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The provision of healthcare services is perhaps one of the largest and most complex 

industries worldwide. As one of the essential necessities to sustain life, it faces the 

consequences of increasing demand in times of limited financial resources and 

competing social needs. Providing the appropriate medical care involves decision-

making in terms of planning and management of healthcare resources. 

There is currently a great need to evolve a framework in which necessarily detailed, 

stochastic, flexible and user-friendly operational models, to aid both the planning and 

management of hospital resources, can be developed. Such a framework is considered 

and created within this research. Furthermore, detailed integrated simulation models 

for the planning and management of hospital beds, operating theatres, workforce needs 

and critical care services have been designed and built. An evolutionary development 

methodology has been adopted whereby the research work and model development has 

been guided by a number of steering groups within participating NHS Trusts. 

The derived framework incorporates the need for sophisticated patient classification 

techniques to be adopted. In order to capture the uncertainty and variability amongst 

the patient population, a number of classification techniques have been considered and 

evaluated for their relative performances and practical usefulness. Healthcare issues 

representing both challenges and opportunities are explored in order to provide a basis 

for tentative conclusions about the current state of operational modelling for healthcare. 

A framework for the successful design and implementation of operational models in a 

healthcare environment is proposed. 
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Chapter 1 Introduction 

Chapter 1 - Introduction 

1.1 Chapter Introduction 

The purpose of this chapter is to establish the general context of the work presented in 

this thesis and provide a perspective into which the individual elements can be 

integrated. Firstly there is a clear statement of the project objectives followed by the 

general methodological approach adopted and research context. Details of the research 

participants and project management arrangements are then presented. The chapter 

concludes with an outline of the overall thesis structure, providing an overview of the 

document as a whole. 

1.2 Research Objectives 

This thesis concerns the planning and management of healthcare resources. The 

research work however may be broadly divided into the following distinct but 

integrated objectives; 

® To research the use of the simulation methodology in support of management 

decision-making processes within the healthcare environment, with particular 

emphasis on hospital beds, human resources and operating theatre capacities. 

® To explore the use of various classification techniques with particular emphasis on 

creating healthcare groupings. This will require an examination and comparison of 

existing methodologies and the need to improve the current theoretical knowledge. 

® To derive a generic framework for modelling of healthcare resources. This should 

involve the linking of patient groupings from classification analyses with 

operational models. 
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® To develop necessarily detailed but flexible operational models to aid the chosen 

study areas and demonstrate the value of such models through various case studies. 

® To evaluate the effectiveness of the adopted methodology and developed 

applications. 

1.3 Research Context, Rationale and Methodology 

As the NHS enters the new millennium, it does so as it faced its birth in 1948; an 

astonishing vision of comprehensive healthcare for an entire population. Now, as then, 

it is beset with controversies, both at local and national level. The nation it serves has 

changed considerably from those post war years. The balance of population living in 

large conurbations has changed, the age structure is different and people's expectations 

of the service they think it should provide change continuously. 

As each year passes, the proportion of the population that can remember what 

healthcare was like before the establishment of the NHS declines. For those bom in the 

fifties and afterwards, it is simply part of the way things are. Perhaps this, more than 

anything else, explains why attitudes to it have changed. 

It will face many new challenges in this third millennium. The need to balance a 

supply driven service with finite funding, against demand fuelled by legitimate 

expectations will not go away. Advances in our understanding of the very generic 

chemistry of life will plunge the service into moral and ethical debates, the like of 

which have never been seen. Expensive treatment for "self inflicted" illnesses related 

to smoking and alcohol abuse will come increasingly into question. Some countries 

have already introduced voluntary euthanasia into law and in Britain the debates will 

continue to be heard. 

Against this backcloth it would be absurd to assume that the delivery, planning and 

management of healthcare will remain static. The state of the NHS has seen many 

structural reforms by various governments since its birth and the continuing emphasis 
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towards improved planning and management of resources within the NHS is clearly 

visible. 

The Conservative government under John Major in 1991 produced "The Health of The 

Nation" reform document outlining their policies for the future role of the NHS 

(Department of Health, 1991). Mr Waldergrave, then Secretary of State for Health 

states, "A key feature of the reforms has been the establishment of a clear strategic role 

for health authorities". Later in the document he acknowledges the need to plan and 

manage resources carefully as there is only a finite amount available and a key 

objective is to make the best possible use of these resources. More recently, the 

Labour government lead by Tony Blair defined what it saw as "The new NHS; a 

Modem and Dependable Service" (Department of Health, 1997). Once again a key 

objective within the new national performance framework, as outlined in the 

document, is for "an evidence-based service in which change will be driven by 

improving the performance and efficiency of NHS Trusts; a combined approach of 

quality and efficiency to build a modem and dependable health service fit for the 

twenty first century and fit for the people of this nation". 

The research topic concerns modelling for the planning and management of healthcare 

resources. This thesis aims to demonstrate that healthcare planning and management 

issues can be greatly benefited through an Operational Research approach. Together 

with the research participants, it was decided to concentrate on the planning and 

management of hospital capacities, which is currently a highly topical and important 

issue. More specifically, this research will focus on hospital beds, human resources 

and operating theatres capacities within a hospital environment. There is currently a 

great need to research these three highly critical, complex and interlinking elements of 

the hospital system. A generic framework for modelling of the hospital system is 

required. 

Capacity planning in hospitals is largely a strategic decision. For example the total 

number of beds in a new hospital and the number of beds in various specialties are very 

major concerns; here the planning horizon could be about ten years. Management of 

available capacities could be from day to day or over longer periods such as winter 

months and summer months. An example would be a planned transfer of surgical beds 
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to elderly medical patients in winter. Appropriate detailed models that can evaluate a 

variety of scenarios could be powerful tools for good planning and management 

decisions. 

A common current practice is to plan and manage hospital capacities through a simple 

deterministic approach using average patient flows, average needs, average length-of-

stay, average duration of surgical operations etc. Patient flows, patient needs, and 

utilisation of hospital capacities involve complexity, uncertainty, variability, 

constraints, and scarce resources. Mathematically speaking, a hospital corresponds to 

a complex stochastic system so that the common deterministic approach for planning 

and managing the system can be expected to be inadequate. Typically the deterministic 

approach will underestimate hospital requirements. The mathematical modelling 

approach of Operational Research is ideal for dealing with complexity, uncertainty, 

variability, constraints, and scarce resources and appropriate models can avoid the 

dangers of planning on the basis of average values only. This research is concerned 

with the development, solution, and validation of sufficiently detailed stochastic 

models for planning and managing hospital capacities. 

Appropriate classification methods, linked to routine databases that are easy to use are 

needed. Classification methods such as Classification and Regression Tree (CART) 

that use binary splits have a great practical appeal. There is a need to improve the 

current theoretical knowledge about criteria for goodness of groupings and the effects 

of transformations. There is a need to test the accuracy and practical usefulness of a 

variety of classification methods for a number of variables. Examples include lengths 

of stay, theatre operations and nursing needs. The necessary theoretical and practical 

research for classification is an important element of this research. Various 

classification techniques will be compared using illustrative hospital datasets. 

A combination of classification and simulation modelling can be used to describe, 

control, and monitor the flow of patients in a hospital. Patient flows correspond to 

queues in networks and it is not surprising to find that queuing models have been used 

extensively in the literature. Integer programming, forecasting, and simulation are 

other commonly used techniques. Although often viewed with success, much of the 

work to date has been project specific or has made highly simplifying assumptions. 
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There is a great need for flexible and sufficiently detailed models that can be used in a 

hospital at various levels. Such models will need to be stochastic in nature and take 

uncertainty, variability, complexity and use of resources into account. Ease of use 

including links with databases that are in common use is an important consideration. 

The models will be too complex for analytical solutions and simulation will be needed 

for solving the models. Validation and verification of complex models are clearly 

important issues and careful attention is given to these matters. 

Historically within Operational Research, simulation methods have been successfully 

proven in manufacturing domains where processes can relatively easily be quantified 

and assessed. Ease of measurement and data collection are key factors in the 

construction and validation of the models used in such applications. In contrast to 

manufacturing systems, the service sector presents particular challenges to the modeller 

(Checkland, 1981). The potential benefit of the simulation methodology within the 

service industries is considerable. Arguably the challenges of service sector modelling 

are most acute in healthcare where issues of complexity, diversity and lack of 

quantitative data create particular problems (Davies, 1985). Such rewards for 

successful implementation of simulation within a healthcare environment provide 

ample incentive for this research. Furthermore, the development of a generic 

framework for simulation of hospital resources is paramount. 

1.4 The Research Participants 

The author worked closely with a number of healthcare organisations. A strong 

relationship was forged between all of the participants throughout the duration of the 

research work and permitted the evaluation of the research methodology and developed 

applications in a real-life environment. Ultimately this resulted in the research work to 

be of great practical use and benefit. 
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1.4.1 The Author 

The author completed a B.Sc. (Hons) honours degree in Statistics at the University of 

Bath in 1995. He then went on to obtain a M.Sc. (with distinction) in Operational 

Research at the University of Southampton during 1996. Since this time he has worked 

for Cap Gemini Management Consultancy in London, before returning to Southampton 

as a Research Assistant within the Operational Research Department. 

1.4.2 Institute of Modelling for Healthcare 

The Institute of Modelling for Healthcare is a group within the Operational Research 

Department in the Faculty of Mathematical Studies at the University of Southampton. 

The Institute was established in the early 1990's, under the directorship of Dr. A. K. 

Shahani, due to the expansion of the healthcare modelling work following successful 

efforts in collaborative work and increases in research funding. 

The Institute is pursuing and co-ordinating research on modelling for a number of 

healthcare areas. These areas include: 

• Hospital capacity. 

• Prevention, early detection and treatment of a particular disease. 

• HIV/AIDS patient care. 

• Intensive care capacity. 

• Maternity care. 

• Interventions for infectious diseases. 

• Organisational issues such as interactions between primary and secondary care. 

One of the aspects emphasised in the IMH approach is that developed models should 

account for the variability found in the real world. This distinguishes them from other 

more simplistic models that consider only average conditions, which often represents 

an unrealistic simplification. 
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1.4.3 The Royal Berkshire and Battle Hospitals NHS Trust 

The Royal Berkshire and Battle Hospitals NHS Trust is an acute district general 

hospital based approximately 40 miles west of London in the Thames Valley. It serves 

a population of around 500,000 in a mixture of urban and semi-rural setting. The 

catchment population is on the whole relatively affluent and in good health, with 

patches of deprivation within the two main towns in the area. 

The Trust covers the usual range of acute specialties including maternity services, with 

the exception of heart surgery and neurosurgery. The Trust treats approximately 

260,000 outpatients, 65,000 inpatients and day cases and about 80,000 casualty 

attendees annually. The beds complement is 800 and the Trust employs over 3,500 

people. 

The hospital was founded on its London Road site in central Reading in 1839. The 

Battle Hospital, on Portman Road in west Reading, began life in 1891. The two 

hospitals have worked closely together since the time of the First World War. In 1987 

they were brought together as one management unit. The Royal Berkshire and Battle 

NHS Trust was formed in April 1993. 

During the middle of the 1990s the Trust, as did the whole of the NHS, came under a 

considerable pressure to treat ever increasing numbers of patients through a 

diminishing bed pool. The demand for certain surgical specialties was showing large 

increases. At same time numbers of medical emergency admissions were on the rise. 

Internally the Trust launched a programme of consolidation of services from the 

current two locations within Reading to a single site. The building constraints meant 

that the pressure on space would become even greater, so that the number of beds that 

would be provided demanded higher bed utilisation and more accurate scheduling of 

other associated services. 

The Trust had to make some fundamental changes to its way of working in order to 

meet these new challenges. An analysis of cost drivers confirmed what everybody 
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intuitively felt; that any significant efficiencies could only be achieved through radical 

systems review and redesign of the whole system. This recognition led to the launch of 

a re-engineering programme within the Trust. 

The Trust already had some limited experience of process oriented improvement 

projects, and now took the bold step to run a Trust wide programme that would 

approach the redesign from a strategic, whole system point of view. Very few 

constraints were placed on the staff working on the project and a much simplified 

organisational model was bom (see Figure 1.1). 

The model defined two categories of patients: 

• Planned patients; and 

• Unplanned patients. 
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Figurel.l: Royal Berkshire and Battle NHS Trust process model 

This simplicity was a departure from the established groupings and at first was not 

universally accepted. The logic behind the grouping, however, is straightforward. For 
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'planned' patients we know in advance that they are coming in and why. We can 

therefore plan, book, and schedule etc. what we are going to do. In fact the process 

itself is not too dissimilar for the 'unplanned' patients. Although they present 

unexpectedly, they still pass through more or less standard processes of diagnosis and 

treatment. 

Having developed a new process model the Trust wanted to test its validity using 

established statistical and mathematical methods. The Trust also wanted to model and 

evaluate detailed options within the new design. Apart from this 'one off application, 

the Trust was also looking to develop a forecasting and planning tool that could be 

used in long term planning and during the annual business planning cycle. 

The Trust evaluated a number of approaches and decided to work jointly with the 

Institute of Modelling for Healthcare at Southampton University. The main reasons for 

choosing this particular establishment was their experience in building highly detailed 

and realistic models both at global and detailed local levels. 

1.4.4 Portsmouth Hospitals NHS Trust 
MlKIMUinH HOSnrAU 

W S TRUST 

Portsmouth Hospitals NHS Trust is one of the largest in England, with an annual 

income of around £240 million (2001/02). It provides acute healthcare services for 

almost a million people; 550,000 covered by Portsmouth and South East Hampshire 

and many more from the surrounding counties. 

The Trust has a regional specialty in its Renal and Transplant Unit and is a designated 

Cancer Centre. It is involved in the training of nurses and doctors at undergraduate 

level from the University of Southampton and postgraduate teaching. 

Based at two locations in the City of Portsmouth four miles apart, the Trust effectively 

operates out of three main sites, as St Mary's Hospital (SMH) is divided in two by a 

main road. St Mary's Hospital West Wing is an historic 'workhouse' hospital and St 

Mary's East Wing is a former infectious diseases hospital, both dating from the 

nineteenth century. Queen Alexandra Hospital (QAH) is located in the north of the 

city in Cosham. It largely comprises two tower blocks of seven floors opened in 1978. 
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This is connected to the original 1908 military hospital, which is leased by Portsmouth 

Healthcare NHS Trust to provide acute elderly services. 

Separately, neither Queen Alexandra Hospital nor St Mary's Hospital represents a full 

District General Hospital (DGH), but together they provide the full range of services 

expected of a DGH, albeit with services scattered around three sites. This leads to 

duplication of services in some instances, and the current cross-site dislocation of such 

services has a heavy cost premium of several million pounds per annum. The use of 

inappropriately configured, ageing building stock contributes to these problems and 

generates a backlog maintenance requirement estimated at £34 million (1994), without 

providing better facilities for patients. This historically generated pattern of split site 

working damages service delivery. 

Internally the Trust launched a consolidation and reconfiguration programme of 

facilities. The following key strategic objectives were identified: 

• To re-engineer the Trust's acute services to ensure the effective delivery of patient 

care on a single acute hospital at Queen Alexandra Hospital. 

• To rationalise existing sites and create a Community Hospital Plus on the St Mary's 

Hospital site (a community hospital with extended facilities). 

® To secure investment for the redevelopment of facilities to support the Service 

Development Strategy through the Private Finance Initiative (PFI). 

• To provide specified services delivered by the Trust in local primary care and 

community settings. 

The Private Finance Initiative (PFI) programme is a government-run initiative to attract 

private sector investment into health to permit the building of new hospitals and the 

development of new services. The Trust, supported by the local health authority, 

submitted a Strategic Outline Case (SOC), which demonstrated the benefits to the local 

community of the PFI. Portsmouth's application was successful, which represented a 

major success to the Trust. Portsmouth were then asked to submit a fully costed 

Outline Business Case (OBC), to appraise the options for delivering such benefits and 

recommend a preferred option. 
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A PFI proposal has to demonstrate value-for-money against the range of options 

considered. In the case of Portsmouth, the preferred option is the development of a 

single acute hospital on the Queen Alexandra Hospital site and the development of a 

community hospital on the St Mary's Hospital West Wing site. The prospects for a 

successful PFI partnership and development are excellent. Adjacent to the new build 

site is an additional 5.7 acres of land obtained from Portsmouth City Council as part of 

a land exchange deal. The outline planning permission includes multi-level car parks 

for patients and visitors and facilities for management of non-clinical services, such as 

laundry, maintenance and clinical waste incineration. 

The significant planned investment, through the PFI process, is intended to develop 

Queen Alexandra Hospital as one of the most modem in this country and to deliver the 

highest possible standards of care to patients. The PFI gives the Trust an excellent 

opportunity to reconfigure the current structure of hospital processes and design the 

layout of the new building development. The Trust launched a consolidation and 

reconfiguration programme of facilities known as the Processes to Improve Care (PIC) 

project. PIC initially concentrated on ways of improving the process of patient care to 

deliver quality benefits, increase the number of patients treated, or reduce costs, or a 

combination of all three. In order to submit a successful and realistic OBC, as required 

under the PFI scheme, the Trust needed to quantify the benefit of re-configured 

processes as identified during PIC. There was a vital need to calculate the likely bed 

compliment for the entire hospital. 

The Trust required an operational model to capture the flow of patients through the re-

configured hospital system. Various scenarios needed to be examined and numbers of 

beds had to be quantified and costed. The Trust acknowledged that internally it did not 

have the necessary personnel with the skills and expertise to undertake this critical 

component of the OBC. Traditionally it had used simple spreadsheet calculations but 

had grave misgivings about the accuracy of these in the past. They appreciated that a 

more sophisticated and mathematically correct methodology was required in the form 

of operational models to capture the complex and variable flows of patients through 

Portsmouth Hospitals NHS Trust. 

11 
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1.4.5 Critical Care Units 

A number of critical care units also participated in the work. Involvement ranged from 

the transfer of knowledge regarding rules governing admissions and flows of patients 

through a critical care unit, through to the supply of data for validation and use of the 

developed model (see Chapter 8). For the purposes of this thesis, the participating 

units wish to remain anonymous. 

1.5 Supervisory Arrangements 

The supervisory framework for the Ph.D. was provided from a number of sources. The 

primary academic axes of supervision came from internal supervisors within the 

Operational Research Department at the University of Southampton. Such supervisors 

oversaw the development and advancement of methodologies as outlined in the general 

research context. Alongside this academic source, a key motivation of the Ph.D. was to 

test the efficacy of the developed methodologies by their application in the 

development of realistic and practically useful applications for use by hospital 

managers themselves. To meet this need, a more managerial supervisory role was 

adopted by the participating hospitals themselves, namely the Royal Berkshire and 

Battle NHS Trust (section 1.4.3), the Portsmouth Hospitals NHS Trust (section 1.4.4) 

and participating critical care units (section 1.4.5). Considerable time was spent 

working within the Trusts, enabling the author to fully understand local issues, 

processes and to build strong relations with a number of key personnel within the 

hospitals. Steering groups were established (Appendix A) which consisted of a number 

of healthcare managers from different departments within each Trust, as well as the 

academic supervisors from the University. Steering group meetings were held at 

regular intervals throughout the duration of the research and a range of reports and 

other documents were produced for the participating Trusts. 

It is believed that the combination of academic and hospital supervisors enabled this 

research to be of great practical use and benefit to the healthcare profession. As a 

consequence of the generic framework and flexibility of the developed operational 

models as discussed in this thesis, they have since been successfully used by a variety 
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of Trusts across the UK and have been presented at a number of domestic and 

international conferences. 

1.6 Thesis Structure 

The main body of the thesis is divided into ten chapters which are designed to follow a 

logical sequence through the subject matter. Thus Chapters 1, 2 and 3 are used to set 

the context for the work; Chapters 4 through to 8 describe the research work itself; and 

Chapters 9 and 10 consist of the discussion of the research findings, conclusions and 

recommended further research. 

In general the first section of each chapter is used to introduce the content and the final 

section gives a synopsis of the ground covered with salient points. Technical detail and 

description relating to specific aspects of the research work are included in appendices 

at the end. 

Figure 1.2 below graphically depicts the thesis structure in terms of its components and 

illustrates how the elements are logically integrated within the thesis as a whole. 

1.7 Chapter Summary 

The general research context and methodology has been outlined; that of the need for 

the development, solution, and validation of sufficiently detailed stochastic models for 

planning and managing healthcare resources. This research will focus on hospital beds, 

human resources and operating theatre capacities within a hospital environment. There 

is currently a great need to research these three highly critical, complex and 

interlinking elements of the hospital system. A generic framework for modelling the 

hospital system is required. Participating NHS Trusts provide the real-life context and 

needs for developing operational models. 
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Chapter 1 
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Chapter 2 
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Chapter 3 
Operational Modelling for 
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Research Work 

Chapter 4 
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Chapter 5 
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Chapter 6 
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resources simulation developed within the evolved 
generic framework. 

Chapter 7 
Hospital Case Studies 

Illustrative case studies of the hospital resources 
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Chapter 8 
Simulation Models for 
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Figure 1.2: Overview of thesis structure 
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Chapter 2 - Planning and Management of 
Healthcare 

2.1 Chapter Introduction 

This chapter provides a review of the history and structure of the NHS. It will identify 

the many structural reforms that the NHS has witnessed since its birth. Furthermore, 

this chapter will establish the current issues that have resulted in the need for detailed 

operational models for the planning and management of healthcare resources. 

2.2 The Health of a Nation 

The National Health Service (NHS) was founded in 1948, and since then has become 

one of the institutions of the State. It is one of the best loved in principle, most vilified 

in debate and least understood parts of the welfare provision of this country. We take 

the NHS for granted now, but it is only just over 50 years ago that healthcare was a 

luxury not everyone could afford. It is difficult today for us to imagine what life must 

have been like without free healthcare and the difference that the arrival of the NHS 

made to people's lives. Many of the references provided in the following sections may 

be found in Rivett (1998), which gives a more detailed description of the health of the 

nation and the birth of the NHS. 

2.2.1 Life before the NHS 

Just before the creation of the NHS, the services available were, as you might expect, 

the same as after; no new hospitals were built nor hundreds of new doctors employed. 

What was different was that poor people often went without medical treatment, relying 
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instead on dubious, and sometimes dangerous, home remedies or on the charity of 

doctors who gave their services free to their poorest patients. Access to a doctor was 

free to workers, who were on lower pay, but this didn't necessarily cover their wives or 

children, nor did it cover other workers or those with a better standard of living. 

Hospitals charged for services, though sometimes poorer people would be reimbursed. 

Even so, it meant paying for the service in the first place which not everyone could 

afford. 

The need for free healthcare was widely recognised, but was impossible to achieve 

without the support or resources of the State. Throughout the nineteenth century, 

philanthropists and social reformers working alone had tried to provide free medical 

care for the poor. One such man was William Marsden, a young surgeon, who in 1828 

opened a dispensary for advice and medicines. His grandly named London General 

Institution for the Gratuitous Cure of Malignant Diseases, a simple four-storey house in 

one of the poorest parts of the city, was conceived as a hospital to which the only 

passport should be poverty and disease and where treatment was provided free of 

charge to any destitute or sick person who asked for it. 

The demand for Marsden's free services was overwhelming. By 1844 his dispensary, 

now called the Royal Free Hospital, was treating 30,000 patients a year. With 

consultant medical staff giving their services free of charge and money from legacies, 

donations, subscriptions and fund-raising events, the Royal Free, now re-housed in 

larger premises, struggled to fulfil Marsden's vision until 1920 when, on the brink of 

bankruptcy, it was forced to ask patients to pay whatever they could towards their 

treatment. 

As well as the charitable and voluntary hospitals, which tended to deal mainly with 

serious illnesses, the local authorities of large towns provided municipal hospitals, 

maternity hospitals, hospitals for infectious diseases like smallpox and tuberculosis, as 

well as hospitals for the elderly, mentally ill and mentally handicapped. Mentally ill 

and mentally handicapped people were locked away in large forbidding institutions, not 

always for their own benefit but to save other people from embarrassment. Conditions 

were often so bad that many patients became worse, not better. Older people who were 

no longer able to look after themselves also fared badly. Many ended their lives in the 
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workhouse, a Victorian institution feared by everyone, where paupers did unpaid work 

in return for food and shelter. Workhouses changed their names to Public Assistance 

Institutions in 1929, but their character, and the stigma attached to them, remained. 

2.2.2 Towards a public health service 

The foundations for a public health service could be said to have been laid in the 

nineteenth century when in 1834 the Poor Law Amendment Act called for the 

provision of sick wards in parish workhouses. Although intended for the people in the 

workhouses, the wards soon became full with sick poor people from the parish in 

general, prompting the State to assess how best this situation could be dealt with. In 

1848, the Public Health Act created the General Board of Health, a centralised body 

intended to review and reform provision for public health, but which, in fact, had little 

power to do so. 

By mid-century, voluntary hospitals, which tended to be more exclusive since they had 

been created by the wealthy, charities and religious bodies and paid for by donations or 

subscriptions, began accepting some of the more complicated cases from the 

workhouses, indicating a further step towards public healthcare provision. 

Another milestone during this time was the provision of separate institutional care for 

smallpox, fevers, insanity and tuberculosis; first in London and later in the provinces. 

While the skeleton of public access to health services was beginning to emerge, with 

workhouses, voluntary hospitals, asylums and isolation hospitals, the level and 

conditions of care were poor. At the beginning of the twentieth century, preventative 

healthcare measures became a focus of attention since both the Boer and Crimean wars 

had highlighted the poor health of soldiers; more had died from fevers and typhoid than 

through actual warfare. 

Any treatment received by wage earners tended to be paid for by their subscriptions to 

trade unions or friendly societies who, in turn, paid the doctors. This system, however, 

only covered the worker and not the family. Those who couldn't afford to pay relied on 

outpatient departments and dispensaries at local voluntary hospitals or simply did not 
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receive treatment. Towards the end of the nineteenth century, voluntary hospitals, 

unable to provide services on charitable donations alone, began charging for hospital 

costs. 

In 1905, the Minority Report of the Poor Law Commission pointed out the differences 

in standards of healthcare services provided across the country and urged the 

Government to make amends. It responded with benefits for the unemployed and 

pensions for the elderly rather than a direct approach. The National Health Insurance 

Act in 1911 ensured that workers at the bottom of the wage scale received free 

treatment with their GP, but did little to improve the situation for the rest of the 

population. 

One of the biggest steps towards organising a National Health Service came in 1920 

with the publishing of the Dawson Report. It recommended a comprehensive system, 

from establishing a single authority to look after all medical and allied services to 

providing standardised clinical records. The next landmark was made in 1926 when 

the Royal Commission on National Health Insurance suggested separating the medical 

service from the insurance system and setting up instead a service, which encompassed 

all public health activities, paid for by public funds. Then the Second World War 

brought more change. Although there were no statutory changes, the effects of war 

brought about significant developments in healthcare provision. 

The creation of the Emergency Medical Service gave central Government control over 

both the voluntary and local authority hospitals as well as taking responsibility for 

funding. This was the first time healthcare had not been paid for by local authority 

rates, patient's contributions or voluntary hospitals funds. In 1941 the Government 

commissioned an independent inquiry to look at the discrepancies in provision of 

hospital services across the whole country. It concluded that there were vastly 

differing standards which would remain the case unless a comprehensive overhaul was 

to take place. 

18 



Chapter 2 Planning and Management of Healthcare 
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With the voluntary hospitals permanently on the verge of financial collapse and the 

municipal hospitals almost universally loathed, there was no shortage of pressure for 

change. The first call for a National Health Service is usually attributed to Beatrice 

Webb, who argued the case for a state medical service in a submission to the Royal 

Commission on the Poor Law in 1909. Over the next 30 years the case for reform was 

taken up and developed in a succession of reports from the Ministry of Health, the 

British Medical Association and others, culminating in the groundbreaking Beveridge 

report of 1942. 

Sir William Beveridge had been appointed by the Government to chair an inter-

departmental committee to look into the existing National Insurance schemes. He made 

no detailed recommendations about how a National Health Service should be run, but 

by identifying healthcare as one of the three basic prerequisites for a viable social 

security system, he laid the foundations for the NHS as we know it today. The 

Beveridge report was followed by a White Paper, "A National Health Service", 

published in 1944, which stated: "everybody, irrespective of means, age, sex or 

occupation shall have equal opportunity to benefit from the best and most up-to-date 

medical and allied services available". It added, "The services should be 

comprehensive and free of charge and should promote good health as well as treating 

sickness and disease". 

In 1945 came a second White Paper. The NHS Bill of March 1946 proposed the 

nationalisation of all the voluntary and municipal hospitals and the creation of 14 

regional hospital boards to control them. The National Health Service Act, steered 

through Parliament by Aneurin Bevan, the then Minister of Health, became law on 

November 6 1946. It laid the ground rules for the modem NHS. It was to be a 

comprehensive health service designed to secure improvements in the physical and 

mental health of the people of England and Wales and the prevention, diagnosis and 

treatment of illness, funded through general taxation rather than National Insurance 

contributions. 
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Many compromises from many parties were still needed before the NHS could come 

into being on the appointed day - 5 July 1948. The key to the success of the plan was 

in winning over the various parties involved and it this with which Bevan is credited. 

The NHS was bom. 

2.3 Healthcare Reforms 

2.3.1 The need for structural reform 

The purpose of the NHS is to secure through the resources available the greatest 

possible improvement in the physical and mental health of the nation by; promoting 

health, preventing ill-health, diagnosing and treating injury and disease and caring for 

those with long term illness and disability who require the services of the NHS. The 

field however in which the NHS is operating is in constant turmoil. The population that 

it seeks to serve is always changing. Compared with its inception in 1948, there are 

now far more elderly in the population, greater diversity of ethnic groups, and fewer 

people living in the inner cities. Most noticeable is that healthcare has a political 

dimension. Funded largely from national taxes, central Government has an intense 

interest in its well being, the resources it consumes, and the service it provides. Public 

accountability is desirable in any public service, but it does not bring stability. 

Because of the political and socio-economic dimensions, the NHS has been subject to 

many structural reforms by various Governments since its birth. There has been a 

growing need for Governments to control the amount of spending on the NHS and to 

be seen to be making a firm stance on providing an effieicient and effective service to 

the nation in light of people's changing expectations through the ages. It is an 

organisation that constantly must change to keep pace with the demands placed upon it. 

Initial estimates for the cost of the NHS in 1948 were greatly underestimated and as 

such, resources were scarce. The first change to the NHS was made in 1951 when 

Winston Churchill's Government introduced prescription charges as a way to subsidise 

the service. Other more radical changes to the NHS have been implemented since, 
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notably in 1974 and 1982. It is the last decade however that has witnessed by far the 

greatest number of overhauls to the system. Major structural reforms were made 

throughout the last decade of the twentieth century by the Conservative Government 

and since by the present Labour Government. 

2.3.2 Reforms under the Conservative Government 

The Conservative Governments of 1987 and 1992 oversaw far-reaching reforms of the 

National Health Service, which created much controversy. Supporters claimed the 

reforms brought increased efficiency and effectiveness, but opponents said they 

undermined the founding principles of the health service. Under Margaret Thatcher, 

the Government encouraged people to use private medical services (The Health Service 

Act 1980 being the first step). However, the public remained committed to the NHS 

and grew concerned when waiting lists increased and wards closed. 

There was also concern about the level of spending on the NHS. With an ageing 

population and increasing use of expensive new technology, experts said that the NHS 

needed above inflation increases of at least 1% a year simply to stand still. 

The Government, influenced by the Griffiths Report (1983), blamed inefficient 

management and structures within the NHS for the cash problems. The National 

Health Service and Community Act of 1990 was the proposed solution. It reformed 

both management and patient care by introducing the concept of an internal market 

(i.e. the division between purchasers and providers of care - Harrison, 1991). The 

reforms represented a movement away from the principles of paternalism, collegiality 

and egalitarianism, and towards the concepts of autonomy, entrepreneurialism and 

differentiation within healthcare. Such reforms typified the nature of the Conservative 

Government at this time. The creation of an internal market was designed to: 

® Reduce inefficiencies in the UK state hospital system. 

® Increase cost-effectiveness of health provision so that a greater "health output" 

could be achieved with a given budget. 

21 



Chapter 2 Planning and Management of Healthcare 

® Improve responsiveness to consumers/patients (healthcare to be demand-led rather 

than supply-led). 

® Introduction of competition on the supply-side to keep healthcare costs under more 

control. 

The reforms concerned the mode of provision and not the source of funding of 

healthcare. In this respect, the reforms could not be classified as traditional 

privatisation. 

Under the reforms, 'self governing' NHS Hospital Trusts were created but remained in 

the public sector. Trusts are run by a board of non-executive directors who report 

directly to the Secretary of State, bypassing the district or regional Health Authorities'. 

Each Trust received a block grant to cover expenditures. Other Trust income was 

secured through competition for GP contracts. Trusts were permitted to set their own 

pay levels, manage their assets and specialise in certain forms of treatments through: 

® Acute services 

« Community services 

• Mental health and mental handicap services 

® Ambulance services 

» Specialist hospitals 

A further reform, as part of the internal market system, was the introduction of GP 

fundholders. GP fundholders are a collection of GP practices and allow individual GPs 

to control their own budgets and to provide and buy a limited range of healthcare for 

registered patients using contracts. GPs were allowed to shop around in the internal 

market for standard and inexpensive treatments for their patients. 

The central aim of the reforms was to produce a more cost-effective NHS. As well as 

the internal market, contracting-out was introduced. This forced the NHS to put in-

house services out to tender and award contracts to the lowest bidder. The Private 

' A Health Authority is an organisation at either a local or regional level designed to care for those 
patients living within its boundary by ensuring that all the parts of the local NHS work together to plan 
and deliver health service improvements for local people. 
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Finance Initiative (PFI) (1992) involved private firms or consortia putting up the 

capital for major NHS projects. Private firms could pay for the design, construction 

and operation of buildings and support services. Health unions complained that PFI 

was privatisation by the back door. 

Under John Major, the Conservatives put forward policies which they claimed would 

make the health service more accountable to patients. They introduced hospital 

performance tables, the Patient's Charter which aimed to clarify health organisations' 

duties towards patients (Department of Health, 1992) and A Code of Practice on 

Openness in the NHS (Department of Health, 1995). They also extended the 

jurisdiction of Health Service Commissioners (Department of Health, 1996). But, at 

the same time, the Conservatives were blamed for reducing accountability by allowing 

hospitals to bypass Health Authorities. 

Other structural reforms saw the eight English Regional Health Authorities abolished 

from April 1996 and replaced by eight regional offices of a new NHS Executive^, 

based in Leeds. Likewise, 100 new Health Authorities (HAs) replaced the previous 

structure of District Health Authorities and Family Health Service Authorities, the aim 

being to reduce bureaucracy and improve services. With no regional structure in 

Scotland, Wales and Northern Ireland, responsibility was left with health departments 

at national and local trust level. 

The Community Healthcare Reforms introduced from April 1993 changed the way 

society cared for the elderly, the mentally ill, the physically disabled and people with 

learning difficulties. The stated aim was to release people from long-stay institutions 

and house them in the community where they could be more independent and have a 

greater say in how they lived and the services they used. But there was criticism from 

health and social care experts that the changes were not properly funded. They believe 

care in the community is more expensive than hospital care and that the extra funding 

has not been forthcoming. 

^ The NHS Executive was formally established in 1989 and is made up of a headquarters and eight 
regional offices. It is responsible for advising Ministers and for formulating and insuring 
implementation of policy on healthcare. It has a strategic rather than an operational role. 
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Despite all the changes, the Conservatives argued that the NHS was "safe in their 

hands" and that the basic principles of a universal and largely free healthcare service 

had been preserved. Their critics, however, claimed they had created a two-tier health 

system, whereby patients of some GP fundholders got faster access to healthcare and 

where the NHS was starved of the resources it needed, with the result that those who 

could afford to were encouraged to purchase private healthcare. The following lists 

highlight some of the perceived positive aspects of the internal market reforms of the 

nineties, and some of the criticisms levelled at the Conservatives: 

Positive aspects of the internal market 

« Competition among providers drove down real prices. 

® Improved information about costs of health treatments. 

e Decline in long term waiting lists. 

® Increase in the numbers of patients treated. 

• Decrease in average time spent by patients in hospital. 

• Fall in public dissatisfaction with the NHS. 

® GP fundholders invested heavily in new technology. 

® Competition for patients among GPs may have led to improved standards of service 

for patients. 

e Emphasis on outcomes and appropriateness of treatment. 

Criticisms of the internal market 

• Resource crises - claims of "health rationing" and "priority setting". 

® Closure of some hospital wards and banning of some non-essential operations. 

® Claims that a two-tier system of treatment emerged. 

• Preferential "fast-track" treatment for patients of GP fundholders. 

® Hybrid market - competition for routine treatment but little for non-routine, 

expensive treatments. 

® GP fundholders preferred taking on younger, healthier, low cost patients. 

® Growth in bureaucracy and organisational turbulence. 

« Some Health Authorities merged to give monopoly power. 

9 Concern about eligibility for care of those with terminal illnesses. 

® Concern over quality of psychiatric patient care in the community. 
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2.3.3 Post 1997 Labour reform 

The fundamental changes of the nineties to the structure of the system of healthcare in 

Britain, together with the rapid speed at which change took place, meant that many 

people within the health service felt that many processes were irreversible. The Labour 

Government, which came into power during 1997, had different ideas. They 

immediately began to address the concerns in the system and launched their 

programme of changes in "The new NHS; a Modem and Dependable Service" 

(Department of Health, 1997). The main theme of the changes, as outlined in the 

document, is to replace the competition engendered by the internal market with a new 

ethos of co-operation. Ministers, like their predecessors in the Conservative 

administration, were keen that GPs should drive reform in the NHS and decide where 

resources should go. 

Labour have scrapped the controversial GP fundholding scheme under which 

individual GP practices were given direct control of large sections of their healthcare 

budget. The Government is to replace fundholding with a system of primary care 

groups (PCGs) designed to ensure that all patients are treated equally. GPs, together 

with other health and social services professionals, will join forces in PCGs covering 

approximately 100,000 patients to decide together how to purchase hospital services. 

PCGs will have to work to a three-year Health Improvement Programme drawn up by 

the local health authority to ensure a consistent approach across a locality. A National 

Institute for Clinical Effectiveness will promote high quality guidelines for treatment 

based on scientific research, and a Commission for Health Improvement will intervene 

where local standards are failing. 

The Labour Government has also stressed that hospitals, which under the Tories were 

encouraged to compete for business, must now co-operate to ensure that patients get 

the best care possible. Many hospital managers and GPs have welcomed the 

introduction of PCGs and the scrapping of the internal market as way to reduce 

inequality in the NHS. But they also fear that the new system could be a way for 

politicians to shirk their responsibility for underfunding in the NHS. With finite 
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resources available, and demand seemingly infinite, managers warn that it is inevitable 

that some treatments will have to be rationed, particularly as the new system will 

inherit the debts run up in previous years. 

The new NHS will mean new roles and responsibilities for Health Authorities and NHS 

Trusts and the Department of Health. Figure 2.1 summarises the new financing and 

accountability arrangements compared with those of the internal market. 
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Service accountability 

Health Improvement Programme 

Figure 2.1: Financing and accountability arrangements in the old and new NHS 

Under the new Labour proposals. Health Authorities will be leaner bodies with 

stronger powers to improve the health of their residents and oversee the effectiveness 
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of the NHS locally. Over time, they will relinquish direct commissioning 

responsibility. Working with local authorities, NHS Trusts and Primary Care Groups, 

they will take the lead in drawing up three-year Health Improvement Programmes 

which will provide the framework within which all local NHS bodies will operate. 

The Department of Health, and within it, the NHS Executive, will shoulder 

responsibility for action genuinely needed at a national level. It will work with the 

clinical professions to develop new National Service Frameworks. National Service 

Frameworks are a series of programmes designed to deliver an evidence-based health 

service in which change will be driven by improving the performance and efficiency of 

NHS Trusts. 

2.3.4 Future challenges 

The Prime Minister, Tony Blair, has set out five challenges that face the NHS as it 

prepares to make best use of the four-year package of funding as announced in the 

2000 Budget: 

® Partnership - working together across the NHS to ensure the best possible care. 

® Performance - taking action to review and deliver higher standards in the NHS. 

® Professions and the wider NHS workforce - getting the right people to deliver the 

right services for patients. Breaking down traditional barriers between health-care 

professionals. 

® Patient care - speed of access, and empowerment 

> delivering fast and convenient care for patients, and 

> listening to patients' needs and letting them know their rights. 

a Prevention - promoting healthy living across all sections of society and tackling 

variations in care. 

The current Government has announced the biggest sustained increase in the amount of 

money available for the NHS since it was founded. This investment in health is 

equivalent to an increase over the next four years from £1,800 per household to £2,800 

(Creating a 21®' Century NHS, Department of Health, 2000). The next step is to agree 
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how to use the money for the greatest benefit. To meet this need, six Modernisation 

Action Teams have been established. Each team draws together expertise from 

frontline health professionals, patients and user groups, academics, policy makers, and 

healthcare managers. A team is led by a Government minister and will come up with 

suggestions for improving performance and standards across the whole of the NHS. 

Staff in every NHS and Social Care organisation will be given the opportunity to 

provide their views. Leaflets giving people the chance to have their say have been 

distributed to supermarkets and high street pharmacists as well as places where NHS 

services are available such as GP surgeries, hospitals and dentists. 

The Secretary of State for Health, Alan Milbum stated in May 2000; "This is quite 

simply the most important stage in providing excellent public healthcare since the NHS 

was set up more than 50 years ago. We are building a new NHS upon the sure 

foundation of NHS values of high quality public healthcare available to anyone 

regardless of their wealth or status. The new NHS will be fast and convenient, 

delivering healthcare that consistently matches the standards of the best in the world. 

The NHS already delivers high quality care and as different parts of the system work 

together more and more effectively the quality is becoming more consistent. The 

unprecedented investment that the Government is making in public healthcare gives the 

NHS the opportunity to respond by providing the kind of care that people have a right 

to expect, a modem and dependable health service. This inclusive process will help the 

NHS to come up with a plan that will re-establish it as the pride of the nation." 

Under the Labour Government, the NHS has been set a tough and challenging 

programme for the future. The Government claims that the programme will involve 

evolutionary change rather than structural upheaval. The result, it hopes, is a NHS 

responding to a changed and changing world where patients can expect services 

quickly and of high quality; an NHS that is accessible and responsive which gets better 

every year. 
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2.4 Planning and Management of Resources 

2.4.1 The enormity of today's NHS 

The scale of the National Health Service is awesome. As Europe's biggest 

organisation, it has a workforce of around one million people who provide care and 

treatment for many millions more every year. The NHS spends in excess of £42 billion 

each year, representing the largest item of central Government expenditure after social 

security. It occupies about 17,000 hectares of land, an area roughly equivalent to the 

size of Liverpool (statistics from General and Personal Medical Service Statistics, 

Department of Health, 1999). 

During the financial year 1998/99, the NHS treated a staggering 11,983,983 finished 

consultant episodes^ (FCE), 3,420,795 day-cases'* and delivered 598,805 babies 

(Hospital Episode Statistics, England 1998-1999, Department of Health, 2000). A 

more detailed analysis by age of inpatient is shown in Figure 2.2. 
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Figure 2.2: Hospital episodes by age of patient 

^ A period of continuous inpatient treatment under the care of a specific consultant. If, during a spell of 
treatment, a patient is transferred from one consultant to another, a new Consultant Episode commences. 

A day case is an elective admission where the patient was treated during the course of a single day. 
Most day cases are episodes involving minor surgical procedures. 
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Of the total admissions to hospital, approximately five million were emergency patients 

and seven million planned patients were admitted from waiting lists. 

Table 2.1 presents health service activity over a number of years from 1983 to 1999 

(Department of Health, 2000). This table helps to show the general increase in 

admissions treated by the NHS. In particular, the rise in day-case surgery has been 

dramatic. 

Table 2.1: Health Service activity (1983 to 1999) 

Hospital and Community Health Services 

(Thousands) % Change 

1983/84 1988/89 1993/94 199&99 (1983 to 1998) 

Ordinary Admissions 

General and Acute 5J13 5,572 6J25 7,595 49 

Geriatric 320 412 554 606 89 

Maternity (births) 716 650 600 599 - 16 

All Specialties 

FCEs (Inpatient) 5^W0 6,577 7,984 11,984 103 

Day Cases 787 1,005 2,080 3,421 335 

New Outpatients 8^U1 8J89 9,685 11,100 34 

Average Length of 

Stay (Days) 

General and Acute 11.1 8.8 7.0 5.5 - 5 0 

Geriatrics 58.0 3&5 23.5 2 2 2 - 6 2 

The NHS is one of the largest employers in the world, employing over one million 

people, including 350,000 nursing staff and 140,000 administrative and clerical staff 

The NHS needs to continually add to its complement of workers to meet the needs of 

increasing admissions and to keep the service running 24 hours a day, 365 days a year. 

The total number of hospital medical staff alone has risen from 43,957 in 1987 to 

63,548 in 1999 (Department of Health, 2000). Figure 2.3 shows this trend over time. 
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Figure 2.3: Number of hospital medical staff employed in the NHS 

Over a quarter of administrative and clerical staff work in direct support to clinicians, 

so allowing the medical professionals more time to concentrate their skills and 

experience on direct patient care. General and senior managers account for only 2.6% 

of the total NHS workforce and 3.6% of total NHS expenditure on salaries and wages. 

Women make up approximately 80% of the total workforce. 

2.4.2 The critical role of the NHS Trust 

NHS Trusts continue to provide the focal point of healthcare in Britain. They offer a 

wide range of hospital and community based services ranging from accident and 

emergency (A&E), to delivering babies, and to providing care for people with long-

term illness or disability. People usually access non-emergency services from NHS 

Trusts following a referral from their own general practitioner. The care and treatment 

provided by Trusts remains free to patients. Hospital Trusts are found in most large 

towns and cities, offering a general range of services to meet most people's needs. 

Some Trusts also act as regional or national centres of expertise for more specialised 

care, whilst some are attached to universities and meet teaching commitments. Trusts 

also provide services in the community, for example through health centres, clinics or 
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in people's homes. Together, NHS Trusts employ the majority of the NHS workforce 

including nurses, doctors, dentists, pharmacists, midwives, health visitors and staff 

from the professions allied to medicine (PAMs) such as physiotherapists, 

radiographers, podiatrists, speech and language therapists, counsellors, occupational 

therapists and psychologists. Many other staff work to keep the NHS running 

continuously; receptionists, porters, cleaners, IT specialists, engineers, caterers, 

domestic and security staff. 

