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Given a Quantum Field Theory, with a particular content of fields and a symmetry 

associated with them, if one wants to study the evolution of the couplings via a 

Wilsonian renormalisation group, there is still a freedom on the construction of a 

flow equation, allowed by scheme independence. 

In the present thesis, making use of this choice, we hrst build up a generalisation of 

the Polchinski Sow equation for the massless scalar held, and, applying it to the calcu-

lation of the beta function at one loop for the interaction, we test its universality 

beyond the already known cutoff independence. Doing so we also develop a method 

to perform the calculation with this generalised flow equation for more complex cases. 

In the second part of the thesis, the method is extended to Yang-Mills gauge 

theory, regulated by incorporating it in a spontaneously broken 6'[/(A^|7V) supergauge 

group. Making use of the freedom allowed by scheme independence, we develop a how 

equation for a gauge theory, which preserves the invariance step by step 

throughout the flow and demonstrate the technique with a compact calculation of 

the one-loop beta function for the 5'C/(7V) Yang-Mills physical sector of 

achieving a manifestly universal result, and without gauge fixing, for the first time at 

finite 
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C h a p t e r 1 

I n t r o d u c t i o n 

The Exact Reaormaiisation Group (ERG) is a powerful tool to control the 

infinities arising in quantum field theories. Once one has started introducing a La-

grangian which defines a certain theory, the calculation of possible predictions from 

it, such as scattering amplitudes or lifetime of particles, have in most of the cases 

to pass through the process of perturbative expansion, this being often, the only 

practical possibility. These quantities are evaluated at different approximations by 

truncating an expansion on the coupling constajit, assumed to be small. Infinities 

come out already trying to calculate the second approximation, when one faces the 

task to integrate over ail the possible momenta of the virtual particles taking part in 

the process. Rather than integrating out all the momenta at once, by introducing a 

cutoff at a certain scale of momenta Ao (here imposed via a cutofF function) which 

regulates these integrals, making the theory finite, one introduces another scale A 

(much lower than the first one), and the integral of the partition function is made 

from this new scale up to the first one, we are left with an integral between zero 

momenta and this new scale A. This integral can still be expressed as a partition 

function, but the previous action (called the 6are ac^mn) which is usually chosen as 

simple as possible, is replaced by a complicated This (rona/ormah'on 



of the action in the partition function due to momenta is a trans-

formation of the so called Wilsonian R e n o r m a l i s a t i o n G r o u p (RG) (see Rg.l.l). 

Imposing the invariance of the partition function under such transformations, one can 

And an equation, whose solution (with set boundary condition at Ao being the bare 

action of the theory), the so called nekton, describes the RG Eow of the 

action. Since the equation is written non-perturbatively, the approach is called the 

EG. The limit that the cutoff tends to infinity of the solution of this equation 

would be the action of the theory at any scale. This will be explained in detail in the 

next section for the case of a massless scalar Aeld theory. 

Ao S'ao—J-bare 
action 

A P> 
<5'a—> effective 

Pc physics action 

Figure 1.1: Flow of 5'^ as momenta a je integrated out 

When this process is applied to gauge theories, a further problem arises: the cutoff 

functions usually used, break the gauge invariance. The usual approach at this point 

was to recover this symmetry when the cutoff was removed. In this way each step is 

done gauge invariance, which is reinserted at the end (this approach will be 

brieSy reviewed later in section 3.1). The "temporary" non-gauge invariance limits 

the study of the theory in particular for what concerns non-perturbative studies. Since 

this is an interesting direction for a better understanding of gauge theories another 

way can be worth exploring, the one pioneered by Dr. Tim Morris in [4, 6, 7], which 

is based on studying an ERG for a gauge theory preserving this symmetry step by 

step. 



This thesis is organised as follows. In the second chapter will be considered the 

Polchinski approach to the Exact RG applied to scalar held theory. A review of the 

concept of scheme independence will be done, and through the freedom derived from 

it, a Eow equation more general than the one by Polchinski, will be introduced. In 

the last section of the chapter, we will calculate making use of this generalised How 

equation, the one loop beta function for the massless scalar held theory, developing 

a method to perform the calculation in this more general framework, which will be 

possible to apply also to the more complicated gauge field caae. 

The third chapter will be dedicated to the description of the attempts done to reg-

ularise gauge theories. Starting from the attempts mentioned earlier in which gauge 

invariance was hrst broken and then restored, and then going on to the methods 

involving covariant derivatives with the addition of Pauli-Villars helds. In the last 

section of the chapter will be also reviewed one of the most recent methods pioneered 

by Dr. Tim Morris et. al, in which the regulazisation is performed embedding the 

gauge group of the theory in a bigger graded group. The chapter will then start 

with some concepts related to this peculiar group and it will explain the mecha-

nism through which its subgroup of physical interest comes out regulated in a gauge 

invariant way. 

The fourth chapter will mainly be concerned with the build up of a Aow equation for 

the theory constructed on this bigger gauge group. Making use of the freedom allowed 

by scheme independence, the equation has been constructed in order to preserve gauge 

invariance through the how. 

The hf th and sixth chapters involve a check on the how equation introduced in the 

previous chapter. Adapting the method used for the scalar held to the gauge case, we 

calculate the one loop beta function for the Yang-Mills theory without hxing 

the gauge at any stage. 



C h a p t e r 2 

T h e Scalar Field Case 

Before we start with the at tempt to write a flow equation for a gauge 

theory, it might be useful to have a look at the way a Sow equation has been worked 

out in a much simpler case, which is the massless scalar Held theory. 

Of the many possible ERG formulations, we have chosen to describe the one by 

Polchinski, as in [6, 7], since it appeared more suitable for extracting a generalisation 

of its Sow equation, using scheme independence. The concept of scheme independence, 

which is going to be described in the second section of this chapter, will be central 

for the development of this whole work. 

As it will appear clear through this chapter, the simple massless scalar theory can 

give great insights on how to proceed for more sophisticated cases such as gauge 

theories. As an example, the calculation of the one loop /3-function performed in 

the last section, with a generalised Polchinski-like flow equation for the scalar theory, 

will set up a method which will be adapted to the analogous calculation for 

Yang-Mills. 

Let us start now with a brief introduction to the Polchinski ERG for the massless 



scalar Aeld. 

2.1 The Polchinski ERG equat ion 

The central object in the path integral formulation of quantimi held theories is the 

partition function Z from which it is possible to extract information such as the 

vacuum expectation value of a product of helds (a.A.a. correlators). These are related 

to physical objects like cross sections and so on. The partition function of a theory 

describing a field dehned by an action is^: 

Z [7] = (2.1) 

Taking derivatives with respect to the current j and setting it to zero, gives expec-

tation values of fields. When these integrals have to be performed, depending on the 

form of 5", there is sometimes the need to make use of perturbative methods, and, as 

it was mentioned in the previous chapter, this gives rise to divergent integrals. 

When these infinities arise from large momenta in the integrals of the particles ap-

pearing in loops, the usual procedure is to regularise the bare action to have finite 

quantum corrections, namely by substituting 5" — ( s e e hg. l . l ) . The partition 

function regulated via A,, is then: 

7 (2 .2 ) 

where the action of the theory is taken at Ao to be (bare action), in the momentum 

space: 

5». = 5 (2.3) 

Îf not otherwise specified we will always be working in Euclidean space 



where ^(p) are the Fourier component of the held (^(z) and c(p^/A^) is a Le. 

infinitely diEerentiable, ultra violet cutoff profile. The cutoE which modifies propa-

gators 1/p^ to c/p^, satisfies c(0) = 1 in such a way that low energy is unaltered and 

c(p^/A^) — 0 as oo, fast enough in order to make all the Feynman diagrams 

ultra-violet regulated. Ao] is the interaction pa j t of the bare action, containing 

all the relevant (and marginal) interactions compatible with the symmetries of the 

theory, considered to be the only non zero interactions at the scale Ao. For the case 

considered in section 2.3, we would normally choose the following (see also [35]): 

Ao] = ^ ^ (2.4) 

To motivate the later strategy, setting an intermediate cutoE scale A, we can (at least 

heuristically) separate the fields into the ones with momentum greater than A ((^>) 

and smaller than it (<^<) and rewrite the partition function with the new measure. 

We can then perform the integral on for a certain A to get: : 

Z = (9.5) 

where: 

= y (2.6) 

In principle now 6'A could contain all possible interactions compatible with the sym-

metries of the theory. In our case, the RG transformation amounts to changing the 

cutoff from Ao to A < < Ao in eq.(2.3): 

'5'A = ^ y ( ^ ^ P ^ c - X p V A ^ ) ' ^ ( p ) ^ ( - p ) + 5""^[^,A] (2.7) 

where now A] is a more complicated functional of (The "tilde" for the 

Fourier components of i^(z) will be dropped from now on.) The choice of a flowing 



kinetic term which keeps the same form as the corresponding one in the bare action, 

is the choice performed in [2] and it is just for simplicities sake. Now, changing the 

intermediate scale A, the interaction term transforms (Aows) as we integrate out 

momenta (RG transformation). One way to get the equation describing its 8ow is the 

following. Demanding that physics be invariant under such a scale change, follows 

from asking the partition function Z to be independent on A. If we then require its 

variation under the RG transformation to vanish 

= 0, (2 .8) 

we are led to a Sow equation for (Polchinski's for scalar field, see [2]): 

Classical Term Quantum Correction 

(c') is the derivative of the cutoff function with respect to its argument (p^/A^) and 

the following notation has been introduced: given two functions /(a;) and ^(?/) and a 

momentum space kernel l'y(p^/A^) (A is the effective cutoff), 

y Vy - ^ = y y (2.10) 

where 1̂ 14̂  = / ^ M / ( p ^ / A " ) e ' P 

The solution of the (exact) equation (2.9), with boundary condition 

the continuum limit (Ao —r oo) would be the action of the theory at any scale (as we 

were observing earlier in the thesis). 



2.2 Scheme Independence 

The equation derived for the interaction part of the effective action, in the previous 

section was indeed a consequence of the request = 0 under a RG transformation. 

Following the example of J.I.Latorre and T.R.Morris in [23], it is worth at this point 

making an observation. This one how equation is not necessarily the most general 

consequence of such a requirement. There is a more general statement, which can be 

extracted from it and this introduces a particular viewpoint on the concept of Scheme 

Independence (SI). 

Let us first consider the effective kinetic term of the scalar field theory, in the notation 

introduced in eq.(2.10): 

( 2 . 1 1 ) 

This will be referred to as "seed action" and denoted with ,9. The total effective action 

can be written then (dropping the A) as: 5" = 6" + 6"'"'. Defining the combination 

Z = 6" — 2^, the Polchinski how equation (2.9), can be rewritten (up to a vacuum 

energy term, discarded in [2]) as: 

The invariance of the partition function is manifest from the previous equation, since 

it is possible to recognise that eq.(2.12) can be recast as: 

I.e. the infinitesimal RG trajisformation on the partition function is a change in the 

integrand corresponding to a total derivative. From the previous equation we can 

8 



also notice that: 

where This establishes another result: integrating out degrees of 

freedom correspond to a redefinition of the fields in the theory [23]. In the case we have 

been considering here, the change in the partition function due to a transformation 

under the RG, corresponds to the variation due to the change of variables (Held 

redefinition): 

(2.15) 

Recognising the first term in eq.(2.14) as arising from the Jacobian and the second 

as arising from the variation of 5". is called the of the RG trazisformation. 

Different kernels, lead to different Sow equations. If these Sow equations come from 

diEerent choices of kernels connected via a field redefinition, they describe the same 

physical system. This gives a great freedom on the form of the flow equation. First 

of all there is a choice of the form of 2 , which could be chosen as a polynomial in 5". 

A reason for choosing it at least linear in the effective action, as it is done here, is to 

ensure a quadratic term in 6" on the RHS of the flow equation, which can give fixed 

point solutions to the fow equation. After this first choice is made, the freedom is on 

the "seed action" 6" (which will be widely used in the gauge case) ajid on the choice 

of the cutof[ function, which in principle can now contain interactions (as will be the 

case for the "wines" which will be introduced for the gauge case, following [6, 7]), 

higher functional derivatives, and/or other more complex dependences on 5'. 

Physical quantities should be independent of these choices. One of the main purposes 

of this thesis is to check that the equation derived from this more general formulation 

of the ERG, can give the same results that were found with previous ones. The 

universal quantity examined here is the first coe&cient of the beta function for both 

the massless scalar field and the ^'(/(N) Yang-Mills theory. In the former case this 

9 



check leads to a proof of universality for the beta function at one loop beyond the 

change of the cutoff function and allows to develop the right procedure to deal with 

calculations in this more general scheme. In the caae of gauge theories, since SI allows 

to write a Sow equation which preserves the symmetry for each step of the flow, the 

check represents also the first calculation of such a quantity in a gauge invariant way 

at finite 

As shown above, in the Polchinski case, the "seed action" coincided with the kinetic 

term, as eq.(2.l2) is equivalent to eq.(2.9) for this choice of S. For our purposes, in 

the calculation of the beta function at one loop for the massless scalar field, the "seed 

action" will be chosen much more general. First of all we require it to preserve the 

symmetry so it must be an even functional of the fields. Second, if one 

wants the effective kinetic term to Sow as in eq.(2.7), the bilinear term of 5" must 

be still equal to (2.11). For all the other interaction vertices with n > 2, we just 

ask them to be infinitely differentiable (Taylor expandable to any order) to ensure 

they do not introduce infrared singularities, and that they do not lead to ultraviolet 

divergent momentum integrals, so that the Sow described by the equation can be 

interpreted as integrating out momenta. We will see from the next section that the 

Srst coefScient of the beta function is blind to the introduction of all these extra 

parameters, which can be always eliminated in favour of the physically meaningful 

vertices of the effective action. 

2.3 One loop /^-function with general S: t he scalar 

field case 

Before we stai't the discussion for the super-gauge Seld we will consider the massless 

scalar Seld caae, in the present formulation and show that starting with the new form 

of the Sow equation (2.12), we can get the correct /^-function at one loop, without 

10 



specifying 6' and without any strong constraint on it. 

As we have mentioned already we expect the physical quantities to be universal, i.e. 

independent of the renormalization scheme. In particular, they should not be sensitive 

to the particular choice of the RG kernel, e.g. on the form of the cutoE function or 

the expression for the seed action. We aim to calculate one of those, the one-loop 

contribution to the /) function, while keeping as general a seed action as possible. As 

we will see, an elegant, clear cut way of achieving such a result is to make use of the 

Eow equations for the effective couplings in order to get rid of the seed action vertices. 

As usual, universal results are obtained only after the imposition of appropriate renor-

malization conditions which allow us to deAne what we mean by the physical (more 

generally renormalised) coupling and held. (The renormalised mass must also be de-

fined and is here set to zero implicitly by ensuring that the only scale that appears is 

A.) 

We write the vertices of S as 

a A) . (216) 

(and similarly for the vertices of 5"). In common with earlier works [2, 42], we define 

the renormalised four-point coupling A by the effective action's four-point vertex 

evaluated at zero momenta: A(A) = 6'('')(0;A). This makes sense once we express 

quantities in terms of the renormalised field, defined (as usual) to bring the kinetic 

term into canonical form —p;A) = 6'(^^(0,0;A) 0(p'^/A^). The flow 

equation can then be taken to be of the form [24, 25]: 

We have used the short hand defined in eq.(2.10), and as usual the anomalous di-

mension "z = ^A^A^Z, where Z is the wavefunction renormalization. As emphasised 

11 



in refs. [4, 23], although eq. (2.17) is not the result of changing variables i-)' 

in eq. (2.12), it is still a perfectly valid flow equation and a more appropriate starting 

point when wavefunction renormalization has to be taken into account. This is in fact 

a small example of the immense freedom we have in defining the Sow equation. (The 

new term on the left hand side arises from replacing <9A|̂  with a partial derivative at 

constant renormalised held, but in order to produce the right hand side, and in order 

to reproduce the same 6", we need to start with the alternative cutofF function cZ in 

eqs. (2.3) - (2.12). Alternatively, for the purposes of computing the function, we 

could have simply taken account of the wavefunction renormalization afterwards as 

in ref. [26].) 

We now rescale the field to 

(2 .18) 

so as to put the coupling constant in front of the action. This ensures the expansion 

in the coupling constant coincides with the one in /z, the actual expansion parameter 

being just A/i. The resulting expansion is more elegant, being no longer tied at the 

same time to the order of expansion of the held It is also analogous to the treatment 

pursued for gauge theory in refs. [4, 6, 7] (where gauge invariance introduces further 

simplifications in particular forcing -y = 0 for the new gauge held). The following 

analysis thus furnishes a demonstration that these ideas also work within scalar held 

theory. 

The bare action (2.3) rescales as 

A 
= (2.19) 

Defining the "rescaled" effective and seed actions as and 

12 



absorbing the change to (9̂ .1̂  in a change to the Sow equation (2.12) reads 

Expanding the action, the beta function /)(A) = A<9AA and anomalous dimension, in 

powers of the coupling constzmt: 

5[(6] = 5o + + A'62 + ' ' ' , 

/3(A) = ^iA^+/32A^ + --- , 

^(A) = + 

yields the loopwise expansion of the 8ow equation^ 

A a A 5 ' i - ^ i 5 ' o - : ^ , ^ . ^ = 
2 6^ 
2 ^(5'o - ^ ) , 1 / (̂ (6'o - 26') . . 

' n r - C - r - , A^ A^ 

e^c. 'Yi and /)i may now be extracted directly from eq. (2.22), as specialised to the 

two-point and four-point elective couplings, 5'(^)(p;A) and 5'('*)(p;A) respectively, 

once the renormalization conditions have been taken into account. 

We impose the wavefunction renormalization condition in. the new variables: 

5'(^)(p, - p ; A) = 0; A) -t- -t- 0(p'*/A'^). (2.23) 

Bearing in mind that the coupling constant haa been scaled out, we impose the 

"In order to simplify the notat ion, the tildes will be removed from now on. 



condition 

5'('')(0;A) = 1. (2.24) 

Both conditions eq. (2.23) and eq. (2.24) are already saturated at tree level. (To 

see this it is suiScient to note that, since the theory is massless, the only scale in-

volved is A. Since 60'̂ ^ is dimensionless it must be a constant at null momenta, thus 

5'o'̂ (̂0; A) = 5'o'̂ (̂0; Ao) = 1. Similar arguments apply to 6'o^\) Hence the renormal-

ization condition implies that we must have no quantum corrections to the four-point 

vertex at p = 0, or to the O(p^) part of the two-point vertex, i.e. 

5'̂ '̂ )(0; A) = 0 and - p ; A) 2 = 0 Vn > 1, (2.25) 

where the notation |p2 means that one should take the coefhcient of in the series 

expansion in p. The Sow equations for these special parts of the quantum corrections 

thus greatly simplify, reducing to algebraic equations which then determine the 

and In particular, from the Sow of at null momenta:^ 

ft + 271 = ^ [ 1 - s ' " ) (0 ) ] s f ' (0 ) - i - 2SWj(0 , , . ^5) , (2.26) 

where Cg == c'(0) and J, = / from the Sow of expanded to O(p^): 

/ 3 I + 7 . = y ' c ' ( g - ) [ 5 W - 2 5 W ] ( p . - p , 5 , - , ) | ^ , . (2,27) 

Note that contrary to the standard text book derivation our one-loop anomalous 

dimension is not zero, picking up a contribution from the general field repaiametriza-

tion [23] induced by higher point terms in 6' and a contribution — d u e to the Aeld 

rescaling eq. (2.18). 

In order to evaluate eq. (2.26), we need to calculate 5'j^^(0) and 6o''^(0, g, —g). We 

^Here and later we suppress the A dependence of the S and S' vertices. 
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would also need ajid g,—g), but we will see tha t we can avoid using 

explicit expressions for them, and thus keep 5" general, by using the Sow equations 

to express them in terms of the effective vertices and 

However, as explained in the previous section, our 5' is not completely arbitrary. 

Apart from some very general requirements on the differentiability and integrability 

of its vertices, for convenience we restrict i? to have only even-point vertices, as in 

fact already used in eqs. (2.26) and (2.27), and constrain its two-point vertex so that 

the two-point effective coupling keeps the same functional dependence upon A as the 

bare one (as in eq. (2.7)). This last condition reads 

S f (p) = (2.2S) 

and from the two-point part of eq. (2.21), we immediately And 

S'W(P) = p V ( g ) . (2.29) 

Let lis s tart with the calculation of 5'̂  (0). From eq. (2.22), its ecjuation reads 

AaA5f ' (0 ) = i l / C M s i " - 231-"] (O.O.,. - 9 ) , (2.30) 

where eqs. (2.29) and (2.28) have been already used to cancel out the classical terms. 

Pursuing our strategy, we get rid of by making use of the How equation for the 

four-point effective coupling at tree level 

A d , S t \ p ) = - ^ _ E ' - ^ S ^ ' \ p ) . (2.31) 

where Cp, = (^(B^) invaiiance of under permutat ion of the p,'s (which 

it haa without loss of generality) has been utilised. Specialising the above equation 
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to p = (0, 0, g, —g), eq. (2.30) becomes 

A%5' | " (0) = 1. [c'^S<i'\OAq,-q} 
, 2c/ 

^(0,0,9, —g) 

— ( 0 , 0 , 9 , - g ) 

-A8A 
c, 5 f ) ( 0 , 0 , g , - g ) 

(2.32) 

In the above, the derivative with respect to the cutoE may be taken after integrating 

over the loop momentum since the integral is regulated both in the ultraviolet and 

in the infrared as a result of the properties of the effective couplings. Eq. (2.32) may 

be now integrated to give 

c, 5'^'^)(0,0,g,-g) 

2cf 
(2.33) 

with no integration constant since for a massless theory, there must be no other 

explicit scale in the theory apart from the effective cutoff. 

Let us now move on to the tree-level six-point function. From (2.21) we get 

'\̂ ^A'$o ^(0, 9, ^ 9 ) 
y\. Cg 

[1 - S'l">(0)] S f 1(0, 0, q,-q) + 0. q,-q) 
A 

1: 

'A 
5'M(0.0, q, -q) [ s f > - 2S(-'>j ( 0 , 0 , , , - 5 ) . (2.34) 

Using eq. (2.31), and solving for 6'('')(0, g, —g), 

S"HO,q,-q) |''^^A.Sa'^'(0, fy , -^ ) ) + " ^ [ 1 - S^'^H^)\Sc''\0,0,q,-q) 

2c'„^i\d,,slt\0Aq.-q) 
9-c, 

;^'SQ^(0,0,g, —g)YW^ Cg6o^(0,0,g, —g)j>. (2.35) 
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We will see that substituting eqs. (2.33) and (2.35) into eq. (2.26) will cause almost 

all the non universal terms to cancel out. The remaining ones will disappear- once 

-yi is substituted using eq. (2.27), leaving just the precise form of the one-loop beta 

function. 

Note that in eq. (2.35) and later, it appears at first sight that we need to be able to 

take the inverse l/c^. This would mean that in addition to the general restrictions on 

6" outlined earlier we would also require that does not vanish at finite argument. 

In fact, we could arrange the calculation more carefully so that 1/c' never appears, 

thus e.^. here we can recognize that only c^6'(^)(0, g, —g) is needed for eq. (2.26) and 

that from eq. (2.31), A8A'S'o^^(0,0,g, —g) has a factor of c^. For clarities sake, we will 

continue to write 1/c' in intermediate results but it is easy to check that all such 

inverses can be eliminated. 

Returning to the calculation in detail, the first term in (2.35) and the term in 

(2.26) may be paired up into 

/ ; ^ 5 ' r ( 0 , 9 , - g ) , (2.36) 

where again, due to the properties of the effective action vertices, the order of 

the derivative and integral signs can be exchanged. Moreover, as the integrand in 

eq. (2.36) is dimensionless, there cannot be any dependence upon A after the mo-

mentum integral has been carried out, hence the result vanishes identically! Also, the 

second term in (2.35), when substituted into (2.26), exactly cancels the first term of 

the latter once (2.33) is used. One is then left with 

2 
A + 2'yi = —CQ / -^A<9A5'o^^(0,0,g, —g) —3 /-^5'o'^^(0,0,g, —g)A<9A{cg5'y^(0,0,g, —g) 

V, g Cg V, g 

" ^^0 / —g) — - / —A^A{cg'$'r^(0,0,9, — - (2 3' 
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In order to cancel out the first term in eq. (2.37), the one-loop contribution of the 

wave function renormalization coming from eq. (2.27) must be taken into account. 

Again making use of eq. (2.31) to rid us of the hatted four-point coupling, 

, - 4 AaA^o' '^(0,0,g,-g), p- ip-A 
(2.38) 

and substituting back in eq. (2.27), 

1 . / X 2 

A + T i — g ^ ^ A / c g 5 ' o ^ ( p , —p,g, —g) A<9A5'o'^(0,0,g, —g). 

