often a need to duplicate data entry.

o Small user-base — there arose a situation during the research where the only
member of staff who was able to use a particular database had left the hospital and

consequently no data had been collected until a replacement was found and trained.

In summarising the current situation, there is clearly a great need for improved
databases for use within the NHS. Such databases should be in the control of the
hospitals themselves, have the ability to add/edit fields as necessary, be self-validating
“and be able to print a number of standard and ad-hoc reports as required. The
combination of databases, with built in statistical and classification tools such as
Apollo, and simulation models like PROMPT would be a powerful integrated hospital

management tool.

10.3.3 Diary planning tools

In response to the need for improved research linking databases, classification tools
and simulation models, a diary planner tool for use across a wide range of hospital
departments is proposed. Initial discussions with healthcare managers and consultants
have been well received with an enthusiastic response. A diary planner could greatly
aid the effective monitoring of the provision of care and help improve the day-to-day
management of hospital wards whilst still allowing for longer-term planning of hospital

capacities by building on the foundations of the developed simulation models.

The proposed model links a patient management system (patient database) with a
graphical front-end so that staff can readily see the current status of the ward or

hospital. For example, the diary planner could tell nurses and consultants information
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on which patient is in which bed and how long they may be expected to remain in the
bed. This prediction could be based on the results of an integrated classification tool
(such as CART or a neural network) that learns and updates itself overtime. Based on
medical and socio-economic factors, patient LoS may be obtained from evolved patient

groupings and displayed next to the corresponding bed on the front-end display.

By linking the current diary (case-mix on the ward) with information on the likely
demand for beds over the forthcoming user-defined planning horizon (e.g. the next two
weeks), an integrated simulation model could simulate the status of the ward over time
and report back forecasted occupancy rates and refusals by shift of each day. A
particular benefit of this system would be in the ability to see when in the planning
horizon is the best time to schedule elective bookings. For example, the simulation
model could report back the probability of there being n beds free for a given time
block in the future and a management decision regarding patient booking(s) made
based on this information. This would help avoid cancelling a large number of elective
patients and generally improve the day-to-day efficiency of the ward and hospital.

Figure 10.2 shows illustrative screen-shots of how a diary planning tool might look.
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Figure 10.2: Illustrative screen-shots of a proposed diary planner tool
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10.4 Chapter Summary

The research work and developed operational tools have delivered a number of benefits
to the participating NHS Trusts (see Appendix H). There is a vast range of areas in
which simulation could be applied in healthcare and this research has identified a
number of opportunities for simulation modelling to make a significant impact on the
way in which healthcare is delivered. It is essential that the modeller is aware of the
many potential pitfalls and limitations of the healthcare modelling approach. A
number of issues defining the primary challenges faced by the modeller in this field
have emerged. The success or failure of the modelling approach is dependent on the

resolution of these challenges.

Although significant progress has been undoubtedly achieved, it is vital to continually
research and develop methodologies for improving the performance and delivery of our
healthcare services across the face of the globe. There is a need to promote the evolved
framework and developed models, such as those described within this thesis, to a wider
healthcare audience. The flexibility of the models should aid this procAess and help to
contribute towards the continued need for improved planning and management of
resources. Whilst acknowledging that resources are limited and budgets are tight, the
work has shown that there are a number of controllable variables and planning and
management methodologies that can help to make life generally more comfortable for

hospital staff and to improve the overall quality of patient care.
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Publications and Presentations

The combination of academic and hospital supervisors has enabled this research to be
of practical use and benefit to the healthcare profession (Appendix H). As a
consequence of the generic framework and flexibility of the developed operational
models as discussed in this thesis, they have since been successfully used by a variety
of Trusts across the UK and have been presented at a number of domestic and
international conferences. The thesis has resulted in a number of publications, which

are listed below, together with details of conferences at which the author presented the

research.

2002 Harper, P R & Shahani, A K (2002), “Modelling for the Planning and
Management of Bed Capacities in Hospitals”. Journal of the Operational
Research Society. 53: 11-18.

Harper, P R (2002), “A Framework for Operational Modelling of Hospital

Resources”. To appear in Health Care Management Science.

2001 Shahani, A K, Harper P R, Vieira, I T and Costa, A X, “Planning for
Critical Care Capacities”. IMH pre-print, Faculty of Mathematical

Studies, University of Southampton.

“Planning and Management of Hospital Capacities: An Integrated
Computer Model for Beds, Theatres and Workforce”. Presented at 4
Celebration of Innovation in Health Care Conference (University of

Reading).

2000 Harper, P R, Dale, J, Foden, D, de Senna, V and Shahani, A K (2000),
“Operational Modelling for the Planning and Management of Capacities in
Hospitals”. In Proceedings of The 7" International Conference on System
Science in Health Care (Budapest) 113-117.

Harper, P R (2000), “A Decision Support Hospital Simulation Model”. In
Proceedings of The International Conference on Health Sciences
Simulation (San Diego) 27-31
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1999 “Modelling for the Planning and Management of Hospital Beds”.
Presented at IFORS (Beijing, August 1999).

Workshop Leader at the Health Care Development Group Annual
Conference (Southampton, March 1999). Workshop on Stochastic
Modelling and Statistical Analysis.

1998 Healthcare Stream Organiser at the Young OR Conference (Guildford,
April 1998). Presented “Towards an Integrated Hospital Capacity Model:
Beds, Theatres and Workforce” and at the annual conference of the OR

Society (Lancaster, September 1998).
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Appendix A — Steering Committees

In was important to delineate a coherent research and development approach consistent
with the stated objectives of this thesis and the needs of the participating NHS Trusts.
To meet this need, an evolutionary development methodology was adopted (Chapter
4). This involved constant dialogue with end-users and its success was largely
dependent on relevant hospital personnel contributing in many ways to the

development and structure of the prototype models.

This was achieved through the creation of steering committees to guide the work at
both Reading and Portsmouth. Members were made up from relevant areas of the
hospital and acted as key contact points for information and provided access to other
staff. One member of each steering group was designated as the Chairperson. These

groups met at agreed regular intervals and discussed project management issues.

A.1 Royal Berkshire and Battle Hospital NHS Trust

Heather Bunce (Clinical Service Unit Manager — Adult Medicine)
Jana Dale (Hospital Process Redesign)

David Foden (Director of Change Management & Human Resources)
Paul Harper (Institute of Modelling for Healthcare)

Rodney Jones (Senior Analyst, Information Management)

Sharon Kearns (Chairperson; Director of Operations)

Eva Morgan (Hospital Process Redesign)

Chris Newman (Director of Womens Services & Child Medicine)
Andrew Pengelly (Medical Executive Director)

Arjan Shahani (Director, Institute of Modelling for Healthcare)
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A.2 Portsmouth Hospitals NHS Trust

Ginette Alexander (Corporate Accountant)

Bill Broadribb (Executive Director of Finance)

Andy Burrows (Deputy Director of Finance)

Ann Carter (Senior Project Manager)

Brian Goodridge (Head of Corporate Information & Applications)
Paul Harper (Institute of Modelling for Healthcare)

Nicola Hartley (Director of Change Program)

Peter Howlett (Chairperson; Executive Director of Development)
Sue Millard (Head of PFI and Strategic Projects Accountant)
Arjan Shahani (Director, Institute of Modelling for Healthcare)
Liz Steel (Senior Project Manager)

Graham Taylor (Information Manager)

Michelle Wheeler (Capital Projects Manager)
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Appendix B — Stochastic Modelling

B.1 Deterministic and Stochastic Models

A common current practice is to plan and manage hospital capacities through a simple
deterministic spreadsheet approach using average patient-flows, average needs, average
length-of-stay and average duration of surgical operations. Patient-flows, patient needs
and utilisation of hospital capacities involve complexity, uncertainty, variability,
constraints and scarce resources, as discussed in the previous section. Mathematically
speaking, a hospital corresponds to a complex stochastic system so that the common
deterministic approach for planning and managing the system can be expected to be

inadequate.

