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Three test statistics for single edge exclusion from the saturated model are considered:
the likelihood ratio test, the Wald test and the efficient score test. Non-signed and signed
square-root versions are used. Their distributions are investigated, in particular under the
alternative hypothesis that the saturated model holds. The delta-method is used to derive
approximating asymptotic normal distributions. A non-central chi-square approximation is

also proposed.

The power of the three test statistics for single edge exclusion is studied in detail, both
for graphical Gaussian models with p variables and for graphical log-linear models with
two and three binary variables. Theoretical asymptotic power functions are derived for the
non-signed and the signed square-root versions of each test statistic. The normal and the
non-central chi-square approximations, previously derived, are used. The quality of the

approximations is assessed by simulation.

The single-factor model and the latent class model (with all variables binary) are
parameterised, within the framework of graphical models, as a graphical Gaussian model
and as a graphical log-linear model, respectively. The implications of such parameterisations
are discussed, in particular concerning the parameter space and its admissible regions.
It is proved that marginalising over the latent variable, both in a single-factor graphical
Gaussian model and in a single-factor graphical log-linear model, induces no conditional
independencies between manifest variables and, therefore, an independence graph that
is complete. Consequently, starting with the saturated model and performing backwards
elimination model selection is suggested as the most appropriate way for the data analyst to
detect the presence of a latent variable. However, since model selection is subject to type II
error, it is recommended that the power of the test statistics for single edge exclusion from

the saturated model is taken into account.

A parallel is made between results obtained for graphical Gaussian models and for graph-

ical log-linear models and some guidelines/recommendations are given to the data analyst.
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Chapter 1

Introduction

Graphical modelling is a form of multivariate analysis that uses mathematical graphs
to represent models. It has emerged as a statistical technique explicitly based on the
concept of conditional independence: the emphasis is on the assessment of the relation-
ships that might exist between pairs of variables, conditioning on (controlling for) the
remaining variables under analysis. Graphs are used to display the (conditional) inde-
pendence structure of the variables. Each variable is represented by a vertex (node),
associations between variables being represented by edges: either lines or directed
arrows. The interpretation of the association structure among the variables can be
directly read from the graph, using the Markov properties. In brief: two vertices are
connected if there is a direct association between them; two vertices are not connected if
the corresponding variables are conditionally independent, given (the) other variables.
Thus, interpretation and model fitting are based purely on conditional independence
relationships.

The conditional independence between two variables, given all the other variables
in the model, can be tested using test statistics for single edge exclusion. Rejecting the
null hypothesis of conditional independence between variables X; and X (given the
remaining variables) corresponds to having edge ij present in the (conditional indepen-
dence) graph. The usual first step in fitting graphical models consists in considering
the saturated model and calculating the test statistics for single edge exclusion, in

order to test for the exclusion of each of the edges present in the graph.

Different test statistics for single edge exclusion have been used in the past. This

thesis considers three: the likelihood ratio test, the Wald test and the efficient score



test statistics. It is known that under the null hypothesis of conditional independence
between X; and X, given the remaining variables, subject to certain regularity condi-
tions, these test statistics are asymptotically chi-square distributed (see, for example,
Whittaker, 1990, page 187). The first two aims of this thesis are to study the distribu-
tion of these three test statistics under the alternative hypothesis that the saturated
model holds and, consequently, to derive asymptotic power functions for these test
statistics.

The variables in the graphical model can be either manifest (observed) variables
or latent (unobserved) variables. A third aim of the thesis is to investigate the pa-
rameterisation of graphical models with a single latent variable, both in the case all
variables are assumed multivariate normal distributed and in the case all variables are
binary, the manifest variables cross-classifying a contingency table. The former case

has a parallel to factor analysis models with a single-factor, and the latter has a parallel

to latent class analysis models.

This introductory chapter has four main sections. Section 1.1 provides a historical
background of graphical models and graphical modelling, since their roots in areas such
as statistical physics (where graphs were used to represent relationships) and in path
analysis, up to recent developments, with different areas of application. Section 1.2
briefly summarises the use of latent variables in factor analysis models and in latent
class analysis models. Because the focus of this research is on graphical models, a wider
coverage is given to the literature on this framework, whereas references to the use of
latent variables are restricted to what was considered essential for the understanding
of this thesis. Section 1.3 reflects the motivation for the work undertaken and now
summarised in this thesis: it lists citations from the literature that explicitly mention
the ‘need’ to include latent variables within the framework defined by graphical models.

Finally, Section 1.4 gives an overview of the structure of the thesis.

1.1 Historical Background of Graphical Models

1.1.1 The roots: graphs and path analysis

The roots for graphical models can be found in the beginning of the 20th century, in

different scientific areas such as physics and genetics. In 1902 Gibbs, a physician, used
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an undirected graph to represent the relationships and interactions in a large system
of particles (possibly the atoms of a gas or a solid), as explained by Lauritzen (1996).
Gibbs was interested in the interaction of groups of particles and he used undirected
graphs to identify sites of particles that interact with one another.

In genetics, graphical models go back to Wright (1934) (and previous papers in 1921
and 1923), who introduced path analysis - which represents one of the early attempts to
meet the need for methods to analyse structures. The idea is that heritable properties
of natural species can be studied using a graph with directed relations, with arrows
moving from parent to child. The vertices of the graph represent continuous random
variables and edges represent correlations and causations. The 1934 paper classified the
‘method of path coefficients as a flexible means of relating the correlation coefficients
between variables in a multiple system to the functional relations among them’. Path
analysis became very popular and started being used in several areas such as economics

and other social sciences - see, for example, Wold (1954), Blalock (1971) and Duncan

(1975).

1.1.2 Conditional independence: an important tool for mod-

elling data

During the 60s and 70s, there was an increased recognition of conditional independence
as an important tool for modelling multivariate data. Dawid (1979) gave a general dis-
cussion of conditional independence in statistical theory, and introduced the notation,
now widely used.

Dawid claimed that ‘rather than just being another useful tool in the statistician’s
kitbag, conditional independence offers a new language for the expression of statistical
concepts and a framework for their study’. The framework is illustrated by an examina-
tion of the role of conditional independence in several diverse areas of statistics. Dawid
wanted to show that independence and particularly conditional independence are fun-
damental concepts in the theory of statistical inference. Many important concepts of
statistics (sufficiency, ancillarity, etc.) can be regarded as expressions of conditional
independence and many results and theorems concerning these concepts are just ap-
plications of some simple general properties of conditional independence. According to

Dawid, by taking conditional independence as basic, and expressing other properties



in terms of it, an unification of many areas of statistics (which appeared unrelated) is
achieved. For proofs see Dawid’s 1980 paper, the purpose of which was to construct
a rigorous general theory of conditional independence. Yet, in the discussion of the
1979 paper, some authors were skeptical that the notion of conditional independence

could be regarded as such a fundamental tool, that it could contribute to statistical

inference.

1.1.3 Developments in contingency tables analysis

One of the reasons for the increased recognition of conditional independence were
the advances in the field of analysis of multivariate categorical data cross-classified in
contingency tables, commonly designated as log-linear modelling. Indeed, the standard
statistical practice of analysing categorical data altered radically during the 70s and
the development of log-linear models made it possible to formulate complex models for
the dependencies between the variables cross-classified in a contingency table.

Starting points in the new approach of analysis of contingency tables include work
by Birch, Bishop, Goodman and Haberman. A brief summary of their main con-
tributions follows. In an attempt to define log-linear models for contingency tables,
Birch (1963) defined interactions in three-way and many-way contingency tables as
certain linear combinations of the logarithms of the expected frequencies. He then dis-
cussed maximum-likelihood estimation for many-way tables and gave solutions for the
three-way contingency tables case. Birch (1964) derived a criterion for testing the null
hypothesis of conditional independence of two dichotomous random variables. In Birch
(1965), the detection of partial association was generalised and three different criteria
for testing the null hypothesis of conditional independence of two random variables
were presented. These criteria include situations when both variables are qualitative,
both variables are quantitative and one variable is qualitative and the other quantita-
tive. Bishop (1969) discussed three methods for fitting log-linear models to multivariate
contingency-table data with one dichotomous variable: logit analysis, the split-table
method and the full contingency-table method. The last one can be regarded as a
generalised approach: basically, it is the same method as described by Birch (1963),
with the advantage that an iterative fitting algorithm may be used.

Goodman (1969) presented a method of partitioning a x? statistic (the statistic



based upon the likelihood-ratio criterion for testing the null hypothesis that the three
variables, cross-classifying the three-way table, are mutually independent), for the I x
J x K contingency table, into additive components. These can be used to test: i) the
null hypothesis of zero three factor interaction, ii) the null hypothesis that the partial
association between two of the variables in the table is zero, iii) some null hypotheses
concerning the two-way marginal distributions. Goodman’s test statistic will have the
appropriate asymptotic x? distribution when a sample of n observations (n — o0) is
drawn from the population I x J x K table. Goodman (1970) discussed, for the m-way
contingency table, both the direct estimation of the multiplicative interactions among
the m variables and the indirect testing of hypotheses pertaining to these interactions.
He considered hierarchical hypothesis, including those that can be expressed in terms of
concepts such as independence and equiprobability and conditional properties (such as
conditional independence). Methods of partitioning those hypotheses were introduced,
providing insight into the relationships between tests applied to the m-way table and
tests applied to marginal tables formed from it. Goodman (1971) can be viewed as an

addendum to the two papers mentioned above, on the analysis of marginal tables and

on the partitioning of the chi-square.

Haberman (1974) provided a general, unified treatment of log-linear models for
frequency data by means of a coordinate free method of linear algebra and differential
calculus. This method of definition permited the development of a general theory.
Previous studies had, indeed, a much more limited scope: each new type of model that
had been proposed required a new examination of the properties of the maximum-
likelihood estimates and a new computational procedure to find them. Statisticians
had to devise new proofs of the uniqueness and existence of their estimates, and had to
show that their algorithms converged. The general log-linear model has the advantage

of eliminating these problems for a large class of models for frequency data.

The authors mentioned above can be considered the base for a much wider scope of
recent literature and advances in this statistical area of log-linear modelling. Accord-
ing to Wermuth and Lauritzen (1983) the moét appealing features of a hierarchical
log-linear model are that: 1) it has a set of minimal sufficient statistics, which is a
set of proper marginal contingency tables, and ii) that each of the jointly sufficient

tables matches exactly the corresponding table derived from the maximum likelihood



estimate of the joint table. Variable sets corresponding to tables listed in the set of
minimal sufficient statistics are the important ones in each given model, because their

observed marginal tables contain the relevant information for the joint distribution of

all variables.

1.1.4 Covariance selection models and zero partial associa-

tions

Dempster (1972) pioneered the development of graphical models theory for continuous
variables, assuming normality. The covariance fitting technique presented involves the
exponential family of normal distributions with unknown covariance structure. He
called those models covariance selection models. Instead of modelling the variance
matrix, the structure of the inverse variance matrix is modelled. Dempster showed
that the covariance structure of a multivariate normal population can be sifnpliﬁed
by setting to zero elements of the inverse variance matrix (or elements of the inverse
correlation matrix).

Wermuth (1976a) made use of analogies between log-linear models, which exhibit
conditional independence, and the covariance selection models of Dempster and in-
troduced models for contingency tables which are analogous to covariance selection
models. She concentrated on a class of patterns of association between variables char-
acterised by zero partial association, that is, pairs of variables that are conditionally
independent, given the other variables. Wermuth discussed different possible patterns
of association for the variables, characterised by different zero partial associations, and
presented rules for the interpretation of such patterns and for computing test statistics.
She stated that testing whether an element of the inverse variance matrix is zero is a
test for zero partial association, that is, for conditional independence.

Wermuth (1976b) proposed a non-iterative model search technique to find simple
patterns of association for several variables. The analysis was restricted to multiplica-
tive models, therefore all patterns under consideration were interpretable in terms of
zero partial association of variable pairs. In the case of a multinomial distribution,
multiplicative models are a subclass of log-linear models (Birch, 1963), and in the case
of a multivariate normal distribution they are a subclass of covariance selection models

(Dempster, 1972). A model is defined as multiplicative if the joint distribution of sev-

6



eral variables can be factored into the marginal distributions of subgroups of variables
(and vice versa). Wermuth showed how multiplicative models, both for contingency
tables and as a subclass of covariance selection models, may be used, in a similar man-
ner, to study simple patterns of association. However, neither Dempster nor Wermuth

mention the idea of using a graph to summarise the results of an analysis.

1.1.5 The beginning of modern development of graphical

models

The first key paper for the modern development of graphical models is the paper by
Darroch, Lauritzen and Speed (1980), in which a way of constructing a graph that
has a well defined probabilistic interpretation was proposed. That graph was called
the conditional independence graph (or independence graph, for short). The authors
used the close connection between the theory of Markov fields and that of log—linear
interaction models for contingency tables to define a new class of models for such
tables: graphical models - a subclass of the so-called hierarchical models that can be
represented by a simple, undirected graph on as many vertices as the dimension of
the corresponding table. All these models can be given an interpretation in terms
of conditional independence and the interpretation can be read directly off the graph
in the form of a Markov property. The class of graphical models contains that of
decomposable models and the authors gave a simple criterion for decomposability of a
given graphical model: first check whether the model is graphical and then, if it is,
check whether the graph is decomposable, that is, whether there are no cyclic subgraphs
of length greater than three.

Lauritzen and Wermuth (1989) is the second key paper for the modern development
of graphical models, together with Wermuth and Lauritzen (1990). Early work in the
field involved just one type of variable (discrete or continuous) at a time. The 1989
paper introduced mized graphical association models (based on Conditional-Gaussian
(CG) distributions, allowing to simultaneously consider quantitative and qualitative
variables), and graphical chain models. Graphical chain representations were suggested
to display complex association structures among variables (qualitative or quantitative).
The word ‘association’ was used broadly, to include both symmetric associations for

variables treated on an equal footing (undirected edges) and directed relations con-



cerned with the dependence of a response on explanatory variables (directed edges).
Symmetric associations occur not only when there are no response variables at all,
but also when some variables are joint responses or joint influences, or when they are
joint intermediate variables (responses to one set of variables and influences to another
set). The chain graph consists of a block of variables separated, for example, by time.
The chain structure is supplied from subject-matter knowledge about responses and
potential influences. Several examples were given in the 1990 paper. The first version
of Lauritzen and Wermuth (1989) was a Research Report published in 1984 (University
of Aalborg). In the meantime, Wermuth (1985) illustrated, by using several examples,
how conditional independencies are reflected in data of CG distributions and showed

representations of graphical chain models.

Since the paper of Darroch, Lauritzen and Speed (1980), there has been an increas-
ing interest in graphical models, both by data analysts and by statisticians. Some
examples of remarkable developments observed in this area are now given. Edwards
and Kreiner (1983) considered strategies for model selection. The advised strategy
was, at least at preliminary stages, to restrict model search to models which can be
understood purely in terms of conditional independence relationships, i.e., to graphical
models. The authors suggested that a natural first step of a graphical model selection

procedure is to start with the saturated model and then test each edge (exclusion) for

significance.

The possibility of reinterpreting models represented by undirected full-line graphs
as dependence models in fully directed graphs was obtained by Wermuth (1980) for
Gaussian systems, by Wermuth and Lauritzen (1983) for contingency tables and by
Frydenberg (1990) for conditional Gaussian systems. Wermuth (1980) showed the
equivalence of covariance selection models to systems of linear recursive equations with
independent errors. Wermuth and Lauritzen (1983) introduced recursive models and
directed graphs for contingency tables. The aim was to specify decomposable models
as the intersecting class of hierarchical log-linear models with recursive models. Fry-
denberg and Lauritzen (1989) focused on the decomposition of the likelihood in mixed

graphical association (interaction) models and Frydenberg (1990) dealt with collapsi-

bility in such models.

In recent years new types of graphs have been proposed in the literature, and new



areas of application have been found. Since these do not directly relate to the work
underlying this thesis, only a brief reference is made to them. Graphs with two types
of edge and covariance graphs were introduced by Cox and Wermuth (1993) (see also
Wermuth and Cox, 1992). The two types of edges (full or dashed) indicate different
types of conditional analysis. A covariance matrix with some zero off-diagonal entries
can be represented by an undirected graph with the corresponding edges missing: a
covariance graph. Koster (1996) introduced reciprocal graphs, which are a generali-
sation of chain graphs, allowing for double-headed arrows to be present, representing
feedback loops (to establish a relation with nonrecursive equation systems). Didelez
(1999) defined local independence graphs, based on the concept of local independence.
Such a graph represents the dynamic dependence structure of several continuous time

processes which, jointly, form a so-called composable Markov process.

For a review of the application of directed acyclic graphs to probabilistic expert sys-
tems, see Spiegelhalter, Dawid, Lauritzen and Cowell (1993). The idea of handling the
uncertainty in expert systems in a coherent probabilistic manner, using directed acyclic
graphs to represent causal networks, had been introduced by Lauritzen and Spiegelhal-
ter (1988). More recently (1999), a book on Probabilistic Networks and Ezpert Systems
(by Cowell, Dawid, Lauritzen and Spiegelhalter) was published, and Lauritzen (2001)
reviewed a number of modern applications of graphical models from different areas

such as decision support systems, telecommunications and machine learning.

Software currently available for fitting graphical models includes DIGRAM, by
Svend Kreiner for the analysis of contingency tables, GraphFitl (‘Graph’ical models
‘Fit’ting ‘I'nteractions), by Angelika Bauth, for model selection, particularly in graph-
ical chain models and MIM (‘M’ixed ‘I'nteraction ‘M’odelling ), developed by David
Edwards, who claims MIM to be ‘currently the world’s leading software for graphi-
cal modeling’ (http://www.hypergraph.dk/). MIM is a commercial software and the
latest version (version 3.1) supports undirected, directed and chain graphs, for contin-
uous, discrete and mixed models. MIM was the software used in this research project.

Throughout the thesis several references are made to MIM notation and results.

Finally, it must be noted that there has been much development in graphical models
in recent years, both in the statistical and the artificial intelligence literature. Most of

it is beyond the scope of this thesis and, therefore, is not reported here.


http://www.hypergraph.dk/

1.2 Latent Variables in Factor Analysis and in La-

tent Class Analysis

The concept of latent variable used in this thesis refers to an unobservable variable that
cannot be measured directly, but only by means of indicators - the manifest variables.
Latent variable models are statistical models specifying the joint distribution of a set of
random variables, some of which are unobservable (latent), and provide an important
tool for the analysis of multivariate data. The classical basic idea is that the manifest
variables (indicators) are conditionally independent given the latent variable. In other
words, the latent variable totally accounts for the observed relationships among the
manifest variables (assumption of local independence). Several reasons why latent
variables should be introduced in a model can be invoked. One possible reason, common
to many techniques of multivariate analysis, is to reduce dimensionality. This is the
idea behind factor analysis. The purpose is to convey the information contained in the
interrelationships of many variables, with a good approximation, in a much smaller
set of variables, i.e., to reduce the dimensionality of the data, preserving as much as
possible of the initial structure. Another possible reason for using latent variables is
related to the fact that in many fields to which statistical methods are applied, social
sciences for example, central entities are handled as if they were measurable quantities,
but no measurement instruments exist for them (motivation, satisfaction, quality of
life, general intelligence, ...). Factors, latent or hidden variables represent, therefore,

something underlying what is observed.

As far as level of measurement is concerned, variables can be classified as metrical
and categorical. Metrical variables have realised values in the set of real numbers, and
may be discrete or continuous. Categorical variables assign individuals to one of a set of
categories, which may be ordered or unordered. Such classification applies to manifest
as well as to latent variables. When all variables (manifest and latent) are metrical,

factor analysis methods can be used. When all variables are categorical, latent class

analysis methods should be used.

A brief historical background of these latent variables methods follows. Francis Gal-
ton (1822-1911) can be considered the direct forerunner of factor analysis and Charles

Spearman (1863-1945) the father. After coming up with the concepts of correlation
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and regression, in the late eighties Galton wrote two articles containing what could
be regarded as the embryo of formal factor analysis. Spearman (1904), a psychologist
who acquired statistical skills, performed several investigations that included mental
variables, and considered these mental variables as being indicators of the same phe-
nomenon. This lead him to invent factor analysis, and to introduce a ‘one-factor model’
for ‘general intelligence’. Yet, neither did he speak of a model, nor was the model-
concept established in statistics at that time. The ‘tetrad difference theorem’ is also
due to Spearman.

Louis Leon Thurstone (1887-1955) performed extensive factor analyses, formally
what one today could call exploratory factor analysis. An important mark in the theo-
retical development of the factor analysis model was the 1956 paper by Anderson and
Rubin, considered by the authors as ‘an unified exposition from the viewpoint of the
mathematical statistician’. A major contribution for the recent development of fac-
tor analysis has been the work by Karl Jéreskog (1935 - ). His major contributions
include the introduction of confirmatory factor analysis (also known as structural equa-
tion modelling) and the development of LISREL (‘LI'near ‘S’tructural ‘REL’ations), a
software package widely used for fitting such models.

At an early stage, it became clear that factor analysis models were inappropriate to
deal with non-quantitative data, and the growth of social research had greatly increased
the amount of such data. Louis Guttman (1916-1987), a psychometrician, emphasised
the need to apply new mathematical methods to qualitative data. The foundation
was launched for the development of latent class models. Latent class analysis was
mainly developed within the social and political sciences. The latent class model was
introduced by Lazarsfeld and Henry (1968) as a way of formulating latent attitudinal
variables from dichotomous survey items. The methodology was formalised and ex-
tended to nominal variables by Goodman (1974), who also developed the maximum
likelihood algorithm that serves as the basis of several current latent class software
programmes. The increasing popularity of latent class models was also due to the im-
portant work of Haberman (1979), who represented such models as log-linear models.

Variants have been proposed for ordinal variables (see, for example, Heinen, 1996)
and for combinations of variables of different scale types (Moustaki, 1996). Important
recent developments include also the work by Vermunt and Magidson, which has lead

to the recent development of the Latent GOLD software.
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1.3 Latent Variables in the Graphical Models Lit-
erature

This section includes references from the literature that point out the use and need of
including latent variables in the framework defined by graphical models. Such refer-
ences are presented in chronological order.

In the discussion of Dawid (1979), a key paper for the understanding of conditional
independence in statistical theory, Professor Novick referred to latent trait theory,
latent variables and conditional independence. He argued that Dawid’s paper did not
contain any reference to Psychometrika, or to psychometric literature in general, in
which the concept of conditional independence is used extensively. Novick claimed
psychometric latent trait theory is about the attainment of conditional independence
through the construction of latent variables.

When reviewing structural analysis of multivariate data, Kiiveri and Speed— (1982),
mentioned factor analysis and latent class analysis as techniques in which considerable
research had been done in recent years. The aim of their paper was to review that re-
search, expressing it in what the authors considered a ‘unified and to some extent novel
way’: in terms of (probabilistic) independence. They showed that many confirmatory
factor analysis models can be expressed in terms of independence. Several examples
were given, the third one being related to the single-factor model and to the latent
class model. Their approach was to view the observed data as incomplete and work
in the framework laid down in Dempster, Laird and Rubin (1977) for the analysis of
incomplete data from exponential families (the EM algorithm).

Hodapp and Wermuth (1983) described decomposable models and claimed such
models are well-suited to study multivariate relationships and to obtain a unified
overview of complex variable relationships. They contrasted the graphical models
framework with what they considered ‘probably the best known models of dependen-
cies’: linear structural equation models. The authors argued that if the latter are
restricted to having only observed variables, linear structural equations are obtained,
of which decomposable models are a sub-class. However, if latent variables are intro-
duced, that is, for LISREL models in general, no sufficient conditions and no necessary
and sufficient conditions are known for parameter identification, which the authors

regarded as a serious problem. A clear argument was made for the conditional inde-
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pendence framework. Graphs for decomposable models were presented and examples
from psychology were given, but no latent variables were used.

Lauritzen (1989) is a key paper surveying the mathematical and statistical theory of
mixed graphical (association) models. In the discussion of the paper Joreskog compared
the LISREL methodology with mixed graphical models, claiming LISREL is primarily
designed for models with latent variables, and Lauritzen was not dealing with such type
of variables. In his reply to the discussion, Lauritzen pointed out that ‘the graphical
models described in the paper are in their infancy and far from being fully developed’,
and said that, although ‘the latent problem is a question of treating the statistical
problems with missing data, I am sure that this will be treated in the near future’.

Wermuth and Lauritzen (1990) also referred to the use of latent variables in the
framework defined by graphical models. The authors mentioned that graphical chain
models can be viewed as extending path analysis in different directions, one of them
being the possibility that some of the variables may be latent (meaning that informa-
tion on them has to be obtained indirectly, with the help of other directly observable
variables). Section 6 of their paper stated that the factor analysis model and the latent
class model can be considered special cases of graphical models. In the discussion of
the paper Kiiveri argued that estimation procedures for graphical chain models with
latent variables needed to be developed, the difficult problems of identifiability that
will arise having to be taken into account. The authors replied saying that ‘though
graphical chain models permit the inclusion of latent variables, the estimation theory
for such models is basically undeveloped. We agree that this extension is essential for
applications in the social sciences, that the EM algorithm may be of help, but we also
believe that a new approach to solving the problem of overparameterisation is needed,
which occurs for models with latent variables, but not for other conditional Gaussian
chain models’.

In the discussion section of Wermuth and Cox (1992), when referring to open prob-
lems for future research, the authors said ‘the role of latent variables needs more study,
both in connection with errors in measurement and with the incorporation of hidden
variables’. Wermuth (1993) is a paper with several examples on graphical chain repre-
sentations, without latent variables. Nevertheless, Wermuth agreed that ‘the statistical
theory for models with latent wvariables which is needed in many applications is not

yet well developed’, which she considered ‘one of the main disadvantages’ of graphical
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chain models (when compared to linear structural equation models).

Whittaker (1993) contrasted the relationship between the diagrams used in latent
variable modelling and the conditional independence graphs of graphical modelling and
stated that ‘the exact relationship between the conditional independence graph and the
latent variable diagram requires some puzzling out’. An example was given, with two
observed explanatory variables and two latent dependent variables (one measured by
two indicators and the other measured by a single indicator). The associated chain
independence graph has three blocks corresponding to the explanatory variables, the
latent variables and the observed response variables (the three indicators). However,
there is no reference in the paper either to identification or to estimation of such a
model. In Whittaker’s words, ‘it can be seen that the latent variable diagram has a
very intimate relationship with the associated directed conditional independence graph,
with the corollary that latent variable modelling is just a form of graphical modelling
that incorporates latent variables’. Yet, Whittaker does not seem very supporti\}e of the
use of latent variables when he says ‘if it is not possible to make direct measurements on
the variables of interest, latent variable modelling is the only recourse. However, there
s a price to pay in that latent variable diagrams are no longer necessarily verifiable
against data, and the independence structure of the latent variable model is a product

of assumption rather than of empirical observation’.

In brief: these references have one point in common - further work is required
within the graphical models framework in order to incorporate latent variables, so
widely used in many areas of application, particularly in the social sciences. This thesis
aims to contribute to such work by investigating the parameterisation of the single-
factor model as a graphical Gaussian model and the parameterisation of the latent
class model as a graphical log-linear model. Special attention is also devoted to the
parameter spaces and their admissible regions. Some advice is given to the data analyst,
regarding strategies to be used when trying to detect the presence of a latent variable,
based on the conditional independence structure of the manifest variables (indicators).
Indeed, starting with the saturated model of the manifest variables and testing for
all possible single edge exclusions seems an obvious way to detect the presence of a
single latent variable, both in a graphical Gaussian and in a graphical log-linear model.

However, the test statistics for single edge exclusion are subject to type II errors. This
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suggested investigating the distribution of the test statistics for single edge exclusion,
in particular under the alternative hypothesis that the saturated model holds, in order

that theoretical asymptotic power functions could be derived.

The trail of thought underlying the research project that gave rise to the current
thesis has just been presented. The next section gives an overview of the thesis, de-

scribing the main structure of each chapter.

1.4 Overview of the thesis

Besides this introductory chapter, the thesis has five chapters: Chapter 2 is mainly
a review chapter, Chapters 3 to 5 present the contributions made by the current
research project and Chapter 6 summarises the concluding remarks. A more detailed

description of the contents of each chapter follows.

Chapter 2 clarifies concepts and definitions and reviews the theory underlying
graphical models, required for the work undertaken and for the understanding of the
thesis. Although its contents are taken from existing literature, it was necessary to
summarise them using an unifying notation. Particular attention is devoted to the
representation of graphical models by means of graphs, and to the Markov properties
that allow conditional independence statements to be read from the graph. Graphical
models based on the multivariate normal distribution (graphical Gaussian models)
and graphical models for categorical variables cross-classified in a contingency table
(graphical log-linear models) are explained separately. A reference is made to model
selection, with an emphasis on backwards elimination. The chapter concludes by
presenting the three test statistics for single edge exclusion from the saturated model

that are used throughout the thesis: the likelihood ratio, the Wald and the efficient

score test statistics.

Chapter 3 proposes normal approximations to the distributions of the three test
statistics for single edge exclusion, under the alternative hypothesis that the saturated
model holds. The delta-method is used to derive asymptotic normal approximations.

Non-signed and signed square-root versions of the three test statistics are considered.
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Results are given for the general p variables case for graphical Gaussian models,
and for the two and the three binary variables cases for graphical log-linear models.
Alternatively, in the two variables case, a non-central chi-square approximation
is proposed to the distribution of the likelihood ratio test, under the alternative
hypothesis of non-independence. The quality of the two approximations is assessed
by simulation and some guidelines are given regarding the comparative performance

of each of the two approximations.

Chapter 4 derives asymptotic normal approximations to the power of selecting
the saturated model, using the non-signed and the signed square-root versions of
the three tests for single edge exclusion, both in graphical Gaussian models (with p
variables) and in graphical log-linear models (with two or three binary variables). In
the two variables case, a non-central chi-square approximation to the power of the
LRT for selecting the saturated model is also investigated. A simulation étudy is
conducted to assess the quality of the proposed approximating power functions, for
various values of the sample size and for different values of the measure of association
between variables: partial correlation coefficients, in graphical Gaussian models, and

odds ratio and marginal probabilities, in graphical log-linear models.

Chapter 5 parameterises the single-factor model as a graphical Gaussian model
and the latent class model (all variables binary) as a graphical log-linear model and
suggests using conditional independence graphs to represent such models. Parameter
spaces are investigated. The conditional independence structure between manifest
variables, arising from marginalising over the latent variable, either in the single-factor
graphical Gaussian model or in the latent class graphical log-linear model, is studied
in detail. Recommendations are given to the data analyst, regarding strategies for
detecting models compatible with a single-factor graphical Gaussian model and with

a latent class graphical log-linear model, taking into account power results.

Chapter 6 summarises the main conclusions of the thesis, points out its main con-

tributions and suggests areas of further research.
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Chapter 2

Graphical Gaussian and Graphical

Log-linear Models

Whittaker (1990) defined a graphical model as ‘a family of probability density func-
tions that incorporates a specific set of conditional independence constraints listed in
an independence graph’ and graphical modelling as ‘the statistical activity of fitting
graphical models to data’. Hence, graphical modelling is another statistical technique

in the framework of parametric statistical modelling.

The present chapter reviews some of the theory behind graphical models and graph-
ical modelling considered essential for the understanding of the work undertaken in this
thesis. All its contents are well established in the literature. However, it was neces-
sary to summarise the extensive existing literature, being consistent in the notation
used. The key concepts of independence and conditional independence are presented
(Section 2.1), as well as the main notions and definitions of graph theory (Section 2.2)
required for the understanding of the thesis. Section 2.3 explains the use of graphs to
represent graphical models and Section 2.4 presents the Markov properties which al-
low conditional independence statements to be read from graphs. Sections 2.5 and 2.6
deal with two different families of graphical models, namely graphical Gaussian mod-
els (when all variables are multivariate normal distributed) and graphical log-linear
models (when all variables are categorical, from a cross-classified multinomial distri-
bution). Section 2.8 is devoted to the process of model selection. Section 2.9 presents
the test statistics for single edge exclusion from the saturated model that are used in

this thesis, both in the graphical Gaussian and in the graphical log-linear frameworks:
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the likelihood ratio, the Wald and the efficient score test statistics.

2.1 Independence and Conditional Independence:
Key Concepts

This section defines independence and conditional independence, first of events and
then of random Variableé and vectors. Important lemmas are presented (for further
details see, for example, Whittaker, 1990, Chapter 2). Independence and conditional
independence are then defined in terms of (partial) correlation coefficients for nor-
mal distributed variables (Section 2.1.1), and in terms of (conditional) odds ratios

and dependence ratios for binary variables cross-classified in contingency tables (Sec-

tion 2.1.2).

Two events A and B are defined as independent if and only if their joint p‘robabﬂ—
ity factorises into the product of the marginal probabilities, that is, if P(AN B) =
P(A) P(B). This independence is denoted by AlLB, following Dawid (1979) no-
tation. The conditional probability of A given B, only defined when P(B) > 0,

is given by P(A|B) = £ 1(;‘2;’)9 ). Three events A, B and C are defined as mutually
independent if and only if each of the three pairs of events are independent and
P(ANBNC) = P(A)P(B) P(C). Indeed, the fact that the three pairs are marginally
independent is not enough to guarantee mutual independence. However, mutual inde-
pendence implies pairwise independence for the three pairs of events. The events A
and B are conditionally independent given the event C, assuming that P(C) > 0, if
and only if P(AN B|C) = P(A|C) P(B|C). This conditional independence is denoted
by AILB|C. It is a symmetric relationship in the sense that A1l B|C implies B L A|C.

These concepts can be directly extended to random variables and vectors. Let X
and Y be random vectors. The joint probability density function of (X,Y’) is denoted
by fxvy(x,y), the marginal density of X by fx(z) and the conditional density of X
given Y = y by fxjy(zly). X and Y are independent, denoted by X 1Y if and
only if their joint probability density function factorises into the product of the two
marginal densities, that is, if fxy(z,y) = fx(z) fy(y), for all values of z and y. The

independence relationship is symmetric in X and Y, that is, if X 1LY, then Y 1L X.