Under the new government proposals, NHS Trusts have been given devolved 

operational responsibility, but are also party to the local Health Improvement 

Programme. They will agree long-term service agreements with Primary Care Groups. 

These services agreements will generally be organised around a particular care group 

(such as children) or disease area (such as heart disease) linked to the new National 

Service Frameworks. In this way, hospital clinicians will be able to make a more 

significant contribution to service planning. NHS Trusts will also have new statutory 

duties of quality and partnership and have to be more accountable to the public by 

publishing details of their performance and their future strategic plans. They need to 

demonstrate the development and involvement of staff 

t 

Figure 2.4: Royal Berkshire and Portsmouth NHS Trusts strategic plans 
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The Conservatives' stated aim in creating NHS Trusts was to raise standards of care for 

patients through devolving power and responsibility away from health authorities and 

towards managers and medical staff By April 1997, all NHS hospitals in Britain 

(other than in the Scottish Islands) had become Trusts. However, concerns about the 

accountability of Trusts led the new Labour Government to require all trusts to hold 

their board meetings in public from June 1997. It is also seeking to ensure Trust 

boards are more representative of the local community. 

2.4.3 The need to plan and manage resources - a system in crisis 

The performance of the health system in this country is more important than it has ever 

been in the past. This is partly because of the massive use of resources needed to meet 

the growing demands, but also because of the more sophisticated way we now look at 

healthcare, taking greater note of health outcomes. 

We now perceive the NHS more as a service and we assess it accordingly. As a result, 

the management of the NHS needs to become more sophisticated with a far greater 

emphasis on value for money and performance. 

The Government has a big interest in what goes on in public services. With so many 

other priorities that need to be addressed, and only a limited bag of resources, the 

Government needs to be assured that its allocation of money is being used wisely and 

in line with the polices it has laid out. The 1983 Griffiths Report led to the 

introduction of general management in the NHS. Since this time, successive 

Governments have placed more and more emphasis on the need for effective and 

efficient use of resources consumed within the system. Instead of profit, the NHS's 

"bottom line" is that it must provide for the healthcare needs of the population. 

Increasingly within this remit, Hospital Trusts have been given devolved operational 

responsibility and greater local flexibility in their own planning and management 

issues. It is the Trust's own responsibility to plan accordingly and manage key hospital 

resources, such as numbers of inpatient beds, numbers of operating theatres and the 

size of its workforce. 
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In recent years, the system has been stretched to its very limits. Problems of provision 

and use of hospital resources and health outcomes have clearly damaged the public's 

confidence in the NHS. Critics claim that the new NHS reforms have provided a way 

for politicians to shirk their responsibility for underfunding in the NHS. With finite 

resources available, and demand now seemingly infinite, managers must now, more 

than ever, plan and manage their resources in the best way possible. 

The flu outbreaks during the winters of 1999 and 2000 illustrated the fragility of the 

current system. Although the outbreaks did not officially reached epidemic 

proportions, the surge in demand, combined with factors including bed shortages and 

staff problems, caused chaos. 
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Figure 2.5: A system in crisis - newspaper headlines from Winter 1999/2000 
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During the winter of 1999/2000, the impact of the crisis was clearly evident. The state 

of the NHS made the news headlines on a regular basis (Figure 2.5). The urgent 

situation was widespread and the repercussions were felt cross the country. Various 

stories made their way into the newspapers and onto the television. The public 

confidence in the system was shattered. 

The Midlands was badly hit, with two hospitals having to use refrigerated lorries as 

mortuaries because of lack of space and some doctors working double shifts. One 

crematorium in Nottingham was forced to use floodlights to fit in more services and 

another held Saturday services. Death rates over two weeks of the 1999 Christmas 

break were at 520, compared with 200 for the same period in 1998. In Portsmouth, 

relatives and friends of hospital patients were asked to wash, shave and feed them to 

relieve pressure on staff. And in Torbay, hospital managers issued an urgent appeal for 

people with nursing qualifications to come forward because of staff shortages. In the 

North, most routine surgery was cancelled. 

The NHS Confederation, which represents NHS managers, concluded in a statement to 

the press, "There are many factors that led to the crises. These include nursing 

recruitment problems and a ten year rise in emergency admissions, but the main 

problem is a shortage of beds". In January 1999, the Emergency Bed Service issued a 

warning about bed shortages for the first time in its two-year history. The warning was 

repeated a year later. It reported that there were only a handful of additional beds 

available in England for hospitals that had reached capacity levels. "Bed numbers have 

been cut around the country as part of efficiency savings by hospitals. The cuts began 

under the Conservatives. In some cases, hospitals have mothballed entire wards. 

Many health authorities and hospitals have gone over budget in recent years and each 

year the problem gets worse as the budget deficits accumulate, leading to more cuts". 

Bed shortages have taken the brunt of the blame for the problems facing hospitals over 

the winter periods. But the debate over bed numbers is a complex one, with some 

arguing that a modem NHS will not need so many general medical beds because of 

advances in technology. In the 1960s, there were more than 3,000 hospitals with 

550,000 beds between them. By 1995, there were only 250,000 beds and now there are 
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some 194,000, of which 108,000 are for acute patients. 

Some health workers argued that the Government's concentration on getting waiting 

lists down caused the problem. But a survey by the NHS Confederation concluded that 

hospitals were suspending non-urgent operations to cope with the extra emergency 

admissions. 

Private finance initiatives (PFI) are likely to reduce bed numbers even further, although 

patient numbers are increasing. The Government has heavily promoted its hospital 

building programme, which includes an emphasis on PFI. A £2.5bn PFI programme 

will build 30 new hospitals over the next few years, with the first PFI hospital expected 

to be finished in the year 2001. 

In the aftermath of the winter crisis, the Government published the long-awaited report 

from National Beds Inquiry; an inquiry charged with looking into the future needs of 

the health service. It warned that action is vital because hospitals have reached 

bursting point. The decline in number of acute hospital beds per head of population 

had put Britain towards the bottom of the league table in Europe. Only four other 

comparable nations have lower bed numbers per head. It concluded that at least 24,000 

extra NHS beds must be provided over the next 20 years, with 4,000 needed almost 

immediately. "The days when health authorities could count on a continuing decline in 

the length of stay to allow for the number of beds being cut are over," commented the 

report's author Clive Smee, chief economic adviser to the Department of Health. He 

claimed that occupancy levels have reached maximum limits with most hospitals 

operating at up to 86% capacity. "The safety valve has been reached and occupancy 

rates cannot go up any further". 

Intensive care beds, a critical part of the system, were also badly hit. The turn of the 

new Millennium heralded the worst-yet crisis in emergency critical care provision, with 

a severe shortage of intensive care beds and overwhelmed casualty departments. A 

survey of available beds at midday on 5̂ '̂  January 2000 revealed that there were no 

intensive care beds for critically ill patients in the South East or West Midlands. In 

London, doctors were told that the nearest bed was 60 miles away, in Eastbourne. On 

Christmas Day, doctors were told to send patients recovering from serious operations 
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200 miles away in an ambulance to Doncaster. An anaesthetist in a North London 

hospital, who anonymously spoke to the press, said that the crisis was killing patients. 

"I had someone who died who probably would have lived but for the fact that there was 

not an intensive care bed available," he said. 

2.5 The Need for OR in Healthcare Management 

The National Health Service in the United Kingdom has over the last decade 

undergone major changes in its organisation and delivery, and this experience has to a 

large degree been mirrored in most major western nations (World Bank, 1993 and 

Ham, 1992). Increasingly large amounts of resources are being directed to support a 

service which is strained sometimes to its limit under growing demands. The flu 

outbreaks of 1999 and 2000 bear witness to a system in crisis. Changes in technology 

and medical practice generally have led to shifting patterns of care which are often 

difficult to predict. In addition, demographic shifts (for example, an increasingly 

ageing population) also impact on healthcare demand (Saltman and von Otter, 1992). 

In this context there is a growing need to tightly manage healthcare resources. Bed 

usage in hospitals, for example, is a specific area where capacity management 

techniques can be implemented more widely to even out monthly variations and other 

fluctuations in demand (Yates, 1982). 

In the UK there is little doubt that the complexity of healthcare management has been 

compounded by Government led changes. Strategic initiatives, often instigated by 

central Government, have been pursued by health authorities and need careful 

management if they are to succeed (Estes and Swan, 1993). Such initiatives have a 

radical impact on the shape of hospital services. Vetter (1995) for example, predicts a 

scenario of secondary care very different from current practice. He identifies the 

following four factors as central to shaping future service: 

• Demographic pressures - changes in population patterns and corresponding health 

needs. 

# Technological pressures - changes in the way medicine is practised due to 

technology. 
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® Economic pressures - the increasing need for efficiency in the face of growing 

demand. 

• Patient pressures - the ever growing level of expectation present within the 

population at large. 

The management of healthcare at all levels has acknowledged the need to more 

precisely monitor and control the use of expensive resources (Appleby, 1992). Old 

tolerances for surplus capacity are increasingly questioned as the trend towards smaller 

more efficiently run units is pursued. The political element of healthcare emphasises 

the need for objective methods and tools to inform the debate and provide a better 

foundation for decision-making. 

The current Government has promised further cash injections into the healthcare 

system to avoid a repetition of the winter pressures of 1999 and 2000. NHS Trusts 

must now decide wisely how and where to best use the extra money in their planning 

and management of the services they offer. This task should not be taken lightly nor its 

complexity underestimated. NHS Trusts need to make fundamental changes to their 

way of working in order to meet these new Government challenges. They are under 

considerable pressure to treat ever increasing numbers of patients through a 

diminishing bed pool. The demands for certain surgical specialties are showing large 

increases. At the same time numbers of medical emergency admissions are on the rise. 

Capacity planning in hospitals is largely a strategic decision. For example the total 

number of beds in a hospital and the number of beds in various specialities are very 

major concerns; here the planning horizon could cover a number of years. 

Management of available capacities is from day to day or over longer periods such as 

winter months and summer months. An example would be a planned transfer of 

surgical beds to elderly medical patients in winter. A common current practice is to 

plan and manage hospital capacities through a simple deterministic spreadsheet 

calculation approach using average patient flows, average needs, average length-of-

stay, average duration of surgical operations etc. 
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Mathematically speaking, the internal dynamics of a hospital corresponds to a complex 

non-linear stochastic structure. Hospital managers must deal with: 

® Thousands of patients 

® Limited resources 

® Variable patient-needs 

® Uncertain demands 

The common deterministic approach for planning and managing the system can be 

expected to be inadequate in such a system. Typically the deterministic approach will 

underestimate hospital requirements, the truth of which is witnessed during the regular 

crises that hit the healthcare system. In the current climate of healthcare provision 

there is a growing need for operational tools which can support management. The 

mathematical modelling approach of Operational Research (OR) is ideal for dealing 

with complexity, uncertainty, variability, constraints and scarce resources and 

appropriate models can avoid the dangers of planning on the basis of average values 

only. This research is concerned with the development, solution and validation of 

sufficiently detailed stochastic models for planning and managing hospital capacities. 

The participating NHS Trusts (see sections 1.4.3 and 1.4.4) expressed a great need for 

evolving operational models to evaluate detailed options within proposed re-structuring 

processes. Apart from ad-hoc queries regarding particular re-design projects and 

management of resources, the Trusts were looking to develop a forecasting and 

planning tool that could be used in mid-term planning and during the annual business 

planning cycle. It was felt that such a model would greatly aid clinical and specialty 

managers, allowing them to fully appreciate their local needs and for both at a local 

level, and more globally at Trust level, to examine a number of "What if?" scenarios. 

The developed capacity-planning tools must account for the complex internal dynamics 

of a hospital. In particular, the Trusts identified the need to model in detail the use of 

key hospital resources: hospital beds (including critical care beds), hospital operating 

theatres and the hospital's workforce. Theses three elements are intricately linked 

together in real-life. 
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The potential benefit of OR within the public services is considerable. Modernising 

Government, the White Paper published in early 2000, sets out a programme for 

reforming the way in which Government works. It gives some key aims and 

commitments, notably: 

® Ensuring that policy making is more joined-up and forward-looking. 

® Delivering responsive, efficient and high quality public services. 

« Using new technology to provide information age Government. 

The benefits of an OR approach within a healthcare environment may be summarised 

under the following three headings (Royston, 2000); 

® Sharpening foresight - e.g. scenario planning to identify trends and discontinuities, 

and assess the policy consequences of possible futures. 

® Improving hindsight - e.g. designing and conducting studies to assess the 

effectiveness of a policy or programme. 

® Generating insight - e.g. developing dynamic simulation models to better 

understand how systems work and the likely effect of changes to them. 

The Modernising Government programme of public services, and within this remit that 

of the NHS, calls for a more integrated approach to issues, working as necessary across 

institutional boundaries and in partnership with a wide range of stakeholders. This 

requires thinking and working with whole systems. Such an approach is not just about 

ensuring that all key elements are recognised. Systems, especially human systems, are 

more than the sum of their parts: their behaviour emerges from a dynamic interplay 

between their components. This interplay is the source of much of the counter-intuitive 

and surprising behaviour of complex systems, such as that of a hospital. 

Modernising Government also calls for more forward-looking policy making. 

Hospitals need to have the appropriate tools. They need tools to let them scan the 

horizon ahead to spot the early weak signals that may be portents of things to come: to 

build a coherent and plausible picture of possible futures, and to test and develop 

policies and programmes that will be robust in an uncertain world. It is evident that the 
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proposed operational modelling work, as described in this thesis, falls within the 

objectives of the Modernising Government White Paper. 

2.6 Chapter Summary 

The scale of the NHS is awesome. From its inception in 1948, it has grown to become 

Europe's largest organisation. It is absurd to assume that the delivery and planning of 

healthcare will remain static in this country. The political and socio-economic 

elements of the healthcare system give rise to the need for structural reform. The NHS 

has witnessed many such reforms since its birth. 

Hospitals are increasingly under considerable pressure to treat ever increasing numbers 

of patients through a diminishing bed pool. The system has witnessed a number of 

crises in recent years surrounding the use and provision of resources. With devolved 

operational responsibility and greater local freedom, NHS Trusts must now place 

greater emphasis on planning and management of key hospital resources. The methods 

of Operational Research are ideal for this purpose and the potential benefits of 

modelling work considerable. 
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Chapter 3 - Operational Modelling for 
Healthcare 

3.1 Chapter Introduction 

In the current climate of healthcare provision, there is a growing need for operational 

tools to support management. This chapter reviews the Operational Research (OR) 

modelling approaches that have been applied to the planning and management of 

healthcare resources. Initially a general overview of OR healthcare approaches, by 

technique, will be reviewed before a more detailed study of developed OR models by 

hospital application. This is followed by a summary and discussion of the literature 

review. It will be shown that a number of key healthcare issues have not been fully 

addressed by previously published work. Specifically, healthcare resource tools should 

account for complexity, uncertainty, variability and limited resources whilst being 

designed for utilisation at both the planning and management levels. Deterministic 

models are too simplistic and stochastic models are required to meet these needs. 

Computer simulations are particularly useful for solving the complexity of patient-

flows through a hospital. 

3.2 OR Approaches to Modelling for Healthcare Planning and 

Management 

The perceived need to create and utilise models for a wide range of scenarios in 

healthcare has spawned a vast array of different approaches. A survey of the literature 

(as given below) reveals a wide range of OR modelling techniques which have at some 

stage been used for the planning and management of healthcare resources. The 

following summary gives example of some of the major modelling approaches adopted 
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in the healthcare domain. The subsequent section explores in more detail different OR 

models classified according to areas of planning and management application. 

3.2.1 Queueing Theory 

The principles of Queueing Theory have been available for a relatively long period, 

and it is therefore not surprising to find its application to healthcare dating back many 

years. Bailey (1952), for example, uses Queueing Theory to analyse the behaviour of 

outpatient waiting lists under a range of operational conditions. A more recent study 

along similar lines (Brahami and Worthington, 1991) uses Queueing Theory to analyse 

the trade-off between outpatient waiting times and doctor idle times in the management 

of outpatient lists. Further examples can be found in studies by Kao and Tung (1981) 

who apply a Queueing Theory approach to bed allocation in healthcare delivery; Weiss 

and McLain (1987) for acute care facilities; Worthington (1987, 1991) for hospital 

waiting lists; Young (1962) for the control of hospital inpatient monitoring; and Keller 

and Laughman (1973) who analyse outpatient queues and congestion. 

3.2.2 Markov Models 

Markov models have been extensively used in healthcare modelling. Hannan (1984), 

for example, demonstrates the use of Markov models to examine the strategic 

allocation of costs in hospitals. Liu et al. (1991) use a Markov chain model in medical 

storage. The main limitation of Markov models (as reported in Davies, 1985 and 

Shahani et al, 1994) is that the transitional probability of a patient changing status is 

taken to be independent of previous events, thus the likelihood of a patient remaining 

in a specific state remains the same from one time unit to the next. Several models 

have introduced subdivisions within treatment states (Davies et al., 1975 and Farrow et 

al., 1971). A much better approach is the use of semi-Markov processes (Shahani et 

al., 1994, Brailsford et al., 1996 and Ridge et al., 1998). A detailed description of 

semi-Markov processes is given in Appendix B. 
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3.2.3 System Dynamics 

System Dynamics (Forrester 1961, 1968) is currently experiencing a growing interest 

in healthcare planning and management applications, largely attributable to its ability 

to deal with operational feedback (see Roberts et al, 1994 and Pidd, 1992). 

Wolstenholme (1993) develops a revised framework called Systems Thinking, which 

integrates information acquisition, quantitative and qualitative elements, and 

archetypes and microworlds as a basis for facilitating discussion and knowledge 

exchange between the disparate groups involved in the modelling process in healthcare. 

More recently System Dynamics has benefited from the availability of modem 

software (Richamond, 1990) and group processes (Lane, 1992), which are both more 

technically representative and more persuasive to their users. As a consequence, more 

recent successful applications include Lane (1999) on patient-flows through hospitals 

and Lane et al. (2000) on modelling of patient-flows through an accident and 

emergency department. 

3.2.4 Mathematical Programming 

There has been a limited use of Mathematical Programming techniques for healthcare 

management. One of the major disadvantages of those models published is little 

recognition of the stochastic nature of healthcare. Typically, models have been built to 

aid managers as a higher level, more strategic, decision-making tool, such as nurse 

rostering or regional planning. One early example is Ruth (1981) who developed a 

Mathematical Programming model to aid regional planning of hospital inpatient 

services. Other models include nurse requirement planning by Kao and Tung (1981) 

and Miller et al. (1976) for nurse scheduling. 

3.2.5 Simulation 

The culture of the NHS leads to a focus on individual patients passing through the 

healthcare system. It is not surprising therefore to find that many models have tended 

to use a discrete event simulation (DBS) approach. Simulation enables the modeller to 
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handle patients with stochastically generated attributes. The simulation approach has 

been used in a variety of healthcare applications for a number of years, with early 

models including Goldman et al. (1968) on the evaluation of bed allocation. More 

recent models include Dumas (1984 and 1985) on hospital bed utilisation and planning; 

Gove et al. (1995) on hospital caseload support; and Kalton et al. (1997) for 

operational planning in a multi-disciplinary clinic. 

3.2.6 Data Envelopment Analysis (DEA) 

DEA (Chames et al., 1978, 1995) has attracted a growing interest in the OR 

community and examples of its application in healthcare are beginning to appear with 

more frequency, especially in relation to cost and performance modelling. 

Hollingsworth and Parkin (1995) use DEA to measure efficiency in acute hospitals in 

Scotland; Ozcan and McCue (1996) have adapted a DEA model to provide a financial 

performance index for hospitals; Kleinsorge and Kamey (1992) show how DEA is used 

in the management of nursing homes; Ozcan et al. (1998) examine the relationship 

between healthcare provider and technical efficiency for stroke patients. A more 

general review of DEA in the public sector can be found in Ball and Roberts (1998). 

DEA has been extensively used to measure efficiency of healthcare systems, however 

the technique does not appear to be well suited to the application of day-to-day 

management tools where managers need to track individual patients through time. 

Instead DEA has traditionally been used as a cost and performance tool with an 

emphasis on comparing the efficiency of one hospital (or healthcare system) to another. 

3 . 2 7 'So /^OR'mef /?ods 

Soft Systems Methodology (SSM), the most prominent of the 'Soft-OR' methods 

(Checkland, 1981 and 1984), has been both advocated and adopted as a primary 

approach in healthcare modelling (Checkland and Scholes, 1990). Lehaney and Paul 

(1994, 1996) demonstrate the use of SSM in the specification and acceptance of a 

computer model of outpatient care and conclude that the linkage between SSM and 

simulation is worthy of further investigation. Other research (Roginski, 1995) 
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discusses the successful use of Strategic Option Development Analysis (SODA), an 

alternative to SSM within the NHS management context. 

3.2.8 Other techniques 

In addition to those listed above, many authors have utilised other OR approaches in 

the study of healthcare systems. In some cases these entail the use of novel methods 

and in other cases more established methods in combination. One such example of a 

novel approach is by Eliasz et al. (1993) that firstly combines Structured Analysis and 

Design Techniques (Marca and McGowan, 1988) and then Coloured Petri nets (Eliasz, 

1992) as a basis for the development of dynamic simulations in community care. Other 

techniques include Structured Systems and Design Methodology (SSADM), a long 

time favoured approach of system analysts (Herbert and Willis, 1992, Ashwood and 

Woodland, 1990); and Object Orientated Analysis (OOA) and Design (OOD) (Meyer, 

1993, Kay, 1993 and Graeber, 1995). 

3.3 OR Applications for the Planning and Management of 

Hospital Resources 

Any attempt to classify the disparate studies and application of OR methodologies in 

healthcare planning and management is inevitably met with problems. A major issue, 

in this context, is the selection of an appropriate dimension as a basis for classification. 

For example, one could distinguish between strategic versus operational dimensions of 

the developed models. Still another is the divide between research projects and 

commercial applications. Invariably any classification is flawed by the numerous 

examples of studies that cross category boundaries. 

Despite these concerns, a survey of research literature of hospital resource models is 

provided below. This is classified according to area of hospital application; inpatient 

beds, operating theatres, workforce planning, critical care, outpatient services, 

emergency services, waiting list management and hospital ancillary services. It 

concludes with a discussion of the published work and the future direction of this 
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research in response to the literature study and the needs of the participating hospital 

NHS Trusts. More general reviews on OR hospital management may be found in 

Shuman et al. (1975), Fries (1976, 1979) and Smith-Daniels (1989). 

3.3.1 Hospital bed planning 

The National Health Service in the United Kingdom has over the last decade 

undergone major changes in its organisation and delivery. Central Government 

strategic initiatives, pursued by health authorities, have had a radical impact on the 

shape of hospital services. In this context, bed management is a particularly important 

area of concern. A hospital must accommodate thousands of patients each year, 

coupled with a complex case-mix, uncertain patients demands and variable patient 

needs. It is not surprising to find many published papers concerning the planning and 

management of hospital beds. 

Interest in the provision and allocation of hospital beds dates back many years. An 

early example can be seen in the recommendations of the Commission of Hospital Care 

(1947), which concluded that the number of beds in a hospital should be calculated as 

X + 3{yfx), where X denotes the expected average occupancy of the hospital. No 

explanation is given for the formula. However it was widely recognised at the time 

that the underlying assumptions included a Poisson distribution of census (people in 

beds), random arrivals and a duty to accept all arrivals. This was the first known 

attempt to mathematically derive the number of hospital beds required. It is clearly far 

too simplistic to represent the complexity and diversity of real-life. 

Goldman et al. (1968) appears to be the first paper to utilise computer simulation for 

modelling hospital resources. The authors employ the technique, although in a 

primitive way, to evaluate bed allocation policies. This paper, whilst acknowledging 

the stochastic nature of healthcare, fails to account for differences in patient needs and 

complex patient inter-arrival times, which are simply generated from the same negative 

exponential distribution and take no account of the time-dependent nature of arrivals. 

Once again, this model assumes that hospital departments can accept all arrivals, the 

concept of which is flawed in practice. 
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Ruth (1981) applied a mathematical programming approach to develop inpatient 

services among hospitals within a region. The problem was formulated as a mixed 

integer programme. The objective function was subject to accessibility (to ensure 

distribution of beds throughout the region meets demand) and acceptability (to ensure 

that increases in level or size of services are feasible). The model was used to examine 

various population distributions across a region and the resulting needs. There is no 

recognition of the stochastic nature of care provided by each level within each hospital. 

Its purpose seems only to provide information for strategic management of care at a 

global level. It lacks robustness at a more individual level of care and provides no 

information on how to manage or indeed plan beds over time. 

The first paper seemingly to recognise and identify an integrated decision making 

process within hospital bed planning was by Butler et al. (1992). It tries to encapsulate 

the idea of linking bed planning decisions between the different levels of infrastructure 

within the hospital. The authors build a model which, whilst finding optimal decisions 

at each level, uses results from previous levels as part of an iterative procedure for 

finding overall optimal and consistent solutions. For example, the authors state that it is 

useless to find an optimal policy for providing extra beds for a department when there 

is no room to accommodate them. Figure 3.1 shows the integrated stages of the model. 

Bed planning, 
capacity acquisition 

nHf Bed planning, 
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Facility layout, 
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Simulation model 
of operations 
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Performance 
Measures 
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Figure 3.1: Multi-level based hospital bed planning approach (Butler et al, 1992) 
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Long-term decisions on bed planning and capacity acquisition are incorporated into the 

planning horizon. Information on the physical constraints of the layout (maximum 

number of beds by hospital department) is used to generate various scenarios for the 

distribution of beds across the hospital. There is very little information given on the 

simulation model itself, raising doubts over the ability of the model to capture the 

necessary details. As too often found in literature on this topic, the proposed model 

seemingly fails to incorporate the necessary mathematical and operational details 

governing the dynamics of individual patient-flows through the hospital system. 

Other attempts to produce various hospital inpatient bed allocation tools have been 

proposed by a variety of authors, including Blewett et al. (1972), Shonick and Jackson 

(1973), Kao and Tung (1981), Cohen et al. (1980), Dumas (1984 and 1985), 

Vassilacopoulos (1985), Dundas and Meechan (1986) and Wright (1987). All of these 

papers examine how best to allocate beds between various hospital departments. 

Again, most fail to recognise the many real-life complications inherent within the 

workings of a hospital. For example, none recognise or incorporate daily arrival 

patterns, nor do they sample length of stay from appropriate statistical distributions. 

Indeed many use only a deterministic calculation for length of stay. All of the models 

are hospital or department specific and correspondingly the methods and results are not 

readily transferable to a wider hospital bed-planning context. In most cases, there is 

little or no evidence that hospital managers have actually used any of these proposed 

academic models themselves. 

More recent papers (Gove and Hewitt, 1995, Bagust et ah, 1999 and Lane et al., 2000) 

have utilised the advancement of computing power to build more realistic hospital 

simulation models. Lane et al have examined the impact of hour-by-hour demand on 

an accident and emergency department and resulting inpatient bed needs, with 

particular emphasis on patient waiting times. There is however a need to study the 

implications of the stochastic nature of demand on a daily basis as it affects the use of 

bed stock. Bagust et al. go some way to addressing this need by developing a discrete-

event stochastic spreadsheet model which generates new arrivals each day as random 

variations around a long-term trend line. The model is used to find the probability of 

no beds being available in the hospital on any given day of the year. It is the first such 

paper to critically examine the relationship between refusal rate (probability of a 

49 



Chapter 3 Operational Modelling for Healthcare 

patient being refused admission because of no available bed) and occupancy rate 

(indicator of how busy the hospital is). They conclude that when occupancy rates 

exceed 85%, an acute hospital can expect regular bed shortages, and periodic bed crises 

if bed occupancy rises to 90% or more. It is commonly known, by hospital managers 

and consultants, that bed occupancies naturally vary between different hospital 

departments. Occupancy itself is multi-dimensional, depending on the distribution of 

emergency and elective (planned) patients, length of stay and case-mix. This paper, 

although well received and publicised amongst the medical profession, takes no 

account of these factors. Instead it has treated the hospital as a single entity and has 

drawn generalised conclusion at the hospital level. Although daily variations have 

been considered, a mean length of stay for all hospital admissions has been used. In a 

complex stochastic system, this common deterministic approach can be expected to be 

inadequate (Shahani, 1981). This is a major oversight of the work. 

3.3.2 Operating theatres 

An operating theatre is an expensive hospital resource, and therefore hospitals need to 

maximise their utilisation. This equates to maximising the number of operations that 

can be fitted in to each theatre whilst avoiding over-run in the theatre schedule. High 

utilisation brings the benefits of reduced waiting lists for operations (a benefit for the 

patient) and a reduction in overtime and under-utilised resources (a benefit for the 

hospital). Many of the published papers on this topic have focussed on issues of 

scheduling of patients into theatre. 

A simple definition of theatre utilisation is the time that the theatre is occupied divided 

by the time that the theatre is available. Intuitive though this might seem, it is 

interesting to find various assumed definitions throughout the literature. For example, 

McQuarrie (1981) uses the time used, excluding overtime and emergencies, divided by 

the time available. The author suggests a normal utilisation figure for an efficiently run 

hospital as above 60% but with peaks around 75%. However O'Donnell (1976) 

indicates that a figure in excess of 50%would require extreme effort, and a level of 

65% would be impossible to maintain without causing staff fatigue. Here the 

utilisation is calculated in a different way. Comparisons of utilisation can only be 
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made with the same method. Clearly the reader should be aware of the different 

definitions as used by different authors. 

Regardless of the method used to measure utilisation, it has been shown that increased 

utilisation can be obtained through efficient scheduling of operations (Wright et al., 

1996 and Hackney et al., 1984). A study by Gordon et al. (1998) showed that 

refinement of scheduling policies, including the use of computer scheduling, could lead 

to much better utilisation of the available time. Improved scheduling of operations at 

the hospital led to a reported increase in theatre throughput of 4.5%. 

Hanson (1982) and Sier et al. (1997) detail some of the constraints involved when 

scheduling patients. These include the available surgeons, types of operations that 

need to be done, and how much free theatre time is available. The scheduling process 

generally involves fitting a number of elective patients into time slots in the available 

operating theatres. Ideally, the objective is to schedule the patients in such a manner 

that results in shorter patient waiting times, no overrunning, increased utilisation of the 

theatres, less wasted time for surgeons, and a more even workload for the staff at the 

hospital. This is a complex task, complicated further by the need to consider 

emergency operations, which can severely disrupt schedules, as these need to be 

inserted into the pre-planned schedule as soon as possible. Gerchak et al. (1996) 

examines such problems in more detail. 

Scheduling is often done with paper systems, with a schedule on which the operating 

rooms and time slots allocated are displayed. Surgeons and anaesthetists play a key 

role in estimating operation times. In this way, the accuracy of the schedule depends 

on the skill and knowledge of the staff Computer scheduling packages are now widely 

used in hospitals (e.g. Surgiserver and Orbit Surgical Services Management Software) 

although these are not always able to improve upon staff estimates (Wright et al., 

1996). 

According to a survey carried out amongst a selection of operating room directors in 

the US by Hamilton and Breslawski (1994), the five most important factors in 

scheduling are: 
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1. Number of theatres - the more theatres the greater flexibility in scheduling patients. 

2. Equipment limitations - if an operation requires specialist equipment, but another 

theatre is using it, the operation will be delayed for a significant amount of time. 

3. Estimated surgery duration - if operation lengths are not estimated accurately, then 

problems with either idle time or overtime will occur. 

4. Hospital scheduling policy - depending on the system used, different effects will be 

felt in the cancellation rate, the recovery unit utilisation, and the working practices 

of the doctors. 

5. Block time available - if the blocks are all allocated, then surgeons may have 

problems obtaining a theatre to perform an operation. 

Given these concerns, there are surprisingly relatively few published papers concerning 

numbers and allocation of theatres. Instead, the vast majority of literature in this area 

focuses on the prediction of operation times and scheduling of individual theatres. 

Papers that attempt to address some of the above issues include Gibson (1998), Lowery 

(1992) and Kwak et al. (1975) who develop computer simulations to model patient-

flows through surgical suite areas. 

There have been a number of studies that have investigated the estimation of operation 

times, often as part of a wider examination of theatre scheduling. Very few however 

seem to be of practical use. This could be attributed to the large data handling 

requirements needed to produce estimates, the lack of recorded data, or high variability 

in the estimates. Many studies, such as that by Magerlein and Martin (1978) involve 

small sample sizes (212 cases in this example). Any detailed conclusions drawn from 

these can be expected to lack robustness and reliability. Linear regression techniques 

are employed by Magerlein and Martin to predict operation times. The paper reports 

that the developed model accounts for only 44% of the total variation within operation 

times. Another model for predicting surgical durations (Rose and Davies, 1984) uses 

the Beta distribution combined with ideas from Critical Path Analysis. This formula 

was used for a year at Morrison Hospital, Swansea, where it was found to produce 

statistically significant reductions in the variance of operation lengths. However only 

urology data was used and it is well known within the medical profession that such 

operations generally exhibit low levels of variation. 
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Other OR applications in this area include Carter et al. (1992) and Murphy et al. (1985) 

who adopt a computer simulation approach for patient scheduling. Luck et a/. (1971) 

and Luckman (1971) present a simulation model of surgical resource use to assist in the 

scheduling of patients through a unit in the Wessex region. As with most papers on 

theatre scheduling, little or no account is taken of the stochastic nature of operation 

times and the complex relationship of the hospital operating theatre to the planning and 

management of hospital inpatient beds. 

3.3.3 Hospital workforce planning 

The NHS is one of the largest employers in the world, employing over one million 

people, including 350,000 nursing staff and 140,000 administrative and clerical staff 

(Department of Health, 2000). The NHS needs to continually add to its complement of 

workers to meet the needs of increasing admissions and to keep the service running 24 

hours a day, 365 days a year. Managers need to quantify the number and type of 

workforce required in order to successfully staff a hospital. Shortages in necessary 

nurses, for example, can lead to the temporary closure of hospital wards. With beds in 

constant demand, managers can ill-afford to have to take such action. 

Wolfe and Young (1965) were early pioneers in developing OR tools to predict future 

nursing requirements. They divided nursing activities into two categories; direct-care 

(such as bedside care) and indirect-care (such as administrative duties). In order to 

ascertain the number of nurses required, they evolved a classification scheme for rating 

the severity of illness of a patient. This rating indicated the level of care required. 

Many subsequent papers have utilised this early work to great effect leading to the 

concept of patient dependency scores (Buist, 1994). The rating system of Wolf and 

Young consisted of only three levels of care. No mention is made of how these levels 

were derived. Indices were subsequently evaluated for each level of care to predict the 

amount of care per eight-hour shift. These indices were simply estimated mean amount 

of care required per patient level. The aggregated nursing requirement per shift, /, was 

then simply found by / = 0.5#, + l.OA^j + 2.5A^3, where Ni, N2 and N3 represent the 

number of patients requiring care levels 1, 2 and 3 respectively. To discover the total 

amount of nursing time required, including that of indirect-care, a survey by the 
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authors found that for each eight-hour shift, twenty hours of total indirect nursing time 

was required on the ward. Clearly the proposed model was only valid for the hospital 

in question. It makes no attempt to address the different types of nurses required but 

provided the first known application of OR, albeit on a simplistic scale, to quantify 

hospital workforce needs. 

Abemathy et al. (1973) proposed a hierarchical structure of hospital manpower 

planning and scheduling. Linear Programming and Monte-Carlo techniques were 

employed to solve the different tiers of the problem (see Figure 3.2). 
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Figure 3.2: Hierarchical structure for nurse scheduling (Abemathy et al, 1973) 

The model presented in Abemathy's paper requires high levels of data and computing 

power to have any benefit (such power was not readily available in 1973). Essentially 

the developed model was too complex to be understood by the hospital managers 

themselves and consequently does not appear to have been used in any hospital setting. 

The mathematical complexity and lack of user-friendliness has proved to be the 

downfall of a model that was initially designed to be used by hospital workforce 

planners themselves. 

Many of the other published papers in this area suffer from similar shortcomings. 

Liebman et al. (1972), Maier-Rothe and Wolfe (1973), Miller et al. (1976), Kao and 
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Tung (1981), Rossenbloom and Goertzen (1987), and Sifred and Benton (1992, 1994) 

all fail to acknowledge and incorporate the stochastic nature of workforce planning. 

Many are hospital or department specific. Few of the proposed models in the literature 

review can realistically be expected to be of use to hospital managers. 

More recent attempts include Dowsland (1998) and Dowsland and Thompson (2000) 

who schedule nurse rosters with a combination of knapsack, networks and tabu search. 

Weekly rosters may be produced which the authors report has minimised complaints of 

unfair treatment by individual nurses. The paper however does not recognise the 

fundamental aspect of patient demand that will undoubtedly impact on nursing needs 

across different hospital wards over time. A prerequisite surely must be to consider 

what the likely nursing needs will be, by grade of nurse over the scheduling period of 

time, before employing a valuable methodology as described in this paper to schedule 

the available nurses appropriately. 

3.3.4 Critical care units 

Critical care concerns the provision within a hospital of both intensive care and high 

dependency care services. Intensive Care Units (ICU) provide a service for patients 

who have "potentially recoverable conditions, who can benefit from more detailed 

observation and invasive treatment than can be provided safely in an ordinary ward or 

high dependency area" (Intensive Care Society, 1997). It is usually reserved for 

patients with threatened or established failure of one or more organs, particularly 

respiratory, cardiovascular or renal systems. Such failure normally arises as a result or 

complication of an acute illness or trauma (emergency), or as a predictable phase in a 

planned treatment programme (planned). 

Patients often require technological support including mechanical ventilation and/or 

invasive monitoring (Intensive Care Society, 1998). Intensive care is consequently 

very expensive with a cost of between £1,000 and £1,800 per bed per day in the UK 

(Sachdeva and Guntupalli, 1999). High Dependency Units (HDU) have been 

introduced as a step between intensive care and ward care. They reflect a need for 
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more suitable levels of care for patients and as a means for reducing some of the costs 

ofanlCU. 

The provision of critical care has to meet the challenges of considerable uncertainty 

and variability in the needs of the patients, high costs and scarce resources. The 

demand for critical care beds arises from many sources as emergency or planned 

admissions. The vast majority of the demand for intensive care is experienced as 

emergencies. Patient's lengths of stay, and the high cost of treating patients, are very 

variable. 

A report on intensive care by the Department of Health (Metcalfe and McPherson 

1994) highlighted the uneven spread of intensive care beds between hospitals, and 

showed that patient refusal rates were strongly linked to local bed allocation. Crosby 

and Rees' (1994) survey of eight UK acute general hospitals indicated that a significant 

number of surgical patients need high dependency care but that the number of high 

dependency beds is insufficient, with the result that many patients are unnecessarily 

staying on more expensive intensive care units. 

There is a great need to better plan and manage critical care beds at both a local and 

regional level. The majority of published papers on this topic have concentrated on the 

number of beds within a single intensive care unit. More recent examples include 

Knighton et al. (1994) and Ridge et al. (1998). Many of the proposed models fail to 

reflect the complexity of the critical care unit and are not sufficiently detailed for 

providing the necessary information for critical care managers. Furthermore, none 

have examined the relationship of high dependency and intensive care units, and the 

allocation of beds between them, nor have they researched the allocation of beds or the 

efficient use of shared capacities amongst a number of regional units. 

In April 1999, the Department of Health established a review of adult critical care 

services. The invited expert group outlined a far-reaching modernisation programme 

and identified the necessary in-depth work required in many areas, including a need for 

detailed capacity planning. The summary of findings, as given in the Department of 

Health's Comprehensive Critical Care document states "The current provision of 

critical care in the UK is characterised by considerable variation in organisation and 
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delivery, quality, funding and effectiveness. This situation is largely the product of 

historic legacy and ad hoc development. The expert group believes that, while the 

development of additional beds and services is crucial, the final shape and size can 

only be determined through evaluation of the impact of the proposed changes, 

supported by the assessment of need" (Department of Health, 2000 and Day, 2000). 

Clearly there is a current need for appropriate operational models for capacity planning 

of critical care units in the UK. 

3.3.5 Outpatient services 

A literature review of hospital outpatient services reveals that many papers have been 

written concerning waiting times and appointment systems. Vissers (1979) describes 

any appointment system as having three characteristics; 

1 The number of patients given the same appointment time at the start of the clinic 

(initial block). 

2 The number of patients given the same appointment time during the clinic 

(blocksize). 

3 The number of minutes between two successive appointment times (appointment 

level). 

A simulation model was used to investigate relationship between the idle time of 

physician and the waiting time of the patient. 

A simulation by Fetter and Thompson (1966) examines the effects of varying different 

factors on the clinic. Factors include appointment level, service time, number of 

patients not arriving and interruptions to the clinic schedule. Other papers include 

Arnold (1992) on modelling of an Orthopaedic clinic; Birchall et al. (1983), Freeman 

(1992) and Gamlin (1997) for scheduling of ENT clinics; Aharonson-Daniel, Paul and 

Hedley (1996) on the management of queues; and Klassen and Rohleder (1996) on 

scheduling appointments in a dynamic environment. 
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A Soft Systems modelling approach is described by Lehaney and Paul (1994, 1996), 

and Lehaney, Clarke and Paul (1999) who discuss the benefit of linking the soft 

systems methodology and discrete-event simulation approach. 

Paul (1995) discusses the use of CLINSIM, a simulation package designed for 

generalised use in outpatient clinic management. Taylor and Kuljis (1998) use this 

package to model the outpatient services offered at Leeds General Infirmary. Other 

examples of the simulation modelling include Levy et al. (1989), Huebner and Miller 

(1996) and Williams et al. (1967), all of who describe the re-organisation of outpatient 

clinics. 

Taylor and Kuljis (1998) state the importance of clinical staff and hospital 

administrator involvement in any study of an outpatient system, so that operational 

modelling "can make complex, chaotic systems comprehensible". 

3.3.6 Emergency services 

Accident and Emergency (A&E) services represent, to a certain extent, a self-contained 

unit within the hospital system. This has led to a large number of papers on the topic. 

A&E models tend to focus on individual patients passing through the system and it is 

not surprising therefore to find that many models have adopted a simulation approach. 

Kirtland et al. (1995) discuss the issues surrounding the modelling of emergency 

services. 

Examples of the models themselves are numerous, and include Huang et al. (1995) 

who simulate an A&E department at Plymouth NHS Trust; McGuire (1997) uses 

simulation to reduce patient time in A&E; Clark et al. (1994) simulate the location of 

an emergency helicopter for emergency services in rural areas; Kilmer et al. (1997) 

incorporate simulation and neural networks in modelling an emergency department; 

Schroyer (1997) redesigns an ambulatory surgery facility; and Muller and Muller 

(1998) use a simulation model as a decision support system for the dispatch of 

ambulances in Belgium. 
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3.3.7 Waiting list management 

The increasing focus of central Government on numbers of patients on waiting lists for 

surgery and length of time spent waiting has raised concerns amongst the profession 

that the clinical priorities of patients for their surgery is in danger of being forgotten in 

the search for shorter waiting lists (BMA, 1998). 

Recent announcements of additional funding to decrease the numbers on the waiting 

list is likely to mean that the easier, shorter cases will be brought in for surgery. This 

will achieve the political wish for fewer people on the list (in the short term) but those 

remaining are likely to represent those with more complex conditions who are quite 

likely to have waited longer. There is a need for a waiting list prioritisation scoring 

system and improved management, at local hospital level, of waiting lists. Some 

authors have tackled these concerns by adopting various OR techniques. These include 

Worthington (1991, 1995) on the management of outpatient and inpatient waiting lists; 

Croft et al. (1997) which outlines the CliniQueue model - a generic system to support 

management of referrals to outpatient waiting lists; and Benneyan (1994, 1997) which 

demonstrates a simulation model in the management and reduction of inpatient waiting 

lists in hospitals. 

New Zealand has achieved considerable success with a sophisticated national scoring 

system for elective surgery (Random and Holmes, 1997, Dennett et al., 1998). The 

system identifies "which patients are likely to derive substantial health benefit from 

those services, bearing in mind competing claims on resources". The established cost-

effectiveness plays a central part in the system. Other successful scoring systems are 

currently in place in Canada and Sweden. The United Kingdom, as yet, has no 

national-level system in place, although a number of waiting list priority systems have 

been experimented with in various hospitals including Guy's in London (Gudex et al., 

1990) and in Birmingham (Health Service Management Centre Birmingham Seminar, 

October, 1998). A vast array of proposed prioritisation formulae may be viewed in 

Mullen (1998). The author concludes that most attempts to produce priority-scoring 

systems are too simplistic and in reality waiting list management requires both a micro 

and macro-level approach to succeed. 
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3.3.8 Hospital ancillary services 

A number of other studies have focussed on auxiliary services provided in the hospital. 

Moores (1987) tackles hospital car parking problems at the University Hospital of 

Wales. Berchtold et al. (1994) use simulation to model different configurations of 

clinical laboratories. Dankbar et al. (1992) evaluate automated path lab equipment and 

Mukhejee (1991) models the management of operations in the hospital pharmacy. 

Ceric (1990) uses simulation to assist in the planning of a hospital automatic guided 

vehicle system. Studies have even focussed on operations of a hospital cafeteria 

(Stout, 1995). 

3.4 Discussion of Literature Review and Future Research 

Needs 

The provision of hospital resources, such as beds, operating theatres and nurses, is a 

matter of considerable public and political concern and has been the subject of 

widespread debate (Capewell, 1996, Blatchford et ah, 1997 and Bagust et al., 1999). 

For several years hospital managers have been under considerable pressure to reduce 

hospital capacities and increase patient throughput in the name of operational 

efficiency. More recently, public disquiet has arisen in cases where patients could not 

gain ready access to their local hospital or were subjected to extended delays while 

vacant beds were identified. This has pointed to the need for improved management of 

resources. Recent flu outbreaks have highlighted a system in crisis (see section 2.4.3). 

An appreciation of the dynamics of the hospital system in its ability to respond to 

fluctuating demand, variable patient needs and complex case-mixes is important in 

framing policy, determining appropriate levels of resource provision, and establishing 

realistic performance monitoring criteria. The management of healthcare at all levels 

has recognised the need to more precisely monitor and control the use of expensive 

resources. Old tolerances for surplus capacity are increasingly questioned as the trend 

towards smaller more efficiently run units is pursued. The political element of 
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healthcare emphasises the need for objective methods and tools to inform the debate 

and provide a better foundation for decision-making. 