Overcoming variability by using average values, which although intuitively attractive
when considering the large numbers of patients in the system, has the effect of
significantly biasing results in an environment of non-linearity and variability.
Consider a system in which the output, Y, depends on the input X, where Y = f(X)

and X is a random variable as illustrated in Figure B.1.

Input Output

Figure B.1: A simple system

Let £(X) = u#. A deterministic model that attempts to deal with variability using
average values, so that E(Y) ~ f(x), may seem intuitively simple for large systems.

However in many practical cases this approach is likely to be inappropriate.

251



Appendix B Stochastic Modelling

If the Taylor series expansion of f(X)is examined we have:

FO0) = F(a)+ (X = 1) (o) + (—)5—;—,4’—)4"(/:) ‘.

which leads to
Var(X)
2!

E(Y)=E(f(X) = f()+ f+...

Hence, if f is non-linear and the variability in X is large, the approximation
E(Y) = f(#) would be a very poor one. The deterministic approach of using average
values leads to significant bias and inaccurate results, typically under-estimating the

true resource needs.

Unlike deterministic models, stochastic models provide a more accurate and realistic
model by incorporating uncertainty and variability through the use of probabilities and

random variables. A stochastic process is a sequence of random variables X = {X,}
where the parameter ¢ usually denotes the time domain. Both 7 and X, may be
continuous or discrete. The values taken by the random variables X, are called states

and the domain of X is called the state space. A realisation (or simple path) of the

stochastic process X is a sequence of states {x,,x,,X,.,...}, where x, is the value taken by
the random variable X, . For the modelling work of hospital systems, the necessary

stochastic descriptions involve discrete states and continuous time. Two stochastic

processes have to be considered, namely Markov and semi-Markov processes.

B.2 Markov and Semi-Markov Processes

Markov processes are attractive because of analytical ease. They are probabilistic
models, which form a special category of stochastic processes. The fundamental

property of the Markov process is its memoryless property 1.e. the probability that the
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random variable X, takes a particular value x, depends only on x,_; and not on the

previous values x,_,,x,_;,...,X,. Notationally, this may be written:
P{Xl = X[!X,_l = xt—l’Xr-Z = xr—Z""’XO = xo} = P{Xt = ‘xt,Xt-l = xt—l}

Under this Markov hypothesis, the main limitation is that the transitional probability of
a patient changing status is taken to be independent of previous events, thus the
likelihood of a patient remaining in a specific state remains the same from one time

unit to the next.

A semi-Markov process is a more general class of processes where the time between
transitions of states can occur after any positive time spent in a state, and where this
transition time can depend on the transition that is made. Each successive state
occupancies are governed by the transition probabilities of a Markov process and the
stay in any state is described by a random variable that can take on any positive, and
not necessarily, an integer value. As an example, patients may pass through various
states in a critical care unit (holding trolley to ICU bed to HDU bed to Ward bed) and

the time spent in each state described by a random variable.

Let p; be the probability that a semi-Markov process that entered state 7 on its last
transition will enter state j on its next transition. The transition probabilities p, must

satisfy the same equations as the transition probabilities for a Markov process.

p; 20 i=1,2,..,N; j=1,2,...,N

and

N
dp;=1  i=1,2,..,N
j=t

where N is the total number of states in the system.
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Howard (1971) describes the process as follows: Whenever a process enters a state i,

we can imagine that it determines the next state j to which it will move according to

state i’s transition probabilities p,,p, ..., p,y . However, after j has been selected, but
before making this transition from state i to state j, the process “holds™ for a time 7, in
state ;. The holding times are positive, integer-valued random variables each governed
by a probability density function g, (¢) called the holding time density function for a
transition from state i to state j. The cumulative function G (¢) is the probability that

the transition from state i to state j will fall between 0 and ¢.

Returning to the previous critical care unit example, each patient will now have
different probabilities of passing from one state to the next (for example, going from
ICU bed to HDU bed to Ward bed, or ICU bed straight to Ward bed), and the times
spent in each state (length of stay) are sampled from appropriate distributions. If
lengths of stay are negative exponential variates, we obtain the Markov process. In
general though, length of stay will follow other statistical distributions, such as

Lognormal or Weibull.

As an illustrative example of the semi-Markov process, consider a simplified model

with state space S = {0, 1, 2, 3} and probabilities with the following probability matrix:

S O O O
S O O =
S O = O
_— O O

The model is given in Figure B.2.

Figure B.2: A simple model
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With this simplification a modification can be made to the general notation of the semi-

Markov process. Define:

/(@) =g, (), i,jeS,t20

and

F.(t) = G, (), i,jeS,t=0
As an example, the probabilities of being in the first three states are as follows:

t
Probability in state 0 at time ¢ 1— j f.(s)ds
0
Probability in state 1 at time ¢ j f(s)ds — j f()F,(x=s)ds = [£,(s)(1 - F,(x - 5))ds
0 0 0

Probability in state 2 at time ¢ j j £,(5) fo(x = s)dx[l = Fy(¢ — x)|dxds
0 s

The expected time of transitions may be calculated as:

ET) = [shods

0

E(T) = Je [£5) 1,0 s)dsd

E(T) = ]‘til. ]f] (x) f5(s — x)dxf, (¢t — s)dsdt

For the probability of being in the state of model with state space S= {0, 1, 2, ..., n}

the following association can be observed:

PSmle[i] (t) = R(i—l)(t) - Ri (t)

where

R(1) = f<, 1)(x)[ | f(s)dsja’x and r(t)—-dR(t) es
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This association is calculated using the differentiation rule:

B(t)

R(t) = ju(t,x)dx

A(t)

dr(t) "Qou(tx dB(t dA(t
O PO gl Be) 2D e, a0) A

ot dt dt

— e ) —
=)=

‘ dt

Al1)
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Appendix C — Simulation Modelling

Models of various types are frequently used in Operational Research. Essentially they
are all representations of a system of interest and are used to investigate possible
effects of different scenarios, for example a new policy or the redesign of the system.
The simplest models are probably physical (iconic) scale models to experiment with.
Such models have limited use as they lack flexibility (are highly project specific) and
are static (they are unable to show how various factors interact dynamically).
Mathematical models, however allow a system to be represented in terms of logical and

quantitative relationships and are then manipulated and changed to see how models

react.

