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The main problem discussed in this work may be described as the lack of coherence be-
tween the test statistics and their reference distribution. In small sample the approximations
of the first order asymptotic theory are often quite inaccurate. As a result the empirical and
nominal probabilities that a test rejects a correct hypothesis can be very different when
critical values based on first-order approximation are used. This may lead one to reject too
many null hypotheses when they are actually true. In principle there are two ways of solv-
ing this problem; either for a given reference distribution to correct the test statistic or for
a given test statistic to correct the reference distribution. In Chapter 2 of this thesis we
consider Johansen’s likelihood ratio and Wald tests for linear restrictions on cointegrating
space and we compare analytical corrections to the test statistics such as the ones suggested
by Podivinsky and Psaradakis with a numerical approximation of the distribution function
obtained using computer intensive methods such as the bootstrap. In Chapter 3 we ap-
proximate the finite sample expectation of the likelihood ratio test using the bootstrap and
we compare the finite sample properties of the asymptotic, the bootstrap, and the boot-
strap Bartlett corrected likelihood ratio tests. Furthermore, we propose bootstrapping the
Bartlett corrected likelihood ratio test, using the Bartlett correction proposed by Johansen
(1999). In Chapter 4 we provide an empirical application to illustrate the usefulness of the

bootstrap test using real data in place of the simulated ones.

1i



Acknowledgments

While working on this thesis I benefit from the advise, constructive criticism,
and encouragement of a number of people. In particular, I would like to thank my
supervisor Ray O’Brien, for insightful and constructive advise. His guidance made
the time I spent at Southampton University a very enjoyable part of my life. I am
also grateful to Mathias Hoffmann not only for supervising me while I was working
on Chapter 4, but also for being a good friend.

I am grateful to the members of the committee, for their willingness to read
this manuscript. I would like to express my appreciation to the participants of var-
ious conferences and workshops I attended while I was working on my thesis. In
particular, I would like to thank: F. Bravo, B. Nielsen, J. Podivinsky, and the other
participants to the 8" World Congress of the Econometric Society for useful sug-
gestions on a preliminary version of Chapter 2 of this thesis; the participants to the
Harvard University Workshop on Monte Carlo Simulations for useful comments
on Chapter 3; C. Flinn, R. Marchionatti, G. Mizon, and the other participants to
the seminars I gave at Southampton and Turin University for useful suggestions on
Chapter 4.

I would like to thank the ESRC for sponsoring this thesis, and P. Stoneman

for creating the opportunity to take special leave while I was working at Warwick

University.

111



Acknowledgments v

Furthermore, I wish to express my sincere gratitude to a number of friends,
listed below, who helped and encourage me along the way: Grazia Rapisarda who
has always been a first class friend, Surjinder Johal and Zheng Wang who have
especially contributed to my fitness, and Gianluca Grimalda for being an excellent
concert mate (without his constructive criticism attending concerts was not the same
fun). Finally, I am deeply grateful to Enrico Gambino for his suppoit and his love.

Coventry, 7 September 2002

Alessandra Canepa



Contents

Preface. . 1
1 An Introduction to the Bootstrap .......................................... 6
1.1 INtrodUCHON . o ettt e e e et e e e 6
1.2 The bootstrap principle ....... ... 7
1.3 Consistency of the BOOStrap . ... ...t e 9
1.4 Asymptotic refinements. ... ... 14
1.4.1 The bootstrap and the Edgeworth expansion .......................... 15
1.4.2 The bootstrap asymptotic minimax property ....................cooues 20
1.5 Bootstrapping test statistics .. ... ST U UUUUUUPPRRIRRRR 26
1.6 Bootstrap methods for time series ... i 30
1.6.1 Residual based resampling ....... ...t 30
1.6.2 Resampling blocksofdata ................... ... 38
1.6.3 The stationary bootstrap resampling scheme .......................... 39
1.6.4 The Sieve bootstrap for linear processes .................cooieenain.n. 40
1.7 Concluding remarks .. ... ..ot 41
1.8 Appendix : The Glivenko-Cantelli Theorem ........ e 43

2 Small Sample Corrections for Tests of Hypotheses on the
Cointegrating Vectors ... 46
46

2.1 INtrOdUCHION . « oo e e e et e e e e e



Contents Vi

2.2 Johansen’s Maximum Likelihood Procedure ........ ... . i, 48

2.2.1 Podivinsky and Psaradakis corrections to the tests for linear restrictions:

“A variationonatheme” ......... ... ... L. e 53
2.3 The BOOLSIIAD TEST .« .o\ ettt e et 55
2.3.1 Design of the Monte Carlo experiments...................ooeeennnn .. 57
2.4 Monte Carlo Results. . ....oon it e 60
2.4.1 The probabﬂity ofthetype [error ....... .. .. .. i i, 60
2.4.2 The probability of the type Il error. ........... .. ... i, 67
2.5 Concluding remarks . ... ... 72
2.6 Appendix A: Computation details ............ ..o i 74
2.7 Appendix B: Supplementary simulations .............. ..o, 78
3 Bootstrap-Bartlett Adjustment in Cointegrated VAR Models ....... 79
3.1 INtrodUCHON . . .ottt e 79
3.2 Model and definitions . .........o.tiniii e 81
3.3 Bootstrapping the Bartlett cOrrection ......... ... ..o i 83
3.3.1 The bootstrap experiment ...........co.oiiiiiiiiiiaian.. e 88
3.3.2 The Monte Carlo design ..........cooiiiiiiiii i 90
3.3.3 The Monte Carlo 18SUlLS ... oouvit it 91
3.4 Bootstrapping the Bartlett adjusted LR test ... 97
3.4.1 The dependence of the size on the parameters: a response surface
ANALYSIS & oottt e e 98
3.5 Concluding remarks ..o e 104
3.6 Appendix : Supplementary Simulations .............. ..o 106

4 Macroeconomic Shocks and Unemployment .......................... 108



Contents vii

4.1 INIrOQUCHION . . ot e ettt et et e e e 108
42 Themodel .. ..ot e 110
4.3 The Econometric model ..o 115
4.3.1 Permanent vs transitory shocks...... ... ... .. it 120

44 Empirical EVIdence. ... . ... i 121
4.4.1 The deterministic variables..............cooiiiiiii i 122
4.4.2 Determining the cointegratingrank ............ ... ... ... oo 124
4.4.3 Testing for linear restrictions on the cointegrating space .............. 128
4.4.4 Common trends analysis ... 137
4.4.5 The dynamics of the structural model............ ... ...t 143

4.5 Concluding remarks ........ ..o 155
4.6 Appendix A: Some methodological notes ... 156
4.7 Appendix B: The bootstrap eXperiment . ..........oooviiiiiiiiiaaa s, 160
5 Summary and Conclusions ... 163

Bibliography .............. R



Preface

Empirical econometric models are usually accompanied by diagnostics which serve
to support the models’ statistical adequacy. Both the diagnostic checking and the ultimate
inference are based on test statistics. The basic quantities needed in hypothesis testing are:
(7) the critical value that provides the desired significance level of the test, (ii) the power
properties of the test, (i74) some knowledge of the sample size required to achieve a given
power. In addition, any inferential procedure has limited robustness when the assumptions
on which it is based are violated, so one wishes to know to what extent the test is robust
against departures from the assumptions under which it is derived.

To calculate (¢)-(477) simple approximate formulas are usually obtained using central
limit theory. However, in order to work well the first order asymptotic approximation
requires that the asymptotic distribution is an accurate approximation to the finite sample
distribution. Unfortunately, particularly for time series models, this is not generally the
case.

In the past various correction methods were proposed to improve upon the first-order
asymptotic approximation. One strand of the literature addresses this problem by propos-
ing corrections to the test statistic in use. A case in point is the Bartlett correction. The
idea behind the Bartlett correction is to adjust the test statistic by its expectation. By do-
ing this we improve the fit of the asymptotic distribution. Another strand of the literature
focuses on replacing the critical values of the limit distribution with values that will gen-

erate an actual test size closer to the nominal one. Here, one of the techniques suggested
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in the literature is the bias-correction method. Loosely speaking this method involves ap-
proximating the moments of the distributions using asymptotic expansions. For example,
White (1961) obtained higher-order moment expansions for the first two moments of the
AR(1) parameter estimator. The higher-order moment expansions can be used to correct
the possible bias, which lead to better finite sample inference by adjusting the finite sample
distribution. However, bias-correction methods only adjust the centre of the distri
so that if the finite sample distribution exhibits substantial skewness this method will not
result in accurate inference. The Bartlett correction can be regarded as adjusting the first
moment.

In contrast to the bias correction method, Edgeworth corrections are based on a series
expansion of the whole distribution function. However, the Edgeworth expansion requires
the estimation of higher-order moments of the underlying population distribution. These
moments are often difficult to estimate accurately so that the Edgeworth expansion is less
frequently used by practitioners.

The bootstrap is a computer intensive technique that involves resampling one’s data
or a model estimated from the data. It can be shown (see for example Hall (1992)) that in
many cases the bootstrap delivers an automatic approximation to the Edgeworth expansion,
so that it can be considered as a numerical approximation to analytical calculations of one-
term Edgeworth expansions. The advantage is, of course, that it does not involve the same
tedious calculations.

In this thesis we investigate the small sample behaviour and the robustness of the

bootstrap inference procedure in cointegrated vector autoregressive models (VAR). In-
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ference in cointegrated systems has been a major topic of debate since Johansen (1988)
showed that in principle standard asymptotic methods can be applied to certain classes of
estimators of the coefficients. However, several simulation studies suggest that the per-
formance of asymptotic tests on the cointegration coefficients may be rather poor. The
bootstrap may deal with finite sample inaccuracies in two ways. Firstly, the bootstrap takes
the effects of the small sample into account by replacing the nuisance parameters by con-
sistent estimators in the finite sample distribution, whereas the asymptotic approximation
replaces the nuisance parameters by consistent estimators in th’e asymptotic distribution.
Secondly, by using the empirical distribution function in place of some specific parametric
distribution the non-parametric bootstrap is able, for example, to mimic possible skewness
of the finite sample distribution (e.g. to take the non-normality of the finite sample distri-
bution into account). Throughout the thesis, bootstrap accuracy in small samples is mainly
investigated through classical Monte Carlo studies, although an empirical application is
provided to illustrate the performance of the bootstrap with some real data.

The thesis is organized as follows. Chapter 1 contains a brief survey of bootstrap
inference procedures in econometric models. The survey is far from being comprehensive,
but it provides the theoretical background for the subsequent chapters. Chapters 2-4 contain
the main body of the research. Finally, Chapter 5 summarizes the main results of this thesis.

Chapter 1 starts with an introduction of the bootstrap principles. After discussing the
first order asymptotic validity of the bootstrap, the theory underlying the bootstrap’s ability
to provide asymptotic refinements is considered in some detail. Then bootstrap hypothe-

sis testing is discussed. Finally, we consider applications of the bootstrap procedures in
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the context of the regression model, and the distinction between the residual based boot-
strap and the block bootstrap is introduced. The chapter ends with an appendix where the
Glivenko-Cantelli Theorem is stated.

The purpose of Chapter 2 is twofold. Firstly, we use bootstrap hypothesis testing as
a way to reduce the size distortion of the tests for linear restrictions on the cointegrating
space, and we compare analytical corrections to the test statistics such as the ones sug-
gested by Podivinsky (1992) and Psaradakis (1994) with a numerical approximation of the
distribution function obtained using the bootstrap. Secondly, we consider the Johansen
likelihood ratio and Wald test statistics as well as the small sample corrected version of
these tests, and we explore the robustness of the inference procedure in a situation where
we allow for potential over-fitting and under-fitting of the number of cointegrating vectors
included in the restricted model.

Chapter 3 is closely related to Chapter 2. Again we consider Johansen’s likelihood
ratio tests for linear restriction on cointegrating space and we propose that the Baﬂlett
adjustment factor be computed using the bootstrap. Further, we consider bootstrapping
Johansen’s Bartlett corrected likelihood ratio test. Since the Bartlett correction can be re-
garded as an analytical approximation to the bootstrap test (see for example Beran (1988)),
bootstrapping the Bartlett corrected L/ test amounts to a sort of double bootstrap proce-
dure which may lead to higher order asymptotic refinements. However, the performance of
the Johansen Bartlett correction crucially depends on the parameters of the model so that

the potential of the bootstrap test to provide second order asymptotic refinements is obvi-
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ously affected. For this reason we undertake a response surface analysis. Finally, the power
properties of the bootstrap tests are evaluated.

Chapter 4 is a self contained chapter where an empirical application of the bootstrap
test is undertaken using real data instead of the simulated ones. The idea is to analyse the

effects of macroeconomic shocks on unemployment, and in particular the effects of shifts

in Iabour supply and labour demand on the rise of European unemployment. The econo-
metric model considered is a structural VAR with cointegrated constraints. This model
has its roots in the Beveridge-Nelson (1981) decomposition of univén'ete time series since
it involves a linear decomposition of a VAR into stationary and non-stationary parts. In
particular, rewriting the VAR in the V EC M form and inverting it we find a M A represen-
tation which is the sum of the initial values, an /(1) component and aﬁ I(0) component.
This M A representation is a natural starting point for the impulse response analysis.

Finally, the thesis concludes with a summary of the main results in Chapter 5. In

addition some directions for possible research are given.



Chapter 1
An Introduction to the Bootstrap

1.1 Introduction

The purpose of this chapter is to illustrate the usefulness and the limitations of the bootstrap
by providing a brief overview of the literature.

After the seminal paper by Efron (1979) a lot of work has been done, and the litera-
ture on this subject is now enormous. For this reason after having introduced the general
conditions under which the bootstrap provide a consistent estimator of the statistic under
study we will focus on the branch of the bootstrap literature which is more closely related
to the areas of application in time series analysis.

The general idea on which bootstrapping is based is to use the single data set to de-
sign a sort of Monte Carlo experiment in which the data themselves are used to generate
an approximation to the distribution of the statistics in which we are interested. However,
as Veall (1998) suggests there are two main stages in the development of bootstrap theory.
The first stage is related to its introduction by Efron (1979) as a computer-based method for
evaluating the accuracy of a statistic by using the bootstrap algorithm for estimating stan-
dard errors or confidence intervals. This procedure can be useful when the finite-sample
distribution of the statistics we are analysing is not known or a good asymptotic approxima-
tion 1is not available. The second stage of the bootstrap literature concerns the case where

asymptotic analytic tools are available but in which bootstrap refinements are used to 1m-
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prove finite-sample performance. Good references in this sense are Horowitz (1994) where
the bootstrap method is applied to the information matrix tests. For an excellent discussion
based on the Edgeworth expansion see Hall (1992). These and other studies have found
that bootstrap provides a higher-order asymptotic approximation to critical values based
on “smooth” statistics. This means that for bootstrap-based critical values the size distor-
tion (that is the difference between the nominal level and its actual rejection pr
decreases more rapidly with increasing the sample size than if the critical values obtained
from first-order asymptotic theory are used.

The outline of this chapter is the following. Section 1.2 introduce the bootstrap prin-
ciple. In Section 1.3 the first higher-order asymptotic validity of the bootstrap is indicated
in the i.i.d. setting. In Section 1.4 we will illustrate the higher order refinements pro-
vided by the bootstrap for pivotal statistics. In Section 1.5, we consider application of the
bootstrap method to test statistics. Finally in Section 1.6 we will go through some recent

developments of the bootstrap method in time series analysis.

1.2 The bootstrap principle

The bootstrap is a method for estimating the distribution of an estimator or test statistic by
resampling the data. It amounts to treating the data as if they were the population for the
purpose of evaluating the distribution of interest. Under conditions that hold in a variety of
applications, the bootstrap provides an approximation to distribution of the statistics under

study that is at least as accurate as the approximation of first-order asymptotic distribution

theory (Horowitz (1999)).
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The basic bootstrap procedure in the simplest setting works as follows. Let F' denote
some distribution function and suppose we are interested in a real-valued parameter ¢ € ©
which can be written as a functional of F'. Let X3, X», ..., X, denote a sample of n i.i.d.
random variables having common distribution function F. Since 6 is unknown we seek to
obtain information about # from the sample X3, X5, ..., X;,. That is, we are interested in
the relationship between the population parameter and the sample. The bootstrap provides
a method for estimating the distribution of 0 or a feature of F such as a moment or a
quantile, by replacing the unknown distribution of F' with a known estimator. Let E,

denote the estimator of F'. Two possible choices of E, are:

(1) The empirical distribution function * (EDF) of the data:

T

where I is the indicator function. The case where ), correspond to the empirical distribu-
tion was discussed by Efron (1979) and it is usually referred to as non-parametric bootstrap.

(2) A parametric estimator of F'. In this case we assume that the random variables
X have a particular distribution function, for example the normal. In the literature this is
defined as the parametric bootstrap.

Practical application of the bootstrap technique requires the generation of bootstrap
samples or resamples (i.e. samples obtained by independently sampling with replacement

from the empirical distribution). Regardless of the choice of F,, usually the bootstrap esti-

1 A functional is simply a mapping that assigns a real value to a function. Most commonly used parameters
of distribution functions can be expressed as functional of the distribution, inciuding the mean, the variance,
the skewness, and the kurtosis of the distribution.

2 The EDF is defined to be the cumulative distribution function (C.DF’) of a random variable which takes
value X7, Xo, ..., X, each with probability mass 1/n.
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mator of the functional of F' cannot be evaluated analytically. However, it can be estimated
with arbitrary accuracy by carrying out a Monte Carlo simulation in which the random
samples are drawn from F,,. Thus, the bootstrap is usually implemented by Monte Carlo

simulation. The procedure used for evaluating the bootstrap by Monte Carlo is straightfor-

ward:

sponding to E, randomly.

Step 2) Compute 0%, the boostrap stastistic.

Step 3) Repeat steps 1 and 2 & times to compute the empirical probability of the event
0* < 6 . In this way we obtain the proportion of the repetitions in which the event §* < 6
occurs.

Under certain conditions described in the next section, the basic bootstrap procedure

described above works very well in extremely general settings.

1.3  Consistency of the Bootstrap

Asymptotic validity for the bootstrap requires that as the sample size 7 increases the boot-
strap distribution will be close to the actual distribution of the root> under study. In the liter-
o

ature the asymptotic validity of the non-parametric bootstrap has been proved by showing

that the Mallows distance between the finite sample distribution and the bootstrap distri-

3 The relationship between the parameter of interest and the sample is often referred as the root R,, (8, @)
A oot is a function of both the population and the sample value (e.g. R,, = (6 — 6)).
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bution converges to zero as the number of observations goes to infinity (see for example

Bickel and Freedman (1981) or Basawa (1991b)).
Let I'} the set of distribution functions G in R¥, such that [ || X[ dG < oo, where

|||l is the Euclidean norm. For G, H € T , the Mallows distance* of order p between the
distributions & and H is defined as

0, (G H)=inf {B||X —Y|[": X « G,Y «~ H}?,
where F(z,vy) is the joint distribution of (X,Y"), F/(z,00) = G is the marginal distribution
of X, and F'(co, y) = H is the marginal distribution of Y. Weak convergence of a sequence
of distributions in the Mallows metric implies convergence of the corresponding sequences
of first p-moments. A detailed description of this metric is discussed in Section 8 of Bickel

and Freedman (1981).

Before, discussing the conditions under which the bootstrap distribution of a statistic

is consistent, it may be useful to consider an example.

Example 1 The distribution of the sample average.

Let X4, ..., X, be i.i.d. random variables with common distribution F', with p =
E(X;),0%=Var(X;). Assume 0 < p < oo, and 0 < o2 < co. Define F, as the empirical

CDF of X;, p, =n 15 X;, 82 =n 1S (X; — ,)° . Finally, define X7, ..., X7 to be
i=1 =1

4 Let E be any set. Let p(z,y) be a function defined on the set E x E of all ordered pairs (z, %) of members
of F, and satisfying the following conditions:

(2) p(z,y) is a finite real number for every pair (z,y) of £ X E';

(#1) p{z,y) = 0if and only if z = y;

(112) p(z, 2) < plz,y) + p(z, z), where z, y, z are three elements of E.

Such function p(z,y) is a metric space on E. That is, is a mapping of E x F into R. A set F is called a
metric space, and the function p(z, y) the distance from the point z to y.
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~ _ T
the resampled data with common distribution F,,, X =n~t > X* Let G, and G7, denote
i=1

the distribution of the roots v/n (u,, — ) and v/n (X — p,,) respectively. Define p, as the

Mallows metric of order two. The Glivenko-Cantelli (see the Appendix of this Chapter)

theorem and the strong low of large numbers implies that the condition
dy (Fn F) 0
is satisfied. Using the properties of dy , (see Bickel and Freedman (1981)), it can be shown
that
* 2 r 2
P2 (GTNGTL> S Po <FH7F) )
which shows that in the non-parametric bootstrap the distance between the bootstrap distri-

bution and the finite sample distribution can be bounded between the £ D F' and the under-

lying distribution function. |

In the literature Bickel and Freedman (1981) were the first to show the conditions un-
der which the bootstrap distribution of a statistic is consistent in 7.2.d. contexts. They list
three conditions for the bootstrap distribution to be consistent. The first is weak conver-
gence of the statistic X; « G for all distribution G in a nei ghborh(;od of the true distribution
F. The second is uniform weak convergence over distributions G in a neighborhood of the
true distribution F. The third is continuity of the mapping from the underlying distribution
(7 to the asymptotic distribution of the statistic. As an example we consider the consistency
of the bootstrap for von Mises functionals.

Let X, ..., X, be a vector of random variables. Consider

V(g (n5,) — g ()
S T (13.1)
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where g : R* - R,v: R — R

where b : RP — R* r: RP — R and

b o= Eh(X),

v = Er(Xy).
Applying the mean value theorem the numerator of (1.3.1) is
Vi (g (n7250) — g (1)) =9 () v/n (n72S, = 1) + 0, (1)
where g= A, g 1s the Jacobian. Consider now the case where ¢ is a functional
g:F —R,

where F is a convex set of probability measures on R™ including all point masses and F'.

Define

o(F) = [adf (@),
9(F) = [ edb (),
9(F) = [adF;(@).
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Let us first define a von Mises functionals. Suppose that g is Gateaux differentiable’

o
at F with derivative g (F') representable as an integral

g(G)=g(FY+9(F)(G-F)+o(1), (1.3.2)
and
Sy s ™ 0 LY 3 [, N I
g(p)\G—f,:& (FTtku—F}Me:o:j Y (z, F)dG (z),

where necessarily
/w (z, F)dF (z) = 0,
and substituting the integral representation of the Gateaux differential into (1.3.2)

g<G>=g<F>+/¢<w>da<x>+ooa—m>.

If ¢ satisfy this properties we call it a von Mises functional.

Asymptotic normality results imply that v/n (g (F,) — g (F))) and
\/ﬁ/w(m,F)d(F-Fn)
are distributed as N (0, [ ¢? (z, F) dF) since

9 (F) — g (F) =95 (B, — F) + A (Fy, F),

5 LetY be a linear space, and let J : D C Y — R be a functional with domain D in Y. If y and v are
elements of Y such that for all £ in a neighborhood of 0, ¥ + ev is an element of D, then

57 (i) " lim Jly+ew) - T
g0 £

is called the Gateaux Differential (or Gateaux Variation) of J at y in the direction of v. Note, that
J
§J (y;v) = —é:J(y + ev) |e=0,

if this derivative w.r.t. € = 0.
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where

An(Fn;F>:Op(9F(Fn"F)>

Let GG,, the empirical distribution of X7, ..., X . Consider
V(g (Gn) = 9 (Fo)) = Vi g, (G = Fu) + V/1i20n (G, Fr)
the bootstrap works if
Vil (G, ) = 0p (1)

so that the conditional distribution of

\/ﬁ.;Fn (Gn - Fn) = \/ﬁ/w (QS,Fn) dGn = \/ﬁ (nﬂ_l Zw (X;,Fn)> . (133)

Indeed, it can be shown that

N <n—1 ;@/} (X;,m) 4N (o, / W? (z, F)dF (:c))

as it turns out that this is also the limit distribution of \/n (¢ (F},) — g (F)) .
Sufficient conditions to ensure the bootstrap works are
DO < [¢?(z, F)dF (z) < o0

2) [ (@ (2, F,) — o (z, F))* = 0as.

1.4 Asymptotic refinements

In this section we explain why the bootstrap provides an improved approximation to the
finite sample distribution of an asymptotically pivotal statistic. Recall that a statistic 1s

pivotal if its limiting distribution does not depend on unknown quantities (see example 2
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in this section). The advantage of bootstrapping pivotal roots can be explained by means
of the Edgeworth expansion. In this section we firstly introduce the Edgeworth expansion,

and secondly the bootstrap will be expressed and interpreted in terms of the Edgeworth

expansion.

