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Smartcards offer robust mechanisms for electronic demonstration of identity, and
as a result are an increasingly important tool of e-commerce and information se-
curity. The identity of an authorised individual and their smartcard are, however,
weakly bound and the presence of a legitimate card-holder can not be assured.
Hence, there is growing interest in the use of biometrics to strengthen the asso-
ciation between card and card-holder, although the emphasis has predominantly
been to use external components such as sensors or processing elements. Such
approaches expose the risk of eavesdrop and replay attacks, and because of this it
is desirable to incorporate all elements of an identity-verification system on-card.

Potential discriminatory characteristics are limited to the measurable interactions
between an individual and smartcard. Hence, the emerging field of biometrics
is comprehensively reviewed for plausible mechanisms of demonstrating identity.
Spatial finger characteristics such as fingerprints, finger-geometry and finger-crease
pattern emerge as the most likely approaches.

Sensors integrated onto smartcards are required to be mechanically flexible, robust
and of low-cost, and such conditions are satisfied by a class of sensors known as
polymer thick film (PTF). Piezoelectric and piezoresistive PTF pressure sensors
are considered, and shown to exhibit sensitivity to loads applied elsewhere on the
card. This effect renders the concept of using PTF pressure sensors to capture
spatial finger characteristics infeasible.

Nevertheless such sensing mechanisms can be exploited to capture temporal, rather
than spatial interactions, and a novel approach to identity verification is proposed
and demonstrated. This approach is based upon the pressure response of finger-
taps, and an experiment involving 34 participants demonstrates significant discrim-
ination between individuals. An investigation into suitable verification functions
reveals that an equal error rate of 2.3% is achievable under controlled laboratory
conditions. Necessary enrolment and verification algorithms are implemented on
a typical smartcard platform, and found to execute within 3.1 and 0.12 seconds,
respectively. Full compliance with the mechanical, computational, and economical
constraints of a smartcard is consequently demonstrated.




This thesis is dedicated to my mum, Irene, who died three days after my viva.
God bless you mum, and may you rest in peace.

Irene Marshall Henderson
20" January 1943 — 11** July 2002



Acknowledgements

It’s not easy finishing a PhD thesis, but I found the influence of a number of peo-
ple helped greatly. Of primary note are my mum and dad, whose unshakable love,
support and tolerance was fundamental to my success. The love, encouragement
and understanding of Sharon helped me through the Dark Stages, whilst Mhairi,
my fourteen month-old niece, demonstrated the usefulness of this work by employ-
ing a draft thesis as a step. Mhairi should also be thanked for giving me chicken
pox shortly after I finished this thesis. My sister and brother-in-law, Fiona and
John, are thanked for just being there, and of-course for the calamine lotion.

My friends deserve special mention, not least those closest to the ill-tempered
outbursts of a thesis-writing Scotsman. These people include: Thomas; Yavus;
Paul; Marcus; Theo; Nicola; Sayed; Neil G; Edward; Peter W; Andy R; and
Dan M. Occasionally during the process of writing-up I was dragged, kicking-and-
screaming, to The Crown. Some of those (ir)responsible include: John M; Richard;
Jasmin; Andy P; Jason; Anna; and Mike G. Finally a number of close friends must
be thanked for putting up with all the unreturned ’phone calls, emails, and the
endless excuses of ...I'm too busy... These people include: Iain; Donny; Graham;
Ed; Jamie; Steve; Mike C; Adam; Dan S; and Tim. Sorry Guys - I'll make it up
to you.

Before starting my PhD, I worked for DERA. My resource manager, Dr. Juliet

Dunn-Rogers, deserves thanks for encouraging this venture, and for organising
financial assistance from DERA.

Finally, there would be no PhD project if not for my supervisors, Dr. Neil White
and Dr. Pieter Hartel. Both deserve thanks for their support, encouragement, and
for at least humouring my sillier ideas.

il



Contents

1 Introduction 1
1.1 A Brief History of Smartcards . . . . . .. ... ... ... ..... 2
1.2 The Applications of Smartcards . . . . . ... . . ... 6
1.3 The Requirement for Strong User Authentication . . .. .. .. .. 7
1.4 Current Approaches to User Authentication . . . . .. ... .. .. 8
1.5 Scopeof Thesis . . . . . . . . . . e 11
1.6 Original Contribution . . . . . . .. . ... ... ... ... 14

2 Biometrics 16
2.1 Introduction . . . . . . . ..o 16
2.2 Biometric Discrimination . . . . . . . . ..o Lo 18

2.2.1 DBiometric Sensors . . . . . . ... .o 19
2.2.2 Modes of Operation. . . . . . . ... .. . ... .. ..... 19
2.2.3 Performance Considerations . . . .. .. .. ... .. .... 21
2.3 Existing Biometric Methods . . . . .. ... ... 000 24
2.3.1 Fingerprints . . . . . . . . .. oo 25
2.3.2 Hand Geometry . . . . . . . . .. ..o 32
2.3.3 Hand Vein Pattern . . . . . .. ... ... ... ....... 36
234 Palmprints. . . . . . . ... 37
2.3.5 Finger Characteristics . . . . . . .. .. . ... .. .. ... 39
2.3.6  Face Recognition . . . .. .. ... ... . ... ... .. 41

1ii



v

CONTENTS iv
2.3.7 TrisFeatures . . . . . . . . ... oL 43

2.3.8 Ear Characteristics . . . . . . . .. ... . ... ... ... 44

2.3.9 Retina Identification . . . . . ... ... 000 44

2.3.10 Speaker Recognition . . . . .. .. ... ... ... 45

2.3.11 Handwritten Signature Verification . . . . . . ... ... .. 46

2.3.12 Keystroke Dynamics . . . . . . .. ... . ... 48

2313 Galt . .. ... 49

2.3.14 Other Biometrics . . . . . . .. ... Lo 49

2.4 Approaches to On-Card Verification . . . . . .. . ... ... ... 51
2.5 Concluding Remarks . . . . . .. ... ... .. . 53

3 Polymer Thick Film Sensors 55
3.1 Imtroduction . . . . . . . . . .o 55
3.2 Thick Film Fabrication . . . . .. .. ... ... ..o 56
3.3 Applications of Polymer Thick Films . . .. ... ... .. ... .. 58
3.4 PTF Sensor Considerations . . . ... .. ... . ... ... ..., 61
3.4.1 Sensor Architecture . . . . . .. ... oL 63

3.5 Planar PTF Force Sensors . . . . . . . . . ... . . ... ... ... 68
3.5.1 Sensor Construction . .. ... ... ... .. ... ..., 68

3.5.2 Piezoresistive Principles of Sensing . . . . . . .. ... ... 70

3.5.3 Piezoelectric Principles of Sensing . . . . . . ... ... ... 75

3.6 Considering Sensors Bonded on Smartcards. . . . . . . . .. .. .. 78
3.7 Concluding Remarks . . . . . ... .. ... ... ... ... ... 79

4 PTF Sensors On Smartcards 82
4.1 Introduction . . . . . . . .. Lo 82
4.2 Bonding Sensors onto Smartcards . . . . .. ... Lo 83
4.3 Material Properties . . . . . . . ... oL oo 84
4.3.1 Young’s Modulus (Smartcard) . . . . .. . . ... ... ... 86



CONTENTS v

4.3.2 Young’s Modulus (Sensors) . . . . . ... ... 87
4.3.3 Piezoresistivity Coefficient, G . . . . . . . .. .. ... ... 89
4.3.4 Piezoelectric Coefficients, dsz & ds1 . . . . . . . .. . .. .. 90
4.3.5 Material Properties Summary . . . . . . . ... ... ... 90

4.4 Smartcard Finite Element Model . . . . . . .. ... ... ... .. 91
4.4.1 Mesh Characteristics . . . . ... .. .. .. ......... 92

4.4.2 Constraints Conditions . . . . . . . ... . .. ... .. 93
4.4.3 Loading Conditions . . . . . . . . ... .. ... ... .. 94

4.5 Finite Element Results . . . . . . .. .. . ... L 96
4.5.1 Displacement and Stress Maps . . . . . . . .. ... .. 96
4.5.2 Strains Experienced by Sensors . . . . . . ... 101
4.5.3 Theoretical Sensor Response . . . . . . . . . ... ... ... 102

4.6 Experimental Verification . . . . .. ... ... .. 0L 103
4.6.1 Constraints . . . . . . ... Lo Lo 103
4.6.2 Mechanism for Applying Loads to the Card . . . . . .. .. 104
4.6.3 Signal Conditioning and Data Acquisition . . . .. ... .. 106
4.6.4 Experimental Results . . . . . . ... .. .. ... . ..... 107

4.7 Spatial Characteristics . . . . . . . . . .. ... ..o 110
4.7.1 Array Sensor Response . . . . . ... .. ... 111

4.8 Temporal Interactions . . . . . . . . . ... L 115
4.9 Serendipitous Sensitivity . . . . . . ... oo Lo 118
410 Conclusions . . . . . . . .. 120
5 A Novel Approach to Identity Verification 122
5.1 Introduction . . . . . . . . . . ... 122
5.2 Background . . .. ... 123
5.2.1 Objectives . . . . . . . . e 125

5.3 Keystroke Dynamics . . . . . . . .. ... oo 126



CONTENTS vi

5.3.1 Static Fixed-String Verification . . . . . . . . ... ... .. 127

5.3.2 Dynamic Free-Text Verification . . .. . . .. ... ... .. 136

5.3.3 Literature Review — Conclusions . . . . . . . . .. ... ... 141

5.4 The Pressure Sequence Method . . . . . ... . .. ... .. .... 145
5.4.1 Experimental Apparatus . . . . .. .. . . ... ... ... 145

5.4.2 Experimental Method . . ... ... ... ... ... ..., 148

5.4.3 Feature Extraction . . . ... . ... ... ... .. ..... 152

5.5 Capturing Impostor Sequences . . . . . . . . . . . .. ... 154
5.6 Considering Reference Vectors . . . . . . .. .. . ... ... ..., 155
5.6.1 The Effect of Generating Sequential Sequences . . . . . . . . 155

5.6.2 User Consistency . . . . . . . .. . ... . ... ... 156
5.6.3 Number of Enrolment Sequences . . .. . .. ... ... .. 158

5.6.4 Outliers . . . . . . . L 159

5.7 Verification Functions. . . . . . . . . ... ... L 159
5.7.1 The ¢; norm Verifier . . . . . . . . .. . ... .. ... .. 160

5.7.2 The £y norm Verifier . . . ... ... ... . ... ...... 163

5.7.3 The Mahalanobis Distance Verifier . . . . . . ... .. ... 165
5.7.4 Component-Wise Linear Verifier . . . . . . . . . . ... ... 168
5.7.5 Component-Wise Non-Linear Verifier . . . . . . . ... ... 171
5.7.6 Discussion . . . . . . . .. L e 173

5.8 Pressure Sequence — Conclusions . . . . . ... ... .. ... ... 175
6 Smartcard Processing Considerations 178
6.1 Introduction . . . . . . . .. .. ... 178
6.2 The Java Card Platform . . . ... ... ... ... ... ... 179
6.3 Implementing Verification Functions. . . . . .. . . . .. ... ... 180
6.3.1 Specific Implementation issues . . . . . . . ... ... ... 181
6.3.2 Further Results . . . . . . .. .. .. ... ... ... . 184

Vi



CONTENTS vii

6.4 Proposed System Architecture . . . . .. ... o000 184
6.5 Conclusions . . . . . . ... 186
7 Conclusions and Further Work 187
7.1 Conclusions . . . . . . . . ... 187
7.2 Further Work . . . . . . . . . .o 191
7.2.1 Pressure Sequence . . . . . . ... ..o 191
7.2.2 Alternative Applications . . . . . . ... ... 192
7.2.3 Alternative Spatial Sensing Mechanisms . . . . . .. .. .. 192

7.2.4 On-Card Speaker Recognition . . . . . . . . .. .. ... .. 9
7.2.5  Alternative Technologies . . . . . . .. .. .. ... .. ... 194
7.3 Concluding Remarks . . . ... . .. ... ... ... ... ... 194
A Beam Theory 196
Al Background . . . . . ... 196
A.2 Beam Bending Description . . . . . . ... ..o 196
B Signal Conditioning Electronics 199
B.1 Piezoresistive Signal Conditioning . . . . . . .. . .. ... ... .. 199
B.2 Piezoelectric Signal Conditioning . . . . . . .. ... ... ... 201
B.3 Data Acquisition . . . . .. . ... 202
C Piezoresistive Signal Conditioning Circuit 203
D Data Acquisition Circuit 207
D.1 Overview. . . . . . . . . e e 207
D.2 Microcontroller Timing . . . . . . . . . . ... 209
D.3 Serial Port Implementation . . . . . . . .. ... . ... ... ..., 213
D.4 Control of the ADC . . . .. . . . . . ... ... . ... .. ... . 215
D.5 PCDataReceive Code . . . . . . .. ... ... ... ... 218

vil



CONTENTS viii

E Feature Extraction Algorithm 222
E.1 Introduction . . . . . . .. . .. 222
E.2 Implementation Details . . . . . . . ... . ... . ... ... ... 223
E.3 Visual Basic Implementation . . . . . . . ... . ... ... ... .. 225

F Enrolment & Verification Functions 229
F.1 Main Program Framework . . . . ... .. ... .. ... ...... 229
F.2 Enrolment & Verification Code . . . . . . . .. . ... .. .. ... 233

F.2.1 ¢ & ¢ norm Functions (Fixed Threshold) . . ... ... .. 233
F.2.2 {; & £y norm Functions (User Specific Threshold) . . . . . . 234
F.2.3 Mahalanobis Distance (Fixed Threshold) . . . . .. ... .. 236
F.2.4 Component Wise Linear . . . . . . ... ... ... ..... 238
F.2.5 Component-Wise Non-Linear . . . ... .. ... ...... 239
F.2.6 Linear and Non-Linear Component-Wise Verifiers with Pro-
portional Acceptance . . . . . ... ..o 241

G Java Card Applets 243
G.1 Host Applet . . . . . . . . .o 243
G.2 iButton Infrastructure Applet . . . . . . . ... ... 250
G.3 Enrolment and Verification Functions . . . . . . . . ... ... ... 254

G.3.1 4y Norm, Per User Basis . . . . .. ... .. .. .. ..... 254
G.3.2 4o Norm, Per User Basis . . . . . . .. . .. . ... ..... 257
G.3.3 Mahalanobis Distance, Per User Basis. . . . . . .. ... .. 257
G.3.4 ¢y, ¢y, Mahalanobis, and Component-Wise Linear (Fixed
Threshold) Verifiers . . . . . ... .. .. ... ... ... 259
G.3.5 Component-Wise Non-Linear . . . . .. .. .. ... .. .. 260
H Publications 261
Bibliography 262

viii



List of Figures

1.1

2.1
2.2
2.3
24
2.5
2.6
2.7
2.8
2.9
2.10
2.11
2.12
2.13
2.14
2.15
2.16
2.17

3.1
3.2

Symmetric and Asymmetric Authentication Mechanisms . . . . . . 4
Smartcard with Embedded Biometric Capabilities . . . . . . . . .. 18
Generic Biometric System . . . . . . ..o L0000 21
Possible Genuine and Impostors Feature Distributions . . . . . . . . 22
Generalised Biometric Error Rates . . . . . . . ... .. ... ... 23
Generalised ROC Curve . . . . . ... ... . . 24
Finger Ridged Skin (After Cummins (1964)) . . . . . .. .. .. .. 26
Example of an Inked Fingerprint . . . . . .. . .. ... ... ... 27
Optical Fingerprint Sensors (After Drake and Fiddy (1996)) . . .. 28
Capacitive Measurement of Finger Ridge Pattern . . . . . . . . .. 29
Silicon Fingerprint Sensors . . . . . . . . . . . . ... 30
Early Hand Geometry Recognition Systems . . . . . . ... .. .. 33
Modern Hand Geometry System . . . . .. .. . ... ... ... .. 34
Vein Patterns from Three Hands (After NeuSciences Ltd.) . . . . . 36
Palm Prints . . . . . . . . .o 38
Finger Geometry System (BioMet Partners, Inc.) . . .. .. .. .. 39
Finger Crease Schematic, After Joshi et al. (1998) . . . . .. . . .. 40
Identification Based upon Grasping Pressures (After Bellin (1989)) 51
Thick Film Screen Mask (After Loasby and Holmes (1976)) . . . . . 57
Thick Film Printing Process (After Savage (1976)) . . . . . . . . .. 57

ix



LIST OF FIGURES X

3.3
3.4
3.5
3.6
3.7
3.8
3.9
3.10
3.11
3.12
3.13
3.14
3.15
3.16
3.17
3.18
3.19

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9
4.10

Simple PTF Membrane Switch (After Gilleo (1995)) . . . . . . . .. 58
PTF Membrane Switch (After Hicks et al. (1980)) . . . . . ... .. 59
PTF Dome Switch (After Gilleo (1995)) . ... .. ... ... ... 59
Piezoresistive Strain Gauge Structures (After Arshak et al. (1995)) 60
Piezoresistive Sensor Array (After TekScan Inc.) . . . . ... .. .. 62
Realisation of PTF Capacitive Sensing Element . . . . . . ... .. 62
Capacitive Sensing Array (After Young (1997)) . .. ... ... .. 63
Partially Connected Array of Charge Generating Elements . . . . . 65
Row of Sensing Elements with Buried Conductive Tracks . . . . . . 66
Piezoelectric Sensor Schematic . . . . . . . ... ... L. 69
Piezoelectric Sensor: Mask Dimensions . . . . . . . . ... ... .. 69
Piezoresistive Sensor Schematic . . . . . . ... . ... 0oL 69

Piezoresistive and Piezoelectric (Left and Right) Sensors on polyester 70

Material Deformation in Response to Compression . . . . . . . . .. 71
Stress-Strain Schematic . . . . . . . .. ... oL 73
Piezoelectric Sensor Axes . . . . . . . .. ..o 76
External Planar Stresses on Sensor . . . . .. . . . ... ... ... 77
Piezoresistive Sensor Bonded to Smartcard . . . . . .. ..o 84
Piezoelectric Sensor Bonded to Smartcard . . . . . . ... ... .. 85
Measurement of Young’s Modulus . . . . . ... .. ... ... 86
Dependency of Internal Film Strains on Substrate Characteristics . 89
Peak Tapping Forces . . . . . . . . . . . .. .. . .. ... .. ... 94
Mesh Position of Load Cases . . . . . . ... .. .. .. ... ..., 95
Load Case 1- Simulation Results . . . . . . ... . ... .. ... .. 97
Load Case 2- Simulation Results . . . . . . ... ... ... ..... 98
Load Case 3- Simulation Results . . . . . . ... . .. ... ... .. 99
Load Case 4- Simulation Results . . . . . . ... .. .. ... ..., 100



LIST OF FIGURES xi

4.11
4.12
4.13
4.14
4.15
4.16
4.17

4.18
4.19
4.20
4.21
4.22
4.23
4.24

5.1
5.2
5.3
5.4
5.5
5.6
5.7
5.8
5.9
5.10
5.11
5.12
5.13

Possible Realisation of Constraint Boundary Conditions . . . . . . . 104
Mechanism for Applying Loads . . . . . ... . ... ... ... . 105
Piezoresistive Sensor’s Response to Applied Loads . . . . . . .. .. 106
Response to Known Loads . . . . . . ... .. ... ... ... ... 108
Simulated Sensor Array . . . . . . .. .. ... 112
Piezoresistive Sensor Element Response with Position . . . . . . .. 112
Piezoresistive Sensor Element (Rotated through 90°) — Response

with Position . . . . . . .o 114
Piezoelectric Response with Position . . . .. . . .. ... ... .. 115
Normalised Sensor Responses with Position . . . . . . .. . ... .. 116
Sensor Response to Tapping Loads . . . . . . . . .. ... .. .. 116
Press Responses . . . . . . . . . ..o 117
Press and Hold Responses . . . . . . .. . ... ... ... . ... 118
Sensors on Mylar — Smartcard on Flat Surface . . . . . .. ... .. 119
Modified Piezoelectric Smartcard . . . . . . . . . ..o 120
Data Acquisition Schematic . . . . .. .. .. .. ... . 147
Experimental Set-up . . . . . . . ... oL 148
3-Pulse Pressure Sequences . . . . . . . .. .. oL 149
4-Pulse Pressure Sequences . . . . . . . . . ... ..o 150
5-Pulse Pressure Sequences . . . . . . . . ... .o 150
6-Pulse Pressure Sequences . . . . . . . .. ... ... ... 150
7-Pulse Pressure Sequences . . . . . . . .. .. . ... 151
8-Pulse Pressure Sequences . . . . . . . .. ... ... 151
9-Pulse Pressure Sequences . . . . . . . . . . .. ... 151
10-Pulse Pressure Sequences . . . . . . . . ... . .. ... ... 152
Pulses from two Participants . . . . . . . . ... ... ... ... .. 153
Pulse Width Vs Pulse Height (All Pulses) . . . . ... ....... 153
Impostor Sequence Distribution . . . . . .. .. . . ... ... ... 154

x1



LIST OF FIGURES xii

5.14
5.15
5.16
5.17
5.18
5.19
5.20
5.21
0.22
5.23
5.24
5.25
5.26
5.27
5.28
5.29
5.30
5.31
5.32
5.33

6.1

Al
A2

B.1
B.2

C.1

Mean Pulse Heights — Normalised to Mean of Sequences . . . . . . 156
Mean Sequence Lengths — Normalised to Mean of Sequences . . . . 157
Participant Consistency . . . . . . . . . . .. . .. 158
Distribution of Modal Pulse Numbers . . . . . . . .. ... ... .. 158
Consistency with Modal Pulse Number . . . . . . . .. .. ... .. 159
Error Rates using the ¢; norm Verifier . . .. . . . ... ... ... 161
ROC curves for the ¢; norm Verifiers . . . . . . . .. ... .. ... 162
Error Rates using the /5 norm Verifier . . .. . . .. ... ... .. 164
ROC curves for the £ norm Verifiers . . . . . . . . . .. ... ... 165
ROC curves for the 5 norm Squared Verifiers . . . . ... ... .. 166
Error Rates using Modified Mahalanobis Distance . . . . . . . . .. 167
ROC Curves for Modified Mahalanobis Verifier . . . . . . . ... .. 168
Error Characteristics for Component-Wise Linear Verifier . . . . . . 169
Component-Wise Linear Verifier with Proportional Acceptance . . . 170
Combined Error Rates with Proportional Component Acceptance . 171
Error Characteristics for Component-Wise Non-Linear Verifier . . . 172
Component-Wise Non-Linear Verifier with Proportional Acceptance 172

Combined Error Rates with Proportional Component Acceptance . 173
Error Rate Comparison with Verifier . . . .. . . . ... ... ... 174
Floating Point Comparison with Verifier . . . . . . .. ... .. .. 175
Biometric System Schematic . . . . . .. ... . ... 186
Cantilever Deflection Schematic . . . . . ... . . ... ... ... .. 197
Beam Cross Section . . . . .. ... .. ... oo 197
Piezoresistor Signal Conditioning . . . . . . .. .. ... ... ... 200
Piezoelectric Sensor Signal Conditioning . . . . . . ... ... ... 201
Classic Resistive Bridge . . . . ... . ... ... ... ... .... 203

xii



LIST OF FIGURES xiii

C.2 Linearity with Resistor Ratio . . . . . . ... . . .. .. ...... 206
D.1 Data Acquisition Schematic . . . . . ... .. . . . ... ... ... 220
D.2 Serial Transmission Protocol . . . . . . . . .. . ... ... ... .. 221
D.3 ADC Timing Requirements . . . . . .. ... . . ... .. ..... 221
E.1 Participant @ - Pulse through Zero . . . . .. . . . ... ... ... 224

xiil



List of Tables

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9
4.10

0.1

6.1
6.2

6.3

D1

E.1

Young’s Modulus for Piezoresistor with Mixing Ratio . . . . .. .. 88
Summary of Material Properties . . . . . . . . . . . ... ... ... 91
ISO Specifications for the Physical Dimensions of a Smartcard . . . 93
Maximum Out-of-Plane Deflections . . . . . . . . . ... ... ... 96
Internal Smartcard Stresses Corresponding to Both Sensor Regions 101

Mean Surface Strains Corresponding to Both Sensor Regions . . . . 101
Theoretical Piezoresistive Response . . . . . . . . ... ... .... 102
Theoretical Piezoelectric Response . . . . . . . . . .. .. ... .. 102
Experimental Piezoresistive Response to Known Loads . . . . . .. 107
Experimental Piezoelectric Response to Known Loads . . . . . . .. 108
Specific Performance Details (User Specific 4 Norm) . . ... . .. 176
Comparison of Floating Point and Integer Results . . . . . . .. .. 183
Comparison of Floating Point, Integer and Pre-Multiplied Integer

Results . . . . . . . . 184
Results for all Verifiers . . . .. . ... ... .. .. ... ...... 185
PIC IO Registers Summary . . . . .. ... .. ... ... ..... 208
Comparison of two feature vectors . . . . . . . . . .. ... ... .. 223

xiv



Nomenclature

Capacitance (Farads)
Voltage (Volts)

Charge (Coulombs)

I O < Q

Resistance (Ohms)

GF;, Longitudinal Gauge Factor

€ Strain, proportional change in dimension
Ex Longitudinal Strain, %—'

Ey Transverse Strain, i;l/

£z Normal Strain, éj—

o Stress, f;— (Pascals)

Oy Planar Stress in the z direction

oy Planar Stress in the y direction
o, Normal Stress in the z direction
E Young’s modulus, Z (Pascals)

v Poisson’s ratio, —% =

P Volume proportion

p Resistivity (Ohm metre)
G Piezoresistivity coefficient

dss  Piezoelectric coefficient describing charge response to normal force (Coulomb
/ Newton)

XV



Nomenclature

xvi

ds1, dss Piezoelectric coefficient describing charge response to planar z or y forces

(Coulomb/Newton)
D;  Electric Displacement (Coulombs/m?)
= Electric Field Strength (V/m)
Maximum number of sensing elements per row of a sensing array

nmam

Amin. Minimum screen printing linewidth
FAR False Acceptance Rate
FRR False Rejection Rate

EFER Equal Error Rate

R Reference feature vector

T Test feature vector (verification)

U Unknown feature vector (identification)
7 i*" component of R

t; it" component of T
D Enroiment Mean distance of enrolment vectors from reference vector, R

) Acceptance Thresold

T Acceptance Tolerance

| -]li 4 norm

|- ll2 42 norm

C Class Covariance Matrix

\'% Class variance Matrix, leading diagonal of C

(-)* Transpose operator

paal



Chapter 1
Introduction

Modern smartcards are fully programmable, open and trusted computational plat-
forms, and are used for a wide range of functions. At the simplest level, they can
be involved in the storage of electronic data and for the prepayment of goods
and services (Rankl & Effing 1997). With cryptographic capabilities, the ap-
plications of high-end smartcards include electronic authentication, and the pro-
vision of mechanisms for non-repudiation of transactions and document creation
(Leach 1995, Hansmann, Nicklous, Schéck & Seliger 2000, Borst, Preneel & Rijmen
2001, M’Raihi & Yung 2001, Cattell, Carroll & Saby 2002). As a result, smartcards

are an important tool of e-commerce and information security.

Whilst a smartcard can robustly demonstrate its involvement during a transaction,
or its presence during remote access of resources, the presence of its rightful holder
can not be assured. Hence, there is currently much interest in the use of biometrics
to securely demonstrate identity to the card (Adams 2000). However, the emphasis
has predominantly been to use components which are external to the card, such as
biometric sensors or processing elements to execute biometric algorithms (Lapere
& Johnson 1997, Sanchez-Reillo 2001, Aufreiter 2001, Praca & Barral 2001). Not
only does such an approach expose the system to the possibility of eavesdrop and
playback attacks (Hachez, Koeunne & Quisquater 2000), it may also inconvenience
the holder by restricting where the card can be used. For these reasons it is
desirable to embed biometric sensors onto the smartcard itself, thereby creating an
entirely self-contained identity verification system. This is a challenge in terms of

the manner of demonstrating identity, and in the method of capturing biometric
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characteristics. Sensors required to capture discriminatory characteristics must
necessarily be sufficiently flexible and robust to withstand normal smartcard usage,

and do so in an economically compliant manner.

This thesis considers the problem of strengthening the association between a smart-
card and its legitimate holder. Appropriate biometric characteristics and sensor
mechanisms are investigated with the ultimate goal of a self-contained, on-card
identity verification system. A novel method of demonstrating identity to the
card is proposed, demonstrated, and shown to be compliant with the constrained

computational resources of a typical modern smartcard platform.

This chapter begins with an overview of smartcards, their applications and the
motivation for restricting access to their contents. Current approaches to the
protection of smartcards are considered, and in conclusion an outline of the work

presented in this thesis is given.

1.1 A Brief History of Smartcards

The development of smartcards can be traced to the first plastic banking and pay-
ment cards, introduced during the 1950s.! These served only as durable, portable
records of the card-holders details such as their name and card number. A sig-
nature field on the back of cards provided all that was required to authenticate
the user and permit transactions to occur. Security at this time relied solely on
the basis of visual inspection by retail staff, and as a consequence fraud was rife
(Rankl & Effing 1997).

The introduction of magnetic stripe cards, in the early 1970’s, offered some im-
provement in that more data could be stored in a machine readable form (Zoreda
& Otén 1994). However, since magnetic stripes are easily read and rewritten with
only moderate equipment (a process known as skimming), these cards are not

well-suited to storing confidential information.

Several patents appeared during the late 1960’s and early 1970’s offering possible
solutions to the insecurity of magnetic data storage (Dethloff & Grotrupp 1968,

'"Payment cards were introduced firstly by Diner’s Club (1950), followed by American Express
(1958) and Bank of America (1959). For more detail, see Rankl & Effing (1997).
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Ellinboe 1972, Castrucci 1972, Moreno 1974, Dethloff 1978). These patents all
proposed variants on the idea of embedding integrated circuits into plastic cards.?
Secret or confidential data could be securely stored within the integrated circuits,
making unauthorized access or copying of the data significantly more difficult than

had previously been the case.

Little progress in adopting this new technology occurred, until 1984 when the
French Postal and Telecommunications agency (PTT) trialed the use of integrated
circuit cards as telephone payment cards. The new cards offered significant ad-
vantages over coin-based payments, in that monies did not require to be collected
from public telephones. Containing less (or no) money, public telephones are less
prone to vandalism and theft (Rankl & Effing 1997).

The success of the French telephone cards is entirely evident in the circulation
numbers; By 1990, six years after the first trials, an estimated 60 million IC
telephone cards were circulating throughout France. Prepaid telephone cards are

now used in over 60 countries world-wide (Hansmann et al. 2000).

The type of IC card used in these telephone cards is known as a memory card.
These cards are prepaid, and their purchase value is stored electronically on the
card. Their requirement is simply to securely decrement an internal value. Because
of their convenience and low-cost, memory cards have displaced cash in numer-
ous small value transactions, including public transportation, vending machines,

photo-copying machines and canteens (Chen 2000).

Memory cards are only suitable for closed systems where a single authority controls
the issue of the cards and accepts them for payment. There must be little incentive
for fraud in these systems, since transactions can be recorded, then simulated using

an elementary microcontroller (Rankl & Effing 1997).

With continued improvements in semiconductor processing techniques, increas-
ingly complex circuitry could be manufactured onto the small areas of silicon of
the smartcard.® This enabled microprocessor functionality to be exhibited by the
smartcard, and data could be processed in addition to being stored. Such cards

are termed microprocessor cards.

2Generically termed integrated circuit cards or IC cards
3The ISO 7816 standard specifies a maximum silicon area of 25mm? in order to prevent
fracture when the card is flexed (Zoreda & Otén 1994)
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The improved capabilitics of microprocessor cards led to increased functionality
and offered for the first time cryptographic capabilitics within the smartcard. In
the above example of the prepaid memory card, fraud is possible because the
payment terminal is unable to verify the authenticity of the card used for payment.

With cryptographic functions this problem can be solved.

A tamper resistant module is installed in each payment terminal which is used to
generate and transmit a random number (called a challenge) to the smartcard.
The smartcard encrypts this random number according to a symmetric encryption
algorithm?, using a private key shared with the payment terminal. The result is
sent back to the terminal, decrypted and compared to the original challenge. If
the two are the same then the smartcard has demonstrated its authenticity and

the transaction may proceed. This is shown in Figure 1.1(a).

Terminal Smartcard Terminal Smartcard
Request public
key, k_public —

Generate Random i Transmit public
Number, Swrekpublic | = oaiic /| key.k_public
Transmit r -t/ Encryptr with Generate Random

private key, k_private Number, r
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Decryptwithprivate | o\ rnemit result, private key, k_private

key, k_private - . "
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Does Decrypt with public | Transmit RZS;IH.
- . key, k_public e, (r) € privart’
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. g
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(a) Private Key Approach (b) Public Key Approach

Figure 1.1: Symmetric and Asymmetric Authentication Mechanisms: ey, & dy denote
encryption and decryption operations, using a key &, respectively.

Security in such a scheme relies inherently upon the secrecy of private keys. If keys
are recovered from a secure module in any of the payment terminals or smartcards,

then the entire system can be compromised.

A way around this is to use an asymmetric public-private key approach.® Two
keys, one of which is private (and hence sceret) and the other public, are stored

on a smartcard. These keys are reclated, but in such a way that the private key

4Such as DES (Data Encryption Standard), or triple DES. See Schneier (1996) for details.
®Such as RSA. See Rivest, Shamir & Adleman (1978) for details.
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cannot easily be obtained from the public key. In the above prepaid payment
application, the payment terminal sends a random challenge to the smartcard,
this is encrypted with the smartcard’s private key, and the result transmitted
back to the terminal. The terminal requests the card’s public key which is then
used to decrypt the result. This is compared to the original challenge, as is shown
generally in Figure 1.1(b). This procedure is called authentication and is designed
to prove authenticity, rather than concealment of data. For a detailed account of
the cryptographic functionality found on current smartcards see (Borst et al. 2001,
Guillou, Ugon & Quisquator 2001).

The use of public keys to demonstrate authenticity removes the need for secure
tamper proof modules in payment terminals. Furthermore, each card contains its
own unique private key, which means that the integrity of the whole system is not

jeopardized if any of the private keys are discovered.

French banks were the first to trial a bank card scheme based upon the use of public
keys. The trial took place between 1982 and 1984, and began to be introduced
nationwide in 1987 (Townend 1995). The scheme’s success is demonstrated in the
reduction of fraud: Cartes Bancaires®, the French banking group, report that as
a direct result of the replacement of magnetic stripe cards with smartcards, fraud
rates fell from 0.27% of total transaction value in 1987 down to 0.02% in 1997
(Flohr 1998).

Modern smartcards cover an extremely diverse range of applications and func-
tionality. At the high-end, smartcard processors are considered to exhibit ap-
proximately the processing power of the first IBM PC (Hansmann et al. 2000),
employing 32-bit RISC processors at clock speeds of up to 7.5MHz. Storage space
on these processors however, is constrained to around 32-64kBytes of non-volatile
EEPROM for application storage, and 1-4kByte of volatile RAM (Castella-Roca,
Domingo-Ferrer & Herrera-Joancomart 2000, Praca & Barral 2001). Crypto-
graphic co-processors can be included to speed up the execution of encryption

and decryption functions.

Most modern smartcard processors include a number of hardware features designed
to prevent fraudulent access to data and internal processes (Rankl & Effing 1997).

These include encapsulating the microprocessor to prevent micro-probing of data

6Cartes Bancaires Group, Paris, France. Web: http://www.cartes-bancaires.com
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lines, metallization layers preventing electromagnetic monitoring of memory states,
on-chip sensors monitoring against intrusive attacks, and constant-power micropro-
cessor designs making it difficult for an attacker to infer a processor’s state from
its power consumption. Such features are generally considered to provide good
tamper-resistance rather than absolute tamper-proofing, and the effort required to

extract private data from a smartcard is considered to be high (Quisquater 1997).

Many high-end cards are programmed using a subset of the Java language, whose
details are prescribed by the Java Card specifications.” Java Card offers developers
the benefits of a structured, type-safe, high-level development language, whilst
retaining the security features required on a smartcard. For example, Java Card
provides robust firewall mechanisms allowing disparate applications to co-exist on
the same card. Other advantages of programming for a Java Card platform are
that applications are independent of the underlying hardware, and new or updated

applications can be dynamically loaded onto the card.

In short, the modern smartcard is an open, trusted and fully programmable mobile

microcomputer.

1.2 The Applications of Smartcards

Modern smartcards are employed in a wide and varied range of applications. At
the simplest level of memory cards, these include the pre-payment of goods and
services such as public telephone, transportation ticketing, photo-copying, and
vending applications. With more complex multi-application cards, a number of
such applications can be stored on the same card. For example,Verschuren (1998)
describes in detail the functionality of a Dutch nationwide university smartcard
project, the smartcard or Studentenchipkaart, combines both a conventional vi-
sual pass with a number of electronic applications including access control and a

selection of pre-payment applications.

At the high-end of smartcard functionality, cryptographic capabilities are involved

in digital signature creation providing a mechanism against the repudiation of

"Full details and specifications of Java Card are available from http://java.sun.com
/products/javacard/
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document creation and electronic transaction (Rankl & Effing 1997, Hansmann
et al. 2000). Further, cryptographic functionality enables strong authentication at
a distance, allowing restricted access to web services or information (Verschuren
1998, Bonetti, Ravaioli & Piergallini 2000). As already indicated, smartcards can
be used to securely store information, this is illustrated by Engelbrecht, Hilde-
brand & Jung (1995) and Naszlady & Naszlady (1998), both describing the use of

smartcards to hold patient medical records.

1.3 The Requirement for Strong User Authenti-

cation

Without strong user authentication, the use of a smartcard for electronic authen-
tication, or for digital signature creation, proves only that the smartcard was
involved in the transaction. But smartcards can be lost, stolen or loaned. As a re-
sult, mere possession of a smartcard is insufficient to demonstrate the participation

of its rightful holder.

The weakness of this approach is apparent, given the possibility of an imposter
borrowing a smartcard and using it to perform a transaction. In such a case, the
legitimate card-holder may find difficulty in disproving involvement. Indeed, the
converse is equally troublesome. If a mendacious card-holder were to repudiate a
transaction involving his smartcard, then he merely has to claim that the card was

stolen.

In the case of pre-payment applications, particularly when a number of applications
are loaded onto a card, restricting access by robustly demonstrating identity is
desirable. In doing so, the card with its stored values becomes less attractive to
thieves, and the holder’s investment is offered some measure of protection. With
similar reasoning, a smartcard storing medical or financial data should restrict
access to only its rightful holder. In essence, data of this nature is personal and

access should exclusively be with the owner’s consent.

For these reasons, it is desirable to find mechanisms which test the identity of
a person before they are able to use a smartcard. It is clear that binding the

electronic data of a smartcard and its rightful holder must be strengthened beyond
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mere possession. The next section reviews the mechanisms which are currently

used to bind a smartcard with its holder.

1.4 Current Approaches to User Authentication

Currently most smartcards are either entirely unprotected or are protected by
conventional security mechanisms such as passwords, or personal identification
numbers (PINs). This is commonly known as two factor authentication, where
someone must firstly have possession of the smartcard and knowledge of its associ-
ated secret information. This can provide greater security than either passwords or
tokens alone. Unfortunately, these knowledge-based approaches are weak, because
the secret knowledge may be forgotten, or discovered by third parties. Hence,
such an approach is no longer considered sufficiently reliable to demonstrate iden-
tity (Jain, Hong, Pankanti & Bolle 1997). These approaches all suffer from an
inability to distinguish between a legitimate user and an impostor having acquired

knowledge or possession of the access method.

As a result there is an increasing interest in making use of biometrics to demon-
strate identity to the smartcard. Biometrics refers to the automated identification
of an individual using physiological or behavioural characteristics, such as finger-
prints or voice patterns. These characteristics are more difficult to lose or steal
than passwords, PINs or tokens, and are hence considered to offer greater security
(Jain & Pankanti 2001). Biometrics can be used to identify an individual from
a population of users, or to verify the identity of an individual. This thesis is
concerned with verification rather than identification, since it is assumed that a
smartcard will have one legitimate holder, only. The field of biometrics is com-
prehensively reviewed in Chapter 2, but for the moment, it is assumed that a

biometric system can be divided into three principal components, that is:

e Sensor to capture discriminatory characteristics;
e Comparison module;

e Means of storing representative features.

Almost exclusively, the work on biometric protection of smartcards has split these

components between the card and some external resources. For example, at the
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simplest level, smartcards are used to securely store the representative features
whilst relying upon external means to capture the biometric characteristics and
compare live samples with those stored on-card (Phipps & King 1997). This ap-
proach is attractive in its simplicity: A moderately featured smartcard is capable
of storing biometric data, and a modern PC is quite capable of performing compar-
ison algorithms. Furthermore, the physical requirements of some biometric sensors
are not particularly arduous, and may make use of the space available on a desk-
top. Indeed, a number of manufacturers offer smartcard readers with integrated
biometric sensors.® Unfortunately, the host PC must be trusted, and live char-
acteristics may be recorded and played-back at a later time. This type of attack
is known as an eavesdrop or replay attack. Typically, such an architecture would
be used in a situation where one authority has complete confidence and control
over all components of the system. Physical access control and time & attendance

monitoring are examples of this structure (Adams 2000).

An improvement is to store both the biometric features and perform the matching
process on-card. In this instance, the smartcard is still reliant upon external
devices for the capture of biometric characteristics, and is hence susceptible to
replay type attacks, but has the advantage of executing the sensitive comparison
process on its trusted, tamper-resistant processor. The disadvantage here is that
some effort must be made in optimising the matching algorithm for the constrained
computational resources of a smartcard. Indeed the matching algorithm may be
too demanding to execute within a reasonable amount of time. However, this
approach is an attractive compromise and a number of smartcard companies are
beginning to demonstrate on-card fingerprint and voice matching®!° (Hojerback
2000, George 2000).

A further disadvantage to the approaches discussed, is that the card-holder may
require the flexibility to use her card at a number of disparate locations. If user-
verification relies upon a device which is external to the smartcard, then such

devices must be present at all points-of-use of the card. As shall be seen in chap-

8See for example the Touch430 smartcard reader with integrated fingerprint sensor from
Gemplus. http://wwv.gemplus.com

90n-Card Fingerprint matching from Precise Biometrics, Miotec, iD2 Technologies and Fin-
gerprint Cards.

190n-Card Voice recognition from Domain Dynamics Limited, Heaviside Laboratories, Cran-
field University, Shrivenham, Swindon, England SN6 8LA. Web: http://www.ddl.co.uk
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ter 2, not all biometrics are suitable for all people, nor indeed all tasks, thereby
confounding the problem. By integrating all relevant components on-card, this
problem is removed and existing card-reading infrastructure can continue to be
used. Moreover, since the sensor is on-card, the potential for eavesdrop and replay

attacks is greatly reduced.

The open literature contains very little evidence of embedding biometric sensors
onto smartcards, although an early patent (Lofberg 1986) describes the concept of
integrating a fingerprint sensor with a smartcard. However, whilst the most com-
pact of modern fingerprint sensors are silicon-based (Tartagni & Guerrieri 1998,
Shigematsu, Morimura, Tanabe, Adachi & Machida 1999, Mainguet, Pegulu &
Harris 2000), silicon is brittle in its native form. This is contrary to the neces-
sary requirement that a sensor be sufficiently robust and flexible to withstand the
typical handling strains to which a smartcard is subjected. By thinning silicon to
around 30um it becomes mechanically flexible (Klink 2000), however, there still
exists the possibility of damage from chemical contamination and electrostatic
discharge. Protecting a silicon sensor from these hazards will incur increased man-

ufacturing and packaging costs.

Nevertheless, it is believed that Infineon!! are in the process of developing flexible
silicon fingerprint sensors (Grassmann & Karl 2001). If successful, this venture
may enable fingerprint sensors to be embedded onto ISO compliant smartcards,
although at the time of writing, no such cards have been openly reported. On
the other hand, one company'? claims to have integrated a self-authenticating
fingerprint module onto a smartcard. Apparently, the module’s packaging provides
mechanical rigidity for a conventional fingerprint sensor, removing the requirement
of flexibility. This device is 1.5mm thick which is significantly in excess of the
ISO standard thickness of 0.76mm, and is hence incompatible with standard card
readers. To the author’s knowledge, there have been no successful attempts to

fully integrate biometric sensors onto ISO standard smartcards.

This thesis investigates a class of inherently thin and flexible polymer sensors,
called polymer thick film (PTF) sensors'3, for the purposes of capturing discrim-

HTnfineon Technologies AG. Miinchen, Germany. Web: http://www.infineon.com

1?Biometric  Associates, Inc. Baltimore, Maryland, USA. Web: http://
www.biometricassociates.com

13Although termed polymer thick films, these devices are thin in comparison to the thickness

10
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inatory biometric characteristics. PTF technology is an established circuit fab-
rication method used in the production of flexible conductors and interconnects
(Fu, Laing, Shiramatsu & Wu 1981). In addition, the intrinsic properties of thick
film materials can be exploited for sensor purposes, for example piezoresistive and
piezoelectric pressure sensors have been demonstrated (Papakostas, Harris, Beeby
& White 1998). Chapter 3 provides a review of the current state of the art, and
develops the mathematical description necessary to characterise the behaviour of

polymer thick film pressure sensors, bonded onto smartcards.

1.5 Scope of Thesis

The focus of this thesis is to investigate mechanisms of demonstrating the identity
of a smartcard holder to their smartcard. From the review presented above, it
is clear that significant security and convenience benefits are offered by integrat-
ing the sensor mechanism and performing algorithmic comparison on-card. This

presents challenges in terms of:

e Identifying human characteristics which are sufficiently distinguishing and are
appropriate to a smartcard system;

¢ Devising sensor mechanisms to capture these characteristics, and do so in a man-
ner which is both mechanically and economically compliant with smartcards;

e Finding efficient comparison algorithms which offer good differentiation proper-
ties, and can execute within an acceptable period of time on a typical smartcard

platform.

The manner in which identity can be demonstrated to the smartcard must ex-
ploit some aspect of the interactions between a person and the card, and is hence
restricted by the physical dimensions of the card. Chapter 2 presents a detailed re-
view of the field of biometrics and identifies a number of possible methods by which
identity could be demonstrated to the card. These include, but are not limited
to: fingerprints; finger geometry; the pattern of creases found on the inner surface

of the finger; and voice characteristics. Sensor requirements, in terms of spatial

of a smartcard, and can be expected to be < 100 um.

11
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resolution are assessed, and additionally, the measurands of pressure, temperature

and capacitance are found to be useful in the capture of such characteristics.

As indicated, PTF sensors are inherently thin, robust, flexible and low-cost, and as
a result offer attractive properties for an integrated smartcard identity verification
system. Hence, the field of polymer thick films is reviewed and assessed in Chapter
3. During the course of this chapter, the sensing mechanisms of piezoresistive
and piezoelectric polymer thick films are described, and mathematical models of
sensors bonded to smartcards are developed. It is found that both sensor types
exhibit theoretical sensitivity to normal and planar strains. This is an undesirable
property, since an applied load, such as the presentation of a finger, causes flexure
of the card and the propagation of planar strain. Chapter 4 assesses this effect,
both theoretically and experimentally, and finds that the planar sensitivity of both
sensor types is too high to allow more than one independent sensor on card. This
work is documented in (Henderson, Papakostas, White & Hartel 2002). On the
other hand, flex of a smartcard causes a sensor to experience higher strains than
would be the case for a sensor bonded to a rigid surface. This improved sensitivity
to singular loads can be exploited, and Henderson, Papakostas, White & Hartel
(2001) documents the differences between piezoresistive and piezoelectric sensors

in this respect.

Chapter 5 proposes and demonstrates a novel approach to identity verification.
Exploiting the force sensitivity of a piezoelectric sensor, bonded to a smartcard,
this new approach is founded upon the principles of keystroke dynamics, and is first
reported in (Henderson & Hartel 2000) and with more detail in (Henderson, White,
Veldhuis, Slump & Hartel 2002a). Differentiation based upon keystroke dynamics
utilises differences between typing styles of individuals, and much of the work uses
only the information of inter-key and key-hold times (Joyce & Gupta 1990, Brown
& Rogers 1993, Obaidat & Sadoun 1997, Robinson, Liang, Chambers & MacKenzie
1998). In this proposed approach to identity verification, an individual taps out
a self-selected rhythm on a singular pressure sensor, bonded to a smartcard. In
common with keystroke dynamics, inter-tap and tap-duration times are used as
features. However, the use of a pressure sensor allows the additional feature of

pressure amplitude, providing further scope for discrimination.

The approach is demonstrated in an experiment involving a population of 34 in-

12
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dividuals, each tapping their rhythm a number of times. Straightforward vector
distance functions are investigated for their discrimination potential, and the best-
performing of which is shown to offer an equal error rate of around 2.3%. This is
comparable to much of the work on keystroke dynamics, in terms of both perfor-

mance, method and population size.

This new approach is a combination of knowledge based and physiologically based
verification. However recent work at the University of Twente (Henderson, White,
Veldhuis, Slump & Hartel 2002b), investigates the use of only the pressure char-
acteristics of each user’s tapping style, thereby moving away from a reliance of
knowledge content and towards a sequence-independent method of demonstrating
identity. This work is based upon the same experimental data as (Henderson &

Hartel 2000), and an equal error rate of around 7% is reported.

Chapter 6, considers the constrained computational resources of a typical Java
Card platform. The algorithms necessary for demonstrating identity are written
and optimised for compliance with the Java Card platform. Java card, for example,
does not support floating-point arithmetic nor elementary maths functions such as
square roots. In conventional use of this platform, for data storage, cryptography
and pre-payment applications, such functions are not required. They are, however,
for biometric verification. So this chapter develops the necessary integer-based
equivalents and algorithmic techniques to allow the vector distance functions of

Chapter 5 to be computed.

This final stage in demonstrating suitability for smartcards ensures that the appro-
priate verification functions can execute within an acceptable time. It is found that
the most discriminating distance approach will perform the one-off enrolment of an
individual within 3.1 seconds, and more importantly, will verify their identity on a
per-transaction basis within 0.12 seconds. These times are well within reasonable
bounds, and this work is documented in (Henderson, White & Hartel 2001).

Chapter 7, sums up the work of this thesis, and considers fruitful areas of further

research.

13



1 Introduction 14

1.6 Original Contribution

Biometrics and the use of smartcards for authentication and non-repudiation mech-
anisms, are both emerging fields, hence, there is very little published work in the
overlapping region between the two. As indicated above, tentative advances have
been made in the use of smartcards to securely store biometric information, and
to perform on-card biometric matching. However, with the exception of a number
of conceptual patents (see for example Lofberg (1986) & Willmore (1994)), and
marketing literature (Grassmann & Karl 2001), there is little evidence of efforts

to embed biometric sensors onto smartcards.

The work contained herein considers this problem, firstly from the viewpoint of
finding discriminatory characteristics which are suitable for smartcards, and sec-
ondly, from the perspective of finding appropriate sensing mechanisms with which
to capture these characteristics. Polymer thick film sensors are identified as being
mechanically and economically compliant with smartcards, and their potential to
capture human interactions is assessed. It is believed that this is for the first time
that PTF technology has been assessed in this respect, and indeed, the work of
Henderson, Papakostas, White & Hartel (2001) has been cited as “...[an] innovative
use of thick film sensors...” (Bogue 2002).

During the course of this work, two novel PTF sensing mechanisms have arisen.
The first is a polymer thick film realisation of a simple capacitance sensor, and
is analogous the the sensing elements of capacitive silicon fingerprint sensors. Al-
though this is proposed in Section 3.4, a discussion on its further development
and testing is necessarily postponed until the Further Work section of Chapter 7.
The second mechanism is described in Section 4.9, and involves the formation of
a dome structure within the substrate underneath a conventional PTF pressure
sensor. This has the advantage of allowing increased strain to be transferred to
the sensing film, even when the substrate is constrained in its out-of-plane direc-
tion. This mechanism was serendipitously discovered, and further development

and applications are proposed in Chapter 7.