Once a mathematical model has been built it must be examined to see how it can
answer the questions of interest about the system it is supposed to represent. If the
model is simple enough, it may be possible to work with its relationships and quantities
to obtain an exact, analytical solution. The analytical solution of stochastic models, as
necessary for the modelling of hospital capacities, presents a formidable challenge.
Unless restricting assumptions are applied, many stochastic models are impossible to
solve analytically. Numerical methods are needed for solving realistic stochastic
models. A computer simulation need not, however, make such stringent simplifying
assumptions and is an ideal tool for modelling hospital capacities. The aim of the
simulation is the solution of a model which mimics the behaviour of a real-life system
over time. A single run of the model corresponds to one realisation of the system
under particular defined circumstances. Figure C.1 summarises the possible ways to
study a healthcare system. See Pidd (1998), Davies and O’Keefe (1989) and Law and

Kelton (1991) for a more exhaustive review of simulation modelling.
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Healthcare
System

Experiment with the Experiment with the
actual system model of the system
Physical Mathematical
Model Model
Analy‘glcal Simulation
Solution

Figure C.1: Ways to study a healthcare system

Simulations are particularly useful for solving the complex models for the flow of

patients through hospital because they can:

e Incorporate and recognise complex patient-flows and hospital rules governing these
flows.

o Capture the variability of patients in the community (for example demand patterns,
and length of stay distributions).

* Be easily understood and used by health managers and planners.

e Model large periods of time very quickly.

o Reduce the risk of reliance on potentially erroneous or unavailable data by
incorporating expert opinion.

e Monitor use of resources over time, which aids the planning and management for
hospital resource decision-making.

e Model a variety of different scenarios with minimum additional effort.
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C.1 Discrete- event Simulation

The modelling of the individual patients through a hospital system is best
accomplished with a discrete-event computer simulation. Discrete-event modelling
observes the system whenever a change of state in the system occurs. The time at
which the change takes place is termed an event, the objects which move in the system
are known as entities, and an activity is defined to be the set of actions taken by the
entities at each event. Finally, the simulation clock measures the passing of time. In
the context of modelling patient-flows through hospital, entities are individual patients
and the events constitute a patient changing from one state to another, corresponding to
movement of patients around the hospital (for example moving from an inpatient bed

to queueing for theatre or moving from an ICU bed to an HDU bed).
Two differing approaches to writing discrete-event simulation programs exist.

o The event-based approach. The programmer must decide what constitutes a change
of state (event) and the changes that result from each event. Events are scheduled
by being placed on the simulation calendar (a time-ordered list of events). The
simulation clock moves to the head of the simulation calendar (time scan) and all
events due at that time are subsequently executed (event execution). To summarise

the advantages and disadvantages of the event-based approach:

Programs run very efficiently and quickly v

Programs are difficult to write X

o The activity-based approach. The programmer must list all the conditions
necessary for each activity to take place. The program then repeatedly tests for

these conditions at every instant of time, and if satisfied, the respective activity

oCcCurs.

Programs are easy to write and modify v

Programs run very slowly ¥
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C.2 The Three- phase Approach

The pioneering three-phase approach was developed by Tocher (1963) and combines
the simplicity of the activity-based approach with the efficiency of the event-based

approach. Two different types of events exist:

e Bound events (or B-events), which may be scheduled once placed in time-order on
to the simulation calendar.
e Conditional events (or C-events), whose executions depend on the fulfilment of

certain necessary conditions.
The three-phase approach is named after the adopted three-phase structure:

Time Phase. Advance the simulation clock to the time of the B-event at the top of the
calendar (i.e. the next event)
B-Phase. Execute all B-events that are due to happen at this time

C-Phase. Test all the conditions for all of the C-events and execute any that are now

satisfied.

The three-phases are repeated until either the calendar is empty, or until the duration

(specified time to run the simulation) has been reached.

The Operational Research group at the University of Southampton has developed a
three-phase simulation shell called TOCHSIM, which was originally written in
Borland’s Turbo Pascal version 7.0. TOCHSIM consists of skeleton procedures for
handling the queues used to hold the calendar of events and the entities in each state.
Procedures to sample from various probability distributions are also included.
Designing graphics in TOCHSIM (menus, input screens, output screens, graphs etc.)
can however be a laborious process. As a consequence, Delphi software, which
incorporates Pascal code and easy to design graphics, is now widely used within the

research group.

260



Appendix C Simulation Modelling

C.3 Historical Simulation Developments

The emergence of computer simulation is generally traced back to post war
developments in OR and numerical modelling. Subsequent developments in
computing hardware and the evolution of high-level simulation languages has further
popularised the application of computer simulation to a range of real-life modelling
problems (Zeigler, 1979). SIMULA is one of the earliest simulation languages, and is
credited with the introduction of object-oriented authoring concepts into computer
science. Other early examples of simulation programming languages include GASP,

GPSS, SIMSCRIPT and SLAM.

The establishment of several specialist groups and societies for computer simulation
also marked the post-war period. One prominent establishment was the Society for

Computer Simulation (SCS). The SCS has grown consistently since its birth.

A body of literature on the topic began to emerge during the 1960’s, including
important source books (Tocher, 1963 and Forrester, 1961 as examples) and a range of
other publications (see Oren, 1974, 1976). At this time, simulation also found its way

into university curricula as a subject in its own right.

The 1970’s and beyond has witnessed enormous advances for computer simulation.
Increasing computer power and growing accessibility in terms ease of use and reduced
costs is largely attributable to this growth. Simulation packages such as Witness,
ProModel, Simul8 and Arena have attributed to this success. The range of applications
has consequently grown to a point where simulation is now routinely utilised for a vast

range of operations in a wide spectrum of industries.
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Appendix D — Classification Tools

Chapter Five describes how a number of classification tools were compared using
various evaluation criteria. A summary of the findings was presented. This appendix
contains detailed results from each of the adopted techniques in the study. It is not
possible to provide results for each classification tool for each study. Instead only one
study is shown for each tool with the intention of illustrating typical model inputs,

outputs and issues.

D.1 Discriminant Analysis

DA is used to classify cases into the values of a categorical dependent. For studies 1
and 3, it was therefore necessary to divide the continuous dependent variable into a
number of groups. Using percentile points, the distribution of values (LoS) was
divided into ten groups (1-10%, 11-20% etc.). DA was then used to predict
membership to each of the 10 groups. For studies 2,4 and 5, the dependent variable

was in the necessary categorical (group) form.

Study 5 is used to illustrate the results from DA. In this study we are predicting the
onset of diabetic retinopathy using 13 explanatory variables. Diabetic patients may
suffer from a number of long-term complications. Retinopathy is a complication with
the eyes, which can eventually lead to blindness. It can be treated successfully if
detected in time. The dependent variable was a nominal 0-1 variable defining
retinopathy. The list of independent variables included sex, height, systolic blood
pressure, diastolic blood pressure, number of diabetic years, glucose level (HbA), type

of diabetes, creatinine level, cholesterol level and age of onset of diabetes.