(2.39) 

The Arst term on the right hand side of eq. (2.39) vanishes as it is a dimensionless 

UV and IR convergent integral, and therefore -yi takes the form 

= —A — A i ^ A ' S ' o ^ O i O , ? , —g)- (2.40) 

Finally, substituting (2.40) in (2.37) yields 

A = 5 / ^ A a 4 c , 5 W ( 0 . 0 . 9 , - , ) } ' (2^41) 
iq q 

3 i l , 
2 (27r)'' Jo 

3 

dgag{cg5'^'^)(0,0,g,-g) 

IGTT̂  2 ' 
(2.42) 

which is the standard one-loop result [27].'* Note that in the top equation the A 

derivative cannot be taken outside the integral, aa this latter would, not then be 

properly regulated in the infrared. Moreover, had that been possible, it would have 

resulted in a vanishing beta function, as the integral is actually dimensionless. 

^The term in braces depends only on g - / A ' . fi.-i is the four dimensional solid angle. The last line 
follows from the convergence of the integral and normalisation conditions c(0) = 1 and (2.24). As 
far aa independence with respect to the choice of cutoff function is concerned, this is standard. 
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C h a p t e r 3 

Regular is ing Gauge Theories 

The first step towards an ERG approach for a quantum field theory is to construct a 

regulajised effective action, with a regulator suppressing the high modes and main-

taining the symmetries of the theory. As far as a scalar field theory is concerned, the 

problem to solve is quite easy and it was developed in the previous chapter. It is well 

known that for gauge theories this task represents a more comphcated issue. 

The notion standing at the base of the ERG is in fact the division between small 

and large momenta (with respect to some effective cutoff A), being the high ones 

those that are integrated out. This separation operated in the momentum space is 

at odds with the concept of gauge invariance [38]. A way to notice it is to consider a 

homogeneous gauge transformation acting on a field 

(3.1) 

In the momentum space, i^(p) is mapped through this transformation into a convolu-

tion with the gauge transformation, and any division between low and high momenta 

is not preserved by gauge transformations. In order to overcome the problem, there 

are two options left: either one breaks gauge invariance trying to recover it in the hmit 
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A — o o or tries to And a generalisation of the ERG. The former approach, which will 

be brieSy reviewed in the next section, has been the one mainly followed so far, as can 

be also found in [38, 39, 43]. The second one, starts on writing gauge invariant cutoE 

functions with addition of Pauli-Villars fields, by A. Slavnov a/. , and is continued 

by T.R. Morris a/, with the introduction of the supergauge theory 5'(y(7V|A^) as a 

gauge invariant regulator for the Yang-Mills theory. This will be reviewed in detail 

in the last few sections of this chapter. 

A gauge theory regulated in a gauge invariant way is then a solid basis to build a flow 

equation capable to preserve this feature while extracting information from it. This 

is going to be the content of the last two chapters. 

3.1 Breaking the gauge symmet ry and the Quan-

t u m Act ion Principle 

If one chooses the first possibility, and introduces a scale A to regularise the effective 

action, the result is that whilst the classical action is invariant under the gauge 

transformation, the cutoff effective action is not. The consequence is a breaking 

of the effective Ward-Takahashi identities, or Slavnov-Taylor identities, for the non-

Abelian case. This complicates the issue but it is not a problem as long as it is 

possible to recover gauge symmetry when the cutoEs are removed. Rephrasing it, 

it is not a problem if it is possible to identify a functional of the effective action, 

representing the explicit breaking term, which satisfies the equation Aeyy[6'A, A] = 0, 

in the "physical" limit A = 0 and Ao oo. 

In order to derive this symmetry breaking term, it is possible to invoke the Quantum 

Action Principle. This method is used to study the response of the action of a 

Quantum Field Theory under a field transformation and it can be used to construct 

20 



theories with a given symmetry. In the case of gauge theories and for the present 

purpose, one has to consider the response of the regularised effective action under a 

gauge transformation and make sure that the term arising from such a change is zero 

in the physical limit described above. We will illustrate here just the procedure for 

constructing an action symmetric under a simple transformation which could then in 

principle be specified. Let us consider a theory described by an action and the 

corresponding generating functional: 

= (3.2) 

where a source term has been added to the action. Consider now the following 

infinitesimal continuous transformation of the fields: 

(3.3) 

where are (anticommuting) polynomials in the fields , which in the case of gauge 

theories can correspond to a BRS transformation and e is an anticommuting parame-

ter. Adding to the action a source-type term for the variation of the field of the form 

—77/1̂ 4 B'lid performing the field transformation on the generating functional, we get: 

/ (fr "/AT— = (3.4) 

where we indicate with A the following: 

" I ' " ^ 

As one caji notice, the first term is due to the Jacobian of the transformation, while 

the second term takes into account the change in the action due to the variation of the 

fields. The response of the system is then given by the insertion of the local operator 

A. Eq.(3.4) is known aa the Quantum Action Principle. 
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For our purposes, as anticipated, in order to get Agyy one would have to follow 

a similar procedure, with a regularised effective generating functional, performing a 

cutoff held transformation. The full calculation for the present case will not be shown 

here, and can be found in the literature (see [44]). 

It is possible to prove that the breaking term obeys the following equation: 

AgAA,;/ = A4[A=yy] (3.6) 

where Ai is a linear operator. This implies that , if it is possible to impose at some 

zero boundary conditions for eq.(3.6), the breaking term vanishes at any A. The main 

point is then to set to zero at A;{ those for the relevant part of Ag//. This procedure 

usually overdetermines the vertices of thus the number of independent constraints 

has to be reduced making use of consistency conditions (algebraic identities coming 

from anticommutativity of the operator ^ ^ ^ ) -

In this picture it is crucial the way the relevant parts are dehned. If the boundary 

conditions are set at Aj% ^ 0, the relevant parts of Ae/y(Aj^) can be extracted by 

expanding the vertices around zero momenta even in presence of massless particles. 

What one gets at this point is that the consistency conditions constrain some of the 

couplings in the relevant part of Aeyy(AB), which via a tuning of the relevant couplings 

of the effective action must match with their set of relations. This procedure is known 

as fine-tuning of the parameters. 

If one instead decides to impose the boundary conditions at the physical point Aj;; = 0, 

if the theory includes massless particles, one has to impose non-vanishing subtrac-

tion points. This causes a mix of relevant and irrelevant vertices in the consistency 

conditions spoiling their power. 

Once all the details of this procedure have been set up, one is left with a fine-tuning 

equation. If the equation is solvable, the symmetry (the gauge symmetry in our case) 
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is implemented at the quantum level and no anomalies appear. A more detailed 

description of the above methods can be found in the literature (see e.g. [45]). The 

main problem now is that the equation mentioned above is usually difhcult to solve, 

even at the first non trivial order in perturbation theory. 

There are successful attempts of avoiding the task to solve the fine-tuning equation 

by fixing proper boundary conditions to the RG equation (see Bonini ef a/, in [43]), 

but we will not discuss them here. 

Instead of doing so, since all these difEculties come from the incompatibility between 

gauge invariance and the division of high and low momenta, we try to follow the 

second approach mentioned in the previous section. Following the lead of T.R.Morris 

we will try here to describe first, a possible way to regularise gauge theories without 

breaking their symmetry, and then how to generalise the RG method in order to 

preserve the symmetry in the Sowing effective action. This will be done through the 

construction of a generalised Sow equation, gauge invariant itself, capable to describe 

a gauge invariant fowing effective action. Before we start, it is worth having an 

overview of other efforts towards a gauge invariant regulator. 

3.2 Higher derivatives and P-V fields 

The first step is to regularise the action in such a way as to preserve its symmetry. 

As we have seen in the previous chapters, in a simple case such as the scalar theory, 

there are many possible choices of regularising the action, involving the introduction 

of cutoff functions. These function have the role to cut the high modes in the loop 

integrals in order to make them finite. There is a wide choice for the cutoff function 

which can be chosen to be either a step function (sharp cutoff) or a smooth one as 

long as it preserves the symmetry of the scalar action (for example for a single scalar 

field this involves the request of being even in the fields). One possible choice, as can 
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be found in Chapter 2, is to introduce in the kinetic term a function in the derivatives 

(which in the momentum space is a function of the momenta). 

When it is the case of gauge invariance, this last requirement causes troubles for the 

reason described in the previous sections. Following the example set by the scalar 

case, the hrst at tempt towards this goal, was to introduce as a cutoff, a function in 

the covariajit derivative, rather than in the ordinary ones. The method starts from 

the observation that a kinetic-like term (quadratic in the fields) containing higher 

derivatives modifies the propagators, conferring them a better behaviour at high 

momentum. A term like this, 

c ^ 8' '^, (3.7) 

substituted in the Lagrangian in place of the usual kinetic term, gives, in the momen-

tum space, a correction to the propagator which amounts to change the ordinary one 

(e.g. in the massless scalar field) as 

i - - i i f i 

The new propagator certainly leads to convergent momentum integrals for a suitable 

choice of the function appearing in (3.7) (for example if is chosen to be a polyno-

mial for a certain choice of its degree). The idea, for a scalar field is as simple as that, 

and the physical information is restored aa A —cxo: at finite A all loop diagrams 

(responsible for divergences) are finite and the calculations are made at this point. 

The physical quantities can be calculated with a proper renormalisation condition 

and sending the scale y\. to infinity gives a finite answer for them. 
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3.2.1 C o var ian t is at io ii 

This does not work for gauge theories. As we said before, a term like the one in (3.7) 

would break the invariance. One way, as we cited before, to deal with the problem is 

to break the invariance and restore it when the scale is sent to inhnity. Nevertheless, 

since we want to follow the other path and write a manifestly covariant Exact Renor-

malisation Group (ERG), our bare action must be gauge invariantly regulated. A Erst 

at tempt embracing this philosophy was to introduce a cutoff function in the covariant 

derivative, as we mentioned in the previous section, rather than in the ordinary ones: 

instead of the term (3.7) we write 

This is known as the higher (fenuahues regularisation [15, 21]. It is known 

that this method cannot work by itself since it creates a new problem: when the higher 

derivatives aje covariantised, divergences at one loop are still present due to further 

interactions coming in with them. One way out is to introduce by hand massive (mass 

of order cutoff A) fields with opposite spin-statistic (the so called f cfuZ; — yzfZora 

helds) capable of cancelling these 1 loop divergencies. Due to their statistic, they 

provide a sign in loops as it is shown in hg.3.1 At high momenta, in fact, when 

= 1/, 

Figure 3.1: Pauli-Villajs field cajicel out residual 1-loop divergencies 

the integrals at one-loop diverge, the propagators and the interactions of the two 

different fields have the same behaviour and due to the sign difference, they cancel each 

other. Once the calculation is carried out with finite integrals and the renormalisation 

conditions have been applied, sending the cutoff to infinity would eventually restore 
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the physics, since these helds decouple from the physical ones in this limit. Higher 

covariant derivatives and Pauli-Villars (PV) fields combined together provide a good 

scheme to regulate gauge theories, as is considered in [15]. This regularisation scheme 

still creates problems though. First of all when these PV fields came in external lines 

there were divergences that even if discarded assuming them non-physical, caused 

overlapping divergences at higher loops containing these diagrams [17]. Moreover, 

even though this problem was solved by Bakeyev and Slavnov in [14], the method 

was not straightforwardly applicable to the RG equation approach. 

A first at tempt of overcoming this problem was presented in [6, 7], where a gauge 

invariant Sow equation for a free Yang-Mills (YM) theory, regulated with higher co-

variant derivatives and PV fields, has already been studied and the 1-loop /^-function 

for YM at # = oo, has been calculated for the first time without fixing the 

gauge. The work was based on insisting that the regnlarisation respected the 6ow, 

adding higher order interactions for the PV fields (instead of adding them just as 

mass terms), and with the aid of an auxiliary scalar field. The regularisation was 

only valid for 1-loop diagrams and at TV = oo and it could not allow to perform 

calculations beyond this order. On the way of doing this, it appeared clear that all 

the right content of fields was contained in a bigger group, called 6'[/(A^|A^), which in 

its bosonic sector, contains SU(N)®SU(N)®U(1). Through a Higgs-type mechanism 

of spontaneous symmetry breaj<ing through an auxiliary scalar field, one of the two 

6'(/(/\A) sectors results in a YM theory gauge invariantly regulated by a naturally 

combined action of higher covariant derivatives and PV fields. This group and its 

application for the present purposes will be better described in the next section. 
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3.3 Regulat ing via Gauge Theory 

3.3.1 superalgebra 

Since we will have to deal with a gauge theory, it ia worth spending few 

words on group and related algebra. is a graded Lie group, 

whose elements (/ an be represented in the exponentiated form as: 

ZV = exp(%'H) (3.10) 

The set of elements belong to the corresponding Lie superalgebra 5'L/^(A'^|N). An 

element of the superalgebra, can be represented with a 2A^ x Hermitian matrix 

•H: 

n = 
(HI, I>\ 

6 ST7(iV|;V) (3.11) 

V f t H},) 

The two jif}/ cire Hermitian jV x matrices whose elements are bosonic complex 

numbers (commuting i.e. ordinary d ), and ^ is an x W matr ix filled up with 

anticommuting fermionic (Grassmann) numbers. A matr ix such as the one described 

in (3.11) belongs to the algebra 5'(y(yV|#) if it satisfies the additional requirement of 

being ' 'supertraceless": 

str'H — trHj^ — trli^v = 0 (3.12) 

The defined in (3.12), is the natural replacement of the trace for ordinary 

matrices. It is in fact cyclically invariant because it compensates the sign picked up 

by commuting the Grassmann components: 

s t r X y = s t r F X (3.13) 



l-iN 0 ^ 
(3.14) 

where and are two general snpermatrices. In this way the supertrace of commu-

tators vanishes, and makes it invariant under the adjoint action of the group. Once 

the matr ix <73 is defined: 

/ llyv 
1̂ 3 = 

y 0 — lliV ! 

where 11 is the x identity matrix, the supertrace of a matrix can be rewritten 

in terms of it as 

str('K) = tr(cr3'M). (3.15) 

The request of being supertraceless for elements of 5'[/(#|7V) is the natural extension 

of the request on the elements of the ordinary algebra: it guarantees that 

ZY in eq.(3.10) has unit superdeterminant. The supertraceful matrix 0-3 generates 

a (7(1) group absent f rom 5'[/(A/|N). This [ / ( I ) group though is not orthogonal 

to 6'(/(A/^|#) because being 6'a a generic generator of 5'[/(A/^|A^), 8tr(cr36'a) can be 

non zero in the case of the identity. Moreover, even though 0-3 commutes with all 

the bosonic generators of 6'(7(A/^|#), it does not commute with all the fermionic 

ones (unlike the case of 5'!7(N) with the [ / ( I ) generated by the traceful identity). 

This confers to 6'(y(#|A/) a different character, which will be used in the symmetry 

breaking mechanism described later. The bosonic subalgebra of 6'(y(//|A^) is, cis we 

have anticipated, 5'[/(A^)i x 5'(/(/ /)2 x ( /(I) the latter being the subgroup generated 

by the unity matr ix (which, since supertraceless, belongs to the algebra). 

We will consider the generators to be Hermitian matrices with complex number en-

tries. The superalgebra will be then defined through a set of commutation and anti-

commutation rules (the Grassmann character will be carried by the coefhcients). Let 

us consider an element of the Lie algebra as a linear combination of the generators: 

^ (3.16) 
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where the 6'a's a je the generators: 

5' 

]l2iV a = 0 

B . a = l , . . . , 2 # ^ - 2 (3.11 

F . a = 2 A A " - l , . . . , 4 7 V " - 2 

llgyv is the 2jV x 2yV identity matrix, are the 2#^ — 2 block diagonal traceless and 

supertraceless generators (along the directions of the bosonic components) and the 

f ^ ' s are the 2#^ oE-diagonal generators (fermionic components). The commutation 

and anticommutation rules which dehne the algebra are: 

1) B , 

2) = 

3) { & , ft} = Be + 11 (3^18) 

4) lll , . l = 0; 

(where ' * ' stands for any element) 

All the generators are matrices with commuting numbers as entries, being the Grass-

mann character carried by the parameters. Here, "Hat are co-

elhcients which define the algebra 6'[/(A^|yV). Since one can get anything from first 

principles by using the fact that the generators 5'a span the space of Hermitian ma-

trices, it is not important to specify them here. However to be more clear, a specihc 

choice of a basis is considered in Appendix A, in order to write the relations of eq. 

(3.18) all in terms of the structure constants of 5'[/(vV), / and d. 

It is useful for future reference to list also the commutation and aticommutation 

relations of the generators of 5'(7(yV|A^) with the generator of the ( /( l) , <73 deAned in 

29 



(3,19) 

eq.(3.14): 

5) [0-3, = {<73, f a } = 0 

6) k s , f . ] = ^3. ' ^6 

First let us split the generators as 6'a = ( 1 1 , I t is now useful to dedne the Killing 

super-metric as: 

= 2 str(5'a6'^) (3.20) 

is symmetric when either index is bosonic and antisymmetric when they are both 

fermionic: 

(3.21) 

where / ( a ) is 0 if the index is bosonic and 1 if it is fermionic. The normalisation of 

the generators is defined via the following form of the metric (where all elements not 

indicated are zero): 

/ 0 

1 

1 

Aa/3 = 

- 1 

- 1 

V 

0 'i 

0 

0 i 

- I 0 

\ 

(3.22) 

[/(I) Fermionic 

^The 7̂ 4 are the traceless and supertraceless generators and span the same space of matrices as 
Bn and f a 
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This super-metric ha^ no inverse due to the presence of ]! in the generators (which 

gives a column and row of zeros in the matrix above). It is possible to dehne 

consistently with or without the identity matrix, changing the definition of the com-

mutators (see [22]). Here the definition including it will be considered. However, we 

will see that the gauge theory constructed on this group will decouple the component 

in this direction. Specialising to just the space including the generators, we can 

consider the Killing super-metric in this subspace, which is invertible and defined as: 

= 2str(T47g) = (3.23) 

its inverse is defined by 

(3.24) 

can be used to lower or raise indices as in 

(3.25) 

Since the ordering of the indices of the super-metric is important (see eq.(3.21)), it is 

worth commenting that in (3.25) the sum is on the second index and in general: 

f (3.26) 

For the generators we have the dual relation given by: 

(3.27) 

Another useful relation which holds for the generators of 6'[/(N|7V) is finally the 

completeness relation: 

{T^Y.ITa)') = ~ [f,(%)'=, + (3.2S) 
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(see App. B for a derivation.) This is most usefully cast in the following forms 

str(XTyi)8tr(T'^y) = ^ s t r ( X y ) - ^ [ t r % s t r y + s t r ; ( ' t r y ] , (3.29) 

s t r ( r ^ x r " ^ y ) = ^ s t r x s t r y - ^ t r ( % y + y x ) , (3.30) 

for arbitrary supermatrices % and y . Let us now consider the adjoint representation 

of the group. An element of it can be written as: 

yW = ]1 + + A i } F . (3.31) 

where the 6'a's are — 1 (2YV x 2A )̂ matrices of 5'[/(#|A/^). An element of the 

adjoint transforms, under an infinitesimal transformation of the group w = = 

LUg Bu + Wp as follows: 

(3.32) 

In components, given the commutation and anticommutation rules of the group, it 

has the following form: 

g , / (3.33) 

For future reference it can be useful to consider also the 2A/̂  0 2vV representation^. 

An element of it can be represented as: 

C = + C"(73 (3.34) 

'Unlike J)(7(7^), the group S(y(W|A^) is indecomposable, thus this representation is not the 
AdjointG the singlet 
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for it also the transformation will be of the form of eq.(3.32) and in components is: 

(3.35) 

= 0 

The last line shows how the component along 0-3 does not transform under 5'[/(#|7V)^. 

Having described here the main properties of this graded group and of its Lie algebra, 

it is now possible to move onto the description of the regularisation. scheme adopted 

making use of it. 

3.3.2 Regi i la r i sa t ion: Gauge g r o u p and Higgs- type mecha-

nism 

Instead of working just with the gauge field, which we write as 

where are the generators orthonormalised to tr(T{^T'j') = we embed 

it in a supergauge field [33, 34]: 

(3.36) 

Here we have written ./I as an element of the 5'[/(A/̂ |A/̂ ) Lie superalgebra, using the 

defining representation, z.e. as a supermatrix with bosonic block diagonal terms A' 

and fermionic block oE-diagonals B cind B, together with the central term 

As required by 5'fy(AA|#), the supermatrix (and thus also ^4) is supertraceless, i.e. 

tr/1^ — trA^ = 0. This excludes in particular 0-3, defined in eq.(3.14), from the Lie 

^However, 0-3 is not a singlet of SU[N\N) though (as 11 is for SU{N)), since it takes part in the 
transformations of the other components 
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algebra. From now on we will write simply cr = <73. The supermatrix is in addition also 

traceless, the trace having been parametrised by ^4°. Equivalently, as we have seen in 

the previous section, we can introduce a complete set of traceless and supertraceless 

generators (normalised as in eq. (3.22)) and thus expand ./I as 

= ^ ; ]1 + (3.37) 

The B fields are wrong statistics gauge fields. They will be given a mass of order 

the cutoff A. The supergroup SD'(jVlA^) has 5'[/(N) x 5'[/(N) x (7(1) as its bosonic 

subgroup. A^(a;) = is the gauge held for the second 5 ' [ / (#) , and is the (7(1) 

connection. Interactions are built via commutators, using the covariant derivative: 

V;; = - zVl;,, (3.38) 

The coupling constant ^ does not appear in the definition of the covariant derivative, 

as it usually does, because it is considered scaled out. This rescaling of the fields is 

proved to be useful and a more detailed discussion about this issue is presented in 

section 4.4.1 Thus the superheld strength is given by V^]. The kinetic 

term will be regularised by higher derivatives which thus take the form: 

str j - (3.39) 

(where the dot means V acts by commutation. In practice we will add the higher 

derivatives as a power series with coeScients determined by the cutoif function c). 

The supertrace, which, from the discussion around (3.13), is necessary to ensure 

5'(7(#|W) invariance, forces the kinetic term for to have wrong sign action, leading 

to negative norms in its Fock space [34]. 

As can be seen from eq. (3.37), does not appear in the kinetic term. Providing the 

interactions can be written as str(y4. x commutators), will not appear anywhere in 
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the action. More generally we will need to impose its non-appearance as a constraint, 

since otherwise ^4° has interactions bnt no kinetic term and thus acts as a Lagrange 

multiplier resulting in a non-linear constraint on the theory, which does not look 

promising for its use as a regularisation method for the original Yang-Mills. 

On the other hand, if the constraint is satisfied, is then protected from appearing 

by a local '^no-./l°" shift symmetry: = A^(z), which implies in particular that 

has no degrees of freedom. Together with supergauge invariance the theory is 

then invariant under 

= (3.40) 

The eEect of the no-^° symmetry is to dynamically define the gauge group as the 

quotient 6'(/'(yV|A^) = 5'(y(AA|7V)/!7(l), in which Lie group elements are identified 

modulo addition of an arbitrary multiple of 11. 

An alternative and equivalent formulation [34] is to pick coset representatives, which 

can for example be taken to be traceless, so that .4° is set to zero, and thus discarded. 

(This is the strategy used in ref. [28] to define a 5'[/ '(N| A )̂ sigma model. Incidentally 

this paper contains arguments for finiteness of these models which are similar to those 

given for 5 ' [ / ( N | # ) gauge theory in [34].^) In this reduced representation, eq. (3.40) 

is replaced by Bars' solution [22]: 

= [V^,w]* = [V;,,w] — y^ t r [V^ ,w] . (3.41) 

The ^bracket replaces the commutator as a representation of the Lie product so in 

particular = %[V ,̂ V^]* [34]. 

The lowest dimension interaction that violates no-v4.° symmetry contains four super-

field strengths, for example: 

str ( ; ; - ^ , ) ' ( ; ^ A . ) ' . (3.42) 

' 'We thank Hugh Osborn for drawing our attention to this paper 
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Such terms are not invariant under the 'Bazs*' eq. (3.41), either. Since eq. (3.42) 

is already irrelevant, no-./l° symmetry is automatic for the conventional supergauge 

invariant bare action of ref. [34]. Here there is no such bare action, and interactions 

are generated by a largely unspecified exact RG, so we need to impose no-y4° as an 

extra constraint. 

We introduce a superscalar field 

•12 
(3.43) 

in the fundamental (gi its complex conjugate representation, equivalently as a matrix 

in the dehning representation of [/(A^|#) [34]. Under supergauge transformations 

= —% [C,w]. (3-44) 

In the Bars'*' representation we do not replace this by a ^bracket, since commutators 

are necessary for powers of C (appearing in its potential) to transform covariantly 

[34]. However, as in ref. [34], since working with the full cosets seems more elegant, 

we will employ eq. (3.40) and the full representation in this thesis. 