Equivalent formulations of the property X 1LY are:
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o fxyv(zly) = fx(z), for all z (which means the conditional and the marginal

density functions are identical);
e more generally, fxyy(z|y) = g(z), for all z;

o fxy(z,y) = g(x)h(y), for all x and y. This factorisation criterion states that
the random vectors X and Y are independent if and only if such functions g and

h exist, without necessarily being the marginal densities.

The reduction lemma states that joint independence implies marginal independence,
that is if (X, Y, Z) is a partitioned random vector, then X 1L (Y, Z) implies X 1LY and
X1 Z, but the converse is not necessarily true. In other words, it is not true that if X
is marginally independent of Y and of Z, then X is jointly independent of Y and Z.
X and Y are conditionally independent given Z, denoted by X 1LY|Z, if and only
if fxviz(z,yl2) = fx)z(z|z) fyz(y|z), for all values of z and y and for all z for which

fz(z) > 0. Two equivalent formulations of this definition are the following:

o fxiyz(zly, 2) = fxiz(z]2);

o fxyz(z,y,2) = L)—‘—-Z(—zgé’)i@ (which is a way of writing the conditional inde-

pendence statement in terms of marginal densities).

The factorisation criterion for conditional independence states that X and Y are
conditionally independent given Z if and only if there exist functions g and A such

that, for all z and y and for all z for which fz(z) > 0,
XAUY|Z = g(z,2) h(y, 2).

The reduction lemma says that if (XY, Z1, Z5) is a partitioned random vector, then
YU (Z:,Z;)|X implies Y I Z1|X. If f is positive, the block independence lemma states

that
Y.LL(Zl,ZQ),X = [Y_LLZ:[!(X, ZQ) and Y._U.ZQI(X, Zl)] .

Alternatively, the following equivalence can also be proved:
YIU(Z,,Z)X < [YUZ|(X,Z;) and Y ILZ,|X].

There is a symmetry property in conditional independence, in the sense that if X 1 Y| Z,
then YL X|Z. Additional implications of the pairs of properties i) X 1LY |Z and
XUZY orii) X1Y|Z and X 1LY are given in Dawid (1980).
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2.1.1 Independence and conditional independence for normal
distributed variables

If (X,, X3) has a bivariate normal distribution, then X; and X, are independent if and

only if the correlation coefficient p13 = \/a%’%@ is zero (o711 and o9 are, respectively, the
variance of X, and of X5 and 0,3 is the covariance between X; and X5). If (X, X, X3)
has a trivariate normal distribution and X; and X, are conditionally independent given
X3, then the off-diagonal element w;5 in the inverse variance matrix 2 is equal to zero.
Also, the partial correlation coefficient pio3 given by——(% is equal to zero.
Therefore, the pairwise marginal correlations satisfy p1a — p13 p23 = 0. When there are

four random variables the partial correlation coeflicient between X; and Xs given X3

and X, can be obtained as

P _ P12.3 — P14.3 P24.3
12.34 = .
\/(1 ~ plaz) (1 = Paa3)

The partial correlation coefficients are minus the off-diagonal elements of the scaled

(to have a unit diagonal) inverse variance matrix, that is, pijrest = "'\/;%““553 (as Whit-
taker (1990, page 143) proves). Additional information on graphical models for vari-

ables with a normal distribution is given in Section 2.5.

2.1.2 Independence and conditional independence for binary
variables

Suppose X; and X5 are two binary variables. In the 2 X 2 contingency table the cell

probabilities, w(xz), and the cell counts, n(z), are

X2 XZ
0 1 0 1
0| m(0,0) | 7(0,1) | m1(0) 0 | n(0,0) | n(0,1) | n1(0)
X1 Xl
1] 7(1,0) | m(1,1) | = (1) 1] n(1,0) | n(1,1) | na(1)
m2(0) wa(1) 1 no(0) ng(1) g

Note that 7(0,0) = m12(0,0): the subscript is omitted, for simplicity of notation,
whenever it is clear that it refers to all variables in the model. It is required throughout
this thesis that probabilities in each cell are strictly positive: no structurally empty

cells are allowed.
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The odds ratio (also known as cross-product ratio) is a commonly used measure of

association in a contingency table. Let

Y1z = 7(0,1)7(1,0)

denote the odds ratio in a 2 x 2 contingency table. It can assume any positive value,
and equals one when the variables X; and X, are independent. For standard sampling
schemes, the sample odds ratio, 11, is the m.le. estimator of the true odds ratio 1o
(see Agresti, 1996, page 24), where

- n(0,0)n(1,1) _ #(0,0)7(1,1)
Y127 00, D) (1,0 7(0,1)7(1,0)°

The log transform of the sample odds ratio 1512 has a sampling distribution close to
normality: the asymptotic approximating normal distribution has mean log 2. As ng

increases, the asymptotic mean square error for ,/ng <IOg Y12 — log 1/)12> is given by

1 1 1 1 s : n n n, n
o5 T o0 T rae T aa which can be estimated by n(O?O) + n(O?l) + n(l?o) + n(l(,bl)‘

Thus (see Sen and Singer, 1993, page 263),

R 1 1 1 1 D
V7o [logthe ~logtha| / \/ﬁ(o, o oo T a0 -

Another possible parameterisation, proposed by Ekholm, Smith and McDonald
(1995), is based on the dependence ratio. If X; and X, are binary variables and in
both cases the ‘success’ is the category 1, the dependence ratio between X; and X,

denoted as 7y, is given by

P[X; = success and X, = success] P[X;=1 and X, =1] 7(1,1)

P[X, = success] P[X, = success]  P[X; =1]P[Xo=1] m(1)m(1)

T2 =

If X; and X, are independent, 735 = 1. The dependence ratio is asymmetric, i.e., it
is not invariant to the coding of the variables. For convenience of notation, in the
remainder of the thesis the dependence ratio for (X1, X3) will be denoted as 712(1,1).
Here the 1 indicates the ‘success’ category. Consequently, 712(0,0) will denote the
dependence ratio for (1 — X1,1 — X3), 712(1,0) the dependence ratio for (X1,1 — X3)
and 715(0, 1) the dependence ratio for (1 — X, X5).

If X3, Xs and X3 are three binary variables, cross-classified in a 2x 2 x 2 contingency

table, there are eight cell probabilities, denoted as 7 (4, 7, k), where 7, j, k € {0,1}. Note
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that, as in the two variables case, (0, 0,0) = m23(0, 0, 0), the subscript being omitted

for simplicity of notation.

A possible display of the contingency table follows

X5 =0 Xz=1
Xo Xa
0 1 0 1
7(0,0,0) | 7(0,1,0) | m13(0,0) 7(0,0,1) | #(0,1,1) | m3(0,1)
N T 0.0 | 71,0 | 7m(L0) 4 A(1,0,1) | 7(1,1,1) | ms(1,1)
m23(0,0) | m23(1,0) | w3(0) mo3(0,1) | mo3(1,1) | ms(1)

The marginal probabilities are obtained as

z: z;=]

In the three binary variables case marginal and conditional odds ratios can be
defined. The marginal odds ratio between X; and X; (with ¢ and j from 1 to 3 and
i # J), ¥;; is obtained by summing the cell probabilities over both categories of the
remaining variable. For example, the marginal odds ratio between X; and X3 equals

7713(07 0) 7‘—13(17 1)
m13(0,1) m3(1,0)

P13 =

The conditional odds ratios between X; and X; are defined for the two categories of
Xe (k=0and k=1), ie,

Wi k= 7?(0,07 k)?('(l]_)k)
gk (0,1, k)7(1,0,k)

If X; 1L X, | Xy both conditional odds ratios v;; x are equal to one.
There is a direct relationship between log;; and the A term(s) in the classical

log-linear model related to the interaction between X; and X;. Assuming corner point

constraints are used, in the 2 x 2 case,
log 12 = A2

Therefore, if X7 and X, are independent, both Ay and logy,s are zero. In the 2x2x 2

case,

log(¥s; . k=0) = Xi; and log(Ws; k=1) = Aij + Aiji-

N
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X; and X are conditionally independent, given X if and only if the two-way interaction
term involving X; and X (A;;) as well as the three-way interaction term (\;x) are zero,
ie.,

XillX; [ X < log(¥ij. k=0) = log(¥ij . x=1) = Aij = Aijr = 0.

Additionally, log(Yix . j=0) = log(¥ix . j=1) = Ai-

Using the dependence ratio parameterisation, with 1 as the ‘success’ category.
o ()

T123(1, 1, 1) denotes the dependence ratio for (X;, Xs, X3), and is given by
7(1,1,1)
1 (1) wa(1) m3(1)
Analogously, 7123(0,0, 1) denotes the dependence ratio for (1 — X;,1 — X5, X3), and is

7123(17 1a 1) =

given by ( )
7(0,0,1

7m1(0) m2(0) m3(1)
More details on graphical models for binary variables are given in Section 2.6.

7-123(07 07 1) =

2.2 Some Notes on Graph Theory

As previously stated, the key tool in graphical modelling is the graph of the model.
All books on graphical models have a revision of graph theory. The current section
summarises some of those revisions, by presenting the main concepts and objects of
graph theory that are required for the understanding of the thesis. For further details
see Whittaker (1990, Section 3.1) Cox and Wermuth (1996, Section 2.2) and Edwards
(2000, Sections 1.2 and 7.1).

A graph, G = (V, ), is a mathematical object consisting of a finite set V of vertices
and a finite set £ of edges (or arcs) between these vertices. Vertices correspond to
the variables in the model. Each pair of variables can have no or one edge between
them, which can be undirected or directed. There is a directed edge or arrow between
vertices v; and v; in V if the set £ contains the ordered pair (v;,v;), vertex v; being a
parent of vertex v; and vertex v; being a child of vertex v;, but not the ordered pair
(vj,v;). There is an undirected edge or line between these vertices if £ contains both
pairs (v;,v;) and (v;,v;). The graph is undirected if all edges are undirected and is
directed if it only contains directed edges.

Two vertices v;,v; € V are adjacent, written as v; ~ v;, if there is an undirected

edge between them. Vertices v; and v; are also adjacent if there is an arrow (directed
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edge) connecting them. Any subset I C V induces a subgraph of G. This is the graph
Gu = (U, F) whose edge set F consists of those edges in £ where both endpoints are
in Y. The subgraph G, can be obtained by deleting all the vertices not in U from the
graph on V, together with all edges that do not join two elements of ¢/. A graph or

subgraph is complete if all vertices are joined with either directed or undirected edges.

A clique of a graph G = (V, ) is a subset of vertices which induce a complete sub-
graph, but for which the addition of a further vertex from V makes the induced sub-
graph incomplete; in other words, a clique is maximally complete. A path is a sequence
of vertices {v1,vs, ..., vk} such that v; is adjacent to vs41, for each i = 1,..., (k — 1).
If there is an arrow from v; to vy (for each ¢ = 1,...,k — 1), then there is a directed
path from vy to vx. The path is a cycle if the end points are the same, that is v; = vg.
In directed graphs the directed path is called a directed cycle. The cycle is chordless
if no other than successive pairs of vertices in the cycle are adjacent. Two vertices, v;
and v; are connected if there is a path from v; to v; and a path from v; to v;, and a

graph is connected if all pairs of vertices are connected.

A graph is triangulated if it has no chordless cycles of length greater than or equal
to four. If A, B,C are three disjoint subsets of V, then C separates A from B in G if

every path from any vertex in A to any in B contains at least one vertex from C.

Let U4 C V denote a subset of vertices of the graph. The neighbours of U are all
those vertices in V \ U that are adjacent to a vertex in U. The set of parents of U is
pa(Uf), the set of all those vertices in V \ I/ that have a child in Y. The boundary of
U is bd(Uf), the union of the neighbours and the parents of /. In an undirected graph

the boundary and the set of neighbours are the same.

2.3 The Use of Graphs to Represent Graphical
Models

This section deals with using different types of graphs to represent graphical models,
in particular conditional independence graphs (with undirected edges), directed acyclic

graphs (with directed edges) and chain graphs (with directed and undirected edges).
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2.3.1 The conditional independence graph

Let X be a vector of random variables, of dimension p. The corresponding set of vertices
is given by V = {1,2 ,P}. An undirected graph is the conditional independence
graph for X if there is no edge between X; and X; when X; and X are conditionally

independent given the remaining p — 2 variables (‘the rest’), that is,
Xidl X5 | Xy & (1.7) & €.

The resulting graph depicts the pattern of associations between the variables in X since
it is constructed from selected independencies between pairs of variables, conditioned
on all the remaining variables in X.

The diagram of a graph is a picture in which vertices are drawn as dots (represent-
ing discrete variables) or circles (continuous variables) and edges are drawn as lines
(undirected edges). Figure 2.1 gives an example of a conditional independence graph

with five continuous variables.

O O
1 2 4

Figure 2.1: An example of a conditional independence graph.

Using the definition of a conditional independence graph, the graph in Figure 2.1 can

be interpreted as follows
1113[{2,4,5}; 11.4[{2,3,5}; 1.15]{2,3,4}; 2.1L.5|{1,3,4}.

For example, 1 is not adjacent to 3, 4 or 5. The graph is triangulated, but that
would not be the case if edge (3,4) was not present. The triangulated property of a
graph is closely related to the existence of closed-form maximum likelihood estimates.
The cliques in the graph are given by {1,2}, {2,3,4} and {3,4,5}. {1,2} induces a
complete subgraph, and {2, 3,4, 5} induces an incomplete subgraph (since edge (2,5)

is not present).
The complementary graph G of a graph G has the same vertex set V, the edge
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set being formed by those edges not present in £. For example, Figure 2.2 shows an

independence graph and its complementary graph.

1 2 1 2
®)
3 4 3 4

Figure 2.2: An example of an independence graph and corresponding complementary graph.

2.3.2 The directed acyclic independence graph - DAG

Directed independence graphs allow for the representation of the lack of symmetry
in the roles played by the variables, due to sequence in time, to a natural ordering
of the variables or to some other notion of causality. Edges are, therefore, directed
(represented by single-headed arrows), but directed cycles (for example Figure 2.3) are
not allowed (that is why they are named directed acyclic graphs) because there is no

suitable joint probability distribution to model such a situation (see Whittaker, 1990,

page 72).

1 3

Figure 2.3: An example of a non-allowed directed graph with a directed cycle.

Specifying a complete ordering of the vertices in the graph guarantees no directed
cycles. This order has to be assumed a priori, by presupposition of the data analyst,
and means that any edge in the graph can only have one possible direction. As a
consequence of the ordering, each variable (vertex) has a past, a present and a future.

Let V(j) = {1,2,...,j} denote the past and present of variable X;. X is a vector
of random variables, of dimension p, and V = {1,2,...,p}. The symbol < denotes
the complete ordering. The directed independence graph of X is the directed graph
G= = (V,&7), where the edge (¢, j), with 7 < j, is not in the edge set £= if and only

if 7112 V(5) \ {4,7}. In other words, the directed edge (¢, j) is missing in the graph
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if X; and X, are conditionally independent given the past (the prior variables). One
should note that, whereas in undirected independence graphs the conditioning was on

the rest, in directed acyclic graphs the conditioning set is restricted to the past.

Consider the directed acyclic graph G= = (V, £~). The associated undirected graph
is defined as G* = (V,&"). G* has the same vertex set as G~, each directed edge in
&£~ being replaced by an undirected edge to obtain £ A directed graph is said to
satisfy the Wermuth condition if no subgraph has the unmarried parents configuration

presented in Figure 2.4.

O——0

Figure 2.4: The forbidden configuration defined by Wermuth condition.

The definition of ‘moral graph’ is required for establishing the Markov properties
of directed acyclic graphs (defined in Section 2.4.2), and follows. The moral graph
associated with the directed graph G= = (V, £~) is the undirected graph ¢™ = (V,£™)
on the same vertex set V, and with an edge set £ obtained by including all edges in
E~ together will all edges required to eliminate forbidden Wermuth configurations from
G~ (that is, ‘marrying parents’). Figure 2.5 shows an example of a directed acyclic
graph, and associated moral graph, obtained replacing directed edges by undirected
edges and ‘marrying’ vertices 2 and 3, since they are parents of vertex 4, by creating

an undirected association between them.

3 3
O ay »O O —t
1 2 4 1 2 4

Figure 2.5: An example of a DAG and the associated moral graph.
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2.3.3 The chain independence graph

Chain independence graphs have a mixture of directed and undirected edges, and
conditional independence graphs and DAGs can be viewed as special cases of chain
graphs, when just one type of edge (undirected or directed, respectively) is present.
Instead of the concept of complete ordering imposed in DAGs, the concept of par-
tial ordering, denoted by the symbol =, is used. Let us suppose the vertex set V is
partitioned into subsets, called blocks, which are completely ordered, forming a chain.

The induced partial order, on the vertices of V, is that:

e ; < j, whenever ¢ € b, and j € b,, with r < s, i.e., two elements from different

blocks are joined by a directed edge;

e ; < j whenever 7,7 € b,, i.e., two elements from the same block are joined by an

undirected edge.

The parents of vertex ¢ (when i is in block b,) are drawn from the past, that is from
blocks b; U by U ... U b,_1, and are joined to 7 by single-headed arrows pointing to z.
The direction of the arrows connecting vertices in different blocks is determined by the
ordering of the blocks. This block formulation excludes not only graphs with directed
cycles (as was the case with DAGs), but also graphs with cycles containing at least
one directed edge.

The definition of chain independence graph follows. Let V() = by U by U ... U b.(5)
denote the set of all past and present variables with respect to X; (where b,(5) is the
index of the block containing X;). X is a vector of random variables, of dimension
p, and V = {1,2,...,p}. The symbol = denotes the partial ordering. The chain
independence graph of X is the graph G= = (V, £F), where the edge (4, j), with i < 7,
is not in the edge set £= if and only if j1Li | V(5)\ {7, 7} If this condition fails and i < j,
then the edge between i and j, present in the graph, is directed and only (7,7) € £=.
Otherwise, the edge between i and j, present in the graph, is undirected, and both
(i,7) € €% and (j,7) € £=. Lauritzen and Wermuth (1989) also called these block
recursive graphs. The convention adopted to ensure an unambiguous interpretation of
each pairwise relation, is that the conditioning variables of each pair are the remaining
concurrent variables.

As in the case of DAGs, the moral graph plays a crucial role for establishing the

Markov properties of chain graphs (defined in Section 2.4.3). The moral graph is also
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obtained by replacing directed edges by undirected edges and by ‘marrying’ parents.
However, the set of possible parents has to be enlarged, so that it also includes all
parents of a connected subset of ‘children’. Figure 2.6 gives an example of a chain

graph and the associated moral graph.

bl b2 b3 b4 bl b2 b3 b4

11[3]ls6][7 1 [ 3] s6l] 7

e >c< > O

|

| |

; 9 | 9
[

| \

J ’A ’r\ > ! NS

23] 5] MIEE:

Figure 2.6: An example of a chain independence graph and the associated moral graph.

Some comments on Figure 2.6. There are four blocks: b; = {1,2}, b, = {3,4},
b3 = {5,6} and by = {7,8,9}. The moral graph on the right joins the parents: vertices
3 and 4 are connected because they are parents of vertex 5, vertices 5 and 6 are
connected because they are parents of a connected subset of ‘children’ (vertices 7, 8
and 9).

Chain graphs provide the conditional independence framework for discussing multi-
variate regression and simultaneous equation models. Other types of graph have been

suggested in the literature, including:

e local independence graphs, which apply the ideas of graphical models to mul-
tivariate stochastic processes (representing continuous time systems). The key
concept is local independence: a component of the process is independent of
the past of another component, given its own past and possibly the past of the
remaining components. Didelez (1999) studied the Markov properties of local
independence graphs, and her PhD thesis (Didelez, 2000) is on graphical models

for event history data based on local independence;

e covariance graphs, introduced by Cox and Wermuth (1993), have edges drawn as
dashed lines, displaying the marginal independence structure of a set of variables.
The associated models are dual to graphical Gaussian models, in the sense that
they constrain a set of elements of the variance matrix to be zero (whereas GG

models constrain elements of the inverse variance matrix to be zero);
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e reciprocal graphs generalise chain graphs by allowing double-headed arrows rep-
resenting feedback loops, such as those arising in nonrecursive equation systems.
Koster (1996) introduced reciprocal graphs, derived pairwise, local and global
Markov properties for such class of graphs, and clarified when it is legitimate to

interpret LISREL path diagrams as conditional independence graphs.

These other types of graphs will not be used in this thesis.

2.4 Markov Properties

Markov properties are important because they allow one to relate a random vector X
to a graph G = (V, &), and to interpret the latter. These properties have been pre-
sented in the literature in different ways. The decision was made to follow Whittaker’s

definition and not Lauritzen’s, the definition of the latter having been considered very

mathematical.

2.4.1 Markov properties for undirected graphs
A vector X is, with respect to a graph G = (V, &),

e pairwise Markov: if an edge missing in the graph corresponds to a conditional

independence statement, i.e., (4,7) € & = X;dLX; | X\ ij);

e local Markov: if any variable is independent of all the remaining variables condi-

tional only on its boundary, i.e., for all X; € V, XZ-JJ_XV\{Z. bd()) | bd(3);

e global Markov: if any two subsets of variables X4 and Xg separated by a third
subset X is independent conditionally only on the variables in X¢ (with X4,

Xp and X disjoint subsets of V). In other words, X¢ separates X, from Xp

= XA_U_XB]XC.

The global Markov property implies the local Markov property, which in turn implies

the pairwise Markov property.
The separation theorem states that, under the condition that the density function
is positive, if X4, Xp and X are vectors containing disjoint subsets of variables from

X, and if in the conditional independence graph of X each vertex in A is separated
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from each vertex in B by the subset C, then X4l Xp | Xc. Therefore, the separation
theorem asserts that the pairwise property (recall that the definition of conditional
independence graph (Section 2.3.1) was given based on the pairwise Markov property)
implies the global Markov property (X1l Xg | X¢). As a result, the three properties
are equivalent if the density is positive (which is the case with the multivariate normal
distribution).

One consequence of the separation theorem is that some of the variables in the
conditioning set may become redundant. A conditional independence between a pair of
variables is minimal if it is not possible to apply the separation theorem to eliminate any
variable from the conditioning set. Going back to the example presented in Figure 2.1

it is possible to conclude that:

e using the pairwise Markov property, there are four conditional independence
statements, which are equivalent to those associated with the definition of con-

ditional independence graph; as written in Section 2.3.1,
113]{2,4,5}; 11L4]{2,3,5); 115({2,3,4}; 21L5({1,3,4};

e using the local Markov property, since there are five vertices, there are five con-

ditional independence statements, namely

110{3,4,5}|2; 2105{1,3,4}; 31L1[{2,4,5}; 41L1]{2,3,5); 51.{1,2}|{3,4};
e using the global Markov property, and the separation theorem, the conditional

independence statements can be summarised as

1113 1{2,4}; 1141{2,3}; 1115]{2,3,4}; 21.5|{3,4}.

Comparing these conditional independence statements with those given by the
pairwise Markov properties it is possible to conclude that, for example, X5 is
redundant in the first two conditioning sets and variable X is redundant in the

last set. There are nine minimal independence statements, namely

1003]2; 11.3[4; 11.4(2; 11.4]3; 11.5]2; 11.5(3; 11L5]|4; 21415(3; 215]|4.

2.4.2 Markov properties for directed graphs

When variables are naturally ordered (according to time or to some causal relationship)

and directed independence graphs are used, the conditioning set has to be limited to
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the ‘past’ and the Markov properties have to be redefined. The concept of moral graph
(introduced in Section 2.3.2) is crucial for this redefinition.

A corollary of a Markov theorem for directed independence graphs states that when
the moral graph G™ is identical to the undirected graph G* (so that no ‘marrying’ is
required), the Markov properties of the directed graph G are exactly identical to those
of the moral graph G™ (Whittaker, 1990, Corollary 3.5.3).

Let us consider the example of the single-factor model with three manifest variables.
The classical formulation of this model is given in Section 5.1.1, whereas Section 5.2.1
presents the single-factor model in the framework of graphical models. The single-factor
model implies that, given the latent variable (denoted by L), the manifest variables
(denoted by 1, 2 and 3) are conditionally independent. A possible representation of
such a model is given in Figure 2.7 a), by using a directed acyclic graph, with directed
edges from the latent variable to each of the manifest variables, the former being the

parent of the latter. The moral graph associated with this DAG is shown in Figure 2.7

b).

a) b)
1 1
L 2 L 2
3 3

Figure 2.7: A DAG representing a classical single-factor model (in panel a)) and the corre-

sponding moral graph (in panel b)).

Applying the corollary presented above to the directed graph in Figure 2.7 a) it is
possible to conclude that, based on the Markov properties of the moral graph in Fig-
ure 2.7 b), the manifest variables are conditionally independent, given the latent vari-
able. Consequently, the conditional independence statements, read from the Markov
properties, of either an undirected or a directed representation of a classical single-
factor model are exactly the same. For this reason, for simplicity and to use the

notation MIM uses, undirected graphs are used in this thesis to represent single-factor

models.
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2.4.3 Markov properties for chain independence graphs

When variables can be partitioned into disjoint sets (blocks) which are completely
ordered, forming a chain, the conditioning set for each pairwise independent statement
is given by all the variables in the ‘past’ blocks and all the remaining variables in the
‘present’ block.

A Markov theorem for chained block independence graphs states that the directed
independence graph G= possesses the Markov properties of its associated moral graph,
G™ (Whittaker, 1990, Theorem 3.6.1).

Let us now consider the example of a single-factor model with correlated residuals
between two manifest variables. Although these models are not included in this thesis,
they are very common in the LISREL literature. Basically, they generalise the single-
factor model by relaxing the axiom of local independence, i.e., the latent variable
does not account for all the associations between the manifest variables. Recent work
has been undertaken by Stanghellini (1997) and Vicard (2000), regarding the issue of
identification of a single-factor model with correlated residuals, using graphical rules.

In the graphical models framework a single-factor model with correlated residuals can

be represented in two ways:

a) as a chain independence graph with two blocks: block one includes the latent
variable, block two the manifest variables. Within block two, manifest variables
with correlated residuals will have an undirected edge connecting them, whereas

directed arrows will connect the latent variable to the manifest variables, the

arrows pointing to the latter;

b) as an undirected graph, with undirected edges connecting the latent variable
with each of the manifest variables, and undirected edges connecting manifest

variables which have correlated residual terms.

An example of a model with four manifest variables, the residual terms of 3 and 4
being correlated, follows. Figure 2.8 shows the two possible representations of this
single-factor model with correlated residuals.

The Markov properties for chain graphs guarantee that the conditional indepen-
dence statements that can be read from the two types of graph are the same. The

moral graph associated with the chain graph of the single-factor model with correlated
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7N

Figure 2.8: A chain graph representing a single-factor model with correlated residuals (in

panel a)) and the corresponding moral graph (in panel b)).

residuals (Figure 2.8 a)) is, indeed, the conditional independence graph of that factor

model (Figure 2.8 b)).

2.5 Some Notes on Graphical Gaussian Models

Graphical models based on the multivariate normal distribution are called graphical
Gaussian models (called GG models in this thesis) or, for historical reasons, covariance
selection models. The assumption is that the continuous random variables follow a joint
multivariate normal distribution. Recall that the multivariate normal distribution is
closed under marginalisation and conditioning, that is, the marginal and the conditional
distributions of a multivariate normal are also multivariate normal. Indeed, suppose
(X4, Xp) is a partitioned vector with a normal distribution, with parameters mean

vector (ua, up) and variance matrix

S a4 ZaB

>Xpa ZBB

Then the marginal distribution of X 4 is normal with mean p4 and variance ¥ 44, and

the conditional distribution of X4 given Xp = zp is also normal with mean
pa. p=pa+2apTpp(zs — uB)

and with variance

Saa.B =344 — ZaSppTpa-
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A zero element in the inverse variance matrix Q = 7!, say w;; = 0, determines a
conditional independence statement between the two variables ¢ and j, given all the re-
maining variables, implying p;;.rest = 0 and, therefore, the absence of the edge between
7 and 7 in the independence graph. Hence, a GG model is a family of normal distribu-
tions for X satisfying the pairwise conditional independence restrictions underlying the
independence graph. Such constraints are equivalent to specifying zeros in the inverse
variance parameters that correspond to edges absent in the independence graph.

A maximum likelihood procedure is then applied in order to fit the specified model.
Suppose X = (Xji,..., X,)7T is a p dimensional random variable, with multivariate nor-
mal distribution, with mean x and variance matrix >. The density of X, parameterised

using = £7!, can be written as

el 1.0) = T AP exp { = 0 = TR e - )}

Therefore, the log density equals
p 1 1 T
log fx (z; 41, Q1) = =7 log(2m) + 51%’]9] —3 (z—p) Qz—p).

The log-likelihood function for the mean p and the inverse variance 2, of the multi-

variate normal distribution based on a random sample of size n is given by

n

W, z) = —"Llog(27) + 21og|Q — 1 Yo (@ — )T Q (zi — )

= —Llog(2m) + 2log|Q| — 2tr(QV) — 2(z — w)T Q(Z — p),
where V is the sample variance matrix with divisor n. The sampling distribution of
V is Wishart. It can be proved that when X is unconstrained the unique maximum
likelihood estimators of the mean u and of the variance ¥, from a sample of independent
normal observations, are the sample mean 7 and the sample variance V. Consequently,
[ is given by Z and €, the unconstrained m.l.e. of , is given by V1. For a GG model

with graph (V, &), the maximum likelihood estimators of the parameters are given by
the following equations

Ou="vy 1=1,...,p

Gy =wvy t#jand (4,5) €&

Wi =0 di#jand (i,7) € &.
In brief: the estimated and the sample variances and covariances are identical for the

subsets of the variables corresponding to the cliques in the graph, and the estimated
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inverse variances corresponding to absent edges are set to zero. An iterative algo-
rithm for computing maximum likelihood estimates for graphical Gaussian models was

described by Speed and Kiiveri (1986).

A generalised log-likelihood ratio test statistic, the deviance, can be used to test
the goodness of fit of a model and to compare different nested GG models. The
deviance of a model M is twice the difference between the unconstrained maximum of
the log likelihood (saturated model) and the maximum taken over M (the model under
consideration). Because i = Z, the last term in the expression of the log-likelihood

function vanishes, i.e. (Z — 2)7 Q(z — i) = 0. Therefore,

dev(M) =2 {(maXZsaturated) — (max ZM)}
=2 {(glog;v—l; — 2tr(VIY)) — (gmg

= (nlog [V=!| = np) — (nlog Q2] — np)

QO - gu(@)) }

Under the null hypothesis that model M holds, the deviance has an asymptotic chi-
square distribution, with degrees of freedom equal to the number of parameters set to
zero (i.e., the number of edges missing in the independence graph). Two nested models,
M, C M, can be compared by the deviance difference (d) between them, which is then
a generalised log-likelihood ratio and has an asymptotic chi-square distribution under
the null hypothesis that M; holds. It can be calculated as d = nlog <§~§—;~;) , where 3,
and ¥ are the m.le. of ¥ under M; and Ms, respectively. Alternatively, it can be
calculated as d = —nlog (:%;—D , where €); and ), are the m.l.e. of Q under M; and
M, respectively. The degrees of freedom equal the difference in free parameters (edges)
between M, and M;. The deviance difference associated with removing edge 77 from
the full (saturated) model can be simplified to —nlog(1 — 4, ,..s;) (see Whittaker, 1990,
page 189). Also, the deviance of a model entirely specified by XpllXc | X4 (where

X4, Xp and X¢ are individual variables, or distinct groups of variables, forming a

partition of X)) is given by —nlog ( Vis L‘:Ql‘f/{}ic AUC1> (see Whittaker, 1990, page
179). Va4 denotes the sample variance matrix, with divisor n, of the variables in X4

and Vaup, aup denotes the sample variance matrix of the variables in the partitions X 4

and XB-
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More details on test statistics for single edge exclusion, in GG models, are given in

Section 2.9; model selection strategies are dealt with in Section 2.8.

2.6 Some Notes on Graphical Log-linear Models

The aim of this section is to briefly explain how to fit graphical models to multi-way
contingency tables based on sampling from the cross-classified multinomial distribution.
As will become clear, graphical log-linear models are a subclass of the hierarchical log-
linear models, specified by parameterising the density in terms of the coefficients of
its log-linear expansion. First, the notation to be used is established, and the cross-
classified multinomial distribution is defined. The concepts of hierarchical log-linear
model and graphical log-linear model are presented. Finally, formulae are given for

obtaining the log-likelihood function and the deviance of a model.

Using coordinate projection notation, let us consider a p dimensional contingency
table, cross-classifying the p dimensional random vector Xy = X = (X1, Xo, ..., X,)7,
with ¥V = {1,2,...,p}. Let z; denote the observed value taken by variable X;, which has
7; categories. Let z = (z1,Za,...,,)7 denote a particular cell in the table, ny(zy) =
n(z) denote the observed cell counts and my,(zy) = 7(z) denote the probabilities in each
cell of the table. Consider the partitioned observation X = (X4, Xg), with B =V \ A.

The values of X4, denoted by x4, are cells in a marginal table, with marginal cell

counts n4(z4) and marginal probabilities ma(24), given by m4(z4) = ZIB (T4, ZB)-

The definition of a cross-classified multinomial distribution follows. The p dimen-
sional random vector X has a cross-classified multinomaal distribution of size one if and
only its density function fy is given by fy(z) = my(z), assuming that 7y, (z) > 0 for all
z and that >~ my(z) = 1. Note that cell probabilities have to be strictly positive to en-
sure the existence of the log-linear expansions and of the conditional density functions.
The family of cross-classified multinomial distributions is closed under marginalisation
and conditioning. As already mentioned, the marginal distribution of X4, denoted
by fa(za), is obtained by summing over the values of Xg. Consequently 74 is also
positive for all z4 (since my,(x) is) and sums to one (since my,(z) does). In conclusion,

fa(za) is also multinomial of size one. The conditional density function of Xp given
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X4 = x4, denoted by fpa(zglra), is given by 2%‘——:;27 for all zg. Since the ra-

tio 3%% is positive and adds to one for each fixed value of z4, the conditional

distribution fpa(zp|z4) is multinomial of size one.