The most important original contribution of this thesis, is the novel approach to
identity verification, proposed and demonstrated in Chapter 5. This is important

because all aspects of this approach, including the sensor, the manner of interac-

14
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tion, and the computational resources required for verification, fully comply with
the constraints imposed by a smartcard. It is believed that Henderson & Hartel

(2000) is the first report of such a system in the open literature.
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Chapter 2

Biometrics

2.1 Introduction

Biometrics refers to the automated identification (or identity verification) of a per-
son based upon their distinctive physiological (something you are) or behavioural
(something you can do) characteristics (Miller 1994, Clarke 1994, Jain, Bolle &
Pankanti 1998, Hollingum 1999). For example, physiological traits which have suc-
cessfully been used to identify individuals include fingerprints, hand geometry, iris
pattern, retinal pattern and facial features (Jain et al. 1997, Miller 1994, Jain, Ross
& Pankanti 1999, Wildes 1997, Davies 1994, Phillips, Moon, Rizvi & Rauss 2000).
Whilst behavioral traits include voice characteristics, handwritten signature fea-
tures, and the manner with which people type on a keyboard (Furui 1997, Newham
2000, Joyce & Gupta 1990).

Conventionally, automated personal identification is based around either a knowl-
edge-based or a token-based approach (Miller 1994, Davies 1994, Ashbourn 2000,
Jain & Pankanti 2001). Knowledge-based identification relies upon something
you know — an individual identifies himself by demonstrating his knowledge of
some predetermined secret, such as a password or a Personal Identity Number
(PIN). Whilst on the other hand, token-based identification requires presentation
of something you have, which could be for example, a key, smartcard or identity

card.

Such approaches to identification are attractive because of the simplicity and ease

16
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with which they can be integrated into existing systems - the widespread use
of passwords for computer access is a good case in point. Unfortunately they
represent weak demonstrations of identity, in that passwords may be forgotten or
discovered by third parties, and tokens may be lost, stolen or copied. Combining
both approaches by protecting a token with some associated secret knowledge,
such as a banking card and PIN, offers some improvement in that an impostor
must gain possession of the token and discover its associated knowledge. But this
approach still does not demonstrate the presence of the authorized party, merely
that the possessor of the token is also in possession of its associated knowledge.
Furthermore, secret knowledge is often written down in obvious places, such as
diaries or even upon the card itself (Parkes 1991). Such actions further weaken an

already weak approach to identification.

Biometrics differs from conventional knowledge-based or token-based identifica-
tion, in that the biological characteristics of a person cannot be easily lost, shared
or misplaced (like passwords or keys). Hence, biometrics are generally considered
to offer a more reliable security mechanism than mere demonstration of something

you know or something you have (Jain & Pankanti 2001).

This thesis is concerned with finding a mechanism of demonstrating a smartcard-
holder’s identity to the smartcard, such that the smartcard will not function unless
the user’s identity has been satisfactorily demonstrated. From the outside-world’s
perspective such a system can represent an authenticated electronic key which
can be used anywhere, and only by the legitimate holder of the smartcard. This

situation is depicted in Figure 2.1.

Positive identification of a person in this manner satisfies a combination of two
approaches to identification, namely that the card must be possessed (something
you have) and that the biometric test must be satisfied (something you are). In
Chapter 5 a novel identity verification method which is wholly appropriate to

smartcard integration is proposed and demonstrated.

In seeking an appropriate identity verification mechanism, we look to biometrics-
based techniques for inspiration. This chapter presents an overview of the funda-
mental principles of biometric discrimination, introduces terminology and consid-
ers factors affecting the performance of a biometric system. A detailed review of

the current biometric state-of-the-art is presented, during which it will become en-
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Figure 2.1: Smartcard with Embedded Biometric Capabilities: The smartcard func-
tions only if the holder’s identity has been robustly demonstrated. This is in contrast to the
operation of current smartcards.

tirely evident that the physical properties of a smartcard restrict both the human
characteristics which can be presented, and the manner with which these can be
captured. A full discussion on the relevance of biometric techniques to the problem

of identity verification on a smartcard concludes this chapter.

2.2 Biometric Discrimination

Any human physiological or bchavioural characteristic can be used to identify
an individual, provided that the requirements of universality, uniqueness, persis-
tence and collectability arc met (Jain et al. 1997). Universality requires that cvery
person should exhibit the characteristic. Uniqueness implies that there must be
sufficient variability within a group of people, such that no two people arc exactly
the same in terms of the characteristic. Persistence requires that the characteristic
be time invariant, whilst collectability means that the characteristic must be ac-
cessible to quantitative measurement. Additionally, a practical biometric system
should exhibit satisfactory performance in terms of accuracy and speed, should
be perceived to be acceptable to its users, and be resistant to circumvention by

fraudulent means.

There are key differences between the use of physiological and behavioural char-
acteristics. Physiological traits are, barring injury, unlikely to change over time,

whilst behavioral traits may exhibit frequent variations depending upon the psy-
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chological state of an individual.

2.2.1 Biometric Sensors

A principal aspect of any biometric system is a means of capturing live biometric
samples. The sensor mechanism which achieves this, may be a dedicated sensor
explicitly designed to capture biometric samples, such as fingerprints (Tartagni &
Guerrieri 1998), or it may exploit the availability of existing devices, as is the case

for speaker recognition over telephone networks (Lamel & Gauvain 2000).

The desire to embed a biometric system on a smartcard places particular con-
straints on the sensor. As indicated in Chapter 1, the sensor must be mechanically
compliant with the smartcard — a requirement clearly illustrated when one consid-
ers that usual handling causes flexure of the card. In addition, the sensor should
be sufficiently robust to withstand sheer stresses associated with insertion and re-
moval of the card from wallets and readers. For these reasons, and that of low
cost, polymer thick film sensors are identified as appropriate for integration with

smartcards.

It is clear that properties, such as sensitivity, cross-sensitivity, and spatial resolu-
tion, impose a limit on the amount of information which can be captured. Hence,
Chapter 3 reviews the current state of polymer thick film sensors, whilst Chapter

4 investigates the properties of such sensors when bonded to smartcards.

The choice of an appropriate identity verification method may be strongly influ-

enced by the sensing resources available.

2.2.2 Modes of Operation

A biometric system can operate in one of two modes — either identification or
identity verification. Identification is the process of answering “who am I1?” and
requires a subject’s biometric characteristics be compared to an entire database of
enrolled users. Identification is hence, a one-to-many comparison. Verification, on
the other hand, represents a one-to-one matching process, and attempts to answer

the question “am I who I say I am?”. Verification requires a person firstly, to make
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a claim of their identity, then provide a biometric sample which is captured and
compared to a previously stored sample associated with the identity being claimed.
If the two are sufficiently similar, then the identity being claimed is accepted as

valid.

It is the mode of identity verification which is of concern throughout this thesis.
The assumption is made that a smartcard has only one legitimate holder, and
it is this identity which is associated with the data stored on card. Hence, an
embedded verification system serving to test the identity of someone in possession

of a smartcard, should reject all with the exception of the legitimate holder.

The functionality of a biometric verification system can be split into two principle
algorithmic cores, namely the enrolment and verification modules. The enrolment
module is responsible for the one-off process of generating and storing a repre-
sentative template of an individual’s biometric characteristics. Whilst verification
occurs on a per-transaction basis, and compares live characteristics to the stored
template. If the two are sufficiently similar, according to a predetermined thresh-

old, then the live sample is accepted.

Upon presentation and capture of an individual’s biometric sample, a feature ez-
traction process performs the task of extracting pertinent, time-invariant charac-
teristics. Using the example of hand geometry, such features may include finger
lengths, finger widths, and the width of the palm (Zunkel 1998). The feature ex-
traction process is common to both enrolment and verification modules, as shown

in Figure 2.2.

The computational requirements of the matching process depend largely on the
complexity of the template and the matching algorithm. Hence, the computa-
tional resources of the matching processor determine the time required to execute
the verification algorithm. This is of particular concern when dealing with the
constrained resources of the smartcard. As a result, processing considerations will

be considered in significantly greater detail in Chapter 6.

20



2 Biometrics 21

Live Biometric Live Biometric
Samples Sample
Feature Feature
{ Sensor J—’[ ADC > Extractor ADC Extractor
Reference Enrolment Reference Verification Acceptance
Template Algorithm Template Algorithm Threshold

!

Accept / Reject

(a) Enrolment Process (Performed Once (b) Verification Process (Performed on a
on Set-up) Per-Transaction Basis)

Figure 2.2: Generic Biometric System
2.2.3 Performance Considerations

Most biometric characteristics will exhibit some variance, either as an inherent
aspect of the characteristic itself (for instance the variations found in handwritten
signatures), as a physical consequence of the measurement process (fingerprints
may be captured when the fingertip makes incomplete contact with the sensor,
the sensor’s surface may be dirty, or the sensor may contribute random noise to
the measurement), or as a result of feature extraction poorly representing the
invariant characteristics of the biometric. All of these sources of variance degrade
the matching accuracy and hence, the performance of the system. See (Jain &

Pankanti 2001) for further details on this matter.

Due to these variations, the process of biometric verification does not give an
absolute accept or reject decision. Rather, a genuine claimant may be accepted,
and an impostor rejected, with an empirically determined confidence. Conversely,
the system may commit errors by falsely accepting an impostor or falsely rejecting
a genuine user, again with an empirically determined probability. Obviously, these

errors should be minimised in the interests of overall accuracy of the system.

The pattern-matching component of a biometric system compares the biometric
features which are expected to remain invariant in different presentations of the
biometric quantity. However, due to the reasons stated above, some variance is

to be expected. This is taken into account by setting an appropriate acceptance
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threshold. For example, if representative features are used to create a pattern vec-
tor, X, and R is the mean feature vector from one person, then X will be accepted
as being sufficiently close to, R if ||R —X]|| < 6 where 6 is the acceptance distance
and the magnitude operator, || - ||, is an appropriate vector distance function (for

example Euclidean norm).

Figure 2.3 shows two possible feature distributions: One from a population of im-
postor, the other from a genuine user. As the acceptance threshold is increased,
the probability of false rejections decreases but the chance of false acceptance in-
creases. It is the goal, then, of a biometric system to use characteristics which are
sufficiently different for each individual within a population, and to find represen-
tations which allow these differences to be maximized.

Distribution Mean (R)

Acceptance

Threshold

~~~~~~~~~~~~~~~~~~~~~~~~~ Genuine User

— Impostors

P(X)

i B >

™ False d Feature Space
Reject

Figure 2.3: Possible Genuine and Impostors Feature Distributions

The performance characteristics of a biometric verification system are typically
given in terms of False Acceptance Rate (FAR) and False Rejection Rate (FRR).
The FAR is defined as the probability that a biometric system will fail to reject

an impostor, and is stated as

Number of false acceptances

. 2.1
Number of impostor attempts 21)

FAR =

The FRR, on the other hand, can be expressed as the probability that a biometric

system will fail to verify the legitimate claimed identity of an enrolee. It is stated
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as
FRR — Number of falserejections (2.2)

~ Number of genuine attempts’

FAR and FRR clearly vary inversely with each other. By way of illustration, con-
sider the following, a system exhibiting a false acceptance rate of zero is required.
This may be achieved simply by blocking access to all users — a system with a
false rejection rate of one will have been created. Conversely, designing a system
to falsely reject no legitimate users is plainly a matter of allowing access to all

users, legitimate or otherwise. A system with a false acceptance rate of one is the

result.

Figure 2.4 shows the generalised error characteristics of a biometric system. The
crossover point of both error curves is known as the equal error rate, although this
rate is not always quoted by manufacturers of biometric systems, it is the author’s
belief that the equal error rate gives a more balanced view of the system than mere

false acceptance rate alone.

~~~~~~~~~~~~ False Rejection Rate False Acceptance Rate

0.8 -

0.6 -

Equal Error Rate

Error Rate

0.4 -

0.2 -

Acceptance Threshold (Arb. Units)
Figure 2.4: Generalised Biometric Error Rates

One can dispense with the detail of acceptance threshold by plotting FAR against
FRR, which is known as the Receiver Operating Characteristics or ROC curve of

the system. Figure 2.5 shows a generalised ROC curve.

It should be emphasised that performance characteristics of a biometric system rely
inherently upon the matching algorithm and the acceptance threshold. Access to

either of these allows the performance level to be altered. This point represents a
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Figure 2.5: Generalised ROC Curve: Typical error ranges are given for different applica-
tions.

principal benefit of performing biometric matching on-card, in a secure and trusted

manner.

2.3 Existing Biometric Methods

This section provides a review of the biometrics state-of-the-art, and highlights
the approaches which make use of characteristics suitable for an on-card verifi-
cation system. Where appropriate, specific aspects of sensing mechanisms are
given, thereby allowing comparison with the properties of polymer thick film sen-
sors. System performance and algorithmic details are provided where available

and relevant.

Unfortunately much of the work on biometrics remains proprietary or is commer-
cially sensitive, and as a result one must look to marketing literature or patents for
information. Whilst this may adequately serve to provide an outline of each bio-
metric method, such reference sources can rarely be relied upon for peer-reviewed,
balanced analysis. However, two recent independent investigations into the perfor-
mance of biometric systems have been made (Funk, Finke & Daum 2000, Mansfield,
Kelly, Chandler & Kane 2001), and will be quoted where appropriate.

The study by Mansfield et al. (2001), for the UK National Physical Laboratory

(NPL)*, assessed biometric systems for the verification of unhabituated users. Two

INational Physical Laboratory, Teddington, Middlesex, UK. Web: http://www.npl.co.uk
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hundred self-selected individuals were involved — each participating in one enrol-
ment and two verification sessions, separated by an interval of one month. Face,
fingerprints, hand geometry, hand vein, iris and voice verification systems were

assessed in this study.

The work by Funk et al. (2000), for the German Information Security Agency?,
investigated the suitability of biometric systems for everyday identification and
verification operations. Under investigation were optical and silicon based fin-
gerprint sensors, face recognition systems, signature verification systems, a hand
geometry recognition system and an iris based verification system. This study

involved forty volunteer participants, each using all ten systems on a daily basis.

Funk et al. (2000) report only false rejection rates without corresponding false ac-
ceptance rates for the verification systems under review. This is unfortunate since
judicious selection of acceptance threshold can achieve any desired false rejection
rate, as can be seen from Figure 2.4. However, both quantities are reported for

the identification systems under investigation, and will be quoted appropriately.

It seems reasonable that an integrated smartcard biometric makes use of the phys-
ical interaction between card and user. For this reason, particular attention will
be given to hand or finger based biometrics, whilst only cursory commentary will
be given to other methods for completeness. At the end of this chapter a full

discussion on the relevance of current biometrics to smartcard integration ensues.

2.3.1 Fingerprints

Fingerprint characteristics is perhaps the most mature area of personal identifi-
cation, being used since the beginning of the twentieth century for criminal and
forensic applications, and more recently in the automated identification of individ-
uals (Jain et al. 1997).

Fingerprints are the visible patterns of ridges covering the fingertip regions of the
finger. The outer region of the fingertip is composed of two layers, the outermost
being a layer of dead skin cells, called the epidermis, whilst the inner layer is a

living conductive layer called the dermis (see Figure 2.6). It is the visible pattern

?Bundesamt fiir Sicherheit in der Informationstechnik, Bonn, Germany. Web:
http://www.bsi.de
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of ridges and valleys which makes up the complex pattern of the fingerprint, and

the ridge separation distance is reported to be around 330-400 pm (Cummins 1964)

Pores
«——— Epidermis

~2mm

Dermis

Figure 2.6: Finger Ridged Skin (After Cummins (1964))

The fingerprint pattern begins to form at about twelve weeks of gestation. Un-
dulations begin to appear on the inner surface of the epidermis, later developing
into a structure of ridges, furrows and sweat glands. As a child grows, the struc-
ture grows, but the pattern geometry is preserved unchanged (Holt 1968). Further
evidence to this effect was provided by (Galton 1892) who recorded fifteen sets
of fingerprints then re-recorded and compared each set, a number of years later.
He observed that in all cases the form of the pattern and the detailed structure
of the ridges remained unchanged. One striking example is given in the case of
a woman who, as a young child was fingerprinted by Galton (in 1890), and then
again by Penrose (1969) in 1961. Over seventy years later, the ridge pattern and
detail remained preserved. Numerous subsequent studies have strengthened these
conclusions (Holt 1968).

Galton (1892) described fingerprints in terms of their gross pattern of loops, arches
and whorls, also making note of small local features called minutiae, which include
ridge endings, ridge bifurcations, delta-points and islands. Although fingerprints
may be generally classified by pattern type and ridge counting methods, identifi-
cation of an individual is subject to matching of the minutiae geometry of their

prints. Figure 2.7 shows an inked print of one of the author’s fingers®, upon which

3The fingertip was coated with LaserJet toner, then dabbed onto paper. The resulting print

26



2 Biometrics 27

a number of minutuae features are highlighted.

Bifurcaction

Ridge Ending

Delta Point

Island

Figure 2.7: Example of an Inked Fingerprint: Finger ridges appear darker than valleys.

There are a number of ways of capturing fingerprints including optical, capaci-
tance, pressure and thermal based approaches. Of these methods optical capture
is perhaps the most intuitive, with a number of variants reported in the literature
(Coetzee & Botha 1996, Drake 1997). The most straightforward approach is sim-
ply to use a direct optical scanner.* However there are a number of problems with
this approach since the pressure of a finger-tip placed on a scanner reduces the con-
trast between ridges and valleys, and further, circumvention using a photograph

is likely to succeed.

An improved optical capture method is that of frustrated total internal reflection
(Coetzee & Botha 1996). This scheme relies upon light internally reflecting from an
inside face of a glass prism, and onto an optical imager. A fingertip is placed upon
the outside of a reflecting face, and at positions of ridge contact the refractive index
of the glass-air boundary are changed thereby frustrating total internal reflectance.
Hence, ridges appear dark and valleys appear as bright regions. Such a scheme is

presented schematically in Figure 2.8(a).

was captured using a flatbed scanner with 8-bit greyscale at 600dpi.
4For example, see the BioMouse from ActivCard, Inc. Fremont, CA, USA. Web:

http://www.activcard.com
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The state of the art in optical fingerprint imaging is a holographic fingerprint
sensor (Drake 1997), a schematic of which is presented in Figure 2.8(b). The bulky
prism and extended optics of the previous device are replaced by a holographic
grating of an extended light source, sandwiched between a glass cover and an
optical CCD sensor. The grating is illuminated by a diode laser, appearing as an
extended source to the glass cover. Light is then reflected from the finger and onto
the imaging sensor. This is a compact optical device, in the order of 1 to 2 cm

high.

Prism =L o i
\ / ﬂ Cover Glass LJ o M )
LT i \, e ‘I'“ Holographic
Extended / < A t T ;l'.' Grating
Light Source / \\. . LaserIn —> “ Glass Substrate
/\ U Imaging Ft!j‘:
( ! N Device ’ !\ CCD Arra
\_/ / y
Processing Electronics
(a) Frustrated Total Internal Reflection (b) Holographic Sensor
Approach

Figure 2.8: Optical Fingerprint Sensors (After Drake and Fiddy (1996))

The most common contemporary approach to sensor design is silicon based, of-
fering a significantly more compact alternative to optical methods. An additional
advantage is the ability to integrate image processing circuitry to improve image
quality on the same die as the sensor. Jung, Thewes, Goser & Weber (1999),
describes an approach to integrating feature extraction functionality on the sensor
die, whilst Shigematsu et al. (1999), reports on the design of a single-chip sensor

with verification functionality.

Silicon based capacitive sensors have been described by Young (1997) and Tartagni
& Guerrieri (1998). Figure 2.9 outlines one possible approach in which a reference
voltage is applied to the electrode of each pixel, and a charge is developed across the
insulating layer. The resulting charge, Qp;ze;, is proportional to the capacitance
between the pixel electrode and the (conductive) dermal layer of the fingertip,
Cpizer. That is

Qpizel = Cpizel Vies- (2.3)
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Upon completion of the charging cycle, the charging switch is opened, and the
discharge switch closed allowing charge to be transferred to a reference capacitor.
The resulting voltage (Vsensor = QC”T:}”) may then be extracted and measured. A
suitable array infrastructure, such as charge-coupling (Tartagni & Guerrieri 1998)
or switched X-Y scanning (Young 1997) is necessary to localise charge and allow

extraction for measurement.

| . .
| Finger Section

.

\ Trough

/ —C N
Ridee 7 — Trough
Insulating \\f/
Layer _.;__ Crigge _— Electrode
! 1 *——__ Discharge
o ' _ -
VM L \/Scnsor / ___5__ CR . Switch
et —L- TRe
Charge
Sensor Switch

Figure 2.9: Capacitive Measurement of Finger Ridge Pattern

Figure 2.10(a) shows the capacitive sensor from Infineon®. This device has 224 x 288
pixels (of dimensions 50x50um ), offering a spatial resolution of 513dpi with an

8-bit greyscale pixel depth.

Pyroelectric materials have been employed in the fabrication of thermal fingerprint
sensors (Mainguet et al. 2000), where temperature differences between the finger
and sensor are captured and used to create a fingerprint image. In this scheme,
heat is drawn away from the sensor in places of finger contact. The sensor detects
this change in temperature and is hence able to record the position of ridges. This
scheme is novel in another respect: Rather than employing a square sensing matrix,
the sensor described by Mainguet et al. (2000) (marketed as the ‘FingerChip’®),
is a rectangular array of 8x280 pixels, each being 50x50um and offering 8-bit
greyscale image depth. A fingertip is swept across the sensing array and a series

of rapid image samples are captured and reconstructed to create a complete image

Infineon Technologies AG St.-Martin-Strasse, 81669 Miinchen, Germany. Web:
http://www.infineon.com
SFingerChip sensor from Atmel, Grenoble, France. Web: http://www.atmel.com
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of the fingerprint. This scheme has the obvious advantage of requiring a smaller
sensor, but requires sufficient computational resources to reconstruct the image.

The thermal sensor offered by Atmel is shown in Figure 2.10(b).

(a) Capacitive Sensor (Infineon) (b) Thermal Sensor (Atmel)

Figure 2.10: Silicon Fingerprint Sensors

It is possible to capture a finger ridge pattern using an array of pressure sen-
sors (Edwards 1984). Here, a CCD array is coated with a layer of piezoelectric
material, which generates charge in response to an applied pressure. Fingertip
ridges exert greater pressure than valleys, and thus a fingerprint image can be
captured. Another method of capturing finger ridge pressures is given in the mi-
cromachined pressure sensor approach of Rey, Charvet, Delay & Hassan (1997).
Fingerprint pressure sensors do not seem to have gained the popularity of the

capacitive and thermal approaches, as outlined above.

A scanning resolution of 500dpi is widely considered to be a minimum requirement,
for the capture of fingerprints, and this necessitates a pixel pitch of ~50pum (Lee
& Gaensslen 1991).

The most common approach to identification and verification, using fingerprints,
relies upon the position and orientation of minutiae features (Jain et al. 1997).
Ridges must be detected and binarized such that the captured grey-scale pixels
are reduced to either black or white values. Due to the effect of noise, dirt, or
non-uniform finger placement, the binarized image may contain holes and speckles.
These should be removed before ridges are thinned to facilitate minutiae extraction.

Straightforward algorithms exist for minutiae detection (for example see Jain et al.

30




2 Biometrics 31

(1998)), which should be applied at this stage. The matching of minutiae between
enrolment and live fingerprints results in an acceptance decision. Details of these

processes are beyond the scope of this thesis, but the reader is directed to Jain
et al. (1997) for greater depth.

A Note on Fingerprints

Since the beginnings of forensic use of fingerprints it has been widely assumed
(based upon empirical experience) that no two fingerprints were identical (Lee
& Gaensslen 1991). However, Pankanti, Prabhakar & Jain (2001), investigate
minutiae distribution and establish a correspondence between two arbitrary fin-
gerprints. It is concluded that false associations may occur, particularly in the
case of automated matching, and the probability of a false correspondence be-
tween two fingerprints is estimated to be around 5.86 x 1077, when 12 minutiae
points are used. This analysis does not consider any genetic or environmental cor-
relation within a population, which is expected to significantly reduce the degree

of uniqueness within a population.

Furthermore, van der Putte & Keuning (2000), prescribe a straightforward method
of copying fingerprints either overtly with the aid of the person belonging to the
fingerprint, or covertly making use of latent prints. In both cases, and with a
minimum of effort, Van der Putte, has shown that silicone-rubber fingerprint copies
can be made and demonstrated that a number of commercially available fingerprint

sensors are readily circumvented.

A number of sensor manufacturers claim to improve security by including liveness
tests in their sensors. These tests may include temperature, conductivity, and
dielectric properties, but as Van der Putte points out, fingerprint sensors are re-
quired (and designed) to function under a very wide range of operating conditions,
and in doing so circumvention is made easier. For example, the resistance of a
fingertip may vary from several MQ) during cold, dry weather, and may drop to a
few k) during summer. It is claimed that a drop of saliva decreases the resistance

of silicone sufficiently to circumvent a conductivity test.

Van der Putte’s work involved state-of-the art (in the year 2000) fingerprint sensors

and included optical, capacitive silicon and thermal silicon sensors. With some
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basic skills, van der Putte estimates that covert creation of latex prints requires
about 8 hours, whilst overt copying would take just a few hours. Whilst the effort

involved is non-trivial, it is still well within the reach of a motivated impostor.

Nevertheless, fingerprints still exhibit a large degree of measurable uniqueness.
The performance study by NPL found that the fingerprint sensor and matching
algorithm from Infineon offered an equal error rate of ~3%, whilst the BSI study
reports a false identification rate of 6.5% at a false rejection of 5.7%. Whilst these
performances are (in common with all biometrics) not absolute, it is the author’s
opinion that fingerprints will continue to be a useful tool in both forensic and
security applications. It is likely that other less-mature biometrics (particularly
those based on external physiology, such as hand-geometry, finger-crease pattern
and palmprints) will suffer similar characteristics. Acknowledging the limitations
of a particular method will enable informed decisions to be made, allowing their

useful exploitation in appropriate circumstances.

2.3.2 Hand Geometry

Discrimination on the basis of hand geometry relies upon individual differences
in the length, width and height of fingers, and palm width (Zunkel 1998, Jain
et al. 1999). The use of hand geometry as an automated means of identification was
first proposed in the patents of Ernst (1971), Miller (1971) and Jacoby, Giordano &
Fioretti (1972). The early systems of Ernst (1971), and Miller (1971), were electro-
mechanical in nature, whilst the proposition of Jacoby et al. (1972), introduced
the approach of electro-optic sensing of hand characteristics. Figure 2.11 provides

schematics of these early systems.

These three approaches measured 2-dimensional planar characteristics of the hand:
The system of Ernst measures only the length and breadth of the hand as a whole;
Miller’s approach was to measure individually the length of each of a person’s four
fingers, whilst Jacoby’s approach was to record the length of all fingers and thumb
of one hand. The sensing method employed by both Ernst and Miller was for the
hand to physically move resistive contacts, hence, finger lengths were deduced by
resistance measurements. With the alternative approach of Jacoby, fingers rest

on perforated guide slots, and are illuminated from above. Presence of a finger
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Figure 2.11: Early Hand Geometry Recognition Systems

blocks light, and hence finger length can be measured. All three patents provided
electro-mechanical means of storing and retrieving hand characteristics on a card,

enabling the systems to be used in identity verification mode.

Modern hand geometry systems use CCD cameras to capture both planar and side
views of a person’s hand, and image processing enables the extraction of features
upon which discrimination is based. These typically include finger and thumb
lengths, the width and thickness of each finger at one or more positions, and the
thickness of the hand at one or more positions. Figure 2.12 shows both a schematic

of this approach and a commercially available system.

Whilst the details of most hand geometry systems remain proprietary, some open
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(a) Hand Geometry Schematic, After Sid- (b) Commercially Available System
lauskas (1988). (Recognition Systems Inc.)

Figure 2.12: Modern Hand Geometry System

research has been recently published. For example, Jain et al. (1999), describes
an attempt to design a verification system, broadly of the form described in Fig-
ure 2.12(a), using image processing techniques to measure finger length, finger
width, hand width and hand thickness. Visual inspection of Jain’s results reveals
an equal error rate of around 7%, this however, does not include approximately
28% of captured samples which were discarded due to inconsistent hand place-
ment. Sanchez-Reillo, Sanchez-Avila & Gonzales-Marcos (2000), reports upon a
similar investigation with 20 users each providing 10 samples, false acceptance and

rejections rates of 6.6% and 9%, respectively were calculated.

In an attempt to improve performance, Jain & Duta (1999), describes an approach
based upon a measure of hand shape, rather than the extraction of explicit features,
as reported above. With a false acceptance rate of 2%, Jain and Duta report a
3.5% false rejection rate. By visual inspection of their results, an equal error rate
of just over 2.5% is estimated, representing significant improvement. Lay (2000),
describes an approach to hand shape recognition, in which the hand is illuminated
by a sinusoidally varying intensity pattern, which is claimed to facilitate shape
extraction. In a verification experiment involving 100 participants, Lay reports an

equal error rate of around 1%.

According to Miller (1994), commercially available systems offer cross-over error

rates of around 0.2%, however no details of the testing regime are given. Mansfield
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et al. (2001) reports an equal error rate of around 1.5% for the HandKey system
(Recognition Systems Inc.”), whilst Funk et al. (2000) found a false acceptance

rate of 2.2% at a false rejection rate of 4.4%, for the same system.

Hand Geometry is widely considered to provide sufficient discrimination for iden-
tity verification rather than identification (Zunkel 1998, Jain et al. 1999, Ashbourn
2000), and the results presented above are aligned with this view. Indeed, as a
method of identity verification, hand geometry is widely used, and its most com-
mon application is in time and attendance monitoring. Modern hand geometry
systems may interface directly with payroll systems, reducing processing costs
and virtually eliminating fraud due to clocking-in on the behalf of others (a phe-

nomenon commonly termed buddy-punching).

Additionally, hand geometry systems have been used successfully in access con-
trol applications. For example, access to the athlete’s village during the 1996
Olympic Games was controlled by means of hand geometry systems, and through-
out the duration of the games, over 65000 people were enrolled for verification
(Ashbourn 2000). The American Immigration and Naturalization Service’s Pas-
senger Accelerated Service System (INSPASS), uses hand geometry to automati-
cally verify the identity of frequent, low-risk travellers (Dell & Bunney 2001). The
system is installed in a number of airports across the States, and in the year 2000

processed over two-hundred and eighty thousand inspections.

Due to the physical bulk of current hand geometry systems, they tend not to
be well suited to protection of PCs or network access. Additionally, it has been
suggested that hand geometry systems may be circumvented using a simple card-
board silhouette (Sidlauskas 1988), although the International Biometric Group®
suggest that an entire cast of an enrolled hand would be required. Furthermore,
hand geometry may not be suitable to those with limited hand movement, for
example severe arthritis sufferers. Nonetheless, in terms of the applications de-
scribed above, hand geometry may be considered a mature and stable biometric.
Recognition Systems Inc., for example, claim to have deployed over 55000 units

worldwide.

In an attempt to reduce the bulk of the hand geometry systems described above,

"Recognition Systems Inc. Campbell, CA, USA. Web: http://www.handreader.com
8International Biometric Group, New York, USA. Web: http://www.biometricgroup.com
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the patent of Harkin (1998) describes a planar sensor capable of capturing the
outline of a hand. This sensor is effectively a large scale, low resolution version
of the fingerprint sensor proposed by (Young 1997), and detailed above. Indeed,
Harkin proposes the provision of an area of high resolution sensing elements corre-
sponding to the position of the fingertips, such that fingerprints may additionally
be captured. To the author’s knowledge, this approach has not been developed
further.

2.3.3 Hand Vein Pattern

The pattern of veins on the back of the hand is claimed to be unique and to offer
the possibility of detecting the liveness of the hand (Rice 1985). Furthermore,
since veins reside below the skin it is believed that vein patterns are more difficult

to forge than conventional hand geometry (Lockie 2001b).

Hand vein systems are physically similar to those used for capturing hand geom-
etry, as shown in Figure 2.12, consisting of a hand grip upon which the user’s
hand is placed, infra-red illumination source to improve contrast between vein and
skin, and an imaging device to record the pattern (further details are provided in
Clayden (1998)). Image processing techniques are then used to extract the vein
pattern for comparison. Figure 2.13 shows the vein pattern from three different
hands.

Figure 2.13: Vein Patterns from Three Hands (After NeuSciences Ltd.)

Hand vein systems are currently manufactured by two companies: NeuSciences®

and BK Systems!®) and are currently deployed in a number of access control and

attendance monitoring applications (Choi 2000).

9NeuSciences, Southampton, United Kingdom. Web: http://www.neusciences.com
10BK Systems, Seoul, South Korea. Web: http://www.bk12.com
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Although BK Systems claim a false acceptance rate of 0.0001% at 0.1% false
rejection, independent testing of hand vein recognition by NPL revealed an equal

error rate of around 10% for a prototype system from NeuSciences (Mansfield
et al. 2001).

Advanced Biometrics Inc.!! have proposed a similar scheme based upon the vein
pattern found on the palm-side of the hand. Their system captures an infrared
image of the palm, from which vein patterns are extracted. Performance charac-
teristics are not stated, nor is it believed that any palm vein systems are currently

In use.

Details of the scanning mechanism are unknown, however, a patent by one of
the company directors outlines the broad functionality of such a system (Stiver &
Peterson 1998). In this a linear array of fibre optic cables is housed in a transparent
cylinder, upon which a hand grips. As the cylinder rotates an infrared image of

the palm vein pattern is captured.

2.3.4 Palmprints

The palm offers a rich set of time-invariant features which can be used for per-
sonal identification (Shu & Zhang 1998). These features include the geometrical
characteristics of length, width and area; the principal lines, numbered 1-3 in Fig-
ure 2.14(a); and minutiae features, common to all ridged skin. Figure 2.14(b)
shows an optical scan of the author’s palm, captured with 8-bit greyscale resolu-
tion at 150dpi using an off-the-shelf flatbed scanner (ScanJet5200C from Hewlett
Packard). Due to low contrast it is difficult to see much of the detail in this image.
Local histogram equalisation was applied over consecutive 8x8 pixel regions to
improve feature contrast, giving the result of Figure 2.14(c), which clearly shows
the three principal lines as suggested by 2.14(a). Detail of large well defined ridges
can be seen in the lower left-side of the image, although the scanning resolution is

too low to see the fine ridges of much of the palm’s remainder.

Identity verification using palm characteristics offers some advantage over the use
of fingerprints in that the geometrical and principal line features can be extracted

from relatively low resolution images, and as a result exhibit greater insensitivity

11 Advanced Biometrics Inc. Puyallup, Washington, USA. Web: http://www.adv-bio.net
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(a) Principal Palm (b) Optically Scanned Palm (¢) After Histogram Equali-
Lines,  After Shu (8-bit greyscale, 150dpi) sation
(1998)

Figure 2.14: Palm Prints

to noise. Furthermore it is claimed that their capture is easier amongst groups

whose fingerprints are faint, such as the elderly or manual workers.

Shu & Zhang (1998), describe an approach to palmprint identification using a
combination of palm geometry and two of the principal lines, indicated above.
Their approach firstly determines the origin and orientation of the palm, then the
position of a number of equidistant points on two principal lines are extracted and
used as features for comparison. Although Shu and Zhang do not give explicitly

the number of participants in their experiments (stating only that “..48 pairs of

prints from the same hand and 844 pairs of prints from different hands...” were
involved), they report an equal error rate of zero. No details about their method
of capturing palmprints is given, other than the final images characteristics of
400400 8-bit greyscale pixels, sampled at 100dpi. Further details of their line
extraction algorithm, necessary for automated verification, is given in (Zhang &

Shu 1999).

Duta, Jain & Mardia (2002), describe a slightly different approach to palmprint
verification, in which isolated points lying along all of the palm lines are used for
comparison. This approach is claimed to be faster and more efficient than the line
extraction method of (Shu & Zhang 1998, Zhang & Shu 1999). An overlap of 5%

in genuine and impostor feature distributions is reported.

Duta et al. (2002), captured their palmprints using a flexible rubber pad, upon

which an inked palm is placed. This leaves an inked print of the palm which is
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then transferred to paper and scanned using an off-the-shelf flatbed scanner (8-bit
greyscale at 200dpi). 30 images in total were collected from both hands of three

participants.

To the author’s knowledge there are no companies offering palmprint identification
systems for civilian applications. However, palmprints are generating some interest
in the field of criminal investigation, and a number of companies offer inkless palm

scanning and recognition devices.!?

2.3.5 Finger Characteristics

Both finger geometry and other finger characteristics such as finger crease patterns

and finger vein patterns have been proposed for use in automated identification.

Finger geometry is a variation of hand geometry, in which geometrical character-
istics, such as finger length, width and height, or the position of the finger joints,
are used as the basis for discrimination (Jain et al. 1998). One company, BioMet
Partners Inc.'®, has developed such a system. As can be seen in Figure 2.15, its
form is similar to that of the hand geometry system presented in Figure 2.12, if

more compact.

Camera Housing

Separator Pins

Finger Pads

Figure 2.15: Finger Geometry System (BioMet Partners, Inc.)

12Gee for example Printrak’s LiveScan3000 device (http://www.printrakinternational.com)
or the PrintQuest device from SPEX Forensics Group (http://www.crimescope.com)

13BioMet Partners, Inc.  Pestalozzistrasse 12 CH-3280 Morat, Switzerland.  Web:
http://www.biomet.ch
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BioMet claim that their system has been extensively tested with over 5 million
enrollees using a number of installations at DisneyLand (Florida, USA). Although

offering no testing nor evaluation details, an equal error rate of 0.1% is claimed.

Joshi, Rao, Kar, Kumar & Kumar (1998), describes a method of capturing and
using the pattern of creases, found on the inner surface of the finger, as the dis-
criminatory features for verification. Their apparatus is again similar to that of
ficures 2.15 and 2.12, with an imaging device positioned over the hand. In this
approach, however, the hand is placed palm-side up, offering the finger crease pat-
tern to the imaging device, as shown in Figure 2.16. As the hand is moved into

position a micro-switch closes which triggers the imaging device. This approach is

Micro-Switch

Ring E F:D‘/M;ddle

Fmger\ F/ Finger
= s

Ve

Base Plate

Placement” + " :
Guide o S

Figure 2.16: Finger Crease Schematic, After Joshi et al. (1998)

In a verification experiment involving 206 participants, Joshi reports an equal error
rate of ~0.3% when using crease patterns from middle fingers only. This improved
to around 0.02% when both middle and ring fingers were considered. Finger crease
patterns were represented as intensity averages, taken across the width of the finger
at 472 points along the finger length, giving 512x512 pixel images with an 8-bit

greyscale resolution.

Hitachil? have developed a verification system based upon the vein pattern of a
person’s index finger (Lockie 2001a). In common with the approach to hand-

vein recognition of NeuSciences, infrared light is used to illuminate the finger

HMHitachi Ltd. Tokyo, Japan. Web: http://www.hitachi.com
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and improve vein-flesh contrast. Hitachi claim a 100% identification rate, from a

population of 700 participants, although no further details are known.

Willmore (1994) was granted a patent for the broad concept of embedding an in-
frared CCD (IR-CCD) onto any type of transaction media (such as credit cards,
computer keyboards, security access media). The function of the IR-CCD is to
capture IR radiation from vein-dense body parts — Willmore suggests the possibil-
ity of using fingers, nose or ear-lobes as being suitable for the task. As such, this
approach differs from that of the other IR vein pattern verifiers in that it relies
upon thermal contact of the body part rather than an optical imaging device to

collect the radiation. This concept may lead to significantly smaller devices.

Willmore proposes that the necessary verification tasks of thermal imaging, image
storage, and image comparison, are performed on the same ASIC module. Specific
application details are lacking, and it appears that this work is based upon concept

rather than implementation.

2.3.6 Face Recognition

Face recognition is perhaps the most common means by which humans recognise
each other. Automating the process of recognition, however, is a difficult task
requiring that the system account for variations in expression, facial hair, wearable

items such as glasses, hats and scarves.

The automated recognition of human faces can be performed either overtly or
covertly. Overt operation requires the implicit knowledge and cooperation of an
individual, and is typically performed within a controlled environment with con-
stant illumination and uniform background. Resulting face images are normalised
in size and position prior to, and to facilitate, feature extraction and recognition.

Such images are termed canonical faces.

Covert operation, on the other hand, may involve imaging an individual’s face with-
out their knowledge, or indeed consent. This may take place in airports, shopping
or town centres (Ashbourn 2000). Covert operation (in particular) must therefore
be sufficiently robust to deal with variations in lighting conditions, background,

and the imaging angle between face and camera.
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Irrespective of operational mode, face recognition techniques must be insensitive
to the normal “non-obstructive” variations of clothing, glasses and facial hair, as
indicated above. Intuitively, derived features such as the position and angle be-
tween the eyes, mouth, nostrils and chin, could be used as the basis for comparison.
Unfortunately the automatic detection of such features is unreliable due to the vari-
ations as described above. As a result these manually derived features are difficult
to measure accurately. An alternative approach is to use automatically derived
features for comparison. To this end, the use of self-organizing neural networks
has been demonstrated (Kohonen 1988) and other possibilities include appearance-
based techniques, such as those described in (Turk & Pentland 1991, Etemad &

Chellapa 1994).

A number of companies develop and sell face recognition systems, including: Vi-
sionics Corporation'®, ZN Vision Technologies'®, Dermalog!” and FaceKey Corpo-
ration!®. Visionics’ recognition system operates with a claimed equal error rate
of less than 1% in verification mode (the NPL study suggests an equal error rate
of ~2.5%). Applications of face recognition technology include the covert surveil-
lance of air travellers at a number of undisclosed US airports and Iceland’s Keflavik
airport, covert surveillance of Birmingham city centre (UK) and the town centre
of Newham borough (London, UK); and at a number of football grounds in the
UK. ZN Vision Technologies and FaceKey both sell face recognition systems for

overt, access control and covert personnel tracking in buildings.

The applications described above require the use of visible-band imaging devices.
These will typically be modern CCD video cameras, although the recognition
system of Visionics is able to use digitised images for a number of sources, including

digital still cameras and even scanned ‘photo-fit’ images.

There have been some developments in the use of infrared imaging of faces (face
thermograms) (Prokoski & Riedel 1998). In common with the hand vein and
infrared finger approaches to identification, infrared face scans make use of vascu-
lar patterns for discrimination. This offers some advantages, in that facial hair,

and other feature-obscuring agents are less pronounced in the IR band. Further-

15Visionics Corporation, Jersey City, USA. Web: http://www.visionics.com

16ZN Vision Technologies, Bochom, Germany. Web: http://www.zn-gmbh.com
'"Dermalog GmbH, Germany. Web: http://www.dermalog.com

18FaceKey Corporation, Albany, San Antonio, USA. Web: http://www.facekey.com
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more, plastic surgery which does not re-route the vasculature is believed to have
no circumventive properties. In addition, IR imagers may be used robustly un-
der variable lighting conditions or in the absence of light altogether. However,
it is likely that face thermograms will be affected by emotional state and body

temperature (Jain, Hong & Pankanti 2000).

The level of vascular detail available to a recognition system depends upon the
thermal sensitivity of the imaging device. Low-sensitivity imaging systems'® are
restricted to using contour matching of captured images, whereas sensitive de-
vices?® are able to capture the minutae-like detail of the blood vessels. For more
detail see Prokoski & Riedel (1998).

2.3.7 Iris Features

The iris controls the amount of light entering the eye by constricting and dilating
in response to ambient light. It is the distinguishing features contained in the
tangled mesh of iris musculature and connective tissue upon which iris recognition
is based (Daugman 1998).

The iris is an internal component of the eye protected by a transparent sheath
called the cornea. As such it is accessible to optical image capture, and yet remains
inaccessible to modification unless through invasive surgery. Liveness tests are able
to exploit the iris’ response to light intensity, the reflective properties of the eye,
or the small, steady-state oscillatory dilation of the iris (this is termed hippus and

has a frequency of around 0.5Hz).

The complex features of the iris are widely considered, both theoretically and
empirically, to contain an extremely high number of independent degrees of free-
dom leading to a recognition method of high accuracy (Daugman 1993, Miller
1994, Wildes 1997). Indeed a number of manufacturers?! of iris recognition sys-

tems claim equal error rates in the order of 107%. The NPL study found 2% false

¥Devices having a sensitivity of around 0.7 to 0.1°C Noise Equivalent Temperature Difference
(NETD).

20With sensitivity less than 0.07°C NETD.

21See for example: Iridian (http://www.iridian.com), who are the licence holders
of US patent: US5291560, upon which all current commercial iris recognition
systems are based (Daugman 1998)
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acceptance with no false matches, involving over 2 million cross matches.

The practical implementation of an iris recognition system will typically involve the
use of a monochrome CCD camera to capture an individual’s face. Preprocessing
will then find the location and outline of the eye and from this extract an image of
the iris. The iris image is then split into annular regions which are characterised

by texture, according to the algorithms of Daugman (1994).

2.3.8 Ear Characteristics

Biometric ear characteristics relies upon the distinctive folds of cartilage consti-
tuting the visible outer portion of the ear (Burge & Burger 1998). Evidence that
ear characteristics are likely to be unique is given by lannarelli (1989), who made
an objective study of over 10000 ears. Indeed, lannarelli proposed a system of 12
anthropometric measurements, upon which his study was based. Identity verifi-
cation based upon ear characteristics is an attractive proposition because of their
accessibility to image capture and are less easily disguised in the manner of face

characteristics.

Although ear recognition complies with an image processing approach, latent ear
prints are often found at the scenes of crime. This is particularly common in
regions with a high prevalence of apartment blocks, and can be explained by

would-be intruders listening with their ears pressed against doors (Lockie 2000).

A number of computer-vision approaches to automating identification or identity
verification using ears have been reported (Hurley, Nixon & Carter 1999, Burge &
Burger 2000), although this work is in the research stage and the author is unaware

of any commercial systems making use of ear recognition.

2.3.9 Retina Identification

The uniqueness and invariance of the vein pattern upon a specific region of a
person’s retina is the basis for retina identification (Hill 1998). This method is
widely claimed to be highly secure due to the difficulty involved in changing, or

replicating a person’s retinal vasculature. However, the intrusive nature of retinal
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identification reduces user acceptance as many users fear retinal damage, or other

health risks associated with close contact of the imaging system.

In operation, a typical system?? requires a person to look into an eyepiece then
move and tilt their head, until a number of alignment marks coincide. At this
stage the user must initiate a near-infrared scan of (a small disk of) their retina.
IR light entering the eye actually passes through the retina (which is transparent to
near-IR), before reflecting from the vasculature of a structure behind the retina,
called the choroidal vasculature (Hill 1998). Thus, as Hill comments, the term
‘Retinal Identification’ is something of a misnomer?. Representative features are

then extracted from the reflected light.

Acquisition of high quality retinal images requires involved cooperation from the
user. For this reason a real operational system is likely to experience a significant
number of false rejections. However, retinal identification systems have found ap-
plications in a number of high-security government, military, nuclear and financial
settings, in which false rejections are of less concern than false acceptances. False
acceptance rates of 107¢ are claimed by EyeDentify, albeit at an unknown false

rejection rate.

2.3.10 Speaker Recognition

The recognition of a person through their voice characteristics can be an efficient
and natural method biometric, especially so when voice capture devices are already
present (such as telephones or PC microphones) (Campbell 1997, Campbell 1998,
Ashbourn 2000).

Speaker recognition?® may be text dependant, requiring an individual to repeat
a predetermined word or phrase during both enrolment and verification, or may
be text independent, recognising an individual by the general characteristics of
their speech. As a behavioural biometric, speaker recognition must be sufficiently
robust to cope with natural variations induced by psychological state, tiredness,

and illness. Other sources of variation occur from the use of different microphones

223uch as the system from EyeDentify (http://wuw.eye-dentify.com)

ZEarly ‘retinal identification’ systems used visible light, but the intensity levels required for
reasonable signal to noise ratios caused discomfort to users, hence the move towards infrared.

Z4Rather than voice recognition which generally refers to decipherment of speech.
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for enrolment and verification sessions (channel mismatch) from inconsistent room

acoustics, or from varying background noise (Furui 1997).

Speaker recognition may be defeated by simple recording of an enrolled person’s
voice (or specifically the pass phrase in the case of text-dependant recognition). In
an attempt to defeat circumvention in this manner, systems have been proposed

which request the user to utter words in a randomly prompted manner (Matsui &
Furui 1993).

A number of authors have reported different approaches to speaker recognition.
Although specific details are beyond the scope of this thesis, some of the investiga-
tions include Doddington (1985) who reports text-dependant verification exhibit-
ing an equal error rate of 0.8% with 6 seconds of speech (200 participants); Tishby
(1991) reporting an equal error rate of 2.8% for verification using 1.5 seconds of
prompted, isolated digits (100 participants); and Higgins & Wohlford (1986) with
an equal error rate of 10% for verification with 2.5 seconds of text independent
speech (11 participants). These results are taken to represent verification using

only short utterances, from a wider survey by Campbell (1998).

A number of commercial voice verification systems exist, including those of Veri-
Voice? offering both stand alone access control and telephone integration systems
with claimed equal error rates of 1.7%, Veritel® offering access control (with undis-
closed error rates) and Keyware Technologies?” offering both access control and
telephonic systems. The NPL study reports an equal error rate of ~1.3% for

speaker verification.

2.3.11 Handwritten Signature Verification

The handwritten signature has long been accepted as a legal demonstration of iden-
tity (Ashbourn 2000), however, as a static entity there may be little to distinguish
between a genuine signature and a good forgery. For this reason, there is consider-
able interest in capturing the additional invariant dynamics of signature creation
for the purposes of identity verification (Plamondon & Lorette 1989, Nalwa 1997).

25VeriVoice, Inc. Princeton, USA. Web: http://wuw.verivoice.com
26Veritel Corporation, Chicago, USA. Web: http://www.veritel.com
2TKeyware Technologies, Woburn, USA. Web: http://www.keyware.com
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Signature verification may be either off-line wherein the static resulting signature
characteristics are compared, or verification may be on-line in which dynamic
characteristics such as pen pressure, pen tilt, and time-position are the basis for
comparison. Dynamic verification requires the use of some peripheral device (such
as a graphics tablet or instrumented pen-like device) to capture pen stroke infor-
mation, whereas static off-line verification requires only that final signature images

be digitised in some manner.

There is a significant body of published work involving both on- and off-line
signature verification, and some recent examples include: (Bajaj & Chaudhury
1997, Huang & Yan 1997, Baltzakis & Papamarkos 2001) reporting off-line ap-
proaches and (Yang, Widjaja & Prasad 1995, Wu, Lee & Jou 1998) describing
on-line schemes. Plamondon & Srihari (2000) provide a comprehensive survey of

handwriting recognition, of which signature verification is a subset.

Bajaj & Chaudhury (1997) reports a false rejection rate of 1% at a false acceptance
rate of 3% for an investigation involving 10 persons, each of whom supplied 5
training and 5 testing signatures. Impostor samples were supplied by 100 random
forgeries, although no further details are given. (Huang & Yan 1997), on the other
hand, made use of 144 detailed forgeries per genuine signature, created either
by tracing or freehand copying of the genuine signatures. From an experiment
involving 21 participants, each supplying 24 genuine signatures, an equal error
rate of 11% is reported. Baltzakis & Papamarkos (2001) collected between 15-25
signatures each from 115 participants (10 of whom provided signatures on 3 to 5
separate occasions), and reports a false rejectidn rate of 3% with a false acceptance
of 9.8%.