There is considerable scope for Operational Research methods to be widely used for 

this purpose. There is a great need for necessarily detailed and realistic operational 

tools to aid with the planning and management of hospital resources. The literature 

study has revealed a vast array of papers on these topics, ranging from the allocation of 

beds between hospital departments, through to the scheduling of patients for theatre. 

The dynamics governing a hospital, and the flow of patients through it, means that the 

necessary models should reflect the complexity, uncertainty, variability and limited 

resources. Examples of these conditions are listed below. These key issues have not 

been fully addressed in the existing literature. 

* CompZexify 

> Rules governing patient admissions into hospital e.g. keep some beds free 

for emergency patients only; elective patients may only be deferred so many 

times before increasing their priority. 

> Patient-flows through the hospital e.g. when there is no available bed, we 

try to admit the patient into another suitable, and available, hospital bed 

albeit on a different ward; intensive care patients may be discharged early to 

high dependency care if, and only if, various complex criteria are satisfied. 

> Constraints imposed by other hospital services e.g. patients cannot go to 

theatre if there is no available inpatient bed for them in the first place; 

operations themselves are subject to theatre space and surgeon's hours. 

• Uncertainty 

> Demand is likely to be a function of time e.g. elective (planned) patient 

arrivals can be controlled and are often therefore highly correlated with the 

month of the year, day of the week, and hour of the day; Planned scheduled 

admissions to hospital though must also account for emergency patients 

who arrive at random, often in quick succession, and who must be admitted 

with the minimum of delay. 
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« Variability 

> Patient length of stay (LoS) varies enormously between and within different 

hospital specialties. For example, Paediatric care length of stay is 

frequently biased towards shorter LoS, but occasionally a child might stay a 

very long time, which can cause a disproportionate 'blocking' effect. LoS 

for Geriatric care, however, can be expected to show very different 

characteristics from that of Paediatric care. Here LoS is much larger and 

the blocking effect can be extreme when elderly patients stay for months 

rather than days and become so called 'bed-blockers'. 

® Limited resources 

> Self-explanatory - hospitals must treat increasing number of patients 

through diminishing bed numbers. There is a need to efficiently and 

effectively plan and manage all hospital resources with particular emphasis 

on inpatient beds, operating theatres, hospital workforce, and expensive 

critical care resources. 

Developed models should be able to aid with both the planning and management of 

resources. Appropriate detailed models that can evaluate a variety of scenarios could 

be powerful tools for good planning and management decisions. 

® Planning tools 

> Capacity planning in hospitals is largely a strategic decision. For example 

the total number of beds in a new hospital and the number of beds in 

various specialities are very major concerns; here the planning horizon 

could be about 10 years. 

> Planning tools should allow hospital staff to examine in detail the likely 

capacities required over time, for example the annual hospital business 

planning cycle each financial year. They should enable the user to identify 

the likely consequences of changes in numbers, and distribution across the 

hospital, of beds, theatres and workforce. 
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> Planning for services across a region e.g. the number and location of 

outpatient clinics to serve the population's needs; the number and 

distribution of critical care beds in a health authority. 

> Management of available capacities could be from day to day or over longer 

periods such as winter months and summer months. An example would be 

a planned transfer of surgical beds to elderly medical patients in winter. 

> Management tools should allow the user to examine resources in detail over 

smaller time intervals in order to maximise their utilisation and provide a 

more efficient use of healthcare resources. For example, the consequences 

of changing daily arrival patterns for elective patients and re-scheduling of 

nurses. 

All of these features point towards a need for sophisticated hospital capacity models. 

The literature review, as presented in the previous two sections of this chapter, has 

profiled the vast amount of literature on this topic, which dates back many years and 

has seemingly involved the spectrum of OR techniques. Given the wealth of work that 

has already been done in this area, it is both surprising and disappointing that it has not 

found greater application. The review has unfortunately highlighted many concerns 

regarding the adopted methodologies and stated assumptions of various proposed 

models that essentially make them redundant in a real-life setting. Some of the 

common themes of concern are given below. 

® Over-simplistic - many models have failed to recognise the complexity of the 

hospital dynamics, with assumptions proving far too restrictive. This raises 

concerns over their applicability and the reliability of their conclusions. Examples 

include: hospital wards accommodating all arrivals and so the concept of a refusal 

does not exist; arrival rates taken from the same negative-exponential distribution 

throughout time when in reality demand is known to be highly time-dependent in 

many specialities (for example, a large surgical emergency demand on Monday 

mornings; no planned activity over the weekend). With today's improved 

computing power, there is no longer a need to over simplify processes. The 
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necessary complexity can be readily captured in the development of practical 

operational models. 

® Deterministic - a huge number of papers on the topic fail to acknowledge and 

incorporate the stochastic nature of healthcare. Such models use average 

conditions, for example average bed occupancy, average arrivals, and average LoS. 

It is widely known that variability is high within a healthcare environment (for 

example, LoS for different patient types have very different distribution profiles). 

Such models can expect to under-estimate true resource needs (Shahani 1981, 

Shahani et al., 1994 and Davies 1985). 

® Lacking flexibility - nearly all models have been designed for specific case studies, 

for example a specifically named hospital ward, an individual operating theatre, or 

for a particular hospital workforce. These models lack flexibility and 

transferability of conclusions from one healthcare setting to another. This is 

particularly unhelpful to the healthcare profession since great effort is seemingly 

required to model individual elements within and between different hospitals. In 

practice, high-level hospital processes are generic processes and widely transferable 

from one hospital to another. There is a need to develop flexible models that allow 

for the 'fine-tuning' of parameters to reflect local conditions but which can be used 

by a variety of hospitals without the need for completely overhauling the model. 

® Lacking granularity - many models suffer from an isolated approach to modelling; 

namely that the models are built and experimented with for specific studies and 

conclusions drawn at a localised level. This lack of granularity (being unable to 

model at various interacting levels of the hospital system) has a great potential to 

give misleading and unrealistic conclusions. For example, modelling the use of an 

operating theatre is the subject of many published papers. An operating theatre 

however is an intricate and delicately balanced part of the hospital system as a 

whole - it is not necessarily possible to increase throughput in the theatre unless 

there is an inpatient bed for the patient in the first instance. Many models fail to 

recognise this obvious interdependency. 
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® Lacking user-friendliness - practical models should be sufficiently accessible for 

end-users (e.g. healthcare managers) to understand the workings of the model and 

to use the model in an experimental way themselves. Many developed applications 

clearly involve the 'black-box' misgivings and are too complex and/or too difficult 

to use. 

3.5 Chapter Summary 

The provision of hospital resources is a matter of considerable public and political 

concern and has been the subject of widespread debate. For several years hospital 

managers have been under considerable pressure to reduce hospital capacities and 

increase patient throughput in the name of operational efficiency. There is 

considerable scope for Operational Research methods to be widely used for this 

purpose. 

The literature study has revealed a vast array of papers on this topic. The dynamics 

governing a hospital, and the flow of patients through it, means that the necessary 

models should reflect the complexity, uncertainty, variability and limited resources. 

There is a great need for necessarily detailed and realistic operational tools to aid with 

the planning and management of hospital resources. Many of the proposed models 

have failed in a number of ways to meet this need. 

A common current practice is to plan and manage hospital capacities through a simple 

deterministic spreadsheet approach using average values only. It may be shown 

mathematically that this deterministic approach can lead to significant bias and 

inaccurate results, typically under-estimating the true resource needs (Appendix B). It 

is evident that the necessary models will be stochastic in nature, flexible, integrated, 

versatile and easy to use by various hospital managers to examine in detail different 

local and global concerns. Of the reviewed methods, it would seem that Simulation 

would best handle the key issues and needs that have been identified, and solve the 

necessary complex models (Appendix C). 
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The participating NHS Trusts, Royal Berkshire and Battle Hospitals, and Portsmouth 

Hospitals (see section 1.4), requested the development of appropriately detailed models 

to evaluate a variety of scenarios for good planning and management decisions. Royal 

Berkshire and Battle Hospitals Trust wanted to model and evaluate detailed options 

within the re-engineered hospital designs. Apart from this 'one off application, the 

Trust was also looking to develop a forecasting and planning tool, for beds, theatres 

and workforce, which could be used in long term planning and during the annual 

business planning cycle. Portsmouth Hospitals NHS Trust required similar models for 

use in its submission of the PFI outline business case. 

Given the needs of the Trusts, the complexity, uncertainty, variability and limited 

resources (as discussed earlier in this chapter), and in addition the requirement of a 

planning and management tool, there is a need for sufficiently detailed and flexible 

models for managing capacities. The following chapter proposes a generic framework 

that specifically addresses these needs. 
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Chapter 4 - Requirements, Methodology 
and Generic Framework 

4.1 Chapter Introduction 

Previous chapters have highlighted the need for necessarily detailed, stochastic, 

flexible and user-friendly operational models to aid with both the planning and 

management of hospital resources. This chapter outlines the adopted general 

methodology with reference to a list of user requirements from the participating 

hospital NHS Trusts. A generic framework for modelling hospital resources is 

proposed which forms a central aspect of the developed simulation models discussed in 

subsequent chapters. 

4.2 Forming a Structured Approach 

The literature review in the previous chapter has illustrated the immense diversity of 

possible methodological approaches for the planning and management of healthcare 

resources. It has highlighted a need for necessarily detailed and flexible models that 

can be easily and quickly fine-tuned to reflect local conditions by hospital managers 

themselves. It is therefore important to delineate a coherent research and development 

approach consistent with the stated objectives of the thesis and the needs of the 

participating hospitals. 

To meet this need, an evolutionary development methodology was adopted. This 

approach requires a constant dialogue with the end-users (hospital consultants and 

managers). Models may then be created and enhanced alongside the potential users 

themselves and this clearly forms a more structured approach than developing models 
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in isolation and then attempting to fit real-life processes and needs into the assumed 

framework. 

Figure 4.1 illustrates the evolutionary approach adopted during the time spent with The 

Royal Berkshire and Battle Hospitals NHS Trust. For a detailed description of 

evolutionary system development see Jenkins (1985). 

Stage 1 Identify the user's basic 
information needs 

Stage 2 

Stage 3 

Operational 
model 

Stage 4 

Statement of basic 
needs and scope of 
system 

r 
Develop the initial 

prototype 

1 
Initial 

prototype 

Use prototype model to 
refine user requirements 

Enhance 
working 
prototype 

Is the user satisfied 
with the prototype? 

Working 
prototype 

Revise and enhance the 
prototype 

Figure 4.1: Evolutionary model development 
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The iterative process identified attempts to avoid ultimate failure of the application by 

involving end-users at all design stages. This is particularly important in a healthcare 

environment where the operational researcher must gain the trust of hospital staff and 

be able to demonstrate the benefits of the new technology to replace or enhance 

existing methods. The evolutionary approach highlights two main components of the 

research, which are both described in detail in the subsequent sections of this chapter. 

« Identifying user requirements to inform the model development (Stage 1). 

® A generic framework in which the models are built (Stages 2 to 4). 

A considerable amount of time was spent working on-site at the hospitals and liaising 

with specialty managers, consultants and other hospital staff including bed-managers 

and nurses. The majority of time was spent sitting on various working groups and 

within process re-design teams, although contact was sometimes informal and 

unstructured. These meetings provided a rich source of insight into management 

processes at different levels and consequently added to the understanding of hospital 

needs and to designing a practically useful, but mathematically correct, planning and 

management tool. A range of structured methods were used to elicit feedback when 

necessary. Such techniques included questionnaires, structured interviews and more 

soft-system OR methodologies for brainstorming and cognitive mapping activities. A 

summary of knowledge elicitation is given below: 

o Formal interview (specialty managers, consultants, nurses and other "system-

owners") - structured examination of key aspects of care system often using 

questionnaires, flow diagrams and demonstration of prototype models. 

9 Informal discussions (all applicable staff) - communication about particular 

operations of the healthcare system. 

• Observation - observing processes, for example accompanying the bed-managers 

on their morning tour of the hospital wards. 

® Examination of data sets, literature and records - survey of collected and reported 

data relating to specific healthcare services. 
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4.3 Defining User Requirement Profiles 

4.3.1 General requirements 

Over a period of time the following set of criteria addressing user requirements was 

identified. These user requirements form the basis for the design rationale that enabled 

the development and enhancement of prototype models. The reader will note that 

many of the criteria have previously been highlighted as those qualities lacking from 

previous approaches, as detailed in the literature study in the previous chapter. This is 

no coincidence and further stresses the need for an improved methodological approach 

to the planning and management of healthcare resources. 

® Flexibility and versatility - ability to model a number of different scenarios 

within hospitals at various levels (from ward level to hospital as a whole) with 

minimal effort. The model must allow the fine-tuning of parameters to reflect local 

conditions but without the need for many different models (a flexible model with 

modules as opposed to a suite of different models). 

• Ease of use - sufficiently accessible for end-users to understand and readily use the 

model to examine various what-if scenarios. 

® Integration and granularity - a hospital wide approach to modelling of resources. 

These must be the ability to model various inter-dependent hospital resources such 

as beds, theatres and nursing needs within one granular model at different levels as 

necessary. There is a need to model hospital bed requirements alone or in 

combination with theatres and/or hospital workforce planning. 

® Validity - confidence can only be gained once the model has been validated 

against past data and experiences, and scenarios make clinical and managerial 

sense. 
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4.3.2 Hospital resource requirements 

After informal and formal discussions with various hospital decision-makers, such as 

specialty clinical managers, and the responses to a questionnaire (see Appendix E), the 

following set of complicating factors were evolved. Necessarily detailed hospital 

capacity models should account for such features and be able to provide appropriate 

information for scenario modelling and decision-making. 

® Emergency patients arrive at random and must be admitted with minimum delay 

and with priority over elective patients. 

® Patient demand may depend on time of the day, day of the week and month of the 

year. Thus bed requirements should be considered over time and not assumed to 

be static. 

o Patient LoS is highly variable, incorporating short LoS patients and those who stay 

a very long time. 

® Different patient types have different LoS distributions. 

o Patients cannot be admitted into a bed-pool if no beds are currently available. 

However, bed managers will decide whether another suitable bed is free elsewhere 

in the hospital. In effect, each patient has a priority list of suitable hospital bed-

pools that is used before either deferring (elective) or transferring (emergency) 

patients. 

* Different specialities have different rules for elective deferral times, ranging from 

re-admission the next day to some weeks in the future. Likewise, for some 

patients, only a pre-defined number of deferrals may be permitted before they are 

given emergency status. 

• There are different theatre sessions for different specialties within the hospital. 

Furthermore, the number and duration of sessions may change by day of the week. 
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• Some of the patients admitted to inpatient beds require an operation and queue for 

theatre {procedure patients) and some patients stay in the bed but do not require 

theatre {non-procedurepatients). 

® Patient operation time is highly variable. Different patient types have different 

operation time distributions. 

« There are known hospital rules concerning the amount of time that a theatre session 

may over-run. These rules have a direct bearing on whether to admit a patient to 

theatre or whether to cancel the operation until the next available session. 

® The hospital day is divided into three shifts - early, late and night. Patients often 

require different amounts of care over time. In turn this equates to the requirement 

of different grades of nurse by shift and by day for each hospital bed-pool or ward. 

« Nurse-dependency varies between different patient groups within the hospital. 

Nursing requirements are usually directly linked to the type of operation or clinical 

diagnosis. 

Furthermore, managers provided a provisional list of possible model applications. The 

following set of criteria specifies the ''what-if" scenarios to be evaluated. A valid 

operational model should allow decision-makers to evaluate (quantify) the 

consequences of various planning and management decisions. 

® Examine what the likely bed requirements for speciality bed-pools will be over 

time and their relationship with other hospital speciality bed-pools. 

o Analyse what effects changing various admission rules may have on the efficiency 

of the bed-pool. 

« Understand the consequences of various daily elective (planned) patient admission 

schedules, in the light of daily bed provisions and a stochastic emergency demand. 

• Evaluate various planning and management options, such as the effects of 

temporary transfer of beds from a surgical ward to a medical ward, creating new 

clinical groupings, and combining existing bed-pools. Important considerations in 
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this evaluation include refusals (transferred or deferred patients), bed-pool 

occupancy levels and the interaction between various care-units. 

® Appraise different operating theatre scheduling options. For example, whether to 

operate on a first come first served basis (FCFS), longest operations first (LF) or 

shortest operations first (SF). Furthermore to evaluate the impact of separate 

dedicated day-case theatres or whether to incorporate day-cases into existing 

elective theatre sessions. 

# Calculate likely nurse needs over time for each specialty bed-pool or hospital ward. 

This should be by grade of nurse, by month, day of week and shift each day. This 

must account for patient case-mix and resulting patient nursing dependencies over 

time. 

The desired user requirements and features of the hospital system point towards a need 

for a sophisticated hospital resource capacity-planning tool. This should meet the 

general criteria as specified by hospital decision-makers and potential end-users, as 

discussed in the previous section. 

4.3.3 Critical care requirements 

Although a critical care unit (CCU) forms a part of the overall hospital system, to an 

extent this unit exhibits distinctive planning and management challenges that are rarely 

seen elsewhere in the hospital, thus the need for separately defined user requirements. 

The extreme costs of critical care (section 3.3.4), the relatively few beds available and 

the critical medical condition of the patients admitted intensify the planning and 

management issues. There is currently a great need to better plan and manage critical 

care beds at both a local and regional level (Department of Health, 2000). During 

lengthy discussions with participating CCU personnel, the following set of 

characteristics concerning the flow of patients through a CCU were evolved; 
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® Some CCUs comprise of an intensive care unit (ICU) only whereas others have 

both ICU and high dependency units (HDU). Currently in the UK the average 

number of ICU beds is 6 but the range is at least 2 to 22. One third of Trusts did 

not have high dependency beds in 1999 (Department of Health, 2000). 

® In those hospitals where both intensive and high dependency beds are available, 

some have physically separate units and others have a combined unit. The 

Department of Health critical care review recommended that that existing division 

into high dependency and intensive care based on beds be replaced by a 

classification that focuses on the level of care that individual patients need, 

regardless of location. 

® For separate units, intensive care patients may only be admitted to ICU and not to 

HDU. High dependency patients may be admitted to ICU if no bed is available in 

HDU. 

« For a combined CCU, admission is limited by both numbers of beds and numbers 

of available nurses. Typically one nurse can care for either one ICU patient or two 

HDU patients. 

® Some units have holding beds where emergency patients can wait for a bed to 

become available. Typically patients can only remain on this bed for a maximum 

of 24 hours. 

® Patients may be discharged early from a bed if certain criteria are satisfied. These 

usually consist of the patient having stayed a minimum time on the unit, they are on 

their last day of stay and they will survive. ICU patients may be discharged early 

to HDU although some may return direct to ward care. HDU patients are early 

discharged to ward although some patients may deteriorate and require intensive 

care. 

» If no bed is available for admission, and having already checked for possible early 

discharges and the arriving patient having already stayed the maximum allowed 

time on any available holding bed, emergency patients will then be transferred to 

another CCU. 
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• Elective patients are deferred for a certain time period, if, upon arrival at the CCU, 

the number of free beds has fallen below a minimum level. This level accounts for 

the provision of emergency-only beds. 

® Elective patients can only be deferred for a maximum number of times after which a 

elective patient is deemed to have emergency patient status. Emergency status 

elective patients and 'true emergency' patients are always admitted if there is a free 

bed. 

® Emergency demand may depend on day of the week and month of the year. Thus 

bed requirements should be considered over time and not assumed to be static. 

# Patient LoS is highly variable. Typically CCU LoS is biased towards shorter LoS 

although occasionally some patients may stay a very long time. 

HDU case-mix and LoS is very different in nature to ICU. HDU usually 

accommodates more elective, less severe patients whereas the majority of ICU 

admissions are emergencies. 

Different patient types have different LoS distributions. 

Some regional CCUs provide specialist beds, such as those for patients with major 

head injuries. Other CCUs within the same region will send these patients to the 

specialist unit. 

Within a region of co-operating CCUs, there often exists a priority matrix governing 

the movement of transferred patients from one unit to another available unit. 

There was an evident desire amongst the participants to permit any developed models 

to examine the consequences of the following options on unit occupancy, transfer and 

deferral rates: 

• Changes to the number of ICU and/or HDU beds. 

o Changes to the number of available nurses in a combined CCU. 
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® Changes to the number of holding beds for ICU, HDU or a combined CCU. 

® Changes to the number of emergency-only beds. 

® Changes to the rules governing early discharge. 

® Changes to the distribution of beds within a region of co-operating CCUs. 

® Changes to the sharing of capacities amongst CCUs, such as emergency-only beds 

in some, but not all, units. 

The complex characteristics of a CCU and region of CCUs, coupled with desired user 

requirements, indicates a need for a sophisticated CCU capacity planning and 

management tool. There is a likely need for a model for a single CCU and a further 

model for co-operating CCUs within a region. Developed models should meet the 

general criteria as specified by critical care service decision-makers and potential end-

users. 

4.3.4 Proposed model utilisation 

The participating hospital Trusts requested models to evaluate detailed options within 

the new hospital re-engineering and re-design processes. It is anticipated that there will 

be a model for hospital inpatient resources (beds, theatres and workforce) and models 

for critical care services. It was envisaged that all models could be readily used for ad 

hoc studies within this framework. However the Trusts were also looking to develop a 

forecasting and planning tool that could be used in long term planning and during the 

annual business planning cycle. The multi-dimensional nature of the model utilisation 

requires the development of flexible models that can be fine-tuned to reflect local 

conditions. In turn this leads to a necessary generic framework in which various 

project-based studies may be realised. Such a generic framework is discussed in the 

following section. 
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4.4 Developing a Generic Framework 

The defined user requirements coupled with the increased knowledge of the hospital 

processes and perceived model utilisation, led towards the evolution of a generic 

framework. Detailed flexible stochastic models may be developed within this 

framework. The generic framework is shown in Figure 4.2. 

Inputs for models 

Routine data. Hospital resources. Operating rules. Collaborative arrangements. 

Statistical analysis of data 

• Creation of clinically meaningful 
and statistical homogeneous 
groups for chosen variable of 
interest e.g. LoS, operation times, 
hospital outcome, typically 
constructed from medical, physical 
and socio-economic factors. 

• Other relevant statistical analysis, 
e.g. probabilities for casemix and 
arrival patterns of emergency and 
planned patients. Statistical 
distributions. 

•=>"=> i=> 
All Patients 

Elective 

Arrival patterns (hourly, daily, monthly) 

Probability of arrival 

ySunday 

.--January 

Day Case 

Elderly Care 
Cardiology 
Rehabilitation 

Emergency 

In-patient 

Adult Medicine 
. Dermatology 

— / M o n d a y 

July 

TVT 

Probability over time 

• e.g. LoS (days). Operation Times (mins) 

Models take uncertainty and variability into account. Example of a basic patient-flow Is Illustrated 

Outside World Q. Patient has 
emergency 

status? 

YES, 

Patient type x 
arrives at 
hospital 

Ward / home 

Death in 
hospital / home 

Q. Accept emergency 
patient x? 

NO, 

Q. Accept planned 
patient x? 

YES 

Transfer to 
another bed 

pool /hospital 

1 NO 

Admit patient for 
LoS. Monitor 

resource needs 

0 . Defer Admission? NO 
Transfer to 
another bed 

pool 

Patient 
leaves 

Outputs from the models 

Outputs in graphical, tabular and report forms that include: aggregated results or results classified as 
needed (e.g. functions of time); effects of changing operating rules of bed pools; effects of changes in 
the number of beds over time (seasonality effect); effects of nurse availability; effects of collaborative 
arrangements; impact of changes in surgical procedures, number and duration of theatre sessions etc. 

Figure 4.2: Developed generic framework for modelling healthcare resources 
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Further detail on each stage within this generic framework is provided below: 

« Model inputs - routinely collected data, such as hospital admission and discharge 

dates, time of arrival, LoS, emergency or elective status, operation time etc. Expert 

data may be used if raw data is not available (see section 6.4). Hospital rules 

governing use of resources are defined. 

• Statistical analysis of data - this stage plays a critical role in the success of 

developed models. The automated rapid classification of patient groups forms a 

key differentiator between this approach and other attempts to produce practical 

capacity planning and management tools. A specially designed statistical analysis 

program, called Apollo, has been developed to enable the creation of statistically 

and clinically meaningful patient groups and to obtain information about particular 

flows over time. Apollo can link with most databases that are used in hospitals and 

extract the necessary data for the statistical analysis. Some of the helpful features 

of Apollo are: 

> Rapid classification of patients using a binary splitting method similar to 

Classification and Regression Tree (CART) analysis. 

> Analysis of patient arrival times for the detection of patterns in the arrivals 

over time for any desired group of patients. 

> Fitting appropriate distributions. For bed capacities, distributions for LoS 

are important. For theatre capacities, distributions for operation times are 

necessary. 

> Linking the statistical analysis to the simulation model. 

Apollo has been designed to link to the hospital simulation model, so that patient 

groups can be created and the key information on arrival profiles and LoS fed 

directly into the model. This is a major help to end-users in creating a clinically 

and statistically correct model. Fitted distributions avoid the need for average 

values (section 3.5.1). Patient arrival profiles acknowledge demand as a function 

of time. See chapter five for a description of Apollo and patient classification 

techniques. 
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• Simulation model -developed simulation models within this framework take 

individual patients through time as they pass through the chosen healthcare system 

(Figure 4.3). This could be inpatient beds and operating theatres (for hospital 

capacity model) or complex care-pathways in a critical care unit. Once again this 

approach differentiates models described in this thesis from other more simplistic 

models of aggregated patient flows. Patients staying within the healthcare system 

take their attributes (arrival profiles, LoS, operation times, survival rates etc.) from 

those described by Apollo during the previous stage. Within this framework, any 

proposed system can be modelled. Such models capture uncertainty, complexity 

and variability (section 3.4). Successful application requires a detailed 

understanding of patient-flows, as typically captured in a flow diagram. This is 

achieved through the evolutionary development process adopted within this work 

that involved end-user involvement during all model development stages (section 

4.2). 

I Individual patient-flows through healthcare system 

1 LoS? 
Admission 1 Operating theatre? 

r Nursing needs? 

Discharge 

Figure 4.3: Individual patient-flows 

• Model outputs - The simulation model should be designed to meet user 

requirements (section 4.3) so that model outputs provide the necessary information 

for end-users. Outputs may be in graphical, tabular and report forms that include 

aggregated results or results classified as needed (e.g. functions of time). 

The framework was used to design and build a hospital capacity simulation model 

(Chapters 6 and 7) and critical care models (Chapter 8). 
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4.5 Chapter Summary 

It is important to delineate a coherent research and development approach consistent 

with the stated objectives of the thesis and the needs of the participating hospitals. To 

meet this need, an evolutionary development methodology was adopted with 

involvement of hospital staff from the outset of the research. A range of structured 

methods were employed to obtain information and feedback whilst visiting a 

participating NHS Trust. Lists of complicating factors governing the flow of patients 

through hospitals were identified. Necessarily detailed hospital capacity models need 

to account for these features and be able to provide appropriate information for 

scenario modelling and decision-making. Provisional lists of model applications aided 

model enhancement alongside the potential end-users. 

A generic framework has been evolved in the light of perceived user-needs and real-

life hospital processes. Developed models for hospital resources and critical care units 

should be designed within this framework. A specially designed statistical analysis 

program has been developed to enable the creation of statistically and clinically 

meaningful patient groups and to obtain information about particular flows over time. 

This automated rapid classification of patient groups forms a key differentiator 

between this approach and other attempts to produce practical capacity planning and 

management tools. Developed simulation models within this framework take 

individual patients through time as they pass through the chosen healthcare system. 

These models take uncertainty, variability and complexity into account properly. 

The generic framework has been shown to be applicable to many different NHS Trusts. 

Originally it was evolved at The Royal Berkshire and Battle Hospitals NHS Trust but 

was then adopted by Portsmouth Hospitals NHS Trust who recognised that the 

structure applied to them. Other Trusts have since approached the author expressing an 

interest in the framework and developed models. 
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Chapter 5 - Patient Classification 
Techniques 

5.1 Chapter Introduction 

The evolved generic framework (Chapter 4) incorporates the need for sophisticated 

patient classification techniques to be adopted. Necessary patient groupings may then 

be fed into developed simulation models and individual patients from each group 

passed through the particular healthcare system of concern. In order to capture the 

uncertainty and variability amongst the patient population, a number of classification 

techniques are considered and evaluated for their relative performances and practical 

usefulness. A statistical package incorporating a symbolic tree-based algorithm, 

CART, has been developed for use within the modelling process. 

5.2 The General Classification Problem 

As a direct consequence of individuality, patients typically differ in a number of 

medical, physical and socio-economic characteristics, for example by age, severity of 

illness, complications and speed of recovery. Groups of patients with healthcare needs, 

whether they represent those who suffer from a particular disease or those who are 

rushed into hospital as emergencies, are usually considered as groups of patients with 

similar needs. In fact these groups are typically heterogeneous and require more 

detailed modelling for classification. Resulting healthcare needs and corresponding 

resources vary from patient to patient within each group. The subsequent uncertainty 

and variability in the healthcare system can place great stress on the efficient and 

effective planning and management of resources. 
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From both a clinical and operational perspective, it is desirable to be able to divide this 

heterogeneous group into smaller homogeneous (in terms of some measure) sub-

groups. Homogeneity brings the benefits of increased certainty in individual patient 

needs and resource utilisation. For example, given an individual patient we can 

classify them into a patient sub-group in which we know, from past experience and 

data, that their LoS in hospital is likely to be within a certain range of time with a given 

confidence. The LoS for this patient group will typically substantially differ from the 

predicted LoS of other groups. The purpose of classification in this example would be 

to produce tight LoS bands with high confidence. Thus with the added knowledge and 

confidence of how long individual patients are likely to stay in the hospital system, the 

potential for improved efficiency and effectiveness in hospital planning and 

management is vast. 

An important criterion for a good classification procedure is that it not only produces 

accurate classifiers (within the limits of the data) but that it also provides insight and 

understanding into the predictive structure of the data (Breiman et al., 1984). For 

example, finding which socio-economic and medical characteristics contribute to the 

risk of a particular disease not only provides valuable assistance in classifying 

individuals into risk groups with some certainty, but more generally has advanced the 

knowledge and understanding of the disease. 

There are two elements to a general classification problem. Measurements are made on 

some case or object (for example a patient in a hospital setting with measurements 

including age, sex, clinical diagnosis, LoS, outcome etc.) and based on these 

measurements a prediction is made as to which class a case is in. The prediction is 

made following a pre-defined classification rule. 

In mathematical terms we define X t o be the measurement space containing 

X = {xi, X2,...Xm), the measurement vector, where eachx/ is a measurement taken on a 

case. The method should, given any x in X, have a classification rule to assign one of 

the classes (1,2,3,... J) to x, where J is the number of classes. The classifiers are based 

on past experience using a combination of expert knowledge and past data with their 

relevant outcomes. For example, the classifiers to be defined could come from a 
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hospital database combined with the expert knowledge of the consultants, specialty 

managers and other medical staff. 

Each measured variable is continuous, nominal or ordinal in nature. A variable is 

continuous if the measured value is a real number (e.g. LoS, age, height). A variable is 

nominal if it is a finite categorical set with no natural ordering (e.g. sex, hospital ward, 

clinical diagnosis). A variable is ordinal if it is a finite categorical set with a natural 

order. 

5.3 Comparison of Classification Algorithms 

There exist many different classification algorithms, but their relative merits and 

practical usefulness for healthcare problems in particular remain unclear. Thus a need 

arises to evaluate their relative performances. Intrasubject comparisons have been 

considered in the past, for example, within statistics (Remme et al., 1980), within 

symbolic learning (Clark and Boswell, 1991) and within neural networks (Xu et ai, 

1991). 

Other authors, for example King et al. (1995), have compared different algorithms for 

non-healthcare datasets, but little or no research has been conducted on the relative 

merits of various techniques for healthcare problems and in particular consideration of 

the practical usefulness for (use by and interpretation of) medical personnel. 

5.3.1 Algorithms and datasets 

Four techniques have been considered, with the intention of representing the spectrum 

of classical statistical and more recent advances in computer-based approaches: 

® Discriminant Analysis 

® Regression Models (Multiple and Logistic) 

® Tree-based Algorithms (CART) 

® Artificial Neural Networks 
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In considering suitable datasets, the primary criterion was that chosen datasets were of 

real-world interest to the medical profession. In order to evaluate how the different 

classification approaches perform on different types of data, a number of datasets were 

chosen with the intention of representing those with different sizes (number of 

records), number of variables (fields), the level of variance or deviance (an indicator of 

how "messy" the data is) and the ratio of continuous to categorical variables in the 

dataset. 

The four selected datasets are described in Table 5.1. A summary of the classification 

studies is shown in Table 5.2. 

Table 5.1: Dataset descriptions 

Dataset Description 

A An intensive care dataset containing routinely collected ICU data within 
the UK. Information on a number of socio-economic and medical 
variables. Primary interest in predicting LoS and outcome. 

B Routinely collected data from a hospital patient management system for 
predicting LoS on the ward. 

C A comprehensive maternity dataset collected as part of a commissioned 
study on predicting complications at birth. Contains a number of socio-
economic and medical variables. 

D A large diabetes dataset, containing information on various diabetic 
complications collected for over 30 years from a leading unit in the UK. 
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Table 5.2: Summary of classification studies 

Study Dataset Dependent Variable Number 

of Records 

Variance/ 

Deviance 

Number of 

variables 

Study Dataset 

Description Nature 

Number 

of Records 

Variance/ 

Deviance 

Number of 

variables 

1 A LoS in 
ICU 

(days) 

Cts 582 11.8 

(mean 2.4) 

7 
(2 Cts, 5 Cat) 

2 A Outcome 
(death or 
survival) 

Cat 582 &13 
(13%) 

7 
(2 Cts, 5 Cat) 

3 B LoS in 
hospital 
(days) 

Cts 17,974 56X5 

(mean 4.3) 

5 
(2 Cts, 3 Cat) 

4 C Chance of 
complicated 

delivery 

Cat 2,402 0 2 4 
(24%) 

16 
(8 Cts, 8 Cat) 

5 D Predicting 
onset of 

Retinopathy 

Cat 4,056 0 3 3 
(33%) 

14 
(12 Cts, 2 Cat) 

(Cts = continuous variable; Cat = categorical variable) 

5.3.2 Evaluation criteria 

The algorithms are evaluated using four criteria. Two are objectively measurable: the 

accuracy and the computing time taken to produce results. There are also two 

subjective criteria: the comprehensibility of the results and the ease of use of the 

algorithm to relatively naive medical users. 

Accuracy 

There is no generally accepted measure or agreement on the appropriate loss function 

or accuracy of a classification tool. Therefore to compare the relative performances of 

each of the four techniques, accuracy has been measured as the percentage of cases 

(patients) that the algorithm classifies correctly with a categorical dependent variable 

or the correlation coefficient (r) between the observed and predicted responses with a 

continuous dependent variable. 
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Run-Time Speed 

Training and testing times were calculated. Training time is the time taken to learn plus 

the time taken to classify the training data. Test time is the time it takes to classify the 

test data. All algorithms were performed on the same PC with a Pentium III processor 

of speed 600MHz with 128 Mb RAM. 

Comprehensibility and Ease of Use 

This is a measure of the extent to which the algorithm produces comprehensible results 

that are easy to interpret and understand, particularly by medical staff This was 

measured by consulting various medical personnel within the participating NHS Trusts. 

They were also asked to estimate the ease of use of each technique. This is based on 

the amount of time required to understand the algorithm and prepare the data, the 

amount of tuning necessary and the time required to produce correct results. 

The subsequent four sections of this chapter describe in turn each of the four chosen 

classification algorithms. This is followed by a presentation of how each performed on 

the dataset together with a critical comparison. The majority of time was spent 

researching and developing CART and Neural Network tools, thus the emphasis on the 

description of these two techniques as opposed to the more classical, and generally 

wider understood, discriminant analysis and regression analysis approaches. 
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5.4 Discriminant Analysis 

{Canonical) Discriminant Analysis (DA) is a technique using least squares methods to 

separate data into two or more groups. Data points are characterized by several 

variables; the optimal discriminant function is assumed to be a linear function of the 

variables and is determined by maximizing the between group sum of squares for fixed 

within group sum of squares. This technique is well described (for example in Manly, 

1998) and a detailed discussion will not be given here. 

DA is primarily used to classify cases into the values of a categorical dependent, 

usually a dichotomy. If it is effective for a set of data, the classification table of correct 

and incorrect estimates will yield a high percentage correct. In general there are 

several purposes for DA: 

• To investigate differences between groups. 

• To determine the most parsimonious way to distinguish between groups. 

• To discard variables which are little related to group distinctions. 

« To classify cases into groups. 

• To test theory by observing whether cases are classified as predicted. 

Discriminant analysis shares all the usual assumptions of correlation, requiring linear 

and homoscedastic relationships and untruncated interval or near interval data. Like 

multiple regression, it also assumes proper model specification (inclusion of all 

important independents and exclusion of extraneous variables). DA also assumes the 

dependent variable is a true dichotomy since data which are forced into dichotomous 

coding are truncated, attenuating correlation. 

DA is an earlier alternative to logistic regression (see 5.5.3), which is now frequently 

used in place of DA as it usually involves fewer violations of assumptions, is robust, 

and has coefficients which many find easier to interpret. 
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5.5 Regression Algorithms 

Regression analysis is concerned with investigating the relationship between several 

variables in the presence of random error. In particular we build a model in which one 

of the variables (the dependent variable) is expressed as a linear combination of the 

remaining variables (which are referred to as the independent or explanatory 

The method of least squares is used to estimate the parameters of the model from a 

given data set. This process of estimation is often referred to as fitting the model. The 

following description is intended to provide an introduction to the topic. The reader is 

referred to Draper and Smith (1966) for a comprehensive examination of the subject. 

5.5.7 General model with additive error 

We seek a model which will enable us to represent the relationship between the 

dependent variable, y, and the set of independent variables xj, X2 ...,Xk. In general this 

relationship will not be completely deterministic and the relationship will contain a 

random experimental error term, s. In order to investigate the relationship a value ofy, 

yj, is determined whenXj, X2,...,Xk take the valuesXjj, X2j ...,% respectively. This is 

repeated fory" = l,...,n. The general model used to represent the relationship is of the 

form; 

where 0 denotes some function of the x's and contains unknown parameters which 

have to be estimated. 

Attention is usually limited to the general linear model in which O is a linear function 

of the unknown parameters, such that; 

yj = a + + PiX-^. +.... + P^Xf^. + j = 
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5.5.2 General model with multiplicative error 

In some situations it is more appropriate for the model to include a multiplicative error 

term rather than the additive term used above. The general model then becomes: 

where 5j denotes the random experimental error term. 

This model is often appropriate for data for which the relationship between the 

variables is clearly non-linear. In this case a suitable logarithmic transformation can 

sometimes be applied to achieve an approximately linear relationship with an additive 

error term. 

5.5.3 Logistic regression 

Binomial (or binary) logistic regression is a form of regression that is used when the 

dependent is a dichotomy and the independents are continuous variables, categorical 

variables, or both. Multinomial logistic regression exists to handle the case of 

dependents with more classes. Logistic regression applies maximum likelihood 

estimation after transforming the dependent into a logit variable (the natural log of the 

odds of the dependent occurring or not). In this way, logistic regression estimates the 

probability of a certain event occurring. 

Logistic regression has many analogies to ordinary least squares (OLS) regression: the 

standardized logit coefficients correspond to beta weights and a pseudo statistic is 

available to summarize the strength of the relationship. Unlike OLS regression, 

however, logistic regression does not assume linearity of relationship between the 

independent variables and the dependent, does not require normally distributed 

variables, does not assume homoscedasticity and in general has less stringent 

requirements. The success of the logistic regression can be assessed by looking at the 

classification table, showing correct and incorrect classifications of the dichotomous, 

ordinal, or polytomous dependent. Goodness-of-fit tests are available as indicators of 

success as is the Wald statistic and other tests of the model's significance. 
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5.6 Classification and Regression Trees (CART) 

5.6.1 The foundations of CART 

Classification and Regression Trees (CART) is a classification method that has been 

successfully used in many healthcare applications. Example applications include 

creating case-mix groups (Smith et al., 1992), minimum data requirements (Homberger 

et al., 1995), cancer survival groups (Garbe et al., 1995) and Intensive Care (Ridley et 

aA, 1998). 

Breimen et al (1984), the founders of the technique, use the following University of 

California study as a means of introducing the reader to the technique. The study uses 

measurements recorded when a heart attack patient is admitted to hospital and attempts 

to classify the patients into low-risk and high-risk groups. Nineteen variables are 

recorded in the first twenty-four hours, including age, blood pressure and seventeen 

other ordinal and binary variables summarising the patient's condition. The CART 

method produces a tree that, by answering a series of yes/no questions, can be used to 

classify the patient. The authors found that it was possible to identify a high risk group 

of those patients not surviving more than 30 days based on minimum systolic blood 

pressure, age and whether sinus tachycardia was present. Figure 5.1 shows the tree 

produced in the study. In the tree, the letter F indicates low risk and G for high risk. 

Is the mmimum s\3(olic hlood pressure over Ihc 
initial 24 hour period ^ 

Figure 5.1: CART analysis of cardiac patients (from Breimen et al., 1984) 
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5.6.2 The method 

The first step in producing a tree is to decide which variable is to be predicted (LoS, 

operation times, survival rates etc.). If the variable is ordinal then the variance is used 

to measure the purity in the group, if the variable is categorical then deviance is used. 

An algorithm is used to split the original dataset into sub-populations of increasing 

purity (decreasing variance or deviance). At each junction of the tree is a node. A 

terminal node is a node at the end of the branch of the tree. At each node in the tree the 

algorithm searches through each of the independent variables in turn. For each variable 

it finds the best binary split that produces a node with the smallest variance or 

deviance. Then it selects the variable that has produced the best binary split (best of 

the best). The parent node will thus be split on this variable with the split as defined. 

This may have the effect of leaving one of the child nodes with a higher 

variance/deviance than the parent node. The algorithm however continues to branch 

from each of these child nodes until defined stopping rules have been fulfilled. 

An issue in CART analysis is when to stop the partitioning, i.e. when do we say that 

the variance has not significantly reduced? It would be possible to create a tree where 

each terminal node has zero variance by having just one case in each node. However 

this would be statistically irrelevant and practically useless. It is necessary therefore to 

introduce stopping rules so that terminal nodes have sufficient size to yield reasonable 

and statistically robust results. Stopping rules include: 

® Stop when nodes contain a certain number of cases. 

® Stop when reduction of variance is below a certain threshold. 

® Stop when a maximum number of terminal nodes (or layers) have been produced. 

Care must be exercised when defining stopping rules and should account for the 

number of cases in the dataset. A terminal node with less than 30 cases, for example, 

can be expected to yield little predictive power and lack statistical robustness. 

Standard bounds are no less than 50 cases per node, a significance level of 1% on the 

reduction of variance in order to split a node, and a maximum of around 10 terminal 

nodes. Once a tree is constructed statistical summaries can be produced at the terminal 

nodes which can be used to form the classes. 
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5.6.3 CART components 

There are 4 components required to construct a regression tree: 

1. A set of questions of the form: Does x, belong to the set A. The answer to such 

questions induces a split of the predictor space, cases associated with A and those 

with the complement of A. The sub-samples form the nodes. 

2. A goodness of split criterion cD(s, f) that can be evaluated at any split s at any node 

t. 

3. A means of determining the appropriate size of the tree. 

4. Statistical summaries at terminal nodes of the tree, for example, node averages and 

frequency distributions. 

5.6.4 Validating the trees 

Once a tree has been produced it should be validated to give an estimate of the 

accuracy of its classifications. The same data that is used to construct the tree cannot 

be used to test the classifications, as the estimate will be over-optimistic. This is 

overcome by splitting the data into two sets, A and B. The cases in A must be 

independent and identically distributed to the cases in B. This has the drawback that it 

reduces the sample size used in the construction of the tree. Set A can be used to train 

the data and build the tree (training set) and set B to test the robustness and validity by 

forcing the data through the tree (testing set). 

For smaller samples there is a technique called V-fold cross validation. This involves 

three stages: 

1. Split data into v sub-sets 

2. Classify on A-A^ for each v 

3. Cross validate over all samples, combine miss-classification rates to measure 

accuracy 
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Standard statistical methods can be used to compare the values of the training set and 

test set at any node. The significance test to compare data sets can be described as the 

following: 

Let «i = number in group at node from training set 

«2 = number in group at node from test set 

(A) Categorical dependent variable 

Let r\ = number responding 'yes' in group at node from training set 

ri = number responding 'yes' in group at node from test set 

Let TTi and %^be the true proportions responding 'yes' in the training and testing 

populations respectively. 

For a large sample (>20) r/ is approximately normal distributed with mean «,;r, and 

variance and r ; with mean and variance - ^ i ) . 

Under the null hypothesis of tti = K2 = tt we obtain: 

and 

^ ^ ^ ( 1 ^ r, r . 

n, n \ I 2 / "-1 "-2 n, n. 

Expectation 
^2 y 

= 0 

y y 
where n is estimated by /> = ' ^ 

«, + «2 

A 95% confidence interval for n\ - 712 is given by: 

+ L 9 6 . M : : : — ^ + 
«2 
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(B) Ordinal (continuous) dependent variable 

Let X, = the mean value within the group at node from training set 

= the mean value within the group at node from test set 

si = the estimated group variance at node from training set 

s] = the estimated group variance at node from test set 

Let jii and p2 be the true means in the training and testing populations respectively. 

Let and a l be the true variances in the training and testing populations respectively 

estimated by s^ and $1 for large n\ and nj. 

Under the null hypothesis of //, = /Uj we derive: 

(», -1)^,' + (»% -

77, + - 2 

2 A ^ 1 1 ^ 

J\^\ ^2 J 

and 

- X;) = 0 

Hence a 95% confidence interval for//, is calculated as: 

X, Xj i 2 , - 2 ) -
(«, - - 1)̂ 2 

«, + - 2 /V'l 

1 1 
— + — 

n, n 
2 J 

Confidence intervals can be used to judge whether or not the two data sets are 

statistically the same. If the interval produced at any given node contains zero then it 

suggests the test data supports the training data; if zero is not contained in this interval 

then the node should be treated with caution. 
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5.6.5 The CART algorithm details 

Classification 

1. For the current group calculate the total variance within the group. 

2. For each value of independent variable, calculate the total value of the dependent 

variable in that group ( ^ % ) , the total value squared ), and the number of 

items of data in that group {N). 