Independence can be defined as follows: consider the partitioned multinomial ran-
dom vector X = (X4, Xp), with B=V\ A. X4 and Xp are independent if and only
if the joint probability factorises as map(z) = wa(z4) 7p(zp). Similarly, consider the
partitioned random vector X = (X4, Xp, X¢), with V={A U B U C}. Xp and X¢

are conditionally independent given X 4 if and only if mapc(z) = WAB(IA’ii)(;Z‘f(“’IC).

The aim now is to write down the density function fy as a log-linear expansion. The
log-linear expansion of the cross-classified multinomial distribution density function can
be obtained as

log fu(z) = > Aa(za),

ACY

where the summation is over all possible subsets of V, including the empty set §I. Each
A4 is a function of x4 and, for reasons of identifiability, corner point constraints are

used, setting to zero the A associated with the first category of each variable z 4 (the

reference category).

Conditional independence can easily be defined in terms of the A. Indeed, if
(X4, Xp,Xc) is a partitioned multinomial random vector, then Xgll X | X4 if and
only if all A with one or more coordinate in B and one or more coordinate in C are zero.
Hence, the definition of graphical log-linear model can be established. Following Whit-
taker (1990, page 207), given an independence graph G = (V, &), the cross-classified
multinomial distribution for the random vector X is a multinomial graphical model for
X if the distribution of X is arbitrary, apart from the constraints that, for all pairs of
coordinates not in the edge set of the graph, the A containing the selected coordinates
are zero. In other words, the density of a multinomial graphical model is given by
log fu(z) = > 4cy Aa(za), subject to the constraints that Ag = 0 if (4,5) € A and
(i,7) € €. The parameters of the graphical model are the remaining A that are not
set to zero. Since in the thesis corner point constraints are used and all variables are

binary (0,1), Aa(z) = 0 when z # (1,1,...1). Therefore, and for notational simplicity,
/\A(l, 1, - 1) = )\A-
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These concepts are now illustrated by an example. Consider X = (X,...,X;)7
a vector of five binary variables, and the log-linear expansion of the corresponding

multinomial graphical model for X given by
log fi2345 = Ao+ A1+ Ao+ Az + Ay -+ A5 + Ao+ Aoz + Aoy + Agg - Ags + Aus + Aogs + Asas.

The graphical representation of the model is given in Figure 2.9. Since A\;3 = 0 (and,
consequently, all higher order interactions involving coordinates 1 and 3 are zero) ver-
tices 1 and 3 are not connected in the graph, corresponding to the conditional inde-
pendence between 1 and 3, given the remaining variables. Since Mgz, A2y and A3y are
not constrained to be zero, the three-way interaction Ass4 is also not constrained to be
zero. Note that Ao35 was set to zero since o5 is zero. Therefore, there is no edge in

the graph connecting vertices 2 and 5 (2 and 5 are conditionally independent, given

the rest).

®
1 2 4

Figure 2.9: The graph of a multinomial graphical model.

Hierarchical log-linear models are a larger class of models. Indeed, a log-linear
model is hierarchical if whenever a particular A is constrained to be zero, all higher
order A terms are also set to zero. This means that all models that are graphical
are hierarchical, but not all hierarchical log-linear models are graphical. Consider, for

example the following two log-linear expansions:
i) log fiaz = Ap + A1 + A2 + Az + Az + A1z + Ags;
ii) log fizs = Ag + A1 + A2 + Az + A2 + A1z + Aoz + Agas.

Log-linear model i) (model 12, 13, 23) is hierarchical but it is not graphical, because
the constraint A3 = 0 does not correspond to a pairwise conditional independence,
whereas model ii) (model 123) is hierarchical and graphical. One should note that, in

both cases (model i) and model ii)), the independence graph has the representation of
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Figure 2.10. Therefore, an independence graph does not correspond to a unique log-
linear model; many different log-linear models may have the same independence graph,
as long as they contain the same two factor interactions. However, every independence
graph corresponds to a unique graphical log-linear model, which can be read from the
graph by identifying the generating class as the set of all cliques in the graph. The
graph in Figure 2.10 has the clique {1,2,3}, therefore it corresponds to the graphical

log-linear model] 123 (in MIM notation).

1 3

Figure 2.10: The graphical log-linear model 123.

In brief: a hierarchical log-linear model is graphical if and only if its maximal A terms

(also known as generators) correspond to cliques in the independence graph.

The log-likelihood function, based on a random sample of ng multinomial random

observations, can be written as a function of the A as

(A n) = ZZ na(za) Aa(za)

The deviance of a model M can be obtained as

dev(M) = 2zxjn(x) log (n@r 3)3 ) = 22 (@) log (%)

where 7 is the m.l.e. of 7. Under the null hypothesis that model M holds, the de-

)

\) N

viance has an asymptotic chi-squared distribution, with degrees of freedom given by
the number of parameters set to zero. Two nested models, M; C M, can be compared
using the deviance difference, which is a generalised log-likelihood ratio statistic and

has an asymptotic chi-square distribution under the null hypothesis that M; holds.

The deviance difference equals 2 )" n(z)log ( ffg) , where 71(z) and 73(x) are the
m.l.e. of 7(z) under M; and M, respectively. The deviance difference associated with

removing edge ¢j from the saturated model is given by (see Whittaker, 1990, page 224)

o ( (@) Gy (B i) >

dev(X; LX; | Xonigy) = 2 ny(zy) lo
( T 2 Y i (T }) TG (T (53)

all cells
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Under the null hypothesis that X; 1L X; | Xy 3 53, the deviance difference has an asymp-

totic chi-square distribution with degrees of freedom given by
df = TV\{i)j} (7”2‘ - 1) (T]‘ —_ 1)

More details on test statistics for single edge exclusion, in GLL models, are given in

Section 2.9 and Section 2.8 deals with models selection strategies.

2.7 The Inverse of the Information Matrix

2.7.1 The inverse of the information matrix in GG models

Smith (1990, page 21) showed that, for GG models, the inverse information matrix (or

asymptotic variance matrix of the m.l.e. of w) can be written as
n COV(QAJU, (I)rs) = Wirljs -+ Wisyr, (21)

where w is the unconstrained m.l.e. of w. Similar result was obtained by Cox and
Wermuth (1990), by arguing that if Y (of dimension p) is multivariate normal dis-
tributed with mean p and variance matrix ¥ (with elements o) then, asymptotically,
the m.l.e. of the o are normal distributed with mean ¢ and variance %Iss(Z), ie.,
Vn(é — o) 2, N(0,Iss(X)), where Iss(X), the Isserlis matrix of ¥ (Isserlis, 1918) is
the symmetric matrix with elements ncov(d;;,6,5) = 04#0;s + 0;50;-. Consequently,
it can be shown that the asymptotic variance matrix of the m.l.e. of the w can be
obtained as = Iss(Q2), where Q = £7} and /n(® — w) 2, N(0,Iss(£2)).

Roverato and Whittaker (1998) described some properties of Iss(X) and derived
the zero structure of its inverse. A novel edge set notation was used, allowing for the
symmetry between X and Iss(X) to be highlighted. From Equation 20 of Roverato and
Whittaker (1998) the asymptotic variance of the m.l.e. of the canonical parameters
of the saturated GG model becomes equal to %ISS(Z‘I), which is exactly the result
previously derived, in alternative ways, by Smith (1990) and Cox and Wermuth (1990).

Let K denote the inverse information matrix based on a single observation and,
therefore, taking values that do not depend on the sample size n. In the two variables

case, and using Equation 2.1,
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Wip wiwoe + wi 2wiwiz  2woswrs
K=nvar | o | = 2w1iwi2 2w?, 22, i (2.2)
Was 299w 2w, 2w2,
Similar reasoning can be used when three or more variables are present. For example,

in the three variables case,

S

Wiz

W13
Wag
K =nvar =
Wiz

Wa2

W33

s , 2 s , - s \ , Ly , SR
Wilwoe + Wiy wWiiwes + wizwiz wiawoz +wizway 2witwia  2wiowes  2wizwas
olsd Siyaag 2 , Ly R s
Wilwe3 + wiswiz  wi1lw3z T Wiy  @Wi2w33 + wizwez 2wiiwiz 2wiawos  2wi3zwss

, , , , ) 32 , , ,
Wigwez + wW13wae Wiaw33z + Wizwe3z  woows3 +wiy  2wizwiz 2woowos  2wa3wss

I ; 2 )2 ,
2wiiwio 2wiiwis 2w13wia 2wy 2wy 2w%3
) ) ,2 y s
2(4)12(4)22 2&)12&/23 2(.022(4)23 2w12 2&4%2 2&/%3
) y 2 54
2w13w«23 2w13w33 2(,:/23(.033 2w13 2(.:./%3 2w§3 ]

2.7.2 The inverse of the information matrix in GLL models

Smith (1990, page 73) showed that the inverse information matrix for a sample
of size ng (or asymptotic variance matrix of the m.l.e. of A) can be written as
7113 W= diag(n(z))”" (W*)T, where W* is obtained from W by eliminating the first
row. If p is the number of binary variables cross-classifying the contingency table,

W=WeW,® ... ® W, is the Kronecker product of p W; matrices of the form

10
-1 1

W; =

Keeping the notation used in Section 2.7.1, the inverse information matrix based on a

single observation, K, is given by
K = W*diag(n(z))™" (W)T. (2.3)
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In the two binary variables case,

1 0 0 0
-1 1 0 0
10 10 “1 1 00 .
= = Hence, W* = | —1 0 10
-1 1 -1 1 -1 0 1 0
1 -1 -1 1
1 -1 -1 1]
Consequently,
-1
. 7(0,0) 0 0 0
M 0
. 0 (1,0
K =mngvar| X = W~ (1,0) (WHT =
; 0 0 701 0
A1z
0 0 0 w(1,1)
(2.4)
n(é,()) + w(11.0) x(é,o) - <7r(é,0) + 7r(11,0))
— 1
= e w(é,O) + 70T - (w(é,m + n"'(‘o,1))
- <r(é,0) + 7.'(11,0)> - <7r(é,0) + «(é,l)) 7.'(3,0) + w(é,l) + 7r(11,0) + 7r(11,1)

Analogously, in the three binary variables case,

.

and

W* =

-1

10@10]@{10}
1 11 11
1 0 0 0 0 0 0]
0 1 0 0 0 00
1 -1 1 0 0 00
0 0 0 1 0 00
1 0 0 -1 1 00
0 -1 0 -1 0 10
11 -1 1 -1 -1 1|
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Therefore,

K = ngp var /\3

0 0 0 0 0 0 0
7(1,0,0) 0 0 0 0 0 0
0 7(0,1,0) 0 0 0 0 0
0 0 7(1,1,0) 0 0 0 0 (W7
0 0 0 7(0,0,1) 0 0 0
0 0 0 0 7(1,0,1) 0 0
0 0 0 0 0 7(0,1,1) 0
0 0 0 0 0 0 =(1,1,1) |
(2.5)

After the calculations K, a symmetric 7 X 7 matrix, is obtained, with the following

diagonal elements (corresponding to the variances of the 5\, respectively ;\1, ;\2, ;\12, ;\3,

;\137 ;\23 and ;\123)3

- _ 1 1 ) _ 1 1.
I&{l, 1] = (m + m) s K[272] - (1\-(0,0,0) + 7\'(0,1,0)) :
_ 1 1 ).

0. 00) + 7o TN 00) + T 0)) K44 = <7r(0,0,0) + w(o,o,1)> ;

~r000)+7r(100)+1r(001)+ (101))

1 1 1 .
(7r ©.00) T =.00) T 7000 T 7r(0,1,1)> :

1 1 1
(000) =6.10) T =, ooy T =T oy + mwom T R 7T rgen T 7r(1,1,1)>'

The off-diagonal elements are the covariances between the ), as follows:

K[2,1]
K13,1]
K[3,2]
K[7,3] =

K[5,4] =

= K[4,1] = ~K[6,1] = K[4,2] = -K[5,2] = ~K[4,3] = =55

:K[5,1]:—K[7,1]='—K[573]:—(W(o,loo 100)

=K[6,2] = -K[7,2] = -K[6,3] = — ( =(0,00) T »(0,1,0))

1 1 1 1 ).
- <7r(0,030) T w10 T raoo T 7r(1,1,0)> ;

K[6,4) = —K][7,4 = —~K|[6,5] = ( o0 T 7 oon>'
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L~ — 1 1 1 1 .
K[7.5] = — <ﬁ(0}0,0) + 5m00 T Amen T 7r(1,0,1)> :

e . 1 1 1 1
K[7.6]= - <w(o,o,0) t oo T Aoy T ﬂ(o,m)) -

2.8 Some Notes on Model Selection

Several methods can be used to perform model selection both in GG and in GLL
models. For a review on the topic see, for example, Cox and Wermuth (1996, Chapter
8) and Edwards (2000, Chapter 6).

Taking into account the lattice of all possible models, strategies to select a graphical
model may include incremental or global search procedures, based on significance tests,
or procedures that optimise an information criteria. The information criteria to be

minimised can be the Akaike’s Information criteria (AIC) or the Bayesian Information

criteria (BIC), given by
AIC = —=2loglL —2f and BIC = —2loglL —+/nf,

where L is the maximised likelihood under the model, n is the number of observations
and f is the number of free parameters in the model. Global search procedures aim to
detect minimally adequate models. A model is adequate if its deviance is sufficiently
small. From all the adequate models, the one with the fewest parameters should be
considered. A model is minimally adequate if there is no other model nested in it
that is also adequate. Edwards and Havének (1985, 1987) considered models that are
minimally adequate and proposed a fast procedure for model selection based on the
principle of coherence. This principle, due to Gabriel (1969), states that, for any two
nested models, My C M, if M; is rejected, then My must also be rejected. Conversely,
if My is accepted, then M; must also be accepted. Models are selected or rejected on
the basis of the overall goodness of fit, and not on the basis of deviance differences.
Incremental search procedures include backwards elimination, forward selection and
stepwise procedures that alternate between a backwards step and a forward step. Back-
wards elimination starts with the saturated model and tests for all pairwise conditional
independence statements using test statistics for single edge exclusion (the deviance

is the most commonly used statistic). The least significant edge is removed and the
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procedure continues until all edges are considered significant given the specified sig-
nificance level. When performing model selection using backwards elimination. the
principle of coherence just means that if the removal of an edge is rejected at one step,
then the edge is not subsequently eligible for removal. Forward selection starts with

the independence model and includes in the model edges that significantly improve the

fit.

Stepwise model selection can also be performed taking into account only decom-
posable models. At any step, the edges whose exclusion (backwards procedure) or
inclusion (forward procedure) would result in a non-decomposable model are consid-
ered non-eligible for removal (inclusion). The classical definition of a decomposable
model is given by Haberman (1974): a model is decomposable if either (i) it is com-
plete or (ii) it is reducible to two decomposable components. This recursive definition
proves equivalent to stating that a model is decomposable if and only if it has com-
plete irreducible components. For Whittaker (1990, page 381) a random vector X is
reducible, i.e., there exists a decomposition of X, if and only if there exists a partition
of X into (X4, Xp, X¢) such that Xp 1l X | X4 (and neither B nor C are empty) and
the subgraph on X4 is complete. If such a decomposition exists, the components of X
are X p = (X4, Xp) and Xac = (Xa, X¢). If such a decomposition does not exist
the vector X is ¢rreducible. Decomposable random vectors have independence graphs
consisting entirely of complete subgraphs. Hence, the maximal irreducible compo-
nents of a decomposable model are the cliques of the graph. Decomposable models
are multiplicative: every density function in the model fully factorises into the prod-
uct of marginal density functions. Besides, decomposable models have triangulated
independence graphs, i.e., graphs with chordless cycles with no more than three ver-
tices (which gives the possibility of an immediate visual check on the decomposability
of a given graphical model) and closed-form maximum likelihood estimates. In brief:

decomposable models are graphical models with triangulated graphs.

The purpose of the current section is not to describe in detail all possible methods
that can be used to perform model selection but to justify backwards elimination as

the obvious method to use, particularly when trying to detect the presence of a latent

variable.

It is current practice in graphical modelling to start with the saturated model and
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test for all possible single edge exclusions. Indeed Whittaker (1990, page 252) stated
that ‘backwards elimination methods starting from the maximal model directly test the
conditional independencies’, since the graphical model is a model for the joint dis-
tribution of the set of variables under study, simplified by conditional independence
constraints. According to Edwards (2000) the usual argument for backwards elimina-
tion (versus forward selection) is that backwards methods start with a complex model
(likely to be consistent with the data) and forward methods start with a very simple

model (unlikely to be consistent with the data).

Calculating all possible edge exclusion tests (from the saturated model) and com-
paring the obtained test statistics with a chi-square distribution is a procedure asymp-
totically correct, requiring large samples. According to Porteous (1985) it may be quite
poor for small sample sizes. In this case, if available, exact tests should be used, as

suggested by Davison, Smith and Whittaker (1991).

In this thesis only backwards elimination is considered. The test statistics for single

edge exclusion used are presented in detail in the next section.

2.9 Test Statistics for Single Edge Exclusion in GG
and in GLL Models

Smith (1990) studied in detail edge exclusion tests, for conditional independence, in
GG and in GLL models. The Wald and the efficient score tests for single edge exclusion
where constructed and compared to the traditionally used likelihood ratio test statistic.
Particular attention was devoted to the adequacy of the chi-square approximation to the
distribution of each of this three test statistics, under the null hypothesis of conditional
independence. This thesis builds upon Smith’s (1990) work: the three test statistics
for single edge exclusion are considered, the focus being on deriving an approximating
distribution, under the alternative hypothesis that the saturated model holds (which
is done in Chapter 3). Section 2.9.1 reviews the rationale for the derivation of the
three tests, Section 2.9.2 provides an overview of these test statistics in the GG models

framework, whereas Section 2.9.3 presents the three test statistics for GLL models.
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2.9.1 The likelihood ratio, the Wald and the score tests

The likelihood ratio test is very often used in statistics, particularly when the null
hypothesis is composite, i.e., when the parameter space constrained under the null
hypothesis is more than a single point. Two other tests, also used for composite
hypothesis are the Wald test and the Lagrange multiplier test, also known as the
efficient score test. Buse (1982) gave a discussion of the geometry of the three tests
and demonstrated that if the log-likelihood function is quadratic (which happens for
normally distributed data) the three test statistics have chi-square distributions, for
all sample sizes, under the null hypothesis. If the log-likelihood departures from the
quadratic shape, the distributions of the three test statistics are asymptotically chi-
square.

Suppose ¢ = {0, v} is the vector of unknown parameters, where 6 is the vector of
the r parameters of interest and v is the vector of nuisance parameters. Consider the
null hypothesis Hy : 8 = 0y, 1 unspecified and the alternative hypothesis Hy : 6 3#
6o, 1 unspecified. The likelihood ratio test compares twice the difference between the
maximum of the log-likelihood under H4 and Hy to the critical value of a chi-square

distribution on r degrees of freedom, i.e.,
LR =2 )~ U&)| =2 [U) - (60, D)

where ¢3 denotes the unrestricted m.l.e of ¢ and ¥ denotes the m.l.e. of ¢ restricted
by Hy. Indeed, by applying a Taylor series expansion to LR about the parameter point
(60,7), Cox and Hinkley (1974, page 323) showed that the limiting distribution of the
likelihood ratio is chi-squared, with degrees of freedom equal to the dimension of 6, the
distribution being central under Hy (similar proof was given by Sen and Singer, 1993,
pages 114-115). It was also shown that the Taylor series expansion of LR leads to two
asymptotically equivalent test statistics: W, the Wald test statistic and S, the score

test statistic. The Wald test statistic is given by
. T . 1-1 /.
W=n (9 - 90) [Kee} (9 - 90) ,

where Ko is the variance matrix of the limiting normal distribution of 6, i.e, the
submatrix of the inverse information matrix K corresponding to 6, evaluated at the

m.l.e. Note that the asymptotic variance of é equals %K .
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The efficient score test statistic is given by
S = n[Ug(6o,¥)]" Koo [Us(bo, )],

where f(gg is the inverse information matrix evaluated using é (the restricted, under
Hy, m.le. of ¢) and Uy(6, ¥) is the efficient score (Cox and Hinkley, 1974, page 107)
and equals the derivative of the log-likelihood function with respect to the elements of 8,
here constrained under Hy. Recall that, in regular problems, the efficient score U(6) has
expectation zero and variance given by the Fisher information matrix. Also, in regular
problems, there is a close connection between the maximum likelihood estimate and
the efficient score U(6), since 6, the m.le. of 6, satisfies U(8) = 0 (Cox and Hinkley,
1974, page 280).

Because of the asymptotic equivalence of LR, W and S, and since LR is approxi-
mately central chi-square distributed under Hy, W and S also have approximate central

chi-square distributions under the null, with degrees of freedom equal to the dimen-

sion of . When the parameter of interest 0 is a scalar, the signed square-root of the

likelihood ratio is given by
LR*" = sign(d — 6,) VLR.

LRs9™ is asymptotically distributed according to a standard normal distribution (see
for example Severini, 2000, pages 117 and 121). Similar reasoning applies to the Wald

and the score tests.

Local alternatives can also be considered. Suppose the case of a simple null hy-
pothesis Hy : 8 = 6y and alternatives that are local, i.e., sequences {6,} such that
6, converges to fy(<= 0, = 6y + %) Cox and Hinkley (1974, pages 317-318) showed
that if /n(6, — 6y) converges to 6, then the likelihood ratio is approximately chi-
squared, with degrees of freedom equal to the dimension of § and non-centrality pa-
rameter ¢ = 67 [Kg,,) " 8. This result extends to the case of composite null hypothesis
Hy : 6 = 6y, ¥ unspecified. For local alternatives 6, = Ho—l—% the non-centrality param-
eter is ¢ = 62 [Kpy6,)* 09, Where [Kg,0,)7" is the partition of the information matrix
corresponding to the restriction in Hy. The number of degrees of freedom equals the

dimension of 8. The same result applies to the Wald and score tests. For a detailed

proof see also Severini (2000, pages 117-119).
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2.9.2 Likelihood ratio, Wald and score test statistics for single
edge exclusion in GG models

The likelihood ratio test statistic for single edge 7 exclusion from the saturated GG
model (see Whittaker, 1990, page 189) denoted in this thesis as Tf; is given by ng =
—nlog(l— ﬁ?jme st), where p;; ..o equals the sample partial correlation coefficient between
X; and X; given the remaining variables in the model. From Smith (1990, Sections 3.2.3
and 3.2.4), the Wald and the score test statistics for the exclusion of edge ij from the

52
3 pi'.r
saturated model, here denoted as T} and T;J, are given by Y = niE=— and

Y ij.rest
Tz}q = np?j.rest'

Smith and Whittaker (1998, Appendix D) suggested signed square-root versions
of these three test statistics can be obtained by multiplying the sign of ps;res: by the
square-root value of the test statistic. Table 2.1 summarises the formulae for the non-
signed and for the signed square-root versions of the three test statistics, for single
edge 77 exclusion from the saturated model, that are used in this thesis: the likelihood
ratio, the Wald and the score test statistics. They are presented both as a function of
the sample partial correlation coefficients and of the elements of the inverse variance
matrix.

Under the null hypothesis of conditional independence between X; and X, (i.e,
pijrest = 0) the non-signed versions of the three test statistics are chi-square distributed
on one degree of freedom (see Smith, 1990) and the signed square-root versions of the

three test statistics are normal distributed (Smith and Whittaker, 1998).
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non-signed version signed square-root version

likelihood ratio Tk = Ti‘;ignL =
test = —nlog(l — cf-“j-ii@jj) = szgn(——i—m) —nlog(1l — m)

= -n log(l - ﬁ?j.rest)) = Sign(ﬁij,rest>\/'—n log(l - ﬁ?j.rest)

. 4 ignW
Wald test Y = T =
%
[SRRIATN — &
e S
1t il D4y
JEHTT
22
=n piz'.rest — p- n
1+pz’j.rest w-rest 1+‘6ijﬂ‘est
ignS
score test Tis = T
J 17
2 .

N =
Wiiljj A /wiii)jj

— A2 — A
- npij.rest - pij‘rest\/ﬁ

Table 2.1: Test statistics for single edge 7j exclusion from the saturated GG model.

2.9.3 Likelihood ratio, Wald and score test statistics for single

edge exclusion in GLL models

This section presents the three test statistics for single edge exclusion, within the GLL
models framework, in a general way. In Section 3.4 they are specified for the two and
for the three binary variables cases. The reason for doing so follows. In the case of
a GG model, each test statistic for single edge exclusion, from the saturated model,
depends on one parameter, the partial correlation coefficient between two variables
given all the remaining variables, irrespective of the total number of variables in the
model. However, in a GLL model, the test statistics for single edge exclusion, from the
saturated model, are a function of different parameters (representing all higher order
interaction terms), the number of parameters depending on the number of variables

being considered. Hence, generalisations for the p variables case are very easy in GG
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models, but can be very complicated in GLL models.

Smith (1990, Section 5.3) constructed the likelihood ratio, the Wald and the efficient
score tests for the general null hypothesis that Hy : A4 = 0, and the alternative
hypothesis that A4 is unconstrained (where A\, is a vector, of dimension r, containing
the A parameters of interest). Under the null hypothesis that A4 = 0 all three test
statistics are chi-square distributed on r degrees of freedom (the number of A terms set
to zero). Smith (1990, Section 5.5) presented the three test statistics for independence
in a 2 x 2 contingency table, as a function of the observed cell counts. Here cell
probabilities are used instead. The likelihood ratio test statistic for Hy (independence),

denoted in thlS theSiS as LRT/ equals
LRT =2n g 7(z)log #le)
{0} - S ~( ) 3

where #(z) are the unconstrained m.l.e. of the cell probabilities 7(z) and % (z) are the
m.l.e. of 7(z) constrained under Hp.
The Wald test statistic for Hy equals
Wald = ng (Aa)” [KAAJ - Aa,
where K4, is the m.le. of the asymptotic variance matrix of A4 based on a single

observation. In the two variables case, when = 1, the Wald test statistic simplifies to

where 112 = IOg’Z/T)lg and K[g,?)] = Vél'(j\lz) = -Fr((l),()) + 'fr(é,l) + 'fr(ll,O) + ﬁ‘(%,l) (recaﬂ the
inverse information matrix K is given by Equation 2.4).

The score test statistic equals

Score = ng (I'4)T [KAA} U4,

where 4 is the derivative of the log-likelihood function (of the log-linear model), with
respect to A4, constrained under Hy, evaluated at the m.le.. In the two variables case,

when 7 = 1, the score test statistic simplifies to

Scoreis = ng (l~’12)2 I~{[3, 3],

where 'y = #(1,1) — #1(1) 7(1) and K([3,3] = ﬁ(é,o) + ﬁ(é’l) + 7.7(11’0) + %(il)'
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In conclusion: GG and GLL models have been presented. Considering
the saturated model and calculating all possible single edge exclusion tests is claimed
to be the usual procedure for starting model selection, particularly if the data analyst
is interested in detecting the presence of a latent variable. The formulae for the three
test statistics for single edge exclusion used in this dissertation have been summarised.

In Chapter 3 the distributions of these test statistics are investigated, in particular

under the alternative hypothesis that the saturated model holds.
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Chapter 3

Distributions of the Test Statistics

for Single Edge Exclusion

The three test statistics for single edge exclusion used in this thesis (likelihood ratio,
Wald and score test statistics) are summarised in Section 2.9. Under the null hypothesis
that X; is conditionally independent from X; given the remaining variables in the
model, i.e., the edge between X; and X is absent from the independence graph of the
variables, the three test statistics for single edge exclusion are asymptotic chi-square
distributed. The number of degrees of freedom is given by the number of parameters
in the model set to zero. In a graphical Gaussian model there is just one parameter
associated with each edge exclusion: w;; = 0 < pyjrese = 0. In a graphical log-linear
model, for each edge exclusion from the saturated model, the number of A terms set to
zero depends on the number of variables in the model: when all variables are binary,
if p = 2 there is just one two-way interaction term to be set to zero (A;2), whereas if
p = 3 two A terms must be set to zero - the two-way and the three-way interaction
terms Aj; and Ay Thus, in GLL models the complexity increases considerably with

the number of variables, which does not happen in GG models.

The aim of this chapter is to study the distributions of the three test statistics for
single edge exclusion under the alternative hypothesis that the saturated model holds.
Indeed, an approximation to the distributions of the test statistics for single edge
exclusion, under the alternative hypothesis, is required for obtaining the asymptotic
power functions derived in Chapter 4. Of particular use are the vectors of the means

and the matrices of the variances and covariances of the test statistics in the asymptotic
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normal distributions.

The current chapter has two main parts: the first part deals with deriving approx-
imations to the distributions of the test statistics for single edge exclusion, from the
saturated model, in the framework of GG models, whereas the second part is developed
within the framework of GLL models.

The delta-method is used (Section 3.1.1) to obtain asymptotic normal approxima-
tions to the distributions of the test statistics: in the GG models framework results
are derived for the general case of p variables, and presented as function of w, the ele-
ments of the inverse variance matrix (Section 3.1.2), and as function of p, the elements
of the scaled inverse variance matrix (Sections 3.1.3 and 3.1.4). Approximations to
the distributions of the signed square-root versions of the test statistics are derived in
Section 3.1.5. In the GLL models framework the two and the three variables cases are
considered (Sections 3.4.1 to 3.4.3). Although the methodology used can be applied to
contingency tables with higher dimensions, the number of parameters involved makes
the calculations very messy, making it almost impossible to derive general ‘simplified’
formulae. Results are obtained for the non-signed (Sections 3.5.1 and 3.5.2) and for
the signed square-root versions (Section 3.5.3) of the test statistics.

In the two variables case, the possibility of using a non-central chi-square approxi-
mation to the distributions of the test statistics is also analysed: in Section 3.2 for GG
models and in Section 3.6 for GLL models. Both main parts of the chapter end with
some guidelines as to when each of the approximating distributions performs better:
simulation results are used to assess the quality of the proposed approximations, as the

sample size varies (Sections 3.3 and 3.7).

3.1 Normal Approximations to the Distributions of

the Test Statistics in GG Models

The test statistics for the exclusion of edge ij from the saturated model, and corre-
sponding signed square-root versions, in the GG models framework, are summarised
in Section 2.9.2, Table 2.1. The aim now is to obtain approximations to the distribu-
tions of these test statistics, under the alternative hypothesis that the saturated model

holds. In Section 2.7.1, following Smith (1990, page 21) the asymptotic variance matrix
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of the m.l.e. of w was presented. Because the test statistics are functions of the @, the
delta-method can be applied to Smith’s result, in order to derive asymptotic normal
approximations to the distributions of the test statistics. A brief explanation of the
method is given in Section 3.1.1. For further details see, for example, Bishop, Fienberg

and Holland (1975, page 493) and Sen and Singer (1993, pages 131-137).

3.1.1 Using the delta-method to obtain asymptotic normal
approximations

Let é, a random column vector, be the m.l.e of 8 based on n observations. It is a well
known result that, under certain regularity conditions, 6 has an asymptotic normal
distribution with mean 8 and variance given by the inverse of the information matrix

(see Cox and Hinkley, 1974, page 294). In other words,

where K = 77! is the inverse information matrix based on a single observation. One
should note that var(é) = %K. If f(9) is differentiable at 0, then, using the delta-

method, the approximating distribution to f (9) is the normal distribution, with mean

f(0) and variance matrix given by (%)Tvar(é) (%g), le.,

NG [f(é) —-f(e)} 2N (o, [(g—g—f K (%)D

In the case under study, let V! denote the unconstrained m.l.e. of Q, i.e. the
sample inverse variance matrix with divisor n, a symmetric matrix with elements de-
noted by &;;. The vector of the distinct elements of V™! is denoted by vec(V ™). It
includes first the off-diagonal elements &;; and finally the diagonal elements ;. For
example, for the three variables case, 6= vec(V™1) = (01 @13 Qg3 011 Wy W33)T and
6 = vec(Q) = (wip wis woz w11 woy wss)T. The function f depends on the test statis-

tic being used. Suppose the test statistic is the likelihood ratio test: f7 0) = L TE.

Consequently, f5(6) = —log(l — o), since TE = —nlog(l - 5. Provided all

elements of the @ vector are different from zero, z? is differentiable at § . Then,
(-1 LR Of (vec(@))\" <6f(vec(9))
Vv [f (vee(V™H) f (vec(Q))] N (O, [( Frec( D) K Bvec(Q) ,

i.e. f(vec(V™1)) is asymptotically normal distributed.
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Section 3.1.2 shows how this formula is applied, both in the case of two and in the
case of four variables. In the remainder of the chapter var(7;;) and cov(7;5, 7}) denote,

respectively, the variance and the covariance of the test statistics in the asymptotic dis-

tribution, where, for convenience of notation, 7,3 = n f;(6) and T = /n 5970 (0).

3.1.2 Asymptotic distribution of the LRT as a function of w

In this section formulae for the variance and covariance of the likelihood ratio test
statistic (for single edge exclusion, from the saturated model) in the asymptotic distri-
bution are derived. First, the two variables case is presented in detail; next, the four

variables case is considered. Results are then generalised to the situation of p variables.

The two variables case

Let us consider the two variables case and derive the mean AE[T%] and the variance

var(T}) of the test statistic 75, in the asymptotic distribution.