Presented tables are taken from SPSS (version 10) output.
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Classification Tools

Descriptive Statistics

lMean

Variable Description !Min !Max Std. Dev
S1 Sex of patient (M/F) 0 1 Cat Cat
DTYPE Diabetes type (IDDM/NIDDM) 0 1 Cat Cat
TOESCORE Toescore 6.48 14.30 10.5 1.8
HEIGHT Height of patient 131.0 200.0 167.8 9.7
SBPMEAN Systolic blood pressure 90.0 220.0 143.7 19.8
DBPMEAN Diastolic blood pressure 51.8 116.7 80.2 9.5
HBAMEAN Glucose level 4.8 14.9 8.7 15
CHOLMEAN Cholesterol level 2.1 12.4 5.8 1.1
CRETMEAN Creatinine level 50.5 644.6 98.3 35.7
BMIMEAN Body Mass Index 18.3 49.0 28.1 5.0
DIAB YEA Years as a diabetic 0.0 66.5 9.5 11.1
AGE Age of patient 10.4 93.3 61.2 16.5
IAGE DIAG Age of onset of diabetes 0.4 90.6 51.7 20.2
RET Retinopathy (Dept. Var) 0 1 Cat Cat
Standardized Canonical Discriminant Function
Function
1
S1 225
DTYP 254
TOESCOR .362
HEIGH -.292
SBPMEA .286
DBPMEA .003
HBAMEA .215
CHOLMEA -.083
CRETMEA -.038
BMIMEA -.110
DIAB_YE .853
AGE -.146
Classification a.b
Predicted
Membership
RE 0 1 Total
Origin Count 0 756 225 981
1 236 501 737
% 0 771 22.9 100.0
1 32.0 68.0 100.0
Cross- Count O 755 226 981
validated 1 242 495 737
% 0 77.0 23.0 100.0
1 32.8 67.2 100.0

a. 73.2% of original grouped cases correctly

b. 72.8% of cross-validated grouped cases correctly
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D.2 Regression Models

Regression analysis is concerned with investigating the relationship between several
variables in the presence of random error. In particular we build a model in which the
dependent variable is expressed as a linear combination of the independent or

explanatory variables.

The technique is illustrated using study 3 where we predict LoS on the ward based on
routinely collected data from a hospital patient management. A number of socio-
economic and medical variables are routinely collected. Four variables (age, intent,
status and sex) were selected for this study. The level of variance in LoS is high
(variance of 56.6 with a mean LoS of 4.3) and the number of records large (17,974).
SPSS (version 10) output is presented. The best result was obtained after a logarithmic
transformation was applied to LoS, although a number of other transformations were

evaluated.

Descriptive Statistics

Variable Description lMin Max Mean Std. Dev
X1 Sex of patient (M/F) 0 1 Cat Cat
AGE Age of patient (M/F) 0 98 56.6 18.2

1 intent (Day-case/Inpatient) 0 1 10.5 1.8

S1 Status (Emergency/Elective) 0 1 Cat Cat

L.OS Hospital LoS (Dept. Var) 1 220 4.3 7.5

The following additional and interaction terms were defined:

Variable [Interaction
AGE?2 AGE * AGE
F1 AGE * 11

F2 AGE * X1

F3 AGE * S1

F4 11* 81

F5 1*X1

F6 11*81

F7 AGE * 11 * X1

The results from CART gave a helpful insight into possible interaction terms. Age,
intent (I1) and status (S1) were important explanatory variables. Only a three-way
interaction term (excluding sex) was used in the model. The results from the
regression analysis are consistent with the results from CART.
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Model Summary

Adjusted Std. Error of
Model R R Square | R Square | the Estimate
1 .5932 .352 352 7705
2 .628° 394 .394 7449
3 .630°¢ .396 .396 .7439
4 .630¢ .397 .397 7436

a. Predictors: (Constant), F1

b. Predictors: (Constant), F1, F4

C. Predictors: (Constant), F1, F4, |1

d. Predictors: (Constant), F1, F4, I1, F3

ANOVA®
Sum of
Model Squares df Mean Square F Sig.
1 Regression 2896.515 1 2896.515 | 4879.140 .0002
Residual 5328.033 8975 .594
Total 8224.548 8976
2 Regression 3244 .575 2 1622.287 | 2923.390 .000P
Residual 4979.974 8974 .555
Total 8224.548 8976
3 Regression 3259.545 3 1086.515 | 1963.604 .000¢
Residual 4965.003 8973 .553
Total 8224.548 8976
4 Regression 3263.621 4 815.905 | 1475.592 .0004
Residual 4960.927 8972 .553
Total 8224.548 8976
a. Predictors: (Constant), F1
b. Predictors: (Constant), F1, F4
C. Predictors: (Constant), F1, F4, 11
d. Predictors: (Constant), F1, F4, 11, F3
€. Dependent Variable: LOGLOS

LOGLOS = (0.3940 * I1) + (0.0084 * AGE * I1) + (0.0039 * AGE * S1) + (0.2270 * {1 * 81)

Correlations

LOS LOSPRED

10S Pearson 1.000 620"
Sig. (2-tailed) .000

N 8987 8987

*_ Correlation is significant at the 0.01 level (2-tailed).
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D.3 Regression Trees (CART)

The CART method produces a tree that, by answering a series of yes/no questions, can
be used to classify each patient. An algorithm is used to split the original dataset into
sub-populations of increasing purity (decreasing variance or deviance). CART is
demonstrated using study 4. Given a number of explanatory variables, we wish to
predict the probability of a pregnant woman having a complicated delivery.
Complications include the need to induce the baby, caesarean section and stillbirth. A
successful classification could help to flag women at high-risk for whom we might

offer more dedicated care throughout labour and during delivery.

Apollo (Chapter 5) was used to train and then test the data. There were 2,402 records
(1,201 in both the training and testing datasets) and 16 variables of interest (8

continuous and 8 categorical).

Descriptive Statistics

Variable Description IMin lMax lMean Std. Dev
SMOKING If woman smokes (Y/N) 0 1 Cat Cat
EPILEPSY History of epilepsy (Y/N) 0 1 Cat Cat
HYPERTEN History of hypertension (Y/N) 0 1 Cat Cat
PARITY Previous number of children 0 8 0.9 1.0
CAESAREAN Previous number of caesareans |0 2 0.02 0.21
HEIGHT Height of woman 14 1.9 1.6 0.06
\WEIGHTMO Weight of woman 39.0 146.0 66.7 13.2
DIABETES Is diabetic (Y/N) 0 1 Cat Cat
BP Blood pressure 40.0 116.0 72.7 9.4
IAGEMO Age of woman 18.3 49.0 28.1 5.0
RACEMO Race of mother (2 categories) 0 1 Cat Cat
GEST WKS Gestation (in weeks) 23.0 42.0 39.3 1.9
B INDEX Body Mass Index of woman 15.8 57.0 24.8 4.7
NO_BABES Number of expected babies 1 2 1.02 0.14
S1 Sex of baby (M/F) 0 1 Cat Cat
SPONTDEL Spontaneous delivery (Dept. Var) |0 1 Cat Cat
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() (5) 18) 19)
2 @ 6 ) 29) @)
9 1 & (& @ @@ @ @
G @ @) @

Terminal Node Summary (numbers shown for testing dataset)

INode IPath lNo. of |SpontDel {SpontDel
records {Y (%) N (%)

