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The main problem discussed in this work may be described as the lack of coherence be-

tween the test statistics and their reference distribution. In small sample the approximations 

of the first order asymptotic theory are often quite inaccurate. As a result the empirical and 

nominal probabilities that a test rejects a correct hypothesis can be very different when 

cntical values based on 6rst-order approximation are used. This may lead one to reject too 

many null hypotheses when ±ey are actually true. In principle there are two ways of solv-

ing this problem; either for a given reference distribution to correct the test statistic or for 

a given test statistic to correct the reference distribution. In Chapter 2 of this thesis we 

consider Johansen's likehhood ratio and Wald tests for linear restrictions on cointegrating 

space and we compare analytical corrections to the test statistics such as the ones suggested 

by Podivinsky and Psaradakis with a numerical approximation of the distribution function 

obtained using computer intensive methods such as the bootstrap. In Chapter 3 we ap-

proximate the hnite sample expectation of the likelihood ratio test using the bootstrap and 

we compare the finite sample properties of the asymptotic, the bootstrap, and the boot-

strap Bartlett corrected hkelihood ratio tests. Furthermore, we propose bootstrapping the 

Bartlett corrected likelihood ratio test, using the Bartlett correction proposed by Johansen 

(1999). In Chapter 4 we provide an empirical application to iDustrate the usefulness of the 

bootstrap test using real data in place of the simulated ones. 
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Empirical econometric models are usually accompanied by diagnostics which serve 

to support the models' statistical adequacy. Both the diagnostic checking and the ultimate 

inference are based on test statistics. The basic quantities needed in hypothesis testing are; 

(%) the critical value that provides the desired significance level of the test, (ii) the power 

properties of the test, (tw) some knowledge of the sample size required to achieve a given 

power. In addition, any inferential procedure has limited robustness when the assumptions 

on which it is based are violated, so one wishes to know to what extent the test is robust 

against departures from the assumptions under which it is derived. 

To calculate simple approximate formulas are usually obtained using central 

limit theory. However, in order to work well the first order asymptotic approximation 

requires that the asymptotic distribution is an accurate approximation to the Anite sample 

distribution. Unfortunately, particularly for time series models, this is not generally the 

case. 

In the past various correction methods were proposed to improve upon the first-order 

asymptotic approximation. One strand of the literature addresses this problem by propos-

ing corrections to the test statistic in use. A case in point is the Bartlett correction. The 

idea behind the Bartlett correction is to adjust the test statistic by its expectation. By do-

ing this we improve the fit of the asymptotic distribution. Another strand of the literature 

focuses on replacing the critical values of the limit distribution with values that will gen-

erate an actual test size closer to the nominal one. Here, one of the techniques suggested 
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in the literature is the bias-correction method. Loosely speaking this method involves ap-

proximating the moments of Ae distributions using asymptotic expansions. For example. 

White (1961) obtained higher-order moment expansions for the first two moments of the 

AR{1) parameter estimator. The higher-order moment expansions can be used to correct 

the possible bias, which lead to better finite sample inference by adjusting the Unite sample 

distribution. However, bias-correction methods only adjust the centre of the distribution, 

so that if the finite sample distribution exhibits substantial skewness this method will not 

result in accurate inference. The Bartlett correction can be regarded as ac^usting the first 

moment. 

In contrast to the bias correction method, Edgeworth corrections are based on a series 

expansion of the whole distribution function. However, the Edgeworth expansion requires 

the estimation of higher-order moments of the underlying population distribution. These 

moments are often difficult to estimate accurately so that the Edgeworth expansion is less 

frequently used by practitioners. 

The bootstrap is a computer intensive technique that involves resampling one's data 

or a model estimated from the data. It can be shown (see for example Hall (1992)) that in 

many cases the bootstrap delivers an automatic approximation to the Edgeworth expansion, 

so that it can be considered as a numerical approximation to analytical calculations of one-

term Edgeworth expansions. The advantage is, of course, that it does not involve the same 

tedious calculations. 

In this thesis we investigate the small sample behaviour and the robustness of the 

bootstrap inference procedure in cointegrated vector autoregressive models (1/^472). In-
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ference in cointegrated systems has been a m^or topic of debate since Johansen (1988) 

showed that in principle standard asymptotic methods can be applied to certain classes of 

estimators of the coefhcients. However, several simulation studies suggest that the per-

formance of asymptotic tests on the cointegration coefficients may be rather poor. The 

bootstrap may deal with finite sample inaccuracies in two ways. Firstly, the bootstrap takes 

the effects of the small sample into account by replacing the nuisance parameters by con-

sistent estimators in the 6nite sample distribution, whereas the asymptotic approximation 

replaces the nuisance parameters by consistent estimators in the asymptotic distribution. 

Secondly, by using the empirical distribution function in place of some specific parametric 

distribution the non-parametric bootstrap is able, for example, to mimic possible skewness 

of the finite sample distribution (e.g. to take the non-normality of the finite sample distri-

bution into account). Throughout the thesis, bootstrap accuracy in small samples is mainly 

investigated through classical Monte Carlo studies, although an empirical application is 

provided to illustrate the performance of the bootstrap with some real data. 

The thesis is organized as follows. Chapter 1 contains a brief survey of bootstrap 

inference procedures in econometric models. The survey is far from being comprehensive, 

but it provides the theoretical background for the subsequent chapters. Chapters 2-4 contain 

the main body of the research. Finally, Chapter 5 summarizes the main results of this thesis. 

Chapter 1 starts with an introduction of the bootstrap principles. After discussing the 

first order asymptotic validity of the bootstrap, the theory underlying the bootstrap's ability 

to provide asymptotic refinements is considered in some detail. Then bootstrap hypothe-

sis testing is discussed. Finally, we consider applications of the bootstrap procedures in 
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the context of the regression model, and the distinction between the residual based boot-

strap and the block bootstrap is introduced. The chapter ends with an appendix where the 

Glivenko-Cantelli Theorem is stated. 

The purpose of Chapter 2 is twofold. Firstly, we use bootstrap hypothesis testing as 

a way to reduce the size distortion of the tests for hnear restrictions on the cointegrating 

space, and we compare analytical corrections to the test statistics such as the ones sug-

gested by Podivinsky (1992) and Psaradakis (1994) with a numerical approximation of the 

distribution function obtained using the bootstrap. Secondly, we consider the Johansen 

likelihood ratio and Wald test statistics as well as the small sample corrected version of 

these tests, and we explore the robustness of the inference procedure in a situation where 

we allow for potential over-fitting and under-6tting of the number of cointegrating vectors 

included in the restricted model. 

Chapter 3 is closely related to Chapter 2. Again we consider Johansen's likelihood 

ratio tests for linear restriction on cointegrating space and we propose that the Bartlett 

adjustment factor be computed using the bootstrap. Further, we consider bootstrapping 

Johansen's Bartlett corrected likelihood ratio test. Since the Bartlett correction can be re-

garded as an analytical approximation to the bootstrap test (see for example Beran (1988)), 

bootstrapping the Bartlett corrected test amounts to a sort of double bootstrap proce-

dure which may lead to higher order asymptotic refinements. However, the performance of 

the Johansen Bartlett correction crucially depends on the parameters of the model so that 

the potential of the bootstrap test to provide second order asymptotic refinements is obvi-
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ously affected. For this reason we undertake a response surface analysis. Finally, the power 

properties of the bootstrap tests are evaluated. 

Chapter 4 is a self contained chapter where an empirical application of the bootstrap 

test is undertaken using real data instead of the simulated ones. The idea is to analyse the 

effects of macroeconomic shocks on unemployment, and in particular the effects of shifts 

in labour supply and labour demand on the rise of European unemployment. The econo-

metric model considered is a structural VAR with cointegrated constraints. This model 

has its roots in the Beveridge-Nelson (1981) decomposition of univariete time series since 

it involves a linear decomposition of a y A A into stationary and non-stationary parts. In 

particular, rewriting the y A A in the form and inverting it we 6nd a Myl represen-

tation which is the sum of the initial values, an 7(1) component and an 7(0) component. 

This M A representation is a natural starting point for the impulse response analysis. 

Finally, the thesis concludes with a summary of the main results in Chapter 5. In 

addition some directions for possible research are given. 



Chapter 1 
An Introduction to the Bootstrap 

1.1 Introduction 

The purpose of this chapter is to illustrate the usefulness and the limitations of the bootstrap 

by providing a brief overview of the literature. 

After the seminal paper by Efron (1979) a lot of work has been done, and the litera-

ture on this subject is now enormous. For this reason after having introduced the general 

conditions under which the bootstrap provide a consistent estimator of the statistic under 

study we will focus on the branch of the bootstrap literature which is more closely related 

to the areas of application in time series analysis. 

The general idea on which bootstrapping is based is to use the single data set to de-

sign a sort of Monte Carlo experiment in which the data themselves are used to generate 

an approximation to the distribution of the statistics in which we are interested. However, 

as Veall (1998) suggests there are two main stages in the development of bootstrap theory. 

The first stage is related to its introduction by Efron (1979) as a computer-based method for 

evaluating the accuracy of a statistic by using the bootstrap algorithm for estimating stan-

dard errors or confidence intervals. This procedure can be useful when the finite-sample 

distribution of the statistics we are analysing is not known or a good asymptotic approxima-

tion is not available. The second stage of the bootstrap literature concerns the case where 

asymptotic analytic tools are available but in which bootstrap refinements are used to im-
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prove Anite-sample performance. Good references in this sense are Horowitz (1994) where 

the bootstrap method is applied to the information matrix tests. For an excellent discussion 

based on the Edgeworth expansion see HMl (1992). These and other studies have found 

that bootstrap provides a higher-order asymptotic approximation to critical values based 

on "smooth" statistics. This means that for bootstrap-based critical values the size distor-

tion (that is the difference between the nominal level and its actual rejection probability) 

decreases more rapidly with increasing the sample size than if the critical values obtained 

from 6rst-order asymptotic theory are used. 

The outline of this chapter is the following. Section 1.2 introduce the bootstrap prin-

ciple. In Section 1.3 the 6rst higher-order asymptotic validity of the bootstrap is indicated 

in the i.i.d. setting. In Section 1.4 we will illustrate the higher order refinements pro-

vided by the bootstrap for pivotal statistics. In Section 1.5, we consider application of the 

bootstrap method to test statistics. Finally in Section 1.6 we will go through some recent 

developments of the bootstrap method in time series analysis. 

1.2 The bootstrap principle 

The bootstrap is a method for estimating the distribution of an estimator or test statistic by 

resampling the data. It amounts to treating the data as if they were the population for the 

purpose of evaluating the distribution of interest. Under conditions that hold in a variety of 

applications, the bootstrap provides an approximation to distribution of the statistics under 

study that is at least as accurate as the approximation of Arst-order asymptotic distribution 

theory (Horowitz (1999)). 



1.2 The bootstrap principle 

The basic bootstrap procedure in the simplest setting works as follows. Let F denote 

some distribution function and suppose we are interested in a real-valued parameter 0 E O 

which can be written as a functional of Let %2, . , -̂ 71 denote a sample of n i.i.d. 

random variables having common distribution function F. Since ^ is unknown we seek to 

obtain information about ^ from the sample %2,..., That is, we are interested in 

the relationship between the population parameter and the sample. The bootstrap provides 

a method for estimating the distribution of ^ or a feature of such as a moment or a 

quantile, by replacing the unknown distribution of f with a known estimator Let 

denote the estimator of F. Two possible choices of Fn are: 

(1) The empirical distribution function ^ of the data: 

1 " 
A = <3;) 

where 7 is the indicator function. The case where ^ correspond to the empirical distribu-

tion was discussed by Efron (1979) and it is usually referred to as non-parametric bootstrap. 

(2) A parametric estimator of In this case we assume that the random variables 

have a particular distribution function, for example the normal. In the literature this is 

dehned as the parametric bootstrap. 

FYactical application of the bootstrap technique requires the generation of bootstrap 

samples or resamples (i.e. samples obtained by independently sampling with replacement 

from the empirical distribution). Regardless of the choice of usually the bootstrap esti-

^ A functional is simply a mapping that assigns a real value to a function. Most commonly used parameters 
of distribution functions can be expressed as functional of the distribution, including the mean, the variance, 
the skewness, and the kurtosis of the distribution. 

^ The B£>F is defined to be the cumulative distribution function {CDF) of a random variable which takes 
value , X2, . - , each with probability mass I/71. 
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mator of the functional of f cannot be evaluated analytically. However, it can be estimated 

with arbitrary accuracy by carrying out a Monte Carlo simulation in which the random 

samples are drawn from Thus, the bootstrap is usually implemented by Monte Carlo 

simulation. The procedure used for evaluating the bootstrap by Monte Carlo is straightfor-

ward: 

Step 1) Generate a bootstrap sample of size n,, by sampling the distribution corre-

sponding to Fn randomly. 

Step 2) Compute the boostrap stastistic. 

Step 3) Repeat steps 1 and 2 k times to compute the empirical probability of the event 

^ . In this way we obtain the proportion of the repetitions in which the event ^ 

occurs. 

Under certain conditions described in the next section, the basic bootstrap procedure 

described above works very well in extremely general settings. 

1.3 Consistency of the Bootstrap 

Asymptotic validity for the bootstrap requires that as the sample size n increases the boot-

strap distribution will be close to the actual distribution of the root^ under study. In the liter-

ature the asymptotic validity of the non-parametric bootstrap has been proved by showing 

that the Mallows distance between the finite sample distribution and the bootstrap distri-

^ The relationship between the parameter of interest and the sample is often referred as the root R,^{9,9). 

A root is a function of both the population and the sample value (e.g. — ^))-
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bution converges to zero as the number of observations goes to inSnity (see for example 

Bickel and Freedman (1981) or Basawa (1991b)). 

Let Pp the set of distribution functions G in R'', such that < oo, where 

II • I) is the Euclidean norm. For G, H , the Mallows distance" of order p between the 

distributions G and H is defined as 

where f (a;, ̂ ) is the joint distribution of (A", F) , F(a;, oo) = (7 is the marginal distribution 

of and F(oo, ^) = is the marginal distribution of Y. Weak convergence of a sequence 

of distributions in the MaUows metric implies convergence of the corresponding sequences 

of Grst p-moments. A detailed description of this metric is discussed in Section 8 of Bickel 

and Freedman (1981). 

Before, discussing the conditions under which the bootstrap distribution of a statistic 

is consistent, it may be useful to consider au example. 

Example 1 j'ampZg overage. 

Let Xi , . . . , A'm be z.t.d. random variables with common distribution F, with = 

E' (%i), (7̂  = yor(%i). Assume 0 < // < oo, and 0 < cr̂  < oo. DeAne as the empirical 

C D F of _ ^-1 g ^ to be 
2=1 t=l 

^ Let .B be any set. Let /)(a;, y) be a function degned on the set E x of all ordered pairs (r, i/) of members 
of E, and satisfying the following conditions: 

(i) p(z, ^) is a Snite real number for every pair (z, y) of E x E ; 
(w) /)(a;, y) = 0 if and only if a; = y; 
(tw) p(z, z) < /^(i, 1/) + ;o(z, z), where z, y, z are three elements of 
Such function ^(z, ?/) is a metric space on That is, is a mapping of x B into R. A set B is called a 

metric space, and the function p(z, y) the distance from the point z to y. 
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the resampled data with common distribution M ^ ̂  %*. Let and G* denote 
i=l 

the distribution of the roots — //) and -\/^ (%* — respectively. DeGne pg the 

Mallows metric of order two. The Glivenko-Cantelli (see the Appendix of this Chapter) 

theorem and the strong low of large numbers implies that the condition 

is satisfied. Using the properties of dg , (see Bickel and Freedman (1981)), it can be shown 

that 

which shows that in the non-parametric bootstrap the distance between the bootstrap distri-

bution and the 6nite sample distribution can be bounded between the and the under-

lying distribution function. 0 

In the literature Bickel and Freedman (1981) were the Arst to show the conditions un-

der which the bootstrap distribution of a statistic is consistent in %.2.d. contexts. They list 

three conditions for the bootstrap distribution to be consistent. The first is weak conver-

gence of the statistic ^ G for all distribution G in a neighborhood of the true distribution 

f . The second is uniform weak convergence over distributions G in a neighborhood of the 

true distribution The third is continuity of the mapping from the underlying distribution 

G to the asymptotic distribution of the statistic. As an example we consider the consistency 

of the bootstrap for von Mises functionals. 

Let % i , b e a vector of random variables. Consider 

(p - g (;/)) . 
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where ^ R, f : 

& = 
t=l 

r„ = 

i=l 

where /z,: r : R \ and 

// = (%i), 

2, = E r ( X i ) . 

Applying the mean value theorem the numerator of (1.3.1) is 

^ (//)) (/̂ ) + Op (1) 

where is the Jacobian. Consider now the case where g is a functional 

g : ^ 

where is a convex set of probability measures on R"̂  including all point masses and F. 

Define 

g ( f ) = y a;(fF(a;), 

9 i^n) ~ J xdFri (^) 1 

9 iK) = j xiK {^) -
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Let us 6rst deSne a von Mises functionals. Suppose that p is Gateaux difPerentiable^ 

O 
at f with derivative g ( f ) representable as an integral 

g{G) = g (F) + 9{F)(G~F) + o ( 1 ) . (13.2) 

and 

g (F) (G-F) = -^^3(F+£(G-F))I,.c = J i, {x, F) dG (x), 

where necessarily 

y ^ (a:, F ) ( f f (%) = 0, 

and substituting the integral representation of the Gateaux differential into (1.3.2) 

p ( G ) = ^ ( F ) + y V'(3;,f)dG(2;) + o ( | G - F | ) . 

If ^ satisfy this properties we call it a von Mises functional. 

Asymptotic normality results imply that (f^) — ^ (F) ) and 

are distributed as / / (O, ^ (z, f ) cZF) since 

g ( f ; ) - p ( f ) ( f^ - f ) + (F^, i^), 

° Let y be a linear space, and let J : D C Y R be a functional with domain D in Y. If y and v are 
elements of Y such that for aH E in a neighborhood of 0,3/ + Eii is an element of D, ±en 

is called the Gateaux Differential (or Gateaux Variation) of J at y in the direction o f f . Note, that 

f J (y; (;) = + ^̂ ) 1̂ =0, 

if this derivative w.r.t. 6 = 0. 
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where 

An F) = Op (pf. - f ) ) 

Let Gn the empirical distribntion of %*. Consider 

(p (Gfi) — P (fli)) = ^ (Gn, , 

the bootstrap works if 

((?n, = Op (1) 

SO that the conditional distribution of 

= y ^ (z;, = (%*,&) j . (1.3.3) 

Indeed, it can be shown that 

^^ (%;, &) j ^ ^ (o, y V'" (:r, F ) dF (z)^ 

as it turns out that ± i s is also the hmit distribution of (p (F^) — g ( f ) ) . 

SuScient conditions to ensure the bootstrap works are 

1) 0 < y (a;, F) (fF (a;) < oo 

2) / (i/; (a:, - V (a:, F))" ^ 0 a.s. 

1.4 Asymptotic reAnements 

In this section we explain why the bootstrap provides an improved approximation to ± e 

hnite sample distribution of an asymptotically pivotal statistic. Recall that a statistic is 

pivotal if its limiting distribution does not depend on unknown quantities (see example 2 
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in this section). The advantage of bootstrapping pivotal roots can be explained by means 

of the Edgeworth expansion. In this section we firstly introduce the Edgeworth expansion, 

and secondly the bootstrap will be expressed and interpreted in terms of the Edgeworth 

expansion. 

1.4.1 The bootstrap and the Edgeworth expansion 

Let Xiii = 1, ... ,n) be i.i.d. with common distribution function F having mean /i and 

variance cr̂ . Let /.t the parameter of interest. By the central limit theorem (CZ,T) we know 

that 

(a:) = f /cr < a;] —> 0 (a;). 

The gives us useful information about the distribution of sums of random vari-

ables when little is known about the individual terms. However, it does not provide any 

insight on the rate of the error made by the first-order normal approximation. 

If has sufficient moments and F is non-lattice^, the Edgeworth expansion of the 

distribution function of the root -Jn (X — /i) /cr is given by 

(a;, ^ (a;) 4- o , 

® A lattice distribution is one in which Xi takes values on an evenly spaced grid of points. More formally, 
a random variable Xi has a lattice distribution if there are constants c and h{> 0) such that the lattice 
\c + kh : k = 0, ±1,. . .] supports the distribution of Xi. 

Suppose ^ f have characteristic function x(t) = , where t = -x /^. Then a necessary 
and sufficient condition for Xi to have a non lattice distribution is that lim |%(t) | < 1. This is called 
the Cramer condition. 



1.4 Asymptotic re6nements 16 

where ^ (a;) = (2?:) exp ( — i s ± e standard normal density function, and 
a; 

$ ( z ) = ( u ) (fit, 

—oo 

is the standard normal distribution function. The function p j is a polynomial of degree no 

more than 3j — 1 and is odd for even j, even for odd j. In particular, we have in the above 

case (of normalised mean) 

Pi (a;, F) = — — l ) , 

where Ag = .27 /o'^- The population value =̂3 is referred to as the skewness. 

Since $ (a;) is the standard normal distribution function, (z, F) (a;) is considered 

to be the Grst term of the Edgeworth expansion, and it corrects the basic Normal distribution 

from the main effect of skewness. The distribution of an asymptotically pivotal root = 

^ j /o-^ admits the following expansion 

(a:, f ) (cc) + 0 , 

where the polynomial is of degree of no more than 3j — 1 and is odd for even j, even for 

odd j. Under appropriate conditions the expansion can be developed to any desired order 

in principle. However, we will consider only first-order expansion. 

Consider now the Edgeworth expansion for more general statistics. Consider the 

smooth function model as analysed by Hall (1992). Let (% = 1,..., n) be i.i.d. random 

A;-vectors variable with distribution function F with mean and finite second moments. 

Let p : > R be continuously differentiable in a neighborhood of p(/^) with Vp(//) ^ 0, 

where Vg denote the first order derivative of a function ^ in The parameter of interest 
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is 0 , which can be estimated by ^ with X == ^ Let denote the 
1 

asymptotic variance of \ /n and 6-̂  an estimator of Suppose we are interested 

in the expansion of the following statistic 

' 

Under sufGcient regularity conditions, the distribution function of T" may be ex-

panded as 

G (z) = P ([T < a:) = $ (a;) + + O , (1.4.1) 

where g is an even quadratic polynomial and are ± e Standard Normal distribution and 

the Standard Normal density, respectively. Hall (1992) shows that the bootstrap estimate G 

admits an analogous expansion. 

G (z) = f (T* < a;) = $ (a;) + M-̂ /̂ g(3;)< (̂a;) + 0 , (1.4.2) 

where T* is ± e bootstrap version of T, and the polynomial g is obtained from g by replacing 

unknowns, such as skewness, by bootstrap estimates. Note that the coefficients of g depends 

on the estimated moments of X up to the third order. By the central limit theorem, these 

coefficients can be estimated -\/n consistently, so that g = g + Op Subtracting 

equation (1.4.1) from (14.2) we get 

f * K < a;] - f [7; < z] = Op . 

Therefore, the bootstrap approximation to (7 is in error by only whereas the 

asymptotic normal approximation is of order 0^ . It is important to stress on the 
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importance of asymptotically pivotal statistics. Recall that a statistic 7^ is (asymptotically) 

pivotal if its (asymptotic) distribution does not depend on any unknown parameters. 