We will arrange for C to develop a vacuum expectation value along the o" direction 

through an appropriate Higgs-type potential, so that classically < C > = Acr.̂  This 

spontaneously breaks 5'[/(A/'|A^) down to its 6'[/(7V) x 5'[/(A^) x [/(I) bosonic subgroup 

and provides the fermionic helds B and D with masses of order A. In usual unitary 

gauge interpretation, D is the would be Goldstone mode eaten by B. However, since 

we will not gauge fix, they instead gauge transform into each other and propagate as 

a composite unit (see Appendix D). The reason why the fermionic components of the 

,4 super-gauge Aeld (the B's) get a mass, is the Higgs mechanism, being them the 

® Later however we will use an unconventional normalisation for C. 
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fields along the broken gauge generators. The D field (fermionic component of the 

super-Higgs held C), being the component of the Higgs along the direction where the 

symmetry is broken, is the Goldstone boson and its kinetic term vanishes at p = 0, 

as it is stated by the choice made in eq.(5.15). However, since the helds B and D 

are coupled, if we diagonalise their kinetic terms, we can indeed notice, that the 

diagonalised mass matrix describes B and D as two massive particles with masses 

of order A. Moreover since the physical mass of a particle corresponds to the pole 

in its propagator written in the Minkowski space, D can be regarded as a massive 

field, since its zero point wine (z.e. elective propagator, see App. D) does not have 

a massless pole, as one can notice from eq. (D.18) (the only field which does is the 

bosonic gauge field ^4). In fact, the coupled fields B and D, have decoupled effective 

propagators or, in other words, the coupled two-point functions and DD and the 

cross term kinetic term BDo", have uncoupled inverses in the transverse space. 

Finally, we arrange for the remaining 'Higgs' fields C" also to have masses of order A. 

This is done here by the choice made in eq.(5.14). The two point C vertex is chosen 

to be non vanishing at p = 0, and the coefficient is chosen positive (A > 0), so that it 

is a mass term. 

All the information that was encoded in the regularisation scheme for the gauge 

invariant effective action of ref. [34], will be here mainly contained in the choice of 

the two-point functions, eqs.(5.12)-(5.16) 

In ref. [34], it was proved by conventional methods that if the kinetic term of ./I 

is supplied with covariant higher derivatives (parametrised by the cutoff function c) 

enhancing its high momentum behaviom- by a factor ^ p^''/A^'', and the kinetic 

term of C has its high momentum behaviour similarly enhanced by p^''/A^'', 

then providing 

r — f > 1 and f > 1, (3.45) 



all amplitudes are ultraviolet Anite to all orders of perturbation theory. Since the 

underlying theory is renormalisable, the Appelquist-Carazzone theorem implies that 

at energies much lower than the cuto^ A, the remaining massless fields and 

decouple. In this way, this framework was used as a regularisation of the original 

Yang-Mills theory carried by A \ 

In brief, the reasons for the above facts are as follows. Providing eqs. eq. (3.45) hold, 

all divergences are superficially regularised by the covariant higher derivatives, except 

for some 'remainders' of one-loop graphs with only ^ fields aa external legs and only 

four or less of these legs. These remainders form a symmetric phase contribution, 

in the sense that the superficially divergent interactions between C and ^ are just 

those that come from C s covariant higher derivative kinetic term, whilst all terms 

containing a cr from the breaking are already ultraviolet hnite by power counting. For 

three or less external ^4 legs the remainders vanish by the supertrace mechanism: the 

fact that in the unbroken theory, the resultant terms contain str^l = 0 or strll = 0. 

By manifest gauge invariance, the four point ^ remainder is then actually totally 

transverse, which implies that it is already finite by power counting. 

The decoupling of A^ and A^ follows from the unbroken local 5'f7(A/^) x 5'!7(A^) in-

variance since the lowest dimension effective interaction 

t r ^ f j l ' t r (3.46) J _ \2 

yV 

is already irrelevant [34, 19]. 

Actually, there are a number of differences between the treatment we give here and 

that of ref. [34]. Since ref. [34] followed a conventional treatment, gauge fixing 

and ghosts were introduced, with a corresponding higher derivative regulaiisation for 

them; longitudinal parts of the four point .A vertex were then related to ghost vertices 

using the Lee Zinn-Justin identities, which were separately proved to be finite. Also, 
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a specific form of bare action and covariantisation was chosen. 

Here we do not fix the gauge and the regularisation scheme is much more general. 

As well as not specifying the covariantisation or the bare action (see below) there is 

anyway much more freedom in introducing interactions via the flow equation. We 

shall not here supply a rigorous proof that up to appropriate restrictions, the Sow 

equation is finite. Since we never have to specify the details, we only need to aaguzne 

that this is true for at least one choice. However, we take care that the scheme 

as described above is qualitatively correctly implemented. Where we do have to 

explicitly compare terms we can use eq. (3.45) aa a guide, although it should be 

borne in mind that cutoff functions with non-power law asymptotics, for example 

exponential, could also be used.^ In practice, it is easy to see at one loop that the 

high energy cancellations are occurring as expected. 

In this scheme, higher covariant derivative and P-V fields come out naturally com-

bined together and 5'[/(AA|A'̂ ) is proved to be a finite theory [34]. This results in a 

6'(/(AA) gauge invariantly regulated theory suitable for a RG flow equation approach. 

The purpose of the present thesis is to check the consistency of this statement, writ-

ing a Eow equation for the theory and calculating universal quantities such as the 

function at one loop as a check. 

^The proof given in ref. [34] could also be easily extended to these cases. 
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C h a p t e r 4 

(A |̂7V) flow equat ion 

In order to be able to construct a f.ow equation for we have to recall a 

set of properties that such an equation must have, in order to lead the right physi-

cal interpretation. Some of these requirements are more general, and are related to 

the structure which a How equation must describe. Others are due to the symme-

tries which must be preserved .through the Sow, in the present case 5'[/(YV|7V) gauge 

symmetry. 

Before we continue it is also necessary to add some more preliminary comments. As 

we have mentioned already, throughout this thesis we work in Euclidean space of 

dimension D. We could formulate everything directly in dimension D = 4 as in [36], 

even though strictly speaking the limit D — 4 is necessary to rigorously define the 

regularisation [34]. However, here we want to show, for the calculation of 

terms such as the one-loop function in Yang-Mills, we do not need to pay 

attention to this subtlety, and we will then keep a general dimension D until the very 

end. 
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4.1 Necessary proper t ies of t he exact RG and their 

in te rpre ta t ion 

The extra fields we have added form a necessary part of the regnlarisation structure. 

We gain an interpretation of these fields at the effective level by imagining integrating 

out the heavy helds B, C and D at some scale A. The result is an effective action 

containing only the unbroken gauge helds but it is not finite. In particular, 

the one-loop determinant formed from integrating out the heavy fields is necessarily 

divergent: the divergences are there to cancel those left by the one-loop hole in the 

remaining covariant higher derivative regularisation [16] of the x Yang 

Mills theory, in a similar way to that done explicitly in gauge invariant Pauli-ViUars 

regularisation [15]. 

A gauge invariant exact RG description of gauge theory thus requires not only an 

effective action but a separate measure term, here provided by the above functional 

determinant. The measure term is not itself finite, but can be represented by a finite 

addition to the effective action, after introducing auxiliary fields (here B, C and D). 

Whilst this interpretation is reasonable, similarly to the scalar field case, we need to be 

sure that we are still only representing the original quantum field theory (here 

Yang-Mills). In the previous chapter this waa ensured by asking the "seed action" 

vertices neither to lead to UV divergent integrals nor to have IR divergences (Taylor 

expandable to all orders). In the present case, this demand is especially pertinent 

in (but not restricted to) the case where there are extra regulator fields, particularly 

here which remains massless and in this effective description only decouples at 

momenta much less than A. More generally, even if there are only physical fields 

in the effective action, we need to be sure that locality, an important property of 

quantum field theory [20, 21], is properly incorporated.^ Note that A is intended to 

^otherwise non-physical effects or other propagating fields, could be hidden in the vertices. 
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be set at the energy scales of interest, which is why it makes sense to use the exact RG 

and solve for the effective action directly in renormalised terms, see e.g. [9]. Indeed, 

to extract the physics (e.g. correlation functions e^c. ) we will even want to take 

A — 0 eventually ([9]). 

These demands are fulfilled implicitly through the A —oo limit, providing some very 

general requirements on the exact RG are implemented, as we now explain. 

Firstly, we require that all parts of the Sow equation can be expanded in external 

momenta to any order, so that the solutions 6" can also be required to have an all orders 

derivative expansion [6, 7, 9].^ This 'quasilocality' requirement [6] is equivalent to 

the fundamental requirement of the Wilsonian RG that Kadanoff blocking take place 

only over a localised patch [1], i.e. here that each RG step, A A — JA, be free from 

infrared singularities. 

The Aow equation is written only in terms of renormalised quantities at scale A. In 

fact, we require that the only explicit scale parameter that appears in the equations is 

the effective cutoff A. Again this is so that the same can be required of 5" where it im-

plements the concept of self-similar Sow [29]. Here this amounts to a non-perturbative 

statement of renormalisability, z.e. existence of a continuum limit, equivalent to the 

requirement that 5' lie on a renormalised trajectory [9]. This is clearer if we first scale 

to dimensionless quantities using the appropriate powers of A. Then, 5" is required 

to have no dependence on A at all except through its dependence on the running 

couphng(s) 5r(A) [9]. 

Note that the A — o o end of the renormahsed trajectory, z.e. the perfect action [30] in 

the neighbourhood of the ultraviolet fixed point at A = oo, amounts to our choice of 

bare action. Its precise form is not determined beforehand but aa a result of solution 

of the exact RG, but it is constrained by choices in the Sow equation. Since these 

'Sharp cutoff realisations [3] are more subtle [8, 10, 12] and will not be discussed here. 
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choices aje however here to a large extent unmade, we deal with an infinite class of 

perfect bare actions. 

Moreover, we require that the Sow of the Boltzmann measure exp(—i?) is a total 

functional derivative, as we discussed below eq. (2.13). As we have seen, importantly, 

this ensures that the partition function Z = exp(—5"), and hence the physics 

derived from it, is invariant under the RG Eow. Since we will solve the exact RG 

approximately, but by controlled expazision in a small quantity, this property is left 

undisturbed. Therefore we may use different scales A at our convenience to interpret 

the computation. 

For example, although locality is obscured in the Wilsonian effective action at any 

finite A, it is important to recognise that invariance of Z together with the existence 

of a derivative expansion and self-similar flow (wz. that the only explicit scale be 

A), ensure that locality is implemented, since it is then an automatic property of the 

effective action as A —oo . 

Similarly, it is as A — o o that we confirm from the Wilsonian effective action that 

we are describing 6'[/(A^) Yang-Mills theory: B, C and D really are infinitely mas-

sive, and in spacetime dimension four or less, is guaranteed decoupled by the 

Appelquist-Carazzone theorem and eq. (3.46). In general strong quantum corrections 

might alter either of these properties. Thus in general we would need to add appro-

priate sources to the A — o o action; compute the partition function by computing 

the A 0 limit of exp(—5"); and finally explicitly test these properties by comput-

ing appropriate correlators. (This is the most general way to extract the results for 

physical quantities from 6'.) However since ^ is perturbative at high energies (indeed 

^ 0 as A — o o ) , we can be sure that the above deductions about the regulator 

fields, drawn at the perturbative level, are not destroyed by quantum corrections. 

As already mentioned, we rec^uire that an ultraviolet regularisation at A, is imple-
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mented so that the right hand side of the Sow equation makes sense. Note that this 

ensures that all further quantum corrections to 5" (computed by solving for the Sow 

at scales less than A) are cutoff (smoothly) at A. Since momentum modes p > A 

were fully contributing to the initial A —> oo partition function, and since Z is in-

variant under the Sow, we can be sure that their effect has been incorporated 5'. In 

other words we can be sure that our final requirement on the how, namely that it 

corresponds to integrating out momentum modes, has been incorporated. 

(In refs. [5, 6], a possible further requirement on the flow equation, called "ultralo-

cality" was discussed, replacing the usual notion of locality, although it was not cleai" 

that it was necessary however. We have seen here that the usual concept of locality 

is recovered providing the existence of a derivative expansion, invariance of Z , and 

self-similar how, are implemented. Furthermore the successful calculations of ref. [35] 

and here, confirm that the restriction of 'ultralocality' is unnecessary since they do 

not assume it.) 

4.2 Super gauge invariance and funct ional deriva-

tives 

The requirements we have mentioned in the previous section are necessary for a 

general how equation. However, since we are dealing with a particular theory we 

have to consider some additional ones. The peculiarities of 5'(y(A/̂ |A/̂ ), in fact, affect 

functional derivatives with respect to ./I and lead to some constraints on the form of 

the exact RG if the how equation is to be invariant under supergauge transformations. 

As in refs. [7, 34], it is convenient to dehne the functional derivatives of C and ./I so 

as to extract the dual from under the supertrace. For an unconstrained field such as 
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C we simply have [7, 34]: 

4.1) 

or in components 

^ r (4.2) 

Under supergauge transformations eq. (3.44), the functional derivative transforms as 

one would hope: 

f4. o 

Such a derivative^ has the properties of 'supersowing' [7]: 

a a 

— strCY = y =4^ s t r X ^ s t rCY = strXY, (4.4) 

and ^supersplitting' [7]: 

s t r — A ' C y = 8tr%stry, (4.5) 

z. e. of sowing two supertraces together, and splitting one supertrace into two, where 

% and y are arbitrary supermatrices. These two properties come directly from the 

completeness relation for the generators of the group [/(A^/TV) (see eq. (3.28) and 

below, for the case of 5 ' [ / ( # | # ) without 11). 

(A^.B. it is a helpful trick to contract in arbitrary .supermatrices at intermediate stages 

of the calculation: it allows index-free calculations in the 6'[/(N|A/^) algebra and more 

importantly means that we can permute overall bosonic structures past each rather 

than have to carry intermediate minus signs from fermionic parts of supermatrices 

anticommuted through each other. Its efEcacy will be seen in examples later. It also 

leads as we will show, to efBcient diagrammakic techniques. The arbitrary superma-

^for simplicity, written with partial derivatives, to neglect the irrelevant spatial dependence 
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trices can always be stripped oE at the end, if necessary.) 

Since ^ is constrained to be supertraceless, its dual under the supertrace strj/^v^.^^ 

has without loss of generality no 11 component: only 

J , - (4.6) 

really couples. The natural construction for the ^ functional derivative from eq. (3.37) 

[34]: 
S S rr rS 

(4.7) :=2T^ 

pulls out precisely this combination. However from eq. (3.40) and the completeness 

relations for the T4 (3.28), under supergauge transformations 

6 A 
. u 

2 II 
, W (4.8) 

, W 

The correction is to be expected since it ensures that remains traceless, but the 

fact that does not transform homogeneously means that supergauge invariance 

is destroyed unless is contracted under the supertrace into something that is 

supertraceless (in which case the correction term vanishes). This is an extra constraint 

on the form of the Sow equation. 

[As an alternative one might try defining as only the term in eq. (4.7), 

however one can show from eq. (3.40) that this does not transform into itself but 

into the full functional derivative given in eq. (4.7). It works however in the Bars"*" 

representation, where the transformation again takes the form eq. (4.8).] 

Similarly there are corrections to eq. (4.4) and eq. (4.5) that arise because the deriva-
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tive is constrained:^ 

s t rX-; :^ str = s t r % y ^ s t r ^ t r K (4.9) 
8 ^ 2A^ ^ ^ 

aa expected from. eq. (4.6), and 

s t r - ; ^ X ^ y = s t r X s t r y ^ t r y X . (4-10) 
27V ^ ^ 

These come directly from the completeness relation for 5'(7(A/̂ |A/̂ ) and are a way to 

rephrase Eqs. (3.29) and (3.30), from the previous chapter. Since these corrections 

contain t rZ = str crZ (where Z is some supermatrix), they similarly violate 6'(/(A^|#) 

invaricince. As we discuss in sec. 4.5.1, they also effectively disappear with the above 

constraint that is contracted into something supertraceless. (This is obvious in 

eq. (4.9) where thus strA^ = 0.) 

In this way the supersplitting and supersowing rules actually become exact for both 

helds, even at finite TV (compare [6, 7]). As we will see, this leads to a very e&cient 

diagrammatic technique incorporated into the Feynman diagrams, for evaluating the 

gauge algebra, analogous to the 't Hooft double line notation [31] and utilised earlier 

[5, 6, 7], but here applying even at hnite TV. 

4.3 Covariantisat ion 

Since we want to build a Eow ec^uation which is invariant under supergauge transfor-

mations, we need to have covariant generalisations of the momentum space kernels 

appearing in other ERG equations' formulations e.g. in the scalar Held case described 

in the Arst chapter. In that case they were present in the flow equation as a result 

^ignoring the spacebime index and spatial dependence 
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of the regularisation scheme, which there did not have any particular invariance-

preserving prescriptions, being just the first derivatives of the cutoff function. In 

the present formulation, making use of the freedom allowed by scheme independence, 

the flow equation will be written incorporating covariantised versions of these objects, 

which we are going to describe in the present section. These covariantised momentum 

space kernels, will be then related back to the gauge invariant regularisation scheme 

of [33, 34]. Their introduction will involve more terms in the how equation, but will 

insure it describes a gauge invariant Sowing effective action. 

Given some momentum space kernel PVp = A) as the one defined in eq. (2.10) 

and below, we define a general covariantisation of any such kernel (the 'wine' [6, 7]) 

via the supergauge invariant: 

(4.11] 
OO y. 

^ , 2/m; a:, 2/) 
771,71 = 0 

str [ 1/(37) (a;i) - " (;z^) f (3/) (m) - - '/4^,.(!/m) ] , 

where and i; are any two supermatrix representations, and with the symbol 

is introduced the wine (Wilson-line) as in [6, 7], the Wilson line implementing the 

parallel transport between the two representations (this will be seen more clearly in 

(4.17)). A graphical representation of it is shown in fig. 4.1. As we can notice from 

eq.(4.11), the wine is expandable in fields. Its expansion in terms of ^ helds is 

j 3:,!/) 
71,771 = 0 

[^;j^(Zl) - ' - (4-12) 

where = / (« )E! , /(°:«), / defined below eq. (3.21) and where the indices a and 
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Figure 4.1: Parallel transport between two matrix representation through, the wine, 
eq.(4.11). There is no explicit representation of the 0-3 because, it is incorporated in 
the closed line which defines already a supertrace. 

a, refer to those in the expansions: r = and . 

A graphic representation of this expansion is shown in fig.4.2. In order to explain 

Figure 4.2: Wine expansion. The blobs represent ./l fields. 

better the graphical notation, the first of the terms with one blob is represented in 

formula by 

(4.13) 

The Feynman rules in the momentum space for a general wine vertex are explained 

in fig.4.3. 

Without loss of generality we may insist that satisfies 

We write the m = 0 vertices (where there is no second product of gauge helds), more 

compactly as 

•"Mn ("̂ 11 ' ' ' ; ^ I 3/) — •••A'n, (^'l) ' ' ' i ^; !/) ; 
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Figure 4.3: Feynmazi rules for wine vertices 

while the m = n = 0 term is just the original kernel appearing in eq. (2.10) and 

below, I.e. 

= (4.15) 

We leave the covariantization general, up to certain restrictions. One of these is 

already encoded into eq. (4.11), namely that there is just a single supertrace in 

eq. (4.11), involving just two ordered products of supergauge Aelds. Another is that 

we require that the covariantization satisfy coincident line identities [6] which in par-

ticular imply that if i;(2/) = %(^) for all i/, i.e. is in the scalar representation of the 

gauge group, then the covariaqtization collapses to 

IL {l'y}^f = (8t r i^)- l /y-^ . (4.16) 

As shown in ref. [7], the coincident line identities are equivalent to the requirement 

that the gauge helds in eq. (4.11) all act by commutation. This requirement is neces-

sary to ensure no-^"^ remains valid and to ensure that is indeed contracted into 

something supertraceless. It is this that we need rather than the identities themselves, 

which are used occasionally, only to collect terms in the calculation. 

Again, although we will not use it explicitly, let us remark that these constraints are 
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solved by the following general covariantization [6, 7]: 

= (4.17) 

where 

f exp-% (4.18) 

is a path ordered exponential integral, i.e. a Wilson line, and the appearance of 

means that we traverse backwards along another coincident Wilson line. The 

covariantization is determined by the measure over conhgnrations of the curves 

and is so far left unspecified except for its normahsation: 

1 = (4.19) 

as follows from eq. (4.11) and eq. (4.15). It is eaay to see tha t eq. (4.17) indeed does 

satisfy eq. (4.23). 

Finally, we will require that the covariantization satisfies 

{ W \ = 0. (4/20) 
5A 

(where the previous is understood contracted on a supermatrix independent of /I) 

z. e. that there be no diagrams in which the wine bites its own tail [5,6,7]. This leads to 

identities for the PF vertices which again we do not need in practice: as we will conhrm, 

such terms do not in any case contribute to the one-loop function. However wine-

biting-their-tail diagrams do appear in general to lead to some improperly regularised 

terms and so some restriction is needed for consistency. We can use the representation 

eq. (4.17) to see tha t sensible solutions to eq. (4.20) do exist. For example we can 

simply insist tha t is a straight Wilson line, and more generally that the measure 

has no support on curves that cross the points z or The end points need 

defining carefully so that they only touch z and 2/ after a limit has been talven [5]. 
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However since we never specify the covariantization, we only need to assume that 

such a thing exists. In the calculation we just use eq. (4.20) and thus just forbid all 

wine-biting-their-tail diagrams. 

4.3.1 D e c o r a t i o n w i t h C 

Making use of the freedom we have on the choice of various parts of the Bow equation, 

given by scheme independence, and since it will prove convenient for later purposes, we 

allow having occurences of C also on the Wilson lines (with the obvious corresponding 

extension of fig. 4.2) although we can limit their appearance to attachments at either 

end of Throughout all this thesis, as in [36], they will furthermore act only via 

commutation at both ends. Precisely, we extend the definition eq. (4.11) so that 

(4.21) 

where A) is some new kernel. This is represented graphically in hg. 4.4, where 

the C fields are drawn by a white circle. In the expansion we now have vertices that 

Figure 4.4: Wines decorated with C fields, represented with white blobs. Each of the 
lines have an expansion in ^ fields as the one of hg. 4.2. 

come from both ^4 and C. Typically in this case and u will actually correspond to 

functional differentials, with respect to, say, and Zi, and it will also be helpful to 

keep track of their Eavours. by including them as labels in the naming convention for 
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the kernel, m'z. as The notation we will use in general is 

= (4.22) 

g A !/i, - -,z/m; z,3/) 
771,71=0 

str -^."(i-.) • x ; - w i - i ' ' ( s . ) • • ^ r ! ; r i y . 
<SZf(,T) ' ^ ^ SZiXy) 

where the superfields yj and Z,, are ./I or C, and the indices a, = 6, = z/, 

and c = -y in the case that the corresponding held is ^ and null if the held is C. In 

fact, as a consequence of the restricted structure eq. (4.21), the Xg,-- - ,Xn_i and 

Yg, - -, Ym-i must be ^ s if they appear at all. 

We can still insist without loss of generality that and use the 

shorthand eq. (4.14), where now we keep track of Savour labels as in eq. (4.22) 

however. It is still the case that with no helds on the wine, the original kernel 

is recovered as in eq. (4.15). The commutator structure in eq. (4.21) ensures that 

eq. (4.16) holds for the full wine also: 

u {W}'(; = (str li) - 14̂  - (4.23) 

Finally, the Cs as further 'decorations' of the covariantized kernels are required to 

partake in the restriction described below eq. (4.20), so this equation extends to 

{ l /F } = A = 0. (4.24) 

(In fact by % = 11 in eq. (4.5), the contribution from differentiating the leftmost C 

vanishes in any case.) 



4.4 Superfield expansion 

Let us consider first the effective (Sowing) action 5". We can expand it in powers of 

the Aelds bearing in mind it must be an invariant under the group The 

most general one, is a linear combination of product of supertraces of helds: 

1 
^ ^ (3:1, " -, str X " ' (a;i) - - (z;,) 

n=l 

m,n=l -Sn'Sm -/ 

s t r x ; - (x,) • ^ • X'^-{x„) str K,'- (t,,) ^ ^ • K ^ ( ! / „ ) 

+ ••• , (4.25) 

where again the are or C, and are or C. (Note that throughout 

this thesis we discard the vacuum energy.) Only one cyclic ordering of each list 

^ - %7i appears in the sum. Furthermore, if either list is invariant under 

some nontrivial cyclic permutations, then ( s^ ) is the order of the cyclic subgroup, 

otherwise = 1 ( s^ = 1)- (For example, in the terms where every is a C, 

Sn — n.) The expansion can be represented diagrammatically, where a thick closed 

line stands for a supertrace, as in fig. 4.5 and each blob represents a field in it (Ag. 

+ 

Figure 4.5: Action's expansion in product of supertraces 

4.6). In a somewhat similar way to eq. (4.17) and eq. (4.21), these closed lines can 

be interpreted as decorated Wilson loops [6, 7]. 

When we spontaneously break the fermionic invariance by shifting C in the cr direction, 
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+ ̂  

Figure 4.6: Each supertrace in the action expansion is a sum of snpertraces of fields 

it will prove to be better to work separately with the bosonic and fermionic parts of 

the superhelds. Thus we write in the broken phase 

•A-n — + Bfj,, and C = C D cr. (4.26) 

where A and C are the block diagonals, and B and D are the block oE-diagonals 

in eqs. eq. (3.36) and eq. (3.43) respectively. (We will see in the sec. 4.5 that C's 

effective vacuum expectation value is just cr.) 