1 WWiData 120176 5

12 Parity = 0; Gestation <= 3 66 58 42

13 Parity = 0; Gestation > 37 172 66 34

10 Parity = 0; Gestation <= 40; Age <= 26 92 63 37

11 Parity = 0; Gestation <= 40; Age > 26 85 49 51

8 Parity = 0; Gestation > 40; Age <= 25 45 51 49

9 Parity = 0; Gestation > 40; Age > 25 85 46 54

30 Parity > 0; Caesarean = 0; BMI <= 20; Sex =M 51 92 8

31 Parity > 0; Caesarean = 0; BMI <= 20; Sex=F 50 98 2

29 Parity > 0; Caesarean = 0; Weight <= 64, BMI >20 213 93 7

24 Parity > 0; Caesarean = 0; Weight <= 81; Gest <= 39 95 94 6

25 Parity > 0; Caesarean = 0; Weight <= 81; Gest> 39 ]126 95 5

23 Parity > 0; Caesarean = 0; Weight > 81; Gest <= 39 |69 86 14

19 Parity > 0; Caesarean > 0 52 55 45

Classification

Predicted
Membership
Y N Total
Original Count Y 814 81 895
N 173 123 296
% Y 90.9 9.1 100.0
N 58.8 41.2 100.0

Overall classification rate of 78.0%
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D.4 Artificial Neural Networks

NeuroSolutions (version 3) was used to train, cross-validate and test each network.
NeuroSolutions makes use of Windows™ 'point & click' technology to make the
software easy to use, enabling non-experienced users to begin building and testing
models with little training and in minimal time. Caution however should be exercised
when selecting suitable network initial conditions, such as step-sizes and numbers of
hidden layers. Only with experience of using the software is it possible to get a feel

for appropriate model configurations.

We illustrate the Neural Network approach in predicting ICU LoS (study 1). Routinely
collected variables of interest include the patient’s age, sex, outcome, source (A/E,
HDU, Theatre or Ward), admission status (elective or emergency) and hospital
speciality (ENT, General Surgery, Medicine, Orthopaedics, Thoracic Medicine,
Trauma or Vascular Surgery). Categorical variables with multiple classes (g) were re-

assigned to (g-1) binary groups (0-1).

Descriptive Statistics

Variable lDescription ‘Min IMax IMean Std. Dev
AGE Age 1 97 60.7 19.8
X1 Sex Male (Y/N); Else Female 0 1 Cat Cat
DAYS_ICU |LoS (Dept. Var) 0.1 252 |24 3.4
S1 ENT (Y/N) 0 1 Cat Cat
S2 Gen Surgery (Y/N) 0 1 Cat Cat
S3 Medicine (Y/N) 0 1 Cat Cat
S4 Orthopaedics (Y/N) 0 1 Cat Cat
S5 [Thoracic (Y/N) 0 1 Cat Cat
S6 [Trauma (Y/N); if N to all then Vascular 0 1 Cat Cat
A1 Elective (Y/N); Else Emergency 0 1 Cat Cat
P1 A/E (Y/N) 0 1 Cat Cat
P2 HDU (Y/N) 0 1 Cat Cat
P3 Theatre (Y/N); if N to all then Ward 0 1 Cat Cat
O1 Outcome Alive (Y/N); Else Died 0 1 Cat Cat

The dataset contained 582 records. Half was used to train the network and half to test
the model. 10% of the training data was used for cross-validation. Missing values
were removed as requested by the software. The best accuracy was achieved using a
multiplayer perceptron network with one hidden layer, a supervised learning control
with 1,000 epochs (iterations over the training set), a step-size of 0.7 and a momentum

rate of 0.5.
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Appendix E — Capacity Planning
Questionnaires

In was necessary to obtain information on the movement of patients through the
hospital, so that the developed PROMPT model could be fine-tuned to reflect local
hospital real-life conditions. Each speciality manager supplied the necessary
information on admission rules, deferral times and theatre information, whilst the bed-
managers constructed patient priority listings. The bed and theatre questionnaires used
at The Royal Berkshire and Battle Hospitals NHS Trust are shown below. Similar
questionnaires were adopted by The Portsmouth Hospitals NHS Trust.

E.1 Bed Capacity Questionnaire

Bed capacity questionnaire sent to all Specialty Managers.

Bed Capacity Planning Questionnaire

The Institute of Modelling for Healthcare (IMH), part of the University of
Southampton, are working with the Hospital Process Redesign (HPR) team to help
answer questions on bed capacity planning.

In order to fully understand patient flows through the hospital, I would very much
appreciate your time in completing the attached short questionnaire. This questionnaire
is being completed for every specialty within the hospital. It is vital that each specialty
completes and returns this form so that I can incorporate the necessary detail into my
work.

If you have any questions about the form, please contact either Jana Dale (HPR) or
myself. Please return the questionnaire as soon as possible to HPR.

Thank you for your time and effort.
Paul Harper

Institute of Modelling for Healthcare
University of Southampton.
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Bed Capacity Planning Questionnaire

Specialty:

Completed by: _ Ext: Date:

1. Patient Flows

Into which wards are patients admitted for your specialty? Please indicate order of
priority if applicable (e.g. 1.West Ward 2. Greenlands)

[Note: If ward lists and priorities are different for certain patient subgroups (e.g.

Planned vs Emergency, Diagnosis), please provide lists on a separate page for each
group identified]

Ward Priority

2. Planned Patient Deferrals

If a planned patient has to be deferred, please indicate below the typical time a patient
must wait before re-admittance. Additionally, state whether deferral time is usually
fixed (e.g. 2 weeks) or whether it may vary (e.g. between 1 and 3 weeks). Remember
that although times may significantly alter, we are only after a “typical” time.

Deferral Waiting Time:
e Fixed time(weeks)

or
e Between and weeks
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3. Emergency Status

Do you enforce a procedure by where a planned patient is “upgraded” to emergency
status if they have be deferred on a number of previous occasions? e.g. If a planned
patient has been deferred on 3 separate occasions, they will now been treated with

emergency status and given priority. If applicable, please state number of deferrals

before emergency status below.

Number of Deferrals:

4. Comments

Please write any other relevant comments below.

Thank you for taking time to complete this form
Please return to:

HPR

The Royal Berkshire Hospital
Craven Road

Reading.
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E.2 Operating Theatre Questionnaire

Theatre capacity questionnaire sent to all Specialty Managers.

Theatre Capacity Planning Questionnaire

Specialty:

Completed by: Ext: Date:

Current Theatre Sessions

Day Session Number Start Time Duration (or End Time)

Current list of Surgeons

Surgeon’s name:
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Total number of in-patient beds across all specialty wards:

What happens to day-cases? Do they use in-patient beds? Do they share in-
patient lists?

What happens to emergency patients? Do they use the same sessions as in-
patients or a different session/theatre?

Any other relevant comments about current practice?

Any scenarios you have in mind that you would like examined? e.g. weekend
theatre (and for which patients), changing the elective weekday admission profile
by operation category etc.
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Appendix F — Statistical Distributions

The developed simulation programs as described within this thesis allow the user to
choose between five statistical distributions for fitting the necessary transition times,

for example to LoS and operation times. These distributions are described in further

detail below.