Example 2 A pivotal statistic 

Consider the distribution of = -s/ri, (X — /x) where Xi N (/x, cr^). The finite 

sample distribution of 2^ is given by 

where $ denotes the distribution function of Z ^ TV (0,1) . Therefore, the 6nite sample 

distribution depends on the nuisance parameter cr̂ . However, the studentized root 

Tfi \/H (^X jij /stx, 

n _ 2 
where = (n — 1)" — Xn) has Gnite sample distribution given by 

i = l 

Gn — P [v^ (-^ m) / ^ ^Ti—1) (^) ! 

where 7(n-i) denotes the Student (-distribution with n, — 1 degree of freedom. There-

fore, under normahty assumption the studentized root 7^ = is a pivotal 

statistic. 0 

The bootstrap provides higher-order approximation only for pivotal roots. If the dis-

tribution of statistics are not pivotal the bootstrap may stiH be applied but it does not pro-

vide higher-order approximation to their distribution. To see why consider the non pivotal 

statistic 

[/ = ^1/2 - g) , 
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the analogues of (14.1) and (1.4.2) in this case are 

H 

H 

(a:) = f ([/ < a;) = $ ^/^p(-)(/)(—) + 0 ( 7 1 , 
\cr/ O" cr 

* (a;) = f ([/* < z) = $ + O 

respectively, where ̂  is a polynomial, p is obtained from p on replacing unknowns by Aeir 

bootstrap estimates, cr̂  equals the asymptotic variance of U, 5"*̂  is the bootstrap estimate 

of cr̂ , (7* is the bootstrap analog of [/. Again p — p = Op , and also &* — (? = 

Op . Therefore, 

A* (a:) - a" (a:) = $ (^/o-*) - $ (3;/(T) + Op , 

Considering the distribution of the first term of its Edgeworth expansion depends 

on unknown parameter, typically, it will have the form # ( 0 , cr )̂. Hence, the Edgeworth 

expansion of A* will have leading term jV(0, cr )̂. It follows, that the error of the bootstrap 

will be controlled by the error of which is usually of order O . This is of the 

same order as the error of the standard normal distribution. 

To summarize, the bootstrap provide an improvement upon the first order approx-

imation because the approximation error of the bootstrap distribution for asymptotically 

pivotal statistics is of order O and not O . Of course, the bootstrap cannot be 

expected to perform well when the Edgeworth expansion provides a poor approximation 

to the distribution of interest. A case in point is the instrumental-variables estimation with 

poorly correlated instruments and regressors (see Hillier (1985)). 



1.4 Asymptotic refnements 20 

1.4.2 The bootstrap asymptotic minimax property 

We now consider the accuracy of bootstrapping statistics based on the minimax error mea-

sures. We Srst consider non-studentized, and then we extend the results to studentized 

statistics. 

Let %i, % 2 , . b e independent identically distributed random variables with un-

f ^ 1 

known distribution function F. DeSne < 2^, M > 1 ^ as statistics based on X2, -

(e.g. = g ^ as the empirical C D f of %i, Xg, and 7^ ( f ) as the asymp-

totic centering for So that {7^ (F)} is a sequence of random numbers such that 

where $ indicate the CDF of a Normal with mean zero, and cr is a scahng factor^. This 

distribution can be approximated using the non-parametric bootstrap distribution 

K(^) = ( i ) = -p; [ v ^ (t: - r„ ( F „ ) ) < I , 

where the symbol signals the bootstrap framework as before. 

We are interested in how well approximates .5^,^ . Beran (1982) has shown that 

A* is asymptotically minimax, (i.e. minimizes the maximum risk over a neighborhood). 

The normal approximation $ (ar/cr) is asymptotically minimax if and only if ± e distribu-

tion of the root has no skewness and bias of order o . Hence, although 

the bootstrap has the same convergence rate as the normal approximation in the non-pivotal 

case, the bootstrap can be superior in term of the minimax criterion. Beran also shows that 

the distribution based on the first order Edgeworth expansion is asymptotically minimax 

^ Note: Defining T„ (F) as a sequence and rather then just a constant allows us to accommodate for the 
most general case. 
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implying that the bootstrap is asymptotically equivalent to the 6rst order Edgeworth expan-

sion. However, Beran's definition of asymptotic optimality involves computing the error 

using a smooth distribution function i; before defining the risk of where 

An is an estimate of . Hence, Beran's proof makes use of the existence of a uniform 

one term Edgeworth expansion for . By contrast, Singh and Babu (1990) reach the 

same result proving again the existence of one term Edgeworth expansion, but they remove 

this artificial smoothing and obtain the required uniform one term Edgeworth expansion for 

Hn,F itself. For this reason we will consider Singh and Babu work in more details. 

As anticipated, the bootstrap has an asymptotic minimax property. This means that 

the bootstrap achieves the smallest risk in the worst case asymptotically. What do we mean 

by "risk" in the "worst case"? In order to proceed we restrict our attention to continuous 

distributions. 

Let 6 > 0 and > 1 be given. Let .F denote the class of non-lattice distribution G 

G R satisfying the inequahty 

so that is an upper bound for the fourth moment. 

Singh and Babu define a risk function and consider the sample mean of n independent 

observations of %2, - f r o m the distribution G, and they show that the bootstrap 

estimator of the sample mean attends this lower bound. 

So, for G E let 

//g = (z) 
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cTg — (z — dG (z;) , 

f [ \ /^ < a;] , 

7% 
where % = ^ z;. The risk function is deAned under a monotonically increasing loss 

i=i 

function 

It: [0, oo) —̂  [0, oo) 

and is defined by 

C ) = E c ( v ^ l l A . - } , (1.4.2.1) 

where || - || stands for the supnorm\ So, ± e expected loss under G is proportional to u 

which is a monotonically increasing function of the maximum distance between and 

G multiphed by the scalar -y/n which prevent the argument of collapsing to zero. 

Theorem 1 below gives an asymptotic lower bound for ^ . l b And a lower bound we 

need to define a neighborhood of the distribution function F, this requires some additional 

notation. Define 

= {G E JF : | |F - G|| < c / V ^ } , 

as the Kolmorogov's ball of radius c/^M, 

(STTcr̂ ) , 

^ The Euclidean noim II - II : ^ R is deSned by 

î il — [I (̂ 1 ; ^n) II — 
\ 

E = 
i = l 

SO, the supnorm is given by 

| f - G|| = sup | f (z) — G (z)! . 
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and 

= (Zz). 

Theorem 1 (cf. Singh and Babu). For F E 

wAgrg inf /v f/ig m/zmwm over aZZ g^yfzmafor of rz siiD« . c- (fgnorg^ rAe 

j'wprgmw/M over aZZ (fz.yfn6wA'0M yMMCfzoMj' G zn ^n,c,f-

The formal proof of this theorem is beyond om" purposes, and we refer the interested 

reader to the original article. Nevertheless, we will give an heuristic explanation of the 

meaning of this theorem. 

"Dgco(^g"^r fAgorem ] .' 

1) Consider 

sup^,c,f ^ ( F ) , 

since f is Axed, we can focus our attention on sup of n,, c and vary G in the Kolmorogov's 

ball. The worst G in Bn,c,F has risk at least as bad as J? ( f ) . 

2) Consider 

infg^ 8uPGeB.,c,f ^ . 

Let now treat M, c as given, and pick to minimise ± e worst risk that can occur for 

a given G combination. Let now consider what happens in the limit 

3) 

liminfTi_oo supGeg ,̂̂ ,̂  > -R (-^), 

so, for all n, sufBciently large we can never get a risk better than A ( f ) . 
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4) 

limc^oo liminf;i_oo infg^ sup ,̂c,F ^ ( f ) . 

Recall Aat F is 6xed. As ± e neighborhood around f expands ( ie . limc_^oo) we get 

closer and closer to a situation in which for all n sufficiently large (i.e. liminf„^oo) the best 

estimator for the neighborhood (i.e. infe 1 can never do better than a risk R (F). 

Singh and Babu show that the lower bound J? ( f ) is attained for the bootstrap esti-

mate A* of as well as for the empirical one-term Edgeworth expansion given 

by 

^ (As.f,) (3:̂  - 1) (1.4.2.2) 

where is the sample standard deviation and ^3^ is the third central sample moment. 

The results established above for the sample mean can be extended to functions of 

multivariate statistics, corresponding studentized statistics and ratio estimators when the 

auxiliary variable is lattice. We just consider studentized roots. 

Suppose 2%,..., be i.i.d. random A; x 1 vectors with distribution function F. Let 

^ ^ R with 1/ E (R'̂ ) continuously differentiable of order three on R'̂ . Let 

// = F (zi) and 2^ = \ /n (z) — g (̂ u)]. In the simplest case of the studentized mean 

T-a \ / ^ l^x\ /^n.} 

where ^ we can write 2^ in the form 

/a [g (Z„) - g (E (%))] , 
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where F (- î, -2:2) = ;zi/ (-2:2 — . In fact, the nor-

malised distribution (p (^m)) is given by 

/ n n 

^ ^ 1 ^ ^ 
2=1 2=1 

n, ^ 
i=l 

/ / 
71" ^ ^ ^ U ' At; 

i=l 

v\ 
1/2 

i=l 

71 (%i -
i=l 

n 
i=l 

1/2 

i=i 

1/2 

Define the distribution of interest as 

(:r) = ^ - 7 ; M < 2?)' 

We have already seen in the previous section that by the central limit theorem 

(3;) = f p 

this implies 

(2:) ^ (a;) 

almost surely. We want to know how good is ± e bootstrap (a;) as approximation to 

(a:). Let 6 > 0, A; > 1 be 6xed, and ^ be ± e class of A;-variate strongly non-lattice 
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(i.e. continuous in all dimensions) distributions on which satisfy 

where ||z|| = . Babu and Singh (1984) have shown that for studentized statistics, if 

' enough moments are assumed, typically 

= Op( i ) . 

Therefore, the risk function (1.4.2.1) tends to zero. Thus, in this case to get meaningful 

results the risk function has to be redefined as 

Ari = Eg j , 

(i.e. Considering in place of -\/7i prevents a degenerate argument in ^ G^). To 

obtain the optimality properties we need to consider two-term Edgeworth expansion instead 

of the one-term Edgeworth expansion like (1.4.2.2). 

To summarise, if there are sufficient conditions to ensure a two-term empirical Edge-

worth expansion (H^), then both JT* and achieve the lower bound, hence are asymp-

totically optimal. 

1.5 Bootstrapping test statistics 

In this section we consider apphcations of the bootstrap method to test statistics. Sup-

pose we want to test the null hypothesis jifo using the asymptotically pivotal statistic 

Consider a symmetrical smooth two tailed test of ^o. This test rejects &t the a level 

if |7^| > ZM,a/2, where Zn,a/2 is the exact 1 — a:/2 quantile of the distribution of 7^. The 
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critical value solves the equation 

Gm (^n,a/2,-F) — Gn (—'Zn,a/2,f') — 1 — a. (1.5.1) 

Since f is unknown the finite-sample critical value cannot be obtained unless 2^ is 

exactly pivotal. First order asymptotic approximation replaces the unknown distribution 

Gn with the known function G (i.e. the asymptotic distribution of 2^ ). According to the 

standard asymptotic theory, the critical value approximates the exact 6nite sample critical 

value with an error whose size is of order O . 

The bootstrap provides an alternative approximation to the finite-sample distribution 

of the statistic 7^. In other words, the bootstrap replaces .F with Thus the bootstrap 

critical value solve the equation 

G'n = 1—0!. (1 5.2) ^n,a!/2) 

The distribution of (1.5.2) usually cannot be solved analytically. However, z* can 

be estimated with the desired accuracy by Monte Carlo. 

To evaluate the accuracy of the bootstrap critical value z* need to consider 

again the Edgeworth expansion. We have seen in the previous section that the error of the 

bootstrap approximation to a one-sided^ distribution function is 

almost surely uniformly over T. Consider now the error for a symmetrical distribution func-

tion. In this case, for asymptotically pivotal roots, the accuracy of the bootstrap is then as 

® For one-side distribution function we mean Pr(|Tn| < when the statistic is symmetrically dis-
tributed about 0. 
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for a one-sided distribution. Consider the distribution function 

P ( |7; | < T) = (T, F ) - ( - T , F ) . 

Let $ denote the Standard Norma] distribution function. Then it follows from the 

asymmetry of the polynomials g' in their first argument that 

G . ( T , F ) - G ^ ( - T , F ) = (1.5.3) 

4 - - g (T, f ) + 0 

n 
= 2 $ (r) — 1 -I—g (-r, f ) -t- O (?i . 

Similarly, from (1.5.2) it follows that 

G ^ ( T , f ; ) - G X - T , f ; ) = [ G ( T , f ^ ) - G ( - T , f ; ) ] + (1.5.4) 

+^q(T,F„)+0{n-'} 

= 2 $ (T) — 1 4- —g ( T , f ^ ) -t- O (f t ; 

almost surely. The remainder terms (1.5.3) and (1.5.4) are 0(n,"^). Now subtracting 

(1.5.3) from (1.5.4) and using the fact that = O ^knost surely to obtain 

[Gn (T, f^) — Gm (—T, fl i)] — [Gn (T, F ) — Gn (—T, F)] — 

= ~[g(r,F^)-g{T,Fn)] + 0(n-^) 
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almost surely if 7^ is asymptotically pivotal. Thus the error made by the bootstrap ap-

proximation in this symmetrical distribution function is O compared to the error 

of O made by the first-order asymptotic approximation. 

In the same way, to evaluate the accuracy of the bootstrap critical value z* as an 

estimator of the exact finite-sample critical value , combine (14.1) and (1.5.1) to 

obtain 

2^ ^ ^ (^n,a/2, -F) = 1 - CK -|- O (n. . (1.5.5) 

Similarly, combining (1.4.2) and (1.5.2) yields 

2 $ (^^,0/2) ^ (̂ m,a/2, = 1 — CK -I- 0 (n, . (1.5.6) 

almost surely. Hall (p. I l l ) shows that equation (1.5.5) and (1.5.6) can be solved to yield 

Cornish-Fisher expansions for and z*^y2. The results are 

1 9 (^00,a/2, 

and 

"̂ 11,̂ /2 - '̂ oo,a/2 _ , / \ ' (1.5.7) 

= (1.5.8) 

almost surely. It follows from (1.5.7) and (1.5.8) that 

— '̂ m,a/2 + 0(71 , 

almost surely. Therefore, the bootstrap critical value for a two tailed test is more accurate 

then the asymptotic critical value, ± e error of the second being O (fi"^) and the error of 

the &rst O . 
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1.6 Bootstrap methods for time series 

In recent years there have been many developments in bootstrapping time series (see for 

example Li and Maddala (1997) and Berkowitz and Kilian (2000) for excellent surveys). 

In the literature, two main approaches to implement the bootstrap in dependent data setting 

have been proposed. The first approach models the dependent process as one that is driven 

by i.i.d. disturbances, which allows one to use the resampling scheme of the residual-based 

bootstrap in linear regression models. The other way is to resample blocks of adjacent 

observation instead of individual residuals. We will consider them in turn. 

1.6.1 Residual based resampling 

Before considering the applications of the bootstrap method for time series models it may 

be useful to consider the residual-based bootstrap for a standard regression model. Consider 

the model 

Ui = X[(3 + Si (1.6.1.1) 

where are i.i.d. eri ^ (0, ^ is a ^-vector of parameters. The vector may be 

estimated using the 01,5' method. Let 

where X = (a;i, ...,2:^)% 2/ = (z/i, - ,2/11), ^ be the estimator o f / ) . The boot-

strap can be used to conduct inference on the distribution of the estimator vector We 

distinguish between the non-parametric bootstrap and the parametric bootstrap according 

to the assumptions we make on the distribution of the residuals. For the non-parametric 
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bootstrap we make no assumptions about but we use the empirical distribution of the 

bootstrap residuals 6* = 2/t — to estimate We know that ^ converge to by the 

Ghvenko Cantelli theorem. By contrast, in the parametric bootstrap we make an assump-

tion on the parametric family for for example we may assume that ^ ^ # (0, . No 

matter the assumptions on ^ , we then proceed as follows: 

Step 1) Generate a random sample of 6*, ...6*. 

Step 2) Calculate %/* = + e*. 

Step 3) Calculate the estimate using the 2/*. 

Step 4) Repeat Steps (l)-(3) B times. 

This procedure gives B bootstrapped estimates of which can be used for exam-

ple to evaluate the accuracy of the estimator Freedman (1981) has shown that for the 

residual based resampling described originally by Efron (1979) the bootstrap distribution 

of is strongly consistent for the distribution of . Moreover, it 

appears that the residual based bootstrap works under weaker conditions than those which 

are necessary for the classical normal approximation (see Mammen (1993)). 

Example 3 ybr in a regrgj'j'foM 

Consider the model for the univariete case of (1.6.1.1) 



1.6 Bootstrap methods for time series 32 

where s, (t = 1,..., 50) are i.i.d. St ^ (0, . In Table 1.1 we present a simple example 

of the residual-based bootstrap for this model using the simulated data. In the second 

column we report the parameters of the data generation process ( D G f ) , in the third column 

the OLS estimates and the corresponding standard errors, in the fourth the mean of the j3 

and their standard deviations, and the t-statistic in the last column. All simulations were 

carried out using the matrix programming language GAUSS Version 3.2.32. The random 

numbers were generated by the function rndns. For each sample we calculated the 

^2, ^ d then we generated B = 10,000 bootstrap samples according to the algorithm 

given above. 

Table 1.1. 
G D P 

/5i 2 1.95431 
(0.2735) 

1.9534 
(0.2631) 

7.1440 

1 0.9833 
(0.0181) 

0.9833 
(0.0175) 

54.229 

5^ 1 0.8552 0.7867 
(0.1228) 

— 

As we can see from Figure 1.1 the distribution of the [3̂  are reasonably closed to that 

of the and they are normally distributed. Unfortunately, the same cannot be said for the 

estimate of the variance since it is clearly not distributed as with 48 degree of freedom. 
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Note that Efron's (1979) original bootstrap algorithm was designed for data which are 

independent and identically distributed. If the data come f rom a heterogeneous population 

the bootstrap will fail to give good results. An heuristic explanation for this failure is that 

if the data display heteroskedasticity or serial correlation a randomly resampled set of data 

will not preserve these properties, and as a result statistics calculated from the resampled 

data will not be consistent. This problem is particularly important when we consider time-

dependent data. 

Early application of the bootstrap algorithm to time dependent data assumed that the 

underlying process follows a stationary AA(1) model. Consider the model 

+ Et, 2/0 = 0, (1.6.1.2) 

where is i.i.d. with common distribution f (0, cr^) and 0 < cr̂  < oo. For this model the 

least square estimator p of p is given by 

-1 

P = I I 
/ \ t=i 

The consistency of p was already established in the 5 0 s \ However, the limit distri-

bution of p is different for the three possible cases: stationaiy, unit root, and explosive. 

Indeed, if |/)| < 1, then 

if |p| = 1 

„ •. IW(r)dW(r) 

' JW(rfdr ' 

where / is a shorthand for and denotes the univariate Wiener process on [0,1]. In 

this case the limiting distribution of p is neither normal nor symmetric since it is negatively 
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skewed. Furthermore, p is super consistent since it converges to its true value at rate 1 /[T 

instead of the usual rate 1/VT-

The asymptotic validity of the bootstrap estimator corresponding to p for the station-

ary case (i.e. |p| < 1) was established by Bose (1988). Using the Edgeworth expansion 

for sum of dependent random variables, Bose proved that the bootstrap distribution is sec-

ond order accurate for the distribution of the studentized root — (p — p) ,(where 

denotes the usual OZ/S" estimator of the variance of p); this property extends to AjZ(p) 

models with unknown mean. 

Basawa gf aZ. (1989) considered the case |p| > 1 and they established the validity of 

the bootstrap even for explosive processes. 

The consistency of the bootstrap estimator of the distribution of the slope coefGcient 

or studentized slope coefficient in a simple unit-root model has been investigated by Basawa 

gf aZ. (1991a, 1991b), Datta (1996), and Ferretti and Romo (1996). 

Basawa gf aZ. (1991a) consider the consistency of the ^-statistic for p in the special 

case ^ TV (0,1) given by 

\ 1/2 

and they investigate the distribution of 

\ 1/2 

obtained by replacing i/, with in (1.6.1.2). They show that the null limit distribution of 

conditional on (%/i,..., i/n) is not the same as that of , so that the bootstrap distribution 

function (̂ * < -r) does not consistently estimate the population distribution function 
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-P (̂ ,1 < 7"). The problem arises from the discontinuity in the asymptotic distribution of p 

at p — 1, since as we have seen above this is different according to p ^ 1. It follows that the 

third condition given in Section 1.3 is not satisfied if the DGP under consideration includes 

ones with and without p = 1. However, Basawa et al. (1991b) show that it is possible to 

overcome this problem by specifying that p = 1 when constructing g*, therefore removing 

the source of discontinuity. 

For the model specified in (1.6.1.2) consider the null hypothesis Hq : p = 1. A natural 

test statistic for testing is given by 

= n (p - 1). 

The bootstrap sample = 1 , i s generated recursively from the estimated 

model 

= + (1.6.1.3) 

where = 0. The centered residuals are where e = ^ (i/t - i/f_i) 
t=i 

The bootstrap analogue of the statistic is z* = n, (p* — 1) where 

^ t—1 / \t=l 

Basawa aZ. (1991b) derive the null limit distribution of z* conditional on (2/1,..., i/m), 

and show that if ffo is true, then (z* < z) — f (z^ < z) | = Op (1) uniformly over z. 

Datta (1996) established that the discontinuity problem can be overcome without 

restriction. Consider the model (1.6.1.2) with the additional assumption that the second 

Note; If an intercept is not included in the model, the residuals i t must be recentered prior to resampling 
to ensure that their bootstrap population mean is zero. 
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moment is bounded (i.e. E < oo for some > oj . Let 

m ^ (z/f -
t=X 

denote the centered residuals from the estimated model, and let s* be a random sample of 

St for some m < M. The random sample is generated by the recursion 

% — 

but with i = 1, ...,m instead of i = 1 , n . Define the bootstrap version of by 

1/2 

t* = 
,i=l 

Datta proved that if [m (log log n,)^]/n—»^Oasn,—>oo, then 

( C < z) - f;, (̂ ^ < z)| = o (1) , 

almost surely as ?T, oo uniformly over z for any E (—00,00). 

The asymptotic validity of ± e bootstrap has been established also for ± e stationary 

autoregressive moving average of order (p, g) ( A7^MA(p, g)). The AEMA(p, g) is given 

by model 

P (Z/) 2/t = (Z) 

where p (Ẑ ) = 1 — PiL — ... — p^LPip [L) = 1 — — ... — , and L is the lag 

operator deAned by the property = ^f_i. Let ^ ...,py,Y7i,. (/)g) denote the 

(p 4- g)-vector of unknown parameters. Assume ±at the process {^t} is stationary as well 

as invertible. If ^ denotes an M-estimator of 0, then Kreiss and Franke (1992) have shown 

that the Mallows distance between the bootstrap distribution of V T (̂ 6 — and the finite -

sample distribution of V T f ^ ^ j converge to zero in probability. The bootstrap estimator 
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^ is based on the resampling scheme 

p(L)y; = riL)el 

where ^ (Z/) = 1 — — ... — ^ (Z/) = 1 — — ... — and s* is sampled 

from the set of centered ARM A residuals. In MA{q) models Bose (1990) proved that the 

bootstrap is second-order correct if the bootstrap is based on a studentized root. 

Li and Xiao (2001) establish the validity of the residual based bootstrap for the re-

gression model with 7(1) explanatoiy variables and f (0) errors, 

is scalar, but z;* can be a YAJR., and can be autocorrelated as well, with appropriate 

ac^ustments to the bootstrapping procedure. 

1.6.2 Resampling blocks of data 

Application of the residual based bootstrap is straightforward if the underlying distribution 

foDows an i.i.d. stationary process. However, if the structure of serial correlation is not 

tractable or is misspecihed, the residual based methods will give inconsistent estimates. To 

take the dependency into account other approaches which do not require fitting the data 

into a parametric form have been developed to deal with dependent data. These procedures 

are called the "moving block bootstrap" because they involve resampling blocks rather then 

individual data. Blocking methods may involve either non-overlapping blocks (see Carl-

stein (1986)), or overlapping blocks (see Kiinsch (1989) and Liu and Singh (1992)). The 

non-overlapping blocks method divide the data of t observations into blocks of length Z and 



1.6 Bootstrap methods for time series 39 

select 6 of these blocks by resampling with replacement all the possible blocks. In the over-

lapping blocks method there are t—Z+1 blocks. The blocks are , 2:̂ +1, - -, 2:^+2-1} 

for A; = 1,2,. . . , — Z + 1). 