Using the delta-method, and considering 6 = vec(V™1) = (012 11 O)7T, 0 =

w2 ~ o2
VEC(Q) = (w12 Wil LUQQ)T, f{gz(é) = —10g(l - 12 ) and flLQ(H) = “lOg(l — ﬁ;), the

W11w22

mean of 7% in the asymptotic distribution is given by
2

w
AE[TS] = n f5(8) = —nlog(l — —2-).
Wiiwsoz
The variance in the asymptotic distribution equals
var(Th) = nAT K A,
where
. ) 2w
Off3/Owre pT—-N
— L _ —w?
A= 8f12/aw11 - wn(wnwg—wﬁn) ’
L —wf
0ffs/Owaz ooz =)

and K is a 3 x 3 matrix, given by Equation 2.2. Substituting in the above equation

gives the simplified result
dnu?
L 12
VaI'(le) =
Wiiwaz
which can be written as a function of the (partial) correlation coefficient as var(T}k) =
4np?,. The n in the numerator implies that, as the sample size increases, the variance

of the test statistic increases. One should note that the n also appears in the expected

value of the test statistic.
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Analogous reasoning can be followed for the three and four variables cases. Calcu-
lations were done separately for each of this cases. However, only the results for four
variables are presented since the three variables case (as well as the two variables case)

is a particular case of the four variables situation.

The four variables case

There are now six Tp% (with ¢ < 7, from 1 to 4) test statistics, for single edge exclusion

from the saturated model, to be considered.

The vector of means of the six test statistics is given by

[ AE[TE) —nlog(1l — ;—112:}22-;)
AE[TE] ~nlog(l - 52&)
AE[TE] _ —nlog(l — :f;%z)
AE[TE] —nlog(l — ;-;—’222:}5;)
AE[TH) —nlog(l — 32%22)

i AE[TE) | | —nlog(1 - T;%Z) ]

The variance matrix equals n AT K A. The 10 x 10 matrix K = nvar[vec(V )] is
calculated, as in the two variables case, using Equation 2.1. The 10 x6 matrix A has the
derivatives of the six fX(0) (fL, fi, fL, f&, f&4, 74, in columns) with respect to the
ten distinet w (wyg, wiz, Wid, Woz, Wag, Wsd, W11, Wae, W33, Waq, i TOWS). For example,
column three equals (0 0 OfL /8wy 0 0 0 8fL /8wy 0 0 OfL/Owsy)T. Performing
the substitutions induces a 6 X 6 variance matrix with the variances of the test statistics,
in the asymptotic distribution, on the main diagonal, the off-diagonal elements being

the covariances between the test statistics, in the asymptotic distribution, (Té’, 75,

with 7 < j and k < [, as follows

var(Th)

cov(Th, TH) var(Tk)

cov(Th, TL)

cov(TlL3, T1L4)

var(T{;l)

var(Th, Th) =
cov(Tlfé, T2L3) cov(TlLa, TZ%) cov(TII;l, T2L3) var(Tzfé)
cov(Th, T4) cov(Th, TH) cov(Th, TE) cov(Th, TH) var(T4)
cov(Th, TH) cov(Th, TH) cov(Th, ThH) cov(Th, TL) cov(Th, TE) va(Th) |
where
. 4nw?, L 4nw?, I 4nw?,
var(1};) = , var(Ty3) = , var(Tyy) = ;
Wi1Wa2 W11Ws3 Wi1W44
4nw? 4l 4dnw?
V&I(TQL?)) = 23 var(TQIZI) = 2 Var(T?f;l) =34
w233 Wooldaq W33laq
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and, for example,

L L n 3
o cov(Tjs, Ti%) = 4w wonwsgwowswez —
( 12> *1 ) w? waowas (wiwaa—wiy ) (wi1waz—wy) [ 11%/2233%12013%23
2 3 2 2,2 (32 3 2,2 0,2 2
4 Wi Wszwyw13wes — 2 Wijwoowizwirwis — 4 wijwoswawswas + 2 wijwiswizwis -+

N 4 .2 2, 4.
2 wiwsswihwis + 2 wiweowiswisl;

L TL\ = 7 it ,7":)’, dYa alatv et tr a4 ——
® cov(le; T wnwhwgs (wiwee—wh ) (weewa —w3,) [4/"“/“’22” FlaTlarres
4 w2 waswiawiawos — 2 w11 Wiowaawowd, — 4 wiiwiiwiswaws, + 2 wiiweswwil, +
2244l plrl4v2d T £ W WooldqWalinyg 11WHoW12W14Woy W11W2owWioWoy

2 2 2 9 4. 27,
2 Wi wipwigwsy + 2 woawagwowiyl;

L L n 3
® COV T N T - 4w W wWool 1ol —
(113, Ta3) 1oz, (onwes ) (waies —y) [4 wiiwysweowigwiowss
4{4}2(4} w3 , — 4w 2 ,3 -9 42 2 .2 + 2w 2.4
33W22W 3w 2023 W11Wizw3wiawhs W11W33Woa sy W11W33Wiswsg +

4 2 2 2 2 o7
2 wazwoowiswys + 2 Wiswiawiswssli

L L n .
e cov(T%, TH) = 4w W33W44 121 3W24(
( 12> 34) wilweawszwad (W11wre —wiy) (Waswsg —ws, ) [ 11W22W33WaaW12W13W24W34 +
oty , 2 [
4 W11Waw33WaaWw12W14wWezw3ss — 4 W2oW33WeaWwisW13wW14wsg — 4 W11W33Wa4W oWa3waW3ss —
2 , 2 , s 2,2
4 w11 Wrawaaw12wW13wswWE, — 4 W11Werw3sW1aw14wWeawsy + 2W11Waswiwiwi, +

2 .2 .2 2,2 2 y 2 02 2.
2 W11WaqWisWagyy + 2 WoaW33W oW g3y 2 w22w44w12w13w34],

L L n
o cov(Tiz, Ts) = 4 (w11W33Woawaw13W1oW
(113, T5a) Tremomr s mma o) [4 w11wsswaaweswi3w12wWaswag +
2 NV
4 w1 w3zwoowaaw3wWiawWazweg — 4 W33Wo2aWeqWyzW12Wiqgway — 4 W11W2oWeqwigw23wsqwoyg —
4 2 _4 2 49 2 2 2
W11W33Wa4W13wi12Wazway W11W33W22W13W14W34Ws, -+ 2 W11Waawiswi Wy, +

2 2 .2 2 2 2 on2e 22
2 Wiwaawiawyzeny + 2 W3BwerW Wiy T 2 WasWaawizw gyl

In brief: a general term for the mean of the test statistic T} (7 < 7) in the asymptotic
distribution can be written as

w?

AE[TH] = —nlog(l — —1), (3.1)

Wiitdjj
a general term for the variance of ng in the asymptotic distribution can be written as

4nwi2j
—_ (3.2)

var(TE) =
=0

and a general term for the covariance of the test statistics szj TE (i < j, k < 1), in the

asymptotic distribution, can be written as
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L L n
COV T T, =
( ijr *k ) Wiy W kWi (Wiiwss —-w?j)(wkkw”—wil)

[4 Wil jWhkW Wi jWigW Wkl ~+ 4 Wiy WE W Wi Wi W5 pWgi

—4 w‘jjwkkwuw%wz'kwizwkz - 4wiiwkkwlzw3jwjkwjzwkz (3 3)
—-4 wiiwjjwllwijw,-kwjkw,zl -4 wiiwjjwkkwijwilwﬂwgl

+2 wiwrrwiwiwy + 2w ey

a2 9 9 9 9 9
+2 wjjwprwiwiwy + 2 Wywnwiwnwiy)-

For simplicity of notation, in the remainder of this chapter this Equation 3.3 is also
going to be written as

n

C.,.

cov(TL,

Ly _
Tkl) B Wiy jWekWil (wiiwjj - w%)(wkkwll - wzl)
Equation 3.3 holds for the cases of 4, j, k,[ from 1 to 4, (both neighbour and non-
neighbour vertices), but also, as the next section will prove, for any case and any
number of variables (i < j and k < [, from 1 to p). In practice, the mathematical
package MAPLE was used to perform the calculations for the five variables case, and
results show Equation 3.3 holds. Neighbour vertices are a particular case of the general
formula, that is, situations when i = k, or ¢ = [, or j = k, or 7 = [. For example,
supposing ¢ = k. In order to obtain cov(T%, Tf), it is only required to start with

Equation 3.3, replace ¢ by 1, j by 2, k£ by 1 and [ by 3, and simplify the results.

The p variables case

The proof that Equation 3.3 is a general formula that holds for any number of vari-
ables and both for neighbour and non-neighbour vertices follows. Expressing the delta

method in coordinate form gives, in general,

ory ok
L L — 2 ki K
COV(’.ITL]7 Tkl) — Zp,q,r,s {77, awpq awrs pgrs

(3.4)

ark  ork
= Zp,q,ns {n : Dors (wqus_*‘wpswqr) )

Owpg

where K. is the inverse of the information matrix based on a single observation.

The proof that starting with this general formula and performing all the calculations

.2
Wi

induces Equation 3.3 follows. Recall that f;; = —log(1 — wiiwjj), and that 7 < 7 and
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k < [. The derivative of Wlth respect to a generic element wy, takes the form

asz — -1 iy 2«‘/1
Bony ) {inéjq (WWJ;) + Oipdiq (] T‘“) + 03p0iq (WW )]
s
(3.5)
_ -1
T (wiiwgg) (wiwgy—w?) [Ozp‘szqw Wij + 5]1053@"" wii — 20ip0jq Wiiwjjwij] :
Analogously,

ok _ -1
Bors = o) oot [OkrOks Wiy + OirO1s Wiy — 207015 wipwnwr) . (3.6)

Substituting Equations 3.5 and 3.6 in Equation 3.4 gives

cov(TE, TEY =3 n20i 20 g
5 “kl D,q,T7,8 Owpg Bwrs pars

-1 -1
wiiwjj(wiswij—w) wikwn (@ikwn—wi;)

. . .. . . 2 C b — . . e .. ..
X Zp,q,r,s {[86p0iq wijw]] + 0jp0jq WiWii 20ip0jq Wi jwis]

="

2 s o .
X [OrOrs Wity + 017015 Wik — 20kr01s Wikwwii] X Kpgrs}

= ——— P sz,q,r,s{"'}7

wiijjwikwil (wiiwj —wi;) (Wekwn —wiy)
where, for the result to hold, in the last expression the summation between curly
brackets has to equal the expression previously denoted by C,,. The proof continues.
Using Equation 2.1,
Dopars 1} = 2pars 51p5105kr0ks‘“ wjjwhl [Wprwes + wWpswarl
+6ip0igO1r 0155w i f Wik [wprigs + Wpsqr]
_252'1)52'q5kr513wi2jwjjwkkwllwkl [wprqu + ‘—V'pswqr]
+5Jp5yq5kr5ksw Wn“’kl“)ll [Wprwgs + wpswr]
‘+‘5jp5jq5lr6lswijwiiw}%lwkk [wprqu + wpswqr]
_25_7p6jq5krélsw Wi WEEWII W] [wprqu + ‘—Upswqr]
—28:p0qOkr Ok swiitwjjwigwit [Wprwgs + wpswar
~—2(5z~p5jq517513wiiwjjwijw,§lwkk {wp,,-qu + wpswqr]

+45ip5jq5krélsWiiwjjwijwkkwllwkl [wprqu =+ u);ns“‘/'qr] }

= wiwjjwhwn [wipwis + wikwir] + whwijwhwis wawi + wawil
_2**‘1 Wi WREWIIWEL [wzszl + wzlwzk] + wj szw]%lwll [w_’]kwjk + ‘—U]k“)]k]
Fwiwiwiwrk [wiw; + wjiwi] — 2wwnwronwin [wWikw; + wjiw;r)
—2wiwjjwiiwewy [Wikwik + wikwik] — 2wiwjjwiwewik wiw; + wiwsi)

Hwiiw; jwiWrkWiWkl [Wikwii + Wiw;k]
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— Vs sl 42,2 . 2,52 .2
= 2wjjwnw e Wiy + 2w)jwprewhivr
s a2 Vo 2,.,2 .2
— 4w W pWnWwWikwi Wiy + 2WEwnwi;wi Wiy
J j j
, 2,2 .2 e
2wk Wi wiws) — AWk WIS CRIC R
2, e vy a2
—4wiiwjjwllwijwklwikwjk - 4wiicujjwkkwijwklwllwﬂ

FAwgw s jWEWNIWi§WRIWikW ] T 4w jWkkWIW jWRIWIW ik,
which equals the expression C,, in Equation 3.3, hence the proof is complete.

In conclusion: Equation 3.4 presents a general formula for the covariance of the
test statistics Tf; , TL (i < j, k <) in the asymptotic distribution, when the likelihood
ratio test statistic for single edge exclusion, from the saturated model, is used.

3.1.3 Asymptotic distribution of the LRT as a function of p

In Section 3.1.2 a normal approximation to the distribution of the likelihood ratio test
statistic is derived, with the means, variances and covariances given as a function of w,
the elements of the inverse variance matrix, by Equations 3.1, 3.2 and 3.3. The purpose
of this section is to express those means, variances and covariances as a function of p,

the partial correlation coefficients.

The mean of the test statistic 7%, in the asymptotic distribution, is given by Equa-
ij g Y

tion 3.1 as AE[T}] = —nlog(1l — —4). Because pijrest = \/;f%, this mean can be

Wiy

written as a function of the partial correlation coefficient, as
AE[T;J];] =N IOg(l - ngj.rest)' (37>

Analogously, the variance in the asymptotic distribution can be written as a function

of the partial correlation coefficient as

V&I‘(ﬂ?) = 4npz?j.rest' (38)

A general formula for the covariances of the test statistics Tf;, T in the asymptotic

distribution is given by Equation 3.3. An easy way to obtain this formula as a function
of the partial correlation coefficients is, for example, to set w;; = w;; = wge = wy = 1
and all six elements of the type wp, equal to —ppgrest- One should note that there are
different combinations of values of the w that will lead to the same set of values of p,
and one of them was chosen. Alternatively, it can easily be proved that, starting with

Equation 3.3 and replacing all elements of the type % by ppg.rest gives Equation 3.9,
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which is a general formula for the covariances of the test statistics, in the asymptotic

distribution, written as a function of the partial correlation coefficients:

L L n
cov(Ts, T5) =
( v kl) (1—'p?j.rest)(l—pilmest)
[4 pij.restpik.restpjlmestpkl.rest + 4 Pij.restPil.rest Pik.restPkl.rest
+4p? ; ; + 4 p? : :
PijrestPik.restPil.restPkl.rest Pij.restPik.restPjl.rest Pkl.rest (3 9)
2 2 ’

+4 pij.restpik‘restpjkmestpkl.rest + 4 pij.restpil.restpjl.restpk[.rest

2 2 2 2 2 2
+2 pij.restpjl‘restpkl.rest +2 pij.restpjk.restpkl.rest

2 2 2 2 2 2
+2 pij.restpil‘restpkl.rest + 2 pij.restpkl.restpik.rest]‘

For simplicity of notation, in the remainder of this chapter this Equation 3.9 is also
going to be written as

n
(1 - pgj.rest)(l - pl%l.rest)

c,.

cov(T}, Th) =

The proof that Equation 3.3 implies Equation 3.9 follows. Equation 3.3 can be written

as
n
cov(i/}’;‘-, TL) = — —~ C, =
Wit i pwnr | wiswii (1— —2 Veop ey (1= —del—
Wi WE WL zzW]]( Ggwi ) kk“"ll( CREWL )
— n —
- wh YR V2.2 2 2 Co =
S S ‘ .
a WiiWj ) Wikwl] S YRk
= > n Wij Wik wy Wl Wiy Wil Wik Wil
(1- Wi )1 wg, ) VLTS Wik /550U Ok VEEDT WiWn SO0k Wkl
wiiws WEkll
w2 w2 .
A Wik Wil Wrl “ij Wik Wil Wit
WiiWjj /Wiilkk Wil Wkl wizwji /W55 Wkk /D500 WkkWl
wWij w; Wik wi Wij w; Wil w2
—4 i) Wik i ki ij il J ki
V@5 /[Dikk /@55 Pkk WkkWil VIG5 @nwl U500 Wekwil
2 w2 2 2 w2 42 w2, 2 42 w2, L2 2
+92 Wig Y Wi Wi Yk Wi Yij Wi Y “iio_ Wik Y ]
Wiy Wi Wkl Wiildjj WijWhk Wikl WiilWjj Wil Wikl Wiiljj Witk WikWll
Finally, replacing all elements —=2¢= b gives Equation 3.9. Using this general
Y, P = fopp@ag Y ppq.rest S q & S

formula, the calculation of the covariance of the test statistics for non-neighbour vertices
(i.e., 4, J, k and [ all different) is straightforward: it just requires replacing ¢, 7, k£ and [
by the number of the vertices one is interested in. The situation of neighbour vertices is

similar. However, after the substitution is performed, values of p;; rest, Pjj.rests Pkk.rest O
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Pu.rest are obtained, which must be set to —1. Indeed, the p can be thought of as minus
the elements of the scaled inverse variance matrix. Therefore, the off-diagonal elements
correspond to the partial correlations, whereas the diagonal elements correspond to —1.

Some examples of the final versions of the formulae follow:

o cov(Th, TH) =

[4 P12.restP13.rest P24 .rest P34.rest + 4 P12.rest Pla.rest P23.restP34.rest +

(2
(1“/7%2,1-&31)(1—/)§4_1-55t)

2 . 2
4 P12.restP13.rest Pld.rest P3d.rest +4 P12.restP23.restP24.rest P34.rest +
pl2Arestp13.rest,023.restp34,rest plQ.Testpl4.rest,024.restp34.rest p12.rest/0244restp34,'rest =+

2 2 2 2 2 2 2 2 2 .
2 P12.restP23.restP34.rest + 2 P12.restPla.restP34.rest + 2 plQ.restp34.restp1&rest]7

L Ly _ n _ 92 2
d COV(T12> T13) T (0% e ) (1= P23 rost) [ 4plQ‘restl&restp?&’rest 2 P12.restP13.rest T

3 3 4 2 2 4
4 P12.restP13.rest P23.rest + 4 P12.restP13.restP23.rest +2 P12 restP13.rest +2 P12.restP13.rest +

2 2 2 .
2 pl2.restp13.restp23.rest] ’

L Ly _ n 2 2
® COV(TH, T24) = (1_p§2.rest)(1—p%4‘rest) [—4 P12.restP24.restPld.rest — 2p12.restp24.rest +

3 3 2 4 4 2
4 P12.restP24.restPl4.rest + 4 P12.rest P24 restPld.rest T 2 P12.restP24.rest T 2 Pi2.restP24.rest T

2 2 2 .
2 :012.rest:024.restp14.rest] )

L 7L 2 2
o cov(Ty3, Ths) —4 P13.restP23.restP12.rest — 2 P13.restP3.rest T

— (e
(1—p%3.rest)(1—p%3.rest) [

3 3 2 4 4 2
4 P13.restP23.rest P12 rest + 4p13.7‘est:023.restp12.rest +2 P13.restPa3.rest +2 P13.restP23.rest +

2 2 2
2 p13.restp23.restp12.rest] -

3.1.4 Asymptotic distributions of the Wald and of the score

test statistics

Using the delta-method, and following the reasoning of Section 3.1.2, this section pro-
poses normal approximations to the distributions of the Wald test statistic and of the
score test statistic for single edge exclusion from the saturated model. Formulae for
the means, variances and covariances, in the asymptotic distributions, are given as a
function of the elements of the inverse variance matrix and as a function of the partial
correlation coefficients. The section ends with a table summarising the formulae for the
variances and covariances, in the asymptotic distribution, of the three test statistics

for single edge exclusion from the saturated model used in this thesis.
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Let var(T}'), cov(T})', T;}') denote the variances and the covariances of the Wald
test statistic in the asymptotic distribution, and var(Tg ) and COV(T;? , T35) denote the
variances and covariances of the score test statistic, for single edge exclusion from the
saturated model, in the asymptotic distribution. AE[T}Y] and AE[T]] denote the
means, in the asymptotic distribution, respectively of the Wald and of the score test

statistics.
These means can be written as a function of the partial correlation coefficient, as
0%
AE[TY] = n 8T (3.10)
Y 1 + pz'Qj.rest

in the case of the Wald test statistic, and as
AE[TS] =n p?jmest? (311)

in the case of the score test statistic. The relationship between the variance (and the
covariance) of the test statistics using the likelihood ratio test and the Wald test can

easily be justified. In fact, a second use of the delta method would require fi?/ to be

. . ) . afw
written as a function of Z? and, therefore, the new A matrix would also include aj;}i ,
i

. . . OfW 6uw;;
which is equivalent to 8—};}%. As a result,
i/ OWij

BfY /Buwi; BFY fOwi;
w — 1L 27 7 if 7
var(T3;") = var(Tj;) 37L[Buws; BFL[Bw,

2
14 y2

(1—
= var(T}) — i
(1 —H)4

WitWij

L (l—pv?'.-rest)z
= var(T§) Usthumea

1+pij:rest

BfY [8wi; 8FFY Jow
w w _ L L ij J ki ki
and COV(Tij T ) = COV(T;j? Ti) fLjowi; 85k Pwn

2 2
(1__ﬁ.L)( — kL
Wiiwy g wrkw]]

= cov(TE, TE)
ijr Tkl Wi o w2 )
(1+Wii“jj) (1+“’kk“’ll)

2 2
(1—pijmest)(1—pkl.rest)
2 s 2 .
1+pij.rest)2(1Tpkl.rest)2

— cov(TE, TF) -

Analogously, for the score test



Sy L OF5 /8wy 8F/0wi;
var(ly) = var(Ty) 57t 57t oo,

2
“ij )2
Wity

— var(TE) (1 -
= Var(fri?) (1 - pizj_rest)Q:

BfE /Bwi; BfF /6w
S —_ L L ij J ki kl
Ta) = cov(Tij, Ty) 87k ]6wi; BFf /0w

(TS
and cov(7T},

u)z wz
— cov(TE, TE) (1 - 21 - )
= COV(E?? Tk]ﬁ (1 - pgj.rest)(l - le,rest>'

Alternatively, general formulae for the covariance of the test statistics, in the asymp-
totic distribution, can be obtained from Equation 3.4, replacing fig by Z‘;V (in the case

of the Wald test statistic) or by f;7 (in the case of the score test statistic). Consequently,

Worwy o5y or¥ 3.12
COV(T;j ’ Tkl ) - Zp,q,r,s n Owpq Owrs (wprqu =+ wpswqr) ) ( . )
and
afs s
COV(:’;?a T3 = > pars {n o B (Wprtgs + wpswqr)} . (3.13)

Table 3.1 summarises the derived formulae for the variances and covariances of the

three test statistics, for single edge exclusion from the saturated GG model, in the

asymptotic distribution.
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variance covariance

. . Ly L Ly
likelihood var(Tj7) = cov(Ty;, Typ) =
4nw?,
ratio test | = —*% = L . »
Wiy wigwjjwpkwn (Wi —wi ) (Wrkwu—wy) @
= 4np2 . = = L3 = Cp
ty.res (1_pij.rest)(1—pkl,rest)
Wy __ W N
Wald test var(T;7 ) = cov(Ty), Ty ) =

2 ©f 2
k3
dnwf; (1~ —2—)

_ Wijjg _ n C
Wi (wisws+w2; )P (wrrwn+wi)? 7Y
wiz'wjj(l-f-w—i;f,lﬁy " ” K
2
—_ 4npij.resi(1_p?j.rest)2 — n C
= 7 = v V]
(1+pij.rest)4 (1+pz‘j.rest)2(l+pkl.rest)2 P
TS = TS TSY =
score test var(73;) = cov(T3;, Tiy) =
2 2
— “ig ( iy )2 — n
Wiilyg Wil wiiwjjwkkw”
—_ 2 2 2|
= 4102 el = Pdrest)? | =1 Cp

Table 3.1: Variances and covariances of the three test statistics (for single edge exclusion,

from the saturated GG model) in the asymptotic distribution.

3.1.5 Asymptotic distributions of the signed square-root ver-
sions of the test statistics

The signed square-root versions of the test statistics are presented in Section 2.9.2,
Table 2.1. The aim now is to obtain asymptotic normal approximations to the dis-
tributions of the signed square-root versions of the test statistics, once more using
the delta-method. A summary table with the derived formulae for the variances and
covariances, in the asymptotic distribution, is presented at the end of the section.

The means can be written as a function of the partial correlation coefficient, as

AE[Z‘?QHL] = Sign<pij.rest) \/_'n lOg(l - pin.rest)v (314)

in the case of the LRT statistic, as

ign m
AE[T™] = pijrest | T2 (3.15)
ij.res
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in the case of the Wald test statistic, and as
AE[TS) = pijrestV/n, (3.16)

in the case of the score test statistic.

The signed square-root versions can be written as a function of the corresponding
non-signed ones, and so the delta-method can be applied to obtain the variance matrix
of the signed versions, based on the variance matrix of the corresponding non-signed
versions. The new A matrix has the derivative of the signed square-root version with

respect to the non-signed version. For example, when the likelihood ratio test is used,

8fisjignL _ 6<szgn ——“7-7;) /fL)
ork - ark

. —Wij 1
:szgn(w%) x - T

:Szgn( u.)”uJJ
100(1 w“w”)

1
2\/_ 1Og(1—‘p1‘2j.rest)

= Sign(pij.rest)

. sanL ; . . .
Hence, since 79" = /n ffj’gnL . the variance of the signed square-root version of the

likelihood ratio test statistic, in the asymptotic distribution, can be written as

var(Ti;ig”L) = (y/n)? x sign? < d”‘j x -5 x var(T}%)
o \/ 100(1 @i .7.7)

wWiiWjj

= var(Tk) x =1
)

7
4n 10“<1~——-L

L —1
=var(TH) X ——->—r
( B ) 4n }‘Og(l-pizjmest) ’

and the covariance can be written as
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szgn(—:‘fy*-) sign(——:‘—uﬂ——>

signL signL _ L L Wiiwsj VERESI
cov(T;"", Ty*™) = cov(Tij, Tig) x = =
an | -logl1-—2i ) /- log(1~—kL_
= T o Wkl
_ COV(Ti?, TL) x S1gn{Psj.rest) SGN(PkL rest)

4n \/-— Iog(l"p?j_rest) \/— log(l—pzl.rest)

Similar reasoning can be followed for the signed square-root versions of the Wald
and of the score test statistics. Table 3.2 summarises the proposed formulae for the
variances and covariances of the signed square-root versions of the test statistics, for
single edge exclusion from the saturated model, in the asymptotic distribution, for the

likelihood ratio, the Wald and the score test statistics.

It is worth noting that both the variances and the covariances of the signed square-

root versions of the test statistics do not depend on the sample size n. Additionally,

the variances simplify to

psionLy _ —Piyres
var( ij ) - log(l - p?j,rest)
and ; :
var(Tg) = L Pores)

a (1 + pz?j.rest>3,

for the signed square-root likelihood ratio and Wald test statistics. A very ‘neat’

expression is obtained for the variance of the signed square-root score test:

Var(T'S'ignS) = (1 - p?j.rest)Q'
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covariance

variance
lealt wsignLly _rnsignLl signly _
likelihood var(7;79"7) = cov(T;9", T™") =
sign(—;—jiﬁ) szgn(—‘ﬁ"’;—%—)
ratio test | = var(T}k) x ———=t—— | = cov(T}, T§) X e —
4n10g(1-5é73§) dn \/-log<1~;%> /—IOg(Fi‘-‘—)
i19g \V “Chkwll
— var(T.L) > —1 - COV(T-L- TL) % sign(pij.rest) Sign(Pit.rest)
907 anlog(1-p3; ,.ye) GPORE T g - logi=02, .. /- logi-e2, ..)
res S Tj.rest Pl rest
9 signWy signW wsignWy
Wald test var(T;; )= cov(T; T )=
w2 / w2 w2
I+t 14 oy 1
— w wiiwig — w w V Wii%ij “kkwl
= var(1;;)) x — =cov(T}, Ty ) % pr— =
an K@?;; V@i Pk kSTl
2 2 2
_ w 14075 rest _ w w \ﬁ*‘ﬂij.resz\/l‘*'pkzmmz
= Vaf(zj ) X 4n P rest - COV(Tij ’ Tkl ) x 4N pij.rest Prl.rest
. signSy __ signS signSy __
score test var(T;;9") = cov(T59™, T, =
— S 1 _ S 'S 1
= var(T3;) X —z— =cov(Tj, Tyy) X s—=g———=m—
4 ;;37—; JSii%5; VORE@Il
_ s 1 _ S S S S
- Var(ﬂj) X I D55 rest - COV(TU" Tkl) X i Pij.restPkl.rest

Table 3.2: Variances and covariances of the signed square-root versions of the test statistics

(for single edge exclusion, from the saturated GG model) in the asymptotic distribution.

3.2 Non-central x> Approximation to the Distribu-

tion of the LRT in a GG Model with Two Vari-

ables

The delta-method was used in Section 3.1 to derive normal approximations to the

distributions of the test statistics, since each test statistic is a ‘well behaved’ function

of the @, the unconstrained m.l.e.

of the elements of the inverse variance matrix,

differentiable provided all & are different from zero. Because each statistic tests the

null hypothesis that w;; = 0(< p;; = 0), the normal approximations should be poor at

very small distances from the null.



However, power at local alternatives has been studied in the literature. In Sec-
tion 2.9.1, when reviewing the rationale for the derivation of the likelihood ratio, Wald
and score tests, it was mentioned that the three test statistics are chi-square distributed
under the null hypothesis, and non-central chi-square distributed for local alternatives
of the type 6, = (90+§% (with nuisance parameters ¢ unspecified), i.e., when /n(6,—6;)
converges to dy. References to the topic of local alternatives include Cox and Hinkley
(1974, page 324), Sen and Singer (1993, page 238), Ferguson (1996, pages 148-149)
and Severini (2000, pages 117-119).

In Chapter 4 of this thesis power is calculated using the non central chi-square
approximation. The aim of the current section is to derive the non central chi-square
approximation to the distribution of the LRT statistic for single edge exclusion from a
saturated GG model with two variables, at a local alternative. Section 3.3 compares the
quality of the non central chi-square approximation to that of the normal approximation
previously derived, in particular as the sample size varies. ‘

Denoting the true value of the parameter by 6, and the parameter point under Hy
closest to 8, by 6p, the distance from the null can be defined as 6y = \/n (6, — 6). In
the simplest case of just one restriction under Hy, the noncentrality parameter ¢ can
be obtained as

© =6} [Koye,)™" 6,

where [Kg,9,] " is the partition of the information matrix associated with the restriction
in Hy. This result is going to be used to obtain an asymptotic non-central chi-square
approximation to the distribution of the non-signed version of the LRT for single edge
exclusion from a saturated GG model with two variables, at an alternative close to the
null. As mentioned in Section 2.7.1, the corresponding inverse information matrix is
given by Kpyg, = wiiwae + w, which can be expressed as a function of pi as 1+ p2,.
Consequently, [Kpyg,]™! = 1/(1 + p%,).

It is, therefore, proposed that the distribution of the LRT for single edge exclusion
from a saturated GG model with two variables, at a local alternative, is approximated

by a non-central chi-square distribution, with noncentrality parameter given by

| % WG - 0) = 22

142,

v =[Vn(pz—0)] x [

1+ pf,

In the next section the quality of such an approximation is assessed, as n and pyo vary.
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3.3 Assessing the Quality of the Approximations,
in GG Models

In Section 3.1 asymptotic normal approximations to the distributions of the test statis-
tics for single edge exclusion from the saturated GG model were derived, and in Sec-
tion 3.2 a non central chi-square approximation was proposed. The purpose of the
current section is to analyse the quality of the two approximations, for various values
of n, by using a simulation study. The two variables case is considered and the LRT
statistic is used.

Recall that, under the alternative hypothesis that the saturated model holds, T is
asymptotically normal distributed, with mean AE[TS] = —nlog(1 — p?,) and variance
var(TE) = 4np?,. At p1» = 0 the asymptotic distribution of T is degenerate, with
mean zero and variance zero. Hence, the normal approximation holds for n at infinity,
but it is poor for n finite. Indeed, for p;» = 0 and n finite, a chi-square distribution on
one degree of freedom is a better approximation.

The results of the simulation study are now presented. First, it is shown how the
mean and the variance of 75 vary as a function of both the correlation coefficient p;g
and the sample size n. Then, the empirical distribution of the LRT statistic is plotted.
Histograms are produced for different values of pis, and three different sample sizes
are used. The curve of the theoretical normal approximation derived in Section 3.1.3
overlaps each histogram, so that the quality of the approximation can be assessed.
Simulated results for the mean, variance and covariance of the test statistic(s) were ob-
tained as follows. Different values were assigned to the (partial) correlation coefficient,
and samples of different sizes were generated for a normal distribution. Likelihood ra-
tio test statistics (for single edge exclusion, from the saturated model) were calculated
and stored at each step. After 1000 repetitions, the mean and the variance values of
the test statistics, were calculated.

Figure 3.1 displays simulation results. The mean values of the test statistic 755
are displayed in plots a), whereas plots b) represent the variances. The correlation
coefficient varies between —0.9 and 0.9, on the horizontal axis. Plots 1) are based on
a sample size of 50 and in plots 2), 3) and 4) n equals 200, 500 and 1000, respectively.
In each plot there are two lines: the blue line corresponds to the values obtained using

the derived theoretical formulae, and the red line corresponds to the simulated values.
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Figure 3.1: Mean (plots a) and variance (plots b) values of the likelihood ratio test statistic
Tle, in the asymptotic normal distribution, as a function of p12. Values were calculated using
proposed formulae (blue lines) and by simulation (red lines), for different sample sizes: 1)

n =50, 2) n = 200, 3) n = 500, 4) n = 1000.

The fact that the two lines almost overlap shows the agreement between simulated
results and formulae derived in Section 3.1. From these plots it is clear that both the
mean and the variance of T'5, in the asymptotic distribution, increase as the sample

size increases and as the absolute value of the correlation coefficient increases. Both

are symmetric about zero correlation.