Yang et al. (1995) reports a false acceptance rate of 5.2% at a false reject rate of
2.5% in an experiment involving 31 participants, each of whom provided 8 training
and 8 testing samples. False acceptances were determined with the signatures of all
other participants being used as impostor signatures, rather than explicit forging
attempts. Whilst (Wu et al. 1998) used 30 samples each from 27 participants, 10
of which were used for enrolment, the others for testing. Four ‘skilled experts’
provided 20 forged signatures associated with each of the genuine participants. A

false rejection rate of 1.4% at 2.8% false rejection is reported.

A number of commercial products embodying handwritten signature verification
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exist, including: On-line verification software from PenOp?® and CyberSign®, al-
though neither company quote performance rates; and the instrumented Smartpen

from LCI Technology group®. Performance characteristics are also not quoted for

this device.

In common with other behavioural biometrics, signature verification is subject
to changes in psychological state, and stress, pressure, tiredness and alcohol, for
example, are all thought to contribute to short term variations in handwritten

signatures (Ashbourn 2000).

2.3.12 Keystroke Dynamics

Keystroke dynamics offers a route to identity verification through the characteris-
tics of a person’s typing style (Umphress & Williams 1985, Joyce & Gupta 1990,
Bleha, Slivinsky & Hussien 1990, Obiadat 1998). Two forms of keystroke dynamics
are considered, and these are namely static or dynamic verification. Static verifi-
cation is the one-time recognition of a user, generally at the start or login of a com-
puter session and typically makes use of key-press and inter-key times. Dynamic
verification, on the other hand, aims to continuously test identity throughout the
lifetime of a session, and makes use of the timing characteristics of specific key

press sequences (called di- or tri-graphs).

It has been suggested that the same neurophysiological characteristics responsi-
ble for the individuality of handwriting result in the individuality of a person’s
typing characteristics (Joyce & Gupta 1990). Indeed, static verification may be
considered the keystroke equivalent of handwritten signature verification, in that
both consider the invariance of short fixed strings. Equally, dynamic verification
may be considered analogous to text-independent handwriting recognition using

an arbitrary sample of prose.

Joyce & Gupta (1990) reports an equal error rate of around 3% for static verifcation

with each participant typing their first and last names and computer usernames

2PenOp, Communication Intelligence Corporation, Redwood Shores, CA, USA. Web:
http://wuw.penop.com

2CyberSign Inc. San Francisco, CA, USA. Web: http://wuw.cybersign.com

OLCI  Smartpen Inc. International Drive, Portsmouth, NH, USA. Web:
http://www.smartpen.con
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and passwords, as login strings. Bleha et al. (1990) and Brown & Rogers (1993)
make use of only the participant’s names as login strings. Bleha reports a false
acceptance rate of 2.8% with a false rejection rate of 8.1%, whilst the method of
Brown resulted in a false rejection rate of 8% at a false acceptance rate of 9%.
Meanwhile, Robinson et al. (1998) used participant’s usernames only, and reports

a false rejection rate of 10% with a false acceptance of 9%.

Keystroke dynamics is an attractive proposition for computer access control sim-
ply because it makes use of existing hardware. Indeed, commercially available
keystroke verification software is offered and licensed from BioPassword®!, and is
used in a number of applications including: authentication of credit card users
across the internet; authenticating access to on-line learning resources; and in the
control of legitimate music downloads from the internet. Performance character-

istics are not given.

In common with signature biometric, this method is behaviorally based, and may

be influenced by the psychological state of the subject.

2.3.13 Gait

A person’s gait is a description of the temporal-spatial way in which they walk (Nixon,

Carter, Cunado, Huang & Stevenage 1998). This is thought to be distinctive. Al-
though much research has been done on the effect of biomechanical defects upon

gait, only recently has this work been extended to identification of a person.

Analysis of live video can extract gait characteristics attributed to a person.

2.3.14 Other Biometrics

There are a number of other human aspects which have been proposed for use
as identification agents. DNA3? profiling is the obvious identification method,
being unique to each person (with the exception of identical twins) (Rudin 1998).

However, for a number of reasons it’s use as an identifier is mainly limited to

31BioPassword from Net Nanny Software Inc. Bellevue, WA, USA. Web:
http://www.biopassword.com
32Deoxyriboneucleic acid
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forensic applications. The primary reasons are as follows: DNA samples are easily
collected from the unsuspecting, for example in exfoliated skin or hair; current
DNA analysis technology is not adapted for fast, real time processing and DNA
variations within the human genome occur only in a very small proportion of its
structure. Added to these practical concerns, the storing of DNA data is widely

viewed as a potential invasion of privacy.

Differentiation of humans by their characteristic odour has been proposed and at
least one attempt at a prototype verification system has been made (Persaud, Lee
& Byun 1998). However, the use of deodorants or perfumes, diet and medication
may change the odour profile of a person, making recognition difficult. This is still

very much a research area.

Identification by means of nailbed pattern has been proposed (Topping, Kuper-
schmidt & Gormley 1998). The human nailbed comprises of a longitudinal series
of parallel epidermal ridges, whose pattern is claimed to be unique and invariant.
Using reflected infrared laser sources this pattern can be recorded, and used as the
basis for identification. Nailbed verification is believed to be under development
by AIMS Technology Inc.33

Another interesting patent initiates the concept of identity verification based upon
the manner in which an individual grasps an object (Bellin 1989). Bellin proposes
a graspable member with a plurality of pressure sensors, and includes some means
of recording the pressure pattern resulting from a hand grasp. Figure 2.17(a) gives
an overview of the system, controlling a door lock, whilst Figure 2.17(b) shows the
construction of the pressure sensitive components. The surface of the object to be
grasped is comprised of two conductive grids, separated by a compressible resistive

layer - the resistance of which changes with applied pressure.

Bellin (1989) offers no evidence that this approach has been validated, nor gives any
details of appropriate verification techniques. Nonetheless, this is an interesting
idea in that the inclusion of temporal characteristics, during the grasp and release

of the object, potentially adds an additional layer of discrimination.

33 AIMS Technology Inc. Little River, SC, USA. Web: http://www.nail-id.com
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Figure 2.17: Identification Based upon Grasping Pressures (After Bellin (1989))

2.4 Approaches to On-Card Verification

Clearly the small size and shape of a smartcard places severe restrictions upon an
embedded verification system’s ability to capture discriminatory human character-
istics. These restrictions are imposed upon both the quantity being measured, and
the mechanism with which to do so. For example quantities such as hand geome-
try and palmprints exceed the planar dimensions of a smartcard, whilst face, iris,
retina and ear recognition require the use of optical imaging devices, currently too
large to be integrated on-card. Whilst those involving optical or infra red illumi-
nation — such as hand vein pattern or nail-bed recognition - are equally excluded

on the basis of space constraints.

The physical interactions between smartcard and fingers are an obvious basis for
discrimination, but current implementations of these biometrics are not appropri-
ate for smartcard integration, Fingerprints, for example, are either captured opti-
cally if with silicon-based capacitance, thermal or pressure sensors, and similarly,
finger-geometry and finger-crease patterns are captured optically or electromechan-
ically. Clearly optical or electromechanical sensing mechanisms are impractical,
and silicon in its native brittle form does not comply with the mechanical flexibil-
ity of a smartcard. Nevertheless as indicated in Section 1.4, Infineon are reported
to be developing flexible silicon-based fingerprint sensors, although this approach
is likely to be expensive and will require further protection against chemical and

electrostatic damage.
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The approach taken in this thesis is to use compliant polymer thick film sensors
to capture discriminatory characteristics. Although, it will become apparent (in
Chapter 3) that such sensors do not exhibit the required spatial resolution of fin-
gerprint sensors, the principles of pressure and capacitance sensing, involved in
the capture of fingerprints, may be exploited to capture other biometric quanti-
ties. In Chapter 3, polymer thick film pressure sensors are described, and a new

implementation of a capacitance sensor is proposed.

Finger-geometry systems capture both the planar and profile characteristics of
the hand and finger, and use features such as finger length and width, knuckle
positions, distance between knuckles, and finger height at a number of places. A
smartcard sensing system is restricted to sensing within its plane, and this implies
that only planar geometry can be captured. However, if the system is considered
dynamically, and can capture images rapidly, then by ‘rolling’ a finger on the
card’s surface, both planar geometry and profile information can be captured.
Alternatively, planar information only from two fingers could be captured, and

features may include both finger-geometry and finger-crease patterns.

If a section of palmprint can be consistently placed on the card, then it may be
possible to capture and use the principal lines for discrimination. This would

require significantly lower spatial resolution than fingerprint sensors.

The concept of Bellin (1989), involving the capture of not only spatial, but ad-
ditionally temporal information is interesting. If spatial resolution is limited by
the sensor mechanism, then the inclusion of temporal characteristics may offer
additional discriminatory features. Voice characteristics could be used to verify
identity, provided a shallow, robust and flexible microphone can be developed.
Under such circumstances, an on-card speaker recognition system may become a
viable proposition. Further consideration of these approaches is deferred until the

further work section of Chapter 7.

Further, as indicated in section 2.2.3, the complexity of features, matching al-
gorithm and computational performance of the processor contribute to the time
required for enrolment and verification. It is important, then, that the processor
of a typical smartcard is capable of executing enrolment and verifications functions

within a reasonable time duration. Such issues are considered in Chapter 6.
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2.5 Concluding Remarks

In this chapter the emerging field of biometrics is investigated for mechanisms
of strengthening the association between a smartcard and its legitimate holder.
Current and proposed biometric techniques are considered in some depth and
fundamental principles have been stated. Because of the commercial interest in this
field, much of the work remains proprietary and, as a result, a significant proportion
of this review had to rely upon marketing literature. Academic references have

been provided where available.

In addition, two independent studies have assessed the performance of currently
available commercial devices, and these results are cited where appropriate. For
example, the study by Mansfield et al. (2001) investigated the unhabituated per-
formance of: fingerprint verification, reporting an equal error rate of ~3%; hand
geometry verification (EER of ~1.5%); and voice pattern recognition (EER of
~1%). The performance of iris recognition is the one which stands out from all
others, with Mansfield et al. (2001) reporting a false rejection rate of around 2%

and no false acceptances in over two million cross-matches.

The dimensions and manner of use of a smartcard places restrictions upon the
scope of human-card interactions which are available for discrimination. The
discriminatory characteristics of fingerprints, finger-geometry (and related finger-
crease pattern), palmprint section (if consistent placement can be assured) and

voice pattern have been identified as plausible.

Pressure, capacitive and thermal sensing mechanisms are employed in the cap-
ture of currently available biometrics systems, and may be useful in capturing
human-smartcard interactions. The smartcard additionally places the restrictions
of flexibility, robustness and (ideally) low-cost, upon an embedded sensor device.
A compliant technology is that of polymer thick films, and will hence be assessed
in detail for its potential to capture human-card interactions in Chapter 4. The
results from Chapter 4 will be exploited in Chapter 5, whereupon a novel approach

to identity verification will be proposed and demonstrated.

As previously indicated (in section 2.2.3), one principal advantage of embedding
an identity verification system upon a smartcard is that the acceptance threshold

and matching algorithm are held securely within the trusted smartcard processor.
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Section 2.2.3 considered that the computational demands placed upon the match-
ing processor are related to the complexity of both the discriminatory features
and the matching algorithm. It is hence important that any approach to iden-
tity verification is demonstrated to execute within an acceptable time on a typical

smartcard processor. This is considered in detail in Chapter 6.

The next chapter provides an outline of polymer thick film sensors, and assesses

their technological properties.
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Chapter 3

Polymer Thick Film Sensors

3.1 Introduction

Polymer thick film (PTF) technology is an established circuit fabrication method
used in the production of flexible components, including conductors, resistors and
dielectrics (Fu et al. 1981). Early development of the technology occurred during
the mid 1970s and the approach is still used today in components for calculators,
keyboards, mobile telephones and a multitude of other devices where low-cost,
flexible circuits are required (Gilleo 1995). Furthermore, by exploiting the intrin-
sic material properties of thick films, sensing elements can be produced which
are widely considered to be compact, robust and relatively inexpensive (White &
Turner 1997, Harsdnyi 1995).

Thick film technology represents the precise, selective deposition of materials onto
a substrate. Preprocessed thick film materials are called pastes or inks, and these
terms are used interchangeably. PTF pastes generally consist of filler particles
bound within a polymer matrix (usually epoxy, silicone, or phenolic resin), and
it is the properties of these filler particles which determine the use of the paste.
Gold and silver flakes or copper particles may be used for conductive pastes, whilst
carbon particles may be used for resistive purposes. Solvents are added to improve
printing characteristics and minerals are occasionally added to achieve desired

electrical and mechanical properties (Papakostas & White 2000b).

Thick film inks are most commonly printed onto a substrate using a screen printing
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process, whereby ink is forced through a patterned mask and onto the substrate.
Hence, deposition is selective according to the pattern on the mask, and deposited
layers are usually <100pum. Generally, PTF materials are processed at temper-
atures of less than 200°C, allowing a wide range of thermally compatible sub-
strates to be used. These include the mechanically flexible materials of polyester,
polycarbonate, polyimide, polyvinyl acetate (PVAc) and acrylic (Papakostas &
White 2000b, Hicks, Allington & Johnson 1980, Gilleo 1995). It is these proper-
ties of flexibility combined with robustness and low-cost which make PTF sensors

attractive for integration with smartcards.

This chapter investigates the properties of polymer thick film sensors bonded to
smartcards, with the ultimate aim of using these sensors to capture discriminating
human characteristics. It begins by presenting an overview of thick film processing
techniques, and then provides a review of PTF applications. The development of
piezoelectric and piezoresistive PTF pressure sensors has been reported in the lit-
erature (Harsanyi 1991, Arshak, Ray, Hogarth, Collins & Ansari 1995, Papakostas
& White 2000b, Papakostas & White 2000c), and arrays of such sensors are con-
sidered in Section 3.4.1. The fabrication of piezoelectric and piezoresistive sensors
onto flexible polyimide substrates is described in Section 3.5, and their principles

of operation are derived in Sections 3.5.2 and 3.5.3.

3.2 Thick Film Fabrication

The most common method of thick film material deposition is the flatbed screen
printing method (Loasby & Holmes 1976). This operates on the principle that
material pastes are selectively forced through the fine mesh of a patterned screen
mask. Thick film screens usually comprise a finely woven mesh (typically stainless
steel or nylon), mounted under tension on a metal frame (Loasby & Holmes 1976).
The mesh is bilaterally covered with a photo-sensitive emulsion, upon which the
circuit pattern is photographically formed. This results in open regions from which

the emulsion has been removed — a cutaway section of screen is shown in Figure 3.1.

Thick film paste is deposited on the surface of the screen suspended about 0.5mm

above the substrate. (Figure 3.2(a)) A squeegee traverses the screen, under pres-
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Figure 3.1: Thick Film Screen Mask (After Loasby and Holmes (1976))
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sure, bringing the screen into contact with the substrate and driving the paste
through the open mesh regions (Figure 3.2(b)).
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Figure 3.2: Thick Film Printing Process (After Savage (1976))

Printed layers are dried to remove solvents, at temperatures of around 100°C, then
cured at temperatures generally less than 200°C. The curing process encourages
cross-linkage between polymer monomers, resulting in polymer shrinkage and im-
provement in film stability (Papakostas 2001). The result is a solid composite film
which is firmly bonded to the substrate. Further layers can be added as required.

Conventional screen printing processes are generally capable of producing mini-
mum line widths of around 100-150um (resulting in a pitch of 200-300pm) (Leppé-
vuori, Vadnanen, Lahti, Remes & Uusiméki 1994), although Robertson, Shipton
& Grey (1999) presents a stencilling approach to screen fabrication capable of pro-
ducing line widths of 50um (100um pitch). An alternative deposition method is
that of gravure offset printing (Leppévuori et al. 1994) in which a plate is etched
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with the desired circuit pattern. Recesses are flooded with ink and intermediately
transferred, to an elastomeric pad by means of contact. Ink is then deposited onto
the substrate in the same manner. Line widths of 50um have been reported using

this method.

3.3 Applications of Polymer Thick Films

The mechanical flexibility of PTF conductors is the enabling technology for mem-
brane switches (Hicks et al. 1980, Gilleo 1995). These low-cost, reliable, compact
devices consist of two polymer conductors printed on flexible dielectrics, separated
by a thin spacer layer. The construction and operation of a simple membrane
switch is shown in Figures 3.3(a) and 3.3(b), respectively. When a sufficiently
large activation force is applied, the top electrode moves through the gap in the

spacer layer and closes the switch.

Activation
Spacers Contact | Force
P 1
¢ 4 s i
~ : o

} L : . ‘|“ — VV'
/ 1 x' : ) : ]
Substrate Layers Contact 2
(a) Switch Construction — Open (b) Switch — Closed

Figure 3.3: Simple PTF Membrane Switch (After Gilleo (1995))

Variations on this simple membrane switch design are available, e.g. the upper
membrane may contain an isolated conductive pad which moves beyond the spacer
layer in response to applied pressure, completing conduction between interdigitated
electrodes on the bottom layer. Figure 3.4(a) shows this schematically, whilst

3.4(b) demonstrates the operation.

Alternatively, the upper membrane may be replaced by a conducting dome struc-
ture, providing increased travel and tactile feedback to users. The dome may be
fabricated by thermoforming a conductor printed on polymer layer or by inserting
conductive material into molded elastomer. The resulting structure is shown in

Figure 3.5.
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Figure 3.4: PTF Membrane Switch (After Hicks et al. (1980))
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Figure 3.5: PTF Dome Switch (After Gilleo (1995))

The intrinsic properties of polymer thick film materials can be exploited for sensor
purposes, and PTF resistors have been shown to exhibit resistive changes in re-
sponse to applied strain (Hollingum 1984, Harsdnyi 1991, Arshak et al. 1995). As
an illustration of this point, Arshak et al. (1995) describes two piezoresistive strain
gauge structures, the first of which is a single resistive layer, whilst the second is
a Metal-Resistor-Metal structure, as shown in Figures 3.6(a) and 3.6(b), respec-

tively. Both structures exhibit resistance changes in response to applied strain.

Sensitivity to strain is expressed in terms of the gauge factor, which for an applied
strain in the longitudinal (z) direction of the sensor is given by the longitudinal

gauge factor, GFp, defined as

dR/R
Ex

GFy = (3.1)

where R is the resistance of the sensor and dR is the change in resistance of the
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Figure 3.6: Piezoresistive Strain Gauge Structures (After Arshak et al. (1995))

sensor resulting from the application of a strain ¢, in the x direction. Note that
G Fp is the proportional change in resistance due to a unit strain applied in the
longitudinal direction. Whilst Arshak et al. (1995) reports a high gauge factor of
around 80 for the MRM structure, in comparison to between 4 and 5 for the single
resistive layer, he also notes that the MRM structure exhibits almost 5 times higher
non-linearity and 4 times greater hysteresis in comparison to the simple resistive

structure.

Arshak, MDonagh & Durcan (2000) make use of a capacitive structure similar
to the MRM sensor described in Figure 3.6(b), differing in the use of a polymer
dielectric, rather than resistive sandwiched layer. Its sensitivity is explained by
the change in dielectric permittivity (and hence sensor capacitance) in response to
applied strain. A gauge factor of around 3.5 is reported for this device printed on

alumina.

Piezoelectric PTF pastes have been developed, printed on alumina substrates, and
have been shown to exhibit good force sensitivity of around 10pC/N (Papakostas
et al. 1998). Piezoelectric polymers have also been developed in aerosol form,

allowing direct deposition onto structures (Hale & Tuck 1999).

Screen printable electroluminescent polymers and organic polymer LEDs have been
reported (Zovco & Nerz 1999, Leung, Kwong, Kwok & So 2000), and resistive
inks have been shown to be sensitive to temperature, humidity and certain gases
(Lundberg & Sundqvist 1986, Papakostas & White 2000b).

Whilst the printing of polymer conductors on flexible substrates is well docu-
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mented, relatively little research has been published on the use of flexible sub-
strates for sensing purposes. By allowing the substrate to deform, higher stresses
can be imparted to the sensor than is the case of an undeformed rigid substrate,
and thereby exhibiting a higher sensitivity to load. Relevant approaches include
the printing of polymer piezoelectric and piezoresistive thick film sensors on flexi-
ble polyester substrates (Papakostas & White 2000b, Papakostas 2001, Papakostas
& White 2000c), and the printing of polymer piezoresistive sensors onto flexible
epoxy membranes (Csdszér & Harsdnyi 1994). In the latter example, an applied
pressure causes deformation of the membrane inducing surface strains, which are

measured by the resistive elements.

Two patents explore the concept of a piezoresistive PTF sensor array on very thin
flexible polymer substrates (Maness, Golden, Benjamin & Podoloff 1988, Maness,
Golden, Benjamin & Podoloff 1989). Maness et al. (1988) proposes a resistor-
resistor structure, which behaves in a highly non-linear switch-like manner, whilst
Maness et al. (1989) details a similar structure employing proprietary piezoresistive
inks to improve linearity. This approach is believed to be the core of a number of
commercially available products® including: dental occlusion sensors; sensors for
orthotic measurements; and industrial sensors for capturing component mating
pressures. Such sensor arrays can have a total thickness as small as 0.1mm, and a

sensor pitch of around 1mm. Figure 3.7 provides a simplified schematic.

The array comprises row and column electrodes separated by pressure sensitive
resistive material, such that the intersection between a selected row and column
is characterised by the resistance at that location. This structure allows efficient
X-Y scanning of the array to extract individual sensor responses. A known voltage
is applied to each row sequentially and during row activation, voltage is measured
from each of the column electrodes. In this manner the temporal-spatial charac-

teristics of applied pressure are captured.

3.4 PTF Sensor Considerations

From the review presented above, it is apparent that a number of pressure sensitive

PTF mechanisms exist. The use of piezoresistive sensors to measure planar strains

'From Tekscan Inc., South Boston, MA, USA. Web: http://www.tekscan.com
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Figure 3.7: Piezoresistive Sensor Array (After TekScan Inc.)

is documented, and may be used to infer the pressure applied to a deformable
substrate. PTF piezoelectric force/pressure sensors have been demonstrated on

both alumina and polyester substrates.

As stated, PTF materials include conductors and dielectrics. This offers the pos-
sibility of realising capacitive sensing elements using insulated electrodes, as sug-
gested by figure 3.8.
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PTF L) L Circuit
Dielectric 75 C
m————— Element
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L
PTF T
Charge Electrode Discharge B
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Figure 3.8: Realisation of PTF Capacitive Sensing Element

The PTF sensing element illustrated consists of an electrode pad insulated with

dielectric material and forms the bottom half of a capacitor structure. The prox-
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imity of conductive matter (for example the dermal layer of the skin - refer back
to Figure 2.6) completes the structure. Such a sensing element is equivalent to the

capacitive sensing mechanism outlined in Section 2.3.1 and Figure 2.9.

3.4.1 Sensor Architecture

Intuitively, the most effective arrangement of sensors on a smartcard is an array or
grid formation, as a dense orderly packed array of sensing elements is most likely
to fully capture the interaction between fingers and the smartcard. In this section
the requirements for arrays of piezoelectric, capacitive and piezoresistive sensing

elements are discussed.

Consider firstly that piezoelectric and capacitive sensing elements generate charge
in response to pressure and proximity, respectively. Charge must be localised to
each sensing element and all elements isolated from each other. This is the case in

the capacitive silicon fingerprint sensor of Young (1997), as shown in Figure 3.9.

Column Electrodes

— 7\

Charge Transistor —> iC i i
Discharge Transistor— i & L 1
i i W
/L' Row
Capacitor ‘.—."‘ ] i Electrodes
Electrodes “‘i’ iC e,
;{\ Ed el
- ET_ -
Yj :F Charge

Integrators

Figure 3.9: Capacitive Sensing Array (After Young (1997))

Here sensing elements are arranged into rows and columns, with each element
containing two transistors. Considering the top-leftmost capacitor element, the
charge transistor has the function of supplying charge to the capacitor electrode,

whilst the discharge transistor is responsible for discharging the capacitor. The
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gate and source of the charge transistor are connected to the upper row electrode,
such that a voltage pulse both supplies and enables charge to flow to the capacitor
electrode. The source and drain of the discharge transistor are connected to the
capacitor electrode and column electrode respectively, whilst the gate terminal
is connected to the lower row electrode. This pattern is repeated throughout
the array, such that a voltage pulse on a row electrode simultaneously causes a
charging of the lower row of capacitors and a discharging of the upper capacitor
row. Scanning the array is performed by applying sequential voltage pulses to each
row electrode individually, and charge is measured by charge integrators on a per
column basis. This form of switched array is attractive because it is successfully
able to localise charge to each capacitive element, whilst minimising the number

of connectors required for the array.

Since polymer thick film technology offers the fabrication of passive components
only, it provides no scope for implementing switching transistors nor indeed any
other method of charge localisation. Hence, each charge generating PTFE element
is required to have an explicit connection to the array’s perimeter whereupon its

charge can be measured.

For an m x n array of sensing elements with explicit connections for each sensing
element, mn connectors are required. Clearly this becomes impractical for large
arrays. Moreover, the printing resolution of connectors becomes a primary limiting

factor in the size and resolution of an array, as illustrated in Figure 3.10.

From Figure 3.10, it can be seen that the number of connectors leaving the array
is limited by the inter-pixel spacing. If the minimum connector linewidth, An,
is equal to the minimum space between connectors, then the minimum connector
pitch is 2)A,,;,. From the architecture presented, half of the sensing elements are
connected through each side of the array, and elements on the periphery may be
connected directly, rather than through the inter-pixel space. Hence the number
of connecting tracks required to pass through the inter-pixel space is § — 1 (for
even n). Or conversely, given the distance between sensing elements, there will
physically be space for (Pizel Spacing)/2Amin connecting tracks. It follows that

the maximum number of sensing elements per row has an upper bound, given by

P :
1zel Spacing Iy (3.2)

nma:c
- )\mm
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Figure 3.10: Partially Connected Array of Charge Generating Elements

As an example, consider a conventional screen process which prints with a mini-
mum linewidth of 100um and sensing elements spaced by a distance of Imm. Then
equation (3.2) shows that a maximum of 12 sensing elements can be connected per
row. Assuming that element length is equal to the inter-pixel spacing, then this
represents a sensing resolution of 5 pixels per centimetre, following the direction

of columns.

An array need not be structured in the regular manner of Figure 3.10, and columns
of sensors may be printed more closely together than row elements. The resolution
of sensing elements in the direction following the rows of the array, is limited by
pixel width and the line-spacing resolution of the printing process. Assuming 1mm?
elements, and line-spacing is equal to linewidth (100um) then sensor resolution

along the rows of the array is around 9 pixels per centimetre.

One can imagine the concept of burying connective elements, such that conductor
tracks pass directly underneath sensing elements and are insulated by a dielectric
layer, as suggested by Figure 3.11. This is directly analogous to multi-layered
PCB design. Using thick film processing, under this structure the array would be
constructed using three layers, with the first layer containing conductive tracks, the

second layer comprising of a dielectric material with vias, allowing electrode plates
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of the third layer to connect with their associated conductive tracks. Conductive

paste, printed during the third layer, would fill in the vias and forge connections

to the first layer.

Conductive Electrodes
(Layer #3)

Dielectric (Layer #2)
Conductive Tracks
(Layer #1) %
=

Figure 3.11: Row of Sensing Elements with Buried Conductive Tracks (Fifth Element
removed to expose vias)

Figure 3.11 shows one half of a row of sensing elements: It is assumed that the
elements belonging to the right hand half will have connective tracks in that direc-
tion. In this instance, the maximum number of sensing elements per row is given

by
Pizel Spacing + Pixzel Length (3.3)

nma:c —
>\min

As an example, consider an array comprising of sensing elements lmm in length
with lmm separation and a connector linewidth of 100um. Then (3.3) shows
that a maximum of 20 sensing elements can be connected per row. However, this
calculation does not take into account the registration accuracy of the printing
process, which could be as low as £50um (Gilleo 1995). Hence, a larger linewidth
may be required to ensure connections between layers. Taking a linewidth of
150pm, equation (3.3) reveals a reduction to 12 sensing elements per row, in the

above illustration.

It is possible to sacrifice the number of elements in a row for greater sensor coverage,
if the inter-pixel spacing is reduced to the limit of the printing process, then fewer
elements will fit along each row, but the array will be more dense and uniform.
Taking 1mm? elements, in an array whose rows and columns are both separated
by 100um (0.1mm), each row will geometrically support 6 elements only. This
represents a resolution of approximately 9 elements per centimetre, in both row

and column directions.

Clearly there is a trade-off between the number of elements per row of an array,

and the pixel-pitch (hence resolution) required to support this number of elements.
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As a result, it is categorically not possible to capture high-resolution fingerprint
characteristics using charge-generating polymer thick film sensors. Nevertheless,
Chapter 2 identified a number of lower-resolution characteristics which potentially
offer a basis for identity verification. These include finger-geometry, finger-crease
pattern, section of palmprint, and some aspect of spatio-temporal grasping char-

acteristics, and will be considered further.

Resistive sensing arrays (as per the array of TekScan) comprise of resistive in-
tersections between row and column electrodes. As such the intersections are
individually addressed by applying a known voltage to the appropriate row elec-
trode and sensing the voltage from the desired column. This reduces the number
of connective tracks required per sensing elements. For example, an n X n element
array can be completely connected with 2n connective tracks. The pitch of sensors
in this instance is limited by printing and registration resolution, rather than by
the number of interconnecting tracks required to pass through the space between
elements. If linewidths of 100um and a registration accuracy of £50um between
layers is assumed, then 150x150um sensing elements are required. If these ele-
ments are separated by a distance of 100um, then a pixel-pitch of 250um, and a
sensor resolution of 40 elements per centimetre, results. Since the ridge separa-
tion distance of fingerprints is reported to be around 330-400 pym (Cummins 1964),
piezoresistive arrays are unlikely to offer sufficiently high resolution to fully capture

fingerprint detail.

In addition to array architecture and the resolution of the PTF printing process,
the mechanical properties of a smartcard will have an effect on the number and
resolution of sensing elements. Compliant substrates, such as smartcards, deform
in response to applied load, and resulting strains will be apparent across the sub-
strate. These strains will be experienced by all sensors bonded to the substrate,
and the degree to which strains propagate across the substrate will determine the

proximity with which sensors may be placed to each other.

The next section describes the fabrication of PTF piezoresistive and piezoelectric
pressure sensors, before presenting the detailed theoretical behaviour of these sen-
sors. This theoretical analysis is employed in Chapter 4 to assess the effect of

strain propagation on such pressure sensors, when bonded to smartcards.
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3.5 Planar PTF Force Sensors

This section describes the construction and fundamental sensing principles of two
approaches to pressure sensing. One sensor is based upon the piezoresistive prin-
ciple, in which applied pressure causes a change in resistance, whilst the other is a
piezoelectric sensor, generating charge in response to applied pressure. The planar
geometry and inherent simplicity of these sensing structures is entirely consistent

with smartcard integration.

3.5.1 Sensor Construction

Both sensors were printed onto 125um thick flexible polyester?, pre-shrunk by
the manufacturer for thermal stability, and offering mechanical flexibility, good
electrical characteristics, low moisture absorption, high solvent resistance and very
low shrinkage at PTF processing temperatures (Gilleo 1995). These sensors are

bonded onto smartcards for further analysis as is described in the next chapter.

Screen printing was performed using a DEK flatbed printer®. The piezoelectric
sensor was constructed in the manner of (Papakostas & White 2000c). This is
a three-layered device comprising of two silver conductive layers (ESL1107 from
Electro Science Laboratories?) sandwiching an active PZT layer (85% Lead Zir-
conate Titanate and 15% phenolic resin by weight, 1:1 ratio by volume, providing
optimal sensitivity and mechanical stability). Figure 3.12 provides a schematic,

whilst the mask characteristics and dimensions are given in Figure 3.13.

The thickness of the PZT layer was measured to be 60um using a stylus profilome-

ter®.

The piezoresistive sensor (see Figure 3.14) is a single resistive layer of polyimide-
based, carbon-filled paste from Electro Science Laboratories (ESL RS15114, 10k2/00),

whose thickness was measured to be 20um. The dimensions of the active piezore-

*Mylar®, from DuPont Packaging and Industrial Polymers, Wilmington, USA. Web:
http://www.dupont.com
SDEK 1750RS, from DEK Printing Machines Ltd. Weymouth, UK. Web: http://www.

dek.com
4Electro Science Laboratories Inc. King of Prussia, PA, USA. Web: http://www.

electroscience.com
5
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Figure 3.12: Piezoelectric Sensor Schematic
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Figure 3.13: Piezoelectric Sensor: Mask Dimensions

sistive material between electrode connections were measured to be 15x9mm.

Piezoresistive Film

Mylar Substrate Bonding Tape

Figure 3.14: Piezoresistive Sensor Schematic

During construction, each layer was printed then dried for 10 minutes using a short
wave infra-red dryer® at 110°C. Upon completion of the drying process the sensors
were cured for 1 hour at 140°C. The piezoelectric sensor was polarized during the

curing process with a poling voltage of 300V. Wire connections were made using

DEK1209 IR Dryer
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Circuitworks’ conductive epoxy (CW2400) and 200um diameter wire.

The resulting sensors are shown photographically in Figure 3.15, and these are

bonded to smartcards as described in Chapter 4.

e,

Figure 3.15: Piezoresistive and Piezoelectric (Left and Right) Sensors on polyester

3.5.2 Piezoresistive Principles of Sensing

As indicated, resistive components are comprised of conductive particles within a
polymer matrix. Hence, electrical resistance is dependent upon the proximity and
contact area of the conductive particles. As a force or pressure is applied to the
material, strains are induced, causing a deformation of the structure and hence a
change in the proximity of the conductive particles and their contact area. Such

a change in resistance to the applied force or pressure is known as piezoresistance.
Prior to a detailed discussion of piezoresistivity, some definitions are required.

Stress, o, is defined as

o= (in Pa) (3.4)

where F is the force (in Newtons) applied to a normal cross-sectional area, A (m?).

A body subjected to uniaxial stress deforms in response. For example, a body
under compression contracts along the axis of applied stress and lengthens under
tension. Also uniaxial stress causes materials to undergo transverse deformations,

expanding in the plane normal to compression and contracting in response to

"Chemtronics Inc. Atlanta, GA, USA. Web: http://www.chemtronics.com
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tension. These effects are illustrated in Figure 3.16, which displays the response
of a block of thickness, ¢, breadth w and length [ to an applied compressional
stress, o, in the z direction. The resulting changes in dimensions of the block are
denoted 6t, dw and 4l respectively, here with ¢/, dw > 0 and §t < 0 (i.e. expansion

in the x and y directions and contraction in the z direction.

t + 6t

/

!/ + 8!/

Figure 3.16: Material Deformation in Response to Compression

Deformations resulting from an applied stress are quantified by the proportional
change in each orthogonal direction. For a change of thickness, dt, the strain, €,

is defined as 5t
Ey = 'i" (35>

where ¢ is the undeformed thickness and ¢, is dimensionless.

Similarly, strains in the z and y directions are defined

o a
T

)

w

where [ and w are the undeformed dimensions in the = and y directions respectively,

and 6/ and dw are the deformational changes in length and breadth respectively.

If a body is subject to uniaxial stress, the magnitude of the transverse strains is
governed by the fundamental material property known as Poisson’s ratio. For a

compressional stress, ¢, in the z direction this is defined as the expansion per unit

71



3 Polymer Thick Film Sensors 72

breadth (or length) divided by the vertical contraction per unit thickness, i.e.

p=_ = Ce (3.7)

Strain is related to stress by another fundamental material constant, called Young’s
modulus. This is defined as the stress per unit strain, and relates to the stiffness
of a material. For a body subject to uniaxial stress, o,, the resulting strain, €,, is

given by

g
=z 3.8

where F is Young's modulus and (3.8) is known as Hooke's law.

Combining (3.7) and (3.8), the effect of applying a uniaxial stress in isolation can
be seen as
2 2 = (3.9)

EZ:—E":>€I:—'—7/-E', Ey:—l/E‘

for uniaxial stress, ¢, in the z direction. Note that the strains in each direction

are dependent on o, only since here we are considering the case of o, = 0, = 0.

Similarly for a uniaxial stress o, in the x direction we have

€z = % = g, = ——V%, €, = —y% (3.10)

and for uniaxial stress, oy,

€y = % = & = —V%, €, = —-I/%. (3.11)
Expressions (3.9)-(3.11) were obtained for applying a stress in one of the orthog-
onal direction z, y or z only. Now for stresses with components in more than
one direction, strains must be calculated using the general stress-strain relation-
ships (Timoshenko & Goodier 1970). These are found by summing the strains in
each orthogonal direction, arising from all stresses acting on the body (equations

(3.9), (3.10) and (3.11)), giving for &,

ez = Sumof strainsinthe z direction
oy UV
= E — E (O'y -+ O'z) (312)

where v and E are Poisson’s ratio and Young’s modulus for the material under
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consideration, o, and o, are planar surface stresses and o, is the out-of-plane

(normal) stress.

Similarly for €, and £, we obtain

(0 + 02)

(0z + 0y) (3.13)

Ey:

f

SINEGT
| = )

g, =

This situation is depicted in Figure 3.17.

(a) Sensor Dimensions (b) Response to Applied Stress
Figure 3.17: Stress-Strain Schematic

With the fundamental definitions in place, the description of a piezoresistive sensor
begins by stating that the resistance, R, of a resistor, whose current flow is parallel
to its length, is given by ,

R= p (3.14)
where p is the resistivity of the resistor material and I, w and ¢ are the length,
width and thickness of the resistor in the z, y and z directions, respectively (Figure

3.17(a)).

The resistivity, p, of a polymer resistor is a function of both the temperature
of the resistor and the applied stress. Thermal stress arises from the different
thermal coefficients of expansion (TCE) of the polymer binders and conductive
fillers, which results in expansion of the phases at different rates. However, at
constant temperature resistivity is a function of external stresses only, resulting in

the development of strains within the material. Resistivity can hence be described
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as a function of the orthogonal strains within the material
p= fles, €y, €2) (3.15)

with e, €, and ¢, as defined in (3.5) and (3.6). It follows that

op ap dp
dp = == deg + — de, + —— de,. 3.16
P = Te o T e, v T e (3.16)
The Piezoresistivity Coefficient, GG, in each of the three orthogonal directions is
given by
o o_ 1o
p Oeg
1 dp
G, = - —
! p Oy
. - Lo (3.17)
p Oe,

However, since PTE materials consist of randomly dispersed particles in a polymer

matrix, it is reasonable to assume that the films are isotropic. That is
G, =G, =G, =G. (3.18)

Multiplying each side of the expressions in (3.17) by p and substituting into (3.16)
gives
dp = p Gde, + p Gdey + p Gde,. (3.19)

Differentiating (3.14) gives

OR OR OR OR

dR = —dp+ — — —
5o p+ 3 dl+awdw+at dt
l P pl pl

dR = — L dl — — dw — == dt. _
7 dp-%-wt dl e dw -y dt (3.20)

Now, since R = pl/wt, (3.20) reduces to

L= _Z . (3.21)

74



3 Polymer Thick Film Sensors 75

Substituting (3.19) into (3.21) gives

dR dl  dw dt
= G d T d 1 d 2z - - . 3.22
5 (deg + dey + de.) + T T (3.22)
But, by definition, % = €4, %—” = ¢, and %’3 = ¢,. Hence, the proportional resistance

change as a function of applied strains is

dR
== G (dey +dey +de,) + €5 — ey — €5. (3.23)
For a sensor bonded to a smartcard, and is thin in comparison to the card, then

the planar strains of the sensor conform to the planar strains of the card. That is

Ex(f) = Ey(o (3.24)
Ey(f) = Ey(o (3.25)

3

where the labels () and (5 are used to denote the card and sensor film, respectively.

The out-of-plane, normal strain, €, (5), is found by solving (3.12 & 3.13), to give

202
l ) [E;E () T &y (C)] + ‘:1 + ———L—"} I (3.26)

f
Er(f) = — —— .
) (1—wvy (1—vys)] Ef

Equation (3.23) shows clearly that a piezoresistive sensors exhibit sensitivity to
planar strain. Since a PTF sensor is thin in comparison to a smartcard, it may be
expected to conform to the planar strains of the smartcard, and hence, the flex of a
card has a significant influence on the response of a sensor bonded to it. Chapter 4
makes use of finite element analysis to calculate the planar strains of a smartcard
resulting from applied loads. These results are then used in conjunction with
equations (3.23), (3.24) and (3.26), to calculate the response of sensors bonded to
its surface, from which the properties of sensors bonded to a smartcard’s surface

can be assessed.

3.5.3 Piezoelectric Principles of Sensing

The direct piezoelectric effect describes the ability of certain crystalline materials

to generate electric charge in proportion to an applied stress. The characteristics
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of such a material is specified by its piezoelectric coefficients, relating the charge
generated per unit stress. Piezoelectric materials exhibit different properties de-
pending upon the direction of applied stress and the direction in which the electric
field is measured. Hence, piezoelectric coefficients are fully specified by two indices,
the first referring to the direction of the electric field, and the second corresponding
to the direction of applied stress. Conventionally, the label 5 is used to indicate
the polling axis, and labels ; & o are arbitrarily chosen orthogonal axes, in the
plane normal to 5. For example, ds3, is the piezoelectric coefficient which describes
the charge generated in response to applied stress in the direction of the polling

axis.

For the sensors used in this work, the polling axis is normal to the plane of the
sensor, as shown in Figure 3.18.

Polling Axis

Conductor

, | Piezoelectric
3(2)
[ 2(y) ! Conductor
|
I

AN o

Figure 3.18: Piezoelectric Sensor Axes

Hence, the piezoelectric coefficients, of relevance to this work, are stated for con-

ds; = <0D3> (3.27)
&ri =

where the ; subscript indicates direction, and Ds is known as the electric displace-

stant electric field, Z, as

ment, and is given as

Dy = % (3.28)

and @ is the charge (Coulombs) generated over an area A (m?).

It can be shown (Lefki & Dormans 1994) that
Dy = 5% + da1 (0a(p) + 0y(p)) + dasoa() (3.29)

where €33 is the permittivity of the piezo material in the direction normal to the
plane of the sensor and under constant stress. However, as a consequence of the

conditioning circuit used in this work (Appendix B), the electric field across the
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sensor, = = 0. Hence, from (3.29) and (3.28), it follows

Q = Aldsi (0u(p) + oy(p)) + dasoup)] - (3.30)

For a sensor bonded to a smartcard, the stresses o,(sy and oy are the stresses
acting upon the PZT film, resulting from the planar strains of the card ;) and

€y (o), Whilst 0,5 is the normal stress applied to the sensor.

For an unconstrained sensor under the influence of a compressive normal stress,
O2(f)s the Orthogonal Planar strains, €z (unconstrained sensor) and €y (unconstrained sensor))

are given by restatement of (3.9), to be

_ 92(f)
€z (unconstrained sensor) — TUVf _E,_‘
f
Ta(f
Ey (unconstrained sensor) —Vy “‘é(—)- . (331)
!

However, for a sensor bonded to a smartcard, the reactive planar stresses of the
card restrict the unconstrained deformations given in (3.31), and shown in figure
3.19.

PTF Sensor

G}’suhsxmlc

Cyensor 7] I
e} <L G N
- X SENS0f 1vus, Xsubstrate &
GYSensor - i S

i

I

G}’subs(mlc

z Ex substrate
y : e
X

Figure 3.19: External Planar Stresses on Sensor

Substrate

The planar strains of the sensor can be expressed in terms of the stresses acting
on the film using equations (3.12 & 3.13), it is found that

9z(f) + Tz (f) — Y9 (f)

Ez () = —Vr
Ly Ly
Ou(f)  Oy(f) — VfO
T E(f)+ v ) Eff 2d), (3.32)
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The calculation of charge (equation (3.30)) requires that the planar stresses acting

on the sensor (o, (s and o, (5)) are known. These are found using (3.24) and

solving (3.32), to be

E; vy
7o) = Tz (S0 FUEa) + T2 0 (3.33)
and
Ef Vg
Oy(f) = 1_ I/% (Ey (c) + VfSI(C)) -+ 1_ v, Tz(§)- (334)

This means that given the strains of the smartcard (e, () and €, (¢)), and the normal
stress upon the sensor (o,s)), the charge generated by a piezoelectric sensor can
be found using (3.30) with the planar stresses, o, () and oy, (5 given by equations
(3.33) and (3.34).

3.6 Considering Sensors Bonded on Smartcards

The goal of this work on polymer sensors is to assess their potential to capture
discriminating human characteristics. It has been shown that both piezoresistive
and piezoelectric sensors exhibit sensitivity to planar strains of the substrate to
which they are bonded. Moreover, it is known from experience that usual handling
of a smartcard causes the card to flex, and this will generate strains within the
smartcard. If an array of sensors is to capture physical characteristics, such as
finger or thumb geometry, then it is desirable that they exhibit sensitivity to
normal, rather than planar strains. The extent to which strains propagate across
the smartcard determines how many sensors can be bonded to the surface, and

how closely spaced they can be without suffering cross-sensitivities.

The preceding analysis of piezoresistive and piezoelectric sensor principles has
made possible the calculation of their responses to known loads, given the planar
strains of the smartcard to which they are bonded. As a load is applied to a sensor,
compression of the sensor occurs, and the smartcard deforms in response. If the
assumption is made that the sensor is thin compared to the smartcard, then the

sensor conforms to the planar strains of the card. This is as stated in (3.24).

For the piezoresistive response, the surface strains, ;) and €y(), and the normal
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load, 0., can be used to calculate the normal strain of the sensor, ¢,, as stated in
(3.26). The three orthogonal strains can then be used to calculate the proportional

change in resistance, £, as given in (3.21).

The piezoelectric sensor response, on the other hand, requires that the stresses
applied to the sensor (o4(s) and oyy)), by the smartcard, are known. These are
calculated using (3.33) and (3.34) with the planar strains of the substrate, £,(¢) and
€y(c), and the applied stress, o,(s). Equation (3.30) then gives the charge response

of the sensor.

The next chapter makes use of finite element analysis to calculate the surface
strains of a smartcard in response to what may be expected as typical loads.
Making use of the above sensor models, the characteristics and behaviour of these

sensors, bonded to smartcards, are assessed.

3.7 Concluding Remarks

In this chapter a brief review of thick film technology is presented. Polymer thick
films offer the advantage of low processing temperatures, and as a result can be
printed onto a wide range of substrates, including flexible polymers. This prop-
erty of flexibility, and in conjunction with those of planar geometry, mechanical
robustness and low cost, make PTF sensors inherently suitable for integration with

smartcards.

A review of thick film processing, and in particular, polymer thick films are con-
sidered. It is apparent that the intrinsic physical properties of PTF materials can
be exploited for sensing purposes, and the fabrication of PTF piezoresistive and

plezoelectric pressure senors is reported.

Since a dense orderly structured array of sensing elements is most likely to capture
spatial finger characteristics, array architectures of resistive and charge-generating
sensor elements is given detailed consideration. Piezoresistive elements can be
connected on a per row and per column basis, are be addressed individually by
measuring the voltage drop across a specific intersection. Spatial resolution of
such an array is limited by the linewidth and registration resolution of the printing

process. It is estimated that a minimum pixel pitch of around 250um is achievable,
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resulting in a spatial resolution off,around 40 elements per centimetre.

PTF technology allows for the fabrication of entirely passive components, and
offers no mechanism with which the charge generated by piezoelectric sensor el-
ements can be localised. This property precludes the construction of switched
sensing arrays in the manner of Young (1997) or the CCD array structures of
Edwards (1984) and Tartagni & Guerrieri (1998). Hence, each individual charge-
generating element must explicitly be connected to outside of the array, whereupon
its charge can be measured. This leads to the situation whereby conductive tracks
must either pass between, or underneath sensing elements, and hence, the spacing
of elements is governed by the number of elements per row of an array. The design
of a charge-generating PTF sensor array then becomes a trade-off between the

required number of sensing elements and the desired spatial resolution.

From an entirely geometrical perspective, neither piezoelectric nor piezoresistive
arrays offer sufficiently high resolution to capture the fine detail of a fingerprint.
It may however be possible to construct arrays which are suitable for capturing
alternative spatial characteristics, such as finger-geometry, finger-crease pattern or

a section of palmprint.

Detailed theoretical models of both sensors are derived, and it is apparent that
both sensors will exhibit sensitivity to planar strains. Since the flex of a smart-
card results in planar strains propagating across the card, it is likely that planar
sensitivity of the sensors, rather than array architecture, will become the limiting
factor to spatial resolution. The extent of this effect is investigated in the next

chapter.

A new implementation of a capacitive sensor using polymer thick film has been
proposed, and consists simply of a base electrode, insulated by a dielectric layer.
In the manner of the fingerprint sensors of Young (1997) and Tartagni & Guer-
rieri (1998), the presence of a conductive object (such as the dermal layer of the
skin), completes the capacitor structure. A known voltage is applied, and charge
accumulates on the base electrode, in proportion to the proximity of a conduc-
tive object. Whilst further consideration of this approach must be deferred until
Chapter 7, an array of such charge-generating elements is required to satisfy the

architectural limitations of piezoelectric arrays.
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The conclusions of Chapter 2 indicate that thermal characteristics can be useful in
the capture of discriminatory characteristics. Although pyroelectric cermet thick
films have been shown to exhibit thermal sensitivity, the development of a suitable
polymer pyroelectric material is beyond the scope of this thesis and will not be

considered further.
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Chapter 4

PTF Sensors On Smartcards

4.1 Introduction

The simple planar polymer thick film sensors described in Chapter 3 are attrac-
tive for smartcard integration because of their properties of low-cost, mechani-
cal flexibility, robustness, and their thin, planar nature. Earlier work in Section
3.4 assessed printing resolution and array architectures of both charge generating
piezoelectric, and resistive piezoresistive sensors. From this analysis it is clear that
fingerprint sensors are not feasibly implemented using thick film technology. Nev-
ertheless, from the review of biometric characteristics in Chapter 2, there exists a
number of less demanding alternative approaches to demonstrating identity. These

include finger-geometry, finger-crease pattern and palmprint characteristics.

It is envisaged that a smartcard owner will hold the card in one hand, and present
the characteristics of the other hand to an on-card sensor for verification. However,
presentation of any of the above characteristics involves applying a load to the
smartcard, which from common experience will cause the card to flex, and strains
will be induced across its surface. But theoretical analysis of both sensor types
indicate sensitivities to planar strain, implying that sensors will respond to forces
applied elsewhere on the card. From the perspective of capturing any of the
above human traits, where spatial (or spatio-temporal) features form the basis for

discrimination, this is clearly undesirable.

The work of this chapter assesses the extent to which planar strains propagate
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across a smartcard, and the resulting effect this has on PTF sensors bonded to the
surface of a card. This is performed using first-order finite element analysis (FEA),
and is verified experimentally. Loads are applied to a finite element smartcard
model, and surface stresses computed. The strains experienced by sensors bonded
to smartcards are approximated, and used to predict sensor responses. This work

forms the invited paper of Henderson, Papakostas, White & Hartel (2002).

This analysis is not concerned with absolute sensor responses, rather, its aim is an
insight into the feasibility of using PTF pressure sensors to capture discriminating
human characteristics. For this reason, both smartcard and sensor models are
validated together, and it is the combined properties of smartcard and sensor

which are measured.

In addition, a number of assumptions have been made about the material proper-
ties of the smartcard and the sensors. Facilities to measure Young’s modulus and
Poisson’s ratio of both sensors were unavailable to this work, and as a result as-
sumptions have necessarily been made. These are clearly stated and references to
relevant measurement techniques are given. It hence follows that predicted sensor
responses are approximate. Nevertheless, the work of this chapter strongly indi-
cates the effect of a smartcard flexing on both sensor types, and this is reinforced

by experimental verification.