Thus in the broken phase we will expand as in eq. (4.25), but the Savours % and 

y are set to A, B, C or Z). There will also be occurences of cr. However since c 

commutes with A and C, and ajiticommutes with B and D, to dehne the expansion 

we can take the convention that we (anti)commute all such occurences to the far right 

in the supertrace. Upon using = H, we are then left with terms with either one 

cr at the end or none at all. Since cr has no position dependence, we put the Savour 

label in the superscript, but we omit the corresponding position label. Clearly, since 

the broken Aelds can still be cyclically permuted by (anti)commutation through cr, 

we also omit it from the determination of the symmetry factor, z.e. is equal to the 

order of the cyclic permutation subgroup of the fields ignoring the cr (if present). 

Finally note that each supertrace term must separately hold only totally bosonic 

combinations since if (or - - - XnCr) is fermionic, it is block off-diagonal 

and has vanishing supertrace. 

Similarly, in eq. (4.22), in the broken phase, X , K and Z will be A, B, C or D. Note 
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that Zi can be the opposite statistic partner from ^2- Since it is a single supertrace, 

again each contribution in eq. (4.22) is overall boaonic however. Single occurences of 

cr can also appear at the ends of the Wilson lines, after taking into account that these 

can also (anti)commute through the Z functional derivatives. 

Finally, the momentum space vertices are written as 

(4.27) 

where all momenta are talten pointing into the vertex, and similarly for all the other 

vertices including eq. (4.22). We use the short hand 6'^^(p) = —p) and 

6'^^'^(p) = —p) for action two-point vertices. 

We will see later many examples. See also ref. [7]. 

4.4.1 Resca l ing g 

As in the case of the scalar Aeld, in order to put the coupling constant in front of the 

action, we want to rescale the Aeld as: 

A = —A. (4.28) 

In this way, as in the previous case, the Boltzman factor in the partition function 

becomes: 

(4.29) 

and the loop (^) expansion conicides with the coupling expansion. In the present 

case, though, this rescaling give us a further nice feature. To explain this consider 

just the 5'(/(AA) gauge field Ai, with covariant derivative If we 
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consider a gauge transformation on it, 

(4.30) 

If we now consider the rescaled Aeld of ecj. (4.28), and we perform a gauge transfor-

mation on it: 

w] (4.31) 

If we now suppose runs as: eq. (4.31), would become: 

= (4.32) 

For gauge invariance to be preserved, must be equal to one and this ensures 

that the rescaled held does not renormalise. In order to extract the one-loop beta 

function, it will then be enough to evaluate the one-loop two-point equation, and not 

also higher points as in the scalar held case (see sec. 2.3), since here -y = 0. The only 

quantity that renormalises is now ^ itself and the renormalisation condition is set by 

eq. (4.37). 

4.5 A manifest ly SU{N\N) gauge invariant ERG 

Our strategy is to write down a manifestly supergauge invariant how equation, obey-

ing the rules outhned in the previous sections, and then spontaneously break it. 

Defining 2^ = ^^5' — 2;^, we simply set 

iVd,\S = —ao[5, Tig] + (4.33) 

where 



and 

where the notation for the wines is explained below eq.(4.22). Here instead of indicat-

ing the kernels with t'F, we used the symbol A, because, as we will see, the integrated 

kernels, play here the role of effective propagators. More precisely they will be the 

inverse of the corresponding two point functions, in the transverse space (see App. 

D). Eq.(4.33) can be represented diagrammatically in fig. 4.7, appearing later. In the 

rest of this section we explain the meaning of the various components, at the same 

time developing some of the properties of this exact RG. 

The definition of Eg and the form of the Sow equation eq. (4.33) are the same as 

in refs. [6, 7]. In contrast to ref. [7] however, the exact RG is very simple in 

conception. The basic structure is inherited from the Wilson exact RG [1, 2, 5]: the 

bilinear functional -oo generates the classical corrections, whilst the linear functional 

Gi generates quantum corrections (compare with eq. (2.9)). As in refs. [6, 7], Oi 

has exactly the same structure as oo except that the leftmost functional derivatives 

differentiate everything to their right. Consequently we have 

(4.36) 

(similarly to eq.(2.13)) which shows that the condition for the Boltzman measure to 

be a total functional derivative, is fulfilled. 

As before, gf(A) is the renormalised coupling of the ^'[/(A^) Yang-Mills theory carried 

by It is defined through the renormalization condition: 

5'[./l = A \ C = C] = — ( 4 . 3 7 ) 
^g- J 

After the rescaling of (/ the previous is the only condition to be set, g being now 

the only quantity that iims (see sec. 4.4.1). The ellipsis in eq. (4.37), stands for 
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higher dimension operators and the vacuum energy, and C is the effective vacuum 

expectation value defined so as to minimise the effective potential y(C) in 5": 

a c 
= 0. (4.38) 

c=c 

C is spacetime independent and generically contains terms proportional to cr and H 

(this is explained at the end of this section). We will see later that for our purposes 

we can simply set C = cr. 

The strategy now to get the 1-loop /3-function, will be the same as in [6, 7] and 

consists in expanding the Sow equation eq. (4.33) in loop (^ powers), which, at this 

point after having rescaled amounts in a coupling expansion^. Expanding 5' hrst 

5 = —5o + Si + g' So + • • •, (4.39) 

where 5'o is the classical effective action, 5"! the one-loop correction, and so on. Sub-

stituting this expansion in eq. (4.33), we see that the function must also take the 

standard form 

+ . (4.40) 

From eq. (4.39) and eq. (4.40), we obtain the loopwise expansion of eq. (4.33): 

A ^ ^ S q = —ao[.So, .So — 25], (4.41) 

— 2/3iSo — 2ao[5o ~ 5, 5i] + ci[So — 25], (4.42) 

= 2/)25o —2oo[5o —5,62] — ( ' ^ - 4 3 ) 

e^c. From the second, we will try to get ^1. Actually, we will find it convenient 

to add some simple quantum corrections to the supergauge invai'iant seed action 5', 

giving it a ^ dependence (as we outline below). We also need to take account of the 

^The redefinition of described in section 4.4.1 led to tliis result 
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Sow of ^2, the coupling for the second carried by A2. However, neither of 

these complications have an eEect on the one-loop function computation, so will be 

largely ignored here. 

S is used to determine the form of the classical effective kinetic terms and the kernels 

A(p, A). It therefore has to incorporate the covariant higher derivative regularisation 

and allow the spontaneous symmetry breaking we require. Unlike previously [5, 6,7], 

we will see that we otherwise leave it almost entirely unspecified. The kernels A are 

determined by the requirement that after spontaneous symmetry breaking, the two-

point vertices of the classical effective action S'o emd 5" can be set equal (see section 

5.1). As previously [5, 6, 7], this is imposed as a useful technical device, since it allows 

classical vertices to be immediately solved in terms of already known quantities. It 

also means that the integral of the kernels defined via 

A(9a.A — —A (4.44) 

will play a closely similar role to that of propagators, in particular being the inverse 

of these two-point vertices up to gauge transformations (see Appendix D). 

The C commutator terms in eq. (4.21), yield cr commutators on spontaneous symmetry 

breaking. Since cr commutes with A and C but anticommutes with B and D, A;̂ "̂  

and A ^ allow for the addition of spontaneous mass creation for B and D whilst still 

keeping the two-point vertices of 6" and 6'o equal. The appearance of the C commutator 

on both sides allows us to insist that C <4- —C is an invariance of the symmetric phase. 

The form (4.34,4.35) preserves charge conjugation symmetry C i-)' ,4 — 4̂̂  

(using the definition of the supermatrix transpose in ref. [34]. Note that here the 

transformation for C is determined by the fact that its vacuum expectation value is 

even under charge conjugation.) 

From eq. (4.3) and sec. 4.3.1, it is trivial to see that the terms are supergauge 
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invariant. Under a supergauge transformation we have by eq. (4.8) and eq. (4.23) 

SA. 2N 
tr w s t r - r - ^ + (5 H- Sg 

(^2 
S/' 4.45) 

where 5" 44' 2g stands for the same term with 6' and Eg interchanged. But by eq. (4.7) 

and no-^'^. 

str = 0, (4.46) 

similarly for 5", and thus the tree level terms are supergauge invariant. Similarly, the 

quantum terms are 6'[/(yV|yV) gauge invariant, since 

N 
tr 

5 
,CJ 

6^4,, 
0. (4.47) 

This completes the proof that the exact RG is supergauge invariant! 

Note that there is no point in incorporating longitudinal terms into the exact RG 

(as was done in ref. [7]) because here the manifest supergauge invariance means that 

they can be exchanged for C commutators: 

V, (4.48) 

(as holds for any supergauge invariant functional) and thus absorbed into the A ^ 

term. 

It is important for the working of the 5'[/(A''|A^) regularisation that the effective 

scale of spontaneous symmetry breaking is tied to the higher derivative regulaiisation 

scale, which thus both flow with A. This is not the typical situation, but can be 

arranged to happen here by constraining 5' appropriately. However, as we now show, 

the constraint is straightforward only if we take C to be dimensionless in eq. (4.33) -

eq. (4.35). 
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Contracting an arbitrary supermatrix into eq. (4.38) (for convenience, c./. sec. 4.2) 

and differentiating with respect to A, we have: 

.9C a ^ ^ <9 
0. (4.49) 

c=c 

We caji compute the Sow c)y/c)A by setting ^ = 0 and C = C in eq. (4.33). Taking 

the classical limit y we And that the resulting equation simplifies dramatically. 

Using eqs. (4.41), (4.34), (4.38), (4.11), (4.15), the fact that vertices in the actions 

with only one vanish at zero momentum (by Lorentz invariance), and 

0, (4.50) 
c=c 

which follows from global 5'[/(A'^|N) invariance (where y is the potential in .9), we 

get 

str A ^ + A ^ ^ ( 0 , A ) ^ ) 0. (4.51) 
- c=c 

With C dimensionless, we can and will insist that the classical vacuum expectation 

value C = (7. eq. eq. (4.51) is then satisfied if and only if^ y also has a minimum at 

C = cr. This is delightful since it ensures that at the classical level at least, neither 

action has one-point C vertices in the broken phase. We will thus impose 

0 (4.52) 

as a constraint on 6'. 

Had we not taken C to be dimensionless, we would have had to require that C depend 

on A, in order that the effective breaking scale Sows with A. Since % is general, 

eq. (4.51) would then imply that y cannot have a minimum also at C = C. Further 

^We will see Lhak the requirement that C has a mass in the broken phase forces A^^(0, A) ^ 0 
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analysis shows that y is then forced to violate C <-4- —C symmetry in the symmetric 

phase. 

Although conventionally C would have dimension one, for these reasons we will take it 

to be dimensionless from now on. (It is intriguing that the conclusion that C [actually 

C] must be dimensionless was reached for very different reasons in refs. [5, 7] which 

are no longer necessarily applicable, now that eq. (4.48) is a symmetry.) 

At the quantum level, C = cr can be expected to receive loop corrections. Since 

5'[/(A^) X 5'[/(A^) invariance is left unbroken, these corrections can only be propor-

tional to (7 or 11. Corrections proportional to the latter do not affect the breaking (but 

presumably through eq. (4.37) give important contributions at higher loops), how-

ever corrections proportional to cr would result, through eq. (4.48), in broken gauge 

invariance identities that explicitly involve gr and thus mix different loop orders. We 

can avoid this by again using the freedom in our choice of 6" to design things ap-

propriately. We can constrain the appearance of y one-point vertices in the broken 

phase 

r ^ s t r C f u ^ ' ^ s t r C o ' (4.53) 

by imposing C = cr as a renormalization condition. Each u is then a non-vanishing 

function of but from the analysis above, only from one-loop onwards: 

(^) = -t- Ug 4- - - - and '(^^''(g) = p'' -k - - -. (4.54) 

We will see that these corrections in fact are already too high an order to affect the 

one-loop function calculation. 

63 



4.5.1 Supe r s owing and s i iperspl i t t ing in t h e A sec tor 

The inherent supersymmetry has a remarkable effect on the gauge algebra: one can 

replace the usual manipulation of structure constants and reduction to Casimirs, 

which becomes increasingly involved at higher loops, by simple steps eq. (4.4) and 

eq. (4.5) which always either just sow together supertraces or split them open. These 

have an immediate diagrammatic interpretation. The apparent violations present in 

eq. (4.9) and eq. (4.10) must somehow disappear since they would violate even global 

5'[/(7V|/V). We iirst prove that this indeed the case. 

For the case where the action contains just a single supertrace, which will turn out to 

be ail we need here, we could adapt the proof given in sec. 6.2 of ref. [34]. However, in 

preparation for future work, we will give a more sophisticated proof which is applicable 

when working with multiple supertrace contributions. Indeed we wiD see that there 

is then one special case, where the corrections in (4.9,4.10) do survive, and result in 

a simple supergauge invariant correction. 

The corrections present in (4.9,4.10) arise because v4 is constrained to be supertrace-

less. To compare their effect to the unconstrained case (4.4,4.5), we momentarily 'hft ' 

^ to a full superheld by adding a cr part: 

:= (4.55) 

is taken arbitrary so the map is not at all unique. We similarly extend all func-

tionals of yl to the full space, simply by replacing ^4 with 4̂% e.^. 

(4.56) 

Again, this is a not unique procedure, as can be seen for example in the fact that 

s t r ^ vanishes, but the promoted functional s t r ^ ' does not. We also introduce the 
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projection back onto the supertraceless space: 

TT̂ "̂  = 5", e(c. , (4.57) 

which of course is unique. Functional derivatives with respect to can be written 

as 

using eq. (4.7), or equivalently deAned as in eq. (4.2). thus satisfies the ex-

act supersowing and supersplitting relations (4.4,4.5). In the extended space, the 

constrained derivative eq. (4.7) can now be written in terms of an unconstrained 

derivative: 
]1 . 

"^777^ (4.59) 
SA^ SAl 2N SAl 

Of course Tr and do not commute, however 

since 4̂̂ ^ is not differentiated on the right hand side. Substituting eq. (4.59) or 

eq. (4.58), and using eq. (4.23) and eq. (4.7), 

the term in big curly braces becomes 

G 

/I A* r 

Now, as we explain below, no-^'^ symmetry is violated in the extended space. However 

the derivatives in eq. (4.61) do vanish after the projection. Thus eq. (4.60) becomes 

^ I , (4.62) 
J [ S 5 v 4 ' ^ 

which says precisely that the corrections in eq. (4.9) can be ignored: exactly the same 
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result is obtained if exact snpersowing is used. 

However, performing the same analysis on the corresponding quantum term in eq. (4.35), 

we get a correction to exact supersplitting, consisting of an attachment of the (zero-

point) kernel A) to two Vl points in 2^: 

(4.63) 
(^^0 

To understand when this correction is non-vanishing, we need briefly to analyse the 

consequences of no-yl"^ symmetry in more detail. Considering the transformation^ 

= A^ll in eq. (4.25), we see that the result must vanish either via the supergroup 

algebra because the corresponding vertex contains a factor s t r^ l^ , thus generating 

s t r ^ = 0 (but s t r^^ ^ 0 in the extended space), or because a non-trivial constraint 

exists on the corresponding vertex function. (This is simply that the sum over all 

possible valid placings of y4°s associated position and Lorentz argument inside a vertex 

function leaving other arguments alone, yields zero.) This non-trivial constraint then 

causes the coefhcient to vaaish whether or not the remaining supergauge fields are 

extended by Thus the correction in eq. (4.63) vanishes in all cases except where 

the zero-point kernel attaches each end to a str^AX factor. Comparing the result 

to the computation assuming exact supersplitting, z.e. the first term in eq. (4.63), we 

see that instead of getting a supergroup factor (strH)^ = 0 we get — ^strcr i.e. a 

supergroup factor of —2. 

(Note that in deriving this rule we have assumed that vertices in Eg with factors 

str^l have been set to zero from the beginning [as would follow immediately from 

the 5[/(N|Ar) group theory]. If for some reason this was not done then the hrst 

term in eq. (4.63) can get a non-zero computation from the kernel attaching to this 

s t r ^ = 2A ŷ4'̂  point. However it then also appears in the correction with precisely 

' there are higher order constraints from separating out higher powers of but from eq. (4.63) 
we only need the Arst order 



A^A 5" 
/=v4,C 

Figure 4.7: Graphical representation of the exact RG, when 5" and .9 contain only 
single supertraces. 

equal and opposite coelScient.) 

This supergroup factor should have been expected since the algebra part of the at-

tachment of a zero-point kernel to a two-point vertex simply counts the number of 

bosonic degrees of freedom in the algebra minus the number of fermionic degrees of 

freedom. There are fermionic such terms in but only — 2 in A, since both 

and, by no-^° symmetry, aze missing. 

Since the correction in eq. (4.63) is non-vanishing only when using up a separate 

str^v4 factor, it Is clear that the result is still supergauge invariant in the remaining 

external superflelds. Furthermore in the present caae where we will be able to work 

with actions with only a single supertrace, the entire effect of the correction is a just 

vacuum energy contribution, which from now on we ignore. 

4.5.2 D i a g r a m m a t i c i n t e r p r e t a t i o n 

v4 thus also effectively satisfies the exact supersowing and supersplitting relations 

eq. (4.4) and eq. (4.5). By using these equations when the covarlantlzed kernels 

eq. (4.22) act on the actions eq. (4.25), and comparing the result to the diagrammatic 

interpretation of the covariantlzed kernels and actions, fig. 4.2 and hgs. 4.5,4.6, it 

Is clear that the exact RG is given diagrammatlcally as in fig. 4.7. Here we have 

specialized to the case of our interest, where 5" and 6' can be assumed to have only 



a single supertrace. (The extension to the more general contributions Ag. 4.5 is 

obvious.) Expanding the thick lines (representing any number of helds) into a power 

series in the fields, we translate the hgure into individual Feynman diagrams, whose 

Feynman rules are given by the momentum space versions of the vertices in eq. (4.22) 

and eq. (4.25) (without the symmetry factors).^ The points representing individual 

fields and their associated momenta and Lorentz indices, appear in all places on a 

composite loop with equal weight, whilst respecting the cyclic order. Of course if 

one of the corresponding vertices does not appear in the expansions eq. (4.22) and 

eq. (4.25), the corresponding Feynman rule is zero. 

It can be seen from fig. 4.7 that the tree level corrections preserve the assumption that 

there is only a single supertrace in 6", but that each quajitum correction results in an 

extra supertrace factor. Thus in general 5" has terms with ajiy number of supertraces, 

and already a minimum of a product of two supertraces at one-loop. However for the 

computation of the function, we need only look at contributions to the AA two-

point vertex (see eq. (4.37) and later, or refs. [5, 6, 7]). Since A is both traceless and 

supertraceless, to get a non-vanishing answer both As must lie in the same supertrace, 

leaving the other one empty of fields. In this way, 5" effectively contains only a single 

supertrace to the order in which we are working. 

4.5.3 A f t e r s p o n t a n e o u s b reak ing 

We substitute C C 4- cr, and from now on work in the spontaneously broken phase. 

Working with fields appropriate for the remaining 5'[/(AA) x 5'[ /( / /) symmetry, we 

break Vl and C down to their bosonic and fermionic parts A, C and D as in 

eq. (4.26). 

®This part of the analysis is the same as in ref. [7], except that here we make explicit the factor 
of 1/2 from eq. (4.34) and eq. (4.35), in fig. 4.7 and the Feynman diagrams, and the factor of 1/A'~ 
is now incorporated in the definition of the kernels A, 
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The diagrammatic interpretation is still the same, except that we now have the four 

favours to scatter around the composite loops, and appearances of cr, which can 

be simplified as explained in sec. 4.4. In addition, we must recall the corrections to 

supersplitting and supersowing arising from differentiating only partial supermatrices 

[7]. These lead to further appearances of cr which are easily computed by expressing 

the partial supermatrices in terms of full supermatrices via the projectors dj_ onto 

the block (off)diagonal components 

d±X = j : (TXcz), (4.64) 

(hence C = d+C, D = d_C, e(c. ). Diagrammatically this simply amounts to correc-

tions involving a pair of crs inserted either side of the attachment as in hg. 4.8 [7]. 

5 
jy 

Y /K \/ /\ 

± 
\/ /\ 

Figure 4.8: Feynman diagram representation of attachment via a partial supermatrix. 

For tree-level type attachments as in eq. (4.4), the corrections merely ensure that 

the coeKcient supermatrices (% and K) have the appropriate statistics to make each 

supertrace term totally bosonic (c./. sec. 4.4), but this has already been taken into 

account in the Feynman rules. Thus these corrections have no effect at tree level [7]. 

Since the classical action 6'o (similarly ^ ) has only a single supertrace and respects 

C —C invariance in the symmetric phase (c./. sec. 4.5), upon spontaneous breaking 

we have the 'theory space' symmetry 
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D - D , 

cr <->- —cr. (4.65) 

The single supertrace part of the one-loop effective action has a single supertrace 

because it also hag a supertrace void of Aelds (c./. sec. 4.5.2). In order for this not 

to vanish it must ' t rap ' a cr (so that we get strcr = 2 # rather than strl l = 0). 

Therefore, the non-trivial supertrace has one less cr (mod two) and is thus odd under 

the symm.etry eq. (4.65). 

These observations, which can be easily extended to multiple loops and supertraces, 

are useful in limiting the possible vertices. 
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C h a p t e r 5 

One-loop / 3 - f u n c t i o n 

5.1 The one-loop equation 

To start with the calculation of the first coefhcient of the /3-fnnction, we can now 

consider eq. (4.42) which we rewrite here in its extended form: 

^ & & 
^ 2 % ^ 

(5.1) 

Where X, can be either or C. Before we continue, this is the right time to point 

out that, unlike the formulation described in [36], for the rest of the calculation here \ 

the wines with C will not be incorporated with the "undecorated" ones. This was 

only done in section 4.3.1 and 4.5 in order to write the properties of the wines and 

the Sow equation more compactly. To get to the new formulation, recall first that 

from eq. (4.21), we can recaat oo azid appearing in the Eow equation eq. (4.33) as 

'Unless stated differently 
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follows: 

folS. E, E (5.1 

and 

'i[£»l 
2 E :5.3) 

The wine vertices will then be considered from now on in a different basis. For the 

kernels: 

A ^ ^ = A-̂ -̂  + A;;̂ '̂  

A ^ ^ = A':': + A^^ 

(5.4) 

(5.5) 

We are ready now to proceed. In order to extract from eq. (5.1), let us first consider 

the renormalisation condition for the coupling After the redefinition of the gauge 

field (see section 2.2) we have already mentioned that the only quantity which 

renormalises is now the gauge coupling itself. We cein then set the renormalisation 

condition asking for ^ to be, in the expansion of 5'(A), the coefficient of the quadratic 

term in the two-point function for the bosonic gauge Aeld A at order (following 

[7]), in order to have the physical /3-function for 5 ' [ / (^ ) Yang-Mills. In formulae it 

is expressed in eq. (4.37). That expression is non-perturbative. At any order, this 

means; 

5"'̂ ^ + O/iX?) + C'(P^) (5.6) 

where we define a;j:,(p) = and 

5' 

qAAa-
^ l.(.U 

. C ' ( 0 ) A , 4 I o ( l ) . 4 . 4 , 
I /.T J/ ' ^ fiiy I 

1 
C' (0 ) .4 .4c r , C ' ( 1 ) A A < T I 

2'- /i 1/ I ' - fi u ~r 
9 

l^i{l)AAcr 
fi u + 

(5.7) 

(5.8) 
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but at tree level we will see we already have: 

= 2 • „ „ ( ? ) + » ( / ) (5.9) 

The condition is already fulAlled, so: 

+ E , + o ( / ) (5.10) 
3 n = l 9 ^ 

This means that as for the scalar held case, considering the one-loop equation eq. (5.1) 

if we take the combination 5"̂ "̂  -|- in the expansion of 5" and its order we have 

a great simplification due to the term on the LHS which now vanishes. Moreover, we 

can simplify even further eq. (5.1) if we take into account the freedom we still have 

on the choice of 6". As we have mentioned in the previous chapter, if we choose it 

so that all its two point functions are equal to the two point effective action at tree 

level, the classical term in eq. (5.1) is zero (for the component in the expcinsion we 

are looking for). In formulae: 

% - % (5.11) 

where can be any held and o, is a Lorentz index if is a gauge field and nothing 

otherwise. This is not a big restriction and it is the same request we set in the scalar 

field case. It just amounts, as we pointed out in section 2.3 for the scalar field, to 

asking the two-point effective tree level vertices, to dow keeping the same functional 

dependence upon A. It is an arbitrary choice which is worth taking since it greatly 

simplify the calculation. These two-point vertices can be almost uniquely determined 

via dimensional analysis, gauge invariance (in the next section the Ward identities 

relating them are considered) and recalling they must be derived from 5'[/(iV|iV) 

theory used as a regulator. We will brieSy discuss their form here. 

The first one, the AA vertex, turns out to be the most general transverse function of 

of dimension A^. The third, the C C vertex, must be a general function of of 
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dimension 4, which is not zero at p = 0. Since we want to interpret this term as a 

mass for C (of order the cutoff A, in order for the regnlarisation to work), we have 

also to choose its coefEcient positive. The vertex, does not have to be transverse, 

and it is written as a combination of a transverse term and a non transverse one. 