F.1 Exponential Distribution

This is an important distribution in reliability work, as it has the same central limiting
relationship to life statistics as the normal distribution has to non-life statistics. It

describes the constant failure rate situation. The pdf with mean life X is given by:
f(x)= Aexp(- Ax)

The mean and standard deviation of the distribution is 1/ 4. Historically the
exponential distribution was the first widely used lifetime distribution partly because of

the availability of simple statistical methods.

F.2 Normal Distribution

The normal pdfiis given by:

3 1 _l X—u :
f(x)_o.(zﬂ)% eXp{ 2( o ):}

where £ is the location parameter, equal to the mean. The mode and the median are

coincident with the mean, as the pdf is symmetrical. o is the scale parameter, equal to

the standard deviation.
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The normal distribution 1s a close fit to most applications in quality control and some
reliability observations, such as size of machined parts and the lives of items subject to

wear out failures, as well as natural phenomena such as heights of adults and strengths

of materials.

The cumulative probability function cannot be solved analytically. A number of
polynomial and rational approximations are given in Abromowitz et al. (1970). The

polynomial approximation, which is used in the estimation of parameters, is given by:

1 _
1—5(1 +c1z + 2z’ +C3Z3+C4Z4) Yy &z) z>0

P(Z<z)=

1 4
E(1+az+c:zzz +C3Z3+C4Z4) + &(z2) z<0

where ]5(2)] <25x107

and  z= (”——’ﬁj c1= 0196854, c2=0115194 3 = 0000344, ca=0.019527 .
o

F.3 Lognormal Distribution

The lognormal distribution is a more versatile distribution than the normal as it has a
range of shapes, and therefore is often a better fit to reliability data, such as for

populations with wear out characteristics. Additionally, it does not have the normal

distribution’s disadvantage of extending below zero to -co. The lognormal pdf is:

B 1 1flnx—u :
f(x)_ox(27r)%eXp{—2( o ”

The mean and the standard deviation of the lognormal distribution are given by:

2
o

Mean = exp(/ﬁ— 5 j , Standard Deviation = [exp<2,u+ 202) - exp(2,a+ o’ )]%

where p and o are the mean and standard deviation of the In of the data.
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An unattractive property of the lognormal distribution is that the hazard rate increases

to a maximum, and then decreases, approaching 0 as x — co.

The cumulative probability function also cannot be solved analytically. The normal

lnx—/z)
— )

polynomial approximation is used in estimating parameters with z = (

F.4 Gamma Distribution

The gamma distribution describes, in reliability terms, the situation when partial failure
can exist, i.e. when a given number of partial failures events must occur before an item
fails, or the ath failure when time to failure is exponentially distributed. The pdf of the
gamma distribution is defined by:
£ = = ()" expl- 2)
I'(a)
where A is the failure rate and a the number of partial failures per complete failure, or

events to generate a failure. I'(a) is the gamma function:

I'(a)= _[x““ exp(— x)dx

%

_y N a a
The mean and standard deviation of the gamma distribution are x= 7 and o= DR
respectively. The exponential distribution is a special case of the gamma distribution,

when a = 1.

The cumulative probability function cannot be solved analytically. The approximation
stated here is given in Press ef al. (1992). Firstly we define the incomplete gamma

function as:

_yax) o Tax) 1 .
Pla,x)= g o = 1= pe = gy [

X
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There is a series development for y(a,x) as follows:

- I'(a)
=0T(a+1+n)

n

y(a,x)=e"x" Z
There is a continued fraction development for I'(a,x) as follows:

. 1 1-a 1 2-a 2
I'a,x)=e x| ———————

It is proved that the series development converges rapidly for x less than about a+1,

while the continued fraction converges rapidly for x greater than about a+1.

The gamma function is defined by the integral
(z)= [r'e"dr
0

An approximatidn uses the fact that certain integer choices of £and N, and for certain

coefficients ¢y, ¢y, ..., cn, the gamma function is given by:

I'(z+1) (+cf+ 1)”% G [y P L. S
= Z - e 7 X yANS £
g 2 z+1 242 Z+N

The error term for £= 5, N = 6 and with a certain set of ¢’s, is smaller than 2x107°. 1t
is better to implement In I'(x) than I'(x) since the latter will overflow many computers’
floating point representation at quite modest values of x. Often the gamma function is
used in calculations where the large values of I'(x) are divided by other large numbers

resulting in an ordinary number.
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F.5 Weibull Distribution

The Weibull distribution has the great advantage in reliability work that by adjusting

the distribution parameters it can be made to fit many life distributions. The Weibull

pdfis:
f()= étﬁ“ exp| — (i)ﬂ
a Pz
Y

The hazard rate is ==¢”"'. fis the shape parameter, « is the scale parameter.
a

When f= 1, we obtain the exponential reliability function (constant) with mean life
equal to . The exponential distribution is a special case of the Weibull distribution.
When £ < 1, this results in a decreasing failure rate reliability function. When > 1,

we obtain the increasing failure rate reliability function.

: ' 2
1 2 1
The mean and the variance are given by al’ (1 + Zj and o’ {F[l + —Ié) - F(—j }
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Appendix G — Programming Structure and
the TOCHSIM Shell

It is not appropriate to include a complete listing of the code for the developed
programs as described within this thesis. Instead, a description ofithe main structure,
together with some of the units with corresponding procedures and functions, are
provided. The PROMPT model was programmed using the TOCHSIM simulation
shell. TOCHSIM has benefited from language extensions to give the full power of
object-orientated programming: more structure and modularity, more abstraction and

reusability built into the simulation shell (see section 6.3.3).

G.1 Application Structure

For each application there exists a project consisting of:

® The project (.DPR) file
® The unit (.pas) files
® The form (DFM) files

® Source code for units without forms

The project file keeps track of all unit and form files in the application. For example,

the project source code for the PROMPT program looks like:

Program PROMPT; Project name
Uses Uses clause
Forms;

Menu in ‘MENU.PAS’ {MainMenuForm}, q—— Form identifiers
BEVENTI in ‘BEVENTIL.PAS’, &  Source code without forms
BEVENT2 in ‘BEVENT2.PAS’,

{SR *RES} Complier directive
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begin
Application.CreateForm(TMainMenuForm,MainMenuForm);
Application.Run;

end.

(Note that bold fonts are reserved words in Delphi).

In accordance with the distinct elements of the PROMPT model, the following sections

describe the coding for patient groups, care units (beds), theatres and workforce.

G.2 Patient Group Code

Defined patient groups are fundamentally either emergency or elective in nature
(priority is given to emergencies during the arrival process). Furthermore, if the theatre
module is activated, groups are either procedure or non-procedure (require or do not
require the use of the theatre respectively). A Patient Group class has been created
containing the necessary information on status (emergency or elective), theatre needs
(procedure or non-procedure), a care unit priority list (Tlevel of care), LoS and
operation time (TLoS_distribution), arrival information (Tarrival vars) and workforce

needs (Tpatient_dep_list).