The chapter concludes with a study of the tactile interaction between user and
smartcard. User interactions are limited but may include a person touching, press-
ing or tapping the smartcard. Both piezoelectric and piezoresistive sensors are
assessed and compared in these respects. It is believed that this is the first time
polymer thick-films have been assessed for identity verification purposes, and this
is documented in Henderson, Papakostas, White & Hartel (2001).

4.2 Bonding Sensors onto Smartcards

The piezoelectric and piezoresistive sensors, described in Section 3.5.1, are printed
onto 125um polyester, and bonded to the top surface of two smartcard blanks.
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This is performed using 50m double-sided adhesive tape', and the result is shown
schematically in Figures 4.1(a) & 4.2(a) and photographically in Figures 4.1(b) &
4.2(b) for the piezoresistive and piezoelectric sensors respectively.

(a) Schematic (b) Actual Smartcard

Figure 4.1: Piezoresistive Sensor Bonded to Smartcard

It should be noted, that whilst these experimental sensors are bonded to the surface
of the smartcards, their thin planar dimensions are entirely compliant with the
processes of modern smartcard manufacture. Smartcards are manufactured by the
lamination of polymer foils (Rankl & Effing 1997), and it is quite conceivable that

a sensor layer could be incorporated into the process.

4.3 Material Properties

Before commencing any finite element modelling, it is important to specify the
material properties of both smartcard and sensors. The smartcard finite element
model requires that Poisson’s ratio, Young’s modulus (as defined in Section 3.5.2),
and the mass density of the smartcard are known. Poisson’s ratio, Young’s mod-

ulus, and additionally, piezoresistive and piezoelectric coefficients are required to

!Scotch Double Sided Tape, manufactured by 3M United Kingdom PLC, Bracknell, UK. Web:
http://www.3m.com
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7 |

(a) Schematic (b) Actual Smartcard

Figure 4.2: Piezoelectric Sensor Bonded to Smartcard

calculate sensor responses.

The smartcard blanks used in this are predominantly constructed of Polyvinyl-
chloride (PVC). As indicated, the manufacture of smartcards involves lamination
of a number of foil layers. The fine detail of this process and any other materi-
als used in bonding or finishing, remain proprietary, and it is hence difficult to
know the precise composition of the smartcards under test. For this reason, the
approach taken here is to use the material properties of bulk PVC, except where
greater accuracy is accessible through simple experimental testing. For example,
Young’s modulus is determined through straightforward experiment in the next
section. Mass density and Poisson’s ratio are taken to be those of bulk PVC, with

Psmarteard =1.38x10% kg/m3, and Vnaricara = 0.38, respectively (Callister 1997).

Poisson’s ratio of polymer materials range between vpoymer = 0.35 and Vpoymer =
0.45 (Callister 1997). In the absence of facilities to measure Poisson’s ratio, we
make the assumption that v,r = v, = 0.4, where the subscripts pR and pE are
used to denote the piezoresistive and piezoelectric sensors, respectively, and 0.4 is

the mean of the range specified above.
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4.3.1 Young’s Modulus (Smartcard)

There are a number of standard methods for the measurement of Young’s modulus
(Callister 1997), including: tension testing; cantilever deflection; torsion testing;
and wvibration resonance testing. Perhaps the most straightforward approach is
that of cantilever deflection, whereby the material under investigation is fashioned
into a beam and supported at one end only. Known loads are applied to the free
end, and its deflection measured. It is this method which is employed here, and

Appendix A provides a detailed description of the mechanics.

Clamping and Loading Conditions

The measurement setup is shown in Figure 4.3.

Screw Micrometer

/ (supports not shown)

Clamp
(vice not shown)

Processor \

Contact Pads .
= v_Attachment
N\ Wire
Smartcard

Mass

Support

Block 7|
Downward 2
. Force, W
X
Unsupported Smartcard Length, L vy

Figure 4.3: Measurement of Young’s Modulus

Two rectangular alumina strips (of dimensions 101x12x0.75 mm), were used to
sandwich the width of the card, ensuring that the clamping constraints were uni-
formly applied. A mechanical vice was then used to clamp this arrangement onto
the measurement structure. It should be noted that the clamp was applied center-
wards of the processor contacts, such that their contribution towards longitudinal

bending stiffness will not affect these measurements.

Loads were attached to the free end of the card by means of fine-gauge wire. The

wire was bonded to the bottom surface of the card, allowing a loop of wire to be
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formed underneath the card. Measured loads were then attached to the underside
loop. No discernable buckling across the width of the card was observed, and it

was assumed that the load was uniformly applied across the width.

Vertical displacements were measured using a screw-micrometer with a resolution

of Sum.

Experimental Measurement of Young’s Modulus

Three measured loads were applied to six smartcards from the same batch, in
the manner outlined above. The resulting vertical deflections for each case were
measured a number of times, and Young’s modulus calculated according to (A.5).
Using standard error analysis (Morris 1988), Young’s modulus was calculated to
be 3.1 £ 0.5 GPa with a standard deviation of 0.19 GPa. This is approximately
15% stiffer than bulk PVC, whose Young’s modulus is 2.7GPa, and the difference
is most likely explained by the lamination and adhesive treatments experienced

during smartcard manufacture.

4.3.2 Young’s Modulus (Sensors)

Sensor films printed onto substrates form composites, and as a result the straight-
forward approach of cantilever deflection can not be used. It is possible to use
composite beam theory (Callister 1997) to describe the bending characteristics of
a thick film printed upon a substrate, however, this approach requires that the
substrate be uniformly smooth in comparison to the thickness of the film. For this
reason, silicon is an appropriate substrate material for such a measurement, and
an attempt to measure Young’s modulus of a thick film, printed on silicon is given
in Grabham (2002).

An alternative approach is to use the simple rule of mixtures for composite mate-
rials (Callister 1997), which is stated as

Ecomposite = PlEl + P2E2 (41)

where Ecomposite 1 Young’s modulus of the composite mixture, P, is the volume
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proportion of material 1 with modulus F;, and P, is the volume proportion of

material 2 with modulus Fj.

Since this work represents a first-order analysis of thick film sensor responses to

smartcard flexing, (4.1) is used to estimate Young’s modulus of both sensor types.

Young’s modulus of the piezoelectric sensor is specified in equations (3.33) and
(3.34), and is required to calculate the planar stresses applied to the sensor by
the card. As stated in Section 3.5.1, the PZT film is composed of a 1:1 mixing
ratio of PZT ceramic to phenolic binder. Whilst Young’s modulus of the phenolic
resin binder is around 4.8GPa (Matweb 2002) and approximately 48GPa for PZT-
5H ceramic (Morgan-Matroc 1998). Hence Young’s modulus of the composite

piezoelectric sensor, v,g, is estimated to be 26.4GPa.

Young’s modulus of the piezoresistive sensor is only relevant during the case of a
load applied directly onto the sensor (ie. o, # 0), as is apparent from equation
(3.26). As stated the piezoresistive layer is comprised of carbon particles within a
polyimide matrix. The precise composition of this paste is proprietary, and hence
unknown. However, Young’s modulus for carbon (graphite) and polyimide are
similar, having values of 4.8Gpa and between 2.5-4.1GPa, respectively (Matweb
2002). Taking the median value of 3.3GPa for Young’s modulus of polyimide,
Table 4.1 shows Young’s modulus for composite mixtures based on different volume

ratios.

| Carbon (% Volume) | Polyimide (% Volume) [ Feomposite (GPa) |

20 80 3.6
50 50 4.05
80 20 4.5

Table 4.1: Young’s Modulus for Piezoresistor with Mixing Ratio

From the data of Table 4.1, it appears that making the assumption of a 1:1 mixing
ratio is unlikely to be in excess of around 10% error. Hence the value of 4.05GPa

is used for Young’s modulus of the piezoresistive sensor.
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4.3.3 Piezoresistivity Coeflicient, G

In order to calculate the piezoresistive response to known strains, it is appar-
ent from (3.23) that the piezoresistivity coefficient, G, of the resistive ink must
be known. Unfortunately, this quantity is not ordinarily quoted on data sheets.
However, G is related to the gauge factor, as indicated by equations (3.1) and
(3.23).

Arshak et al. (1995) measured and found the longitudinal gauge factor, GFp, of
this resistive ink? to be between 4 and 5. However, these measurements were
made for PTF resistors printed on alumina substrates. As Papakostas & White
(2000a) point out, the material properties of a substrate affects the gauge factor of
a piezoresistor. If the film sensor is thin compared to the thickness of the substrate,
then it can be assumed that the planar strains developed within the film conform
to the planar strains of the substrate, whilst the out-of-plane strains depend upon

the properties of the film. This situation is illustrated in figure 4.4.

PTF Sensor

s

z .
Ex substrate
y L
X

Figure 4.4: Dependency of Internal Film Strains on Substrate Characteristics

Substrate

If a longitudinal strain, €, (substrate) is the result of a uniaxial stress, oz, applied to
a substrate then the resulting strain in the other planar direction, €y (supstrate) 18

related through Poisson’s ratio,

Ey (substrate) = T Vsubstrate Ex (substrate)- (42}

2RS 15114, from ESL
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Assuming that the resistive film is thin compared with the substrate, then

Ex(f) = Exz(substrate)

Ey(f) = ~Vsubstrate €z (substrate)- (43)

The out-of-plane, normal strain, €, (y), is found by solving (3.12 & 3.13) with (4.3)

to be

vy
E2(f) = — (1 — Vf) [533 (substrate) + &y (substrate)} - (44)

Using (4.4) into (3.23), combining and rearranging with (3.1), it is found that
(Papakostas & White 2000a)

GFp -2

1=Vsubstrate
l/f 1—vy

G = + 1. (4.5)

11— Vgybstrate —

Taking Arshak’s median measurement of GFy = 4.5, and using vyupstrate = 0.22
for alumina (Matweb 2002) and veensor = 0.4, it is found that G = 10.62. At the
extremes of Arshak’s measurements, G = 8.69 for GF;, = 4 and G = 12.54 for
GF, =5.

4.3.4 Piezoelectric Coefficients, ds3 & d3;

Papakostas (2001) reports on the development and characterisation of the piezo-
electric sensors used in this work. The ds3 and ds; coefficients were found to be
between 7 to 11pC/N and -3 to -5pC/N, respectively. Hence the median values of
dss = 9pC/N and ds; = -4pC/N, are used in this analysis.

4.3.5 Material Properties Summary

Table 4.2 summarises the material properties used in this modelling work.
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Property Assumed Source Additional
Value Information
E, 3.1£0.5GPa (Callister 1997) Cantilever
Deflection
Ve 0.38 (Matweb 2002) »
Pe 1.38x10%kg/m> (Matweb 2002) -
Eyr 4.1GPa (Callister 1997) Rule of
mixtures
VpR 04 {Matweb 2002) -
G 10.6 (Papakostas & White 2000a) Inferred
(Arshak et al. 1995)
| Eur 26.4GPa (Callister 1997) Rule of
mixtures
VpE 0.4 (Callister 1997) -
dss 9pC/N (Papakostas 2001) -
ds1 -4pC/N (Papakostas 2001) -

Table 4.2: Summary of Material Properties

4.4 Smartcard Finite Element Model

It is the intention of this work to capture the general mechanical characteristics,
rather than absolute detail, of a smartcard responding to an applied load. As a
result some aspects of the real smartcard will be omitted, including the processor
contact pads (see Figures 4.1(b) and 4.2(b)), the underlying laminate construction
(Section 4.2) and the curved corners of a real card. This model treats the smartcard

as a simple rectangular plate of uniform thickness and homogenous material.

Finite element analysis allows the modelling of complex geometrical structures by
subdividing (or discretising) the structure into small, deterministic units called
elements (Fagan 1992). The characteristics of elements, and hence their appropri-
ateness to particular geometries, are defined by their number and relative positions
of nodes and their degrees of freedom. The degrees of freedom specify the manner
with which nodes are free to move relative to other nodes within the element,
and include translational and/or rotational components. For example, 3-D solid
elements can have cuboidal or tetrahedral shapes defined by 8 and 4 translational
nodes, respectively. Hence, solid objects require to be stacked on top of each
other to describe the bending behaviour of a structure. Shell elements, on the
other hand, use nodes with both translational and rotational properties, and are

hence able to adequately describe bending with a lesser number of nodes. It is

91



4 PTF Sensors On Smartcards 92

the material properties attributed to each element which determine the relative

displacements and/or rotations of nodes in response to applied loads.

The manner with which an individual holds a smartcard places constraints upon
the freedom of movement of the card. As indicated, it is envisaged that a smart-
card’s owner will support the card with one hand, whilst presenting the charac-
teristics of the other for verification. Common experience suggests that the most
practical manner of performing this action is for the supporting hand to grasp the
longitudinal edges of the card, thereby restricting the out-of-plane movement of
the edges. The extent to which the hand contacts with the card, and the extent
to which the edges are supported is far from clear. Hence some assumptions are

made in this regard, and are detailed in Section 4.4.2.

These assumptions are superimposed with those made earlier in section 4.3. Nev-
ertheless, it is believed that this work provides a first order approximation of the
behavior a card-sensor system, illustrating rather than specifying its characteris-

tics.

4.4.1 Mesh Characteristics

Ideally all problems would be solved using solid cuboidal volume elements, how-
ever, in order to maintain a reasonable aspect ratio on the dimensions of each
element, meshing a smartcard using solid elements requires that the length and
breadth of each element be very small. This unacceptably increases the number of
nodes and elements involved. Hence, the smartcard is modelled in this work with
rectangular shell elements, generally considered to be appropriate for thin planar
geometries in which thickness is small in comparison with the other dimensions
(Fagan 1992).

The physical properties of smartcards are outlined in the ISO7816-1 standard® This

document prescribes that smartcards adhere to the dimensions given in Table 4.3.

To remove the uncertainty in the ISO standard thickness, the thickness of six

31507816-1:1998 Identification cards — Integrated circuit(s) cards with contacts — Part 1:
Physical characteristics. International Organization for Standardization, Geneva, Switzerland.
Web: http://www.iso.ch
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| Measurement | ISO Specification (mm) |

Length 85.6
Width 54.0
Thickness 0.76 £ 0.08

Table 4.3: ISO Specifications for the Physical Dimensions of a Smartcard

cards from the same batch was measured. This was performed using a screw-gauge
micrometer, and the mean thickness was found to be 0.815mm with a standard

deviation of 0.005mm. This value is used as the element thickness.

The length and width of the smartcard’s geometry was subdivided (or discretised)
into a mesh of 17 x 11 elements, with each element having dimensions of 5.035mm
length and 4.909mm width. These mesh characteristics were chosen to fit within
the nodal restrictions of the analysis software?, whilst still providing reasonable

spatial resolution.

4.4.2 Constraints Conditions

With a smartcard held in hand, a user restricts the vertical displacement of the
two longitudinal edges. The hand in contact with the smartcard may impart, or
inhibit rotation of the edges, and compression may be applied across the width
of the card. Furthermore, these constraints are non-uniform and asymmetrical,
and are likely to vary between individuals. Complicating the situation further,
real constraints are likely to be dynamic, and will change as an individual presents
their characteristics for verification. In reality, the way in which a user interacts

with a smartcard is complex, and this is a difficult modelling problem.

Without extensive analysis of real constraints imposed by a number of users hold-
ing cards in their hands, a quantitative assessment of constraints in beyond reach.
For this reason it was decided to apply only simple constraints with which one may
have some confidence. Hence, this FE model applies only vertical displacement
constraints to the edge nodes of the card’s longitudinal edges. This means that the
edge nodes are free to move in both planar directions, and are able to rotate with-

out boundary restrictions. Whilst this imposes yet further approximations upon

4Using AutoFEA v7.0, from AutoFEA Engineering Software Inc. CA, USA. Web:
http://www.autofea.com
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the model, this approach facilitates the experimental verification of its results (as

is described in section 4.6).

4.4.3 Loading Conditions

As already stated, the manner of interaction between an individual and a smart-
card sensor system is limited, but may be considered to include a finger touching,
pressing and tapping upon the card. Whilst the absolute characteristics of this in-
teraction are dependent upon the properties of the sensing mechanism, and hence
cannot be determined at this stage, it was deemed important to apply loads sim-
ilar in magnitude to those which might be expected during the presentation of
real discriminatory characteristics. At the disposal of this work was a calibrated
(ceramic) piezoelectric force sensor, but piezoelectric sensors tend to exhibit poor
static or quasi-static responses, thereby eliminating the capture of a finger touch-
ing or pressing. Hence the force magnitudes of fingers tapping on the sensor were

recorded.

To estimate the force magnitude with which a user taps, five volunteers were each
asked to tap upon a calibrated piezoelectric pressure sensor printed on alumina.
Their instruction was to tap the sensor with as little or as much force as desired,
randomly varying the strength of their taps as the session progressed. Each partic-
ipant provided between 250 and 400 taps. A Visual Basic program was written to
extract the peak force values from the captured data. Figure 4.5 shows the force

distribution of the taps collected.

5 6 7 8 91011 12 13 14
Force (N)

Figure 4.5: Peak Tapping Forces
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Figure 4.5 does not exhibit normal distribution characteristics, and visually ap-
pears more akin to a log-normal distribution. This is reminiscent of the well
documented phenomena of logarithmic sensory perception in human auditory and
visual systems® (Stevens 1960), although no claim is being made to this effect, and

further research is necessary to justify such a claim.

From the data collected, the modal tapping magnitude was found to be around
2.5N. It is assumed that a reasonable estimate of fingertip area is ~lcm?, and
hence a static 2.5N load is distributed over 1cm? and used as the input to our
model. In practice this means distributing the force over 9 nodes. Therefore,
0.2778N was applied to each of the 9 nodes.

Four load cases were considered, each being applied along the central longitudinal
axis of the card, and whose centre-nodes are 1, 2.5, 4 and 5cm from the short
edge, furthest from the processor contacts. Hence, 5.5cm of longitudinal distance
is investigated, and believed to cross most of the region available to an on-card
sensor system. Figure 4.6 shows the smartcard model with edge constraints and
loading conditions, superimposed upon the region covered by the piezoresistive
sensor. The piezoelectric sensor is not shown for reasons of clarity, however, its

footprint covers the lower (edgewards) eight nodes of the piezoresistive sensor.

... Load Case 4
.. Load Case 3

o - - Load Case 2
> ...~ Load Case 1

FE Mesh o

Constraints

Figure 4.6: Mesh Position of Load Cases: Each of the four load cases is applied over nine
nodes, each covering different lem? regions. The coordinates of each central node are given in
parenthesis.

5Known as the Weber-Fechner law.
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4.5 Finite Element Results

The FEA results are used to calculate the mean planar strains of the smartcard’s
surface corresponding to the sensor positions of Figures 4.1 and 4.2. These mean
strains were then used with equations (3.24), (3.26) and (3.23) to compute the
theoretical piezoresistive sensor responses, and with equations (3.33), (3.34) and

(3.30) to compute the theoretical piezoelectric sensor responses.

Section 4.5.1 presents the displacement and stress maps resulting from this anal-

ysis.

4.5.1 Displacement and Stress Maps

Figures 4.7-4.10 provide FEA results for load cases 1 through 4, as specified by
Figure 4.6, respectively. Out-of-plane displacement maps are given in sub-figures
(a), whilst sub-figures (b) and (c) show the planar X and Y direction stresses,

respectively.

It is clear from Figures 4.7 through 4.10 that a load, which can be considered
typical of those applied during the presentation of finger characteristics, causes a

smartcard to flex. Table 4.4 shows the maximum deflection resulting from each

load case.
Load | Maximum Out-of-plane
Case Deflection (mm)
1 -1.68
2 -0.85
3 -0.72
4 -0.74

Table 4.4: Maximum Qut-of-Plane Deflections

The extent to which the card deforms depends upon the loading position, as is
evident from Table 4.4. Load case 1, for example, causes the greatest vertical
deflection, whilst load case 3 causes the least. This is due to the material of the
card constraining deflections: Case 1 is applied close to an unconstrained edge
which is more able to deform than case 3 which is applied towards the centre of
the card.
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(b) X-Dircction Stress (c) Y-Direction Stress

Figure 4.7: Load Case 1- Simulation Results
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:

(b) X-Direction Stress (c) Y-Direction Stress

Figure 4.8: Load Case 2- Simulation Results
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Displace Z Meters

(b) X-Direction Stress (c) Y-Direction Stress

Figure 4.9: Load Case 3- Simulation Results
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(a) Vertical Deformation

(b) X-Direction Stress (c) Y-Direction Stress

Figure 4.10: Load Case 4- Simulation Results
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But both sensor models require the planar strains of the surface in order to calcu-
late their theoretical response to loading. Strains can be derived from the planar

stresses of the card, and this is performed in the next section.

4.5.2 Strains Experienced by Sensors

The assumption that sensors bonded to a smartcard will conform to the planar
strains of the card’s surface is made in Section 3.5 and continued throughout this
analysis. The FEA results are used to calculate the mean stresses of the smartcard
in the regions corresponding to both sensors (as shown in Figures 4.1 and 4.2, and
as specified in Figure 4.6), from which the mean surface strains of these regions are
calculated. Table 4.5 presents the mean internal smartcard stresses corresponding

to the position of both the piezoresistive and piezoelectric sensors.

Piezoresistive Footprint | Piezoelectric Footprint
Load Case Mean Stress (MPa) Mean Stress (MPa)
Ta(e) | Ty(c) Ga(e) | Ty(e)
1 -3.86 -0.761 -4.29 -1.01
2 -4.84 -3.15 -4.95 -3.21
3 -3.10 -1.34 -2.79 -0.947
4 -2.47 -0.767 -2.23 -0.531

Table 4.5: Internal Smartcard Stresses Corresponding to Both Sensor Regions

Mean surface strains of the smartcard, corresponding to the regions under both
sensors, are found by solving equations (3.12) and (3.13) for the planar smartcard
strains, €g(c) and €y, with the smartcard material properties (ie. v = v, and
FE = E.) and the mean stresses of Table 4.5. These are presented in columns 2&3

and 4&5 of Table 4.6, for the piesoresistive and piezoelectric sensors respectively.

Load Piezoresistive Footprint Piezoelectric Footprint
Case Eae) | Ey(o Ea) | Ey(o)
1 -1.15 x107% [ 2.28%x10~% [ -1.26x1073 | 2.00x10~7
2 | -1.18 x107% | -4.23%x107% | -1.20%107° | -4.29%x 1071
3 -8.36 x10~% | -5.23x1075 | -7.84%x10~% | 3.65%x107°
4 -7.03 x107% | 5.54x107% | -6.54x10~% | 1.02x107¢

Table 4.6: Mean Surface Strains Corresponding to Both Sensor Regions
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4.5.3 Theoretical Sensor Response

The piezoresistive sensor responses to each load case are found with equation
(3.23) using the strains presented in Table 4.6 and the normal out-of-plane strain,
as given by (3.26). The material properties required by (3.26) and (3.23) are as
stated in Section 4.3. The out-of-plane normal stress, o) acting on the sensor is
non-zero for load case 2, only, and is assumed to act uniformly upon the sensor,

and o5y =1.67MPa is used. Table 4.7 gives the results.

[ Load Case | dR/R (%) |
-0.527
-0.756
-0.452
-0.348

= o] Do =

Table 4.7: Theoretical Piezoresistive Response

Similarly, the strains of Table 4.6 are used to compute the theoretical piezoelectric
sensor responses. Equations (3.33) and (3.34) are used to calculate the planar
stresses acting on the sensor due to the smartcard, which are then used with
equation (3.30) to give the charge response of the sensor. The sensor’s area is
taken to be 0.64cm?, and its material properties are specified in Section 4.3. The
out-of-plane normal stress is applied only during load case 2, and is taken to be
3.9MPa. Table 4.8 provides the results.

| Load Case | Charge Generated (nC) |
-11.9
-18.4
-8.420
-6.21

WM

Table 4.8: Theoretical Piezoelectric Response

Although the largest sensor responses occur during load case 2 (as one would
expect), this analysis indicates that both sensor types respond to loads applied
elsewhere on the card. Taking for example the sensor responses due to load case
4, in which the centre of the load is applied 1.5c¢m from the sensor, the theoretical
sensor responses are 46% and 34% of the response due to direct loading of the
sensors. The next section aims to experimentally verify these results, which will

then be discussed in greater depth.
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4.6 Experimental Verification

In order to verify the behaviour of the smartcard FE model, one must try to
replicate exactly the conditions set out in the model. This is a difficult thing to
do as the finite element model is an idealised perspective of the real-world. For
example the boundary conditions used to restrict vertical movement are applied
precisely on the longitudinal edges of the model smartcard. They constrain the
model by fixing these edges, disallowing their movement in the z-direction, whilst
allowing complete freedom of movement in the planar z and y directions. Whilst
one can imagine complex mechanical structures, involving razor-edged clamps,
vertically constraining the outermost region of both longitudinal edges, and setting
these clamps upon low-friction bearings allowing unconstrained planar movement,
such apparatus was unavailable to this experiment. Furthermore, the loading
conditions of the FE model implies a perfectly uniform load distribution over the
load’s contact area with the card. In reality a rigid mass applied to a smartcard
will cause the card to flex. As the card flexes, the load distribution will concentrate

around the edges of the mass.

Nonetheless, this section describes an attempt to replicate, as closely as possible,

the characteristics of the finite element model.

4.6.1 Constraints

A number of constraining methods were considered for this experiment. Firstly
a method of rigidly clamping both longitudinal edges was investigated. This is
shown schematically in Figure 4.11(a). In this approach approximately +mm of
both longitudinal edges are sandwiched between two alumina plates. The alumina
plates provided flat, uniform surfaces with which the edges could be vertically
constrained. T'wo bkg masses provided the vertical constraining forces, and were
applied onto each of the edge plates. Clearly this method allows little scope for
planar movement of the card. In an attempt to improve the freedom of movement
in the planar directions, the scheme presented in Figure 4.11(b) was considered. In
this scheme, both longitudinal edges were sandwiched between two alumina plates
in the manner described above. One of the edges is rigidly constrained with the

application of a 5kg mass, whilst the other is offered some freedom of movement by
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Smartcard Smartcard
5kg Mass l 5kg Mass
Aluming S Smartcard
Plates—===Ts T
| 0T Sre
E ] P;:./.LL\J_W%’
: i
zy |Support | |Support]  Roller
| -y - Bearings
(a) Rigid Constraints (b) Roller Constraints

Figure 4.11: Possible Realisation of Constraint Boundary Conditions

placing rollers underneath the constraint’s bottom plate. The rolling edge was also
constrained vertically by means of a 5kg mass. Visual inspection of this method
confirmed that the application of a load onto the card caused the constraining mass
to move just perceptively inwards. Whilst this method offered improved freedom
of movement in the z-direction, it was found to be limited both by the inertia of

the constraining mass and friction of the rollers.

The preferred method of constraining the edges is shown schematically in Fig-
ure 4.12. In this method the outermost % mm of the card’s longitudinal edges
are simply supported by means of flat plastic blocks. By simply supporting the
extreme edge of the card, the downwards force of the card’s weight and that of
the load is transferred to the supports through the edge of the card. This means
that the edges are unable to rise, and are in effect constrained by the weight of
the card and by the force of the load itself. The card is loosely attached to the
supports using a loop of adhesive tape, helping to maintain the card’s position on
the supports, whilst providing some structural connection between the card and
both supports. An additional advantage of loose bonding is that some freedom of

movement in the x, and y directions is exhibited.

4.6.2 Mechanism for Applying Loads to the Card

An efficient mechanism for applying loads to the card is to use a simple pulley
system, as outlined in Figure 4.12. The load is suspended just above the smart-
card’s surface by means of thin 200um diameter wire, and released in a controlled

manner allowing the load to rest on the smartcard. The contact area between load
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Pivot Support

Smartcard

Supports (Loosely Bonded)

Apply /
Remove Load

Figure 4.12: Mechanism for Applying Loads

and smartcard is determined using a square of smartcard material, cut to an area
of 1em?, and bonded to the bottom surface of the load. Figure 4.13(a) shows the
the response of the piezoresistive sensor to a load applied onto the card in this

manner.

Applying the load directly onto the card can induce a number of problems. From
Figure 4.13(a), the sudden application of a load can be seen to cause mechani-
cal oscillations of the card. Although energy is dissipated, and the card quickly
assumes its steady state, it is desirable to reduce these oscillations as much as
is possible. A further concern with this method of loading is that loads have a
tendency to swing as they are removed from the card. This can result in the load
being applied to slightly different surface positions each time it is placed in contact

with the card.

A solution to the above is to attach a small (1cm? area with 5mm thickness), high
density foam rubber pad to the position of interest on the card’s surface. This has
the effect of damping oscillations, whilst also reducing the positional variance of
the contact point. Figure 4.13(b) shows the sensor’s response to a load applied in
this manner. The mechanical oscillations have been reduced, and the steady-state
output of the sensor is of comparable magnitude to the response of the direct

contact approach.

Rather than applying load to the piezoelectric sensor, it is good practice to remove

loads thereby avoiding dynamic loading. Piezoelectric sensors suffer from charge
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(a) Load Applied Directly Onto Card (b) Load Applied Onto Bonded Foam
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Figure 4.13: Piezoresistive Sensor’s Response to Applied Loads

leakage across sensor contacts, and leakage arising from the conditioning electronics
(Appendix B). Therefore load response measurements must be taken immediately
after the load has been applied. As a result, it is good practice to remove, rather
than apply, loads to avoid dynamic loading. The change of sense is accounted for

in presented data.
To be consistent with the finite element model, a vertically downwards force of
2.5N must be applied to the card. Newton’s third law states

F =m agraviy (4.6)

where I’ is the downwards force due to the gravitational acceleration, @grguiy, Of
mass m. The required mass is calculated as 255.1g, taking agrqvity to be 9.81ms™?
(Halliday & Resnick 1989). A combination of small standard masses provided a

total measured mass of 254.3g, resulting in a downwards force of 2.49N.

4.6.3 Signal Conditioning and Data Acquisition

Plezoresistive responses are conditioned using a resistive bridge circuit, whose
output is amplified with an AD622 instrumentation amplifier from Analog De-
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vices.b. Piezoelectric signal conditioning, on the other hand, was performed using
the LMC6001 Ultra-Low Input Current Amplifier from National Semiconductor’,
configured as an op-amp integrator. Appendix B provides schematics and further

descriptions of the signal conditioning circuits used.

Data acquisition from both sensors was performed using a Data Translation®
DT9802 acquisition board, sampling with 12-bit resolution (between -5 to 5V),
at a rate of SkHz.

4.6.4 Experimental Results

For both sensor cards and each load case, the load was applied (removed in the
piezoelectric case) to the card at least 30 times. Tables 4.9 and 4.10 show the ex-
perimental means (and standard deviations) for the piezoresistive and piezoelectric
sensors, respectively. The measured responses are also quoted in proportion to the
theoretical predictions. Figures 4.14(a) and 4.14(b) show typical responses to all

load cases for the piezoresistive and piezoelectric sensors, respectively.

Piezoresistive Response
dR / R (%)
Load Case | Experimental (Std. Dev.) | Expt. / Theoretical
1 -0.457 (0.036) 86.7%
2 -0.582 (0.022) 77.0%
3 -0.388 (0.017) 85.8%
4 -0.293 (0.034) 84.2%

Table 4.9: Experimental Piezoresistive Response to Known Loads

Both sets of experimental results show clearly the effects of card flexing. Again
using load case 4 for illustration, it is observed that the sensor responses are
50% and 38% of the direct sensor loading case, for piezoresistive and piezoelectric

responses respectively.

Whilst the experimental results for the piezoresistive response compare well with

theory, and load cases 1, 3 and 4 are within approximately 15% of theoretical val-

6 Analog Devices, Norwood, MA, USA. Web: http://www.analog.com
“National Semiconductor, Santa Clara, CA, USA. Web: http://www.national.com
8Data Translation, Inc. Marlboro, MA, USA. Web: http://www.datx.com
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Piezoelectric Response
Charge Out (nC)
Load Case | Experimental (Std. Dev.) [ Expt. / Theoretical

1 “1.53 (0.22) 12.9%
2 7210 (0.22) 11.4%
3 -1.06 (0.10) 12.6%
4 ~0.808 (0.07) 13.0%

Table 4.10: Experimental Piezoelectric Response to Known Loads

2 3
Time (Seconds) Time {Seconds)

(a) Piezoresistive Response (b) Piezoelectric Response

Figure 4.14: Response to Known Loads: Load Case is indicated in parenthesis.

ues, there are a number of possible explanations for these discrepancies. Firstly,
whilst every effort was made to experimentally reproduce the conditions of the
finite element model, it is likely that differences exist. In particular, the con-
straining conditions of the experimental method are not precise representations
of the finite element model. Frictional forces between the smartcard and its sup-
ports will restrict freedom of movement in the planar directions thereby inhibiting

planar strains, and hence sensor responses.

Further, some material properties have been estimated rather than measured and
can have a significant influence upon theoretical responses. For example, 0.4 was
taken as the value for Poisson’s ratio of the piezoresistive sensor, and whilst this can
be considered a reasonable assumption, investigation of the sensor model demon-
strates particular sensitivity to this property. For example taking Poisson’s ratio

of the film to be 0.35, rather than 0.4, results in a predicted resistance change of
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-0.641%, whilst a value of 0.45 results in a resistance change of -0.392%, for load
case 1. Indeed consideration (and rearrangement) of equation (3.23) shows that
dR

= = (G + 1)6x(c) + (G - l)sy(c) + (G — 1)5z(f) (4.7)

and since the planar strains, () and €y, depend upon the strains developed
within the smartcard, and G is a material property of the piezoresistive film, it

follows that iR
— X Eyf). 4.8
L (4.8)
From equation (4.4) the normal strain, €,s), is a function of Poisson’s ratio of the
film, and the planar strains, e,() and gy(). For a fixed static load these strains
are determined by the smartcard’s mechanical response and shall be considered
constant. That is

€a(c) T Ey(c) = K (4.9)
Hence, from (4.4)
g (4.10)

expy = flvy) = =)

Further investigation of (4.10) reveals €.(s) to be a monotonically increasing func-

tion of vy within the permissable bounds of —1 < vy < 0.5.

In addition, the piezoresistivity coefficient, G, was not measured directly, rather
G was inferred from related measurements reported in the literature (Arshak
et al. 1995). The predicted piezoresistive responses of table 4.7 were generated
using Arshak’s median measurement of gauge factor (GFp = 4.5), from which the
piezoresistivity coefficient was inferred. However, if his lower gauge factor mea-
surement is used (GFL = 4) then a value of G = 8.69 is calculated. With this
value of G, the predicted sensor responses tend towards the experimental values,
with measured responses being 97.4%, 90.2%, 98.2% and 95.4% of the respective

theoretical value for each load case.

It must be stated that this discussion attempts only to illustrate the model’s
sensitivity to certain parameters, and makes no claim that their values can be

determined from this work.

On the other hand, experimental and theoretical magnitudes for the piezoelectric

responses deviate significantly, with experimental measurements being only around
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12.5% of their corresponding theoretical values. The large discrepancy is believed
to stem from the estimation of Young’s modulus of the piezoelectric composite.
The rule of mixtures method, (4.1), was used and assumes that the two materials
in the composite are exclusively and homogeneously mixed. This is most likely
not the case, as the presence of air gaps within PZT-phenolic films have been ob-
served (Papakostas 2001). Air gaps within the composite will significantly reduce
Young’s modulus, and although further determination is beyond the scope of this
work, reducing Young’s modulus of the PZT film has been shown to bring theo-
retical results closer to experimental. This is clearly demonstrated by considering

equations (3.33), (3.34) and (3.30). Combining and rearranging shows

As an example, and with the same caveat as above, taking E,r = 5.5GPa,
causes the theoretical responses to descrease, such that measured responses be-
come 101.7%, 90.9%, 99.9%, and 103.1% of theoretical values.

The results presented in column 2 of Tables 4.9 and 4.10, show that the direct
loading responses of both sensors (load case 2), are significantly lower in propor-
tion to their theoretical values than is the case for the other loading positions.
This is believed to be due to the sensor film and its polymer substrate dispersing
the applied load over an increased area. For example, applying the same 2.5N
load over an area of 2cm?, rather than 1cm?, and re-running the FEA simulation,
lower surface strains are generated. Repeating the approach of Section 4.5.3, the
piezoresistive response was calculated to be %25 = -0.649% and the charge gener-
ated by the piezoelectric sensor, @) = -16.2nC. The experimental measurements in
comparison to these new theoretical results are 89.6% and 12.9%, for the piezore-
sistive and piezoelectric sensors respectively, and are comparable to the results of
the other load cases. It should be noted that this effect will have no influence if

the sensor and its substrate are smaller than the area over which a load is applied.

4.7 Spatial Characteristics

The above analysis demonstrates that applying a load to a smartcard causes flex-

ing and strain propagation, which in turn results in sensors responding to loads
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applied elsewhere on the card. This is an unfortunate consequence and does not
encourage the design of pressure sensors for the capture of discriminating spatial
characteristics. However, the above considers only the response of fixed sensors to
loads applied at different positions. Making use of the smartcard model we can
investigate the converse in which sensors at locations across the card respond to a

load applied at one fixed position.

Before doing so the discrepancies between model and experiment must be ac-
counted for. As the preceding work shows, both sensor models are sensitive to
changes in the values of their material properties, and a judicious choice of prop-
erty value can have a significant effect on the model’s response. Whilst there exists
some uncertainty about actual property values, these cannot be inferred by com-
paring theoretical with experimental results. The reason for this is simply that
the model’s response is a consequence of the interaction of all components, and
changing component properties simultaneously can result in the same ultimate
response. For example, the piezoresistive response to load case 1 was calculated
to be QER = —0.527% with v, = 0.4 and G = 10.62. The same ultimate sensor
response can be achieved with v,z = 0.45 and G = 18.6. A more appropriate
method of accounting for experimental differences is to scale the model’s response
to the experimental observations. By taking the mean of experimental to theo-
retical results, scale factors of 0.86 and 0.13 are found for the piezoresistive and

piezoelectric sensors respectively.

4.7.1 Array Sensor Response

The finite element model can be used to simulate the response of an array of
sensors bonded to a smartcard. The following analysis considers a grid of 4x4mm
sensing elements, each centered on one node of the FE mesh, as shown in Figure
4.15.

In order to assess the extent to which individual sensing elements respond to a
single load, the smartcard model is loaded with a 2.5N force applied over an area
of 1em? This is the loading condition of case 2, and is believed to be typical
in magnitude of forces applied during the presentation of discriminatory finger

characteristics. The resulting nodal stresses are used to calculate sensor responses
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Longitudinal Axis

Lateral Axis

Figure 4.15: Simulated Sensor Array: Sensing elements are centered on FE nodes, and
the array is only partially completed for clarity.

in the manner prescribed above (section 4.5.3).

Rather than presenting results for all possible sensing elements, this analysis con-
siders two perpendicular cross-sectional responses, through the longitudinal and
lateral axes of the card, and intersecting with the load center. This situation
is shown in Figure 4.15 and is believed to sufficiently demonstrate the response

characteristics of a sensor array.

Considering firstly an array comprising of piezoresistive elements, whose current
flow is in the lateral, or z, direction of the card. The response characteristics of
these elements is shown in Figures 4.16(a) and 4.19(b) for longitudinal and lateral

cross-sections, respectively.

4 5 6

6 7 8 0 1

3 4 5 2 3
Longitudinal Position (cm) Lateral Position (cm)
(a) Longitudinal Array Cross-Section (b) Lateral Array Cross-Section

Figure 4.16: Piezoresistive Sensor Element Response with Position
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As reasonably expected, the peak sensor response corresponds to the centre of the
applied load, and the response of sensing elements decreases with distance from
this position. For example, sensing elements 1.5cm either side of the load in the
longitudinal direction exhibit approximately 65% and 53% of the peak response,
for edgewards and centerwards elements respectively. This is significant, given that
both elements are a full 1cm from the edge of the applied load. The cross-sectional
responses through the lateral axis are seen to decrease more rapidly with distance,

but remain greater than 30% of the peak response for the 3.5¢cm central section of

card.

Considering the piezoresistive sensor description given in equation (4.7), it can
be seen that piezoresistive response is more sensitive to strains in the direction
of current flow, £;(¢) in this case, than in the other orthogonal directions. From
experience, and from the displacement maps presented in Figures 4.7(a)-4.10(a),
it is observed that a smartcard will flex along its longitudinal axis, if supported
in a manner typical of being held in hand. As a result, strains are higher in the
lateral orientation and this is indicated by the stress maps of Figures 4.7(b)&4.7(c)
- 4.10(b)&4.10(c). On the other hand, longitudinal, or y orientation, strains are
more confined to the region surrounding the load, as indicated by Figures 4.7(c)~
4.10(c).

These properties can be exploited by configuring the sensing elements, such that
current flow is parallel to the longitudinal axis of the card. In this instance, the

plezoresistive response is given by

dR

= = G (e T €20 + €xp) + E0t0) = Eate) — &2 (4.12)

and is more insulated from high lateral strains. Figures 4.17(a) and 4.17(b) show

the longitudinal and lateral cross-section responses, respectively.

The immediate difference between sensor responses is a reduction in peak response,
from approximately 0.66% for piezoresistive elements whose current flow is in the
lateral direction, to 0.51% for these rotated sensor elements. This, as explained, is
due to sensor elements being insulated from the higher lateral strains of the card.
The array exhibits a sharper longitudinal cross-sectional response to applied load,
with the response of elements being approximately 30% of the peak, at a distance

of 1.5cm from the load center. Due to the confined circular region of high stress in
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Figure 4.17: Piezoresistive Sensor Element (Rotated through 90°) — Response with
Position

the longitudinal direction, the lateral cross-section responses are similar to those

presented in Figure 4.16(a).

Figures 4.18(a) and 4.18(b) present the results for an array of piezoelectric sensing
elements. As can be seen, the peak amplitude of approximately -0.27nC is sig-
nificantly smaller than than the experimental measurements, presented in Section
4.6.4. Equation (3.30) clearly shows the piezoelectric activity to be proportional to
the area of a sensor, which in this case is 0.16cm? (0.4x0.4cm?) as compared with
0.64cm? for the experimental sensor. Cross-sectional responses appear similar to
those of the piezoresistive array, and since the piezoelectric model does not distin-
guish between planar directions, rotating the sensors relative to the card offers no

advantage.

In conclusion to this section, the array characteristics presented above are nor-
malised and plotted in Figure 4.19. Sensor elements respond to loads applied
elsewhere on the card, and cross-sensitivity between elements is demonstrated.
The sharpest cross-sectional response is exhibited by piezoresistive elements in
which current flows in the longitudinal direction of the smartcard. However, in
order to capture spatial characteristics, sensing elements require to be well isolated
from each other, and not respond significantly to a measurand applied to other

elements. This is clearly not the case with the sensing elements considered here.
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Figure 4.18: Piezoelectric Response with Position

Despite their attractive properties of low-cost, mechanical ruggedness and flexi-
bility, PTF piezoresistive and piezoelectric sensors are unsuitable for the capture
of spatial human characteristics. Nevertheless, both sensor types can be used to
capture temporal characteristics, and their potential to do so is investigated in the

next section.

4.8 Temporal Interactions

As indicated in Section 4.1, the tactile interactions of a person with a smartcard
are effectively limited to tapping and pressing. Tapping may be considered a
fast dynamic action, whilst pressing, or pressing and holding, represents a slower
quasi-static interaction. This section compares the characteristics of piezoelectric
and piezoresistive sensors in responding to these different interactions. Whilst the
previous section made use of simulation to assess PTF sensors for capturing spatial
characteristics, this section makes use of experimental measurement to assess the

effectiveness of both sensors to capture temporal characteristics.

The sensor cards and data capture apparatus used for the experimental verification
of the smartcard & sensor model (section 4.6), were also used in this work, and it
was the author who pressed and tapped the sensor cards during all of the following

measurements. The card was held in one hand, and tapped or pressed with the
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Figure 4.19: Normalised Sensor Responses with Position

fingers of the other. Three points of contact are considered and correspond to load

cases 1,2&3, of the above analysis.

Figures 4.20(a) and 4.20(b) show sensor responses to single taps on the piezoelec-

tric and piezoresistive smartcards, respectively. Both methods capture the dy-
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Figure 4.20: Sensor Response to Tapping Loads

namics of this interaction adequately, as is clear from the above. However, there
is some repeated evidence of hysteresis on the piezoresistive response. Hysteretic

behaviour is observed on previous piezoresistive responses (see for example Figures
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4.13 and 4.14(a)), however its influence is quite distorting in comparison to the
piezoelectric responses (Figure 4.20(a)). The responses to each contact position
are in broad agreement with FEA results, in that the tap on sensor generates

the largest response, followed by tapping edgewards and then centrewards of the

Sensor.

Figures 4.21(a) and 4.21(b) show the piezoelectric and piezoresistive responses to a
finger pressing-on, then releasing-from the card. It appears that the piezoresistive
sensor offers better characteristics than the piezoelectric, whose response is affected

by the prolonged proximity of a finger. The effect of prolonged finger contact on
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Figure 4.21: Press Responses

the piezoelectric sensor is starkly demonstrated with Figure 4.22, which presents
the response of both sensors to a finger pressing and continuing to hold for a short
interval. The piezoelectric noise component, arising from 50Hz mains noise and
stray capacitances, dominates the signal, and it is apparent that piezoresistive

sensors offer significantly better static and quasi-static responses.

These results indicate that piezoresistive PTF sensors offer greater versatility than
their piezoelectric counterparts. They are able to capture the dynamics of a fast
on-off tap, whilst offering good quasi-static measurements. However, hysteresis
and poor stability are the downside. Piezoelectric sensors, on the other hand,
exhibit good low-noise dynamic properties and poor, noisy quasi-static charac-
teristics. TFurther, piezoelectric measurements can be made with simple charge

amplification circuitry, rather than the resistive bridge circuit used for piezoresis-
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Figure 4.22: Press and Hold Responses

tive measurements. This offers significant advantage to the smartcard arena, in

terms of circuit complexity, manufacturing and initialisation efforts.

4.9 Serendipitous Sensitivity

The flexing of a smartcard, in response to an applied load, has been shown to
induce cross-sensitivities in multiple sensors bonded to a card. As such it may
be viewed as a hindrance. However, the work of this section identifies flex of a
smartcard as an important agent in enhancing the sensitivity of singular sensors

bonded to a card.

In this experiment, both sensor cards were placed upon a flat rigid surface, and
a 2.5N load was applied onto the sensor. Figures 4.23(a) and 4.23(b) show typ-
ical piezoelectric and piezoresistive responses, respectively. Both sensors exhibit
significantly reduced responses in comparison to the responses of edge-supported
cards, as shown in Figures 4.14(a) and 4.14(b). Clearly it is the flex of a smartcard

which induces planar strains, contributing to the sensitivity of both sensor types.

Completely inadvertently, a method of improving the sensitivity of a constrained
sensor has been found. In an attempt to print sensor layers directly onto the surface

of a smartcard, rather than firstly onto a flexible substrate, it was discovered a
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Figure 4.23: Sensors on Mylar — Smartcard on Flat Surface

dome structure, analogous to the dome membrane switches of Figure 3.5, formed
underneath the sensor. This is believed to be due to different thermal coefficients
of expansion (TCE) of the smartcard and sensor materials, such that the sensor
cooled at a faster rate than the card. With this sensor card fully constrained in
the z-direction, the dome is able to deform in response to applied load, and hence

induces increased strains to the sensor film.

Figure 4.24(a) shows the response of this modified smartcard sensor, being sup-
ported along its longitudinal edges, to an applied 2.5N load. Its reponse to the
same applied load whilst constrained on a flat rigid surface is given in Figure

4.24(b), and is observed to be of comparable magnitude.

It should be noted that this was an entirely serendipitous discovery, and has only
been demonstrated with piezoelectric sensors. The yield of this one-off fabrica-
tion batch was low, with only one working sensor from fifteen smartcards. This
thesis does not consider further details or development of this approach to sensor
fabrication, although it may offer some advantages in allowing PTF sensors to be
used upon rigid components, and is hence considered in the further work section
of Chapter 7.
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Figure 4.24: Modified Piezoelectric Smartcard

4.10 Conclusions

Theoretical analysis of the pressure sensors considered in Chapter 3 indicated that
sensors exhibit sensitivity to planar strains. Since a smartcard deforms in response
to an applied load, strains propagate across the card, and this implies that sensors
will respond to loads applied elsewhere on the card. First-order finite element
analysis is used to assess the extent of strain propagation across a smartcard, and
the extent to which an array of sensing elements respond to a single applied load,

typical of human-finger interactions.

The FEA smartcard model represented a smartcard as a single plate of uniform
thickness and material homogeneity. Where data was unavailable, assumptions
about material properties and constraint conditions have necessarily been made.
FEA results were used as input values to the piezoresistive and piezoelectric sensor
models of Chapter 3, and theoretical sensor responses were calculated. These
results were then compared with experimental measurement, and it was found
that theoretical piezoresistive results were within ~15% of measured values, whilst
piezoelectric measurements were approximately %th of theory. The discrepancy in
plezoresistive results can be explained by factors such as imprecise modelling of
constraint conditions and uncertainties in material property values. The very large
discrepancy between piezoelectric values is likely to be dominated by inaccuracies

in the composite mixture approach used to approximate Young’s modulus of the
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PZT sensor layer. The composite mixture model assumes uniform and exclusive
mixing of two materials, and does not account for non-uniformities, such as air-

gaps whose presence have been reported in the literature.

Nevertheless, this analysis captures the gross mechanical behaviour of a loaded
smartcard, and with appropriate scaling, can be used to simulate on-card sensor
arrays. Simulating arrays of small piezoresistive and piezoelectric sensors, it is
found that sensors across the surface of the card will respond significantly to a
singular load applied elsewhere. Whilst sensor responses are observed to dimin-
ish with distance from an applied load, they remain significant in proportion to
the peak response. This effect becomes the limiting factor in bonding sensors to
smartcards, and it is not practical to bond more than one sensor, without suftering

cross-sensitivities between sensors.

However, it is shown that both sensors can capture aspects of the temporal (rather
than spatial) interaction between a finger and the card. Piezoresistive sensors
adequately capture both static and dynamic signals, whilst piezoelectric sensors
are better suited to the capture of fast-changing dynamic signals rather than static
or quasi-static signals. But piezoresistive sensors suffer from hysteretic properties,
and whilst this is not characterised, it is observed to distort fast changing, dynamic

interactions.

Finally, it is shown that the flex of a smartcard is an important agent in the
sensitivity of both sensors, and constraining the vertical out-of-plane freedom of a
smartcard significantly reduces sensitivity. A way around this has been discovered,
and involves the formation of a dome structure underneath the sensor. In response
to an applied load, the dome deforms, and the resulting strains are transferred to

the sensor.
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Chapter 5

A Novel Approach to Identity

Verification

5.1 Introduction

The work of Chapter 4 demonstrates that planar PTF pressure sensors are not
suitable for the capture of spatial characteristics, such as finger-geometry or finger-
crease pattern. It is shown that the extent to which planar strains propagate
across a smartcard, in conjunction with the sensing properties of PTI pressure
sensors, causes sensors to respond to forces applied elsewhere on the card. It
is this effect which renders the concept of a spatial sensing array infeasible, and

hence, alternative discriminatory characteristics are sought.

Although the flex of a smartcard effectively limits the number of independent sen-
sors to one single sensor, Chapter 4 also shows that smartcard flexing is largely
responsible for the absolute sensitivity of PTTF pressure sensors to applied loads.
This effect can be exploited to capture temporal, rather than spatial characteris-
tics: Piezoelectric sensors were shown to capture the dynamics of a fast changing
interactions, whilst piezoresistive sensors performed best at capturing static and

quasi-static, signals.