3. Sort the values of the independent variable into increasing order of the mean value 

of the dependent variable. 

4. For each independent variable calculate the best point at which to split the sorted 

mean values to produce the minimum variance. 

5. Split the data based on the best independent variable in order to reduce the total 

variance calculated as: 

I 
all groups ^ N 

Total observations 

6. Choose a suitable sub-group of the data as the current group, and repeat the above 

steps until either the data is split into groups of size less than a minimum number, or 

the reduction in variance obtained by a split of the data is below a minimum value. 

Regression 

1. For each pair of adjoining subgroups, calculate the change in variance resulting 

from the amalgamation of these two groups. 

2. Combine the sub-groups whose combination will result in the least gain of variance. 

3. Repeat the above steps until the desired numbers of sub-groups are obtained. 
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5.6.6 Computational time issues 

With uncensored data numerated covariates, for example patient age, these are ordered 

such that the analysis is carried out on (< x , > x) and is performed n times, where n is 

the number of individual ages. We have 0(n) computations to make. Enumerated 

covariates, A, B, C and D with X = {A, B, C, D}, are ordered such that E(A) < E(B) < 

E(C) < E(D). Therefore it is logical to look at the groupings {A}, {B, C, D}; {A, B}, 

{C, D}; {A, B, C}, {D} etc., with order 0(«- l ) 

With censored or categorical data numerated covariates, analysis is,carried out with 

order 0(n). However if we are analysing an enumerated split, for example hospital 

specialties A, B, C and D with X={A, B, C, D}, we have to investigate all possible 

groupings: {A}, {B,C,D}; {A,B}, {C,D}; {A,B,C},{D}; {B},{A,C,D}; {B,C}, 

{A,D}; {C}, {A,B,D}; {A,D}, {B,C} with order 0(2" ' - 1) for nominal and 0(M^- 1) 

for ordinal variables. The computation time for the construction of the tree sequence 

for censored data is of obvious concern, although a possible solution for large number 

of enumerated types would be the use of factorial designed experiments. 

5.7 Artificial Neural Networks 

Artificial neural networks are parallel computing devices consisting of many 

interconnected simple processors. In essence they are attempting to mimic the 

behaviour of the most powerful asset known to man, the human brain. Although each 

processor is quite simplistic, a collection of these units (a network) gives rise to a 

powerful computational tool. Each processor in the network is only aware of signals it 

periodically receives and the signal it periodically sends to other processors, and yet 

such simple local processors are capable of performing complex tasks when placed 

together in a large network of orchestrated cooperation. 

Artificial neural networks have their roots in work performed in the early part of the 

twentieth century, but only during the 1990s, after the breaking of some theoretical 

barriers and the advances in computing power, have these networks been widely 
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accepted as useful tools. A plethora of books and papers have been published on 

artificial neural networks. This section aims to provide the reader with a general 

overview of the topic. For a more comprehensive and exhaustive description, the 

following references are useful starting points: Anderson (1995), Haykin (1999), 

Callan (1999) and Kay and Titterington (1999). 

5.7.1 The basic components 

The neural network is the collection of units that are connected in some pattern to 

allow communication between the units. These units, also referred to as neurons or 

nodes, are simple processors whose computing ability is restricted to a rule for 

combining input signals and an activation rule that takes the combined input to 

calculate an output signal. Output signals may be sent to other units along connections 

known as weights. The weights usually excite or inhibit the signal that is being 

communicated. The net input of weighted signals received by a unit j is given by 

- Wo + 
/ = ! 

where wo is the biasing signal, w/ the weight on input connection ij, Xj the magnitude of 

signal on input connection ij and n is the number of input connections to unit j. An 

illustrative schematic of a single network unit with three incoming signals is shown in 

Figure 5.2. 

Incoming 
Signals W2 

W3 

1 
in Transfer 

Function 

^ Outgoing 
1 

Transfer 
Function Signal 

Figure 5.2: A single network unit 
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The summed value net is passed on to a second processor within the unit, the transfer 

function, which computes the output value of unit j determined by: 

where oj is the unit output andy() is the output transfer function. Common transfer 

functions include the step, sigmoid and hyperbolic tangent sigmoid functions. 

One of the intriguing aspects of neural networks is that although they have units with 

limited computing capability, when many of these units are connected together, the 

complete network is capable of performing a complicated task. Figure 5.3 illustrates 

an example of a simple two-layered feedforward network (the input layer is not 

normally regarded as a layer as its purpose is simply to enter the input values). 

Input 1 

Input 2 

Input 3 

Input 4 

Output 

Figure 5.3: A two-layered feedforward network 

5.7.2 The backpropagation network 

As opposed to a traditional and rigorous programming approach, where the developer 

blueprints every command to be executed, a neural network is left to itself to learn the 

underlying theories of the problem and the procedures required for solving it. This 

process of learning is known as network training. The knowledge obtained by the 

network is stored in its weights and biasing values. 

A popular training algorithm for feedforward networks is the backpropagation 

algorithm. Feedforward networks that are trained using this approach are commonly 

known as backpropagation networks (BPN). The general concept of this technique is 
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to constantly perform corrections to the individual weights and bias values, with the 

objective of reducing the output error, corresponding to the magnitude it has 

contributed to the output error. In other words, the algorithm redistributes the "blame" 

to the individual weights and biases according to their contributions to the overall error. 

The backpropagation algorithm is a supervised learning method in which the developer 

first selects a set of training data from historical records. The training data would 

consist of samples of inputs, /, together with a corresponding set of targeted output(s), 

t. For each data point in the training set, the algorithm sweeps through the network 

twice. The forward sweep first propagates the input vectors through the network to 

compute the output values at the output layer (with the weights and biasing values of 

the network initialised to small arbitrary values). The unit's total output error, e, 

obtained by summing the individual differences between the network's output and the 

targeted outputs {t-o), are then in turn propagated backwards through the network to 

determine how the weights are to be changed during training. Common error functions 

used include the sum of squared error (SSE) and the mean squared error (MSB). 

An epoch is a complete cycle through each data point in the training set. Network 

training terminates when the sum of all errors is below a predefined target error. 

The main parameter of the backpropagation algorithm is the networks learning rate, r. 

In order to make the effect of weight changes smoothly, the transfer function of the 

units must be smooth. The learning rate should be kept low to allow a smooth and 

steady descent on the error surface. A commonly adopted learning rate is the logistic 

sigmoid function: 

1 
o 

The amount of correction that is to be made on a particular weight connected to the 

output layer is computed using the following equation: 

where dw is the weight change, r the network learning rate and ej the SSE of unit j. 
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Thus the new value of the weight is found by: 

Further discussions on the backpropagation algorithm may be found in Mehrotha et al. 

(1997). 

5.7.3 Architecture selection 

An important consideration affecting the likely success or failure of a neural network is 

the choice of the number of units in the input, hidden and output layers. With prior 

knowledge of the dataset, respectable initial values may be chosen. For most problems 

however, the initial values are unclear and often further complicated by the curse of 

dimensionality which states that the number of data points required for training 

increases non-linearly as each input variable is added. 

The choice of the number of units to be used in the hidden layers also strongly affects 

the generalisation capability of the network. Generalisation in the neural network 

context refers to the ability of a network to arrive at a configuration that is able to 

correctly process input data that has never been presented to it before. As a general 

rule of thumb (Callan, 1999), start with a two-layered network comprising of 30% to 

50% of the total number of units in both the input and output layers in the hidden layer. 

While the lack of units in the hidden layers would obviously cause the network to be 

insufficiently powerful to model the problem at hand, the presence of too many units 

may cause the network to overfit. Under such circumstances, the network has begun to 

memorise the training set and will not allow for flexibility in processing new input sets. 

Overfitting is observed when a higher test error is observed when compared to the final 

training error. 

Another issue is that of overtraining. This occurs when the training data is presented to 

the network on too many occasions, which will result in the network memorising the 

training set. A practical solution is to periodically test the network with a separate data 

set known as the validation set. 
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5.7.4 Dataset selection 

The choice in the dataset used for training, validation and testing is an important factor 

for the success in network training and generalisation. The dataset must firstly be 

representative of the problem. Specifically, the data must include all previously 

observed eventualities. A guideline by Baum and Haussler (1989) in determining the 

training set size is found by calculating: 

N>!^ 

where N is the number of training data points required, W is the total weight and 

biasing values in the network and s is the proportion of allowed errors in testing. 

The numeric values of training data may also need to be pre-processed prior to 

application. For example, the data will usually need to be scaled so as to prevent 

domination by variables that are computationally larger in magnitude. A crude method 

of scaling would be to divide the observations of a particular variable set by the largest 

observation. This then limits the largest value within the set to unity. 

5.7.5 A voidance of local minima 

The backpropogation training algorithm is a gradient descent method. If the output 

errors were plotted against the possible range of weights and biasing values, a two-

dimensional view of that graph would be similar to that shown in Figure 5.4. This 

graph is known as the network error surface. 

Figure 5.4: An example of network's error surface 
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The algorithm aims to minimise the error by taking the steepest descent on the error 

surface. However, as the above figure shows, the error surface will consist of a 

combination of uphill and downhill slopes and valleys. It is therefore possible for the 

algorithm to be trapped in one of the many local minima. 

The inclusion of a momentum constant can help overcome this event whilst in the 

process of searching for a global minimum. This constant provides additional 

magnitude in the error descent by simply adding a fraction of the previous weight 

change to the current computed change. Thus, if the previous weight change resulted 

in a large downhill shift in error and the network is now in a local minima, the previous 

weight change can help the network to overcome the small valley(s). 

The amount of correction that is to be made on a particular weight connected to the 

output layer is thus modified to include a momentum constant a. 

^ (/z +1) = rg o (1 - o ) / + («) 

5.8 Results of the Comparison Study 

5.8.1 Summary of results 

Initial time was spent randomly splitting each of the four datasets into training and 

testing datasets (with approximately half the total number of observations in each). 

The same training and testing datasets were used for each of the classification 

techniques in each study. The discriminant and regression models were built using 

SPSS (version 10). The CART trees were constructed using a developed package 

Apollo (section 5.9). NeuroSolutions (version 3) was used to build, train and test the 

neural networks. For each study, the models were trained and then tested. Their 

accuracy and run-time were recorded. Further details may be found in Appendix D. 
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Table 5.3 summarises how each of the classification techniques performed in each of 

the five studies. Recall that with a categorical dependent variable, the percentage of 

correctly classified cases is presented (rescaled as a number between 0 and 1). With a 

continuous dependent variable, the value of the correlation coefficient (r) is given. The 

time taken to test the models is shown in seconds. Appendix D contains more detailed 

information with illustrative results for each of the four techniques. 

Table 5.3: Performance of the different classification techniques 

Study Discriminant Regression CART Neural Nets Study 

Accuracy Time Accuracy Time Accuracy Time Accuracy Time 

1 &23 12 &29 1 032 1 033 39 

2 0.67 6 &81 1 &87 2 &87 39 

3 &45 165 0.62 5 0.60 20 034 620 

4 &54 7 (168 2 &78 6 &79 165 

5 0J3 3 a75 2 &79 12 0,74 129 

5.8.2 Discussion of research findings 

Discriminant Analysis (DA) 

DA is used to classify cases into the values of a categorical dependent. A large amount 

of set-up time was therefore required to split the continuous dependent variables into 

necessary groups. For this purpose, groups were derived using percentile splits with a 

total of ten groups constructed. 

DA consistently gave the lowest accuracy and took a longer time to run than both the 

Regression and CART approaches, although it was faster than the Neural Network tool. 

DA's poor performance may be explained by its linear structure that seems unable to 

tune itself to the structure of the datasets. In contrast, for example, regression models 

may be tuned to the dataset through the use of interaction terms. In DA the 

assumptions of a linear structure appear too restrictive. DA performed particularly 
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poorly for predicting LoS (studies 1 and 3). The LoS data has high skew and kurtosis 

which appears to severely disrupt the performance of the discriminants. 

The resulting discriminant functions and their coefficients were not always easier to 

interpret and often shed little light on the structure of the data. A survey of healthcare 

professionals revealed that they often struggled to make clinical sense of the 

discriminant functions. This is a further downfall of the technique. 

Regression Models 

Models with both additive and multiplicative error terms were examined and the best 

accuracy recorded. When the number of variables is large, and thus running a full-

factorial model is unfeasible, regression models ideally require that the user has at 

minimum a general understanding of the variables and may therefore evaluate suitable 

interaction terms. As a consequence, a large amount of time should be afforded to the 

consideration of appropriate model terms. Various models may then be built and 

evaluated. 

The accuracy was typically comparable with that of CART and Neural Network 

approaches. It tended to do better when the number of records (data points) was large 

and actually produced the best correlation coefficient r for predicting hospital LoS 

(0.62). For studies 1 and 3 (continuous dependent variables) the best results were 

obtained after a logarithmic transformation was applied to the dependent, although a 

number of other transformations were also evaluated. 

Careful selection of interaction terms were considered and this process was greatly 

aided by the results from CART. Tree-based structures graphically illustrate the 

variables that cause the tree to split and branch, with nested variables {parent and 

resulting child branches further down the tree) providing a good initial indication of 

potential interaction terms to include in the regression model. Further detail of the 

usefulness of CART in the appreciation of possible interaction terms may be found in 

Appendix D. Once the desired model had been chosen, the actual run-time was the 

quickest of all of the techniques. Even with 17,974 records (study 3) it only took 5 

seconds to run. 
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Logistic regression performs particularly poorly compared to CART and Neural 

Networks when there are a high number of categorical independent variables (study 3). 

This is consistent with what is known about the properties of the discriminant and 

logistic regression algorithms; the properties of high skew (>1) and kurtosis (>7) along 

with the presence of binary/categorical variables disrupts the performance of these 

algorithms (King et ai, 1995). Such conditions are well suited to symbolic learning 

algorithms, as observed by the performances of CART and Neural Networks (study 3). 

When considering ease-of-use and interpretability, regression models are fairly 

straightforward to interpret and understand although there is a large set-up time and a 

need to run a number of different models accounting for interaction terms and 

transformations to the dependent variable as necessary. 

CART 

The performance of CART was consistently as good as, or better than, Regression and 

Neural Networks models and always more accurate than Discriminant Analysis. It 

appeared to perform well over all datasets, indicating that the number of records or 

number of variables does not affect its relative accuracy compared to the other 

techniques. It performed particularly well on datasets with high skew and kurtosis, 

indicating that they are furthest from the (multivariate) normal. Symbolic learning 

tools, like CART, are generally non-parametric. That is, they do not make any 

assumptions about the underlying distributions. This is why we observe a consistently 

good performance relative to the other approaches. Although run time is a potential 

concern for tree-based methods, the observed times were low even for larger datasets 

and those with a high proportion of categorical explanatory variables. 

The CART output is simple and straightforward to interpret. Surveyed healthcare 

professionals particularly favoured the clear pictorial way in which the tree was 

constructed and captured on screen. It was found that this technique was the easiest to 

clinically interpret, allowing the user to discover which variables were of importance 

and furthermore their relative importance and quantifying the point at which to split on 

each variable. Such a method can challenge perceived beliefs or reinforce existing 

clinical judgements. A great practical advantage of this tool is the ability to combine 
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expert clinical/managerial knowledge with the power of statistical analysis. From any 

node in the tree, it is possible for the user to split the node on a user-selected 

explanatory variable. The CART algorithm may then be continued from the created 

child nodes. The combination of CART and local expert clinical knowledge proved to 

be a powerful tool during discussions with, and use of the tool by, the surveyed 

medical staff. 

Neural Networks 

The performance of the Neural Net varied throughout the study depending on the 

features of the dataset, although overall it performed well. A large amount of initial 

effort was required to train and validate the models. Run time was by far the slowest of 

the studied classification tools, because of the large number of parameters, with the 

neural net taking over 10 minutes to train the largest dataset (study 3). Improvement in 

the speed of neural networks is a large research area (for example see Fahlman, 1999). 

A major drawback of neural networks is that they are difficult to set up to produce 

good results. For example, to run backpropogation properly, a number of parameters 

needed to be adjusted. For example, an important decision concerns the number of 

layers and the initial step-size and momentum rates of the backpropogation network. 

Any small changes in these parameters can decrease the performance substantially. 

After running a number of networks and gaining an appreciation of the tool, an insight 

was made on choosing suitable starting conditions. These appeared to indicate an 

initial step-size of 0.7, a momentum rate of 0.5 and a network with two-hidden layers 

although there is no guarantee that the results are the best that could be achieved. An 

automatic method of parameter selection for backpropogation is another important 

current research topic. 

Accuracy was restricted (especially when comparing the results with those obtained 

from CART and Regression models) when the network was handling datasets with 

high variance or deviance (studies 3 and 5). The tool was equally or more accurate 

than all of the other tools in studies 1 and 2 with the smallest dataset (582 records). 
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As with Regression and DA, Neural Networks are not always easier to interpret. 

Coupled with the large set-up time, long run-times and multitude of possible network 

configurations, this tool is perhaps best suited to an experienced user. Extreme care 

should be exercised if intending to give the tool to a healthcare professional with 

limited statistical and Neural Network knowledge. 

5.8.3 General conclusions 

In order to capture the uncertainty and variability amongst the patient population, a 

number of classification techniques have been considered and evaluated for their 

relative performances and practical usefulness in predicting various healthcare 

indicators using a number of real-life datasets. This research has indicated that in 

practice there is no single best classification tool but instead the best technique will 

depend on the features of the dataset to be analysed and any preferences of end-users. 

The research has made a start in investigating what these features are with particular 

emphasis on healthcare data. A summary of the main findings are as follows: 

® Overall the results were very promising with each tool making a statistically 

significant contribution in each study (values of r and the percentage correctly 

classified were all significant at the 99% level). 

e Regression models consistently had the fastest run-times, although the difference in 

times compared to CART and DA is likely to be insignificant in practice. Neural 

Networks require significantly more time to train and validate models. 

® In general CART, Regression and Neural Network classification approaches gave 

similar accuracies, although CART was the only tool to give consistently good 

results. DA performed poorly throughout the study. 

® CART was well suited to datasets with large skew (>1) and kurtosis (>7) and where 

there were a large proportion of categorical independent variables. CART makes 

no assumption about the underlying distribution, hence why CART performed 

consistently well. In contrast, these conditions limit the performance of 
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discriminant and regression models, where the data is furthest from the 

(multivariate) normal. 

® Neural Networks produced the best accuracy when dealing with smaller datasets 

but performed slightly disappointingly when handling dependent variables with 

high levels of variability or deviance. 

9 If ease of use and human understanding are high priority, symbolic algorithms such 

as CART should be chosen. 

® A number of healthcare professionals were surveyed for ease of use and 

interpretability of the four techniques. The main concern focussed on the form of 

the DA discriminant function and the associated coefficients and weights of the 

Regression and Neural Network models respectively. Typically these were of seen 

to be difficult to interpret and often shed little light on the structure of the data. 

A survey of hospital staff from the participating NHS Trusts has revealed that tree-

based tools, such as CART, do have a greater practical appeal than that of the other 

tested techniques. This is a measure of the extent to which the CART algorithm 

produces comprehensible results that are generally easier to interpret by medical staff 

than the results of other algorithms, and on the time it took for hospital staff to 

understand the technique, prepare the data and actually perform the analysis to produce 

correct and meaningful results. 

In practice clearly a balance must be made between the accuracy and interpretability of 

a proposed technique. Accuracy is undoubtedly important, especially when 

considering a number of healthcare variables such as predicting death or survival. We 

might however wish to avoid a situation in which we are obtaining accurate predictions 

but where the form of the classifier is complex and little confidence and knowledge is 

gained on the data structure. Such a black box approach is limited in producing 

interpretable classification rules both for understanding the prognostic structure and for 

the planning and management of healthcare in general. 
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The evolved generic framework incorporates the need for a patient classification 

technique to be adopted. Derived patient groupings may then be fed into developed 

simulation models and individual patients from each group passed through the 

particular healthcare system of concern. In order to capture the uncertainty and 

variability amongst the patient population, it was decided that a tree-based 

classification tool be utilised. CART performed well in the research and was 

particularly well received by the participating NHS Trusts. A statistical package 

incorporating a CART tree-based algorithm has been developed for use within the 

modelling process. 

Integration of the mathematical modelling work and statistical analysis is demonstrated 

with the hospital resources and critical care modelling work (Chapters 6, 7 and 8). The 

successful integration has been enabled by the software development constructed in 

object-orientated code within the Windows environment. The developed classification 

package, Apollo, is presented in the next section of this chapter. 
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5.9 The Apollo Statistical Package 

A statistical package, Apollo, has been developed as part of the evolved generic 

framework for modelling healthcare resources. Apollo incorporates a tree-based 

algorithm, similar to CART, that assists in the production of clinically and statistically 

meaningful healthcare groupings. For example, these could be patient groupings 

based on LoS, operation times or survival rates. Derived groupings may be 

automatically saved and fed in to developed simulation models within the genetic 

framework. 

Apollo has been designed to enable healthcare personnel to create appropriate 

groupings of patients and carry out the necessary statistical analysis. At the highest 

level of functionality, Apollo may be used as a: 

® Data exploratory tool, allowing the user to explore and understand in greater detail 

their data. For example, Apollo permits manual splitting of the data into desired 

groupings and the rapid extraction of a number of key statistics, time-dependent 

profiles and continuous distribution fitting. 

® Tree-based algorithm tool for classification and prediction, allowing the user to 

derive statistically meaningful, easy to interpret homogeneous groupings. This 

aids understanding of the structure of the data, enabling the user to define 

interpretable classification rules as necessary. 

In the context of the planning and management of hospital resources, likely patient 

groups would be based on LoS as the dependent variable. Independent variables could 

include any routinely collected, or other, data such as patient age, sex, status, specialty 

and clinical diagnosis (HRG). Apollo has been specifically designed to enable users to 

create groups of patients, capture the necessary statistical information for each group, 

namely demand profiles and LoS fitted distributions, and then automatically fed these 

into a hospital capacity simulation model. Apollo has been designed for ease of use 

with screens designed in a Windows environment using Delphi software, and the 
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ability to save patient groupings for loading into a developed simulation model 

(Chapter 6). 

A high-level appreciation of the functionality of Apollo is given in Figure 5.5. 

Analyse 
Select Dept. Var. 
Analysis 

Results Comparison 
Open File 
Summary 
View Results 
View Nodes 

Open 
View Data 

Summary 
View Results 
View Nodes 
Save Results 

Clear Nodes 

Calculate Statistics 
Arrival Profiles 
Discrete Analysis 
Record Groupings 
Continuous Analysis 

Manually Split Data 
Remove Split 
Perform CART Analysis 

Quick Summary & Save 

Figure 5.5: High-level Apollo functionality diagram 

The subsequent sections of this chapter illustrate different aspects of this functionality 

through various screen-shots and discussions. 
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5.9.1 Loading, viewing and constructing a tree 

Data files may be loaded in to Apollo from a current choice of .dbf or Excel formats. 

Figure 5.6 shows the main screen which forms the central control of the program. 

Through this menu the user can load and save data, view the data table and resulting 

tree and perform the necessary splits to construct a tree. 

A P O L L O - C : \ O n c o l o g y . d b f - [ N o d e T r e e - D e p e n d e n t V a r i a b l e : L O S ] 

B e tealjise Resutts Ccmpatison Window Help 

• I f i l l f I 1 r-1 rr I c I 

E s E 

View data 

Split data 

View results 

View nodes 

Tree 

Figure 5.6: Apollo main screen 

Having chosen the dependent variable from those available in the data table, the user 

can commence the splitting of the data (binary splits) adopting either a manual or 

CART approach, or a combination of both from the list of independent variables 

(Figure 5.7). For example, splitting the whole dataset (node 1) into two subgroups 

(nodes 2 and 3) representing those less than 50 years of age and those aged 50 or over. 

Manual 
split 

Analysis - Dependent Vaiiabte; LOSCE 

Groups CategoncalVanabies 

METHADM 

SEX 
PRIMARYDIA 
HRG 
STATUS 
CATEGORY 
SPECIALTY 

Numer ica l Variables 

CESPECIALT 

INTĵ  

Manually Add Split A C l a s s i f i c a t i o n ^ Remove Spm 

List of 
independent 
variables 

CART 

Figure 5.7: Splitting the data to construct a tree 

112 



Chapter 5 Patient Classification Techniques 

5.9.2 CART analysis 

If the tree-based algorithm is selected, the user will need to provide the necessary 

information in order to construct a tree. The dependent variable has already been 

selected. Independent variables to use in the classification algorithm must be chosen 

from the list of those available (e.g. sex, age, specialty). These may be nominal 

(categorical) or scale (continuous) variables. Additional information required includes 

the desired number of final groups and the minimum number of patients in each group. 

Available independent variables 

CART Analysis - Dependent Variable: LOSCE 

Selected variables to be used in 
the CART algorithm 

List of available ¥J riabies 

PRIIdARYDIA 
TittlEiN 

CATEGORY 
CESPECiALT 
COUNTER 
INTMAN 

Choosen variables 

Nominal 
Scale 
Scale 
Scale 

Nominal 
Scale 

AGE 
HRG 
SEX 
SPECIALTY 
STATUS 

^ Select 

Scale 
Nominal 
Nominal 
Nominal 
Nominal 

De-Select 

Parameters 

Number of final groups 

h 
Max number of groups 

|iooo 

Minimum group size 

[so 

Significance Level (%) 

1 

X Start X Exit 

Select and de-select variables Start CART 
Additional 
Parameters 

Figure 5.8: CART parameters 

5.9.3 Viewing the results 

A number of statistical indicators are available for each node within the tree. These 

include group mean, variance and inter-quartile range (for a continuous dependent 

variable) or percentage split and deviance (for a categorical dependent variable), 

together with rapid access to arrival profiles (for month, day and hour) and distribution 

fitting of continuous variables. A summary of nodes form provides easy access to node 

results (Figure 5.9). 
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Distribution 
fitting 
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Figure 5.9: Summary of nodes form 

The quick summary and save button allows the user to rapidly view and save the key 

results for use within the developed hospital capacity model (Chapter 6). For the 

planning and management of hospital beds, LoS distributions and patient arrival 

profiles are of particular help (Figure 5.10). 
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Figure 5.10: Patient group arrival profile and fitted LoS distribution 
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5.10 Chapter Summary 

The research has explored the use of classification techniques for the creation of patient 

groupings. Necessary patient groupings may then be fed into developed simulation 

models and individual patients from each group passed through the particular 

healthcare system of concern. In order to capture the uncertainty and variability 

amongst the patient population, a number of classification techniques have been 

considered and evaluated for their relative performances and practical usefulness. 

Research has shown that there is not necessarily a single best classification tool but 

instead the best technique will depend on the features of the dataset to be analysed. 

The research has made a start in investigating what these features are with particular 

emphasis on healthcare data. 

A survey of healthcare staff has however revealed that symbolic, tree-based tools, such 

as CART, do have greater practical appeal than that of the other tested techniques. 

This is a measure of the extent to which the CART algorithm produces comprehensible 

results that are generally easier to interpret by medical staff than the results of other 

algorithms and on the time it took for hospital staff to understand the technique, 

prepare the data and actually perform the analysis to produce correct and meaningful 

results. 

A statistical package, Apollo, has been developed as part of the evolved generic 

framework for modelling healthcare resources. Apollo incorporates the CART tree-

based algorithm that assists in the production of clinically and statistically meaningful 

healthcare groupings. For example, these could be patient groupings based on LoS, 

operation times or survival rates. Derived groupings may be automatically saved and 

fed in to developed simulation models within the framework. 
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Chapter 6 - A Simulation Model for Hospital 
Resources 

6.1 Chapter Introduction 

This chapter outlines the development, structure and validation of a simulation model 

for hospital resources, PROMPT, that has been developed in conjunction with the 

Royal Berkshire and Battle Hospitals NHS Trust. The model has been designed within 

the evolved generic framework for modelling of healthcare resources (Chapter 4). 

6.2 PROMPT V 

6.2.1 Developing PROMPT 

During the initial phase of work with the Royal Berkshire and Battle Hospitals NHS 

Trust, it was decided that a working title of the model would be desirable. For this 

purpose the acronym PROMPT - Patient and Resource Operational Management 

Planning Tool was chosen. This helped give the work an identity and facilitated easy 

reference to the model. The operational modelling approach captured in PROMPT can 

help to evaluate the implications of various options for patient care. In particular, the 

model allows what if.. ? scenarios to be examined for: 

« Hospital beds (Core model) 

® Operating theatres (Add-on module) 

• Use of human resources, such as nurses, doctors and anaesthetists (Add-on 

Module) 
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PROMPT was developed within the evolved generic framework as detailed in section 

4.4. A high-level summary on constructing a PROMPT model is shown in Figure 6.1. 

Hospital 
Database 

Data Extraction 
{Apollo) 

Demand Profiles by Patient Group 

- r - i Sunday p., 

l / 
Monday June January 

Statistical Distributions by 
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LoS (days), Operation time (mins) 

Modelling 
{PROMPT) 

Beds 

Theatres Workforce Theatres Workforce 

Example Model Outputs 

Bed 
Needs 
Over 
Time 

A M J J A S O N D J F 

l l . . . a: 

Number of Beds 

Figure 6.1: Constructing a PROMPT model 

The statistical module, Apollo, links directly to the hospital database. The necessary 

statistical analysis is conducted within Apollo, including the creation of patient groups 

with demand profiles and distributions derived for each group. These groups are then 

directly fed into the PROMPT simulation model, and individual patients pass through 

the hospital system through time. Patient demand and LoS/operation time distributions 

are sampled from the appropriate patient group statistics. Bed needs together with 

optional workforce and theatre needs are assessed during each run of the simulation. 

Example outputs include daily numbers of beds in use, number of refusals over time, 

workforce rosters and theatre session utilisation. 
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Over-time, and with an increasing knowledge of the hospital processes and perceived 

model utilisation, a schematic diagram of patient-flows though a hospital system was 

developed. This is suitably generic, allowing for the model to be readily used by other 

hospitals. Figure 6.2 identifies the structure of the developed simulation model. This 

diagram was evolved together with hospital staff, and so reflects their requirements and 

re-enforces their knowledge of the model structure. It draws together the various 

elements of the PROMPT model. 
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Figure 6.2: Schematic workings of the capacity model 



Chapter 6 A Simulation Model for Hospital Resources 

PROMPT was developed in a Delphi environment using a three-phase simulation shell 

TOCHSIM (Hawkins et al., 1992), developed at the University of Southampton 

(Appendix G). The use of Delphi enables the model to be easily tailor-made for the 

hospital, whilst the resulting familiarity of a Windows environment aids ease of use. 

The TOCHSIM simulation shell can reflect the experiences of the hospital very 

rapidly. For example, one year of hospital time corresponds to a few seconds of 

TOCHSIM time. 

The model simulates the flow of patients through user-defined care-units, which may 

represent a ward, a specialty bed-pool or the hospital as a whole. Bed numbers for 

each care-unit are entered into the model. The bed numbers can be changed monthly 

and daily to represent the step-up and step-down of seasonal bed requirements and 

those wards which have some beds in use on a part-time basis. User-defined patient 

groups capture the hourly, daily and monthly arrival rates and reflect the observed (or 

other) demand patterns. For each hospital specialty, patient categorisation techniques 

were employed to capture the necessary variability in LoS and estimate the appropriate 

statistical distributions. A particularly useful classification method is the Classification 

and Regression Tree analysis (CART - see Chapter 5). Each specialty manager 

supplied the necessary information on admission rules and deferral times, whilst the 

bed-managers constructed patient priority listings (Appendix E). 

The developed model takes individual patients through time as they arrive and pass 

through the hospital. For an arrival at the hospital, the model will attempt to acquire a 

suitable bed. Each patient has a defined priority list of suitable hospital bed-pools that 

they may stay in. Acquiring a bed is achieved by assessing the current bed situation for 

each of the defined care-units in turn on the priority-list and admitting, if possible, the 

patient into an free bed. Patients are classified as outliers if they stay in beds from a 

care-unit other than the first appropriate choice (for example, a general medicine 

patient stays in a general surgical bed). If no bed can be found, then a patient is 

allowed to wait for a user-defined time for a bed to become available. After this time, 

if still unsuccessful, an emergency patient will be transferred (out of the hospital) 

whilst an elective patient will be deferred and told to come back after a user-defined 

number of days (or a random time up to a maximum time limit). The user may also 

specify that a given number of beds be only accessible to emergency patients. 
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Throughout the admission process, emergency patients are always given priority over 

elective patients. 

Once a patient has acquired a bed, the LoS is sampled from an appropriate statistical 

distribution (current choice is from a Weibull, lognormal, normal, gamma or negative-

exponential). The patient will be discharged on completion of their LoS and the bed 

will become available. 

6.2.3 Evaluating bed capacity options 

Hospital managers requested a number of key statistical indicators, tables and graphs. 

The results collected are broadly at two levels; those at the care-unit level, such beds in 

use over time, transfers and deferrals, and those at the patient level, such as LoS and 

patient waiting times. 

Bed utilisation is one of the most important measures of each specialty's workload. 

Bed occupancy, which is used in the model, calculates the proportion of time that a bed 

is occupied. 

Bed Occupancy = ""mber.f bed days used 
number of bed days available 

An important concept about bed utilisation that is often sadly forgotten or 

misunderstood is that of its relationship with the refusal rate. A refused admission 

occurs when no bed is available for an arriving patient. 

Refusal Rate = number of refused admissions 
total number of referrals (or admissions + refusals) 

As patient demand increases, both bed occupancy and refused admissions increase. It 

is important to understand how bed allocation and bed capacity planning effect both 

bed occupancy and refusals. Refused emergency admissions will typically be found a 
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bed in another hospital specialty and will become an outlier. Outliers put stress on 

other specialties, as they are in effect an unexpected emergency demand. Refused 

elective admissions result in patient deferrals and distress to the patient as well as 

having a consequence on elective waiting lists. Case studies later in this chapter will 

demonstrate the complex relationship between occupancy and refusals, and the 

implications on hospital resources. 

6.2.4 Operating theatre module 

Building on the foundation of the bed capacity model, as described above, an add-on 

operating theatre module was developed. This module helps the user to evaluate 

operating theatre capacities. It is necessary to refer back to the provision of beds when 

considering the planning and management of theatres, since without a bed in the first 

place, an in-patient cannot be sent to theatre. Two classes of patients now exist: 

procedure patients (who require an operation) and non-procedure patients (who do not 

require an operation). Non-procedure patients stay in the bed and are discharged on 

completion of their LoS. The flow of procedure patients is now considered in more 

detail: patients acquire a bed, queue for theatre, have an operation, return to the 

hospital bed and stay for a LoS before discharge. As with LoS, the patient operation 

time will vary between patients, and thus needs to be captured using a statistical 

distribution rather than an average time in the PROMPT model. Various theatre 

session and patient scheduling options may be examined. 

Numbers and durations of theatre sessions are defined in the model. These are likely to 

vary according to the day of the week. A number of theatre scheduling rules have been 

incorporated to meet expressed user requirements. These are first come first served 

(FCFS), longest operation times first (LTF), shortest operation times first (STF) and 

longest time first followed by shortest first after a user-defined cut-off time (LTSC, 

also known as top-down bottom-up scheduling). Furthermore, the user can examine 

the effects of scheduling day-case patients first in any session before elective in-patient 

operations. Each speciality manager supplied the necessary information on numbers 

and duration of theatre sessions together with current scheduling rules (Appendix E). 
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6.2.5 Evaluating theatre capacity options 

Hospital managers requested a number of key statistical indicators, tables and graphs 

from the theatre module. Examples include graphs of number of patients in theatre, 

operation time distributions and patient waiting times for theatre. 

Session utilisation is a key measure of the theatre's workload. Session utilisation, 

which is used in the model, calculates the proportion of time that the theatre is busy. 

total time theatre in use during session 
Session Utilisation = *100% 

total time theatre available during session 

Other key statistical indicators include the under and over-run time distributions. An 

over-run occurs when a patient's operation is not completed until after the official 

theatre session closing time. This will depend on theatre admission rules governing the 

latest time an operation may commence in light of the expected operation time and 

session end time. The model reflects these rules by incorporating a user-defined 

maximum over-run time permitted (as a percentage of the total session time) and by 

considering the patient's expected operation time as sampled from the appropriate 

statistical distribution. Under-runs (when a theatre closes early) can be avoided by 

careful scheduling of operations. Various theatre session and patient scheduling 

options may be considered and their impact on theatre utilisation, under-run and over-

run times examined. 

6.2.6 Workforce planning module 

Quantifying hospital workforce needs over time, such as the required number of nurses 

by grade, is a non-trivial exercise. Workforce needs are influenced by many different 

factors, such as patient case-mix and patient demand. Using the bed model as a basis 

for simulating patients passing through the hospital (arrival, LoS, discharge), an add-on 

workforce module for PROMPT enables the user to further evaluate workforce needs 

over time (down to monthly, daily and shift needs). During their LoS, patients might 

pass through different stages of care-needs. Initially, for example, a patient may be 
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classed "high dependency" and remain in this state for a day. Then they might move 

into an "Intermediate dependency" stage for the next 48 hours, before moving onto 

"low dependency" for the remainder of their stay. Care-needs will obviously differ 

between each dependency stage, as one would expect intense care for high dependency 

patients, with the level of care gradually becoming less intense during their stay (Figure 

6.3). 

24 hrs 48 hrs Remainder of LoS L o S 

r T 
High Intermediate Low 

Figure 6.3: Illustrative patient nursing dependency states 

Workforce requirements will depend on the following variables: 

® Number of dependency states a patient experiences. 

» How long a patient stays within each of these states. 

® Patient-to-Resource dependencies (or ratios) for each state (see below). 

The model allows any workforce resources to be defined (for example. Grade A nurse. 

Grade B nurse. Skilled Nurse, Untrained Nurse, Porter etc.). For each patient group in 

the model, necessary workforce needs are structured for the patient during their stay in 

hospital. The participating Trusts agreed that these needs should be provided in the 

form of patient-to-resource dependencies (or ratios). For example, a ratio of 2 for a 

grade A nurse indicates that a grade A nurse can care for 2 patients from this group 

who stay in hospital - or equivalently, one patient requires 0.5 grade A nurses. These 

dependencies are provided for each workforce resource. 

The user may create as many dependency states as necessary, together with the 

expected percentage of time that the patient will stay in that state (as a percentage of 

their expected total LoS). For each state, dependency ratios may then be entered 

against each resource. Furthermore, the ratios should be defined for each hospital shift 

- early, late and night. This reflects the varying care-needs across the day. During the 
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night, for example, whilst a patient sleeps, the necessary level of care may be less than 

when the patient is awake during the daytime. 

The workforce module calculates likely workforce needs (rosters) over time for each 

specialty bed-pool or hospital ward. The resulting needs are displayed by resource and 

further broken down by month, day of week and shift each day. Because the module is 

linked to the bed capacity model, and operating theatre module if so desired, the 

consequences of changes to other hospital capacities, such as the number of beds and 

duration of theatre sessions, will be reflected in the workforce rosters. This integrated 

and granular approach is essential to reflect real-life complex patient flows through a 

hospital and avoids many of the failings of existing approaches as discussed in the 

literature review (section 3.4) and furthermore meets the expressed needs of a 

sufficiently detailed and flexible hospital capacity model (section 4.3.1). 

6.2.7 Data requirements 

Access was given to the hospital's patient management system. This large database 

contained information on individual patients, including episode admission date, 

episode discharge date, LoS, operation time, specialty, admission method (emergency 

or elective) and management intent (day-case or inpatient). Apollo is used to create 

statistically and clinically meaningful patient groups and to obtain information about 

particular flows over time. Apollo can link with most databases that are used in 

hospitals and extract the necessary data for the statistical analysis. 

6.2.8 No vel features 

The PROMPT model has been designed with the needs of the hospital and review of 

existing literature in mind. The review (Chapter 3) highlighted the need for a 

sophisticated dynamic hospital resource model and PROMPT has been evolved to 

avoid a number of issues that have made previous models essentially redundant in a 

real-life setting. Some of the novel features of this work, which help provide its place 

in literature include: 
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« The stochastic nature recognises and incorporates the complexity of hospital 

dynamics. The model uses statistical distributions to help capture the large amount 

of variability, for example in length of stays and operation times. Arrival profiles 

help to mimic complex monthly, daily and hourly arrival patterns. 

» The flexible structure permits the model to be fine tuned to reflect local conditions, 

which can be used by a variety of hospitals. This avoids the development of 

hospital or ward specific models. For example, the concept of a Care Unit was 

derived alongside hospital managers to represent any configuration of hospital care, 

such as a specialty bed-pool, day-case unit or ward. Many different patient groups 

may be defined, enabling a variety of different hospital case-mixes to be captured. 

Virtually all hospital parameters may be changed to reflect current conditions and 

for ease of use in scenario modelling by healthcare managers. 

» An integrated approach helps to capture the wider, more global picture of 

healthcare provision. For example, PROMPT models the use of beds, theatres and 

human resources and is unique in examining all three major hospital resource 

components in a single simulation tool. Many other models suffer from an isolated 

approach in that they ignore the complex integrated system and instead draw 

conclusions at a localised level. Clearly this has the potential to provide misleading 

and unrealistic conclusions. 

• PROMPT has been designed for ease of use in mind. Practical models should be 

sufficiently accessible for end-users who are not experts in simulation, such as 

healthcare managers and clinicians. Ease of use has been achieved through 

development in a Windows environment (Delphi) and through the evolutionary 

development methodology (section 4.2), which created prototype models alongside 

end-users. 

« The use of Apollo for creating patient groups and automatically feeding them into 

the simulation model is novel. This aims to provide the user with an easy to use 

interface and to help in the creation of statistically and clinically meaningful 

groups. 
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® Detailed hospital resource models should aid managers with both planning and 

management issues. PROMPT has been developed with these needs in mind. For 

example, it may be used to examine the consequences of different daily theatre 

schedules (management decision) or the total bed needs for the forthcoming 

financial year (planning issue). 

Together, the above features help to demonstrate that Apollo and PROMPT have a 

unique place in healthcare modelling. 

6.3 Simulation Structure 

A patient-flow through the hospital is assumed to consist of a finite number of states. 

For example, the LoS in the hospital bed or the operation time in the theatre. Patients 

have to queue before making the transition between states. For example, queueing for 

a bed to become free or queueing for a theatre session. The simulation model follows 

individuals as they progress through the hospital system, from the first time they arrive 

in an attempt to obtain a bed until they leave the hospital having completed their stay. 

In order to simulate the passage through the hospital, information on dwelling times in 

the various states and transition probabilities are required. In other words a semi-

Markov structure has been chosen to model patient-flows (Appendix B). A number of 

distribution functions are available for use in the program to sample transition times: 

Lognormal, Weibull, Normal, Exponential and Gamma. The Weibull distribution is 

frequently used when data availability is limited (see section 6.4). 

PROMPT was developed in a Delphi environment using a three-phase simulation shell 

TOCHSIM (Appendix G). The three-phase approach consists of two different events; 

Bound (B) events and Conditional (C) events. The necessary events for the PROMPT 

structure are: 
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® Bound events 

>• Generate initial arrival times and cause next arrivals within each patient group. 

> Check, and if necessary adjust, bed numbers to reflect step-up and step-down of 

beds over time (daily and monthly event). 

> Open theatre sessions as necessary (daily event). 

> Cause post-operation LoS to commence when patient arrives back from theatre 

to ward. 

> Cause patient to leave hospital on completion of their LoS or cause re-admission 

arrival time for deferred elective patients. 

® Conditional events 

> Start patient stay (having already found an available and suitable hospital bed). 

> Start operation in theatre (having queued and been admitted in to a suitably 

available and open theatre session). 

Appendix G provides further information on the TOCHSIM shell with pseudo-code for 

the PROMPT model. 

An object-orientated programming (OOP) approach was adopted within the three-

phase structure. OOP is a natural evolution from earlier innovations to programming 

language design (for example see Hirata and Paul, 1996). It is more structured and 

more modular than previous approaches. Three main properties characterise an OOP 

language: 

# Encapsulation - combining a record with the procedures and functions that 

manipulate it to form a new data type, called an object. 

® Inheritance - defining an object and then using it to build a hierarchy of descendant 

objects, with each descendant inheriting access to all its ancestors' code and data. 

» Polymorphism - giving an action one name that is shared up and down an object 

hierarchy, with each object in the hierarchy implementing the action in a way 

appropriate to itself 
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TOCHSIM with Objects has benefited from the language extensions to give the full 

power of OOP: more structure and modularity, more abstraction and reusability built 

into the simulation shell. 

An object type is a structure consisting of a fixed number of components. Each 

component is either afield, which contains data or a particular type, or a method, which 

performs an operation on the object. Similar to a variable declaration, the declaration 

of a field specifies the field's data type and an identifier that names the field. Similar 

to a procedure or function declaration, the declaration of a method specifies a 

procedure, function, constructor, or destructor heading. 

An object type can inherit components from another object type. If T2 inherits from 

Tl , then T2 is a descendant of T l , and Tl is an ancestor of T2. 

Inheritance is transitive in nature. If T3 inherits from T2, and T2 inherits from Tl , then 

T3 also inherits from T l . The domain of an object type consists of itself and all its 

descendants. 

The inherited object is the generic simulation object used by the following objects in 

TOCHSIM: queues, resources, all statistic objects, the simulation timer, and the 

simulation model. 

6.4 Probability Distributions for LoS and Operating Times 

The necessary distributions for use within PROMPT, namely LoS and operation times, 

can be represented by a number of statistical distributions. Within the Apollo statistical 

add-on package, distributions can be fitted and parameters passed across for use in the 

simulation. Individual patient LoS and operation times may then be sampled from the 

appropriate distributions within the model. This automated process is particularly 

useful for end-users. An illustrative Apollo patient group fitted LoS distribution is 

shown in Figure 6.4. 
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Figure 6.4: Illustrative fitted LoS distribution (Apollo screen-shot) 

Complex hospital models must deal with circumstances when LoS and/or theatre data 

is absent or limited. When detailed data is not available, information through 

aggregated data or through expert opinion, such as a likely mean value and/or 

percentage points, may be the only source of input for the model. Rapid choice of 

distributions and the use of different distributions in a sensitivity analysis are needed in 

practical simulation modelling work. 

Typically a choice is made from a number of standard statistical deviates, such as 

Normal, Exponential, Weibull, Gamma or Lognormal. In the absence of data, Weibull 

variates are particularly useful. 