—p Tarrival vars = class

Arrivalhour : array[1..6] of integer;
. _ ArrivalRateVDay : array[1..7] of integer;
TPatient_Group = class Arrivalmth : array[1..12] of integer;
status: boolean; YearlyRate : integer;
theatre needs : boolean,; procedure load(var f : textfile);
LoS : TLoS_distribution; procedure save(var f: t extfile);
o end;

arrival var : Tarrival vars; —
op_time : TLoS distribution;
level_of care : Tlevel of care;
description : Tstringlist;
patient_dep_list : Tpatient_dep;
procedure init;
procedure load(var f : textfile); Tlevel of care=class
procedure save(var f : textfile); next_level_of_care:T.strlngllstE
procedure load(var fitextfile);
end; procedure save(var fitextfile);
end;

v

Tdistribution = (d_weibull, d_normal, d_lognormal, d_negexp, d_gamma);
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The LoS and operation times are generated using the LoS_distribution class defined
below:

TLoS_distribution = class

distribution : Tdistribution;
parameterl, parameter2 : real;
min_stay, max_stay, reduced los : real;
mean : real;

increase los : integer;

function random_deviate : real;
procedure load(var f': textfile);
procedure save(var f : textfile);

end;

v
function TLoS_distribution.random_deviate : real;
var transtime : real;

begin
repeat
case distribution of
d_weibull : transtime := rnd.weibull(parameter1, parameter2);
d _normal : transtime := rnd.normal(parameter1, parameter2);
d_lognormal : transtime := rnd.lognormal(parameterl, parameter2);
d negexp : transtime := rnd.negexp(parameterl, parameter2);
d_gamma : transtime := rnd.gamma(parameterl, parameter2);
end;
until ((transtime >= min_stay) and (transtime < max_stay));
if reduced los >=1 then begin {reduced los is a percentage shift to LoS}
if increase los = 0 then {1 for an increased and 0 for a decreased shift}
transtime := transtime - ((reduced los/100)*transtime)
else
transtime := transtime + ((reduced_los/100)*transtime);,
end;
random_deviate := transtime;
end;

The Tstringlist object is frequently used throughout the program in order to maintain
and manage lists of strings, so that classes may add, delete, insert, move or exchange
strings with pre-defined functions in a controlled and safe environment. For example,
next level of care (care unit priority list attached to each class of patient groups) is
defined as a Tstringlist. In the model, a combo-box on the patient group form enables
the user to select from a number of currently defined care units and add it/delete it from

the list, or move the position (priority) of the care unit on the list (Figure G.1).
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List of available
care units (from
the stringlist of
care units)

[ Patient Group General T Aurival Profiles T Length Of Stay
Care Details T Resource Needs ]
Care Priority List
Priority List for Patients |
(admission info care unit- priorifes as below) i
|
{ ‘ ' [wiaaa | |
|
v ‘ i Delete ‘
Add Care Unit of Priority
Select Next Care Unit: | Medicine :J

Surﬂeri
—_  |Orhopaedics

Urology
F" ENT
__ OK|Opjghalmology
- OnCology =
Gynaecology K2

|»

The selected unit is
added to the patient
group unit priority
stringlist
(Tnext_level of care)

Figure G.1: Editing care unit priority lists: the TStringList object in action

G.3 Care Unit (Bed) Code

A patient attempts to find a suitable bed in the hospital by examining each care unit on

their priority list in turn and examining the current care unit bed availability whilst

adhering to relevant admission rules. The class Care_Unit has been created containing

all of the necessary statistics (Pcounter and Pwaitstatistic), the unit name and the

number of beds in each unit (Tresource).

TCare Unit = class

patient_count : integer;

deferral : Tdeferment;

<

patient_freq : Pcounter;

arrivals : Pcounter;

transfers : Pcounter;

no_stayed : Pcounter;

no_moved : Pcounter;
patientwaitingtime : Pwaitstatistic;
patientlostime : Pwaitstatistic;

monthly bed time used : array [1..12] of real;

Patients in the unit
care_unit_beds : Tresource; <€4——— Number of beds
number of beds : Tnum_beds;
waitingtime : real;

Admission rule variables

Statistics
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procedure init(wardname : string; def time : real; no_def to emerg,
no_free, fixed def time : integer; time_waiting : real);

procedure changename(wardname : string);

procedure remove;

constructor create;

end;

G.4 Operating Theatre Code

An operating theatre is described by the TOpt class that contains all of the necessary
statistics and rules governing its use. The Ttheatre times class controls the opening

times and duration of each theatre session (by day).

TOpt =class
number of sessions : Tnum_sessions;

theatre name : string;

times : Ttheatre times; 1

overrun_percentage, Theatre scheduling rules
schedule_method : integer;

cut_point : integer;

currently being_used : integer;

time_in_use, time_over, time_under : real;

no_operations, sessions_under, sessions_over : Pcounter; Statistics
operation_waiting_time, operation_server_time,

slack time : Pwaitstatistic;

constructor create;

procedure load(var f : textfile);

procedure save(var f: textfile);

procedure remove;

destructor destroy;

end;

P> Ttheatre_times = class

duration:integer;

starttime:string;

currentlybeingused:boolean;
starttimeindays,endtimeindays:real;

lasttimeused:real;

constructor create;

procedure save(var f:textfile);

procedure load(var fitextfile);

procedure copyandpaste(var D:Ttheatretimes);
function acquire(timerequired,group mean:real):boolean;
function overrun(timerequired,transtime:real):boolean;
function return:boolean;

procedure produceactualtimes;

destructor destroy;

end;
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G.5 Workforce Code

A number of workforce resources may be defined. For each patient group, the
necessary workforce-to-patient ratios must be defined. This is further broken down by

patient dependency state and shift of the day.

A Tstringlist of human resources is constructed (THuman_Resource).

THuman Resource = class(Tstringlist)
constructor create;
procedure load(var f : textfile);
procedure save(var f': textfile);
destructor destroy;
end;

Patient dependency lists are created within the TPatient Group class (section E.2)
which define the number and duration of each dependency state, together with the

numbers of each resource required for each of the three daily shift (time period 1, 2,

and 3).

Tpatient_dep = class
name : string;
percent : integer;
time period 1: Ttime resource list;
time_period 2 : Ttime resource list;
time period 3 : Ttime resource list;
constructor create;
procedure load(var f: textfile);
procedure save(var f : textfile);
procedure copy_info(old info : Tpatient_dep);
destructor destroy;
end;

G.6 Simulation Object

The inherited simulation object is used by queues, resources, all statistic objects, the

simulation timer and the simulation model. The common method for these objects is

described by:
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PsimObj = TsimObj
TsimObj = Object(Tobject)

Constructor init;

Procedure Start runs;

Procedure Start new_run;

Procedure End_run;

Procedure End runs;

Function return_value : real;

Destructor done;

end;
The object orientated programming approach enables the programmer to hide detail in
units that have become part of the simulation shell. For example, when a queue is
created in the initialisation at the start of the application, the queue is added to the

simulation object list using the following code:
Object list.add object(self)

The programmer no longer needs to empty the queue at the start of the run since it

automatically follows the Start_runs procedure in the application.

G.7 B-Events

The B-events for the PROMPT model are:

» Generate initial arrival times and cause next arrivals within each patient group.

» Check, and if necessary adjust, bed numbers to reflect step-up and step-down of
beds over time (daily and monthly event).

»> Open theatre sessions as necessary (daily event).

» Cause post-operation LoS to commence when patient arrives back from theatre to

ward.

> Cause patient to leave hospital on completion of their LoS or cause re-admission

arrival time for deferred elective patients.