Figure 3.2 shows the histograms of the empirical distribution of the likelihood ratio
test statistic 7. Results are given for three different sample sizes: n = 50 (plots in
blue), n = 200 (plots in red) and n = 1000 (plots in green). For each sample size there
are ten different histograms, corresponding to the values of p1s ranging from 0 to 0.9
(with an interval of 0.1). Recall that, for p12 = 0, the asymptotic distribution of the test
statistic for single edge exclusion is chi-squared on one degree of freedom (the green line
overlapping the corresponding histograms represents the density of a x? distribution).

For p12 # 0, the asymptotic distribution of 7} tends to the normal distribution as n
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tends to infinity (the black line overlapping most histograms represents the density of
a normal distribution with mean —nlog(1 — p?,) and variance 4np?,). The histograms
show that, as expected, the distribution looks chi-squared on one degree of freedom for
p12 = 0 (particularly noteworthy for large sample sizes). For pis # 0, the distribution
of T tends to the normal distribution, faster for larger sample sizes: for n = 1000 the

histograms start showing a normal shape at p;o = 0.2, whereas for n = 50 this happens

at P12 = 0.6.
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Figure 3.2: Histograms of the empirical distribution of the likelihood ratio test statistic 7',
for different sample sizes: n = 50 (plots in blue), n = 200 (plots in red) and n = 1000 (plots
in green). Normal density overlapping. For each sample size pjs ranges from 0 to 0.9 (with

an interval of 0.1)

In brief: the normal approximation to the distribution of the LRT statistic for single
edge exclusion from the saturated GG model with two variables is a good approximation
if n is large and p12 is not close to zero. The approximation is poor for small sample

sizes and values of the correlation coefficient close to zero.

In Section 3.2 a non central chi-square approximation to the distribution of the
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LRT statistic for single edge exclusion from the saturated GG model was proposed.
The aim now is to assess the quality of such an approximation and contrast the normal
approximation with the non central chi-square approximation. For that, p-p plots were
produced, comparing the observed cumulative probabilities (obtained in the simulation
study) with those cumulative probabilities that would be expected if the simulated val-
ues of the LRT statistic were asymptotically normal or non-central x? distributed. The
red line represents an exact agreement between observed and expected, the blue curve
represents the asymptotic normal approximation (with mean —nlog(1 — p%,) and vari-
ance 4np?,) and the green curve represents the non central chi-square approximation

2
(with noncentrality parameter %).
12
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Figure 3.3: P-P plots of the distribution of the likelihood ratio test statistic T, for different
sample sizes: n = 50 (plots a)), n = 200 (plots b)) and n = 1000 (plots c)). For each sample
size p12 ranges from 0 to 0.9 (with an interval of 0.1)

Figure 3.3 shows some of the p-p plots that were obtained. Some conclusions can

be drawn:

e the normal approximation works well for large values of n (1000), even for small

correlations (above 0.2). As stated before, for n small the normal approximation
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is poor. The approximations seems to hold for p;; > 0.3 when n = 200, whereas

with n = 50 it just holds for p;» > 0.5;

e the non-central chi-square approximation performs better for small values of pis,
in particular if the sample size is not large. The approximation does not hold for

correlations distant from zero, becoming even worse as n increases.

These two conclusions relate to the issue of the distance from the null - recall that the
use of the non-central chi-square approximation is suggested at an alternative close to
the null. This distance being measured by é = /n(p12 — 0) means that, as n increases,
the approximation performs better when p;s becomes closer to zero.

In brief: in the two variables case the normal approximation is a better approxi-
mation if the sample size is large and the correlation coefficient is not close to zero.
The non central chi-square approximation performs better than the normal at small
distance from the null, i.e., if n = 1000 and p12 < 0.1, n = 200 and p;» < 0.2 of n =50

and pi2 < 0.3.

The first three sections of the current chapter concerned GG models. In the re-

mainder of the chapter GLL models are considered.

3.4 Test Statistics for Single Edge Exclusion in
GLL Models: Two and Three Variables Cases

This second part of Chapter 3 is devoted to the study of the distributions of the test
statistics for single edge exclusion, from the saturated model, in graphical log-linear
models. Attention is restricted to the two and the three variables cases, due to the
fact that the number of parameters to be considered increases substantially as the
number of variables increases. So does the complexity of the notation to be used.
This did not happen in GG models, where results could easily be generalised to the
p variables case. The structure of this second part of the chapter is the following:
first, the likelihood ratio test statistic is expressed in cell probabilities, using a log-
linear formulation (Section 3.4.1), and so are the Wald and the score test statistics
(Section 3.4.2) and corresponding signed square-root versions (Section 3.4.3). Then,

asymptotic normal approximations to the distributions of the test statistics are derived:
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for the LRT statistic in Section 3.5.1, for the Wald and the score test statistics in
Section 3.5.2, and for the corresponding signed square-root versions in Section 3.5.3.
Section 3.6 proposes a non central chi-square approximation to the distribution of the

LRT statistic, for single edge exclusion from the saturated GLL model and Section 3.7

assesses the quality of the two derived approximations.

3.4.1 LRT statistic for single edge exclusion from the satu-

rated GLL model

The two variables case

Suppose X; and X, are two binary variables. Using a log-linear expansion, the satu-

rated model can be written as log fi2 = Ag + A1 + Ao + Apa.

The m.le. of the cell probabilities under the saturated model, 7(z), and under the

constrained model of independence, 7(z), are

#(0,0) = exp{Ag} 7(0,0) = #1(0) x #(0)
#(0,1) =exp{Ag+ Ao} 7(0,1) = #1(0) x 7a(1)
#(1,0) =exp{ig+ A1} 7(1,0) = 71(1) x #2(0)
#(1,1) = exp{g+ A + Ao + A2} 7(1,1) = #1(1) x Fo(1)
#1(0) = exp{Ag} x (1 +exp{As}) m(0) =a(0)
#1(1) = exp{Ag+ A1} x (1 +exp{i2 + A12}) (1)  =m(1)
#2(0) = exp{Ag} x (1 +exp{A1}) m2(0) = #2(0)
(1) = exp{Ag + Ao} x (1+exp{A1 + A12}) m2(l)  =m2(1)

Note that under independence the marginal probabilities do not change and the cell
probabilities are the product of the corresponding marginal probabilities. From Sec-

tion 2.9.3, the likelihood ratio test statistic for single edge exclusion from the saturated

model, LRT:5, equals

ft12(z1,22)

LRT12 =2 g ZI 7%(.’22‘) log (ZE;%) = 2 T 221,226{0,1} ﬁ'm(.’l)l, 172) IOg (m)

_ - #(0,0) o #(0,1)
= 2np [W(O, 0)log (ﬁl(O)ﬁz(o)) + 7(0,1) log (——————ﬁl(o)ﬁz(l)>

N - #(1,0) ~ o #(1,1)
+#(1,0) log (ﬁl(l)ﬁz(o)) +#(1,1)log (7}1(1)7?2(1))] :
(3.17)



It is suggested that the likelihood ratio test statistic is expressed as a function of the

m.l.e. of the A terms in the log-linear expansion of fis, as

LRT1y =2np | —exp{ig}log (exp{;\@} x (1+exp{\}) x (1+ exp{&}))
—exp{Ag + A2} log (exp{;\@} x (1+exp{Aa}) x (1 +exp{As + ;\12})>
—exp{lg + 1 }log (exp{ig} x (1+exp{ln}) x (1 -+ exp{ls + 2}
+exp{Ag + A1 + Az + Arz} (log(exp{;\u})

—log(exp{Aa} x (1 +exp{ie + hiz}) x (1 +exp{As + haa})) | -

Since the sum of the four cell probabilities equals one, Ay is a function of A\, A and
A2, ie., Ag = —log(1 + exp{ A} + exp{ Ao} + exp{ A\ + A2 + A12}).
The likelihood ratio test statistic for single edge exclusion from the saturated model

can also be written as a function of the dependence ratios, as

LRTys =2ng szze{o’l} T12(z1, 22) 71 (z1) T2(z2) log (F12(z1, 22))
=2 g [7"'12(0, O) 7%1(0) 7%2(0) log (’/?'12(0, O)) + 7A'12(O, 1) 7}1 (O) 77'2(1) log (%12(0, 1))

+712(1,0) 71 (1) 72(0) log (712(1,0)) + F12(1, 1) 711 (1) 72(1) log (F12(1,1))] -

The three variables case

Suppose X;, Xo and X3 are three binary variables, cross-classified in a 2 x 2 x 2
contingency table. Using a log-linear expansion, the saturated model can be written
as log fio3 = Ag + A1+ Ao+ A3 + A2 + A1z + Aoz -+ Ajos. Since there are three variables,

there are three possible conditional independencies to test for, namely that:
o X U X5|X34 Hy: Ao = A3 = 0; H, 1 A2, A123 unconstrained;
o X1 U X3|Xo < Hy: A1z = A1z = 0; H, 1 A3, Ajo3 unconstrained;
e Xoll X3| X1 < Hp: Aoz = Aoz = 0; Hy : Agg, A123 unconstrained.

Consequently, there are three different likelihood ratio test statistics for single edge

exclusion from the saturated model, denoted as LRTis, LRT13 and LRT53. In the
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three variables case, a general expression for the likelihood ratio test statistic for the

exclusion of edge 77 from the saturated model is given by

LRT;; = 2nyg Z g (T, T4, k) log </(Uk(x2,x],xk)r (xk)> . (3.18)

zi2;.2ne {01} Wzk(zu xk) Tjk‘(x]7 Ik)

Hence, the values of the three test statistics can be obtained as

- (0,0,0)73(0) . #(0,1,0)73(0)
LRTy = 2ng { (0,0,0)log (———~—————W13(O 07 O)) +#(0,1,0)log (mﬁm(owzﬁum)

+7(1,0,0)log (A0 4 7(1,1,0)log ( Z4H05(0)

7!'13(1,0)74'23(0,0) 1 0) n23(1 0

N #(0,0,1)73(1 . 0.1.1)4
+#(0,0, 1) log (;13((0—1—)3233(%)7)) #(0,1,1)1 ( _FO.11)7s(1) )

13(0,1)723(1,1)

N o [ _F(1,0,1)%3(1) ~ (1,1,1)73(1) .
+7(1,0,1) log (———————mu,l)ﬁ;(o’n) 7(1,1,1)1 (” s )J

713(1 1)1&23 1 1

LRTis = 2ny [77—(0, 0,0) log (M) +#(0,1,0) log (ML)

712(0,0)723(0,0) #12(0,1)723(1,0)

FS o [ _F(1,0,0072(0) - #(1,1,0)72(1)
+7(1,0,0) log <ﬁ12(110)ﬁ2§(0,0)) +7(1,1,0)log (W—ﬁ;(l,mz:a,m)

#(0,0,1)72(0) - #(0,1,1)72(1)
O 0, 1 (m 00)7—232(0 1 ) + W(O’ 1, l)log (ﬁu(O,l)v’rz;(l,l))
#(1,0,1)72(0) - o [ _A(L,1,1)#2(1) .
7(1,0,1)log ( T2 (1000, 1)) +#(1,1,1)log (”"m(l,nﬁzf(l,n)] ’

LRTys = 2ng [#(0,0,0) log (250100 + 7(0,1,0) log (209040 )

7\'12(0,0)71'13(0,0) 712(0,1)713 (0,0)

#12(1,1)#13(1,0)

~ #(1,0,0)71 (1 #(1,1,00%:1 (1)
+#(1,0,0) log (ZESIBI) + 7(1,1,0) log (2R3 )

R 0,0,1)71(0 . #(0,1,1)71(0
+#(0,0,1) log (7;(00)31;((0)1 ) #(0,1,1)log (frm((o,1)f?1;((0,)1))

- Lo \ | 4 #(1,1,1)%1(1)
+7(1,0,1) log ( ZEIBAY + 7(1,1,1) log (AEARRELY |

#12(1,1)713(1,1)

Note that, for example, ma31(0,1,1) = m193(1,0,1) and 731(0, 1) = m15(1,0). In each
of these three formulae the m.l.e. of the cell probabilities under the saturated model,

7(x), are
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#(0,0,0) = exp{ig}

#(0,0,1) = exp{ig + A3}

(0,1,0) = exp{Ag+ A2}

7(0,1,1) = exp{;\@ + Ao+ A3 +;\23}

(1,0,0) = exp{ig + A1}

(1,0,1) =exp{;\@+;\1 +;\3+5\13}

#(1,1,0) :exp{jxg)+5\1 +;\2+;\12}

(1,1,1) = exp{Ag + A1 + Ao + Az + Ao + A1z + Aoz + Aras}

N

1

1>

$H

i

N

!

i

#1(0) = exp{ig} x (1 +exp{Az} +exp{is} +exp{i2 + Az + 5\23})
#1(1)  =exp{ig + A1} x (1 +exp{Az + A1z} + exp{As + A3} + exp{i2 + Az + Az + Az + Aos + 5\123}>
w2(0) = exp{j\@} x (1 + exp{;\l} + exp{j\g} +exp{A1 + Az + ;\13}>
72(1) = exp{Ap + A2} x (1 +exp{A1 + A2} +exp{As + Azz} +exp{A1 + Az + Az + Aiz + Aoz + ;\123})
#3(0) = exp{Ag} x (1 +exp{A1} +exp{A2} +exp{i1 + A2 + 5\12})
#3(l) = exp{;\g, + ;\3} X (1 -+ exp{j\l + 5\13} -+ exp{;\z + 5\23} + exp{;\1 + Ao+ A1z + A1z + Aoz + 5\123}>

#12(0,0) = exp{Ag} X (1 +exp{As})

#12(0,1) = exp{Ag + Ao} x (1 + exp{As + Azs})

12(1,0) :exp{;\@+;\1} X (l+exp{;\3+;\13})

712(1,1) = exp{Ag + A1 + A2 + A2} x (1 + exp{As + A1z + Aoz + A12s})

#13(0,0) = exp{Ag} x (1 +exp{A2})

#13(0,1) = exp{Ap + Az} x (1 +exp{o + Aaz})

#13(1,0) = exp{ho + A1} x (1 +exp{is + A12})

#13(1,1) = exp{Ag + A1 + Az + Az} x (1 +exp{Aa + A2 + Aoz + A12z})

#23(0,0) = exp{ig} x (1 +exp{A1})
703(0,1) = exp{g + Az} x (1 + exp{A; + A13})
#93(1,0) = exp{igp + Ao} x (1 + exp{A\1 + A12})
F23(1,1) = exp{lg + Ao + Az + Aoz} x (1 +exp{A 4+ A1z + Aiz + Aizz})
Since the sum of the eight cell probabilities equals one, Ap is a function of the
remaining A (A1, Ao, Az, A12, A13, Agg and Aja3), e,

Apg = —log <1 + exp{j\l} + exp{j\g} + exp{ig} + eXp{;\l + ;\2 + ;\12} -+ exp{;\l + 5\3 -+ X13}
+exp{Aa + Az + Aoz} +exp{h + Ao + A3 + A2 + Az + Aoz + ;\123}> .

The likelihood ratio test statistic for single edge exclusion from the saturated model

can also be written as a function of the dependence ratios, as
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Fign(Ti,25,28)

LRT; = 2nyg Zliyzjvxke{al} Tisk (22, 25, 2x) log (ﬁk(?—“z‘,xk) @k(%%)) : (3.19)

3.4.2 Wald and score test statistics for single edge exclusion

from the saturated GLL model

A general expression for the Wald and the score test statistics for single edge exclusion,
in GLL models, is given in Section 2.9.3, following Smith (1990, Section 5.5). Recall
that, under the null hypothesis of conditional independence, the test statistics are y?
distributed, the number of degrees of freedom being given by the number of parameters
set to zero. The two test statistics are now written as a function of the cell probabilities,

for the two and the three binary variables cases.

The Wald test statistic

In the two variables case, the Wald test statistic for single edge exclusion from the

saturated model is

Waldyy = mo [logd;w]z — " [log(%g%—j%%)]z ) (3.20)

1 1 1 1
#(0,0) + #(0,1) + #(1,0) + #{1,1)

1 1 1 1
7(0,0) + #(0,1) + #(1,0) + 7{1,1)

The null hypothesis is that variables 1 and 2 are independent, i.e., ¥ = 1 < logiy =
0 < A2 = 0 and the alternative hypothesis is that Aj is unconstrained. An extension
to the three variables case is now proposed. There are three possible Wald test statistics
for single edge exclusion from the saturated model, denoted as Waldy2, Walds and
Waldys. The Wald test statistic for the exclusion of edge 12 from the saturated model,
with null hypothesis that both Aj3 and Aj93 are zero (and alternative that both are
unconstrained), equals

- T -1 -

A2 K[3,3] KI7,3] A2

Waldys = nyg . ) ) .
A123 K[7,3] KI[7,7] A123

?

where K(3,3] = =5 + 505 + 5000 T sy A3 = —K[3,3] and K[7,7] =

K[3,3] + 7500 + o0 T Ao T sroD (recall the inverse information matrix K is

given by Equation 2.5).
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Substituting in the above equation gives

N2 . . 2
Wald (/\12) ()\12 + )\123>
atliz = Ty 1 1 T T T 1 1 ]
70,00 T 7050 T oo T ALLY)  m000 T oD T ALeD T ALLD

This simplified formula for the Wald test statistic for testing the conditional in-
dependence between variables 1 and 2 given variable 3 has two terms. FEach term
corresponds to a category of the binary variable 3, the variable being conditioned on.
The numerators are the square of the conditional log odds ratio between variables 1
and 2 for each level of variable 3. The denominators are asymptotic variances (of the
m.l.e. of the X) for each category of variable 3.

More generally, it is suggested that the Wald test statistic for the exclusion of edge
ij from the saturated GLL model (with three binary variables) is given by

[log (s .k=0)]2 i [log(w; x= 1)]2 }

1 1
iny zj €{0,1} Tijk (75,7 ,2=0) ZI z; € {0,1} Rijk (z4,75,2=1)

— ng {z G () _.._}

z; z; € {0,1} #ijk (24,7 5,2 =0) in, z; € {0,1} ik (T4e% T =1)

Waldij ) {
(3.21)

The score test statistic

From Section 2.9.3, in the two variables case, the score test statistic for single edge

exclusion from the saturated model is

Scorers = ng (I'12)? K3, 3],

where I'15 = #(1,1)—#1(1) #2(1) and K[3,3] = W(é 5 +ﬁ(31) +7.r(110) +ﬁ(111). Constrained
under the null hypothesis of independence between variables 1 and 2, the last term can

be further simplified as

> _ 1 1
KB.3 =smame * soeD T a0R0 T 500

_ F1(1) #®a(1) + 71 (1) 72(0) + #1(0) #2(1) + #1(0) #2(0) _ _ 1
- 71(0) 71(1) #2(0) #2(1) t %1(0) #1(1) 72(0) #2(1) "

Therefore,

_ mp [F1,D)=#1 (1) #2(1)]?
Scoreyy = 7.?1(0) PGy 500 ;2(1) i (3.22)
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One should note that
#(1,1) — 71 (1) #2(1) = #(1,1) — [#(1,1) +#(1,0)] [#(0,1) + 7(1,1)]
L= #(1,1) [ = #(0,1) — #(1,1) — #(1,0)] — #(1,0) #(0,1)
= #(0,0) #(1,1) — #(0, 1) #(1, 0).

Consequently, the score test statistic can also be written as

_ ng [#(0,0) #(1,1)—#(0,1) #(1,0)]*
Scorery = T R 700 7201

which is Pearson’s chi-square statistic for independence, usually written in cell counts
(see Agresti, 1996, page 52), here expressed in cell probabilities.

An extension to the three binary variables case is now derived. The score test
statistic for the exclusion of edge 12 from the saturated model, with null hypothesis

that both A;2 and A1g3 are zero (and alternative hypothesis that both are unconstrained)

equals

Scoreis = ng

% _ 1 1 1 1
K[3’ 3] — #%(0,0,0) + #(0,1,0) + #(1,0,0) + #(1,1,0)

#3(0) + #3(0) #3(0) #3(0)
’fT13(O,0) frzs(0,0) ﬁ'lg(0,0) ’/:1‘23(1,0) 7”1'13(1,0) ’frzs(0,0) 'fr13(1,0) fr23(1,0)

_ [#3(0)]3
Tttt T #13(0,0) #13(1,0) 723(0,0) #*23(1,0)

—K3,3]

=

=~

=
[

o — K #3(1) #3(1) #3(1) #3(1)
K[7,7 = K[373} + 7'r13(0,1§7“r23(0,1) + ﬁ13(0,1§ﬁ23(1,1) + ﬁ13(1,15);77'23(0,1) + 73'13(111;%23(1’1)

_ 73 0)° N [rs (1
Tt T #13(0,0) #13(1,0) 723(0,0) ®23(1,0) #13(0,1) #13(1,1) ®23(0,1) #23(1,1)

A #13(1,0) #23(1,0) #13(1,1) #23(1,1)
P = fip(1,1) - (2202600 o 50 2a00)]

77 7}13(1)1) 7’%23(1’1)

l/123 = ’/%(17 1, 1) - 7}3(1)
once evaluated at the m.l.e. Performing the substitutions and simplifying the results

gives
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. [%(1,1,0) #3(0)~#15(1,0) ﬁ23(1,0)}2 73(0) [7(1,1,1) *3(1)—713(1,1) * 3(1,1)]2 73(1)
Scorerz =y { #1300.0) F1a(L0) 7(0.0) 7(10) T F13(0.0) Fia(L]) a(0.0) (D) [ -

The proposed formula for the score test statistic, for testing the null hypothesis of
conditional independence between variables 1 and 2 given variable 3, has also two
terms, corresponding to the two categories of the variable being conditioned on. The
denominators are the product of all marginal probabilities for each category of variable
3.

More generally, it is suggested that the score test statistic for the exclusion of edge

ij from the saturated GLL model (with three binary variables) is given by

N . . o 2. . - . N 2
Scores — m [#e55(1,1,0) #(0) =74k (1,0) 755 (1,0)]” #x(0) | [Feje(1,1,1) #x(1) =ik (1,1) #5(11)]” k(1)
Y 0 Iz e 00,13 Fon(@i,Zh=0) 75k (25, Zk=0) Iz, .z eq0,) Fik(@i@r=1) T35(25,Zk=1)
(3.23)

3.4.3 Signed square-root versions of the tests statistics for sin-

gle edge exclusion in GLL models

Only the two variables case is considered when studying the signed square-root versions
of the test statistics in GLL models, since in the presence of three (or more) variables
the test statistic for single edge exclusion from the saturated model depends on two
(or more) parameters. Therefore, it becomes unclear for which parameter to consider
the sign. One-sided tests should be used when the analyst is interested in testing for
a positive association between the two variables, which corresponds to an odds ratio
greater than one (and a log odds ratio greater than zero).

In GG models the parameter of interest is the partial correlation coefficient and its
sign is considered. In GLL models the logarithm of the odds ratio %15 is the parameter
of interest. A positive association corresponds to ¥y > 1 & log;s > 0. The sign of

the test statistic is negative if ¥5 < 1 < logws < 0.

It is proposed that the signed square-root version of the LRT statistic for single

edge exclusion from the saturated model, denoted as LRT", is obtained as

LRT;;‘WL = sign[log 1&12] \/2 g Zm,zzE{O,l} T12(%1, 22) log (%) (3:24)
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Similarly, the signed square-root version of the Wald test statistic for single edge ex-

clusion from the saturated model, denoted as Wald{¥", is given by

Walds¥™ = log s \/ Zo (3.25)

T 1 T T
7om T ion T Ao T EaD

and the signed square-root version of the score test statistic equals

Scored¥™ = [#(1,1) = #1(1) #2(1)] \/MO) TR (3.26)

As in the Gaussian case, under the null hypothesis of independence the signed square-

root versions of the three test statistics are normally distributed.

3.5 Normal Approximations to the Distributions of

the Test Statistics in GLL Models with Two
and Three Variables

The aim of this section is to derive asymptotic normal approximations to the distri-
butions of the test statistics for single edge exclusion from the saturated model (LRT,
Wald and score test statistics) in graphical log-linear models with two and three bi-

nary variables, under the alternative hypothesis that the saturated model holds. The

delta-method is used.

3.5.1 Using the LRT statistic

A reasoning similar to that followed in Section 3.1.1 is now going to be used to obtain
the asymptotic distribution of the LRT statistic for single edge exclusion from the
saturated model, under the alternative hypothesis that the saturated GLL model holds,
using the delta-method.

The vector of parameters of interest is now § = vec(A), and its m.lLe., based on ny
observations is § = vec()). Recall that, since f is the m.lLe. of 6, it has an asymptotic
normal distribution with mean 6 and variance given by the inverse of the information
matrix. If K is the inverse information matrix based on a single observation (as defined

in Section 2.7.2), var(§) = Ela K. Using the delta-method, if f(6) is differentiable at 0,

N {f(é)-f(e)} —D-»N(O, [(%éﬁf K (‘%gl)D
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In this chapter fLET () = ;le LRT,. For example, in the two variables case,

7T12(l"17$2) )
)

7T1(561)71’2(1132)

LET(9) = 2 Z m2(21, Z2) log (

z1,72€{0,1}
since LRT1s is given by Equation 3.17.
The function fERT is differentiable at @ provided all cell probabilities and all A are
different from zero. In the remainder of the chapter var(LRT,) and cov(LRT,, LRT,)
denote, respectively, the variance and the covariance of the test statistics in the

asymptotic distribution where, for notational convenience, LRT, = ng f,LRT(é) and

LRT™ = /g fsiomtF7 (§).

In the two variables case, § = vec(j\) = [5\1 Ao ;\12]T and 6 = vec(A\) = [A Ag Apo]?.
Therefore, applying the delta-method, the expected value of the LRT statistic, in the

asymptotic distribution, equals

AFE[LRTy5] =2ng 221,3?2"5{071} m12(Z1, Z2) log (;—E%) , (3.27)
and the variance in the asymptotic distribution is obtained as
var(LRT1,) = ng AT K A,

where K is given by Equation 2.4 and A is the vector of the derivatives of fLf
with respect to A1, Ay and Ajs. In order to obtain such derivatives it is necessary to
calculate the derivatives of each of the four cell probabilities, as well as of each of the
four logarithmic terms, with respect to the three A. Note that, \g is also a function of
A1, A2 and Ajp. All these derivatives can be expressed in cell probabilities, as shown in
appendix Tables A.1 and A.2. When all the derivatives of fZ7*7 with respect to the )

are written as a function of the cell probabilities, the vector A is of the following form

Off5™ Jon
A =1 0TI | =
| OffE™ /O

[ —m(1 (1,0 (1,1 ]
_7116(-2 AFE[LRT13] + 2 ['ﬂ'(l, 0) log (W) +m(1,1) log (W(Ll—)ﬂ

— —ma(1 (0,1 w(1,1
= | =220 4B[LRT:,) +2 [71'(0, 1) log (—-——m(o)m)(l)) +7(1,1) log (m(fm?(l))]

—7(1,1) , m(1,1)
T AE[LRTy2] +2 [Tr(l, 1) log (Wﬂ
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Multiplying ng AT K A and simplifying the resulting expression by writing it as a

function of cell probabilities, 7, gives the following result

var(LRTyo) = 4mg |7(0,0)log” (5% ) +7(0, 1) log” (575241

+7r(1,0)10g2( m(L0) )+w(1,1)10g2 (—*—)—“nl?f;é(l))]

m1(1)72(0)

(AE[LRT,))?

L
ng

=419 3, seqory T12(21, 72) log” (————Wf‘(fff;j@’ﬂ) — = (AE[LRTy)).
(3.29)

In the three variables case, 6 = vec(j\) = [5\1 5\2 5\12 ;\3 ;\13 5\23 ;\123]T and 0 =
vec(A) = [A1 A2 A2 Az A1z Agz A1a3)7. Applying the delta-method, the expected values
for each of the three LRT statistics for single edge exclusion from the saturated model,

in the asymptotic distribution, are given by

r‘ijk(xi,a:j,xk)m(xk)> . (3.30)

AE[LRT;;] =2 ik (s, T5, Tr) log
[ 5] np Z Tigh (20, 25, k) 10 <7rik($i,$k)7fjk($j7$k)

z5,25,2£€{0,1}

The variance matrix of the three likelihood ratio test statistics, for single edge exclusion
from the saturated GLL model, is a 3 x 3 symmetric matrix and equals ng AT K A,
where K is given by Equation 2.5, and A is a 7 X 3 matrix, having in each column the
derivatives of z%RT with respect to the seven A. The derivatives of A\, as well as those
of each of the eight cell probabilities, and those of the logarithmic terms of each of the
igRT, with respect to the vector of seven A, once expressed in cell probabilities, are
presented in appendix Tables A.3, A.4 and A.5. So are the various elements of the

matrix A, written as a function of the cell probabilities (Tables A.6 and A.7).
In conclusion: it is proposed that the variance (in the asymptotic distribution) of

the LRT statistic for the exclusion of edge ¢j (with ¢ and j distinct, from 1 to 3) from

the saturated GLL model is expressed in cell probabilities, as

2 Wi ( iyLgy )7T ( )
var(LRT;;) = 4ng Zzi@j,xke{o,l} 7556 (Zs, Tj, Tr) 10g (Tlﬁ;z?) frjk(z};zt)) -
3.31

~ L (AE[LRT;))

87



Analogously, the covariance (in the asymptotic distribution) between the LRT statistic
for the exclusion of edge ij and the LRT statistic for the exclusion of edge ik (with

¢, 7 and k distinct, from 1 to 3) from the saturated GLL model is expressed in cell

probabilities, as

cov(LRT;;, LRTy) =

ik (T4,25,Tk) Wk(xk)>

_ e o o [ Fijk(EiTs i) m5(x5)
dng Zl‘z‘@j:zke{ovl} [W”k(x“xj’xk) log (Wik(zivl‘k) ik (T5,2k) log <7rij(1iy1j)7"kj(1‘k::rj)

—:L (AE[LRT;]) (AE[LRTy]).
(3.32)

A small simulation study was performed, validating the formulae presented for the
variance structure (in the asymptotic distribution) of the three test statistics for single
edge exclusion from the saturated model. One thousand contingency tables with a
certain cell probability structure were generated. Two different sample sizes, ng, were
used: 1000 and 10000. For each of the tables, the values of the three likelihood ratio
test statistics for single edge exclusion from the saturated model were calculated and
stored. Then, for each sample size, the variance matrices of the one thousand values
of the three test statistics were obtained.

The vector of cell probabilities used, in standard cell order, is
7(z) = [0.05 0.05 0.1 0.1 0.2 0.1 0.15 0.25]".

The theoretical values obtained using the six formulae proposed above can be compared

to the simulated values:

theoretical | simulated || theoretical | simulated

values values values values

ng =1000 | ng =1000 | ng= 10000 | ny = 10000

var(LRT12) 98.400 102.792 984.004 991.077
var(LRT}3) 69.317 74.935 693.170 682.474
var(LRT53) 227.909 224.088 2279.089 2308.754
cov(LRT12, LRT}3) 68.042 70.386 680.421 677.314
cov(LRTy2, LRT»3) 68.263 71.101 682.630 692.646
cov(LRTy3, LRT?3) 66.516 69.199 665.164 651.256

88



Additionally, for both sample sizes, ten batches of 1000 repetitions each were per-
formed, and for each of them the variances and covariances of the three test statistics
were calculated and stored. Finally, 95 and 99% confidence intervals for the mean

variances and mean covariances were obtained, as follows:

CI for p 95% 99% 95% 99%
ng = 1000 ng = 1000 ng = 10000 ng = 10000

var (LRT12) (99.79;108.40) | (97.91;110.28) || (946.03:1019.89) | (929.91;1036.01)

var (LRT:3) (72.03; 78.0) (70.73; 79.31) (675.36;716.28) (666.43;725.21)

var (LRT33) (224.53;246.25) | (219.79;250.99) || (2242.27;2334.95) | (2222.03;2355.19)
cov (LRT12, LRTi3) (68.52;74.17) (67.29;75.40) (653.98;703.54) (643.16;714.36)
cov (LRTy2, LRT:3) || (65.73;73.30) (64.08;74.96) (624.48;723.71) (602.81;745.37)
cov (LRTy3, LRTy3) || (65.27;73.22) (63.53;74.95) (629.44; 698.59) (614.35; 713.69)

The proposed theoretical values lie inside the boundaries of the confidence intervals,
not only at a 99% confidence level, but also at 95%, when the sample size is big
ng = 10000. For a sample size of 1000 theoretical values are inside the limits of the
confidence intervals at a 99% confidence level, but some values are outside when a 95%
confidence level is considered. These results confirm that the proposed formulae for
the variances and the covariances of the likelihood ratio test statistics, for single edge

exclusion from the saturated model, hold asymptotically.

In conclusion: the LRT statistic for single edge exclusion from a saturated GLL
model with two or three binary variables, under the alternative hypothesis that the
saturated model holds, has an asymptotic normal distribution with means given by

Equations 3.27 and 3.30, and variances and covariances given by Equations 3.29, 3.31

and 3.32.