We discuss a method for estimating the parameters from the Weibull distribution 

function. This method has been used within PROMPT and allows the user to rapidly 

fit LoS and operation time distributions. Currently Normal, Lognormal, Weibull, 

Negative Exponential and Gamma have been implemented (Appendix F), although 

other variates, including discrete distribution, can be easily included if necessary. 
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6.4.1 Point estimation for the Weibull distribution 

Several methods of point estimation for Weibull parameters are given by Orman 

(1995). For a density/(x) the maximum likelihood function of a sample n {xj, ...,x„) is 

given by: 

i=l 

The maximum likelihood estimates of the parameters a , (3 can be obtained by solving: 

1 _ 

n /=i 

and 

, 1 „ 

/=! 

The Newton-Raphson method can be used to estimate the parameters. The maximum 

likelihood method is the preferred approach when data is available. In the absence of 

data, Weibull variates are particularly useful and point estimation is possible with a 

mean value and/or percentile points as described below. 

6.4.2 Point estimation for the Weibull distribution given mean and one 

percentage point 

With ease of use in mind, Orman (1995) gives an algorithm that calculates an estimate 

of the parameters of the Weibull distribution from a defined mean value and one 

percentage point. 

The user defines a mean value m and a percentage value for which F(x) = p. The user 

provides the value of p. 
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With q = 1 ~p,the starting values of the two parameters are 

In(-lng) 

]n(x/Gro) 

At the next iteration, 

and 

The /th iteration, i >0, gives 

/M J /, ln ( - ln9) 
a . = and /^ = -' r ( l + l//^._,) ln(%/Gr,_,) 

Care must be exercised for percentiles in the neighbourhood of 63% where the 

algorithm does not always converge. This feature is the result of the mathematical 

nature of the probability density function of the Weibull variate (Shahani et ah, 1994) 

since p = 0.63 = 1 - 1/e and leads to the condition: 

y^ln = 0 

which shows that a = /, V p. Thus this value o f p will not discriminate between 

different values of P and so the range around this value should be avoided when trying 

to solve for p. 

6.4.3 Point estimation for the Weibull distribution given two percentage points 

Dubey (1967) describes a method for estimating the parameters a and P of the Weibull 

distribution using two percentages from a sample set of data points. The information 

given corresponds to the equations: 

F(x/) 
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The parameters can be obtained by solving these two equations to get: 

ln[- ln(l - / > , ) ] - ln[- ln(l - P2)] 

ln(x,) - ln(%^) 

and 

where 

ar^exp 

W = 1 H-W-P,) 
In[- in(l - / ? , ) ] - In[- !n{l - )] 

6.4.4 Algorithm AS47 

A simplex optimising algorithm (Nelder, 1965 and O'Neil, 1971) has been selected for 

estimating the parameters of a chosen distribution. The parameters are estimated by 

minimising a helpful second degree function, the Chi-square value. The simplex 

optimising algorithm was chosen as it is computationally easy to implement and use of 

the Chi-squared value is asymptotically equivalent to the maximum likelihood function 

(Jones, 1997). 

The user may define a mean and/or one or more percentile values for Weibull, Gamma, 

Lognormal, Normal and Exponential. Other distributions may be added if necessary. 

The AS47 algorithm for solving the two dimensional problem in which a functionX^) 

is minimised with respect to two parameter values is described below. The simplex 

routine minimises the Chi-square value and converges to provide a solution. 

Algorithm AS47 is built into both the Apollo and PROMPT models to enable the user 

to fit the necessary statistical distributions. This may be an automated process within 

Apollo so that the chosen distribution and parameters are fed into PROMPT, or within 

the PROMPT model itself to fit a distribution with a mean and/or percentile values 

only. Either way, it permits the simulation model to reflect the inherent variability 
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amongst the population of patients who stay at the hospital and thus avoids the dangers 

of using deterministic average values only. 

Algorithm AS47 

STEP 1. Start with three initial points x/, xs where x, = (P/ (/), P2 (0) and Pi 

represents the parameter /. 

STEP 2. Calculate the function value at these points yi=j{x^). 

STEP 3. Find the reflection, xr, through the centroid xc, of the point with the 

maximum function value, say x/. 

STEP 4. If the reflection value, yR, is minimum then expand to xe- The minimum 

of)//; and};^ determines which point replaces Xm&t. 

STEP 5, If the reflection value, yR, is maximum then contract to xa or xg, 

depending on whether 3̂ 2 o r ^ j is lower, and replace xr. 

STEP 6, The iteration, steps 3 to 5, continues with the simplex distorting in shape 

according to the slope it encounters, until the variance of the values yt are 

less than a determined level. 

6.5 Capturing Patient Demand Profiles 

Alongside the necessary statistical distributions, additional information is required to 

allow PROMPT to reflect observed (or other) patient demand patterns. An automated 

process within the Apollo statistical module captures the hourly, daily and monthly 

arrival rates which are fed directly into the PROMPT simulation model. An 

illustrative Apollo patient group monthly demand profile is captured in Figure 6.5. 
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Arrival Profile: Node 1 
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Figure 6.5: Illustrative monthly patient demand (Apollo screen-shot) 

In the model observed (or other) arrival patterns are entered for each month, day and 

four-hour time block within each day. This is necessary to reflect in detail fluctuating 

demand over time. Expected annual total numbers of patients are provided for each 

group. Individual patient group arrival profile numbers need not sum to the 

corresponding annual total but instead represent a profile of relative demands. For 

example, if the total number of annual patients was six hundred and every month had a 

monthly profile value of one, then we would expect the same demand of fifty patients 

per month across the year. If January had a value of two and every other month a value 

of one, then we would now expect double the demand in January relative to the other 

months (92 patients in January and 46 every other month). This methodology has been 

adopted since it is likely that hospitals will use a number of previous years demand 

profiles but wish to change the total number of predicted patients for scenario 

modelling whilst preserving the observed demand structure. 

In general let rui be the demand profile entered for month i {i= 1,..., 12), dj for day j 

(j = 1,..,7) and hk for hour-block k{k= 1,..,6). Furthermore let n be the annual total 

number of patients for a particular patient group. 
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Inter-arrival times for arrivals from within each patient group are sampled from the 

Negative Exponential distribution. The expected number of arrivals, Xij,k for any given 

month i, day j and four hour-block k is given by: 

f \ / \ 

K 
7 6 

Z " . 
V j 

where jv/ indicates the number of days in month i (28, 29, 30 or 31). 

The probability of r arrivals within a given four-hour block may be calculated by using 

the Poisson distribution, such that: 

r! 
r = 0 , 1 , 2 

6.6 Model Validation and Verification 

Throughout the research work constant validation and verification was conducted in 

order to increase confidence in the model operations. Essentially verification ensures 

that you are solving the problem correctly and validation ensures that you are solving 

the correct problem. Validation was largely achieved through the use of the generic 

framework and the adopted evolutionary model development. This ensured that end-

users contributed to the model development at all stages and ensured that the 

simulation model reflected the original conceptual schema. 

For model verification, a range of techniques was used including statistical 

comparisons of simulated output against real data. The following summary lists the 

validation and verification techniques that have been adopted. These techniques are 

described in Sargent (1991). 
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Animation: The model's operational behaviour is displayed graphically as the model 

moves through time. An optional run-time graphical display shows the current 

simulation time, numbers of patients stayed, numbers of refusals and occupancy rate 

for each care-unit within the hospital. This is particularly useful to verify that the 

simulation behaviour (e.g. numbers of arrivals and beds in use each day) matches real-

life behaviour. Graphical displays, such as the one developed in PROMPT, are 

becoming increasingly popular amongst simulation end-users. Graphics provide more 

confidence as the user can see the processes on screen which prevents a "black-box" 

approach. Graphics however can considerably slow down run-time and so the user 

may turn off the graphical display at any time during the simulation run. Other 

graphics available on completion of the run include plots of patient arrivals over time. 

Such graphs also permit model verification. Figure 6.6 shows the graphical display 

during a simulation run of the PROMPT model. 

m 
Simulation Model Running 

COLLECTING RESULTS' 

Current Run: 

Total Runs: 

Day: 43 

Current Month: May 

Current Day: Monday 

I Turn Off Graphics 

Care Unit Information 

Occupancies: 

Medicine 

Surgery 

Ortiiopaedics 
7 0 % 

9 3 % 

X Abort Simulation Emulation j 

Stayed: 

156 

207 

208 

Refused: 

56 

33 

23 

Figure 6.6: Animation within PROMPT 

Comparison to other models: Various simulation results may be validated by 

comparison to other models. As an example simpler cases of the simulation model 

may be compared to known results of an analytical model. Validation of PROMPT has 

included the comparison of the developed simulation model against some queueing 

models. Further details may be found in section 6.7. 

Degenerate tests: The degeneracy of the model's behaviour is tested by an appropriate 

selection of values for the input and internal parameters. For example, running the 
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simulation with arrivals only on a Monday but an operating theatre session only on 

Thursday. Suitable checks are made to ensure that all patients are waiting until 

Thursday for their operation and then returning to ward for re-commencing their LoS. 

Extreme-condition tests: The model structure should be plausible for any extreme and 

unlikely combination of levels of factors in the system. As examples; providing no 

beds in the hospitals for a 100% refusal rate; no theatre sessions so that operations are 

not permitted and patients can wait all year in bed; no arrivals and so 0% care-unit 

occupancy. 

Historical data validation: In the presence of historical data, part of this is used to 

build the model and the remaining data used to determine if the model behaves as the 

system does. 

Internal validity: Several replications of a stochastic model are made to determine the 

amount of variability in the model. Inconsistency in the results should cause concern 

over the model's validity. Graphical plots are used in PROMPT to display standard 

deviation from the multiple simulation runs that can be used to gauge the run-to-run 

simulation variability. 

Traces: The behaviour of different types of specific entities in the model are traced 

through the model to determine if the model's logic is correct. Examples include 

tracing a patient through PROMPT to ensure that they follow the correct care-pathway 

and receive the correct resources (theatre and nursing) as necessary. 

Parameter variability - Sensitivity analysis: This validation technique consists of 

changing the values of the input and internal parameters of a model to determine the 

effect upon the model behaviour and output. For example: shortening LoS should 

reduce occupancy and refusals; examining the relationship between numbers of beds, 

occupancy and refusal rates; sensitivity of predicted demand on Trust's performance. 

Sensitivity analysis, and in particular the design of experiments, is a major topic of 

research. Currently there is a great need for more research in this area (Cheng and 

Holland, 1997, Cheng and Kleijnen, 1999 and Cheng and Lamb, 2000). 
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6.7 Comparison of Queueing Models and Developed 

Simulation 

As a necessary part of the model validation process, the developed simulation has been 

compared to analytical queueing models. As the complexity of the healthcare system 

increases, correspondingly analytical models become harder to formulate and solve. 

Thus only two queueing models have been built for illustrative validation purposes. A 

simulation model enables the programmer to incorporate far more complexity, 

variability and uncertainty within the stochastic framework. Analytical models fail to 

capture many of the necessary processes, but nevertheless permit validation for a 

number of simplistic scenarios, as detailed below. 

6.7.1 Queueing models 

A number of queueing models, adapted from work by Cohen (1956), Saaty (1961) and 

Erlang (1917), were considered. A description of each model and the relevant steady-

state solutions are provided. The corresponding simulation runs are shown alongside 

for validation. Example data values (numbers of patients and LoS) have been taken 

from the Royal Berkshire and Battle NHS Trust's database. 

Key to queueing models 

s : Number of beds (fixed) 

Xi : Arrival rate of patient type i 

Hi : Service rate (1/LoS) of patient type i 

p : Traffic intensity QJjj) 

LQi ; Average length of the fth patient queue (number of patients) 

WQi : Average waiting time on the /'th patient queue (days) 

Wi : Average total time spent in hospital by /'th patient type (days) 

: The steady-state, or equilibrium probability, of state J 

^38 



Chapter 6 A Simulation Mode/ for l-lospital Resources 

6.7.2 M / M / s / GD / queueing model 

Model description 

® All patient admissions to a single care-unit taken from a single queue, Qa-

® All patients have a mean LoS of 6.2 days. 

® Patients are referred at a rate of 1,100 per year. 

® LoS and inter-arrival times are assumed to have Negative-Exponential 

distributions. 

® There is an infinite population of patients. 

* There is no limit on the length of the arrival queue. 

® Arrivals are taken from the queue on a first come first served basis (FCFS). 

Analytical solution 

The model state transitions are shown in the transition diagram of Figure 6.7. 

1 

1̂  2̂ 1 S[l 

represents the state in which there are X patients in the system (care-unit) 

Figure 6.7: Transition diagram for M / M / s / GD / o o / o o queueing model 
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Ifj servers (beds) are occupied, service completions occur at a rate // + / / + // + ... = y// 

I J 

Thus: 

/iy = 

= V// 

"Y" 
J 

(y = o,...,oo) 

(y = 0,..., 

0 = J + l,...,oo) 

Substituting these expressions into the following basic queueing theory formulae. 

TTj = tTqCj where c. 7-1 

gives: 

P = A 
j'// 

1 

7t, = a-, = ( ; = ^ + l,...,co) 

f (yT > 
^!(1 - /?) 1 - / 7 

// SJU — A JJ. 

MO 
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Illustrative queueing model results 

Table 6.1: Illustrative results from a M / M / s / G D / c o / c o queueing model 

s P P(jr>j) 

20 &94 &69 10.09 3J5 9J6 

21 0.89 &51 4^7 138 7J9 

22 &85 037 2.09 &69 &90 

23 &81 026 1.13 037 &58 

24 &78 0J8 &63 &21 &42 

25 0J5 0^2 036 0 1 2 637 

Figure 6.8 shows the complex relationship between beds and a number of hospital 

system indicators. 

• -LQa 

Figure 6.8: Relationship between number of beds, queue waiting time, queue length, 

and time in hospital using M / M / s / GD/oo/oo model 

MY 
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Simulation model 

The developed simulation model was run under the same assumptions as for the 

queueing model. Figure 6.9 shows the corresponding simulation activity flow diagram. 

Patient 

/ a m v M 

Patient 
Patient 

Figure 6,9: Activity flow diagram for M / M / s / GD/oo/oo simulation model 

Model comparisons 

The simulation was run for one-year with a five-year warm-up and for a total of fifty 

runs. 

Table 6.2: Comparison of models fox aM / M / s / GD / o o / o o queue 

Model 

Queueing 25 &35 0J2 637 

Simulation 25 036 OJl 636 

Although the assumptions are very limiting, this model permits a first approximation to 

real-life and is useful for validating the simulation. It becomes possible, and with 

increased confidence, to progress on to more complex and realistic queueing models 

for validation purposes. 
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6.7.3 Mi/M/s/NPRP/«> /oo queueing model 

Model description 

® All patient admissions to a single care-unit taken from two queues, Qe for 

emergency patients and Qp for planned (elective) patients. 

® All patients have a mean LoS of 6.2 days. 

® Emergency patients are referred at a rate of 850 per year. 

® Planned patients are referred at a rate of 250 per year. 

® LoS and inter-arrival times are assumed to have Negative-Exponential 

distributions. 

® There is an infinite population of patients. 

* There is no limit on the length of the arrival queue. 

® Emergency patients always have priority over planned patients when both queues 

are not empty; arrivals are then taken from the queue with priority on a FCFS basis. 

Analytical solution 

Let (x) be the state in which x beds (0 < x < 5) are occupied, / ( x ) be the probability 

of state (x) and h be the average LoS. Cohen (1956) can be adapted for this model to 

produce the following helpful functions: 

- 4 - ^ ^ ( /I + ^ 

where 

b" 
N{a,b) = and E{a^b) 

,=0 

Y43 
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LQ,~-

Model results 

Table 6.3: Illustrative results from 2iMi/M/s/NPRP/oo/oo queueing model 

5 P POr>j) Z-gp frg. fr. 

20 0.94 0.69 L81 &28 0.78 12J0 6.99 1831 

21 0.89 0.51 104 &48 4.45 6.69 10.66 

22 &85 037 OJO L38 030 2.02 6.51 &23 

23 &81 0.26 &44 0.69 OJ^ 1.01 &40 722 

24 &78 0J8 &27 036 0J2 &52 633 &73 

25 &75 0J2 0J6 0.19 0.07 &28 &28 &49 

Simulation model 

The developed simulation model was run under the same assumptions for the queueing 

model. Figure 6.10 shows the corresponding simulation activity flow diagram. 

Planned 
patient 

Patient 
s#ys W Patient 

queues amves 

Outside 
odd 

Patient 
^ queues 

Emergency 
padent 
arrives 

Patient 
S l & Y S 

Figure 6.10: Activity flow diagram for M, /M/s /NPRP / co / co simulation model 
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Model comparisons 

The simulation was run for one-year with a five-year warm-up and for fifty runs. 

Table 6.4: Comparison of models iox a Mi /M/ s /NPRP / (X) / co queue 

Model 5 frg . fP, Wp 

Queueing 25 &16 0U9 0.07 &28 &28 &49 

Simulation 25 &16 a2o 0.08 &23 6.29 6.44 

As part of the model validation process, the developed simulation has been compared 

to two analytical queueing models. Consecutive runs of the PROMPT model have 

demonstrated excellent reproductively of the analytical solutions and has imparted the 

necessary confidence for model use. Slight discrepancies, particularly with planned 

patient queues, arise because the PROMPT model permits an unconstrained length on 

this queue. Further validation against a number of more complex queueing models 

would be desirable. Analytical models however become harder to formulate and solve 

when moving beyond the M, / M / s / NPRP / co / oo queueing model presented. The 

validation process has additionally granted an insight into necessary warm-up times 

and numbers of simulation runs required for PROMPT to reach a steady state. To 

avoid a significant warm-up bias, it was observed that a warm-up of at least three years 

was necessary, although to be sure it is proposed that five years should be used. 

6.8 Designing a User-friendly Simulation 

The adopted evolutionary model development approach (section 4.2) involved potential 

end-users from the outset of model development. Many of the users are likely to have 

limited experience or practice in using computer simulation models. This adopted 

process however enabled hospital personnel to play a major role in the "look and feel" 

of the final model. Delphi software enabled the simulation to be readily tailor-made 

for the hospitals within a familiar Windows environment. PROMPT has also been 

designed to link to spreadsheets and other Windows programs so that model outputs 
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can be copied into other software. This resuhs in a system for solving a wide range of 

healthcare problems. 

Some illustrative PROMPT screen-shots are shown within subsequent sections of this 

chapter. These are divided into distinct model elements: PROMPT menu, the main 

screen and file management; how to create care units, patient groups, human resources 

and operating theatres; simulation parameters and outputs. 

6.8.1 PROMPT menu 

The menu screen forms the central control of the program, through which various 

options may be selected. Through this menu (Figure 6.11), the user may access (by 

clicking on the icons) either the Apollo statistical package or various PROMPT 

modules, namely; beds, beds and human resources, beds and operating theatres, or 

beds, human resources and operating theatres. These options may be activated within 

the model itself at a later time. 

Bed module (core model) Theatre and/or Resource modules (add-ons) 

A 
@ PiompI Main Menu 

a Program for Evaluotim HospH-al i opacHie 

Please choose from 1he fo/owina modules by cliclUk me picture 

Beds Module Stds wi th Resource Mod i l e Beds w i t h Theotre Module 

Apollo - Dttl-o Analysis 

Beds wi th Theatre 

and Resounx Modules 

EMt M a n M e n u 
I n s t i t u t e o f ModeNng fo r HeWthcare, University o f S c x i t t w m p t o n , 2 0 0 0 . 

Apollo statistical package 

Figure 6.11: PROMPT menu screen 
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6.8.2 The main screen 

Having selected the desired PROMPT module, the user will be presented with the main 

screen (Figure 6.12), which forms the central control in building a model of the 

healthcare system. The familiar Windows environment allows for easy selection of 

options and facilitates the construction of the necessary care-units and patient groups 

before running the simulation. 

Link to Apollo Simulation parameters 
Main menu 

I 
8 Prompt 

Speed bar (icons) 

HEIE3 
i[Gfoup$ CbwkaKn SimuSfcn Windcw Help Hospital Description 

D B B 5% Care Unit 0 Hospital Summ^v A Resources Patients Theatre 

r-iî iTiltf.ii-1 fVl 

Create/edit 
care-units 

Create/edit 
patient groups 

Create/edit 
resources 
(if module activated) 

Create/edit 
theatre sessions 
(if module activated) 

Figure 6.12: PROMPT main screen 

6.8.3 File management 

There are three main types of file that can be loaded and saved in PROMPT. 

• Patient groups (*.pat) - Information on individual patient groups. The user can 

save a patient group in Apollo and directly load it into PROMPT. All patient group 

files have the extension .pat 

• Care units (*.loc) - Information about each care unit (level of care) including bed 

numbers, resources and operating rules. All level of care files have the extension 

.loc 

• Prompt files (*.prm) - Load and save all information (patient groups, care units, 

theatres and resources). This should be used once all parameters have been entered 

into the model. PROMPT files have the extension .prm 
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6.8.4 Care units 

A care unit is defined to be any appropriate unit within the hospital where patients 

receive care. Typically this will be a speciality bed pool (e.g. General Medicine, ENT, 

Oncology) but may be an individual ward or the hospital as a whole (as one large care 

unit). The way in which a care unit is set-up by the user will depend on the nature of 

the study. For example, if we wish to plan bed numbers at the speciality level (e.g. 80 

General Surgery beds, 50 Paediatric beds) then speciality bed-pool care-units should be 

defined. 

One or more care units can be created depending on whether the user is interested in 

examining in detail one care-unit or the dynamics between care-units. This is achieved 

via the various patient groups in the model and their associated care unit priority list. 

Different patients in hospital require different care units. As an example, for a cardiac 

patient only a cardiac care unit bed may be appropriate, whereas for a general medicine 

patient, a general surgical bed may suffice on an occasion where no general medicine 

beds are available. Providing each care unit has been defined, any number of priority 

lists may be used. Use of beds, occupancy rates and outlier relationships can be 

studied (an outlier being a patient who couldn't be given a bed in their first choice care 

unit but is found a bed in another suitable care unit from their priority list). 

The following variables are defined for each care unit: 

• Bed numbers: user-defined bed numbers by month of year and day of week. 

» Operating rules: 

> Permitted waiting times: how long a patient may wait for until a bed becomes 

free. 

> Operating rules for elective patients: deferral time and number of deferrals 

allowed before patient is given emergency status 

> Emergency-only beds: the number of reserved beds for emergency patients only. 

N 8 
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Care-unit 
name 

Step-up and 
down beds 
(monthly 
and daily) 

Edit Details of Care Unit; General Medicine 

Bed Numbers j Operating R u l e s ^ 

Care Unit Name; 

Select Month: 

General Medicine 

Select Weekly Profile: 

Number of Beds Mon - Fri: 

Number of Beds Sat and Sun: 120 

m\ 

All Year Weekend Change 

Every Dav of Week 

Daily Change 

Q f Corfirm Changes 

• OK X Cancel ? Help 

Care unit 
operating rules 

Bed 
numbers 

Figure 6.13: Care unit parameters 

6.8.5 Patient groups 

Fundamentally, there are two types of patient in the model: 

• With procedure patients - those who require surgery. 

• Without procedure patients - those who don't require surgery. 

If the theatre module is turned off, then the user will only see details on without 

procedure patients. Furthermore, for each of these patient types, patients are either 

emergency or elective. An emergency patient always has priority in the model over 

elective patients (for example, if one bed is available and both an elective and 

emergency patient are waiting, then the bed would be given to the emergency patient). 
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Emergency 

Dermatology 
Elderly Care 
Elderly Care Rehab 
General Medicine 
Neurology 
Rehabilitation 
Rheumatology 

Patient Groups 

Elective 

Cardiology 
Elderly Care 
General Medicine 
Gen Med Daycases 
Neurology 
Rehabilitation 
Rheumatology 

D New &Load 

@Edit H Save 

^ Delete ?Help 

• fione 

Figure 6.14: Illustrative list of patient groups 

A patient group is described by; 

• Patient group general: the group name, type and a text description. 

• Length of stay (LoS): the LoS distribution governs the probability of the length of 

time a patient is likely to remain in the hospital bed. 

• Operation time (with procedure patients only): the operation time distribution 

governs the probability of the time a patient is likely to spend in theatre. 

• Arrival rate profiles: the arrival rate profiles describe how the patients arrive. The 

group's arrival pattern will depend on the month of the year, day of the week and 

potentially hour of the day. The yearly average arrival rate governs the number of 

patients that will be referred to the hospital for the time period being studied 

(typically one financial year). 

• Deferral rules (electivepatient types only): elective patients also have defined 

deferral rules (information used for when it becomes necessary to defer an elective 

patient), which may be at the patient level or care unit level. The rules incorporate 

deferral time (how long into the future before the patient should try again to obtain 

a bed) and deferrals until emergency (number of times a patient may be deferred 

before receiving emergency status with priority). 
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• Care details: each patient group is given a care unit priority hst. When a patient is 

admitted, they will attempt to acquire a bed in the care unit(s) listed. One or more 

of the defined care units may be placed onto the priority list in the order of 

preference. In the case where no bed can be found from any of the listed care units, 

elective patients will be deferred and emergency patients transferred. 

• Resource needs: if the resource module is turned on, the user will have access to 

this page. Further information may be found in section 6.8.6. 

Set up Medica l p a t i e n t s 

Patient Group General J Arrival Profiles Length Of S t a 7 

Care Deta i ls ^ 

Set up Medical patients 

Care Details 

Patient Group General % jArrfyal P f o ^ j 3 ^ Length Of Stay 

Priority-
lists 

C a r * P r i o r i ^ L i s t 
Set up Hadiotherapy 

Pr io r i t y L i s t f o r P a t i e n t s ' [ 

(admissioninto care unit- priori 

Care Details Admission Rules 

Patient Group General { Arrival Profiles Lettgtb Of SWy 

L a n g t h o f S t a y ( D a y * ) G e n e r a l M e d i c i n e 

G e n e r a l S u r g e r y 

O r t h o p a e d i c s 

: g 
r xwbum 
C Mormal 

f| Loonomiaj 
r Btponenlial 

C Gamma 

0.755800 
StDgy |1 323900 S J FitDisWbution 

Cance l ? Help y OK 
* Change M i n i m u m L e n g t h O f S t a y 

M a x i m u m L e n g t h O f S t a y 175 no 

% Cancel 
Arrival 
information 

LoS 
information 

Figure 6.15: Patient group parameters 

6.8.6 Human resources 

For each patient group, the user may define the necessary resource needs for the patient 

during their stay in hospital. These needs are provided in the form of patient-to-

resource ratios (or dependencies). These dependencies may be provided for each 

defined resource. Dependencies may also be defined for different stages during the 

patient's stay. 
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The user may create as many dependency states as necessary, together with the 

expected percentage of time that the patient will stay in that state (as a percentage of 

their expected total LoS). For each state, dependency ratios may then be entered 

against each resource. Furthermore, the ratios should be defined for each nurse shift 

shown - early, late and night. This reflects the varying care-needs across the day. 

During the night, for example, whilst a patient sleeps, the necessary level of care may 

be less than when the patient is awake during the daytime 

Patient 
dependency states 

Human resources 

u 
[ Pdknt Group General { AnWProMes ] f Length Of Gby 1 

AcMalonRules 

Patient Dependency (%) 

Intermediate 
Low 

Resource Needs 

rvAdi'i 

Enter dependency s t ^ s and percentage 

of expected total LoS patient remains in sta' 

Enter Resource-to-Patient Dependency Ratios (e.g. 4 = one resource fer four patients) 

I L a t e (Ea r ly i N i g h t 

y OK % Cancel 

Add, edit and delete 
patient dependency 
states 

Resource-to-
patient ratios 
(by shift) 

Figure 6.16: Workforce parameters 

6.8.7 Operating theatres 

When a with procedure patient arrives at the hospital and acquires a bed, the patient 

will then queue for theatre. When the theatre becomes free, the patient will be operated 

on. This process depends on a number of variables: 

• Theatre times: the user must enter a start time and duration of each theatre session. 

More than one session may run in parallel. The number of theatre sessions is likely 

to depend on day of the week and possibly month of the year. As with defining bed 
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numbers, the session times for the theatre are entered via month and weekly profile 

drop-down-boxes. 

• Session operating rules: the user should define the maximum time that a session 

may overrun. This should be as a percentage of the total session time. 

• Session scheduling rules: the user must chose from a number of session 

scheduling techniques. 

The user may also define any number of appropriate theatre resources. For each 

resource, a resource description and quantity is defined. Each time a session opens 

these resources will be used. For example, an Anaesthetist with quantity one will result 

in one Anaesthetist being used for every session. Summary statistics of resource use 

over time and other key measures will be generated. 

OperaHng Theat ie 

Session Details The%tr# R u l t s )[ Resources 

-Session Operating Ruler-^ =— 

Maximum % time session is allowed to overrun: |lO | ^ 

(as a % of total session time available) 

Sess ion Schedul ing R u l e s -

Scheduling rule for each theatre session: 

C First Come First Seived(FCF^ 

<• Longest Time F[ret(LTF) 

C Shortest Time First ®TF) 

C Longest Then Shortest Cut-Of (LTSC 

O p e r a t i n g T h e a l i e 

jStstlon D«tall»j Thealre Rules \ Resources 

Theatre Name/Group; [Surgical T h e a l ^ 

Select Month: 

All Year 

Select Weekly Profile: 

2 I Daily Change 3 

pDay-case S c h e d u l i n g -

I F l 8 c A # d u l e d « w m e e s m n * l n e s M S 3 

<2^ Summary • OK 

Scheduling rales 

Please define ses»on start and session duration below: 

use 24hr clock e.g. 0930,1445 
durafion time in minutes only 

Start Time j Duration (mins) | 

0830 500 

•830 450 

1300 1120 W 1 

y OK 

l> Add X Car :el 

•€• Remove 

Defme daily sessions 

X Cancel Session start times 
and durations 

Figure 6.17: Operating theatre parameters 
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6.8.8 Simulation parameters 

These screens allow the user to edit the simulation parameters and to run the model. 

The model has been designed to simulate one financial year (1̂ * April to 31^ March). 

The user has the possibility to change the following variables: 

« Warm up time: the time (in years) that the model will run without collecting data. 

® Number of runs: each run comprises of the warm up time plus one year where data 

is collected. 

® First day of financial year: given an initial starting day (first day of financial year), 

the model calculates how many of each day there are in each month. For example, 

if April 1®' is a Monday, then given April has 30 days, there will be 5 Mondays and 

Tuesdays in April and only 4 Wednesdays, Thursdays, Fridays, Saturdays and 

Sundays (the model will similarly calculate the number of each day for each month 

of the year). 

• Cap patient LoS (check-box): for each defined patient group, there is a minimum 

and maximum length of stay (LoS). These values are used in the random sample of 

LoS for each patient from the given distribution. Thus the model will only sample 

LoS values that fall within this minimum and maximum interval. A further use of 

the model is to cap LoS. When we cap LoS, we effectively say that any LoS above 

the defined maximum will be set to the maximum LoS. This is useful, for example, 

in studies to evaluate the distribution of acute and post-acute bed needs whereby 

patients are transferred out of the ward after a certain cut-off LoS. 

o Module options: there are two modules available - Theatres and Resources. The 

user may turn on/off these modules. The model will only give the user access to 

the relevant parts of the model depending on which options are currently activated. 

« Graphics: the PROMPT model may be run with or without a graphical display. 

The graphics show the occupancy rates, and numbers of patients who stayed and 

who were refused in each care unit. This is particularly useful in validating the 

model, but is much slower than running the model with the graphics turned off 

154 



Chapter 6 A Simulation Model for IHospital Resources 

(default). At any stage during the running of the model, with the graphics on, the 

user may turn off the graphical display. The user, through this option, can enable 

or disable the graphical display. 

Once the required simulation parameters have been set, the simulation may be run. 

m Simulation Parameters 

Warm up time (years) 

Number of runs 

First day of financial year 

20 

a 
r Cap patient Length of Stay (to max defined) 

• o k X Cancel ? Help 

Figure 6.18: Simulation parameters 

6.8.9 Simulation outputs 

A number of statistics and graphs are available on completion of the simulation run(s). 

These are broadly at the patient level and care unit level, and include: 

Graphs 

• Beds in use over time. 

• Patient frequency. 

• Emergency transfers and elective deferrals over time. 

• Deferral frequency. 

• Number of patients moved over time (outliers). 

• Patient LoS distributions. 

• Number of operations over time. 

• Patient waiting times for theatre. 
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Statistics 

• Bed-days used. 

• Occupancy rate, transfers, deferrals and outliers. 

• Monthly occupancy and refusal rates. 

• Workforce needs over time. 

• Patient waiting times. 

• Observed LoS. 

a PROMPl C \HtALTH-2\CAPAD-1\PROMPT\PC\lCU2.PnM IMonftily Summaiy) 
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Figure 6.19: Illustrative model outputs 

6.9 Chapter Summary 

An operational model for hospital resources, PROMPT {Patient and Resource 

Operational Management Planning Tool), has been developed within the evolved 

generic framework for modelling of healthcare resources. PROMPT was developed in 

a Delphi environment using a three-phase simulation shell TOCHSIM. Over-time, and 

with an increasing knowledge of the hospital processes and perceived model utilisation, 

a schematic diagram of patient-flows though a hospital system was developed and 

incorporated into the model. This is suitably generic, allowing for the model to be 
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readily used by other hospitals. This has been witnessed by the adoption of the 

framework by Portsmouth Hospitals NHS Trust who recognised that the structure 

applied to them. Other Trusts have since approached the author expressing an interest. 

The developed simulation takes individual patients through time as they arrive and pass 

through the hospital, whilst capturing and monitoring the necessary resource needs, 

such as operating theatres and nursing needs. 

Throughout the research work constant validation and verification was conducted in 

order to increase confidence in the model operations. Verification was largely 

achieved through the use of the generic framework and the adopted evolutionary model 

development. This ensured that end-users contributed to the model development at all 

stages and ensured that the simulation model reflected the original conceptual schema. 

Validation techniques include the comparison of the simulation to analytical queueing 

models. 

Many of the potential end-users are likely to have limited experience or practice in 

using computer simulation models. Delphi software enabled the simulation to be 

readily tailor-made for the hospitals within a familiar Windows environment for ease of 

use. The resulting practical simulation model incorporates the necessary complexity, 

uncertainty and variability, for solving a wide range of hospital planning and 

management issues. Chapter 7 will demonstrate PROMPT in use at the participating 

NHS Trusts. 
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Chapter 7 - Hospital Case Studies 

7.1 Chapter Introduction 

Previous chapters have discussed the development, structure and validation of an 

operational model, PROMPT, for the modelling of hospital resources. This chapter 

demonstrates model applications through case studies undertaken during the time spent 

with the participating NHS Trusts. 

Expressed user needs and requirements helped to mould the model structure throughout 

its development. In particular, PROMPT has been designed to be used: 

® as a tool for evaluating a.d-hoc studies, such as the creation of a new care unit, 

hospital consolidation plans or changes to patient-flows through the hospital 

system. 

® as a management and planning tool that can be used in long-term planning and 

during the annual business planning cycle. 

During the time spent with both the Royal Berkshire and Battle Hospitals NHS Trust 

and Portsmouth Hospitals NHS Trust, the model played a fundamental role in a 

number of hospital studies to evaluate hospital process re-design options. It was also 

used in the annual business planning cycle with specialty managers to assess the likely 

scenarios for the forthcoming financial year, and as a tool for agreeing customer 

service levels with GP Fundholders, local Health Authorities, and in the case of 

Portsmouth, for the outline business case of the PFI project. 

The primary purpose of the studies is to assess the general methodology in the context 

of the genuine concerns of healthcare managers. The experience of using the 

operational models and the evaluation of their effectiveness in a practical setting is 

therefore the primary objective in the research. Only a few case studies out of the 
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many undertaken are presented in this chapter. It is hoped however that the selected 

studies will allow the reader to appreciate the spectrum of possible model uses. 

7.2 Case Study One - Modelling the Provision of Adult 

Medicine Beds 

One of the major specialties within the Royal Berkshire and Battles Hospitals NHS 

Trust, and indeed within any Trust, is Adult Medicine. This specialty has witnessed 

the largest growth in emergency demand over recent years and plays a pivotal role in 

the rest of the hospital system. Table 7.1 summarises the various patient groups who 

use the medical beds together with their status (emergency, elective, day-case or all in-

patients), mean length of stay, length of stay inter-quartile range and observed demand 

(referrals in finished consultant episodes) for the 1996/97 financial year. 

Table 7.1: Adult Medicine patient groups 

Patient Group Status Mean LoS Inter-quartile Range Referrals 
(days) (days) 

Cardiology Emergency 3.2 1 . 0 - 4 . 0 1^03 

Elective 2.7 1 . 0 - 3 . 0 196 

Dermatology In-patients 15.7 5 . 8 - 1 9 . 8 27 

Elderly Care Emergency 1CL9 4 . 0 - 1 3 . 0 2,062 

Elective 18.1 3 . 8 - 2 0 . 0 17 

Elderly Rehab In-patients 17.3 7 . 0 - 21.0 L430 

Gastroenterology Emergency 1.5 1 . 0 - 1 . 8 500 

Elective 2.3 1 . 0 - 2 . 0 205 

General Medicine Emergency 5.3 1 . 0 - 6 . 0 6,890 

Elective 2.9 1 .0 -2 .0 L098 

Day-case 0.7 0.5 - 0.8 194 

Neurology Emergency 9.9 2 . 8 - 1 2 . 3 68 

Elective 4.7 2 . 0 - 5 . 0 33 

Rehabilitation Emergency 5 7 0 2 ^ 8 - 8 ^ 5 74 

Elective 5 ^ 0 1 4 . 8 - 6 9 . 3 35 

Rheumatology Emergency 9.6 1 . 0 - 1 3 . 3 248 

Elective 1L2 6 . 0 - 1 4 . 0 205 

Thoracic Medicine Emergency 5.0 1 .0 -7 .0 154 

Elective 1.7 1 .0 -2 .0 48 

Totals - 7.1 1 .0 -8 .0 15,087 
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Table 7.1 illustrates the large variation in length of stay within and between patient 

groups. Traditional capacity planning methodology would have involved the overall 

mean LoS for emergencies and electives, equating to 7.5 and 4.3 days respectively. 

This fails to capture the inherent variability in LoS, and as this case study shall show, 

fails to estimate the true bed requirements. It is therefore necessary to obtain LoS 

distributions for each of the patient groups above. Furthermore, hourly, daily and 

monthly referral profiles are obtained for each patient grouping and used within the 

model, thus incorporating the necessary daily and seasonal variations. Using a constant 

daily arrival rate that is independent of time greatly increases the likelihood of 

producing misleading bed requirements. 

The PROMPT model was run with observed referrals for one financial year for the 

following scenarios; 

1. Using the developed model that captures demand over time and uses LoS 

represented by appropriate statistical distributions. 

2. With demand over time but using only average LoS for each of the patient groups 

shown in Table 7.1. 

3. With demand over time but using only an average LoS for emergency and elective 

patient groups (7.5 and 4.3 days respectively). 

4. Assuming constant arrival pattern (no seasonal effect) and with average LoS for 

emergency and elective patient groups. 

Clinical managers at the hospital typically employ method 4 to estimate bed 

requirements. Figure 7.1 shows how each of these bed-planning options compare 

against the observed admissions for 1996/97. Given that bed occupancy varies within 

each month, only the monthly mean occupied bed number is shown. Table 7.2 shows 

how each method compares with the prediction of overall bed occupancy and refused 

admission rate. 

Figure 7.1 and Table 7.2 illustrate how the use of average LoS results in misleading 

forecasts of bed requirements. The developed simulation model performs well against 

the observed 1996/97 occupancy and refusal rates. Up to 5,600 bed days are 

underestimated using scenario 3. Occupancy and refusal rates for average LoS 
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scenarios are consistently lower than those observed. For scenario 4, the summary 

statistics given in Table 7.2 do not capture the large mismatch between planned beds 

and bed needs. 

Table 7.2: Comparison of bed planning performance measures 

Method Occupancy (%) Bed-days used Refusal Rate (%) 

Observed 93 j 106,500 2.6 

1 93.6 106,600 2.7 

2 8&2 101,600 1.5 

3 88.6 100,900 1.4 

4 9L3 104,000 1.1 

The seasonal bed requirements are readily appreciated from Figure 7.1. Standard 

capacity planning techniques, where monthly and daily variation are not incorporated, 

would produce deceptive results. This is seen in scenario 4 where demand is assumed 

to be constant over time. Such a prediction would greatly under and over estimate 

actual requirements during different periods of the year. Given the stochastic nature of 

the model, it is possible to determine confidence intervals around these predictions. To 

illustrate this, error bars (95%) are shown for model prediction (method 1). 
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Figure 7.1: Observed and predicted Adult Medicine bed needs 
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Table 7,3: Comparison of different Adult Medicine bed configurations 

Bed Configuration Occupancy (%) Refusal Rate (%) 

Current (310 beds all year) 93^ 2.7 

300 beds all year 949 4.7 

320 beds all year 9L4 1.6 

310 (current) with extra 20 beds Dec - Feb 910 1.9 

320 beds Dec - May; 290 beds Jun - Nov 93J 3.2 

330 beds Jan - Feb; 290 Jun - Oct 

310 Nov, Dec, Mar - May; 

939 3.3 

The developed bed-planning tool may also be used to examine the relationships 

between bed numbers, occupancy and refusal rates. Figure 7.2 and Table 7.3 illustrate 

how this relationship is complex and non-linear. Capacity planning options need to be 

explored in light of these sorts of calculations. 
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Figure 7.2: Beds, occupancy and refusals for Adult Medicine 
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7.3 Case Study Two - Creating a New Clinical Grouping 

One great advantage of the flexible nature of the model is that the user is able to 

investigate the likely consequences of changes in capacities and hospital practices. 

This may be through changing current configuration of existing wards or through the 

creation of new clinical groupings or units. For this latter purpose, this case study 

outlines the pivotal role that the model played in helping managers at the Royal 

Berkshire hospital to investigate the care-needs of a proposed new clinical unit, 

respiratory medicine, and its likely effect on the remainder of the hospital system. 

Managers and clinicians needed to fully understand the consequences before 

implementation. They were particularly interested in the following: 

• The bed needs of the new respiratory unit. 

® Whether to ring-fence these beds or to share with other specialties, such as general 

medicine. 

® The effect of removing respiratory patients from adult medicine and other hospital 

specialties and the corresponding potential bed-day savings, if any, from the 

creation of this unit. 

» Bed-day savings and reduced bed needs as a result of likely reductions in LoS of 

respiratory patients. 

Using the developed statistical module, it was possible to rapidly access and analyse 

information on respiratory patients, based on clinical coding, from the large hospital 

database. Respiratory patient groupings were created and demand profiles and LoS 

distributions were obtained. These patient groupings were then passed through a 

respiratory unit in the capacity model and the likely bed needs were evaluated (Figure 

7.3). Furthermore, the adult medicine and respiratory bed-pools were considered 

together in the model in order to examine the consequences of removing the respiratory 

patients from the adult medicine bed-pool. The bed needs shown in Figure 7.3 show a 

marked seasonal demand. This graph indicates that beds could be stepped up and 

down over the year. It is noted with interest that before the model was used, managers 

had provisionally decided on a capacity of 25 beds kept constant across the year, based 
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primarily on rough deterministic calculations. Their opinion was greatly changed after 

the modelling study. 
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Figure 7.3: Respiratory bed-needs over time 

The motivation behind the provision of a new clinical group is to provide focussed care 

to a particular class of patients. At the time of the study, respiratory patients could be 

found in up to 15 different wards across the hospital, many of which were outside of 

the general medicine specialty. It was hoped that the LoS for this group of patients 

would decrease, over time, within a dedicated unit. The flexible nature of the 

developed model enabled a number of different LoS reduction scenarios to be easily 

and rapidly explored. 

It was decided that a realistic method was to attempt to achieve a proportional 

reduction in LoS because this proportional approach means that we have a greater 

chance of a larger LoS reduction in the upper range of LoS than for those who stay a 

short time in hospital. The scenarios of 10%, 20 and 30% reductions were chosen and 

the model was used to calculate the resulting bed needs (Table 7.4). 
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Table 7.4: Respiratory patient LoS reduction and resulting hospital bed-day savings 

LoS Adults Elderly Overall Bed-day 

Reduction Mean LoS 95% Value Mean LoS 95% Value Mean LoS Savings 

Current 5.7 l&O 1L8 310 8.7 -

10% 5.2 14^ 1&6 3010 7.7 1,000 

20% 4.8 13.0 9.5 2&5 6.8 2,500 

30% 3.9 1L5 8.8 210 5.9 3,600 

Table 7.4 shows the revised mean LoS, 95% point of this LoS distribution, and 

predicted hospital bed-day savings under the 10, 20 and 30% LoS reductions. This 

Table helps show that bed-day savings is not a linear function of LoS reduction given 

the stochastic nature of queues in the hospital system. 

7.4 Case Study Three - Hospital Consolidation and 
Reconfiguration. 

Portsmouth Hospitals NHS Trust is one of the largest in England, with an annual 

income of around £240 million (2001/02) and providing acute healthcare services for 

almost a million people. Internally the Trust launched a consolidation and 

reconfiguration programme of facilities. The Trust successfully applied for PFI status 

and was asked to submit a fully costed Outline Business Case (OBC), to appraise the 

options for delivering PFI benefits. The Trust needed to calculate the likely bed needs 

for the consolidated hospital and examine various reconfiguration plans, such as the 

effects of curtailing acute LoS and increasing the capacity of post-acute beds. 

Working within the evolved modelling generic framework, the first phase included the 

necessary extraction and analysis of the large hospital database using Apollo. This 

database included five years worth of individual patient data, including LoS, episode 

start and end dates, hospital specialty, HRG (procedure code), emergency or elective 

status and inpatient or day-case episode. Portsmouth required a number of options to 
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be explored. These included the bed-needs by existing hospital specialty (General 

Medicine, Orthopaedics, Paediatrics etc.) and additionally by re-designed hospital 

clinical groupings derived primarily by clinical procedure (for example hips, knees and 

neck of femur as one clinical grouping). There were nine such groups in total. 

Apollo was used to create the necessary patient groupings under both scenarios. 

Groups were formed using specialty and/or HRG fields in the database. Table 7.5 

shows an example group created within Apollo, with a number of key statistical 

indicators and fitted LoS distributions. Monthly and daily arrival profiles for each 

group were readily captured using episode start date and this information saved 

alongside the LoS distributions for use in PROMPT. 