1.4.1  The bootstrap and the Edgeworth expansion
Let X; (i =1,...,n) be ii.d. with common distribution function F' having mean p and
variance o2, Let  the parameter of interest. By the central limit theorem (C' LT) we know

that
Kn(@)=P[Vn(X —p)/o<z] — @ (z).

The C' LT gives us useful information about the distribution of sums of random vari-
ables when little is known about the individual terms. However, it does not provide any
insight on the rate of the error made by the first-order normal approximation.

If X; has sufficient moments and F is non-lattice®, the Edgeworth expansion of the

distribution function of the root /1 (X — ,u) /o is given by

PlVn(X—p)jo<z] = ®+n (2, F)¢(z)+ ...

+n7 9 (2, F) ¢ (z) + 0 (n771?),

6 A lattice distribution is one in which X; takes values on an evenly spaced grid of points. More formally,
a random variable X; has a lattice distribution if there are constants ¢ and h(> 0) such that the lattice
[c+kh:k=0,%1,...] supports the distribution of Xj;.

Suppose X; «~ F have characteristic function x(¢) = Elexp(itX)], where i = +/—1. Then a necessary
and sufficient condition for X; to have a non lattice distribution is that lim supyy|_,o [x()| < 1. This is called
the Cramer condition.
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where ¢ (z) = (27)"/* exp (—12?) is the standard normal density function, and

® (z) =j¢(U) du,

is the standard normal distribution function. The function p; is a polynomial of degree no

more than 37 — 1 and is odd for even 7, even for odd j. In particular, we have in the above

case (of normalised mean)
1 2
p1<$,F):—6k3 (il? —1),

where k3 = E [(X — u)g] /o3. The population value k3 is referred to as the skewness.
Since ® () is the standard normal distribution function, n=*/2p, (z, F') ¢ (=) is considered
to be the first term of the Edgeworth expansion, and it corrects the basic Normal distribution

from the main effect of skewness. The distribution of an asymptotically pivotal root /2, =

NG (@ - 9) /o? admits the following expansion

P[\/E(X—/O/ﬁgx] = O+ Y2 (x,F) ¢ (z)+ ...

2, (2, F) 6 () + 0 (n7)

where the polynomial g; is of degree of no more than 35 — 1 and is odd for even 7, even for
odd j. Under appropriate conditions the expansion can be developed to any desired order
in principle. However, we will consider only first-order expansion.

Consider now the Edgeworth expansion for more general statistics. Consider the
smooth function model as analysed by Hall (1992). Let X; (¢ = 1,...,n) be i.i.d. random
k-vectors variable with distribution function F' with mean g and finite second moments.
Let g : R — R be continuously differentiable in a neighborhood of g(u) with Vg(u) # 0,

where Vg denote the first order derivative of a function g in R*. The parameter of interest
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is @ = g(u), which can be estimated by 8 = ¢(X) with X = n1 i X;. Let o denote the
1
asymptotic variance of \/n (@ — 9) and &2 an estimator of o2. Suppose we are interested

in the expansion of the following statistic

VAR (é_@

&
Under sufficient regularity conditions, the distribution function of 7' may be ex-

panded as

G(z)=P(T <z)=®(z)+n Yq)é(x) + O (n71), (1.4.1)
where ¢ is an even quadratic polynomial and @, ¢ are the Standard Normal distribution and
the Standard Normal density, respectively. Hall (1992) shows that the bootstrap estimate G

admits an analogous expansion.

G(z)=P(T* <z) = (z) +n4(z)¢(x) + O (n7'), (14.2)
where 7™ is the bootstrap version of 7', and the polynomial g is obtained from g by replacing
unknowns, such as skewness, by bootstrap estimates. Note that the coefficients of § depends
on the estimated moments of X up to the third order. By the central limit theorem, these
coefficients can be estimated /n consistently, so that § = ¢ + O, (n‘l/ 2)‘ Subtracting

equation (1.4.1) from (1.4.2) we get
P Ty <z]—P[T,<z]=0,(n7").

Therefore, the bootstrap approximation to G is in error by only n~! whereas the

asymptotic normal approximation is of order O, (n~%/?) . It is important to stress on the
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importance of asymptotically pivotal statistics. Recall that a statistic T, is (asymptotically)

pivotal if its (asymptotic) distribution does not depend on any unknown parameters.

Example 2 A pivotal statistic

Consider the distribution of 7;, = v/n (X — p) where X; «~ N (u,0?). The finite

sample distribution of 7, is given by

Cr=P V(X —p) <a] =2 (%),

g
where ® denotes the distribution function of Z « N (0,1) . Therefore, the finite sample

distribution G, depends on the nuisance parameter 0. However, the studentized root

Tn:\/ﬁ()_(“,u>/5n>

(Xi — )_(n)Q has finite sample distribution given by
1

where s2 = (n—1)7"

2

G= P [V (X 1) /o0 < 2] = Tramy (2).

mn

where T(nﬂn denotes the Student ¢-distribution with n — 1 degree of freedom. There-
fore, under normality assumption the studentized root 7, = /7 (X —~ p) /s, is a pivotal

statistic. B

The bootstrap provides higher-order approximation only for pivotal roots. If the dis-
tribution of statistics are not pivotal the bootstrap may still be applied but it does not pro-

vide higher-order approximation to their distribution. To see why consider the non pivotal

statistic

U =nl/? (9—9) ,
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the analogues of (1.4.1) and (1.4.2) in this case are

Hiz) = PU<2)=&(2)+np(2)é(2)+ 0 (n),

PU*<z)=0 (;) + n‘”‘?ﬁ(f:)cé(

T
s

)+0(n7),

&
&
I

o

respectively, where p is a polynomial, p is obtained from p on replacing unknowns by their
bootstrap estimates, o equals the asymptotic variance of U, &*? is the bootstrap estimate
of 0%, U* is the bootstrap analog of U. Again p ~ p = O, (n™%/?) , and also 6* — ¢ =

O, (n=1/2) . Therefore,
A (z)— H(z)=®(z/6") — @ (z/0) + Oy (n),

Considering the distribution of H, the first term of its Edgeworth expansion depends
on unknown parameter, typically, it will have the form N(0, o%). Hence, the Edgeworth
expansion of H* will have leading term N (0, o). It follows, that the error of the bootstrap
will be controlled by the error of 4 which is usually of order O (n~Y/?). This is of the
same order as the error of the standard normal distribution.

To summarize, the bootstrap provide an improvement upon the first order approx-
imation because the approximation error of the bootstrap distribution for asymptotically
pivotal statistics is of order O (n™1) and not O (n“l/ 2) . Of course, the bootstrap cannot be
expected to perform well when the Edgeworth expansion provides a poor approximation
to the distribution of interest. A case in point is the instrumental-variables estimation with

poorly correlated instruments and regressors (see Hillier (1985)).
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1.4.2  The bootstrap asymptotic minimax property

We now consider the accuracy of bootstrapping statistics based on the minimax error mea-
sures. We first consider non-studentized, and then we extend the results to studentized
statistics.

Let X1, X, ..., X, be independent identically distributed random variables with un-
known distribution function F. Define {Tn, n > 1} as statistics based on X1, X, ..., X,
(e.g. T, = g (Fn) E as the empirical CDF of X1, Xy, ..., X, and T, (F') as the asymp-

totic centering for 7. So that {7, (F)} is a sequence of random numbers such that

H,r () = Pr |V (T~ T (F)) <a| = @ (Z),

o
where ® indicate the CDF of a Normal with mean zero, and o is a scaling factor’. This
distribution can be approximated using the non-parametric bootstrap distribution

H (@) = H, 5, (1) = P [Va (T3 - T () <],

where the symbol “x” signals the bootstrap framework as before.

We are interested in how well H;; approximates /7, 5 . Beran (1982) has shown that
ﬁ;‘; is asymptotically minimax, (i.e. minimizes the maximum risk over a neighborhood).
The normal approximation ® (z/c) is asymptotically minimax if and only if the distribu-
tion of the root \/n @ — 9> has no skewness and bias of order o (n“l) . Hence, although
the bootstrap has the same convergence rate as the normal approximation in the non-pivotal
case, the bootstrap can be superior in term of the minimax criterion. Beran also shows that

the distribution based on the first order Edgeworth expansion is asymptotically minimax

7 Note: Defining T,,(F) as a sequence and rather then just a constant allows us to accommodate for the
most general case.
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implying that the bootstrap is asymptotically equivalent to the first order Edgeworth expan-
sion. However, Beran’s definition of asymptotic optimality involves computing the error
H'n — M, r using a smooth distribution function v before defining the risk of H, ¢, where
f{n is an estimate of H, r. Hence, Beran’s proof makes use of the existence of a uniform
one term Edgeworth expansion for v * H,, . By contrast, Singh and Babu (1990) reach the
same result proving again the existence of one term Edgeworth expansion, but they remove
this artificial smoothing and obtain the required uniform one term Edgeworth expansion for
H, r itself. For this reason we will consider Singh and Babu work in more details.

As anticipated, the bootstrap has an asymptotic minimax property. This means that
the bootstrap achieves the smallest risk in the worst case asymptotically. What do we mean
by “risk” in the “worst case”? In order to proceed we restrict our attention to continuous
distributions.

Leté > 0 and K > 1 be given. Let F denote the class of non-lattice distribution G

€ R satisfying the inequality
/ " dG (2) < K,

so that K is an upper bound for the fourth moment.

Singh and Babu define a risk function and consider the sample mean of n independent
observations of X3, X, ..., X}, from the distribution G, and they show that the bootstrap
estimator of the sample mean attends this lower bound.

So, for G € F, let

po = [ d6(a),
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b = [le=n0rdG (@),

Hio = PIVE(X-pg) <o,

n
where X = n™! > z. The risk function is defined under a monotonically increasing loss
=1

function
u: [0,00) — [0, 00)
and is defined by
R, (Hn G) = Eg {u (\/ﬁuﬁn . Hn,G||)} , (1.4.2.1)
where || - || stands for the supnorm®. So, the expected loss under G is proportional to u

which is a monotonically increasing function of the maximum distance between /,, and

H, ¢ multiplied by the scalar /n which prevent the argument of u collapsing to zero.
Theorem 1 below gives an asymptotic lower bound for R,, . To find a lower bound we

need to define a neighborhood of the distribution function F', this requires some additional

notation. Define
Buer={GeF:||F-G| <c¢/+/n},

as the Kolmorogov’s ball of radius ¢/+/7,

o= (uyr — )" (870%)

&  The Euclidean norm || - || : R* — R is defined by

HCEH = H(‘Th ,l‘n)/H = A ng

IF Gl =sup|F(2) =G @)l

so, the supnorm is given by
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and

R(F):/u(alzlcp(z)dz).

Theorem 1 (cf. Singh and Babu). For ' € F,
liMe oo liminfy .o infy, SUpper Rn (HnG> > R(F),

where inf z denotes the infimum over all estimator Hy, of H,, ¢ and sup,, . r denotes the

supremum over all distribution functions G in By, . p.

The formal proof of this theorem is beyond our purposes, and we refer the interested
reader to the original article. Nevertheless, we will give an heuristic explanation of the
meaning of this theorem.

“Decode” for theorem 1 :

1) Consider

SUPp,c.Fr Lin <lffn7 G) > R(F),
since I 1s fixed, we can focus our attention on sup of n, ¢ and vary G in the Kolmorogov’s
ball. The worst G in B, . r has risk at least as bad as R (F').
2) Consider |
infy  SUPGem, . fin (ﬁn, G) > R(F).

Let now treat n, ¢ as given, and pick H,, to minimise the worst risk that can occur for
a given fIn, ( combination. Let now consider what happens in the limit

3)

liminf, ... infy, supces, ., B (Hn G) > R(F),

so, for all n sufficiently large we can never get a risk better than R (F) .
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4)
lim, .o Hminf, oo infs Supner Ba (Hn G) > R(F).

Recall that F' is fixed. As the neighborhood around F' expands (i.e.lim. o) We get
closer and closer to a situation in which for all n sufficiently large (i.e. liminf,,_,) the best
estimator H,, for the neighborhood ( 1.e.inf Un) can never do better than arisk R (F).

Singh and Babu show that the lower bound R (F) is attained for the bootstrap esti-

mate H* of H, p as well as for I77, the empirical one-term Edgeworth expansion given

by

The results established above for the sample mean can be extended to functions of
multivariate statistics, corresponding studentized statistics and ratio estimators when the

auxiliary variable is lattice. We just consider studentized roots.
Suppose Z1, ..., Z, be i.i.d. random k x 1 vectors with distribution function F. Let

g : RF — R with y € C?(R*) continuously differentiable of order three on R”. Let

pw = FE(z) and T = /7 ]g () — g (1)]. In the simplest case of the studentized mean
where p, = F (X;) we can write T, in the form

Vnlg (Zn) = g(E(Z))],
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where Z; = [Xi — py, (X; — %)2) and g (z1,22) = 21/ (22 — Z%>1/2_ In fact, the nor-

malised distribution (g (Z,)) is given by

9(Z.) = g (n‘lz(Xi —pg) Y (X — %)2)

=1 i==1

o XTL — My
- ” 1/2
(n‘l SX? - X,,%)
i=1
_71 — Hy =
= o Y ("n)

Define the distribution of interest as
Hor (&) = Pr [V (T, =T (F) € 3|
We have already seen in the previous section that by the centrai limit theorem
Ho, (2) = Pr [V (To = Tu(F) < ) | = @ (a),
this implies

1y (2) = H,p, (5),

almost surely. We want to know how good is the bootstrap /. (z) as approximation to

H. g, (z).Leté > 0, k > 1 be fixed, and F}, be the class of k-variate strongly non-lattice
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(i.e. continuous in all dimensions) distributions on R* which satisfy

/m#”m%ag&

where ||z|| = (z2)1/ ? . Babu and Singh (1984) have shown that for studentized statistics, if

- enough moments are assumed, typically

n|[Hyr, = Hill = 05 (1)
Therefore, the risk function (1.4.2.1) tends to zero. Thus, in this case to get meaningful

results the risk function has to be redefined as
B (H.G) = Be {u (nlftn — Hacll) }

(i.e. Considering n in place of \/n prevents a degenerate argument in R, (ﬁn, G))‘ To

obtain the optimality properties we need to consider two-term Edgeworth expansion instead

of the one-term Edgeworth expansion like (1.4.2.2).

To summarise, if there are sufficient conditions to ensure a two-term empirical Edge-

worth expansion (H?Z), then both ¥ and HZ achieve the lower bound, hence are asymp-

totically optimal.

1.5 Bootstrapping test statistics

In this section we consider applications of the bootstrap method to test statistics. Sup-
pose we want to test the null hypothesis Hy using the asymptotically pivotal statistic 7,.
Consider a symmetrical smooth two tailed test of Hy. This test rejects Hy at the « level

if |Th| > Zzn,as2, Where zy, o9 is the exact 1 — /2 quantile of the distribution of 7;,. The
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critical value solves the equation
Gn (Zn7a/2;F) - Gn (_Zn7a/27F) =1—oq. (151)

Since ' is unknown the finite-sample critical value cannot be obtained unless 7, is
exactly pivotal. First order asymptotic approximation replaces the unknown distribution
G, with the known function G (i.e. the asymptotic distribution of T}, ). According to the
standard asymptotic theory, the critical value approximates the exact finite sample critical

value with an error whose size is of order O (n™1) .
The bootstrap provides an alternative approximation to the finite-sample distribution

of the statistic 7},. In other words, the bootstrap replaces F' with F,,. Thus the bootstrap

critical value solve the equation
G (2 aj20 Fn) = Gn (=25 a0 Fn) = 1 — . (1.5.2)

The distribution of (1.5.2) usually cannot be solved analytically. However, Zp o/2 CAN
be estimatedywith the desired accuracy by Monte Carlo.

To evaluate the accuracy of the bootstrap critical value z;, 2 We need to consider
again the Edgeworth expansion. We have seen in the previous section that the errof of the

bootstrap approximation to a one-sided’ distribution function is
G (1, F) = G (7, F) = Op (),

almost surely uniformly over 7. Consider now the error for a symmetrical distribution func-

tion. In this case, for asymptotically pivotal roots, the accuracy of the bootstrap is then as

9 For one-side distribution function we mean Pr T, < z,.) when the statistic is syrnmetn'cally dis-
= i
tributed about 0.
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for a one-sided distribution. Consider the distribution function
P(T.| <7)=Gn(7,F) = Gp(—T7, F).

Let ® denote the Standard Normal distribution function. Then it follows from the

asymmetry of the polynomials ¢ in their first argument that

G (7, F) = G (=7, F) = [G(r,F) =G (=7, F)] + (1.5.3)
+%q (1,F)+ 0 (n™?)

= 2@(7)—1+%Q(T,F)+O(n_2).

Similarly, from (1.5.2) it follows that

G (1, F) = G (=71, F,) = [G(1,F,) —G(—7,F,)] + (1.5.4)
+24(r,F) +0 (n7?)

= 20 (7)—1+ %q (7, F,) + O (n_2) ,

almost surely. The remainder terms (1.5.3) and (1.5.4) are O (n™?). Now subtracting

(1.5.3) from (1.5.4) and using the fact that 7, — F = O (n~*/2) almost surely to obtain

[Gn (T> Fn) - Gn (—7‘, Fn” - [Gn (77 F) - Gn (“TvF)] =

_ %mvﬁm~ﬂﬂﬂﬂ+0w”)

= O (n’3/2)
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almost surely if 7}, is asymptotically pivotal. Thus the error made by the bootstrap ap-
proximation in this symmetrical distribution function is O (n=%/2) compared to the error
of O (n~!) made by the first-order asymptotic approximation.

In the same way, to evaluate the accuracy of the bootstrap critical value 2 /o a8 an
estimator of the exact finite-sample critical value 2, ,, , combine (1.4.1) and (1.5.1) to
obtain

2 2
28 (zna/0) = 1+ ~q (2002 Fy=1l-a+0(n7?). (15.5)

Similarly, combining (1.4.2) and (1.5.2) yields

2
20 (2, 00) — 1+ ~q (25 0y Frn) =1—a+0(n7?). (1.5.6)
almost surely. Hall (p. 111) shows that equation (1.5.5) and (1.5.6) can be solved to yield

. . . *
Cornish-Fisher expansions for z,, , , and z; , ,. The results are

14 (Zoo,a/,?? F)
Zne/2 T Fooe/2 T T ) (1.5.7)
BT GOy
; o0,0/2
and
* 1 4 (Zoo,a/27 Fn)
Zn,a/Z = Zooya/Z - E ] ) (158)
-9 (Zoo7a/2>

almost surely. It follows from (1.5.7) and (1.5.8) that

Z:L,OL/Q = Znaf2 +0 (77’—3/2) ’

almost surely. Therefore, the bootstrap critical value for a two tailed test is more accurate

then the asymptotic critical value, the error of the second being O (n™!) and the error of

the first O (n=%?) .
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1.6 Bootstrap methods for time series

In recent years there have been many developments in bootstrapping time series (see for
example Li and Maddala (1997) and Berkowitz and Kilian (2000) for excellent surveys).
In the literature, two main approaches to implement the bootstrap in dependent data setting
have been proposed. The first approach models the dependent process as one that is driven
by i.i.d. disturbances, which allows one to use the resampling scheme of the residual-based
bootstrap in linear regression models. The other way is to resample blocks of adjacent

observation instead of individual residuals. We will consider them in tumn.

1.6.1  Residual based resampling
Before considering the applications of the bootstrap method for time series models it may
be useful to consider the residual-based bootstrap for a standard regression model. Consider
the model

yi = X0+ e (1.6.1.1)
where ¢; are i.i.d. & « F, (0,07), 8 is a k-vector of parameters. The vector [ may be

estimated using the O LS method. Let
B=(X'X)"Xy

where X = (z1,...,2,), ¥ = (y1, ..., %n) , and B be the OLS estimator of 3. The boot-
strap can be used to conduct inference on the distribution of the estimator vector B . We
distinguish between the non-parametric bootstrap and the parametric bootstrap according

to the assumptions we make on the distribution F,, of the residuals. For the non-parametric
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bootstrap we make no assumptions about [, but we use the empirical distribution of the
bootstrap residuals €} = 1y, — X/ to estimate F,,. We know that £, converge to F}, by the
Glivenko Cantelli theorem. By contrast, in the parametric bootstrap we make an assump-
tion on the parametric family for F,, for example we may assume that £, «~ N (0,0%) . No
matter the assumptions on E, , we then proceed as follows:

Step 1) Generate a random sample of €7, ...€},.

Step 2) Calculate y7 = X'F + .

Step 3) Calculate the O LS estimate 5~ using the ;.

Step 4) Repeat Steps (1)-(3) B times.

This procedure gives B bootstrapped estimates of § which can be used for exam-
ple to evaluate the accuracy of the estimator ,5’ . Freedman (1981) has shown that for the
residual based resampling described originally by Efron (1979) the bootstrap distribution
of \/n (B* —~ B) is strongly consistent for the distribution of /n (B - ﬂ) . Moreover, it
appears that the residual based bootstrap works under weaker conditions than those which

are necessary for the classical normal approximation (see Mammen (1993)).

Example 3 Non-Parametric bootstrap for the OLS coefficients in a simple regression

model using simulated data.

Consider the model for the univariete case of (1.6.1.1)

yi = P+ Bymi + €
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where g; (1 = 1,...,50) are i.i.d. &; « F (0,07) . In Table 1.1 we present a simple example
of the residual-based bootstrap for this model using the simulated data. In the second
column we report the parameters of the data generation process (DG P), in the third column
the O LS estimates and the corresponding standard errors, in the fourth the mean of the B*
and their standard deviations, and the t-statistic in the last column. All simulations were
carried out using the matrix programming language GAUSS Version 3.2.32. The random

numbers were generated by the function 7ndns. For each sample we calculated the Bl,

3,, and 52, then we generated B = 10,000 bootstrap samples according to the algorithm
2 g

given above.

Table 1.1.

GDP | OLS B_Mean | t — Stat

B, ]2 1.95431 | 1.9534 7.1440
(0.2735) (0.2631)

G, 1 0.9833 | 0.9833 54.229
(0.0181) (0.0175)

S? 11 0.8552 | 0.7867 —
(0.1228)

As we can see from Figure 1.1 the distribution of the B: are reasonably closed to that
of the fiz and they are normally distributed. Unfortunately, the same cannot be said for the

estimate of the variance since it is clearly not distributed as x? with 48 degree of freedon.
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Note that Efron’s (1979) original bootstrap algorithm was designed for data which are
independent and identically distributed. If the data come from a heterogeneous population
the bootstrap will fail to give good results. An heuristic explanation for this failure is that
if the data display heteroskedasticity or serial correlation a randomly resampled set of data
will not preserve these properties, and as a result statistics calculated from the resampled
data will not be consistent. This probiem is particularly important when we consider time-
dependent data.

Early application of the bootstrap algorithm to time dependent data assumed that the

underlying process follows a stationary AR(1) model. Consider the model
Y = PYi-1 + &, Yo = 0, (1.6.1.2)

where ¢, is i.i.d. with common distribution F (0, 0?) and 0 < ¢ < co. For this model the

least square estimator p of p is given by

‘ n n -1
- (z yy) (zy@) |
ta=] t=1
The consistency of p was already established in the 50s’. However, the limit distri-

bution of p is different for the three possible cases: stationary, unit root, and explosive.
Indeed, if |p| < 1, then

. d

T(p—p)—= N(p,1-0"),

if |p| =1
o W)W )
fW(T)Qdfr

where [ is a shorthand for fol and W (r) denotes the univariate Wiener process on [0, 1]. In

T{p-1)

this case the limiting distribution of p is neither normal nor symmetric since it is negatively
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skewed. Furthermore, p is super consistent since it converges to its true value at rate 1/7
instead of the usual rate 1/+/T.

The asymptotic validity of the bootstrap estimator corresponding to p for the station-
ary case (i.e. |p| < 1) was established by Bose (1988). Using the Edgeworth expansion
for sum of dependent random variables, Bose proved that the bootstrap distribution is sec-
ond order accurate for the distribution of the studentized root R, = (p — p) /&% (Where
&f, denotes the usual OLS estimator of the variance of p); this property extends to AR(p)
models with unknown mean.

Basawa et al. (1989) considered the case |p| > 1 and they established the validity of
the bootstrap even for explosive processes.

The consistency of the bootstrap estimator of the distribution of the slope coefficient
or studéntized siope coefficient in a simple unit-root model has been invest gated by Basawa
et al. (1991a, 1991b), Datta (1996), and Ferretti and Romo (1996).