3.5.2 Using the Wald and the score test statistics

In the case the Wald test statistic is used, with two variables,

Wald [log(ZG6H=Es )}2

12 =

1 1 1 1
7(0,0) + 7(0,1) + 7(1,0) + 7(1,1)

= A, / [exp{=Ap} (1 +exp{=Az} +exp{—Ai} +exp{=A1 — A2 = A12})].
Applying the delta-method, the expected value of the Wald test statistic, in the asymp-
totic distribution, equals

no [log( 20 200)]" (3.33)

1 1 1 s 1
7(0,0) + oo T o T 7(1,1) ’

.AE[WCLZdIQ:I =
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and the variance in the asymptotic distribution is obtained as
var(Waldys) = ng AT K A,

where K is given by Equation 2.4 and A is the vector of the derivatives of f5%? with

respect to Ay, As and Ajq, expressed in cell probabilities as follows

[ 5 wald
8f12%/0M
— Wald —_
A = Of15%% /02 =
Wal
| Of15 %92
[ 1 SRR
1 il TR,
;L—AE[Waldm] —7T1(1)+ DI WIS SR |
0 «(0,0) 7 7=(0,1) 7(1,0) 7(1,1)
1 41
= LAE[VVald —ma(1) 7(Q1) x(Cl)
= 12 mo{l) + — i i 1
o ] o0 TR T Rae T EaD
1
1 % 2log y1»
E_AE[WaldH] —m(1,1) + — T 1 w_*_) T 1 B R S— % I 1
L e 70,00 TR0 T L) T wL) =00 T 7o T o T o J

(3.34)
It is suggested that, in the two variables case, the variance of the Wald test statistic,

in the asymptotic distribution, simplifies to

o 1 _ 1 _ 1 1
log y12 [(ﬂo,on? =o,107 _ LonZ <w(1,1))2q

1 1 1 1
(7% * 760 + =00 * o)

var(Wald12) = 4AE[W&ZCZ12] [1 -+

1 > | ZooR T GooR T auoR T Gans
(0,0 7=(0,1 (1,0 (1,1
+.7.’l—q_)— (AE[[’[’ aldlg]) n T " ] 5 - 1.
(w(o,o) +30 oo T w(l,l))
(3.35)

In the three variables case, when applying the delta-method, the expected values,
in the asymptotic distribution, for each of the three Wald test statistics for single edge

exclusion from the saturated model are given by

- 2 " 2
[1Og(wij.k=0)] [log(wij.kzl)}
AE[WCleU] = Ny T + - — i?/ald‘
Zl‘i,xje{o,l} sk (T1,25,Z,=0) in,CEjE{O,l} m
(3.36)

The variance matrix, in the asymptotic distribution of the three Wald test statistics for
single edge exclusion from the saturated model, is a 3 x 3 symmetric matrix and equals

ng AT K A, where K is given by Equation 2.5, and A is a 7 x 3 matrix, having in
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each column the derivatives of f/*? with respect to the seven A. Each of the elements
of the matrix A can be written as a function of the cell probabilities, as presented in
appendix Tables A.8 to A.10.

It was not possible to obtain a nice simplified formula for the variances and covari-
ances of the three Wald test statistics. For further calculations the several pages long

formulae produced by MAPLE were used.

In the case of the score test statistic, with two variables,

fSeore . [rLD)-m() mM)? . [wAD-m(1) m(1)?
12 m1(0) w1 (1) 72(0) 72(1) — [1-m1(1)] m2(1) 1—m2(1)] m2(1)"

Expressing directly £ as a function of the three ) and differentiating it with respect
to A;, A and Aj» was not easy because of the complicated expressions that were ob-
tained. The decision was made to obtain such derivatives indirectly, by differentiating

Seore with respect to the 7 and then the 7 with respect to the A, i.e.,

8f1.92cm»e _ 971 aflszcore
oN  Ox om

where 7w and A are 3 x 1 vectors with 7;(1), me(1), w(1,1) and Aj, Ao, A1o, Tespectively.

For example,

ofm _ om(1) OfFT | Om(1) OFFTC | on(L1) OfF
8/\1 (9/\1 37r1(1) (9/\1 671'2(1) 3)\1 (97('(1, 1) )

Analogously for the derivatives with respect to Ay and Ajp. After some calculations

these derivatives can be expressed in cell probabilities, as follows

afggere | —2{n(1,1)-m() ma(1)} | _ rScore _ 1—2mi(1)
(1) | m() [I-m(1)] Q—m2(1)] 12 7 1) [1-m(1)]
afggere _ —2{7T(1,1)—7r1(1)7«'2(1)}]__ Score __1—2ma(1)
am2(1) | [I=m(1)] m2(1) A—m2(1)] 12 (1) [I-m2(1)]
affgere 9 m12—71(1) 72(1)

ox(L,1)  “ m(Q1) A—m(1)] m2(1) [1-m2(1)]
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Consequently,

F' S
afmcore/a)\l

A = afl%core/a/\Q —
] afl%core/a/\m
r w(1,1) =1 (1) 72(1)} [1=272(1)] ]
%AE[Scm’eu] [1 —2m (1) — U 71’21((1))[12—(71-;)2%1[)] ( )4]
(1,1)—71(1) w2(1 1-27
- L AB[Scorep) [1 - 2my(1) — EOD=m B0 -t
1 1 L 2{lem)—ma()=r(1,1) 42 m (1) ma(1)
y ABlScorers]n(1,1) {4" ey B o) e (R V=t )y R }] 1

i (3.37)
Applying the delta-method, the expected value of the score test statistic, in the asymp-

totic distribution, simplifies to

AE[Scoreyy] = melrla-m() ma()” (3.38)

71{0) 71(1) 72(0) 72(1) ?

and the variance, in the asymptotic distribution, is obtained as
var(Scoreis) = ng AT K A,

where K is given by Equation 2.4 and A is given by Equation 3.37. Calculations
where made by hand and using MAPLE. However, it was not possible to obtain a nice
simplified formula for the variance of the score test statistic (as had been in the case of
the LRT and the Wald test statistics). For that reason a final expression for the variance
is not presented here. Additionally, the decision was made not to consider the three
variables case, due to the complexity already existent in the two variables case. Hence,
the specific calculations for obtaining the variance of the score test statistic, in the
three variables case, were not performed. Yet, the expected values, in the asymptotic

distribution, for each of the three score test statistics for single edge exclusion from the

saturated model are given by

AE[Score;;]

2
0 [7ix(1,1,0) 72 (0) =% (1,0) e (1L0)]” 7k (0) | [magu(1,11) me(D)=mag (1,1) w3 (1,1)]” me (1)
B Iz, 2 €013 Tin (T5,Tk=0) Tjk(T;,Tk=0) [z, 05100} Tk (@aZh=1) 75k (25,7k=1)

(3.39)
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3.5.3 Using signed square-root versions of the test statistics,
in the two variables case

The aim of this section is to derive the asymptotic distributions of the signed square-
root versions of the test statistics for single edge exclusion from the saturated GLL
model, in the two variables case, under the alternative hypothesis of non-independence.
The delta-method is used, as in previous sections.

In the case of the signed square-root version of the LRT statistic,

signLRT . 7T12($17~T2)
= signllog ¥ 2 E T To)1 e Wi oL
12 g [ g1 12] /&12(331, 2) 0g <7T1 331)7?2(:162)

z1,22€{0,1}

In the case of the Wald test statistic,

: 1
Wald ,
f;gn “ = ]‘ngIQ 1 + n T
=00 T 71'(0 ) ( 5 T D

and in the case of the score test statistic

signScore __ T - o 1
2 = () (1) ma (1) \[1(0)#1(1)71’2(0) m2(1)

Using the delta-method, and under the alternative hypothesis that the saturated model

holds, the signed square-root versions of the three test statistics for single edge exclu-

sion, in GLL models, are asymptotically normal distributed:

LRTH™ 2 N (AE|LRTE™), var(LRTS™))

Wald$" N (AE[W aldi¥™), var(Wald;s™))

Scorel¥™ 2. N (AE Scorel¥™, var(ScoreSd™)) ,
12 12

where
AE[LRTszgn] \/——— szgnLRT7 AE{W ldszgn] \/——- szgnWald

AE [SCOT‘eswn} \/— szgnSco're

As in Section 3.1.5, the variance of the signed square-root versions of the test statistics
can be obtained by applying the delta-method a second time, the new A matrix having
the derivative of the signed square-root version of the test statistic being considered
with respect to the non signed one. For example, in the case of the LRT,

5 fszgnLRT 0 (sz'gn[log Y12 \/JT{‘;ﬁ ) , 1
P = FLT = signllog vl
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Hence,
1

4 AE[LRT,) (3.40)

var(LRT™) = var(LRTy,)

where var(LRT1,) is given by Equation 3.29 and AE[LRT)s] is given by Equation 3.27.

Analogously,
1

var(Waldi$™) = var(Waldys)

where var(Waldy2) is given by Equation 3.35 and AE[Wald;»] is given by Equation 3.33

and
1

4 AE[Scoreys]’ (3-42)

var(Scorels™) = var(Scores)

where AFE[Score;s] is given by Equation 3.38.

In brief: asymptotic normal approximations have been derived to the distributions
of the non-signed and the signed square-root versions of the three test statistics for
single edge exclusion from the saturated GLL model. The possibility of an alternative

approximation is studied in the next section.

3.6 Non-central x> Approximation to the Distribu-
tion of the LRT in a GLL Model with Two Vari-

ables

Similarly to what was undertaken in Section 3.2, the current section proposes a non-
central chi-square approximation to the distribution of the likelihood ratio test statistic
for single edge exclusion from the saturated GLL model with two binary variables, at
a local alternative. Section 3.7 compares the quality of the non-central chi-square
approximation to that of the normal approximation derived in Section 3.5.1.

A brief explanation on how to obtain the non-centrality parameter ¢ follows. The
null hypothesis is that Ao =0 & Y10 =1 & logyrs = 0. Consequently, the distance

from the null is measured as § = /ng (log 12 —0). The non-centrality parameter equals
o =067 (K[3,3])7" 6,

where K(3,3] is the element of the inverse information matrix associated with the

restriction in Hy, i.e., associated with A;;. From Section 2.7.2, K3, 3] = ;@1—@ + ﬁ(—éﬁ +

94



w(110) + ﬁ(ll - Therefore,

¢ = =

i 1 i T~ , -
7(0,0) + #(0,1) + 7(1,0) + 7(1,1) ASE(logny)

. 2
ng 10g2 (P { AE[log 1] } . (3.43)

Note that ¢ can also be obtained as the square of the ratio of the mean of the log
transform of the sample odds ratio, in the asymptotic distribution, over its asymp-
totic standard error. Also note that the non-centrality parameter equals the mean of
the Wald test statistic in the asymptotic normal distribution, i.e., ¢ = AE[Walds,].
Although the three variables case is not considered, it is possible to conclude that
the non-centrality parameter of a non-central chi-square approximation to the LRT
statistic, under the alternative hypothesis that edge 75 is present in the model, equals

AE[Wald,;], given by Equation 3.36.

3.7 Quality of the Two Approximations, in GLL
Models

In the two binary variables case, under the null hypothesis of independence (Ao =0 <
112 = 1), the asymptotic distribution of the likelihood ratio test statistic for single edge
exclusion from the saturated GLL model is x3. Under the alternative hypothesis that
the saturated model holds, (using the delta-method) the asymptotic distribution of the
likelihood ratio test tends to the normal distribution, as derived in Section 3.5.1, as ng
tends to infinity. At A = 0 (or ¢;2 = 1) the asymptotic distribution is degenerate,
with mean zero and variance zero. The normal approximation holds for ng at infinity,
but it is poor for ng finite.

As in Section 3.3 (for GG models), a simulation study was used to assess the
quality of the two proposed approximations (normal and non-central chi-square) to
the distribution of the LRT statistic for single edge exclusion from the saturated GLL
model with two binary variables, for various values of ng. First, a brief explanation
on how the simulation study was conducted is given. Then, the histograms of the
empirical distribution of the LRT statistic are plotted, with a normal curve overlapping,
corresponding to the proposed theoretical normal approximation. Two different sample
sizes and several combinations of odds ratios and marginal probabilities are used. The

quality of the normal approximation is assessed. Finally, p-p plots are produced,
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allowing the comparison between the quality of the normal and of the non-central
chi-square approximations. Some guidelines are given as to when each of the two
approximations performs better.

The parameters for the simulation study were chosen as follows. In a 2 x 2 con-
tingency table there are four cell probabilities that add up to one, therefore three un-
knowns. Alternatively, one can consider two fixed marginal probability values, say 71 (0)
and m2(0), and a given odds ratio value (1;5) and obtain the corresponding cell probabil-
ities. Indeed, for a given combination of 71 (0), 72(0) and 15 the four cell probabilities
can be written as: 7(0,1) = 71(0) — 7(0,0); #(1,0) = w(0) — x(0,0); w(1,1) =
1 — m(0) — m2(0) + 7(0,0). If ¢12 = 1, then 7(0,0) = 71(0)m2(0). If 912 # 1, since

7(0,0)7(1,1)  w(0,0) (1 — m1(0) — m2(0) + 7 (0, 0))
(0,1

Y2 0. )7(1,0) . (71(0) — 7(0,0)) (ma(0) — 7(0,0)) ’
0.0 = Qw1 V=) w0 m0) = TP+ 0 = i) fre 1 (O)72(0)]
T, 2 2(1 — ¥12) 2(1= ¥12) ‘ |

The decision was made to fix the values of m1(0), 72(0) and 2.

Because of the way the two marginal probabilities were chosen, there are several
types of symmetries that can be taken into account when using 71(0), 72(0) and %15 to
calculate either the likelihood ratio test statistic (from Equation 3.17) or the probability
of selecting the saturated model (Section 4.2.1). In brief:

e symmetry due to the swapping of m;(0) and m2(0): for a given 12, the value of

LRT5 is the same for 71(0) = z; m2(0) = y and for 71(0) = y; 72(0) = z;

e symmetry related to complementary marginal probability values: for a given
112, the value of LRTs is the same for m1(0) = z; 72(0) = y and for m(0) =
1—y; m2(0) =1 —

e symmetry when one of the marginal probabilities equals 0.5: for a given )y, the
value of LRT, is the same for m1(0) = 0.5; 73(0) = y and 7;(0) = 0.5; 72(0) =
1 —y; or for m1(0) = z; 72(0) = 0.5 and m(0) = 1 — z; m(0) = 0.5.

Besides, there is a ‘reciprocal (inverse)’ symmetry due to the value of the odds ratio.
Indeed, the value of LRT}, is the same for ¢ = 2, m(0) = z, m(0) = y and for
P1g = 1/z, m(0) =1 — z, m3(0) = y.

Due to these symmetries, only some combinations of marginal probabilities and

odds ratio are considered. 1o takes values from 1 to 4, m1(0) from 0.1 to 0.9 and

79(0) from 0.1 to 0.2. Figure 3.4 shows histograms of the empirical distribution of the
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likelihood ratio test statistic, for the chosen combinations of marginal cell probabilities
and odds ratio values. The sample size equals 1000 observations. Each of the eight
rows corresponds to a different combination of cell marginal probabilities 71(0) and
72(0): from top to bottom of the plot, 0.1 and 0.1; 0.3 and 0.1; 0.5 and 0.1; 0.7 and
0.1; 0.9 and 0.1; 0.3 and 0.2; 0.5 and 0.2; and 0.7 and 0.2. Two different colours are used
to highlight a change in marginal probabilities. Each of the six columns corresponds
to a different odds ratio value: from left to right, ¥ = 1,1.5,2,2.5,3 and 4. In each
histogram the horizontal axis corresponds to the range of values obtained for LRT}, for
the combination of cell probabilities used. In each plot there is a blue curve overlapping:
it represents the density of a normal distribution with mean and variance given by
Equations 3.27 and 3.29. The aim is to detect how close the simulated values are to
the theoretical normal approximation proposed. The green line in the first column
plots represents the density of a chi-square distribution on one degree of freedom. The
histograms show that, as expected, the distribution of LRT}» looks chi-squared on one
degree of freedom for 112 = 1. For 115 # 1 the distribution of LRT}> tends to the
normal as the odds ratio increases, faster for less unbalanced combinations of marginal
probabilities (as happens for 7;(0) = 0.3 or 0.5 and 72(0) = 0.2). Indeed, for less
unbalanced combinations of marginal probabilities, normality seems to be achieved for
an odds ratio value around 2. An odds ratio of at least 2.5 seems to be required for

more unbalanced combinations of 7;(0) and m2(0).

It is worth taking into account the minimum expected counts in each cell, for the
different combinations of marginal probabilities and odds ratio values, with a sample
size of 1000. A minimum expected cell count of 10 is obtained with an odds ratio of
1 and m(0) = m2(0) = 0.1. When 72(0) = 0.1 and 7;(0) = 0.9 a minimum expected
cell count of 7.1 is obtained with ¢ = 1.5, whereas values of ¥ of 3 and 4 lead
to minimum expected cell counts of 3.8 and 2.9, respectively. For this reason odds
ratio values greater than 4 were not considered in the simulation study. For more
balanced combinations of marginal probabilities, for example 0.3 and 0.2, or 0.5 and
0.2, the minimum expected cell counts equal 60 (for 115 = 1) and 48.86 (for 112 = 4),
respectively. In brief: the most unbalanced combinations of marginal probabilities
are the ones that should be looked at more carefully when drawing conclusions, since
they are more likely to correspond to situations of very small expected cell frequencies.

Expected cell counts associated with the different combinations of 71 (0), m2(0) and 1
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Figure 3.4: Histograms of the empirical distribution of LRT}2, for ng = 1000 for different
combinations of cell marginal probabilities (in rows: values for 7 (0) on the left, values for

m2(0) on the right of the plot) and odds ratios (in columns: values for 115 on top).

used in the current section (for ny = 1000) are given in appendix Table B.1.

Figure 3.5 highlights the better performance of the normal approximation for large
values of the sample size: ng = 10 000. The same combinations of marginal probabilities
were chosen. To facilitate the interpretation of the plots only values of the odds ratio
from 1 to 2.5 are displayed, the reason being normality is now achieved for smaller values
of the odds ratio, even for more unbalanced combinations of marginal probabilities.
This confirms the normal approximation holds asymptotically.

In brief: the normal approximation to the distribution of the LRT statistic for single
edge exclusion from the saturated model is a good approximation for ny large, an odds
ratio not close to one and balanced combinations of marginal probabilities. One should
note that in a GG model n = 1000 can be considered a large sample size. However,
that is not the case in a GLL model: for a 2 x 2 contingency table ng = 10000 can be

considered a large sample size.
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Figure 3.5: Histograms of the empirical distribution of LRT}s, for ng = 10000 for different
combinations of cell marginal probabilities (in rows: values for 71(0) on the left, values for

m2(0) on the right of the plot) and odds ratios (in columns: values for ;2 on top).

The quality of the non-central chi-square approximation proposed in Section 3.6 is
now asessed, and contrasted to that of the normal approximation, by using p-p plots.
Figure 3.6 shows p-p plots of the distribution of the likelihood ratio test statistic, ob-
tained for the combinations of marginal probabilities 7;(0), m2(0) and odds ratio 112
used in Figure 3.4. The sample size is ng = 1000. As in Section 3.3 (for GG models),
the red line represents an exact agreement between observed and expected cumulative
probabilities, the blue curve represents the asymptotic normal approximation (with
mean and variance given by Equations 3.27 and 3.29) and the green curve the non cen-
tral chi-square approximation (with non-centrality parameter given by Equation 3.43).
From Figure 3.6, with a sample size of 1000, it is possible to conclude that, as ex-
pected, for an odds ratio of one the chi-square distribution is a good approximation
(the non-centrality parameter, is zero, so the non central chi-square becomes a central

chi-square on one degree of freedom). For values of the odds ratio close to one (1.5,
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and even 2) the non central chi-square is a better approximation than the normal. For
higher values of the odds ratio (namely 3 or 4) the non central chi-square becomes a

poor approximation, except in the cases of balanced tables (71(0) = 0.3; m(0) = 0.1

and m1(0) = 0.3; m(0) =0.2).
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Figure 3.6: P-P plots of the distribution of LRT}4, for different combinations of cell marginal
probabilities (in rows: values for 71 (0) on the left, values for m2(0) on the right of the plot)

and odds ratios (in columns: values for 12 on top). ng = 1000

At this point it was necessary to clarify the concept of balance in a 2 x 2 contingency

table. Since no measure of balance was found in the literature, the Balance Index (BI)
is proposed. In the 2 X 2 case,

1 1 1 1
~ 7(0,0) * 7(0,1) * 7(1,0) + m(1,1)

BI

The balance index has the following two desirable properties:

i) it relates to information, i.e., it comes from the information matrix and equals

the asymptotic variance of A (from Section 2.7.2);
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ii) it has a minimum value of 16 when all four cell probabilities are equal. Big BI
values can be reached if one of the cell probabilities is very small, by comparison
with the others. Higher values of BI are, therefore, associated with contingency
tables with small minimum (expected) cell counts. Since all cell probabilities are

assumed positive, Bl always has finite values.

Table 3.3 shows the values of the balance index for the different combinations of odds
ratios and marginal probabilities used in Figures 3.4 and 3.6. For v, = 3 or 4,
the smallest values of BI are obtained for 7;(0) = 0.3, m2(0) = 0.1 and m;(0) =
0.3, m2(0) = 0.2, the combinations of marginal probabilities for which the non-central

chi-square approximation performs best.

m1(0) / W2(0) Piz=1 P12=15 Yio=2 Y15=25 Y1o=3 Yp=4
0.1/0.1 123.5 97.3 84.5 76.9 72.1 66.4-
0.3/0.1 52.9 47.8 45.9 45.5 45.7 471
0.5/ 0.1 44.4 45.8 48.5 51.7 55.2 62.6
0.7 /0.1 52.9 61.9 71.4 81.1 90.9 110.7
0.9/0.1 123.5 163.1 202.9 242.9 282.8  362.7
03/0.2 29.8 27.6 26.8 26.6 26.7 27.2
0.5/0.2 25 25.4 26.6 27.9 29.3 32.2
0.7 /0.2 29.7 33.9 37.5 41.6 45.7 54.1

Table 3.3: Balance index values for different combinations of marginal probabilities and odds

ratios

The proposed measure of balance needs to be further investigated, so that the rela-
tionship between the value of the balance index, the value of the odds ratio and the
quality of the derived approximations to the distribution of the LRT statistic can be
better understood.

The quality of the two approximations (normal and non-central chi-square) for a
sample size of 10000 can be assessed by inspecting Figure 3.7. For ¥;5 # 1, the blue line
and the red line almost overlap, confirming the conclusions drawn from the histograms
in Figure 3.5: for ng = 10000 the normal approximation is a good approximation, even

for small values of the odds ratio and for less balanced combinations of marginal cell
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probabilities. This confirms the normal approximation holds asymptotically. However,
the situation is quite different in the case of the non-central chi-square approximation.
The green and the red lines almost overlap for values of ¥;5 up to 1.5, particularly
for more balanced combinations of 71(0) and m2(0). Yet, as the distance from the
null increases (i.e., as v/n log(v12) increases) the non-central chi-square approximation
becomes very poor, except in the cases of balanced tables (71(0) = 0.3; m2(0) = 0.1 and
m(0) = 0.3; m2(0) = 0.2, as before). This is shown by the green line, in the p-p plots

corresponding to 5 equal to 3 or 4.
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Figure 3.7: P-P plots of the distribution of LRT}9, for different combinations of cell marginal
probabilities (in rows: values for 71(0) on the left, values for m2(0) on the right of the plot)

and odds ratios (in columns: values for 112 on top). ng = 10000

Although plots are not presented, a smaller sample size of ng = 500 was also
investigated. As expected, the normal approximation performs much worse than in
the case ng = 1000. The approximation only seems acceptable for values of 115 of 3 or

4 and balanced tables. The non-central chi-square is a better approximation for small

values of 5.
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In conclusion: two different approximations to the distributions of the non-
signed and signed square-root versions of the likelihood ratio test statistic for single edge
exclusion, under the alternative hypothesis that the saturated model holds, have been
derived, both in GG and in GLL models. The non-central chi-square approximation
can be used in the two variables case and is a good approximation when the distance
from the null is small (as n increases, either p15 or log 112 have to be close to zero). For
small sample sizes, it performs better than the normal approximation, the distance from
the null being small. The normal approximation holds asymptotically, i.e., performs

better for large sample sizes.

In the framework of GG models n = 1000 can already be considered a large sample
size and the normal approximation is a good one, even for small values of the (partial)
correlation coefficient. In GLL models, 1000 observations is not a large sample size
and the asymptotic normal approximation has some limitations, particularly fer small
values of the odds ratio and less balanced combinations of marginal probabilities. In
the 2x 2 case, 10000 observations can already be considered a large sample size and the
norfnal approximation seems a good approximation to the distribution of the likelihood
ratio test statistic for single edge exclusion under the alternative hypothesis that the
saturated model holds.

Asymptotic normal approximations to the distributions of the Wald and of the
score test statistics for single edge exclusion from the saturated model have also been
derived. In GG models the conclusions apply to the general p variables case, whereas
results for GLL models are restricted to the two and the three binary variables cases.
Conclusions are very similar to those associated with the LRT statistic.

In Chapter 4 all these theoretical approximations are used to derive the power of

selecting the saturated model for the three test statistics for single edge exclusion.
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Chapter 4

The Power of the Test Statistics for
Single Edge Exclusion

In Chapter 3 theoretical approximations have been derived to the distributions of
the test statistics for single edge exclusion, under the alternative hypothesis that the
saturated model holds. The aim of the current chapter is to investigate the power of
the three test statistics for single edge exclusion (likelihood ratio, Wald and score),
both in GG and in GLL models. Non-signed and signed square-root versions of the

test statistics are considered.

The power of an hypothesis test is the probability of rejecting the null hypothesis
when it is false (the alternative hypothesis being true) and equals one minus the type II
error. The definition of power of a model selection procedure used in this thesis follows
Smith (1992): the power of the model selection procedure refers to the probability of
selecting the true model given the specified true model parameters. The traditional
definition of power is associated with a single hypothesis test with a single null hy-
pothesis. However, a model selection procedure involves a sequence of tests with a
sequence of null hypotheses. The fact that more than one hypothesis is tested at a
time may raise an argument for not calling the probability of selecting the true model
power. Yet, because it has the essence of power, in the sense that it is the probability

of accepting the ‘right hypotheses’, the decision was made to keep the term power.

Simulation studies are conducted to estimate the power of selecting the saturated
model when using the test statistics for single edge exclusion. Theoretical power func-

tions are also derived, and the quality of the approximations is assessed. Throughout
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the chapter each individual hypothesis test is carried out considering a size (type I
error) of 5%. This does not mean, however, that each model selection procedure has

an overall size of 5% because of multiple testing.

A more detailed description of the structure of the current chapter is now given.
The chapter has two main parts: the first part (Section 4.1) aims at studying the
power of the test statistics for single edge exclusion in GG models; the second part

(Section 4.2) is concerned with such a study in GLL models.

The power of selecting the saturated GG model with two variables, using the like-
lihood ratio test statistic, is studied in Section 4.1.1. Asymptotic normal and non-
central chi-square approximations are derived. The quality of the two approximations
is assessed by simulation, particularly as the sample size varies. Section 4.1.2 derives
asymptotic normal approximations to the power of the Wald and of the score test
statistics for single edge exclusion from a saturated GG model with two variables. Sec-
tion 4.1.3 investigates the positive definiteness constraint on the 3 x 3 scaled inverse
variance matrix. In Section 4.1.4 the power of selecting the saturated GG model with
three variables, using the LRT statistic, is estimated by simulation. The corresponding
theoretical normal approximation is derived in Section 4.1.5. Section 4.1.6 shows how
the proposed theoretical approximations to the power of the test statistics for single

edge exclusion, in GG models, can be generalised to the p variables case.

The power of selecting the saturated GLL model, with two binary variables, using
the likelihood ratio test statistic, is investigated in Section 4.2.1. Asymptotic normal
and non-central chi-square approximations are derived. The quality of the two ap-
proximations is assessed by simulation, as the sample size varies. Asymptotic normal
approximations to the power of the Wald and of the score test statistics (in the two
binary variables case) are derived in Section 4.2.2. The power of the signed square-root
versions of the three test statistics is studied in Section 4.2.3. Finally, Section 4.2.4
alms to generalise previous results, regarding the power of the test statistics for single

edge exclusion from the saturated GLL model, to the three binary variables case.
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4.1 Power of Single Edge Exclusion in GG Models

In this first part of the chapter GG models are considered and the power of single edge

exclusion tests is analysed.

4.1.1 Power of the LRT statistic in the two variables case:

normal versus non-central x> approximations

The power for the LRT of excluding edge 12 from the saturated GG model with two
variables, also called the power of selecting the saturated GG model with two variables,
is first estimated by simulation. Theoretical power functions are then derived and

compared to the simulation results.

Simulated power functions

The power of a backwards elimination model selection procedure for selecting the true
(saturated) model is now investigated by a simulation study. In GG modelling, the
association between manifest variables is measured by the (partial) correlation coeffi-
cients. Power is calculated for different values of the correlation coefficient (41 different
values of p;2 ranging from —1 to 1, with an interval of 0.05, are used). In other words,
the probability of selecting the saturated model given each of the specified ‘true’ values
for the correlation coefficient, is estimated. To study how power varies as a function
of sample size n, simulations are repeated for n = 50, 100, 200, 500, 1 000. All the sim-
ulation results presented were obtained using the likelihood ratio test for single edge
exclusion. Simulations were also carried out using the Wald test statistic and the score
test statistic and equivalent results were obtained - for that reason the corresponding
plots are omitted.

A more detailed explanation of the simulation procedure is now given. For each
sample size n and for each chosen combination of values of the (partial) correlation co-
efficient(s) in the population, 1 000 samples were generated from a normal distribution
with that pre-defined covariance structure. For each sample, the test statistic for single
edge exclusion from the saturated model was calculated and stored. The probability
of selecting the saturated model was then estimated, as the number of times, out of

1000, that the saturated model was chosen, that is P[Tj > X3, 0.05), for each edge 5.
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Figure 4.1 summarises the results of the simulations for the two variables case,

obtained after 1000 iterations. It is worth noting that:

e the power function is symmetric about zero correlation;
e the power increases as |pj2| increases;

e the power also increases as the sample size increases.
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Figure 4.1: Power functions for the saturated GG model - two variables, five different sample

sizes.

Theoretical power functions using the LRT statistic

Recall that testing that edge 12 is not present in the model is testing the null hypoth-
esis, Hy, that py = 0. Under Hy, the test statistic 735 is chi-square distributed, on one
degree of freedom. The probability of selecting a model with edge 12 present (corre-
sponding to rejecting Hp) is calculated as P[T{3 > x3. 905 | p12], for different values of
P12

Theoretical power functions are derived both for the non-signed and for the signed
square-root versions of the LRT statistic. The case of the non-signed version of the LRT
is now considered. As derived in Section 3.1.3, under the alternative hypothesis that the
saturated model holds (i.e., p1a # 0), the likelihood ratio test statistic for single edge
exclusion, is asymptotically normal distributed, with mean AE[T}] = —nlog(1 — pi,)
and variance var(Tj) = 4np?,. Therefore, an asymptotic normal approximation to

the power for the LRT of excluding edge 12 from the saturated GG model with two
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variables can be obtained as

(4.1)

a 3.8414 + nlog(1 — p3,)
P[TL > 3.8414 L p [z > © 12
T | pc] 2v/1 | p12|

where z ~ N (0, 1).

Alternatively, a non-central y? approximation can be used. In Section 3.2 it was
proposed that the distribution of the likelihood ratio test statistic for single edge exclu-
sion from the saturated model can be approximated by a non-central x? distribution,
with non-centrality parameter ¢ = 1%%’;. The null hypothesis that p;2 = 0 is rejected
if P[T} > x3. 005 | p12]- Hence, the theoretical power functions can be obtained by cal-
culating one minus the cumulative probability for a non-central chi-square distribution
with one degree of freedom, for a quantile value of 3.8414 (when p; varies between -1
and 1).

Figure 4.2 compares the simulated power values (in red, corresponding to the five
different lines in Figure 4.1) with the theoretical values calculated using the asymp-
totic normal approximation (in blue) and the non-central chi-square approximation (in
green), for the non-signed version of the likelihood ratio test statistic for single edge
exclusion from the saturated model. The five different plots correspond to the five
sample sizes used: 50, 100, 200, 500 and 1000 observations. The horizontal dotted
lines correspond to power values of 0 and 0.05.

Figure 4.2 highlights a difference in shape between the red and the blue curves,
particularly for small values of p;s, indicating the theoretical normal approximation
performs poorly. Note that if pj2 = 0, AE[T;] = 0 and var(Th) = 0. The z value
is infinity. Using a (partial) correlation value close to zero induces a very small value
for the variance of T); and, consequently, z becomes very big and the corresponding
theoretical probability (blue curve) is zero. For large sample sizes (n = 1000) the
asymptotic normal approximation performs well for values of pis not close to zero.
For sample sizes of, at least, 200 observations, the green and the red lines overlap.
This indicates power calculations for the non-signed version of the LRT statistic for
single edge exclusion from the saturated model can be accurately approximated by a

non-central chi-square distribution.
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Figure 4.2: Simulated (in red) and theoretical power curves using the likelihood ratio test
statistic for single edge exclusion, T1L2, with an asymptotic normal approximation (in blue)
and a non-central chi-square approximation (in green), for five different sample sizes: a)

n =50, b) n =100, ¢) n = 200, d) n = 500, and e) n = 1000.