The former is chosen equal to the AA one, in order for the regularisation to work (so 

to have the right cancellations of the propagators at high momenta). The latter has 

a form, constrained in order to produce through Ward identities the last two in the 

list (BDcr first, and from it DD). The DD one is required to have the momentum 

dependence of C's for the regularisation to work, and it must vanish at p = 0, since 

it's the kinetic term of a Goldstone (massless) field. Finally B D c is obtained by 

dimensional analysis and through Ward identities from the vertex. A list of 

two-point vertices with such requirements, follows below: 

% ( P ) = 2 — = (5.12) 

+ (5.13) 
A" 

c •p 

_ : ^ + 2AA'' (5.14) 

5£-D(P) _ ^ (5,15) 

S'Bo-(p) = - 2 ^ (5.16) 

where was defined below eq. (5.6), c and c are general functions of a; = p^/A^ and 

A is a constant. The only necessary requirement on c is cg = 1, from the normalisation 

condition and eq. (5.9), as for the scalar field. We will also require co = 1 and, as we 

have mentioned earlier, in order for C to have a mass, we choose A > 0. In principle 

we could have chosen two pairs of different functions, c and c for the A and the B and 

c and c for the C and the D vertices. In fact, even though they come from the same 

supermultiplets, when one considers the broken phase, the two pairs of two-point 

function, can pick different contributions due to their different statistics. Although 
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the most general requirements would then be that the functions chosen must have 

the same behaviour as p /A -4- oo, we decide to choose them equal. 

The form of is then still left quite general. Apart from having to preserve all the 

symmetries of the theory, and the request expressed by eq. (5.11) on its two-point 

vertices, we just add as for the scalar Aeld caae, the restriction on its higher vertices 

to be Taylor expandable to any order and to keep UV hnite all the integral in which 

they appear. 

Considering again eq. (5.1) we are then left with: 

= - 1 0 1 + 0(P=) (5J7) 

where Because of (4.65) though, the 1-loop vertices 

must contain a cr, so eq. (5.17) becomes Anally 

a,(S<°>l-;;f = - 4 A a „ „ + 0(p^) (o.lS) 

Computing all the diagram contributing to the vertex at one loop, and consid-

ering the form of the 8ow equation, we can find the following expression for eq. (5.18): 

- 4 A a ^ , ( p ' ) = 

2 ^ ^ — — P , P) + ^ — P, — ^ ) ^ H t ( P — - P ) 

+ '^',!t'^''^(p, —p; 

— P, —p) — '^^ '^^(p; ^ — P, —^)S aa^(p - - p ) 

- A ' ; ^ y ^ ( p , - p ; A ; , - i . ) 2 ^ ^ ( A : ) 

4-A^^ ( — A;, A;,p, —p) -|- A: — p, — A:)2'"'"'^(p — A:, A;, —p) 

(p, —p; — A:)2''^ (A;) 
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- p ) - t - p, - A;, - p ) 

DD, (5.19) 

where Jt — / level but the subscript "0" has been 

omitted. What we have to And at this stage are the vertices at tree level shown in 

Tab.5.1. The last two lines list the vertices needed in order to calculate the oth-

4 -po in t 3 -po in t 2 -po in t 

5 ' ' ° ' ° ^ ^ (p . 9. r ) 

9. r ) 

(p .g . r ) 

Table 5.1: Tree level vertices needed to calculate /) at one loop 

ers. The two three-point vertices in the second part of Table 5.1 are related via a 

symmetry of the theory, which will be discussed in the next section, called "Charge 

Conjugation". In particular: _cBADc 

5.2 Symmetr ies 

Before we continue studying the equations of the vertices needed to perform our 

calculation, it is worth spending some words about the symmetries of the theory we 

are considering. 

The main symmetry involved here is, of course, supergauge invariazice under 

transformation. This invai'iajice must hold for the action we want to describe, and 
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it is preserved along its Sow due to the properties of the Sow equation and the way 

it has been constructed. Expanding the action in Eelds and imposing it is invariant 

under applying to them the transformations expressed by (3.40,3.44), it is possible 

to get constraint on the vertices, i.e. Ward identities. These identities are expressed 

by eqs. (5.29), (5.30) and (5.31), while a pictorial representation is given in Hg. 5.1. 

This symmetry is of great importance and preserving it in the flowing action was the 

p49 

Figure 5.1: Graphical representation of gauge invariance identities. 

purpose of the whole thesis. It has been used through the various steps of the calcu-

lation of at one-loop as a check, helping us to be sure it was correctly performed. 

Since the supergauge theory will have to be spontaneously broken, in order to the 

regularisation to work, it is convenient to And an expansion for the action in terms of 

a different basis, %.e. the shifted helds. Imposing the corresponding transformations 

to hold, it is possible then to find the Ward identities for the vertices in the broken 

phase, which is the basis that will be used in the calculation. This issue will be 

addressed in section 5.2.1. 

Another relevant symmetry involved here, and which follows directly from the con-

struction of the action expanded in supertraces, is the cyclicity. This property ensures 

that vertices can be set equal if their arguments (z.e. momenta and indices), are re-

lated by cyclic permutations. An example of this property is expressed below for the 

three-point vertex of pure A: 

= '5'-%'^(r,p,g) (5.20) 
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Cyclicity is automatically incorporated in the diagrammatic representation ajid it is 

one of the reasons that makes it so powerful. As an example, all the three vertices of 

eq. (5.20) are represented by the same diagram in Ag. 5.2 

D -

Figure 5.2: Diagram representing the three vertices of eq. (5.20) 

A further symmetry, which we have already mentioned in the previous section is 

"Charge Conjugation" (CC). This invariance has to hold since the final goal is to 

describe a 6'[/(yV) Yang-Mills theory, which has this symmetry, and it is imposed by 

asking the action to be invariant under the transformation: 

(5.21) 

C ^ (5.22) 

This requirement sets as well relations on the vertices, and in particular sets equal 

those with inverted set of arguments, up to a minus sign to the power of the number 

of gauge fields. Namely: 

. . . ,P . ) = . . . ,pi) (5.23) 

where r is the number of gauge helds in % i , . . . , This property is easily expressed 

in diagrammatic form, as can be seen in hg. 5.3. Through CC symmetry, it has 

been possible to rule out some vertices, which might have appeared in the action 

otherwise, and might have caused trouble. One of them is the two-point vertex ACcr, 

which, assuming the action invaiiant for charge conjugation, is identically zero (it also 

vanishes for other reasons, such as gauge invariance and Lorentz invariance). This 
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Figure 5.3: DiELgrammatic representation of CC invariance 

fact will lead the two equations for AA and C C to be decoupled, while those for 

and DD will be coupled through and with the equation for the non-zero vertex BDcr. 

Other important properties can be extracted imposing this symmetry , also on wine 

vertices. One of them, widely used throughout the whole thesis, relates one-point 

wine vertices and reads (in the case of a pure gauge wine vertex): 

9, r) = - r , g) (5.24) 

The last invariance we will describe in this section and which was already discussed in 

the previous chapter, is the no-/l° symmetry. As it was already discussed there, this 

symmetry has to be imposed for the action as we start considering the supergauge field 

containing the identity matrix in its expansion on the generators of 

if we do not want its presence to create a non linear constraint on the theory. Its 

requirement re jects on the vertices through a set of constraints, obtained imposing 

the transformation 

= A^a:), (5.25) 

to be an invariance for the expanded action. Given for example the four-point pure 

A vertex, we can imagine for example that one of them were an In this ca.se 

invariance for eq. (5.25) would give the following relation: 

+ = 0 (5.26) 
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If two of them were ^ 2 , the symmetry would give us a different constraint: 

(P, 9, a) + r, 5, g) + (p, r, g, 5) + 

= 0 (5.27) 

This second relation, since must hold together with the first one give us in particular: 

.5,^,9) + 5' ; ;^^^(p,g,6,r) + 5'-^^-^(p,5,g,r) = 0 (5.28) 

(5.26,5.28) must hold for the four-point pure A vertices, for 6" to be invariant under 

no-^° symmetry. Their diagrammatic form is expressed in fig. 5.4. As can be seen 

more clearly from fig. 5.4, the two previous equations are the same constraint through 

Charge Conjugation invariance. If three or four of them were v4°'s we would not get 

any constraint since, we would be left respecively with str(yl^) and str(H) which are 

already zero. 

Cr ^ a 

y j + w + 

A' z/ ^ P ^ 

0 * 0 -
cr cr ^ u 

Figure 5.4: Diagrammatic representation of no-y4° symmetry for the four-point pure 
A vertex. 

Relations like these can be found for all possible vertices. This symmetry will be 

particularly useful in the calculation for the second coefficient of the /^-function, as 

can be found in [37]. As far as the present work is concerned, this symmetry played 

a crucial role together with CC invariance, in order to rule out the vertex AACcr. As 
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we will see in the last chapter, this allowed us to treat the three different sectors A, 

C and the sector B and , in a similar way. 

Other important consequences of this invariance, relevant to the present work were 

already described in section 3.3.2 and will not be repeated here. 

5.2.1 W a r d ident i t ies in t h e b roken phase 

As we have already mentioned earlier in this chapter, supergauge invariance is the 

most relevant symmetry throughout the present work, and since we will be working in 

the broken phase of the theory, it is worth exploring the Ward identities in this regime. 

According to the split fields notation which haa just been introduced in eq. (4.26), 

they read: 

- -p, g, r , . . . ) = . . p, g + r, - . . . p + g, r, - - ) 

(5.29) 

'(- - p, g , r , . . . ) = ± [ / : : : f r " ( - - + r , . . . ) ? . - p + g,r , . ) 

+ 2 L / . : : r t : - ( - - - p , 9 , r , . . . ) 

(5.30) 

The notation of Eqs.(5.29) and (5.30) needs a brief explanation. represent any 

vertex either from the expansion of the effective action or a wine vertex. X and Y 

are generic fields and the indices a and 6, respectively referring to ^ and F , are either 

Lorentz indices or nothing, according to the scalar or vectorial nature of % and F . 

The "A" on the fields in the RHS of eq.(5.30) indicates a change in the spin-statistic 

nature of the fields, i.e. and so on. Finally, the signs in the first 

line of eq.(5.29) are + and — if there is no cr between A' and B and y and B, and 

'B and D will be considered together, for reasons which will become clear later 
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opposite sign in the other case. 

We write separately the identities for wine vertices where the point is at the end of 

the line: 

p r . ,Pn; 9 1 , . . . , r , 5) = (5.31) 

+ P2'%' - - ,Pn; 9l, " - , 9m; r, j) 

- (P2, . . . , Pn ; 91, . . . , gm; r + Pi, 5) 

If the held on the wine hit by ^ were a B we would have had a relation similar to 

eq. (5.30). Similar identities would be obtained hitting the vertex with momenta 

and as is clear from hg. 5.1. 

We can now see them in some particular examples. For the two-point vertices in the 

effective action expansion (the same apphes to the .9 vertices), for example, we have: 

P ' S f A p ) = 0 (5.32) 

P'SfM = - 2 5 ' ™ ' ( p ) (5.33) 

p'S'^'W = -S'"'{r) (5.34) 

The hrst one, simply states that in the A sector the gauge invariance is not broken, 

and the A propagator is still transverse. The last two, relate vertices in the broken 

sector. Another observation which can be done is that, since the seed action 5" must 

be gauge invariant itself, (5.29) and (5.30) must apply to its vertices. It is easy to 

check for the two-point ones, since we have written explicitly the expressions for their 

identities in (5.32-5.34). It is straightforward to see that (5.32) is true for (5.12) 

since it is proportional to the transverse tensor []^;,(p). Moreover, we can see that, 
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applying to (5.13) and comparing with (5.16), we get 

(p) = P" ( s i i i p ) + 44^4;.") = (5,35) 
\ Cp J C.p 

and applying it to (5.16) and comparing with (5.15): 

P'S'>"°(p) = P" ( - 2 ^ ) = - 2 ^ = (5.36) 
Cp j Cp 

Another check which can be done is on the two-point function equations (5.38) and 

(5.40)-(5.42). If everything is consistent the hrst should give zero if contracted with 

and the others should be connected by Ward identities. This is indeed the case, 

as it can be verified applying (5.29) and (5.30) to them (the same of course should 

apply for the higher point equations). Relations (5.29) and (5.30) will be useful for 

calculations and other checks in the present section and in the next chapter. 

5.3 Tree level vertices 

After having discussed the importance of the symmetries of the Eowing effective action 

and their consequences on its vertices, we can now concentrate on the equations which 

we need to extract the /^-function at one-loop from eq. (5.1). They are all listed in 

Tab.5.1. Since they are all tree level vertices, let us consider first the tree level 

equation (4.41) which we rewrite here in its extended form: 

where just in order to have a more compact equation the incorporated C-wines no-

tation has been used. The previous equation is shown diagrammatically in fig. 5.5. 
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E Pi 

Figure 5.5: Tree level equation; / can be either an A, B, C or D held 

We can now specify eq. (5.37) to the vertices of Tab 5.1. 

5.3.1 T w o poin t t r e e level ver t ices and kernels 

We will start studying the equations for the two-point vertices. The kernels (zero-

point wine vertices) in the basis we are working (the ones listed in eq. (5.4)), will be 

determined here through the request of the seed action two-point vertices to equal 

the tree level ones. They are represented diagrammatically in fig. 5.6. 

# = K 

T 

/ # / 

= / / = 

o = c 
V = D 

/ / = A 

/Q/ /c, 

Figure 5.6: Graphical representation of 0-point wines 

The first step is now, once the equations for the two-point vertices are written, to 

assume the request expressed in eq. (5.11). Since the form of the vertices of the 

two point is set by the argument described in section 5.1, this gives rise to a set of 

equations for the kernels (as we have mentioned earlier). Because of the extra terms in 

the how equation that we have introduced through the "decoration" of the wines, we 

84 



have enough freedom to impose these constraint and the set of equations has actually 

a solution that will be evaluated later in the present section. 

The Arst two-point tree level equation to be studied here, is going to be the two A's. 

In the graphical representation, it is shown in hg. 5.7. 

/.i 

A 

Figure 5.7: AA tree level equation 

The equation in formulae reads: 

(p) (5.38) 

where has the expression of eq. (5.12). Before we solve the equation for we 

are going to list them all. 

The next one to be considered is then the two C's equation. Diagrammatically it is 

represented in Ag. 5.8. 

A 

Figure 5.8: C C tree level equation 
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While in formnlae we have: 

(5.39) 

As one can notice, these first two equations are decoupled, and one can solve for 

and As we will shortly see, the last three equations, for BB, BDcr and 

vertices, will be coupled. The way they are connected, allows to write all of them in 

one, introducing a compact notation for this sector, which will be introduced in the 

next chapter for the gauge invariant calculation. We will refer to this sector as the 

BDcr sector. Here they will be kept separate. 

The first of the three is the equation for the vertex B B . In fig. 5.9 it is displayed in 

its diagrammatic notation. 

A & f A 

ly 

Figure 5.9: B B tree level equation; the "star" represents a cr. 

Its analytical form is the following: 

(7)) = (p) (p) + Ar (5.40) 

where for the only non-symmetric vertex in the change p —p, namely 

the argument +p refers to the momentum of the first field, and: p,p) = 

—p) = 5'^°^^(p) = — 5'^^' '(p). The sign in the second term is then determined 

by an extra minus sign, from the fact that one of the cr's, in order to "hit" the other one 

and give the same supertrace as the LHS (strB^B.,), must pass through a fermionic 
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field. This result is more clear from its graphical representation of Ag. 5.9. 

The equation for the BDo" vertex is represented graphically in Fig.5.10. 

AdA r A 

Figure 5.10: BDcr tree level equation 

In formulae is: 

(p) (5.41) 

Finally, the equation for the last two-point vertex, Z)D, is represented graphically in 

Fig.5.11 and in formulae in: 

AdA A 

Figure 5.11: D D tree level equation 

AaA^' ' ' ' (p) = A ^ ^ 4- A^'^ (5.42) 

We are now ready to extract the four kernels from these five equations. The hrst two 

ec^uations give us two conditions to determine the two A's and two C's kernels and the 

last three for the B and Z) ones. As one might think the set of three coupled equations 
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is not overconstrained because they are related to each other via Ward identities. It 

is in fact possible to check that starting from the equation for the two B's vertex, one 

can obtain the other two via contracting respectively once or twice with a momentum 

(respectively — T h e y set then two conditions: one is given by the equation 

for the transverse part of the other one by the equation for its non transverse 

part, or by one of the last two equations related via gauge invariance. What we find 

are function of z = written in terms of the two functions c and c introduced 

in Eq8.(5.12)-(5.16). They will be the momentum space kernels, which will need to 

be covariantised as described in section 4.3. Solving the two-point equations for the 

kernels, we Anally get: 

Ap = — c (5.43) 

• xb ( 5 3 : ) ' 

1 / ^ ' 

p 

where c and c ai-e intended as functions of a; and the prime stands for the derivative 

with respect to this argument. 

We just spend a few words on how the equations may be solved. For the two decoupled 

ones, it was just a question of substituting the two-point vertices and solve for the 

kernels. For the coupled ones, a possible way was to contract the equation for the 

vertex with the combination In such a way, in eq. (5.40) we are left with 

the first member, containing only It is then possible to solve directly for that 

kernel, and substituting it in the equation for the two D's vertex, get the final kernel 

^This and others were some of the checks made possible by gauge invaiiance, that let us keep 
under control the calculation 
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It is now time to move to the higher point vertex equations. 

5.3.2 T h r e e and four point t r e e level vert ices 

The equations we finally have to And are the ones for the four-points and three points 

vertices which are needed to extract the 1-loop /3-function (plus the three point needed 

to And the four point). Some of these vertices are directly needed to be substituted 

in the 1-loop equation. Others will have to be used to calculate the latter. 

An important remark must be done at this point. Although we would expect these 

tree level vertices to be Anite, as will be discussed in the next two sections, this is not 

true in general (for example if 5' is the one chosen in [34]). However, this problem can 

be Axed with an appropriate shift of the hatted vertices. This will be shown for an 

explicit example in the last section of this chapter. We will then have to add a further 

request on the seed action, which is to ensure there are no classical divergences. 

While writing down the equations for these higher point vertices, we will need the 

covariantised kernels described in section 4.3. This did not happen for two-point 

vertices, because had we considered a Aeld on the wines, we would have been left 

with one point vertices, which are ruled out from this theory. From three point 

vertices onwards, we can instead consistently construct supertraces of three Aelds, 

having one of them (or more) on the wines i.e. coming from the expansion in Aelds 

of the covariantisation of the kernels. In Ag. 5.12 these one-point wines can be 

found in their graphical representation. Even though A^''^'^(p;g,r), A^'''^^(p;g,r) 

and A^'^ '^(p;g,r) are all equal to 1/A'^c^(p|g,r) (since they all come from the co-

variantisation of = c'/A^) they will be indicated in the equations as they appear 

in Ag. 5.12, to make more cleai- the link between their analytic and diagrammatic 

form. The same applies to the three covariantisations of namely Aj^'^'"(p; g,r), 

A^'^'°(p; g, r) and A^'^^(p; g, r). One could also check that A'^^'^'^(p; g, r) = A;^^/2 

89 



g, r) / / = g, r) 

/ y = A^'^^(p;g, r) /y =:A^'^^(p;g, r) 

= A ^ ' ^ ' ^ ( p ; g , r ) / / = A ^ " ° ^ ( p ; g , r ) 

^ g, r) / / = (p; g, r) / / =^c^,Ba 

Figure 5.12: Graphical representation of the 1-point Wines 

and g,r) = from eq. (5.2). 

We can start now with the hrst three point vertex we want to consider which is 

the three A's vertex. Its equation is shown in the diagrammatic representation in 

Fig.5.13. 

In formulae is eq. (5.47). The other 3-point vertex equations follow if^. 

cfAi 1 fcAAAI 
A AI 

+2(p^i^^^ - + cycles 

•̂ If not stated otherwise, in all the formulae, we will drop the label (0) and 5 will be intended as 
6'o, tree level action 
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A6A -j-CyciGs 

Figure 5.13: Diagrammatic representation of the three A's vertex's equation 

f ' ? : ! ^(P, 9, r) (g) + 

-5 ' ^^ ' ' ( p )A^ '^^ ( r ; + Int.Const. 

9, ^) = - r ^ 9,r) A ^ ^ % ( p ) + g r ( P , 9, r ) 

+ ^ f ' ' ( p , 9 , r ) A ^ ^ S ^ ^ ( g ) + S^^( r )A^ '^^ (p ; r ,g )S^^(g)} + i .C. 

^5.49) 

5 " r ( p , g , r ) = ^ + % ^ l r , p , g ) A r 6 ' r ( ' r ) 
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(5.50) 

dA 

A Ai 

9, r) A f r) A ^ ^ ^ f 

+ ^ r X 9 ) A : : ' ' ' ' ' ( p ; r , g ) 5 ' ^ ^ M + 7 . C . 

(5.51) 

The four point needed are four: AAAA, AABB, AADD, AACC. The equation for the 

V V 
A^A ( ^ 

;/ 

"a 
<7 a 

ly 

At 

+ f i + 

;•(' (Q-
A' 

CL_. /) 

1 

2 

A' 

Cycles 

Figure 5.14: Diagrammatic representation of the four A's vertex's equation 

4-A'8 vertex is shown in its diagrammatic representation in Fig.5.14 and in formulae: 

, /1.4 6.4/1 / 

1 

/i 1/ cr 

+ 9, r + 5)A^g6'^^^(p + g, r, a) 

92 



+ 9, r + 9, r, 5) 

9, r + p + g, 

9 + r ) A y ' ^ ( r ; g,p + 

+ + cycles j. + i .C. 

f5.52l 

In the previous equations, I.C. stands for "Integration Constant" and was not writ-

ten explicitly here but in the three A's equation (5.47). For the other vertices, the 

divergent parts of the integrating constants will be discussed in the next two sections. 

Their hnite parts are given in Appendix F. 

The equations for the four-point vertices left out here, are listed in Appendix C 

5.3.3 Enfo rc ing universal i ty of f5i (and (i-i) 

Before we discuss the hniteness of the tree level vertices from the previous section, 

let us review in this context, the standard argument for why we should expect to 

get the same value for /9i, and indeed Z?;, in the /? function eq. (4.40) as in other 

methods, despite the fact that our renormalisation scheme for g(A) differs from that 

of the corresponding coupling g(;i i-)- A) defined by these other methods. 

In principle we can extract from eq. (4.39), by computing quantum corrections, the 

value of the other coupling as a function of ours, and thus match the two couplings 

perturbatively: 

1 / f = l / g ' + ' 7 + 0 ( g ' ) , (5.53) 

where the classical agreement is guaranteed by the standard normalisations of the 
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fields and kinetic term in eq. (4.37), after scaling ^ back to its usual position, and -y is 

a one-loop matching coefhcient. Differentiating with respect to A and using eq. (4.40), 

the corresponding function for g, and eq. (5.53), we have 

A + A = A + (5.54) 

Since "-y is dimensionless, it cannot depend upon A, there being no other scale to 

form the necessary dimensionless combination. Thus = 0 in eq. (5.54), and we 

immediately recover the standard facts that and ,82 = 

Clearly this argument fails if some other scale has been introduced, for example the 

standard arbitrary finite physical scale /^, or if other running couplings get introduced. 

(After solving for their Sows, z. e. solving their corresponding functions, this becomes 

equivalent to the first failure since by dimensional transmutation a new finite physical 

scale has been introduced.) Importantly, A^A? can then have an C)(g^) one-loop 

contribution or in extreme ca;ses even a tree-level 0(g'°) contribution. From eq. (5.54) 

one sees that a one-loop contribution to the running of 'y destroys agreement, 

whilst a tree-level running would even modify . 

As we will see shortly, a generic 5", including the simple form used for the bare action 

in ref. [34], can lead to such tree-level corrections. Fortunately, there is also an infinite 

class of seed actions that cannot. As with the earlier constraints discussed, since we 

never specify 5", it is not the solution that matters, only knowing that one exists. 

To get agreement with the standard function at the two-loop level, one needs to 

confirm that there are no further couplings hidden, that run at one loop, and to take 

into account contributions from 5^2(A). This can be done [36]. 

Even with a non-vanishing A^^?, could still recover the usual function coefh-

cients, by defining a standard low energy -or infrared- coupling g(^) at some scale 

/̂  < A, this coupling being distinguished from the 'ultraviolet' coupling g(A) in the 
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effective action 5'A [40, 41]. We want to avoid this because the introduction of 

would destroy, or at least obscure, the power and elegance of self-similarity (c./. sec. 

4.1). 