Basawa er al. (1991a) consider the consistency of the ¢-statistic for p in the special

case &, «~ N (0, 1) given by

. 1/2
t, = <Z yf_1> (P p)
t=1

and they investigate the distribution of

n 1/2
th = (Z (yf*_l)2) ("~ p)

t==1

obtained by replacing y; with ¢ in (1.6.1.2). They show that the null limit distribution of
t* conditional on (y1, ..., y») is not the same as that of ¢,, , so that the bootstrap distribution

function P (t* < 7) does not consistently estimate the population distribution function
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P (t, < 7). The problem arises from the discontinuity in the asymptotic distribution of p
at p = 1, since as we have seen above this is different according to p 2 1. It follows that the
third condition given in Section 1.3 is not satisfied if the DG P under consideration includes
ones with and without p = 1. However, Basawa et al. (1991b) show that it is possible to
overcome this problem by specifying that p = 1 when constructing &}, therefore removing
the source of discontinuity.

For the model specified in (1.6.1.2) consider the null hypothesis Hy : p = 1. A natural

test statistic for testing Hy is given by
zZn=n(p—1).

The bootstrap sample {y;,t = 1,...,n} is generated recursively from the estimated

model

Yr =Y & (1.6.1.3)

T
where 3 = 0. The centered residuals are &, = y;—y;—1—&, where £ = n™1 3 (ye — %-1) '

1=1

The bootstrap analogue of the statistic z, is z; = n (p* — 1) where

n n -1
~ %k E 3 * 2
=D vivis (Z Ay ) :
t=1 t=1
Basawa et al. (1991b) derive the null limit distribution of 2 conditional on (y1, .., Yn)»
and show that if Hy is true, then | P} (z; < z) — P (2, < z)| = o, (1) uniformly over z.

Datta (1996) established that the discontinuity problem can be overcome without

restriction. Consider the model (1.6.1.2) with the additional assumption that the second

10 Note: If an intercept is not included in the model, the residuals &; must be recentered prior to resampling
to ensure that their bootstrap population mean is zero.
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moment is bounded (i.e. B (]@]Hé < oo for some 6 > 0). Let
B=y— By — T Z (yt - B%-l)
t=1
denote the centered residuals from the estimated model, and let &; be a random sample of

£, for some m < n. The random sample is generated by the recursion

Lk % %
y; = By, + &

but with i = 1, ..., m instead of 7 = 1, ..., n. Define the bootstrap version of ¢,, by

tr, = [i (vi-1) "

(7. -8).
1=1

Datta proved that if [m (loglog n)Q] /n— 0asn — oo, then

fP:l(t:ﬁ<z)~—Pn(tn<z)f:0(1)7

almost surely as n — oo uniformly over z for any § € (—o0, o0).

The asymptotic validity of the bootstrap has been established also for the stationary

autoregressive moving average of order (p, ¢) ( ARM A(p, q)). The ARM A(p, q) is given

by model

pL)y=¢(L)e
where p (L) = 1 —pL — ... = p,LP, (L) = 1 — ;L — ... — p, L4 and L is the lag
operator defined by the property Ly; = ;1. Let 0 = (pl, ey Py P15 o gpq) denote the
(p + q)-vector of unknown parameters. Assume that the process {y; } is stationary as well
as invertible. If § denotes an M-estimator of B, then Kreiss and Franke (1992) have shown

that the Mallows distance between the bootstrap distribution of VT (@* -~ @) and the finite-

sample distribution of v/T' <é — 9) converge to zero in probability. The bootstrap estimator



1.6 Bootstrap methods for time series 38

4" is based on the resampling scheme
pL)y; =¢(L)e,

where p(L) = 1 — pyL — ... = p, L7, p(L) =1 —$,L — ... — L% and & is sampled
from the set of centered ARM A residuals. In M A(q) models Bose (1990) proved that the

d rrect if the bootstrap is based on a studentized root.

g
i
7
[72]
[¢]
(@)
Q
=3
C‘L
@}
g

bootstrap 1
Li and Xiao (2001) establish the validity of the residual based bootstrap for the re-

gression model with I (1) explanatory variables and I(0) errors,
ye = o + .

1y 1s scalar, but x; can be a VAR, and w; can be autocorrelated as well, with appropriate

adjustments to the bootstrapping procedure.

1.6.2  Resampling blocks of data

Application of the residual based bootstrap is straightforward if the underlying distribution
follows an i.i.d. stationary process. However, if the structure of serial correlation is not
tractable or is misspecified, the residual based methods will give inconsistent estimates. To
take the dependency into account other approaches which do not require fitting the data
into a parametric form have been developed to deal with dependent data. These procedures
are called the “moving block bootstrap” because they involve resampling blocks rather then
individual data. Blocking methods may involve either non-overlapping blocks (see Carl-
stein (1986)), or overlapping blocks (see Kiinsch (1989) and Liu and Singh (1992)’)‘ The

non-overlapping blocks method divide the data of ¢ observations into blocks of length [ and
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select b of these blocks by resampling with replacement all the possible blocks. In the over-
lapping blocks method there are t—[+1 blocks. The blocks are Ly, = {zy, Txr1, -, Thtim1}
fork=1,2,...,(t-14+1).

The idea that underlies the block resampling scheme is that if the blocks are long
enough, then enough of the original dependence is preserved in the resampled series.
Therefore, the bootsirapped statistics, say 7, under consideration will have approximate
the same distribution as the value 7’ calculated from the replicates of the original series. Of
course, this approximation will be best if the dependence is weak and the blocks are as long
as possible, so that the dependence is preserved more faithfully. However, the drawback
of the moving block Bootstrap is that pseudo time series generated by the moving block

method is not stationary even if the original series are is stationary. For this reason Politis

and Romano (1994) suggest the stationary bootstrap.

1.6.3  The stationary bootstrap resampling scheme

The main idea behind the stationary bootstrap is to draw a sequence of blocks of random
length, where the length of each block has a geometric distribution. Let Y; denote the vector

of m consecutive observations from {y;} starting at 1_.,.1. To describe the algorithm let
By =4{Y, Y1, o, Y1),

be the block of [ observations starting at Y;. If the index j > 7, then Y; is defined as Yy
(ie. Y; =Y;), where k = k(modT) and Yy = Y7. Let p be a fixed number in [0, 1] .
Independent of the data, let L1, Lo, ... be a sequence of ¢.i.d. random variables having the

geometric distribution, so that the P {L; =m} = (1 —p)™ " p for m > 1. Independent
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of the data and the L, , let 17,75, ... be a sequence of 7.¢.d. random variables that have
the discrete uniform distribution on {1,...,7} . Now the bootstrap sample Y7*,..., Y7 is -

generated in the following way. Sample a sequence of blocks of random length
B:T == ABQ"JJIJ1 s B; - BI’Q,LQ) veey

the first L; observations in the bootstrap sample Y}, ..., Y;* are determined by the first
block Bj of observations containing Y7, ..., Y711, and the next L, observations of ¥;*
are determined by the second block B3, and so forth. This process is stopped once 7’ obser-
vations has been generated. Once that the bootstrap sample has been generated, compute

the statistic T;; as usual. Politis and Romano prove the first-order consistency of the sta-

tionary bootstrap (see also Lahiri (1999).

1.6.4  The Sieve bootstrap for linear processes

An alternative model-based resampling procedure is the sieve bootstrap. The sieVe boot-
strap has been studied by Kreiss (1992) Bithlmann (1997) and Paparoditis (1996). The
main idea behind the sieve bootstrap is approximating the general linear process by a finite
autoregressive process of order increasing with the sample size, and resampling from the

approximated autoregressions. Consider the following DG P

Yi—p=Y ¢ Yi;—p)+ei, (1.6.4.1)

i—1
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where 1 = E (V;) for all 1, the process ; consist of .7.d. random variables, and Y; may be

o0
a scalar or a vector process. Assume that ) (; < oo and that the roots of the power series
j-1

o0
1= 67
-1
are outside the unit circle. Suppose we approximate (1.6.4.1) by an AR(p) model in which
p = p(n) increases with increasing sample size. Let {a,; for j = 1, ..., p} denote the
Jeast squares estimates of the coefficients of the approximating process, and let €,,; denote
the centered residuals. The sieve bootstrap consists of generating bootstrap samples to the

process

;—m)+ &,

&
3
il
s

where m = n~! > Y; and £ are the bootstrap residuals. In the literature Bithlmann (1997)
i=1

have given conditions under which this procedure consistently estimates the distributions

of several statistics, while Choi and Hall (2000) investigate the ability of the sieve bootstrap

to provide asymptotic refinements.

1.7 Concluding remarks

The purpose of this chapter has been to illustrate how the bootstrap method works and its
properties. It appears that the bootstrap is a general method for estimating the statistical
accuracy of an estimator or test statistic by resampling the data. Particﬁlar emphasis 18
given to the bootstrap’s ability to improve upon first order approximation. The theoretical

explanation of the bootstrap’s ability to provide asymptotic refinements is based on the
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Edgeworth expansion. Indeed, the bootstrap provides asymptotic refinement because it
amounts to a one-term Edgeworth expansion, and the bootstrap will not necessarily perform
well when an Edgeworth expansion provides a poor approximation of the distribution of
interest.

The bootstrap principle extends easily to a variety of statistical models and there is
also a growing number of studies investigating the usefuiness of bootstrap methods for
small sample inference in cointegrating regression models. The possibility of using the
bootstrap for improving the accuracy of the inference in cointegrating regressions was pro-
posed for example by Li and Maddala (1997). In their paper the authors consider situations
where the errors driving the cointegrated relationships are autocorrelated and they compare
the small sample properties of the standard bootstrap, the moving block and the stationary
bootstrap. Their simulation experiments show that bootstrap methods can be successfully
employed to reduce the size distortion of the tests statistics. More recently, Psaradakis
(2001) suggests using a sieve bootstrap procedure based on resampling residual from an

autoregressive approximation to the innovation process driving the cointegrated system.
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1.8 Appendix : The Glivenko-Cantelli Theorem

The theoretical justification for the use of the empirical C D F' is provided by the Glivenko-

Cantelli Theorem. This theorem asserts that F), converges uniformly'' to the true distribu-

tion F'

Theorem 2 Asn — oo

>

sup n(z)— F(z)| — 0.

~o0o< <o

almost surely .

This theorem is of fundamental importance in probability and the proof can be found

in several books. Here we follow Zaman (1996).

Proof. For a fixed z,say © = zq, F,, (zg) is the average of i.i.d Binomial random vari-

able and P (limn_éoo d (ﬁ’n (z0) , F (m0)> = O) = 1 by the weak low of large numbers.

Now consider a partition P such that xg, Z1, ..., Zgg, T100 SO that F (zg) = 0, F (1)
0.01, F (z2) = 0.02, ..., F (zg9) = 0.99, F (z100) = 1. We allow for 2o = —oco and z10p =

+o0. Tt follows that P (hmnwd (Fn (2;) ,F(xj)) - o) — 1forj = 1,2,....100. We

11 It is important to distinguish between uniform convergence and pointwise convergence.
A sequence of functions (f, (z)) is said to converge uniformely to a function f (z) for = belonging to

some set A if
Ve > 0,3N,Vz € A,¥n > N sup|fn (z) - f(z)| <e¢
A sequence of functions (f» (z)) is said to converge pointwise to a function f (z) for z belonging to some

a set A if for each value of z in A (f,, (z)), considered as a sequence of real numbers, converges to the real
number f (z).
Ve >0,z € AAN,Yn > N,|fn(z) — f (z)] <¢

The crucial difference between these definitions relates to the order of quantification. In the second case
the value of IV can vary with z as well as €, whereas in the first case N must exist independent of z.
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have that ¥V z, 3 z; such that z,_; < x < x5, so that using the triangular inequality

d (F (), F, (93)> < fF(fC) — F(z)) + F () — Fo (%) + F (25) — B (fﬂ)‘

By (25) = Fu 2)

+

< |F(z) = F(z;)| + |F(z;) — F (25)

The first term is less than or equal to 0.01, the second is convergent to zero, and the third

Thus with probability 1 as n — oo, | F,,(z) — F'(z)| < 0.03. However, this remains true

for all positive real numbers, however large. We thus achieve uniform convergence with

probability one. B

To see why the assumption on the form of convergence (i.e. uniform or pointwise) is

important consider estimating
Fla)=P(X <a)

for some fixed a, then the CDF

Fn (a) = Number of X; < a.

T
The number Y of X’s < a has the binomial distribution

Y :b(p,n) with p= F(a),

with
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It follows that F, (a) is a consistent estimator of F' (a) for each fixed a, since

and

~

Var (Fu(a)) = %F(a) - F(a)].

In addition, it follows by the De Moivre’s theorem that
Vi [Fu(@) = Fa)] % N (0,F () [1 = F (a)]).

However, the Glivenko-Cantelli theorem implies a much stronger consistency prop-
erty. Indeed, it asserts that if the difference between F), (z) and F () is considered not
only for a fixed = but simultaneously for all z, then the supremum of the distance between

F,, (z) and F (z) tends in probability to zero as n — 0.



Chapter 2
Small Sample Corrections for Tests of
Hypotheses on the Cointegrating Vectors

2.1 Introduction

The first procedure for testing cointegrating relationships was proposed by Engle and
Granger (1987). After their seminal paper cointegration became an extremely intensive
field of research, and in the literature many alternatives to their procedure have been devel-
oped.

Among them the Johansen (1988, 1995) and Johansen and Juselius (1990) procedure
for estimation and testing of cointegrating relationships is widely used in applied econo-
metric research. This method applies the maximum likelihood procedure to a multivariate
vector autoregressive model written in the error correction form. Maximizing the Gaussian
likelihood function leads via reduced rank regression to the analysis of eigenvalues and
eigenvectors. To test for linear restrictions on the cointegrating vectors and their weights
Johansen (1988) and Johansen and Juselius (1990) proposed likelihood ratio and Wald
tests. However, the asymptotic x? distributed tests are quite heavily affected by the sam-

ple size. The problem of the poor approximation of the asymptotic distribution to the finite

sample distribution may be described as one of lacking coherence between the statistic and

its reference distribution.

46
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In principle there are two ways of solving this problem, either for a given reference
distribution correct the test statistic so that the finite sample distribution is closer to the
asymptotic distribution, or for a given test statistic correct the reference distribution. Podi-
vinsky (1992) and Psaradakis (1994) followed the first route and they proposed an alterna-
tive approximate F'-type test, and a small sample adjustment for L R criterion and the Wald
test, respectively. The second route involves replacing the critical values of the limit distri-
bution with transformations of critical values obtained from the Edgeworth expansions of
the distribution function. Unfortunately, this approach is analytically rather demanding. In
this sense estimating critical values using simulated-based method is a plausible numerical
alternative.

The purpose of this chapter is twofold. Firstly, we use bootstrap hypothesis testing
as a way to reduce the size distortion of the tests for linear restrictions on the cointegrating
space. Secondly, we consider the Johansen LR and Wald test statistics as well as the small
sample corrected version of these tests, and we explore the robustness of the inference
procedure in a situation where we allow for potential over-fitting and under-fitting of the
number of cointegrating vectors included in the restricted model.

The outline of this chapter is the following. Section 2.2 briefly introduces the Jo-
hansen maximum likelihood estimation and, in particular the likelihood ratio and Wald
tests for linear restrictions as well as Podivinsky’s (1992) F'-type test and Psaradakis’s
(1994) corrected LR and Wald tests. Section 2.3 describes the bootstrap test. Finally, in

Section 2.4 describes the Monte Carlo experimental design and some simulation results are

reported.
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2.2 Johansen’s Maximum Likelihood Procedure

Johansen considers a general vector autoregression in error correction form,

AY; =p+T1AY 4+ A+ T AY g + 1Y + 6, (2.2.1)

where Y; , and ¢; are (p x 1) vectors, and I'; through I'y are (p x p) matrices ©

AY, =Y, ~Y,_1.¢ - NID(0,X). We specialise to the case k = 1, so

AY; = p+ 1Y + &, 2.2.2)

The matrix II determines whether or not, and to what extent, the system (2.2.2) is
cointegrated.

We assume first that the eigenvalues of [ + II lie on or inside the unit circle. Suppose
that IT has rank r. If » = 0, and thus II is a null matrix, Y; is a vector of random walks
related only through the covariances of their innovations ¢; . If » = p, Y; is stationary. If
0 < 7 < p (2.2.2) can be interpreted as an error correction model. The hypothesis of 7

cointegrating vectors [ can be written as:
HO I = a,@”,

where o and 3 are (p x r) matrices. The rows of 3’ can be interpreted as the distinct
cointegrating vectors of Y; (i.e. such that the linear combinations 3'Y; are /(0)) and the

elements of « represent the weights of each of these r cointegrating relations in the p

component equations (2.2.2).
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Johansen (1988) shows that maximising the likelihood function involves solving the

eigenvalue problem
}Askk - Skos@lsokf =0,

to give p ordered eigenvalues Ao> > ;\p > ( and corresponding eigenvectors V =
[01 ... 0p] normalised such that V'SV = I . The matrices Sy =T i R Ry, 1,7
’ t=1

0,k , where Ry, and Ry, , are the residuals obtained by regressing AY; and Y;_; on, in
general, AX;_1,...,AX; ps1, D;and 1. In our case the S;; are just mean adjusted moment
matrices. A basis for the space spanned by the cointegrating vectors is estimated by B =
[01 ... 0,] . The corresponding estimate of « is given by & (5’) = Su3 .

A test for the number r of cointegrating vectors can be based on the p eigenvalues
5\1 > > Sxp > 0. Johansen (1988) derives a likelihood ratio( LR) test of the hypothesis
that there are at most r cointegrating vectors by testing that the (p — r) smallest eigenvalues
Ar41;- -5 Ap are zero against the assumption that A; > Ofor¢ = 1,...,p. The LE test

statistic for this is known as the trace test, defined as

LR(trace), = =T 27": In <1 - XL) .

f==r-p1

In addition, the maximum eigenvalue test statistic is given by
LR(max), = —Tln (1 _ im) ,

and can be used to test the null Hy(r) : rank(Il) = r against the alternative H(r + 1) :

rank(Il) = r + 1.
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Johansen (1988) shows that the asymptotic distribution of the LR, trace test is

1 1 -1

tr /dBB' /BB’du /BdB’ ,

0 0 0

where B (u) is an (p — r)-dimensional Brownian motion with covariance matrix I. He
tabulates simulated values of selected percentiles of this asymptotic distribution for a range
of values of (p—1) = 1,2,3,4,5. These tabulated values serve for testing r = 0,7 <
L...,r< (p — 1) when p ranges from 2 to 5.

The value of r chosen using the LR tests determines the matrices & and (3 : both are
(p x r) . It is then possible to test linear restrictions upon the elements of « and 5 .

Now we can briefly outline the proposed tests for linear restrictions on the cointegrat-

ing vectors. Under the hypothesis Hy : IT = o3’ , the maximised value of the concentrated

likelihood function satisfies

1T isoof‘ﬁ (1 _ 5\7> ,
i=1

where Spg and \; were defined earlier. Johansen and Juselius (1990) use this to develop LR
tests of linear restrictions on the matrices v and § . Here we will consider only the case
G=Hep.

To understand how this test is derived, recall that only the ranges of the columns of «
and J are identified. If we set o* = a B’ and #* = B! than o*f* = o’ = II. Therefore,
« and (3 are identified only up to a non-singular transformation B(r x 7). Now, what enters

the model is #'y;_, 7 linear combinations of the p elements in Y;_;, . Restricting

ﬁ(pxr) = H ¢

(pxs)(sxr)
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implies that 3"y, = @' H'ys and if Y is a matrix whose #** row is y;_, , the column
space of YiH is now s dimensional.

The maximised value of the concentrated likelihood function subject to the restriction
18

L7 = ool T, (1 %)
where A; > ... > ), are the s > r eigenvalues obtained from solving
| NH' S H — H'SkoSag Sox H| = 0.
The LR test of 5 = H can be obtained from the concentrated likelihood functions above,
and 18
LR(f) = —2In (i/f;) - Tim [(1 . XZ) / (1 - X)} ‘

Johansen (1995), p. 104-5 and 192-3 showsmffiat LR (B) is asymptotically x? (r (p — $))
under Hy : = He.

Alternatively, Johansen and Juselius (1990) propose a Wald test. Consider the fol-
lowing null hypothesis Hy : K'3 = 0 where K is an (p x (p — s)) matrix of full rank, then

the W statistic for testing Hy is:

W (8) = Ttr ( [ '3 (A—l . I,p) - B/KJ [KVVKJ 4) (2.2.3)
where A = diag (:\1, e 5\,> and V. = [y41,...,%) . Since the limiting distribution
of 3 is a Gaussian mixture, W (() is asymptotically distributed as x2 (7 (p — s)) under the

hypothesis K’ = 0 respectively.

It may help to relate the two forms of the restrictions. Given

B =H ¢,

(PX"‘) (pX8) (sx7)
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we order the rows of 3 so that

H= (piS) {%]

has H; of full rank. So partitioning conformably
S B4 Hyp }
= H == .
<p_s>[ﬁ2J v [HW

By =Hyp=p=H '3
Substituting in B, = Haow
By = HoH By

Hence 8 = H implies

((p—5)xs)(sxs) B ((p—3)x)

—H, Hfl I(p~5)] {51 } =
This is one way of obtaining

K{tp—s)xr)Bpxr) = 0,

i.e. (p — s) common linear restriction on the columns of 3.

Similarly, given an arbitrary K, and K’ = 0 we can write

{ K Ky } Bl o
((=s)%)  ((=)x(p=5)) | | By !

hence, if we order the rows of [ so that K is invertible then
KBy + Kafy = 0= ~K18) = Koy = By = —K; ' K13,
Thus

/ r I
2]= | | e e | s

((p—s)xs) | (sx1) (sx)
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- H, _ | - H
~KoKMH, [P | By [P T

Thus to move from H = [ Zl } to K, we have to set
2

K, = [“KZHQH;I : KQ] y

where K is an arbitrary non singular (p — s) X (p — s). In the same way, to move from
K'=[ Ky K, |toH; wehavetoset H = { mKQT]:lJ}QHl }, where H; is an arbitrary

non singular (s X s) matrix.

2.2.1 Podivinsky and Psaradakis corrections to the tests for linear
restrictions: ‘A variation on a theme

The Johansen (1988) simulated critical values are based on asymptotic results, and may
not be appropriate when used with relatively small sample sizes. In the literature a lot of
work has been done on the procedure for inference in cointegrated systems. Among others
Podivinsky (1992) and Psaradakis (1994) investigated the adequacy of these asymptotic
critical values in moderately sized samples.

They consider a simple DG P with limited number of lags, and just one cointegrating
vector. Their simulation analysis indicate that the asymptotic x* distributed LR tests are
quite heavily affected by the size of the sample. Accordingly, they proposed small sample
adjustments respectively for an F'-type test and for the LR criterion and the Wald test.

First, consider the Podivinsky (1992) approximate F-type test. If again we denote

estimation under the null by tilde, and unrestricted estimation by a circumflex, and

S=11, (1 —X%-) ,
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S = I, (1 - Xz) )

then the F'-type statistics for testing the linear restriction hypothesis 8 = Hy is

(5-3)/rto-9)
S/(T-1)

F(8)=

where [ is the number of parameters estimated subject to the maintained hypothesis I =
aff’. Inour case | = 2pr —r*+p, when estimating «, 8, and p. Then F/(3) is approximately

distributed as F' (r (p—s),T —1) .

Psaradakis (1993) proposes the application of L2 and Wald tests adjusted by certain

correction factors. Letting
CB)=U/p)+(1/2)[p—r—~s)/p+1],
the modified statistics are defined as

LR.(8) = LR(B)[T - (I/p)] /T,
LR.(8) = LR(®IT-C )T,

We(B) = W(B)[T~(/p)/T,

where the LR () and W,(3) are obtained by replacing 7" by 7" — (I /p) in standard likeli-
hood ratio and Wald tests.

Monte Carlo evidence in Podivinsky (1992) indicates that the application of the mod-
ified F-type test is worthwhile, since improvement are shown with respect to the size prop-
erties of LR tests proposed by Johansen (1988). These results are mainly confirmed by
Psaradakis (1994), but in addition he shows that the small-sample behavior of L R statistics

may be improved by the use of simple scale corrections as indicated above.
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More recent work in the literature points out that the problem of size distortion can
be substantial when more complex DGP are considered (i.e. when r > 1, and more
lags and seasonal dummy are inserted), see for instance Fachin (1997), Gredenhoff and
Jacobson (1998). One reason is that for the asymptotic theory to be valid it is necessary
that rejection probabilities do not depend on the DG P, which is not usually the case in
small samples. As a result, the true and the nominal probabilities that a test rejects a correc
Hy can be very different when the p-value is obtained from the asymptotic distribution of
the test statistic. Since the bootstrap distribution is able to mimic possible skewness of the

finite sample distribution it may account for deviations of the actual distribution from the

x? distribution.