The case of the theoretical power calculations when using the signed square-root

version of the LRT is now considered. Recall that, from Section 2.9.2,

TS = sign(pra)y/ —n log(1 — p),

and that, from Section 3.1.5, in the asymptotic normal distribution,

) —1 —p?
TszgnL _ 4 2 x — 12
var(Ti™) = dnpr, x log(1 —p?y)  log(1— ply)

and

AE[TlségnL] = Sign(p12)\/—n10g(1 — pia)-

If p1 = 0, T59™ is asymptotically normal distributed, with mean zero and vari-

ance one. Indeed, if pjo = 0, then sign(pia)y/—nlog(l —p?) = 0 and, apply-

_p2 .
ing Hopital’s rule, —222_— tends to one as pjp tends to zero. If pig 0, the
. Tog(1—p2,) o 4
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signed square-root version of the likelihood ratio test statistic for single edge ex-

clusion, from the saturated model, is asymptotically normal distributed with mean
=3y
log(1~p3,)"

AE[T3™) = sign(pra)/—nlog(1 — p2,) and variance var(T59) =

In the case of a two-sided hypothesis test, the null hypothesis that p;5 is zero is
rejected if the absolute value of the signed version of the LRT statistic is greater than
1.96, for the different values of p15. That is, asymptotically, the power for the two-sided

signed square-root LRT of excluding edge 12 from the saturated GG model with two

variables can be obtained as

r
2 < ~1.96— szgn(pu)\/—nlo 1— plzJ

PIT35| > 1.96 = P
” 12 I ! 012] L 1P12i/\/ 10@1 ~p%a)
(4.2)

P i > 1.96—sign{pi2)V/ —nIOO"(l pmjj

¢ lpr2l/v/~10g(1-p2,)
where z ~ N (0, 1).

p12 varies between -1 and 1. Figure 4.3 compares the simulated power values (in
red) with the theoretical values of the normal approximation (in blue) obtained for the
two-sided signed square-root version of the likelihood ratio test statistic for single edge
exclusion from the saturated model. As previously, the five plots correspond to the five
different sample sizes used. The horizontal dotted line corresponds to a power value of
0.05.
In all five plots the blue and the red lines overlap, validating the theoretical normal
approximation of the power functions presented above, even for small values of the

sample size, and small (partial) correlation coefficients.

In the case of a one-sided hypothesis test, the null hypothesis that pis is zero is
rejected if the value of the signed version of the LRT statistic is greater than 1.645,
for the different values of p;o. That is, asymptotically, the power for the one-sided

signed square-root LRT for excluding edge 12 from the saturated GG model with two

variables can be obtained as

1.645 — s3 —nlog(l — p2
PITS L > 1645 | pia] £ P |2 > sign{pn) /7 O‘;( iz) , o (43)
lp12]/+/—log(1 — pi)

where z ~ N (0, 1).

p1o varies between zero and one. Figure 4.4 compares the simulated power values

(in red) with the theoretical values of the normal approximation (in blue) obtained for
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Figure 4.3: Simulated (in red) and theoretical asymptotic normal (in blue) power curves

using the two-sided signed square-root version of the likelihood ratio test statistic for single

edge exclusion, nggnL, for five different sample sizes: a) n = 50, b) n = 100, c) n = 200, d)

n = 500, and e) n = 1000.

the one-sided signed square-root version of the likelihood ratio test statistic for single
edge exclusion from the saturated model.

Results of the theoretical derivations of the power functions presented are validated by
the overlapping of the blue and the red lines in all five plots. One should note, that for
negative values of pi9, power either equals zero or, for small sample sizes, a value very

close to zero. For example, for n = 50 power equals 0.0091 for p;5 = —0.1 and equals

0.00005 for p1o = —0.3.

In brief: the normal approximation to the power for the signed square-root LRT of
excluding edge 12 from the saturated GG model with two variables is a good approx-
imation, both when one-sided and two-sided hypothesis tests are used, even for small

values of n and (partial) correlation coefficients close to zero.
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Figure 4.4: Simulated (in red) and theoretical asymptotic normal (in blue) power curves

using the one-sided signed square-root version of the likelihood ratio test statistic for single

edge exclusion, Tf;g”L , for five different sample sizes: a) n = 50, b) n = 100, ¢) n = 200, d)

n = 500, and e) n = 1000.

In conclusion, the power of selecting the saturated GG model with two variables,

using the likelihood ratio test statistic for single edge exclusion:

e increases as |p1z| increases. The value of —nlog(1 — p,) is always non-negative.
For a given sample size, if p;5 increases in absolute value, the numerator of Equa-
tion 4.1 becomes more negative and the corresponding z values become more neg-

ative. Consequently, power increases. Similar reasoning applies to Equations 4.2

and 4.3;

e increases as n increases. m appears in the numerator of Equation 4.1 and /n in
its denominator. Therefore, for a given p;s, as n increases the numerator becomes
more negative, faster than the denominator becomes more positive. Hence, the
z values become more negative and power increases. In the signed square-root

versions n only appears in the numerator of Equations 4.2 and 4.3, and a similar
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reasoning applies;

e for two-sided hypothesis tests power is symmetric about zero correlation: both
in Equations 4.1 and 4.2 either the absolute value of p;5 or its square-root value
are considered, leading to the same z values for positive and negative pis, and

the standardised normal distribution is symmetric about zero.

4.1.2 Power of the Wald and score test statistics in the two
variables case: normal approximations

From Section 3.1.4 recall that, if pio 5 0 (i.e., the saturated model, with two variables,

holds) the Wald and the score test statistics for single edge exclusion in GG models

are asymptotically normal distributed, with mean AE[TY}] = p T AE[T, 3] = np?,
and variance var(T}J) = éﬁ%%————ﬁ{; var(T53) = 4np% (1 — ,012) . Therefore, as in

Section 4.1.1, theoretical power functions for the non-signed versions of the Wald and
the score test statistics can be obtained, using a normal approximation, as

3.8414 — n pfy (1 + pip) 7 :’
2 Vo] (1= p3y) (14 py) 2

and

g a 3.8414 — n p3,
PITS > 38114 | o] £ 7 >
where z ~ N (0, 1).

Signed square-root versions of the Wald and of the score test statistics can also be
considered. From Section 3.1.5 recall that, if p1o # 0, the signed square-root versions
of the Wald and of the score test statistics for single edge exclusion from the saturated
model are asymptotically normal distributed, with mean AE[TS™] = pi, \/%;

AE[T$"] = p1yy/n and variance var(T59™) = %L—Z%%—, var(T5"%) = (1 — p2,)>

Asymptotically, the power for the two-sided signed square-root Wald test of ex-

cluding edge 12 from the saturated GG model with two variables can be obtained

as

—1.96—p12 \/n(l‘-“ﬂ?g)—l} L p [z > 1.96—p12 /1 (1+P%2)‘1:!

signW e
PlIT,™ 7| > 1.96 | pro] = P [z S 0%, () (1=p3,) (1+p7;)73/2

and for the two-sided signed square-root score test statistic as

PIT{ > 1.96 | pral £ P [z < 28] 4 P[5 > Lo0epym]
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where z ~ N (0, 1).
In the case of a one-sided hypothesis test, the power of selecting the saturated GG

model with two variables, using the signed square-root versions of the Wald and the

score test statistics for single edge exclusion is given by

z>

P[TSW 5 1645 | pa] £ P

1.645 — p1a /0 (1 + pi,) !
(1= p2y) (1 + ply) =52

and

P[TS9mS 5 1,645 | pro] £ P [z >
Tz o (1= p3o)

where z ~ N (0, 1).

Plots referring to this section are not presented for the simple reason that the power
functions of the Wald and of the score test statistics are very similar to those of the
LRT statistic: differences can hardly be detected when observing the corresponding
plots. The conclusions drawn in Section 4.1.1, for the LRT statistic, also abply for
the Wald and the score test statistics. In short: in the two variables case power
increases as n increases, as |pi2| increases and is symmetric about zero correlation for
two-sided hypothesis tests. Additionally, the asymptotic normal approximation is a
good approximation to the power of the signed square-root versions of the Wald and
of the score test statistics (even if n is not large), whereas for the non-signed versions
the approximation is only acceptable for large samples and values of the (partial)

correlation coefficient not close to zero.

4.1.3 The shape of the scaled inverse variance matrix

The study of the power functions in the three (or more) variables case requires some
thought when specifying the domain, since the scaled inverse variance matrix is con-
strained to be positive definite. The aim of this section is to express the positive
definiteness constraint in terms of partial correlations and to emphasise some proper-
ties of the set of all possible combinations of the three partial correlation coefficients.

Rousseeuw and Molenberghs (1994) studied the shape of correlation matrices. They

stated that the correlation matrix of three variables is positive definite if its determinant

is strictly positive, i.e., if
1+ 2 p12 p13 P23 — Pl — P13 — Paz > 0. (4.4)
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They constructed a three-dimensional graph of the boundary set of all the combina-
tions of the three correlation coefficients that satisfy this condition as an equality and
showed that the different combinations of the three p;; form a convex set (the interior
of the boundary set) which is symmetric with respect to rotations corresponding to
permutations of the components of (p12, p13, p23). Additionally, they showed that any
horizontal cross section of this surface is an ellipse.

These results are now extended to partial correlation coefficients. Recall that the
scaled inverse variance matrix has ones on the main diagonal, the off-diagonal elements

being the negative of the partial correlation coefficients. In the three variables case

1 —p12.3 —P13.2
scaled (2) = | —pras 1 —p23.1
—p132 —pP23.1 1

For the determinant of this matrix to be strictly positive, it is required that

1 —2p123p13.2 P23.1 — sz.s - P§3.2 - P§3,1 > 0. (4.5)

As happened with correlation coefficients, the different combinations of the three
pi;.r form a convex set which is symmetric with respect to rotations corresponding
to permutations of the components of (pi23, p13.2, pe3.1). Figure 4.5 supports the
statement that any horizontal cross section of this surface is an ellipse. In all panels
p13.2 is on the horizontal axis, pe3; is on the vertical axis and pjo3 takes arbitrary
positive values of 0.1 in a), 0.5 in b), 0.7 in ¢), 0.9 in d) and negative values of - 0.1 in

e), -0.5in ), -0.7 in g) and - 0.9 in h).

Because of the existing symmetries, only certain combinations of values of the three
partial correlations need to be considered in the next section, when studying the power

of the LRT statistic for single edge exclusion from a saturated GG model with three

variables.
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Figure 4.5: The positive definiteness constraint for partial correlation coefficients: pj3.2 on
the horizontal axis, pg3.1 on the vertical axis and pjo.3 taking values of: a) 0.1, b) 0.5, ¢) 0.7,

d) 0.9, e) —0.1, f) =05, g) —0.7, h) —0.9.

4.1.4 Simulated power of the LRT statistic in the three vari-
ables case

The aim of this section is to study the power of the test statistics for single edge
exclusion from the saturated GG model with three variables. A simulation study is
used. Theoretical normal approximations to the power functions are derived in Section
4.1.5. The quality of the approximations is then assessed. The LRT statistic is used.
The power for the three tests of excluding edge ij, edge ik and edge jk, here called
power of selecting the saturated model, is estimated as the probability that each of
the three test statistics for single edge exclusion is greater than a critical value from

a chi-square distribution on one degree of freedom, given certain values for the three

partial correlation coeflicients, i.e.,
L 2 L 2 L 2
P[Ty5 > X7 095 and i3 > X7, 095 and 153 > X7 g.05 | p12.3, P13.2, P23.1)-

This corresponds to the three null hypotheses that each of the partial correlation co-
efficients is zero, and to the three alternative hypotheses that each of them is different
from zero (saturated model). Power is, therefore, the overall probability of rejecting
the three null hypotheses that the partial correlation coefficients are zero, when these
hypotheses are false and the saturated model holds. For each of the three tests a size
of 5% is considered. When the true model is the independence model, the overall prob-
ability of accepting the saturated model equals 0.05%. Consequently, the overall size of

the selection procedure can range between 0.05% and 0.05.
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In this simulation study the three partial correlation coefficients vary between -1 and
1, subject to the positive definiteness constraint defined by Equation 4.5. In practice
p13.2 and pog; vary from 0.1 to 0.9 (with an interval of 0.1) and pjo3 varies between
-0.9 and 0.9, within the region of positive definiteness. Figure 4.6 shows the power
functions for a sample size of 200, using the likelihood ratio test for edge exclusion.
Plot a) was obtained after 20000 repetitions (in order to reduce Monte Carlo error)

and the remaining three plots after 1000 repetitions.
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Figure 4.6: Power functions for the GG saturated model, with 3 variables, using the LRT
statistic, for a sample size of 200. p;2.3 on horizontal axis. In each plot ps3.1 from 0.1 to 0.9.

p13.2 equals 0.1 in a), 0.2 in b), 0.3 in ¢) and 0.4 in d).

Some conclusions can be drawn from Figure 4.6:

e generally, power increases as partial correlations increase. However, the black
and blue lines (corresponding to values of 0.1 and 0.2 of ps3;), in panel b),

and especially in panel a), show some non-monotonicity with increasing positive

partial correlations;

e for n = 200, the probability of selecting the saturated model has a maximum value
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of >~ 0.3 when one of the p;;r =~ 0.1, even if the other two partial correlations
are large. This probability goes up to ~ 0.8, or almost 1, when the minimum

pijx == 0.2 or 0.3, respectively:

e there is a lack of symmetry in the power function about zero partial correlation,
particularly noteworthy for small values (note the black and blue lines corre-

sponding to 0.1 and 0.2 in panels a) and b)).

Simulations were also carried out using the Wald test statistic and the score test statis-
tic and very similar results were obtained. For that reason the corresponding plots are
omitted.

In order to try to understand and explain the non-monotonicity and non-symmetry
of the power functions two different types of analysis were carried out. First, simu-
lations were done to estimate both the power for the test of excluding edge ij and
the power for the two tests of excluding edge ¢j and edge ik. The results of the simu-
lation follow. Secondly, a theoretical asymptotic normal approximation to the power

functions, in the presence of three variables, was derived. Results are given in Section

4.1.5.

Power for the test of excluding edge ij

The power for the test of excluding edge 17 is estimated as the probability that the test
statistic TZ’;“ is greater than a critical value from a chi-square distribution on one degree

of freedom, given certain values for the partial correlation coefficients, i.e.,
L 2
P[Tz‘j > X1, 095 | p12.3, P13.2, P23.1)-

The null hypothesis is that p;;x = 0, and the alternative is that it is not zero (assuming
the other two edges are present, since edge exclusion is from the saturated model). The
two variables case is an example of the power for the test of excluding edge ij (and
Figure 4.1 shows a symmetric power function).

Results of the simulation study are presented in Figure 4.7, and it is possible to
conclude that power functions are symmetric, as expected. One thousand repetitions
were made and n = 200. In all plots the horizontal axis corresponds to pis3, and the
different lin'es in each plot correspond to values of pos ;. Plots in panel a) are associated

with testing for the exclusion of edge 12, plots in panel b) with the exclusion of edge 13
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and plots in panel ¢) with the exclusion of edge 23. Plots 1) correspond to a value of 0.1
of p13.2, whereas plots 2) and 3) correspond to values of 0.2 and 0.3, respectively. Plots
for higher values of this partial correlation coefficient are not presented for simplicity,

since they have a similar pattern.
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Figure 4.7: Power functions for the test of excluding edge ij, LRT statistic, n=200. Plots
a) edge 12, plots b) edge 13, plots ¢) edge 23. In all plots pi2.3 on the horizontal axis, the
different lines corresponding to values of p23.1. Plots 1) p13.2 = 0.1, plots 2) p13.2 = 0.2, plots

3) pi3.2 = 0.3.

In brief:

e plots in panel a) correspond to power calculations for the test of excluding edge
12. The pattern is the same in all three plots, clearly determined by the values
of p12.3 and neither depending on p132 (plots are alike when this coefficient takes

values 0.1, 0.2 or 0.3) nor on po3; (lines almost coincident, in each plot);

e plots in panel b) show the power for the test of excluding edge 13. The pattern

is always the same, neither depending on p193 (the lines are horizontal), nor on
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p23.1 (lines almost coincident, in each plot). When p135 increases power increases,

and therefore lines move horizontally;

e in panel c¢) plots, power for the test of excluding edge 23, power functions vary
because po3; varies. Indeed they do not depend either on pis3 (all the lines are

horizontal) or on pi3o (the three plots are very similar);

e it seems possible to conclude that the power for the test of excluding edge ij
(given the remaining edges are present) just depends on p;;x: power increases as

|pi;.x| increases, and is symmetric, about zero, in p;; k.

A theoretical explanation for the behaviour of the power for the test of excluding
edge 77 is given in Section 4.1.5, where it is shown that, asymptotically, both the mean
and the variance of the test statistic for single edge ij exclusion only depend on the

partial correlation coefficient of interest: p;; res:-

Power for the tests of excluding edge ¢7 and edge ik

The power for the two tests of excluding edge 15 and edge ik is estimated as the proba-
bility that each of the two test statistics for single edge exclusion T} and T} is greater
than a critical value from a chi-squared distribution on one degree of freedom, given

certain values for the three partial correlation coefficients, i.e.,
L 2 L 2
P[Tij > X'1; 0.95 and T3 > X1; 095 | p12.3, P13.2, P23.1]-

The two null hypotheses are that p;;r and p;.; are zero, and the two alternative
hypotheses are that they are different from zero. In both cases it is assumed the
remaining two edges are present, since edge exclusion is from the saturated model.
Power denotes the overall probability of rejecting the two null hypotheses that py;«
and p.; are zero when these are false and the saturated model holds. The overall size
of the selection procedure is expected to range between 0.052 and 0.05, since for each
of the two tests a size of 5% is considered.

Results are presented in Figure 4.8. One thousand repetitions were made and
n = 200. In all plots the horizontal axis corresponds to pi23, and the different lines in
each plot correspond to values of po3;. It is possible to conclude that there exists some

non-symmetry and some non-monotonicity in the power functions. In brief:
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Figure 4.8: Power functions for the tests of excluding edge ij and edge ik, LRT statistic,
n=200. Plots a) edges 12, 13, plots b) edges 12,23, plots c) edges 13,23. In all plots p12.3 on
the horizontal axis, the different lines corresponding to values of po31. Plots 1)‘ p13.2 = 0.1,

plots 2) pi3.2 = 0.2, plots 3) p13.2 = 0.3.

e plots in panel a) - power for the tests of excluding edge 12 and edge 13 - power
does not seem to vary with pez; (lines almost coincident, in the three plots).
Power increases as |pi23| and or |pi32| increase; does not exceed 0.3 if one of
the p is around 0.1 (even if the other is large). Power almost reaches one if
|p12.3] > 0.3 and or |pi3.2] > 0.3. Some non-symmetry is present for small values
of p12.3 and or p;3.2, but the power function becomes symmetric about zero when

p13.2 increases (compare plots a.1), a.2) and a.3)), even if p1o 3 is small;

e plots in panel b) - power for the tests of excluding edge 12 and edge 23 - power
does not seem to vary with py3 (the three plots are similar). Power increases as
|p12.3] and or |pes1| increase. Although globally the three plots look symmetric,
there seems to be some non-symmetry, and also some non-monotonicity, in the

black line (po3.1 = 0.1), which become more evident as p;35 increases (compare
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plots b.1), b.2) and b.3));

e plots in panel ¢) - power for the tests of excluding edge 13 and edge 23 - power
functions clearly non-symmetric and non-monotonic for small values of po3 1, par-
ticularly noteworthy when pi3 is also small (black and blue lines in plots c.1)

and c.2));

e the power for the two tests of excluding edge 7 and edge ik varies mainly as a
function of pj;x and pir;: it increases as |p;; x| and or |ps ;| increase. A combi-
nation with certain values of p;i; seems to lead to some non-symmetry and some

non-monotonicity.

Hence, it is possible to conclude that the problems of non-symmetry and non-
monotonicity of the power functions are already present in the case of two tests for
single edge exclusion. In the next section power functions are studied theoretically
and an asymptotic normal approximation is derived. It will then become clear that
the mean and correlation structures of the test statistics justify the non-symmetry and

non-monotonicity of the power functions for certain combinations of partial correlation

coefficients and sample sizes.

4.1.5 Normal approximation to the power of the test statistics

for single edge exclusion in the three variables case

In Section 3.1.3 an asymptotic normal approximation to the distribution of the LRT
statistic for single edge exclusion from the saturated GG model was derived. In
the three variables case, under the alternative hypothesis that the saturated model
holds (i.e, the three partial correlation coefficients are different from zero) the vec-
tor of test statistics Tzf is asymptotically normal distributed, with means given by
AE[T}] = —nlog(l — pZ,), variances given by var(T}) = 4np},, and covariances
given by Equation 3.9, when the non-signed version of the LRT statistic is used. In the
case the signed square-root version of the LRT statistic is used, formulae for the means
AE [T};ig"‘r’}, variances var(T;"") and covariances cov(Z;%"", T"") are summarised
in Table 3.2. Hence, as in the two variables case, the asymptotic power for the LRT

of selecting the saturated GG model with three variables can be obtained, using a

trivariate normal approximation, as
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P[T5 > 3.8414 and T > 3.8414 and TS > 3.8414 | p1a3, 132, P231] =

r+oC
/ / / & (y, T) dTL dTL dTL, (4.6)
3.8414 J3.8414 J3.8414

where @ (p, %) is the joint cumulative distribution of the joint trivariate normal density
of the three LRT statistics with vector of means y and variance matrix ¥ given by
AE[TE], var(Tk) and cov(T%, T%). As mentioned in Section 4.1.4, the variance matrix
of the test statistics has to be positive definite.

The values of the integral of the joint cumulative distribution function can not be
obtained directly with S-Plus, since its pmunorm function only works if the variance
matrix is the identity matrix, which is not the case. The pmwvnorm function of the muvt-
norm package of the programme R was used to compute the distribution function of
the multivariate normal distribution for the required limits, mean vectors and variance

matrices. The function is based on algorithms by Genz and Bretz, which incorpo-

rate a sequence of transformations of the original integral before applying numerical

integration.

Figure 4.9 compares simulated power values (in red) with theoretical power values
obtained with the normal approximation just derived. Three different sample sizes are
used: n = 200 (plots in panel a)), n = 500 (plots in panel b)) and n = 1000 (plots in
panel ¢)). In each plot p123, on the horizontal axis, varies between —0.9 and 0.9, within
the region of positive definiteness. Four different combinations of values for pi35 and
p23.1 were chosen: 0.1 and 0.1 (plots 1)), 0.1 and 0.2 (plots 2)), 0.2 and 0.2 (plots 3))
and 0.2 and 0.3 (plots 4)). For other combinations of partial correlation coefficients,
obtained power patterns are similar to those presented here. Some conclusions can
be drawn from Figure 4.9: as expected, power increases as the sample size increases,
and as the absolute values of the partial correlation coefficients increase. Theoretical
values confirm simulation results from Section 4.1.4 that there is some non-symmetry
and some non-monotonicity in the power functions, particularly for small sample sizes
and values of one of the partial correlation coefficients close to zero (plots a.1) to a.3)
and b.1)).

The non-symmetry and non-monotonicity of the power functions is accounted for

by the structure of the means and of the correlations, in the asymptotic distribution, of
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Figure 4.9: Simulated (in red) and theoretical normal (in blue) and truncated normal (in

black) power curves, for saturated model, using the LRT statistic. In all plots p12.3 on the

horizontal axis. Plots a) n = 200, plots b) n = 500, plots ¢) n = 1000. Different combinations

of values for pj3.2 and po31: plots 1) 0.1 and 0.1, plots 2) 0.1 and 0.2, plots 3) 0.2 and 0.2,

plots 4) 0.2 and 0.3.

the three test statistics. Consider the case of plot b.1) in Figure 4.9. The sample size

equals 500, pi32 = pe31 = 0.1 and pi9.3 ranges from -0.9 to 0.9. The expected values of

the three likelihood ratio test statistics Tlg , in the asymptotic distribution, for certain

combinations of partial correlation values are:

0.1, 0.1; 0.1

0.2; 0.1; 0.1

0.9; 0.1; 0.1

p12.3; p13.2; P23 || -0.6; 0.1; 0.1
AE[TE] 223.140
AE[TE] 5.025
AE[TL] 5.025

5.025
5.025
9.025

20.410
9.025
5.025

830.400
5.025
9.025

The corresponding correlation structure for the three test statistics, in the asymptotic

distribution, follows:
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P12.3; P13.2; pesa || -0.6; 0.1; 0.1 | -0.1; 0.1; 0.1 | 0.2; 0.1; 0.1 | 0.9; 0.1; 0.1
cor[T5, TE] 0.070 0.095 - 0.111 - 0.136
cor[Ts, TE] 0.070 0.095 -0.111 -0.136
cor[T5, TE) 0.597 0.095 - 0.205 -0.900

The correlations between the three test statistics are always positive if pia3 is
negative and both py3- and ps31 are positive. The correlations are always negative if
the three partial correlation coefficients are positive. However, the expected values are
always positive. A correlation coefficient of -0.9, associated with expected values of
~ 0.5, makes it more likely for the values of T and T'5 to be below the critical value
of 3.8414 than does a correlation coefficient of 0.597 associated with the same expected
values. All this accounts for the non-symmetry and non-monotonicity of the power
functions in plot b.1). When the value of one of the partial correlation coefficients
increases, say ps3; = 0.2, as in plot b.2), the expected value of T, in the asymptotic
distribution, increases to 20.41. Although the correlation structure changes slightly,
it becomes less likely for the values of 7% to be below the critical value of 3.8414
for different combinations of pio3. For that reason there is no non-symmetry and no

non-monotonicity in plot b.2) Figure 4.9.

When assessing the quality of the normal approximation to the power of selecting
the saturated model, using the LRT statistic, it is possible to conclude the approxima-
tion holds asymptotically, i.e., it performs better for larger sample sizes (see plots in
panel c), associated with n = 1000) and for values of the partial correlation coefficients

not close to zero (plots ¢.3) and c.4)). Recall that a similar conclusion was drawn in

the two variables case, Section 4.1.1.

The reason why, in Figure 4.9, plots 1 (corresponding to values of p132 and paz;
close to zero), the normal approximation seems to perform better for small rather
than for large sample sizes (plots a.1) versus c.1)) is not yet clear. It is also not clear
why, for n = 200 (plots in panel a) the curves of the simulated and theoretical values
seem to get further apart, indicating a poorer approximation, as pis» increases (plots

a.2) and a.3)).

functions, a significance level of 10% was also considered and corresponding simulated

In order to try to account for this non-justified pattern of the power

and theoretical power values were obtained. The obtained plots are not presented

because they are very similar to those in Figure 4.9, where a size of 5% is considered.
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Therefore, varying the size level was not conclusive. A larger sample size was also
used, n = 2000 and in this case the simulated and the theoretical power curves are
very close, even for p13» and po31 equal to 0.1 (the case of plots 1). This confirms the
proposed normal approximation holds asymptotically.

Additionally, the total non-admissible region was quantified. Indeed, a trivariate
normal approximation has been proposed to the power of selecting the saturated model,
with three variables, using the LRT. However, the values of the test statistic are always
non-negative. Thus, the total non-admissible region (denoted as NAR) corresponds to
all situations when at least one test statistic is negative and is obtained as one minus
the probability that all three test statistics are greater, or equal, to zero. Values of this
total NAR were calculated for the different sample sizes and the different combinations
of partial correlation coefficients used in Figure 4.9. Results indicate that, as expected,
NAR values are higher for smaller sample sizes, particularly for smaller partial correla-
tion coefficients. Appendix Table C.1 lists the NAR values. Such values were used to
obtain a ‘truncated’ normal approximation to the power functions. Indeed, since the
total admissible region should be one, and is not, theoretical power values given by the
normal approximation (represented by the blue curves in Figure 4.9) where divided by
the actual admissible region (equal to one minus NAR). The corrected power values
are represented by the black curves in Figure 4.9. This correction has lead theoretical
power values to increase, improving the quality of the asymptotic normal approxima-
tion in the case the sample size is large, even for small values of the partial correlation
coefficients - note the overlapping of the red and of the black curves in panels c.1) and
c.2). The proposed truncated normal approximation is of no use for small sample sizes

and small partial correlation coefficients - plots 1) and 2) in panels a) and b).

The asymptotic power for the signed square-root LRT of selecting the saturated GG
model with three variables can be obtained, using a trivariate normal approximation,

as follows:
e in the case of a one-sided hypothesis test

P[TS™ > 1,645 and T3 > 1.645 and T > 1.645 | p1os, p1sa, Posi] =

+oo +co +00 ) ) ) . )
[ o[ e, s argrt azget azge (47)
1. 1 1.

645 645 645
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e in the case of a two-sided hypothesis test

PHTlsQignL' > 1.96 and ITf?fgnL’ > 1.96 and lT;?fgnL[ > 1.96 | pi2s, Pr32, pa3a] =

[ [ [ @, sy argrt arsirs arge, (48
. D

where @ (59", ¥597) is the joint cumulative distribution of the joint trivariate nor-
mal density of the signed square-root versions of the three LRT statistics with vec-
tor of means u®9" and variance matrix 9" given by AE[Y}ng”L 1, Var(ﬂ“;-ignL) and
cov(ﬂ?ignL,Tis]:gnL). The variance matrix is constrained to be positive definite. D,
the domain of integration in the case of a two-sided hypothesis test, is the region
where each of the three test statistics is in —oc to —1.96 or 1.96 to +oo, i.e.,

D = {(~00, —1.96) U (1.96, +00)}%.

Figure 4.10 compares simulated power values (in red) with theoretical powér values
(in blue), using a one-sided hypothesis test with the signed square-root LRT statistic.
Three different sample sizes are used: n = 200 (plots in panel a)), n = 500 (plots
in panel b)) and n = 1000 (plots in panel ¢)). In each plot pja3, on the horizontal
axis, varies between 0 and 0.9, within the region of positive definiteness. As before,
four different combinations of values for pi3 and ps3; were chosen: 0.1 and 0.1 (plots
1)), 0.1 and 0.2 (plots 2)), 0.2 and 0.2 (plots 3)) and 0.2 and 0.3 (plots 4)). Some
comments on Figure 4.10: the normal approximation is a good approximation to the
power of the one-sided signed square-root LRT statistic for selecting the saturated
model, even for a sample size of 200 (plots in panel a) and partial correlation values
close to zero (plots 1 and 2). Power increases as the sample size increases and as
the partial correlation coefficients increases. However, some non-monotonicity seems
to exist for small sample sizes (n = 200) and small values of p (see plots a.1) and
a.2)). The reason is the following: the correlations between the three test statistics,
in the asymptotic distribution, are always negative and, for a sample size of 200, the
expected values of the test statistics, in the asymptotic distribution, equal 1.42 and
2.86, respectively for partial correlations coefficients of 0.1 and 0.2. It is, therefore,
very likely that values of the test statistics are below the critical value of 1.96, and

even decrease as pio3 increases (because of the negative correlations). Hence power

decreases, as in plot a.1).

127



o ° o
.|a.1) .| b.1) ) 4
3 5 ®
® ° o
° ° & ° /
- @ ya Y W T D 3
3 g :
s | £ y / c.1)
2 e b ey,
o Lrsmmet P T T 0 s T T e i o | o Lo
3 o LAl g i s s i e
00 02 04 06 o8 0.0 02 04 0.6 08 0.0 02 04 06 o8
° o °
- 2 - - T S — i ISP el S Ty
.| Q. - -
e e /—.-r.n-...-..-.—-.—-n &
© ° "
o o o l
. | 7/ :
3

o~ o~ - o~ L]
4 ° “|a
& Dbt s I s s et e ° .(::::::::::::::::::::::::::::::::::::::: g L
3 3

0o 02 04 08 08 00 02 04 06 08 0.0 02 04 0§ 08
2 e e — - ——— —— o rﬁ'———___.___.
- /—“"-—-:N-w—" ] / s [
% f = . II
H 3 /
, / - -
2 3 / 3 /
.| / ald)| b.3) 2| c.3)
o [ o f R e S e R - B e TR e
=) =) =]

oo 02 04 06 08 oo 02 04 06 o8 0o 02 04 0.6 08

~.
02 04 06 08 1.0

02 04 06 08 10
\
\!
i
. ;
02 04 06 08 10

00

~
00
00
I~

Figure 4.10: Simulated (in red) and theoretical normal (in blue) power curves, for saturated
model, using the signed square-root LRT statistic, one-sided hypothesis test. In all plots
p12.3 on the horizontal axis. Plots a) n = 200, plots b) n = 500, plots ¢) n = 1000. Different
combinations of values for pj32 and pe2s.1: plots 1) 0.1 and 0.1, plots 2) 0.1 and 0.2, plots 3)

0.2 and 0.2, plots 4) 0.2 and 0.3.

Analogously, Figure 4.11 compares simulated power values (in red) with theoretical
power values (in blue), using a two-sided hypothesis test with the signed square-root
LRT statistic. In all plots pi2.3, on horizontal axis, varies between -0.9 and 0.9, within
the region of positive definiteness. The normal approximation is a good approximation
to the power of selecting the saturated model using the two-sided signed square-root
LRT, even for small sample sizes and small partial correlation coefficients. Note similar

conclusions were drawn in the two variables case (Section 4.1.1).
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Figure 4.11: Simulated (in red) and theoretical normal (in blue) power curves, for saturated
model, using the signed square-root LRT statistic, two-sided hypothesis test. In all plots
p12.3 on the horizontal axis. Plots a) n = 200, plots b) n = 500, plots ¢) n = 1000. Different
combinations of values for pi3.2 and pa3.1: plots 1) 0.1 and 0.1, plots 2) 0.1 and 0.2, plots 3)

Until now the current section has dealt with deriving power functions for selecting

the test(s) of excluding edge ij (and edge ik) is now derived.

the saturated model, using the LRT statistic. In Section 4.1.4 a simulation study was
used to estimate the power for the test of excluding edge ij and the power for the
two tests of excluding edge ij and edge ik, using the non signed version of the LRT
statistic. The results of the simulation, for a sample size of 200, are summarised in

Figures 4.7 and 4.8. A theoretical asymptotic normal approximation to the power for

Even if there are three variables in the model, the power for the test of excluding
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edge ij is obtained, as in the two variables case (with the correlation coefficient pio



being replaced by the partial correlation coefficient p;;x), as

b

o1 — 2
PITE > 38414 | puas, prss, prss] & P | > 3.8414 ; \/r%k’);i f pij.k)J
where z ~ N (0, 1) and is not dependent on the values of any of the remaining partial
correlation coeflicients. Such behaviour was pointed out when commenting on simu-
lated values presented in Figure 4.7. In brief: the power for the test of excluding edge

ij increases as n increases, as |p;; | increases, and is symmetric, about zero, in Pijk-

An asymptotic bivariate normal approximation to the power for the tests of exclud-

ing edge 7j and edge ik , when the LRT statistic is used, is now proposed as

PITE > 3.8414 and T% > 3.8414 | pro3, pra2, poa1) =

I
3.8414 J3.8414

where ® (1, ¥) is the joint cumulative distribution of the joint bivariate normal density
of the two test statistics with vector of means x and variance matrix ¥ given by AE[T],
var(T}%) and cov(Tk, T%). The variance matrix has to be positive definite. Note that
the mean and the variance of TL are a function of n and of p;; x, whereas the covariance
between Tf;‘ and Ti,c depends not only on p;;x and ps.; but also on pji ;. For that reason
some non-symmetry and non-monotonicity of the power functions can be observed for
certain combinations of values of the three partial correlation coefficients, as detected
in Figure 4.9.