Table 7.5: Example hospital consolidation clinical grouping 

Patient Group Status Episodes Mean LoS Fitted Distribution 

(1998/99) (1998/99) 

Vascular Surgery Emergency 600 8.8 Weibull (7.23, 0.73) 

Elective 663 4.6 Lognormal (0.53, 1.44) 

Vascular Medicine Emergency 470 2.7 Gamma (0.15, 17.98) 

Elective 44 2.9 Weibull (1.04, 0.42) 

Poisoning Emergency 892 1.7 Lognormal (0.01, 10.6) 

Thoracic Procedures Emergency 93 2.0 Weibull (0.33, 0.32) 

Elective 31 1.7 Weibull (0.55, 0.41) 

Thoracic Medicine Emergency 3,882 5.7 Weibull (5.10, 0.81) 

Elective 428 3.5 Lognormal (0.05, 1.58) 

Evolved patient groups were loaded into the PROMPT model and the necessary 

admission and patient-flow rules defined. Bed-needs were captured for each specialty 

and then for each clinical grouping. Various sensitivity analyses were then examined 

by hospital managers to assess their impact on the overall costing for the PFI. Initially 

these included changing the demand and LoS. Sensitivity on LoS was aided by 

examining LoS over-time (five years worth of data was available) and forecasting 

likely LoS percentage increases or reductions. Access was also given to peer group 

hospitals LoS. These LoS figures came from ten similar size hospitals across the UK 
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and allowed for comparison of Portsmouth LoS to the peer group average and best peer 

group performance (lowest LoS for a given procedure). Figure 7.4 shows how 

PROMPT was designed to allow end-users to easily change the shape of the LoS 

distribution using a percentage increase or decrease. This avoids the need to re-fit the 

distribution in Apollo. 
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Figure 7.4: LoS sensitivity analysis by shifting the LoS distribution 

An illustrative LoS shift of 15% (decrease) for a Portsmouth Oncology patient group is 

presented in Figure 7.5. The mean LoS was 5.12 days with a 95^ percentile point of 16 

days. The fitted distribution was Lognormal with mean 0.765 and standard deviation 

of 1.324. After the 15% shift the LoS is 4.35 days and 95^ point at 13.6. The revised 

fitted distribution has a mean of 0.593 and standard deviation unchanged at 1.324. 

•Current LoS 

•Fi t ted Current LoS 

-Reduced LoS 

< 1 1 2 3 4 5 6 7 8 9 1 0 1 1 1 2 1 3 1 4 1 5 

Nights in Hospital 

Figure 7.5: Illustrative percentage shift to a patient group LoS distribution 
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A matrix of bed-needs was created under a number of LoS scenarios. This allowed 

hospital managers and financial personnel to agree on achievable LoS and hence read-

off the corresponding hospital bed-needs. A subset of the full hospital matrix is shown 

in Table 7.6 below. 

Table 7.6: A matrix of hospital bed-needs by LoS scenario 

Speciality Changes In number of beds 

% LoS reduction/increase (4) 
Speciality 

Deterministic 
(1) 

PROMPT 
(2) 

Best LoS 
(3) 

5% 10% 20% 

Cardiology 3 3 3 0 0 1 

Dermatoiogy 10 11 10 0 1 2 

General Medicine 270 282 236 10 22 47 

Thoracic Medicine 1 1 1 0 0 0 

Haematology 8 9 7 0 1 2 

Orthopaedics 149 159 148 7 14 30 

A & E 9 9 9 0 1 2 

Rheumatology 23 26 21 1 2 5 

General Surgery 137 143 132 6 12 25 

ENT 18 20 17 1 2 4 

Ophthalmology 6 6 3 0 0 1 

Oral Surgery 8 9 7 0 1 1 

(1): Beds required for 85% occupancy using a spreadsheet deterministic calculation. 

(2): Beds required for 85% occupancy using the PROMPT model. 

(3): Beds required for 85% occupancy using PROMPT and best peer group LoS 

(4); Change to the number of beds required under various LoS percentage shifts. 

Of particular concern amongst hospital managers was the distribution between acute 

and post-acute beds. There is a growing acknowledgement within the medical 

profession that for many categories of patients within the hospital, the acute LoS (time 

in the hospital) is unnecessarily long. On discharge, many of these patients move to 

beds within local community hospitals (post-acute stay). Unfortunately due to existing 

limited post-acute capacities, many patients have to wait some time in hospital before 

transferring to more suitable (and possibly cheaper) post-acute care. The distribution 

therefore between acute and post-acute bed capacities plays an important role in the 

planning and management of NHS Trusts. 

To understand and model the system, PROMPT was used to examine a number of 

patient-care scenarios. Working with specialty managers, we were able to identify 
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groups of patients who would benefit from a post-acute phase and less time within the 

hospital itself (typically elderly patients). Furthermore using Apollo we were able to 

examine current practice in detail (LoS distributions for these groups) and challenge 

existing protocols of care. Using expert opinion, PROMPT was used to model various 

"discharge cut-off times" for different groups within the Trust. Essentially these times 

refer to the maximum permitted time that a patient from this group may spend in the 

hospital. If a patient is still in a bed at this time, they will be transferred to post-acute 

care. Thus we were able to monitor both acute and post-acute bed needs over time 

under various clinical and managerial patient-care decisions. The Trust was able to 

gain a system-wide view of both the Trust and community care needs and incorporate 

these into the developed PFI outline business case. 

7.5 Case Study Four - General Surgery Theatre Needs 

Like many other NHS Trusts, Royal Berkshire and Battle Hospitals needed to re-

evaluate their theatre capacities in light of existing capacities, forecasted patient case-

mix and a constant shift in the distribution between in-patients and day-case surgery. 

To guide this work, a multi-disciplinary working group was created and tasked with 

evaluating a variety of theatre options. Concerns included the numbers of theatre 

sessions by specialty, the daily distribution of these sessions and the scheduling of 

patients within the sessions. Essentially the task group was looking to make better use 

of existing capacities through improved theatre management. In addition they required 

a tool to assess a number of longer-term planning decisions. 

After various discussions with the group, a number of objectives were defined. In 

essence the hospital must find efficient and effective policies that account for the 

complex nature of patient care. For example the policies must account for the daily 

number of available hospital beds before considering theatre needs. Clearly it would 

an oversight to examine the numbers of possible operations without accounting for the 

necessary bed capacities to accommodate this patient population. The objective is two-

fold: 
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® Maximise theatre session utilisation (daily event) 

Adopt a scheduling policy that will prevent session under-run and large over-run, 

giving greater utilisation (time theatre in use divided by time theatre open). 

Utilisation will depend on patient operation times. 

o Optimise bed utilisation (across the week) 

Adopt an admission policy that will allow maximum utilisation of beds. This will 

depend on post-operation LoS. For example, on which day(s) of the week should 

we admit the major operations (those who will subsequently stay a long time on the 

ward)? There is a need to examine outlier and deferral rates as a measure of policy 

benefit. 

Combined, these two objectives should help to maximise throughput (number of 

patients we can see in a year) and help to flatten out occupancy levels over the week, 

thus avoiding extremely busy and slack periods in the bed-pool. In turn this should 

reduce hospital refusal rates and theatre cancellations. 

PROMPT was used to examine all surgical specialties within the Trust. Each specialty 

brought its own complexities, such as differing case-mixes and theatre needs. As an 

illustration of the PROMPT model in use, the General Surgery case study is discussed 

below. 

The results also account for non-surgical patients in the General Surgery bed-pool, 

such as medical outliers and those surgical patients not requiring theatre (accounting 

for 27% of all patients in General Surgery). These without procedure patients are 

additionally captured within PROMPT and are passed through the bed-pool to reflect 

true bed-needs accounting for all admissions. This is a necessary condition of a 

practical hospital bed and theatre capacity model. 

Royal Berkshire and Battle Hospitals NHS Trust categorise all surgical patients into 

one of three classes: minor, intermediate and major patients. The categories reflect the 

severity of the operation (procedure) and consequently act as an indicator to likely 
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workforce needs and patient post-operative LoS. Apollo was used to examine current 

General Surgery practice by class of patient (Table 7.7 and Figure 7.6). 

Table 7.7: General Surgery patient statistics 

Patient Patient Number of Av. Operation Average Post-op 
Status Category Operations Time (mins) LoS (days) 

Day-Case Minor 197 20 < 1 

Intermediate 608 32 < 1 

Major 85 44 < 1 

Overall 920 30 < 1 

Elective Minor 194 21 2.0 
Intermediate 879 32 2.0 
Major 1,469 89 4.8 
Unclassified 266 - -

Overall 2,808 63 3.4 

Emergency Minor 201 23 2.0 
Intermediate 199 46 2.7 
Major 920 81 6.0 

Overall 1,320 61 4.6 

All Data Overall 5,CW8 54 3.0 
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Figure 7.6: General Surgery operation day profiles 
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Figure 7.6 helps to illustrate the large daily variation in numbers of operations. These 

peaks and troughs throughout the week are largely influenced by historical theatre 

schedules and preferred working patterns of surgeons who have a significant say in 

when different types of operation are performed. The corresponding impact on bed-

needs is complex and non-trivial, depending on the estimated post-operative LoS of 

each patient. Furthermore, because of restricted bed-capacities on the wards, current 

emergency demand should be acknowledged when planning and managing elective 

theatre schedules. 

The nine with-procedure patient groups shown above, together with their LoS and 

operation time distributions and current admission profiles were used in PROMPT. 

Two care units were created: a surgical inpatient bed-pool and a day-case centre. 

Existing theatre scheduling rules and numbers and durations of daily theatre sessions 

were defined. 

Various scheduling methods were experimented with in an attempt to better manage 

existing capacities and meet the stated objectives. The following conclusions concern 

only the management and planning of existing bed and theatre capacities. The model 

however has also been used to examine a number of options, including the increase of 

bed and theatre capacities. 

Scheduling of general surgery theatre sessions 

Schedule expected large operations first followed by the smaller operations later in the 

session i.e. major first, then intermediate and then minor. The larger operations 

generally have the most variability in operation times. By scheduling these first and 

smaller ones later, there is less chance of closing the session early and thus increasing 

throughput and utilisation. 

Adopting LTF (Longest Time First) strategy: 

Current session occupancy = 88%, Current refusal rate = 5.0% 

Predicted LTF session occupancy = 85%, Predicted LTF refusal rate = 3.8% 
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Essentially, this shows that under a LTF policy, we can still achieve the same number 

of operations but reduce occupancy. Put another way, we can improve efficiency of 

our sessions by maintaining current throughput but on average saving session time 

under a different session schedule. This extra saved time could be used to operate on 

more patients, thus increasing throughput without the need for extra resources (i.e. beds 

and theatre time). In fact, this reduced occupancy equates approximately to an extra 60 

hours a year operating time (current total operation times approximately 3,800 hours) 

plus a drop in the refusal rate. In turn, this equates to potential 1.6% increase in 

throughput (or around an extra 70 patients operated on per year) without the need for 

extra resources. 

Day-case and inpatient sessions 

Generally it is best to keep day-case patients in the same theatre as in-patients. As 

day-cases typically have shorter and less variable operation times, it makes logical 

sense to include these patients with other in-patient theatre sessions if we are primarily 

concerned with session utilisation. Where possible, some day-cases could be placed 

towards the end of the sessions to reduce potential under-run and wasted time (as LTF 

above). For example, the majority of day-cases could go towards the end of the 

morning sessions. This might well help keep the time that day-case ward needs to open 

down to a minimum as well. Practical considerations will dictate how late in the day a 

day-case patient may commence their operation. 

Weekly profiling 

So far we have only examined the effects of scheduling patients within a session. This 

has assumed that the day-to-day scheduling of patients remains unchanged. So, for 

example, do we admit major patients early or late on in the week, or does it not make 

any difference when these patients are admitted? This should help to "even-out" busy 

and slack times in the bed-pool, making optimal use of beds whilst helping to reduce 

refusal rates. We will now need to consider pre and post-operation LoS. Post-op LoS 

for each patient group is shown in Table 7.7. The data revealed that 6% of minor, 11% 

of intermediate and 47% of major patients needed to be admitted the day prior to their 
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operation on clinical grounds. This profile, based on hour of arrival, was reflected in 

the model. 

From the many possible schedules examined together with hospital personnel and the 

working group, and whilst respecting constraints such as surgeon's availability, the 

schedule shown in Table 7.8 was produced which gave a benefit of a flatter occupancy 

across the week, which helped the overall refusal rate drop from 5 to 3%. 

Table 7.8: Proposed General Surgery weekly scheduling profile 

Patient Group Operation Day 

Minor Early in week (majority on Monday) 

Intermediate Early to Mid Week (majority Tuesday & Wednesday) 

Major Mid to Late Week (majority Thursday & Friday) 

Figure 7.7 and Table 7.9 show the current and proposed occupancy rates by day of the 

week. Please note that the occupancy rate shown is the occupancy at the start of the 

day before admissions on that day. 
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Figure 7.7: Comparison of General Surgery daily occupancy rates for 

current and proposed scenarios 
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The logic behind this schedule is that the major patients are now very likely to stay in 

the bed across the whole weekend (days 3, 4, or 5 of their stay). This is a time when 

there are no (or little) admissions, thus utilising beds when perhaps weekends might be 

less busy than early to mid week currently. The majority of these patients would then 

be discharged during Monday in time for the short LoS Minors and all discharged 

before Intermediates in the mid week. This is shown in Table 7.9 and Figure 7.7 by the 

flattening out of occupancy, and hence probability of a bed being free for admitting 

patients in that day, across the days. Essentially we attempt to reduce peaks and 

troughs in occupancy over the week and hence reduce the likelihood of all beds being 

full and refusing patients. 

Table 7.9: General Surgery occupancy and likely bed availability for 

current and proposed scenarios 

Start of 

Day 

Occupancy in bed-pool (%) Probability of a free bed (%) Start of 

Day Current Proposed Current Proposed 

Monday 54 64 46 36 

Tuesday 69 77 31 23 

Wednesday 82 76 18 24 

Thursday 83 81 17 19 

Friday 86 84 14 16 

Saturday 81 81 19 19 

Sunday 64 72 36 28 

The model has highlighted a number of areas for potential improvement. Some of 

these policies equally apply to other specialties within the hospital and indeed to other 

NHS Trusts. The general message from this modelling work is that an operational 

modelling approach, through necessarily practical and detailed capacity tools, can be 

used to experiment with the system helping to improve existing planning and 

management of hospital theatre resources. 
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7.6 Case Study Five - A Study of Trauma and Orthopaedic 
Nursing Needs 

The NHS is one of the largest employers in the world, employing over one million 

people, including 350,000 nursing staff and 140,000 administrative and clerical staff 

(Department of Health, 2000). The NHS needs to continually add to its complement of 

workers to meet the needs of increasing admissions and to keep the service running 24 

hours a day, 365 days a year. Managers need to quantify the number and type of 

workforce required in order to successful staff a hospital. Shortages in necessary 

nurses, for example, can lead to the temporary closure of hospital wards. With beds in 

constant demand, managers can ill-afford to have to take such action. 

To illustrate the workforce module, this case study outlines the role of the model in the 

planning of Trauma and Orthopaedic nursing needs within The Royal Berkshire and 

Battle NHS Trust. Apollo was used to derive the appropriate patient groups using a 

combination of statistics (CART) together with clinical knowledge based on defining 

patient groups with homogeneous hospital nursing needs. This process produced the 

following five distinct clinical groupings: 

® Hips 

* Knees 

® Spinal (decompositions and fusions) 

® Discectomies, minor hands/knees, head of femur, spinal lesions, dissolving discs 

® Shoulders, other major joints 

The workforce module builds on the foundations of the bed capacity model; patients 

from each group arrive, attempt to obtain a bed and stay for a LoS before discharge. 

Additional information is now required governing the care of patients during their stay 

in hospital. 

For each patient group, necessary resource needs for the patient during their stay on a 

Trauma and Orthopaedic ward were defined. These needs were provided in the form 

of patient-to-resource ratios (or dependencies). Dependencies were defined for 

different stages during a patient's stay together with the expected percentage of time 
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that the patient will stay in that state (as a percentage of their expected total LoS). For 

each state, dependency ratios were entered against each resource. Furthermore, the 

ratios have been defined for each nurse shift - early, late and night. This reflects the 

varying care-needs across the day. 

An illustrative resource needs profile for a hip replacement patient is shown in Table 

7.10. For this procedure clinicians, nurses and hospital managers defined three 

dependency states: High, Intermediate and Low. Nursing needs for two types of 

workforce resource are studied; Trained Nurse and Untrained Nurse. Ratio figures 

indicate the number of patients that one nurse may care for in a given shift. 

Table 7.10: Resource needs profile for a hip replacement patient 

Dependency State: High (5% of LoS) 

Resource / Shift Early Late Night 

Untrained Nurse 5 5 6 

Trained Nurse 3 4 5 

Dependency State: Intermediate (10% of LoS) 

Resource / Shift Early Late Night 

Untrained Nurse 3 4 6 

Trained Nurse 3 4 6 

Dependency State: Low (85% of LoS) 

Resource / Shift Early Late Night 

Untrained Nurse 3 4 5 

Trained Nurse 5 5 6 

Figure 7.8 illustrates how hospital configuration (beds and admission rules) and patient 

information (LoS and resource needs) are combined to form an integrated workforce 

planning and management approach using the PROMPT methodology. 
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Figure 7.8: An integrated approach: modelling hospital workforce requirements 

The above structure was adopted to predict likely nursing needs for Trauma and 

Orthopaedic wards in the Royal Berkshire and Battle hospital. The model enables 

managers to simulate patients through time whilst assigning corresponding care needs, 

allowing for the rapid production of workforce rosters for each resource by month, 

which are further broken down to day and shift levels. Because workforce needs will 

vary between simulation runs and during the same shift/day combination within a 

month, the mean number of resources required is displayed with 95% confidence 

intervals. 

The model was used by the hospital to ascertain nursing needs for various wards and 

specialty bed-pools across the Trust. Because of the integrated PROMPT model, 

managers and human resource personnel were able to evaluate the impact on necessary 

staffing levels as a consequence of changes to a number of hospital variables, 

including; 

• Changes to the number of ward beds. 

• Changes in patient demand. 

• Changes to the number of contracted local health authority elective episodes. 

• Changes to the number of theatres and durations of sessions. 
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7.7 Chapter Summary 

The work presented in the case study reports helps illustrate the wider experience of 

addressing real and practical needs of health service professionals using the developed 

generic framework and the PROMPT methodology. This experience played a key 

element in helping to structure and develop the Apollo and PROMPT models. The 

various projects undertaken within the participating Trusts and the spectrum of 

planning and management issues provided a rich source of input into the evolution of 

the prototype versions of the models. 

Each case study details how the methodology was integrated into managerial processes 

of NHS Trusts and the way in which the simulation and its interface responded to user 

requirements. The case studies help illustrate the wide use of the model in the planning 

and management of hospital beds, theatres and workforce. It has been successfully 

used within the participating hospitals to help mangers and clinicians understand and 

quantify the consequences of planning and management policies (see Appendix H). 

The model has highlighted to the participating hospitals the need for incorporating the 

necessary detail when calculating resource requirements. Monthly, daily and hourly 

demand and meaningful statistical distributions that capture the inherent variability in 

LoS, workforce dependencies and operation times are important in the development 

and use of planning tools for hospital capacities. Healthcare resource allocations 

should obviously be made in light of both bed and theatre occupancies and refused 

admission rates. The relationship between beds, occupancy and refusals is complex 

and often overlooked. The developed model can be used to study a variety of hospital 

planning issues and it has demonstrated to the hospitals that it is possible to improve 

efficiency and effectiveness of the available limited resources. 

Many challenges were encountered during the work and were very real in the sense that 

authentic solutions were being sought for genuine managerial and clinical concerns. 

Many critical issues became apparent and were brought into sharp contrast, such as 

data availability and quality, and the political dimension of the NHS. These 

challenges, together with the author's experience and perceived modelling 

opportunities are discussed in greater detail in Chapter 9. 
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Chapter 8 - Simulation IVIodels for Critical 
Care Services 

8.1 Chapter Introduction 

Although a critical care unit (CCU) forms a part of the overall hospital system, to an 

extent this unit exhibits distinctive planning and management challenges that are rarely 

seen elsewhere in the hospital. The extreme costs of critical care (section 3.3.4), the 

relatively few beds available and the critical medical condition of the patients admitted 

intensify the planning and management issues. There is currently a great need to better 

plan and manage critical care beds at both a local and regional level (Department of 

Health, 2000). In response, two simulation models for the planning and management of 

critical care services have been developed within the evolved generic framework for 

modelling of healthcare resources (Chapter 4). The first simulation models the 

complex flow of patients through an individual unit (intensive and/or high-dependency 

care). The second simulation models a number of critical care units within a region. 

Both models have been built using SimulS (Visual Thinking International), a standard 

off-the-shelf simulation package, and enhanced through the use of Visual Logic and an 

Excel front and back-end. The deliberate use of SimulS allows for a comparison 

between standard software packages with an adopted programming approach such as 

the development of the TOCHSIM shell. A discussion is presented in Chapter 9. This 

chapter outlines the development, structure and validation of these two critical care 

models with illustrative case studies. 

8.2 Towards a Critical Care Unit Model 

Although a critical care unit (CCU) forms a part of the overall hospital system, to an 

extent this unit exhibits distinctive planning and management challenges that are rarely 

780 



Chapter 8 Simulation Models for Critical Care Services 

seen elsewhere in the hospital. The extreme costs of critical care, coupled with the 

relatively few beds available and the critical medical condition of the patients admitted 

intensify the planning and management issues. Critical care concerns the provision 

within a hospital of both intensive care and high dependency care. An Intensive Care 

Unit (ICU) bed is usually reserved for patients with threatened or established failure of 

one or more organs, particularly respiratory, cardiovascular or renal systems. High 

Dependency Unit (HDU) beds have been introduced as a step between intensive care 

and ward care. They reflect a need for more suitable levels of care for patients and as a 

means for reducing some of the costs of an ICU. 

The provision of critical care has to meet the challenges of considerable uncertainty 

and variability in the needs of the patients, high costs and scarce resources. The 

demand for critical care beds arises from many sources as emergency or planned 

admissions. The vast majority of the demand for intensive care and high dependency is 

experienced as emergencies and electives respectively. Patient's lengths of stay and 

the large costs of treating patients are highly variable. 

A recent Department of Health review of adult critical care services (Department of 

Health, 2000) concluded that there is a great need to better plan and manage CCU beds 

at both a local (individual) and regional level. The review reinforced and reiterated the 

beliefs and concerns amongst CCU managers and consultants participating with this 

research. During initial lengthy discussions with the working group, and building on 

previous work by IMH (Ridge et al., 1998), a number of characteristics concerning the 

flow of patients through a CCU were evolved (section 4.3.3). There was an evident 

desire amongst the participants to model in detail an individual unit followed by a 

model of a number of co-operating units within a region. Accordingly these research 

aims complement the Department of Health's directives, although it should be noted 

that the work commenced before the publication of the Department of Health's report. 

There are a number of critical variables within a CCU that must be effectively and 

efficiently managed on an hour-to-hour, day-to-day basis. In particular, the working 

group expressed the need to examine the following key questions: 
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1. How many CCU beds do we need? (local, regional and national levels) 

2. What is a good mix of ICU and HDU beds? (distribution of beds within a CCU) 

3. Are the internal rules good enough? (admission and discharge rules etc.) 

4. Is the geographical distribution of CCU beds right? (across a region/the nation) 

5. Can we pool resources from different CCUs? (more efficient use of resources) 

Both the individual and regional models have been designed and built within the 

SimulS package (version 5), an off-the shelf simulation tool that is now widely used in 

both business and educational establishments. It would be possible to develop these 

models within TOCHSIM, the simulation shell in which PROMPT (Chapter 6) has 

been constructed. It was felt however that the use of SimulS would permit the 

comparison between standard software packages with adopted programming 

approaches. This is discussed in Chapter 9. 

8.3 SimulS 

SimulS (Visual Thinking Ltd.) was first used in industry in 1995. It is now used by 

thousands of users worldwide in enterprises such as Ford and Hewlett Packard. Much 

of its success can be attributed to its relative cheapness (compared to other simulation 

packages commercially available), its use of Windows™ 'point & click' technology to 

make SimulS easy to use, and the ability for non-experienced simulation users to begin 

building simple models with very little training and in minimal time. SimulS has built 

on the growing success of Visual Interactive Simulation (VIS) tools now used in many 

sectors of business and education. VIS technology is discussed in section 8.4. 

SimulS adopts the process-based approach to discrete-event modelling (section 3.6.2). 

It allows the user to create a visual model of the system being investigated by drawing 

objects directly on the screen. Typical objects may be queues or service points. The 

characteristics of the objects can be defined in terms of, for example, capacity or speed. 

The basic philosophy of SimulS is to represent a system graphically, using icons to 

represent the various elements of the model. The flow of entities through the system is 

made by connecting these elements; the rules governing this flow can be made very 

complex. When running the simulation, the flow of work around the system is shown 
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through animation on the screen so that the appropriateness of the model can be 

assessed. Once the structure of the model has been confirmed, a number of trials can 

be run and the performance of the system described statistically. Statistics of interest 

may include average waiting times, utilisation of facilities or resources, etc. 

A SimulS model consists of objects (items such as storage bins (queues) and work 

centres) on the screen with a default structure (routing) between them and work items 

which flow around the model. These work items are the entities that move around the 

system, for example patients in a hospital, products in a factory or invoices in an 

accounts department. Work items can have associated attributes (for example age, sex, 

diagnosis). Each individual work item can have different values for each of its 

attributes. Values of attributes may be changed and used by work centres. An 

important type of object is a resource which can be used at the work centres. For 

example, if work centres are machines, they might need recourses called people to 

operate them. 

The basic SimulS building blocks are summarised below (with default graphics, 

although these may be edited or replaced by images from a SimulS graphics library). 

Corresponding illustrative CCU activities and objects are provided in brackets. 

?-

# 

Work Item - an object (entity) that moves around the system {patient). 

Work Entry Point - a place where work items first appear in the system 

(patient arrives). 

Storage Bin - a place where work to be done can wait until appropriate 

resources or work centres are available i.e. a queue (patient waits for a bed). 

Work Centre -where work takes place on work items (bed). 

Resource - items in the simulation model which are required at work centres in 

order for the work centre to work on an item (nurse, doctor etc.). 

Work Complete - a place where work that is complete (or otherwise "finished") 

leaves the model (pa/fen^ /gave-y). 
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In order to capture complex patient-flows through a CCU, extensive use was made of 

Visual Logic within the SimulS software. The use of Visual Logic acts as an internal 

programming language allowing the modeller to incorporate rules governing the 

movement of entities and behaviour of objects within the simulation that are outside 

the scope of standard commands and parameters. For example, Visual Logic can be 

used to test for a number of conditions before deciding whether to admit an arriving 

patient. Figure 8.1 shows a SimulS Visual Logic window for a work centre 

encapsulating the necessary code governing the rules of early discharge of patients on 

the CCU in order to free beds for arriving patients. 
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Figure 8.1: Visual Logic code 

SimulS may also be linked to MS-Excel using a Visual Basic connection. This has the 

advantage of using Excel as a user-friendly front and back-end to the simulation model. 

SimulS currently has very poor facilities for displaying user-specified results and is 

particularly limited in allowing end-users to easily change parameter values without the 

need to reference objects and entities within the model. Standard Visual Logic 

commands can send and receive information to and from specified cells in the 

spreadsheet. Visual Basic code built within Excel, employing the use of a SimulS 

library of functions, may be used to perform a number of operational activities, for 

example instructing SimulS to start a run, end a run or simply change the parameter 

values of various SimulS objects. 
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8.4 Visual Interactive Simulation (VIS) 

Visual interactive simulation (VIS) originated with the discrete event work of Robert 

Hurrion in the late 1970's (Hurrion, 1978). Before that time, although simulation was 

seen by many as an attractive tool in Management Science and Operational Research, it 

was hampered by the complexity and lack of transparency inherent to many of the 

models used (Bell and O'Keefe, 1987). In addition, the limitations of computer 

technology had contributed to a general lack of accessibility. 

Before VIS, simulation models were often characterised as black-boxes which typically 

could not easily be verified, validated or even understood by many who could benefit 

from them. Accessibility to such models was generally limited to technical specialists 

within the larger organisations who were able to afford the computer technology 

required for their operations. VIS represented an important development since it 

effectively broke the black-box image of simulation. Use of computer graphics and 

animation, for example, allowed the flow of entities through the system to be visually 

represented on screen. Numerous studies have since demonstrated the importance of a 

visual aid in the decision making process (Dickson et al., 1986 and Chau and Bell, 

1995). 

Since the 1970's, VIS has benefited from the confluence of many developments in 

computing and other external factors including: 

» Continuing increases in computer performance. 

® Rapidly falling costs of hardware. 

« Cheaper and improved colour displays (VDU's and LCD projectors) 

® Increasing number of commercial VIS products and services -current VIS packages 

on the commercial market include Witness, SimulS and Arena. 

» Increasing recognition of computer tools in management. 

» Greater accessibility due in part to a recent fall in VIS software costs - for example, 

SimulS is now sold at $495 per license or a one-off site-license price of $999 for 

educational establishments. As a result, SimulS is rapidly becoming a popular tool 

to use on Management Science and OR degree courses. 
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8.5 A Simulation Mode! for an Individual CCU 

8.5.1 Capturing the flow of CCU patients 

The complex characteristics of an individual CCU, coupled with desired user 

requirements, indicated a need for a sophisticated local CCU capacity planning and 

management tool. Working alongside managers and consultants from a number of 

critical care units, a detailed understanding of patient-flows was acquired. The 

corresponding activity flow diagram is presented in Figure 8.2. Patient-flows are 

appropriately generic as specified in the evolved operational modelling framework of 

healthcare resources (section 4.4). Suitable use of model parameters allows the 

simulation to be fine-tuned to reflect local individual CCU conditions. 
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Figure 8.2: Activity flow diagram depicting patient-flows through a CCU 
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8.5.2 CCU configuration 

The operational modelling approach used in the CCU model can help to evaluate the 

implications of various options for CCU patient care. What if..? scenarios may be 

examined by changing the following unit configuration parameters: 

(A) For separate ICU and/or HDU, or combined CCU 

• Beds - number of ICU and HDU beds either on separate units or combined CCU. 

Patients will stay in the bed for a sampled LoS unless they are early discharged (see 

below). 

® Holding Beds - number of ICU, HDU or combined CCU holding beds (trolleys). 

A holding bed is used to accommodate arriving emergency patients when no main 

bed is available. During the time spent on the holding bed, every effort will be 

made to make available a bed by means of early discharge. If a bed becomes free 

then the waiting patient will be moved provided that they will survive their stay on 

the holding bed (a user-defined probability of death on the holding bed is necessary 

as this initial time on the unit is critical and holding beds typically do not provide 

the comprehensive facilities of a main bed on the unit. A separate probability of 

death once on the unit is also defined in the model). 

® Maximum Time on Holding Bed - the maximum permitted time an emergency 

patient may spend on the holding bed whilst waiting for a bed to be made available. 

If at the end of this time no bed is free, the patient will be transferred out of the 

hospital. 

® Number of Emergency-Only Beds - some beds may be reserved for emergency 

only patients (for example, one emergency-only bed on a six bedded unit; arriving 

elective patients will not be admitted if five or more beds are occupied). 

• Number of Elective Deferrals - elective patients that cannot be admitted will be 

deferred. They will need to return at a later date (see below). Elective patients may 

only be deferred up to a permitted number of times before receiving upgraded 

status and high priority for admission. 
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• Deferral Waiting Time - The time between an elective being refused admission 

and re-attempting admission at a later date. 

• Minimum LoS for Early Discharge - patients may be discharged from the unit 

provided they satisfy a number of criteria; they will survive; they are currently on 

their last day of LoS; they have stayed at least X days, where Xrepresents a user-

defined minimum LoS. The minimum LoS appears to vary between units 

(although is typically 2 days), hence the need to parameterise. 

(B) For a combined CCU only 

• Move to ICUfrom HDU- percentage chance that a high dependency patient will 

deteriorate and need intensive care. 

• Move to HDU from ICU - percentage chance that early discharged intensive care 

patients will subsequently need to stay on HDU (alternative being to move directly 

to ward care). 

The above unit configuration parameters are displayed on a worksheet in the Excel 

front-end so that they may be easily referenced and edited by end-users (Figure 8.3). 
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Figure 8.3: Excel front-end CCU configuration parameters 
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8.5.3 Patient profiling 

In order to characterise the uncertainty and variability in CCU patient needs, the model 

allows up to six patient groups for each of ICU and HDU elective and emergency 

patients. The necessary statistical analysis is conducted in Apollo (Chapter 5), 

including the creation of these patient groups with demand profiles and LoS 

distributions derived for each group. Currently the CCU model reflects demand 

profiles through quarter yearly demand and daily profiles. Patient LoS is sampled from 

a number of statistical distributions (Lognormal, Weibull, Gamma and Normal). Two 

additional pieces of information are required: the probability of the patient dying 

during a stay on a holding bed (emergency patients only), and the probability of dying 

on the unit. 

Intensive and high dependency patent information is included on separate worksheets 

within the Excel front-end. Figure 8.4 shows illustrative intensive care patient 

information with five emergency and two elective groups. 
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Figure 8.4: Patient group information 

Entering and editing daily demand profiles for each group is facilitated by the use of 

daily variation graphs (Figure 8.5). The user may drag-up or down the bars on the 

graph as necessary until the desired demand profile is depicted. Based on the 
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simulation time during the year, patient group inter-arrival times are calculated using 

the total yearly demand, current quarter yearly demand and relative daily demand (see 

section 6.5 for greater detail). 
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Figure 8.5: Excel graph capturing patient daily demand profile 

8.5.4 Nursing constraints within a combined unit 

Within a combined CCU, admissions are restricted by both the number of beds 

(accounting for emergency-only beds) and nursing constraints. Because of their critical 

nature, intensive care patients require a one-to-one ratio of nursing care. High 

dependency patients are currently given a one-to-two ratio of nursing care (one nurse 

can care for two patients). 

Consider a combined CCU comprising of/ intensive care beds, i / h igh dependency 

beds and E emergency-only beds. At most the unit will have ( / + 0.5//) nurses. Let i 

denote an intensive care patient and h a high dependency care patient staying on the 

unit. The CCU must satisfy the following conditions: 

and 

/ + 0.5A < / + Q.5H (Nursing constraint) 

i + h < I + H (Bed constraint) 
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Furthermore, for all arriving elective patients: 

i + h<I + H-E (Emergency-only beds constraint) 

8.5.5 Running the SimulS model 

Having configured the CCU and provided the necessary patient information, the 

SimulS model may be run for one year for a user-defined number of simulation runs. 

Extensive use of animation within the package allows the user to monitor the CCU 

status throughout the runtime. A number of statistics are displayed during each 

simulation run, including the number of patients who have survived and died, the 

number of patients on holding beds and numbers of deferred elective patients currently 

waiting to be re-admitted. Figure 8.6 illustrates the SimulS model during runtime for 

separate intensive and high dependency care units with S and 6 beds respectively. 
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Figure 8.6: Individual CCU SimulS model 
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8.5.6 Simulation results 

A number of statistics are collected during each simulation run and sent back from 

SimulS to the Excel back-end on competition of each run. Statistics are grouped at the 

intensive care and high dependency care levels, with a detailed breakdown for each 

patient group. Statistics include: 

• Admissions, number survived and number died. 

• Bed-days used and unit occupancy rates. 

• Emergency transfers and elective deferrals. 

• Holding bed admissions and average waiting time. 

• Number of early discharges. 

• Number of elective patients with upgraded status. 

Figure 8.7 shows the Excel overall simulation results worksheet with illustrative 

output. A run results worksheet displays a results table for each simulation run. 
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Figure 8.7: Illustrative simulation results 
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8.6 Validating and Verifying the SimulS Model 

As a necessary part of simulation development, validation and verification techniques 

have been utilised to ensure that the CCU simulation is behaving in the desired manner 

and to increase confidence in the model operations. The working group contributed to 

the model development at all stages and ensured that the simulation model reflected the 

original conceptual schema. A number of validation and verification techniques, as 

described by Sargent (1991) and discussed in section 6.6, were adopted. 

SimulS represents the system graphically on screen and the flow of work around the 

system is animated so that the appropriateness of the model can be assessed and the 

behaviour of the system's objects over time examined. This is a major benefit of VIS 

tools in aiding the validation and verification process. By stepping through the 

simulation, moving entities (patients) through the CCU one-by-one, it was possible to 

check that the Visual Logic code governing the flow of patients was functioning in the 

desired way. 

8.6.1 M / G / s / GD / s / °° (blocked customers cleared) queueing model 

In addition to various verification techniques, including degenerate tests, extreme-

condition tests and tracing, a simplified version of the SimulS model has been 

compared to an analytical queueing model. In many queueing systems, an arrival who 

finds all servers (beds) occupied is, for all practical purposes, lost to the system. We 

call such a system a blocked customers cleared, or BCC, system. Assuming that inter-

arrival times are exponential, such a system may be modelled as an 

M/ G / s / GD / s / go system. It would be too complex to formulate and solve the 

necessary analytical model to capture all of the complex rules governing real-life flows 

of patients (for example, incorporating early discharge rules, holding trolleys and 

movements between HDU and ICU). Hence simulation model parameters have been 

tuned to represent a simple single unit system described below; 
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Model description 

® A single unit with admissions taken from a single queue. 

® Arrivals are taken from the queue on a FCFS basis. 

® Inter-arrival times are assumed to have negative exponential distributions. 

® Once all beds are occupied, subsequent arrivals are transferred out of the hospital. 

* All patients have a mean LoS of 4.0 days. 

® There is a patient demand of 600 per year. 

Analytical solution 

Assume that at time 0 all beds are free. The probability that n out of the s beds are 

occupied is given by Erlang's Loss formula; 

^ / 
P{n) -

where 

X 
p — — 

A 

such that 

= 1 
1 = 0 

It follows that in a unit with .s beds, the percentage chance that a patient will be 

transferred occurs when all beds are occupied, i.e. P(5')*100%. 

Queueing model results and simulation comparison 

The queueing model has been used to find the transfer rate in a unit with varying 

numbers of beds. The analytical solution has then been compared to results from the 

corresponding simulation model (Table 8.1). 
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Table 8.1: M/ G /s / GD /s /co queueing model and SimulS model results 

% Transfers - % Transfers -

Queueing Model Simulation Model 

5 3&9 3&5 

6 3&4 2&8 

7 2 2 2 2L3 

S 15.4 15^ 

9 10.1 1&4 

10 6.3 5.7 

11 3.6 3.2 

The simulation model performs very well against the analytical solution. The SimulS 

model was also configured to mimic the real-life complexity of the CCU in question, 

including the use of emergency-only beds, patient groupings and early discharges. 

Using recorded data from the unit, the observed transfer rate was calculated and 

compared to the results of the SimulS model (15.9% and 15.5% observed and 

simulated transfer rates respectively). This is an additional and necessary verification 

process. 

Validation, through the use of the generic framework and the adopted evolutionary 

model development (section 4.2), and verification methods such as the comparison 

with the above queueing model and observed data, help to increase confidence with the 

SimulS model and ensure that it is sufficiently accurate and necessarily detailed. It 

becomes possible to use the model to examine a number of options for the care of 

patients in a CCU. 
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8.7 Model Applications 

The individual CCU SimulS model has been used by a number of different Critical 

Care Units across the UK as a decision-making aid for consultants and managers. It 

has been used to examine various configurations of care at a local CCU level. An 

illustrative list of model applications is provided below. This is not intended to be an 

exhaustive list of possible uses. 

> Bed capacities - the current Government has indicated a desire for combined units 

to replace existing divisions between ICU and HDU. There is a need for each unit 

to model current bed needs and the consequences, where relevant, of moving 

towards a combined bed-pool. 

> Nursing needs - a combined CCU is restricted by both bed capacities and nurse 

availability. It is important to quantify the required nurse-mix and to understand 

how various nursing levels impact of the unit's efficiency and effectiveness. 

> Holding bed capacities - to appreciate the benefit of holding beds and to quantify 

how different numbers of holding beds affects transfer and deferral rates. 

> The provision of emergency-only beds - to examine the relationship between the 

numbers of emergency-beds provided and the unit transfer, deferral and occupancy 

rates. 

> CCU operating rules - examine in detail the consequences of changes to a number 

of unit operating rules, such as the impact of early-discharges and maximum time 

allowed on a holding bed. 

> Re-configuration of care-pathways - in addition to modelling the redesign of 

separate ICU and HDU to a combined unit, the model may examine other 

configurations of care, for example allowing ICU patients to stay on HDU beds and 

preventing HDU patients from moving to ICU beds. 
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8.8 A Simulation !\^odel for a Region of Co-operating CCUs 

There is currently a great need to better plan and manage CCU beds at a regional level. 

The Department of Health's review of adult critical care services highlighted the lack 

of co-operation between units within a region. Improved planning and management of 

resources within a region of co-operating units has the potential to greatly benefit both 

CCU healthcare professionals and patients alike. For example, given that two 

neighbouring units both reserve one emergency-only bed, the consequences of just one 

"floating" emergency-only bed shared between the two units needs to be fully 

examined and understood. This scenario would likely cause a drop in the elective 

deferral rates (increased capacity for elective patients) but could unwittingly cause a 

small but significant rise in the emergency transfer rate. Such a critical issue 

demonstrates the power and value of an operational modelling approach. It is possible 

for managers and consultants to simulate various polices on a computer as opposed to 

potentially placing lives at risk by real-life experimentation with unit configurations 

and admission rules. Furthermore, often within a region of CCUs (such as those in a 

large city), some units are designated specialist centres for the treatment and care of 

patients with critical conditions such as major head injuries. It is therefore important to 

capture this detail in a model of co-operating units by simulating the transfer of 

specialist group patients from one unit to another. 

Given the desired needs of the working group and the real-life complexities 

surrounding the flow of patients within a region of CCUs, it was decided to build on 

the foundations of the individual SimulS model and evolve a model for up to six units 

within a given area. The regional model follows the same basis as the individual unit 

model, namely that the same configuration parameters must be defined for each of the 

six units together with the necessary information on emergency and elective patient 

group demand profiles, LoS distributions and survival probabilities. 

In order to incorporate the role of the specialist centres, information for a number of 

specialist patient groups are entered on to a worksheet in the Excel front-end. Figure 

8.8 illustrates a patient group for head injuries and includes the expected annual 

number of patients, LoS distribution and a preference matrix of which unit they should 

V97 



Chapter 8 Simulation Models for Critical Care Services 

be sent to (more than one CCU may admit major head injuries and so the user may 

express an ordered preference to where patients should be sent). 
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Figure 8.8: Specialist patient group worksheet 

Within the individual CCU model, transferred patients will be sent to another hospital. 

In practice this will be to the nearest CCU with an available bed. The movement of 

transfers within an area is included in the regional model through a transfer preference 

matrix. These preferences will typically reflect distance, or other factors, between 

transferring units. Preferences are numerically ordered (first choice, second choice 

etc.) with transferred patients attempting to find an available bed in a unit starting with 

the highest priority (preference). An Excel worksheet captures the user-specified 

preference matrix (Figure 8.9). 
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Figure 8.9: A preference matrix governing the movement of transfers between units 

If no suitable available bed can be found in the area, the patient will be transferred to a 

hospital outside of the region. This statistic is displayed on screen when running the 

model (Figure 8.10). Other statistics, as indicated in the individual model, are shown 

on a run-by-run basis in the Excel back-end. 
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Figure 8.10: Regional CCU Simul8 model 
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8.9 Advocating Change Through Improved Co-operation 

The regional CCU SimulS model has been used to highlight a number of ways in which 

CCUs could improve patient-care through improved co-operation amongst a number of 

regional units. Using "hands-on" workshops and demonstrations, the model has helped 

consultants and managers to appreciate the value of co-operation and to fully 

understand and quantify the benefits. The regional model has shown that careful 

planning and management of a number of CCU variables can significantly impact on 

the effectiveness and efficiency of a number of co-operating units. These include, but 

are not limited too; 

> Improved planning 

• Unit re-configuration - planning and provision of beds for each unit whilst 

acknowledging patient case-mix across the region and specialist centres. 

Consequences of a mixture of combined and separate units and the effect of 

changes in bed and nurse capacities on the care of patients within the region as 

a whole. 

® Transfer preferences - evaluation of changes to the transfer preferences of units 

and the impact on the necessary number of CCU resources. 

> Improved management 

® Shared bed capacities - greater flexibility in the provision of beds between 

units provides a responsive environment in which bed supply more closely 

matches bed needs over time. For example, provision of one emergency-only 

bed between two units as opposed to one emergency-only bed per unit. This 

will help eliminate redundant capacity and reduce deferrals. 

« Flexible admission/discharge rules - greater flexibility achieved through 

improved communication between units can help reduce daily transfer and 

deferral rates and correspondingly increase the overall occupancy rate. For 

example the early discharge or transfer of patients from one unit to another. 
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8.10 Chapter Summary 

The extreme costs of critical care, coupled with the relatively few beds available and 

the critical medical condition of the patients admitted intensify the planning and 

management issues. A recent Department of Health review concluded that there is a 

great need to better plan and manage CCU services at both a local (individual) and 

regional level. In planning for CCU capacities we need information for answering the 

following types of question; 

« What are the effects of changing the number of intensive care and high dependency 

beds in a particular unit? 

9 What are the effects of changes in the casemix of the patients? 

® What are the effects of changes in the lengths of stay of the patients? 

® What are the advantages, and disadvantages, of formal co-operative arrangements 

for the care of patients in a group of units? 

To help meet this need and provide the necessary detailed information, two detailed 

models for the planning and management of CCU services have been developed within 

the SimulS package, an off-the-shelf simulation tool. The first model considers 

resources within individual units whilst the second models co-operating regional units. 

The developed models take individual patients through time as they pass through the 

complex care-pathways within the CCU. 

Both simulations have been utilised in a number of ways by the working group (a team 

of CCU managers and consultants who have guided the work) to aid them in evaluating 

the implications of various options for patient care. With these models it is possible to 

have any arrival patterns, for example, winter pressures, and any casemix of patients. 