2.3 The bootstrap test

As seen above, the LR and W test préposed by Johansen (1988) and Johansen and Juselius
(1990) enable a researcher to test for linear restrictions on § after having accepted cointe-
gration among variables and Podivinsky (1992) and Psaradakis (1994) propose small sam-
ple adjustment for these tests and for an F'—type test. In this section, (i) we investigate the
size distortion of these tests in finite sample, (ii) we analyse the robustness of the Johansen
inference procedure to misspecification in the number of cointegrating relationships, (iii)
we apply the bootstrap method to the LR and Wald tests above (iv) we evaluate fhe robust-
ness of the bootstrap tests. The evaluation of points (i)-(iv) is via Monte Carlo simulation

experiments.

The model estimated is a VAR(1) defined by
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Ay, =Ty 1+ p+ e, (2.3.1)

where y:, and y;—; are (4 x 1) vectors, p is a vector of intercepts and ¢, = i.i.d.N (0, I)
When testing for linear restrictions on cointegrating vectors, the true DG P is not
known. Since the null model, and consequently the DG P is unknown, the estimated DG P

is used. In our case the estimated error correction model is
-~ = / ~ ~
Ay, = af yra + o+ & (2.3.2)

where & and B are the restricted estimates.

The non-parametric bootstrap'? involves approximating the finite sample distribution
of the ﬁ%, /W, F —type tests by drawing several B bootstrap realizations {TR;} , {W}*} Rely
{ﬁ’z*} fori = 1,2, ..., B bootstrap samples {(Ay*,y{‘_l)i}. In order to do this we re-
sample the residuals (¢4, ..., &) from (2.3.2). Denote the bootstrap sample (¢3, ...,£;) . The

bootstrap algorithm can be summarised as follows:

—

1) Estimate the error correction model given by (2.3.2) and compute ﬁ%, W, F —type

as described 1n Section 2.2.

2) Re-sample the residual from (¢4, ..., £7) independently with replacement to obtain
a bootstrap sample (7, ..., &%) . Generate the bootstrap sample (v, ..., ) recursively from

yo = 0 and (&7, ..., 7 ) using the estimated restricted model

12° Note the stationary bootstrap is often used in time series analysis in place of the ordinary bootstrap. One
reason is that the stationary bootstrap is able to preserve the correlation structure of the residuals. However, in
our case we are primarily interested in whether the bootstrap is able to reduce the size distortion with respect
to the inference based on first-order asymptotic critical values (Osterwald-Lenum (1992)), so we abstract
from the more complicated issue of correcting dynamic specification of the underlying V A R. Moreover, Van
Giersbergen (1996) results show that the ordinary bootstrap has better power properties with respect to the
stationary bootstrap.
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~ 2« ~ *
Ay =alyey + i+ e
where & and (3 denote the restricted estimates under the null hypothesis F; = 0 .

o~

3) Compute the bootstrap replication of {I/j%*} ; {/W?* } ,Or {F * } using (y5, ..., y;)

4) Repeat steps 2-4 B times. Defining the bootstrap p—values function by the quan-
tity
B
P (e) Y (9* > 9) (23.3)
=1
~ wherei = 1,...B, 8 is the test statistic considered, and I(-) is the indicator function that
equals one if the inequality is satisfied and zero otherwise.
6) Reject the null hypothesis if the selected significance level exceeds p* (@) .
As seen before LR () and W () are asymptotically pivotal since they asymptoti-

cally distributed 2. Therefore, the we may expect refinements of order 7 *.

2.3.1  Design of the Monte Carlo experiments

In order to keep an high degree of experimental control the DG P used are simple VAR(1)

processes with small dimension. We consider three different DG P, the first is given by:
DGP1 :
Ayyy = e,

Aysy = e,
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! PN .
where e, = [ €], €y | ~4.0.d.N(0,)), yar, y1e are (2% 1) vectors and Y is a (4 x 4)
matrix. The variance-covariance matrix of the disturbances is set to a unit matrix through-
out. So, we have four unrelated random walks and r = 0.

The second DGP is given by DGP2 :

Aylt = €1t
Ath = €&,
Ay3t = €3¢,

Ysr = Bosyai—1 + Bagyze—1 + BasYar—1 + €ar,

I3

with Go3, 033 O43 << 1, and & = [ €1t €x €3t Eq ] ~ 4.3.d.N (0,1) . So that we have
!

one cointegrating vector [ 0 Byz faz fa3 — 1 |

The third is given by DG FP3 :

Aylt = €1
Ath = €9,
Y3t = 522?/%—1 + 5329&—1 + 5429@-1 + €3¢,

Yo = 523?,/27:—1 + 533931&—1 + 54gy4t_1 + €4,

7

with ¢ = [ er, en e, € | ~ 4.i.d.N(0,I). So that we have two cointegrating

vectors.
Two possible situations are investigated:
a) The model is correctly specified:
-DGP is DG P2 and in model estimated r = 1

-DGP is DG P3 and in model estimated r = 2
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b) The number of cointegrating vectors is over-fitted or under-fitted:
-DGP is DGP1 but we are assuming r» = 1
-DGP is DG P2 but we are assuming r = 2

-DGP is DG P3 but we are assuming 7 = 1

All simulations were carried out on 400MHz Pentium PC using the matrix pro-
gramming language GAUSS Version 3.2.32. The random numbers were generated by
the function rndns. For each sample we calculated the six tests considered above in
a VAR(1) model with intercept and we generated B = 400 bootstrap samples according
to the algorithm given in the previous section. Then the bootstrap is evaluated by Monte
Carlo, and each Monte Carlo experiment is based on 1,000 replications. Obviously, the
level of accuracy of the experiment could be improved using a larger number of boot-
strap replications and a larger number Monte Carlo replicates, (a 95% confidence interval
around a 5% nominal size is [3.6-6.4] for 1,000 replicates). However, 1,000 replications
with B=400, T =800, uses 3.2x 10® random deviates of the 4 x 10? distinct deviates avail-
able from rndns. For the non-bootstrapped tests, 100,000 Monte Carlo replications were
used. The random number generator was restarted for each 7' value.

According to Davidson and MacKinnon (1996b), in some situations B = 400 i1s
the smallest number of replications that guarantees a reasonable trade off between the
gains in power and computational costs. However, increasing the number of bootstrap
replications involves increasing computational costs, consequently it 1s necessary to re-
duce them to a number that minimizes the loss of power. To explore the sensitivity of

the estimated size to the number of bootstrap replications we made a pilot experiment for
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B e {100,200, 400, 600, 800, 1200} (the results are reported in Appendix of this chapter)

and this simulation confirms that B = 400 is adequate for our purposes.

2.4 Monte Carlo Results

In this section we report the result of the Monte Carlo experiment. We firstly consider the

size properties of the test statistics and then we present the results for the power.

2.4.1 The probability of the type I error

In Table 2.1-2.5 we report the results of the Monte Carlo experiment with respect to the
sizes of the tests. The notation is the following: T is the sample size, LR is the uncorrected
likelihood ratio test; LC,. and LR, are the likelihood ratio tests adjusted by Psaradakis’s
(1994) correction factors; W and W, are respectively the uncorrected and corrected Wald
tests; £ is the ['-type test proposed by Podivinsky (1992). Therefore, from column 2
to column 7 we report the Monte Carlo estimated sizes, and column 8 and 9 report the
bootstrap corrected likelihood ratio and the bootstrap Wald tests.

The first thing it is important to note is that the empirical sizes of Boot LR are equal
to those for BootF, the bootstrap corrected £’ statistic, as the [F' statistic is a one to one
function of the LR statistic. Hence, the columns of BootF' have been omitted.

Monte Carlo evidence in Table 2.1 and 2.2 confirms Psaradakis (1993) and the Podi-
vinsky’s (1992) results in the case where the number of cointegrating vectors is correctly
specified and this is particularly true for the F'-type. We find the poorest performance for

both the W and W, versions of the Wald statistic. For the W/, test the actual significance
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level is much higher then the 5% nominal level, and as a consequence the true null hypoth-
esis will be rejected too often. A reason for this may be the non-invariance property of the
Wald test. The invariance property states that the decision reached by the hypothesis test-
ing procedure should remain unchanged under transformation of the parameters. So, the
Wald statistic varies with the parametrisation of the null hypothesis being tested and its nu-
merical value can vary greatly according to the specification of Hj that is being used. As
a result, the finite sample level of the Wald test can be greatly different from the nominal
level, and using the asymptotic distribution of the Wald statistic can be misleading. In this
sense the bootstrap provides a better approximation to the finite sample distribution than
first order asymptotic theory and therefore smaller size distortion.

The overall impression is that when the number of cointegrating relationships is cor-
rectly specified the size distortion asymptotically vanishes, but the asymptotic theory is
uniformly satisfactory only for 7" > 150. For smaller sample sizes the only tests that pro-

vide nearly exact « level is Podivinsky’s (1992) F'-type test, BootL R and BootW .
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Table 2.1. Sizes for tests of [31,1 = () assuming correct cointegrating rank of 1.

T | LR | LR. | LR, |44 W, F BootLR | BootW
50 | 0.100 | 0.091 | 0.083 | 0.186 | 0.174 | 0.061 0.046 0.050
75 ] 0.080 | 0.075 | 0.067 | 0.129 | 0.123 | 0.057 0.055 0.050
100 | 0.071 | 0.067 | 0.064 | 0.104 | 0.099 | 0.055 0.050 0.049
150 | 0.064 | 0.061 | 0.059 | 0.083 | 0.081 | 0.054 0.049 0.048
200 | 0.061 | 0.059 | 0.058 | 0.075 | 0.072 | 0.053 0.050 0.048
400 | 0.054 | 0.054 | 0.053 | 0.060 | 0.060 | 0.051 0.044 0.043
800 | 0.051 | 0.051 | 0.050 | 0.054 | 0.054 | 0.050 0.052 0.050 |

DGP2 . /323 = 0.5,,833 = 04,643 = 0-1.

Table 2.2. Sizes for tests of [/@11 , /621] = [O, O] assuming correct cointegrating rank of 2.

T LR | LR, | LR, |44 W, F BootLR | BootW
50 [ 0.100 | 0.091 | 0.082 | 0.171 | 0.160 | 0.060 0.045 0.047
75 1 0.080 | 0.075 | 0.070 | 0.125 | 0.118 | 0.057 0.062 0.061
100 | 0.074 | 0.070 | 0.066 | 0.105 | 0.101 | 0.057 0.055 0.059
150 | 0.067 | 0.064 | 0.062 | 0.087 | 0.084 | 0.056 0.048 0.051
200 | 0.062 | 0.603 | 0.059 | 0.077 | 0.075 | 0.054 0.054 0.059
400 | 0.057 | 0.056 | 0.055 | 0.064 | 0.063 | 0.053 0.049 0.052
800 | 0.053 | 0.052 | 0.052 | 0.056 | 0.056 | 0.051 0.058 0.058

DGP3 . ﬂ237/8337,643 asinTableQ,l,ﬂQQ - 07/632 = 0.97ﬁ42 = 01,
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Table 2.3. Probability of rejecting ,6’171 = ( when true but assuming 77 = 1 when7 = ().

T | LR | LR. | LR, w W. F BootLR | BootW
50 | 0412 0.394 | 0.379 | 0.681 | 0.673 | 0.327 0.132 0.191
75 10.405 | 0.393 | 0.383 | 0.674 | 0.668 | 0.351 0.124 0.176
100 | 0.406 | 0.398 | 0.390 | 0.672 | 0.668 | 0.367 0.152 0.215
150 | 0.401 | 0.395 | 0.390 | 0.670 | 0.667 | 0.375 0.138 0.172
200 |1 0.399 | 0.395 | 0.391 | 0.669 | 0.667 | 0.380 0.138 0.205
400 | 0.398 | 0.396 | 0.394 | 0.666 | 0.665 | 0.388 0.122 0.204
800 | 0.397 | 0.396 | 0.396 | 0.664 | 0.664 | 0.393 0.134 0.211
DGP1
Table 2.4. Probability of rejecting ,31,1 == () when true, but assuming 77 = 1 when 7 = 2.
T |\ LR | LR, | LR, W W, F BootLR | BootW
50 | 0.099 | 0.082 | 0.073 | 0.189 | 0.165 | 0.034 0.045 0.044
75 1 0.079 | 0.068 | 0.064 | 0.130 | 0.117 | 0.040 0.061 0.062
100 | 0.070 | 0.063 | 0.059 | 0.105 | 0.096 | 0.042 0.061 0.057
150 | 0.063 | 0.058 | 0.056 | 0.084 | 0.079 | 0.045 0.051 0.050
200 | 0.060 | 0.057 | 0.055 | 0.076 | 0.072 | 0.048 0.052 0.047
400 | 0.053 | 0.052 | 0.051 | 0.061 | 0.059 | 0.048 0.042 0.043
800 | 0.052 | 0.051 | 0.051 | 0.055 | 0.054 l 0.049 0.056 0.054 |

DGP3, asTabie 2.2,

63
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Table 2.5. Probability of rejecting {/6117/621] = [O, O] when true, but assuming 7 = 2 when7 = 1.
T | LR | LR, | LR, | W W, F BootLR | BootW
50 | 0.37510.337 | 0318 | 0.706 | 0.691 | 0.207 0.103 0.179
75 |1 0.357 | 0.332 { 0.319 | 0.689 | 0.679 | 0.252 0.108 0.154
100 | 0.351 | 0.333 | 0.323 | 0.681 | 0.673 | 0.274 0.100 0.163
150 | 0.342 | 0.330 | 0.324 | 0.677 | 0.671 | 0.293 0.100 0.158

200 | 0.338 | 0.329 | 0.324 | 0.673 | 0.669 | 0.301 0.090 0.165

400 | 0.334 | 0.330 | 0.328 | 0.668 | 0.666 | 0.317 | 0.098 0.168

800 | 0.332 | 0.330 | 0.329 | 0.666 | 0.665 | 0.323 0.123 0.162

DG P2, astavle 2.1.

Table 2.6. Probability of rejecting [11, B21] = [0, 0] when true, but assuming 7 = 2 when 7 = 0.
T LR | LR, | LR, 124 W, F BootLR | BootW
50 10.573 10532} 0.510 | 0.880 | 0.872 | 0.371 0.14 0.203
75 10.564 | 0.535 | 0.520 | 0.878 | 0.872 | 0.438 0.128 0.190
100 | 0.565 | 0.543 | 0.532 | 0.877 | 0.872 | 0473 0.152 0.206
150 | 0.559 | 0.545 | 0.538 | 0.874 | 0.871 | 0.500 0.117 0.171
200 | 0.556 | 0.546 | 0.541 | 0.875 | 0.873 | 0.513 0.145 0.201
400 | 0.553 | 0.548 | 0.545 | 0.875 | 0.874 | 0.533 0.145 0.176
800 | 0.553 | 0.551 | 0.549 | 0.874 | 0.873 | 0.543 0.145 0.196

DGP1
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Tables 2.3-2.6 report the Monte Carlo sizes for the tests considered in situations
where the number of cointegration vectors is over-fitted or under-fitted. As we can see
from Table 2.4 the size distortion when underfitting is not very different, either for mag-
nitude or direction, from the size distortion when the model is correctly specified. This
suggests that the difference between the nominal and the empirical size is more likely to
be due to finite sample effects than to misspecification. In fact, in both cases the size of
the tests depends on the sample size and on the many parameters of the model, and in both
cases this dependence asymptotically vanishes (even though the adjustment is quite slow).
Therefore, as long as the asymptotic theory works, the bootstrap works. By contrast, when
overfitting the asymptotic theory does not help. Indeed, the size distortion caused by over-
fitting is so large that it calls into question the use of the tests. A size greater than 0.5
implies that one is more often wrong than right when using the test.

O}xe explanation of the excessive size of the Wald test when overfitting the cointegrat-
ing rank is as follows. In the case of a single constraint, §,; = 0, K’ = [ 10 0 } ,with

r = 1 assumed, one can write the Wald test in the form
0 p
e D4~ ~2
W = gy,01/ Zvlj
J=2

where

511 is the first element of El and

O'% :3\\1/(1—;\\1)
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If r = 0, the properties of Bil change: it becomes an O,(T~1/?) estimator of 0, rather than
O,(T~%) under Hy : K'B = 0. Thus Bu is more variable, and B?l on average larger, if
r = (). While the other two terms in W\ also change, both being on average smaller when
r = 0, in simulations it seems that the effect on /B\il dominates by an order of magnitude.

Considering the general case of W as defined in (2.2.3) , this intuition suggests that
overfitting can be regarded as misclassifying the columns of V/. If one assumes that the
rank of IT is 7 + 1 when it is 7, one erroneously regards U, as /1 41 and includes it in the
‘numerator’ of W rather than the ‘denominator’. As it is O, (7~%/2) rather than O,(T~1),
and its ‘square’ enters W, this shifts the distribution of W to the right.

This only explains the behavior of the likelihood ratio indirectly insofar as W and
LR are correlated. Turning to the bootstrap tests, when overfitting their size is around
10%, and does not converge to the correct value. Why does bootstrapping fail?

In the correctly specified model 3'y;_; and a3y, iare stationary. If we overfit, we
include in B/yt_l linear combinations of 1;_1 which are not stationary, and when generating
Ayf from the resampled residuals Ay, — &E/yt_l both the residuals and Ay; will be I(1).
Thus bootstrapping fails. The size is not as distorted as the non-bootstrapped tests, but
there is no reason to think the power properties will be desirable.

One might try to recover the situation by using the parametric bootstrap. If one does
so, the residuals are replaced by independent and identically distributed Normal vectors,
and Ay has the properties implied by the cointegrating rank = assumed and 3; = 0.

However, the test statistic, W or LR, being compared with this bootstrap distribution is
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calculated from data with a smaller 7, and the equivalent of Table 2.5 for the parametric

bootstrap shows sizes from 23% to 63%.

When underfitting, as in Table 2.4, the performance of 5 out of the 6 tests is much

better, the exception being the £ test.

Table 2.7. Parametric bootstrap: Probability of rejecting ﬁ 1 = mlla /5’ 21], = () when true, but assuming

7 =2whenr = 1.
T |\ LR | LR. | LR, w W, F BootLR | BootW

50 10.392 1 0.357 | 0.333 | 0.728 | 0.713 | 0.221 0.226 0.467
75 10.370 | 0.345 | 0.335 | 0.698 | 0.682 | 0.265 0.238 0.489
100 | 0.357 | 0.335 | 0.324 | 0.669 | 0.664 | 0.269 0.228 0.507
150 { 0.313 | 0.307 | 0.297 | 0.671 | 0.668 | 0.265 0.232 0.557
200 { 0.348 | 0.338 | 0.332 | 0.681 | 0.672 | 0.300 0.259 0.567
400 | 0.315 | 0.310 | 0.304 | 0.655 | 0.653 | 0.292 0.268 0.586
800 | 0.338 | 0.336 | 0.333 | 0.675 | 0.674 | 0.327 0.304 0.631

DG P2 asTavle 2.1

2.4.2  The probability of the type II error

The power is defined as the probability of rejecting the null hypothesis (Hp) when it is false.
Therefore, to evaluate the power of the test statistics considered in the previous section, it
is necessary to evaluate the behavior of the tests when the null hypothesis being tested in

false. In our case, the model tested is given (2.3.1), but the data are generated by simulation
from two different models
a) The DG P is given by

Aylt = €1,

Ays = €,
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Aysy = es,

Yoo = 0.1y11+0.5y241 + 04ys ;1 + 0.1yge—1 + €u,

with € = [ €1y €9 €3¢ €E4¢ }, ~143.dN (O,I)

b) The DGP is given by

Ay, = e,
Ay = €x,
yse = 0.9yse—1 + 0.1ys—1 + €3,
Yo = 0.1y1 ;-1 +0.5y24-1 + 0.4ys -1 + 0.1yss_1 + €a,
with € = [ €1t € €3¢ € ], ~ 1.9.d.N (0, I) . Therefore, Hy is false because 3, # 0
in DGP1,and | By, [, | #0in DGP2.
In Figure 2.1-2.2 we report the rejection frequencies of the test statistics considered.
As expected the Wald test has higher ‘power’, being the test with the highest size distortion.
The rejection frequencies based on the small sample corrected version of Wald and LR
tests are quite close to rejection frequencies based on the asymptotic critical values. The
bootstrap test performs well for the LR test since the ‘power’ loss in relatively low. By
contrast, the ‘power’ loss of the bootstrapped Wald is more substantial as the ‘power’ curve
for the BootW is uniformly lower than for the asymptotic Wald tests.
Turning to the overfitted and the underfitted model, we can see in Figure 2.3-2.4
that the power properties of the test statistics are quite different. When underfitting all
the test statistics considered present a substantial loss in power, but the power curve of

the bootstrap test mimic the ones of the reference asymptotic tests. By contrast, when
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overfitting the asymptotic tests have much higher ‘power’ then the bootstrap tests, but this

just reflects their greater inflation in size.
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—e—LR —m—LRc [Ra —ieW —%—We |
—e—F +— BLR BW

Figure 2.1. Power for tests of 611 = () assuming correct rank of 7 =1.

-~ B
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—— LR —&—1HRc LRa —s W —%—Wc
—a—F +— BLR BW

Figure 2.2. Power for tests of [5117 ,821] = [O, O} assuming correct rank of 7 = 2.
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0 50 100 150 200 250 300 350
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Figure 2.3. Probability of rejecting /3 11 = (0 when false, and assuming 7 = 1 when 7 = 2.

O T T T T T T
0 50 100 150 200 250 300 350
! —e—IR —=—LRc - LRa —w—W —%—Wc

]—&-F +—BLR BW

L

Figure 2.4. Probability of rejecting [ﬂll? 521} = [O, 0] when false, and assuming 7 = 2 when7 = 1.
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2.5 Concluding remarks

In this chapter we consider the small sample properties of Johansen LR and Wald tests
for linear restrictions on cointegrating space, as well as the small sample corrected ver-
sions éf these tests proposed by Psaradakis (1994) and Podivinsky (1992). In addition, we
analyse the sensitivity of the LR, Wald, and F'-type to misspecification on the number
of the cointegrating vectors, and both the cases of over-fitting and under-fitting have been
conéidered.

The Monte Carlo evaluation of the bootstrap tests show that when the model 1s cor-
rectly specified the resampling procedure provides empirical sizes which are much closer
to the nominal size, and this is particular true the Wald test. Furthermore, the bootstrap
tests seem to have good power properties. Although our Monte Carlo design is limited, the
results suggest that the bootstrap provides a good alternative to procedures relying on first
order approximations or small sample corrected tests.

When the number of cointegrated vectors is misspecified the overall picture changes
completely. Indeed, our Monte Carlo results show that overspecifing the number of coin-
tegrating vectors leads to considerable size distortion of the tests for linear restrictions on
the cointegrating space, whereas underspecifing leads to severe power loss. In this case
the bootstrap does not perform well, since in the first case the residuals are not stationary,
whereas in the second case the residuals are correlated.

From the practitioner point of view, we may suggest that if there is any uncertainty
about the cointegrating rank r, tests on [ should be conducted under different assumptions

about 7. If the conclusions change when r is increased, especially if the bootstrap test
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results start to diverge from the those of the asymptotic tests, then only the results for
smaller r should be relied upon. This is in contrast to the suggestion in Podivinsky (1998),
that “possible overspecification of the number of variables in a model has less serious
consequences” (than underspecification): we argue that overestimating cointegrating rank

seriously biases tests on [.
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2.6 Appendix A: Computation details

The implementation of Johansen’s cointegrating tests was not conducted using Johansen
original algebra, but using ()R and singular value decomposition as employed in O’Brien

(1996). In this appendix we show how Johansen cointegration analysis can be rewritten in
term of QR decomposition .
For ease of notation we report here the model in Section 3

Ay =y +p+ ¢

where y; and is y;_1 aré (4 x 1), a; is a vector of intercepts, and €; ~ N(0, ). The VAR(1)
model can be rewritten as

wi = [, yi_y, Ay, (2.6.1)
which forms the t—th row of the matrix W. Then a QR decomposition of the matrix W

yields a Cholesky factorisation'* R such that such that R'R = W'W . We partition

Rin Ria R
R= 0 Ry R
0 0  Hss

where R;; has 1 rows and columns, while Rgpand R are each (p X p).
Using the Cholesky factorisation we can estimate II in a reasonably straightforward

way. First note that if 'R = W'W, W = [W,4, Wg], and R is conformably partitioned

Raa Ruagp

0 Rep J then,

into‘[
Ry Ran = WyWa, (2.6.2)

Ry Rap = W, Ws, (2.6.3)

13 For further details see O’Brien (1996). This method is also discussed in Doornik and O’ Brien (2002).

14 If A is a positive definite (m x m) matrix there exists a lower triangular matrix P such that or A = P'P.
The decomposition A = P’ P is called a Cholesky decomposition.
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and

RypRap + RgpRps = WyWhs. (2.6.4)
Thus from (2.6.3) solving for R4z

Rag = (Raa) ™ W)W, (2.6.5)

solving (2.6.4) for Rz 5 Rpp and substituting (2.6.5) in (2.6.4) we get

RipRps = WLWps — R\ypRap (2.6.6)

— WEWs — [(Ran) " WiWs] [(Raa) ™ WiWs]

= WLWg — WaWa (R Ran) W, W5
=WiLWg — WEWA (W, Wa) " Wy W,

Ras
W = [ Wi, Wy Wi } so that W, and Wjs each have p columns, we can rewrite (2.6.4)

Identifying R44 with R;;, and { R022 Fs jl with Rpp, and conformably partitioning

as

Ros Ros ]'[ Rwy R , o
[1022 R;ﬂ [ 0 RjiJ:{Wg,Wﬁ 1w ()T W | e, W)

which in Johansen’s notation is the product moment matrix

Ske Sko
T .
{ Sor Soo }

Thus,

R/22R22 =T Syx, R/22R23 =TSy, Ré?)Rgg -+ Ré3R33 = TSy (2.6.7)
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Using the latent root of )\, and the latent vector ¢; of C“lS;COSo“OlSOk (c’ )”1 , where CC' =

Skk, then defining B/ = [ejes...e.] and S = [‘TOT} ,we have

g=(C)"ES,
and
a(8) = SonB (B'SiB) ™"
this gives us
(B’Skkﬁ) — S E'CS (C) " BS, = S'E'ILES, = 5.8, = I,

and

B) = SouB.