This chapter presents and demonstrates a novel approach to identity verification

which is based upon the temporal interactions between a finger and pressure sen-
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sor. This new approach is founded upon the principles of keystroke dynamics, and
is first reported in Henderson & Hartel (2000) and with greater depth in Hen-
derson, White, Veldhuis, Slump & Hartel (2002a). In this proposed approach, an
individual taps out a self-selected rhythm on a singular pressure sensor, bonded to
a smartcard. In common with much of the work on keystroke dynamics, inter-tap
and tap-duration times are used as features. However, the use of a pressure sensor
allows the additional feature of pressure amplitude, providing further scope for
discrimination. Whilst two authors suggest modifying keyboards to include pres-
sure sensitive elements (Spillane 1975, Young & Hammond 1989), this proposed
mechanism is quite different in its use of only one single pressure sensor, rather

than a full keyboard.

Background justification for this approach is given, and similarities with keystroke
dynamics become apparent. A comprehensive review of keystroke dynamics is
thus presented and used as the basis for an experimental trial. An experiment
involving 34 volunteer participants is described and significant visual differences
between the characteristics of individuals are observed. Appropriate verification
functions are investigated and an equal error rate of 2.3% is found to be achievable

under controlled laboratory conditions.

5.2 Background

From an empirical viewpoint, the recognition of people from a series of taps or
pulses has some precedent — early telegraphic operators recognised other operators
by the way in which they keyed information. Operators developed a distinctive
fist or telegraphic style which could be recognised (Bryan & Harter 1897). This
is further illustrated with an example from French Military Intelligence during
the First World War: Telegraph interceptors were able to recognise the enemy
operator responsible for transmitted signals, whilst a network of receiving stations
could triangulate the source of radio transmissions. Combining information from
these sources, Intelligence officers were able to surmise the movements of individual

battalions thereby providing strategic advantage to the Allies (Singh 1999).

On a more mundane level, Umphress & Williams (1985) observe that:
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“Anyone who sits within earshot of a typist, or has an office next
to a keypunch room is usually able to recognise typists by keystroke

patterns.”
They go on to suggest that:

“Keyboard characteristics are rich in cognitive qualities and give great

promise as a personal identifier.”

In fact, since the publication of this paper much work has gone into making recogni-
tion by keystroke patterns, or keystroke dynamics, a realistic and viable biometric
(Obiadat 1998). An explanation for the discriminating basis of keystroke dynamics
is offered by Rumethart & Norman (1982), suggesting that differences in typing
style are due to both the physical characteristics of the hand, such as finger length

and agility, and the level of motor control of a person.

Indeed we have everyday experience of ‘tap’ recognition in recognising a person
by the way in which they knock on a door. Furthermore, the use of prescribed
knocking patterns has long been employed as an indication of belonging to so-called

secret societies, or of group membership. For an example see Clancy (1999).

The characteristic patterns of footsteps can cause dogs to bound towards their
owners, or bark in warning at the unknown. Moreover, as pointed out by Obiadat
(1998):

“Since the beginning of time, humans have been able to recognise [a]

person from the sound of steps of the individual.”

A practical implementation of this is illustrated in the ‘Smart Floor’ (Orr 2000),
in which an instrumented floor covering is the basis of a system for identifying
people from their footsteps. There is overlap between this method of identifica-
tion and that of Gait Recognition (Nixon et al. 1998). Gait recognition looks for
biomechanical differences in leg and body movements of a person’s stride, whilst
the Smart Floor method seeks identification based upon the resulting pattern of

reaction forces, between feet and ground.

In a similar manner, the pressure sequence method seeks recognition by the pattern

of pressure pulses between fingertip and pressure sensor, resulting to some measure
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from the biomechanical characteristics of a person’s hand and wrist. That the
human hand is complex and offers scope for discrimination between people is
demonstrated in its composition of 19 bones, 19 joints and 20 muscles, combining

to give 22 degrees of freedom (Kandel 1981).

Shaffer (1982) investigates rhythm and timing in common tasks. It is found that:

“...temporal rhythm is the realisation of a schedule in a motor pro-

gram...”

and:

“...given a schedule, the motor system can produce a movement to the
next temporal target, taking a previous target as a reference point for

the movement trajectory.”
This is applied to the task of ‘tapping’:

“In repetitive tapping, with one finger, the previous tap provides the

reference point for the next one.”

Hence, tapping is in some way a function of a person’s motor program, or neuro-
physiology. It appears that the expression of some rhythm (or sequence of taps) is
tempered both by the neurophysiological and biomechanical make-up of a person,
and one would expect the output of even the same rhythm by two people to be

subtly different.

5.2.1 Objectives

For the pressure sequence method to gain merit as a verifier a high level of dis-
crimination must be demonstrated. Since there are strong similarities between
the proposed pressure sequence method and that of keystroke dynamics, the dis-
crimination methods of keystroke dynamics are investigated for their potential to
discriminate between people, based only on a sequence of taps on a single pres-
sure sensor. This is justified in that both result from similar neurophysiological
and biomechanical mechanisms, and at a minimum, both consider time intervals

between finger taps.
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5.3 Keystroke Dynamics

Keystroke dynamics refers to the identification or verification of an individual
by making use of their characteristic typing style. This can be performed on
a one-off basis, generally at the start or login of a computer session, or it can
be performed on a continual basis throughout the lifetime of a session. These
approaches are known as static and dynamic keystroke dynamics, respectively.
Since verification of a smartcard holder occurs once during a session, it is apparent
that static verification is most appropriate, nevertheless certain aspects of dynamic

verification are useful, and both approaches are described for completeness.

Static verification tends to be based upon the typing pattern of a fixed short login
string, such as the person’s name or username, and the features of inter-key'
and or key-hold times form the basis of discrimination. Dynamic recognition (or
verification), on the other hand, must be able to deal with arbitrary free text-
independent prose, and in order to do this text must be broken down into small
recognisable and characteristic units. One primary way of doing this is to record
keystroke latencies between specific character pairs, called digraphs. Using only
the lowercase ASCII character set there are 26x26 possible digraphs or 27x27 if
the space character is included. Some commonly occurring three-character units,
called trigraphs (for example ion), and four-character groups, called tetragraphs
(for example tion) are also found to be typed consistently and may be used in the
discrimination process. Di-, tri—, and tetra— graphs are compared continuously to

reference profiles throughout the session.

It has been suggested that typing style is analogous to handwriting, since both
stem from similar neurophysiological factors and from the complexity of the hu-
man hand (Joyce & Gupta 1990). Indeed, static verification may be considered
the keystroke equivalent of hand-written signature verification, in that both anal-
yse the expression of a fixed string. Dynamic recognition / verification, then, is

analogous to handwriting recognition given an arbitrary sample of prose.

linter-key times are also known as keystroke latencies
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5.3.1 Static Fixed-String Verification

Spillane (1975) first proposed a keyboard with means of recording time and pres-
sure patterns as a user keys an entry code. He suggests that this pattern will be
unique to each user, and proposes its use as a means of verifying identity. By
varying the length of the entry code, Spillane suggested that any desired level of

security could be achieved. No experiments or results are reported.

The patent of Garcia (1986) proposes using timing information between keystrokes
entered upon a simple existing keyboard to verify the identity of a computer user.
Garcia suggests using a common, often used string such as a person’s name or login
username, which should be entered with a high degree of consistency. His method
is to enrol users by entering their names a number of times, thereby creating
a database of timing vectors whose components are the latency times between
subsequent keypresses. At some future time, when a user requires access to the
system, the claimant enters their name, from which latency times are extracted.
A timing vector is generated and statistically compared to the enrolment timing

vectors. If these are sufficiently similar, access is granted.

In generating a reference vector, Garcia advocates the removal of outliers — sug-
gesting that isolating the enrolment environment from noise and distractions will
produce a cleaner reference vector. Garcia proposes using the Mahalanobis dis-
tance function to determine the statistical similarity between the enrolment and

test vectors, and is defined as follows:
DR, T)=(R-T)"-C*-(R-T) (5.1)

where R is the reference vector, T is the test vector, C~! is the inverse of the
covariance martix generated from an individual’s enrolment vectors, and the op-

erator (- )* denotes the transpose matrix.

If MD < 50, a user will be immediately accepted. For 50 < M D < 100, a request
is made for the user to reenter their name. If M D > 100, the user is denied access.
With these thresholds, Garcia claims a probability of false acceptance of 0.0001
(0.01%) and a probability of false rejection of 0.5 (50%).

Garcia widens the scope of his patent, limiting it not only to standard computer
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keyboards, with his suggestion that a variety of input devices could be used, in-
cluding; telephone keypads, numeric keypads, electronic piano keyboards, or even
a single telegraphic key. The critical feature of his scheme is that: “each successive

piece of information is distinct and measurable, with a resolution of between 1 and

500 ps”.

According to Garcia, the discriminating mechanism is based upon the concept
that: “The co-ordination of a person’s fingers is neurophysiologically determined
and unique.” He continues, by saying: “Any situation in which a person has to
reproduce a rapidly changing pattern on one or more keys will produce a unique
signature, in terms of the time delays between each key pressed.” Whilst offering no
substantive evidence for this theory, it is broadly aligned with that of (Shaffer 1982)

referenced above.

Young & Hammond (1989) propose the use of a specially designed keyboard, to
capture both interkey times and keystroke pressure, in order to verify a computer
user. Authorized users enrol by typing a selected passage of text, from which a
plurality of features may be extracted. Features are suggested to include interkey
times between selected di or trigraphs, and keystroke pressures. They propose
generating a reference vector, R, whose d components are selected features of the
above. A test vector, T, containing the specified feature set, is constructed either
statically at login or dynamically during a session, when a user wishes access or is

using their system.

Their verification scheme involves computing a Euclidean distance measure ({2

norm):

2

Z}n—Mﬂ (5-2)

where 7; is the i** component of R and ¢; is the i** component of T. If ||R — T,

IR = Tll2 =

is less than a certain threshold, then the test and reference vectors are deemed to
be sufficiently similar and the user is either granted access, or allowed continued

access to the facilities.

No information is given about threshold determination, nor achievable error rates
with their proposed system. Indeed, it is not clear from their patent, whether the

authors conducted trials with their apparatus, or are merely logging stake to a
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claim.

Joyce & Gupta (1990), proposed the identity verification of computer users based
upon the entry of a short signature string. Their analysis method is similar to
that of Garcia, relying solely upon keystroke latencies, captured to a resolution
of 0.01s, rather than specific digraph latencies. Their login signature comprises
of username, password, firstname and lastname. In common with Garcia (1986),
they suggest that a ‘well-known’ regularly typed string can be quite consistent.
In their experiment, 33 people were enrolled each providing 8 login samples from
which a reference profile was created. After typing their enrolment sequences each
user provided 5 further login attempts, yielding a total of 165 self login attempts.
Six from the 33 participants were randomly chosen as targets, and the remaining
27 participants each attempted 5 impostor logins per target. It should be noted
that the impostors were not present during the target’s enrolment sessions, and

that all data, both test and reference, were captured during a single session.

By considering each signature as a vector whose components are the keystroke
latencies between each character, each signature will be composed of 4 vectors of

latency values. The mean reference signature will be given by:

R= {Rusernamea Rpassword; Rfirstnamrz? Rlastname} (53)

The mean of each latency is calculated from the eight enrolment signatures. Each
latency is then compared to its corresponding mean. Any outliers, greater than 3

standard deviations will be removed, and the mean of that latency recalculated.

The difference between a test vector, T, and the mean reference vector, R, is

calculated as the ¢; norm:
d
IR =Tl =Y | — ] (5.4)
i=1

where R is the d dimensional reference-vector, generated from the mean of each of
the components in the user’s enrolment vectors, T is a d dimensional test vector,

and r and ¢ are the components of M and T respectively.

By looking at the way in which each enrolment signature differs from the mean

reference vector, a mean difference and standard deviation are calculated for each
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user. If each of the enrolment signatures are Si, Ss, ... , S;, respectively, then,
IR — SJ|; is calculated for j = 1 to 8. The mean and standard deviation of these
norms are calculated, and used to decide an acceptance threshold for each user. A
test sequence, T, will be accepted if ||[R—T||; falls within the mean + a proportion

of the standard deviation of the enrolment norms.

Using an acceptance threshold of 1.5 standard deviations, false rejection and false
acceptance rates of 16.67% and 0.25%, respectively, are reported. Increasing the
threshold to 2.5 standard deviations resulted in a false rejection rate of 6.67% and
a false acceptance rate of 1%. Joyce and Gupta, graphically characterise further
results at a range of thresholds, and visual inspection reveals an equal error rate
of around 3%.

Although these results are impressive, the authors suggest that the ‘shape’ of
each signature could offer further discrimination. Differences in latency values
across two different signatures may be small, but the ‘shape’ or slopes of the
signatures could be significantly different. Hence, the authors propose a further
classifier based upon the difference between successive latencies, ’Slope Difference’.
If I = {i1,ia,...,9,_1} is the vector of slopes of the mean reference signature, R,
and J = {Jj1, 72, -+, Jn—1} 18 the corresponding vector of slopes from the test vector,

T, then a measure of slope difference can be given by:

2
(lik = Jk| + liksr — Jrs1l]) w (5.5)
1

n

|

o
Il

where i "

1 — U
n~—1 a . . (5'6)
L Max |l — T

Wy =

Since the objective in this classifier is to bring out distinctive features of the
signature, the slope differences are weighted by the amount of slope change in the
reference signature, wy. This classifier proved to be slightly worse than the ¢; norm
classifier, and visual inspection of the author’s results suggests an equal error rate
of around 5%.

Bleha et al. (1990) describe an experiment in which identity verification is based
upon the interkey times of a user’s name. Using a dedicated PC in a separate office,

14 volunteers each entered 30 enrolment samples from which a user’s reference
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file was created. Data held in the reference file was used to calculate a mean
reference vector and covariance matrix. A further 25 volunteers were designated
the role of impostor (13 of whom were encouraged to practice the person’s name
whose identity they were claiming). After the enrolment process, volunteers were
encouraged to participate freely depending upon their availability and willingness.
Reference files were updated on a weekly basis, using the last 30 login samples,
and a total of 539 valid login samples and 768 impostor attempts were captured,

over an eight week period.

Two minimum distance classifiers were used, and both were normalised to accom-

modate variation in name length. The first classifier is given as:

(T-R,)" (T -Ry)

R 2 (57)

Di(T) =

whilst the second as

_(T-R)"C'(T-R;)

=R <? 58)

where the participant is claiming to be user j , T is the test vector, R is the mean
reference vector, C™! is the covariance matrix, and 0; and 6 are the threshold
values. Values of 0.029 and 0.000029 were used for 8; and 85, respectively.

Under Bleha's scheme, a test vector will be accepted as valid if it satisfies both
classifiers. From a total of 539 valid logins, 44 were rejected, from 768 impostor
attempts, 22 were accepted, resulting in a false rejection rate of 8.1% and a false

acceptance rate of 2.8%.

In a similar experiment involving 10 valid users and 14 impostors, Bleha & Obaidat
(1993) assessed the use of the perceptron algorithm to verify a user’s keystroke
characteristics. Valid users typed their first and last names, impostors were given
the names of the legitimate users and asked to break the verifier. Data samples
were collected over a period of eight weeks, each person providing 2 samples per
session, allowing at least one day between sessions. A total of 50 valid and 50
impostor samples were collected per legitimate user, 40 of which were used for

network training, the remaining 10 for testing.

The authors achieved an average false rejection rate of 8%, and a false acceptance
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rate of 9%. It is not clear which 10 samples were used for testing, nor whether the

impostors each attacked one specific user, or a mixture of users.

Brown & Rogers (1993), with the intention of verifying identity solely upon entry of
a short login string, extended the techniques outlined above. The authors captured
keyhold times in addition to simply keystroke latencies. As a user entered their
name on login, key press and key release times were time-stamped and recorded to
millisecond resolution. From these measurements key hold times were calculated
by subtracting the key press time from the key release time from each character
typed. Interkey times were calculated by subtracting the first key release time
from the second key press time. This, the authors note, was frequently negative,

indicating that the second key was pressed before the first fully released.

Their experiment enlisted a total of 46 people, each typing their own name several
times, interspersed with the names of others which served as impostor data. Each
user participated in two data capture sessions — data from the first serving as a
training set, the second as test data. The sessions were separated by an interval
of at least one week. Each input was converted into a vector whose components

were keyhold and interkey latency times.

Three classifiers were compared in the experiment; two neural techniques — an
ADALINE and a Backpropagation Network; and a Euclidean distance measure.
An average of 37.7 user data sets and 35 impostor sets were used for network
training, per user. Networks were tested with an average of 12.4 user test sets and
30 impostor sets. Each of the classifiers was set up to minimise false acceptance
errors, with their collected data and set thresholds false acceptance rates of 0%
were achieved. This, as the authors point out, does not mean that no impostor will
ever be accepted by these methods, rather that the classifiers were biased against

allowing impostor passes.

The 46 volunteers arose from two distinct groups of 25 and 21 students. As a result
Brown and Rogers have stated their results for each group. Data from the first
group, of 241 self login attempts, generated 42 false rejections with the ADALINE
technique (17.4%), 29 using the backpropagation method (12.0%) and 36 with the
distance measure (14.9%). Meanwhile the second group of 330 self login attempts,
resulted in 132 false rejections using the ADALINE classifier (40%), 70 using the
backpropagation method (21.2%) and 78 with the distance classifier (23.6%). The
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authors are unclear about the reasons for second group’s poor performance. They
suggest that ‘individual variation’ and an ‘unfamiliarity’ with the computing envi-
ronment is most likely the cause. Combining the results from both groups, we find
false rejection rates of 30.5%, 17.3% and 20%, for the ADALINE, Backpropagation

and Euclidean methods, respectively.

Obaidat & Sadoun (1997) used a modified PC interrupt handler to record both key
hold and keystroke latencies, to 0.1 millisecond resolution, during login attempts.
In common with (Brown & Rogers 1993), (Bleha et al. 1990), (Bleha & Obaidat
1993) and (Garcia 1986), the authors avoided potential security problems, by using
a string other than a user’s password. Looking for a string which is typed regularly

and consistently, they proposed using a person’s username as the verification string.

Fifteen users each provided 255 valid usernames per day, over a period of 8 weeks.
Fifteen impostors provided 15 login attempts using each of the valid usernames,
resulting in 225 impostor attempts for each of the valid users, per day. The
captured data was split into two halves — one for classifier training, the other for

test data.

The authors employ and compare a range of classical pattern recognition tech-
niques: K-Means Algorithm, Cosine Measure Algorithm, Minimum Distance Al-
gorithm, Bayes Decision Rule and a Potential Function Algorithm. A number of
neural techniques were also employed: Backpropagation Network, Counterpropaga-
tion Network, Fuzzy ARTMAP, Radial Basis Function Network, Learning Vector
Quantization Network, Sum of Product Network and a Hybrid Sum of Product
Network.

Using combined keyhold and keystroke latency times, it was found that the most
successful pattern recognition technique was the Potential Function algorithm,
offering a false rejection rate of 1.9% and false acceptance rate of 0.7%. According
to the authors, the Bayes Decision Rule was the next most successful classifier
giving only marginally poorer results. Visual inspection of their results shows that
the Minimum Distance Measure algorithm came third, offering a false rejection

rate of around 11% and a false acceptance rate of around 7%.

The Potential Function Algorithm is described as follows: Each vector of a class

defines a point in d-dimensional space, these points are iteratively weighted to
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generate a decision plane in conventional recognition schemes, such as the percep-
tron algorithm. In this scheme, however, rather than using the absolute positions
of each feature vector to define a decision surface, a potential function method is
used. The decision surface is modified by the sum of potential functions, result-
ing from each of the training vectors of a class. This method must be iteratively

trained, to generate a discriminating decision surface.

The potential function used by Obiadat is given as:
K(T,R;) = el-aIT-R;l%} (5.9)

where R; is the mean feature vector for user j, T is the test vector and « is a
positive constant, determining the relative amplitudes of the potential function.

In Obaidat’s implementation « is set to 1.
Bayes decision rule as implemented by Obiadat, is given as

PW;) P(TIW;)

P{(W;|T) = 5.10
where T is the test vector, and W, is the 7' user class.
The decision boundary is given by
d; = In[P(W;)] + TC;'R; /*R,;C; 'R — In[C;] (5.11)

where R; is the reference vector of the j* user class W; and C; is the covariance

matrix for this user class.

Obiadat’s minimum distance verifier is given as

D; =|IT - Ry|l = \/(T - R;)* (T - R;) (5.12)
Squaring and expanding (5.12), gives

* * 1 *
D} =|T - Ry’ =T* T~ 2(T°R, - 5R; Ry) (5.13)
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Since T* T is independent of j for all classes, the minimum distance occurs when
¥ 1 *
d=T"R; — §Rj R, (5.14)

is at a maximum. This is the distance measure used.

The neural classifiers improved upon these error rates with the Learning Vector
Quantization, Radial Basis Function Network and the Fuzzy ARTMAP schemes
all offering zero errors for both false rejection and false acceptance. The Backprop-
agation, Hybrid Sum of Product and Sum of Product Networks, were successful,
offering false rejection rates of 0%, 1% and 4% and false acceptance rates of 1%,
0.5% and 2.5% respectively.

The use of keyhold times only and keystroke latencies only was also investi-
gated. It was found that, although keyhold times offered better discrimination
than keystroke latencies, combining keyhold and latency times offered the best
discrimination. For example, the Potential Function algorithm offered a FRR of
2.9% and 4.7% for keyhold and keystroke latencies, respectively. False acceptance

rates with the same classifier were 1.6% and 2.2% for keyhold and latency times.

Robinson et al. (1998) address some of the problems encountered by other re-
searchers, namely the reluctance of users to type more than their username and
password, and the security implications of including password information in the
timing vector. Hence, they propose using only the timing pattern contained within
a person’s username. In common with Brown & Rogers (1993), Obaidat & Sadoun
(1997), and Monrose & Rubin (2000), key hold and keystroke latency times were
both recorded. In this experiment, key hold and latency times were measured to a
resolution of 0.1milliseconds, using a modified DOS keyboard handler. During the
routine use of computer facilities, valid login attempts from 10 valid users were

captured. Several hundred 'forgeries’ were collected from a further 10 people.

Three different classifier schemes were used; a Minimum Intra-Class Distance Clas-
sifier, a Non-Linear Classifier and an Inductive Learning Classifier. These ap-

proaches are defined as follows

The Minimum Intra-Class Distance Classifier uses a thresholded Mahalanobis dis-
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tance approach, defined in (5.1). A test vector, T, will be accepted if
D(T,R) < 6 (5.15)

where R is the reference vector, and 6 is the threshold distance for acceptance.

Non-Linear Classifier: This classifier independently compares each component, ¢;,
of the test vector T, with the corresponding component of the reference vector,
and its standard deviation, o;. A test vector will be accepted as belonging to the

user class W if
[t: — 1| < TO; Vi (5.16)

In their experiments, Robinson et al. used an acceptance threshold of 3 for 7.

Inductive Learning Classifier: Based around a classifier proposed by Chan (Chan
& Wong 1990), this inductive learning classifier is trained with 10 valid samples

and 20 invalid ’forgery’ samples.

It was found that in all three classifiers, key hold times alone, performed better then
key stroke latencies, alone. The best classifier proved to be the inductive learning
classifier, using both key hold and interkey times. Its error rates were found to be
10% and 9% for false rejection and false acceptance rates. The MICD and Non-
Linear classifiers, using both key hold and interkey times, offered false rejection
rates of 23% and 31%, and false acceptance rates of 24% and 31%, respectively.

5.3.2 Dynamic Free-Text Verification

Gaines, Lisowski, Press & Shapiro (1980) sought to answer the question:
Can people be identified by the way in which they type?

Six professional typists were enlisted and asked to type three paragraphs of prose
on two occasions separated by an interval of four months. The time intervals
between each keypress were measured and recorded. Entered text consisted of
only lower case letters and spaces, resulting in 27x27 possible digraphs. From
these 729 digraphs, most did not occur, and others only infrequently. Therefore
to ensure representative statistics, their analysis was limited to those digraphs
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occurred at least ten times. By comparing the probability distributions of the
second set of data with the first, Gaines discovered that each typist indeed had a
characteristic ‘typing signature’, which could be used as a basis for discrimination.
This method gave a False Acceptance Rate of zero and a False Rejection Rate of
4%. Further analysis identified five key or core digraphs (in, io, no, on and ul)

which offered zero error rates.

Building upon the work of Gaines et al. (1980), Umphress & Williams (1985)
investigated the use of typing style as a means of replacing existing username &
password security schemes. Their ultimate objective was the identification of a
person as they begin typing, and it is further suggested that their approach could
be used to provide constant surveillance throughout the lifetime of a computer

session (Dynamic Verification).

Their experiment involved 17 people, each typing approximately 1400 characters
of prose, which served as a reference and was followed a few days later by a test
text of around 400 characters. Each keystroke was time-stamped to the nearest
hundredth of a second, and recorded. According to Shaffer (1982) typists first look
at text to be typed, ‘load’ an amount into a memory ’buffer’ then output the buffer
contents onto the keyboard. The length of the buffer is around 6 to 8 characters
long, manifesting itself as pauses in typing, occurring with a frequency of 6 to 8
characters. In an effort to clean their data, Umphress and Williams considered
only the first 6 characters of a word and discarded the others. Each digraph time
was stored in the appropriate location of a 26x26 element matrix, and the mean
and standard deviation of each digraph were calculated, and additionally the mean

latency for all digraphs.

The test text from each person was pre-treated in the same manner, and resulting
digraphs compared to the reference digraphs. If a test digraph fell within 0.5
standard deviations of the reference it was accepted as valid. If a sufficiently
high proportion of individual digraphs passed the reference comparison (>60%)
then the test profile passed their digraph test. A second test considered the gross
structure of a person’s typing style, and was characterised by the mean keystoke
latency time for all digraphs, thereby providing a measure of the person’s typing

speed.

From the outcome of both tests, a degree of confidence was assigned to the test
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profile arising from the same person as the reference profile. If a participant passed
both tests then a high degree of confidence would be assigned, and their sequence
would be accepted, otherwise their sequence was rejected. A false acceptance rate

of approximately 6% at 12% false rejection is reported.

Leggett & Williams (1988), performed essentially a replication of Umphress &
Williams (1985), with the goals of determining which digraphs offered most dis-
crimination, and to test the effect of a larger experimental population. 36 people
participated, each providing a reference sample of 1075 characters, followed a few
days later by a test sample of 537 characters. A false acceptance rate of 5% with

5.5% false rejection, using all lowercase and space digraphs, is reported.

Leggett, Williams & Usnick (1991) further extended their work into dynamic veri-
fication, and suggested the possibility of continuously monitoring a person’s typing
style. Using the data of Leggett & Williams (1988), sequential statistics were ap-
plied to characters as if they were being typed live, resulting in a false acceptance
rate of 12.8% at 11.1% false rejection.

The experiment reported by Monrose & Rubin (2000), describes an attempt at
developing a non-static, or dynamic keystroke identifier. T'wo regimes were inves-
tigated; typing of structured, text-dependent prose and the typing of arbitrary,
text-independent prose. Data was collected from 63 users over an 11 month pe-
riod. Subjects were asked to retype a few sentences from a list of available phrases
(fixed-text), or to type a few sentences on the spur of the moment (free-text).
The experiment software was downloaded and run on the user’s local machine,
from which results were automatically emailed back to the authors. This enabled
each person to undertake the experiment at many and varied times, rather than
providing both enrolment and test data during the same session. Keystroke dura-
tions and specific digraph latencies were collected over a number of sessions and
split into training and testing data sets. No mention of the average length of the

gathered text samples was made.

Four analysis methods were investigated: Euclidean distance measure (5.2). Since
the author’s intention was identification, an unknown test vector, U is attributed

to the reference vector which minimises this distance measure.

Non-Weighted probability measure. If a d dimensional pattern vector, R, represents
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a user’s mean reference vector, then each component of R can be described by the

quadruple
Ri = (/Li,O'Z‘,Oi,QIZ‘> (517)

where i, 0;, 0; and z;, each represent the mean, standard deviation, number
of occurrences and data value of the i** component of the reference vector R,

respectively.

Assuming that each feature is distributed normally, a score is calculated between

an unknown vector, U, and the reference vector, R, as

d
SR, U) =) s, (5.18)

N
ZP( "““H (5.19)

and xz(;‘) is the j** occurrence of the i** feature of U and P() is the Gaussian prob-

where

ability function. The score for each component, u;, is based upon the probability
of observing the value u;;, in the reference vector, R, given the mean, u,,, and
standard deviation o,,. The unknown vector, U, is associated with the reference

vector which maximises S(R, U).

Wezighted probability measure. Some digraph features occur more often than others
and are hence typed more consistently and reliably. For this reason the authors
investigated the use of weight factors, weighting more heavily those digraphs which

occur most frequently. The score between vectors U and R is given as

d
SR, U) =) syw, (5.20)
i=1
where wy, is the weight of feature u;, the ratio of its occurrences relative to all other
features in the feature vector U. In common with the Non-Weighted probability

measure, the unknown vector, U, is associated with the reference vector which
maximises S(R, U).

Bayesian Classifier. If U and R are the unknown and reference feature vectors,

respectively, ¢ the interclass dispersion vector and w; the weight vector, then the

139



5 A Novel Approach to Identity Verification 140

distance between the two feature vectors is expressed as

A*(U,R) = iw (ui ; ri>a (5.21)

i=]

where the feature vectors uy, ug, ... ,up and ry, 79, ... ;7 are derived through factor
analysis, reducing the dimensionality of U and R whilst preserving the correlation
between features. See (Monrose & Rubin 2000) for details. The authors found
that identification based upon structured fixed-text was more reliable than arbi-
trary free-text. Correct identification rates for fixed-text identification were 83.2%,
85.6%, 87.2% and 92.1% for the Euclidean, Non-Weighted Probability measure,

Weighted Probability measure and the Bayesian classifiers, respectively.

Alexandre (1997) investigates an entirely different method of keystroke dynamics.
Taking the adage: ‘It’s not what you type, but the way in which you type it.’; to
its natural conclusion, his method is to recognise a user based upon the correla-
tion between randomly pressed keys. Termed Keyboard Behavioural Signature, 30
users enrolled by randomly typing a sequence of around 1000 keypresses on keys
1 through 8. Alexandre considers this data to be 10 sequences of 100 keystrokes

each. From these sequences a single reference pattern, for each user is generated.

Two approaches have been considered to verification. The first method is to simply
use the frequency of each keypress in the reference pattern, R, and compare this
to the keypress frequency of the test signature, R. An Euclidean distance measure

is employed:

8
D(T,R) = |3 (F, - F,)’ (5.22)
i=1
Where F;, and F,, are the frequencies of key i being pressed in the test and reference

sequences.

Alexandre’s second verification technique involves the use of the frequency of the
appearance of key pairs, representing the correlation between each key. This data

generates an 8x8 reference matrix. A similar Euclidian distance measure is used:

Z (Ft(i,j) - FT(i,j)>2 (5.23)

1 j=1

8
DQ(T, R,) =

)
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Where Fy, , and [, ., are the frequencies of occurrence of key 4 followed by key

j in the test and ref(e;gnce patterns respectively.

Although the precise method of comparison and the acceptance threshold(s) are
not stated, Alexandre claims that a verification algorithm based upon both dis-
tance measures, results in a false rejection rate of zero and a false acceptance rate
of less than 1%. As Alexandre points out, however, not all of the key pairs provide
the same power of discrimination, some are extremely variant and should not be

taken into account during the verification process.

Another approach adopted is neural network based. Whilst the first two methods
account for the first and second order similarities, a neural technique is investigated
to recognise higher orders. Alexandre’s neural approach is an implementation
of the Backpropagation algorithm, with 64 (+bias) inputs, corresponding to the
appearance frequency of each key pair. The network was tested with new patterns
from the genuine users and other impostor patterns. With this method, zero false
acceptance and false rejection errors were reported. Training required two seconds
on a 50MHz 486 PC.

Alexandre’s intention was to run his recognition algorithm on a smartcard, and
as a results data and program memory requirements were considered. Data mem-
ory was estimated to be around 1324 bytes, and program requirements of around
2kbytes. Unfortunately, Alexandre quotes memory requirements for only his neural
technique. No comparison is made with his structural verifiers. Nor is the exe-
cution time considered. Furthermore, it should be emphasised that these quoted
requirements are for the trained verification network executing upon a smartcard.
No attempt was made to train the network using a smartcard processor, and as
a result, Alexandre’s approach must rely upon external processing elements. As
indicated in Chapter 1, such an approach exposes the possibility of tampering.

5.3.3 Literature Review — Conclusions

The approaches to capturing data of Umphress & Williams (1985), Leggett &
Williams (1988), Brown & Rogers (1993), Monrose & Rubin (2000) and Robinson
et al. (1998) are more realistic than those of Joyce & Gupta (1990) and Alexandre

(1997). In capturing enrolment data during one session, then collecting test data

141



5 A Novel Approach to Identity Verification 142

during a subsequent session, their approach reflects the likely real-world use of
a biometric system in which enrolment will take place, followed by actual use of
the system at some later time. Practical problems arise, however, when trying to
coax a large number of people to participate in two separate sessions. It is clear
from their reports that the above authors had some degree of control over their
university’s computing facilities; authors such as Robinson, were able to embed a
transparent logging program into their computing network; Brown and Rogers had
access to groups of students using their computer labs. These authors were hence
able to capture data from a large group of people during two distinct sessions.
Whilst capturing data from a small number of people during multiple sessions is
indeed straightforward, logistical and practical obstacles hinder two session capture
from a large group of users. As a result, data for both training and testing will be

captured during a single session.

Garcia (1986) and Joyce & Gupta (1990) both suggested creating a feature vector
of typing characteristics, allowing vector comparison techniques to be applied to
the problem of keystroke verification. This is a succinct and elegant way of com-
bining and summarising a person’s characteristics into an easily processable form.
The pressure sequence method offers three key discriminating characteristics; peak
pressure level, pressure duration and inter-press durations. These characteristics
will hereon be referred to as pulse height, pulse width and interval duration. Work-
ing with standard computer keyboards, the majority of authors reviewed above
record keystroke latencies, some additionally extend their measurements to record
key hold times. For a sequence of n keypresses, a feature vector of only keystroke
latencies will have (n — 1) dimensions. If the vector is extended to include both
keystroke latencies and key hold times the feature vector will then have (2n—1) di-
mensions. Since the pressure sequence method records an additional characteristic
for each tap — pressure, a feature vector comprising pulse height, pulse width and
interval duration offers (3n — 1) components. Pulse width and interval duration
are the equivalent of key hold and keystroke latency respectively. According to
Robinson et al. (1998) a higher dimensionality may make for better discrimination.
The desire to reduce verification string size led Brown & Rogers (1993), Obaidat
& Sadoun (1997) and Robinson et al. (1998) to increase the dimensionality by
recording both key hold times and keystroke latencies. It is however difficult to

directly assess the effect of increased dimensionality since previous authors used
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different verification methods and strings, captured a different number of enrol-
ment and test sequences, and biased the acceptance thresholds for different reasons.
Brown & Rogers (1993) suggests that key hold times offer better discrimination
than keystroke latencies, but better still discrimination is found when both these
characteristics are employed. Once a suitable verification algorithm has been dis-
covered, the effects of combining pulse height, pulse width and interval duration

will be assessed.

The verification methods used in early work by Gaines et al. (1980), Umphress &
Williams (1985) and Leggett & Williams (1988) are not directly relevant. These
methods make use of digraphs as the characterising features of a person’s typing
style. Although the proposed pressure sequence method uses a singular sensor, one
idea from Umphress & Williams (1985) may have some use in pressure sequence
verification. Umphress suggests that a sequence of characters be accepted if a
certain proportion of digraphs pass a comparison test. Rather than digraphs, this
method could be applied to the components of a pressure sequence, accepting a
sequence if a certain proportion of components fall close enough to the reference

template.

Some commonly used pattern recognition methods have been explored by Gar-
cia (1986), Young & Hammond (1989), Joyce & Gupta (1990), Bleha & Obaidat
(1993), Monrose & Rubin (2000) and Robinson et al. (1998). These are the /;
norm, Euclidean Distance (£ norm), Mahalanobis Distance, Minimum Distance
Measure, and non-linear classifiers. Although, as stated earlier, it is difficult to
make direct comparisons between each method, used by different authors, a num-
ber of these methods have demonstrated good discrimination power. For example,
the ;1 norm, used in (Joyce & Gupta 1990), offered an equal error rate of around
3%, working with keystroke latencies in a user’s first name, last name, username
and password. Enrolment of each user is reported to require only eight sequences.
Applying these recognition methods to verification requires that a suitable deci-
sion threshold be set. Bleha et al. (1990) employs a fixed threshold for all users,
whilst Joyce & Gupta (1990), Brown & Rogers (1993) and Robinson et al. (1998)
determine the threshold on a per user basis. Applying a fixed acceptance threshold
for all users may lighten the enrolment processing load at the expense of verifica-
tion accuracy, whilst determining a suitable threshold for each user may improve

accuracy at the expense of enrolment processing requirements. Both approaches

143




5 A Novel Approach to Identity Verification 144

will be explored in subsequent sections.

A number of authors report upon the improved discrimination potential of neu-
ral techniques over conventional recognition methods. Obaidat & Sadoun (1997)
contrasts a number of neural techniques with conventional methods; he finds that
the backpropagation algorithm performs best, offering 0% and 1% false recogni-
tion and false acceptance rates, respectively. He found this compared with a false
recognition rate of 11% and 7% for a minimum distance classifier. Obiadat used
an exceptionally large number of sequences for network training and testing; 15
valid users each provided 255 username samples per day over an eight week period,
whilst 15 impostors each provided 15 impostor samples per username per day — a
total of 255 impostor sequences per valid user per day, over the same time period.
This data was split into training and testing halves. Brown & Rogers (1993), also
compared the performance of a backpropagation algorithm with a minimum dis-
tance (Euclidean) measure. With an average training set of 37.7 valid user samples
and 35 impostor samples and an average test set of 12.4 valid user samples and
30 impostor samples for testing, Brown reports false rejection rates of 17.3% and
20% for the neural and distance techniques, respectively. Decision surfaces were
purposefully biased against false acceptances, resulting in zero false acceptances
for both methods. The verification string in Brown’s work was each person’s name,
rather than usernames, in Obaidat’s work. Although the average string length of
15.6 characters in Brown’s work is approximately double that of the 7 characters
reported by Obaidat, Brown’s reported performance of the backpropagation al-
gorithm is clearly worse than stated in Obiadat. Allowing for differing threshold
biases, the distance results from both papers seem comparable. This indicates
very strongly that a large number of training samples is required for good neural
performance. The number of samples captured by Obaidat is clearly impractical

for a single session enrolment scheme.

The iterative nature of network training is likely to result in intensive processing
requirements during the enrolment stage. Furthermore, network training requires
the availability of a representative group of impostor samples, in order to calculate
a decision boundary which separated the samples of a legitimate card-holder, and
those of all others. Since enrolment should occur on-card (see Section 2.2.2), the
use of a neural verifier necessitates the storage of impostor data on-card. This

is clearly an undesirable requirement for the constrained memory capacity of a
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smartcard, and as a result such techniques will not be considered further. Obaidat
& Sadoun (1997) reports upon the use of a potential function recognition method,
although this is not a neural network, it is iteratively weighted in a similar way to

the perceptron algorithm.

Monrose & Rubin (1997) compares the performance of two statistical classifiers
to an Euclidean distance measure. He finds that both weighted and non-weighted
probability functions perform slightly better than the distance measure. These

methods should also be assessed.

In conclusion, the commonly used methods of £; norm, £ norm (Euclidean Dis-
tance), Mahalanobis Distance and a minimum distance measure will be investi-
gated, under both fixed thresholds and thresholds based upon the variability of
each user. An implementation of the non-linear classifier, outlined in (Robinson
et al. 1998) and a simple linear classifier based upon the linear deviation of each
of a test vector’s components, from mean reference components, will also be ex-
plored. The approach of (Umphress & Williams 1985), in which a test sequence
is accepted if a fixed proportion of test vector components are sufficiently close to

those of the reference, will be applied to these linear and non-linear classifiers.

5.4 The Pressure Sequence Method

With a comprehensive review of keystroke dynamics in place, this section describes
a series of experiments to assess the discrimination potential of finger tapping upon
a pressure sensor. This approach has been dubbed ‘pressure sequence’, and this
term is used from here on. We begin with a description of the experimental method
and apparatus used to capture sequences of taps from a volunteer population of
individuals. Once data has been captured, the focus of the remainder of the chapter

is to investigate the verification potential of the methods of keystroke dynamics.

5.4.1 Experimental Apparatus

To capture pressure sequences, a piezoelectric sensor whose construction is de-

scribed in detail in Section 3.5.1 was bonded onto a smartcard blank in the manner
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of Section 4.9. Recall that this method involves the direct screen printing of the
PTF sensor layers directly onto the card, resulting in improved sensitivity of the

sensor, when the card is placed upon flat surfaces.

The signal conditioning circuitry is that of the charge amplifier, as described in
section B.2. The data capture electronics are, however, somewhat different to

those described in the previous chapter.

As indicated in Section 5.3.3, capturing sequences from users on multiple occasions,
rather than during one singular session represents more realistically the manner in
which users would interact with a so-called real-world system. As also indicated
previously, capturing data from each participant during a number of separate
sessions, is difficult. Unlike the capture of keystroke dynamics data which lends
itself to observation of participants within their usual computing environment
(see for example (Robinson et al. 1998) (Brown & Rogers 1993) or (Monrose &
Rubin 2000)), the use of a prototype sensor-card in this series of experiments

precludes such transparency.

In an attempt to improve matters, data acquisition electronics were designed, for
portability, and a prototype built. This should have offered a means of visiting
participants at their convenience, rather than requiring them to present themselves
at the author’s laboratory on more than one occasion. It was believed that whilst
volunteers may be willing to be inconvenienced in this manner for a single session,

they could not be expected, nor would be happy, to do this more than once.

Unfortunately, due to unforseen logistical circumstance, the prototype electronics
could not be manufactured into the desired portable robust unit, within an accept-
able time period. As a result data capture sessions had to be conducted within the
controlled environment of the laboratory. This in turn biased the data collection

method towards single session thereby maximizing the number of participants.

The data acquisition hardware’s function is the digitization of voltage signals from
the sensor’s charge amplifier, and the communication of this data to PC. It was
based around Microchip’s 8-bit 16F84 microcontroller?, whose software was com-
piled using Hi-Tec’s C cross compiler (v7.83)% and downloaded to chip with Mi-

crochip’s suite of tools; MPLAB (v4.0). PC communication software was written

2Microchip Technology Inc. Chandler, Arizona, USA Web: http://www.microchip.com
SHI-TECH Software, Alderley, QLD, AUSTRALIA. Web: http://www.hitech.com.au/
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using Microsoft’s Visual Basic (v5.0)*.

Figure 5.1 provides an overview of the circuit, whilst appendix D provides a de-

tailed circuit diagram, and description of the enabling software.

Indicator LEDs User Mode/Reset Buttons

® 4MHz Clock in

ToPC @——ro TTL-
RS232 PIC

Converter

16F84

Analogue in
ADC [

2KByte

EEPROM 2.5V ref

Figure 5.1: Data Acquisition Circuit Overview: Appendix D, Figure D1 provides the
circuit diagram.

An 8-bit 16F84 Peripheral Interface Controller (PIC) from Microchip controls the
logging device. Analogue to digital conversion is performed by a 12-bit successive
approximation ADC (Linear Technology® LTC1285), offering one differential input,
sampled at up to 7.5kHz. Voltage reference to the ADC was provided by a precision
2.5V bandgap voltage reference (MC1403) from STMicroelectronics®. According
to data sheets, this device is stable to £0.1%. Linear Technology’s data sheets for
the ADC states a maximum conversion error of +0.2% of full-scale (£8 LSB).

The communication protocol between PIC and ADC occurs across three wires and
is implemented in software. Data from the ADC is temporarily held in the PICs

data memory, from whence it will be transmitted across a serial link to PC.

PIC to PC serial communication is implemented in software. Signal voltages,
however must be converted from TTL levels to RS-232 levels to and from the PC.
This function is performed by a MAX-232 IC from MAXIM’.

LEDs are provided to indicate the logger’s current status, these are driven directly

“Microsoft Corporation. Redmond, WA USA. Web: http://www.microsoft.com

SLinear Technology Corporation, , Milpitas, CA, USA. Web: http://www.linear-tech.com
83TMicroelectronics, Saint Genis, France. Web: http://www.st .com

"Maxim Integrated Products, Inc. Sunnyvale, CA, USA. Web: http://www.maxim-ic.com
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from the PIC, whose output pins are capable of high current sourcing. Input

buttons enable the selection of operational mode, or to reset the device.

Power is supplied to the circuit by a 5V regulator (LM2930) from National Semi-

conductor® and a standard 4MHz crystal provides the clock signal.

Appendix D provides a detailed description of the data acquisition circuit hardware

and software.

5.4.2 Experimental Method

Figure 5.2 gives an overview of the experimental set-up.

|
|

- Piezoelectric 4w2 Data
. Sensoron | " | Acquisiion |
| Card | . Hardware |
L i | | I
%///”//
—— 7
P
Data
Acquisition
PC

Figure 5.2: Experimental Set-up

To validate this approach to identity verification, students and staff from the
Electronics & Computer Science department were invited to participate in a trial,
and 34 people volunteered. The population is therefore self-selected, rather than
randomly chosen. Within the experimental population there exists a reasonable
variability in age and sex. Although a larger group of people would have been
desirable, its size compares favourably with a number of the studies outlined above.

8National ~ Semiconductor  Corporation, Santa  Clara, CA, USA.  Web:
http://www.national.com
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Figure 5.3: 3-Pulse Pressure Sequences

Each volunteer was asked to choose a short tapping sequence (typically lasting
between 2 and 4 seconds), and to tap that rhythm 30 times, in three sets of 10
sequences. In the first set the card was held in one hand whilst tapping with the
other. In the second sequence, the card was placed upon a table, and in the third
set, a mouse mat was placed between card and table. These three scenarios were
thought to be representative of the way in which this system would be used in the
real world, and remove some experimental bias. The volunteers were not given
immediate feedback on how they were doing. Instead, they were asked simply to

concentrate on tapping the rhythm.

Figures 5.3 through 5.10 show examples of unprocessed pressure sequences with
between 3 to 10 taps (or pulses). Each figure comprises of sequences from two
participants, to help illustrate some differences between sequences. Unlike previous
analysis of piezoelectric sensor response, the sensor outputs are given in terms of
voltage rather than charge. This is simply because in the latter stages of this
chapter, the unprocessed digital voltage levels (from the acquisition hardware) will
be used to construct feature vectors representing each pressure sequence. Since
the voltage output from the sensor signal conditioning circuit (see section B.2) is
proportional to the charge generated, the conversion between voltage and charge

is felt to be an unnecessary step.

As can be seen from figures 5.3-5.10, there exist obvious differences in the number
of pulses, the pulse heights, pulse widths and inter-pulse (interval) lengths, both

within and between sequences. It is with these simple easily extractable charac-
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Figure 5.4: 4-Pulse Pressure Sequences
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Figure 5.5: 5-Pulse Pressure Sequences
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Figure 5.6: 6-Pulse Pressure Sequences
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Figure 5.8: 8-Pulse Pressure Sequences
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Figure 5.9: 9-Pulse Pressure Sequences
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Figure 5.10: 10-Pulse Pressure Sequences

teristics that the discrimination methods, considered in this chapter, operate, and
with which the pressure sequence method aims to discriminate between a valid

and an invalid user.

5.4.3 Feature Extraction

Before comparing two pressure sequences, the key characteristics; pulse height,
pulse width and interval duration must be extracted from each sequence of raw,
unprocessed data. This was performed using a simple Visual Basic program (See
Appendix E for details). It seems that sensor responses do not have a standard and
uniform shape, rather the shape varies between participants. This is illustrated,
by considering individual pulses from the above raw data sequences. Figure 5.11
shows the third pulse of Figure 5.7(a) (generated by participant I), alongside the
fourth pulse of Figure 5.8(a) (generated by participant K). These specific pulses
were chosen simply because they are of comparable magnitude. They should be

considered as illustration, only. Chapter 7 considers pulse shape in greater detail.

Pulses from participant ‘I’ rise and fall quickly, before rising again for a final time.
Pulses from participant ‘K’, on the other hand, typically spend a longer period of

time reaching their peak level, before falling at a lesser rate.

Considering all pulses collected during this experiment, Figure 5.12 shows the

height for each pulse plotted against its width. It can be seen (from Figure 5.12
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Figure 5.11: Pulses from two Participants

that although there is no dominant correlation between pulse height and pulse
width, most pulses have a duration of less than 100ms and a height of less than
1.5V. Beyond a peak of 1.5V, pulses tend to have a duration of around 50ms,
implying very short sharp taps upon the sensor. Pulse characteristics appear to be
function of user interaction with the sensor and may offer additional discrimination
characteristics between participants. However in this work, pulses are quantified

only in terms of their height and width.
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Figure 5.12: Pulse Width Vs Pulse Height (All Pulses)

Extracted pulse heights, pulse widths and interval durations, were then packaged
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into a single column vector, of (3n — 1) dimensions, where n is the number of
pulses in a sequence. Appendix E provides more detail of the feature extraction

algorithm used.

5.5 Capturing Impostor Sequences

Ten volunteers were asked to provide impostor data for this experiment. They had
no direct experience of the sequences entered by the other users, and were merely
guided in their masquerading. Since a pressure sequence consists of a distinct
number of taps which could be sequentially guessed, the impostors were encouraged
to begin by providing a number of sequences with two taps, then three, working
up to sequences of 14 taps. It was pointed out to the impostor volunteers that a
verifier would use pulse height, pulse width and interval duration as its recognition
features. They were thus encouraged to generate sequences with variation in these
aspects, to try and generate sequences that would be accepted as originating from
an enrolled user. Each impostor provided between five and ten sequences per pulse
number, giving a total of 992 impostor sequences. The distribution of impostor

sequences with pulse number is shown in Figure 5.13.
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Figure 5.13: Impostor Sequence Distribution

The impostors were not given any feedback about their progress, nor their se-

quences’ proximity to those of enrolled users. Impostor sequences were merely
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captured and stored for future use. This approach misses out on an important as-
pect of real-world use, namely that the real-world impostor has something tangible
to gain from his masquerading — these impostors had no such incentive. Indeed
some of the volunteers began to show signs of boredom and frustration towards

the end of their session.

The gaming aspect of breaking the sequences of colleagues and friends, as pointed
out by Bleha & Obaidat (1993), may provide an impetus for impostor perseverance.

This is highlighted as appropriate for future work.

5.6 Considering Reference Vectors

5.6.1 The Effect of Generating Sequential Sequences

Before considering how to compute reference vectors, this small experiment inves-
tigates the properties of sequences which were generated in rapid, back-to-back,
succession. The experiment involved eight volunteers, each of whom were asked to
tap out their pressure sequence 30 times one after the other. As before, pressure
sequences will be quantified in terms of their average pulse height and average
total duration. Figures 5.14 and 5.15 show average pulse heights for each of the
30 consecutive sequences normalised to the geometrical mean of all sequences, and

average sequence duration, normalised to the geometrical mean for all sequences.

As seen in Figure 5.14, pulse heights demonstrate a convincing upwards trend with
sequence number. The first two pulse height averages are 24% and 16% below the
mean for all sequences, and the last two heights are 15% and 20% above the mean.
Sequence length, shown in Figure 5.15 demonstrates a very gradual decrease with
sequence number. The linear trendline begins 1.5% above the mean, and finishes
1.5% below the mean. This is far from conclusive as the standard deviation of
sequence lengths was calculated to be approximately 4%, and could easily mask

any effect of producing consecutive sequences.