5.3.4 F in i t eness a t t r ee level 

As we have anticipated earlier in this chapter, it is now time to prove that it is 

possible to have all the integrals for the tree level vertices, UV regulated for a specific 

choice of 6'. One should not usually expect divergences at the classical level, but the 

incorporation of Pauli-Villajs fields directly into an exact RG, can cause them. In this 

section we do not intend to give a proof, but we just want to show that all the vertices 

we have to deal with in order to perform our calculation (two, three and four point 

tree level vertices), are convergent for an appropriate choice of the seed action. We 

start recalling the two main requirements on namely to be supergauge invariant, 

and to have the two-point vertices of the form of Eq8.(5.12)-(5.16). A possible choice 

in the unbroken phase is: 

- ^ ^ s t r ( C ^ - A ^ ) ^ (5.55) 

Now, once the C Held has been shifted (5'(/(A^|7V) broken phase), and it has been 

redefined in order to be dimensionless (C ^ AC), the seed action chosen here has the 

following form (the bare action in ref. 

(p f** ' I J L J 

A 
.%A"[^^,^]{c- '}V^.C-h--A' 's t r /({(7,C}-t-C)" (5.56) 

4 Vr 
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We can, at this point split the fields in the diagonal and off-diagonal (bosonic 4-

fermionic) components: 

— •'̂ 11 + (5.57) 

C = C + D (5.58) 

Since = 0 and = 2^^cr, our vertices simplify because now they have 

either one cr (which for convention we decide to put at the end), or no cr's in them. 

The seed action in terms of split fields is: 

. C -t- ^A'^str / ( C " + -H C D + DC + 2C(7)" 
4 J X 

(5.59) 

One can easily check that the two-point vertices are exactly the one listed in section 

5.1. The higher vertices (three and four-point), which are a possible covariantisation 

of the two-point ones, are: 

Three point: 

9 

Cp 

+2c;^ (g; P, r) (p^r^, - p . -H cycles 

= (5.60) 

(5.61) 

\ A 2/9^ 

Cg Cf 

(5.62) 



(5^63-

Four point: 

1 

+2c%X'S;P,r + 

+2cr^(g,r;p,a)(pAa;. - p-

cr,i(9; 5;p,r)(pfr^ - p - + cycles = (5.64) 

(P, 9, r, a) = + 4A'<^,Ac;j(p, g; r, 5) (5.65) 

'^ '^^^^(P,9,r ,a) = A ^ ( c ; : ^ / ^ ^ + j ^ c ; X p ; 9 + r , 5 ) + r ^ c J ^ ( g ; p + g,r) 

- r . 5 c ; J ( p , g ; 5 , r ) ) (5.66) 

% ^ ^ ( P , g , r , a ) = ;^;^^^^(p,g,r,5) (5.67) 

= 2A^(apC-j(p,g;s,r) + (^^^c;X9;r,P + a)) (5.68) 

'^f;^p^' '(P,9,r,5) = 6 ' ; ^ ^ ^ ' ( r , g , p , s ) (5.69) 

One could check that indeed all the Ward identities are satisAed, by contracting the 

vertices with the proper momenta. 

In order to control the divergences, we have hrst to regulate the integrals with a 

cntofT Ao, to make the divergences explicit. We can then substitute the seed action 

vertices in the three-point tree-level integrals, and, then in the four-point ones, and 

see if there are any logarithmic or power-like divergences. 

What we expect is to And that many divergences are connected via Ward identities, 

some of them related back to two point vertices. Since they present only power 

divergences, we are not worried about those. These are canceled by term that must 

be present for gauge invariance, in the action at tree level when A = Ao, leaving the 
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constant which are listed in Appendix F. More worrying are possible logarithmic 

divergencies of the form a l n ^ . Terms of this kind would have to be transverse 

since in the two-point vertices such divergences are not present. To cure those, we 

would have to add marginal operators to the action at Ao, proportional to I n ^ , 

being another hnite scale (this way was the one followed in [6, 7]). Although this is a 

possible solution, introducing a new scale would result in a loss of self-similarity, as it 

waa discussed in the previous section, and causing problems through the calculation 

carried on in the next chapter, which relies on the fact that we are dealing with only 

one finite scale A. We will then see that a possible way out is to redefine the vertices 

of the seed action in order to tune to zero these logarithmic divergences, without 

fixing a new scale. In other words, it seems reasonable to infer that it is possible to 

choose a seed action which keeps all the integrals in which it appears UV finite . 

The first vertex to be considered is the three-point pure A vertex. It is easy to see that 

it does not present any divergence as we would expect. The corresponding two-point 

vertex is in fact finite and, by dimensions and Lorentz invariance, a transverse term in 

three different momenta cannot be constructed, which would carry a divergent factor 

of Ao-

Let us analyse the other divergences, dividing them in kwo sets. The first set includes 

the two vertices AAC and AACC. Their divergences are: 

= a ^ ( p , g , r ) l n ^ +^^(p ,g , r )Ag (5.70) 

where 

9, r) = -4(co -t- 2co)?-a []a^(p) (5.71) 

^A.(p,9,r) = 2 ( g - r ) ^ (5.72) 
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and 

4In "t" 2 c Q ) ( r ^ + pi,5^ 

+9;,^^ — (p - 5 + g - (5.73) 

+ 4 1 n ^ ( c ^ - 2 c ^ ) ) ( p ^ g ^ - p . g ( ^ ^ ^ ) (5.74) 

+2AgJ^, (5.75) 

respectively. For the first one, the three-point ACC, one can notice that the quadratic 

divergence is exactly cancelled by a term already contained in the logarith-

mic one is transverse in the A-Aeld momentum, as expected. For the four-point 

one, the same can be said about the power divergences, but there are two indepen-

dent logai'ithmic divergent terms. We will see that one of the two, namely (5.73), 

can be cancelled via the same counterterm that cancels the one in (5.70), in which it 

can be transformed via a Ward identity. For the other one, transverse in both the A 

momenta, p and g, we will have to add an independent term to the seed action. 

The second set of vertices includes ABB, ADD, A B D c , A A B B and AADD. Their 

divergences are: 

# Three point: 

(P,9,r) 

D/y 

16 In (5.76) 

12Ag(g - r)^ - 4In a , , ( p ) (5.77) 

—4AQĵ i, 4- 8 In " ^ ( p ' — Pnû Âi) (5.f8) 

Four point: 

D/y 
= —16 In 

A[ 

A 
(5.79) 
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—(p - 5 + g - + 2Ag^^i, (5.80) 

Here the situation is simpler: all the three-point divergences have the logarithmic part 

which is transverse in the corresponding A momentum, as one can expect, and all the 

four point have their logarithmic divergences, falling in those of their corresponding 

coefhcients related by gauge transformation. In this case it will then be possible to 

cancel all of them with the addition of only one counterterm. 

Let us start with the former set of vertices. Following [6, 7], we can add to the 

tree-level action at Ao the terms: 

^0 = - ^ / ' ' ' ' s t r { C , V , . C} (5.81) 

'Y AACC 

- k j s t r [C\y ; , , ] " (5.82) 

It can be shown that both terms (5.81) and (5.82) are 5'[/(A^|A/^) invariant and no-,4° 

symmetric. Moreover, choosing the two constants as follows: 

/.£ 

= 2 ( 4 - 2 % ) I n — , (5.84) 
/.£ 

one caa check that all the logarithmic divergences in eq.(5.70) and (5.73,5.74) are 

cancelled. 

For the second set of terms, it is possible to show that adding to the tree level action 

at Ao the following counterterm^ 

i'o = - (V„ ^ C)|^,„1C. (V„ ^ 0 1 . (5.S5) 

^SfJlNjiV) invariant and no-/ l° symmetric as well. 
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can cancel all the logarithmic divergences of Eq8.(5.76)-(5.80), for the following choice 

of the constant: 

^^^-'^ = 16111— (5.86) 
f,L 

As we have mentioned in the previous section, though, even if this procedure cures all 

the divergences at tree level, it introduces a new scale /v. In the next chapter, we will 

see that throughout the calculation, we will often rely on the fact that there is only one 

finite scale A. This argument is no longer true if we regularise the tree level vertices 

by modifying the integration constant in the way we just mentioned. Fortunately, it 

is possible to overcome this problem. Instead of adding terms to the tree level action 

at Ao, we can in fact add terms to the seed action which appears inside the integrals, 

without introducing any new scale and, thus, making sure logarithmic divergences 

do not appear. In other words, we can choose an .9 which does not produce any 

logarithmic divergences, leaving the power divergences unchanged which must appear 

by gauge invariazice. In the specific case we are considering, for example, it is enough 

to add to the seed action, the same terms we wanted to add to the bare action (5.81), 

(5.82) and (5.85), with different coe&cients. If one chooses here coefEcients (similarly 

defined) to be: 

= _ 4 (5.87) 

= (c:, + 2c[,)/2 

_ (c^_2c: , ) /2 

it is easy to check^ that all the logarithmic divergences disappear. 

A way to see this issue from a more general perspective, as can be found in [36], is 

to realise aa we have already mentioned earlier, that the problem of classical diver-

gences is associated to the Pauli-Villars sector. These terms have a classical divergent 

^Tbis check waa done with a script in FORM. 
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action as A — o o , having a divergent mass, causing logarithmic divergences along 

the marginal directions. The solution which avoids the introduction of a new scale, 

is precisely to shift the 5' vertices along those directions, in order to tune the loga-

rithmic divergences to zero. If the shift for each vertex is, in our particular case, a 

coefficient as the ones listed in (5.87) times the structure of the divergence of the cor-

responding vertex, then the potential logarithmic divergent term is removed from the 

integrand. Since the structure of the classical How equations eq. (4.41) is such that 

the How of each vertex has the corresponding as its highest-point 

6' contribution, contracted with kernels and with the appropriate two point vertices 

(wz. where = A,C, B or D) [6, 7], and since these terms are 

non-vanishing at zero momentum precisely when is a massive Pauli-Villars Aeld, 

it follows that we can always remove the divergence associated with these marginal 

directions by tuning in the same direction. 

Once this laat check has been performed it is now possible to move onto the gauge 

invariant calculation of the 6'fy(7V) Yang-Mills /^-function at one loop. This calcula-

tion was mostly inspired by the scalar field case, which gave us all the necessary hints 

and uncovered the whole machinery that made it possible: above all, the use of the 

How equations to eliminate the hatted vertices in favour of the elfective ones, and the 

integrated wine technique. This will all be explained in detail in the next chapter. 
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C h a p t e r 6 

Gauge Invar iant calculation 

Let us first consider the equation for (5.19). This can be expressed in diagram, 

as it is represented in fig.6.1. / in the figure, can represent any of the fields present 

- 4 A (p) + 2 ^ 
/ = A, a 

c, D 

Figure 6.1: Graphical representation of the equation for 

in the theory: A, B, C or D. The content of fields and the symmetries, allow to 

separate the problem in three different sectors: the A and C ones, which are possible 

to study independently and the B — D which can be considered together. The reason 

we must study the and D sectors together, comes from the fact that unlike the A 

and the C ones, their equations appear coupled trough the vertex BDcr. In the A — C 

case, due to the fact that ACcr is not allowed (see section 5.2), this mix does not 

occur and the study of the two sectors can be carried out separately. Moreover, it is 

possible to avoid the study of a complicated set of coupled equations, recognising that 
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all of them can be recast into only one equation via the introduction of a compact 

notation which will be introduced in the next section. The crucial step in order to 

obtain a set of only one equation for each generalised vertex is the introduction of a 

doublet field F = Dcr). This will also allow to have equations of the same form 

of the corresponding ones in the A and C sectors. This further observation allows us 

to write all the equations for each vertex in term of an even more generalised field 

multiplet, / , containing also the A and C fields. Of course this is not a fundamental 

choice as it is for the sector, because the former two being decoupled helds, 

it will just amount to having to deal with block diagonal matrices, but it will help 

indeed to keep the calculation neater. 

In the next section, the compact notation for the BZ)cr sector will be introduced as 

well as the corresponding equations and Ward identities. In the second section, the 

actual calculation will be cai'ried out in the 5-flelds notation as far as it possible and 

it will be finished by splitting down to components in the final part. Finally in the 

last section, will be considered the potentially non-universal terms proportional to 

and it will be shown that , as one can expect, they do not contribute to the final 

result. 

6.1 Compact nota t ion for the BDa sector 

As can be recognised from Eq8.(5.40)-(5.42) it is possible to combine them together 

introducing a compact notation as follows. Let us first define the matrices: 

(p) 

(?) 

S0"0' '(p) 
(6 .1) 

(6.2) 
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where F refers to the doublet (B, Z)(7) and in the eq.(6.1), the momenta are referred to 

the Arst field. Making use of Eqs.(6.1) and (6.2) we can now rewrite Eq8.(5.40)-(5.42) 

in the following compact form: 

nFF -,FF, (6.3) 

Equation (6.3) has now exactly the same form as the two-point 4̂. and C vertices of 

Eqs. (5.38,5.39). Extending the idea it is possible to rewrite all the equations for 

the three and four point vertices in the B D a sector. First of all we have to group 

together the three point vertices in the following tensor representation 

/ 

and similarly for the four point ones: 

S' ABB 
cr 5 tip 

ADcrB <^AD(tD(t Q 
(6.4) 

^ fiy p a 
cAADo-B 

^ jiu a 

cAABDd 

cAADaDa 
/ 

(6.5) 

(where, in both, the momentum dependence on the right hand side is omitted since 

it is the same); then a one point wine must be dehned as: 

(P; 9, r) 
0 - A ^ ' ^ ^ ( p ; g , r ) ^ 

(6.6) 

and its natural two point extension: 

(p, g; r, a)^, 

0 
(6.7) 
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Finally in order to be able to write all the three point equations of the BDcr sector 

in a compact form, it is necessary to define the following two objects: 

/ 

(6.8) 

(6.9) 

These are one point wine vertices which have either a ^ or a D field. All the usual 

wine vertices rules and properties apply to them. Their two point extensions (covari-

antisations) with an A field is then: 

/ \ 
(6.10) 

(6 .11) 

where g;r, s) = A^-^(p;r , g + 'S)/2. These are two point wine vertices, 

one of whose field is an A and the other one can be either a B or a D. Also in this 

case, ail the usual rules and properties for wine vertices are valid. It is now possible 

with this notation to write the equations for the three point functions (5.48), (5.50) 

and (5.51) collected together in the following form: 

(P, 9, r ) = 9, r ) + (p, g, r ) A ^ g ( g ) ^ g g ( - g ) 

+ 5 ' f f ^ ( r ) A ; ^ ( r ) ^ ^ ^ g ( p , g , r ) 

+ ^ f f ( r ) A ^ ^ ( ; , ; r , g ) ^ ^ ^ ( - g ) 

A ngf / 

+ % ( p ) A p ^ ' ' ( r ; g , p ) ^ : ^ ( g ) 68F/ (6.1:: 
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With this formalism all the four point equation of the BDcr sector can be as well 

recast in only one compact equation that reads: 

9 , 9 , r, 

9, ^ + s) (p + g, r, s) + g, r + a) (p + g, r, s) 

9, r (p + 9,1", 4 - 5'^^^(p, g + r, s)A^g(g + (g, r ,p + s) 

+"^^75 (P) 9 + r, 5)A^^(g + r ) 6 ' ^ ^ ( g , r , p + a) 

(P, 9 + r, a)A^^(g + r )^^^^(g , r , p + a) 

+^aBS (P + 9, r, a) A^"'^^(p; r + a, g)^^^(g) + 5 ' ^ f (g, r, a + p) Ap'^''^(g; g + r , p )^ 

+'^^va(p, 9, ^ + 9, 'S)'Saf (—'S) + (p, 9 + ^, 9! P + 

+'^^a(p)'^'^'^'^(9; P, + '^)'5aR5(P + 9, '̂ ) + ' 5 ^ ( ' S ) A ^ ^ ( p ; 5, g + r ,p + 5) 

+ - 5 ^ ^ ^ , p + (r + S,p, g) + % ( g ) A g ' ^ ^ ( r ; g, s + (p, g + r, 5) 

+ % ( P ) A : g ' ' ' ^ ( g , r; p, ( - . ) + ( . ) A ^ : ' % ( p , g; 5, 

+ ^ ^ W A % ' ^ ' ' ( . , p ; r , g ) % ( g ) + % W A % ' ^ ( r , 6 ; g , p ) ^ ^ ( p ) 

r; 5, g)5'^:(g) + 3; p, r ) % ( r ) (6.13) 

In this form it is easy to notice a similarity with the A (aad C) sector. In fact the Ward 

identities obtained acting on the A momenta of the vertices defined in Eqs.(6.5) and 

(6.4) are the same as the ones for the pure A case. We can also recognise generahsed 

Ward identities for the remaining momenta, carrying the indices in capital letters, 

which show that gauge invariance is fully preserved in this sector. Considering the F 

and D sectors separately, as we can recall from the discussion carried out in section 

5.2.1, we had instead to work with broken Wai'd identities. Moreover eq. (6.12) has 

the same form of the equation for the three A's vertex (5.47) and of the three-point 

vertex ACC of eq. (5.49), with A (C) replaced by F , and eq. (6.13) has the same of the 

equations for the four A's vertex (5.52) and the four-point vertex AACC (C.2). This 
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observation will allow us in the next section to use an even more compact notation, 

with the introduction of the label / , representing all the helds of the theory. 

Before we start this analysis in detail, let us first dehne some more elements which 

will be useful later, the two 

, —2) (6-14) 

-gk) , (6.15) 

where = / ( z = ^ ) = = ^(^^ = & ) = ^ e can 

now recognise that the former of the two generalised momenta acts on the vertices 

as though it was a standard gauge transformation. On the four point vertices, for 

example: 

—p, A:, —A;) — 5'^'^g(p, —p, 0) — p , —A;) (6.16) 

( — p , A ; , — t ) — p,A:) — p , 0 ) (6.17 

and on the three point ones: 

(p, A;, —p — A;) — 5"^^(p) - 5'^^(p + A;) (6.18) 

—A;)s5^^g(p, —p + A;,—A:) = (6.19) 

where ^ = (v4,Ccr) and ^ = (A, —Cc). The action of the generalised momentum 

(6.14) on the two point vertices is Anally a further gauge invariance statement since, 

as for the pure A case a generalised transversality is underlined: 

^A'5^(A:, —A;) = 0 (6.20) 

( - k ) s S g i k , - k ) = 0 (6/21) 

It is now time to move to the actual calculation. 
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6.2 Calculation 

Due to the notation introduced in the previous section, comparing the set of equations 

for the 2,3, and 4-point vertices in the BDcr sector with the corresponding equations 

in the A and C sectors, it is possible to notice some similarities. The label F , which 

in the previous section was introduced to represent the field doublet and 

which simplified drastically the set of equations, could be replaced by or C and 

introducing some new Feynman rules for the new wine vertices, from (6.3), (6.12) 

and (6.13) we can get the corresponding equations for the other two sectors. It is 

possible then to introduce a field multiplet / = (A,C, B,Dcr), to represent all the 

equations, which could then be specified for each sector with the right wine rules. 

As it was mentioned at the beginning of this section, this further grouping of fields 

is not necessary since the A and C sectors are decoupled, but since the calculation 

to. be done is similar in all the sectors, it is worth doing it in this notation to avoid 

repetitions and specifying the components only at a later stage. In this new notation, 

(5.19) gets the form: 

- 4 f t + 0 ( p = ) = 2 / E 

+ ^ — P, " ^ ) ^ R ^ ( P — —P) 

+ —p; — ^ ) ^ ^ ( ^ ) } 

(6.22) 

where = 0 and = 1. The 2 's here are 6'o — 26", the equations for the 6'0's 

are now (6.3), (6.12) and (6.13), with f replaced by the new / . The wine vertices 

are defined in the previous section, when / = F and for A and C are the ones listed 

in sections 5.3.1 and 5.3.2. 

First of all, once we have defined the zero point wine (kernel) A ^ ( p ) , we can define 
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its integrated form, as it was anticipated in section 4.5 (see also App.D for details): 

(6.23) 

being now Ag^(p) the wme. Let us now consider the two point equation 

for the generalised Aeld multiplet / : 

A9A5%if^(p) = '5'Mz,(p)A{g(p)5g^(p) (6.24) 

We can recognise the following relation (App.D): 

— -8^(A;) (6.25) 

Let us now consider the equation for /3i (6.22). This is expressed in diagram in 

fig.6.1. Following the steps of the the scalar field case, shown in section 2.3 and more 

extensively in [35], we wiU try to use the fow equations of the effective vertices in 

order to eliminate the 5" ones. Consider then the first line on the RHS in (6.22): 

—P) = (6.26) 

Let us take only the effective vertex term (the first one in the previous equation) and 

recalling eq.(6.23) we can write it as: 

—p) = —(^^AAg{;(A:))5'^^;^(—A;,A;,p, —p) 

= -A^A [AsA(^)'$'A%;^(-^, P, - p ) 

p, —p) (6.27) 

This is represented diagrammatically in fig.6.2. We can now use the equation for 

the effective vertex / / A A at tree-level, substituting it into the previous one. The 
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Figure 6.2: Graphical representation, of the method used to eliminate ^ in the equation 
for /3i. The stars represent the held multiplet / 

graphical representation of the equation for the effective vertex / / A A is illustrated 

in fig.6.3 

Substituting this equation into (6.27), which correspond to substitute all the diagrams 

of fig.6.3 in fig.6.2, leads to the following equation: 

/1.4 6^/1 / 

" P, — P , A:,p — A;) 

— p, —A:,p)A^{/(A: — p)S'̂ _R{A(—p, k ,p — k) 

+ " P' - ^ , p )^T{f (^ — P)'^l!ALr(^P) ^,P — ^) 

-^ ' ; ! ^^ (p , -p ,0 )A;^^^ :^^4(0 ,A, - t ) 

+ ^ ' % : ( P , - P , 0 ) A ^ ^ ^ ^ ^ ( 0 , A : , - A ; ) 

+ a(p, - p , 0)Ao'^5'^^g(0, t , - t ) 

+ % ^ i ( ^ , - ; = , o ) A y - x p ; o , - p ) 5 t : ( p ) 

111 

\ f f ;•//, 

(0) 

(1) 

(2) 

(3) 

(4) 

(5) 

(6) 

(7) 

(8) 

(9) 

(10) 

(11) 



Figure 6.3: Graphical representation of the Eow of the tree level vertex AAff 

—t) (12) 

^ A;, p — A:) (13) 

+'^^Ts(P; ^ " P, P; P — ^, (14) 

+ ^aT("^)^'^ '^ '] l /(P) "P ; (J-5) 

+ % ^ ( p , - P , 0)A6''^(A:; 0, -A : )^ f^ ( t ) (16) 

0)5^'^'^(0, p, —p) (17) 

+ '^^Ra(-P, P - ^ - P, p)'^^li(p) (18) 
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+5' —P, P — - P, —A:, p) 

p; —^;p, (—^) 

(19) 

(20) 

(21) 

[22) 

A^,/,-8;4 ^23) 

+ ^^a(p)'^A^'^ —P,P):^au(p) 4^/ (24) 

(6.28) 

The terms inserted follow the order of Eg.6.3, and the momenta are specialised to 

the ones needed in the present case. Since we want only the order on the RHS of 

V 
%~~ 

Figure 6.4: Examples of potentially universal diagram 

eq.(6.22), the previous equation can be greatly simplified. Noticing that the two point 

A vertex is already order momentum squared, in all the terms in which it appears 

carrying momentum p, we can set all the other p dependences to zero. This will cause 

many terms to be either not contributing to the wanted order of p, or, due to gauge 

invariance, to have simplified expressions. Terms of this kind, depending only on 

seed action two-point vertices and their associated zero-point kernels (integrated or 

otherwise), will be addressed as po^enh'aZ/i/ wnmerso/: since the seed action two-point 

vertices aad the kernels derived from them, are the only things that we have explicitly 

prescribed, for the result to be universal, it must be that we can reduce everything 

to such potentially universal terms or to total A derivatives as in eq. (6.27). In 

turn, potentially universal terms must, and do, collect into total A: derivatives, whose 
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boundary terms oa integration, aje universal aa a result of restrictions on the large 

momentum behaviour, e.g. eq. (3.45), and the renormalization condition eq. (4.37). 

(Actually, since oc Cg, by eq. (5.43), and l/c(, is never produced, terms such 

as eq. (6.31) are universal only because they combine to give boundary terms that 

vanish, as it is proved in section 6.3). Examples of these terms are presented in the 

diagram_matic form in fig.6.4. As it can be noted, in fact, the upper blobs are two A's 

point vertices with momentum p. 

Before starting to consider any of the terms of eq.(6.28), it is important to point out 

some relations, due to gauge invariance, for vertices evaluated at special momenta: 

0, - ^ ) + 5 '^^;^(0,0, k, - k ) = 

(6.29) 

(6.30) 

(The second one, is symmetric in A; —A;). For the derivation of these equations see 

Appendix E. It is now time to perform the analysis of eq.(6.28) term by term. First 

of all we notice that the first two terms of eq.(6.28), have a factor containing the two 

point A vertex, evaluated at momentum p. At order it becomes then proportional 

to 

(6.31) 

(the extra factor 2 is for using i/ invariance and eq.(6.30) has been used). A 

detailed study of this terms is left to section6.3. There is now another group of terms 

w 

Figure 6.5: These diagrams do not contribute to the order 
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to be considered together, which are those diagrams not contributing to the order 

Two examples of this type are represented diagrammatically in 6g.6.5. As one can 

notice, in fact, one of them has the factor: —p, 0) (the left one in lig.6.5). 