The idea that underlies the block resampling scheme is that if the blocks are long 

enough, then enough of the original dependence is preserved in the resampled series. 

Therefore, the bootstrapped statistics, say T*, under consideration will have approximately 

the same distribution as the value T calculated from the replicates of the original series. Of 

course, this approximation will be best if the dependence is weak and the blocks are as long 

as possible, so that the dependence is preserved more faithfully. However, the drawback 

of the moving block bootstrap is that pseudo time series generated by the moving block 

method is not stationary even if the original series are is stationary. For this reason Pohtis 

and Romano (1994) suggest the stationary bootstrap. 

1.6.3 The stationary bootstrap resampling scheme 

The main idea behind the stationary bootstrap is to draw a sequence of blocks of random 

length, where the length of each block has a geometric distribution. Let denote the vector 

of m consecutive observations from starting at 2/t-m+i. To describe the algorithm let 

— {Yf, "̂ +1 , —1} ; 

be the block of Z observations starting at If the index > T, then is denned as 

(i.e. , where A; = A;(modT') and Yo = Let p be a 6xed number in [0, l ] . 

Independent of the data, let Z/2, be a sequence of random variables having the 

geometric distribution, so ±at the jP{Z/i = = (1 — for m > 1. Independent 
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of the data and the , let 21,72, -- be a sequence of iz .d. random variables that have 

the discrete uniform distribution on {1, . . . ,T}. Now the bootstrap sample is 

generated in the following way. Sample a sequence of blocks of random length 

the fbrst observations in the bootstrap sample Y]*, are determined by the first 

block of observations containing yTi+z,-i, and the next Z/g observations of 

are determined by the second block so forth. This process is stopped once T obser-

vations has been generated. Once that the bootstrap sample has been generated, compute 

the statistic as usual. Politis and Romano prove the Arst-order consistency of the sta-

tionary bootstrap (see also Lahiri (1999). 

1.6.4 The Sieve bootstrap for linear processes 

An alternative model-based resampling procedure is the sieve bootstrap. The sieve boot-

strap has been studied by Kreiss (1992) Buhlmann (1997) and Paparoditis (1996). The 

main idea behind the sieve bootstrap is approximating the general linear process by a finite 

autoregressive process of order increasing with the sample size, and resampling from the 

approximated autoregressions. Consider the following D G f 

l i — /i — Cj O^i-j ~ (1.6.4.1) 
i-1 



1.7 Concluding remarks 41 

where for all %, the process s, consist of it .d. random variables, and may be 

OO 
a scalar or a vector process. Assume that ^ C; < oo and that the roots of the power series 

OO 

are outside the unit circle. Suppose we approximate (1.6.4.1) by an model in which 

p — p(7%) increases with increasing sample size. Let for = 1, ...,p} denote the 

least squares estimates of the coefBcients of the approximating process, and let Snj denote 

the centered residuals. The sieve bootstrap consists of generating bootstrap samples to the 

process 

OO 

^ — m,) 4- a*, 

where m ^ Y) and 6* are the bootstrap residuals. In the literature Biihlmann (1997) 
i = l 

have given conditions under which this procedure consistently estimates the distributions 

of several statistics, while Choi and Hall (2000) investigate the ability of the sieve bootstrap 

to provide asymptotic refinements. 

1.7 Concluding remarks 

The purpose of this chapter has been to illustrate how the bootstrap method works and its 

properties. It appears that the bootstrap is a general method for estimating the statistical 

accuracy of an estimator or test statistic by resampling the data. Particular emphasis is 

given to the bootstrap's ability to improve upon hrst order approximation. The theoretical 

explanation of ± e bootstrap's ability to provide asymptotic refinements is based on the 
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Edgeworth expansion. Indeed, the bootstrap provides asymptotic refinement because it 

amounts to a one-term Edgeworth expansion, and the bootstrap will not necessarily perform 

well when an Edgeworth expansion provides a poor approximation of the distribution of 

interest. 

The bootstrap principle extends easily to a variety of statistical models and there is 

also a growing number of studies investigating the usefulness of bootstrap methods for 

small sample inference in cointegrating regression models. The possibility of using the 

bootstrap for improving the accuracy of the inference in cointegrating regressions was pro-

posed for example by Li and Maddala (1997). In their paper the authors consider situations 

where the errors driving the cointegrated relationships are autocorrelated and they compare 

the small sample properties of the standard bootstrap, the moving block and the stationary 

bootstrap. Their simulation experiments show that bootstrap methods can be successfully 

employed to reduce the size distortion of the tests statistics. More recently, Psaradakis 

(2001) suggests using a sieve bootstrap procedure based on resampling residual from an 

autoregressive approximation to the innovation process driving the cointegrated system. 
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1.8 Appendix : The Glivenko-Cantelli Theorem 

The theoretical justification for the use of the empirical CDF is provided by the Glivenko-

Cantelli Theorem. This theorem asserts that Fn converges uniformly" to the true distribu-

tion F 

Theorem 2 As n ^ co 

sup 
-oo<a:<oo 

0 . 

This theorem is of fundamental importance in probability and the proof can be found 

in several books. Here we follow Zaman (1996). 

Proof. For a Axed z:,say a; = Zg, (̂ ô) is Ae average of i.i.d Binomial random vari-

able and f d (a;o), f (3:0)^ = 0 ^ = 1 by the weak low of large numbers. 

Now consider a partition f such that Zo,a:i, ...,2:99,3:100 so that f (a:o) = 0, = 

0.01, .F (2:2) = 0.02,..., (2:99) = 0.99, f (â ioo) = 1. We allow for = - 0 0 and Zioo = 

4-00. It foHows that jP l̂imTi_̂ oo d = oj = 1 for j = 1,2,..., 100. We 

It is important to distinguish between uniform convergence and pointwise convergence. 
A sequence of functions (2:)) is said to converge uniformely to a function / (z) for r belonging to 

some set A if 

Ve > 0 , e A,Vn > A/̂ ,sup (z) — / (z)| < E 

A sequence of functions ( /„ (x)) is said to converge pointwise to a function / (x) for x belonging to some 
a set A if for each value of z in A (z) ) , considered as a sequence of real numbers, converges to the real 
number / (z ) . 

Ve- > 0, Vz E A, 37V, VM > AT, (z) - / ( z ) ) < E 

The crucial difference between these definitions relates to the order of quantification. In the second case 
± e value of can vary with z as well as E, whereas in the Srst case TV must exist independent of z. 
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have that V a;, 3 such that < z < Tj , so that using the triangular inequality 

d (i:), < F (z) — f (Zj) + f (%_;) — ^ (a:^) + ^ (3:) 

The first term is less than or equal to 0.01, the second is convergent to zero, and the third 

can be bounded as: 

^ ( z ) - < ^(2:,.) - F(z,.) - - 0.01. 

Thus with probability 1 as n, ^ 00, < 0.03. However, this remains true - F(z ) 

for all positive real numbers, however large. We thus achieve uniform convergence wi± 

probability one. # 

To see why the assumption on the form of convergence (i.e. uniform or pointwise) is 

important consider estimating 

f (a) = f (% < a) 

for some 6xed a, then the C D F 

jViimber 0 / %, < a. 

n 

The number F of %'s < a has the binomial distribution 

y : 6 (p, with p = f (a), 

with 

E (— ) = p and Var 
y \ np 

M / n. 
(9 = 1 - P) 
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It follows that (a) is a consistent estimator of f (a) for each fixed o, since 

E A.(o) = F ( a ) 

and 

yGr(F»(G)) = ^ F ( G ) [ l - F ( a ) ] 

In addition, it follows by the De Moivre's theorem that 

However, the Glivenko-Cantelh theorem implies a much stronger consistency prop-

erty. Indeed, it asserts that if the difference between Fn (x) and F (x) is considered not 

only for a fixed x but simultaneously for all x, then the supremum of the distance between 

(z) and F ($) tends in probability to zero as n, ^ oo. 



Chapter 2 
Small Sample Corrections for Tests of 

Hypotheses on the Cointegrating Vectors 

2.1 Introduction 

The Grst procedure for testing cointegrating relationships was proposed by Engle and 

Granger (1987). After their seminal paper cointegration became an extremely intensive 

field of research, and in the literature many alternatives to their procedure have been devel-

oped. 

Among them the Johansen (1988, 1995) and Johansen and Juselius (1990) procedure 

for estimation and testing of cointegrating relationships is widely used in applied econo-

metric research. This method applies the maximum likelihood procedure to a multivariate 

vector autoregressive model written in the error correction form. Maximizing the Gaussian 

likelihood function leads via reduced rank regression to the analysis of eigenvalues and 

eigenvectors. To test for linear restrictions on the cointegrating vectors and their weights 

Johansen (1988) and Johansen and Juselius (1990) proposed likehhood ratio and Wald 

tests. However, the asymptotic distributed tests are quite heavily affected by the sam-

ple size. The problem of the poor approximation of the asymptotic distribution to the finite 

sample distribution may be described as one of lacking coherence between the statistic and 

its reference distribution. 

46 
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In principle there are two ways of solving this problem, either for a given reference 

distribution correct the test statistic so that the finite sample distribution is closer to the 

asymptotic distribution, or for a given test statistic correct the reference distribution. Podi-

vinsky (1992) and Psaradakis (1994) followed the first route and they proposed an altema-

tive approximate .F-type test, and a small sample ai^ustment for Z/A criterion and the VKaZd 

test, respectively. The second route involves replacing the critical values of the limit distri-

bution with transformations of critical values obtained from the Edgeworth expansions of 

the distribution function. Unfortunately, this approach is analytically rather demanding. In 

this sense estimating critical values using simulated-based method is a plausible numerical 

alternative. 

The purpose of this chapter is twofold. Firstly, we use bootstrap hypothesis testing 

as a way to reduce the size distortion of the tests for linear restrictions on the cointegrating 

space. Secondly, we consider the Johansen and Wald test statistics as well as the small 

sample corrected version of these tests, and we explore the robustness of the inference 

procedure in a situation where we allow for potential over-fitting and under-fitting of the 

number of cointegrating vectors included in the restricted model. 

The outhne of this chapter is the following. Section 2.2 briefly introduces the Jo-

hansen maximum likelihood estimation and, in particular the likelihood ratio and Wald 

tests for linear restrictions as well as Podivinsky's (1992) f - type test and Psaradakis's 

(1994) corrected and Wald tests. Section 2.3 describes the bootstrap test. Finally, in 

Section 2.4 describes the Monte Carlo experimental design and some simulation results are 

reported. 
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2.2 Johansen's Maximum Likelihood Procedure 

Johansen considers a general vector autoregression in error correction form. 

— /i + TiAYf-i + . . . + + UYt-k + Gf, (2.2.1) 

where , and are (p x 1) vectors, and Fi through are (p x p) matrices of coefGcients. 

— ^ - 1 . Et jV7D(0,2).We specialise to the case A; = 1 , so 

AYt — /X + IIYt-i + 6t, (2.2.2) 

The matrix 11 determines whether or not, and to what extent, the system (2.2.2) is 

cointegrated. 

We assume hrst that the eigenvalues of f +11 lie on or inside the unit circle. Suppose 

that n has rank r. If r = 0 , and thus 11 is a null matrix, Yt is a vector of random walks 

related only through the covariances of their innovations . If r = p, Yt is stationary. If 

0 < r < p (2.2.2) can be interpreted as an error correction model. The hypothesis of r 

cointegrating vectors can be written as: 

Hq : U = aj3'. 

where a and are (p x r) matrices. The rows of can be interpreted as the distinct 

cointegrating vectors of (i.e. such that the linear combinations are 7(0)) and the 

elements of a represent the weights of each of these r cointegrating relations in the p 

component equations (2.2.2). 
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Johansen (1988) shows that maximising the likelihood function involves solving the 

eigenvalue problem 

= 0, 

to give p ordered eigenvalues > . . . > > 0 and corresponding eigenvectors y = 

T 
normalised such that = / . The matrices 6!;̂  — ^ J = 

t=l 

0, A: , where Eot and the residuals obtained by regressing and on, in 

general, A X f _ i , . . . , A%t_k+i, Dt and 1. In our case the 5'ij are just mean adjusted moment 

matrices. A basis for the space spanned by the cointegrating vectors is estimated by = 

[ti l . . . - The corresponding estimate of a is given by 6 -

A test for the number r of cointegrating vectors can be based on the p eigenvalues 

Ai > . . . > Ap > 0. Johansen (1988) derives a likelihood ratio(Z\R) test of the hypothesis 

that there are at most r cointegrating vectors by testing that the (p — r) smallest eigenvalues 

Ar+i , . . . , Ay are zero against the assumption that A, > 0 for t = 1 , . . . . The test 

statistic for this is known as the trace test, defined as 

p 

= —T la — Â  j . 

In addition, the maximum eigenvalue test statistic is given by 

Z/7^(max)r — —Tin ^1 — A^+i^ , 

and can be used to test the null : ^^^/^(n) = r against the alternative .H'i(r + 1) : 

ramA;(n) = r + 1. 
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Johansen (1988) shows that the asymptotic distribution of the trace test is 

tr } 
\ o 

1 \ 

0 / 
where B {u) is an (p — r)-dimensional Brownian motion with covariance matrix I. He 

tabulates simulated values of selected percentiles of this asymptotic distribution for a range 

of values of (p — 1) = 1 ,2 ,3 ,4 ,5 . These tabulated values serve for testing r = 0, r < 

1 , . . . , r < (p — 1) when p ranges from 2 to 5. 

The value of r chosen using the LR tests determines the matrices a and P : both are 

(p X r) . It is then possible to test linear restrictions upon the elements of a and . 

Now we can brieAy outline the proposed tests for linear restrictions on the cointegrat-

ing vectors. Under the hypothesis Hq : U = aP' , the maximised value of the concentrated 

likelihood function satisfies 

2 = jS'ool 
i=l 

where S'oo and were defined earlier. Johansen and Juselius (1990) use this to develop LR 

tests of linear restrictions on the matrices a and (3 . Here we will consider only the case 

. 

To understand how this test is derived, recall that only the ranges of the columns of a 

and are identified. If we set a* = aB' and than a*/)*' = a/?' = H. Therefore, 

a and are identified only up to a non-singular transformation J9(r x r). Now, what enters 

the model is r linear combinations of the p elements in - Restricting 

/̂ (pxr) — y 
(pxa)(sxr) 
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implies that and if is a matrix whose row is , the column 

space of is now g dimensional. 

The maximised value of the concentrated likelihood function subject to the restriction 

IS 

where Ai > . . . > Ag are the a > r eigenvalues obtained from solving 

= o . 

The test of /? = can be obtained from the concentrated likelihood functions above, 

and is 
r 

= - 2 1 i i ( ^ I / l j = T ^ h i [ ( ^ l - A ^ ^ / ( ^ l - A ^ ) . 
i=l 

Johansen (1995), p. 104-5 and 192-3 shows that (/?) is asymptotically (r (p — s)) 

under ffo : ̂  = Tify). 

Alternatively, Johansen and Juselius (1990) propose a Wald test. Consider the fol-

lowing null hypothesis jfo : = 0 where is an (p x (p — s)) matrix of full rank, then 

the W statistic for testing Ho is: 

^ (/)) = Ttr .A"'/) 
-1 

(2.2.3) 

where A = ^Ai , . . . , A^j and 14 = . Since the limiting distribution 

of ^ is a Gaussian mixture, VF(/3) is asymptotically distributed as (r (p — g)) under the 

hypothesis jT'/) = 0 respectively. 

It may help to relate the two forms of the restrictions. Given 

(pxr) (px^)(»xr) 
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we order the rows of so that 

H ( p - g ) 

has Hi of full rank. So partitioning conformably 

Hi 
H2 

s 

( p - 5) 
/?! 
A 

= H(fi = 
-5̂ 2 

Then 

Substituting in /?2 = 

Hence /? = implies 

- ^ 2 
((p-s)xs)(3xs) 

Pi 
A 

— 0 
( ( p - 3 ) x r ) 

This is one way of obtaining 

-^((p—s)xr)/^(pxr) 

i.e. {p — s) common linear restriction on the columns of /?. 

Similarly, given an arbitraiy jiT, and = 0 we can write 

( (p-a )xs ) ( ( p - 3 ) x ( p - s ) ) 
r A l 

- _ A . 
0, 

hence, if we order the rows of so that jpr2 is invertible then 

+ 7ir2/?2 - 0 ^ - ^ 2̂/32 ^ ,82 = 

Thus 

/5i 
p2 

I 

( (p-a)xa) 

/?! 
' 1 ' 

(5XT-) (ax a) 
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Hi Hi 
H2 

Thus to move from 
Hi 
H2 

to K', we have to set 

where is an arbitrary non singular (p — s) x (p — g). In the same way, to move from 

Hi 
= [ jRTi jiTz ] to we have to set Tif = 

non singular (g x g) matrix. 

, where 77% is an arbitrary 

2.2.1 Podivinsky and Psaradakis corrections to the tests for linear 
restrictions: "A variation on a theme " 

The Johansen (1988) simulated critical values are based on asymptotic results, and may 

not be appropriate when used with relatively small sample sizes. In the literature a lot of 

work has been done on the procedure for inference in cointegrated systems. Among others 

Podivinsky (1992) and Psaradakis (1994) investigated the adequacy of these asymptotic 

critical values in moderately sized samples. 

They consider a simple D G f with limited number of lags, and just one cointegrating 

vector. Their simulation analysis indicate that the asymptotic distributed tests are 

quite heavily affected by the size of the sample. Accordingly, they proposed small sample 

adjustments respectively for an F-type test and for the LR criterion and the Wald test. 

First, consider the Podivinsky (1992) approximate F-type test. If again we denote 

estimation under the null by tilde, and unrestricted estimation by a circumSex, and 

^ = nr 1 1 - A , , 
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s = n i _ . ( i - A,) , 

then the F-type statistics for testing the linear restriction hypothesis (3 = H^-p is 

/ ( r ( p - g ) ) 

( r - z) 

where I is the number of parameters estimated subject to the maintained hypothesis H = 

a/)'. In our case / = 2 p 9 — w h e n estimating a, and //. Then f is approximately 

distributed as f (r (p — g), T — Z) . 

Psaradakis (1993) proposes the application of and Wald tests ac^usted by certain 

correction factors. Letting 

(/̂ ) = (Vp) + (1/2) [ p - r ( p - s ) / p + l ] , 

the modiAed statistics are defined as 

Z,&(/3) = ] : jZ(/3)[T-(Z/p)] /T, 

= z ; 7 2 ( / ) ) [ r - c ( / ) ) ] / T , 

W,(^) = T ^ ( / ? ) [ r - ( Z / p ) ] / T , 

where the Z ĵRc(/?) and M^(/)) are obtained by replacing [T by T — (Z/p) in standard likeli-

hood ratio and Wald tests. 

Monte Carlo evidence in Podivinsky (1992) indicates that the application of the mod-

ified -P-type test is worthwhile, since improvement are shown with respect to the size prop-

erties of tests proposed by Johansen (1988). These results are mainly confrmed by 

Psaradakis (1994), but in addition he shows that the small-sample behavior of LR statistics 

may be improved by the use of simple scale corrections as indicated above. 
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More recent work in the literature points out that the problem of size distortion can 

be substantial when more complex DGP are considered (i.e. when r > 1, and more 

lags and seasonal dummy are inserted), see for instance Fachin (1997), Gredenhoff and 

Jacobson (1998). One reason is that for the asymptotic theory to be valid it is necessary 

that rejection probabilities do not depend on the DGP, which is not usually the case in 

small samples. As a result, the true and the nominal probabilities that a test rejects a correct 

Hq can be very different when the j)-value is obtained from the asymptotic distribution of 

the test statistic. Since the bootstrap distribution is able to mimic possible skewness of the 

finite sample distribution it may account for deviations of the actual distribution from the 

distribution. 

2.3 The bootstrap test 

As seen above, the Z/.R and test proposed by Johansen (1988) and Johansen and Juselius 

(1990) enable a researcher to test for linear restrictions on after having accepted cointe-

gration among variables and Podivinsky (1992) and Psaradakis (1994) propose small sam-

ple adjustment for these tests and for an f—type test. In this section, (i) we investigate the 

size distortion of these tests in finite sample, (ii) we analyse the robustness of the Johansen 

inference procedure to misspecification in the number of cointegrating relationships, (iii) 

we apply the bootstrap method to the and Wald tests above (iv) we evaluate the robust-

ness of the bootstrap tests. The evaluation of points (i)-(iv) is via Monte Carlo simulation 

experiments. 

The model estimated is a y v l ^ ( l ) defined by 
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^Ut = nyt__i + / i + ef, (2.3.1) 

where and are (4 x 1) vectors, // is a vector of intercepts and % z.i.d.TV (0, i ) 

When testing for linear restrictions on cointegrating vectors, the true D G f is not 

known. Since the null model, and consequently the DGP is unknown, the estimated DGP 

is used. In our case the estimated error correction model is 

'^Vt — 6 ^ Ut-i + A + (2.3.2) 

where & and ^ are the restricted estimates. 

The non-parametric bootstrap^^ involves approximating the 6nite sample distribution 

^ r ———- * "J c'—- * 1 
of the Z, A, VF, f—type tests by drawing several B bootstrap realizations | | ^ | 

j for % — 1,2, . . . ,B bootstrap samples In order to do this we re-

sample the residuals (si , . . . , Sf) from (2.3.2). Denote the bootstrap sample (s^,..., 6*). The 

bootstrap algorithm can be summarised as follows: 

1) Estimate the error correction model given by (2.3.2) and compute Z/A, 14̂ , F—type 

as described in Section 2.2. 

2) Re-sample the residual from (si, . . . , 6r) independently with replacement to obtain 

a bootstrap sample ..., &y). Generate the bootstrap sample ( y * , r e c u r s i v e l y from 

^0 = 0 and (s^,..., 6*) using the estimated restricted model 

Note the stationary bootstrap is often used in time series analysis in place of ± e ordinary bootstrap. One 
reason is that the stationary bootstrap is able to preserve the correlation structure of the residuals. However, in 
our case we are primarily interested in whether the bootstrap is able to reduce the size distortion with respect 
to the inference based on first-order asymptotic critical values (Osterwald-Lenum (1992)), so we abstract 
from the more complicated issue of correcting dynamic specification of the underlying VAR. Moreover, Van 
Giersbergen (1996) results show that the ordinary bootstrap has better power properties with respect to the 
stationary bootstrap. 
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Ay* — 2/Z-i + A + 

where a and ^ denote ± e restricted estimates under the null hypothesis = 0 . 

3) Compute the bootstrap rephcation of j , j w * j ,or j , using ..., ] 

4) Repeat steps 2-4 B times. Defining the bootstrap p—values function by the quan-

tity 
B 

p* ^ I > g ) ( 2 . 3 . 3 ) 

i = l 

where i = 1, ...B, ^ is the test statistic considered, and i ( ) is the indicator function that 

equals one if the inequality is satisf ed and zero otherwise. 

6) Rqect the null hypothesis if the selected signihcance level exceeds p* 

As seen before I,A (/)) and (̂ 0) are asymptotically pivotal since they asymptoti-

cally distributed Therefore, the we may expect re&nements of order 

2.3.1 Design of the Monte Carlo experiments 

In order to keep an high degree of experimental control the used are simple 

processes with small dimension. We consider three different D G f , the 6rst is given by: 

D G P l : 

^Uit — 

= Ezt, 
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where ^ (0, ^ ) , i/zt, 3/it are (2 x 1) vectors and is a (4 x 4) 

matrix. The variance-covariance matrix of the disturbances is set to a unit matrix through-

out. So, we have four unrelated random walks and r = 0. 

The second D G f is given by D G f 2 : 

= eit, 

A7/2f — 62(, 

= Est, 

Wt = + G4t, 

with /923,;̂ 33,/?43 < 1, Cf = [ e2( 3̂( C4t ] ^ 2.z.(f.jV(0,7). So that we have 

one cointegrating vector [O /̂ gg ^43 — l ] ' . 