The 15% increase in pulse heights observed within the main experimental data
set can readily be explained by the effect of users tapping a number of sequences

in quick succession. This is probably due to users becoming more familiar with
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Figure 5.14: Mean Pulse Heights — Normalised to Mean of Sequences

the experimental apparatus and becoming less concerned with its fragility. It is
possible that splitting the main capture session into three distinct regimes, lowered
this effect from the 40% range observed during the capture of 30 consecutive
sequences. Average sequence lengths appear to decrease with sequence number in
the main experimental data set, which superficially may be due to user boredom,
or again an increased familiarity with the apparatus. The consecutive sequences

data set, however, does not support this.

5.6.2 User Consistency

The most obvious layer of discrimination is the number of pulses in a sequence.
Testing the consistency with which a user taps sequences is an indication of how
well suited the pressure sequence method is to that user. Initial analysis of data
entered from the 34 participants is to compute the modal number of pulses within
each person’s sequences (defined as the modal pulse number from here on). It
is assumed that the most common number of pulses in sequences from each user
is their intended sequence. Figure 5.16 shows the proportion of user sequences

entered with their modal number of pulses.

This shows that approximately 85% of people entered their modal number of
pulses, more than 80% of the time, with all but one person entering sequences
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Figure 5.15: Mean Sequence Lengths — Normalised to Mean of Sequences

with modal pulse numbers greater than 60% of the time. The one person who
failed to enter sequences consistently, performed particularly badly, entering his
most common number of pulses only 17% of the time. Consistency at this stage is
a good test of how well suited this verification method is to each person. Clearly,
the user for whom entering sequences consistently was a problem would, given a
choice, not choose this approach to verification. Figure 5.16 demonstrates that the

majority of users were able to enter their sequences with reasonable consistency.

Figure 5.17 shows the distribution of modal pulse numbers. The most frequent
modal number of pulses is 7, and the inconsistent participant being the only person
entering sequences with 16 pulses. Sixteen is the highest modal pulse number from
all participants, and it is believed that this user intentionally generated complex,
copy-resistant sequences, making replication difficult even for himself. The next
highest number of pulses, 14, was entered by two other users, both tapping 14
pulse sequences 87% of the time. Figure 5.18 shows consistency plotted against
modal pulse number. From this it can be seen that the inconsistent user suffered
atypical problems, and it is clear that that this participant is not well suited to

the pressure sequence approach.
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ticipants enter sequences containing their modal number of pulses.
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5.6.3 Number of Enrolment Sequences

The trends in pulse height and sequence length with sequence number, described
in Section 5.6.1 suggest that as few sequences as possible should be used in the
generation of a reference profile. However, a sufficient number are required to
confidently generate a mean and standard deviation for each component. It was
decided that, in common with Joyce & Gupta (1990), eight enrolment sequences
would suffice. Since all data was collected in one single session, and there is a
requirement for two sets of distinct training and testing data, captured sequences

from each user were alternately placed into training then testing directories. Ref-
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Figure 5.18: Consistency with Modal Pulse Number

erence profiles were generated entirely from the training set.

5.6.4 QOutliers

A number of authors (Joyce & Gupta 1990), (Bleha et al. 1990) advocate the
removal of outlier components. Upon inspection of captured sequences it has
been decided not to remove outlying data components; it appears that users with
outlying components in their sequences express a naturally high degree of variance.

Outliers, therefore form part of their sequence characteristics, and will be retained.

5.7 Verification Functions

The structural pattern recognition methods outlined in section 5.3 will be investi-
gated in this section. The methods to be used here are the ¢; norm, the ¢3 norm,
a minimum inter-class distance classifier and a classifier based around the Maha-
lanobis distance. In addition, two component-wise linear and non-linear methods

are considered.

Since the aim of this project is verification, rather than identification, the reference
vector from each participant is subjected to all impostor sequences, through a

sweep of acceptance thresholds, rather than comparing each test sequence to all
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user reference vectors. Test sequences are deemed to have originated from the user
under test if they fall within certain threshold limits. Since the pressure sequence
method requires that each user enters a certain number of taps for their sequence,
and the number of taps in a sequence can be sequentially guessed, impostor vectors
will only be applied to those user vectors with the same number of taps. To do

otherwise would artificially lower false acceptance rates.

As indicated in Section 5.3, there are two possibilities for determining thresholds:
Either setting a fixed acceptance threshold for all participants, irrespective of their
natural variance, or to take account of each participant’s variations in entering
sequences. This can be performed using the approach of Joyce & Gupta (1990), in
which deviations between enrolment signatures and each person’s reference vector
are used to calculate a mean difference and standard deviation, on a per participant

basis. This approach is covered in detail in Section 5.3.

Although the discriminating power of each verifier is important, it is crucial to
compare verifiers not only in terms of their error rates, but also in terms of pro-
cessing requirements. These verifiers have been implemented in MatLab (V5.3)°
which offers the facility to count the number of floating point operations (FLOPS)
between two points in an algorithm. Whilst the task of processing is affected by a
number of factors, such as memory access, processing architecture, instruction set,
for example, it is felt that by comparing the number of operations for each verifier
on a single PC platform, an early indication of the comparative requirements on
a smartcard can be inferred. Smartcard computational constraints are more fully

considered in Chapter 6.

A skeletal MatLab program was written to take care of common tasks such as
file handling and the calculation of false rejection and false acceptance rates —
Appendix F provides the MatLab code. Appropriate enrolment and verification

functions are then called as required.

5.7.1 The ¢; norm Verifier

As stated in Section 5.3, the ¢; norm was used by Joyce & Gupta (1990) to
verify identities based on the inter-key times of a user’s first and last names, their

9MatLab from The MathWorks, Inc. Natick, MA, USA. Web: http://www.mathworks.com
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username and password. Joyce reports an equal error rate of approximately 3% (by
visual inspection of his published results). Equation (5.4) is the implementation

used to quantify the similarity between a test vector, T' and a reference vector, K.

Using the same fixed acceptance thresholds for all users, a test vector will be

accepted if:
d
Solri—tl <6 (5.24)
=1

where 6 is the acceptance threshold, and all other variables are as defined in
Section 5.3.

Figure 5.19(a) shows the false acceptance and false rejection rates, calculated for a

sweep of fixed thresholds. The equal error rate using this method was calculated to
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Figure 5.19: Error Rates using the ¢; norm Verifier
be 9.7% at an acceptance threshold of 685. The number of FLOPS for enrolment
and verification were measured to be 175 and 24 FLOPS, respectively.

Setting the acceptance threshold on a per user basis, as outlined in Section 5.3, a

test vector, 7', will be accepted if it is sufficiently close to a reference, R, such that

d
Z lri — tzl < ,EEnrolment - 7-O-E’m"olment’ (525)

1=1

where D prroimen: 18 the mean distance of the enrolment vectors from the reference

vector, OEnroment 18 the standard deviation of the enrolment vector distance from
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the reference vector, and 7 is defined as the acceptance tolerance. Figure 5.19(b)

shows the resulting error characteristics.

Using the mean enrolment distance and standard deviation to determine accep-
tance thresholds considerably reduces the equal error rate for this verifier, with
a rate of 2.3% compared with 9.7% for the £; norm using fixed thresholds. As
expected the processing requirements have increased, with the enrolment process
requiring an average of 378 FLOPS against 175 for the fixed threshold method.
Verification requirements have increased marginally to 29 FLOPS compared with
24 for the fixed threshold method.

Figure 5.20 shows the receiver operating characteristics (ROC) for both fixed and
user dependent threshold verifiers. The user dependant curve offers a reduction in
false acceptance rates, without having to tolerate a great increase in false rejections.
For example, if the rate of false acceptance were reduced to around 1%, the user
defined acceptance threshold method would suffer an increase of user rejections
to around 10%. The fixed threshold method, however, would have to tolerate an

increase in false rejections to around 80%, for a reduced false acceptance of 1%.
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Figure 5.20: ROC curves for the £; norm Verifiers
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5.7.2 The ¢, norm Verifier

From the literature survey at the beginning of this chapter, it was noted that the
£, norm (as stated in equation (5.2)), or Euclidean distance has been used, or pro-
posed by a number of authors. For example Young & Hammond (1989) proposed
using this method on a plurality of features although he reports no results. Brown
& Rogers (1993) reports false rejection rates of 20% with 0 false acceptances, us-
ing the Euclidean distance measure on keystroke latency and key hold features
extracted from user’s names. Whilst Monrose & Rubin (1997) obtained a cor-
rect identification rate of 83% using a Euclidean distance measure upon keystroke

durations and digraph times from a few sentences of text.

Under the fixed threshold implementation of the £, norm verifier a test vector, T

if it is sufficiently close to a participant’s reference vector, R, such that

(5.26)

Setting an acceptance threshold on a per-user basis, in the manner of (5.25), a
test vector will be accepted as having originated from same participant with whom

reference vector R is associated if

d
Z (Tz' - tz)2 < \EEm'olment - TUEnrolmentl (527)

i=1
where nomenclature is consistent with that defined in (5.25).

Figures 5.21(a) and 5.21(b) show the error characteristics of both methods with

respect to threshold and tolerance.

Equal error rates for the fixed acceptance threshold and user specific threshold
methods are 5% and 3%, respectively. Enrolment and verification requirements
are 175 and 99 FLOPS for the fixed threshold method and 1000 and 104 FLOPS,
respectively, for the user specific threshold regime. Figure 5.22 shows the ROC

curves for both methods.

Setting both verifiers to have false acceptance rates of 1% then the false rejection
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Figure 5.21: Error Rates using the ¢ norm Verifier

rates of the fixed threshold and user specific threshold methods would be 41% and
18%, respectively. This demonstrates a tightening of the spread exhibited by both
threshold methods using the ¢; norm as verifier.

Bleha & Obaidat (1993) uses a derivative of the £; norm in his minimum distance
classifier, which is essentially the square of the 3 norm. By squaring the norm,
the computational process avoids the square root requirement and thus may be
expected to furnish similar discrimination whilst perhaps reducing computational
requirements. Using keystroke latencies within user’s names, Bleha reports a false
acceptance rate of 2.8% and false rejection rate of 8.1%. Although Bleha normalises
his classifier, allowing name samples of differing lengths to be compared, filtering
pressure sequences for number of pulses eliminates this requirement here. The

verification implementations are given in (5.28) and (5.29).
(T-R)*(T-R)<¥ (5.28)

(T - R)* (T - R) < I—EEm'olment - TUEnrOlmentl- (529)

The receiver operating characteristics for (5.28) and (5.29) are presented in Fig-
ure 5.23.

Equal Error rates are computed as 5.2% and 2.8% for the fixed user specific thresh-
old regimes, respectively. Enrolment requirements are recorded as 175 and 844

FLOPS for fixed and user specific thresholds, whilst verification requirements are
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Figure 5.22: ROC curves for the £ norm Verifiers

80 and 85 FLOPS, respectively. Error rates for the fixed threshold regime are
comparable with the explicit £, norm verifier — 5.2% against 5%, with this method
offering marginally lower verification demands — 80 against 99 FLOPS. The user
specific regime offers both improved error rates (2.8% against 3.5%) and processing
demands (844 Enrolment FLOPS against 1000 and 85 verification FLOPS against
104), compared with the explicit £ norm method.

At 1% false acceptance rate the fixed threshold regime offers 37% false rejection

rate, whilst the user specific threshold method provides 11% false rejection rate.

5.7.3 The Mahalanobis Distance Verifier

Garcia (1986) reports upon the performance of a Mahalanobis verifier applied to
keystroke latencies within a person’s typed name. Capturing each person’s name a
number of times, Garcia biases his verifier against false acceptances, and quotes a
false acceptance rate of 0.01%. The penalty for such a low rate of false acceptance
is a higher false rejection, which he quotes as 50%. Robinson et al. (1998) use the
Mahalanobis distance to discriminate between users based upon keystroke latencies
and hold times contained within an individual’s username. A false acceptance rate
of 24% and a false rejection rate of 23% are reported from several hundred login

attempts.
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Figure 5.23: ROC curves for the ¢, norm Squared Verifiers

The Mahalanobis Distance is defined in equation (5.1). Simple linear classifiers,
such as the ¢; and ¢ norms, dealt with above, may suffer from limitations in
the way in which they generate decision boundaries. They are known to be in-
accurate when dealing with features which are highly correlated or badly scaled
(Schalkoff 1992). The Mahalanobis distance provides a way around some of the
limitations of simple classifiers. By taking the covariance matrix into account,
the classifier can be made to account for poor scaling and deal with correlations
between features. However, calculating the covariance matrix requires that a rela-
tively large number of example vectors is available (generally d+1 example vectors
for a d-dimensional feature vector). Robinson et al. (1998) had several hundred
example vectors available per individual, whilst Garcia (1986) states that each per-
son entered their name a number of times. In this experiment only eight enrolment
vectors are available to generate a reference vector. Even for small feature vectors,
generated from sequences containing only a few pulses, the number of features will
be (3n — 1), where n is the number of pulses, very quickly the number of features

rises above eight, the number of example vectors available.

Indeed, this is demonstrated when one calculates a covariance matrix using se-
quence vectors generated from sequences containing only a modest number of
pulses; the determinant of the resulting covariance matrix tends towards zero,

indicating that the matrix is close to being singular.
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Rather than use a badly scaled covariance matrix to compute the Mahalanobis
distance, the leading diagonal which contains only the variances of each component,
can be used. Whilst the resulting metric will not be rotationally invariant, it will

exhibit scale invariance.

This method forms the subject of the next verifier. A test vector, T will be

accepted under the fixed acceptance threshold regime, if:
(T-R)*V ' (T-R)<?¥ (5.30)

where V is the leading diagonal of the covariance matrix generated by the en-
rolment vectors, whose mean is the reference vector, R. Explicitly, V™! is the
inverse of a d x d matrix, whose non-zero components are on the leading diag-
onal and comprise the variances of each of the d-dimensional enrolment vectors’

components.

Similarly, T will be accepted under the user specific acceptance threshold regime,
if:
(T - R)* V_l (T - R) < l—EEnrolment " TUEnrolmentl (531)

Figures 5.24(a) and 5.24(b) show the false acceptance and false rejection curves

for fixed and user specific threshold methods, respectively.

e FRR +veeeee FAR ——FRR - FAR
100 100
Y \ T 80 i
é 60 \ -Sw.a 60 V
[

Df_ 40 ‘f 40
e 1\ s I\
w20 e T w20

0 A 0

0 100 200 300 400 0 10 20 30 40
Acceptance Threshold Acceptance Tolerance
(a) Fixed Acceptance Threshold (b) User-Specific Threshold

Figure 5.24: Error Rates using Modified Mahalanobis Distance

Equal error rates for this modified Mahalanobis measure were found to be 3.4%

and 2.4% for the fixed and user-specific acceptance threshold approaches. There
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Figure 5.25: ROC Curves for Modified Mahalanobis Verifier

were two methods of calculating the variance matrix, Vi, either to firstly compute
the covariance matrix from the eight enrolment vectors then extract its leading
diagonal, or to simply construct a matrix whose leading diagonal is composed of
variances from each dimension of the enrolment vectors. Under the fixed thresh-
old regime, the first approach recorded an average of 11108 enrolment FLOPS and
927 verification FLOPS, whilst the second recorded an average of 5179 enrolment
FLOPS and (again) 927 FLOPS for the verification process. The user-specific
threshold method required an average of 19198 FLOPS during enrolment and 932
FLOPS for verification, using the covariance approach. Directly generating a vari-
ance matrix required an average of 11779 enrolment FLOPS and 932 verification
FLOPS.

Figure 5.25 shows ROC curves for both threshold approaches. Tightening the false
acceptance rate to 1% will result in false rejection rates of 42% and 10% for the

fixed threshold and user specific threshold approaches.

5.7.4 Component-Wise Linear Verifier

This method embodies perhaps one of the simplest verifiers. Its aim is to explicitly

compare each component, t;, of a test vector, T, to the respective component, 7;,
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of the mean reference, R. T will be accepted only if all components satisfy

Figure 5.26(a) shows the error rates for this verifier, whilst Figure 5.26(b) shows
its ROC curve.
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Figure 5.26: Error Characteristics for Component-Wise Linear Verifier

The equal error rate for this approach is found to be 7.2%, requiring an average of
175 FLOPS during enrolment and 157 for verification. The ROC curve suggests
that by tightening the rate of false acceptance to 1% the verifier would exhibit a

false rejection rate of around 32%.

The condition for all 4, can be relaxed in the manner of Umphress & Williams
(1985). Although Umphress made use of digraph latency times as features in his
verifier, his approach of accepting sequence vectors if a fixed proportion of their
components fell within set bounds is applicable here. The approach of accepting
a test sequence if a preset proportion of components pass some comparison test,
lends itself well to this component-wise verifier. By sweeping through a range of
acceptance thresholds, as above, but relaxing the condition that all components
in a test vector must pass the component-wise comparison to a proportion of
components in a test sequence must pass the component-wise comparison, it may
be possible to find low error regions within this two-dimensional threshold space.
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Defining a component acceptance function c(t;) as

ct) = 1,if |mi—t| <6r;
= 0, otherwise. (5.33)

A test vector, T will be accepted if a proportion, p, of its components satisfy

d

> elt) > pd (5.34)

i=1
where d is the number of components of T.

Error rates were calculated for a sweep of component threshold under a range of
acceptance proportions. Figures 5.27(a) and 5.27(b) show the false rejection and

false acceptance rates under a plane of acceptance thresholds and proportions.
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Figure 5.27: Component-Wise Linear Verifier with Proportional Acceptance

False rejection rates can clearly be seen to decrease with increasing component ac-
ceptance threshold and decreasing proportional acceptance. False Rejection rates,
meanwhile can be seen to increase with acceptance threshold and proportional
acceptance. It was hoped that a region of low errors could be identified in this
way. However from Figure 5.28, which shows the sum of false acceptance and false

rcjection crrors, it can be scen that whilst such regions cxist they arc small and
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Figure 5.28: Combined Error Rates with Proportional Component Acceptance

likely a function of this particular data set.

5.7.5 Component-Wise Non-Linear Verifier

Robinson et al. (1998) reports upon his use of a component-wise non-linear verifier
using keystroke latency and hold times. He achieved an equal error rate of 31%
using the information contained within usernames, typed several hundred times.
This approach is similar to that of the component-wise linear verifier, differing
only in that the component acceptance threshold is based upon the component-

wise standard deviation calculated from a user’s enrolment vectors.

A test vector, T, will be accepted if all of its components satisfy:
[re—t4] < 703 Vi (5.35)

Where o; is the standard deviation of the i*® component of T, calculated from the

enrolment vectors, and 7 is the acceptance tolerance.

Figures 5.29(a) and 5.29(b) show error characteristics and ROC curve, respectively.
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Figurc 5.29: Error Characteristics for Component-Wise Non-Lincar Verifier

In the same manner as the simple component-wise linear verifier, the condition
for all i can be relaxed to a proportion of the number of components. Defining a

component acceptance function c¢(t;) as

ct:) = Lif [ri—ti| <7o;
= 0 otherwise. (5.36)

In common with the component-wise linear verifier, a test vector will be accepted
if (5.34) is satisfied.
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Figure 5.30: Component-Wise Non-Linear Verifier with Proportional Acceptance
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Figure 5.31: Combined Error Rates with Proportional Component Acceptance

5.7.6 Discussion

Figures 5.32 and 5.33 provide a comparison of the error rates and processing in-
tensities between each of the verifiers thus far considered. It is observed that
the ¢; and /5 norms (with acceptance threshold set on a per-user basis), and both
threshold approaches of the Mahalanobis distance verifier offer relatively low equal
error rates. When the verifiers are biased against false acceptances (as shown in
the secondary columns of Figure 5.32) the user-specific £; norm and Mahalanobis
distance verifiers perform best, offering equal error rates of 2.3% and 2.4%, respec-
tively, whilst both exhibit 10% falsc rejection rates with 1% falsc acecptance.

A measure of the processing intensity of all verifiers (shown in Figure 5.33) indi-
cates that computation of the ¢/, verifier requires significantly fewer floating point

operations than the Mahalanobis distance method.

Equal error rates of 2.3% have been achieved using all features; pulse height, pulse
width and interval duration. This figure, nor indeed any of the other error rates,
include non-modal pulse sequences. Sequences with non-modal pulses must be
considered errors, however, in common with Umphress & Williams (1985), Leggett
& Williams (1988), Joyce & Gupta (1990), Brown & Rogers (1993) and Robinson
et al. (1998), who all discarded incorrectly spelled samples from valid users, these
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Figure 5.32: Error Rate Comparison with Verifier

non-modal sequences are also discarded. The distribution of modal-pulses has

been calculated and the results discussed in Section 5.4.

Furthermore, it must also be stated that these error rates do not include the
inconsistent user — who was unable to provide sufficient samples with the same
number of pulses for enrolment and testing. Whilst it may be argued that this
omission artificially lowers the reported error rates, it is felt that the situation
whereby a user is not comfortable with the pressure sequence method and is (for
whatever reason) unable to provide satisfactory sequences, is directly analogous
to excluding people from using hand geometry biometrics, for example, when they
physically have no hands. Of course, taking the populace as a whole, the person
who can neither be accepted nor rejected, must be counted as a failure of the
system. On the other hand, his unsuitability to this approach is clearly apparent,

and he would not be included in trials.

Trialing of a verification scheme must include some measure of the appropriateness
of the method, whether this is fingerprints, hand geometry, voice, or whatever, the
proportion of people unable or unsuitable to the method should be assessed. No
method of identity verification will ever suit all people for all purposes. It seems
in this case, one user from 34 has demonstrated unsuitability, representing around

3% of the sample population.

Participants were generally self selected, or coerced with (only) a little persua-

sion, and (perhaps as a result) reactions have been predominantly positive — with
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Figure 5.33: Floating Point Comparison with Verifier

comments from the participants including: “fun to use”, “interesting”, “novel”.

It should be further noted that error rates presented thus far are global averages,
calculated across the results from all participants within the experimental pop-
ulation. It follows that individual detail is missing. Table 5.1 provides specific
performance characteristics for each participant, under the per-user #; norm ver-
ifier, from which it can be seen that the majority of participant characteristics
exhibit equal error rates of 0%. However, this is most likely a function of the
limited size of the impostor data set, and although encouraging, emphasizes the

need for larger numbers of collected samples. This is highlighted as an important

aspect of future work.

It is observed that the mean false rejection rate, at the global crossover point, is
due entirely to three participants, each of whom exhibit equal error rates of 0% at

slightly higher values of acceptance tolerance.

5.8 Pressure Sequence — Conclusions

Requiring only one single pressure sensor and elementary signal conditioning, this
simple idea of identity verification based on inherent rhythm has demonstrated

remarkable discrimination. In a laboratory based experiment which involved 34
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Participant I Individual Results | Results at Global Crossover {7=3.25) |
‘ {(Number of Pulses) [ EER (%) | T [TFRR (&) T FAR %)
) 5.4 1125 0 338
b (3) 0 3.0-4.25 ] 0]
< (3) 2.56 7.0 ] 377
3 (3) 556 2.75 [} 5.1
N6 0 1.75-2.5 ] 2.4
T4 0 5.0-6.75 0 0
£ (4) 1] 1.25-1.75 0 1.1
T (4) 0 T756.0 0 0
{9 0 5560 0 0
(@) [ 2.5-6.25 0 0
X (5) ] 2.75-4.5 ] ]
T(5) T4 175 0 8.4
™ (6) 0 175115 0 0
n (6) i] 3.0-4.25 0 0
5 (6) 0 T95-14 5 3 8
5 (7) 9] 1.75-9.5 i 0]
a (7 5 1.75-19.75 375 ]
r (7) 0 2.75-10.75 0 3]
(7 0 1.25°11.25 4] 0
T (7) 0 1.95-2.75 0 1.2
u (7) 0 15-1.75 ] 36
v (8) 0 T 75-16.5 0 ]
w (8) 0 1.75-11.75 0 0
% (8) i 375-10.75 135 0
v (8) 5 3.195 0 3.6
z (9) 0 3.25-16.5 0 ]
aa (9) [1] 3.0-12.75 9] 0
ab (10) 0 1.0-2.25 i) 9.1
ac (10) ] 3.0-19.75 0 0
ad (11) 0 1.25-12.25 0 0
ae (12) 5} 6.256-7.25 25.0 0
of (14) 0 1.95-3.0 (] 31
ag (14) [} 5H5-3.0 ] 31
[ Mean: [ 23 ] 2.3 ]

Table 5.1: Specific Performance Details (User Specific £; Norm)

volunteer participants, an equal error rate of 2.3% has been demonstrated.

Pressure responses of taps were crudely represented by pulse-amplitude and pulse-
duration, and in conjunction with inter-pulse times form the representative features
of a raw analogue rhythm sequence. The body of work on keystroke dynamics is
used as a source of potential verification functions, and from an investigation of

verification functions the £; norm is found to be the most discriminating.

Whilst good discrimination between individuals is shown, there exist a number of
uncertainties. For logistical reasons, training and testing samples were captured
during the same session, and this does not account for any differences which may
be exhibited on a day-to-day basis. Indeed the variability in sequences over time
has not been assessed, and this is a requirement for any practical approach to

identity verification.

Impostor data was captured in a manner believed to best represent a person ‘find-
ing’ a smartcard, and using a brute-force method of attack. However, the mo-

tivation for impostor perseverance in this experiment is questionable, and must
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be strengthened — impostors must have a strong desire to break an individual’s
sequence. This is an area strongly highlighted for future work. Another critical un-
certainty is the effect of an impostor overhearing the input of someone’s sequence.
Although preliminary experiments suggest that it can be difficult to replicate a
sequence to the satisfaction of its originator, the objective effect of overhearing a

sequence must be fully assessed.

This work uses pulse-amplitude and pulse-duration to represent pressure responses
of finger taps. Clearly from the data presented in this chapter, this is an over sim-
plification, and from Figure 5.11 differences between the responses of two partici-
pants are observed. This offers further scope for discrimination, and may result in
a sequence-independent method of verification. Such an approach moves towards
a true biometric, rather than the current implementation which is that of identity

verification.
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Chapter 6

Smartcard Processing

Considerations

6.1 Introduction

The new identity verification method presented and demonstrated in Chapter 5
complies physically with smartcards, in terms of the manner of demonstrating
identity and in the sensor structure used to capture discriminatory characteris-
tics. This chapter considers the algorithmic requirements for executing enrolment
and verification functions on-card. Algorithmic demands are twofold, in that the
smartcard platform must support the necessary mathematical mechanics, such as
floating-point arithmetic, and the smartcard processor must be sufficiently power-
ful to execute algorithms in a timely fashion. It seems reasonable that verification,
executing on a per-transaction basis, should complete within around one second,

and the one-off enrolment function within a few seconds.

As stated, the Java Card platform supports applications (or applets) written in a
subset of the Java language. Whilst this reduced form of Java may be suitable for
a great number of smartcard applications, it offers no support for floating-point
operations nor basic mathematical functions, such as square roots. This is unfor-
tunate, since the discrimination functions of Chapter 5 rely upon native scientific
capabilities of the MatLab numerical analysis package. Hence the first task of this

work is to devise suitable integer-based alternatives, and explicit means of im-
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plementing the required mathematical functions. The enrolment and verification
functions, detailed in the last chapter, are then translated to Java and executed
on a typical Java Card platform, allowing time requirements to be recorded and
compared. This work forms the basis of Henderson, White & Hartel (2001).

The chapter begins with a brief overview of programming the Java Card smartcard

platform.

6.2 The Java Card Platform

Java Card technology enables applications written in the Java language to run on
smartcards and other embedded systems. As indicated in Chapter 1, this offers
developers the advantages of a structured, type-safe high-level development lan-
guage, whilst complying with the security and trust philosophy of the smartcard.
Java Card effectively insulates the programmer from underlying hardware and
protocol layers, and as a result programs may be rapidly developed, and written
by independent third parties for any compliant device. For more details on Java
Card, see Chen (2000).

The Java Card platform used in this work was implemented on a device called
an 1Button from Dallas Semiconductor!. The iButton is a 32-bit smartcard RISC
processor, housed in a small (16mm @x 6mm) stainless steel canister rather than
embedded in the plastic substrate of a smartcard. The steel canister also houses a
battery and real-time clock, but these differences aside, the processor is comparable
to other modern Java Card smartcards, with 32kBytes of EEPROM for application
storage and 1kByte of volatile RAM for run-time processing. The iButton was
chosen as a test-platform because of its availability and its good simulation and

debug support.

Applets were compiled using Sun Microsystem’s Java Card 2.1.1 Development Kit,
under version 1.10 of Dallas Semiconductor’s iButton Development environment
(iB-IDE). The resulting Java-Code was run on the Java Card 2.0 compliant Java-
Virtual-Machine (JVM) of the iButton.

1Dallas Semiconductor, Austin, Texas, USA. Webhttp://www.iButton.com
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6.3 Implementing Verification Functions

To test the suitability of the pressure sequence verifiers, the enrolment and veri-
fication functions of each verifier were written as stand-alone Java functions and
called from a skeletal applet, containing the essential communication and timing

routines. The applet code can be found in Appendix G, and its structure is as

follows:

e Retrieve and store pre-processed enrolment vectors from PC
e Record start time

e Perform enrolment (a number of times)

e Record finish time

e Send total enrolment time and reference vector to PC.

The feature vectors used were obtained from the data collection exercise of Section
5.4.2. Once the iButton had completed vector processing, reference vectors and
processing times were returned to the host PC, whereupon the reference vectors
were checked for consistency with the MatLab results (described in Section 5.7),
and mean processing times were calculated. Verification times were measured in

the same way as enrolment times, with the verification function called in place of

enrolment.

The applet executes by firstly loading a user’s enrolment feature vectors, pre-
processed from their enrolment sequences, to the iButton. Time is recorded using
the iButton’s real-time clock, then the enrolment function is called a number of
times. Upon completion, the finish time is recorded and the process duration is
calculated. This is then transmitted to the host PC, and a mean execution time

is calculated.

Implementing the process in this way avoids lengthy PC to iButton communica-
tions which are not involved in the enrolment (or verification process). This process
assumes that the enrolment samples have already been captured, pre-processed,
and are now available to the processor. This will be considered further in section
6.4. ‘
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6.3.1 Specific Implementation issues

There are two fundamental limitations to running the verifiers on the Java Card
platform: the restriction to 32-bit integers and hence the lack of floating-point

data-types; and the lack of elementary mathematical functions, such as square-

roots.

The fixed threshold version of one of the most successful verification schemes, the

¢, norm is defined in equation (5.4) and is repeated for the convenience of the

forthcoming discussion:
d
IR =Tl =) |ri —t
i=1

where R is the d dimensional reference-vector, generated from the mean of each of
the components in the user’s enrolment vectors, T is a d dimensional test vector,

and r and ¢ are the components of R and T respectively.

The identity of a user will be accepted if equation (5.24) is satisfied, that is
IR=T|, <0

where 6 is the acceptance threshold.

Calculation of the #; norm is achievable with no loss of precision under the restric-
tion of the 32-bit integer data type. Using a fixed acceptance threshold, however,
resulted in a rather uninspiring equal error rate (EER) of 9.7% (see Figure 5.32),
since the same acceptance threshold is used for all users irrespective of their natural

varlance.

To improve upon this rate, Section 5.7.1 considered taking the variation of a user’s
enrolment vectors from their reference vector into account, and equation (5.25)

was the result. This is repeated (again for the sake of convenience) as

“R — T”l S IEEnrolment —T: UEnrolment’

where 7 is the globally-set acceptance tolerance, D gnrommen: 1S the mean distance
of the enrolment vectors to the reference vector, and ognromment 1S the standard

deviation of these distances.
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The problem for the integer-only Java Card system is that o g,roiment requires the

calculation of a square root:

" (S, _R)?
O Enrolment — \/Z]:(l( - ) ) (64)

n—1

where n is the number of enrolment vectors, and S; is the ;% enrolment vec-
tor. Whilst the immediately obvious method for calculation of square roots, the
Newton-Raphson method (Press, Teukolsky, Vetterling & Flannery 1993), is well
known and used, it suffers from a number of problems. Firstly, it is an iter-
ative method, whose efficiency depends upon the quality of the initial guess.
Secondly, applied to integers in its native form, the Newton-Raphson method
will infinitely oscillate between two integers, above and below a real non-integer
root (Crenshaw 1998). Crenshaw has devised a simple algorithm for the calcula-
tion of square roots. His method is essentially a search through all possible integers
until the integer part of a non-integer root is found. The simplest form of this is
to search all possible integer square roots, z, for /N until 2 > N. The integer
root of N is then the exit value of x, minus one. However, Crenshaw provides a

more efficient implementation arising from the observation that
(z+1)2 =2+ (22+1). (6.5)

This means that to check each new possible square root, (22 4+ 1) merely has to be
added to the previous square. The Java code implementation for this is presented
as follows (listing 6.1):

Listing 6.1: Java Code for Integer Square Root Function

public static int SQRT(int a)

{
int square = 1; // x=1: 1st Integer Square Root
int delta = 3; // (2x+1), for x=1
while(square<=a) {
square+=delta; // (x+1)°2 = x"2 + (2x+1)
delta +=2; // Next value for (2x+1)
}
return (delta/2 - 1); // square is now > a, so find previous value of x
}

Although faster fixed cycle-length square root functions exist (Crenshaw 1998),
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.. Mean Distance | Standard Deviation
Floating Point Result 221 49.29
iButton’s Integer Result 222 48

Table 6.1: Comparison of Floating Point and Integer Results

the time required for execution of the enrolment process using this implementation
was measured to be 3.1 seconds — well within the bounds of a reasonable duration.
20 square roots were required for the enrolment process, each iterating 49 times.

Verification required only 0.12 seconds for completion.

Although the final values for the mean distance and its standard deviation between
enrolment vectors and the user’s reference vector will be truncated to integer levels,
the fractional loss is small relative to the distances involved and is not expected
to cause any significant reduction in the verifier’s accuracy. Table 6.1, presenting

the floating point and integer results from one user, illustrates this point.

The second most discriminating method; the Mahalanobis distance verifier is de-

fined in equation (5.31) as follows:
(R - T) ' v_l : (R - T) < I—EEnTolment - T UEnrolment[

where V™! is defined as the inverse of a square dx d matrix whose leading diagonal
is composed of the variances from each dimension of the enrolment vectors and all

other elements are zero.

This leads us to the problem that multi-dimensional arrays are not supported under
Java Card 2.0, and as a result matrix manipulation will be both convoluted and
time consuming. The solution rests with the analytical reduction of the left-hand
side of (5.31) to give:

(R—T)-V‘l-(R—T):ZQ:%@j (6.7)

where v; is the variance of the i* component of the enrolment vectors. Equation

(6.7) now offers a route to the direct computation of the Mahalanobis distance

verifier.

There is one further catch, however. v; as the variance of each vector component,
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.. Mean Distance | Standard Deviation
Floating Point Result 17.5 5.56
iButton’s Integer Result 10 4
iButton’s Pre-Multiplied Integer Result 17 5

Table 6.2: Comparison of Floating Point, Integer and Pre-Multiplied Integer Re-
sults

is the square of the standard deviation for that component. It is hence likely to be
of comparable magnitude to that of the component values. The integer division,
therefore, of (r; — t;)? by v; is extremely likely to result in the loss of a significant
fractional part of the result, further compounded by the sum across all components.
Pre-multiplying each numerator by 10fequiredPrecision anq post-dividing the sum by
the same enables retention of the fractional information. Table (6.2) gives the

floating point, integer and pre-multiplied integer results.

Execution of the Mahalanobis enrolment process required 4.5 seconds, whilst ver-

ification completed within 0.16 seconds.

6.3.2 Further Results

The enrolment and verification times for the other verification schemes considered
in Chapter 5 were also measured on the iButton. Additionally, the combined
program size for enrolment and verification functions was recorded. Table (6.3)
presents a comparison of these quantities, along with a repetition of the Equal

Error Rates, for convenience.

6.4 Proposed System Architecture

The above analysis assumes that the smartcard processor has access to feature
vectors of live pressure sequences. This is assumed, and is desirable, in that the
smartcard processor is not required to continuously monitor the live sensor output.
Since the output signal from the sensor is an analog quantity and requires to be
digitised before any processing can be performed, an on-card biometric system

must have analog to digital conversion circuitry. There are hence, two options.
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Enrolment | Verification | Program
Verification Scheme Time Time Size EER%
(Seconds) | (Seconds) (bytes)
¢y norm - Fixed Threshold 1.2 0.12 296 9.7
45 norm - Fixed Threshold 1.2 0.26 356 5
Component-Wise Linear 1.2 0.19 285 7.2
MICD - Fixed Threshold 1.2 0.15 319 5.2
Component-Wise Non-Linear 2.9 0.29 524 3.7
£; norm - User Specific 3.1 0.12 684 2.3
£5 norm - User Specific 4.2 0.25 707 3
Mahalanobis - Fixed Threshold 2.4 0.16 550 3.4
Mahalanobis User Specific 4.5 0.16 752 24
MICD - User Specific 8.5 0.16 704 2.8

Table 6.3: Results for all Verifiers

Either the architecture of the smartcard’s processor hardware can be modified to
include such circuitry, or more generally, an additional signal conditioning IC can
be included on-card. In the former case the processor becomes specific to one, and
only one form of identity verification, whereas in the latter, smartcard processors

remain standard and an appropriate conditioning IC is included with the sensor.

Since the Java Card platform offers unprecedented flexibility to the programming
of smartcards, the inclusion of biometric specific circuitry moves counter to the
generalist philosophy of Java Card. The latter option of employing a separate

conditioning IC module is therefore favoured.

It is proposed that the conditioning module contains all the required signal con-
ditioning (for example charge amplifiers), analog to digital converters and any
necessary control circuitry. This can be extended to include some local process-
ing functionality, such that the feature extraction process can occur autonomously
and free from smartcard processor intervention. An approach of this manner is
directly analagous to the fingerprint sensors of Jung et al. (1999), in which em-
bedded logic identifies and extracts minutiae locations. It is suggested that this
biometric module could be based around one of the many available microcontroller
ICs, for example, the 16F73 peripheral interface controller (PIC) from Microchip?,

which includes a number of on-board ADC channels and communication ports.

Figure 6.1 outlines one possible architecture.

*Microchip Technology Inc. Chandler, AZ, USA. Web:http://www.microchip.com
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Raw Analog Extracted Feature
Signal Vectar
Feature Extraction >
Unit
Pressure ! C Controller
AD —
or ;
Sens Unit P Smartcard
D Processor
Biometrics Module Request

Biometric Capture

Figure 6.1: Biometric System Schematic

The smartcard processor issues a request to capture a biometric sample, this is
recieved by the biometric module, and signal capture is initiated. Upon comple-
tion, a feature extraction component analyses the captured signal, performs the
necessary preprocessing and transmits this information back to the smartcard pro-
cessor. It should however be emphasised, that enrolment and verification occur on

the tamper-resistant smartcard processor, and not within this biometric module.

6.5 Conclusions

In this chapter the enrolment and verification functions of the verifiers developed
in Chapter 5, were implemented on a Java Card platform. Necessary mathematical
resources, such as square roots and matrix division, are not available to the native
Java Card platform, and as a result some effort was invested in overcoming these

limitations.

The execution times of enrolment and verification processes were measured and
found to be well within reasonable bounds, and the most discriminating verifier
(the user specific £; norm) required 3.1 seconds to perform enrolment and 0.12
seconds for verification. Furthermore, both enrolment and verification functions
of this verifier, taken together, were found to use < 700 Bytes of EEPROM re-
sources. This combination of processing time and applet size, demonstrates that
the computational requirements of the pressure sequence method are well within

reach for a typical Java Card platform.
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Chapter 7

Conclusions and Further Work

7.1 Conclusions

Modern smartcards are fully programmable, open and trusted computational plat-
forms, and are used for a wide range of functions. At the simplest level, they can
be involved in the storage of electronic data and for the prepayment of goods and
services. With the cryptographic capabilities of high-end smartcards, applications
include electronic authentication of an individual’s credentials, and the signing of
documents and transactions. As a result, smartcards represent an important tool

of e-commerce and information security.

Unfortunately, the fundamental association between an individual and their smart-
card is based upon possession or knowledge, both of which are widely considered
to be weak demonstrations of identity, since cards can be lost, stolen or ‘borrowed’,
and secret knowledge can be discovered by third-parties. Whilst a smartcard can
robustly demonstrate its involvement during a transaction, or its presence during
remote access of resources, the presence of its rightful holder can not be assured.
There is hence a strong motivation to tighten the association between a smartcard

and its holder.

Currently, there is growing interest in using biometric characteristics to strengthen
this association, and a number of schemes have been commercially developed, and
proposed in the open literature. However, these schemes predominantly rely upon

components, such as sensors or processing elements, which are external to the card.
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Whilst offering improved binding of the holder’s identity to the card, the reliance
upon external components restricts where the card can be used, and moreover,

exposes the possibility of eavesdrop and replay attacks.

To overcome these concerns, this thesis proposes integrating an identity verification
mechanism on-card. However, the physical size and properties of a smartcard
introduces a number of challenges. The size of a smartcard restricts the manner in
which identity can be demonstrated, its mechanical flexibility imposes the use of
compliant sensing mechanisms, and its constrained computational resources limit
the complexity of the necessary enrolment and verification algorithms. Each of

these areas is considered in the work of this thesis.

In Chapter 2 a comprehensive review of biometrics is provided, from which it is
apparent that demonstration of a smartcard holder’s identity can be based upon
aspects of the hand and fingers. Possible characteristics include: fingerprints;
finger-geometry; finger-crease pattern; grasping pressures; and palm-prints. The
measurands of pressure, temperature and capacitance are identified as means of

capturing discriminating characteristics.

That the smartcard imposes particular restrictions on sensor properties has been
indicated, and it is apparent that a sensor requires to be geometrically planar,
mechanically robust, flexible and economically compliant with smartcards. Such
restrictions can be satisfied by a class of sensors, known as polymer thick film
sensors, and a review of the field is presented in Chapter 3. Polymer thick film offer
the advantage of low processing temperatures, and as a result can be printed onto
a wide range of substrates, including flexible polymers. This property of flexibility,
and in conjunction with those of planar geometry, mechanical robustness and low

cost, make PTTF sensors inherently suitable for integration with smartcards.

Piezoresistive and piezoelectric pressure sensors can be realised using polymer
thick films, and an array structure of such sensing elements are most likely to fully
capture spatial human characteristics. It is found that the inherent resolution of
polymer thick film sensing arrays is limited by the achievable thick film linewidths.
Moreover, since polymer thick film is a passive technology, every charge-generating
sensing element (such as a piezoelectric element) requires an explicit conductive
path connecting it to the outside of an array. This severely restricts spatial res-

olution since conductive tracks must either pass between sensing elements, or be
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buried beneath an insulating layer. It transpires that pixel pitch varies in pro-
portion to the number of sensing elements per row of an array, and hence resolu-
tion must decrease with increasing numbers of sensing elements. The design of a
charge-generating PTF sensor array then becomes a trade-off between the required

number of sensing elements and the desired spatial resolution.

Piezoresistive elements, on the other hand, can be connected on a per row and
per column basis, are be addressed individually by measuring the voltage drop
across a specific intersection. Spatial resolution of such an array is limited by
the linewidth and registration resolution of the printing process. It is estimated
that a minimum pixel pitch of around 250um is achievable, resulting in a spatial

resolution of around 40 elements per centimetre.

However, detailed theoretical models of both sensors are derived, and it is apparent
that both sensors will exhibit sensitivity to planar strains. Since the flex of a
smartcard results in planar strains propagating across the card, planar sensitivity
of the sensors, rather than array architecture, becomes the limiting factor to spatial

resolution.

Chapter 4 makes use of first-order finite element analysis to assess the extent of
strain propagation across a smartcard, and the extent to which an array of sensing
elements respond to a single applied load, typical of human-finger interactions.
It is found that sensors across the surface of the card will respond significantly
to a singular load applied elsewhere. Whilst sensor responses are observed to
diminish with distance from an applied load, they remain significant in proportion
to the peak response. This effect becomes the limiting factor in bonding sensors to
smartcards, and it is not practical to bond more than one sensor, without suffering

cross-sensitivities between sensors.

Further, it is shown that the flex of a smartcard is an important agent in the
sensitivity of both sensors, and constraining the vertical out-of-plane freedom of a
smartcard significantly reduces sensitivity. A way around this has been discovered,
and involves the formation of a dome structure underneath the sensor. In response
to an applied load, the dome deforms, and the resulting strains are transferred to

the sensor.

Both sensors are shown to capture aspects of the temporal (rather than spatial)
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interaction between a finger and the card. Piezoresistive sensors can adequately
capture both static and dynamic signals, whilst piezoelectric sensors are able to
capture fast-changing dynamic signals rather than static or quasi-static signals.
But, piezoresistive sensors suffer from hysteretic behaviour, and whilst this is not

characterised, it is observed to distort fast changing, dynamic interactions.

Chapter 5 proposes and demonstrates a novel approach to identity verification
based upon temporal interactions between a finger and pressure sensor. The pres-
sure responses of an individual’s finger are recorded and used as a basis for dis-
crimination. Requiring only one single pressure sensor and elementary signal con-
ditioning, this simple idea of identity verification based on inherent rhythm has
demonstrated remarkable discrimination. In an experiment involving 34 volunteer
participants, each using self-selected rhythms, an equal error rate of 2.3% has been

demonstrated.

Pressure responses of taps were represented by pulse-amplitude and pulse-duration,
only, and in conjunction with inter-pulse times form the representative features of
a raw analog rhythm sequence. The body of work on keystroke dynamics is used as
a source of potential verification functions, and from an investigation of verification

functions the ¢; norm is found to be the most discriminating.

For logistical reasons, training and testing samples were captured during the same
session, and this does not account for any differences which may be exhibited on
a day-to-day basis. Indeed the variability in sequences over time has not been
assessed, and this is a requirement for any practical approach to identity verifica-
tion. Impostor data was captured in a manner believed to best represent a person

‘finding’ a smartcard, and using a brute-force method of attack.

In Chapter 6 the enrolment and verification functions of the verifiers developed in
Chapter 5, were implemented on a Java Card platform. Necessary mathematical
resources, such as square roots and matrix division, are not available to the native
Java Card platform, and as a result some effort was invested in overcoming these

limitations.

The execution times of enrolment and verification processes were measured and
found to be well within reasonable bounds, and the most discriminating verifier

(the user specific £; norm) required 3.1 seconds to perform enrolment and 0.12
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seconds for verification. Furthermore, both enrolment and verification functions
of this verifier, taken together, were found to use < 700 Bytes of EEPROM re-
sources. This combination of processing time and applet size, demonstrates that
the computational requirements of the pressure sequence method are well within

reach for a typical Java Card platform.

7.2 Further Work

7.2.1 Pressure Sequence

Whilst discrimination between individuals has been demonstrated, there are a
number of unresolved issues. Day to day variations in sequences has not been
assessed, and this is clearly of practical importance for the method. A long term
data collection exercise should be set up, perhaps with some incentives encouraging
participants to enter their data on a frequent basis. This should be open to as

many people as possible, most likely on a departmental basis.

One crucial experiment which must be performed, is to test the effect of impostors
overhearing a user entering their rhythm. Preliminary experiments suggest that
it can be significantly harder than one might think to replicate the sequence of
another, although this must be rigourously verified. The sensitivity to eavesdrop-
ping in this way will depend upon the complexity and inherent variance of an

individual’s rhythm, and this should be investigated.

Section 5.4.3 illustrates some differences between singular tap-responses from two
participants, and it is clear that response characteristics can be quite different be-
tween two people. As indicated in Section 5.7.6, very recent work at the University
of Twente has explored the use of statistical representations of tap responses, and
from this a verifier has been demonstrated with an equal error rate of around 7.7%.
This work can be extended further by modelling the biomechanical interactions of
a finger tapping upon a smartcard, from which discriminatory tap features may
arise. If successful then this will guard against overhearing and repetition of a
rhythm, indeed it may lead to an entirely sequence-independent verifier. In this
instance the knowledge-based component of the sequence (the rhythm) is removed,

and the approach becomes a true behavioural biometric.
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The practical security of this method needs to be investigated, and impostors must
be sufficiently motivated to sustain attempts of circumvention. A proposition to
this effect could involve a number of participants (again, as many as possible), each
given some protected file space on a network. The file space would be protected by
the pressure sequence method, such that a user would login by stating their claimed
identity, then demonstrate this using their self-selected rhythm. To provide an
incentive for impostors, each person’s file space would contain a one-time-usable
electronic token, such as a £20 Amazon® voucher. Some mechanism would be
devised that requires each authorised person to login to their file space regularly
(so that impostors have a chance of overhearing), but prohibits the authorised
person from spending their voucher until the end of the trial, which of course is

only possible if it has not already been spent.

7.2.2 Alternative Applications

It is the flex of a smartcard which enhances the sensitivity of polymer thick film
pressure sensors to an applied load, and constraining a sensor in the vertical direc-
tion significantly reduces its sensitivity. However, Section 4.9 describes a method
of improving sensitivity of constrained sensors, which involves the fabrication of a
dome structure underneath a PTF sensor. This will allow sensors to be incorpo-
rated onto rigid platforms such as Personal Digital Assistants (PDAs) or generic

smart objects.

Further, it may be possible to incorporate pressure sensors into numeric keypads,
as suggested by Spillane (1975), and to adapt the pressure sequence approach.
This has the potential of providing a layer of security which is additional to PINs.

This is an area which should be investigated.

7.2.3 Alternative Spatial Sensing Mechanisms

The pressure sensors considered in this thesis are sensitive to planar strains, and
since a smartcard flexes in response to an applied load, sensors will respond to

strains applied elsewhere on the card. If spatial characteristics, such as finger

‘http://www.amazon. co.uk

192


http://www.amazon.co.uk

7 Conclusions and Further Work 193

geometry, or finger crease pattern are to be captured then a sensing mechanism

which is predominantly sensitive to normal presentation of characteristics must be

found.

Chapter 3 proposed a new polymer thick film implementation of a capacitance
sensor, which should be sensitive to proximity of an object, rather than load. In
this sense, a capacitance sensor will be unaffected by flex of the card, and it may
be possible to capture finger characteristics, as described above. Such sensors
generate charge in proportion to the proximity of an object such as the finger,
and hence require the type of array architecture considered for charge generating
piezoelectric sensors (Section 3.4.1). From these considerations, and from equation
(3.3), it is shown that an array of elements with a pitch of 2mm? and a printing
linewidth of 100um, can support 20 elements per row of an array, which would
occupy 4cm across. This may be sufficient to capture finger characteristics, but

detailed research is needed.

7.2.4 On-Card Speaker Recognition

As indicated in Chapter 1, on-card voice-pattern recognition has been demon-
strated algorithmically (Phipps & King 1997, George 2000), although the sys-
tem requires an external microphone for voice capture. In Section 2.4, an on-
card speaker recognition system was identified as a practical proposition from the
perspective of acquiring biometric characteristics. It was suggested that given a
suitable microphone, an embedded on-card speaker recognition system could be

practical.

Recently a number of authors have reported silicon micromachined microphones,

which, due to their size are suitable for smartcard integration (Rombach, Miillenborn,

Klein & Rasmussen 2002, Torkkeli, Rusanen, Saarilahti, Seppa, Sipola & Hietanen
2000, Bree, Leussink, Korthorst, Jansen, Lammerink & Elwenspoek 1996). For ex-
ample Rombach et al. (2002) describes two micromachined capacitive microphones
with planar dimensions of 1x1 and 2x2mm with a thickness of approximately
15um. These devices offer good linearity and a relatively flat frequency response

to around 5kHz.

Using on-card displays (as detailed by Praca & Barral (2001)) or MEMS acoustic
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actuators (as reported by Neumann & Gabriel (2002)), speaker recognition could
be randomly prompted, as described in section 2.3.10. This would offer improved

resilience to circumvention.

All the components of an on-card speaker recognition system have been demon-

strated, and their complete integration with smartcards should be investigated.