Thus the models can be tuned to capture the important, different, features of the various 

critical care units, the current practice, and possible changes in the current practice, can 

be reflected in the models. The modelling process has highlighted different approaches 

to help improve patient care by taking appropriate action at the individual unit level 

and through improved co-operating between regional units. 
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Chapter 9 - Moving Forward; Challenges 
and Opportunities 

9.1 Chapter Introduction 

This chapter draws together the research themes of previous chapters and aims to 

provide a synthesis of the research, practical work and issues raised. In many respects 

the work may be regarded as a feasibility study into the potentials of operational 

modelling for the planning and management of healthcare resources. During the period 

of research, working alongside a number of healthcare personnel from the participating 

hospitals, a number of central themes have emerged. The purpose of this chapter is to 

explore these issues representing both challenges and opportunities, in order to provide 

a basis for tentative conclusions about the current state of modelling for healthcare. 

Against the backcloth of the literature review, and based on personal experiences of 

working with the hospitals and the lessons learned from the research work itself, an 

attempt is made to present a framework for the successful design and implementation 

of operational models in a healthcare environment. 

9.2 Identifying Critical Issues and Challenges 

During the course of the case study work, a number of issues defining the primary 

challenges faced by the modeller in this field have emerged. It is fair to say that their 

resolution determines the likely success or failure of healthcare modelling in general. 

This section explores these key challenges under a series of subject headings. 
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9.2.1 Complexity 

Anyone who has experienced the richness of interaction and activity of a district 

hospital, for example, will readily empathise with the inherent complexity of the 

system. You cannot fail to be impressed by the elaborate organisational structure and 

systems entailed in its operation. Complexity exists at all levels of the health service, 

from the society of disparate individuals who comprise the staff and patients, to the 

organisational and strategic relationships that exist both within and between the service 

providers. 

The field in which the NHS is operating is in constant turmoil. It is absurd to assume 

that the delivery and planning of healthcare will remain static in this country. The 

political and socio-economic elements of the healthcare system give rise to the need for 

structural reform. In the UK there is little doubt that the complexity of healthcare 

management has been compounded by government led changes. Some of the multi-

dimensional factors contributing to the general complexity of the system include; 

® Demographic change 

® Social change 

® Organisational change 

® Political change 

® Strategic change 

® Technological change 

® Clinical change 

® Inherent variation and uncertainty in treating individuals 

Often a change at one level of an organisation can impact in an unforeseen way on 

other levels of operation. For example, changes to the number of beds will impact on 

the number of necessary theatre sessions. Thus organisational and strategic changes 

cannot be considered in isolation from the complex network of inter-and intra-relating 

hospital services. 

In such circumstances, it is important to ask whether quantitative operational tools, 

such as the simulation models presented in this thesis, can play a useful role in the 
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context of healthcare management. It is evident that a common current practice is to 

plan and manage hospital capacities through a simple deterministic spreadsheet 

calculation using average patient flows, average needs, average length-of-stay, average 

duration of surgical operations etc. Mathematically speaking, a hospital corresponds to 

a complex stochastic system so that the common deterministic approach for planning 

and managing the system can be expected to be inadequate. It has been shown that the 

deterministic approach will typically underestimate hospital requirements. With great 

advances being made in computing power and technology, it is fair to conclude that the 

need to create simplistic unrealistic models is unnecessary and outdated. The 

mathematical modelling approach of OR, and in particular simulation methodology, is 

ideal for dealing with complexity, uncertainty, variability, constraints, and scarce 

resources. Appropriate models can avoid the dangers of planning on the basis of 

average values only. This research has identified the benefits and opportunities of the 

development, solution, and validation of sufficiently detailed stochastic models for 

planning and managing hospital capacities. 

9.2.2 Diversity 

Diversity exists at all levels in the health service and forms a central aspect of the NHS 

culture. It is a reflection of a number of factors including the diversity between 

individuals at work within the NHS, between the management of the service providers, 

between the information systems employed and between the populations that each 

institution seeks to serve. 

The majority of NHS management is borne by the administration of local service 

providers themselves. For example, a hospital will plan and manage patient care at a 

local level, independently of other hospitals in the UK. Current Labour Government 

policy appears to be promoting this cause, with policies directed at giving greater 

managerial flexibility at a local Trust level. It may be argued that this helps to ensure 

that past inefficiencies of the NHS are avoided by giving increased responsibilities and 

incentives, together with the penalties that come with poor performance, to effectively 

privatised parts of the healthcare system. The result however is that healthcare 

institutions, although conforming to national standards, often have their own 
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idiosyncratic methods and operations. It is amazing to contemplate that between 

hospitals, even separated in distance by a few miles, the differences are clearly evident. 

For example, there are different ranges of specialities, different arrangement of wards 

and different ways of collecting and analysing data within the Trusts. 

From a modelling perspective, this represents a clear challenge. One approach could 

be to focus research at the level of individual service providers and to limit findings to 

particular institutions. This approach seems to have been adopted by the vast number 

of papers reviewed during the literature search as detailed in Chapter 3. The major 

downside to this approach is the large overheads entailed in producing institutional 

specific models with irrelevance to a wider NHS context. Modelling tools that are 

targeted for specific areas of healthcare application are limited by the focused scope of 

the models. Unfortunately many of the proposed models suffer from this fate of over-

specificity to one scenario of care. 

More generic models, that may be applied to a number of healthcare providers and 

used to model a number of patient-care scenarios, bring obvious benefits. The 

development of the generic framework for the modelling of hospital resources 

exemplifies one variant of the generic approach. Whilst acknowledging the challenges 

of diversity and complexity, models within this framework incorporate generic 

processes with the ability to fine-tune the model to reflect local conditions. Hence we 

obtain one operational model for many healthcare settings as opposed a hospital-

specific suite of programs. Unfortunately there is little evidence of their widespread 

adoption at the management levels in the NHS. Hopefully over time, funding bodies 

such as NHS Executive and MRC will come to appreciate and fund more projects 

aimed at developing operational models to deliver research findings applicable to the 

widest possible healthcare audience. Such models represent excellent value for money 

in terms of grant expenditure versus advancement and transfer of knowledge across the 

NHS. 
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An operational modelling approach is likely to be unfamiliar to the vast majority of 

healthcare managers and clinicians in the NHS. It is often consequently treated with 

caution and slight contempt. The adopted evolutionary development approach taken in 

this research goes some way to easing the fears of the client. This approach requires a 

constant dialogue with the end-users (hospital consultants and mangers). Models may 

then be created and enhanced alongside the potential users. It is fair to say that 

confidence in the model is only gained through verification and validation techniques. 

This ensures that the model is right (behaves as required) and that it is the right model 

(is modelling the true real-life system). This should be considered as a stepwise 

process; an ongoing dynamic in which both the modeller's and client's confidence is 

gradually increased. Hopefully there will come a time when the model is trusted 

enough by the client to accurately represent the real system to a degree that is sufficient 

for the purposes at hand. 

Validation and verification must be recognised as fundamental to the modelling and 

development of healthcare resources. Given the political sensitivities that often 

accompany the decision making process in healthcare management (section 9.2.5), this 

becomes especially important. Managers and clinicians appear only to gain confidence 

and trust after the model has been used and is seen to be validated by mimicking 

observed results over time. 

9.2.4 Data a vailability and quality 

The old adage "garbage in; garbage out" is nowhere more relevant than in the context 

of modelling and simulation. A model is only as good as the data that informs its 

development. Within the healthcare domain, the range of data required varies 

enormously according to the nature of the model and its purpose. Confidence in the 

data however, is prerequisite to a model's credibility; a necessary condition (but not 

itself sufficient). 
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Although there is undoubtedly an enormous quantity of data collected in one form or 

another within the health services, it is less certain that this always forms the basis for 

useful decision support. More recently NHS Trusts have responded with the creation 

of departments given grand names such as Hospital Strategic Analysis or Trust 

Information Team. Now more than ever there is a need for evidence-based hospital 

planning and management by utilising the vast data supply to deduce meaningful 

hospital information for managers. One of the main factors inhibiting the efficient use 

however is the multiple classes of data that are collected and the wide range of interest 

groups and objectives that need to be served. Financial, contractual, clinical, 

personnel, operational, audit and strategic needs all place different demands on the data 

collection exercise. Partly in response to this need, the systems used for collection vary 

widely, ranging from manual systems such as nurse diaries and operating theatre 

logbooks, through to specialised departmental databases and hospital information 

systems. 

In hospitals, the primary source of patient information is the Patient Administration 

System (PAS) or Patient Management System (PMS). This is used to routinely collect 

information on every patient who passes through the hospital. Typical fields include 

the patient name, address, date of birth, admission date, discharge date and diagnosis 

(HRG). Much of this data formed a central role in the case studies (Chapter 7). With 

such a large source of data, often in the region of 70,000 inpatient records of 

information per year for a typical medium sized NHS hospital, it is so bewildering and 

frustrating that the NHS often seems starved of information with limited use of 

evidence-based management at the Trust level. 

The issue of data quality is clearly central to building confidence in the modelling 

process. Accuracy unfortunately can rarely be assumed. The recording of clinical 

data, for example, is an area where problems of classification are particularly acute. 

Likewise, the recording of medical activity, especially within hospitals, is fraught with 

problems. The use of the FCE (Finished Consultant Episode) as the standard activity 

measure for instance, has widely been criticised although an alternative is not 

forthcoming. There is a strong suspicion that FCE measurements can be too easily 

manipulated for contractual purposes, for example, by amplifying the total number of 

FCEs by transferring the same patient around different hospital specialities. 
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In many respects the problems of attaining high data quality in healthcare is a reflection 

of the inherent difficulties and complexities as discussed in previous sections of this 

chapter. Clinical coding for example is beset with difficulties and often coding clerks 

may have little clinical knowledge. Databases themselves are often incomplete with 

missing values and erroneous data entries in many of the fields. For example, it was 

common during the course of this work to find within provided datasets negative ages, 

clinical codes that do not exist and patients who were apparently discharged before 

they were admitted. Data quality represents a major challenge to the modeller. 

Extreme care must be exercised when handling and analysing hospital data. 

9.2.5 Politics 

The political dimension of healthcare plays a major role in the management and 

decision-making processes within the organisation. It seemingly permeates every level 

of the service and becomes quickly obvious to anyone involved in the management and 

planning of resources. The NHS is one of the best loved in principle, most vilified in 

debate and least understood parts of the welfare provision of this country. Funded 

largely from national taxes, central government has an intense interest in its well being, 

the resources it consumes, and the service it provides. This political element 

significantly impacts the way decisions are made and how they are presented. At local 

level public opinion often manifests itself as opposition to changes to its service. At 

the national level government policy is frequently a subject of much debate. 

It is important that modellers understand the politics of the environment in which they 

are working. It is unlikely that operational models will be perceived in a neutral light 

given the pervasive nature of the political dimension in the NHS. Precautions must be 

taken to safeguard against distortion and misuse of the models, for example by 

managers trying to use the model to prove their own beliefs. 

The political element was never more evident than when the model was being used to 

examine the way in which the operational effectiveness and efficiency of the system 

could be improved by changing the working culture of hospital consultants. There still 

persists in today's NHS a them and us working culture, with consultants often in 
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conflict with specialty managers attempting to bring managerial changes to the running 

of wards. Hospital managers often saw the simulation as a tool to potentially influence 

change. It should be stressed that operational modelling tools have a large role to play 

in that they can quantify the impact of change and help in objective, as opposed to 

subjective, decision-making. There is however a need to be aware of any specific sub-

group agendas so that the modelling process is not railroaded by external political 

factors. 

9.3 Identifying Opportunities 

The previous section has highlighted potential challenges that may impede an 

operational modelling approach for the planning and management of healthcare. The 

work however has also identified a number of opportunities for simulation modelling to 

make a significant impact on the way in which healthcare is delivered within the NHS. 

9.3.1 Application 

There is a vast range of areas in which simulation could be applied in healthcare. Even 

within a specific area of research, there are a number of ways in which simulation 

could be utilised. Some of these themes will be picked up within the further research 

discussion in Chapter 10. Below is a list of potential simulation projects within a 

hospital capacity modelling context. This list was evolved from discussions with 

participating NHS Trust managers. 

® Planning bed numbers 

o Workforce rostering 

« Planning operating theatre needs 

® Scheduling operations 

• Management of ward beds on a day-to-day basis {diary-planner) 

® Costing resources 

» Contingency planning 

® Management of waiting lists 
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® Resource planning for new configurations of care 

® Planning and management of outpatient resources 

® Outpatient clinic scheduling 

« Resource planning for a health authority (movement of patients within a region) 

In addition to the many areas of application, it is possible to define various types of its 

use. Model utilisation will often dictate which form of simulation is necessary. For 

example, VIS could be used when it is desirable to visualise the movement of patients; 

perhaps suitable for bed planning but unnecessary for a waiting list management 

simulation tool. Potential types include operational simulation (what-if scenario 

tools), educational simulation tools (to facilitate understanding of a particular system) 

and real-time simulations (decision support tools). 

In addition to what may be termed patient-flow simulation models, which capture the 

movement of patients through healthcare organisations (hospitals, outpatient clinics, 

GP surgeries etc.), are patient-progress models which capture the movement of 

patients through the natural history of a disease or medical complication. The Institute 

of Modelling for Healthcare (IMH) has a wealth of experience in building models for 

this purpose. These including simulation tools to examine the care of patients with 

asthma and HIV/AIDS, and screening models for colorectal cancer and breast cancer. 

There is an endless list of possible applications for the modelling of diseases. 

9.3.2 Emerging technologies 

Advances in simulation software and technology are only now beginning to be applied 

in new areas of healthcare. This has been aided by dramatic falls in the cost of 

computing hardware. Access to powerful simulation tools is no longer restricted to 

large businesses with large research budgets. Instead, for as little as under £300, 

hospitals may purchase easy to use simulation packages for their own purposes, 

provided of course they have suitably qualified personnel to work them. 

More recent advances in simulation include 'Virtual Reality' (VR) applications which 

are now becoming more widely used in healthcare, primarily to allow consultants to 
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rehearse complex surgery on a three-dimensional computer-generated human body. 

Other applications of VR include 3D graphics built into simulation software to allow 

the user to model a hospital building (for example the WITNESS software by Lanner 

Group). 

Real-time systems also have a major role to play in the future of healthcare 

management. For example, the use of decision support systems (DSS) to assist in the 

daily running of a hospital. Such tools represent a large opportunity to the OR 

community. Although there has been some evidence of their use in recent use (Rojas 

and Martinez, 1998), there is however a great need for similar and more advanced 

models for use in a wider healthcare setting. 

9.3.3 Promoting the cause 

Key to the success of the future role of operational models is the ability to extend the 

user base; to encourage and promote the methodology. This may be achieved through 

successful projects being given the acknowledgment they deserve in publications that 

provide the widest possible readership to healthcare professionals (e.g. BMJ). 

Academics tend to limit publications to more technical and subject specific audiences 

through mathematical, operational research and computing journals. There is a real 

need for the transfer of knowledge to potential healthcare "clients". Experience has 

shown that many managers are simply not aware of an operational approach and in 

particular that of simulation. It is only through discussions and presentations of 

existing models that they are able to understand and appreciate the potential benefits. 

9.4 Selecting an Appropriate Simulation Tool 

The research work as described in this thesis has utilised different simulation 

approaches for the modelling of healthcare resources. The deliberate choice of 

different techniques allows for a discussion on the advantages and disadvantages of 

each approach. In general, careful consideration should be given to selecting the 
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appropriate simulation tool for the project in hand. The choice will likely depend on a 

number of factors, such as: 

® Client preference 

* Cost 

® Time 

® Size of simulation (estimated number of simulated entities) and complexity 

® Available computer hardware (to develop on and that of the end user to run on) and 

software, and existing client IT infrastructure and support 

® Expertise/skills of the modeller 

* Speed of simulation (runtime) 

® The importance of a visual representation (VIS) 

® Whether the model will be handed over to client 

* Ease of use by end user 

In essence, the modeller must choose between building the simulation from scratch 

themselves (a programming approach) as opposed to making use of existing simulation 

tools {off-the-shelf approach). Furthermore, if the off-the-shelf approach is chosen, it 

may be possible for the modeller to adapt the model in the desired manner by 

incorporate some programming elements outside of the software package itself (e.g. 

combining Visual Basic with SimulS via an Excel front and back-end). 

The PROMPT model (Chapter 6) was developed using the programming approach. 

This was built within the TOCHSIM simulation shell using Object Orientated Coding 

in a Delphi software environment. The CCU simulation models (Chapter 8) however 

have been built using the commercial software package SimulS and enhanced through 

Excel, Visual Logic and Visual Basic. Based on the author's experience of creating a 

number of healthcare simulation tools, the purpose of this section is to highlight the 

key benefits and limitations of both the programming and off-the-shelf approaches. 

These points are intended to act as issues to consider when proceeding with a 

simulation-modelling project. Clearly there is no right or wrong answer to the question 

of which approach to select. Instead, the final choice of tool will likely depend on the 

modeller's personal preferences, model utilisation, the factors bulleted above and the 

issues raised below. 
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9.4.1 The programming approach "• 

^ Benefits 

• The model can be design to meet the exact specification 

• It may be tailor-made for the end user 

• It does not require the client to buy commercial software - only the programmed 

executable is required to run the model 

• The simulation may be readily designed to read in data from / output data to 

existing client systems 

• Provided models are constructed using a suitable simulation shell (e.g. Three-phase 

or event-based approach), run-time speeds are typically very fast 

• There are no constraints to the possible size of simulation (numbers of entities, 

resources, activities etc.) 

! Concerns 

• Takes a long time to code and build models (more suited for mid to long-term 

projects rather than for quick solutions) 

• VIS elements may take a long time to design and code 

• Requires modeller with skills in computer programming 

9.4.2 The off-the-shelf approach 

Benefits 

• Rapid time to design prototypes and final model 

• Requires little programming skills as most packages use Windows 'point and click' 

technology (create the model by selecting appropriate simulation objects from the 

menu toolbar) 

• Possible to build the model 'in front' of end user (design and draw processes 

directly onto the computer screen interactively with end user) 

• Can enhance model by linking to other packages (e.g. MS-Excel which most clients 

are familiar with) 
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! Concerns 

® Model may not meet exact user requirements (for example, limited functionality of 

objects within software may not mimic exact real-life processes) 

® Difficult to give a tailor-made appearance (for example no main menu, problems 

with customised data input and summary sheets, limited number of graphs 

permitted within software package etc.) 

® Requires the client to buy the commercial software (issues with cost, license 

problems and number of machines that will run the software) 

9.5 Towards a Framework for Successful Operational 

Modelling for Healthcare 

Healthcare modelling projects will typically be varied in their nature, according to the 

needs of the client and the hospital system under consideration. Based on the author's 

experiences of working with a number of healthcare clients, some general conclusions 

and issues however have emerged. The following list has consequently been evolved 

and is intended to provide points for discussion within a framework for the successful 

implementation of healthcare operational models. Each of these issues should be given 

the due attention they deserve, as they will ultimately determine the likely success or 

failure of the project. This framework is intended for use when embarking on a new 

study. 

The thirteen discussion points are described below. A framework has been evolved to 

show the natural order and causal relationships between these issues. Each healthcare 

project may be divided into three high-level components; Pre-model, Model and Post-

model stages. The presented framework illustrates the positioning of the thirteen issues 

within the modelling project as a whole, together with inter-dependences and natural 

orderings. 
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1. Form a steering group 

Identify appropriate hospital personnel to form a group to steer the direction of the 

work. This group should meet at agreed regular intervals and should discuss project 

management issues. Members should be made up from relevant areas of the hospital 

who should act as key contact points for information or provide access to other staff 

Appoint one member of the steering group to act as Chairperson. 

2. Conduct a feasibility study 

A critical part of any project; scope out the project and create a project brief to be 

agreed by the steering group. Identify what is required and crucially what are the 

project deliverables and time scales. Check for any potential obstacles such as lack of 

necessary data or access to key hospital staff. If deemed feasible, a comprehensive 

feasibility study lays an excellent foundation for a successful project. 

3. Spend time collecting the necessary data and information 

A considerable amount of time should be spent working on-site at the hospital and 

liaising with hospital "process-owners". Much of this contact may be informal and 

unstructured, although time should also be spent sitting on any existing and appropriate 

working groups and within process re-design teams. These meetings provide a rich 

source of insight into management processes at different levels and consequently add to 

the understanding of hospital. A range of structured methods should also used to elicit 

feedback as necessary. Such techniques could include questionnaires, structured 

interviews and more soft-system OR methodologies for brainstorming and cognitive 

mapping activities. Raw data may be obtained from the relevant hospital data sources 

(such as Patient Management Systems). 

4. Pay attention to data quality 

Having obtained the necessary data and information, never assume completeness or 

quality. Check issues that might have biased the contents (such as a sudden surge in 

day-case surgery to meet government targets). Carry out necessary preliminary data 

quality checks and analysis to identify any outliers, data entry errors or anomalies. 
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5. Think carefully about the level of detail 

One tension that exists within healthcare modelling is the extent to which it is possible 

to abstract the processes of care and still retain a level of accuracy within a model 

capable of producing useful results. A trade-off needs to be recognised between the 

need to simplify processes and the need to retain detail to accurately reflect the real 

system. 

6. Select the appropriate tools 

Initially spend necessary time to decide on the most appropriate tool(s). The OR 

practitioner should call upon their toolkit of OR techniques and select those which best 

meet the needs of the problem with the end user in mind. For example this could 

involve simulation models (with careful selection of the best methodology as discussed 

in section 9.4) coupled with suitable data analysis packages and databases. Bear in 

mind the desired end product which will influence the appropriate tools. For example, 

if a graphic representation of the system is required then this will narrow the range of 

potential approaches. 

7. Design for wide use 

Develop models with flexibility in mind. For example, where possible parameterise 

variables so that they may be readily changed by end-users at the hospital and indeed to 

reflect conditions at other hospitals (potential clients). This level of flexibility avoids 

the misgivings of institutional specific models with irrelevance to a wider NHS 

context. 

8. Involve end-users at all times 

Maintain strong links with the client and make the necessary visits to the hospital to 

meet key personnel. Prototype models should be developed alongside end-users and 

not independently from them. A successful project involves a powerful combination of 

OR practitioners and medical experts. Be aware that if at the end of the work you are 

planning to propose change, there has to be a top-down emotional case for change as 

well as a bottom-up rational case for change. Hospital politics are likely to be 

entangled within this process of change (see later point). 

276 



Chapter 9 Moving Forward: Challenges and Opportunities 

9. Build credibility 

Spend time getting to know key personnel and understand their role within the 

organisation. Presentation of prototype models to targeted individuals will build 

credibility over time if the models can be seen to be meeting expressed user needs and 

reflecting real-life processes. 

10. Acknowledge the politics 

Seek and acknowledge any political sub-agendas. Maintain a non-biased objective 

view throughout the work. Try to keep a safe distance from political issues but 

understand and accept political relationships within the organisation. Use these to your 

own benefit. 

11. Allocate resources 

A successful project will need the necessary resources allocated to the project both 

within the hospital and back at base (practitioners organisation). These are not only in 

terms of human resources but should include computing hardware, software and other 

resources as relevant. 

12. Foster relationships 

Keeping the client happy with good working relationships and a successful outcome 

will likely lead on to future projects with the same client or useful endorsements when 

approaching other healthcare organisations. 

13. Promote the results 

Ensure that successful projects are promoted both within the hospital and to a wider 

healthcare audience. This may be achieved through presentations of the work at 

healthcare meetings, conferences and through publications. 
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Pre-Model 
1. Form a steering group 

I 
2. Conduct a feasibility study 

8. Involve end-users at all times 9. Build credibility 

Model 

5. Level of detail -4 6. Select appropriate tools 

I 
3. Data and information gathering 

i 
4. Data quality 7. Design for wide use 

10. Politics 11. Allocate resources 

Post-Model 

12. Foster relationships 
1 

13. 
• 

Promote the results 

Figure 9.1: A causal diagram for successful implementation of healthcare models 
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9.6 Chapter Summary 

Healthcare modelling is beset with many challenges. It is important that careful 

consideration is given to these issues, ranging from politics through to data quality and 

availability. In order for a healthcare operational modelling project to succeed, a 

number of points should be borne in mind both before commencing and during the 

work with the healthcare organisation. A framework towards successful 

implementation has been evolved through the author's own experiences. This shows 

that many of the inherent challenges may be overcome by adopting suitable working 

methods and standards. Most of these reflect issues that are unique to, or intensified in, 

the healthcare environment. 

With greater emphasis now on efficient and effective healthcare to meet the needs of 

our nation, these are surely exciting times for healthcare OR. There is so much to be 

done and endless possibilities and opportunities. It is crucial however that the 

necessary steps are taken to ensure that the future generation of work meets the true 

needs of managers and clinicians. In particular, careful thought should be given to 

selecting the appropriate operational tools. Successful projects should be promoted to 

a wider healthcare audience. 
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Chapter 10 - Conclusions and Further 
Research 

10.1 Chapter Introduction 

The provision of healthcare services is perhaps one of the largest and most complex 

industries worldwide. As one of the essential necessities to sustain life, it faces the 

consequences of increasing demand in times of limited financial resources and 

competing social needs. 

The current policy in the United Kingdom focuses on appointing responsibilities and 

decision making to regional and district health authorities rather than the centralisation 

of power. It is expected that in this way the needs of the population in each region will 

be successfully met, thus leading to the improvement of the NHS performance. 

Providing the appropriate medical care involves decision-making in terms of planning 

and management of the healthcare services and the resources contain within. However, 

such decisions occur in a larger context that includes ethical, economical, social and 

legal considerations. Issues surrounding planning and management of healthcare 

services are varied and include: 

• The need for appropriate level of care. 

® Supply of adequate resources, including beds, operating theatres and workforce. 

• Measurement of resource consumption. 

e The need of effective monitoring of the provision of care. 

To help meet these needs, the research as described in this thesis has explored many 

issues and has proposed various frameworks and models for use within the healthcare 

profession. The purpose of this chapter is to review the ground covered and to outline 

the future direction of research in this field. 
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10.2 Thesis Review 

This thesis concerns the planning and management of healthcare resources. The 

purpose of this section is to discuss whether the research objectives, as discussed in 

section 1.2, have been met and to summarise the main conclusions from the research 

work. 

10.2.1 Simulation methodology as a tool for decision support 

Within the healthcare environment, it is clearly apparent that there is a great need for 

detailed quantitative management tools to aid decision-making. This has been evident 

through the expressed needs of steering groups and through the magnitude of possible 

model applications, some of which have been described through case studies (Chapter 

7). To many in the profession, the use of operational tools such as the adoption of a 

simulation methodology represents a new and untested concept. 

A common current practice is to plan and manage hospital capacities through a simple 

deterministic spreadsheet approach using average patient-flows, average needs, average 

length-of-stay and average duration of surgical operations. Patient-flows, patient needs 

and utilisation of hospital capacities involve complexity, uncertainty, variability, 

constraints and scarce resources. Mathematically speaking, a hospital corresponds to a 

complex stochastic system so that the common deterministic approach for planning and 

managing the system can be expected to be inadequate. 

Unlike deterministic models, stochastic models provide a more accurate and realistic 

model by incorporating uncertainty and variability through the use of probabilities and 

random variables. In particular it has been shown that such models contain desirable 

properties for the modelling of healthcare resources, in which the time between 

transitions of states can occur after any positive time spent in a state and where this 

transition time can depend on the transition that is made. 

The analytical solution of stochastic models, as necessary for the modelling of hospital 

capacities, presents a formidable challenge. Unless restricting assumptions are applied, 
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many stochastic models are impossible to solve analytically. Numerical methods are 

needed for solving realistic stochastic models. A computer simulation need not make 

such stringent simplifying assumptions and is an ideal tool for modelling hospital 

capacities. It is hoped that this thesis has demonstrated the power of computer 

simulation in support of management decision-making processes for a variety of 

healthcare resources. 

10.2.2 Classification techniques 

The research has explored the use of classification techniques for the creation of patient 

groupings. Necessary patient groupings may then be fed into developed simulation 

models and individual patients from each group passed through the particular 

healthcare system of concern. In order to capture the uncertainty and variability 

amongst the patient population, a number of classification techniques have been 

considered and evaluated for their relative performances and practical usefulness. 

Research has shown that there is not necessarily a single best classification tool but 

instead the best technique will depend on the features of the dataset to be analysed. 

The research has made a start in investigating what these features are with particular 

emphasis on healthcare data. 

A survey of healthcare staff has however revealed that tree-based tools, such as CART, 

do have a greater practical appeal than that of the other tested techniques. This is a 

measure of the extent to which the CART algorithm produces comprehensible results 

that are generally easier to interpret by medical staff than the results of other algorithms 

and on the time it took for hospital staff to understand the technique, prepare the data 

and actually perform the analysis to produce correct and meaningful results. 

A statistical package, Apollo, has been developed as part of the evolved generic 

framework for modelling healthcare resources. Apollo incorporates the CART tree-

based algorithm, that assists in the production of clinically and statistically meaningful 

healthcare groupings. For example, these could be patient groupings based on LoS, 

operation times or survival rates. Derived groupings may be automatically saved and 

fed in to developed simulation models within the framework. 
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10.2.3 Evolving a generic framework 

A generic framework has been evolved in the light of perceived user-needs and real-

life hospital processes. Developed models for hospital resources and critical care units 

should be designed within this framework. A specially designed statistical analysis 

program Apollo (as described above) has been developed to enable the creation of 

statistically and clinically meaningful patient groups and to obtain information about 

particular flows over time. This automated rapid classification of patient groups forms 

a key differentiator between this approach and other attempts to produce practical 

capacity planning and management tools. Developed simulation models within this 

framework take individual patients through time as they pass through the chosen 

healthcare system. These models take uncertainty, variability and complexity into 

account properly. Figure 10.1 illustrates the inter-linking components of the proposed 

approach. 

Hospital 
databases 

Environmental 
factors and 
constraints 

Proposed 
scenarios 

Management 
decision-making 

processes 

Quantitative 
evaluation of 

proposed 
scenarios 

Agreed hospital 
configuration / 

delivery of service 

Developed 
simulation models 
(e.g. PROMPT) 

Data extraction, 
analysis and patient 

classification 
{Apollo) 

Figure 10.1: Framework components 

The framework was critical to the success of developed simulation models. Integrated 

models for the planning and management of hospital beds, theatres and workforce 

(PROMPT) and for critical care services have been developed within the evolved 

framework. Each model is suitably generic to allow for the models to be readily used 

by other hospitals, helping to promote the benefits of detailed and flexible computer 

simulation tools. 
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10.2.4 Towards successful implementation 

In many respects the work may be regarded as a feasibility study into the potentials of 

operational modelling for the planning and management of healthcare resources. 

During the period of research, working alongside a number of healthcare personnel 

from the participating hospitals, a number of central themes emerged representing both 

opportunities and challenges to the operational modeller. It is fair to say that the 

resolution of a number of issues determines the likely success or failure of healthcare 

modelling in general. To this end, a framework towards the successful implementation 

of modelling tools in healthcare is proposed. Each of the issues raised within the 

framework should be given the due attention they deserve. 

The deliberate choice of different simulation tools throughout the research has allowed 

for a discussion on the advantages and disadvantages of each approach. In essence, the 

modeller must choose between building the simulation from scratch themselves (a 

programming approach) as opposed to making use of existing simulation tools {off-the-

shelf approach). In general, careful consideration should be given to selecting the 

appropriate simulation tool for the project in hand. The choice will likely depend on a 

number of factors. 

10.3 The Direction of Future Research 

Working closely with the participating NHS Trusts has revealed a number of 

opportunities for operational modelling to make further significant impacts on the way 

in which healthcare is delivered within the NHS. At present the use of operational 

tools within the profession is limited and successful applications are often not given the 

wide publicity they deserve. There is considerable scope for further work. Some 

proposals are described in the subsequent sections of this chapter. 
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10.3.1 Modelling the wider environment 

Critical issues within the hospital setting have highlighted the need to research and 

model a wider environment incorporating the population structure that the hospital 

serves and the delicate balance of links to other healthcare institutions within the 

region. For example, the number of bed-blockers (elderly patients who should not be 

in hospital but in a more suitable care setting), and the great stress that such patients 

place on bed capacities, points towards the need for an integrated region-wide model 

examining the flows of patients between hospital, elderly day-centres, nursing homes 

and home-care facilities. This potentially powerful model could help to structure mid 

to long-term plans for the provision and distribution of elderly care places within 

society. With an ageing population, the country can ill-afford to misjudge future 

elderly needs. The government, with the aid of necessarily detailed, integrated and 

valid operational models, should begin to plan to avoid placing the healthcare system 

into further crisis and to avoid potentially placing lives at risk. 

The PROMPT model illustrates the benefit of simulation tools for examining the link 

between hospital beds, theatres and workforce needs. The PROMPT model and 

similar capacity models do however need to be enhanced to incorporate information on 

the population that it seeks to serve. The developed models are currently independent 

of community needs and in practice planning should be a regional issue accounting for 

the demographic and socio-economic composition of the surrounding population and 

resulting healthcare needs. For example, current projections on the forecasted number 

of patients expected to require hospital care are conducted outside of the PROMPT 

model and then fed in as a user input for scenario analysis. Future work should 

concentrate on developing a total integrated package linking capacity models to the 

necessary forecasting tools. This tool would link the demographic structure with other 

important factors, such as the health of the surrounding population, to predict referral 

rates and feed them directly into the simulation model. In this way, intervention 

policies and health improvement programmes within the region may be monitored, 

their consequences captured in the model and their impact on hospital resources 

measured. 
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10.3.2 Hospital data sources and databases 

It was necessary to access a number of hospital data sources during the period of 

research. Perhaps no other system within the NHS displays the levels of diversity as 

hospital data sources. The problem arises from the huge assortment of data collection 

and storage methods that are in use at both hospital-wide and departmental levels 

across the UK. Based on personal experiences of working with various NHS Trusts, 

current data storage methods may be categorised under the following three headings; 

® Paper-based records - despite the availability of cheap and reliable computer 

systems, some hospital departments still only keep paper records of patients. 

Accessibility and analysis of this data is a painful process. 

® Out sourced databases - databases by external software consultancy groups. 

Built and implemented often at great financial expense to the hospital, most are out 

of the control of the hospital themselves. So, for example, if an extra field or an 

extra report is required, the hospital must pay for the consultancy group to carry out 

the necessary modifications. It is possible that the data legally belongs to the 

consultancy group who demand extra money to give access to the raw data for 

analysis. All too often there is mismatch between hospital requirements and the 

consultancy deliverables. 

® In-house databases - depends on the skills of the personnel within the hospital IT 

department. All too often though, due to the failure to attract the right calibre of IT 

staff (salaries are ridiculously low compared to other IT jobs), in-house databases 

are limited in number and quality. 

Some of the current critical issues surrounding the majority of existing databases in use 

across UK hospitals appear to include: 

® Lacking of ease of use - many systems are still in DOS and are complicated to 

work with and difficult to use. 

« Lacking validation - most do not include self-validating rules so that the quality is 

prone to missing values or erroneous entries by the data entry clerk. 
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» Out of the hospital control - healthcare user requirements evolve over time, but 

without access to the source code, it is not possible for the hospital to re-configure 

different components of the database without reference to the software developers. 

® Lacking integration - hospitals may have various data collection sources, both at 

the hospital-level and for further research needs at a departmental level. Typically 

however there is no integration between different levels of databases and 

correspondingly there is often a need to duplicate data entry. 

® Small user-base - there arose a situation during the research where the only 

member of staff who was able to use a particular database had left the hospital and 

consequently no data had been collected until a replacement was found and trained. 

In summarising the current situation, there is clearly a great need for improved 

databases for use within the NHS. Such databases should be in the control of the 

hospitals themselves, have the ability to add/edit fields as necessary, be self-validating 

and be able to print a number of standard and ad-hoc reports as required. The 

combination of databases, with built in statistical and classification tools such as 

Apollo, and simulation models like PROMPT would be a powerful integrated hospital 

management tool. 

10.3.3 Diary planning tools 

In response to the need for improved research linking databases, classification tools 

and simulation models, a diary planner tool for use across a wide range of hospital 

departments is proposed. Initial discussions with healthcare managers and consultants 

have been well received with an enthusiastic response. A diary planner could greatly 

aid the effective monitoring of the provision of care and help improve the day-to-day 

management of hospital wards whilst still allowing for longer-term planning of hospital 

capacities by building on the foundations of the developed simulation models. 

The proposed model links a patient management system (patient database) with a 

graphical front-end so that staff can readily see the current status of the ward or 

hospital. For example, the diary planner could tell nurses and consultants information 
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on which patient is in which bed and how long they may be expected to remain in the 

bed. This prediction could be based on the results of an integrated classification tool 

(such as CART or a neural network) that learns and updates itself overtime. Based on 

medical and socio-economic factors, patient LoS may be obtained from evolved patient 

groupings and displayed next to the corresponding bed on the front-end display. 

By linking the current diary (case-mix on the ward) with information on the likely 

demand for beds over the forthcoming user-defined planning horizon (e.g. the next two 

weeks), an integrated simulation model could simulate the status of the ward over time 

and report back forecasted occupancy rates and refusals by shift of each day. A 

particular benefit of this system would be in the ability to see when in the planning 

horizon is the best time to schedule elective bookings. For example, the simulation 

model could report back the probability of there being n beds free for a given time 

block in the future and a management decision regarding patient booking(s) made 

based on this information. This would help avoid cancelling a large number of elective 

patients and generally improve the day-to-day efficiency of the ward and hospital. 

Figure 10.2 shows illustrative screen-shots of how a diary planning tool might look. 
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Figure 10.2: Illustrative screen-shots of a proposed diary planner tool 
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10.4 Chapter Summary 

The research work and developed operational tools have delivered a number of benefits 

to the participating NHS Trusts (see Appendix H). There is a vast range of areas in 

which simulation could be applied in healthcare and this research has identified a 

number of opportunities for simulation modelling to make a significant impact on the 

way in which healthcare is delivered. It is essential that the modeller is aware of the 

many potential pitfalls and limitations of the healthcare modelling approach. A 

number of issues defining the primary challenges faced by the modeller in this field 

have emerged. The success or failure of the modelling approach is dependent on the 

resolution of these challenges. 

Although significant progress has been undoubtedly achieved, it is vital to continually 

research and develop methodologies for improving the performance and delivery of our 

healthcare services across the face of the globe. There is a need to promote the evolved 

framework and developed models, such as those described within this thesis, to a wider 

healthcare audience. The flexibility of the models should aid this process and help to 

contribute towards the continued need for improved planning and management of 

resources. Whilst acknowledging that resources are limited and budgets are tight, the 

work has shown that there are a number of controllable variables and planning and 

management methodologies that can help to make life generally more comfortable for 

hospital staff and to improve the overall quality of patient care. 
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Publications and Presentations 

The combination of academic and hospital supervisors has enabled this research to be 

of practical use and benefit to the healthcare profession (Appendix H). As a 

consequence of the generic framework and flexibility of the developed operational 

models as discussed in this thesis, they have since been successfully used by a variety 

of Trusts across the UK and have been presented at a number of domestic and 

international conferences. The thesis has resulted in a number of publications, which 

are listed below, together with details of conferences at which the author presented the 

research. 

2002 Harper, P R & Shahani, A K (2002), "Modelling for the Planning and 
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Research Society. 53: 11-18. 

Harper, P R (2002), "A Framework for Operational Modelling of Hospital 
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2001 Shahani, A K, Harper P R, Vieira, I T and Costa, A X, "Planning for 

Critical Care Capacities". IMH pre-print. Faculty of Mathematical 

Studies, University of Southampton. 

"Planning and Management of Hospital Capacities: An Integrated 

Computer Model for Beds, Theatres and Workforce". Presented at A 

Celebration of Innovation in Health Care Conference (University of 

Reading). 

2000 Harper, P R, Dale, J, Foden, D, de Senna, V and Shahani, A K (2000), 

"Operational Modelling for the Planning and Management of Capacities in 

Hospitals". In Proceedings of The International Conference on System 

Science in Health Care (Budapest) 113-117. 
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1999 "Modelling for the Planning and Management of Hospital Beds". 

Presented at IFORS (Beijing, August 1999). 

Workshop Leader at the Health Care Development Group Annual 

Conference (Southampton, March 1999). Workshop on Stochastic 

Modelling and Statistical Analysis. 

1998 Healthcare Stream Organiser at the Young OR Conference (Guildford, 

April 1998). Presented "Towards an Integrated Hospital Capacity Model: 

Beds, Theatres and Workforce" and at the annual conference of the OR 

Society (Lancaster, September 1998). 
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Appendix A - Steering Committees 

In was important to delineate a coherent research and development approach consistent 

with the stated objectives of this thesis and the needs of the participating NHS Trusts. 

To meet this need, an evolutionary development methodology was adopted (Chapter 

4). This involved constant dialogue with end-users and its success was largely 

dependent on relevant hospital personnel contributing in many ways to the 

development and structure of the prototype models. 

This was achieved through the creation of steering committees to guide the work at 

both Reading and Portsmouth. Members were made up from relevant areas of the 

hospital and acted as key contact points for information and provided access to other 

staff One member of each steering group was designated as the Chairperson. These 

groups met at agreed regular intervals and discussed project management issues. 

A.1 Royal Berkshire and Battle Hospital NHS Trust 

Heather Bunce (Clinical Service Unit Manager - Adult Medicine) 

Jana Dale (Hospital Process Redesign) 

David Foden (Director of Change Management & Human Resources) 

Paul Harper (Institute of Modelling for Healthcare) 

Rodney Jones (Senior Analyst, Information Management) 

Sharon Keams (Chairperson; Director of Operations) 

Eva Morgan (Hospital Process Redesign) 

Chris Newman (Director of Womens Services & Child Medicine) 

Andrew Pengelly (Medical Executive Director) 

Arjan Shahani (Director, Institute of Modelling for Healthcare) 
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A.2 Portsmouth Hospitals NHS Trust 

Ginette Alexander (Corporate Accountant) 

Bill Broadribb (Executive Director of Finance) 

Andy Burrows (Deputy Director of Finance) 

Ann Carter (Senior Project Manager) 

Brian Goodridge (Head of Corporate Information & Applications) 

Paul Harper (Institute of Modelling for Healthcare) 

Nicola Hartley (Director of Change Program) 

Peter Hewlett (Chairperson; Executive Director of Development) 

Sue Millard (Head of PFI and Strategic Projects Accountant) 

Arjan Shahani (Director, Institute of Modelling for Healthcare) 

Liz Steel (Senior Project Manager) 

Graham Taylor (Information Manager) 

Michelle Wheeler (Capital Projects Manager) 
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Appendix B - Stochastic Modelling 

B.1 Deterministic and Stochastic Models 

A common current practice is to plan and manage hospital capacities through a simple 

deterministic spreadsheet approach using average patient-flows, average needs, average 

length-of-stay and average duration of surgical operations. Patient-flows, patient needs 

and utilisation of hospital capacities involve complexity, uncertainty, variability, 

constraints and scarce resources, as discussed in the previous section. Mathematically 

speaking, a hospital corresponds to a complex stochastic system so that the common 

deterministic approach for planning and managing the system can be expected to be 

inadequate. 

Overcoming variability by using average values, which although intuitively attractive 

when considering the large numbers of patients in the system, has the effect of 

significantly biasing results in an environment of non-linearity and variability. 

Consider a system in which the output, Y, depends on the input X, where Y = /(X) 

and X is a random variable as illustrated in Figure B.l. 

Input Output 

AT Y 

Figure B . l: A simple system 

Let E{X) = ju. K deterministic model that attempts to deal with variability using 

average values, so that E(y) » / ( / / ) , may seem intuitively simple for large systems. 

However in many practical cases this approach is likely to be inappropriate. 
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If the Taylor series expansion of f ( X ) is examined we have: 

f ( x ) = / ( M ) + { x - / j ) r ( p ) + r w + . 

which leads to 

E(Y) = E(f(Xj) = / ( / / ) + / V ) +... 

Hence, if / is non-linear and the variability in X is large, the approximation 

E(Y) = / ( / / ) would be a very poor one. The deterministic approach of using average 

values leads to significant bias and inaccurate results, typically under-estimating the 

true resource needs. 

Unlike deterministic models, stochastic models provide a more accurate and realistic 

model by incorporating uncertainty and variability through the use of probabilities and 

random variables. A stochastic process is a sequence of random variables X = {X,} 

where the parameter t usually denotes the time domain. Both t and X, may be 

continuous or discrete. The values taken by the random variables X, are called states 

and the domain of X is called the state space. A realisation (or simple path) of the 

stochastic process X is a sequence of states {x0,x,,x2,...}, wherex, is the value taken by 

the random variable X,. For the modelling work of hospital systems, the necessary 

stochastic descriptions involve discrete states and continuous time. Two stochastic 

processes have to be considered, namely Markov and semi-Markov processes. 

B.2 Markov and Semi-Markov Processes 

Markov processes are attractive because of analytical ease. They are probabilistic 

models, which form a special category of stochastic processes. The fundamental 

property of the Markov process is its memoryless property i.e. the probability that the 
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random variable X, takes a particular value x, depends only on and not on the 

previous values Notationally, this may be written; 

Under this Markov hypothesis, the main limitation is that the transitional probability of 

a patient changing status is taken to be independent of previous events, thus the 

likelihood of a patient remaining in a specific state remains the same from one time 

unit to the next. 

A semi-Markov process is a more general class of processes where the time between 

transitions of states can occur after any positive time spent in a state, and where this 

transition time can depend on the transition that is made. Each successive state 

occupancies are governed by the transition probabilities of a Markov process and the 

stay in any state is described by a random variable that can take on any positive, and 

not necessarily, an integer value. As an example, patients may pass through various 

states in a critical care unit (holding trolley to ICU bed to HDU bed to Ward bed) and 

the time spent in each state described by a random variable. 

Let p.j be the probability that a semi-Markov process that entered state i on its last 

transition will enter state j on its next transition. The transition probabilities p^j must 

satisfy the same equations as the transition probabilities for a Markov process. 

f = l , 2 , = 1 , 2 , 

and 

z = l , 2 , 
j=\ 

where N is the total number of states in the system. 
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Howard (1971) describes the process as follows: Whenever a process enters a state i, 

we can imagine that it determines the next state j to which it will move according to 

state Vs transition probabilities Aw • However, after j has been selected, but 

before making this transition from state i to state j, the process "holds" for a time t.j in 

state i. The holding times are positive, integer-valued random variables each governed 

by a probability density function (/) called the holding time density function for a 

transition from state i to state j. The cumulative function G^j{t) is the probability that 

the transition from state i to state j will fall between 0 and t. 