«

TN

Identifying /T C with R}, from equation (2.6.7)

C™'Sk0S55' Sor (C') " = (Rhy) ™" RhyRag (RhgRog + RbgRss) ™ RiyRos Rf2.6.8)
= Rys (RysRas + RiyRas) ™' Rig

-1
= I |1+ Ros (RigRsa) " Rb|
Using the singular value decomposition, let
RozR3g = USSRV

where U'U = I, = V'V and Sy, is diagonal with the singular values o; of RogRa; as its

diagonal elements. Thus

Ros Ry (ResRsy) = USRU’
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and
Ryg (Riy Ras) ™ Ry (U') ™ = USH,
so if u is a column of U, and o the corresponding diagonal element of Lg,

Rgg (RgSRgg)gl Rf%u = 02u

so that o, u are the eigenvalues and the eigenvectors of Rz (R4, Rsg) ™ Rbs respectively.

Thus rearranging equation (2.6.8) we have

{[ — (I+ Ros (RssRsg) ™ 353)—1} U= {1 -1+ ‘72)#1} u
so that u is a latent vector and {1 —(1+ 02)”1} u= Tf;—g alatent root of Ryg (Rjs Raz) ™ Rbs.
Thus the Johansen required quantities are \; = : + o7 and 3 = (C")"' ES, = VT Ry, US, with
_ (5) = Sop = VT (RyRas) B = 1/NTRYUS,.
Moreover, for the LR likelihood test of Hy : § = Hy, where § = Hyp is a set of
restrictions, with H (p X s), we can again use a () R decomposition. First, adapting equation

(2.6.1) we have:

RoyH  Ras
0  Ras
(2px(s+p))
so that
RpH Ry ' [ RwH Ry H'SwH H'Sko
=T 2.6.9
[ 0 333} { 0 R33} I: Sox Soo 269)

then we can perform a () R decomposition of this matrix to produces, Rg = [ Rg” gg 23 }
33

where Rg,, is (s x s) , and Rg,, is (p x p). Then if we replaces Ryy, Fa3 and H33 in our
initial analysis with R, Rg,,, and Rg,, this will yield A;, &, B = H¢, and &. Tests on

« are handled in a similar way.
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2.7 Appendix B: Supplementary simulations

In this appendix we report the results of some supplementary simulations. In Table 2.1A-
2.2A we reports the p-values for increasing number of bootstrap replications. From these
tables we can see that for the bootstrapped likelihood ratio (BootLR), B = 400 is only
slightly improved on by B = 800. The results for the bootstrapped Wald test, BootW,

also suggest B = 400 is a reasonable compromise.

Table 2.1A. Sizes (%) for Boot L R tests of 511 = () assuming correct cointegrating rank of 7 = 1 and

N = 1000".
T\ B | 100 | 200 | 400 | 600 | 800 | 1000 | 1200

50 5148 | 47|51 )50 52 | 57
75 49 1 65% | 5151147 ] 49 | 60
100 | 56| 52 | 50|63 |47 | 43 5.1
150 | 52| 47 | 56|43 |47 45 5.2
200 | 43 | 43 | 53|44 50) 57 | 55

Table 2.2A. Sizes (%) for Boot W test of [/8 119 ,[321] = () assuming correct cointegrating rank of 7 = 2

and N = 1000.
T\B 100 | 200 | 400 | 600 | 800 | 1000 | 1200

50 |69%160] 56|52 56| 55 | 6.1
75 50 1631565249 54 | 6.0
100 | 57 |52 |52]63 |51 51 4.6
150 | 49 |53 160 |46 ] 48| 54 | 5.2
200 | 46 |46 |54 |46 |51 | 56 | 58

15 Monte Carlo precision £1.35%; values marked * are significantly different from the nominal size of 5%
when testing at a 5% level of significance. Time required, 18.5 hours (400 MHz Pentium).



Chapter 3
Bootstrap-Bartlett Adjustment in
Cointegrated VAR Models

3.1 Introduction

In the previous chapter we have considered the small sample properties of Johansen LR
and Wald tests for linear restrictions on cointegrating space. Our Monte Carlo experiments
revealed that the accuracy of Johansen tests is heavily affected by the sample size and
also that the small-sample corrected versions of these tests are quite useful in reducing the
size distortion problem. Another simple technique to obtain more accurate small-sample
inference for the L R tests was already introduced iﬁ 1937 by Bartlett. The basic idea behind
the Bartlett correction is to adjust the test statistics so that its finite sample distribution is
closer to its asymptotic distribution. In 1.i.d. situation the Bartlett correction has been useful
for solving size distortion problem. However, calculating the Bartlett correction usually
involves calculating an asymptotic expansion of the expected value of the test statistics.

Because of the complicated form of the LR tests this can be rather painful; the bootstrap

may save us from tedious calculations.

In this chapter we consider Johansen’s likelihood ratio tests for linear restriction on
cointegrating space and we propose that the Bartlett adjustment factor be computed us-

ing the bootstrap. In the literature this approach was first suggested by Rocke (1989), and

79
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Rayner (1990) showed that the bootstrap-Bartlett correction applied to a seemingly unre-
lated model regression provides accuracy to order O(T~%/2).

The Bartlett correction for LR test yields a test which is asymptotically consistent
with an error in the rejection probability of order O(T~%/?). Therefore, bootstrapping the
Bartlett corrected LR test may amount to a one term Edgeworth expansion of the distri-
bution function of the Bartlett corrected likelihood ratio test. This procedure may yield a
level of the error in rejection probability of order O(7~2), so considerably smaller than the
conventional first order approximation (see Beran (1988)).

One possible drawback of this approach is that the performance of Johansen tests us-
ing Bartlett correction crucially depends on the parameters of the model. Johansen’s (2000)
simulation results show that for some parameter values the correction factor is a useful im-
| provement, whereas there are parameter points close to the boundary of the parameter space
where the correction does not work well. If this is the case, the ability of the bootstrap to
provide second order asymptotic refinements is obviously affected. For this reason it is im-
~ portant to bstudy the dependence of the finite sample size distortion on the parameters. In
order to do that we undertake a response surface analysis.

It is well known that the Bartlett correction factor is designed to bring the actual
size of asymptotic tests close to their respective nominal sizes, but it may lead to a loss in
power. Therefore, it is important to evaluate the power properties of the tests. In our case,
the analysis of the power reveals that the procedures have power.

The plan of the chapter is as follows. In Section 3.2 we introduce the model consid-

ered and the Bartlett correction. In section 3.3 the consistency of bootstrap Bartlett correc-
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tion is considered. In Section 3.4, we explain how the Monte Carlo experiment has been
designed and some simulation results are reported. In Section 3.5 we report the simula-

tion results for the bootstrap Bartlett corrected LR test as well as the result of the response

surface analysis.

3.2 Model and definitions

Consider the p-dimensional V AR model

k—1
AY, =BV + > TiAY, + ®d; + &, (3.2.1)

1=1

where ¢; are i.i.d.  N(0,Q). The initial conditions are fixed, the matrices v and [ are
(pxryand I, fori=1,...,k—1are (p x p), ® the vector d; contains deterministic terms
and @ their correspondent coefficients, AY; = Y, — V;_;.

Once the cointegrating rank has been established we can test for linear restrictions on
cointegrating space. Let O be the parameter space under Hy and ©; the parameter space

under H;. Let Gy be the Johansen’s (1988) likelihood ratio test statistic for Hy against

H,y, given by

Gor = —2log (HolHy) = Tiln [(1 . Z\i) / (1 . X)} .

where )\; and J\; are the eigenvalues found as solutions to the eigenvalue problem implied
by the maximum likelihood estimation of the restricted and unrestricted models.
Let go v and g be the 95% quantiles of the finite sample distribution and the asymp-

totic distribution of Gy r respectively. Let E (Gp 1) and E. (Gor) be the corresponding
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expectations. Johansen and Juselius (1990) show that the likelihood ratio test for cointe-

gration has the correct size asymptotically, for example

sup PB,T (GQT > goo) — 5% asT — oo. (3.2.2)
80,

However, this asymptotic result does not give information about the size of the test
for finite samples. Many simulation studies have revealed that this test is oversized.
A simple technique to obtain accurate small sample correction for the likelihood ratio

test was introduced by Bartlett (1937). His idea was that instead of looking directly at Gg

Go.T
E(Gor)

which as T" — oo tends to G, we focus on the distribution of . In other words, he

suggested the approximation

Jeo
7 (Gec)

gor = E(Gyr)

Because of the complicated form of the typical LR test statistics, it is difficult to find

the expected value, but it may be easier to find a series expansion such as

E(Gyr) =FE(Gs) + ? +0(T77), (3.2.3)

where R is a known constant. Hence the approximation becomes

Gor ~ (E (Ga) + i;) e

This is called the Bartlett correction. In the ii.d. situation the Bartlett correction
has been useful for solving size problem. Lawley (1956) proved that in the context of
ii.d. variables, the same correction improves not only the mean but also all moments.

Unfortunately, no similar theorem has been proved in the case of I(1) variables. However,
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results in Johansen (1999, 2000) show that the Bartlett correction can be useful in the

cointegration model to solve the size distortion problem.

3.3 Bootstrapping the Bartlett correction

This section provides an heuristic explanation of the consistency of the bootstrap-Bartlett
corrected LR test (Gpp henceforth).

Let the p-dimensional process Y; be generated by a Gaussian V AR(k) model. In

equilibrium-correction form, we may write this as

k—1
AY, = TIY,_| + ZRAYt + Bd, + e, (3.3.1)

i=1
where €, v N(0,82), IT and I'; are p X p parameter matrices, the vector d; contains deter-

ministic terms and @ their correspondent coefficients, AY; = Y; — Y;_,. The characteristic

polynomial associated with model (3.3.1) is given by

k—1

U(z)=(1-2)I-Tz- > Ty(l—2)7,

2=

with determinant |¥(z)]. When the rank of Il equals 7 (for r < p), there exist p X r matrices
o and [ such that IT = a3’ so that the process (3.3.1) can be written in the vector correction
form given in (3.2.1).

Define o) and 3 as the p x (p — r) matrices, such that &/a; = 0 and '8, = 0.If
the restriction IT = ' holds and ¥(z) has p — 7 roots equal to 1 and all the other roots

outside the unit circle from Granger’s representation theorem (see Appendix A in Chapter
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4) the process (3.3.1) has the representation

T
Y =C Y (®di + &) + C(L) (Pd; + &) + ¥,

i=1
where C(z) = 3. Ciz', Yo = Yo + 3 Cieo, and
i=0 =0

C=p8, (e, TB.) " ol
with ' = [ —T'; — ... — T'x_;. Hence, the process (3.3.1) has a Wold vector moving average

representation which contains: (i) an J(1) component given by

t t t
Y/ =C Z (6 +®d;) =8, (! TB,) (OK’L@ Z ds + Z O‘let> ,
i=1 i=1

=1

t t
where (a’l ST+ > o) et> represent the (p — ) common trends along with their co-
=1

efficients 3, (o, T'8,)™", (ii) an 1(0) component given by

t

P =0(l) Z(@dt +&);

i=1

and an 1nitial values denoted by Yy. Cointegration implies that 3’V = 0 (i.e. the cointe-
grating vectors act as a detrending model) so that the process 3'Y; is stationary.

Turning to the non-parametric bootstrap, let E. denotes the empirical distribution
function of the residuals, and &, /3’, r i & the maximum likelihood estimators of @, 3, T,
® under the null hypothesis. Since the resampling scheme imposes 7 unit roots and all the

other roots lie outside the unit circle, the process generated by the resampling scheme

k—1
AY; =af Y, + Y TAY) +&d; + ¢

i=1

where € « E., differs from the DGP in that €7 replaces ¢; and the parameters are estimated.

N
A problem with this bootstrapping scheme is the potential non-stationarity of 3 Y;* ;. If we
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take (3 — ) = O,(T ™), then

(6= 0)Ys = 0p(T)0,(T?) = O, (T17)

and we make an O,(T/?) error in an O,(1) quantity 3'Y;. Starting the data construction
from the observed Yj, the error is propagated as we construct AY; and Y;,t = 1,..,7. If
AY;* is the bootstrap data which would be obtained if 3 were replaced by 3, then AY;" —
AY; involves (o)~ 1(3 — 8)'Y,. Unfortunately, the convergence of this error depends on
the moduli of the eigenvalues of a3, and not of (I 4+ «3'). Thus for stationarity of AY; and
B3'Y; we require real eigenvalues of o3 € (—2,0). However, from the bootstrapping point
of view, values in (—2, —1] may be problematical.

Even if one could show that AY,* were stationary, the method used by Caner and
Hansen (2001), relying on Hansen (1996), would not suffice; as the likelihood ratio test
depends on eigenvalues which are functions of the moments of the levels of ¥;*, not AY;".
One may need to establish directly the properties of the bootstrapped test statistics. This
problem does not seem to have been solved in the literature, and hence the validity of
the bootstrap in this situation can be empirically illustrated but not proven under general
conditions.

We may consider using the parametric in place of the non-parametric bootstrap. Con-
sider model (3.2.1), for all p x p matrices L of full rank, the transformation X = LY leaves

the statistic invariant, so that equation (3.2.1) becomes

k—1
AX,=GF Xoq+ Y [AX + 8d, + &,

=1
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where & = La, f = L7143, I, = LT, ® = L®, and & — N(0, LQAL'"). We can now
chose L = Q~%/? such that & «~ N(0, 7). In this case, the consistency of our resampling
procedure follows from the fact that we are resampling from a N (0, /) distribution.
Turning now to the Bartlett correction, the test G rejects Hy at the « level if |G| >
9T.a; Where gr ., the exact, finite sample, o level critical value, is the 1 — « quantile of the
distribution of Gr. Since G is asymptotically pivotal first-order asymptotic approximation

implies that geo — gra = O(T 1), where g is the asymptotic critical value. Consider

16 Note: assuming that the conditions under which the Bartlett correction corrects the LR test are satisfied
(see Lawley (1956)), under weak regularity conditions, we have

Goo — 9Ta = O(T‘3/2)-
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now EyGr, since G is a non-negative random variable, its mean may be written as'’

oG

EyGr = /PI‘(GT > goo>dg.
0
In view of the fact that the bootstrap p-value is first order asymptotically correct, the

average value F;Gr of the empirical bootstrap distribution may be represented by

E;Gr = / Pr(G5 > goo)dg.
0
The Mallows distance between the bootstrap distribution of

VT (B;Gr — E;Gr),
and the finite-sample distribution
VT (E,Gr — EeGr)

converge to zero in probability (see Bickel and Freedman (1981)).

17 We are using here the following lemma. For a non-negative continuous random variable ¥ with probabil-
ity density fy

oo

ElY] = /P{Y >y} dy.

0

To see this note that
oo oo

!PW>M@:/Jhwm@,

0
where we have used the fact that

P{Y >y} = /fy (z)dx.

Interchanging the order of integration in the preceding equation yields

O/P{Y>y}dy:0/ O/di fy(z)de
:/a:fy(:c)dm
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3.3.1 The bootstrap experiment

In the previous section, the asymptotic validity of the bootstrap procedure was investigated.
The asymptotic validity, however, is only a prerequisite. In this subsection some Monte
Carlo experiments are performed to shed light on the small sample behavior of the bootstrap
procedure considered. In particular, we are interested in studying the performance of the
simulated Bartlett correction in reducing the error in the rejection probability'® of the tests
considered and compare it with the bootstrap tests. Let g,5 and g, be, respectively, the

Bartlett corrected quantiles and the bootstrapped quantiles of Gy . The probability to be

studied are

by = Fir (G&T > 9bB> ;

¢ = For (Gox>0).
These need to be compared with the probability
b= Fyrp (Gé,:r > Qoo> :
where g, are the quantiles of the asymptotic distribution of the test (Goo)-

The model we consider is a simpler version of equation (3.2.1). This is given by

Ay = af 'y +p+ e, (3.3.1)

18 By error rejection probability or size distortion we mean the difference between the actual probability that
the test rejects when the true value of # lie in ©¢ and the nominal size.
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where y;, and y;_; are (4 x 1) vectors, p is a vector of intercepts and ¢; ~ .i.d.N (0, 1) .

So that the estimated error correction model 18
/\/\/ A~
Ay, = B ypo1 + i+ & (3.3.2)

where @ and (3 are the restricted estimates.

The non-parametric bootstrap involves approximating the finite sample distribution

of G'p 7, by drawing B bootstrap realizations { Gy T} ,fori = 1,2, ..., B bootstrap samples

{(Ay*,y;_1),}. In order to do this we re-sample the residuals (ey, ..., ;) from (3.3.2).

Denote the bootstrap sample (£7, ..., 7). The algorithm to calculate the bootstrap test can

be summarised as follows:
1) Estimate the error correction model given by (3.3.2) and compute {G i,é,T} :

2) Re-sample the residual from (g1, ..., 7 ) independently with replacement to obtain
a bootstrap sample (7, ..., &%) . Generate the bootstrap sample (7, ..., y7.) recursively from

yo = 0 and (&7, ..., €7 ) using the estimated restricted model
~ A ~ *
Ay =afy, ,+i+e
where & and 3 denote the restricted estimates under the null hypothesis 5, = 0.

3) Compute the bootstrap replication of { G, T} ,using (yf, ..., u;) -

4) Repeat steps 3-4 B times to get { ;f),T} s { ;7é,T}.

5) Defining the bootstrap p—values function by the quantity

B
b=B3 1 (Glyr = ) (3.3.3)
i=1
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where i = 1,..B, and I(-) is the indicator function that equals one if the inequality is

satisfied and zero otherwise. Reject the null hypothesis if the selected significance level

exceeds §p.

To calculate the bootstrap Bartlett corrected likelihood ratio test simply repeat steps

1-4 and average the observed {G* } - {G’; 5 T} to get an estimate of F(Gg 7). The

1.8,
quantity
5 r(p—s)GaT
Gé,T - B-1
—1 *
B ( — Gz’,é,T)

is the Bartlett corrected value of the likelihood ratio statistic. Defining the bootstrap p-value

function by the quantity
X B
b =T > 1(GE, > g8) (334
i=1

reject the null hypothesis if the selected significance level exceeds §,5.

3.3.2  The Monte Carlo design

In order to evaluate the size accuracy and power the bootstrap procedures described above
we have undertaken a Monte Carlo experiments. The DG P used are very similar of the
ones used in the previous chapter (i.e. a VAR(1) process with just one or two cointegrated
vectors), doing this allow us to compare our results with the ones given in the previous
chapter. The first DG P is given by

DGFP = DGFP1:
Aylt = &1,

Ayzt = &,
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Ay3t = &3¢

Yar = Pag¥si—1 + BusYa—1 + Eat,

- 4 .
with where 833 = 0.1, 3,3 = 0.1, and ¢, = [ €1¢ €9t €3t Eag ] ~ 1.1.d.N (0,I) . So that
the variance-covariance matrix of the disturbances is set to a unit matrix throughout. The
cointegrating vectoris [ 0 0 g5 Bus—1 ]

The second DG P is given by:

Y3t = BooYor—1 + Baoysr—1 + Baolar—1 + €31,

Yo = 523@%—1 + ,533y3t—1 + 5433%4.%1 + £4t,

!
~

where Oy, = 0.9, O35 = 0.1, By5 = 0.4, U353 = 0.5, 043 = 0.1, and ¢; = [ €it, €2t €3 E4t } ~
i.2.d.N (0,I) . So that we have two cointegrating vectors.
The simulations for the bootstrap and the bootstrap Bartlett corrected test were car-

ried out using 1,000 replications of B=400 bootstrap replications, while for the non-bootstrapped

test we used 100,000 Monte Carlo replications.

3.3.3 The Monte Carlo results

The Monte Carlo results can be summarized as follows. The first thing to note in Table
3.1-3.2 is that inference based on first order asymptotic critical values is again markedly
inaccurate. When 7" = 50, the empirical size can be almost four times as large as the

nominal size. Although the inference improves when the sample size increases, the size
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distortion of the test is still noticeable when 1" = 200. In general, the higher the precision
of the test required (i.e. 10% vs 1% nominal size) the higher the probability of falsely
rejecting a true null hypotheses. With respect to the asymptotic inference, the bootstrap has
better performance. For a nominal level of 10% or 5% the empirical sizes of the bootstrap
tests are only marginally different from the nominal level; this remain true regardless the
sample size considered.

Turning to the bootstrap Bartlett corrected empirical sizes we can see that again they
are much closer to the nominal sizes than the first order asymptotic critical values. How-
ever, the ordinary bootstrap test seems to perform slightly better. This is particularly true
for a sample size 7' < 100. The only exception to this trend is for the nominal significance

level of 1% where for G g the size distortion is smaller than for G.
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Table 3.1. Sizes for tests of §,; = 0 (DGP=DGP1)".
T Ga Gy Gip
10% | 5% % | 10% | 5% 1% 10% | 5% 1%

50 10.216 | 0.133 | 0.045 | 0.106 | 0.050 | 0.005 | 0.136 | 0.073 | 0.015
75 10.169 | 0.099 | 0.027 | 0.101 | 0.047 | 0.007 | 0.121 | 0.063 | 0.008
100 | 0.143 | 0.081 | 0.020 | 0.091 | 0.047 | 0.005 | 0.106 | 0.054 | 0.009
150 | 0.132 | 0.073 | 0.019 | 0.103 | 0.048 | 0.006 | 0.107 | 0.054 | 0.007

200 | 0.120 | 0.064 | 0.015 | 0.094 | 0.052 | 0.013 | 0.102 | 0.055 | 0.013

Table 3.2. Sizes for tests of [317, 4] = [0, 0] (DGP=DGP2).
T G, G; Gip
10% | 5% 1% | 10% | 5% 1% 10% | 5% 1%
50 | 0.198 | 0.103 | 0.037 | 0.128 | 0.067 | 0.016 | 0.129 | 0.068 | 0.015
75 ] 0.163 | 0.093 | 0.025 | 0.131 | 0.072 | 0.015 | 0.130 | 0.071 | 0.015
100 | 0.142 | 0.084 | 0.019 | 0.112 | 0.067 | 0.014 | 0.117 | 0.066 | 0.014
150 | 0.127 [ 0.075 | 0.014 | 0.113 | 0.064 | 0.012 | 0.118 | 0.063 | 0.011
200 | 0.115 | 0.059 | 0.015 | 0.093 | 0.054 | 0.009 | 0.093 | 0.053 | 0.010

19 Note: Ga, Gb, Gb B are the asymptotic sizes, the empirical sizes of bootstrap test, the empirical sizes of bootstrap-Bartlett adjusted LR est,

respectively.
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Considering now the power of the test, the evaluation of the power has been has been

carried out by generating the data under the following alternatives:

a) DGP = DGP1:

Hyy @ 8=[01 0 01 01],

Hyp : 8=[04 0 01 01],
Has © f=[06 0 01 01],
b) DGP = DGP?2 :

- o 09 01 017

Has = =101 04 05 01 |
0 09 01 017

Hap = f= {0.4 04 05 01 |
0 09 01 017

Has = P= {0.6 0.4 05 0.1 |

Tables 3.3-3.4 report Monte Carlo estimated power for the likelihood ratio test, its
bootstrap analogue, and the bootstrap Bartlett corrected test. From these tables we can see
that, in general, as expected, the power increases with the sample sizes and the distance
between the null and the alternative. The power for the larger sample size 7' = 200 is
reasonable irrespective of which alternative we use. Note, however, that in the empirical
literature sample sizes of 7" > 150 are rarely available to practitioners.