7.2.5 Alternative Technologies

A novel method of implementing a low cost, flexible sensor may be through the use
of semiconducting polymers. A class of plastics known as conjugated polymers can
be made to conduct or semiconduct depending upon the level of doping (Garnier,
Haklaouri, Yasser & Srivastava 1994) . Semiconducting polymers have been incor-
porated into Light Emitting Diodes (LEDs) (Burroughs, Bradley & Brown 1990)
and Field Effect Transistors (FETs) (Bao, Feng & Dodabalapur 1997). Logic .
gates made from polymer transistors have been demonstrated, and all-polymer

integrated circuits fabricated (Drury, Mutsaers & Hart 1998).

The use of all-polymer transistors offers the potential to create an array within
which charge can be localised, and data extracted in the manner of (Young 1997).
In conjunction with the capacitance sensor implementation of Chapter 3, all parts

of this sensing array could be fabricated using flexible, low-cost polymers.

This is an important area of further work.

7.3 Concluding Remarks

The work of this thesis has proposed and demonstrated a novel approach to identity
verification, which complies mechanically, economically, and computationally with
smartcards. Although a number of ancilliary components, such as power source,
display and input switches are required to complete an on-card verification system,
there are no fundamental technological barriers to their incorporation on-card
(Praca & Barral 2001). Indeed as a demonstration of feasibility, Gemplus? have

reported the manufacture of a smartcard with on-board power, display and user

2Gemplus Research Labs, BP100, Gémenos Cedex, France. Web: http://www.gemplus.com
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7 Conclusions and Further Work 195

input components. The challenge remaining is to mass-manufacture such cards
economically, which according to Praca & Barral (2001), requires that the cost of
high-end cards be less than around $10.
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Appendix A

Beam Theory

A.1 Background

Young’s modulus of a smartcard can be measured using the cantilever deflection
method. This involves applying load to one end of the card, whilst the other is
rigidly clamped. The deflection of the unclamped edge is proportional to Young’s

modulus of the material.

This appendix outlines the relationship between deflection and Young’s modulus.

A.2 Beam Bending Description

Considering a beam which is clamped at one end and has a known load, W, applied
at a distance, L, from the clamp. A vertical deflection, Z, will result, this situation

is described in Figure A.1.

The relationship between Young’s Modulus, E, beam length, L, vertical displace-
ment, Z and applied load, W is given as

1 W
6 El,

(y* — 3L?y +2L%) (A1)

where y is the distance from the free end at which the deflection measurement is

made, and I is the moment of inertia of the beam around the centroid axis (Roark

196



A Beam Theory 197

Figure A.1: Cantilever Deflection Schematic

& Young 1975). In the case of y =0, (A.1) is reduced to

1 WL3

- = A2
2= "3 7L, (A4.2)

>
»

A

b |

Figure A.2: Beam Cross Section

Considering a cross-section through the width of the beam (as shown in Fig-
ure A.2), and noting that the moment of inertia of a differential area, da, around

the x-axis (centroid azis) is given as I 4, = 22da then the moment of inertia of
the beam is calculated as

I, = /z2da (A.3)

t

= /2 bz2dz

t
2
bt3

— I, = —
12

where da = b dz and b is the width of the beam (see Figure A.2).
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A Beam Theory 198

Combining (A.2) with ( A.3) and rearranging, gives

It is (A.5) which is used in section (4.3.1) to calculate Young’s modulus of a

smartcard, given the deflection arising from an applied load.
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Appendix B

Signal Conditioning Electronics

This Appendix describes in detail the signal conditioning circuits used to capture
the output responses from both the piezoresistive and piezoelectric sensors, de-
scribed in Chapter 3, and used in Chapters 4 & 5. Piezoresistive responses are
captured using a resistive bridge whose output is connected to an instrumenta-
tion amplifier, whilst piezoelectric signals are captured using a low-current charge

amplifier circuit.

B.1 Piezoresistive Signal Conditioning

The signal conditioning circuit used to sense the resistance change of the piezore-
sistive sensor is a variation of the classic resistive (Wheatstone) bridge circuit.
This implementation comprises of four resistors connected through two parallel
branches, driven by a constant input voltage. The output voltage from the bridge
is measured between points B and D as shown in Figure B.1. R; and Ry are
of fixed resistance, Rz is a variable resistor, whilst the resistance of the sensor,

Rgensor Will change in response to applied stress.

A full analysis of the bridge circuit is presented in appendix C. The resistance
of the unstressed sensor, at 23°C, was measured! to be 87.15kQ2. Equation (C.8)

'Resistance measurements made using a Keithely 2000 series multimeter (to £0.008% ac-
curacy). Keithley Instruments, Inc. 28775 Aurora Road, Cleveland, Ohio 44139. USA. Web:
http://www.keithley.com
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RG[EAD 622 v,

-10V

Figure B.1: Piezoresistor Signal Conditioning

states that the condition for the bridge to be balanced, that is Vzp = 0, the ratio
of Rgensor to Rz and the ratio of Ry to Ry must be equal. For convenience this
ratio was taken to be around 10, with R; measured to be 9853.7C2 and R, being
977.62. The variable resistor, R3, was used to balance the bridge. Figure C.2
clearly shows that for proportional changes in resistance of %ﬁﬁ‘:—r < 10%, the
proportional change in bridge output voltage, %, can be assumed to be linear.

Rearranging (C.11), it is found

2
ARsensor _ (147)7 AV B1)

RSensor r V:m

where r is the resistance ratio RJ%M and %.

Since the output voltage from the bridge is typically small (in the order of a few
milivolts per percentile resistance change), amplification is required. The amplifier
used here is an AD622 instrumentation amplifier from Analog Devices?. This
amplifier is based around the classic three op-amp instrumentation amplifier (see
for example Horowitz & Hill (1990)), and is of low-cost, moderate accuracy, offering
good linearly, temperature stability and common-mode rejection characteristics.
It has the further advantage of requiring only one external resistor to program its

gain. This is selected according to (B.2)
~50.5k02
- G-1

2 Analog Devices, One Technology Way, P.O.Box 9106, Norwood, MA 02062-9106, USA. Web:
http://www.analog.com

Rg (B.2)
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where R is the gain-set resistor and G is the gain of the amplifier.

The numerator resistance of 50.5k2 arises from the sum of two integrated 25.25k<2
resistors, laser-trimmed for precision. Analog Devices’ data sheet for the AD622
claims that (B.2) is accurate to 0.5%. The resistance of the external resistor, Ig,
was measured to be 489.35Q, resulting in a gain of G =104.240.52.

The proportional resistance change, from the output of the amplifier stage is found
by combining (B.1) and (B.2),

ARsensor _ 1 [_Q_“”_"X AV} , (B.3)

RS ensor B E r V;

In all subsequent measurements of ARI?*"”W, the voltage driving the bridge net-

work, Vi, was supplied by battery and measured to be 8.8V. The instrumentation

amplifier’s reference voltage was set to ground.

B.2 Piezoelectric Signal Conditioning

The conditioning circuit used for the piezoelectric sensor signal is shown in Fig-
ure B.2. The op-amp used here is the LMC6001 Ultra-Low Input Current Amplifier

Eensos :: c oue
: @ Senser + LM C6001

=

Figure B.2: Piezoelectric Sensor Signal Conditioning

from National Semiconductor?, and is configured as an op-amp integrator. The

piezoelectric sensor is modelled here as a current source with inherent capacitance,

3National Semiconductor, 2900 Semiconductor Drive P.O. Box 58090, Santa Clara, California
USA. Web: http://wuw.national.com
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as indicated by Isensor ad Csensor- The virtual earth connected to the amplifier’s
non-inverting input, ensures that there is effectively no voltage drop across the
sensor, hence the output voltage from the amplifier, V,, is proportional to the

charge developed by the sensor,

Qsensor
V;)u = B.4
where Qgensor 15 the charge developed across the sensor and Cf is the capacitance

of the feedback capacitor.

The feedback resistor, [y, determines the rate of discharge of C, by providing a
direct current path. Ry was measured to be 100.4MS) whilst the capacitance of
C was 470pF (to 5%).

B.3 Data Acquisition

Data from both sensors was captured using a Data Translation? DT9802 acquisi-
tion board. This board offers 12-bit sampling resolution of up to 16 single-ended
(or 8 differential) channels at a maximum data throughput of 100k samples per
second. The input voltage range across which the digitisation process occurs is
user selectable from a number of predetermined ranges. In these experiments 12-
bit digitisation occurred across 20V, between -10V and +10V. The conversion of
digital values to voltage is performed simply, using

VRan
_ ge
VAnalogue - ]:QBitResolution VDigitalValue - VOffset (B5>

A Visual Basic program, employing Data Translation’s ActiveX driver controls®,

was written to capture and store data.

4Data Translation, Inc. 100 Locke Drive, Marlboro, MA, USA. Web: http://www.datx.com
SDTx-EZ ActiveX controls for sampling and plotting, available from Data Translation
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Appendix C

Piezoresistive Signal Conditioning

Circuit

The following analysis describes the signal conditioning circuit used to measure
resistance change of piezoresistive sensors. In this instance, the implementation
is a variation of the classic resistive (Wheatstone) bridge circuit, comprising of
four resistors connected through two parallel branches, driven by a constant input
voltage. The output voltage from the bridge is measured between points B and D
as shown in Figure C.1. R, Ry and Ry are of fixed resistance, whilst the resistance

of the sensor, Rgensor 1S allowed to change.

— Vbd

Figure C.1: Classic Resistive Bridge

Clearly the voltage difference between points A and C is independent of route,

203
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hence Vypc and Vape are the same, and equal to the input voltage, Vip;
Vin = Vase = Vapc (C.1)

For a fixed input voltage, V;,, the branch currents through points ABC and ADC
depend upon the resistance encountered:

Vi

C.2
RB + RSensor ) ( )

Iape = (

Vi

I = C.3
APC T (Ry + Ry) (C3)
It follows that the potential differences from point A to B and A to D are given

by the potential divider equations;

R
Vap = Iapc R = B+ R35 ] Vin (C.4)
R
VAD = ]ADC RQ = @731?—) V;n (C~5)
1

The voltage from B to D is hence the difference between C.4 and C.5;
Vep = Vap — Vap

RS Rl - RZ RSensor

Vin C.6
(RB -+ RSensor)(RQ + Rl) ( )

> Vep =

If the resistance of the piezoresistor is allowed to change from Rsepnsor 10 ( Rsensor +
ARgensor), then the change in output voltage, AV is given by

AV [RS Rl - RZ (RSensor + ARSensor) _ RB Rl - RZ RSensor V.
(R3 + RSensor)(R2 + Rl) (R3 + RSensor)(R2 + Rl) m
RQ A‘R.S'ensor
’:(RE': + RSensor)(RQ + Rl) ( )
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If resistor values are chosen such that the bridge is initially in balance, ie. Vpp =0
then from C.6, Rz R1 = Ry Rsensor OF

RS ensor Rl
—————— T —— T C -8
R, 7 (C.8)

Making use of C.8, C.7 reduces to

7‘ AR ensor
AV =l [ = } (14n) Vi, (C.9)
where ; ;
n=-——, and a = (L) (C.10)

RSensm‘

- (ARMW)

If ARgensor < Rsensor, then a — oo and n — 0. Under such a condition C.9

collapses to

r A]{Sensor
AV ~ — Vi C.11
(1 'J“T)Q {: RSensor :{ ( )
Figure C.2 plots the proportional change in voltage, %, against proportional

change in sensor resistance, %{iﬁw’ﬂ, for both the approximate linear and the exact
T

non-linear descriptions. Thesesz:n&;ves are derived from equations C.11 and C.9 for
four bridge resistance ratios, » = 0.1, 1, 10 and 100. The approximation C.11 is
generally considered valid for resistance changes of < 5% (See for example (Jones
& Chin 1983)). This is illustrated in figures C.2(b) and C.2(c)showing clearly
the non-linear deviation from C.11 as ARgensor increases, whilst figures C.2(a)

and C.2(d) exhibit reduced sensitivity to change in sensor resistance.
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Figure C.2: Linearity with Resistor Ratio
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Appendix D

Data Acquisition Circuit

D.1 Overview

This appendix provides a detailed description of the data acquisition circuit used

to capture the pressure sequences described in Chapter 5.

Figure D.1 provides the hardware detail for this circuit. As indicated in Chapter 5,
the circuit is based around Microchip’s 8-bit 16F84 Peripheral Interface Controller
(PIC). The task of the PIC is the timely initiation of the analogue to digital con-
version process, performed using Linear Technology’s TLC1285 12-bit successive
approximation ADC. Upon digitisation of the analogue signal, the PIC’s next task
is to transmit the data to a host PC. This is performed across a 2-wire serial link,
whose protocol is implemented in software. The sampling through-rate of this
circuit was set to 2kHz, enabling detailed capture of pressure response character-
istics.I t is the detail of the timing, sampling and communication functions which

form the subject of this appendix.

Before considering the software detail of the microcontroller’s operation, some
thought must be given to initialising the input and output ports of the PIC. The
16184 has two bi-directional I/O ports; port A and port B offering 5 and 8-bit
ports, respectively. Their direction is software selectable, depending upon the bit
state of specific control registers. These registers are called TRISA and TRISB,
respectively. Table D.1 shows the direction of the IO registers.
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10 Register Function Direction
RAO na na
RA1 na na
RA2 Indicator LED Qutput
RA3 Indicator LED Output
RA4 Indicator LED Output
RBO Interrupt Switch Input
RB1 I?C Communication Data | Input/Output
RB2 I2C Communication Clock | Input/Output
RB3 Serial Communication Tx Output
RB4 Serial Communication Rx Input
RB5 ADC Clock Output
RB6 ADC Data Out Input
RB7 ADC ChipSelect Output

Table D.1: PIC IO Registers Summary

The physical pin numbers for each register can be found by reference to Figure D.1.

Registers RA2-RA4 supply the output indicator signals, these are used primarily
for status indication and as an aid to debugging during software development.
RBO enables external signals to trigger software interrupts, allowing program flow
to be modified during run-time. In this case RB0 is configured as an input and
is connected to a push button switch, whose terminal is pulled-down by a 470¢2

resistor, preventing the input from floating.

Bit registers RB1 and RB2 are used to implement an I?C 2-wire serial interface
bus! between the PIC and an EEPROM? memory module. The EEPROM is
not used in this implementation, but is included to provide flexibility for future
applications. No further details of the I2C protocol will be given here, however,

the interested reader is directed to the reference below.

RB3 and RB4 implement the serial output and input communication lines, re-
spectively, whilst RB5-RB7 implement the 3-wire control of the ADC device. The
detailed function of these bit registers will be described subsequently.

Listing D.1 gives the detail of the C-header file for the main program code, pro-

Inter IC 2-wire communication protocol. Devised by Philips Inc. See for example,

http://www.semiconductors.philips.com/i2c/facts/ ,
2Electrically Erasable Programmable Read Only Memory, 24L.C16B from Microchip Tech-
nology Inc. 2355 West Chandler Blvd. Chandler, Arizona, USA 85224-6199. Web:

http://www.microchip.com
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viding name and constant definitions used in subsequent code listings.

Listing D.1: Acquisition Code - Header File

// ’logger.h’

// All definitions and constants for logger project.
// Relevant parts extracted from function files.

// Neil Henderson 7/6/°99

#define XTAL 4000000 // Xtal frequency (Hz) (serial.c)

#define BRATE 38400 // Baud rate (Hz) (serial.c)

#define EEPROM_Address 10 //24LC16B address.

#define Decision_Time 2000 //Time (mS) allowed for second RBO press

#define Comms_Flash_Period 1000 //Time (mS) for LED flash cycle during comms_mode.
#define Comms_LED_ON 300 //Duration (mS) for LED on during comms flash cycle.
#define sp_addr 1 //The starting location of sample period (pic’s eeprom)
#define ON =1

#define OFF =0

#define RBOInterruptLED RAO //Indicate RBO interrupt

#define timingInterruptLED RA1l

#define decisionModeLED RA2

#define decisionTimeLED RA3

#define sampleLED RA4

#define Int_button RBO //Button press interrupt (pin 6)

#define SDA RB1 //i2¢c serial data line (pin 7)

#define SCL RB2 //i2¢c serial clock line (pin 8)

#define TxData RB3 //Serial Tx Data (pin 9

#define RxData RB4 //Serial Rx Data (pin 10)

#define Clk RBS //ADC Bus Clock (pin 11)

#define Din RB6 //ADC Data in (pin 12)

#define CS RB7 //ADC Chip Select (pin 13)

#define IButton Direction  TRISBO

#define SDA_DIR TRISB1

#define SCL_DIR TRISB2

#define TxDirection TRISB3 // Serial Tx Direction register
#define RxDirection TRISB4 // Serial Rx Direction register
#define ADC_Clock_Dir TRISB5

#define ADC_Data_Dir TRISB6

#define ADC_CS_Dir TRISB7

D.2 Microcontroller Timing

The 16F84 has built-in timing interrupt sources. The primary timer - an 8-bit
register (called TMRO0) - increments in step with the processor’s instruction cycle,
which in-turn is determined by the external clocking frequency. As a result of

the PIC’s architecture, the actual instruction cycle consumes four external clock
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cycles, meaning that the instruction rate is one quarter of the clocking frequency,
in this case 1IMHz. The 16F84 offers the possibility of using either an oscillator
crystal or a simple RC circuit to provide the external clocking signal. For stability,

an oscillator crystal was used.

The main data acquisition program relies upon the PIC’s timing interrupt handler,
for the desired 2kHz sample rate. Whilst the instruction cycle at 1MHz rate is 1us,
the sampling interrupt is required to trip every 500us. This is achieved by means
of a timing prescaler, whose function is to delay the incrementing of TMRO by a
predefined number of instruction cycles. To arrive at an interrupt time of 500us
the prescaler was set to a ratio of 1:2, such that every second instruction cycle
causes the TMRO register to increment, and an initial value of -250 was loaded
into TMRO. When enabled, the timing interrupt is initiated when TMRO changes
to 0.

Prescaler characteristics are determined by selective bit manipulation of the OP-
TION control register. For further details see the 16F84 data sheet from Mi-
crochip. Details of this specific implementation are given below, in the code listing

for the main acquisition program (listing D.2).

Listing D.2: Acquisition Code - Main Program

// ’loggerv2.c’

// Data Acquisition Development program.

// Include file - ’logger.h’ - works with; delay_l.c 7/6/°99
// serial_l.c 7/6/’99
// This is Version 2.0 14/12/°99

// Cut Down versjon of Loggervi.0 - allowing only sample to PC
// functiomality at 500Hz sample rate

//

// NOTE::: Serial PIC->PC comms set for 38400 Baud transmission.

// Sample Rate Increased and Reliable to 2kHz.

//

// Version 3.0 NH 11/1/2000

#include <pic1684.h> //Standard pic registers

#include "logger.h" //Definitions and constants for Acquisition program
#include "serial_l.c" //Serial comms functions - Modified

#include "delay_l.c" //Delay functions - Modified.

#include "adcfs.c"

[/ *xx*k*%kxxx*xGlobals from here...........ovvvunn.

const sample_period = 1; //Total Sample Period = sample_period x 500us
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unsigned long  event_counter; //Tracks the number of timing interrupts
unsigned char  sample_NOW; //Flag - true when time to sample

//*¥*x*xxkkxkInterrupt handler from here.........

static void interrupt isr(void)

¢ if (INTCON,TOIF) //..then counter’s ticking....
¢ timingInterruptLED ON;
if (-—event_counter==0) //...then it’s time to sample!
¢ sample_NOW=1; // = TRUE - Go Sample!

event_counter = sample_period; //Reload event trigger...

}

//*x**%Finish up gracefully..................

TMRO -= 250; //reload timer with ~250 * 1uS ’ticks’
INTCON,TOIF = 0; //...and clear flag.

timingInterruptLED OFF;

}//And that’s the timer tick dealt with.
}//interrupts dealt with.

//xkkwrrrkkxMain from here.........coveevnvnnnnns

nmain(void)

{
//Variables from here....
unsigned char data_store[2]; //2byte array - store ADC return data
unsigned char* data_pointer; //pointer to character array.

//*xxxxxxxUser Response 100D fOllOWS...uviiiivrnernnsrnasennasen
//Set up interrupts..............
//Timer interrupt....

OPTION, PSA = 0; //Assign PreScaler to timer.
OPTION, TOCS = 0; //Clock Source is internal instruction clock.

OPTION, PSO = O; //Set up prescaler ratio...
OPTION, PS1 = 0; //
OPTION, PS2 = 0; //...Prescaler is 1:2 - Interrupt every 2us.

INTCON,TOIF

L
(=

//Clear interrupt flag.
//Interrupt masks...
INTCON,GIE = 1; //Enable all unmasked interrupts

//Set up PORTS and TRIS registers......

PORTA = 0O; //All OFF!

TRISA = 0; //ALl outputs
PORTB = 0O; //A11 OFF.

TRISB = 0; //A1l outputs...

//Set up serial link...
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RxDirection = 1; //Rx - input...

TxDirection = 0; //Tx - output.

OPTION,RBPU = O; //...Enable Weak pull-ups on input pims...
RxData = 1; //Serial Rx HIGH...

TxData = 1; //Serial Tx High...

//8et up ADC Bus...

ADC_Clock_Dir = 0; //Clock is generated by pic - output...
ADC_Data_Dir = 1; //Data from ADC - input...

ADC_CS_Dir = 0; //Controlled by pic - output.
data_pointer = data_store; //Point to 2byte array

event_counter = sample_period; //Number of 250 uSeconds between each sampling event
INTCON,TOIE = 1; //Enable timing interrupts

while(1) //Main Routine - keep it going....
{
if (sample_NOW)
{
decisionTimeLED ON;

INTCON,TOIE = 0; //Disable timing interrupt - but timer continues ’ticking’
GetADCData(data_pointer); //Initiate ADC

decisionModeLED ON;
putch(*data_pointer); //Serial transmission of first byte->PC

decisionTimeLED OFF;
decisionModeLED OFF;

INTCON,TOIE = 1; //Reenable timing interrupt
sample NOW = 0O;
¥

}
}//End main()

The acquisition code structure, is straightforward. After initialising IO ports,
timing interrupts and sampling parameters, the program goes into an infinite loop,
doing nothing until the sampling interrupt occurs. At this point the PIC initiates
execution of the analogue to digital conversion, retrieves the data from the ACD,
then transmits this across a serial link to the host PC. A small Visual Basic
Program, running on PC, collects and stores the data. This will be dealt with at

the end of this appendix.
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D.3 Serial Port Implementation

Communication between PIC and PC is performed by the implementation of an
asynchronous serial protocol in software. In this method, an eight bit data byte is
sandwiched between start and stop bits. Bits are transmitted in order of LSB to
MSB, the duration of which is controlled by software generated delays. The delay
length for each bit is calculated, in terms of instruction cycles, at compile time.

Parity checking and handshaking techniques are not employed.

From the circuit diagram of Figure D.1, it can be seen that between the PIC and
PC there is a 232-TTL level converter. This converts the RS-232 voltage levels
(+5 to +15V for logic LOW and -5 to -15V for logic HIGH), to CMOS/TTL levels
(+5V HIGH and 0V LOW). Figure D.2 shows the TTL and RS-232 levels, for the

transmission of one byte of value 150 (base 10).

The data transfer rate was set to 38400 Baud, under which the transmission of
one byte takes 330us to complete. In this software implementation, faster transfer
rates were not reliably achievable. The asynchronous nature of this protocol relies
upon independent clocks at both PC and PIC running at precisely the same rate,

making faster communications unreliable between these devices.

Sampling at the required rate of 2kHz, requires that both data acquisition and
data transmission processes complete within 500us. Taking the naive view that
the efficient transmission of 12-bit ADC values requires that two (12-bit) words be
packaged into three transmission bytes, the total transmission time for two 12-bit
words would be 990us, or 495us per word. Improving the timing constraints by
considering only the bit-transmission time running at 38400Baud, and imagining
a constant bit-stream protocol, transmission of each bit would require 36.67us or
transmission of a full 12-bit word would require 440us. This leaves only 60us to
initiate and capture the full 12-bit data word from the ADC. Clearly, the serial

data transmission is the limiting factor in the data throughput.

The timing situation can be improved by considering only the first 8-bits of the
ADC’s digital signal. This is justified in that, as indicated in Chapter 5, the
maximum conversion error of the ADC device is =8 x LSB. Considering only the
first 8-bits of conversion data has the effect of increasing the maximum error from
0.2% to 0.37%. As indicated the transmission of one byte requires 330us allowing
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a maximum of 170us for the conversion process. In this instance the reduction
of precision due to discarding the 4 Least Significant Bits, is justified against the

improved timing constraints.

Simple loop delays are used to generate the time required for each bit transmission.
These are generated by firstly calculating the number of instruction cycles required
for each bit and subtracting from this the number of instructions used to set up
and execute the loop test conditions. This number is then divided by the number
of instruction cycles used during each loop. This is the number of times the wait
loop has to execute to generated the required bit-time. Code Listing D.3 provides

the C-code used to implement serial transmission.

Listing D.3: Serial Transmission Function

/*
* Serial port driver for 16Cxx chips
* using software delays.
*
* Copyright (C)1996 HI-TECH Software.
* Freely distubutable.
*/
// Based around HI-TECH’s serial functions - modified for clarity.
// All ’tuneable’ parameters removed to ’logger.h’
/7 :
// NH 7/6/°99

#include <conio.h>
#define DLY 3 /% cycles per null loop */
#define TX_OHEAD 13 /* overhead cycles per loop */

#define DELAY(ohead) (((XTAL/4/BRATE)-(ohead))/DLY)

void
putch(char c)
{
unsigned char dly, bitno;
TxDirection = 0; //Replaces ’INIT_PORT’ (NH)
TxData = 0; /* start bit */
bitno = 8;
do {
dly = DELAY(TX_OHEAD); /* wait one bit time */
do
/* nix */ ;
while(--dly); //Until delay is complete ~ dly=0
if(c & 1) // bit value TRUE??
TxData = 1; //Transmit HIGH
if(t(c & 1)) // bit value NOT (TRUE)??
TxData = 0; //Transmit LOW
c = (c > 1) | 0x80; // bit-shift data by one place.

} while(~~bitno);

TxData = 1; //Stop-bit on transmission line.
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The code used in this serial implementation was modified from Hi-Tec’s library file

serial.c, which can be found in the samples directory of their compiler installation.

D.4 Control of the ADC

Communications between PIC and ADC are synchronous, with the PIC supply-
ing the required clock pulses. There are three essential stages to this protocol.®
Firstly the PIC must initiate conversion by driving the ADC’s -Chip Select (-CS)
pin LOW. Secondly, the PIC provides fifteen clock pulses, of which, the first three
are used for set up purposes, the remaining twelve each causing a data bit to be
expressed on the ADC’s data out pin. During this period the PIC must retrieve
and store each data bit as it arrives. Thirdly, the PIC must complete the conver-
sion process by driving -CS HIGH. The timing diagram is shown schematically in
Figure D.3. The clock period was 5us, leading to an overall sample time of 75us.
A delay of 5 us is consumed by only 5 instruction cycles and as such was imple-
mented using fixed non-significant instructions. Again because of the extremely
short clock cycle, the code was implemented as a series of explicit bit assignments,
rather than being rolled into loops. Code listing D.4 provides the implementation.

Listing D.4: Control of ADC

// ADC.c

// Contains code to drive ADC.

// Data is referenced through int array pointer -
// declare this before use.

// Neil Henderson 20/5/’99

// changed to use char* rather than intx*
// NH 16/6/799.

[/ ek ko ok ok stk ok o ok ok Ok ¥ KoK K
// ADCfs.c (ADC fast sample)

// Bitlengths reduced to improve sample time.
// NH 13/1/2000

3For further details see Linear Technology’s data sheets for the TL.C1285. These are available
from http://www.linear.com
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// Functionality extracted from nested loops - Loops unraveled to improve speed.
// NH 13/1/2000
//

void GetADCData( char* datapointer )
//Function to initiate ADC and store returned data in two byte array.
signed char cpulse; //count pulses generated.
char dbytel, dbyte2; //Store data retrieved from ADC

char wastetime;

CS = 0; //-CS Low - initiate ADC

dbytel = 0;
//Now state all transitions explicitly - try and minimize time requirements...
Clk = 0; [/ ok ks o ook o ok oK ok oK R K
wastetime = 0;
Clk= 1;
wastetime = 1;
/7]
Clk = 0; /]
wastetime = 0; //
Clk= 1; // Initial 3 pulse cycles
wvastetime = 1; //
/7]
Clk = 0; /71
wastetime = 0O;
Clk= 1;

wastetime = 1; //#sockkskokskiokkkskkokkokkoksdkkonr

//Collect only the MSByte -~ disregard LSByte data....

Clk = 0O; [ /R Aotk ok sk sk ok ok ok ok sk ok sk okok ok
dbytel = dbytel <<1i; //bitshift left
if (Din) //MSByte MSB
{
dbytel++; //Add Din as LSB
}
Clk = 1;

wastetime = 1;

Clk = Q;
dbytel = dbytel <<1; //bitshift left
if (Din) //MSByte B6
{
dbytel++; //Add Din as LSB
¥
Clk = 1;

wastetime = 1;

Clk = 0;
dbytel = dbytel <<1; //bitshift left
if (Din) //MSByte B5
{
dbytel++; //Add Din as LSB
}
Clk = 1;

wastetime = 1;

Clk = 0;
dbytel = dbytel <<i; //bitshift left
if (Din) //MSByte B4

216



D Data Acquisition Circuit 217

{

dbytel++; //Add Din as LSB
}
Clk = 1;

wvastetime = 1;

Clk = 0;
dbytel = dbytel <<1; //bitshift left
if (Din) //MSByte B3
{
dbytel++; //Add Din as LSB
}
Clk = 1;

wastetime = 1;

Clk = 0;
dbytel = dbytel <<1; //bitshift left
if (Din) //MSByte B2

{

dbytel++; //Add Din as LSB
¥
Clk = 1;
wastetime = 1;

Clk = 0;
dbytel = dbytel <<1; //bitshift left
if (Din) //MSByte B1
{
dbytel++; //Add Din as LSB
¥
Clk = 1;

wastetime = 1;

Clk = 0;
dbytel = dbytel <<i; //vitshift left
if (Din) //MSByte BO
{
dbytel++;  //Add Din as LSB
}
Clk = 1;
wastetime = 1; //**********************

//MSByte collected - finished with ADC.
//Store data in external array

*datapointer = dbytel; //MSB -> B4

CcS = 1; //Finished with ADC Bus

The total time required for sampling and data transmission was 420ms. Sampling
at 2kHz requires that both processes finish within 500ms, leaving no room for im-
provement in the sample rate, nor transmission of the ADC’s full 12bit range. This

implementation has reached its limit and is inappropriate for further development.
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D.5 PC Data Receive Code

A simple Visual Basic program was written to retrieve data transmitted from the
PIC. The core of which loops until the user issues a stop command, each time
retrieving a single transmitted byte from the PC’s serial buffer and saving to file.

The code for this core function can be found in listing D.5.

Listing D.5: Retrieve Data from Serial Buffer

Private Sub Cmd_Start_Click()

’’Subroutine to Retrieve and store each byte from the serial port’s buffer.

Dim CommData As Variant
Dim dataByte() As Byte
Dim Person As String

Sampling = True

GraphForm.Hide ’’Disable All buttons except STOP...
Cmd_Start.Enabled = False

Cmd_Stop.Enabled = True

Cmd_FinishCollecting.Enabled = False

CardOnDesk_Option.Enabled = False

CardOnMat_Dption.Enabled = False

CardInHand_Option.Enabled = False

Call UpdateStats ’?’Add 1 to relevant sample type
Person = MainForm.PersonName + TodaysDate() + SampleQualifier()

’’Now generate Filename from Person’s Name,Date, Option +Number
Filename = MainForm.DirectoryPath + Person + “.txt"
NameLabel.Caption = Person

outputfile = FreeFile ’’Open File...
Open Filename For Output As #outputfile

MSComml.PortOpen = True ’’0Open Comm Link...

While (Sampling)
DoEvents

Do
DoEvents

Loop Until ((MSComml.InBufferCount > 0)) ’’We’ve got a character..!

CommbData = MSCommi.Input
dataByte = CommData

If (Sampling) Then !'User hasn’t pressed [Stop]
Print #outputfile, CByte(dataByte(0))
End If
Wend
Close ’’any open files

218



D Data Acquisition Circuit 219

MSComm1i.PortOpen = False

End Sub
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Figure D.3: ADC Timing Requirements
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Appendix E

Feature Extraction Algorithm

E.1 Introduction

The pressure sequence method involves capturing the analog response of a par-
ticipant tapping rhythms upon a piezoelectric pressure sensor, this is outlined in
detail in Chapter 5. Figures 5.3 to 5.10 show captured sequences, sampled at
2kHz, from 16 different participants.

Much of the work involved in demonstrating the viability of the pressure sequence
method is to show its discrimination potential. For this, some method of quan-
titively comparing sequences must be sought. Rather than comparing raw digi-
tised sequences, pertinent characteristics may be extracted and used as a basis for
comparison, this is known as feature extraction. Visual inspection of captured se-
quences with the same number of pulses (presented in Chapter 5) show differences
between sequences in terms of pulse amplitudes, pulse widths and the time inter-
vals between pulses. It is, hence, upon these characteristics that the verification

functions of Chapter 5 are based.

For example, table E.1 provides this feature representation corresponding to fig-
ures 5.3(a) and 5.3(b). Both sequences have three pulses and originate from two
participants - participant A’ and 'B’, respectively. Since the components of a fea-
ture vector are dimensionless, units of each component are purposefully omitted.
For interest, however, pulse amplitudes are presented in terms of digital steps,

whilst pulse widths and interval durations are given in terms of sample periods.
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Feature Vector - Components
Participant | Amplitude; | Width; | Interval; | Amplitudey | Widtha Intervaly | Amplitudes | Widths
A’ 78 90 568 66 79 213 71 99
B’ 132 93 407 156 107 811 203 133

Table E.1: Comparison of two feature vectors

The component subscripts of table E.1 refer to the pulse number with which they

are associated.

Since there are two features associated with each pulse (pulse amplitude and pulse
width) and one interval between two pulses, a sequence of n pulses will result in a

feature vector of (3n — 1) components.

It is with these extracted features, combined to form a feature vector, pressure
sequences will be compared. From here on the term sequence (in the context of
”...sequence X...” ) will refer to unprocessed analog signals, whilst vector (in similar

context) will refer to feature vectors derived from sequences.

E.2 Implementation Details

The feature extraction algorithm in this implementation simply searches across a
raw data file looking for data crossing of a noise threshold. This threshold is set to
an ADC value of 5, in this case equivalent of around 49mV. Once data crosses the
threshold, the algorithm traverses these super-threshold values, comparing subse-
quent values to previous, ascertaining the pulse’s peak level. A counter, measuring
pulse width, is initiated upon positive threshold crossing, and incremented for each

data point above the noise threshold.

This level of complexity would be sufficient to characterise a simple pulse, rising
above the nose threshold, reaching some peak level, then returning to sub-threshold

levels.

However, many of the pulses captured, do not follow elementary trajectories. Par-
ticipant I's third pulse, described in Figure 5.11, is an example of a more complex
form. In this, the sensor’s output voltage rises to a peak then falls to a local
minima, rises to a local maxima before finally returning to ground. If the voltage
minima was to drop below the noise threshold, then the above algorithm would
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characterise this response as two separate pulses.

An extreme example of this form, from another user - User ’Q)’ - is shown in Fig-
ure E.1. In reaching the local minima, the sensor is generating charge in the oppo-
site sense, which is masked by the charge amp’s 0V supply line (See Appendix D
and section B.2 for circuit diagram). No choice of positive noise threshold would
allow this response to be characterised as a singular pulse, using the outlined al-

gorithm. For the feature extraction algorithm to cope with this form of pressure
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Figure E.1: Participant @ - Pulse through Zero

response, it must look-forward for a short interval. If, within this short time inter-
val, the raw data stream returns above the noise threshold, then this region will
be considered part of the same pulse, otherwise, the pulse will be assumed to have
reached completion upon the last negative crossing. The overall pulse width will
be measured from the first positive threshold crossing, to the negative crossing
beyond which the data does not return above threshold, within the look-forward

time interval.

If the look-forward interval is too short then the second part of the response will be
considered a separate pulse. Too long, on the other hand, and subsequent pulses
will be considered part of previous pulses. A suitable look-forward interval was
chosen by considering both the shortest inter-pulse interval and the longest intra-
pulse sub-threshold interval. From captured pressure sequences, these were found

to be 64.5ms and 22.5ms, respectively. Taking an interval approximately halfway
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between shortest inter-pulse and intra-pulse sub-threshold times, the look-forward

interval was set to 45ms.

E.3 Visual Basic Implementation

The following code sections implement the feature extraction approach outlined
above. Listing E.1 provides detail of the main program structure, whilst listing E.2
contains the essence of the feature extraction algorithm. Listing E.3 is called by
the main algorithm when data crosses the noise threshold. This code function
characterises the pulse in terms of amplitude and width. The other functions

within listing E.4 contain ancillary file handling functions, and are included for

completeness.

Code was implemented using Visual Basic V5.0.

Listing E.1: Feature Extraction - Main

Option Explicit

P xkkkdokkdk Constants from here. ..

Const PulseThreshold = 5 7 = 749 mV ... This is the noise threshold.

Const PulseEndGap = 80 ’? =45 ms ... This is the ’look forward’ time interval

Const DataDirectory = "c:\My Documents\Pressure Biometric\ _
Captured Data\Enrolment Sequences\"
Const ResultsDirectory = "c:\My Documents\Pressure Biometric\ _
Results\ComparativeAnalysis\Enrolment Sequence Summaries - LowThreshold\"

?2akkxkkkk*x Globals from here...
Private RawDataFileno As Variant
Private ResultsFile As Variant

Private FileList(2000) As String

Private Sub cmdExtractFeatures_Click()
?? Procedure sequentially steps through all raw pressure sequence files

’? in ’DataDirectory’
’? Extracts Pulse Height, Pulse Width and interval length - then saves to file.

Dim NumberofFiles As Integer ?’Number of files in DataDirectory
Dim i As Integer ??loop/file counter

Dim ExtractedFeatures As String ’’Extracted features held in string
Dim FeatureFileno As Variant ’’File channel for output file

Dim RawDataFilename As String
Dim FeatureFilename As String
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NumberofFiles = GenerateFileList ’’Create a list - held in global ’'Filelist’ -

For i = 1 To NumberofFiles

DoEvents
RawDataFilename = FileList(i) ’?’Select RawDataFile
Labell.Caption = RawDataFilename

RawDataFileno = FreeFile ’’Open File channel

Open (DataDirectory + RawDataFilename) For Input As RawDataFileno
ExtractedFeatures = FeatureExtraction ’’Extract Features from raw pressure Sequence

FeatureFilename = ConvertFilename(RawDataFilename)

FeatureFileno = FreeFile ’’0Open channel for Output
Open ResultsDirectory + FeatureFilename For Output As FeatureFileno
Print #FeatureFileno, ExtractedFeatures IPrint Extracted Features to file
Close ’?Close all file
Next I

End Sub

Listing E.2: Feature Extraction Function

Private Function FeatureExtraction() As String
"'File MUST be PREVIDUSLY OPENED through the [globall channel ’CurrentFile’

Dim DataVal As Integer

Dim IntervalWidth As Integer

Dim NumberofPulses As Integer

Dim BioSampleStarted As Boolean

Dim JustReturnedFromPulse As Boolean
Dim Analysis As String

IntervalWidth = 0
NumberofPulses = 0
BioSampleStarted = False
JustReturnedFromPulse = False
Analysis = ""

Do While Not (EOF(RawDataFileno)) ’?Sift through data...

DoEvents
Input #RawDataFileno, DataVal

If (DataVal >= PulseThreshold) Then ?’We’ve got a pulse

If (BioSampleStarted) Then ''Ye've just returned from an interval
IntervalWidth = IntervalWidth + 1 ’’Because this super-threshold value...
1 closes the interval.
Analysis = Analysis + CStr(IntervalWidth) + ";"
IntervalWidth = 0
End If

Analysis = Analysis + PulseCharacteristics()
NumberofPulses = NumberofPulses + 1
BioSampleStarted = True
JustReturnedFromPulse = True
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End If

1f (DataVal < PulseThreshold) And (BioSampleStarted) Then
If (JustReturnedFromPulse) Then ’’Must add the interval gap read in...
??  PulseCharacteristics()
IntervalWidth = IntervalWidth + PulseEndGap
JustReturnedFromPulse = False

End If
IntervalWidth = IntervalWidth + 1
End If
Loop
FeatureExtraction = CStr(NumberofPulses) + ":" + Analysis

End Function

Listing E.3: Feature Extraction - Pulse Characteristics

Private Function PulseCharacteristics() As String

Dim EndofPulse As Boolean
Dim SuperThreshold As Boolean
Dim PulseWidth As Integer

Dim GapWidth As Integer

Dim PulseHeight As Integer
Dim DataVal As Integer

EndofPulse = False

SuperThreshold = False

PulseWidth = 0 ’’We’ve already crossed the threshold in calling function.

GapWidth = 0 ’’?...s0...each subsequent super-threshold value closes a
’? pulse time interval.

PulseHeight = 0

Do While Not (EOF(RawDataFileno)) And Not (EndofPulse)

DoEvents
Input #RawDataFileno, DataVal
If (DataVal >= PulseThreshold) Then ’’...we’re on a pulse...
If Not (SuperThreshold) Then ’?...ve’ve just crossed a gap - update Pulse width

SuperThreshold = True
PulseWidth = PulseWidth + GapWidth
GapWidth = 0

End If

PulseWidth = PulseWidth + 1

If (DataVal > PulseHeight) Then
PulseHeight = DataVal

End If

Else ’?...we’re on a gap...
SuperThreshold = False
GapWidth = GapWidth + 1

If (GapWidth = PulseEndGap) Then ’’We’ve reached the end of the pulse.
EndofPulse = True
End If
End If
Loop
PulseCharacteristics = CStr(PulseHeight) + "," + CStr(PulseWidth) + ","
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End Function

Listing E.4: File Handling Functions

Private Function GenerateFileList() As Integer
>’Builds a list of all files in DataDirectory...

Dim File As String

Dim FileListString As String
Dim NumberofFiles As Integer
Dim i As Integer

File = ""
FileListString = ""
NumberofFiles = 0

File = Dir(DataDirectory)
If File <> "" Then
NumberofFiles = NumberofFiles + 1
FileList(NumberofFiles) = File
End If

Do While File <> ""
DoEvents
File = Dir ?’Get next file in dir...

If File <> "" Then

NumberofFiles = NumberofFiles + 1

FileList (NumberofFiles) = File ’?Add to Global Array
End If

Loop
Labell.Caption = CStr(NumberofFiles)

GenerateFileList = NumberofFiles ’’Return the number of files in directory

End Function

Private Function ConvertFilename(Fname As String) As String
’’Simple Function to convert Raw Data Filename to Feature Filename...
Dim FnameLength As Integer

Dim basename As String
Dim NumberIndicator As String

FnameLength = Len(Fname)

basename = Left(Fname, FnameLength - 5) ’’Extract name before NumberIndicator

NumberIndicator = Mid(Fname, (FnameLength - 4), 1)’’Extract File number indicator
ConvertFilename = basename + "F" + NumberIndicator + ".txt" ’’Build and return

7 Converted filename
End Function
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Appendix F

Enrolment & Verification

Functions

The enrolment and verification functions discussed at length in Chapter 5 were im-
plemented using the MATLAB! technical computation package. MATLAB offers
high level vector and matrix manipulation functions, making it inherently suitable

for the analysis and direct comparison of pressure sequence verification functions.

F.1 Main Program Framework

In order to directly compare verification schemes, in terms of both error rates and
computational requirements, a common infrastructure is required. To this end a
framework program was written to support the tasks common to all verification
methods. Explicit MatLab code for this program is provided in listing F.1. The
essential code structure of which can be distilled to the following;

e Retrieve all impostor vectors (from file)
e For EACH participant:
— Retrieve enrolment vectors

— Call Enrolment function - Generate reference vector

— For a number of Acceptance Thresholds:

'MATLAB version 5.3, available from The MathWorks Inc. 24 Prime Park Way, Natick, MA
01760-1500, USA. Web: http://www.mathworks.com
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* Call Verification function - Verify participant’s test vectors

— For all impostor vectors:

* If impostor vector has same number of pulses as reference, then verify impostor

e Save results.

Listing F.1: MatLab - Main Program

% Pressure Sequence - Enrolment/Verification Functions

%

% Matlab Script File - Version 1.2 - Condensed to Functions

% NOTE: This is the Skeletal Code to perform both enrolment and
% verification. Change Enrolment and verification functions
% for each verifier

% NH 10/8/700

WADAALINIAAALAYL Constants from here...

ResultsPath = ’C:\My Documents\Pressure Biometric\Results\MatLab Analysis\Results\’;

ReferenceVectorDir = ’C:\My Documents\Pressure Biometric\Results\MatLab Analysis\
\Reference Vectors\’;

TestSequenceDir = ’C:\My Documents\Pressure Biometric\Results\ComparativeAnalysis\
Test Sequence Summaries\’;

extension = ?.txt’;
TestSummaryIndicator = ’TS’; %#Self-Test Summary Filename indicator

NumberofUsers = 33; %Number of Enrolled Users

RRARIALSANSALAY Variables & Matrices from here...

EnrolmentFlops = zeros(1,2); %[EnrolmentFlops, NumberofEnrolments]
VerificationFlops = zeros(1,2); %[VerificationFlops, NumberofVerifications]
EnrolmentVectors = [0]; %Holds all eight Enrolment Feature Vectors
ImpostorVectors = [0]; %Holds ALL Impostor Feature Vectors
ComparisonResult = zeros(1,2); %Return data from Comparison function

%[Comparison Performed??, Accepted or Rejected]
Rejections = zeros(1,2); %Running Tally of [False Rejections,No. comparisons]
Acceptances = zeros(1,2); %Running tally of [False Acceptances,No.comparisons]

StartThreshold = 0;

NumberofThresholdSteps = 80; #Number of Comparison Threshold Calculation Steps.
ThresholdStep = 0.25; %Threshold Calculation Step Size.
MaxNumberofPulses = 15;

global Results; %Results array - 3rd dimension-pulse number pages.

Results = zeros(NumberofThresholdSteps,5,MaxNumberofPulses);

A YAy Ay YA NN S YA YNy NN AN A YA A Y SN Y YN YA NSNS AN S S Y AN AN
%% Transfer Impostor Feature vectors from File to Impostor MATRIX... %UAAULUL

disp(’....Retrieving Impostor Vectors...’);
ImpostorVectors = RetrievelmpostorVectors; %Retrieve Impostor Vectors
disp(’Impostor Feature Vectors - Retrieved!’);

ALRALAALA Impostor Feature Vectors Retrieved - Matrix Created. YUAAA%ULALALA
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Tl A Tl Ll Rl L Ll AR R R AT IR NI L R AT DL AU IR D DRIII DA A LRI R B LIAALY,

DALl LAt U Rl UI R ARR LRI R LTI A AINA AL BARDIRAAL AN LN ANRARAIA AL IA LR IA ALY,
TUBITIIDLILALLALAAAAY Main Program Loop From Here ... AAAUAAAAGALIIAALLL ALY,
YA AN NN YA S AN NSNS N AN S YA AN SN AN S AN AN Y YA NN AN

for Person = 1:NumberofUsers %Go through all Participants

PersonlName = PeopleList(Person); YPerson to be dealt with.
disp([’Enroling User ’ int2str(Person)]);

EnrolmentVectors = RetrieveEnrolmentVectors(PersonName);
[m,n] = size(EnrolmentVectors);
NPulses = (n+1)/3;

A AN A AN N A A AN YA AN AR AN AN AN AN YA A VAN R A A A KA A A A
TN ENROL USER WA Mt A d

flops(0); %Reset FLOP counter
ReferenceProfile = Enrol(EnrolmentVectors); %ENROL this Participant
EnrolmentFlops(1) = EnrolmentFlops(1) +flops; Joperations required
EnrolmentFlops(2) = EnrolmentFlops(2)+1; %Number of enrolments performed

SaveReferenceToFile (ReferenceProfile, PersonName);

SARAAILLAIS AL UAA ENROLMENT COMPLETED & Data Saved %UAAULAALUALALLLL KIS IY:
Il R Rl T Rl Tl Tt ettt T T AT Bl Tl h T KAt bl It K Tl o Ve

B L A e l I Ll R Al el Tl Rl I AT A TR AR A DRI R ARIRA DS DAY
RALLIRIRALAAAIAAAAY, Verification From Here. . . WUAAAAAAAAGANLA LI IS DSttt
for thresh = 1:NumberofThresholdSteps

Threshold = StartThreshold + (thresh-1)*ThresholdStep;
disp([’Threshold :’ num2str(Threshold)]);

AALILAAANALY FALSE REJECTION RATE FROM HERE. .. YUAULAULIALIIS DAL IR %L,

Rejections = zeros(1,2);
Acceptances = zeros(1,2);

for i = 1:8 %#Self-Test Feature Vectors....For False Rejection Rate

basefilename = [PersonName TestSummaryIndicator int2str(i)];
filename = [TestSequenceDir basefilename extension]; %Generate filename

T=dlmread(filename,’,’); %Retrieve Test Feature Vector...

flops(0); %Reset Flops counter
ComparisonResult = Verify(T,ReferenceProfile,Threshold);

if ComparisonResult(1) % ...if Test and Reference Vectors have same no. pulses..

% ....S0 Test...

VerificationFlops(1) = VerificationFlops(1) + flops; %Update verification FLOPs

VerificationFlops(2) = VerificationFlops(2) + 1;

Rejections(2) = Rejections(2) + 1; %Another Comparison made.

Rejections(1) = Rejections(1) + ~“ComparisonResult(2); %...and the result stored.

end % ... if branch.

end ‘%for Feature Vector loop.
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YURLLLLAGYLY, False Rejection Complete. UhUAAAAAAGLAALLLLI AT AN LL LIS ALY

WAUHNAA%AAY%YS FALSE ACCEPTANCE RATES FROM HERE... WAAAAAAAAALLAAAAAALL
[NumberofImpostors,components] = size(ImpostorVectors);
for i = 1:NumberofImpostors

ImpostorVector = ImpostorVectors(i,:);
flops(0);

ComparisonResult = Verify(ImpostorVector,ReferenceProfile,Threshold);

if ComparisonResult(1) ATest and Mean vectors have same no.pulses

% ....So Perform Test...

Acceptances(2) = Acceptances(2)+1; “Another comparison made...
Acceptances(1) = Acceptances(l)+CompariscnResult(2); %...And the Result stored.

VerificationFlops(1) = VerificationFlops(1l) +flops; YUpdate verification FLOPs
VerificationFlops(2) = VerificationFlops(2) +1;
end  Aif

end % Number of Impostors Loop.

WARIAIAILY, False Acceptance Complete. LAMANMLLMIMILALIIIMEMLIAALIIL S

BRI ISR RII LRI N LR L AA LA Update Results Matrix...
Results(thresh,1,NPulses) = Threshold;

Results(thresh,2,NPulses) Results(thresh,2,NPulses) + Rejections(1);
Results(thresh,3,NPulses) Results(thresh,3,NPulses) + Rejections(2);
Results(thresh,4,NPulses) Results(thresh,4,NPulses) + Acceptances(1);
Results{thresh,5,NPulses) Results(thresh,5,NPulses) + Acceptances(2);

DDA RL IR L DAL LTI AL R A b AL LA Append to User Results File...
FRR = (Rejections(1)/Rejections(2))*100;

FAR = (Acceptances(1)/Acceptances(2))*100;
SaveUserResults(PersonName, Threshold, FRR, FAR);

end %Threshold value Loop

WRRALLIIRLAAARANLA RS Verification Complete. UhUAUALLAALALLLAAULIA AL AL Y,
B Il A Wt et I Tt l T R Tl NI I WA AR BT AL RIS L LA ARDI AL AL LTI

end %Person Loop.