The third is given by D G f 3 : 

Ai/it = eit, 

Al/2t = E2t, 

2/3t — /)22y2f-l + /)322/3(-l + ,̂ 422/4<-l + ^3t, 

3/4t = AsZ/Zt-l + /̂ 333/3f-l + /^432/4t-l + 4̂*, 

with = [ Elf, est E2t, Est ] ^ i'z.d.]V(0,I). So that we have two cointegrating 

vectors. 

Two possible situations are investigated: 

a) The model is correctly specified: 

- D G f is D G f 2 and in model estimated r = 1 

- D G f is DGP3 and in model estimated r = 2 
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b) The number of cointegrating vectors is over-fitted or under-fitted; 

-DGP is DGPl but we are assuming r = 1 

-DGP is DGP2 but we are assuming r = 2 

- D G f is D G f 3 but we are assuming r = 1 

All simulations were carried out on 400MHz Pentium PC using the matrix pro-

gramming language GAUSS Version 3.2.32. The random numbers were generated by 

the function rndns. For each sample we calculated the six tests considered above in 

a VAR(l) model with intercept and we generated B = 400 bootstrap samples according 

to the algorithm given in the previous section. Then the bootstrap is evaluated by Monte 

Carlo, and each Monte Carlo experiment is based on 1,000 replications. Obviously, the 

level of accuracy of the experiment could be improved using a larger number of boot-

strap replications and a larger number Monte Carlo replicates, (a 95% confidence interval 

around a 5% nominal size is [3.6-6.4] for 1,000 replicates). However, 1,000 replications 

with B=400, T =800, uses 3.2x10^ random deviates of the 4x10^ distinct deviates avail-

able from For the non-bootstrapped tests, 100,000 Monte Carlo replications were 

used. The random number generator was restarted for each T value. 

According to Davidson and MacKinnon (1996b), in some situations B = 400 is 

the smallest number of replications that guarantees a reasonable trade off between the 

gains in power and computational costs. However, increasing the number of bootstrap 

replications involves increasing computational costs, consequently it is necessary to re-

duce them to a number that minimizes the loss of power To explore the sensitivity of 

the estimated size to the number of bootstrap replications we made a pilot experiment for 
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B G {100,200,400,600,800,1200} (the results are reported in Appendix of this chapter) 

and this simulation confirms that B = 400 is adequate for our purposes. 

2.4 Monte Carlo Results 

In this section we report the result of the Monte Carlo experiment. We firstly consider the 

size properties of the test statistics and then we present the results for the power. 

2.4.1 The probability of the type I error 

In Table 2.1-2.5 we report the results of the Monte Carlo experiment with respect to the 

sizes of the tests. The notation is the following; T is the sample size, LR is the uncorrected 

likelihood ratio test; LCc and LR^ are the likelihood ratio tests adjusted by Psaradakis's 

(1994) correction factors; and Wc are respectively the uncorrected and corrected Wald 

tests; F is the F-type test proposed by Podivinsky (1992). Therefore, from column 2 

to column 7 we report the Monte Carlo estimated sizes, and column 8 and 9 report the 

bootstrap corrected hkelihood ratio and the bootstrap Wald tests. 

The first thing it is important to note is that the empirical sizes of BootLR are equal 

to those for BootF, the bootstrap corrected f statistic, as the F statistic is a one to one 

function of the LR statistic. Hence, the columns of BootF have been omitted. 

Monte Carlo evidence in Table 2.1 and 2.2 confirms Psaradakis (1993) and the Podi-

vinsky's (1992) results in the case where the number of cointegrating vectors is correctly 

specified and this is particularly true for the F-type. We find the poorest performance for 

both the and Wc versions of the Wald statistic. For the Wc test the actual significance 
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level is much higher then the 5% nominal level, and as a consequence the true null hypoth-

esis will be rejected too often. A reason for this may be the non-invariance property of the 

Wald test. The invariance property states that the decision reached by the hypothesis test-

ing procedure should remain unchanged under transformation of the parameters. So, the 

Wald statistic varies with the parametrisation of the null hypothesis being tested and its nu-

merical value can vary greatly according to the specification of Hq that is being used. As 

a result, the finite sample level of the Wald test can be greatly different from the nominal 

level, and using the asymptotic distribution of the Wald statistic can be misleading. In this 

sense the bootstrap provides a better approximation to the finite sample distribution than 

first order asymptotic theory and therefore smaller size distortion. 

The overall impression is that when the number of cointegradng relationships is cor-

rectly specified the size distortion asymptotically vanishes, but the asymptotic theory is 

uniformly satisfactory only for T > 150. For smaller sample sizes the only tests that pro-

vide nearly exact a level is Podivinsky's (1992) f'-type test, and 
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Table 2.1. Sizes for tests of Pn = 0 assuming correct cointegrating rank of 1. 

T LRa W M4 F BootLR 
50 0.100 0.091 0.083 0.186 0.174 0.061 0.046 0.050 
75 0.080 0.075 0.067 0.129 0.123 0.057 0.055 0.050 
100 0.071 0.067 0.064 0.104 0.099 0.055 0.050 0.049 
150 0.064 0.061 0.059 0.083 0.081 0.054 0.049 0.048 
200 0.061 0.059 0.058 0.075 0.072 0.053 0.050 0.048 
400 0.054 0.054 0.053 0.060 0.060 0.051 0.044 0.043 
800 0.051 0.051 0.050 0.054 0.054 0.050 0.052 0.050 

: ^ 2 3 = 0 . 5 , ^ 3 3 = 0 . 4 , ^ 4 3 = 0 . 1 . 

Table 2.2. Sizes for tests of \j3ii, /?2i] — [0, 0] assuming correct cointegrating rank of 2. 

T LRa W Wc F BootLR 

50 0.100 0.091 0.082 0.171 0.160 0.060 0.045 0.047 
75 0.080 0.075 0.070 0.125 0.118 0.057 0.062 0.061 
100 0.074 0.070 0.066 0.105 0.101 0.057 0.055 0.059 
150 0.067 0.064 0.062 0.087 0.084 0.056 0.048 0.051 
200 0.062 0.603 0.059 0.077 0.075 0.054 0.054 0.059 
400 0.057 0.056 0.055 0.064 0.063 0.053 0.049 0.052 
800 0.053 0.052 0.052 0.056 0.056 0.051 0.058 0.058 

" 0,/)32 0.9, A 4 2 0 . 1 . 
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Table 2.3. Probability of rejecting ( ^ n = Q when true but assuming r — 1 when r = 0. 

T LRc I, A . VK Wc F 
50 0.412 0.394 0.379 0.681 0.673 0.327 a i 3 2 a i 9 i 
75 0/W5 0.393 0383 0.674 0.668 0351 0J^4 &176 
100 0.406 0398 0390 0.672 0.668 0367 a i 5 2 0.215 
150 &401 0395 0390 O^^O 0.667 0375 &138 &172 
200 0399 0395 0391 0L6,69 0.667 0 3 8 0 0J38 (1205 
400 0398 0396 0394 0.666 0.665 0388 0J.22 0.204 
800 0397 0396 0396 0.664 0.664 0393 a i 3 4 &211 

Table 2.4. Probability of rejecting /5i i = 0 when true, but assuming r = 1 when r = 2 . 

T LRa W F 
50 0CW9 0.082 0.073 0.189 0.165 0.034 &045 a044 
75 0.079 o i ^ a 0.064 0J30 0.117 0.040 0.061 01)62 
100 01^0 &063 0 I # 9 0J05 0.096 0.042 0.061 0.057 
150 0.063 0.058 0.056 0.084 0.079 0IW5 0.051 0.050 
200 0.060 0.057 0.055 0.076 0.072 OIKS 0.052 0IW7 
400 0.053 0 052 0.051 0.061 0.059 0.048 0IW2 0IW3 
800 0.052 0.051 0.051 0.055 0.054 0.049 0.056 &054 

D G F S , as Table 2.2. 
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Table 2.5. Probability of rejecdng 2lJ 

T W F BootZ/E 
50 0.375 0.337 0.318 0.706 0.691 0.207 0.103 0.179 
75 0.357 0.332 0.319 0.689 0.679 0.252 0.108 0.154 
100 0.351 0.333 0.323 0.681 0.673 0.274 0.100 0.163 
150 0.342 0.330 0.324 0.677 0.671 0.293 0.100 0.158 
200 0.338 0.329 0.324 0.673 0.669 0.301 0.090 0.165 
400 0.334 0.330 0.328 0.668 0.666 0.317 0.098 0.168 
800 0.332 0.330 0.329 0.666 0.665 0.323 0.123 0.162 

0 , 0 ] w h e n true, but assuming r = 2 w h e n r = 1. 

DGP2, as Table 2.1. 

Table 2.6. Probability of rejecting [ j S n , = 0 , 0] w h e n true, but assuming r = 2 w h e n T' = 0 . 

T 2,7^ PK F .6 00̂ 14̂  
50 0.573 0.532 0.510 0.880 0.872 0.371 0.14 0.203 
75 0.564 0.535 0.520 0.878 0.872 0.438 0.128 0.190 
100 0.565 0.543 0.532 0.877 0.872 0473 0.152 0.206 
150 0.559 0.545 0.538 0.874 0.871 0.500 0.117 0.171 
200 0.556 0.546 0.541 0.875 0.873 0.513 0.145 0.201 
400 0.553 0.548 0.545 0.875 0.874 0.533 0.145 0.176 
800 0.553 0.551 0.549 0.874 0.873 0.543 0.145 0.196 
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Tables 2.3-2.6 report the Monte Carlo sizes for the tests considered in situations 

where the number of cointegration vectors is over-fitted or under-fitted. As we can see 

from Table 2.4 the size distortion when underfitting is not very different, either for mag-

nitude or direction, from the size distortion when the model is correctly specified. This 

suggests that the difference between the nominal and the empirical size is more likely to 

be due to finite sample effects than to misspecification. In fact, in both cases the size of 

the tests depends on the sample size and on the many parameters of the model, and in both 

cases this dependence asymptotically vanishes (even though the ac^ustment is quite slow). 

Therefore, as long as the asymptotic theory works, the bootstrap works. By contrast, when 

overfitting the asymptotic theory does not help. Indeed, the size distortion caused by over-

fitting is so large that it calls into question the use of the tests. A size greater than 0.5 

implies that one is more often wrong than right when using the test. 

One explanation of the excessive size of the Wald test when overfitting the cointegrat-

ing rank is as follows. In the case of a single constraint, = 0, = [ 1 0 - - 0 ] ,with 

r = 1 assumed, one can write the Wald test in the form 

J = 2 

where 

is the first element of /̂ ^and 

0"! = 
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If r = 0, the properties o f c h a n g e : it becomes an estimator of 0, rather than 

Op(T'"^) under = 0. Thus is more variable, and on average larger, if 

r = 0. While the other two terms in TV also change, both being on average smaller when 

r = 0, in simulations it seems that the effect on dominates by an order of magnitude. 

Considering the general case of W as deGned in (2.2.3) , this intuition suggests that 

overfitting can be regarded as misclassifying the colunons of y . If one assumes that the 

rank of 11 is r + 1 when it is r, one erroneously regards as ^^+1 includes it in the 

'numerator' of rather than the 'denominator'. As it is rather than 

and its 'square' enters W, this shifts the distribution of W to the right. 

This only explains the behavior of the likelihood ratio indirectly insofar as and 

are correlated. Turning to the bootstrap tests, when over6tting their size is around 

10%, and does not converge to the correct value. Why does bootstrapping fail? 

In the correctly specified model and o:/3'^t_iare stationary. If we over6t, we 

include in ^ linear combinations of which are not stationary, and when generating 

from the resampled residuals — S/? yt_i both the residuals and A^^ will be 7(1). 

Thus bootstrapping fails. The size is not as distorted as the non-bootstrapped tests, but 

there is no reason to think the power properties will be desirable. 

One might try to recover the situation by using the parametric bootstrap. If one does 

so, the residuals are replaced by independent and identically distributed Normal vectors, 

and A^* has the properties implied by the cointegrating rank r assumed and = 0. 

However, ± e test statistic, or being compared with this bootstrap distribution is 
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calculated from data with a smaller r, and the equivalent of Table 2.5 for the parametric 

bootstrap shows sizes from 23% to 63%. 

When under6tting, as in Table 2.4, the performance of 5 out of the 6 tests is much 

better, the exception being the F test. 

Table 2.7. Parametric bootstrap: Probability of rejecting/?], = [Pll^ 02l]' ~ 0 when true, but assuming 

r = 2 when r = 1. 
T LRa F 
50 0.392 0.357 0.333 0.728 0.713 0.221 0.226 0.467 
75 0.370 0.345 0.335 0.698 0.682 0.265 0.238 0.489 
100 0.357 0.335 0.324 0.669 0.664 0.269 0.228 0.507 
150 0.313 0.307 0.297 0.671 0.668 0.265 0.232 0.557 
200 0.348 0.338 0.332 0.681 0.672 0.300 0.259 0.567 
400 0.315 0.310 0.304 0.655 0.653 0.292 0.268 0.586 
800 0.338 0.336 0.333 0.675 0.674 0.327 0.304 0.631 

2asTable2.1. 

2.4.2 The probability of the type II error 

The power is defined as the probability of rejecting the null hypothesis (j?o) when it is false. 

Therefore, to evaluate the power of the test statistics considered in the previous section, it 

is necessary to evaluate the behavior of the tests when the null hypothesis being tested in 

false. In our case, the model tested is given (2.3.1), but the data are generated by simulation 

from two different models 

a) The DGP is given by 
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2/4t = 0- l2/ l , t - l+0 5l/2,f-l + 0.%3,t_l + 0.1?/4t_i + 64f; 

w i t h E t = [ e i t 62* est 64*] %2.i.(f.7V(0,7). 

6) The D G f is given by 

= Eit, 

m = 0.9l/3f_i + 0.1l/4t_i+63t, 

2/4t = 0 l 2 / l „ t - l + 0 ' 5 ^ 2 , t - l + 0 % 3 , t - l + 0 - 1 2 / 4 , t - l + ^4t, 

w i ± Et = [ eit eat cgt ] % i . id . jV(0 , f ) . Therefore, j?o is false because ^ 0 

in D G f 1, and [ A i ] f 0 in D G f 2. 

In Figure 2.1-2.2 we report the rejection frequencies of the test statistics considered. 

As expected ± e Wald test has higher 'power', being the test with the highest size distortion. 

The rejection frequencies based on the small sample corrected version of Wald and LR 

tests are quite close to rejection frequencies based on the asymptotic critical values. The 

bootstrap test performs well for the jLA test since the 'power' loss in relatively low. By 

contrast, the 'power' loss of the bootstrapped Wald is more substantial as the 'power' curve 

for the BootVK is uniformly lower than for the asymptotic Wald tests. 

Turning to the overfitted and the underfitted model, we can see in Figure 2.3-2.4 

that the power properties of the test statistics are quite different. When underGtting all 

the test statistics considered present a substantial loss in power, but the power curve of 

the bootstrap test mimic the ones of the reference asymptotic tests. By contrast, when 
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over6tting the asymptotic tests have much higher 'power' then the bootstrap tests, but this 

just reflects their greater inflation in size. 
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50 100 150 200 250 300 

— L R —m— LRc LRa —) ^—W — * — W c 

—@— F — 1 — B L R - ^ - B W 

Figure 2,1. Power for tests of /?i ^ = 0 assuming correct rank of f = 1 . 

0 50 100 150 200 2 5 0 300 350 

LR « - -LRc LRa —> - X — W c 

— ® — F — 4 - -BLR — BW 

Figure 2.2. Power for tests of ^ assuming correct rank of r = 2 . 
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Figure 2.3. Probability of rejecting /3ĵ  ^ = 0 when false, and assuming r = 1 when r = 2. 
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Figure 2.4. Probability of rejecting [Pn, = [ 0 , 0 ] when false, and assuming r = 2 when r — 1. 
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2.5 Concluding remarks 

In this chapter we consider the small sample properties of Johansen LR and Wald tests 

for linear restrictions on cointegrating space, as well as the smaU sample corrected ver-

sions of these tests proposed by Psaradakis (1994) and Podivinsky (1992). In addition, we 

analyse the sensitivity of the LR, Wald, and f - type to misspecification on the number 

of the cointegrating vectors, and both the cases of over-fitting and under-6tting have been 

considered. 

The Monte Carlo evaluation of the bootstrap tests show that when the model is cor-

rectly specified the resampling procedure provides empirical sizes which are much closer 

to the nominal size, and this is particular true the Wald test. Furthermore, the bootstrap 

tests seem to have good power properties. Although our Monte Carlo design is limited, the 

results suggest that the bootstrap provides a good alternative to procedures relying on Arst 

order approximations or small sample corrected tests. 

When the number of cointegrated vectors is misspeciBed the overall picture changes 

completely. Indeed, our Monte Carlo results show that overspeciSng the number of coin-

tegrating vectors leads to considerable size distortion of the tests for linear restrictions on 

the cointegrating space, whereas underspeciAng leads to severe power loss. In this case 

the bootstrap does not perform well, since in the Grst case the residuals are not stationaiy, 

whereas in the second case the residuals are correlated. 

From the practitioner point of view, we may suggest that if there is any uncertainty 

about the cointegrating rank r, tests on should be conducted under different assumptions 

about r. If the conclusions change when r is increased, especially if the bootstrap test 



2.5 Concluding remarks 73 

results start to diverge from the those of the asymptotic tests, then only the results for 

smaller r should be relied upon. This is in contrast to the suggestion in Podivinsky (1998), 

that "possible overspeciScation of the number of variables in a model has less serious 

consequences" (than underspeciAcation): we argue that overestimating cointegrating rank 

seriously biases tests on /). 
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2.6 Appendix A: Computation details 

The implementation of Johansen's cointegrating tests was not conducted using Johansen 

original algebra, but using QR and singular value decomposition as employed in O'Brien 

(1996). In this appendix we show how Johansen cointegration analysis can be rewritten in 

term of QJZ decomposition 

For ease of notation we report here the model in Section 3 

A /̂t = + /.i + et 

where i/t and is are (4 x 1), cKi is a vector of intercepts, and « 7V(0, J). The 

model can be rewritten as 

(2.6.1) 

which forms the t—th row of the matrix Then a QE decomposition of the matrix 

yields a Cholesky factorisation^'^ E such that such that A'A = W W . We partition 

R = 
Rll Ri2 RI3 

0 J?22 -̂ 23 
0 0 ^33 

where has 1 rows and columns, while Egzand %3 are each (p x p). 

Using the Cholesky factorisation we can estimate H in a reasonably straightforward 

way. First note that if = W'M/ Wg], and .R is conformably partitioned 

into 
0 uR_BB 

then, 

(2.6.2) 

(2.6.3) 

For further details see O'Brien (1996). This method is also discussed in Doomik and O'Brien (2002). 

If A is a positive definite {m x m) matrix there exists a lower triangular matrix P such that or A = P'P. 
The decomposition A = P'P is called a Cholesky decomposition. 
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and 

B- (2.6.4) 

Thus from (2.6.3) solving for 

(2.6.5) 

solving (2.6.4) for and substituting (2.6.5) in (2.6.4) we get 

= 

(2.6.6) 

Identifying w i ± ^ n , and 
-R22 -R23 

0 7̂ 33 
with Agg, and conformably partitioning 

W3 ] so that and W3 each have p columns, we can rewrite (2.6.4) 

as 

%2 -R23 
0 A33 

-R22 ^23 
0 %3 

[H/2,M/3 

which in Johansen's notation is the product moment matrix 

T Skk SkO 
'S'ot 'S'oo 

Thus, 

^^2-^22 = -R22%3 — '̂5'kO, -^'^23 + -^33-^33 — '̂'S'oO- (2.6.7) 
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Using the latent root of A; and the latent vector 6̂  of C (CO ^, where CC" 

6'kk, then defining E = [eie2- .er] and 5" = ,we have 

/ ) = ( C y ^ E ^ , 

and 

this gives us 

and 

o: = 'S'ok̂ -

Identifying \ / T C with j?22 A'O™ equation (2.6.7) 

C-15mS„1,"S„, (C)^' = H!,,R23 RaI!,nR^i2.6.«) 

= R23 (R'lsR^s + %%,)-' R'23 

I - i + %3(;i!^3%3) ' ^ 2 3 

Using the singular value decomposition, let 

-̂ 23-̂ 33̂  = 

where and is diagonal wi± the singular values (Ti of .R23-R^̂  as its 

diagonal elements. Thus 

RiiR-^i {RTiR^i)' = uy.lu' 
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and 

SO if w is a column of (7, and cr the corresponding diagonal element of 

-R23 (^33-^33) ^ 

so that cr̂ , w are the eigenvalues and ± e eigenvectors of .R23 respectively. 

Thus rearranging equation (2.6.8) we have 

{ / - ( / + R23 ( f t s R j t ) " ' B23)"'} « = {1 - (1 + cr")*'} « 

SO that u is a latent vector and | l — (1 + j u — a latent root of i?23 (^33^33)"^ 

Thus the Johansen required quantities are = Yp-7, ^ d ^ = (C^) .E'5'r = 5r ,with 

& = a = 5'ok 

Moreover, for the Z/A likelihood test of .5̂ 0 : where — ffy; is a set of 

restrictions, with (p x 5), we can again use a Q.R decomposition. First, adapting equation 

(2.6.1) we have: 

^ 2 2 ^ -̂ 23 
0 %3 

(2px(a+p)) 

so that 

R22H R23 
/ 

^22^ ^23 = T 
0 %3 0 J?33 

= T 
'S'ok-̂  'S'oo 

(2.6.9) 

-R/322 -̂ 2̂3 
0 Aen we can perform a Q.R decomposition of this matrix to produces, .R/; = 

where is (5 x a) , and is (p x p). Then if we replaces (̂22, %3 and jRsg in our 

initial analysis w i ± 

a are handled in a similar way. 
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2.7 Appendix B: Supplementary simulations 

In this appendix we report the results of some supplementary simulations. In Table 2.1A-

2.2A we reports the j)-values for increasing number of bootstrap replications. From these 

tables we can see that for the bootstrapped likelihood ratio (BootLR), B = 400 is only 

slightly improved on by B = 800. The results for the bootstrapped VKaW test, BoofW, 

also suggest B = 400 is a reasonable compromise. 

Table 2.1A. Sizes (%) for BootLR tests of = 0 assuming correct cointegrating rank of r — 1 and 

= lOOOii 
T \ B 100 200 400 600 800 1000 1200 

50 5.1 4.8 4.7 5.1 5.0 5.2 5.7 
75 4.9 6.5* 5.1 5.1 4.7 4.9 6.0 
100 5.6 5.2 5.0 6.3 4.7 4.3 5.1 
150 5.2 4.7 5.6 4.3 4.7 4.5 5.2 
200 4.3 4.3 5.3 4.4 5.0 5.7 5.5 

Table 2.2A. Sizes (%) for i ?00 t 14^ test of ~ 0 assuming correct cointegrating rank of r — 2 

and N = 1000. 
T \ B 100 200 400 600 800 1000 1200 

50 6.9* 6.0 5.6 5.2 5.6 5.5 6.1 
75 5.0 6.3 5.6 5.2 4.9 5.4 6.0 
100 5.7 5.2 5.2 6.3 5.1 5.1 4.6 
150 4.9 5.3 6.0 4.6 4.8 5.4 5.2 
200 4.6 4.6 5.4 4.6 5.1 5.6 5.8 

Monte Carlo precision ±1.35%; values marked * are significantly different from the nominal size of 5% 
when testing at a 5% level of significance. Time required, 18.5 hours (400 MHz Pentium). 



Chapter 3 
Bootstrap-Bartlett Adjustment in 

Cointegrated VAR Models 

3.1 Introduction 

In the previous chapter we have considered the small sample properties of Johansen 

and Wald tests for linear restrictions on cointegrating space. Our Monte Carlo experiments 

revealed that the accuracy of Johansen tests is heavily affected by the sample size and 

also that the small-sample corrected versions of these tests are quite useful in reducing the 

size distortion problem. Another simple technique to obtain more accurate small-sample 

inference for the tests was already introduced in 1937 by Bartlett. The basic idea behind 

the Bartlett correction is to adjust the test statistics so that its finite sample distribution is 

closer to its asymptotic distribution. In i.i.d. situation the Bartlett correction has been useful 

for solving size distortion problem. However, calculating the Bartlett correction usually 

involves calculating an asymptotic expansion of the expected value of the test statistics. 