Making use of eq.(6.29), it is possible to see that this term becomes: 

S-ltUp, -p. 0) = d'Xt(P') = % I I (6.32) 

which is of order odd in p and can not contribute to the wanted order.The terms 

ruled out by this observation are (8)-(10) and (16)-(17). We can now make a further 

reduction of the terms. Among the group of the potentially universal the terms (11) 

and (12) in eq.(6.28) are left with A^'''^'^(0; 0,0) (the right one in fig.6.5) which is zero 

(clearly by Lorentz invariance). Finally, term (24) has two factors 5'^^(p) therefore 

it is of order We are now ready to proceed evaluating the terms left which will 

eventually give the /3-function at 1-loop. 

We still have to evaluate (3)-(7), (13)-(15) and (18)-(23) of eq.(6.28). Let us then 

start with (3) and (4): 

(6.33) 

Making use of eq.(6.25) it is possible to write the previous equation as: 

]1 + B 

Figure 6.6: Diagrammatical representation of the mechanism responsible of the can-
cellation of the hrst S-term of fig.6.1 (first line of eq.(6.22)) 
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+ ^3,4 (6.34) 

since the wine vertices are diagonal. Where A3 4 is the remainder, since the contraction 

between the two point vertex and the integrated wine, eq.(6.25), does not give just 11, 

and it will be considered later. For now, let us compare the expressions in eq.(6.34) 

and the second term in eq.(6.26). As it is shown diagrammatically in fig.6.6, the two 

terms (3) and (4) get the same form and opposite sign of the hatted term of fig.6.1 

up to the rest so they cancel out. 

The next terms which will be considered are (13) and (14) of eq.(6.28): 

{ % ( - ^ ) ^ p T i 7 ( P ; ^ - A;) 

^ ^ P, — P — (6.35) 

Applying also in this case eq.(6.25) one can recast the equation above in the following 

+ -̂ 13,14 

11 + B 

Figure 6.7: Diagrammatical representation of the mechanism responsible of the can-
cellation of the second .S'-term of fig.6.1 (second line of eq.(6.22)) 

form: 

^ — P)'^^T^(—P, A;,p — A:) + ^{3,14 (6.36) 

Here we made use of the fact that A^(A;) is diagonal in JZS and is an even function 

of A; and we used the // p 44- —p symmetry. We also have considered the fact 

that the above term had to be integrated over A: and used the translation invariance 

for the integrated variable. It is possible also here to notice that the first term in 

Eq(6.36) exactly cancels the term containing 5" in the second line of eq.(6.22). This 
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is diagrammatically expressed in fig.6.7. The two terms (13) and (14) of eq.(6.28) 

cancel the three-point hat ted vertex from eq.6.22) and what is left is just ^{3 14 which 

will be considered later. We will now move to term (15) of eq.(6.28). Its expression 

is the following; 

(6.37) 

Using the usual (6.25) relation, we get: 

—P; — A ; ) + 7̂ 15 (6.38) 

In this case it is already clear that the hrst term in eq.(6.38) cancels the term 

15 

11 + g 

Figure 6.8: Diagrammatical representation of the mechanism which causes the can-
cellation of the third :9-term of fig.6.1 (third line of eq.(6.22)) 

containing .S" in the tMrd line of eq.(6.22). The mechanism is again described by the 

diagrams of hg.6.8. What is left of term (15) from eq.(6.28) after the cancellation is 

the usual reminder, which will be indicated with .Rig and considered later. We now 

move to study the terms from (5) to (7) of eq.(6.28). Also here the method adopted 

involves the use of the Row equations for the effective vertices. Let us consider (5): 

—Ag^(A:)5'̂ ;g'̂ (A: — p, — A:,p)A^{^(^ — p)6'j'R^(—p, — t ) (6.39) 

As we can see from fig.6.9, eq.(6.39) can be rewritten a^: 

-Ai^A [Ag^(A;)A^{^(A: — p)5'y;g^(A; — p, —A;,p)5'^^^(—p, A;,p — A:) 
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Aĉ A 

1 

2 

Figure 6.9: Method used for the diagrams (5)-(7) of equation (6.28). The Eow equa-
tion for the 3-point Aff is now needed 

— ^)Ac)A.'5'̂ g^(A: — p, — A;,p) 44 (6.40) 

The Arst term will be considered later, together with (0) in eq.(6.28), while the second 

term needs now the introduction of the equation for the three point function / / A . 

This equation is expressed in diagrams in Ag.6.10. If now one substitutes the terms of 

Ag.6.10 in fig.6.9 there would be terms such as those represented in figs.6.11, 6.12 and 

6.14. Making use of the inverse relation eq.(6.25) many cajicellations occur. To start 

with, as one can notice from fig.6.11, term (6) is cajicelled when the last two terms 

of the hrst line in lig.6.10 are substituted in fig.6.9. In the same way (7) is canceled 

when the i/ term of fig.6.9 is considered. Moreover, the effective three point 

vertex term (the last left in eq.(6.22)) is cemceled when the first term on the second 

line of fig.6.10 is substituted in fig.6.9 (as it is explained diagrammatically in fig.6.12) 

and when the same is done for its analogous in the swop <4- z/. This can be checked 

writing them in formulae using the rules for wines, elective and hatted vertices. A 
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A^A 0 ^ 

Figure 6.10: Flow equation for the three point vertex Aff 

: + B 

^ 9 ^ / +Ri 

Figure 6.11: Term arising from (5) in eq.(6.28), once the equation for A / / is used, 
canceling (6) 

further cancellation occurs due to (5), and it is the one described in hg.6.13. Due 

to the inverse relation (6.25), the last two terms of the three point vertex A / / when 

substituted in eq.(6.40), cancel exactly terms (18) and (19) of eq.(6.28). What we 

are left with, after the analysis of term (5), are then three reminders from the three 

cancellations which occurred, which will be considered later on with all the others, 

and the term described in diagrams in hg.6.14. This term comes from the first term of 

the equation for A / / . Its analytical form comes directly from the diagram in fig.6.14. 

Since it contains the two point A vertex evaluated at momentum p, which as we noted 

previously has already order , once the other momenta p are set to zero to get only 
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-Ro 

: + B 

Figure 6.12: Term arising from (5) in eq.(6.28), once the equation for A / / is used, 
canceling the three point elective action term in eq.(6.22) 

the wanted order in p we get: 

(6.41) 

(the extra factor of 2 comes from Lorentz invariance, considering it together with 

the analogous f-)- z/ term and eq.(6.29) has been used). This is another term 

proportional to A^"^ and will be considered separately in section 6.3. What we are 

/•̂ f On 

M- A 

11 + F 

+-R3 

Figure 6.13: Term arising from (5) in eq.(6.28), once the equation for A / / is used, 
canceling (18) and (19) in the same equation. 

A'? iSo) 7 A • • A 1 ^ 

Figure 6.14: Potentially universal terms left from (5) of eq.(6.28) 
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left with from eq.(6.28) are then the terms (20)-(23), the six remainders and the two 

total derivative terms. Let ns consider (20)-(23) first. Since they all are proportional 

to the two-point v4 vertex at momentum p, using the inverse relation (6.25), they can 

be grouped together as follows: 

4 0„a(p) - B a A ( — A ; ; —A;, 0) — A;; — 0 ) j (6.42) 

To get eq. (6.42), we have also used a consequence of the coincident lines identity, 

which relates wine vertices, with fields on different lines; in particular, for our pur-

poses, we have considered: 

9 ; - s ) = g; r, a) - p; r, a) (6.43) 

It is also important to notice, that the second term in eq. (6.42), will not appear 

when / is specified to the C sector, since there is no kernel. For the A and F = 

(B, Dcr) sectors, it will be respectively —A:, 0) and —A:, 0) = 

0) (again because there is no kernel). These contributions, as it 

can be proved, cancel between the A and f sectors, being of opposite sign. However, 

since they represent Wines biting their tail diagrams, which are excluded by eqs. 

(4.20) and (4.24), they will not be included in the rest of the calculation. We are now 

ready to summarise and rewrite eq.(6.22) as: 

— 4^1 []^.,(p) = — 

— — - p ) p 2 

—2A^{f(A;) -A:,p, —p)B^^(A;) -{- — A;,p, —p)-8^'^(-A;) (2) 

-2A'^](j^(p; —A;, A; — p)^{!A^(—p, A;,p — A;)B^^(A;) 

—2A'^^i;(—p; p — A;, A;).9^^^(p, A; — p, —A:)B^^(-A;) (3) 

- 2 A ' ^ ^ ' % ( p , - p ; -A:, A:)^^{,(-A:)B^^(A;) (4) 

( - P , A;, p - A:) [6'-^{/g(p, A: - p, -A;) A^{i(A;)A(^;v(A: - p)^j(r{/(p - t ) + 
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+ ^ - p, (5) 

—vy^(—P; P - ^, ^ P) (6) 

+8 a_(p)A^,^/(A;; 0, A%(A;) (7) 

+8 a . . ( p ) B % ( t ) A ^ ^ ; ^ ( 0 , A;; - t , 0) (8) 

+ 4 A ^ 0|,a(p) } (9) 

(6.44) 

Jf 

6.2.1 T h e A sec tor 

Let us start, with the first contribution to be evaluated in this sector which is 

The general expression is represented by term (2) in eq. (6.44). Recalling the form of 

B^^(A:) in the pure A case from eq.(D.4), we can rewrite this term as follows: 

-̂ 3,4 — —A:,p, —p). (6.45) 

Making use of the usual Ward identities for the pure gauge Aeld, and recalling 

eq.(6.29), we can write the previous equation as: 

_ 4A^ -̂'̂ (;c) 
^3,4 k'-

(t.sjs-;;-:(p) + Siiip - k) - S'I'Kp)) (6.46) 

Since the first term in the above equation has only odd powers of p, it does not 

contribute to the order and it will not be taken into account for the rest of the 

calculation. We are then left with: 

4A''̂ '̂ (A;) 
^2 5":':(P-A:) 2 a , . ( p ) (6.4 4( 
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The next term to be considered is now (term (3) in eq. (6.44)) which in this 

sector gets the following form: 

^13,14 — — A ; , A; — p, A;,p — A;) 

(6.4S) — A;, A;)-

Applying the Ward identities and making use of the symmetry H- z/, it is possible 

to get the hnal expression (at order p^): 

-̂ 13,14 
4A;̂  

k'^ 
- A:, A:)^^^(p - A;) ^ - 2a;A^'^(A;) O ^ / p ) (6.49) 

We now have to analyse term (3) of eq. (6.44), which is Its expression in the 

sector A is: 
Jc hr, . . 

(6.50) - p ; , = 0, 

by gauge invariance. 

We have now to evaluate the last three reminders (5)-(7) of eq.(6.44). They have in 

the v4 sector the following form: 

Ri 

16A^'^(A:) 

4A:̂  

-8A: 

A;2 

Qi/c* (p) 

S f t i . p - k ) , (6.51) 
k'- k 2 " Ai 1 

(—p; A;,p — A;) 5'^'^(p — A;)|̂ ^ + (A;) a;ip(p) 

A^" '̂'̂ (Au; 0, -A;) + ^ (A^^ (A; ) - A^^) = 0 

(6.52) 

(6.53) 

where Ward identities and the inverse relation (6.25) have been used, and the order 

p^ taken. Before start ing with the total derivative term (1) and the one proportional 

to Ag'"^ (9), let us consider term (8) in eq.(6.44). In this sector, it takes the form: 

8 []^a(p) (6.54) 
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It is possible to notice now that adding up all these contributions, the non-universal 

terms cancel out and that many other cancellations occur. Collecting the terms which 

are left, recalling the expression of the A-kernel from eq. (5.43) and considering the 

integral over A; in (6.44), after the average over the A; components is taken, we Anally 

get: 

(2T: D 
1 

1 \ A % 1 , 

D 
(6.55) 

Setting now i and with some algebra, we find the previous equation be-

comes: 

f CO 

^ - s j c(a;) ^ + ^ c ' ( z ) ^ (6.56) 

( D - 4 ) ( 4 - 3 D ) 

D 
c(z) 

where is the integration over the angles divided by (Svr)^. (For the other calcu-

lations, we will not specify this laat step, but we will just write the result in D = 4.) 

Since this integral is regular in D around D = 4, we can specify to that value and get 

a total derivative: 
/-co 

O^^(p) j [—4c(3;) 4- r c'(z)] 

= 47Vi^, a^ , (p) 
(6.57) 

In eq. (6.55) we did not include the total derivative term and the ones proportional 

to The total contribution from the A sector to this latter set of terms is: 

o„(p) - (A-"{k)) d^S't:^{k)dtsfHk) (6.58) 

which is term (9) of eq. (6.44) in this sector, and: 

(6.59) 

a further term of this kind to be added to the previous one, which comes from 
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eq8.(6.52) azid (6.54). These terms will be considered later on in section 6.3. 

It is now time to consider (1) of eq. (6.44), z.e. the total derivative term. After 

substituting in it the expression for the integrated A-kernel from eq. (D.16), a hrst 

observation we can make is that if the term was UV and IR regulated we could pull 

the A-derivative out of the integral, aa in the scalar Held case, and the result would 

be identically zero. The integrand is in fact dimensionless and once the integration is 

carried out the result would be a A-derivative of a scale independent quantity. Since 

the UV finiteness is ensured by the regularisation, the non zero contribution of this 

term, if there is one, must come from its IR poles. We want then to study the A: — 0 

behaviour of the following term: 

^ - P, A7,p - A;) - - p , -A:, A:) 9(p__j!g)2 "V 

(6.60) 

and take its order Eq.(6.60) haa to be integrated in (f^A;, and the second term of 

the two does not contribute at all since its integral is IR convergent. The first one 

instead has to be studied. The first step is to expand the factor that might carry 

extra poles (the second integrated wine) up to the order 

Cp — k 

(p - A:)̂  

The last term cannot contribute because the product of the two three point vertices 

gives at leaat as A:̂ , and thus results in an integrable term. We are then left with three 

terms, a term, a term linear in p and a term of order p^. The crucial observation 

to handle this total derivative term is now that even though it is not potentially 

universal, its IR contribution happens to be, as we will describe. Let us take for 

example the p'̂  term in the expansion (6.61). In D = 4, substituting it in eq. (6.60), 

we can see that the integral is IR convergent unless in both of the three point vertices 

appearing in the product, we take the order zero in A:. This means that using eq. (6.29) 
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we get a potentially universal term. If we now consider the term linear in p, we must 

get another power of p and this can come from either of the two three-point vertices in 

the product. This means that the other one must be taken at order and this makes 

it potentially universal. Moreover, in D = 4, the Arst three point function must be 

taken at order zero in A; since otherwise is at least linear in A; and the term would be 

integrable. This makes the term potentially universal. Finally, there is the term of 

eq. (6.61) which is already of order It is obvious in this lat ter case that we do not 

need any more powers of p and the three point functions must be taken at p = 0. The 

whole total derivative term is then potentially universal in its IR-divergent regime. 

The only contribution from expression (6.60) takes the following form: 

A . 

- h i " ' - BisrAk)dtsfHk) (6.62) 

Considering now the expression for the two point function 2 talcing the order 

p^ of the previous equation and the average on the & momenta, we get (in D = 4 and 

recalling the factor N in (6.44)): 

^ ^ 4 (6.63) 

where the following identity has effectively been used: 

o ' % J ( 4 ^ = D ' % = 9 , (6.64) D-»4+ ' y (2%)^ A;̂  D-4-4+ D — 4 

(Here, only the IR divergent pa j t is shown). This waa the contribution from the 

total derivative term of the A sector. In order to get the total contribution to the 

/? function at one loop from this sector we have to sum to this, the result obtained 

from the rest in eq. (6.57). As one can notice this partial result is not transverse as 

it would be expected (the LHS of eq. (6.44) is transverse and so the RHS ought to 
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be). However, the contribution from the BDcr sector will contribute with another 

non transverse term and give a transverse final result. 

6.2.2 T h e C s ec to r 

In the present sector there is no contribution expected from terms (2)-(7) in eq. (6.44), 

since as can be seen from eq.(D.15) B^'"(A:) = 0. What we have is then: 

= - ^ 1 3 , 1 4 = 7̂ 15 = = ^ = ^3 = 0 (6.65) 

Moreover term (8) from eq. (6.44) is zero too, since it comes from (20)-(23) in eq. (6.22) 

and these two point wines are zero when / = C (as was pointed out above eq. (6.44)). 

As far as this sector is concerned, the only contributions are from (1) and (9) of 

eq. (6.44), the total derivative term and the one proportional to Let us analyse 

the former first.The analysis to be carried out here is similar to that one for the A 

sector. We will be looking for IR poles. The total derivative term in this sector has 

the following form: 

(A:) (A; — p)5^'^^(p, A; — p, — ( — p , A;,p — t ) 

—25^^^^(p, ——A;,A;) (6.66) 

From the explicit expression of e.^. eq. (6.106), one can notice that it is regular 

as A: 0, as its derivatives are. The expression in eq. (6.66) is then not only UV 

regular (after adding in the other sectors), but also IR regular, and the A-derivative 

can be pulled out of the integral giving a vanishing contribution. 

To finish the analysis of this sector we are then left with the set of terms proportional 
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to Here we will just write term (9) of eq. (6.44) specialised in the sector C: 

4A^'^ a ,« (p) (6.67) 

This term will be considered in section 6.3. 

6.2.3 T h e BDa sec to r 

Let us hnish this analysis considering the last sector. The Arst term that has to be 

evaluated is again In this particular case, from the expression of (A;) of 

eq.(D.5) and recalling that there is an extra minus sign for all the terms when / = F 

(as one can see comparing eqs.(5.19) and (6.22)), we can write it as: 

^3,4 — 2A'Y,[/(A;) ( t , —A;,p, —p) + ( — A : ' ) [ / ( — ( A ; , —A;,p, —p) 

(6.68) 

where A; and A;' are the generalised momenta of eqs.(6.14) and (6.15). It is now possible 

to see that , in this case, one can apply the generalised Ward identities described in 

section 6.1, namely Eqs.(6.16)-(6.21). Due to a similar argument to the one used in 

the pure A held, the wanted expression at order is: 

-^3!4| 2 — —4A^^(A:)A:[; (p. A: — p, —A;) ^ (6.69) 
i p - •p-

the components will be specified once the other terms are considered. The next term 

which has to be studied is then Its general expression is term (3) of eq. (6.44) 

and in the present sector, gets the form: 

-̂ 13,14 — 2A^^(p;—A;,A; —p)A;^A;j%^j^^^(—p, A;,p —A;) 

= 2A^'^J(-p;p-A;,A;)(-A;)^(-A:)B6'^^^(p,A:-p,-A:) (6.70) 
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Making use of the generalised Ward identities, using the properties of the wine vertices 

and with some algebra, it is possible to recognise the hnal result to be: 

-" '13 ,14 — —p, — p ) (6.71) 
p-

Also in this case we keep for now the compact notation before we consider all the 

other terms, in order to see all the simplifications which occur already at this level. 

The last term of this kind to consider is which in the BDcr sector gets the form: 

-̂ 15 — (Pi "Pi (6.72) 

Due to the generalised Ward identity (6.21) this is identically zero as in the case of 

the pure A. 

The last three remainders in the BDcr sector have the following form: 

R F 8 []^a(p) [A^ (̂A;)A;̂ A;;, + A^(A;)A^^(A:)A;;^,9^^^j^(A:) 

+4AgjY(^)^jv(^ - (^) 

+ 4A^^(A:)A;^S^^j^(p, A: — p, —k) 

R: F 

p-
4 a , ^ ( p ) |2k:af:A^^(A:) + LA:[,(-A:')ya^Af;i;(k) t AFF/ 

' oBFr 
p -

R F 

P-

a^«(p) [A^'^-'^(A;; -A:, 0) + 

(6.7c 

(6.74) 

(6.75) 

From the two terms (8) of eq. (6.44), and recalling the comment just above eq.(6.44), 

we have this Anal expression: 

-8 Q / f at A BB a:A^^(A;)-Af '^ '^(A;;-A;,0) (6.76) 
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It is possible already to notice many cancellations, in particular of the non-potentially 

universal terms of eqs. (6.69) and (6.71) respectively due to and plus many 

others as in the A sector. Unlike from the pure gauge Aeld case there is a residual 

term left, from which is not clearly transverse. As we will analyse it, it will be 

clear that it is not transverse and in fact will restore the transversality of the pure 

gauge result. The other terms left are the total derivative, the ones proportional to 

Ag and all the ones which are not cancelled between the equations above but are 

already potentially universal. Let us consider the latter group of terms first. After 

specifying the components and grouping them together it is possible integrating by 

parts and with some algebra to recognise that in D = 4, we are left with a total 

derivative, which becomes a surface term to be evaluated between the boundaries: 

- O^^(p) a;^/^(a;)[a;c'(a:) - 4c(a;)] ^ (6.77) 

where a; = A;^/A^, and the two functions / ( z ) and ^ ( r ) were dehned below eq. (6.15). 

Considering again the behaviour of c and c at the boundaries, it is possible to recognise 

that this surface term does not contribute. 

It is now time to consider the non-transverse term mentioned earlier: 

(6.78) 

Specifying the components, taking the order and with some algebra it is possible 

to show it gets the following form: 

1 6 # 

D ( D - h 2 ) 
+ 2p^p,) cfz y ( z ) (6.79) 

where / and g are the two functions defined above. Integrating by parts and making 

use of the properties of c and c at the boundaries, we get to the following final result 
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for this term (in Z) = 4): 

(6.80) 

As one can notice, this term is not transverse, aa it wcis azinoiinced, but we will see 

that it is the right combination which added to the contribution (6.63), maJces the 

total result transverse. 

We have now to consider the total derivative term in this section, term (1) in eq. (6.44). 

Expanding in components to have a clearer view, its expression in this sector is: 

- p . k,-k) + - p . fc, - fc) 

+2A«''(fc)A°°(p - t.p- k)Sfi°'l-k,p. k - p) 

- k)St^^(-p, k, p - k ) S f / , ( p , k - p , - k ) 

k , p - k - p, ~k) (6.81) 

In this case, as in the case of the C sector, we can notice that due to the regular 

behaviour of A^^(A:) and A^^(A;) and their derivatives as A; ^ 0 (see eq8.(6.112) and 

(6.113)), there are no IR poles and therefore no contribution comes from this term 

either. 

Before we add up all the contribution collected so far, we have finally to recognise 

the terms proportional to A g f r o m this sector. The hrst one is the same in common 

with all the three sectors, and is term (9) of eq. (6.44). In this sector it gets the 

following form: 

- 4 ^ a u . ( r t ( t ) _ (6.82) 

There a^e in this case two more contributions to this set of terms. The hrst one 

comes from (eq. (6.75)) and the second from the third term of eq. (6.76). Their 
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expression is: 

(6.83) 

These terms will be treated with all the ones proportional to CQ, from the other sectors 

in the next section. In particular it will be proved that there is no contribution from 

them. As we would expect in fact, a contribution from those terms would make the 

result dependent upon the choice of the cutoff. 

We have now all the contribution to the /3-function at one loop, from eq. (6.44) and 

we are ready to sum them up. First of all, adding (6.63), from the total derivative 

term of the pure gauge sector, and (6.80) from the remainder of the BDcr sector 

(which is the only contribution from this sector), we get: 

— + 2p^p.,) 4- 0^:/(p) (6.84) 

This makes the RHS of eq. (6.44) transverse just as it is on the LHS. Adding finally 

(6.57), from the remainders of the A sector and substituting everything in eq. (6.44): 

22 11 A'' 
-4/3i = yATijz, a^ , (p) , 2.e. = " Y Y w 

Which is the j9-function at one loop for 5'[/(yV) Yang-Mills, evaluated with the use of 

a gauge invariant Eow equation. 

6 . 3 A ^ ' ^ - t e r m s 

In all the three sectors it is possible to recognise terms which are proportional to 

Since a final ajiswer dependent on the cutoff function at zero momentum would 

make the result dependent on its choice, it must be possible to collect all of them 

and recognise a surface term in any dimension D, vanishing at the boundary. That 

132 



is indeed the case, as we will prove in this section. 

Let US first consider the class of these terms, coming from the pure A sector. They 

are: 

A A 
A p 

4A„" •„„(?) 