Y A AN A N AN A ANy SN SN A NSNS AN YA AN AN AN YA AN A

WRRARBIRLLARRIAAAAALY, END Main Program Loop. AAALIALLARLLLALLLIIAAARIAL AN AL
yA

YYANAAAA

y) YA

Nl BRIl AT R I AR LRI AL TR WA AN D AL L LLART AL ALA LI

YN YYANANYATANAN

Rl B Ll L R A e Rt Il ALl L RIS AL TN,
WARARILALIILDIARALLANAAAANAYL Finally ~ SAVE RESULTS. .. UAAUALAALGRGRAIGLIAALG DY

YNo.of Rejections
YComparisons made

SaveAllResults(Results, EnrolmentFlops, VerificationFlops, NumberofThresholdSteps,

MaxNumberofPulses) ;

Enrolment and verification functions, specific to each verification method, were

written and inserted into the above code. The next section considers the code

implementation for each method.

232



F Enrolment & Verification Functions 233

F.2 Enrolment & Verification Code

This section provides the enrolment and verification functinos for each of the ver-

ification schemes presented in section 5.4. These code blocks slot directly into the

preceding program code.

F.2.1 /¢ & ¢; norm Functions (Fixed Threshold)

Each participant’s reference vector, R is constructed, simply, from the mean of

each component of their enrolment vectors. This can be stated as follows:

1 m
g — T i, I?.l
T m ;%;; e]z ( )

where r; is the i component of reference vector, R, m is the number of enrolment

vectors, E and e;, is the 7" component of the ;¢ enrolment vector.

MatLab provides high level vector functions, and so equation (F.1) is implemented

for all components of R as follows (code listing F.2):

Listing F.2: Mean Component Enrolment

function ReferenceProfile = Enrol(EnrolmentVectors)

%% Enrolment function - ’Enrol( ..., )?’

W

%% Calculates the mean of each component from all Enrolment Vectors

%% Returns the mean reference vector as the ’R’ field of the ’ReferenceProfile’
%% structure.

Wh

%% 11, 12 norms and component-wise linear verification schemes.

Wh

%% NH 12/8/°01.

%%4% Calculate Mean ...
ReferenceProfile.R = mean(EnrolmentVectors);

The verification of a vector, T, is performed using a vector distance measure - if
IR — T||x is less than a globally set threshold then T will be accepted as being
sufficiently close to R. Code for the implementation of the ¢; verification measure

is presented in listing F.3.
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Listing F.3: ¢; Verification Code

function ComparisonResult = Verify(T,RefProfile,Threshold)

%% R is the class reference vector (the ’R’ field of RefProfile), it should be
%% free of numberofpulses and extraneous last column data.

%A T, on the other hand should be a test vector,

%% taken directly from file, and will contain pulse number and last column data.

%% Note that the test vector, T, is taken directly from the Impostor Matrix -
%% it may therefore contain a large number of trailing zeros - these MUST be
%% removed, before a vector comparison is performed.

Wh

%% NH 12/8/°00

TestFeatureVector = [J; /Extracted feature components from T.

SameNumberofPulses = 0; %Do both the Test and Reference have the same number of pulses?
accept = 0; %has the test vector passed the comparison?

ComparisonResult = zeros(1,2);
[n,m] = size(RefProfile.R); %Get the number of components in M

NumberofPulsesinReference = (m+1)/3;

if (NumberofPulsesinReference == T(1) ) %Both Test and Reference vectors have the same
% number of pulses - so make the comparison...
SameNumberofPulses = 1; %#Flag returned as first component of Result -

% Vectors have same number of pulses, therefore
%  comparison will be/has been made.

for i=2:(m+1) %Extract only Test Vector Features....
TestFeatureVector = [TestFeatureVector, T(i)];

end

TestDistance = norm((RefProfile.R-TestFeatureVector),1); %Calculate 11 norm

accept = (TestDistance < Threshold);
end Jconditional branch

ComparisonResult = [SameNumberofPulses,acceptl]; %[comparison performed??, outcome??]

The implementation of the fixed threshold ¢; norm is identical in almost every
respect to the ¢; implementation, differing only in the distance calculation. For

the £ norm, this is executed with:

TestDistance = norm((RefProfile.R-TestFeatureVector),2); %Calculate 12 norm .

F.2.2 /; & ¢; norm Functions (User Specific Threshold)

With a user specific acceptance threshold, a user’s reference vector, R must firstly
be created in the manner of listing F.2. The next stage is to compare all of a

user’s enrolment vectors to R, generating a distribution of enrolment distances;
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IR — E;|; for j = 1,2,...,m where m is the number of enrolment vectors and E;
is the j** enrolment vector. From the resulting distribution of distances, the mean
distance and standard deviation are calculated for each participant. This process
is covered in detail in section 5.3. Listing F.4 provides the code implementation

for user specific enrolment under the ¢; norm verification scheme.

Listing F.4: User Specific Enrolment

function ReferenceProfile = Enrol{(EnrolmentVectors)
KULALLYAYL Calculate Mean Enrolment Vector AAAULAALAA
R = mean{EnrolmentVectors);

%Now Calculate the mean and std of enrolment sequences from the Mean reference vector
Distances = [];
for i=1:8
SequenceVector = EnrolmentVectors(i,:);
Distances(i,:) = norm((R-SequenceVector),1);
end
MeanEnrolmentNorm = mean{Distances);
StdEnrolmentNorm = std(Distances);
ReferenceProfile.R = R;
ReferenceProfile.MeanEnrolmentNorm = MeanEnrolmentNorm;
ReferenceProfile.StdEnrolmentNorm = StdEnrolmentNorm;

The mean enrolment distance and its standard deviation are stored in fields of the

ReferenceProfile structure, and are required during verification.

The verification implementation of the user specific approach is similar to that
of using a fixed acceptance threshold (shown in listing F'.3). Rather than simply
comparing the distance between reference and test vectors, this approach must
firstly compute the distance ||R ~ T||; and compare this distance to the mean
enrolment distance. If the two are within a fixed proportion of the standard
deviation of the enrolment distance, then T will be accepted. Listing F.5 provides

the code implementation of the verification function given in equation 5.25.

Listing F.5: User Specific Verification

function ComparisonResult = Verify(T,RefProfile,Threshold)

%% R is the class reference vector (the 'R’ field of RefProfile), it should be
%% free of numberofpulses and extraneous last column data.

%% T, on the other hand should be a test vector,

%% taken directly from file, and will contain pulse number and last column data.
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wh

%% Note that the test vector, T, is taken directly from the Impostor Matrix -
%% it may therefore contain a large number of trailing zeros - these MUST be
%% removed, before a vector comparison is performed.

Wh

%4 NH 12/8/°00

TestFeatureVector = []; %Extracted feature components from T.
SameNumberofPulses = 0; %Do both the Test and Reference have the same number of pulses?
accept = 0; %has the test vector passed the comparison?

ComparisonResult = zeros(1,2);
[n,m] = size(RefProfile.R); %Get the number of components in R

NumberofPulsesinReference = (m+1)/3;

if (NumberofPulsesinReference == T(1) ) %Both Test and Reference vectors have the same
% number of pulses - so make the comparison...
SameNumberofPulses = 1; 4Flag returned as first component of Result - Vectors

% have same number of pulses, therefore comparison
% will be/has been made.

for i=2:(m+1) AExtract only Test Vector Features....
TestFeatureVector = [TestFeatureVector, T(i)];

end

TestDistance = norm((RefProfile.R-TestFeatureVector),1); %Calculate 11 norm

accept = (sqrt((RefProfile.MeanEnrolmentNorm - TestDistance)~2))
< (RefProfile.StdEnrolmentNorm*Threshold);

end %Comparison branch.

ComparisonResult = [SameNumberofPulses,accept]; %[comparison performed??, outcome??]

In common with the fixed threshold approach of section F.2.2, the ¢5 method

differs from that of the ¢; only in the distance calculation.

F.2.3 Mahalanobis Distance (Fixed Threshold)

The Mahalanobis distance verifier requires calculation of component variances of
the enrolment vectors. As indicated in section 5.7.3 there are two obvious methods
of performing this; either compute the covariance matrix and extract the leading
diagonal using the enrolment vectors, or simply calculate the variances from each
component explicitly. It was found that using the approach was more efficient
in terms of the required number of floating point operations. This method will
hence be presented here. Listing F.6 provides the code implementation for the

fixed threshold version of this verifier.
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Listing F.6: Fixed Threshold, Mahalanobis Distance - Enrolment

function ReferenceProfile = Enrol(EnrolmentVectors)

%YY%%Y Calculate Mean Reference Vector & inverse variance matrix.......

R = mean{EnrolmentVectors);
V = var{(EnrolmentVectors);
D = diag(V);

Vinv = inv(D);

ReferenceProfile.R = R;
ReferenceProfile.Vinv = Vinv;

Calculation of the mean reference vector and the inverse of the variance matrix

is straightforward, making use of MatLab’s higher matrix manipulation functions.

For the calculation of the user specific Mahalanobis verifier the mean distance and

standard deviation of the enrolment vectors, from the reference, is required. This

is performed with the code of listing F.7.

Listing F.7: User Specific Threshold, Mahalanobis Distance - Enrolment

function ReferenceProfile = Enrol(EnrolmentVectors)

%% Calculate Mean Reference Vector, inverse variance matrix.......
%% ...and the mean (+ Standard Deviation) of the enrolment distance.

mean (EnrolmentVectors);
var (EnrolmentVectors);
diag(V);

nv = inv(D);

R
v
D
Vi

%% Now Calculate the mean and std of enrolment vectors from the reference
Distances = [];
for i=1:8
SequenceVector = EnrolmentVectors(i,:);
Distances(i,:) = MahalanobisDistance(SequenceVector,R,Dinv);
end
MeanEnrolmentMD = mean(Distances);
StdEnrolmentMD = std(Distances);

ReferenceProfile.R = R;

ReferenceProfile.Vinv = Vinv;
ReferenceProfile.MeanEnrolmentMD = MeanEnrolmentMD;
ReferenceProfile.StdEnrolmentMD = StdEnrolmentMD;

For robustness and convenience the distance function is performed in a separate

function, as show in listing F.8.

Listing F.8: Mahalanobis Distance Function
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function MD = MahalanobisDistance(T,M,Cinv)

MD = (T-M)’*Cinv*(T-M);

Verification for the fixed threshold and user specific threshold approaches is per-
formed with only minor modifications to the verification functions of the ¢; norm,
given in listings F.3 and F.5, respectively. The ¢; distance measure in both code

functions is simply replaced by a call to the Mahalanobis function of listing F.8.

F.2.4 Component Wise Linear

As indicated in section 5.7.4, the component-wise linear verifier compares each
component of a test vector explicitly to the corresponding component of a reference
vector. If the distance between the two is sufficiently small then the test vector

will be accepted.

Enrolment for this method is the generation of a reference vector, whose com-
ponents are the mean of the enrolment vector components. This is as stated in

equation F.1 and the enrolment implementation is as given in listing F.2.

Verification, on the other-hand is more involved, requiring the explicit comparison

of each component. Listing F.9 provides the implementation code.

Listing F.9: Component-Wise Linear - Verification

function ComparisonResult = Verify(T,RefProfile,Threshold)

%% R is the class reference vector (the ’R’ field of RefProfile), it should be
%4 free of numberofpulses and extraneous last column data.

%4 T, on the other hand should be a test vector,

%% taken directly from file, and will contain pulse number and last column data.
Wh

%4 Note that the test vector, T, is taken directly from the Impostor Matrix -
%% it may therefore contain a large number of trailing zeros - these MUST be

%% removed, before a vector comparison is performed.

A
%% NH 15/8/°00

TestFeatureVector = [];  %Extracted feature components from T.

SameNumberofPulses = 0; %4Do both the Test and Reference have the same number of pulses?
acceptVector = 1; “Assume Vector has passed until proved otherwise
acceptComponent = 0; %individual components will be compared.

ComparisonResult = zeros(1,2);
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[n,m] = size(RefProfile.R); %Get the number of components in R

NumberofPulsesinReference = (m+1)/3;

if (NumberofPulsesinReference == T(1) ) Y%Both Test and Reference vectors have the same
% number of pulses - so make the comparison...
SameNumberofPulses = 1; %Flag returned as first component of Result - Vectors

% have same number of pulses, therefore comparison
% will be/has been made.

for i=2:(m+1) %Extract only Test Vector Features....
TestFeatureVector = [TestFeatureVector, T(i)];

end

for ¢ = 1:(3*NumberofPulsesinReference~1)

acceptComponent = ((((RefProfile.R(c) - TestFeatureVector(c))~2)-0.5)
<= (2*Threshold*RefProfile.R(c)/100));

acceptVector = acceptVector & acceptComponent;
end
end

ComparisonResult = [SameNumberofPulses,acceptVector]; %[comparison performed??, outcome??]

F.2.5 Component-Wise Non-Linear

The component-wise non-linear verifier is presented in detail in section 5.7.5. In
summary this verification scheme enrols a user by generating both a reference vec-
tor comprising of the mean component values from that user’s enrolment vectors,
and a vector comprising of the standard deviation of each of the enrolment vector

components.

Enrolment code makes use of MatLab’s mean and std functions for the component-

wise calculation of mean and standard deviation, and is shown in listing F.10.

Listing F.10: Component-Wise Non-Linear - Enrolment

function ReferenceProfile = Enrol(EnrolmentVectors)
%4 Calculate Mean...
R = mean(EnrolmentVectors);
%% and standard deviatiom...
StdEnrolment = std(EnrolmentVectors);

ReferenceProfile.R = R;
ReferenceProfile.StdEnrolment = StdEnrolment;

Verification of a test vector under the non-linear component-wise scheme is very
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similar to that of the linear component-wise version. They differ in the acceptance
threshold; for the linear approach each test component must be within a cer-
tain proportion of the corresponding reference component, whilst the non-linear
approach requires that each component be within the reference component + a

proportion of the user’s standard deviation for that component (see equation 5.35).

Listing F.11 provides the coding detail.

Listing F.11: Component-Wise Non-Linear - Verification

function ComparisonResult = Verify(T,RefProfile,Threshold)

%% R is the class reference vector (the 'R’ field of RefProfile), it should be
%% free of numberofpulses and extraneous last column data.

%% T, on the other hand should be a test vector,
%% taken directly from file, and will contain pulse number and last column data.

4% Note that the test vector, T, is taken directly from the Impostor Matrix -
%% it may therefore contain a large number of trailing zeros - these MUST be
% removed, before a vector comparison is performed.

wh

%% NH 15/8/°00

TestFeatureVector = []; JExtracted feature components from T.

SameNumberofPulses = 0; %Do both the Test and Reference have the same number of pulses?
acceptVector = 1; %Assume Vector has passed until proved otherwise
acceptComponent = 0Q; %individual components will be compared.

ComparisonResult = zeros(1,2);
[n,m] = size(RefProfile.R); %#Get the number of components in R

NumberofPulsesinReference = (m+1)/3;

if (NumberofPulsesinReference == T(1) ) %Both Test and Reference vectors have the same
% number of pulses - so make the comparison...
SameNumberofPulses = 1; %Flag returned as first component of Result - Vectors

% have same number of pulses, therefore comparison
% will be/has been made.

for i=2:(m+1) %Extract only Test Vector Features....
TestFeatureVector = [TestFeatureVector, T(i)];
end

for ¢ = 1:(3«NumberofPulsesinReference~1)
acceptComponent = ((((RefProfile.R(c) - TestFeatureVector(c))~2)"0.5)
<= (Threshold*RefProfile.StdEnrolment(c)));
acceptVector = acceptVector & acceptComponent;
end
end

ComparisonResult = [SameNumberofPulses,acceptVector]; %[comparison performed??, outcome?7?]
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F.2.6 Linear and Non-Linear Component-Wise Verifiers

with Proportional Acceptance

This method is outlined in sections 5.7.4 and 5.7.5, and is a variation upon the

component-wise approaches above.

Essentially the addendum of proportional acceptance is a relaxation of the con-
dition for all components, accepting a test vector if a certain proportion of its
components satisfy linear, or non-linear test conditions. Equations 5.33 and 5.36
describe the acceptance conditions for linear and non-linear verification functions,
respectively. Whilst listing F.12 provides the code implementation for the linear

approach.

Listing F.12: Component-Wise Linear with Proportional Acceptance

function ComparisonResult = Verify(T,RefProfile,Threshold, ComponentProportion)

TestFeatureVector = [];  JExtracted feature components from T.

SameNumberofPulses = 0; %Do both the Test and Reference have the same number of pulses?
acceptVector = 0; %Vector passed??

acceptComponent = 0; %individual components will be compared.

ComponentsAccepted = 0; %Running Tally of the number of components satisfying test

ComparisonResult = zeros(1,2);
[n,m] = size(RefProfile.R); %Get the number of components in R

NumberofPulsesinReference = (m+1)/3;

if (NumberofPulsesinReference == T(1) ) %Both Test and Reference vectors have the same
% number of pulses - so make the comparison...
SameNumberofPulses = 1; #Flag returned as first component of Result - Vectors

% have same number of pulses, therefore comparison
% will be/has been made.

for i=2:(m+1) %Extract only Test Vector Features....
TestFeatureVector = [TestFeatureVector, T(i)];
end

for ¢ = 1:(3*NumberofPulsesinReference-1)
acceptComponent = ((((RefProfile.R(c) - TestFeatureVector(c))~2)"0.5)
<= (2*Threshold*RefProfile.R(c)/100));
if (acceptComponent)
ComponentsAccepted = ComponentsAccepted +1;
end
end
end

acceptVector = ((ComponentsAccepted/NumberofPulsesinReference)*100 >= ComponentProportion )
ComparisonResult = [SameNumberofPulses,acceptVector]; %[comparison performed??, outcome??]

The non-linear component-wise code implementation differs from F.12 only in the
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component test, which is contained within listing F.11.
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Appendix G

Java Card Applets

This appendix presents the Java code applets and functions described in Chapter
6. Sections G.1 & G.2 provide the structure of the main applets running on the
host PC and iButton, respectively, whilst Section G.3 presents the functional detail

of the enrolment and verification mechanisms, considered in Chapter 6.

G.1 Host Applet

The host PC applet initiated the execution of enrolment and verification on the

iButton. Its primary tasks are to

e Transmit enrolment vectors from PC to iButton
e Initiate enrolment code

¢ Initiate verification code

e Request and receive results from iButton

e Decipher and Display Results on PC.

Its main code loop executes when an iButton is inserted to its reader (public
void iButtonInserted(JibMultiEvent event)), where upon a communication
link is established, and the IdentityVerification applet is selected. If this is
successful, then enrolment vectors are transmitted, and the iButton is requested

to perform enrolment, then transmit the results and the time taken back to PC.
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Results are displayed on screen and checked for accuracy. Verification is then

performed in a similar manner.

In order to communicate with the iButton, the applet running on the host requires
the OpenCard communication protocols. These are provided in the com. ibutton.oc

and opencard.core.terminal packages, and are included in the applet header.

Listing G.1: PC Host Infrastructure Code

import com.ibutton.oc.*;

import com.ibutton.oc.CommandAPDU;

import opencard.core.terminal.*;

import com.ibutton.opt.jibletselect.Selector;
import java.io.x*;

public class Identity Verification_Host implements JibMultilistener
{
// BEGIN INSTRUCTION DECLARATIONS
public static final byte IDENTITY_VERIFICATION_CLA = (byte)0x80;
public static final byte IDENTITY_VERIFICATION_INS_TRANSFER = (byte)O;
public static final byte IDENTITY_VERIFICATION_INS_PERFORM_ENROLMENT = (byte)1;
public static final byte IDENTITY_VERIFICATION_INS_SETDIMENSIONS = (byte)2;
//  END INSTRUCTION DECLARATIONS

//The object that will be used to communicate with the iButtons.
protected JibMultiFactory factory;

private String appletName; //The name (AID) of the iButton applet used by this host.
private String appletPath;

// Verifier Specific Constants/Globals...
int numberofPulses = 7; //8;//14;
int vectorDimension = (3*numberofPulses)~1;
int vectorBytesRequired = 4xvectorDimension;
int numberofEnrolmentVectors = 8;
int[] featureVector = new int[vectorDimension];

int enrolmentVectors[J[] = // Enrolment Feature Vectors Here.

{

};

public Identity Verification_ Host(String appletPath, String appletName)
{

//Sets up the listener for iButton inserted and removed events.

this.appletName = appletName;
this.appletPath = appletPath;

factory = new JibMultiFactory();
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factory.addJiBListener(this); //Add the listener that will be notified
//when an iButton is inserted or removed.

//Begin polling for iButtoms.

try
{
factory.startPolling(true);
¥
catch(CardTerminalException cte)
{
cte.printStackTrace();
}
}
public void addJiBListener(JibMultiListener 1)
{
//Adds the specified iButton listener to receive inserted and removed events.
factory.addJiBListener(1);
b
public void removeJiBListener(JibMultilistener 1)
{
//Removes the specified iButton listener
factory.removeJiBListener(l);
}
/%
*
%
* @param event the insertion event.
*/
public void iButtonInserted(JibMultiEvent event)
{

//Called when an iButton inserted.

//The master pin for this iButton.

//1f a password is set on the iButton you must
//provide that here.

String password = "";

factory.setSlot(event.getSlotID());

try //Try to select the applet.
{
Selector appletSelector = new Selector(false);
if (appletSelector.select(appletPath,appletName + ".jib",appletName,
event.getChannel() ,password))

//*****************************************
//* Insert any code to be done when *
//* an iButton is inserted here. *

//*****************************************

System.out.println("iButton Inserted...");
setdimensionsDispatch(); //Inform iButton about Vector Properties

String fVector = "";
for (int i = 0; i<=(numberofEnrolmentVectors~1);i++) { //Prepare Vectors. ..

featureVector = enrolmentVectors[i];

fVector = "*;
for (imt j = 0; j<=(vectorDimension-1);j++) {
fVector = fVector + enrolmentVectors[il[j] + " ";
}
System.out.println(fVector);
transferDispatch(); //Call Transmission function

245



G Java Card Applets 246

}
/

* %

}

¥
Perform_EnrolmentDispatch(); //Request
System.out.println("Finished.");

}

else

{
int sw = appletSelector.getLastStatusWord();
System.out.println("Applet load failed: "+Integer.toHexString(sw));
System.out.println("Reason : "+decodeSW(sw));

¥

catch(CardTerminalException cte)

{

¥

System.err.println("ERROR: CardTerminalException occurred while communicating
with iButton.");

catch(FileNotFoundException fnfe)

{
}

System.err.println("Unable to find file: " + appletName + ".jib");

catch(IOException ioe)

{
}

System.err.println("Unable to read file: " + appletName + ".jib");

catch(Exception e)

{

//Exceptions that occur in jButtonInserted events
//will be drained in the OpenCard internals if we
//don’t catch them here.
System.err.println("Exception in iButtonInserted:");
e.printStackTrace();

* Called when an iButton is removed.

*

* Q@param event the removal event.

*/

public void iButtonRemoved(JibMultiEvent event)

{

private String decodeSW(int sw)

{

try
{

}

[ /%% % 3 e koo ek ok K 3K ok KK KK K R o ok oK oKk ok ok o o oK o ok sk ok ok K
//* Insert any code to be done when *

//* an iButton is removed here. *
//*****************************************

catch(Exception e)

{

//Exceptions that occur in iButtonRemoved events
//will be drained in the OpenCard internals if we
//don’t catch them here.
System.err.println("Exception in iButtonRemoved:");
e.printStackTrace();

//Decode Return Status Word

switch (sw)

{

case 0x6100:
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return "Response Bytes Remaining";
case 0x6301:
return “Success Packet";
case 0x6400:
return “Insufficient Memory";
case 0x6681:
return "Bad Master PIN“;
case 0x6700:
return "Wrong Length";
case 0x6901:
return "Invalid AID Length";
case 0x6902:
return "\r\nlnvalid API Version\r\n'"+
n - \r\n"+
"This error occurred because the applet (.jib file) was not built\r\n"+
"for this kind of Java Powered iButton.\r\n\r\n";
case 0x6303:
return "Invalid Password”;
case 0x6904:
return "Invalid Signature Length”;
case 0x86805:
return "Hash Corruption";
case 0x6906:
return "Hash Failure";
case 0x6982:
return "Invalid Signature";
case 0x6984:
return "Data Invalid";
case 0x6985:
return "Conditions Of Use Not Satisfied";
case 0x6A80:
return "Wrong Data";
case 0x6A81:
return "Function Not Supported";
case 0x6A82:
return "Unable to Select Applet";
case 0x6A84:
return "Class Length Overrun";
case 0x6A86:
return "Invalid Loader Command";
case 0x6A87:
return “Incomplete Packet";
case 0x6B00:
return “"Incorrect Parameters (P1,P2)";
case 0x6C00:
return “Correct Expected Length";
case 0x6D00:
return "INS Value Not Supported";
case 0x6F00:
StringBuffer sb = new StringBuffer(“Uncaught Exception: ");
try
{

ResponseAPDU res = factory.getLastError();
int err = 0x0ff & res.data()[0];
sb.append("Last Error reported as 0x");

if (err<16) sb.append(’0’});

sb.append (Integer.toHexString(err));

}
catch(Exception e)
{
sb.append("Could not getLastError!");
}

return sb.toString();
case 0x8450:
return "Unable to Find Applet";
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case 0x8453:
return "Unable to Select Applet";

case 0x9000:
return "Success";

default:
StringBuffer unrec = new StringBuffer("Unrecognized SW ");
if (sw < 0x1000) unrec.append(’0’);
if (sw < 0x100) unrec.append(’0’);
if (sw < 0x10) unrec.append(’0?);
unrec.append(Integer.toHexString(sw));
return unrec.toString();

// BEGIN INSTRUCTION DISPATCHER FUNCTIONS

public void setdimensionsDispatch() throws CardTerminalException

{

// Send enrolment vector properties to iButton

ResponseAPDU response;
int[] sequenceParameters = {vectorDimension,numberofEnrolmentVectors};

bytel]l vectorDByteRepresentation = new byte[8];

System.out.println("...Sending Sequence Parameters...");
intArrayToByteArray(vectorDByteRepresentation,0,sequenceParameters);

response = factory.sendAPDU(new CommandAPDU((byte)IDENTITY_VERIFICATION_CLA,
(byte) IDENTITY_VERIFICATION_INS_SETDIMENSIONS,
(byte)0x0, (byte)0x0, vectorDByteRepresentation, (byte)0));

String responseStr = decodeSW(response.sw());
System.out.println(responseStr);

public void setdimensionsDispatch(int slotNumber) throws CardTerminalException

{

factory.setSlot(slotNumber) ;
setdimensionsDispatch();

public void transferDispatch() throws CardTerminalException

{

}

//Sends Enrolment Vectors to the iButton

ResponseAPDU response;
byte[] data = new byte[4*vectorDimension];

System.out.println("....Sending Enrolment Vector....");
intArrayToByteArray(data, 0, featureVector); //Convert integer to byte array

response = factory.sendAPDU(new CommandAPDU((byte)IDENTITY_VERIFICATION_CLA,
(byte) IDENTITY_VERIFICATION_INS_TRANSFER,
(byte)0x0, (byte)Ox0, data, (byte)0));
String responseStr = decodeSW(response.sw());
System.out.println(responseStr);

public void transferDispatch(int slotNumber) throws CardTerminalException

{

factory.setSlot(slotNumber);
transferDispatch();
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public void Perform_EnrolmentDispatch() throws CardTerminalException

{

//Launches a request to initiate Enrolment procedure

ResponseAPDU response;
int[] dataResponse = new int[vectorDimension+3];
String returnedData = "";

System.out.println("...Requesting Enrolment....");
response = factory.sendAPDU(new CommandAPDU((byte)IDENTITY_VERIFICATION_CLA,
(byte) IDENTITY_VERIFICATION_INS_PERFORM_ENROLMENT,
(byte)0x0, (byte)0x0, null /*add data to send here*/, (byte)0));

String responseStr = decodeSW(response.sw());
System.out.println(responseStr);

System.out.println("Response Recieved...Processing...");
dataResponse = intArrayFromByteArray(response.data(),0, (vectorBytesRequired+12));

for (int i= 0;i<=(vectorDimension+2);i++) //We have vectorDimension +1 elements
// (time,d0,d1,...,dn-1)
{
returnedData = returnedData+ dataResponse([i] +" ";

}

System.out.println(returnedData);

}

public void Perform_EnrolmentDispatch(int slotNumber) throws CardTerminalException
{

factory.setSlot(slotNumber);

Perform_EnrolmentDispatch();

//  END INSTRUCTION DISPATCHER FUNCTIONS

// BEGIN CONVENIENCE FUNCTIONS
public static void intToByteArray(byte([l outArray, int start, int value)
{
//BigEndian
outfrray({start] = (byte) ((value & OxFFO00000) >>> 24);
outArray[start + 1] (byte) ({value & 0xOOFF0000) >>> 16);
outArray[start + 2] (byte) ((value & 0x0000FF00) >>> 8);
outArray[start + 3] (byte) (value & 0xO000QOQFF);

[}

[}

}
public static int intFromByteArray(bytel[l inArray, int start)
{
//BigEndian
return (((int)inArray[start 1 << 24) & 0xFF000000 |
((int)inArray[start + 1] << 16) & 0xOOFF0000 |
((int)inArray[start + 2] << 8) & 0xO000FF00 |
((int)inArray[start + 3] ) & 0xO000000FF) ;
¥

public static void intArrayToByteArray(byte[] outArray, int start, int[] value)
{ .

//BigEndian
for(int i = 0; i < value.length; i++)
{
outArray[start + (i * 4)] = (byte) ((valuel[i]l & OxFF000000) >>> 24);
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outArraylstart + (i * 4) + 1]
outArray[start + (i * 4) + 2]
outArray[start + (i * 4) + 3]

#

(byte) ((valueli] & OxOOFFO000) >>> 16);
(byte) ((value[i] & OxO00OFFQ0) >>> 8);
(byte) (valuel[il & 0xO000OQFF);

public static int[] intArrayFromByteArray(byte[] inArray, int start, int length)

¥
}
{
int[] ia = new int[length / 41;
//BigEndian
for(int i = 0; i < length / 4; i++
{
ialil = (((int)inArray([start +
((int)inArray[start +
((int)inArray[start +
((int)inArray[start +
}
return ia;
}

//  END CONVENIENCE FUNCTIONS

public static void main(Stringl[] args)

{

)

(i
(i
¢!
1

*

*
*

4) 1 << 24) & 0xFF000000 |
* 4) + 1] << 16) & 0xOOFF0000 |
4) + 2] << 8) & 0x0000FF00 |

4) + 3]

//The following path has been auto-generated by
//the Project Wizard. If the project is moved
//to a different directory, you MUST update this

//path accordingly.

new Identity Verification_Host("C:\\ ..

) & 0xOO0OO0QOFF);

. \\ ’Identity Verification Class Path’..... ")

G.2 iButton Infrastructure Applet

The iButton applet essentially listens for, and responds to, requests from the host
PC. It firstly, receives enrolment vectors and packages them in an array. Then,
upon request, calls the enrolment and verification processes, and transmits the
results back to the host. Timing is performed using the iButton’s internal real-time
clock, hence the package com.dalsemi.system.Clock is included in the preamble.
The clock has a minimum resolution of one second, and hence, enrolment and
verification are each performed 100 times, and average times are calculated back

on the host.

Listing G.2: iButton Infrastructure Code

import javacard.framework.x*;
import com.dalsemi.system.Clock;
import java.lang.Math;

public class Identity _Verification_ Applet extends Applet {

// BEGIN INSTRUCTION DECLARATIONS

public static final byte IDENTITY_VERIFICATION_CLA = (byte)0x80;
public static final byte IDENTITY_VERIFICATION_INS_TRANSFER = (byte)O;
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public static final byte IDENTITY_VERIFICATION_INS_PERFORM_ENROLMENT = (byte)l;
public static final byte IDENTITY_VERIFICATION_INS_SETDIMENSIONS = (byte)2;
public static final byte IDENTITY VERIFICATION_INS_PERFORMVERIFICATION = (byte)3;
// END INSTRUCTION DECLARATIONS

final static private byte SELECT_CLA = (byte)0x00; //Used to select an applet.
final static private byte SELECT_INS = (byte)OxA4; // "
final static private short MAX_SEND_LENGTH = (short)1000; //Max bytes in a single apdu.

// initialisation Code from here....

public byte[l apduData;

int[] incomingData; //Holds integer passed from host.
int[] enrolmentVectors;

int maxNumberofEnrolmentVectors;

int numberofEnrolmentVectors = 0;

int vectorDimension;

int[] featureVector; //8ingle Feature vector from Host

bytel[] outgoingData; //Returned Reference Byte Vector

int[] returnedFVector; //Returned Reference Data

int[] referenceVector; //Reference Vector From Enrolment Function

// Add Enrolment / Verification Specific Globals here...

// End Specific Globals.

public Identity_Verification_Applet()

{
register(); //Register this applet with the JCRE
}
public static void install(APDU apdu)
{
new Identity_Verification_Applet();
}

public void process(APDU apdu)

{
byte[] buffer = apdu.getBuffer();

if ((buffer [ISO.OFFSET_CLA] == SELECT_CLA) &%
(buffer[ISO.0FFSET_INS] == SELECT_INS)) //Determine if applet is being selected.
{

return;

}

apduData = new byte[buffer[IS0.0FFSET_LC] & OxOFF];

short apduDataOffset = 0;

short bytesRead = apdu.setIncomingAndReceive(); //Read in the entire APDU.

while (bytesRead > 0) //Loop until all bytes have been read.

{
Util.arrayCopyNonAtomic(buffer, IS0.OFFSET_CDATA, apduData, apduDataOffset, bytesRead);

apduDataOffset += bytesRead;
bytesRead = apdu.receiveBytes(IS0.0FFSET_CDATA);
¥

apdu.setOutgoing(); //Prepare the apdu for sending.
apdu.setlutgoingLength (MAX_SEND_LENGTH) ;

if(buffer [ISO.OFFSET_CLA] != IDENTITY_VERIFICATION_CLA) //Check for a valid CLA.

{
ISOException.throwIt(ISO.SW_CLA_NOT_SUPPORTED);

}
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else
{
switch (buffer[ISO.OFFSET_INS]) //Call the appropriate dispatch method for the INS.
{
case IDENTITY_VERIFICATION INS_PERFORMVERIFICATION:
performverificationDispatch(apdu,buffer[IS0.0FFSET_P1],buffer[IS0.0FFSET_P2]);
break;
case IDENTITY_VERIFICATION_INS_SETDIMENSIONS:
setdimensionsDispatch(apdu, buffer[IS0.0FFSET_P1], buffer[IS0.OFFSET_P2]);
break;
case IDENTITY_VERIFICATION_INS_TRANSFER:
transferDispatch(apdu, buffer[ISO.0OFFSET_P1], buffer [IS0.0FFSET_P2]);
break;
case IDENTITY_VERIFICATION_INS_PERFORM_ENROLMENT:
Perform_EnrolmentDispatch(apdu, buffer[ISO.0FFSET_P1], buffer[IS0O.0FFSET_P2]);
break;
default:
ISOException.throwIt(IS0.SW_INS_NOT_SUPPORTED);
}
¥
¥
protected void sendByteArray(APDU apdu, byte[] data)
{
short offset = 0;
while((data.length - offset) > MAX_SEND_LENGTH)
{
apdu.sendBytesLong(data, offset, MAX_SEND_LENGTH);
offset += MAX_SEND_LENGTH;
}
apdu.sendBytesLong(data, offset, (short)(data.length - offset));
¥

// BEGIN INSTRUCTION DISPATCHER FUNCTIONS

public void performverificationDispatch(APDU apdu, byte pl, byte p2)
{
//Performs and Times Comparison between reference Vector and test Vector.
int vectorBytesRequired = 4%(2*vectorDimension+2);
int startTime;
int finishTime;

outgoingData = new byte[vectorBytesRequired]; //Returned Reference Byte Vector
returnedFVector = new int[vectorDimension+2]; //Returned Reference + Enrolment Time
int Threshold = 5; //Acceptance Threshold

boolean Accept = false;

for (int i= 0;i<=vectorDimension-1;i++) //copy first enrolment vector for verification

{

featureVector[i] = enrolmentVectors[i];

:

startTime = Clock.getClock();
for(int i=0; i<100;i++) {
Accept = VerifyUser(referenceVector, featureVector, ...., );
}
finishTime = Clock.getClock();

returnetiFVector[0] = (finishTime-startTime); //Send Enrolment Data Back to Host...
if (Accept == true) {
returnedFVector([1] = 1;
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¥
else {

returnedFVector[i] = O;
}

intArrayToByteArray(outgoingData, 0, returnedFVector);
sendByteArray(apdu, outgoingData);

public void setdimensionsDispatch(APDU apdu, byte pl, byte p2)
¢ //Recieves Initialisation data from the Host.../
int[] sequenceParameters = new int[2];
sequenceParameters = intArrayFromByteArray(apduData,0,8);
vectorDimension = sequenceParameters[0];

maxNumberofEnrolmentVectors = sequenceParameters[i];

enrolmentVectors = new int[vectorDimension*maxNumberofEnrolmentVectors];

featureVector = new int[vectorDimension]; //Single Feature vector from Host
referenceVector = new intl[vectorDimension]; //Reference Vector From Enrolment

numberofEnrolmentVectors = 0;

// Add Enrolment / Verification Specific Globals here...

// End Globals.

public void transferDispatch(APDU apdu, byte pl, byte p2)
{

// Retrieves Enrolment Vectors from Host.../
int vectorBytesRequired = 4*vectorDimension;

featureVector = intArrayFromByteArray(apduData,0,vectorBytesRequired);
numberofEnrolmentVectors +=1;

// Have Enrolment Vector, Now place in appropriate location of
// enrolmentVectors[] array.

int enrolmentIndexStart = ((numberofEnrolmentVectors-1)#*vectorDimension);

for (int i = 0; i<=(vectorDimension-1);i++)
{

enrolmentVectors[enrolmentIndexStart+i] = featureVector[i];

1

public void PerformEnrolmentDispatch(APDU apdu, byte pl, byte p2)
{

// Calls and times enrolment process.../

int vectorBytesRequired = 4x(vectorDimension+3);

int startTime;

int finishTime;

outgoingData = new byte[vectorBytesRequired]; //Reference Byte Vector

returnedFVector = new int[vectorDimension+3]; //Reference vector + Enrol Time

startTime = Clock.getClock();
for(int i=0; i<10;i++) {
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EnrolUser{referenceVector);

}
finishTime = Clock.getClock();

//Send Enrolment Data Back to Host...
returnedFVector [0] = (finishTime-startTime);
returnedFVector[1] = distanceMean;
returnedFVector[2] = distanceStdDev;

for(int i = 0; i<=(vectorDimension~1);i++) {

returnedFVector [i+3] = referenceVector[i];

b

intArrayToByteArray(outgoingData, 0, returnedFVector);
sendByteArray(apdu, outgoingData);

public void EnrolUser(int[] referenceVector)

{
// Specific Enrolment Function Here.
//
}
boolean VerifyUser(int[] refVector, int[] testVector, ...., )
{

// Specific Verification Function Here.

//
}

//  END INSTRUCTION DISPATCHER FUNCTIONS

// BEGIN CONVENIENCE FUNCTIONS
V7 Convenience Functions are the same as Host Functions.

// END CONVENIENCE FUNCTIONS

G.3 Enrolment and Verification Functions

G.3.1 /¢, Norm, Per User Basis

As discussed in sections 5.7.1 and 6.3.1, the reference vector for the ¢; verifier uses
the component means of the enrolment vectors. On a user specific basis, the mean

distance of the enrolment vectors, from the reference vector, is calculated and used
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to match the verifier’s performance to the variability of each user. The enrolment

function below (Listing G.3) implements this approach in Java.

Listing G.3: ¢; Norm Enrolment Function

public void EnrolUser(int[] referenceVector)
{

int enrolmentVectorStartIndex;

int enrolmentVectorIndex;

int vectorDistance;

int distanceSum=0;
int distanceSumofSquares=0;
int distanceVariance=0;

for {int j = 0;j<=(vectorDimension-1);j++) //Reset reference vector information...

referenceVector[j] = 0;
componentSun{j] = 0;
sumofSquares[j] = 0;
featureVector[j] = 0;

}
for (int j = 0; j<=(maxNumberofEnrolmentVectors-1i);j++)
{
LiDistance[j] = 0;
}

//Sum Each Dimension of EnrolmentVectors
for(int ev = 0;ev<=(numberofEnrolmentVectors-1);ev++){
enrolmentVectorStartIndex = (evxvectorDimension);
for(int d = 0;d<=(vectorDimension-1) ;d++){
enrolmentVectorIndex = enrolmentVectorStartIndex + d;
componentSum[d] +=enrolmentVectors[enrolmentVectorIndex];

¥

//Find The Mean EnrolmentVector
for(int d = 0;d<=(vectorDimension-1);d++){
referenceVector[d] = componentSum[d]/numberofEnrolmentVectors;

}

//For Each Enrolment Vector, Find the L1 Distance from mean. ..
for(int ev = 0; ev<=(numberofEnrolmentVectors-1);ev++) {

enrolmentVectorStartIndex = (evxvectorDimension);

for(int d = 0;d<=(vectorDimension-1);d++){ //Extract Enrol. vector from main array
enrolmentVectorIndex = enrolmentVectorStartIndex + d;
featureVector[d] =enrolmentVectors[enrolmentVectorIndex];

}

vectorDistance = LiNorm(featureVector, referenceVector);
LiDistance[ev] = vectorDistance;

//Distances Calculated - now calculate Mean and Std. Deviation of Distances...
for (int ed = 0;ed<=(numberofEnrolmentVectors-1);ed++) {

distanceSum += LiDistance[ed];
distanceSumofSquares += LiDistance[ed] * LiDistancel[ed];
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distanceMean = distanceSum/numberofEnrolmentVectors;
distanceVariance = (distanceSumofSquares - (distanceSum*distanceSum) /
(numberofEnrolmentVectors))/(numberofEnrolmentVectors-1);

distanceStdDev = SQRT(distanceVariance);

Verification on a per user basis, requires that a test vector is compared to a user’s
reference vector. If the two are within a predefined proportion of the user’s mean
enrolment to reference distance, then the test vector will be accepted. Listing G.4

implements this process.

Listing G.4: ¢, Norm Verification Function

boolean VerifyUser(int[] refVector, int[] testVector, int meanDistance, int enrolmentStdDev,
int Threshold)

{
//Performs Verification of testVector Against Enrolment Vector...
boolean Accept = false;
int distance;

distance = LiNorm(testVector, refVector);
if (distance > meanDistance) {
Accept = ((distance - meanDistance) <= (Threshold*enrolmentStdDev));

}
else {

Accept = ((meanDistance - distance) <= (Threshold*enrolmentStdDev));
}

return Accept;

Listing G.5: £; Norm Distance Implementation

public int LiNorm(int{] fVector, int[] refVector)

{
int distance=0Q;
for (int d = 0; d<=(vectorDimension-1);d++) {
if (fVector[d]>=refVector[d]) {
distance += (fVector[d]-refVector[d]);
}
else {
distance += (refVector([d]-fVector[d]);
¥
}
return distance;
}

Listing G.6: Square Root Implementation
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public static int SQRT{int a)
{

int square = 1;

int delta = 3;

while(square<=a) {
square+=delta;
delta +=2;

}
return (delta/2 - 1);

G.3.2 /¢y Norm, Per User Basis

The user specific £5 norm verifier takes a similar structure to that of the user
specific £; norm verifier, presented above. The only difference between the two is
the ¢, distance function, given by Listing G.7, below.

Listing G.7: ¢5 Norm Distance Implementation

public int L2Norm(int{] fVector, int[] refVector)

{
int distance=0;
for (int d = 0; d<=(vectorDimension-1);d++) {
if (fVectorld]>=refVector[dl) {
distance += (fVector[d]-refVector[d])*(fVector[d]-refVectorl[d]);
¥
else {
distance += (refVector[d]-fVector[d])*(refVector{d]l-fVector[d]l);
}
}
return SQRT(distance);
}

G.3.3 Mahalanobis Distance, Per User Basis

The user specific Mahalanobis distance verifier is a little different from those of
the 4, and ¢ norm verifiers. The main difference is that component variances of
the enrolment vectors must be calculated during enrolment, and are used during
verification as a substitute for the covariance matrix. This is as discussed in Section
6.3.1, and the core differences in enrolment are presented in Listing G.8.

Listing G.8: Mahalanobis Enrolment - Core Differences

Public void EnrolUser (int[] meanReferenceVector)

{

// Declarations as 11 Norm enrolment function
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1/
//

//Sum Each Dimension of EnrolmentVectors
for(int ev = 0;ev<={numberofEnrolmentVectors-1);ev++)

{
enrolmentVectorStartIndex = (ev*vectorDimension);
for(int d = 0;d<=(vectorDimension-1) ;d++)
{
enrolmentVectorIndex = enrolmentVectorStartIndex + d;
componentSum[d] +=enrolmentVectors[enrolmentVectorIindex] ;
componentSumofSquares [d] += enrolmentVectors[enrolmentVectorIndex] *
enrolmentVectors[enrolmentVectorIndex];
}
}

//Find The Mean EnrolmentVector
for(int d = 0;d<=(vectorDimension-1);d++)

{
meanReferenceVector{d] = componentSum[d]/numberofEnrolmentVectors;
componentVariance[d] = (componentSumofSquares[d] - (componentSum[d]*componentSum[d]l) /
(numberofEnrolmentVectors))/(numberofEnrolmentVectors-1);
}

//For Each Enrolment Vector, Find the Distance from Reference...
for(int ev = 0; ev<=(numberofEnrolmentVectors-1);ev++)

{
enrolmentVectorStartIndex = (ev*vectorDimension);
for(int d = 0;d<=(vectorDimension-1);d++) //Extract Enrolment vector from main array
{
enrolmentVectorIndex = enrolmentVectorStartIndex + d;
featureVector[d] =enrolmentVectors[enrolmentVectorIndex];
}
vectorDistance = Mahalanobis(featureVector, meanReferenceVector, componentVariance);
MDistance[ev] = vectorDistance;
}
// Distances Calculated - now calculate Mean and Std. Deviation of Distances...
//
// .... As L1 Norm Enrolment

The remainder of the user specific Mahalanobis verifier is similar to those of the
user specific ¢, and ¢, norm verifiers (Listing G.4), with the exception of the
distance function, which is given in Listing G.9.

Listing G.9: Mahalanobis Distance Implementation

public int Mahalanobis(int[] fVector, int[] refVector, int[] cVariance)

{
int distance=0;
int componentDifference;
for (int d = 0; d<=(vectorDimension-1);d++)
{
componentDifference = fVector{d] - refVectorl[d];
distance += (100*componentDifferencexcomponentDifference)/cVariancel[d];
¥
return (distance/100);
}
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G.3.4 {1, {3, Mahalanobis, and Component-Wise Linear
(Fixed Threshold) Verifiers

The ¢;, ¢5, and component-wise linear approaches to verification use only the mean
of each component of the enrolment vectors, for the reference vector. As explained
in Section G.3.3, the Mahalanobis distance function is a little different in that the
variance of each enrolment component is required. This is performed in the same
manner as given in Listing G.8, and is otherwise the similar. The Java code for
these enrolment functions is presented in Listing G.10.

Listing G.10: Fixed Threshold Enrolment Function

public void EnrolUser(int{] meanReferenceVector)
{

//For the LiNorm, L2Norm, Component-Wise Linear and MICD Verifiers...
// with FIXED Acceptance Thresholds

int enrolmentVectorStartIndex;
int enrolmentVectorIndex;
int vectorDistance;

int distanceSum=0;

//Sum Each Dimension of EnrolmentVectors
for(int ev = 0;ev<=(numberofEnrolmentVectors-1);ev++)

{
enrolmentVectorStartIndex = (ev*vectorDimension);
for(int d = O;d<=(vectorDimension-1);d++)

{
enrolmentVectorIndex = enrolmentVectorStartIndex + d;
componentSum{d] +=enrolmentVectors[enrolmentVectorIndex];

//Find The Mean EnrolmentVector ~ Serves As ReferenceVector
for(int d = 0;d<=(vectorDimension-1);d++)

{

meanReferenceVector [d] = componentSum[d]/numberofEnrolmentVectors;

}

The verification function for fixed threshold verifiers is a simple test of the dis-
tance between a test vector and the reference vector being < a preset threshold
distance. The generic Java code for this is presented in Listing G.11. The call to
DistanceFunction indicates substitution of a relevant vector distance function,
and can be selected from Listings G.5, G.7 and G.9 for the ¢y, £, and Mahalanobis
verifiers respectively. The component-wise linear verification function simply com-
pares each component of a test vector with the appropriate component of the
reference vector. If the difference is less than a predefined fraction of the reference
component, then the test vector is accepted.
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Listing G.11: Fixed Threshold Verification Function

boolean VerifyUser(int[] refVector,int[] testVector, int Threshold)

{

//Performs Verification of testVector Against Enrolment Vector...

boolean Accept = false;
Accept = (DistanceFunction(testVector,refVector) <= Threshold);

return Accept;

}

G.3.5 Component-Wise Non-Linear

The component-wise non-linear approach to verification (as discussed in Section
5.7.5, requires that the standard deviation of the enrolment components are calcu-
lated. Variance of the enrolment components is calculated in the manner set-out in
Listing 77, and the standard deviation is found by using the square root function,
given in Listing G.6.

Verification is performed on a per-component basis, whereby each component of
a test vector is compared to the appropriate component of the reference vector.
If the difference between the two is < a predefined proportion of the standard
deviation for this component, then the test vector is accepted. Listing G.12 shows
the implementation. :

Listing G.12: Component-Wise Non-Linear Verification Function

boolean VerifyUser(int[] refVector,int[] stdDev, int[] testVector, int Threshold)
{

boolean Accept = true;

int componentDistance;

for (int i = 0; i<=vectorDimension-1;i++) {
if (refVector[i] > testVector[i] ) {
componentDistance = (refVector[i] - testVector[il);

}
else {
componentDistance = (testVector[i] - refVector[il);
}
Accept = Accept & (componentDistance <= Threshold*stdDev[il);
}
return Accept;
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Publications

The following is a list of publications resulting from the work of this thesis.
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Fourth Working Conference on Smart Card Research and Advanced Applications,
Kluwer Academic Publishers, Bristol, UK, pp. 241-256. ISBN: 0-7923-7953-5.

Henderson, N. J., Papakostas, T. V., White, N. M. & Hartel, P. H. (2001). Polymer
thick film sensors: Possibilities for smartcard biometrics, IOP Sensors and Their
Applications X1, Institute of Physics, IOP Publishing, London, pp. 83-88.

Henderson, N. J., White, N. M. & Hartel, P. H. (2001). iButton enrolment and ver-
ification requirements for the pressure sequence smartcard biometric, in I. Attali &
T. Jensen (eds), Smart Card Programming and Security: International Conference
on Research in Smart Cards, E-smart 2001, Java Card Forum, Eurosmart, INRIA |
Springer, Cannes, France, pp. 124-134. Lecture Notes in Computer Science Series,
ISBN: 3-540-42610-8.

Henderson, N. J., Papakostas, T. V., White, N. M. & Hartel, P. H. (2002). Low-
cost planar PTF sensors for the identity verification of smartcard holders, IEEE
Sensors 2002, IEEE, Orlando, Florida, p. To Appear.

Henderson, N. J., White, N. M., Veldhuis, R., Slump, K. & Hartel, P. H. (2002a).
A novel approach to the verification of smartcard holders, IEEFE Transactions on
Systems, Man and Cybernetics. To be submitted (summer 2002).
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