Because of the complicated form of the LR tests this can be rather painful; the bootstrap 

may save us from tedious calculations. 

In this chapter we consider Johansen's likelihood ratio tests for linear restriction on 

cointegrating space and we propose that the Bartlett adjustment factor be computed us-

ing the bootstrap. In the literature this approach was first suggested by Rocke (1989), and 

79 
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Rayner (1990) showed that the bootstrap-Bartlett correction applied to a seemingly unre-

lated model regression provides accuracy to order 

The Bartlett correction for LR test yields a test which is asymptotically consistent 

with an error in the rejection probability of order Therefore, bootstrapping the 

Bartlett corrected LR test may amount to a one term Edgeworth expansion of the distri-

bution function of the Bartlett corrected likelihood ratio test. This procedure may yield a 

level of the error in rejection probability of order O (T~^), so considerably smaller than the 

conventional first order approximation (see Beran (1988)). 

One possible drawback of this approach is that the performance of Johansen tests us-

ing BarHett correction crucially depends on the parameters of the model. Johansen's (2000) 

simulation results show that for some parameter values the correction factor is a useful im-

provement, whereas there are parameter points close to the boundary of the parameter space 

where the correction does not work well. If this is the case, the ability of the bootstrap to 

provide second order asymptotic refinements is obviously affected. For this reason it is im-

portant to study the dependence of the finite sample size distortion on the parameters. In 

order to do that we undertake a response surface analysis. 

It is well known that the B artlett correction factor is designed to bring the actual 

size of asymptotic tests close to their respective nominal sizes, but it may lead to a loss in 

power Therefore, it is important to evaluate the power properties of the tests. In our case, 

the analysis of the power reveals that the procedures have power. 

The plan of the chapter is as follows. In Section 3.2 we introduce the model consid-

ered and the Bartlett correction. In section 3.3 the consistency of bootstrap Bartlett correc-
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tion is considered. In Section 3.4, we explain how the Monte Carlo experiment has been 

designed and some simulation results are reported. In Section 3.5 we report the simula-

tion results for the bootstrap Bartlett corrected LR test as well as the result of the response 

surface analysis. 

3.2 Model and defmitions 

Consider the p-dimensional y model 

fc-i 
+ $(4 + St. (3.2.1) 

where are i.i.d. 7V(0,0). The initial conditions are Axjed, the matrices a; and are 

(p X r) and F, for % = 1,..., A; — 1 are (p x p) , 0 the vector contains deterministic terms 

and $ their correspondent coefficients, A}^ — 

Once the cointegrating rank has been established we can test for linear restrictions on 

cointegrating space. Let 8o be the parameter space under 8 i the parameter space 

under jifi. Let be the Johansen's (1988) likelihood ratio test statistic for 77o against 

^1, given by 

r 

= -21og (j7o|a-i) = r - A,) / ( l - A,) . 
2=1 

where Â  and A, are the eigenvalues found as solutions to the eigenvalue problem imphed 

by the maximum likelihood estimation of the restricted and unrestricted models. 

Let and goo be the 95% quantiles of the 6nite sample distribution and the asymp-

totic distribution of respectively. Let E' (Gg,]") and (Ge,T) be the corresponding 
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expectations. Johansen and Juselius (1990) show that the likelihood ratio test for cointe-

gration has the correct size asymptotically, for example 

sup —^5% as r —> oo. (3.2.2) 
ddiQr 

However, this asymptotic result does not give information about the size of the test 

for finite samples. Many simulation studies have revealed that this test is oversized. 

A simple technique to obtain accurate small sample correction for the likelihood ratio 

test was introduced by Bartlett (1937). His idea was that instead of looking directly at 

which as T oo tends to Goo, we focus on the distribution of \ . In other words, he 

suggested the approximation 

PcX3 

Because of the comphcated form of the typical test statistics, it is difficult to End 

the expected value, but it may be easier to 6nd a series expansion such as 

E ^ (Goc) + ^ + O ( 7 - " ) , (3.2.3) 

where J? is a known constant. Hence the approximation becomes 

' r j 

This is called the Bartlett correction. In the i.i.d. situation the Bartlett correction 

has been useful for solving size problem. Lawley (1956) proved that in the context of 

i.i.d. variables, the same correction improves not only the mean but also all moments. 

Unfortunately, no similar theorem has been proved in the case of 7(1) variables. However, 
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results in Johansen (1999, 2000) show that the Bartlett correction can be useful in the 

cointegration model to solve the size distortion problem. 

3.3 Bootstrapping the Bartlett correction 

This section provides an heuristic explanation of the consistency of the bootstrap-Bartlett 

corrected test (Gbg henceforth). 

Let the p-dimensional process be generated by a Gaussian yA^(A;) model. In 

equilibrium-correction form, we may write this as 

t - i 
g 4- et. (3.3.1) 
i=l 

where ^ 7/(0, H), 11 and are p x p parameter matrices, the vector (ft contains deter-

ministic terms and $ their correspondent coefficients, The characteristic 

polynomial associated with model (3.3.1) is given by 

k - l 

\[r(z) = (1 - - Hz - ^ n ( l - z ) / , 
i = l 

with determinant | ̂  (z) |. When the rank of H equals r (for r < p), there exist p x r matrices 

a and such that H = a/)' so that the process (3.3.1) can be written in the vector correction 

form given in (3.2.1). 

De6ne aj, and as the p x (p — r) matrices, such that = 0 and = 0. If 

the restriction 11 = a/)' holds and ^(z) has p — r roots equal to 1 and all the other roots 

outside the unit circle from Granger's representation theorem (see Appendix A in Chapter 
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4) the process (3.3.1) has the representation 

t 

Yt = C ^ + ^i) + C{L) {^dt + Cf) +YQ, 
i = l 

oo 
where C(z) = ^ Qz", = Yo + ^ Qeo, and 

%=0 2=0 

c = 0^ Q-i^ 

with r = 7 — Fi — ... — Ft- i . Hence, the process (3.3.1) has a Wold vector moving average 

representation which contains: (%) an 7(1) component given by 

t / t t 
y f = c J ] (£. + $ 4 ) = ( Q i r / 3 + E 

t = l \ i = l i = l 

where f ^ ^ j represent the (p — r) common trends along with their co-
\ i=i / 

efficients (c^±r/^±)"^, (̂ )̂ 7(0) component given by 

t 

Y/ = C(L) + £,); 
i=i 

and an initial values denoted by }^. Cointegration implies that = 0 (i.e. the cointe-

grating vectors act as a detrending model) so that the process is stationary. 

Turning to the non-parametric bootstrap, let ^ denotes the empirical distribution 

function of the residuals, and 6, F,, 6 the maximum likelihood estimators of a, F, 

$ under the null hypothesis. Since the resampling scheme imposes r unit roots and all the 

other roots lie outside the unit circle, the process generated by the resampling scheme 

k - l 

Ay,* = ^ f , + e; 
i=l 

where e* differs from the DGP in that e, replaces and the parameters are estimated. 

^ / 

A problem with this bootstrapping scheme is the potential non-stadonarity of If we 
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take (,8 - /)) = ^), then 

and we make an error in an 0^(1) quantity Starting ± e data construction 

from the observed Yo, the error is propagated as we construct A}^ and t = 1 , T . If 

is the bootstrap data which would be obtained if ^ were replaced by then A}̂ "̂  — 

A}^* involves Unfortunately, the convergence of this error depends on 

± e moduli of the eigenvalues of a/)', and not of (f + a/)'). Thus for stationarity of A}^ and 

we require real eigenvalues of a/)' E (—2,0). However, from the bootstrapping point 

of view, values in (—2, —1] may be problematical. 

Even if one could show that AY *̂ were stationary, the method used by Caner and 

Hansen (2001), relying on Hansen (1996), would not sufhce; as the hkelihood ratio test 

depends on eigenvalues which are functions of the moments of the levels of not Al^*. 

One may need to establish directly the properties of the bootstrapped test statistics. This 

problem does not seem to have been solved in the literature, and hence the validity of 

the bootstrap in this situation can be empirically illustrated but not proven under general 

conditions. 

We may consider using the parametric in place of the non-parametric bootstrap. Con-

sider model (3.2.1), for allp x p matrices Z, of full rank, the transformation % = Z/Y leaves 

the statistic invariant, so that equation (3.2.1) becomes 

fc-i 
A%t = 

i=l 
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where a = ^ = Z/Fi, $ = Z/$, and ^ Ar(0,Zyr^Z,'). We can now 

chose such that e* ^ jV(0,7). In this case, ± e consistency of our resampling 

procedure follows from the fact that we are resampling &oni a TV (0,7) distribution. 

Turning now to the Bartlett correction, the test rejects Tfo at the a level if > 

gr.a, where the exact, Snite sample, a level critical value, is the 1 — a quantile of the 

distribution of Since G]" is asymptotically pivotal first-order asymptotic approximation 

implies that where goo is the asymptotic critical value. Consider 

Note: assuming that the conditions under which the Bartlett correction corrects the LR test are satisfied 
(see Lawley (1956)), under weak regularity conditions, we have 



3.3 Bootstrapping the Bartlett correction 87 

now since Gy is a non-negative random variable, its mean may be written as'̂  
OO 

E'gGr = y Pr((?2' > 

0 

In view of the fact that the bootstrap p-value is first order asymptotically correct, the 

average value EqGt of the empirical bootstrap distribution may be represented by 
OO 

0 

The Mallows distance between the bootstrap distribution of 

and the finite-sample distribution 

converge to zero in probability (see Bickel and Freedman (1981)). 
We are using here the following lemma. For a non-negative continuous random variable Y with probabil-

ity density / y 

0 
To see this note that ^ 

^[y] = y f 
0 

0 0 i; 
where we have used the fact that 

f {y > 3/} = y /y (z) da;. 
y 

Interchanging the order of integration in the preceding equation yields 

CO OO / z \ 

y f {y > ;/} dy = y I 

z/y 
0 
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3.3.1 The bootstrap experiment 

In the previous section, the asymptotic validity of the bootstrap procedure was investigated. 

The asymptotic validity, however, is only a prerequisite. In this subsection some Monte 

Carlo experiments are performed to shed light on the small sample behavior of the bootstrap 

procedure considered. In particular, we are interested in studying the performance of the 

simulated Bartlett correction in reducing the error in the rejection probability^^ of the tests 

considered and compare it with the bootstrap tests. Let and be, respectively, the 

Bartlett corrected quantiles and the bootstrapped quantiles of Gg T- The probabihty to be 

studied are 

These need to be compared with the probability 

where goo are the quantiles of the asymptotic distribution of the test (Goo). 

The model we consider is a simpler version of equation (3.2.1). This is given by 

+ ^ + (3.3.1) 

By error rejection probability or size distortion we mean the difference between the actual probability that 
the test rejects when the true value of 0 lie in Go and the nominal size. 
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where and are (4 x 1) vectors, is a vector of intercepts and % 2.2.d.TV (0,1) . 

So that the estimated error correction model is 

= + + (3.3.2) 

where S and are the restricted estimates. 

The non-parametric bootstrap involves approximating the finite sample distribution 

of by drawingBbootstrap realizations ^G^^j,for% = 1 , 2 , b o o t s t r a p samples 

In order to do this we re-sample the residuals (si, from (3.3.2). 

Denote the bootstrap sample (e^,..., g*). The algorithm to calculate the bootstrap test can 

be summarised as foDows: 

1) Estimate the error correction model given by (3.3.2) and compute < § IT r • 

2) Re-sample the residual from ..., 6r) independently with replacement to obtain 

a bootstrap sample (gi,..., e^) . Generate the bootstrap sample (^*,..., 2/̂ ) recursively from 

?/o = 0 and (e*,..., ) using the estimated restricted model 

4- /14- Et 

where a and ,8 denote the restricted estimates under the null hypothesis = 0. 

3) Compute the bootstrap replication of j , using (2/*, - ) 2/f) -

4) Repeat steps 3-4 B times to get j , 

5) Defining the bootstrap p—values function by the quantity 

= (3.3.3) 
1=1 
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where ^ = 1, ...B, and ) is the indicator function that equals one if the inequality is 

satisfied and zero otherwise. Reject the null hypothesis if the selected significance level 

exceeds g;,. 

To calculate the bootstrap Bartlett corrected likelihood ratio test simply repeat steps 

1-4 and average the observed g ^ j , - t o get an estimate of E(Gg,r). The 

quantity 

r ( p - s ) Q ^ 
/B- i \ 

(S 
is the Bartlett corrected value of the likelihood ratio statistic. De&ning the bootstrap p-value 

function by the quantity 

= ( < ; £ „ > to), (3.3.4) 

reject the null hypothesis if the selected significance level exceeds 

3.3.2 The Monte Carlo design 

In order to evaluate the size accuracy and power the bootstrap procedures described above 

we have undertaken a Monte Carlo experiments. The used are very similar of the 

ones used in the previous chapter (i.e. a process with just one or two cointegrated 

vectors), doing this allow us to compare our results with the ones given in the previous 

chapter. The Srst D G f is given by 

D G f - D G f 1: 

= 6 l t , 

= 62f, 
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= Est, 

2/4f = + /343^4,t-l + ^4t, 

with where = 0.1, = 0.1, and = [ Si* 62t ^st (0,1). So ±at 

the variance-covariance matrix of the disturbances is set to a unit matrix throughout. The 

cointegrating vector is [ 0 0 ^33 ^ 

The second D G f is given by: 

= Eit, 

= E2(, 

= /^222/2t-l + /̂ 32%/3t-l + + 63*, 

2/4f = A3^2t-1 + /)332/3t-l + /343l/4t-l + 64t, 

where/322 = 0.9,/?32 = 0 l,/323 = 0 4, ,̂ 33 = 0 . 5 , = 0.1, ande^ = [ 6]t, E2t '̂3̂  64* ] % 

z.i.cf.TV (0,1). So that we have two cointegrating vectors. 

The simulations for the bootstrap and the bootstrap Bartlett corrected test were car-

ried out using 1,000 replications of B=400 bootstrap replications, while for the non-bootstrapped 

test we used 100,000 Monte Carlo replications. 

3.3.3 The Monte Carlo results 

The Monte Carlo results can be summarized as foUows. The Erst thing to note in Table 

3.1-3.2 is that inference based on first order asymptotic critical values is again markedly 

inaccurate. When T = 50, the empirical size can be almost four times as large as the 

nominal size. Although the inference improves when the sample size increases, the size 
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distortion of the test is still noticeable when T = 200. In general, the higher the precision 

of the test required (i.e. 10% vs 1% nominal size) the higher the probability of falsely 

rejecting a true null hypotheses. With respect to the asymptotic inference, the bootstrap has 

better performance. For a nominal level of 10% or 5% the empirical sizes of the bootstrap 

tests are only marginally different from the nominal level; this remain true regardless the 

sample size considered. 

Turning to the bootstrap Bartlett corrected empirical sizes we can see that again they 

are much closer to the nominal sizes than the first order asymptotic critical values. How-

ever, the ordinary bootstrap test seems to perform slightly better. This is particularly true 

for a sample size T < 100. The only exception to this trend is for the nominal significance 

level of 1% where for Gba the size distortion is smaller than for Gb. 
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Table 3.1. Sizes for tests o f = 0 (DGP=DGPl) 19 

T Ga G , 

10% 5% 1% 10% 5% 1% 10% 5% 1% 
50 0.216 0.133 0.045 0.106 0.050 0.005 0.136 0.073 0.015 
7 5 0.169 0.099 0.027 0.101 0.047 0.007 0.121 0.063 0.008 
100 0.143 0.081 0.020 0.091 0.047 0.005 0.106 0.054 0.009 
150 0.132 0.073 0.019 0.103 0.048 0.006 0.107 0.054 0.007 
200 0.120 0 . 0 6 4 0.015 0.094 0.052 0.013 0.102 0.055 0.013 

Table3.2. Sizes for tests of — [0; 0 ( D G P = D G P 2 ) . 

T Ga A 
10% 5% 1% 10% 5% 1% 10% 5% 1% 

50 0.198 0.103 0.037 0.128 0.067 0.016 0.129 0.068 0.015 
7 5 0.163 0.093 0.025 0.131 0.072 0.015 0.130 0.071 0.015 

100 0.142 0.084 0.019 0.112 0.067 0.014 0.117 0.066 0.014 
150 0.127 0.075 0.014 0.113 0.064 0.012 0.118 0.063 0.011 
200 0.115 0.059 0.015 0.093 0.054 0.009 0.093 0.053 0.010 

Note: G q , Gf ) , GhB are the asymptotic sizes, the empirical sizes of bootstrap test, the empirical sizes of bootstrap-Bartlett adjusted L/R test, 

respectively. 
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Considering now the power of the test, the evaluation of the power has been has been 

carried out by generating the data under the fo l lowing alternatives: 

а) D G f = D G f 1 : 

0 0.1 0 . 1 ] % 

: / ) = [ 0.4 0 0.1 0.1 

: / ) = [ 0.6 0 0.1 0.1 ]% 

б) D G f = DGP2 : 

: /) = 

: ,g = 

0 0.9 0.1 0.1 
0.1 0.4 0.5 0.1 

0 0.9 0.1 0.1 
0.4 0.4 0.5 0.1 

0 0.9 0.1 0.1 
0.6 0.4 0.5 0.1 

Tables 3.3-3.4 report Monte Carlo estimated power for the likelihood ratio test, its 

bootstrap analogue, and the bootstrap Bartlett corrected test. F rom these tables we can see 

that, in general, as expected, the power increases with the sample sizes and the distance 

between the null and the alternative. The power for the larger sample size T = 200 is 

reasonable irrespective of which alternative w e use. Note, however, that in the empirical 

hterature sample sizes of T > 150 are rarely available to practitioners. 

Turning to the comparison of the power among the di f ferent procedures, in general, 

we found that the power of G;,, and the power of are almost as good as the asymptotic 
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power. The only exception being for [T = 50 under the alternative which is the worst 

possible scenario. In this situation the Bartlett corrected test seems to have higher power 

than the test based on the ordinary bootstrap^. 

The results concerning the power of the bootstrap test are consistent with the the-

oretical result by Davidson and MacKinnon (1996b). As far as the power of the Bartlett 

ac^usted test is concerned, the theory is less conclusive. Indeed, it is well known that 

the size adjusted test statistics are characterized by a loss in power. In spite of this Cox 

and Reid (1987) show that the uncorrected statistic and its Bartlett corrected version have 

the same local power to an order However, their result concerns a stationary AA(1) 

process; the question whether or not it holds in the case of cointegrated processes is still 

open. 

Note that these 'power' comparisons are not size corrected, and perhaps should be more accurately de-
scribed as 'rejection frequency' comparison. 
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T ^ l e 3.3. Power for ( 3 ^ , G; , , G b g ^ nominal level of 5% under different alternative hypotheses ( f = 1 ) . 

50 7 5 100 150 200 
I { a , i '• P = 0 . 1 G a 0.363 0.490 0.677 0.899 0.976 

G , 0.213 0.379 0.617 0.870 0.969 
GbB 0.273 0.420 0.642 0.884 0.966 

= 0.4 G a 0.924 0.992 1.00 1.00 1.00 
G b 0.821 0.982 0.999 1.00 1.00 
GbB 0.895 0.991 1.00 1.00 1.00 

= 0.6 Ga 0.984 1.00 1.00 1.00 1.00 
Gb 0.921 0.998 1.00 1.00 1.00 
Gbg 0.964 0.999 1.00 1.00 1.00 

Table 3.4. Power for Ga, , GbB ^ nominal level of 5% under different alternative hypotheses (r = 2 ) . 

50 75 100 150 200 
: ^ = 0.1 Ga 0.343 0.515 0.673 0.900 0.976 

Gb 0.273 0.468 0.632 0.885 0.972 

G^a 0.277 0.466 0.642 0.894 0.973 
= 0.4 G. 0.932 0.993 1.00 1.00 1.00 

Gfe 0.897 0.986 1.00 1.00 1.00 

GbB 0.903 0.989 1.00 1.00 1.00 
-G'A.s : /) = 0.6 Ga 0.980 0.993 1.00 1.00 1.00 

Gb 0.967 1.00 1.00 1.00 1.00 

Gbg 0.903 0.989 1.00 1.00 1.00 
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3.4 Bootstrapping the Bartlett adjusted test 

In the previous section we have estimated the Bartlett correction using the bootstrap, and 

we have seen that both the bootstrapped test and the bootstrap estimated Bartlett 

ac^usted test (Gbg) are able to reduce the size distortion of the test without involving 

substantial loss in power. Further refinements, however, may be obtained by bootstrap-

ping the Bartlett adjusted likelihood ratio test, the adjustment being estimated using the 

model parameters. This idea rests on the fact that under regularity conditions the Bartlett 

correction for test yields a test which is asymptotically of correct size with an error 

in the rejection probability of order Bootstrapping the Bartlett corrected likeli-

hood ratio test amounts to a one term Edgeworth expansion of the distribution function of 

the Bartlett corrected hkelihood ratio test. This procedure may yield a level of the error in 

rejection probability of order considerably smaller than the conventional first or-

der approximation. The conditions under which the Bartlett correction corrects the test 

for the first and higher moments are given in Lawley (1956). These are some continuity 

assumptions on the likelihood and its derivatives, together with the assumption that the sec-

ond derivatives of the likelihood with respect to the parameters are of order T as T oo. 

Unfortunately, no similar theorem has been proved in the case of 7(1) variables. However, 

an analytical calculation of the Bartlett correction for the test for linear restrictions 

on cointegrating vectors is given in Johansen (1999). The correction factor proposed by 

Johansen depends on the parameters under the null hypothesis, so that in practise the es-

timated parameters have to be used in order to calculate the Bartlett correction. In our 

case, for the hypothesis y and the D G f = D G f 1 with r — 1 and a constant term 
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2 + a ; j 5 | p + 4 ( l + dijs 

Johansen's correction factor is given by 

E[-21ogZ,jZ|a^6] 1 3 ( p + l ) / - \ yj ^ z i n 
r ( p - g ) T 2 

In Table 3.5 we report the Monte Carlo results for the bootstrapped test scaled by 

the factor given in equation (3.4.1)^\ The empirical sizes for the bootstrapped Z-JZ test are 

labelled as Gbjg. 

Table 3.5. Sizes (5%) for Gjsb test of (3i = 0 

T Ga G. Gbg Gbjg 
50 0.129 0.050 0.073 0.047 
75 0.097 0.047 0.063 0.045 

100 0.076 0.047 0.054 0.041 
150 0.066 0.048 0.054 0.045 
200 0.069 0.052 0.055 0.045 

To facilitate the comparison with ± e previous procedures we report some of the re-

sults given in Table 3.1. Recall that we have labelled (7^, Gb, the asymptotic sizes, the 

empirical sizes of bootstrap test, the empirical sizes of bootstrap-Bartlett adjusted Z/A test, 

respectively. From Table 3.5 we can see that the inference based on the bootstrapped pro-

cedure is quite accurate; no matter the sample size the error in the rejection probability of 

GbJB is only marginal. 

3.4.1 The dependence of the size on the parameters: a response 
surface analysis 

Calculating the Johansen's Bartlett correction factor given in (3.4.1) for the hypothesis 

for the D G f with r = 1 gives 

The design of the bootstrap experiment follows closely the procedure described in the previous section for 
the bootstrap test, but in this case we correct the test statistic by the correction factor given in (3.4.1) before 
applying the resampling procedure. 
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21ogZ,jR|o:^6] _ 1 

r (p — g) T 

14 - 9/?, 43 

/̂ 33 + /̂ 43 

for a' = [ 0 0 0 1 ] and /?' = [ 0 0 ] . 