Returning to the previous critical care unit example, each patient will now have 

different probabilities of passing from one state to the next (for example, going from 

ICU bed to HDU bed to Ward bed, or ICU bed straight to Ward bed), and the times 

spent in each state (length of stay) are sampled from appropriate distributions. If 

lengths of stay are negative exponential variates, we obtain the Markov process. In 

general though, length of stay will follow other statistical distributions, such as 

Lognormal or Weibull. 

As an illustrative example of the semi-Markov process, consider a simplified model 

with state space 5 = {0, 1, 2, 3} and probabilities with the following probability matrix: 

P 

V 

0 1 0 0 

0 0 1 0 

0 0 0 1 

0 0 0 1 J 

The model is given in Figure B.2. 

0 ^ 1 — • 2 3 

Figure B.2: A simple model 
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With this simplification a modification can be made to the general notation of the semi-

Markov process. Define: 

and 

As an example, the probabilities of being in the first three states are as follows: 

/ 

Probability in state 0 at time t 1 - j / j {s)ds 
0 

Probability in state 1 at time t J/{s)ds - J/j{s)F^(x - s)ds = (s)(l -F^ix- s))ds 
0 0 0 

Probability in state 2 at time t J J / ( 5 ) ( x - 5)Jx[l -F^{t - x)^xds 

0 J 

The expected time of transitions may be calculated as: 

0 

GO / 

0 0 

00 / f 

0 0 0 

For the probability of being in the state of model with state space 5 = {0, 1, 2, ..., n} 

the following association can be observed: 

Psii,le[i](0 - ^(/-|)(0 " -̂ , (0 

where 

and ^ 
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This association is calculated using the differentiation rule: 

= ju{t,x)dx 
a(() 

J " 
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Appendix C - Simulation IVIodelling 

Models of various types are frequently used in Operational Research. Essentially they 

are all representations of a system of interest and are used to investigate possible 

effects of different scenarios, for example a new policy or the redesign of the system. 

The simplest models are probably physical (iconic) scale models to experiment with. 

Such models have limited use as they lack flexibility (are highly project specific) and 

are static (they are unable to show how various factors interact dynamically). 

Mathematical models, however allow a system to be represented in terms of logical and 

quantitative relationships and are then manipulated and changed to see how models 

react. 

Once a mathematical model has been built it must be examined to see how it can 

answer the questions of interest about the system it is supposed to represent. If the 

model is simple enough, it may be possible to work with its relationships and quantities 

to obtain an exact, analytical solution. The analytical solution of stochastic models, as 

necessary for the modelling of hospital capacities, presents a formidable challenge. 

Unless restricting assumptions are applied, many stochastic models are impossible to 

solve analytically. Numerical methods are needed for solving realistic stochastic 

models. A computer simulation need not, however, make such stringent simplifying 

assumptions and is an ideal tool for modelling hospital capacities. The aim of the 

simulation is the solution of a model which mimics the behaviour of a real-life system 

over time. A single run of the model corresponds to one realisation of the system 

under particular defined circumstances. Figure C. 1 summarises the possible ways to 

study a healthcare system. See Pidd (1998), Davies and O'Keefe (1989) and Law and 

Kelton (1991) for a more exhaustive review of simulation modelling. 
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Healthcare 
System 

Simulation 
Analytical 
Solution 

Physical 
Model 

Mathematical 
Model 

Experiment with the 
actual system 

Experiment with the 
model of the system 

Figure C.l: Ways to study a healthcare system 

Simulations are particularly useful for solving the complex models for the flow of 

patients through hospital because they can: 

® Incorporate and recognise complex patient-flows and hospital rules governing these 

flows. 

® Capture the variability of patients in the community (for example demand patterns, 

and length of stay distributions). 

® Be easily understood and used by health managers and planners. 

® Model large periods of time very quickly. 

® Reduce the risk of reliance on potentially erroneous or unavailable data by 

incorporating expert opinion. 

« Monitor use of resources over time, which aids the planning and management for 

hospital resource decision-making. 

» Model a variety of different scenarios with minimum additional effort. 
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C.1 Discrete- event Simulation 

The modelling of the individual patients through a hospital system is best 

accomplished with a discrete-event computer simulation. Discrete-event modelling 

observes the system whenever a change of state in the system occurs. The time at 

which the change takes place is termed an event, the objects which move in the system 

are known as entities, and an activity is defined to be the set of actions taken by the 

entities at each event. Finally, the simulation clock measures the passing of time. In 

the context of modelling patient-flows through hospital, entities are individual patients 

and the events constitute a patient changing from one state to another, corresponding to 

movement of patients around the hospital (for example moving from an inpatient bed 

to queueing for theatre or moving from an ICU bed to an HDU bed). 

Two differing approaches to writing discrete-event simulation programs exist. 

® The event-based approach. The programmer must decide what constitutes a change 

of state (event) and the changes that result from each event. Events are scheduled 

by being placed on the simulation calendar (a time-ordered list of events). The 

simulation clock moves to the head of the simulation calendar (time scan) and all 

events due at that time are subsequently executed (event execution). To summarise 

the advantages and disadvantages of the event-based approach; 

Programs run very efficiently and quickly ^ 

Programs are difficult to write ^ 

® The activity-based approach. The programmer must list all the conditions 

necessary for each activity to take place. The program then repeatedly tests for 

these conditions at every instant of time, and if satisfied, the respective activity 

occurs. 

Programs are easy to write and modify ^ 

Programs run very slowly ^ 
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C.2 The Three- phase Approach 

The pioneering three-phase approach was developed by Tocher (1963) and combines 

the simplicity of the activity-based approach with the efficiency of the event-based 

approach. Two different types of events exist: 

® Bound events (or B-events), which may be scheduled once placed in time-order on 

to the simulation calendar. 

® Conditional events (or C-events), whose executions depend on the fulfilment of 

certain necessary conditions. 

The three-phase approach is named after the adopted three-phase structure: 

Time Phase. Advance the simulation clock to the time of the B-event at the top of the 

calendar (i.e. the next event) 

B-Phase. Execute all B-events that are due to happen at this time 

C-Phase. Test all the conditions for all of the C-events and execute any that are now 

satisfied. 

The three-phases are repeated until either the calendar is empty, or until the duration 

(specified time to run the simulation) has been reached. 

The Operational Research group at the University of Southampton has developed a 

three-phase simulation shell called TOCHSIM, which was originally written in 

Borland's Turbo Pascal version 7.0. TOCHSIM consists of skeleton procedures for 

handling the queues used to hold the calendar of events and the entities in each state. 

Procedures to sample from various probability distributions are also included. 

Designing graphics in TOCHSIM (menus, input screens, output screens, graphs etc.) 

can however be a laborious process. As a consequence, Delphi software, which 

incorporates Pascal code and easy to design graphics, is now widely used within the 

research group. 
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C.3 Historical Simulation Developments 

The emergence of computer simulation is generally traced back to post war 

developments in OR and numerical modelling. Subsequent developments in 

computing hardware and the evolution of high-level simulation languages has further 

popularised the application of computer simulation to a range of real-life modelling 

problems (Zeigler, 1979). SIMULA is one of the earliest simulation languages, and is 

credited with the introduction of object-oriented authoring concepts into computer 

science. Other early examples of simulation programming languages include GASP, 

GPSS, SIMSCRIPT and SLAM. 

The establishment of several specialist groups and societies for computer simulation 

also marked the post-war period. One prominent establishment was the Society for 

Computer Simulation (SCS). The SCS has grown consistently since its birth. 

A body of literature on the topic began to emerge during the 1960's, including 

important source books (Tocher, 1963 and Forrester, 1961 as examples) and a range of 

other publications (see Oren, 1974, 1976). At this time, simulation also found its way 

into university curricula as a subject in its own right. 

The 1970's and beyond has witnessed enormous advances for computer simulation. 

Increasing computer power and growing accessibility in terms ease of use and reduced 

costs is largely attributable to this growth. Simulation packages such as Witness, 

ProModel, SimulS and Arena have attributed to this success. The range of applications 

has consequently grown to a point where simulation is now routinely utilised for a vast 

range of operations in a wide spectrum of industries. 
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Appendix D - Classification Tools 

Chapter Five describes how a number of classification tools were compared using 

various evaluation criteria. A summary of the findings was presented. This appendix 

contains detailed results from each of the adopted techniques in the study. It is not 

possible to provide results for each classification tool for each study. Instead only one 

study is shown for each tool with the intention of illustrating typical model inputs, 

outputs and issues. 

D.1 Discriminant Analysis 

DA is used to classify cases into the values of a categorical dependent. For studies 1 

and 3, it was therefore necessary to divide the continuous dependent variable into a 

number of groups. Using percentile points, the distribution of values (LoS) was 

divided into ten groups (1-10%, 11-20% etc.). DA was then used to predict 

membership to each of the 10 groups. For studies 2,4 and 5, the dependent variable 

was in the necessary categorical (group) form. 

Study 5 is used to illustrate the results from DA. In this study we are predicting the 

onset of diabetic retinopathy using 13 explanatory variables. Diabetic patients may 

suffer from a number of long-term complications. Retinopathy is a complication with 

the eyes, which can eventually lead to blindness. It can be treated successfully if 

detected in time. The dependent variable was a nominal 0-1 variable defining 

retinopathy. The list of independent variables included sex, height, systolic blood 

pressure, diastolic blood pressure, number of diabetic years, glucose level (HbA), type 

of diabetes, creatinine level, cholesterol level and age of onset of diabetes. 

Presented tables are taken from SPSS (version 10) output. 
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Descriptive Statistics 

Variable Description Min Max Mean Std. Dev 

S1 Sex of patient (M/F) 0 1 Cat Cat 
•TYPE Diabetes type (IDDM/NIDDIVI) 0 1 Cat Cat 
TOESCORE Toescore 6.48 14.30 10.5 1.8 
HEIGHT Height of patient 131.0 200.0 167.8 9.7 
SBPMEAN Systolic blood pressure 90.0 220.0 143.7 19.8 
DBPMEAN Diastolic blood pressure 5 i a 116.7 80.2 9.5 
HBAMEAN Glucose level 4.8 14.9 8.7 1.5 
CHOLMEAN Cholesterol level 2.1 12.4 5.8 1.1 
CRETMEAN Creatinine level 50.5 644.6 98.3 35.7 
BMIMEAN Body Mass Index 18.3 49.0 2&1 5.0 
DIAB YEA Years as a diabetic 0.0 66.5 9.5 11M 
AGE Age of patient 10.4 93.3 61.2 16.5 
AGEDIAG Age of onset of diabetes 0.4 90.6 51.7 20.2 
RET Retinopathy (Dept. Var) 0 1 Cat Cat 

Standardized Canonical Discriminant Function 

Function 

1 
SI .225 

DTYP .254 
TOESCOR .362 
HEIGH -.292 

SBPMEA 
DBPMEA .003 

HBAMEA 

CHOLMEA -.083 
CRETMEA -.038 
BMIMEA -.110 
DIAB_YE .853 
AGE -.146 

Classification a.b 

Predicted 
Membership 

RE 0 1 Total 
Origin Count 0 756 225 981 

1 236 501 737 
% 0 77.1 2Z9 100.0 

1 32.0 68.0 100.0 

Cross- 3 Count 0 755 226 981 
validated 1 242 495 737 

% 0 77.0 2 3 0 100.0 

1 3 2 8 6^2 10&0 

a. 73.2% of original grouped cases correctly 

b. 72.8% of cross-validated grouped cases correctly 

263 



Appendix D Classification Tools 

D.2 Regression Models 

Regression analysis is concerned with investigating the relationship between several 

variables in the presence of random error. In particular we build a model in which the 

dependent variable is expressed as a linear combination of the independent or 

explanatory variables. 

The technique is illustrated using study 3 where we predict LoS on the ward based on 

routinely collected data from a hospital patient management. A number of socio-

economic and medical variables are routinely collected. Four variables (age, intent, 

status and sex) were selected for this study. The level of variance in LoS is high 

(variance of 56.6 with a mean LoS of 4.3) and the number of records large (17,974). 

SPSS (version 10) output is presented. The best result was obtained after a logarithmic 

transformation was applied to LoS, although a number of other transformations were 

evaluated. 

Descriptive Statistics 

Variable Description Min Max Mean Std. Dev 

X1 Sex of patient (M/F) 0 1 Cat Cat 
AGE Aqe of patient (M/F) 0 98 56.6 18.2 
11 intent (Day-case/inpatient) 0 1 10.5 1.8 
S1 Status (Emergency/Elective) 0 1 Cat Cat 
LOS Hospital LoS (Dept. Var) 1 220 4.3 7.5 

The following additional and interaction terms were defined: 

Variable Interaction 

AGE2 AGE * AGE 
F1 AGE*M 
F2 AGE * XI 
F3 AGE * SI 
F4 M*S1 
F5 I1*X1 
F6 M*S1 
F7 AGE* 11 *X1 

The results from CART gave a helpful insight into possible interaction terms. Age, 
intent (II) and status (SI) were important explanatory variables. Only a three-way 
interaction term (excluding sex) was used in the model. The results from the 
regression analysis are consistent with the results from CART. 
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Model Summary 

Adjusted Std. Error of 

Model R R Square R Square the Estimate 

1 .593a ^ 5 2 .352 7 7 0 5 

2 .628b .394 ^94 7449 

3 . 6 3 ^ .396 .396 .7439 

4 .630^' .397 ^97 .7436 

a. Predictors: (Constant), F1 

b. Predictors: (Constant), F1, F4 

c. Predictors: (Constant), F1, F4, 11 

d. Predictors: (Constant), F1, F4, I I , F3 

ANOVA® 

Model 
Sum of 

Squares df Mean Square F Sig. 
1 Regression 

Residual 

Total 

2896.515 
5328.033 

8224.548 

1 

8975 
8976 

2896.515 
.594 

4879.140 .000= 

2 Regression 

Residual 

TobI 

3244^75 
4979.974 
8224.548 

2 

8974 
8976 

1622.287 

.555 

2923.390 .000*: 

3 Regression 

Residual 

Total 

325&545 
4965.003 

8224.548 

3 

8973 
8976 

1086.515 
^53 

1963.604 .OOQC 

4 Regression 

Residual 

Total 

3263.621 
4960.927 
8224.548 

4 

8972 
8976 

81&905 
^53 

1475.592 .00^ 

a- Predictors: (Constant), F1 

b. Predictors: (Constant), F1, F4 

c. Predictors: (Constant), F1, F4, I I 

d. Predictors: (Constant), F1, F4, I I , 

e. Dependent Variable: LOGLOS 

F3 

LOGLOS = (0.3940 * 11) + (0.0084 * AGE * 11) + (0.0039 * AGE * SI) + (0.2270 * 11 * SI) 

Correlations 

LOS LOSPRED 

LOS Pearson 1.000 .620* 
Sig. (2-tailed) .000 

N 8987 8987 

*. Correlation is significant at the 0.01 level (2-tailed). 
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D.3 Regression Trees (CART) 

The CART method produces a tree that, by answering a series of yes/no questions, can 

be used to classify each patient. An algorithm is used to split the original dataset into 

sub-populations of increasing purity (decreasing variance or deviance). CART is 

demonstrated using study 4. Given a number of explanatory variables, we wish to 

predict the probability of a pregnant woman having a complicated delivery. 

Complications include the need to induce the baby, caesarean section and stillbirth. A 

successful classification could help to flag women at high-risk for whom we might 

offer more dedicated care throughout labour and during delivery. 

Apollo (Chapter 5) was used to train and then test the data. There were 2,402 records 

(1,201 in both the training and testing datasets) and 16 variables of interest (8 

continuous and 8 categorical). 

Descriptive Statistics 

Variable Description Min Max Mean Std. Dev 

SMOKING If woman smokes (Y/N) 0 1 Cat Cat 
EPILEPSY History of epilepsy (Y/N) 0 1 Cat Cat 
HYPERTEN History of hypertension (Y/N) 0 1 Cat Cat 
PARITY Previous number of children 0 8 0.9 1.0 
CAESAREAN Previous number of caesareans 0 2 0.02 0.21 
HEIGHT Height of woman 1.4 1.9 1.6 0.06 
WEIGHTMO Weight of woman 39.0 146.0 66.7 13.2 
DIABETES Is diabetic (Y/N) 0 1 Cat Cat 
BP Blood pressure 40.0 116.0 72.7 9.4 
AGEMO Age of woman 18.3 49.0 28M 5.0 
RAGEMO Race of mother (2 categories) 0 1 Cat Cat 
GEST WKS Gestation (in weeks) 23.0 k2.0 39.3 1.9 
B WDEX Body Mass Index of woman 15.8 57.0 24.8 4.7 
NO BABES slumber of expected babies 1 2 1.02 &14 
S1 Sex of baby (M/F) 0 1 Cat Cat 
SPONTDEL Spontaneous delivery (Dept. Var) 0 1 Cat Cat 
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Terminal Node Summary (numbers shown for testing dataset) 

Node Path No. of 
records 

SpontDel SpontDel 
N(%) 

1 All Data 1^01 75 25 
12 Parity = 0 Gestation <= 3 66 58 42 
13 Parity = 0 Gestation > 37 172 66 34 
10 Parity = 0 Gestation <= 40; Age <= 26 92 63 37 
11 Parity = 0 Gestation <= 40; Age > 26 85 49 51 
8 Parity = 0 Gestation > 40; Age <= 25 45 51 49 
9 Parity = 0 Gestation > 40; Age > 25 85 46 54 
30 Parity > 0 Caesarean = 0; BMI <= 20; Sex = M 51 92 8 
31 Parity > 0 Caesarean = 0; BMI <= 20; Sex = F 50 98 2 
29 Parity > 0 Caesarean = 0; Weight <= 64; BMI > 20 213 93 7 
24 Parity > 0 Caesarean = 0; Weight <= 81; Gest <= 39 95 94 6 
25 Parity > 0 Caesarean = 0; Weight <= 81; Gest > 39 126 95 5 
23 Parity > 0 Caesarean = 0; Weight > 81; Gest <= 39 69 86 14 
19 Parity > 0 Caesarean > 0 52 55 45 

Classification 

Predicted 
Membership 

Y N Total 
Original Count Y 814 81 895 

N 173 123 296 
% Y 9&9 9.1 100.0 

N 5&8 41.2 100.0 

Overall classification rate of 78.0% 
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D.4 Artificial Neural Networks 

NeuroSolutions (version 3) was used to train, cross-validate and test each network. 

NeuroSolutions makes use of Windows™ 'point & click' technology to make the 

software easy to use, enabling non-experienced users to begin building and testing 

models with little training and in minimal time. Caution however should be exercised 

when selecting suitable network initial conditions, such as step-sizes and numbers of 

hidden layers. Only with experience of using the software is it possible to get a feel 

for appropriate model configurations. 

We illustrate the Neural Network approach in predicting ICU LoS (study 1). Routinely 

collected variables of interest include the patient's age, sex, outcome, source (A/E, 

HDU, Theatre or Ward), admission status (elective or emergency) and hospital 

speciality (ENT, General Surgery, Medicine, Orthopaedics, Thoracic Medicine, 

Trauma or Vascular Surgery). Categorical variables with multiple classes (g) were re-

assigned to (g-1) binary groups (0-1). 

Descriptive Statistics 

Variable Description Min Max Mean Std. Dev 

AGE Aqe 1 97 60.7 19.8 
X1 Sex Male (Y/N); Else Female 0 1 Cat Cat 
DAYS ICU LoS (Dept. Var) 0.1 25.2 2.4 3.4 
81 ENT (Y/N) 0 Cat Cat 
S2 Gen Surgery (Y/N) 0 Cat Cat 
S3 Medicine (Y/N) 0 Cat Cat 
S4 Orthopaedics (Y/N) 0 Cat Cat 
S5 Thoracic (Y/N) 0 Cat Cat 
S6 Trauma (Y/N); if N to all then Vascular 0 Cat Cat 
A1 Elective (Y/N); Else Emergency 0 Cat Cat 
P1 A/E (Y/N) 0 Cat Cat 
P2 HDU (Y/N) 0 Cat Cat 
P3 Theatre (Y/N); if N to all then Ward 0 Cat Cat 
01 Outcome Alive (Y/N); Else Died 0 Cat Cat 

The dataset contained 582 records. Half was used to train the network and half to test 

the model. 10% of the training data was used for cross-validation. Missing values 

were removed as requested by the software. The best accuracy was achieved using a 

multiplayer perceptron network with one hidden layer, a supervised learning control 

with 1,000 epochs (iterations over the training set), a step-size of 0.7 and a momentum 

rate of 0.5. 
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• i & l E D llo^n • ^ 1 n i l | £ | | a j a i m i E E - M x 
1 U File Edit Alignment Tools View j^indow Help -Iffjx 

Cofrfusion Discrim. | Reset-Run ( Test Net 1 Train Net | Build MLP 

N e w O p e n S a v e 

i ^ 

Start 

o 
Reset 

0 * @ # 
Zero Count j NBuilder N S Excel C S V WE»pert Testing 

k? 
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Average MSE with Standard Deviation Boundaries for 
20 Runs 

1.2 T 

1 -

LiJ 
(/) 0.8 • 

? 
0) U.fa 
M 
2 0.4 -
0) 

0.2 < 0.2 

0 

• 0 . 2 

Training 

+ 1 Standard Deviation 

• 1 Standard Deviation 

Cross Validation 

+ 1 Standard Deviation 

- 1 Standard Deviation 

100 199 298 397 496 595 694 793 892 991 

Epoch 

Performance DAYS ICU 
MSE 11.6452 
NMSE 0.9286 
MAE 1.8410 
Min Abs Error 0.0152 
Max Abs Error 23.6978 

r 0.3280 
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Appendix E - Capacity Planning 
Questionnaires 

In was necessary to obtain information on the movement of patients through the 

hospital, so that the developed PROMPT model could be fine-tuned to reflect local 

hospital real-life conditions. Each speciality manager supplied the necessary 

information on admission rules, deferral times and theatre information, whilst the bed-

managers constructed patient priority listings. The bed and theatre questionnaires used 

at The Royal Berkshire and Battle Hospitals NHS Trust are shown below. Similar 

questionnaires were adopted by The Portsmouth Hospitals NHS Trust. 

E.1 Bed Capacity Questionnaire 

Bed capacity questionnaire sent to all Specialty Managers. 

Bed Capacity Planning Questionnaire 

The Institute of Modelling for Healthcare (IMH), part of the University of 
Southampton, are working with the Hospital Process Redesign (HPR) team to help 
answer questions on bed capacity planning. 

In order to fully understand patient flows through the hospital, I would very much 
appreciate your time in completing the attached short questionnaire. This questionnaire 
is being completed for every specialty within the hospital. It is vital that each specialty 
completes and returns this form so that I can incorporate the necessary detail into my 
work. 

If you have any questions about the form, please contact either Jana Dale (HPR) or 
myself. Please return the questionnaire as soon as possible to HPR. 

Thank you for your time and effort. 

Paul Harper 
Institute of Modelling for Healthcare 
University of Southampton. 
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Bed Capacity Planning Questionnaire 

Specialty: 

Completed by; Ext: Date; 

1. Patient Flows 

Into which wards are patients admitted for your specialty? Please indicate order of 
priority if applicable (e.g. 1 .West Ward 2. Greenlands) 

[Note: If ward lists and priorities are different for certain patient subgroups (e.g. 
Planned vs Emergency, Diagnosis), please provide lists on a separate page for each 
group identified] 

Ward Priority 

2. Planned Patient Deferrals 

If a planned patient has to be deferred, please indicate below the typical time a patient 
must wait before re-admittance. Additionally, state whether deferral time is usually 
fixed (e.g. 2 weeks) or whether it may vary (e.g. between 1 and 3 weeks). Remember 
that although times may significantly alter, we are only after a "typical" time. 

Deferral Waiting Time: 

or 

Fixed time(weeks) 

Between and weeks 
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3. Emergency Status 

Do you enforce a procedure by where a planned patient is "upgraded" to emergency 
status if they have be deferred on a number of previous occasions? e.g. If a planned 
patient has been deferred on 3 separate occasions, they will now been treated with 
emergency status and given priority. If applicable, please state number of deferrals 
before emergency status below. 

Number of Deferrals: 

4. Comments 

Please write any other relevant comments below. 

Thank you for taking time to complete this form 

Please return to: 

HPR 
The Royal Berkshire Hospital 
Craven Road 
Reading. 
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E.2 Operating Theatre Questionnaire 

Theatre capacity questionnaire sent to all Specialty Managers. 

Theatre Capacity Planning Questionnaire 

Specialty: 

Completed by: Ext: Date: 

Current Theatre Sessions 

Day Session Number Start Time Duration (or End Time) 

Current list of Surgeons 

Surgeon's name: 
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Total number of in-patient beds across all specialty wards: 

What happens to day-cases? Do they use in-patient beds? Do they share in-
patient lists? 

What happens to emergency patients? Do they use the same sessions as in-
patients or a different session/theatre? 

Any other relevant comments about current practice? 

Any scenarios you have in mind that you would like examined? e.g. weekend 
theatre (and for which patients), changing the elective weekday admission profile 
by operation category etc. 
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Appendix F - Statistical Distributions 

The developed simulation programs as described within this thesis allow the user to 

choose between five statistical distributions for fitting the necessary transition times, 

for example to LoS and operation times. These distributions are described in further 

detail below. 

F.1 Exponential Distribution 

This is an important distribution in reliability work, as it has the same central limiting 

relationship to life statistics as the normal distribution has to non-life statistics. It 

describes the constant failure rate situation. The pdf with mean life X is given by; 

The mean and standard deviation of the distribution is l /A. Historically the 

exponential distribution was the first widely used lifetime distribution partly because of 

the availability of simple statistical methods. 

F.2 Normal Distribution 

The normal pdf is given by: 

/ W " yGxp 

where / / is the location parameter, equal to the mean. The mode and the median are 

coincident with the mean, as the pdf is symmetrical, cris the scale parameter, equal to 

the standard deviation. 
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The normal distribution is a close fit to most applications in quality control and some 

reliability observations, such as size of machined parts and the lives of items subject to 

wear out failures, as well as natural phenomena such as heights of adults and strengths 

of materials. 

The cumulative probability function cannot be solved analytically. A number of 

polynomial and rational approximations are given in Abromowitz et al. (1970). The 

polynomial approximation, which is used in the estimation of parameters, is given by; 

f (Z < z) = 

1-—(1 + C I Z + C 2 Z ^ + C 3 Z ^ + C 4 Z ' ' ) +<F(z) Z > 0 

• 0 + C I Z + C2Z^ + C 3 Z ^ + C 4 Z ' * ) ̂  z < 0 

where \£{zj\ < 2.5 x 10 

and z = 
jj-x 

a y 
CI = 0.196854, C2 = 0.115194 ,C3 = 0.000344, C4 = 0.019527, 

F.3 Lognormal Distribution 

The lognormal distribution is a more versatile distribution than the normal as it has a 

range of shapes, and therefore is often a better fit to reliability data, such as for 

populations with wear out characteristics. Additionally, it does not have the normal 

distribution's disadvantage of extending below zero to -oo. The lognormal pdf is: 

1 

m;(2.^) 
^ e x p 

1 ^ In X - / / 

2I o-

The mean and the standard deviation of the lognormal distribution are given by: 

Mean = exp // + — , Standard Deviation = |^exp(2// + 2a^) - exp(2// + )j^ 

where p and a are the mean and standard deviation of the In of the data. 
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An unattractive property of the lognormal distribution is that the hazard rate increases 

to a maximum, and then decreases, approaching 0 as x —> oo. 

The cumulative probability function also cannot be solved analytically. The normal 

polynomial approximation is used in estimating parameters with z = ^ —j . 

F.4 Gamma Distribution 

The gamma distribution describes, in reliability terms, the situation when partial failure 

can exist, i.e. when a given number of partial failures events must occur before an item 

fails, or the ath failure when time to failure is exponentially distributed. The pdf of the 

gamma distribution is defined by: 

/(;c) = exp(- /k) 
IXa) 

where X is the failure rate and a the number of partial failures per complete failure, or 

events to generate a failure. r (a) is the gamma function: 

T{a) = | x " ' exp(- x)d: fx 

The mean and standard deviation of the gamma distribution are / / = — and a = ——, 

A A 

respectively. The exponential distribution is a special case of the gamma distribution, 

when <3=1. 

The cumulative probability function cannot be solved analytically. The approximation 

stated here is given in Press et al. (1992). Firstly we define the incomplete gamma 

function as: 
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There is a series development for Y(a,x) as follows: 

There is a continued fraction development for T{a^) as follows: 

1 \ — Q 1 1 ~ Q 2 

X -h 1+ X+ 1+ X + 

It is proved that the series development converges rapidly forx less than about a+1, 

while the continued fraction converges rapidly for % greater than about a+1. 

The gamma function is defined by the integral 

r ( z ) = {r'-'g-Vr 

An approximation uses the fact that certain integer choices of ^and N, and for certain 

coefficients cj, C2, cn, the gamma function is given by: 

1 
r(z + 1) = I z + — I e X 

c c c 
C + + H h + S 

z + 1 z + 2 

The error term for 5,N = 6 and with a certain set of c's, is smaller than 2x10''°. It 

is better to implement In r(x) than r(x) since the latter will overflow many computers' 

floating point representation at quite modest values of %. Often the gamma function is 

used in calculations where the large values of r(x) are divided by other large numbers 

resulting in an ordinary number. 
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F.5 Weibull Distribution 

The Weibull distribution has the great advantage in reliability work that by adjusting 

the distribution parameters it can be made to fit many life distributions. The Weibull 

pdf is: 

/ ( f ) = ' exp 

The hazard rate is — / ? i s the shape parameter, a\s, the scale parameter, 
or 

When 13= 1, we obtain the exponential reliability function (constant) with mean life 

equal to a. The exponential distribution is a special case of the Weibull distribution. 

When fi<\, this results in a decreasing failure rate reliability function. When /?> 1, 

we obtain the increasing failure rate reliability function. 

The mean and the variance are given by aT and a ' r 1 + - r 
/%/ 
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Appendix G - Programming Structure and 
the TOCHSIIVI Siiell 

It is not appropriate to include a complete listing of the code for the developed 

programs as described within this thesis. Instead, a description of the main structure, 

together with some of the units with corresponding procedures and functions, are 

provided. The PROMPT model was programmed using the TOCHSIM simulation 

shell. TOCHSIM has benefited from language extensions to give the full power of 

object-orientated programming: more structure and modularity, more abstraction and 

reusability built into the simulation shell (see section 6.3.3). 

G.1 Application Structure 

For each application there exists a project consisting of: 

® The project (.DPR) file 

® The unit (.pas) files 

® The form (.DFM) files 

® Source code for units without forms 

The project file keeps track of all unit and form files in the application. For example, 

the project source code for the PROMPT program looks like: 

Program PROMPT; ^ Project name 

Uses Uses clause 

Forms; 

Menu in'MENU.PAS' {MainMenuForm}, ^ Form identifiers 

BEVENTl in 'BEVENTl.PAS', ^ Source code without forms 

BEVENT2 in 'BEVENT2.PAS% 

{$R *.RES} ^ Compiler directive 
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begin 

Application.CreateForm(TMainMenuForm,MainMenuForm); 

Application.Run; 

end. 

(Note that bold fonts are reserved words in Delphi). 

In accordance with the distinct elements of the PROMPT model, the following sections 

describe the coding for patient groups, care units (beds), theatres and workforce. 

G.2 Patient Group Code 

Defined patient groups are fundamentally either emergency or elective in nature 

(priority is given to emergencies during the arrival process). Furthermore, if the theatre 

module is activated, groups are either procedure or non-procedure (require or do not 

require the use of the theatre respectively). A PatientJJroup class has been created 

containing the necessary information on status (emergency or elective), theatre needs 

(procedure or non-procedure), a care unit priority list (Tlevel_of_care), LoS and 

operation time (TLoS_distribution), arrival information (Tarrival vars) and workforce 

needs (Tpatient dep list). 

TPatientGroup = class 
status: boolean; 
theatre needs : boolean; 
LoS : TLoS distribution; 
arrival var: Tarrival vars; 
op time : TLoS distribution; 
level_of_care : Tlevel_of_care; 
description ; Tstringlist; 
patient_dep_list: Tpatient dep; 
procedure init; 
procedure load(var f : textfile); 
procedure save(var f ; textfile); 
end; 

Tarrivalvars = class 
Arrivalhour : array[1..6] of integer; 
ArrivalRateVDay : array[1..7] of integer; 
Arrivalmth : array[1..12] of integer; 
YearlyRate : integer; 
procedure load(var f : textfile); 
procedure save(var f: t extfile); 
end; 

T l e v e l o f c a r e = class 
next_level_of_care:Tstringlist; 
procedure load(var f:textfile); 
procedure save(var f:textfile); 
end; 

Tdistribution = (d_weibull, d normal, d_lognormal, d negexp, d gamma); 
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The LoS and operation times are generated using the LoS distribution class defined 
below: 

TLoS_distribution = class 
distribution ; Tdistribution; 
parameter 1, parameter2 : real; 
min stay, max stay, reduced los : real; 
mean : real; 
increase los : integer; 
function random deviate : real; 
procedure load(var f : textfile); 
procedure save(var f : textfile); 
end; 

function TLoS_distribution.random_deviate : real; 
var transtime ; real; 
begin 

repeat 
case distribution of 
d_weibull: transtime := md.weibull(parameterl, parameter!); 
d normal: transtime := md.normal(parameterl, parameter!); 
d lognormal: transtime ;= md.lognormal(parameter 1, parameter!); 
d negexp : transtime := md.negexp(parameterl, parameter!); 
d gamma : transtime := md.gamma(parameterl, parameter!); 
end; 

until ((transtime >= min stay) and (transtime < max stay)); 
if reduced los >=1 then begin {reduced los is a percentage shift to LoS} 

if increase los = 0 then {1 for an increased and 0 for a decreased shift} 

transtime ;= transtime - ((reducedlos/100) * transtime) 
else 
transtime := transtime + ((reduced_los/100)*transtime); 

end; 
random deviate := transtime; 

end; 

The Tstringlist object is frequently used throughout the program in order to maintain 

and manage lists of strings, so that classes may add, delete, insert, move or exchange 

strings with pre-defined functions in a controlled and safe environment. For example, 

next_level_of_care (care unit priority list attached to each class of patient groups) is 

defined as a Tstringlist. In the model, a combo-box on the patient group form enables 

the user to select from a number of currently defined care units and add it/delete it from 

the list, or move the position (priority) of the care unit on the list (Figure G.l). 
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List of available 
care units (from 
the stringlist of 
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Figure G.l: Editing care unit priority lists: the TStringList object in action 

G.3 Care Unit (Bed) Code 

A patient attempts to find a suitable bed in the hospital by examining each care unit on 

their priority list in turn and examining the current care unit bed availability whilst 

adhering to relevant admission rules. The class CareJJnit has been created containing 

all of the necessary statistics (Pcounter and Pwaitstatistic), the unit name and the 

number of beds in each unit (Tresource). 

TCareUnit = class 
patient count: integer; 
care unit beds : Tresource; -4-

Patients in the unit 
Number of beds 

number of beds : Tnum beds; 
waitingtime : real; 
deferral: Tdeferment; 
patient freq ; Pcounter; — 
arrivals : Pcounter; 
transfers : Pcounter; 
no stayed : Pcounter; Statistics 
no moved : Pcounter; 
patientwaitingtime : Pwaitstatistic; 
patientlostime : Pwaitstatistic; ^ 
monthly_bed_time_used : array [1..12] of real; 

Admission rule variables 
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procedure init(wardname ; string; def_time : real; no_def_to_emerg, 
no free, fixed_def_time ; integer; time waiting : real); 

procedure changename(wardname : string); 
procedure remove; 
constructor create; 
end; 

G.4 Operating Theatre Code 

An operating theatre is described by the TOpt class that contains all of the necessary 

statistics and rules governing its use. The Ttheatre_times class controls the opening 

times and duration of each theatre session (by day). 

TOpt =class 

Theatre scheduling rules 

number_of_sessions : Tnum sessions; 
theatre name : string; 
times : Ttheatre_times; 
overrunjercentage, 
schedule method : integer; 
cut_point: integer; 
currently_being_used ; integer; 
time_in_use, time_over, time under : real; 
no_operations, sessions under, sessions over : Pcounter; ^ Statistics 
operation waiting time, operation_server_time, 
slack time : Pwaitstatistic; — 
constructor create; 
procedure load(var f : textfile); 
procedure save(var f : textfile); 
procedure remove; 
destructor destroy; 
end; 

Ttheatretimes = class 
duration;integer; 
starttime:string; 
currentlybeingused:boolean; 
starttimeindays,endtimeindays;real; 
lasttimeused:real; 
constructor create; 
procedure save(var f:textfile); 
procedure load(var fitextfile); 
procedure copyandpaste(var D:Ttheatretimes); 
function acquire(timerequired,group_mean:real):boolean; 
function overrun(timerequired,transtime:real):boolean; 
function retum;boolean; 
procedure produceactualtimes; 
destructor destroy; 
end; 
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G.5 Workforce Code 

A number of workforce resources may be defined. For each patient group, the 

necessary workforce-to-patient ratios must be defined. This is further broken down by 

patient dependency state and shift of the day. 

A Tstringlist of human resources is constructed (THuman_Resource). 

THumanResource = class(Tstringlist) 
constructor create; 
procedure load(var f ; textfile); 
procedure save(var f : textfile); 
destructor destroy; 
end; 

Patient dependency lists are created within the TPatient_Group class (section E.2) 

which define the number and duration of each dependency state, together with the 

numbers of each resource required for each of the three daily shift (time_period_l, 2, 

and 3). 

Tpatientdep = class 
name : string; 
percent: integer; 
time_period_l : Ttime_resource_list; 
time_period_2 : Ttime_resource_list; 
time_period_3 : Ttime_resource_list; 
constructor create; 
procedure load(var f : textfile); 
procedure save(var f : textfile); 
procedure copy_info(old_info : Tpatient dep); 
destructor destroy; 
end; 

G.6 Simulation Object 

The inherited simulation object is used by queues, resources, all statistic objects, the 

simulation timer and the simulation model. The common method for these objects is 

described by; 
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PsimObj = TsimObj 
TsimObj = Object(Tobject) 

Constructor init; 
Procedure Start_runs; 
Procedure Start_new_run; 
Procedure End run; 
Procedure End runs; 
Function retum_value : real; 
Destructor done; 
end; 

The object orientated programming approach enables the programmer to hide detail in 

units that have become part of the simulation shell. For example, when a queue is 

created in the initialisation at the start of the application, the queue is added to the 

simulation object list using the following code; 

Object_list.add_object(self) 

The programmer no longer needs to empty the queue at the start of the run since it 

automatically follows the Start runs procedure in the application. 

G.7 B-Events 

The B-events for the PROMPT model are: 

> Generate initial arrival times and cause next arrivals within each patient group. 

> Check, and if necessary adjust, bed numbers to reflect step-up and step-down of 

beds over time (daily and monthly event). 

> Open theatre sessions as necessary (daily event). 

> Cause post-operation LoS to commence when patient arrives back from theatre to 

ward. 

> Cause patient to leave hospital on completion of their LoS or cause re-admission 

arrival time for deferred elective patients. 

All B-events are objects of Bevent, defined by: 
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TB event = Object(TObject) 
Constructor init; 
Procedure Start new run; 
Procedure do_event(ent; Pentity); 
Destructor done; 
end; 

Pseudo code for the B-events are provided below: 

b_arrive: TB_eventLinit; 
initialise entities {for each patient group} 
generate initial arrivals {based on arrival profiles for each group} 

b_arrive: TB_eventl.do_event; 
add to queue {for care unit} 
cause next arrival 

b_arrive: TB_event2.do_event; 
release bed {patient leaves} 
dispose of entity 
check queue {for waiting times of queueing patients} 

b_arrive: TB_event3.init; 
calculate any changes in bed numbers during year 

b_arrive: TB_event3.do_event; 
change bed numbers {for each care unit as appropriate over time} 

b_arrive: TB_event4.do_event; 
cause departure {as patient arrives back from theatre} 

b_arrive: TB_event5.do_event; 
Open theatre {for each session based on opening times} 

G.8 C-Events 

The C-events for the PROMPT model are: 

> Start patient stay (having already found an available and suitable hospital bed). 

> Start operation in theatre (having queued and been admitted in to a suitably 

available and open theatre session). 
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C-events are defined by: 

PCevent = TCevent 
TCevent = Object(TObject) 

{Variables} 
event on : boolean; 
{Procedures} 
Constructor init; 
Procedure do_event(ent: Pentity); 
Destructor done; 

end; 

Pseudo code for the C-events are: 

TC_start_service. do_event; 
check bed availability 
if a suitable bed is free: 

acquire bed 
generate LoS 
cause departure 
log arrival time 
update statistics 

else; 
add to queue 

TC_theatres.do_event; 
if at least one patient waiting for theatre: 

acquire theatre 
generate operation time 
cause departure from theatre 
update statistics 

TOCHSIM has been developed over a number of years with the programming skills in 

particular of Dr Daryl Gove and Dr Simon Jones. My specific contribution to 

TOCHSIM was to help move the shell from the Pascal to Delphi environment, thus 

developing a 32-bit object-orientated version. 
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Appendix H - Hospital Feedbacl^ and 
Research Evaluation 

Acceptance and ease of use of the models by the hospital staff are necessary conditions 

for obtaining the benefits from the developed models. It was the intention that the 

variety of operational tools and frameworks as developed during the research and as 

discussed in this thesis meet these necessary conditions. A key aspect of the evaluation 

process was entailed in the use the models by the participating NHS Trusts. In this 

context, it was with great pleasure that letters of thanks and appreciation were received 

from the two major NHS Trusts at Reading and Portsmouth. Messages of thanks were 

also received from managers and consultants from the various critical care units. 

An excellent working relationship has been forged between the Institute of Modelling 

from Healthcare (IMH) at the University of Southampton and the participating 

hospitals. As a consequence, a number of future projects have already been proposed 

(some ideas of which are described within the further research section of Chapter 10). 

Furthermore, due to the network of senior hospital staff within the UK and in particular 

between regional NHS Trusts, a number of other hospitals have approached IMH with 

the intention of conducting similar capacity planning exercises. The letters from the 

two NHS Trusts are shown on the following pages. 
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H.1 Correspondence from The Royal Berkshire and Battle 

Hospitals NHS Trust 

ROYAL BERKSHIRE & BATTLE HOSPITALS NHS TRUST 

ADULT MEDICINE 

London Road, Reading, Berkshire RGl 5AN Tel (0118 87 7911) 

Paul Harper 
Institute of Modelling for 
Healthcare Faculty of Mathematics Studies 
University of Southampton 
S0171BJ' 

HB/1736/g]C 
23 April 2001 

Dear Paul 

Re: Activity Modelling for the Roval Berkshire and Battle Hospitals 
NHS Trust 

We have now completed our fourth year of activity modelling for the 
Trust. I wanted to thank you for aU the help and support you have 
given us in developing this tool. It has proved to be very accurate in 
projecting our activity. 

We use this information on an annual basis to modell our activity both 
for our surgical profiling and our Acute medical capacity. To date 
entirely based on the modelling we have opened 60 additional medical 
beds, some being newly staffed beds others re-allocated from other 
specialities. 

The whole activity modelling forms part of our contract negotiations 
with our local Primary Care Trusts. 

It has formed the basis for our winter pressure planning. Our Regional 
Office visited us in March to evaluate the effectiveness of our plan and 
we were given a glowing report. There is no doubt with the 
information of projected peaks and troughs in our activity we can plan 
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to meet the demand with as much efficiency as possible. Thus 
emergency patients are admitted speedily and elective surgery is not 
cancelled. 

Kind regards 

Yours sincerely 

V 

Heather Bunce 
CSUIvI 
Deputy Director of Operations 
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H.2 Correspondence from Portsmouth Hospitals NHS Trust 

Portsmouth Hospitals c z z a 

Dr Peter Howiett MBA 
Executive Director 

NHS Trust 

Mr P Harper 
Institute for Modelling for Healthcare 
Faculty of Mathematical Studies 
University of Southampton 
Southampton 
Hants 
S 0 1 7 1 B J 

Our Ref; PH/SMHW/012 

Ground Floor 
Room 0.23 
De La Court House 
Queen Alexandra Hospital 
Southwick Hill Road 
Cosham 
Portsmouth P06 SLY 
Hants 
Tel; (023) 92 286000 Ext. 6342 
Fax;(023) 92 286073 

18^ June 2001 

Dear Paul 

Re; Modelling of Patient Activity for Portsmouth Hospitals NHS Trust 

I am writing to thank you for the crucial work that you are doing to support the plans 
for the redevelopment of Queen Alexandra Hospital. As you know the 
redevelopment plans involve a El 20m building programme combining existing 
hospital buildings with significant new ones to.provide one of the largest acute 
hospital complexes on the south coast. 

In an area as complex as health care identifying the capacity of such facilities 
against future patient workload is not straightfon/vard. We do have some tools which 
are widely used in the health service for identifying numbers of beds and numbers of 
operating theatres for specific workloads in specific specialties, but these are static 
modelling tools, which I describe as measuring the 'size of the pipe'. The crucial 
element of your own work and why it is so valuable to us is that your modelling tools 
provide a dynamic model which enables us to effectively test 'what if questions. We 
can take our own current workload figures and ask the question what if we were to 
attempt to manage this workload through this set of new facilities. We can then 
anticipate growth in that workload and again test against the facilities. Effectively, 
your modelling work provides us with a dynamic tool to look at the flow through the 
pipe. Given that much of our workload is dominated by emergency work which is 
subject to significant fluctuations, peaks and troughs in workload, it is essential for us 
to be able to anticipate when we might fail to have sufficient facilities for a particular 
workload. The failure of hospitals to anticipate fluctuations in workload and to have 
sufficient facilities to meet workload peaks is of course the subject of a considerable 
amount of adverse publicity. 

Given too the significant levels of investment in new hospital facilities it is essential 
that we are able to fully test our specification proposals for the building of new 
hospitals. 
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I think I can therefore safely say that your own personal input and the development 
of those modelling tools has been enormously valuable to us. We recognise the 
degree to which those tools and the modelling is evolving and is the subject of both 
research and development. We are very happy to be working with you in looking at 
how that can be used in a very timely way in one of the largest acute hospitals in the 
country undergoing a massive change programme. 

We look forward to making further progress with you in meeting our planning needs 
and hopefully stimulating your research interests. 

Yours sincerely 

Dr. Peter Howlett 
Director of Planning 
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