All B-events are objects of Bevent, defined by:
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TBevent = Object(TObject)
Constructor init;
Procedure Start new_run;
Procedure do_event(ent : Pentity);
Destructor done;
end;

Pseudo code for the B-events are provided below:

b_arrive : TB_eventl.init;
initialise entities {for each patient group}
generate initial arrivals {based on arrival profiles for each group}

b_arrive : TB eventl.do_event;
add to queue {for care unit}
cause next arrival

b_arrive : TB_event2.do_event;
release bed {patient leaves}
dispose of entity
check queue {for waiting times of queueing patients}

b_arrive : TB event3.init;
calculate any changes in bed numbers during year

b_arrive : TB_event3.do_event,
change bed numbers {for each care unit as appropriate over time}

b_arrive : TB_event4.do_event,
cause departure {as patient arrives back from theatre}

b_arrive : TB _event5.do_event;
Open theatre {for each session based on opening times}

G.8 C-Events

The C-events for the PROMPT model are:

» Start patient stay (having already found an available and suitable hospital bed).
» Start operation in theatre (having queued and been admitted in to a suitably

available and open theatre session).
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C-events are defined by:

PCevent = TCevent
TCevent = Object(TObject)

{Variables}
event_on : boolean;
{Procedures}
Constructor init;
Procedure do_event(ent : Pentity);
Destructor done;

end;

Pseudo code for the C-events are:

TC start service.do_event;
check bed availability
if a suitable bed is free:

acquire bed

generate LoS

cause departure

log arrival time

update statistics
else:

add to queue

TC theatres.do_event;
if at least one patient waiting for theatre:
acquire theatre
generate operation time
cause departure from theatre
update statistics

TOCHSIM has been developed over a number of years with the programming skills in
particular of Dr Daryl Gove and Dr Simon Jones. My specific contribution to
TOCHSIM was to help move the shell from the Pascal to Delphi environment, thus

developing a 32-bit object-orientated version.
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Appendix H — Hospital Feedback and
Research Evaluation

Acceptance and ease of use of the models by the hospital staff are necessary conditions
for obtaining the benefits from the developed models. It was the intention that the
variety of operational tools and frameworks as developed during the research and as
discussed in this thesis meet these necessary conditions. A key aspect of the evaluation
process was entailed in the use the models by the participating NHS Trusts. In this
context, it was with great pleasure that letters of thanks and appreciation were received
from the two major NHS Trusts at Reading and Portsmouth. Messages of thanks were

also received from managers and consultants from the various critical care units.

An excellent working relationship has been forged between the Institute of Modelling -
from Healthcare (IMH) at the University of Southampton and the participating
hospitals. As a consequence, a number of future projects have already been proposed
(some ideas of which are described within the further research section of Chapter 10).
Furthermore, due to the network of senior hospital staff within the UK and in particular
between regional NHS Trusts, a number of other hospitals have approached IMH with
the intention of conducting similar capacity planning exercises. The letters from the

two NHS Trusts are shown on the following pages.
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H.1 Correspondence from The Royal Berkshire and Battle
Hospitals NHS Trust

ROYAL BERKSHIRE & BATTLE HOSPITALS NHS TRUST
ol
ADULT MEDICINE
London Road, Reading, Berkshire RG1 5AN Tel (0118 87 7911)

Paul Harper
Institute of Modelling for
Healthcare Facultv of Mathematics Studies

University of Souihampton
5017 1B]

HB/ 1736/ gjc
23 April 2001

Dear Paul

Re: Activitv Modelling for the Roval Berkshire and Battle Hospitals
NHS Trust

We have now completed our fourth year of activity modelling for the
Trust. [ wanted to thank vou for all the help and support you have
given us in developing this tool. It has proved to be very accurate in

projecting our activity.

We use this information on an annual basis to modell our activity both
for our surgical profiling and our Acute medical capacity. To date
entirely based on the modelling we have opened 60 additional medical
beds, some being newly staffed beds others re-allocated from other

specialities.

The whole activity modelling forms part of our contract negotiations
with our local Primary Care Trusts.

It has formed the basis for our winter pressure planning. Our Regional
Office visited us in March to evaluate the effectiveness of our plan and
we were given a glowing report. There is no doubt with the
information of projected peaks and troughs in our activity we can plan
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to meet the demand with as much efficiencyv as possible. Thus
emergency patients are admitted speedily and elective surgerv is not

cancelled.
Kind regards

Yours sincerely

I\ i %
HE PR 10 \
ﬂ\—.{/':'uk‘ ~ v S

Heather Bunce

CSUM
Deputy Director of Operations
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H.2 Correspondence from Portsmouth Hospitals NHS Trust

Portsmouth Hospitals UL’E

NHS Trust

Dr Peter Howlett MBA
Executive Director

Ground Floor
Room 0.23
De La Court House

Mr P Harper -
Institute for Modelling for Heaithcare g”ee” A"fx?;“ga Hospital
Faculty of Mathematical Stucies ng:;“:r'f Hill Road

University of Southampton Portsmouth POS 3LY
Southampton Hants

Hants Tel: (023) 92 286000  Ext. 6342
SO17 184 Fax: (023) 92 286073

Our Ref: PH/SMHW/012 18" June 2001

Dear Pauil
Re: Modelling of Patient Activity for Portsmouth Hospitals NHS Trust

| am writing to thank you for the crucial work that you are doing to support the plans
for the redevelopment of Queen Alexandra Hospital. As you know the
redevelopment plans involve a £120m building programme combining existing
hospital buildings with significant new ones to .provide one of the largest acute
hospital complexes on the south coast.

In an area as complex as health care identifying the capacity of such facilities
against future patient workicad is not straightforward. We do have some tools which
are widely used in the health service for identifying numbers of beds and numbers of
operating theatres for specific workloads in specific specialties, but these are static
modelling tools, which | describe as measuring the ‘size of the pipe’. The crucial
element of your own work and why it is so valuable to us is that your modelling tools
provide a dynamic model which enables us to effectively test ‘what if’ questions. We
can take our own current workload figures and ask the question what if we were to
attempt to manage this workload through this set of new facilittes. We can then
anticipate growth in that workload and again test against the facilities. Effectively,
your modelling work provides us with a dynamic tool to look at the flow through the
pipe. Given that much of our workload is dominated by emergency work which is
subject to significant fluctuations, peaks and troughs in workload, it is essential for us
to be able to anticipate when we might fail to have sufficient facilities for a particular
workload. The failure of hospitals to anticipate fluctuations in workload and to have
sufficient facilities to meet workload peaks is of course the subject of a considerable

amount of adverse publicity.

Given too the significant levels of investment in new hospital facilities it is essential
that we are able to fully test our specification proposals for the building of new

hospitals.
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I think | can therefore safely say that your own personal input and the development
of those modelling tools has been enormously valuable to us. We recognise the
degree to which those tools and the modelling is evolving and is the subject of both
research and development. We are very happy to be working with you in looking at
how that can be used in a very timely way in one of the largest acute hospitals in the
country undergoing a massive change programme.

We look forward to making further progress with you in meeting our planning needs
and hopefully stimulating your research interests.

Yours sincerely

Dr. Peter Howilett
Director of Planning
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