It can be seen that in our case the correction factor depends only on the parameters 

and T. In order to evaluate the sensitivity of the empirical sizes to the parameter values 

of the D G f we have undertaken a response surface analysis. In doing that we are able to 

analyse not only the Gnite sample properties of the correction factor, but also the effects 

of the parameters on the distribution of the likelihood ratio test statistic as the parameters 

enter into the distribution function of the test through the functions a'/) and 

of equation (3.4.1) (cf. Johansen (2000)). In our case the matrix reduces to the scalar 

a'/) = and 

+ 8̂̂ 3, 

The parameter space in the Monte Carlo experiment has been chosen in order to 

preserve the stability of the system^ ,̂ and is given by 

G —1.9. —1.5, —0.9, —0.5, —0.3, —0.2 — 0.1 
i/) G ^ = 

8̂33 G 0.1,0.2,0.3,0.4,0.9,1.5,2 
(3.4.2) 

Calculating the characteristic polynomial we have: 

A (z) = f (1 — z) — = 

/ 1 - z 0 0 0 
0 1 - z 0 0 
0 0 1 — z 0 

\ 0 — 1 — ( 1 + z y 

such that IA (z)| = (1 — z)^ (1 — (1 4-/343) z) = 0 if and only if 

1 or 1/ (1 + , if ^ —1 

if A 43 

Therefore, if is in the interval (—2,0], then the process is J ( l ) . (In the case ,843 = 0 , the process 
is a pure 7(1) process which does not cointegrate. For < —2 or /̂ ĝ > 0 the process is explosive). 
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and 

r e {50,75,100,150}. 

This give us a number of 7 x 7 x 4 = 196 Monte Carlo experiments with 10,000 

replications each. 

To summarize the results of the Monte Carlo experiments we use a 3D plot. In figure 

3.1A-D we report how the empirical sizes change as a function of the parameter values 

keeping the sample size fixed to 50, 75, 100, 150, respectively. On the vertical axis we 

report the empirical sizes corresponding to each pair of On the horizontal axis 

the values assumed by and /Sgg given in (3.4.2). 

From Figure 3.1A-D, it appears that there are points in the parameter space where 

the approximation works relatively well. This is true for example for 

V' ^ < —1.5 U 0.5 < < 9} 

in Figure 3.4A, where T = 50. The implication of this is that there are points of the 

parameter space where the Bartlett correction or the bootstrap test are less needed, since 

the usual 6rst order approximation gives good results. On the other side, from Figure 

3.4A-D it appears that there are points of the parameter space where the size distortion of 

the test does not vanish, even for T = 150 (e.g. i/; E = —0.1 U /)gg = 0.1}). The 

overall impression is that the size distortion of the test greatly depends on the values of the 

parameters other than the sample size. 
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3-D Groph for LR, b4j. b]] 3-D Grooh for LR, b4], b3] 

3-D Groph for LR, b43, b33 3-D Groph for LR, b43, b33 

Figure 3.1. Sizes (5%)forGa for diSerent values o f a n d / 3 ^ . {T — 5 0 , 75, 100,150in3.4A-Drespectively. 
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The response suiface function has been estimated using the logistic transformation ̂  

In 
1 — Go, , 

where St ^ Z)(0, [1— Z,7^a]/7V), and TV is the sample size of the Monte Carlo experiment. 

After several attempts, we find that the equation that best describes the relations 

between the parameter values and the empirical size of the likelihood ratio test is 

+77^ ^ (/̂ 43/̂ 33) + 78^ ^ (/̂ 43 (l ^ /^L) ) + 

+ 7 9 ^ + Et-

In terms of the inSuence of the parameters and T we can see in Table 3.6 that after the 

intercept, the most signiScant coefGcient is 'yg, the coefficient of which is negative. 

Cox's (1970) linear logistic models of binary data are natural bases for developing response surfaces of 
estimated finite sample probabilities. Consider a binary response, denoting as M the number of replications 
in a particular monte Carlo experiment, 5' the number of "successes" (i.e. the number of repHcadons for 
which the value of the test lies in the critical region), (for 0 < g!i < 1) the fmite sample probability of the 
test lying in the critical region, and s = 5"/^ is the Anite sample rejection &equency. Letting 

$ 

T (g) = log 

and for (2M)-^ < T < 1 - (2M)-^ : 

T* ((;) = lo, 

it can be shown that 

1 

g(M - g) 
M - 1 ' 

for 0<T < 1, 

1 - ; - (2M)' 
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Table 3.6. Estimated coefficients standard errors, Wald test, two-tailed p-values. 

C o e / / . Z f 

7 i 92.99 3.062 30.36 0.00 

72 -205.36 9.936 -20.67 0.00 

73 1465.30 169.98 8.61 0.00 

74 -2954.99 321.61 -9.19 0.00 

75 -80975.3 9574.02 -8.45 0.00 

76 -7.132 0.377 -18.89 0.00 

77 -120880.1 11245.1 -10.75 0.00 

78 2.21 0.51 4.30 0.00 

79 8330.44 656.20 12.69 0.00 
6 5.07 0.41 12.37 0.00 

(1/df^Dsvimce: 394.7; ( 1 / d f ^ Pearson: 398.3; 
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3.5 Concluding remarks 

In this chapter we consider computer intensive methods for inference on cointegrating vec-

tors in maximum likelihood cointegration analysis. The Erst part of this chapter focuses 

on the 6nite sample behavior of the asymptotic, bootstrap, and bootstrap Bartlett corrected 

likelihood ratio tests for testing linear restriction on the cointegrating space. The Monte 

Carlo results show that asymptotic based inference can be quite inaccurate in small 

sample applications. By contrast the bootstrap and the Bartlett corrected LR tests delivers 

remarkably accurate inference for the restrictions considered. Furthermore, the compari-

son of the power among different procedure reveals that the power of the bootstrap, and 

bootstrap Bartlett corrected likelihood is almost as good as the asymptotic power, although 

in some situations the bootstrap Bartlett corrected test seems to have higher power than 

the bootstrap test. 

In the second part of this chapter we propose bootstrapping the Bartlett corrected 

likelihood ratio test, but in this case the Bartlett correction is calculated analytically using 

the correction factor proposed by Johansen (1999). According to theoretical arguments 

proposed by Beran (1988) this procedure may produce an error of rejecting probability of 

order 0(T'"^). The simulation results reveals that this procedure works remarkably well. 

However, the response surface analysis reveals that the size distortion of the test heavily 

depends on the parameter values. There are regions of the parameter space were the usual 

asymptotic approximation works reasonably well, whereas there are parameters points 

close to the boundary where the distribution of the test is very sensitive to the parameter 
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values. In this case the 6rst order approximation is quite inaccurate, as is the Bartlett 

corrected LR test. 

The general conclusion is that both the bootstrap hypothesis testing and the Bartlett 

correction the test are useful devices for robust inference in the context considered in 

this chapter, but of course, further theoretical work is needed to confirm the simulation 

results. 
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3.6 Appendix : Supplementary simulations 

In this appendix we report the results of some supplementary simulations. In Table 3.1A-

3.4A we reports the p-values for increasing number of bootstrap replications. 

Table 3.lA. Sizes for tests o f / ? 2 l — 0 , T — 1 and i V — 1 0 0 0 for ( 

100 200 400 600 800 
50 0.065 0.067 0.073 0.08 0.078 
75 0.074 0.059 0.063 0.084 0.073 
100 0.05 0.057 0.054 0.058 0.059 
150 0.057 0.060 0.054 0.058 0.064 
200 0.043 0.055 0.055 0.059 0.051 

Table 3.2A. Sizes for tests of ,/?2xJ — 0 rank of T — Z and/V" —: iUOO f o r 

100 200 400 600 800 
50 0.051 0.048 0.047 0.051 0.050 
75 0.049 0.065 0.051 0.051 0.047 
100 0.056 0.052 0.050 0.063 0.047 
150 0.052 0.047 0.056 0.043 0.047 
200 0.043 0.043 0.053 0.044 0.050 
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Table 3.3A. Sizes for tests of/?-I — 0 , 7 " — 1 and i V — 1 0 0 0 f o r ( 

1 0 0 2 0 0 4 0 0 6 0 0 8 0 0 

5 0 0 . 0 7 6 0 . 0 7 9 0 . 0 6 8 0 . 0 8 1 0 . 0 8 3 

75 0 . 0 7 6 0 . 0 6 4 0 . 0 7 1 0 . 0 7 7 0 . 0 7 0 

1 0 0 0 . 0 4 9 0 . 0 6 4 0 . 0 6 6 0 . 0 5 4 0 . 0 6 4 

1 5 0 0 . 0 5 6 0 . 0 6 5 0 . 0 6 3 0 . 0 5 5 0 . 0 5 4 

2 0 0 0 . 0 4 9 0 . 0 5 3 0 . 0 5 3 0 . 0 5 4 0 . 0 5 6 

Table 3.4A. Sizes for tests o f — 0 rank of T — 2 and TV — 1 0 0 0 f o r 

1 0 0 2 0 0 4 0 0 6 0 0 8 0 0 

5 0 0 . 0 6 1 0 . 0 7 6 0 . 0 6 7 0 . 0 8 0 0 . 0 8 1 

75 0 . 0 7 5 0 . 0 5 9 0 . 0 7 2 0 . 0 7 2 0 . 0 7 1 

1 0 0 0 . 0 4 7 0 . 0 5 8 0 . 0 6 7 0 . 0 5 7 0 . 0 6 3 

1 5 0 0 . 0 5 4 0 . 0 6 1 0 . 0 6 4 0 . 0 5 5 0 . 0 5 7 

2 0 0 0 . 0 4 0 0 . 0 5 2 0 . 0 5 4 0 . 0 5 5 0 . 0 5 5 



Chapter 4 
Macroeconomic Shocks and Unemployment 

4.1 Introduction 

In the previous chapters we have considered the small sample performances of the boot-

strap tests using mainly simulated data. In this chapter we consider real data instead. The 

main issues addressed in this chapter are the relationships between macroeconomic shocks 

and unemployment. In particular, the questions we try to shed light on are: (t) What is 

the relative importance of shifts in labour supply and labour demand in the rise of unem-

ployment? (n) What explains the asymmetry of unemployment rate across countries? To 

investigate these issues we analyse the joint dynamic behavior of three key variables: the 

proht rate, the real interest rate, and real wages. In the hterature there is a wide consen-

sus (see for example Bean (1994)) that the cause of the rise in unemployment in Europe 

during the 1970s' has been a large adverse shift in the wage-setting relation. SpeciGcaUy, 

there was a widely documented slowdown in the rate of the total factor productivity growth 

in the European countries during the seventies, and a failure of real wages to adjust to a 

slowdown in productivity growth was one of the causes of the rise in unemployment rate. 

On the other side, though it would be generally agreed that an increase of the price markup 

reduces the labour demand and increases unemployment, relatively few authors have inves-

tigated this possibility. Blanchard (1997) argues that during the 1980s' shift in the labour 

supply in the European countries were substituted by shifts in the labour demand. The ex-

108 
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planations he gives are: (t) A shift in the distribution of rents from workers to Arms due 

to the fact that frms have steadily increased their markups in goods markets starting from 

the early 1980s. A technological bias against labour, that is at given factor prices Srms 

have been adopting technologies that use less labour and more capital, thus decreasing the 

labour demand. 

Blanchard's hypothesis is quite challenging, and particularly interesting for the pol-

icy implication that it involves. However, in the recent literature the relationships among 

capital accumulation, real interest rate and unemployment remains relatively obscure, par-

ticularly from the quantitative point of view. With this work we try to 611 the gap. Although 

based on a general economic framework, the contribution of this chapter is more method-

ological. Our task is to provide an empirically valid description of the interrelations in 

actual economic data in accordance with the economic theory. We thus impose theoretical 

restrictions as long as these do not conSict with the empirical evidence. 

The model we study is a cointegrated VAR. This model allows us to distinguish be-

tween the effects of transitory and permanent shocks to unemployment. Inference about the 

cointegrating rank is, once again, carried out using the Johansen procedure (1988, 1995). 

In order to investigate the robustness of our inference we have carried out a simulation 

study using non-parametric bootstrap. 

The structure of the chapter is as follows. In Section 4.2, a simple economic model is 

presented. In section 4.3 we brieHy summarize the econometric model. Section 4.4, reports 

the empirical results. 
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4.2 The model 

In this section we. introduce the model that will be estimated in Section 4.3. The structure 

of model is described below. As far as the notation is concerned we use the lower case to 

indicate that the variable is expressed in logarithms and the upper case when the variable is 

expressed in levels. 

fmcfwCfZOM 

Consider a production function characterized by constant return to scale 

yt ~ Ti ) 4" (4.2.1) 

with 1/: output, A:: capital, n,: labour, and Ot stands for technological progress which follows 

the stochastic process given by 

CLf — Oif—l 4" 

where is a stationary error term. Assuming that Arms maximise pro6t, the price-setting 

relation is given by 

ujt — {yt "I" Mt) 

where = real wage. Hence, the wage is a function of the marginal product of labour and 

a mark-up (//J ^ on the-labour costs. From equation (4.2.1), we can write 

Wt = — 7^) + Of -t-

The markup is deGned as the ratio of the marginal product to the real wage. 
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and solving for we obtain an expression for the labour demand given by 

+ /ct 4- I'l -

In the short run the capital is fixed, so that labour demand is decreasing in the wages, 

while the ratio of labour to capital is decreasing in the wages and increasing in the mark-up 

on the labour cost 

(tut - /.it -I- Of). 

In the long run firms adjust the factor proportions, and capital accumulation depends 

on the firms' profit. 

DeGning the proht per unit of capital as 

we can express the profit rate as 

TTt — /Ct = — 

where follows a 7(1) stochastic process. If = 0 this is simply the factor price frontier 

relation implied by the production function (4.2.1). In the long-run, for a given interest 

rate, the zero profit condition implies that the wages must be such as to generate a proGt 

equal to the user cost of capital, so that 

( ^ , — Pt + (4.2.2) 

where and stand for the depreciation rate and the real interest rate, respectively. 

Therefore, the long run labour demand is horizontal. 
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From the short run and the long run labour demand, in order to consider the relation-

ship between unemployment and factor prices, we write a general expression for unem-

ployment given by (4.2.3). Note in (4.2.3) the variable has been omitted since under the 

assumption of Hicks-neutral production function the ratio of the marginal products remains 

unchanged for a given capital to labour ratio. Therefore, does not depend on a*. 

Inverting the price-setting relation we can derive an expression for unemployment 

given by 

Zt — Tit — 4- ( 4 . 2 . 3 ) 

where stands for labour force, and 

where < 1, and is a stationary process. Assuming that a linear combination of 

(4 — Mt) and is stationary, and that the real interest rate is stationary, we may consider 

two cases^: 

r 75 = 1 -^(1) -^(1) 1 
< 1 => / ( O ) => 7 ( 0 ) J ' 

The stochastic process ^ may reflect changes in the equilibrium level of unem-

ployment caused by an increase in the markup of prices over wages. If ^5 —> 0 then the 

equilibrium level of unemployment does not change, since it depends only on a pure labour 

demand shock (sf̂ u)- For ^ 1 the equilibrium unemployment is not stationary. 

These hypothesis will be subject to testing in Section 4. 
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TTze wagg-j'grfzMg rgZafion 

The wage-setting relation or pseudo-labour supply, may be thought as the relation 

between the wage set in bargaining between firms and workers, and labour market con-

ditions. In the literature (see Layard gf aZ. (1991)) this function has been expressed as a 

relationship between wages, unemployment and labour productivity. In particular, 

Wt = —'Yg (Zt — Tit) 4- (2/t — TTf) 4- (4.2.4) 

where is an 7(0) process, and are the elasticity of the real wage with respect to 

unemployment and productivity, respectively. In order to concentrate on the relationships 

between the wages and unemployment we rewrite equation (4.2.4) as 

= - 7 3 [(4 - Tit)] + 74% - (4.2.5) 

where 

— (i/t — 

and tnt is assumed 7(0). 

If ^ 7(0), = 1, = 0, and > 0, then we are in the "competitive 

framework" where the wage is equal to the marginal product of labour (i.e. the wage share 

is stationary) and unemployment is white noise. In equation (4.2.5), (̂ /t — fif)^ indicate 

the productivity level perceived by workers, rather then the actual one. 

The stochastic process may reflect changes in the equilibrium level of un-

employment caused by the mismatch between the perceived and the actual productivity 

growth. 
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The idea behind this formulation of the wage setting relation is that "hysteresis" in the 

labour market may be caused by a failure of wages to adjust to a shock to productivity. The 

assumption that workers have imperfect foresight captures some important aspects of the 

data. It may be useful to illustrate our hypotheses about non stationary in unemployment 

with a picture. 

V 

Figure 4.1. The relation between real wage and unemployment. 

Figure 4.1 relates the unemployment rate and the real wage. The wage setting relation 

is denoted as , and the price setting relation is denoted as f 5". A positive shock to w* 

shifts the wage setting relation from to and the equilibrium unemployment moves 

from A to while real wage does not change. Thus a positive shock to does not show 

up in higher wages in the long run, since higher unemployment forces wages back to their 

initial level. 
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On the other side increases in shift the f 6" curve down to moving the equilib-

rium from A to C, and thus leading also to an increase in the natural rate of unemployment. 

Whether this movement is permanent or not depends on the properties of the stochastic 

process in 

Under the assumptions above there are two common stochastic trends among em-

ployment, real wages, and pro6t rate arising from productivity growth and a markup trend. 

A third possible trend is derived from equation (4.2.3) . This implies that unemployment 

can have a permanent component and a serially con-elated transitory component. These 

components may be interpreted as "structural" and "cyclical" unemployment respectively. 

One important feature of this model is that the endogenous variables are driven by 

unit root processes. This property motivate the interpretation of the model in terms of 

cointegradon. 

4.3 The Econometric model 

In this section we briefly discuss the econometric model we use to estimate the model 

described in the previous section. We refer the reader to Stock and Watson (1988), Johansen 

(1995), Kling gr aZ. (1987), and Wame (1993) for more rigorous treatments. 

The common trends model involves a linear decomposition of a VAA into stationary 

and non-stationary parts. Rewriting the y A E in the form and inverting it we hnd 

a MA representation which is the sum of the initial values, an 7(1) component and an 7(0) 

component. This formulation has its roots in the Beveridge-Nelson (1981) decomposition 

of univariate time series. 
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Consider the model 

— 3̂ 0 4- Art + $ (Z/) Vi (4.3.1) 

where $0 is an (n, x 1) vector of constants, is an (A; x 1) vector of random walks with 

drift //, and innovations is the lag operator, $ (Z,) is an (n, x M) matrix of lag polyno-

mials, and ft is an (?% X 1) vector of serially uncorrelated innovations, with mean zero and 

covariance matrix ^ . 

The matrix is called the loading matrix, and gives the impact of the trend on Zt. 

By recursive substitution in (4.3.1) the model can be rewritten as 

= io + $(Z,)i;t (4.3.2) 

To 4- ^ 
i = i . 

+ arl" 

So the trend component is driven by the impulses to the random walks y; and the 

propagation mechanisms in A. The deviations from the trend are a product of the impulses 

lit and the propagation mechanism $ (i^). 

As Stock and Watson (1988) point out cointegration implies the number of trends. A; 

to be less then the number of variables, n. That is, there are exactly r = n — k linearly 

independent vectors which are orthogonal to the columns of the loading matrix so that 

there exists an n x r matrix such that the vector 
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is stationaiy (i.e. — 0). 

To see how the common trends model can be estimated let us consider 

r (Z,) (4.3.3) 

The can be inverted to yield a Beveridge-Nelson-Stock-Watson representa-

tion in term of reduced form disturbances 

= ^0 + 

where C*(Z,) is a stationary moving average representation, = p + and 

Therefore, equation (4.3.3) can be rewritten 

= zo -t- C*(iL)gt (4.3.4) 

4" = C' (1) ^ 

(4.3.5) 

Combining (4.3.2) and (4.3.4) we 6nd that 

C (1) /O = 

C (1) 

and hence (assuming that E (i/'t'^/) = 7) that 

C ( 1 ) ^ C ( 1 ) ' - A A ' . 

To estimate the loading matrix A we need to know C (1) and ^ . The covariance 

matrix can be consistently estimated from (4.3.3). However, to obtain an estimate of C (1) 

we need to invert the y .BCM representation. To do it, we follow Wame (1993). Define 
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M as a non-singular matrix given by 

M : 
(nxn) (fixt) (nxr) 

Furthermore, a* = [ 0 a ] , and the polynomial matrices and D_L(^) de-
(nxm) 

Ened by 

and 

4 0 
0 a - z;) 

( l - Z ' ) A 0 
0 7. 

Under hypotheses of cointegration there exist a restricted (jZyAZZ) represen-

tation of the form 

= ^ + + (4.3.6) 

where B (7) — M (Z,) -t- a*!,] and for the process 

is stationary. 

The following relationship holds between the and the unrestricted 

model; 

a* = 

77t = Met, 

A(i:) = 

Since (Z,)| = 0 has all solutions outside the unit circle and has rank r , A( l ) 

has rank r. 
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To summarize we use Johansen's (1995) procedure to estimate the matrix polynomial 

M and (Z/). From here we can construct the vector {i/t} . To choose the 6rst A; elements 

of 2/t we set 6"̂  = where = 0. Consistent estimates of the parameters in (4.3.6) 

can be obtained from Gaussian likelihood estimation of 2/( on a constant andp lags. 

The next step is to estimate the loading matrix of the common trends parameters, (i.e. 

the matrix A defined above). 

Let us rewrite A as Aovr, where is a known and 7r is a lower triangular matrix of 

unknown parameters. Then the estimate of A and 7r can be constructed from the estimates 

of C( l ) and ^ ^ - To determine vr, recall that, 

t 

j=l 

Combining this with the assumption that (which is a (A; x A;) identity ma-

trix), it follows that 

C( l ) ^ (^(1)' = AoTTTr'Ao. 

Therefore, given C( l ) and ^ , vr can be estimated using a Cholesky factor of 

TTTT' = (AoAo)-' A[,C(1) Y ] ^(l) '^^ (Ao^o)' ' (4.3.7) 

The right hand side of (4.3.7) is a (A; x A:) positive definite and symmetric matrix 

with A: (A; + 1) /2. So, if Ao is known we can solve A: (A: + 1) / 2 independent equations in 

TTTr'. However, in order to uniquely identify vr, in addition to the requirement = 0, we 

need A: (A: — 1) / 2 extra restrictions. 
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4.3.1 Permanent vs transitory shocks 

The usual way of analysing how a yATZ system reacts to various impulses is using impulse 

response functions and variance decomposition. The impulse response function shows the 

shape of the dynamic response of the variables to an innovation in the permanent com-

ponent. By contrast, the variance decomposition gives us the relative importance of the 

response to a typical innovation in determining the short run evolution of the variables. 

The moving average representation of (4.3.3) is a natural starting point for impulse 

response analysis and variance decomposition. This is given by 

(4.3.8) 

We write 

[ V't ] I 

and assume that E' [ ] is diagonal. From (4.3.5) we know that 

^, = (A'A)- 'A'C(l)st . (4.3.9) 

Defining 

Fk = (A'A)-"A'C(l) 

and f ] , we can express (4.3.9) as 

V'f = 

so that the moving average model (4.3.8) becomes 

Aa;* = + (4.3.10) 

= 6 + .R(-L)(̂ t 
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with E(Z,) = ^ The representation(4.3.10) can be used to calculate the impulse 
i=0 

response function and decomposition of variance with respect to the innovation and i;*. 

4.4 Empirical Evidence 

In this section we present the result from the estimation on the models described in the 

previous section. The empirical evaluation of the model is carried out by considering the 

following variables 

wt TTt - tzt t/Ct 

for France, UK, Germany, Italy, US, Japan and Canada. 

The data-set consists of quarterly observations from the data-set^ ((1970-

1998) for France, and (1960-1998) for [/S" and Canada, on real G D P (}<) , total employ-

ment in hours (7V(), gross Axed capital formation capital stock at constant prices 

(A!'_CC)5'T'), and the nominal interest rate on long-run government securities (77^_]V0M). 