Let us now write the corresponding ones from the C sector: 

(1) 

(2) 

(6.86) 

c c . t cCC/, cCC, 

Finally the ones from the F sector are: 

O^a(p) [A^(A:)8^9^5^^(A;) — A^^(A;)A^a(A;)^^5'^^(A;)8^5'^g (/c) (1) 

- 8 A ^ ^ 0,.(p)A;LA:: (2) 

(6.88) 

Let US consider the first term of each group. Modulo a factor 4cQ a^a(p), we can 

indicate them with (term (9) of eq. (6.44) after some relabelling): 

(6.89) 

where / can represent either A, C or F . If we now integrate the first term by parts, 

the term in brackets becomes; 

d':. A&(A').9^^^^(A:)1 - (6)^A%(A:)a^g^^(^) 

(6.90) 

Remembering the relation between the two point functions ajid their integrated zero 

point wines, eq.(6.25), the last two terms of the three of eq.(6.90) can be rearranged 
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as follows: 

\d;Bl,{{-k)] dls!r>s(k) - (6.91) 

We now remember that: 

— 0 (6.92) 

We use this to transfer (9̂  in the second term to zind integrate by parts the 

onto similarly to above. Redefining the indices, changing A; ——A; and using the 

a 'H' 1/ symmetry (which automatically has, since it is just a function of A;), we can 

rewrite eq.(6.89) as: 

a t WRs{k)d lSg(k) ] - {d',Bg(k)}l8^^BiUk)) (6.93) 

Before continuing, we can simplify further the hrst term of the equation above. We 

can in fact notice via a dimensional ajialysis that the expression in square brackets 

can be written as: 

'jfF'lkVA') (6.94) 

The full term with all the coefEcients as it appears in the equation for has to be 

integrated in d^A; and it has then the following form: 

A /' rl^ 
a „ [ f ) j ^dt\2k,F'{kyA% (6.9.5) 

(recalling that = Cg/A^). Performing the derivative, taking the average on the 

A; components and defining a; = A;^/A- we finally find the expression: 

16c' 
•,„(p)!7oA°-' I" dx [x'"^-FJ{x)]' (6.96) 

which allows us to extract from the first term of eq.(6.93) the surface term. We 

can now specify for each different sector these expressions in order to evaluate the 
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contribution of this set of terms to the one loop /^-function. 

6.3.1 A sec tor 

In this sector, we recall from eq.(D.4) that: 

P 

and eq.(6.93) becomes: 

^ (6.97) 

dt ) (6^98) 

The second term evaluates to: 

& k - (G.99) 

Remembering now the factor ^ in front of it, we can collect it together with 

(2) in eq.(6.86), to get: 

- 8 ^ (6.100) 

This is a total derivative term and it will be considered later. The last term propor-

tional to Cg in the A sector, yet to be considered, is another total derivative which we 

are going to evaluate now. First of all we recall tha t : 

(6.101) 

(6.102) 

where z = In this case then we have: 

F ^ ( z ) = ( D - l ) | ^ l n — j (6.103) 
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In order to And the contribution of this term we must evaluate at the boundary the 

quantity: 

in 
c(z)^ 

(6.104) 

with c(a:) 1 as i -4 0 and 0(1) — 0 as 3; -4- 00. This term is regular in the infrared 

and it does not contribute at a; = 0, but it has a divergent ultraviolet behaviour. As 

we shall see this infinity will be Axed when we take into account the corresponding 

term coming from the BDcr sector. 

6.3.2 C sec tor 

In this sector as we can see from eq.(D.15), = 0, and the only possible 

contribution from this sector to the terms comes from the total derivative. In this 

case this term takes the form: 

where (here a; = A;^/A^): 
1 c z 

2A'( z + 2Ac(a;) 

referring to the notation of eq.(6.96), we can recognise: 

(6.105) 

(6.106) 

f ^ ( z ) in 
^c(z) 

r + 2A (6.10^ 

The term we have to evaluate at the boundaries is now: 

.D/2 in 
X 

C I 
-f- 2A (6.108) 

Also in this case, due to the properties of c(a;) at 0 and 00 (similar to those of c(z)), 

there is no contribution at a; = 0 and a divergence at a; — 0 0 . Nevertheless, the 
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corresponding term of the BDcr sector will cure also this problem. 

6.3.3 BDa sec to r 

In the present sector, from eqs.(D.3) and (D.6), we can see there are two types of 

remainder, depending on the order the two point vertex and the integrated zero point 

wine are placed: 

(6.109) 

Nevertheless, we can always express everything in term of one of the two, since relation 

(D.8) holds between them. The second term of eq.(6.93) can then be written in terms 

of B^^(A;) and considering the explicit expression of the generalised momenta of 

eqs.(6.14) and (6.15), we get 

= --iKK - ^aX ( s -uo) 

Adding the right factors in front, the first term on the RHS, cancels exactly (2) in 

eq.(6.88). The second one on the RHS, once it is considered with all its factors and 

in the integral, is of the form of the one in eq.(6.95). It is therefore a total 

derivative and it has to be considered together with the hrst term of eq.(6.93). Let 

us first consider the latter. Once we split in components we can apply the same 

arguments of the two previous sections and it gets the following form: 

(6) + A^^(A:)a^^^^(A:)] (6.111) 
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Let us now consider (see Appendix D): 

A^^(A:) = 

A^^(A:) = 

1 )c(c c r c kc 
2A^ zc(a;) + 2c 

1 ^(2;) 

a:c(];) + 2c' 

(z = A;̂ /A^ here), and 

S^^(k) = 2 A M ( D - 1 ) ~ + 
cue 

2D 

c(3;) 

^^:)(A;) = A'̂  
c T 

In this last case it is possible to see that we can write: 

f ^ (z) = (D - 1) 
, / I 2 

\ c a ; | c z , 

2c(z)c(a;) / 1 

f ^ ( z ) 
CI a ; 2^(3;) 

2:c(i) + 2c \c(z)y 

2c^(T) / c(a;) 

a;c(a;) + 2c \^c^(z) 

What we have to calculate is now: 

(6 .112) 

(6.113) 

(6.114) 

(6.115) 

(6 .116) 

(6.117) 

(6 .118) 

It is possible to notice that the second terms of both eqs.(6.116) and (6.117) do not 

give contribution either at 2; = 0 or when z —00 . On the contrary, even if the hrst 

terms of the two equations do not give a contribution for i = 0 they do give one 

for a; 00, but it cancels the divergent contribution of respectively the two terms 

of eqs.(6.104) and (6.116). In order to hnish the check of the contributions to the 

1-loop function of the terms proportional to CQ, we just have now to evaluate the 

second term in the RHS of eq.(6.110), with the right factor in front, and the term in 
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eq. (6.100). They can be collected together into the form: 

(27r)D " Vi'- % 

2c 

(27r)^ \z(a;c + 2c) 

2c r^ /2 . 
i ( z c + 2c) 

=0 (6.119) 

Since neither of these laat two terms give any contribution, we can conclude that 

the Anal result will be independent from Cg. This result does not surprise us and we 

were expecting it from the beginning, since the /? function at one loop is a universal 

quantity, independent from the choice of the cutoff function. 
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C h a p t e r 7 

Conclusions 

To summarise the work that has been developed in this thesis, we can say that we 

started by revisiting an exact RG Eow equation for a massless scalar field theory 

as it was described by Polchinski in [2]. Making use of the ideas about scheme 

independence introduced in [23], we considered a generalisation of it, and computed 

the effective mass and wavefunction renormalisation at one loop. Combining these 

results with the Sow equation for the one-loop four-point vertex at zero momenta, 

we calculated the first coefEcient of the /^-function, obtaining the expected universal 

answer expressed in eq. (2.41). 

This result, achieved with a Polchinski-type How equation with a general kernel is 

a proof of universality for ^ at one loop for the massless scalar held, beyond the 

independence of the choice of the cutoff function. The totally generic form of the 

kernel, in fact, includes not only a general form of the cutoff, but also the introduction 

in the game of an auxiliary action, the aee<i action, which can contain all sorts of extra 

vertices compatible with the symmetry. (In the case of Polchinski it is recognised to 

coincide with the kinetic term only). The presence of the seed action can complicate 

the calculation as long as the scalar held is concerned, but the freedom on its choice 
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(with just some mild constraint on its vertices) turns out to be useful for the gauge 

case. 

The independence of universal quantities, such as at one loop, upon the unphysical 

vertices of the seed action, introduced by hand, come out as an expected result from 

the calculation performed for the scalar Aeld case, but the way these extra parameters 

were eliminated in favour of the physical ones, was crucial to set up a powerful method 

to deal with these generalised Eow equations. It was through the calculation in the 

scalar case that it becomes clear the need to use the Sow equations, in order to 

eliminate the seed action vertices in favour of the effective ones. 

Since the main aim of this work was to set up a dow equation for a Yang-

Mills gauge theory which preserved the symmetry, in the second part of the thesis, we 

started by revisiting a scheme in which this theory was regularised in a gauge invariant 

way considering it aa a sector of a bigger graded group, known as which 

is broken spontaneously (see [34]). This was the Arst step towards our goal, since 

with a gauge invariant regularised action, we could then build a Sow equation with 

the right features in order to preserve this symmetry through the Sow. With the 

wide choice given by scheme independence, it was possible to write a Sow equation 

for 6'i!y(/V^|#), see eq. (4.33), which was supergauge invariant, via the introduction 

of the covariantisation of the kernels, described in section 3.2.1. The extra choice on 

the seed action vertices comes out to be another crucial point, since it was through 

the properties we could set on them, that the calculation was simplified. Moreover, 

the Aniteness at tree level could be also ensured, without the introduction of an extra 

scale, and without loosing the selfsimilar Sow property, not only elegant but crucial 

for our calculation. 

In the last part of the thesis, we could eventually perform a check on the Sow equation 

just built, evaluating the Srst coefScient of the /3-function for the physical 5'(7(A/̂ ) 

Yang-Mills sector of 5'[/(A/^|yV). 
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The method used for the scalar held case was implemented and adapted to the present 

case, with the extra aid of the graphical interpretation. The power of the diagrams, 

representing the vertices can be appreciated through the whole calculation, as they 

could often be used instead of specifying their analytical expressions. The symmetries 

present in the effective action allowed also to use, for most part of the calculation, a 

compact notation, in which all the helds present in the theory (the basis used in the 

broken phase), were collected in a supermultiplet / and all the equations could be 

written in terms of it. This greatly simplified the task and avoided repetitions. 

The expected universal answer for the first coefBcient of the /^-function was eventu-

ally calculated for the Yang-Mills sector of 6'f7(7V|#) as it is expressed in 

eq. (6.85). This resulted not only in a check of universality for this quantity beyond 

the change of the cutoff, as for the scalar case, but also represented the first time the 

hnite value was extracted in a gauge invariant way. 

We are now trying to adapt this method, to perform other gauge invariant calculations 

making use of this how equation e.^. second coefficient of the /3-function. Even though 

we made many progresses and all this machinery seems to be not just exploitable in 

the relatively simple calculation of we will not develop this further analysis in this 

thesis and leave this discussion to future references (see [37]). 
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A p p e n d i x A 

Basis for SU{N\N) algebra, and 

(anti) c o m m u t a t i o n relat ions 

In order to write more explicitly the commutation and anticommutation relations for 

the algebra, we have to choose a basis. We want to choose the one that 

allows us to write all the relations of the algebra in terms of the structure constants 

of A possible choice is then the following: 

rU) = 

al') = 

T. 0 ^ 

\ 0 T , ; 

^ 0 T, ^ 

0 / 

0 llyv 

0 y 

/ Ta 0 

0 —Tr, 

\ 

c(2) 
0 

0 / 

3n = 
0 —zH/v 

iliyV 0 
(A.l) 

The index a runs here from 1 to — 1, and they are — 2 (27V x 2A )̂ traceless 

and supertraceless matrices which, together with Hgyv form a possible basis {5'^} 

of generators for The two in the hrst line are the direct product of the 
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Ta's, generators of with Hg and the Pauli matrix era respectively, and the last 

two lines are the Ta's and ll;v in direct product with the Pauli matrices and cr; 

respectively. Relating this basis with the matrices introduced in section 3.3.1, we 

have: and fL = 

In terms of the basis defined in eq.(A.l), we can rewrite the first relation of eq.(3.18) 

as: 

(A.2) 

(A.3) 

The second can be rewritten: 

[ 4 " . 4 " 1 = ' 4 " (A,4) 

i ^ ( A . 5 ) 

= 0 (A.6) 

Finally the third: 

{ 4 " . 4 " } = / . / 4 " (A.7) 

4 ^ ' + ( A . S ) 

{ 4 4 4 4 = 2 % 4 " (A !̂>) 

{ ^ u \ ^ o 4 = 2(5ijil2jY (A.10) 

In all the equations above, /^s and d^s are indeed the antisymmetric and symmetric 

structure constants of 6'[/(7V). 
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A p p e n d i x B 

Comple teness re la t ion for SU{N\N 

In order to derive the completeness relation for the 7^ generators of let 

us Arst write a generic non constrained snpermatrix, expanded on the generators of 

in this form: 

X = X ^ T ^ + ;Co]l + %3(;3 (B.l) 

Recalling now that: 

and: 

= 2 strTyiX (B.2) 

2 # 

Then we can rewrite eq. (B.l) as: 

. . 4 _ 1 

^ 0 — (B'3) 

% = 2 T ' strT^X + (11 strcrsA" + cr̂  strUX) (B.5) 
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Writing both aides in components: 

= 2{TjJa,y,{Ty,X>', + Ja,y ^S\X-. 

(B^6) 

Considering the previous equation must be valid for any and rearranging the 

generators (without H), on the LHS, we get: 

{ T A Y ^ (B.7) 

If now we multiply both sides by (erg)", considering that: 

(<T3)",(a3)', = i " (B.8) 

and the fact that the elements of the generators are all ordinary commuting (bosonic) 

numbers we get the completeness relation of eq.(3.28). 
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A p p e n d i x C 

Four point equat ions at t ree level 

The four point tree level vertices whose equations were not explicitly written in section 

5.3.2, can be found here: 

9, r + . ) 6, p + g) + g, r + s) p + g) 

+ % ^ ( P , 9, r + . ) 6 , p + g) - f + r, s, p ) A g ^ ^ % ^ ( r , p + g) 

+ ^ f ! ' : (9 + r, s,p) A ^ ^ S ^ f p + 3, g) + 6'f.%(g + r, 3,p) A % g ^ f : ^ ( r , p + a, g) 

9, r , , ) A f p , g, r ) A f (r) 

+ 5 " ! ^ g + r , p + 3) - g + r ) A ^ ^ : ^ ^ X 9 , r , p + , ) 

9 + + . ) + + g, , , p ) A ; . ^ ( r ; g,p + . ) % ( g ) 

3 + p, g ) A y ^ ( 3 ; g + r , p ) ^ j ^ ( p ) + % ( p , g, r + 5 ) 6 ^ ^ ( 3 ; r , p + g ) ^ f ^ ( r ) 

9, r + 3)A^'^^(r ; p + g, f (3) + S f f : ^ ( r , p + , , g) A ^ ^ ( p ; s, g + r )Sf ! ( . ) 
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r + a , ? ) % ( ? ) + a , p + g ) A y ' ^ ( g ; p , r + 

+ 5 ' ! % ( 9 + r , p ) A y ^ ( g ; 6 + p , r ; p , 

+ 6 ' : f ( r ) A ^ t ^ ^ ( p , g ; s , ( s ) + S : : ( . ) A ^ ' : r ; 3 , g ) % ( 9 ) 

- 6 ' ^ ^ ^ ' ( g , r , p + 5 ) A y ^ ( p ; j , g + ^ 

9 + r ) A ^ ' ^ ^ ( 9 ; p + ?: ^ C". 

( C . l ) 

9 , )̂  + ' ^ ) A ^ 5 ' a ' ^ ' " ( p + g , r , 5 ) + ^ ( P , 9 , ^ + ( p + giT", -s) 

9 , r + 5 ) A ^ ; ^ , ^ f ^ ( p + g , r , 3 ) + A y ^ ( p ; r + s , + 9 , r , 6 ) 

W A : ' ^ ' ^ ( 9 ; P , r + 5 ) ^ f + g , r , s ) + ^ ( p , g , r , , ) A r ^ ' : ^ ( 5 ) 

( P , 9 , r , 3 ) g + r , . ) ^ ( g , r , p + . ) 

( P , 9 + r , 6 ) ^ ( g , r , p 4- 3 ) + S ^ ^ ^ ( p , g + r , s ) A % ^ f ( g , r , p + a ) 

, r , p + 6 ) A ^ ' ^ ^ ( p ; g + + 6 " ^ : ^ ^ ( p , g + r , s ) A ^ ' ^ ^ ( g ; p + r ) 5 ' ^ ' : ( r ) 

+S^^(p)A^^ ' ' ' ' ' ( r ,5 ;g ,p )5 '^^(g) + : 9 ^ ( ' ( a ) A ^ t ' ' ' ^ ( p , 9 ; ^ , r ) ^ ^ ^ W } + 7.C. 

(C.2) 

5''^';!^^(P,g,r,a) = - ^ ^ {^^a^^(P,g , r ,5 )A^- '^^^^(g) + % ^ ^ ( p , g , r , a ) A ^ ' ^ ^ ^ ^ ( p ) 
dAi 

/ A A i 

+ ^ % : ' ' " ( ^ , P , 9 , r ) A f ^ ^ r ' ( 6 ) + % ' ' X P , 9 , r , . ) A f ^ ^ r ' ( r ) 

9 , r + s ) A ^ ; ^ , 5 ' ' ^ ^ ^ ( p + g , r , 5 ) + S ' ^ ^ ^ - l ( p , g , r + s ) + g , r , s ) 
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9, r + 5) + g, r, 6) + g + r, . ) + ^, 9, r 

9 + r, + . , g, r) - g + r, + . , g , . 

j ) A^"^^(p; 5, g + + s, g, r) + + g, r, 5)A^"^^(p; r + j , g ) % ( g 

+ ^ ' : ^ W A: '^ ' ' (g ;p , r + s ) 5 ' f ^ (p + g, r, , ) + g + r, . )Af ' ^^ (g ; p + r )^ f^ '^ ( r 

A^': '^^(p, g; 6, ^'^(r) + 5'^^^^(p, g, r, 6 ) A f ^ ^ ^ : ' ( 5 

9, r, s) A f g + r , . ) A ^ ^ f ^ ^ ( g , r, p + , 

g + r, s )Agf^5 '^^°(g , r ,p + a) + 6'^^^(p, g + r, 5 ) A ^ 6 ' ^ ^ ^ ( g , r , p + a 

+ 5 ' ^ ^ ( . ) A y ^ ( p ; 3, g + ^(g, r , p + . ) + g + r, . )A^ ' ^^ (g ;p + s, 

+ % ( 9 ) A ' ' ' ° ' ^ ^ ( g ; p , r + ^' '(p, g + r, a) - .5'^^^(p, g, r + 5)A^'''"^'^(r;p + g, 

- 5 ' f 9, r) A^' '^ '^(5; g + r, p)^^^(p) + ^ ' ( r ) A^' '^'^(3; r , p + g)6';^^^(p, g, r + a 

+ % W A^' ' ' ' ' ' ' ^ (g ; 6;p, r ) ^ f + % ( 9 ) A ^ ' ' ' ' ' ^ ^ ( p ; r; s, g )^f 

+ % W A : ^ ' ^ ' ' ^ ^ ( r , . ; g , p ) % ( g ) + ^ ^ ^ W A ^ y : ^ ( p , g ; . , r ) 5 ' ^ ^ W } + A C 

(C 

The integration constants, not specified in most of the previous equations, are the 

bare action vertices. As mentioned in section 5.3.2, although the request on the seed 

action vertices to keep UV Aniteness, ensures there are not classical divergencies, we 

must at least prove this is possible for a particular .9. This check is done in section 

5.3.2. 
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A p p e n d i x D 

In t eg ra t ed wines 

First of all, once we have defined the zero point wine A ^ ( p ) , we can dehne its 

integrated form. We can de&ne 

( D . l ) 

now being the wine. Let us now consider the two point equation 

for the generalised field multiplet / : 

(D.2) 

It turns out that: 

(D 3) 

This relation will be crucial throughout the entire calculation that will follow. In the 

case of the A held, in particular we have: 

^ (D,4) 
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In the C sector = 0 and Anally in the BDcr one we have: 

a g f ( t ) = k'^kr (D.5) 

where A: and A;' are the generalised momenta of Eq.(6.14) and (6.15). There is another 

relation which holds in this sector if we place the two point vertex with the integrated 

wine the other way round: 

(D.6) 

where: 

= ( — ^ ) A ( — ( D . 7 ) 

but it caji be seen that there is a relation between them which will allow us to make 

use of only one of the two, namely: 

= B ' S i k ) (D.S) 

For the C sector the derivation of these relations is much easier and it is similar to 

the scalar Aeld case in the theory considered in section 2.3. Since the two point 

vertex is here invertible, and there is no remainder (B^'^(A;) = 0), it is easy to present 

the full derivation of the previous equations for the present case. 

In the C-sector, we remind from eq. (5.45) tha t the zero-point wine has the following 

form: 

where z = in this case. Now, recalling that in this notation: 

(D.IO) 
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Figure D.l: Graphical representation of the integrated 0-point wine for the C sector 

we can write the following identity: 

= -AaAA^^(p) (D. l l ) 

where: 

This is the integrated 0-point wine for the C sector, which is represented in fig.D.l. 

Recalling now the equation for 5'^'^: 

AaA5'''^(p) = (D.13) 

aad since is invertible, we can rewrite it as: 

Since at A —̂  oo we have -4- 0 (choosing the integration constant 

here and later, so that the 'effective propagator' vanishes as p —oo) , we see we must 

have: 

(6'^'^(p))-' = A^^(p) (D.15) 

which we can indeed see explicitly from (5.14) and (D.12). 

We represent the integrated wine as in fig. 5.6, but with a line down its spine, and 

thus eq. (D.15) is represented diagrammatically as in fig.D.2. Similarly to eq. (D.12), 
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-A<9,\ 

Figure D.2: The integrated wine in the caae of the bosonic component of the scalar 
field is the inverse of the two-point vertex 

one can And all the other integrated kernels. They aje listed below: 

^ ' D , 7 ) 

5$^ c' 
where c and c are intended as functions of z = Let us spend few words 

about the previous equations. The two A's integrated kernel, in eq. (D.16), despite 

its similarity to a regularised Feynman propagator, has no gauge hxing. Indeed this 

'effective propagator' is the inverse of the classical AA kinetic term only in the trans-

verse space, as one can see from (D.3,D.4). Since in practice will be connected 

to an A point on some other vertex, the remainder term above will simply generate 

gauge transformations via eq. (5.29). This observation proves crucial in the 'magic' 

of the calculation. 

The B and D integrated kernels are described in (D.17,D.18). Note that despite the 

classical D kinetic term being that of a massless (Goldstone) field, the D effective 

propagator like that of C and B (but unlike A) has no massless pole. Of course 

this is nothing but the Higgs mechanism, arising here from the B and D two-point 

vertices being intimately related via (5.40,5.42) (the BDcr vertex being non zero). 

Similarly to the above reasoning, the pair of effective propagators (D.17,D.18), would 

form the inverse of the znaWx of these fermionic two-point vertices (see eq. (6.1)), 

if this matrix was invertible. It is not, for the same reason that these flows are 
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necessarily entangled: 5 and Dcr rotate into each other under the broken snpergauge 

transformations eq. (5.30). 
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A p p e n d i x E 

Special m o m e n t a 

In the present appendix is contained a, derivation of Eqs.(6.29) and (6.30), plus some 

comments about the behaviour of the vertices at some particular momenta. The 

symmetry which governs the theory is gauge symmetry and also in this case, will give 

us a hint on how to derive the expressions mentioned above. Let us consider first 

the three point vertex at momenta A;). We can imagine to consider it 

evaluated at momenta (e, A; — e, —A;) and applying the Ward identity with momentum 

we get: 

— = — — G ) (E.l) 

Expanding in c both sides of the equation and taking order linear in e, we get precisely 

the hrst equality of eq.(6.29). For the second one, we can repeat the procedure the 

same way. 

If we now wank to have an espression for the four point vertex evaluated at 

momenta (0,0,A:,—k), we can as well consider it instead at momenta (e, —e,A:,—k) 

and applying twice the Ward identity, with first and then we get: 

'C, k , = '-.d'Akk) - Sg(k) + S{>i(k - £) (E,2) 
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In this case, if we expand the equation in e and take the order what we get is 

eq.(6.30). 

Other vertices at particular momenta can be evaluated in similar ways. 
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A p p e n d i x F 

Bare act ion vert ices (finite pa r t ) 

This is a list of finite part of the 4-point and 3-point vertices of the bare action, 

when Ao is sent to infinity that must be added to the equations in section 5.3.2. They 

represent the finite part of the integration constants, necessary in order to have gauge 

invariant tree level vertices. 

F o u r - p o i n t : 

lAo— 

9, r, = Co 4- + 2r^a^ - 5^5^ 

~ 2^^;,p • s + • .s — (F.L 

gill 's) + —'r^r^ + 2r^5., — 

^^fiuP' ~ • s + • s — (F 4) 

Ao -+CO 
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Ao-̂ co 
2cq ^iip'^u ^jj.p'^u ( F J ) 

T h r e e - p o i n t : 

AQ—J'CO 

Aq -4-CO 

Aq - y c o 

Aq—S-oo 

AQ -YOO 

AQ —J-CO 

2co (P.7) 

—2cQ (F.8) 

^^(MuPp ~~ ^^fipPu ^^fj.p'^l' 4~ '^^Up^jl 

-2(^,,r^ (F.9) 

^^p.upp ^^i-LUQP ~ ^^iipPu ~{~ 2(5"̂ pr̂  -f" ^^i/p^p. 

-2<^^,,r^ - 4co(^^^p^ - (F-10) 

-Co(g;,9^ - g^g . r + r^g . r - r^r^) (F . l l ) 

-%(g,ig^ - g^g . r + r^g . r - r^r^) (F.12) 
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