Turning to the comparison of the power among the different procedures, in general,

we found that the power of GGy, and the power of G are almost as good as the asymptotic
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power. The only exception being for 7’ = 50 under the alternative H 4;, which is the worst
possible scenario. In this situation the Bartlett corrected test seems to have higher power
than the test based on the ordinary bootstrap®.

The results concerning the power of the bootstrap test are consistent with the the-
oretical result by Davidson and MacKinnon (1996b). As far as the power of the Bartlett
adjusted LR test is concerned, the theory is less conclusive. Indeed, it is well known that
the size adjusted test statistics are characterized by a loss in power. In spite of this Cox
and Reid (1987) show that the unconected statistic and its Bartlett corrected version have
the same local power to an order 7-1/2. However, their result concerns a stationary AR(1)

process; the question whether or not it holds in the case of cointegrated processes is still

open.

20 Note that these ‘power’ comparisons are not size corrected, and perhaps should be more accurately de-
scribed as ‘rejection frequency’ comparison.
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Table 3.3. Power for G, G, Gpp a nominal level of 5% under different alternative hypotheses (7" = 1).
H,/T 50 | 75 | 100 | 150 | 200
Hu1:8=01]G, |0.363|0.490 |0.677 | 0.899 | 0.976
Gy ]0.213]0.379 ] 0.617 | 0.870 | 0.969
Gyg | 0.273 | 0.420 | 0.642 | 0.884 | 0.966
Hpan:8=04]G, 1092410992 | 1.00 | 1.00 | 1.00
Gy |0.82110982(0.999 | 1.00 | 1.00
Gyg | 0.895 10991 | 1.00 | 1.00 | 1.00
Hup3:08=06]G, |0984 | 1.00 | 1.00 | 1.00 | 1.00
Gy, 0921|0998 | 1.00 | 1.00 | 1.00
Grg | 0.964 | 0.999 | 1.00 | 1.00 | 1.00

Table 3.4. Power for G, G b, (GpB 2 nominal level of 5% under different alternative hypotheses (T = 2).
Hy/T 50 75 100 150 200

Ha1:8=01|G, |0343|0.515 | 0.673 | 0.900 | 0.976
Gy, 1027310468 0.632]0.885 | 0.972
Gup | 0.277 | 0.466 | 0.642 | 0.894 | 0.973
Hap:8=04|G, [0932]0993] 1.00 | 1.00 | 1.00

Gy, 10.89710.986| 1.00 | 1.00 | 1.00
Gep | 0.903 ] 0.989 | 1.00 | 1.00 | 1.00
Has:5=06|G, [0980]0993| 1.00 | 1.00 | 1.00
G, 10967 1.00 | 1.00 | 1.00 | 1.00

Gpp | 0903 | 0.989 | 1.00 | 1.00 | 1.00 |
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3.4 Bootstrapping the Bartlett adjusted /. R test

In the previous section we have estimated the Bartlett correction using the bootstrap, and
we have seen that both the bootstrapped LR test (@b) and the bootstrap estimated Bartlett
adjusted LR test (@bB) are able to reduce the size distortion of the test without involving
substantial loss in power. Further refinements, however, may be obtained by bootstrap-
ping the Bartlett adjusted likelihood ratio test, the adjustment being estimated using the
model parameters. This idea rests on the fact that under regularity conditions the Bartlett
correction for LR test yields a test which is asymptotically of correct size with an error
in the rejection probability of order O(7~3/2). Bootstrapping the Bartlett corrected likeli-
hood ratio test amounts to a one term Edgeworth expansion of the distribution function of
the Bartlett corrected likelihood ratio test. This procedure may yield a level of the error in
rejection probability of order O(T~2), considerably smaller than the conventional first or-
der approximation. The conditions under which the Bartlett correction corrects the L test
for the first and higher moments are given in Lawley (1956). These are some continuity
assumptions on the likelihood and its derivatives, together with the assumption that the sec-
ond derivatives of the likelihood with respect to the parameters are of order 7" as 1" — oc.
Unfortunately, no similar theorem has been proved in the case of I(1) variables. However,
an analytical calculation of the Bartlett correction for the LR test for linear restrictions
on cointegrating vectors is given in Johansen (1999). The correction factor proposed by
Johansen depends on the parameters under the null hypothesis, so that in practise the es-
timated parameters have to be used in order to calculate the Bartlett correction. In our

case, for the hypothesis 8 = Hp and the DGP = DGFP1 with r = 1 and a constant term
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Johansen’s correction factor is given by

E[-2logLR|c/ e] _ +i3(P+1>_&lBKH&IA)pML(H&@] (34.1)

r(p—s) r o2 7086016

In Table 3.5 we report the Monte Carlo results for the bootstrapped L R test scaled by

the factor given in equation (3.4.1)*'. The empirical sizes for the bootstrapped LR test are

labelled as éb JB.

Table 3.5. Sizes (5%) for G ypp test of 3, = 0
T | G, G, | Gvs | Gus
50 |1 0.129 | 0.050 | 0.073 | 0.047
75 | 0.097 | 0.047 | 0.063 | 0.045
100 | 0.076 | 0.047 | 0.054 | 0.041
150 | 0.066 | 0.048 | 0.054 | 0.045

200 | 0.069 | 0.052 | 0.055 | 0.045

To facilitate the comparison with the previous procedures we report some of the re-
sults given in Table 3.1. Recall that we have labelled G, G, G the asymptotic sizes, the
empirical sizes of bootstrap test, the empirical sizes of bootstrap-Bartlett adjusted LR test,
respectively. From Table 3.5 we can see that the inference based on the bootstrapped pro-

cedure is quite accurate; no matter the sample size the error in the rejection probability of

Gy sp is only marginal.

3.4.1  The dependence of the size on the parameters: a response
surface analysis

Calculating the Johansen’s Bartlett correction factor given in (3.4.1) for the hypothesis

8 = Hyp for the DGP with r = 1 gives

21 The design of the bootstrap experiment follows closely the procedure described in the previous section for
the bootstrap test, but in this case we correct the test statistic by the correction factor given in (3.4.1) before

applying the resampling procedure.
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Bl-2log LRlo%e] _ |, 1 [8_ 14 — 9543}
7 (p — ) r 533 +/3333 7

fora/=[0 0 0 1]andB' =[0 0 By By |-

It can be seen that in our case the correction factor depends only on the parameters
and T'. In order to evaluate the sensitivity of the empirical sizes to the parameter values
of the DG P we have undertaken a response surface analysis. In doing that we are able to
analyse not only the finite sample properties of the correction factor, but also the effects
of the parameters on the distribution of the likelihood ratio test statistic as the parameters
enter into the distribution function of the test through the functions /3 and &/Q a5 Q8
of equation (3.4.1) (cf. Johansen (2000)). In our case the matrix /3 reduces to the scalar
o'} = P43 and

o/ B0B = Bl + B,
The parameter space in the Monte Carlo experiment has been chosen in order to

preserve the stability of the system?, and is given b
p y y g y

be = B4 € —1.9,~1.5,-0.9,-0.5,-0.3, —0.2 - 0.1 (3.42)
Ba3 €0.1,0.2,0.3,0.4,0.9,1.5,2 ’ o

22 Calculating the characteristic polynomial we have:

A(z) = I(l—2)—affz=

11—z 0 0 0
. 0 1-z 0 0
B 0 0 1—z 0 !
0 —fo3z Pz 1—(1+ Bys)2

such that | A (2)| = (1 — 2)° (1 — (1 + f,43) 2) = 0 if and only if

- 1 or 1/(1+ Bas), if,@@#—l}
Sl if B3 =—1

Therefore, if 3,5 is in the interval (—2, 0], then the process Y; is J(1). (In the case 843 = 0, the process
is a pure I(1) process which does not cointegrate. For 3,5 < —2 or 8,3 > 0 the process Y; is explosive).
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and
T e {50,75,100, 150} .
This give us a number of 7 x 7 x 4 = 196 Monte Carlo experiments with 10, 000

replications each.

To summarize the results of the Monte Carlo experiments we use a 3D plot. In figure
3.1A-D we report how the empirical sizes change as a function of the parameter values
keeping the sample size fixed to 50, 75, 100, 150, respectively. On the vertical axis we
report the empirical sizes corresponding to each pair of (8,5, (B35). On the horizontal axis

the values assumed by 3,5 and 55 givenin (3.4.2).

From Figure 3.1A-D, it appears that there are points in the parameter space where

the v? approximation works relatively well. This is true for example for

e {-2< B < ~15 U 05< By <9}

in Figure 3.4A, where 77 = 50. The implication of this is that there are points of the
parameter space where the Bartlett correction or the bootstrap test are less needed, since
the usual first order approximation gives good results. On the other side, from Figure
3.4A-D it appears that there are points of the parameter space where the size distortion of
the test does not vanish, even for 7' = 150 (e.g. ¥ € {B43 = —0.1U G353 = 0.1}). The

overall impression is that the size distortion of the test greatly depends on the values of the

parameters other than the sample size.
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3-D Graph for LR, b43, b33 3~D Graph for LR, b43, b33

3-D Graph for LR, b43, b33 3-D Graph for LR, b43, b33

Figure 3.1. Sizes (5%) for (G, for different values of ,333 and 543 .T= 50, 75, 100, 150 in 3.4A-D respectively.
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The response surface function has been estimated using the logistic transformation *

~

n [ —Ge = MW, T)+e.

1-G,

where £; « D(0, [1— LR,]/N), and N is the sample size of the Monte Carlo experiment.
After several attempts, we find that the equation that best describes the relations

between the parameter values and the empirical size of the likelihood ratio test is

Go = G+nT  + 3T 85 + T 05 + 44T (Bs3fu) +
+45T " (B138s3) + 46T ™1 843855 +
T (BBls) + 45T (Bis (1~ B3) ) +
+79T % fas + &1
In terms of the influence of the parameters and 7" we can see in Table 3.6 that after the

intercept, the most significant coefficient is 4, the coefficient of T~ which is negative.

23 Cox’s (1970) linear logistic models of binary data are natural bases for developing response surfaces of
estimated finite sample probabilities. Consider a binary response, denoting as M the number of replications
in a particular monte Carlo experiment, S the number of “successes” (i.e. the number of replications for
which the value of the test lies in the critical region), ¢ (for 0 < ¢ < 1) the finite sample probability of the
test lying in the critical region, and s = S/M is the finite sample rejection frequency. Letting

S(M - 9)
=202
M-1
T(g):@l/QlogLig , for 0<¢ < 1,
and for 2M)™F < ¢ <1— (2M)7 L
—(OM)"*
() = /% log _s-@M) ~ |
1—¢—{(2M)

it can be shown that
7 (s)— 7 (¢) 2 N(0,1).



Table 3.6. Estimated coefficients standard errors, Wald test, two-tailed p-values.

3.4 Bootstrapping the Bartlett adjusted LR test

Coeff. Std.Er. | Z P> |Z]
vy | 92.99 3.062 30.36 | 0.00
o | -205.36 9.936 -20.67 | 0.00
A4 | 1465.30 16998 | 8.61 0.00
Y4 1 -2954.99 | 321.61 | -9.19 | 0.00
s | -80975.3 | 9574.02 | -8.45 | 0.00
Vg | -7.132 0.377 -18.89 | 0.00
- | -120880.1 | 11245.1 | -10.75 | 0.00
Y | 2.21 0.51 4.30 0.00
g | 8330.44 656.20 | 12.69 | 0.00
a | 5.07 0.41 12.37 | 0.00

(1/df peviance: 3947, (1 /df ) pearson: 398.3;
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3.5 Concluding remarks

In this chapter we consider computer intensive methods for inference on cointegrating vec-
tors in maximum likelihood cointegration analysis. The first part of this chapter focuses
on the finite sample behavior of the asymptotic, bootstrap, and bootstrap Bartlett corrected
likelihood ratio tests for testing linear restriction on the cointegrating space. The Monte
Carlo results show that asymptotic x? based inference can be quite inaccurate in small
sample applications. By contrast the bootstrap and the Bartlett corrected LR tests delivers
remarkably accurate inference for the restrictions considered. Furthermore, the compari-
son of the power among different procedure reveals that the power of the bootstrap, and
bootstrap Bartlett corrected likelihood is almost as good as the asymptotic power, although
in some situations the bootstrap Bartlett corrected L R test seems to have higher power than
the bootstrap test.

In the second part of this chapter we propose bootstrapping the Bartlett corrected
likelihood ratio test, but in this case the Bartlett correction is calculated analytically using
the correction factor proposed by Johansen (1999). According to theoretical arguments
proposed by Beran (1988) this procedure may produce an error of rejecting probability of
order O(T~?). The simulation results reveals that this procedure works remarkably well.
However, the response surface analysis reveals that the size distortion of the test heavily
depends on the parameter values. There are regions of the parameter space were the usual
asymptotic x? approximation works reasonably well, whereas there are parameters points

close to the boundary where the distribution of the LR test is very sensitive to the parameter
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values. In this case the first order approximation 1S quite inaccurate, as is the Bartlett

corrected LR test.
The general conclusion is that both the bootstrap hypothesis testing and the Bartlett
correction the LR test are useful devices for robust inference in the context considered in

this chapter, but of course, further theoretical work is needed to confirm the simulation

resuits.
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3.6 Appendix : Supplementary simulations

In this appendix we report the results of some supplementary simulations. In Table 3.1A-

3.4A we reports the p-values for increasing number of bootstrap replications.

Table 3.1A. Sizes for wsts of J17 = 0,7 == Lana N = 1000 for ¢, 5.
T\B | 100 | 200 | 400 | 600 | 800
50 | 0.065 | 0.067 | 0.073 | 0.08 | 0.078
75 1 0.074 1 0.059 | 0.063 | 0.084 | 0.073
100 | 0.05 | 0.057 | 0.054 | 0.058 | 0.059
150 | 0.057 | 0.060 | 0.054 | 0.058 | 0.064
200 | 0.043 | 0.055 | 0.055 | 0.059 | 0.051

Table 3.2A. Sizes for tests of [ (711, Fo1] = Orokor 7 = 2 and N = 1000 for ¢ 5.
T\B| 100 | 200 | 400 | 600 | 800
50 | 0.051 | 0.048 | 0.047 | 0.051 | 0.050
75 1 0.049 | 0.065 | 0.051 | 0.051 | 0.047
100 | 0.056 | 0.052 | 0.050 | 0.063 | 0.047
150 | 0.052 ] 0.047 | 0.056 | 0.043 | 0.047
200 | 0.043 1 0.043 | 0.053 | 0.044 | 0.050
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Table 3.3A. Sizes for tests of (1 = 0,7 = Lana N = 1000 for ¢
T\B | 100 | 200 | 400 | 600 | 800
50 | 0.076 | 0.079 | 0.068 | 0.081 | 0.083
75 1 0.076 | 0.064 | 0.071 | 0.077 | 0.070
100 | 0.049 | 0.064 | 0.066 | 0.054 | 0.064
150 | 0.056 | 0.065 | 0.063 | 0.055 | 0.054
200 | 0.049 | 0.053 | 0.053 | 0.054 | 0.056

Table 3.4A. Sizes for tests of (1 == O rankof 7 = 2ana N = 1000 for &,
T\B | 100 | 200 | 400 | 600 | 800
50 |0.061 | 0.076 | 0.067 | 0.080 | 0.081
75 1 0.075 ] 0.059 | 0.072 | 0.072 | 0.071
100 | 0.047 | 0.058 | 0.067 | 0.057 | 0.063
150 | 0.054 | 0.061 | 0.064 | 0.055 | 0.057
200 | 0.040 | 0.052 | 0.054 | 0.055 | 0.055




Chapter 4
Macroeconomic Shocks and Unemployment

4.1 Introduction

In the previous chapters we have considered the small sample performances of the boot-
strap tests using mainly simulated data. In this chapter we consider real data instead. The
main issues addressed in this chapter are the relationships between macroeconomic shocks
and unemployment. In particular, the questions we try to shed light on are: (7) What is
the relative importance of shifts in labour supply and labour demand in the rise of unem-
ployment? (i7) What explains the asymmetry of unemployment rate across countries? To
investigate these issues we analyse the joint dynamic behavior of three key variables: the
profit rate, the real interest rate, and real wages. In the literature there is a wide consen-
sus (see for example Bean (1994)) that the cause of the rise in unemployment in Europe
during the 1970s’ has been a large adverse shift in the wage-setting relation. Specifically,
there was a widely documented slowdown in the rate of the total factor produ@tivity growth
in the European countries during the seventies, and a failure of real wages to adjust to a
slowdown in productivity growth was one of the causes of the rise in unemployment rate.
On the other side, though it would be generally agreed that an increase of the price markup
reduces the labour demand and increases unemployment, relatively few authors have inves-
tigated this possibility. Blanchard (1997) argues that during the 1980s’ shift in the labour

supply in the European countries were substituted by shifts in the labour demand. The ex-

108
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planations he gives are: (i) A shift in the distribution of rents from workers to firms due
to the fact that firms have steadily increased their markups in goods markets starting from
the early 1980s. (iz) A technological bias against labour, that is at given factor prices firms
have been adopting technologies that use less labour and more capital, thus decreasing the
labour demand.

Blanchard’s hypothesis is quite challenging, and particularly interesting for the pol-
icy implication that it involves. However, in the recent literature the relationships among
capital accumulation, real interest rate and unemployment remains relatively obscure, par-
ticularly from the quantitative point of view. With this work we try to fill the gap. Although
based on a general economic framework, the contribution of this chapter is more method-
ological. * Our task is to provide an empirically valid description of the interrelations in
actual economic data in accordance with the economic theory. We thus impose theoretical -
restrictions as long as these do not conflict with the empirical evidence.

The model we study is a cointegrated VAR. This model allows us to distinguish be-
tween the effects of transitory and permanent shocks to unemployment. Inference about the
cointegrating rank is, once again, carried out using the Johansen procedure (1988, 1995).
In order to investigate the robustness of our inference we have carried out a simulation
study using non-parametric bootstrap.

The structure of the chapter is as follows. In Section 4.2, a simple economic model 18

presented. In section 4.3 we briefly summarize the econometric model. Section 4.4, reports

the empirical results.
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4.2 The model

In this section we introduce the model that will be estimated in Section 4.3. The structure
of model is described below. As far as the notation 1S concerned we use the lower case to

indicate that the variable is expressed in logarithms and the upper case when the variable is

expressed in levels.
Production function, Price-setting relation,and unemployment

Consider a production function characterized by constant return to scale
Y — e =71 (ke — 1) + (4.2.1)

with y: output, k: capital, n: labour, and a; stands for technological progress which follows

the stochastic process given by
Ay = Qg1 T Etq,

where €, , s a stationary error term. Assuming that firms maximise profit, the price-setting

relation is given by

wy = (Y — 1) +

where w; = real wage. Hence, the wage is a function of the marginal product of labour and

a mark-up (u,) ** on the-labour costs. From equation (4.2.1), we can write

24 The markup is defined as the ratio of the marginal product to the real wage.
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and solving for n; we obtain an expression for the labour demand given by
_ -1 3 —1 -1
ne=—71 Wt k471 0+ e

In the short run the capital is fixed, so that labour demand is decreasing in the wages,

while the ratio of labour to capital is decreasing in the wages and increasing in the mark-up

on the labour cost
ny — ky = =7 (wy — p, + ag) .

In the long run firms adjust the factor proportions, and capital accumulation depends

on the firms’ profit.

Defining the profit per unit of capital as

1L B /Nt\\ N JVt\
w=1(7)-= (%)

we can express the profit rate as
Ty — ki = =MW + Uy

where 1, follows a /(1) stochastic process. If y1, = 0 this is simply the factor price frontier
relation implied by the production function (4.2.1). In the long-run, for a given interest
rate, the zero profit condition implies that the wages must be such as to generate a profit
equal to the user cost of capital, so that

II
= (W) = o+ 70 (422)
t

where p, and r; stand for the depreciation rate and the real interest rate, respectively.

Therefore, the long run labour demand is horizontal.
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From the short run and the long run labour demand, in order to consider the relation-
ship between unemployment and factor prices, we write a general expression for unem-
ployment given by (4.2.3). Note in (4.2.3) the variable a; has been omitted since under the
assumption of Hicks-neutral production function the ratio of the marginal products remains

unchanged for a given capital to labour ratio. Therefore, u; does not depend on a;.
given by

li — ng = yowy + nyuce + Ory, (4.2.3)

where [; stands for labour force, and
Qt,u = 759‘6—1,21 + Etus

where |v;| < 1, and ¢, is a stationary process. Assuming that a linear combination of

(I; — n;) and w; is stationary, and that the real interest rate is stationary, we may consider

two cases®:

’)’5:1:>9t7wmf(1)$utwf(l)
’)/5<1:>(9t>wv~]<0):>utm](0) ’

The stochastic process 6;, may reflect changes in the equilibrium level of unem-
ployment caused by an increase in the markup of prices over wages. If v5 — 0 then the
equilibrium level of unemployment does not change, since it depends only on a pure Jabour

demand shock (g, ,,). For 5 — 1 the equilibrium unemployment is not stationary.

25 These hypothesis will be subject to testing in Section 4.
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The wage-setting relation

The wage-setting relation or pseudo-labour supply, may be thought as the relation
between the wage set in bargaining between firms and workers, and labour market con-
ditions. In the literature (see Layard et al. (1991)) this function has been expressed as a

relationship between wages, unemployment and labour productivity. In particular,

we = —v3 (I — 1) + v, (e — 1e) + €t (4.2.4)
where £, ,, is an /(0) process, and 73, v, are the elasticity of the real wage with respect to
unemployment and productivity, respectively. In order to concentrate on the relationships

between the wages and unemployment we rewrite equation (4.2.4) as

Wy = —7s {(Zt - 'I’I,t)] -+ Vol — Ty —+ @t,wy (425)

where

and w@¢ ,, is assumed 7(0).

If @i « I(0), v4 = 1, p, = 0, and 73 > 0, then we are in the “competitive
framework™ where the wage is equal to the marginal product of labour (i.e. the wage share
is stationary) and unemployment is white noise. In equation (4.2.5), (y; —n)° indicate
the productivity level perceived by workers, rather then the actual one.

The stochastic process @;,, may reflect changes in the equilibrium level of un-

employment caused by the mismatch between the perceived and the actual productivity

growth.
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The idea behind this formulation of the wage setting relation is that “hysteresis” in the
labour market may be caused by a failure of wages to adjust to a shock to productivity. The
assumption that workers have imperfect foresight captures some important aspects of the

data. It may be useful to illustrate our hypotheses about non stationary in unemployment

with a picture.

>

Real wage

__________ P> :
A B
PS
§ ’
! {

\\ ws ws*

—

o Uws Ups Unemployment rate

Figure 4.1. The relation between real wage and unemployment.

Figure 4.1 relates the unemployment rate and the real wage. The wage setting relation
is denoted as WS, and the price setting relation is denoted as P.S. A positive shock to &y
shifts the wage setting relation from /.S to W.5” and the equilibrium unemployment moves
from A to B, while real wage does not change. Thus a positive shock to @ does not show
up in higher wages in the long run, since higher unemployment forces wages back to their

initial level.
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On the other side increases in p, shift the .S curve down to PS’, moving the equilib-
rium from A to C, and thus leading also to an increase in the natural rate of unemployment.
Whether this movement is permanent or not depends on the properties of the stochastic
process in j;.

Under the assumptions above there are two common stochastic trends among em-
pioyment, real wages, and profit rate arising from productivity growth and a markup trend.
A third possible trend is derived from equation (4.2.3) . This implies that unemployment
can have a permanent component and a serially correlated transitory component. These
components may be interpreted as “structural” and “cyclical” unemployment respectively.

One important feature of this model is that the endogenous variables are driven by

unit root processes. This property motivate the interpretation of the model in terms of

cointegration.

4.3 The Econometric model

In this section we briefly discuss the econometric model we use to estimate the model
described in the previous section. We refer the reader to Stock and Watson (1988), Johansen
(1995), King et al. (1987), and Wamne (1993) for more rigorous treatments.

The common trends model involves a linear decomposition of a VAR into stationary
and non-stationary parts. Rewriting the VAR in the VECM form and inverting it we find
a M A representation which is the sum of the initial values, an /(1) component and an /(0)

component. This formulation has its roots in the Beveridge-Nelson (1981) decomposition

of univariate time series.



4.3 The Econometric model 116

Consider the model
. = xo+ A+ P (L) v 4.3.1)
Tt = P+ Tie1+ @y
where zg is an (n x 1) vector of constants, 7 is an (k x 1) vector of random walks with

drift 1, and innovations ¢,, L is the lag operator, ® (L) is an (n x n) matrix of lag polyno-

mials, and v; is an (n x 1) vector of serially uncorrelated innovations, with mean zero and

covariance matrix » .