From these series the variables of the estimated models are constructed as follows: 

the unemployment series, (_Lt/A^), is equal to In [1/(1 — tit/lOO)], where is the per-

centage unemployment rate for the economy. Note that expressing the unemployment in 

this way implicitly give us data on the labour force (i,*) in hours. The real-wage series 

(14^) is calculated from the average nominal wages per hour (which include pay roll tax 

rate) deSated by the G D P deSator. The real interest rate is calculated as 

less the inBation rate. From annual and quarterly f using the 

The data relating to employment (in hours of work) are obtained from International Labour Office (ILO): 
Bulletin of Labour Statistics. 



4.4 Empirical Evidence 122 

perpetual inventory method, we calculate the capital stock ( . The user cost of capital 

is calculated as + D E f f o r = depreciation ("scrap-

ping") 6om the O E C D data-set. The profit rate (yr̂  — A;*) is calculated as the log of the 

proSt divided by .fQ. 

Prior to cointegration analysis, we need to establish the lag order for the y A A model. 

We have considered lag lengths ranging from 1 to 6, together with the univariate tests for 

the analysis of the residuals (vector Portmanteau statistic for residual correlation, test 

for autocorrelated residual, effects, test for normality) and multivariate versions 

of these tests. The misspeciGcation analysis suggests that a reasonable choice of the lags 

length is 4 for Canada, Japan,UK, US, GermanyJFrance, and 5 for Italy. We have also 

considered the Akaike (1969) and Hannan and Quinn (1979) information criteria. The 

result was that any model with lower lag order, although supported by these information 

criteria failed to pass the misspecihcation tests. 

4.4.1 The deterministic variables 

In modelling the relationship between capital accumulation, factor prices, and unemploy-

ment it is important to keep in mind that many economies in Europe have experienced 

signi6cant changes in their economic structure during the last thirty years. For example, 

UK and Italy have undergone substantial liberalisation of their labour markets. As a result 

there has been a shift in the structure of the aggregate labour sector. As Marcellino and Mi-

zon (1999) point out the 1980s in UK correspond to a period of m^or changes in labour 

markets legislation which aimed at substantially increasing labour flexibility. Some of the 
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institutional changes are: a decrease in unemployment benefits, the weakening of union 

power, and the possibility for employers not to contract with unions. To take this into ac-

count we allow for a step dummy not restricted to lie in the cointegration space which take 

value one up to 1979:2. This date coincides with the election of the Thatcher Conservative 

Government in May 1979. 

As far as Italy is concerned, in the 80s labour mobility increased due to amendments 

of the Wage Supplementation Fund (Cassa Integrazione Guadagni). On the other hand, at 

the beginning of this period a tighter monetary policy was introduced to control inflation, 

and the Banca d'ltalia was concerned with the defence of the lira within the ERM. For this 

reason we introduce a step dmnmy which takes value one from 1981:2 to 1981:4 when there 

was a sharp drop in inflation and an increase in unemployment. In addition we introduce 

a step dummy for the period 1980:4 tol982:l to capture the effect of recession induced 

by tight monetary policy. Finally, we include an impulse dummy for 1992:2 , since this 

corresponds to an important change in the measurement of unemployment. 

To account for German reunifcation we insert a step dummy which takes the value 

one up to 1 July 1990, the date of reuni&cation. The German economic and monetary union 

is associated with an important shock for the labour market. Indeed, after the reuniScation 

East-German wages adjusted rather quickly towards West-German wages despite the low 

labour productivity in the East. Wage differentials together with high unemployment in the 

East led to migration of workers from East to West Germany. 
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Finally, in order to account for outliers we include a number of impulse dummy 

variables in all the countries considered. The hrst group of dummies refers to the &rst oil 

shock in the 70s, and the second to the second oil shock in the 80s. 

4.4.2 Determining the cointegrating rank 

As specified in Section 4.3 to estimate the model we use the full information maximum 

likelihood approach introduced by Johansen (1988). As additional information we look at 

the dynamics of the VAR model. In particular, we consider the roots of the companion 

matrix, since this provides us additional information of how many (yi — r) roots are on 

the unit circle, and thus on the number of r cointegrating relations. In Table 4.1-4.7 we 

report the tests for cointegrating rank calculated for the different countries considered. The 

various hypotheses to be tested from no cointegration (i.e. r = 0 or alternatively n — r = 5) 

to increasing the number of cointegration vectors, are presented in the Grst column. The 

eigenvalues are presented in the second column, ordered from the highest to the lowest. 

Next come the statistics which test whether r = 0 against r = 1, or r = 1 against 

r = 2, etc. The Atroce tsst is given in column six for the null that r = g (g = 1,2,..., n, — 1). 

Using the asymptotic reference distribution in Osterwald and Lenum (1992), on the basis 

of the rank tests it is possible to accept that there are three cointegrating vectors for France, 

US, Canada, Japan and only two for Germany, UK, and Italy . 
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Table 4.1. Test for cointegrating rank using France data (1970:1 -1998:1). 

: r k A —T'log(l — A r + l ) •^max R - r E l o g ( l - A , ) ^traceR 
0 5 0.583 92.8** 70.91** 194.2** 148.4** 
1 4 0.409 55.73** 42.59** 101.4** 77.51** 
2 3 0.225 27.63** 21.12 45.7** 34.92* 
3 2 0.128 14.49 11.07 18.07 13.81 
4 1 0.033 3.579 2.735 3.579 2.735 

Table 4.2. Test for cointegrating rank using Germany data (1970:1-1998:1). 

^0 : r k A —[riog(l — A r + l ) •^max R —T'^log( l — A )̂ '^troceA 

0 5 0.5087 74.63** 56.86** 143.3** 109.2** 
1 4 0.3755 49.44** 37.67** 68.67* 52.32* 
2 3 0.1178 13.16 10.03 19.23 14.65 
3 2 0.0476 5.061 3.856 6.067 4.623 
4 1 0.009 1.006 0.766 1.006 0.766 

Table 4.3. Test for cointegrating rank using UK data (1971:1-1998:1) 

k A —T log(l — A r + l ) — T ^ l o g ( l - A )̂ ^traceR 
0 5 0.4945 75.72** 56.03** 151.5** 124.2** 
1 4 0.2547 32.63* 26.75 75.75** 62.1** 
2 3 0.2096 26.11 21.4 43.13 35.36 
3 2 0.1329 15.82 12.97 17.02 13.95 
4 1 0.0107 1.194 0.979 1.194 0.979 

k A - 2 ^ 1 0 6 ( 1 - A , + i ) ^ma.xR - r E i o g ( i - A , ) ^traceR 
0 5 0.4139 57.16** 43.8** 115.6** 88.57** 
1 4 0.3132 40.22** 30.82** 58.41** 44.76** 
2 3 0.1157 13.16 10.09 18.19 13.94 
3 2 0.0456 4.989 3.824 5.013 3.856 
4 1 0.0004 0.042 0.032 0.042 0.031 
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Table 4.5. Test for cointegrating rank using US data (1960:1-1998:1). 

k A —T'log(l — A r + l ) Amax R — T ' ^ l o g ( l - Ai) ^traceR 
0 5 0.3675 67.81** 58.65** 158.9** 137.4** 
1 4 0.2565 43.88** 37.95** 91.07** 78.76** 
2 3 0.2088 34.67** 29.99** 47.19** 40.81** 
3 2 0.0555 8.452 7.31 12.52 10.83 
4 1 0.027 4.066* 3.516 4.066* 3.516 

Table 4.6. Test for cointegrating rank using Canada data (1960:1-1998:1). 

: r k A —T'log(l — A r + l ) Arnax/J - T E l o g ( l - A , ) A(rocej! 
0 5 0.4671 90.64** 78.05** 202.1** 174.1** 
1 4 0.3824 69.41** 59.77** 111.5** 96** 
2 3 0.1389 21.54 18.54 42.08** 36.24* 
3 2 0.1190 18.26* 15.72* 20.55* 17.69 
4 1 0.015 2.292 1.074 2.292 1.974 

Table 4.7. Test for cointegrating rank using Japan data (1971:1-1998:1). 

JTo : r k A —T'log(l — Ar+l) Amax A — T ^ l o g ( l — Ai) ^traceR 

0 5 0.3456 45.8** 37.32** 122.2** 99.57** 
1 4 0.2963 37.95** 30.92* 76.4** 62.25** 
2 3 0.2041 24.66* 20.09 38.45** 31.33* 
3 2 0.0811 9.135 7.443 13.79 11.24 
4 1 0.042 4.657* 3.795* 4.657* 3.795* 

Denotes rejection at the 10% signidcance level; * Denotes rqection at the 5% signiAcance level. 
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The cointegration analysis was conducted using PcFiml for Windows. However, it 

is well known that asymptotic distribution is potentially a poor approximation in small 

sample applications. Although, PcFiml by default calculates Reimers (1992) adjusted trace 

and Amoz statistics^^, it is not clear whether this is the prefeired correction (see Doomik and 

Hendry (1994)) Since our theoretical model in Section 4.2 does not prespecify the exact 

number of cointegrating relations the rank test is crucially important in our analysis. For 

this reason, it is important to investigate the robustness of our results. To do it we augment 

the asymptotic inference with a simulation study based on non-parametric bootstrapping 

(see Appendix B of this chapter). In Table 4.8 we report the results of our experiment. The 

p-value we report are based on B — 400 replications. 

Table 4.8. Bootstrapped p-values for and tests (% values). 

r — 0 r = 1 r = 2 1 r = 3 r = 4 

France Amax 5.00 8.25 10.75 30.25 56.75 
^trace 5.00 5.75 4.50 32.75 56.75 

Germany A max 5.00 5.25 48.50 73.25 -

^trace 5.00 9.25 56.25 73.25 -

UK Amax 5.00 3.25 31.25 77.75 82.25 

^trace 5.00 3.00 42.5 85.25 82.25 
Italy ^ A max 8.75 19.0 86.75 89.0 40.25 

^trace 8.5 29.0 18.81 6.27 0.81 
US Amajc 5.00 5.25 5.75 35.75 2.5 

^trace 5.00 5.00 5.25 11.5 2.5 
Canada Amax 5.00 5.00 24.0 10.5 76.75 

^trace 5.00 5.00 7.0 16.0 76.75 
Japan Amax 5.00 5.00 26.25 21.75 18.25 

^trace 5.00 5.00 6.25 16.75 18.25 

These are given in column 4 and 7 of table 4.1-4.7. 

Reimers's correction factor allows tis to take account of the number of parameters to be estimated in the 
model by making an adjustment for the degree of freedom. This is done by replacing the sample size (T) 
in the original Johansen's (1988) trace and Xmax statistics with (T — np), where n is the dimension of the 
l /AE, and p are the number of lags included in the estimated model. 
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Comparing Table 4.1-4.7 with Table 4.8 we can see that the conclusions about the 

cointegrating rank are quite in agreement with Reimers's small-sample corrected tests, 

while Johansen tests in some case (e.g. Canada) tend to overestimate the number of coin-

tegrating vectors. Moreover, from Table 4.8 we can see that in general the p-values of 

bootstrapped Amax are higher then the p-values of the Atroce test. In the literature it has been 

established (see Cheung and Lai (1993)) that the trace test is more robust then the Amax 

test. For all these reasons we decided: (i) to rely more on the bootstrap test, (n) to place 

greater weight on the trace test than the Amax kst. Following this criteria we are able to ac-

cept r = 3 for US, Canada (at 7%), for France (at 4.5%), and Japan (at 6.25%), and r = 2 

Germany (at 9.25%), and UK (at 3%). The conclusion about the cointegrating rank change 

for Italy (where r = 1 at 8.5%). However, the moduli of the three largest roots in the com-

panion matrix are 0.9893x 1 and 0.9566x2, are close to unity suggesting that /c = 3, so we 

decided to proceed with r = 2. 

4.4.3 Testing for linear restrictions on the cointegrating space 

From Table 4.1-4.7, aU we know is how many cointegration vectors span the cointegration 

space. However, any linear combination of the stationary vectors is also a stationary vector, 

as a consequence the estimates for any column in ^ are not necessarily unique. Therefore, 

the next step is to impose linear restrictions on the cointegrating space, and then test if the 

columns of ,8 are identiGed. 
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In the case where r = 3, we test if the following vectors are contained in the estimated 

cointegration space 

= [ ^ 1 0 * 0 ] % 

^1.2 = [ 0 * 1 0 * ] , 

^1.3 ^ | ^ 0 * 0 1 * j . 

The symbol " * " is used to indicate the parameters which are left unrestricted. In 

term of the theoretical labour market model, we identify the Grst as the wage setting relation 

given by equation (4.2.5), the second with equation (4.2.2), and the third with equation 

(4.2.3). 

As a next step we additionally require equal coefGcients with opposite sign on the 

real wage and productivity (i.e. we test for 'yg = 1 in equation (4.2.5), and we test for 

homogeneity between the pro6t rate and user cost of capital in equation (4.2.2), (i.e. we 

test for (TTt — /Cf) — UQ = 0) . 

In the case r = 2, we test for 

= [ * 1 0 * 0 ] , 

= [ 0 . 1 0 . ] ' , 

and then for homogeneity restriction between the proGt rate and user cost of capital as 

above^ .̂ 

In addition we check for the hypotheses of stationarity of unemployment by testing if 

/̂ 2.i — [ * 1 0 0 0 ] , 
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Table 4.9. The estimated structural long-run relations. 

France =01.2727 + (i/t — Mt) — 3.6958 
(0.252) (0.427) 

TTt — ^ =2.5049+0.73291 wt — ttct 
(0.329) (0.086) 

=3.6015-0.927782^,^-0.984 
(0.100) (0.102) (0.355) 

X"(2) = 5.27 
p = 0.0716 

German?/ TTt — kf =—0.07 Wf- 2.956 t/Q 
(0.524) (0.40) 

Wt = — 0.6735 itt 
(0.0136) 

%:'(1) = 0 . 0 3 4 
p = 0.8423 

=0.3682 — 4.6322 -u 
(0.044) (2.0979) 

TTt — =—0.020617w(—0.82493 WQ 
(0.0250) (0.108) 

%^(2) = 1.45 
p = 0.4837 

w* =—0.266 (i/f — Mt) + 6.028 Ut 
(0.2907) (1.7928) 

TTt — =—1.5372wt — 1.880 liQ 
(0.5032) (0.5662) 

X"(2 )=4 .72 
p = 0.095 

= (2/( - - 16.352 tit 
(1.5836) 

TT; — Alt = — 0.2468 Wt— 0.001 liQ 
(0.2409) (0.0003) 

14 =0.309 0.0029t6Ct 
(0.0367) (0.0004) 

%^(1) = 0.182 
p = 0.6699 

Wi =—2.371—0.1273 {tjt — Mt) — ut 
(0.0598) (0.0156) 

TTf — kf =—6.064-|-5.236 Wf — uct 
(1.005) (0.3593) 

tit =—0.01949wt — 3.412216^ 
(0.0168) (0.2322) 

X'(2) = 3.88 
p = 0.1434 

Wt = — 0.1409 (i/t — Mt) — 31.21 Ut 
(0.00745) (2.3245) 

TTt — Ât =—6.305 Wt + "uct 
(0.2338) 

lit =—0.074 wt— 0.042 nct 
(0.0073) (0.043) 

x:^(l) = 1.024 
p = 0.3116 

^^2 

^^3 

0 

0 1 

1 0 * 

0 - 1 0 

are contained in the cointegrating space. This hypothesis has been rejected for all countries except for US 
and Japan with x^(3) = 7.1874, = 0.0662), and % (̂3) = 6.4248, = 0.094), respectively. 
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In Table 4.9, we report the estimated coefficients of the equations described in Section 

4.2, statistic, and the correspondent p-value. The first equation, determines how unem-

ployment and productivity affect wages. The long-run elasticity of wages with respect to 

unemployment is lower for the European countries, US, and Canada than for Japan. This 

fact seems to refect differences in the structure of the labour market in particular for Japan. 

However, the estimated elasticity for Japan may be affected by the starting point of the time 

series we have considered. Indeed, the wage flexibility in Japan increased after the second 

oil shock, therefore, it may be interesting to extend the sample to a period before the 1965 

to see how the estimate of is affected. 

The response of wages to unemployment has played a crucial role on the explanation 

of European unemployment. For this reason equation (4.2.5) has been estimated by many 

authors using different econometric methods. For example, Layard gf aZ. (1991) report 

values of ranging from 0.53 for the UK to 41 for Japan. Alogoskoufis and Manning 

(1988) obtain similar results. For the Scandinavian countries, Jacobson ef aZ. (1997) using 

the common trends model And — 1.2 for Denmark and 'yg — 9.67 for Norway. It is 

important to keep in mind that since all the variables are endogenous a stationary relation 

between unemployment and real wages does not mean that a rise in the real wages causes 

a rise in unemployment 

A separate discussion is required for Germany. In Table 4.9 we report the esti-

mated parameters for a four dimensional VAR model which does not include the variable 

(z/t ^ '"'t) - ThG reason is that although on the base of the rank test we were able to accept 

3 0 The likelihood ratio test rejects the weak exogeneity hypothesis for any variable of the model. 
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two cointegrating vectors, the restrictions described above are rejected by the test for lin-

ear restrictions on the ,5. One explanation for this result may be the poor quality of our data 

set relating to this country^\ Indeed, Carstensen and Hansen (2CX)0) using seasonally ad-

justed data of the DIW database for the West Germany, 6nd a stationary relation between 

unemployment and the wage wedge, and they estimate ^3 = 1 824. 

The second equilibrium equation indicates, except for Japan, a negative relationship 

between profit rate and user costs of capital. The estimated parameter for the user cost of 

capital can be interpreted as the elasticity of investment with respect to the shadow price of 

capital. In general, the lower the cost of ac^ustment, the faster the difference between profit 

and user cost is translated into capital accumulation or decumulation. From Table 4.9, we 

And the estimated elasticity is particularly low for US. 

The third equation relates unemployment to factor prices. Unemployment would 

be expected to rise with increases in real wages, since this translate to higher cost for 

firms. However, an increase of may also increase the labour force and therefore increase 

unemployment in the presence of nominal rigidities. This may explain the positive sign for 

US. 

The long run elasticity of unemployment with respect to user cost of capital is par-

ticularly large for Canada and surprisingly low for US, where the "wage channel" is more 

important. Since the coefhcient of variation of the depreciation rate along the time series 

considered in our sample is low, it is plausible to assume that the pattern of the user cost of 

The definition of "earning per hour" in the ILO publication has been changed several times in the estima-
tion. Moreover, the data for this variable relate to the Fed. Rep. of Germany before 3.10.1990, and include 
East Germany afterward. 
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capital over the time is mainly determined by the behavior, of the real interest rate. Accord-

ing to Blanchard (1998) the real interest rate affects unemployment through a reduction of 

investment and consequent capital decumulation, while Fitoussi and Phelps (1988) insist on 

the effect of the real interest rate on the markup chosen by imperfectly competitive firmŝ .̂ 

In our model we are not able to distinguish between these two channels; nevertheless both 

types of shocks have a positive effect on unemployment. 

Figures 4.2-4.8 present the vectors adjusted for the short run dynamics. An 

inspection of these graphs reveals that these vectors are stationary. As additional check 

of the adequacy of the model we plotted the recursive estimates of the first r non-zero 

eigenvalues^^. Generally, for the model we consider there is no evidence of parameter 

instability due to, for example the failure to account for structural breaks. 

According to Blanchard (1997) an increase in the interest rate leads Arms to increase their mark-up of 
price over cost: to do this they decrease the real wage to workers. Increased anemployment is needed for 
workers to accept this lower real wage. 

To save space we omit these figures. 
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Figure 4.2. Estimated restricted cointegrating relations for France. 
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Figure 4.3. Estimated restricted cointegrating relations for UK. 
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Figure 4.4. Estimated restricted cointegrating relations for Germany. 

Figure 4,5. Estimated restricted cointegrating relations for Italy. 
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Figure 4.6. Estimated restricted cointegrating relations for US. 

# Y V V W ? \ ^ ' / ;v^d£Vi£^ 
IM» 

/ " H w A l M U Z 

Figure 4.7. Estimated restricted cointegrating relations for Canada. 
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Figure 4.8. Estimated restricted coiBtegrating relations for Japan. 

4.4.4 Common trends analysis 

Using the Johansen procedure for the 6ve variable model we found a cointegration 

rank of three for UK, France, US, Canada, Japan and two for Italy, Germany. 

As we have seen in Section 4.2, the structural shocks are identified as a productivity 

shock, and a stochastic shock to the proBt rate. The transitory shocks are a shift in the labour 

demand and shock to the user cost of capital. The equilibrium unemployment innovation 

is identified as long-run shock in the case of three common trends, and short-run shock in 

the case where the cointegrating rank is three. 

To identify the common trends model in the first case (i.e. when — r = 2) we need 

to impose — 1)/2 = 1 further restrictions. To identify the structural VAR in the latter 

case (i.e. the long-run shocks for n, — r = 3) we need — l ) / 2 = 3 extra restrictions. 
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The restriction we impose is that the markup trend has no long-run effects on the 

labour productivity. The assumption is exactly identifying in the case of two trends. If 

there are three trends we add two extra assumptions by imposing a zero restriction on the 

coefGcients 013 and ogg of the loading matrix A described in equation (4.3.1) of Section 

4.3, that is we impose that the unemployment innovations do not affect labour productivity 

and the pro6t per unit of capital in the long-run. 

Table 4.10-4.16 reports the estimated loading matrix of the common trends. The 

standard errors of the estimated coefGcients are given in parenthesis The interpretation 

of the coefGcient of the loading matrix A is that Oij measures the long-run effects on the 

endogenous variable from a unit shock to the trend innovation. 

Since the model in Section 4.2 does not holds for Germany we report the estimated 

parameters for the Ave variable VAR described above, but we omit the productivity term. 

Note that in this case the restriction for ai2 = 0 is exactly identifying. 

Considering the first common trend coefGcients, we can see that a one standard-

deviation increase in technology increases the labour productivity around 5% in Japan, 3% 

in Canada, while in US only 1%. In the long run both wages and unemployment are also 

noticeably affected by technological progress. 

The second trend captures the effect of a unit shock to the markup. Considering 

the second column of the A matrix, we can see that a one standard deviation increase in 

markup increases the proSt rate, this is particularly true for Japan and Italy. However, the 

effects on unemployment are more controversial. If is stationary, according to economic 

The asymptotic distribution of the common trends coefRcients is Gaussian. 
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theory an increase of the labour markup leads in the short and medium run to a downward 

movement in the labour demand, since an increase of the markup acts like a tax on labour. 

As a consequence employment falls and unemployment rises. A rise in unemployment 

leads to a decrease in real wages. On the other hand lower wages lead to an increase in the 

profit rate, and because of the excess of pro6t new entry of firms, and capital accumulation. 

Therefore, employment rises as a result of either capital accmnulation or a larger number 

of Gmis. This process continues until the proSt rate has returned to its original value, as the 

real wage. 

To what extent can economic theory explain our empirical results? It seems plausible 

to consider wage behavior as the main protagonist of our story. We can see from Table 

4.12 and Table 4.14 that in UK and US a shock to the markup leads to an increase in the 

wages and a decrease inunemployment while the same is not true for the other European 

countries. One interpretation of this result is that for US and UK the "capital accumulation 

effect" induced by the increase of the proGt rate is more dominating than the "tax effect". 

This seems to support the idea that wage rigidity matters. Indeed, if wages do not ac^ust to 

unemployment, then markup shocks lead firms to decrease the ratio of labour to capital so 

that the proSt rate remains unchanged in the long run. Therefore, both higher capital and 

a lower labour to capital ratio lead to a decrease in employment and consequently higher 

unemployment. Our results support the Blanchard (1997) hypothesis that the upward trend 

on markup (and consequently in the profit rate) in most "continental European countries" 

is able to explain, at least in part, the evolution of the unemployment rate in the 80s. 
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Finally, for Italy and Germany &om Table 4.11 and 4.13 we can see that a unit shock 

to unemployment innovation decreases wages by about 4% in Italy and 3% in Germany. 
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Table 4.10. Estimated common trends for France, 1968:1,1998:1^^. 

m -TT't 
— kf 
Ut 
Wt 

— Xq ~f" 

0.039 0 
( 0 . 0 1 3 ) (-) 

0.017 0.0012 
( 0 . 0 0 0 7 ) ( 0 . 0 0 0 2 ) 

0.0014 -0.0006 
( 0 . 0 0 0 5 ) ( 0 . 0 0 0 1 ) 

-0 .217 -0.0024 
( 0 . 0 0 1 ) ( 0 . 0 0 5 ) 

0.0028 -0.0029 
( 0 . 0 0 1 4 ) ( 0 . 0 0 0 6 ) 

-^y.t 

Table 4.11. Estimated common trends for Germany, 1970:1,1998:1. 