The matrix A is called the loading matrix, and gives the impact of the trend 7 on z:.

By recursive substitution in (4.3.1) the model can be rewritten as

z; = zg+ P(L) v (4.3.2)
T
o = A {To+ut+z%}
=1
T, = xf+af

So the trend component A7, is driven by the impulses to the random walks ; and the
propagation mechanisms in A. The deviations from the trend are a product of the impulses
v and the propagation mechanism @ (7).

As Stock and Watson (1988) point out cointegration implies the number of trends, k
to be less then the number of variables, n. That is, there are exactly r = n — k linearly
independent vectors which are orthogonal to the columns of the loading matrix A so that

there exists an n X r matrix J such that the vector

/3,3315 = /6/330 + ﬁIATt + 5/@ (L) Ut
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is stationary (i.e. 5'A = 0).

To see how the common trends model can be estimated let us consider
I'(L) Az, = af'zi 1 + & (4.3.3)
The VECM can be inverted to yield a Beveridge-Nelson-Stock-Watson representa-
tion in term of reduced form disturbances
r, =1z + C(1)& + C* (L) &

where C*(L) is a stationary moving average representation, £, = p+ &,_; + &, and

cr Ly =S crr.

§=0
Therefore, equation (4.3.3) can be rewritten

x; = xo+ C*(L)& (4.3.4)
» t
@ = O |go+et+), =
Combining (4.3.2) and (4.3.4) we find that
Cp = Au = (4.3.5)
C(e = Ay,

and hence (assuming that F (¢¥,1,”) = I) that

C(1)> C(1) = AA"

To estimate the loading matrix A we need to know C (1) and > . The covariance
matrix can be consistently estimated from (4.3.3) . However, to obtain an estimate of C' (1)

we need to invert the V ECM representation. To do it, we follow Warne (1993). Define
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M as a non-singular matrix given by

[ s g7
M—[ ¥ (nxr)}'

(n Xn) (TLXk))

Furthermore, o” = [ 0 « |, and the polynomial matrices D(L) and D (L) de-

(nxn)

fined by

and

D, (L)= [ (1 ”OL)]’“ IO}

Under hypotheses of cointegration there exist a restricted VAR (RV AR) represen-

tation of the form
B(L)y, =04+0"D; +n,, (4.3.6)

= M[A*(L)M'D(L)+ « L] and fory, = D, (L)Mz, the process {z:}

where B (L

N

18 stationary.

The following relationship holds between the RV AR and the unrestricted VAR

model:

0 = Mp,
6* — Mp*>
e = JMEt

A(L) = M'B(L)D, (L)M.
Since | B (L)| = 0 has all solutions outside the unit circle and D, has rank r, A(1)

has rank 7.
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To summarize we use Johansen’s (1995) procedure to estimate the matrix polynomial
M and D (L) . From here we can construct the vector {y; } . To choose the first k elements
of y: we set Sp = (' where 3/ f = 0. Consistent estimates of the parameters in (4.3.6)
can be obtained from Gaussian likelihood estimation of ¥; on a constant and p lags.

The next step is to estimate the loading matrix of the common trends parameters, (i.e.

the matrix A defined above).

Let us rewrite A as Agm, where Ag is a known and 7 is a lower triangular matrix of

1100

unknown parameters. Then the estimate of A and 7 can be constructed from the estimates

of C(1) and ) = E (g:¢}) . To determine , recall that,
t
ZL’? = C(l) Z&j = 44’/}.
=1

Combining this with the assumption that F (¢,¢}) (\;thch is a (k x k) identity ma-

trix), it follows that
C(1)Y " C(1) = Agrr' A,
Therefore, given C(1) and ) |, 7 can be estimated using a Cholesky factor of
mr' = (Agdo) T ALC(1) D> C(1) Ay (Ao o)™ 4.3.7)

The right hand side of (4.3.7) is a (k x k) positive definite and symmetric matrix
with &k (k + 1) /2. So, if Ag is known we can solve k (k + 1) /2 independent equations in
77’ However, in order to uniquely identify =, in addition to the requirement 5’ Ao = 0, we

need k (k — 1) /2 extra restrictions.
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4.3.1 Permanent vs transitory shocks

The usual way of analysing how a VAR system reacts to various impulses is using impulse
response functions and variance decomposition. The impulse response function shows the
shape of the dynamic résponse of the variables to an innovation in the permanent com-
ponent. By contrast, the variance decomposition gives us the relative importance of the
response to a typical innovation in determining the short run evolution of the variables.
The moving average representation of (4.3.3) is a natural starting point for impulse

response analysis and variance decomposition. This is given by
Azy =6+ C(L)e;. (4.3.8)
We write

@t:[w; U{‘J7

and assume that ' [ ¢, ¢} | is diagonal. From (4.3.5) we know that
v, = (A'A) T AC(Q)e,. (4.3.9)
Defining
F, = (4A) T 4C(1)
and F = [ F| F] ], we can express (4.3.9) as
Y, = Fey,

so that the moving average model (4.3.8) becomes

Az, = 6+C(L)F 'y, (4.3.10)

= 6+ R(L)g,
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oo
el ) ronreeantatinn 1
with R(L) = > R,L". The representation(4.3.10) can be used to calculate the impulse

e

response function and decomposition of variance with respect to the innovation 1, and v;.

4.4 Empirical Evidence

In this section we present the result from the estimation on the models described in the

previous section. The empirical evaluation of the model is carried out by considering the

following variables
!
Ty = [ yt — Ny Wy T — kt Uy UCt :t

for France, UK, Germany, Italy, US, Japan and Canada.

The data-set consists of quarterly observations from the OECD data-set*® ((1970-
1998) for France, and (1960-1998) for /'S and Canada, on real GDP (Y;) , total employ-
ment in hours (IV;), gross fixed capital formation (I N'V;), capital stock at constant prices
(K_COST), and the nominal interest rate on long-run government securities (I R_NOM).

From these series the variables of the estimated models are constructed as follows:
the unemployment series, (L:/N;), is equal to In[1/(1 — wu,/100)], where u; is the per-
centage unemployment rate for the economy. Note that expressing the unemployment in
this way implicitly give us data on the labour force (L;) in hours. The real-wage series
(W) is calculated from the average nominal wages per hour (which include pay roll tax
rate) deflated by the GDP deflator. The real interest rate (R_IRATE) is calculated as

IR_NOM less the inflation rate. From annual K _COST and quarterly //NV', using the

26 The data relating to employment (in hours of work) are obtained from International Labour Office (I LO):
Bulletin of Labour Statistics.
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perpetual inventory method, we calculate the capital stock (&) . The user cost of capital
is calculated as (R_IRATE + DEP_RATE) for DEP_RATE = depreciation (“‘scrap-
ping”) from the OFECD data-set. The profit rate (7, — k) is calculated as the log of the
profit divided by K.

Prior to cointegration analysis, we need to establish the lag order for the VAR model.
‘We have considered lag lengths ranging from 1 to 6, together with the univariate tests for
the analysis of the residuals (vector Portmanteau statistic for residual correlation, LM test
for autocorrelated residual, ARC H effects, test for normality) and multivariate versions
of these tests. The misspecification analysis suggests that a reasonable choice of the lags
length is 4 for Canada, Japan,UK, US, Germany,France, and 5 for Italy. We have also
considered the Akaike (1969) and Hannan and Quinn (1979) information criteria. The
result was that any model with lower lag order, although supported by these information

criteria failed to pass the misspecification tests.

4.4.1 The deterministic variables

In modelling the relationship between capital accumulation, factor prices, and unemploy-
ment it is important to keep in mind that many economies in Europe have experienced
significant changes in their economic structure during the last thirty years. For example,
UK and Italy have undergone substantial liberalisation of their labour markets. As a result
there has been a shift in the structure of the aggregate labour sector. As Marcellino and Mi-
zon (1999) point out the 1980s in UK correspond to a period of major changes in labour

markets legislation which aimed at substantially increasing labour flexibility. Some of the
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institutional changes are: a decrease in unemployment benefits, the weakening of union
power, and the possibility for employers not to contract with unions. To take this into ac-
count we allow for a step dummy not restricted to lie in the cointegration space which take
value one up to 1979:2. This date coincides with the election of the Thatcher Conservative
Government in May 1979.

As far as Italy is concerned, in the 80s labour mobility increased due to amendments
of the Wage Supplementation Fund (Cassa Integrazione Guadagni). On the other hand, at
the beginning of this period a tighter monetary policy was introduced to control inflation,
and the Banca d’Italia was concerned with the defence of the lira within the ERM. For this
reason we introduce a step dummy which takes value one from 1981:2 to 1981:4 when there
was a sharp drop in inflation and an increase in unemployment. In addition we introduce
a step dummy for the period 1980:4 t01982:1 to capture the effect of recession induced
by tight monetary policy. Finally, we include an impulse dummy for 1992:2 , since this
corresponds to an important change in the measurement of unemployment .

To account for German reunification we insert a step dummy which takes the value
one up to 1 July 1990, the date of reunification. The German economic and monetary union
is associated with an important shock for the labour market. Indeed, after the reunification
East-German wages adjusted rather quickly towards West-German wages despite the low
labour productivity in the East. Wage differentials together with high unemployment in the

East led to migration of workers from East to West Germany.



4.4 Empirical Evidence 124

Finally, in order to account for outliers we include a number of impulse dummy
variables in all the countries considered. The first group of dummies refers to the first oil

shock in the 70s, and the second to the second o1l shock in the 80s.

4.4.2 Determining the cointegrating rank

As specified in Section 4.3 to estimate the model we use the full information maximum
likelihood approach introduced by Johansen (1988). As additional information we look at
the dynamics of the VAR model. In particular, we consider the roots of the companion
matrix, since this provides us additional information of how many (n — r) roots are on
the unit circle, and thus on the number of r cointegrating relations. In Table 4.1-4.7 we
report the tests for cointegrating rank calculated for the different countries considered. The
various hypotheses to be tested from no cointegration (i.e. 7 = 0 or alternatively n —r = 5)
to increasing the number of cointegration vectors, are presented in the first column. The
eigenvalues are presented in the second column, ordered from the highest to the lowest.
Next come the Ay, statistics which test whether 7 = 0 against r» = 1, or r = 1 against
r = 2, etc. The Apqce test is given in column six for the null that r = g (¢ = 1,2, ...,n—1).
Using the asymptotic reference distribution in Osterwald and Lenum (1992), on the basis
of the rank tests it is possible to accept that there are three cointegrating vectors for France,

US, Canada, Japan and only two for Germany, UK , and Italy .



Table 4.1. Test for cointegrating rank using France data (1970:1-1998:1).
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[ Hy:r k] ) —Tlog(1 — ;\T+1) Amaxr | —1 > log(l — 5\1) AtraceR
0 51 0.583 | 92.8%* 70.91%% | 194 2%* 148.4%*
1 4 10.409 | 55.73** 42.59%* | 101.4%*=* TT.51%*
2 3 10.225 | 27.63%* 21.12 45.7%* 34.92%
3 2 10.128 | 14.49 11.07 18.07 13.81
4 11]0.0333.579 277135 | 3.579 2.735

Table 4.2. Test for cointegrating rank using Germany data (1970:1-1998:1).

Ho:7r | k| A —Tlog(1 — ;\T+1) Amaxr | —1' Y log(l— 5\2) AtraceR
0 51 0.5087 | 74.63%* 56.86%* | 143.3%%* 109.2%*
1 4 1 0.3755 | 49.44%* 37.67%% | 68.67* 52.32%
2 3101178 | 13.16 10.03 19.23 14.65
3 21 0.0476 | 5.061 3.856 6.067 4.623
4 110.009 | 1.006 0.766 1.006 0.766
Table 4.3. Test for cointegrating rank using UK data (1971:1-1998:1).
Ho:r | k] A —T10g(1 = Mi1) | Amaxr | —7 S210g(1 = A) | Mracer
0 5104945 | 75.72%% 56.03%% | 151.5%* 124.2%*
1 4 10.2547 | 32.63* 26.75 75.75%%* 62.1%*
2 31 0.2096 | 26.11 214 43.13 35.36
3 2 10.1329 | 15.82 12.97 17.02 13.95
|4 110.0107 | 1.194 0.979 1.194 0.979
Table 4.4. Test for cointegrating rank using Italy data (1971:1-1998:1).
Ho:r | k| —T1og(1 = A1) | Amaxre | =7 3210g(1— A) | Mracer
0 5104139 | 57.16%* 43.8%% | 115.6%* 88.57**
1 4 1 0.3132 | 40.22%* 30.82%* | 58.41%%* 44.76%*
2 310.1157 | 13.16 10.09 18.19 13.94
3 2 1 0.0456 | 4.989 3.824 5.013 3.856
4 11 0.0004 | 0.042 0.032 0.042 0.031




Table 4.5. Test for cointegrating rank using US data (1960:1-1998:1).
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Ho:r | k| A _T10g<1 — ;\r+1) Amax R =T Zlog(l - 5\1) AtraceR
0 5103675 | 67.81** 58.65%* | 158.9%* 137.4%%
1 4 1 0.2565 | 43.88%* 37.95%* | 91.07** 78.76%*
2 3 | 0.2088 | 34.67** 29.99%% | 47 19%* 40.81**
3 2 10.0555 | 8452 7.31 12.52 10.83

4 1 110.027 | 4.066* 3.516 4.066* 3.516

Table 4.6. Test for cointegrating rank using Canada data (1960:1-1998:1).

(Ho:r | kA —T108(1 = Ar1) | dmaxr | =T S 10g(1 = X) | Airacer
0 5104671 | 90.64%* . 78.05%* | 202.1%* 174.1%%*
1 4 103824 | 69.41%* 59.77%% | 111.5%* 96%+*

2 3 10.1389 | 21.54 18.54 42.08%* 36.24%
3 2 10.1190 | 18.26* 15.72*% | 20.55% 17.69
4 110015 |2292 1.074 2.292 1.974
Table 4.7. Test for cointegrating rank using Japan data (1971:1-1998:1).
Hy:r | k| A —Tlog(1 — Ari1) | Amaxr | =T D_1log(1 — A;) | Aracer
0 5103456 | 45.8%* 37.32%% | 122.2%* 99.57%*%*
1 4 1 0.2963 | 37.95%* 30.92% | 76.4%* 62.25%*
2 31 0.2041 | 24.66%* 20.09 38.45%* 31.33%
3 2 1 0.0811 | 9.135 7.443 13.79 11.24
4 1 110.042 | 4.657* 3.795% | 4.657* 3.795% |

** Denotes rejection at the 10% significance level; * Denotes rejection at the 5% significance level.
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The cointegration analysis was conducted using PcFiml for Windows. However, it
is well known that x? asymptotic distribution is potentially a poor approximation in small
sample applications. Although, PcFiml by default calculates Reimers (1992) adjusted trace
and A, Statistics®, it is not clear whether this is the preferred correction (see Doornik and
Hendry (1994)) . Since our theoretical model in Section 4.2 does not prespecify the exact
number of cointegrating relations the rank test is crucially important in our analysis. For
this reason, it is important to investigate the robustness of our results. To do it we augment
the asymptotic inference with a simulation study based on non-parametric bootstrapping
(see Appendix B of this chapter). In Table 4.8 we report the results of our experiment. The

p-value we report are based on B = 400 replications.

Table 4.8. Bootstrapped p-values for Amax a0d Agpee tests (% values).

Test Stat. | r=0{r=1{r=2|r=3|r=4
France Amax 5.00 | 825 1 10.75 1 30.25 | 56.75
Atrace 5.00 | 575 | 450 | 32.75 | 56.75
Germany | Apax 5.00 | 525 | 48.50 ] 73.25 -
Atrace 5.00 | 9.25 | 56.25 | 73.25 -
UK Amax 500 | 3.25 | 3125|7775 | 82.25
Atrace 5.00 | 3.00 | 425 | 85.25 | 82.25
Italy Amax 875 | 19.0 | 86.75 | 89.0 | 40.25
Atrace 8.5 20.0 | 18.81 | 6.27 0.81
Us Amax 500 | 525 | 575 | 3575 | 2.5
Abrace 5.00 | 5.00 | 525 | 11.5 2.5
Canada A max 500 | 5.00 | 24.0 | 10.5 | 76.75
Atrace 5.00 | 5.00 7.0 16.0 | 76.75
Japan Amax 5.00 | 5.00 |26.25]21.75 | 18.25
Atrace 5.00 | 5.00 | 6.25 | 16.75 | 18.25

27 These are given in column 4 and 7 of table 4.1-4.7.

28 Reimers’s correction factor allows us to take account of the number of parameters to be estimated in the
model by making an adjustment for the degree of freedom. This is done by replacing the sample size (1)
in the original Johansen’s (1988) trace and e statistics with (T — np), where n is the dimension of the
V AR, and p are the number of lags included in the estimated model.
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Comparing Table 4.1-4.7 with Table 4.8 we can see that the conclusions about the
cointegrating rank are quite in agreement with Reimers’s small-sample corrected tests,
while Johansen tests in some case (e.g. Canada) tend to overestimate the number of coin-
tegrating vectors. Moreover, from Table 4.8 we can see that in general the p-values of
bootstrapped Ay.x are higher then the p-values of the Ay qce test. In the literature it has been
established (see Cheung and Lai (1993)) that the trace test is more robust then the Ay .
test. For all these reasons we decided: () to rely more on the bootstrap test, (i) to place
greater weight on the trace test than the Ay, test. Following this criteria we are able to ac-
cept r = 3 for US, Canada (at 7%), for France (at 4.5%), and Japan (at 6.25%), and r = 2
Germany (at 9.25%), and UK (at 3%). The conclusion about the cointegrating rank change
for Italy (where = 1 at 8.5%). However, the moduli of the three largest roots in the com-
panion matrix are 0.9893x 1 and 0.9566x 2, are close to unity suggesting that £ = 3, so we

decided to proceed with r = 2.

4.4.3  Testing for linear restrictions on the cointegrating space

From Table 4.1-4.7, all we know is how many cointegration vectors span the cointegration
space. However, any linear combination of the stationary vectors is also a stationary vector,
as a consequence the estimates for any column in J are not necessarily unique. Therefore,

the next step is to impose linear restrictions on the cointegrating space, and then test if the

columns of B are identified.



4.4 Empirical Evidence 129

In the case where r = 3, we test if the following vectors are contained in the estimated

cointegration space
81.1 = [* 1 0 = O],,

!

Bro = [0 % 10 ],
51.3 == I: 0 * O 1 * ]/ .
The symbol “ * ” is used to indicate the parameters which are left unrestricted. In

term of the theoretical labour market model, we identify the first as the wage setting relation

given by equation (4.2.5), the second with equation (4.2.2), and the third with equation

(4.2.3).

As a next step we additionally require equal coefficients with opposite sign on the
real wage and productivity (i.e. we test for v = 1 in equation (4.2.5), and we test for

homogeneity between the profit rate and user cost of capital in equation (4.2.2), (i.e. we

test for (m; — kt) — ucy = 0) .

In the case r = 2, we test for

~

61.1 = [ * 10 = 0 JIJ
31‘2 = [ 0« 1 0 = }/;
and then for homogeneity restriction between the profit rate and user cost of capital as

above®.

29 In addition we check for the hypotheses of stationarity of unemployment by testing if

Ban = [+ 10007,



4.4 FEmpirical Evidence

Table 4.9. The estimated structural long-run relations.

[ France wy =01.2727 + (y — ny) — 3.6958 uy
(0.252) (0.427)
m — ky =2.5049+0.73291 w; — ucy
(0.329)  (0.086)
209) = 5.27
Uy =3.6015—0.92778w;—0.984 e, | X (2) =027
(0.100) (0.102) (0.355) D= 0.0716
Germany | 7y — ky =—0.07 w— 2.956 uc;
(0.524) (0.40)
2
X2(1) = 0.034
= — 0.6735
W= ot p = 0.8423
UK wy =0.3682 (y; — ny) — 4.6322 u
(0.044) (2.0079)
p)
2(2) = 1.45
7wy — ky =—0.020617w;—0.82493 uc
! i (0.0250) ‘ (0.108) ‘ p = 0.4837
Ttaly wy =—0.266 (y; — ny) + 6.028
(0.2907) (1.7928)
2
22 =472
T — ke =—1.5372w; — 1.880 uc
t ‘ (0.5032) ' (0.5662) ‘ p=10.095
Us )y = — — 16.352
we = (v = me) (1.5?36) e
7wy — ky = — 0.2468 w;— 0.001 ucy
(0.2409) (0.0003)
TN
w =0.309 wi+ 0.0029uc; x“(1) = 0.182
(0.0367) (0.0004) p = 0.6699
Canada | wy =—2.371-0.1273 (1 — ny) — e
(0.0598)  (0.0156)
7w — ky =—6.064+5.236 w — ue
(1.005) (0.3593)
25 —
. =—0.01949w, — 3.4122uc; x(2) = 3.88
(0.0168) (0.2322) p=0.1434
J = — 0.1409 —mny)— 31.21
apan W (0.00745) (e = o) (2.3245) b
Ty — kt =—6.305 Wt ~+ UCt
(0.2538)
)
(1) = 1.024
=—0.074 w,— 0.042
ut (0.0073) e (0.043) e p=0.3116
52.2 = [ 0 = 1 0 = },’
Bos = [0 1 0 -1 0]
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are contained in the cointegrating space. This hypothesis has been rejected for all countries except for US
and Japan with x2(3) = 7.1874, (p = 0.0662), and x?(3) = 6.4248, (p = 0.094), respectively.
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In Table 4.9, we report the estimated coefficients of the equations described in Section
4.2, x? statistic, and the correspondent p-value. The first equation, determines how unem-
ployment and productivity affect wages. The long-run elasticity of wages with respect to
unemployment is lower for the European countries, US, and Canada than for Japan. This
fact seems to reflect differences in the structure of the labour market in particular for Japan.
However, the estimated elasticity for Japan may be affected by the starting point of the time
series we have considered. Indeed, the wage flexibility in Japan increased after the second
oil shock, therefore, it may be interesting to extend the sample to a period before the 1965
to see how the estimate of -y is affected.

The response of wages to unemployment has played a crucial role on the explanation
of European unemployment. For this reason equation (4.2.5) has been estimated by many
authors using different econometric methods. For example, Layard et al. (1991) report
values of vy, ranging from 0.53 for the UK to 41 for Japan. Alogoskoufis and Manning
(1988) obtain similar results. For the Scandinavian countries, Jacobson ef al. (1997) using
the common trends model find v, = 1.2 for Denmark and 5 = 9.67 for Norway. It is
important to keep in mind that since all the variables are endogenous a stationary relation
between unemployment and real wages does not mean that a rise in the real wages causes
a rise in unemployment *°

A separate discussion is required for Germany. In Table 4.9 we report the esti-
mated parameters for a four dimensional VAR model which does not include the variable

(y: — n¢) . The reason is that although on the base of the rank test we were able to accept

30 The likelihood ratio test rejects the weak exogeneity hypothesis for any variable of the model.
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two cointegrating vectors, the restrictions described above are rejected by the test for lin-
ear restrictions on the B . One explanation for this result may be the poor quality of our data
set relating to this country®. Indeed, Carstensen and Hansen (2000) using seasonally ad-
justed data of the DIW database for the West Germany, find a stationary relation between
unemployment and the wage wedge, and they estimate v = 1.824.

The second equilibrium equation indicates, except for Japan, a negative relationship
between profit rate and user costs of capital. The estimated parameter for the user cost of
capital can be interpreted as the elasticity of investment with respect to the shadow price of
capital. In general, the lower the cost of adjustment, the faster the difference between profit
and user cost is translated into capital accumulation or decumulation. From Table 4.9, we
find the estimated elasticity is particularly low for US.

The third equation relates unemployment to factor prices. Unemployment would
be expected to rise with increases in real wages, since this translate to higher cost for
firms. However, an increase of w; may also increase the labour force and therefore increase
unemployment in the presence of nominal rigidities. This may explain the positive sign for

- US.

The long run elasticity of unemployment with respect to user cost of capital is par-
ticularly large for Canada and surprisingly low for US, where the “wage channel” is more
important. Since the coefficient of variation of the depreciation rate along the time series

considered in our sample is low, it is plausible to assume that the pattern of the user cost of

31 The definition of “earning per hour” in the /2O publication has been changed several times in the estima-
tion. Moreover, the data for this variable relate to the Fed. Rep. of Germany before 3.10.1990, and include

East Germany afterward.
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capital over the time is mainly determined by the behavior. of the real interest rate. Accord-
ing to Blanchard (1998) the real interest rate affects unemployment through a reduction of
investment and consequent capital decumulation, while Fitoussi and Phelps (1988) insist on
the effect of the real interest rate on the markup chosen by imperfectly competitive firms®.
In our model we are not able to distinguish between these two channels; nevertheless both
types of shocks have a positive effect on unemployment.