TTt -

Ut 

liCf 

3=0 

0.0316 0 
( 0 . 0 6 ) (-) 

0.004 -0.1101 
( 0 . 0 3 3 ) ( 0 . 1 4 2 8 ) 

-0.0353 0.0125 
( 0 . 0 2 9 ) ( 0 . 0 6 2 ) 

0.0092 -0.0017 
( 0 . 0 1 5 7 ) ( 0 . 0 0 2 3 ) 

Table 4.12. Esdmaled common trends for UK, 1968:1,1998:1. 

0.046 0 0 
( 0 . 0 6 8 ) (^) (-) 

0.045 0.0072 0 

TTt - /Cf 
( 0 . 0 6 7 ) ( 0 . 0 0 3 0 5 ) (-) 

Ut — iCo ~l~ 
-0 .016 -0.0021 0.0023 Ut — iCo ~l~ 

( 0 . 0 2 ) ( 0 . 0 0 1 5 8 ) ( 0 . 0 0 0 4 5 ) 

W t -0 .093 0.0097 -0.0104 
( 0 . 0 1 3 ) ( 0 . 0 0 7 3 ) ( 0 . 0 0 2 1 1 ) 

0.025 0.0091 0.0033 
( 0 . 0 3 9 ) ( 0 . 0 0 3 8 ) ( 0 . 0 0 0 0 7 ) 

TTr.t 
^u.t 

35 Note: The estimated asymptotic standard errors are reported within parentheses. 
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Table 4.13, Estimated common trends for Italy, 1970:1,1998:1. 

0.0715 0 0 
( 0 . 6 4 ) (-) (~) 

2/t -0 .1256 0.02 0 
"TTf - ( 0 . 1 5 1 2 ) ( 0 . 0 1 9 ) (-) 

Ut — Xq + - 0 . 0 1 
( 0 . 0 9 5 ) 

0.002 
( 0 . 0 0 2 ) 

0.0024 
( 0 . 0 0 0 4 ) 

W t 0.0459 0.0067 -0 .004 
( 0 . 4 2 1 1 ) ( 0 . 0 0 5 7 ) ( 0 . 0 0 0 7 ) 

0.0551 0.001 0.006 
( 0 . 5 0 9 ) ( 0 . 0 7 2 ) ( 0 . 0 0 1 ) 

Table 4.14. Estimated common trends for US, 1960:1,1998:1. 

0.0117 0 
( 0 . 0 0 5 6 ) (—) 

2/t 0.0008 0.00027 
( 0 . 0 0 0 4 4 ) ( 0 . 0 0 0 0 5 ) 

Ut = a;o 4- -0.00045 
( 0 . 0 0 0 2 1 ) 

0.00014 
( 0 . 0 0 0 0 2 ) 

Wt 0.00441 0.00226 
t t C t ( 0 . 0 0 2 7 ) 

- 0.3157 
( 0 . 2 4 6 1 ) 

( 0 . 0 0 0 4 1 ) 

-0 .2882 
( 0 . 0 5 1 8 7 ) 

Table 4.15. Estimated common trends for Canada, 1960:1,1998:1. 

-n't -
Ut 
•wt 

a:o 

0.037 0 
( 0 . 0 7 ) (—) 

0.0227 0.0024 
( 0 . 0 4 2 ) ( 0 . 0 0 0 7 ) 

-0 .0034 0.0016 
( 0 . 0 0 7 ) ( 0 . 0 0 0 4 ) 

-0 .0082 -0.0016 
( 0 . 0 1 7 ) ( 0 . 0 0 0 4 ) 

- 0 . 0 2 -0 .011 
( 0 . 0 0 4 ) ( 0 . 0 0 2 ) 

^TT.t 

Table 4.16. Estimated common trends for Japan, 1965:1,1998:1. 

0.0522 0 
( 0 . 0 3 1 ) (-) 

-0 .092 0.01 
"TTt - /Ct ( 0 . 2 3 7 ) ( 0 . 0 0 5 ) 

Ut = + -0 .0024 
( 0 . 0 0 6 ) 

0.00 
( 0 . 0 ) 

0.008 0.0023 
( 0 . 0 2 2 ) 

-0 .042 
( 0 . 1 0 5 ) 

( 0 . 0 0 1 ) 

-0 .004 
( 0 . 0 0 2 ) 
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4.4.5 The dynamics of the structural model 

In this section we show how the VAR system reacts to various impulses. The impulse 

response function, along with asymptotic 95 percent confidence bands are given in Figures 

4.1-4.10. 

As have seen in Section 4.3, the impulse response analysis can be performed by 

rewriting the moving average model (i.e. equation (4.3.8)) as equation (4.3.10). 

To identify we have used the following specification 

where w = [a ] so that the permanent and the transitory innovations are uncorrelated. 
(nxr)(rxr) 

Indeed, E '] is given by 

where the elements of Q are obtained from the Cholesky decomposition of w' ^ ^ w. 

The second assumption we need is that only the first A: structural shocks have long 

effects, whereas the last r shocks do not. This implies that 

E(1) = C ( 1 ) F -1 A 0 
(?ixk) (nxr) 

As far the results are concerned, from Figure 4.11 we can see that a wage shock in 

Italy reduces the proht rate and the user cost of capital by about 2%. Moreover, it produces 

a fall in labour productivity of about 0.25%, while unemployment is not affected. By 

contrast, in US a shock to wages does not afPect the proht rate, but real wages, user cost 
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of capital, and unemployment increase. In particular, although as a response to a positive 

wage shock, real wages rapidly ac^ust to their long run level, after less then one year the 

unemployment rate starts increasing, and it takes approximately four years to reach the 

long run level. For Germany, we find that a shock to wages increases unemployment by 

about 1%. Adjustment to equilibrium unemployment shocks occurs within approximately 

2 years. 

Coming to the shock to the user cost of capital, we can see that a unit shock to 

the user cost significantly reduces the profit rate in UK (0.1%), Japan (1%), and Canada 

(0.4%). Moreover, we hnd significant response in unemployment for Germany (4%),UK 

(approximately 0.05%), US (3%), Canada (about 0.2%), Japan (0.06%) 

From an inspection of Figures 4.12 and 4.15 it is evident that in general the technol-

ogy trend and the markup trend do not affect unemployment, since we do not record any 

signihcant response for the hrst 10 years in these countries^^. The only exception is the 

US, where a productivity shock reduces unemployment by about 0.2% in the long run. The 

fact that a technology shock does not affect unemployment in the long run is in line with 

the theoretical model by Layard gf aZ.(1991), and some empirical results for the Scandina-

vian unemployment by Jacobson aZ. (1997). The result from the markup shock are not 

consistent with the estimated parameters in Section 4.2. Indeed, the magnitude of the esti-

mated coefficients falls in a range between 0 for Japan and 0.003 for UK, even though the 

95% confidence interval are very wide. 

In Figure 4.10,4.13,4.16 we report the impulse response function to one standard deviation shock to 
technology and profit rate for France, Germany, US. To save space we omit to report the ones for the other 
countries whose the result are not significant. They are available on request. 
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Figure 4.9. FRANCE: Impulse response function with 95% confidence interval f r o m a one-standard deviation shock to 

the unemployment, wage innovation, and user cost of capital innovation. Response in 

(Z/t — W t , 'UQ respectively. 
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Figure 4.10. FRANCE: Impulse response function with 95% confidence interval f r om a one-standard deviation shock to 

the markup innovation and unemployment innovation. Response in (l/t — 71̂ ) , — A);), Wt, 16̂ , ItC* 
respectively. 
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Figure 4.11. ITALY: Impulse response function with 95% confidence interval from a one-standard deviation shock to the 

wage innovation and user cost of capital innovation. Response in [ y t — 7% )̂ , (TTf — k t ) , U f , Wf , UCf respectively. 
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Figure 4.12. GERMANY: Impulse response function with 95% confidence interval from a one-standard deviation shock 

to the wage innovation, and user cost of capital innovation. Response in (TT̂  — , Wt, MQ respectively. 
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Figure 4,13. GERMANY: Impulse response function with 95% confidence interval f rom a one-standard deviation shock 

to the markup innovation and unemployment innovation. Response in (tTj — fct), W i , U t , UCt respectively. 
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Figure 4.14. UK: Impulse response function with 95% confidence interval from a one-standard deviation shock to the 

wage innovation and user cost of capital innovation. Response in , W;, t tQ respectively. 
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Figure 4.15. US: Impulse response function with 95% confidence interval f rom a one-standard deviation shock to 

technology innovation and markup innovation. Response in , tUt, ttCt respectively. 
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Figure 4.16. US: Impulse response function with 95% confidence interval from a one-standard deviation shock to 

unemployment innovation, wages innovation, and user cost of capital innovation. Response in {yt — , 

, Wt, t/Ct respectively. 
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Rgure 4.17. CANADA: Impulse response function with 95% conAdence interval from a one-standard deviation shock to 

unemployment innovation, wage innovation, and user cost of capital innovation. Response in (l/t — , 

(TTt — respectively. 



4.4 Empirical Evidence 154 

/N' 
V\-' 

I j\i 
* / 
\ I 
\ / 

l/VfV 

r\,' 

Figure 4.18. JAPAN: Impulse response function with 95% confidence interval f r o m a one-standard deviation shock to 

unemployment, wage innovation and user cost of capital innovation. Response in (l/t — l i t ) , 

(TTt — Alt), tZt, Wt, ttCt respectively. 
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4.5 Concluding remarks 

In this chapter we analyse the G7 labour market using a structural cointegrated 

model. In the literature a lot of work has been done on this subject. However, much of 

the econometric research on the increase in unemployment has taken the form of estima-

tion across countries and time of a reduced form equation for the unemployment rate as a 

function of a number of variables. In this chapter we suggests a different approach which 

involves identifying separately supply and demand shocks, and we try to explain the effect 

of each of these shocks separately. Moreover, the econometric procedure we use allows us 

to distinguish between the effects of short run shocks (i.e. deviation from the equilibrium 

relationships) and long run shocks (i.e. structural shocks) to unemployment. With respect 

to other related works, the novelty of this work is that we model directly some of the vari-

ables which affect Arms' investment decisions, such as the profit rate and the factor prices, 

even thought we include in our model the variables that are traditionally regarded as the 

main "culprit" for high unemployment rate (i.e. wages rigidities and productivity shocks). 

In the light of the tight monetary policy which characterized the policy decisions in particu-

lar starting from the 80s, it seems to us that focusing only on the "labour market rigidities" 

is able to explain only part of the story. In particular, it fails to explain why the result of 

these policy decisions translates to high unemployment rate in the European countries, but 

did not increase unemployment rate in the UK and the US. 

As far as the results are concerned we 6nd that wages and real interest rate shocks 

are the most important source of uncertainty for unemployment. However, there are pro-

nounced differences among the G7 countries. 
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4.6 Appendix A: Some methodological notes 

Let us consider the following the VAR{1) model 

= /i + Tlxf- î + Ef, (4.6.1) 

under the assumption of cointegration we can express the matrix 11 as 

so (4.6.1) can be written as 

Axt = /i + a/3 Xt-i + 6t, (4.6.2) 

which can be rewritten as 

Zt = + (.Zn + + 6̂ . 

Premultiplying this system by give us a yA.R(l) model for the cointegration rela-

tions. 

(7n + i 4- ^ 

= + (fr 4-

so that 

(7r — 4- 4-

where ZL stands for the lag operator. Since the matrix (7^ + ct/)') has all eigenvalues inside 

the unit circle, then the polynomial (7r — 4- /)'o!)7^) is invertible. It follows that 

= (7r — (-/r 4- /9̂ a:)Zf) 4- 6:̂ ), 
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and using the formula for the sum of a geometric series we get 

= y + + (4.6.3) 
^ "̂ 2=0 

f 2̂=0 f 2̂=U 

= — (^'d) /?'// + ^ 2 - + 
f "̂2=11 

SO that we have found an Myl(oo) representation for the r cointegrating relations. 

Substituting equation (4.6.3) for in equation (4.6.1) we have found the MA 

representation for Aa:*, given by 

Aa;* — + a [— (/) o:) 4- ^ (7^ 4- /) o:) /? 
( f ^ 9.=0 

+ St ( 4 . 6 . 4 ) 

^ G: (/)^a) /i + 6t + ^ ^ CK (_Zr + /? O:) /? 

Eoo 
,:=n 

where Q = in. 

To show ±at C (z) = roots, note 6rst ±at 

C ( l ) = + a ( 7 , + / ? ' a ) ' / 3 ' 

Second, Johansen (1995) p.39 shows that for any G of rank (n — r) 

such that 0!j_CK = 0 and = 0 it holds that 

^ + a (Ẑ 'o;) 
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This can be verified in part through premultiphcation of both sides by 0!j_ or or 

through post-multiphcation by a or The choice of the basis is irrelevant since = 

(where C and are nonsingular (?% — r) x (n — r) matrices) satisfy 

Thus C (1) = CKj, — CK ^ = C (1) = C. In Johansen 

(1995), 4.7 (p. 47), it is stated that the C (z) matrix polynomial can be expressed 

as 

C(z) = ( 7 + ( l - z ) C* (z), 

so that C( l ) = C, and substituting for C (z) in equation (4.6.4) we get 

Zt — — C// + Cy => (4.6.5) 

— 3̂ 0 = . n ^ 
f "̂ 2=1 / ^̂ =0 

* -̂ "t r——^ GX3 

where 

EOO 

So ±at we have found that Ae Mv4 representation contains: 

(%) an 7(1) component: C i 

(n) an 7(0) component: 

(Mt) an initial values denoted by . 
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The 7(1) component of the MA representation can also be expressed as 

c ( f ' * + z L i =')=<3-1 ( " > ' + 2 ^ , L i • 

To illustrate this consider the following process 

^1/ 1 
' 1 0 ' Ut " 0 0 ut—1 

Py. 0 1 1 - 1 _Wf_i 

or 

1 0 
1 0 

Axj — 5 + ( / + C-L) St 

Suppose that C (z) has reduced rank, that is 

C ( l ) = 

The 7(1) component of the MA representation can be expressed as 

a;: = t^y 

lMJ/. 

1 
1 

1 
1 

t + 1 0 
1 0 E t=l ^ 

Ut 

Wt 

1=1 

1 0 ] 

Ui 

f̂ y J 
t + : o ] E 

t=l 1-

Ut 
Wt 

—I 

The term ^t) represent the common trend. So, in general without loss 

of generality we can rewrite (4.6.1) as 

= 3:̂  + 3;̂ , 
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where 

2 = 1 

OO 
4 -

It is important to note that if is a cointegrating vector, then = 0 for = /3'a;̂  

to be stationary. 

4.7 Appendix B: The bootstrap experiment 

In this appendix we describe the simulation experiment for the rank tests. For ease of 

notation we report ± e given in equation (4.3.3) in Section 4.3 

T'(L)A.xt = // + (4.7.1) 

where // is an intercept; , and are (?% x 1) vectors, r(i}) is an (» x n) matrix polynomial 

in the lag operator i) is the lag operator, 11 = a/3% — Zf_i,and ^ ]V7D(0, S) 

. The matrix 11 determines whether or not, and to what extent, ± e system (5.7.1) is cointe-

grated. Suppose that 11 has reduced rank r, the hypothesis of r cointegrating vectors can 

be written as: 

^0 : n = 

where CK and /? are (yi x r) matrices. As we have seen in Section 4.3, the rows of can be 

interpreted as the distinct cointegrating vectors of (i.e. such that the linear combinations 

are 7(0)) and the elements of a represent the weights of each of these r cointegrating 

relations in the m component equations (4.7.1). 
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A test for the number r of cointegrating vectors can be based on the n eigenvalues 

Ai > . . . > ^ > 0 . As seen in Chapter 2 a likelihood ratio (Z,A) test of the hypothesis 

that there are at most r cointegration vectors by testing that the (fi — r) smallest eigenvalues 

Ar+i , . . . , Am are zero against the assumption that A, > 0 for i = 1 , . . . , . The test 

statistic for this is known as the trace tests, deSned as 

= —T ^ In — A ^ 
i—T+l 

In addition, the maximum eigenvalue test statistic is given by 

Zy^(niax)^ = —Tin — Ar+i^ 

and can be used to test the null .5^0(r) : raMA;(n) = r against the alternative + 1) : 

?-aMA;(n) = r + 1. 

The bootstrap can be used to approximate the 6nite sample distribution of the Amex 

and trace statistic under the null. The idea is to approximate the finite sample distribution 

of the ZA tests by drawing .8 bootstrap realizations < > for 2 = 1 , 2 , ^ bootstrap 

samples { (Aa;*, }. The bootstrap algorithm we use can be summarised as foUows: 

1) Estimate the error correction model given by ( v 4 2 . 1 ) and compute 

2) Resample the residual from ...,6*) independently with replacement to obtain 

a bootstrap sample (s*,..., ). Generate the bootstrap sample (a ;* ,a :* ) recursively from 

Zg — 0 and (si,. . . , 6 )̂ using the estimated restricted model 

t - i 
= /i + ^ ^ FjAxj_j + 

i=l 

where & and ^ denote the estimates under the null hypothesis. 
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4) Compute the bootstrap replication of ,using (z*, . .,2:*) 

5) Get the distribution of the trace and the Amar tests under the null by repeating steps 

2-4 g times. 

The p-value is given by 

. , # & ' > LR) 
p -value = 

where # ( > ZJ? j indicate the number of occurrences of eventuality f > Z7^) 

over g bootstrap replications. 



Chapter 5 
Summary and Conclusions 

There are five chapters in this thesis. Chapter 1 contains a brief survey of bootstrap 

inference procedures in econometric models. Chapters 2-4 contain the main body of the 

research. In this chapter the main results of this work are summarized. 

Chapter 1 is an introductory chapter where the fundamental concepts of the bootstrap 

method are highlighted. The Chapter starts with an introduction of the bootstrap principle, 

and after discussing the 6rst-order asymptotic properties of the bootstrap the higher order 

properties are considered in some detail. We then introduce a number of different boot-

strap procedures used in the context of time series models. In particular, we distinguish 

between the residual based bootstrap which requires assuming a particular specification 

of the model in use, and techniques such as the block bootstrap and the stationary boot-

strap which generate the bootstrap observation from the observed time series directly (i.e. 

without assuming a particular model specification). Throughout the chapter, empirical ap-

phcadons are provided to illustrate the methods and their applicability. 

The purpose of Chapter 2 is twofold. Firstly, we use the bootstrap hypothesis testing 

as a way to reduce the size distortion of the tests for linear restrictions on the cointegrating 

space. Secondly, we consider the Johansen LR and Wald test statistics as well as the small 

sample corrected version of these tests, and we explore the robustness of the inference 

procedure in a situation where we allow for potential over-fitting and under-fitting of the 

number of cointegrating vectors included in the restricted model. 

163 
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As far as the results are concerned we 6nd that when the number of cointegrating 

relationships is correctly speciGed inference based on furst-order asymptotic critical values 

for Wald and the statistics is markedly inaccurate. This is particularly true for the Wald 

statistic for which, when T = 50, the empirical size can be 3 times as large as the nominal 

level. The LR test performs better, but the overall impression is that the asymptotic theory 

is uniformly satisfactory only for T" > 200, which is a sample size well above the sample 

size generally available to practitioners. Psaradakis's small sample corrected and Wald 

statistics have smaller size distortion than the uncorrected version of these tests. However, 

for all sample sizes, the empirical sizes that the F-type tests and the bootstrap test deliver 

are much closer to the 5% nominal size of the test. Turning to the power properties of the 

tests we find that for T > 150, both the small sample corrected and the bootstrap test have 

slightly lower 'power' (rejection frequencies) than the tests based on Erst-order asymptotic 

critical values. The picture changes when we come to the misspecified model. In this case 

we 5nd that: (2) when the cointegrating rank is overGtted the size distortion of the tests 

is so large that it calls into question the use of the tests, since we find sizes over 30%, 

(n) when the number of cointegrating vectors is underAtted the size distortion of the tests 

asymptotically vanishes, but the power-loss in this case is substantial, when the model 

is misspeciSed using the small sample corrected tests or the bootstrap test does not help, 

since the power of both these procedures mimic the behavior of the asymptotic tests. 

Chapter 3 is closely related to Chapter 2. In the first part of Chapter 3 we propose 

approximating the finite sample expectation of the jLA test statistic using the bootstrap and 

we compare the finite sample properties of the asymptotic, the bootstrap, and the bootstrap 
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Bartlett corrected likelihood ratio test. The Monte Carlo evaluation of the bootstrap and 

the bootstrap Bartlett corrected 1,7^ tests deliver remarkably accurate inference for the test 

statistics considered. Furthermore, the evaluation of the power reveals that the power of the 

bootstrap, and bootstrap Bartlett corrected likelihood, is almost as good as the asymptotic 

power, although in some situations the bootstrap Bartlett corrected test shows higher 

power than the bootstrap test. In the second part of the chapter we propose bootstrapping 

the Bartlett corrected likelihood ratio test, but in this case the Bartlett correction is cal-

culated analytically using the correction factor proposed by Johansen (1999). According 

to theoretical arguments in Beran (1988) this procedure may produce an error of rejection 

probability of order 0(7'"^), which is considerably smaller than the error of conventional 

Arst order approximation. The simulation results reveal that the bootstrap procedure works 

remarkably weD, although the response surface analysis reveals that the size distortion of 

the test heavily depends on the parameter space values: there are regions of the param-

eter space were the usual asymptotic approximation works reasonably well, whereas 

there are parameters points close to the boundary of the parameter space where the distri-

bution of the test is very sensitive to the parameter values. In this case the Arst order 

approximation is quite inaccurate, as is the Bartlett corrected test. 

Chapter 4 is a self contained chapter where an empirical application of the bootstrap 

test is undertaken using real data instead of the simulated ones. The idea is to analyse the 

effects of macroeconomic shocks on unemployment, and in particular the effects of shifts in 

labour supply and labour demand on the rise of European unemployment. The econometric 

model considered is a structural y A A with cointegrated constraints. This model allows us 
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to distinguish between the effects of transitory and permanent shocks to unemployment. 

Inference about the cointegrating rank is, once again, carried out using Johansen's (1988) 

procedure. To improve the robustness of our inference we also used the non-parametric 

bootstrap. Turning to the results, we find that the conclusions about the cointegrating rank 

are in agreement with Reimers's small-sample corrected tests, while the Johansen tests in 

some cases tend to over-estimate the number of cointegrating vectors. 

In the various chapters, we come to the conclusion that the bootstrap can successfully 

eliminate the size distortion problem of the test statistics employed in cointegrated models 

without involving substantial loss in power. We were primarily interested in the problem of 

reducing the error in rejection probabihty of the asymptotic tests, so we only investigated 

the performance of the residual-based bootstrap. However, the residual-based bootstrap 

assumes that the dynamics of the model is correctly speciAed. Under uncertainty 

with respect to the model speciScation, other bootstrap procedures such as the stationary 

bootstrap, seem to be more suitable than the residual-based bootstrap. With this in mind it 

would be interesting to extend the results in Chapter 2 and 3 to more complicated DGPs, 

using for example block bootstrap procedures and perhaps analysing the robustness of our 

conclusions to misspeciGcation in the underspeciGcation or overspeciEcation of the dynam-

ics of the y A A model. Moreover, throughout this thesis in our experiment design we only 

control the number of cointegrating vectors in the DGP and the sample size: it would be 

interesting to extend the analysis by controlhng the dimension of the model. 
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Nonetheless, the analysis in this thesis demonstrates that, provided that it is care-

fully executed, the bootstrap offers a promising option for conducting relatively accurate 

inference in cointegrated models. 
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