Figures 4.2-4.8 present the 3’ X;-vectors adjusted for the short run dyﬁamics. An
inspection of these graphs reveals that these vectors are stationary. As additional check
of the adequacy of the model we plotted the recursive estimates of the first r non-zero
eigenvalues®. Generally, for the model we consider there is no evidence of parameter

instability due to, for example the failure to account for structural breaks.

32 According to Blanchard (1997) an increase in the interest rate leads firms to increase their mark-up of
price over cost: to do this they decrease the real wage to workers. Increased unemployment is needed for

workers to accept this lower real wage.

33 To save space we omit these figures.
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Figure 4.2. Estimated restricted cointegrating relations for France.

Figure 4.3. Estimated restricted cointegrating relations for UK.
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Figure 4.8. Estimated restricted cointegrating relations for Japan.

444  Common trends ahalysis

Using the Johansen procedure for the five variable VAR model we found a cointegration
rank of three for UK, France, US, Canada, Japan and two for Italy, Germany.

As we have seen in Section 4.2, the structural shocks are identified as a productivity
shock, and a stochastic shock to the profit rate. The transitory shocks are a shift in the labour
demand and shock to the user cost of capital. The equilibrium unemployment innovation
is identified as long-run shock in the case of three common trends, and short-run shock in
the case where the cointegrating rank is three.

To identify the common trends model in the first case (i.e. when n — r = 2) we need
to impose k(k — 1)/2 = 1 further restrictions. To identify the structural VAR in the latter

case (i.e. the long-run shocks for n — r = 3) we need k(k — 1)/2 = 3 extra restrictions.
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The restriction we impose 1s that the markup trend has no long-run effects on the
labour productivity. The assumption is exactly identifying in the case of two trends. If
there are three trends we add two extra assumptions by imposing a zero restriction on the
coefficients a;3and ags of the loading matrix A described in equation (4.3.1) of Section
4.3, that is we impose that the unemployment innovations do not affect labour productivity
and the profit per unit of capital in the long-run.

Table 4.10-4.16 reports -the estimated loading matrix of the common trends. The
standard errors of the estimated coefficients are given in parenthesis *. The interpretation
of the coefficient a;; of the loading matrix A is that a;; measures the long-run effects on the
i** endogenous variable from a unit shock to the 5 trend innovation.

Since the model in Section 4.2 does not holds for Germany we report the estimated
parameters for the five variable VAR described above, but we omit the productivity term.
Note that in this case the restriction for a1 = 0 is exactly identifying.

Considering the first common trend coefficients, we can see that a one standard-
deviation increase in technology increases the labour productivity around 5% in Japan, 3%
in Canada, while in US only 1%. In the long run both wages and unemployment are also
noticeably affected by technological progress.

The second trend captures the effect of a unit shock to the markup. Considering
the second column of the A matrix, we can see that a one standard deviation increase in
markup increases the profit rate, this is particularly true for Japan and Italy. However, the

effects on unemployment are more controversial. If 4, is stationary, according to economic

34 The asymptotic distribution of the common trends coefficients is Gaussian.
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theory an increase of the labour markup leads in the short and medium run to a downward
movement in the labour demand, since an increase of the markup acts like a tax on labour.
As a consequence employment falls and unemployment rises. A rise in unemployment
leads to a decrease in real wages. On the other hand lower wages lead to an increase in the

profit rate, and because of the excess of profit new entry of firms, and capital accumulation.
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Therefore, employment rises as a result of either capita
of firms. This process continues until the profit rate has returned to its original value, as the
real wage.

To what extent can economic theory explain our empirical results? It seems plausible
to consider wage behavior as the main protagonist of our story. We can see from Table
4.12 and Table 4.14 that in UK and US a shock to the markup leads to an increase in the
wages and a decrease inunemployment while the same is not true for the other BEuropean
countries. One interpretation of this result is that for US and UK the “capital accumulation
effect” induced by the increase of the profit rate is more dominating than the “tax effect”.
This seems to support the idea that wage rigidity matters. Indeed, if wages do not adjust to
unemployment, then markup shocks lead firms to decrease the ratio of labour to capital so
that the profit rate remains unchanged in the long run. Therefore, both higher capital and
a lower labour to capital ratio lead to a decrease in employment and consequently higher
unemployment. Our results support the Blanchard (1997) hypothesis that the upward trend
on markup (and consequently in the profit rate) in most “continental European countries”

is able to explain, at least in part, the evolution of the unemployment rate in the 80s.



4.4 Empirical Evidence 140

Finally, for Italy and Germany from Table 4.11 and 4.13 we can see that a unit shock

to unemployment innovation decreases wages by about 4% in Italy and 3% in Germany.
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Table 4.10. Estimated common trends for France, 1968: 1,1998:135.
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Table 4.11. Estimated common trends for Germany, 1970:1,1998:1.

Ty — Ky
Uy
Wy
UCy

::(BO—~{-

[ 0.0316
(0.06)

0.004
(0.033)

—0.0353
(0.029)

0
(=)
—0.1101
(0.1428) {
L

0.0125
(0.062)

—0.0017

(0.0023) |

~

7t
u,t

' } + @(L)Ut

Table 4.12. Estimated common trends for UK, 1968:1,1998:1.
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Note: The estimated asymptotic standard errors are reported within parentheses.
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Table 4.13. Estimated common trends for Iraly, 1970:1,1998:1.

[ 0.0715 0 0

(0.64) ) )

—0.1256  0.02 0

(0.1512) (0.019) (=)
_ —0.01 0.002 0.0024
= o+ (0.095) (0.002) (0.%004)
0.0459 0.0067 -0.004
(0.4211)  (0.0057)  (0.0007)
0.0551  0.001  0.006
(0.509) (0.072)  (0.001)

Ty,t
%W:t + d (L)'Ut

Tu,t

Table 4.14. Estimated common trends for US, 1960:1,1998:1.

Yt — Ny
T — ke
Uy

UCt _J

::_’L'O+

0.0117
(0.0056)

0.0008
(0.00044)

—0.00045
(0.00021)

0.00441
(0.0027)

— 0.3157
(0.2461)

0
()
0.00027
(0.00005)

0.00014
(0.00002)

0.00226
(0.00041)

—0.2882

(0.05187) |

A{

y)t
7,

} + ®(L)v,

o~

Table 4.15. Estimated common trends for Canada, 1960:1,1998:1.

Y — Ty
Ty — kt
Uy
w;

UCy ]

[ 0.037
(0.07)

0.0227
(0.042)

. | —0.0034
(0.007)
—0.0082
(0.017)

—0.02
(0.004)

0
(=)
0.0024
(0.0007)

0.0016
(0.0004)
—0.0016
(0.0004)

—-0.011
(0.002)

|

yf } + &(L)v,

,

-~

Table 4.16. Estimated common trends for Japan, 1965:1,1998:1.

Y — Ty
e — ki

0.0522
(0.031)

—0.092
(0.237)
—0.0024
(0.006)

0.008
(0.022)
—0.042
(0.105)

:ﬂj0+

0
)
0.01
(0.005)

0.00
(0.0

0.0023
(0.001)

—0.004
(0.002)

|

T%t J + @(L)Uf

Tt
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4.4.5 'The dynamics of the structural model

In this section we show how the VAR system reacts to various impulses. The impulse
response function, along with asymptotic 95 percent confidence bands are given in Figures
4.1-4.10.

As have seen in Section 4.3, the impulse response analysis can be performed by
rewriting the moving average model (i.e. equation (4.3.8)) as equation (4.3.10).

To identify F, we have used the following specification

Fr= Q_lwl Z_la

where w = [a ~ ]so that the permanent and the transitory innovations are uncorrelated.

(nxr)(rxr)

Indeed, F [v'] is given by

Bl =By F=q Wy (@) =1

where the elements of Q are obtained from the Cholesky decomposition of ' 3~ w.

The second assumption we need is that only the first k& structural shocks have long

effects, whereas the last » shocks do not. This implies that

_ -1 _ A 0
R)=CMF'=| A W)]

As far the results are concerned, from Figure 4.11 we can see that a wage shock in
Italy reduces the profit rate and the user cost of capital by about 2%. Moreover, it produces
a fall in labour productivity of about 0.25%, while unemployment is not affected. By

contrast, in US a shock to wages does not affect the profit rate, but real wages, user cost
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of capital, and unemployment increase. In particular, although as a response to a positive
wage shock, real wages rapidly adjust to their long run level, after less then one year the
unemployment rate starts increasing, and it takes approximately four years to reach the
long run level. For Germany, we find that a shock to wages increases unemployment by
about 1%. Adjustment to equilibrium unemployment shocks occurs within approximately
2 years.

Coming to the shock to the user cost of capital, we can see that a unit shock to
the user cost significantly reduces the profit rate in UK (0.1%), Japan (1%), and Canada
(0.4%). Moreover, we find significant response in unemployment for Germany (4%),UK
(approximately 0.05%), US (3%), Canada (about 0.2%), Japan (0.06%)

From an inspection of Figures 4.12 and 4.15 it is evident that in general the technol-
ogy trend and the markup trend do not affect unemployment, since we do not record any
significant response for the first 10 years in these countries®. The only exception is the
US, where a productivity shock reduces unemployment by about 0.2% in the long run. The
fact that a technology shock does not affect unemployment in the long run is in line with
the theoretical model by Layard er al.(1991), and some empirical results for the Scandina-
vian unemployment by Jacobson er al. (1997). The result from the markup shock are not
consistent with the estimated parameters in Section 4.2. Indeed, the magnitude of the esti-

mated coefficients falls in a range between 0 for Japan and 0.003 for UK, even though the

95% confidence interval are very wide.

36 In Figure 4.10,4.13,4.16 we report the impulse response function to one standard deviation shock to
technology and profit rate for France, Germany, US. To save space we omit to report the ones for the other
countries whose the result are not significant. They are available on request.
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Figure 4.11. ITALY: Impulse response function with 95% confidence interval from a one-standard deviation shock to the

wage innovation and user cost of capital innovation. Response in —ng), [ — ki), Uz, Wy, UC; Tespectively.
p p 4 4 t t)s y Wiy t p
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Figure 4.14. UK: Impulse response function with 95% confidence interval from a one-standard deviation shock to the

wage innovation and user cost of capital innovation. Response in (yt - nt) , (’/T t — ]ﬁt), Uz, Wy, UC; Tespectively.
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Figure 4.15. US: Impulse response function with 95% confidence interval from a one-standard deviation shock to

technology innovation and markup innovation. Response in (yt — nt) , (7«‘ : kt), Uyg, Wy, UC; respectively.
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4.5 Concluding remarks

In this chapter we analyse the G7 labour market using a structural cointegrated VAR
model. In the literature a lot of work has been done on this subject. However, much of
the econometric research on the increase in unemployment has taken the form of estima-
tion across countries and time of a reduced form equation for the unemployment rate as a
function of a number of variables. In this chapter we suggests a different approach which
involves identifying separately supply and demand shocks, and we try to explain the effect
of each of these shocks separately. Moreover, the econometric procedure we use allows us
to distinguish between thebeffects of short run shocks (i.e. deviation from the equilibrium
relationships) and long run shocks (i.e. structural shocks) to unemployment. With respect
to other related works, the novelty of this work is that we model directly some of the vari-
ables which affect firms’ investment decisions, such as the profit rate and the factor prices,
even thought we include in our model the variables that are traditionally regarded as the
main “culprit” for high unemployment rate (i.e. wages rigidities and productivity shocks).
I.n the light of the tight monetary policy which characterized the policy decisions in particu-
lar starting from the 80s, it seems to us that focusing only on the “labour market rigidities”
is able to explain only part of the story. In particular, it fails to explain why the result of
these policy decisions translates to high unemployment rate in the European countries, but
did not increase unemployment rate in the UK and the US.

As far as the results are concerned we find that wages and real interest rate shocks
are the most important source of uncertainty for unemployment. However, there are pro-

nounced differences among the G7 countries.
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4.6 Appendix A: Some methodological notes

Let us consider the following the VAR(1) model

Az = p+ Hzy g + &, (4.6.1)

under the assumption of cointegration we can express the matrix II as
II=af

so (4.6.1) can be written as

Azy = p+af'zi_ + &, (4.6.2)
which can be rewritten as
= p+ (I +af)zi1 + &
Premultiplying this system by 3’ give us a VAR(1) model for the cointegration rela-
tions.
Bz, = Fu+f (Ln+af)ze+ Be
= Fu+ (L +fa)fz+ Fe,
so that
(I = (I + ') L) B'zy = B'p + F'er
where L stands for the lag operator. Since the matrix (7, + «3") has all eigenvalues inside

the unit circle, then the polynomial (I, — (I, + f'«) L) is invertible. It follows that

o= (I — (I + fa)L) " (Bu+ G,
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and using the formula for the sum of a geometric series we get

Bre = Y (I + o) L (Bt =) 463)
= Y (LB But Yy (I + o) Be

—(8e) " Bu+d . (L +aB) Bes,

so that we have found an M A(oco) representation for the r cointegrating relations.

Substituting equation (4.6.3) for §'z,_; in equation (4.6.1) we have found the M A

representation for Az;, given by

Az, = p+a [ (B'a) " Bu+ Z (I, + ﬁ'@)i ﬁ’et_imlJ + &y (4.6.4)

= (L—a@x)™ ﬂ’) preaty ah+8a)" Fea

where Cy = 1,,.

To show that C (2) = >~ Ciz" has unit roots, note first that

c() = I+Z a(l, +pa) g
= In—a(ﬁ'a)_lﬁ'.

Second, Johansen (1995) p.39 shows that for any o), 3, € R™ ") of rank (n —r)

such that @ o = 0 and | 8 = 0 it holds that

=8, (' 8) " e} +a(fa) 5.
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This can be verified in part through premultiplication of both sides by ., or 3 or
through post-multiplication by o« or 3, . The choice of the basis is irrelevant since o] =

ai(, 87 = 3,9 (where ¢ and 9 are nonsingular (n — r) X (n — r) matrices) satisfy
B (@Bt =B, (@B) L.
Thus C (1) = 8, (¢, 8) " &/, and ([n —« (,6'04)*1,6’0 = C (1) = C. In Johansen
(1995), Lemma 4.1 (p. 47), it is stated that the C' (z) matrix polynomial can be expressed
as

Cz)=C+(1—-2)C"(2),

so that C(1) = C, and substituting for C (z) in equation (4.6.4) we get

Ty — L1 = C/L + Cey + Z;:O C; (Et—j — 5t—-j—~1) = (465)
t t o] t
Zi:l A:Bt B Ei:l (C’u + CEt) + ijo C]* Zi:l (Et_j - Etﬂj_l)
t ool
Ty — Tg = C,UJt +C Zi:l E¢ + ijo C;(Et-_j - 80)

- t e} )
z; = zo+Cut + sz‘zl £+ ijo Clerj.
where

So that we have found that the A/ A representation contains:
() an I(1) component: C (ut + Y i_; &) ;

(%) an I(0) component: (Z}io C;gt__j) ;

(#47) an initial values denoted by :1—20 :
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The I(1) component of the M A representation can also be expressed as

(Mf+z ~t) By (e 8)” (C‘u/ﬂfJr Z Ouft)
To illustrate this consider the following process

Az, Hy 10 Uy 0 0 U1

= + .

=Ll = Lo Bl 5 0]

or
Azy =06+ (I+CL)g
Suppose that C' (z) has reduced rank, that is
10
C(1)= { 10 } :

The I{1) component of the M A representation can be expressed as

t
= fualpt Py &
t
= f[,a| <,ut + Zi:l Et) .
The term o/, (/uf 50 5t) represent the common trend. So, in general without Joss

of generality we can rewrite (4.6.1) as

3
73

Ty = Ty T Ty,
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where

¢
.’L':? = C <‘Uft + Zz’:l Et> s
T = g+ ijo Crery

It is important to note that if 3 is a cointegrating vector, then §'zf = 0 for 8'z; = B'z¢

to be stationary.

4.7 Appendix B: The bootstrap experiment

In this appendix we describe the simulation experiment for the rank tests. For ease of

notation we report the IV £C' M given in equation (4.3.3) in Section 4.3

D(D)Azy = p+ Hzy g + € (4.7.1)
where 1 18 an intercept; z;, and ¢ are (n x 1) vectors, I'(L) is an (n X n) matrix polynomial
in the lag operator L is the lag operator, H’ =af, Az, =z, — z41,and ¢, ~ NID(0,%)
. The matrix IT determines whether or not, and to what extent, the system (5.7.1) is cointe-

grated. Suppose that IT has reduced rank 7, the hypothesis of  cointegrating vectors [ can

be written as:
Ho Il = OZ/BI,

where o and /3 are (n x r) matrices. As we have seen in Section 4.3, the rows of 3" can be
interpreted as the distinct cointegrating vectors of z; (i.e. such that the linear combinations

3’z are 1(0)) and the elements of « represent the weights of each of these r cointegrating

relations in the n component equations (4.7.1).
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A test for the number 7 of cointegrating vectors can be based on the n eigenvalues
A >...>X, >0. Asseenin Chapter 2 a likelihood ratio (LR) test of the hypothesis
that there are at most r cointegration vectors by testing that the (n — r) smallest eigenvalues
., Ap are zero against the assumption that A; > Ofor ¢ = 1,...,n . The LR test

Arit, .-

statistic for this is known as the trace tests, defined as

LR(trace), = =T EH: In (1 - /A\Z) :

t==r-1

In addition, the maximum eigenvalue test statistic is given by
LR(max), = —Tln (1 - im)
and can be used to test the null Hy(r) : rank(Il) = r against the alternative Hy(r + 1) :
rank(Il) = r + 1.
The bootstrap can be used to approximate the finite sample distribution of the Apax
and trace statistic under the null. The idea is to approximate the finite sample distribution

of the LR tests by drawing B bootstrap realizations { I//E*} fori = 1,2, ..., B bootstrap

samples { (Az*,z7_;) }. The bootstrap algorithm we use can be summarised as follows:
1) Estimate the error correction model given by (A2.1) and compute LR.

2) Resample the residual from (&4, ..., &;) independently with replacement to obtain
a bootstrap sample (7, ..., &} ). Generate the bootstrap sample (z7, ..., z;) recursively from

zy = 0 and (g7, ..., ;) using the estimated restricted model

k-1
Azy =+ Tidai , +afz;, +
i=1

where & and [ denote the estimates under the null hypothesis.
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ok
4) Compute the bootstrap replication of {LR } .using (z3, ..., z7)
5) Get the distribution of the trace and the Apq. tests under the null by repeating steps
2-4 B times.

The p-value is given by
4(LR > LR)
B+1

p*value =

where # (fﬁ: > ﬁ%) indicate the number of occurrences of eventuality (ffz* > ﬁ%)

over B bootstrap replications.



Chapter 5
Summary and Conclusions

There are five chapters in this thesis. Chapter 1 contains a brief survey of bootstrap
inference procedures in econometric models. Chapters 2-4 contain the main body of the
research. In this chapter the main results of this work are summarized.

Chapter 1 is an introductory chapter where the fundamental concepts of the bootstrap
method are highlighted. The Chapter starts with an introduction of the bootstrap principle,
and after discussing the first-order asymptotic properties of the bootstrap the higher order
properties are considered in some detail. We then introduce a number of different boot-
strap procedures used in the context of time series models. In particular, we distinguish
between the residual based bootstrap which requires assuming a particular specification
of the model in use, and techniques such as the block bootstrap and the stationary boot-
strap which generate the bootstrap observation from the observed time series directly (i.e.
without assuming a particular model specification). Throughout the chapter, empirical ap-
plications are provided to illustrate the methods and their applicability.

The purpose of Chapter 2 is twofold. Firstly, we use the bootstrap hypothesis testing
as a way to reduce the size distortion of the tests for linear restrictions on the cointegrating
space. Secondly, we consider the Johansen LR and Wald test statistics as well as the small
sample corrected version of these tests, and we explore the robustness of the inference
procedure in a situation where we allow for potential over-fitting and under-fitting of the

number of cointegrating vectors included in the restricted model.

163
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As far as the results are concemed we find that when the number of cointegrating
relationships is correctly specified inference based on first-order asymptotic critical values
for Wald and the L R statistics is markedly inaccurate. This is particularly true for the Wald
statistic for which, when 7" = 50, the empirical size can be 3 times as large as the nominal
level. The LR test performs better, but the overall impression is that the asymptotic theory
is uniformly satisfactory only for 7" > 200, which is a sample size well above the sampie
size generally available to practitioners. Psaradakis’s small sample corrected LR and Wald
statistics have smaller size distortion than the uncorrected version of these tests. However,
for all sample sizes, the empirical sizes that the F'-type tests and the bootstrap test deliver
are much closer to the 5% nominal size of the test. Turning to the power properties of the
tests we find that for 7 > 150, both the small sample corrected and the bootstrap test have
slightly lower ‘power’ (rejection frequencies) than the tests based on first-order asymptotic
cﬁtical values. The picture changes when we come to the misspecified model. In this case
we find that: (¢) when the cointegrating rank is overfitted the size distortion of the tests
is so large that it calls into question the use of the tests, since we find sizes over 30%,
(1) when the number of cointegrating vectors is underfitted the size distortion of the tests
asymptotically vanishes, but the power-loss in this case is substantial, (47¢) when the model
is misspecified using the small sample corrected tests or the bootstrap test does not help,
since the power of both these procedures mimic the behavior of the asymptotic tests.

Chapter 3 is closely related to Chapter 2. In the first part of Chapter 3 we propose
approximating the finite sample expectation of the LR test statistic using the bootstrap and

we compare the finite sample properties of the asymptotic, the bootstrap, and the bootstrap
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Bartlett corrected likelihood ratio test. The Monte Carlo evaluation of the bootstrap and
the bootstrap Bartlett corrected L R tests deliver remarkably accurate inference for the test
statistics considered. Furthermore, the evaluation of the power reveals that the power of the
bootstrap, and bootstrap Bartlett corrected likelihood, is almost as good as the asymptotic
power, although in some situations the bootstrap Bartlett corrected LR test shows higher

£ 11 1.

power than the bootstrap test. In the second part of the chapter we propose bootstrapping

=

the Bartlett corrected likelihood ratio test, but in this case the Bartlett correction is cal-

culated analytically using the correction factor proposed by Johansen (1999). According
to theoretical arguments in Beran (1988) this procedure may produce an error of rejection
probability of order O(7T~?), which is considerably smaller than the error of conventional
first order approximation. The simulation results reveal that the bootstrap procedure works
remarkably well, although the response surface analysis reveals that the size distortion of
the test heavily depends on the parameter space values: there are regions of the param-
eter space were the usual asymptotic x? approximation works reasonably well, whereas
there are parameters points close to the boundary of the parameter space where the distri-
bution of the LR test is very sensitive to the parameter values. In this case the first order
approximation is quite inaccurate, as is the Bartlett corrected L1 test.

Chapter 4 is a self contained chapter where an empirical application of the bootstrap
test is undertaken using real data instead of the simulated ones. The idea is to analyse the
effects of macroeconomic shocks on unemployment, and in particular the effects of shifts in

labour supply and labour demand on the rise of European unemployment. The econometric

model considered is a structural V AR with cointegrated constraints. This model aliows us
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to distinguish between the effects of transitory and permanent shocks to unemployment.
Inference about the cointegrating rank is, once again, carried out using Johansen’s (1988)
procedure. To improve the robustness of our inference we also used the non-parametric
bootstrap. Turning to the results, we find that the conclusions about the cointegrating rank

are in agreement with Reimers’s small-sample corrected tests, while the Johansen tests in

In the various chapters, we come to the conclusion that the bootstrap can successfully
eliminate the size distortion problem of the test statistics employed in cointegrated models
without involving substantial loss in power. We were primarily interested in the problem of
reducing the error in rejection probability of the asymptotic tests, so we only investigated
the performance of the residual-based bootstrap. However, the residual-based bootstrap
assumes that the dynamics of the VAR model is correctly specified. Under uncertainty
with respect to the model specification, other bootstrap procedures such as the stationary
bootstrap, seem to be more suitable than the residual-based bootstrap. With this in mind it
would be interesting to extend the results in Chapter 2 and 3 to more complicated DG Ps,
using for example block bootstrap procedures and perhaps analysing the robustness of our
conclusions to misspecification in the underspecification or overspecification of the dynam-
ics of the VAR model. Moreover, throughout this thesis in our experiment design we only
control the number of cointegrating vectors in the DG P and the sample size: it would be

interesting to extend the analysis by controlling the dimension of the IV AR model.
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Nonetheless, the analysis in this thesis demonstrates that, provided that it is care-
fully executed, the bootstrap offers a promising option for conducting relatively accurate

inference in cointegrated models.
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