Figure 4.12 compares simulated power values (in red) with theoretical values (in
blue) obtained with the normal approximation just derived, for the tests of excluding
edge 13 and edge 23, using the LRT statistic. As before, three different sample sizes
are used: n = 200 (plots in panel a)), n = 500 (plots in panel b)) and n = 1000 (plots
in panel ¢)). In each plot p1o3, on the horizontal axis, varies between —0.9 and 0.9,
within the region of positive definiteness. The four different combinations of values
for pi32 and po3; are: 0.1 and 0.1 (plots 1)), 0.1 and 0.2 (plots 2)), 0.2 and 0.2 (plots
3)) and 0.2 and 0.3 (plots 4)). Some comments on Figure 4.12: the power for the two
tests of excluding edge 13 and edge 23 depends not only on pi32 and pa3; (it clearly
increases as these increase) but it also depends on pis3. Indeed, not all the lines are
horizontal, even for large sample sizes: see for example the case of p;35 = 0.1 and

p231 = 0.1, when n = 1000 (plot c.1)) and also the case of p135 = 0.1 and py3; = 0.2,
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Figure 4.12: Simulated (in red) and theoretical normal (in blue) power curves, for the tests
of excluding edge 13 and edge 23, using the LRT statistic. In all plots pj2.3 on the horizontal
axis. Plots a) n = 200, plots b) n = 500, plots ¢) n = 1000. Different combinations of values
for p13.2 and po3.1: plots 1) 0.1 and 0.1, plots 2) 0.1 and 0.2, plots 3) 0.2 and 0.2, plots 4) 0.2
and 0.3.

when n = 500 (plot b.2)). The normal approximation performs better asymptotically,
i.e., for large sample sizes, particularly for partial correlation coefficients not close to
zero (plots c.3) and c.4)).

The justification for the non-symmetry and non-monotonicity of the power functions
in Figure 4.12, plots a.1), a.2) a.3) and b.1), is basically the same as the one given when
commenting on Figure 4.9. Since only two test statistics are now used a graphical
display is also presented. Consider the case of plot b.1) in Figure 4.12. The sample
size equals 500 and pi30 = p231 = 0.1. Consider three possible values for pjo3 : -
0.6, 0.2 and 0.9. The expected values of the two test statistics 75 and T.5, in the

asymptotic distribution, equal 5.025, not depending on the value of p;23. However,
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the correlation coefficient between T'5 and Ti is a function of py53 and equals 0.597,
-0.205 and -0.9, respectively for p;s3 equal to -0.6, 0.2 and 0.9. When py3; = 0.2,
plot b.2) in Figure 4.12 (where the non-symmetry and non-monotonicity are no longer
present), the expected value of 7', in the asymptotic distribution, equals 20.41 and
the correlation coefficients between Tk and Ti; change to 0.594, -0.21 and -0.9. Recall
that the red lines in plots b.1) and b.2) correspond to simulated power values, i.e.,
to the overall probability that both 7% and T are greater than the critical value
of 3.8414, for the different combinations of the three partial correlation coefficients.
Consequently, plotted values are the number of times, out of 1000 (repetitions), that
both test statistics are greater than 3.8414, for the 1000 samples generated from a

bivariate normal distribution with the specified correlation structure.

Figure 4.13 shows the 1000 pairs of simulated values of T5 and T, for the six
combinations of pia3; p13.2; pes.1 chosen above: plot a) -0.6; 0.1; 0.1, plot b) 0.2; 0.1;
0.1, plot ¢) 0.9; 0.1; 0.1, plot d) -0.6; 0.1; 0.2, plot e) 0.2; 0.1; 0.2 and plot f) 0.9; 0.1; 0.2.
The values of T are displayed on the horizontal axis, the vertical axis corresponding
to values of Tt5. The red lines represent the critical value of a chi-square distribution
on one df, for a 5% size: 3.8414. In each plot the number of dots in the region where
both test statistics are greater then 3.8414, out of 1000, gives the overall power for
the two tests of excluding edges 13 and 23. Plots a), b) and ¢) correspond to three
power values in the red line of plot b.1), Figure 4.12: respectively 0.466, 0.362 and
0.229. Power in plot c), where cor(T5,T%) = —0.9, is much lower than in plot 2),
where cor(Tf, Th) = 0.597. The sign of the correlation coefficient between the two test
statistics, together with small (~ 5) expected values for the test statistics, accounts
for the non-symmetry and non-monotonicity of the power function. Plots d), e) and f)
correspond to power values of 0.62, 0.62 and 0.61. Although cor(T},7%) is the same
in plots ¢) and f), the fact that in plot f) pa3; = 0.2 has lead to an increase in the
expected value of Ti5 (in the asymptotic distribution), making it less likely that values

of T'5 are under 3.8414. As a result, power values do not decrease in plot f) as they do

in plot ¢).

In brief: the mean and correlation structures of the test statistics accounts for
the non-symmetry and non-monotonicity of the power functions, noteworthy for small

values of the partial correlation coefficients.
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F igure 4.13: T1L3 and T2L3 simulated values, for six combinations of p12.3; p13.2; p23.1 : a) -0.6;

0.1; 0.1, b) 0.2; 0.1; 0.1, ¢) 0.9; 0.1; 0.1, d) -0.6; 0.1; 0.2, e) 0.2; 0.1; 0.2, ) 0.9; 0.1; 0.2.

Until now normal approximations to the power of the likelihood ratio test statistic
have been derived, both concerning selecting the saturated model (with three variables)
and test(s) of exluding edge ij (and edge ik). Non-signed and signed square-root
versions of the LRT have been considered. Similar reasoning can be applied to derive
asymptotic power functions for the Wald and the score test statistics. Consequently,
asymptotic power functions (saturated model) for the Wald or the score test statistics

can be obtained by replacing in Equation 4.6, respectively

* Tj by Ty or Tij;

o AE[TY] by AE[T)¥] or AE[TS);

. SY.
var(Tk) by var(T;}) or var(T});

cov(Tiz, Ti) by cov(T}, T or cov(T3, T3).

Analogously, signed square-root versions of the Wald and score test statistics can be

considered, once the appropriate replacements are made in Equation 4.7 for one-sided
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hypothesis tests and in Equation 4.8 for two-sided hypothesis tests. The conclusions

are expected to be similar to those drawn so far, using the LRT, as happened in the

two variables case.

4.1.6 Power of single edge exclusion tests, in GG models: the

p variables case

The normal approximation to the power of the test statistics for single edge exclusion
from the saturated GG model, with three variables, derived in Section 4.1.5, can be
generalised to the p variables case, using a multivariate normal approximation, by gen-
eralising Equations 4.6, 4.7 and 4.8. One should note, however, that a model with four
variables implies six partial correlation coefficients (and six test statistics for single
edge exclusion from the saturated model) and a model with five variables implies ten
(i.e., p(p — 1)/2) test statistics for single edge exclusion. Therefore, calcula;zing the
power of the test statistics for single edge exclusion in a model with p = 5 variables re-
quires using a multivariate normal distribution of dimension ten, i.e., a ten dimensional
integral.

When p is large and numerical integration becomes impractical it is always possible
to perform Monte Carlo integration. This would first require generating a large number
of observations (say, one million) from a p(p — 1)/2 - dimensional multivariate normal
distribution with vector of means AE[T}] (the expected values of the test statistics, in
the asymptotic distribution) and variance matrix given by cov(T}, Tj,;) (the variances
and covariances of the test statistics, in the asymptotic distribution). Generating a
multivariate normal distribution of dimension p(p — 1)/2 is straightforward: it requires
generating p(p — 1)/2 univariate standard normals, combining them in a vector, pre-
multiplying that vector by the positive square-root of the variance matrix cov(73, 7, o)
and adding the result to the vector of means AE[T};] (see Mardia, Kent and Bibby,
1979, Section 2.5.1). The power of the model selection procedure, i.e., the Monte Carlo
probability of selecting the saturated model is obtained as the number of values, out
of a million, in the region between zero and the density of the multivariate normal
distribution, from the upper limits of integration to infinity.

The complexity of the problem increases considerably with the number of variables

in the model. Because of this complexity, the decision was made not to investigate
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the quality of the normal approximation when four or more variables are present.
Furthermore, performing simulations becomes much more complex when the number
of variables increases (in the sense that there are many possible combinations of values
of the p, with the additional constraint of a positive definite scaled inverse variance
matrix). Also, while it is possible to visualise the associations between three variables in
a three dimensional space, this becomes no longer possible when six or ten associations
are present. However, it was decided to consider the four and the five variables cases,
restricting the attention to models with equal partial correlation coefficients between
all variables, and to obtain power functions by simulation.

First, it is required to express the region of positive definiteness as a function of
the partial correlation coefficients. An equicorrelation matriz (see Mardia, Kent and

Bibby, 1979, page 461) is a p x p matrix of the type
P=(1—pI+p) ©(9)

that is, a matrix with ones on the main diagonal, all off-diagonal elements being equal to
the correlation coefficient p. J denotes a p x p matrix of ones. The determinant of P is
given by the product of its eigenvalues, where Ay = 1+(p—1)pand Ao = ... = A\, = 1—p.
P is positive definite when all eigenvalues are positive, that is, when 1 — p > 0 and

. o, . . __‘1
1+ (p—1)p > 0. Consequently, P is positive definite when p € (5_—1 , 1>.

Because the focus is on partial correlation coefficients, existing results for an equicor-
relation matrix had to be adapted. Indeed, the scaled inverse variance matrix, with

ones on the main diagonal and off-diagonal elements being minus the partial correlation

coefficients, can be written as
T = 5C<P—l) = (1 + pij.rest)-[ - pij.restJ (4-10)

The determinant of 7" is given by the product of its eigenvalues, where A\; = 1 — (p —
D)pijrest and Ao = ... = Ap = 1 + pjjrest. 1 is positive definite when 1 + pjjres > 0
and 1 — pijrest(p — 1) > 0. Because pijrest € (=1, 1), 1+ pijrest is always positive and
[1 — pijrest(p — 1)] is strictly positive if pjjres < ;—}—1—. In other words, it is suggested
that the positive definiteness constraint in the scaled inverse variance matrix with p

variables, when all partial correlation coefficients p;;,..: are equal, is that p;ress €
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Figure 4.14: Power of selecting the saturated GG model (with three, four or five variables)
when all partial correlation coefficients are equal. Four different sample sizes: a) n = 50, b)

n = 100, c) n = 200, d) n = 500.

Simulations were performed for the cases of three, four and five manifest variables,
in order to estimate the power for selecting the saturated model, i.e., the probability of
selecting the saturated model given the specified values for p;; ,es:. All partial correlation
coefficients are assumed equal, and varying from -0.95 to p{—l with an interval of 0.05.
In each case 1000 repetitions were done. Four different sample sizes are considered:
50, 100, 200 and 500. The likelihood ratio test for single edge exclusion is used. The

results obtained are presented in Figure 4.14.

Some conclusions can be drawn:

e for a certain value of the partial correlation coefficient, the smaller the number
of variables, the larger power is. This effect is particular noteworthy for small
absolute values of the partial correlation, whereas for large absolute values the

differences vanish;

e with large sample sizes, power tends to increase faster as the absolute value of

the partial correlation coefficient increases, and, therefore, differences in power
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between models with three, four and five variables can only be detected for small

absolute values of p;; res:: less than |0.2] with a sample size of 500 (see panel d)).

The LRT statistic was used. Similar results should be obtained using either the Wald

or the score test statistics.

4.2 Power of Single Edge Exclusion in GLL Models

The power of the test statistics for single edge exclusion from the saturated GLL
model is investigated. Non-signed and signed square-root versions of the test statistics
are considered. The two binary variables case is analysed and some insight is given
regarding three binary variables. As in the continuous case, the power of a backwards
elimination model selection procedure for selecting the saturated GLL model is defined
as the probability of selecting the true (saturated) GLL model given the specified true
model parameters. In the continuous case the association between variables is measured
by a single parameter, the (partial) correlation coeflicient, whereas in the case of two
or more binary variables cross-classified in a contingency table, more parameters are

required, the total number of parameters depending on the number of binary variables

in the GLL model.

4.2.1 Power of the LRT in a GLL model with two binary vari-
ables

The odds ratio, 12, is a commonly used measure of association between two binary
variables, but additional information is required. As in Section 3.7, besides 12, 71 (0)
and m2(0) are considered fixed. The LRT statistic is used. Simulated power values are
presented. The theoretical power of the LRT statistic is then derived, using asymptotic
normal and non-central chi-square approximations. The quality of the two approxima-

tions is assessed.

Simulated power values

For the two binary variables case, power is calculated for different combinations of the
three chosen parameters 112, 71(0) and m3(0). Because of the symmetries explained in

Section 3.7, w1(0), takes values between 0.1 and 0.9 (an interval of 0.1 is used), 75(0)
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takes values between 0.1 and 0.5 and the odds ratio 15 takes values greater or equal to
one (1, 1.25, 1.5, 1.75, 2, 2.25, 2.5, 3 and 4). A total sample size of 1000 observations
is considered. The likelihood ratio test statistic for single edge exclusion from the
saturated model, given by Equation 3.17, is used. Recall that the null hypothesis is
that the independence model holds, the alternative being that the saturated model

holds. Power is estimated as the number of times, out of 1000, that the saturated

model is chosen, that is, that P [LRTys > X3, g.65 | m1(0), m2(0), 12] -

Figure 4.15 shows simulated power values, for ng = 1000, obtained for the different
combinations of odds ratio (on the horizontal axis of each plot) and marginal proba-
bilities. In each plot each of the nine lines corresponds to a value of 71(0) (from 0.1 to

0.9). m2(0) has a value of 0.1 in panel a), 0.2 in b), 0.3 in ¢), 0.4 in d) and 0.5 in e).

Figure 4.15: Simulated power of the saturated model, with two binary variables, for a sample
size ng = 1000 and different combinations of 115 (from 1 to 4, on the z axis), m1(0) (from

0.1 to 0.9 in each plot) and m2(0) (from 0.1 to 0.5 in panels a) to e), respectively).

Some conclusions can be drawn from Figure 4.15:

e for a given combination of marginal probabilities, power increases as the odds

138



ratio deviates from one;

e power increases faster when one of the marginal probabilities is around 0.4 or

0.5, particularly if the other marginal probability also takes that value;

e if 1(0) = 0.1 (plot in panel a) a power value of ~ 0.8 is achieved with 15 = 2.25,
for values of 7;(0) of 0.8, whereas if m5(0) = 0.3 (plot in panel ¢) similar values
of power are achieved for 45 = 1.5. Indeed, more balanced combinations of

marginal probabilities 71 (0), m2(0) lead to higher power values, even for smaller

odds ratios 1s.
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Figure 4.16: Simulated power of the saturated model for different sample sizes: a) ny = 1000,
b) ng = 500, ¢) nyg = 200, d) ny = 100. In all plots m2(0) = 0.1, 71(0) from 0.1 to 0.9 and 12

from 1 to 4.

The effect of reducing the total sample size on the probability of selecting the
saturated model seems more drastic than in the continuous case. Figure 4.16 shows
the simulated power of the saturated model for different sample sizes: 1000, 500, 200
and 100, for an unbalanced combination of marginal probabilities: m1(0) from 0.1 to
0.9 in each plot and m5(0) = 0.1 in all four plots. It is possible to conclude that

power decreases with decreasing sample size. With ng = 1000 (plot in panel a) and
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m2(0) = 0.1 a power of 0.8 can be obtained with 115 ~ 2.25 for all 7;(0) between 0.1
and 0.8, whereas with nyp = 500 (plot in panel b) that power value is only achieved if
m1(0) =~ 0.4. If nyp = 200 (plot in panel c¢) an odds ratio of 4 is required, and if ng = 100

(plot in panel d), even with 115 = 4, the maximum value for power is ~ 0.5.
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Figure 4.17: Simulated power of the saturated model for different sample sizes: a) ny = 1000,
b) ng = 500, ¢) ng = 200, d) ng = 100. In all plots m2(0) = 0.4, m1(0) from 0.1 to 0.9 and 12

from 1 to 4.

Figure 4.17 shows the effect of reducing the sample size if m5(0) = 0.4. By compar-
ison with Figure 4.16 it is possible to conclude that, when the sample size decreases,
the effect on the power of selecting the saturated model is not so severe if marginal
probabilities are more balanced. Thus, when varying the sample size, power is influ-

enced not only by the value of the odds ratio, but also by how balanced the marginal

probabilities are.

In brief: in the two binary variables case, power increases as the sample size in-

creases and as the value of the odds ratio gets further from one, faster for more balanced

marginal probabilities combinations.
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Theoretical power values

Theoretical asymptotic power functions are now derived. As mentioned in Section 3.5.1,
if 115 5% 1, i.e., if the saturated model with two binary variables holds, the distribution
of the likelihood ratio test statistic for single edge exclusion from the saturated model
can be asymptotically approximated by a normal distribution, with mean AE[LRT},]
(Equation 3.27) and variance var(LRT}») (Equation 3.29). Therefore, asymptotically,
the power of selecting the saturated GLL model with two binary variables, using the

LRT, can be calculated using a normal approximation as

3.8414 — AE[LRT)»)

var(LRT3) (+11)

P[LRT]Q > 3.8414 , 71'1(0), ’/'('2(0)7 IZ,L/JIQ} 2 Plz>

where z ~ N (0, 1).

A non-central chi-square approximation to the power of the LRT statistic can also
be used, with non-centrality parameter ¢ given by Equation 3.43. The null hypoth-
esis of independence is rejected if P [LRTD > le; 0.05 | m1(0), m2(0), 7,&12] . Hence, the
theoretical power functions can be obtained by calculating one minus the cumulative
probability for a non-central chi-square distribution with one degree of freedom, and

non-centrality parameter @, for a quantile value of 3.8414 (and given values of 7 (0),
7('2(0) and 11112).

The quality of the two approximations to the power of the LRT statistic can now
be assessed. Figure 4.18 compares the simulated power values (in red) with the the-
oretical values calculated using the asymptotic normal and the non-central chi-square
approximations presented above, for different combinations of marginal probabilities
and odds ratio values. The asymptotic normal approximation corresponds to the blue
curve and the non-central chi-square approximation to the green curve. A sample size
of 1000 is used. In each plot the odds ratio is represented on the horizontal axis and
varies from 1 to 4. The marginal probability 71(0) takes the values 0.1, 0.3, 0.5, 0.7
and 0.9, respectively in plots 1 to 5. The marginal probability m(0) takes the values
0.1, 0.2 and 0.3, respectively in plots in panels a), b) and c).

Some comments on Figure 4.18. Even for a sample size of 1000, the normal ap-
proximation seems a poor approximation for values of the odds ratio close to one. In

such cases, at an alternative close to the null, i.e., %5 close to one, the non-central
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Figure 4.18: Simulated (in red) and theoretical power values using an asymptotic normal
(in blue) and a non-central chi-square (in green) approximation. ng = 1000. 12 from 1 to
4 in each plot. 71(0) equals: 1) 0.1, 2) 0.3, 3) 0.5, 4) 0.7 and 5) 0.9. m2(0) equals: a) 0.1, b)
0.2 and ¢) 0.3.

chi-square approximation performs much better. Note that if ¢5 = 1, AE[LRT}5] =0
and var(LRT)2) = 0. The z value is infinity. Using an odds ratio value close to one
(112 = 1.0001) induces a very small value for the variance of LRT and, therefore, z
becomes very big, the corresponding theoretical probability is zero and the normal
approximation is poor (a value of 0.05 was expected). However, when the odds ratio
value is far from one and the contingency table is unbalanced, i.e., the values of the
balance index are high (Table 3.3), the normal approximation seems to perform bet-
ter. That is the case of plots b.5) and especially a.5). Note that, in these cases, the
minimum expected cell counts (appendix Table B.1) can be very small: in plot a.5)
values of 3.8 and 2.9 are reached, respectively for 115 equal to 3 and 4. The chi-square

approximation is very poor then.

For a sample size of 10000 (considered a large sample size for a GLL model with

two binary variables) the normal approximation is still a poor approximation to the

142



power of the LRT statistic for odds ratio values close to one. Indeed, for a large
sample size, the non-central chi-square approximation to the power of the non-signed
version of the LRT statistic (saturated GLL model) performs better than the normal
approximation. These conclusions were drawn from Figure 4.19. Note these conclusions

are in agreement with those drawn in Section 4.1.1, for GG models with two variables.

Figure 4.19: Simulated (in red) and theoretical power values using an asymptotic normal
(in blue) and a non-central chi-square (in green) approximation. ng = 10000. ;2 from 1 to
4 in each plot. m1(0) equals: 1) 0.1, 2) 0.3, 3) 0.5, 4) 0.7 and 5) 0.9. m2(0) equals: a) 0.1, b)
0.2 and ¢) 0.3.

4.2.2 Normal approximations to the power of the Wald and

the score test statistics in the two binary variables case

The power of selecting the saturated GLL model with two binary variables, using the
Wald and the score test statistics was estimated by simulation, as in Section 4.2.1 when

the LRT statistic was used. Very similar results were obtained and for that reason the
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corresponding plots are omitted.

As for the LRT, theoretical power values can be obtained using a normal approx-
imation. The power of selecting the saturated GLL model with two binary variables,
using the Wald test is given by

3.8414 — AE[Waldss]
var(Waldy2)

P[Wald12 > 3.8414 I 7T1(0), 7«'2(0), 2/)12] = P [Z > J N (412)

where z ~ N (0, 1), and AFE[Waldy5] and var(Walds,) are given by Equations 3.33
and 3.35, respectively.
The power of selecting the saturated GLL model using the score test, is given by

3.8414 — AE[Score;s)

var(Scoreis)

P[Scoreyy > 3.8414 | m1(0), m2(0), ¥1a] = P {:z > :‘ . (4.13)

where z ~ N (0, 1), AE[Score;s] is given by Equation 3.38 and the methodology to

obtain var(Score;s) is explained in Section 3.5.2.

The conclusions derived in Section 4.2.1, regarding the normal approximation to
the power of the LRT statistic, also apply to the power of the Wald and score test
statistics. In brief: the asymptotic normal approximation to the power of the test
statistics, in GLL models with two binary variables, is a good approximation for large

sample sizes and odds ratio values not close to one.

4.2.3 Power of the signed square-root versions of the test

statistics, in GLL models with two binary variables

The signed square-root versions of the three test statistics for single edge exclusion
from a saturated GLL model, with two binary variables, are presented in Section 3.4.3.
In Section 3.5.3 normal approximations to the distributions of the signed square-root
versions of the three test statistics are derived, under the alternative hypothesis that
the saturated GLL model holds. The formulae for the means and variances of LRT5",
Walds¥™ and ScoreS?", in the asymptotic distribution, are also given in Section 3.5.3.
All these can be used to derive theoretical power functions.

In the case of a two-sided hypothesis test, the null hypothesis that logy;s = 0

is rejected if the absolute value of the signed square-root version of the test statistic

being used is greater than 1.96, for the different values of log s, m1(0) and 72(0). In
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other words, asymptotically, the power of selecting the saturated GLL model with two
binary variables, using the two-sided signed square-root version of each of the three

test statistics for single edge exclusion, can be obtained as

signL - = o af a I —1.96— AE[Testi¥"]
P”T&S’tlg I > 1.96 } 1(0), 7 2(0), 100 ’(,012} P -Z < \/V&I'(Test‘;;gn) :{

p Fz 1.96—.4E[Test§;9“]
vvar(Test; ™) ’

where z ~ N (0, 1) and Test9" can equal LRT“", Wald¥™ or Scoresd", with cor-
12 12 12 12

responding formulae for means and variances, in the asymptotic distribution, given in

Section 3.5.3.

In the case of a one-sided hypothesis test, the null hypothesis that logqs = 0 is
rejected if the value of the signed square-root version of the test statistic being used
is greater than 1.645, for the different values of logs, m1(0) and m5(0). Consequently,
the power of selecting the saturated GLL model with two binary variables, using the

one-sided signed square-root version of each of the three test statistics for single edge

exclusion, can be obtained as

1.645—AE[Test§;9”}J

signL o :i
P{T@Stlg > 1.645 ’ (S (O), 7«'2(0), 100 ’d}lg] P liZ < \/V&I'(Test‘;égn)

The quality of the asymptotic normal approximation is now assessed. Since only
odds ratio values greater or equal to one have been used so far, only one-sided hypoth-
esis tests are considered. The three test statistics for single edge exclusion were used.
Because the pattern of their power functions is very similar only the results associated
with the power of the one-sided signed square-root likelihood ratio test statistic are
presented. Figure 4.20 compares simulated power values with theoretical power values
obtained with the proposed approximation, for a sample size of 1000. Four different
unbalanced combinations of marginal probabilities were chosen: m5(0) = 0.1 in all plots
and m(0) equals 0.1 in panel a), 0.2 in b), 0.8 in ¢) and 0.9 in d). The choice is based
on the fact that previous results (Section 4.2.1) indicate approximations tend to per-

form worse for unbalanced combinations of marginal probabilities rather than for more

balanced combinations.

In conclusion: the asymptotic normal approximation is a good approximation to the

power of the one-sided signed square-root version of the test statistics for single edge
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Figure 4.20: Simulated (in red) and theoretical asymptotic normal (in blue) power curves
using the one-sided signed square-root likelihood ratio test statistic. ng = 1000. %12 from 1

to 4 in each plot. m2(0) equals 0.1. 71(0) equals: a) 0.1, b) 0.2, ¢) 0.8, and d) 0.9.

exclusion, from a saturated GLL model with two binary variables, even for moderate
sample sizes (ng = 1000), less balanced combinations of marginal probabilities and
odds ratio values close to one. These results are in agreement with those obtained in

Section 4.1.1, for GG models with two variables.

4.2.4 Power of the test statistics for single edge exclusion in

GLL models with three binary variables

In a 2 x 2 x 2 contingency table there are eight cell probabilities that add up to one.
Consequently, the parameter space is seven dimensional. For this reason a compre-
hensive investigation of the power functions for the different combinations of values of
the seven parameters is not possible. The aim of the current section is, therefore, to
provide some insight on how to obtain approximating theoretical power values for a
specific contingency table.

Let 0 be the 7 x 1 vector of the chosen parameters, either seven cell probabilities or
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combinations of conditional odds ratios and marginal probabilities that uniquely define
the contingency table under analysis, depending on the information available to the
data analyst. Following a reasoning similar to that of Section 4.1.5, asymptotic normal
approximations to the power of selecting the saturated GLL model with three binary
variables, using the test statistics (LRT, Wald or score) for single edge exclusion from
the saturated model, are now derived.

From Section 3.5.1, in the three binary variables case, under the alternative hypoth-
esis that the saturated model holds, the vector of the three likelihood ratio test statistics
LRT;; is asymptotically normal distributed, with means given by Equation 3.30, vari-
ances given by Equation 3.31 and covariances given by Equation 3.32. If the Wald
or the score test statistics are used instead, the vectors of test statistics Wald;; and
Score;; are asymptotically normal distributed, with means given by Equations 3.36 and
3.39, respectively. Procedures for obtaining the variances and covariances are given in
Section 3.5.2. Hence, the asymptotic power for the LRT of selecting the saturated

GLL model with three binary variables can be obtained, using a trivariate normal

approximation, as

LRT12 > 3.8414 and LRT\3 > 3.8414 and LRT23 > 3.8414 [ 9]

/ / / /L Z dLRT12 dLRTlg dLRT23, (414)
3.8414 J3.8414 J 3.8414

where @ (i, ¥) is the joint cumulative distribution of the joint trivariate normal density
of the three LRT statistics with vector of means u and positive definite variance matrix
3, given by Equations 3.30, 3.31 and 3.32. Similar reasoning applies to the Wald and

to the score test statistics.

In practical terms, in order to obtain the asymptotic normal approximation to
the power functions, the data analyst has to choose the test statistic for single edge
exclusion to be used. Then, for the set of cell probabilities of interest, the means,
variances and covariances of the test statistics have to be calculated (using formulae
from Section 3.5.2). Finally, the pmwvnorm function of R can be used to compute the
corresponding triple integral defined by Equation 4.14. From the results obtained in

the two variables case, it is expected that the normal approximation performs well
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for large sample sizes, more balanced contingency tables with no small values for the

minimum expected cell counts and conditional odds ratios not close to one.

In conclusion: it is proposed that the theoretical power of selecting the
saturated GG or GLL model, using the test statistics for single edge exclusion from
the saturated model, is obtained with asymptotic normal and non-central chi-square
approximations to the distributions of the test statistics. The non-central chi-square
approximation can be used in the two variables case and is a good approximation, both
in GG and in GLL models, particularly at an alternative close to the null (p12 close to
zero or 12 close to one). In the single edge case, if the signed square-root versions of
the test statistics are used, the normal approximation is a good approximation to the
power of the test statistics, even if the sample size is not very large and the correlation
coefficient or the log odds ratio, are close to zero. However, if the non-signed version
of the test statistics is used, the asymptotic normal approximation requires larger
sample sizes, and remains a poor approximation for correlation coefficients close to zero
(in GG models) and odds ratio values close to one (in GLL models with two binary
variables). As highlighted in the conclusion of Chapter 3, one thousand observations
can be considered a large sample size in a GG model, whereas in a GLL model, for a

sample to be considered large, many more observations are required.
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Chapter 5

Single-Factor GG Model and
Latent Class GLL Model

As mentioned in Chapter 1, several references have been made in the literature to the
use and importance of incorporating latent variables in the graphical models framework.
Recent contributions in this area include Stanghellini (1997), Vicard (2000) and Giudici
and Stanghellini (2001), all being related to the identification of factor analysis models
with correlated residuals. Stanghellini (1997) presented the independence graph of the
residuals and derived a sufficient condition for global identification of such a model.
Vicard (2000) used the complementary graph of the independence graph of the residuals
to derive a necessary and sufficient condition for identification. The single-factor model
with correlated residuals is represented by a chain graph, following Cox and Wermuth
(1996, Section 8.3). Giudici and Stanghellini (2001) defined a graphical factor analysis
model as a factor model with correlated residuals and gave a sufficient condition for
the identification of a factor model with an arbitrary number of factors, somehow
generalising Stanghellini (1997). A Bayesian approach was adopted to tackle the issue
of model comparison. The graphical factor analysis model is represented as a chain
graph, but dashed arrows are used between boxes, thus representing the marginal
associations between pairs of variables.

Edwards (1995, Section 7.1.2 and 2000, Section 4.6.2) used conditional indepen-
dence graphs to represented both a single-factor analysis model and a latent class
model and claimed both models can be fitted using MIM. Yet, it is recommended in

this thesis that the data analyst is very cautious when using the software since not only
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does MIM have no built in check for identification, but it also manages to give param-
eter estimates for models with ‘negative degrees of freedom’. Besides, the relationship
between the estimates produced by MIM and those produced by other packages that
fit classical single-factor models, such as SPSS or LISREL, is often not clear. A deeper

understanding of these models is, therefore, required.

The focus of the current chapter is neither on identification nor on estimation.
Apparently taking a step back, the emphasis is on model parameterisation, both of
the single-factor model as a graphical Gaussian model and of the latent class model
as a graphical log-linear model. Models are represented by conditional independence
graphs, with associations between each of the manifest variables and the latent variable

measured either by partial correlation coefficients or by conditional log odds ratios.

Although traditionally factor analysis models and latent class models haﬂze been
developed and treated quite separately, even as far as users and software packages for
model fitting are concerned, some recent efforts have been made to create a theoretical
unified framework and to work within it. These include Bartholomew and Knott (1999),
Bartholomew, Steele, Moustaki and Galbraith (2002) and work by Vermunt leading to
Latent GOLD software. The fact that, in this thesis, both models are treated in
the same chapter corresponds to the belief that graphical models provide a unified
framework for including both Gaussian and categorical latent variables. Furthermore,
although mizred models are out of the scope of this thesis, once conditional-Gaussian
distributions are considered, models parallel to latent trait and latent profile analysis

can also be included in the unified framework. It is certainly a topic for further research.

The structure of this chapter is as follows. The classical factor analysis model and
the classical latent class model are reviewed in Sections 5.1 and 5.4. Section 5.2 pa-
rameterises the single-factor GG model using partial correlations, relates the classical
to the proposed parameterisation and investigates the admissible regions of the param-
eter space. Section 5.3 focus on detecting a model consistent with a single-factor GG
model and gives some recommendations to the data analyst. Finally, Section 5.5 pa-
rameterises the latent class GLL model and investigates the conditional independence

structure of the manifest variables arising from a latent class GLL model.
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5.1 The Classical Factor Analysis Model

This section reviews the classical parameterisation of the factor analysis model, par-
ticular attention being devoted to the single-factor model. The question of model

identification is addressed and a brief reference is made to model estimation.

5.1.1 The classical parameterisation of the single-factor model

The factor analysis model can be written as
X =AE+9, (5.1)

where X is a vector of p manifest variables, £ is a vector of m underlying factors (latent
variables) such that m < p, A is a p X m matrix of factor loadings relating the manifest
variables to the underlying factors, and ¢ is a vector of p variables representing random
measurement error and indicator specificity. Variables are considered to be measured
as deviations from their means, that is E[X] = E[¢] = 0. The model assumes that
E[¢6T] = 0, E[5] = 0, var [] = ©5s (diagonal) and that X, £ and & are multivariate
normal distributed.

The variance matrix for X, with elements denoted by oy, is
Yxx = ADAT + O, (5.2)

where ® is the m xm variance matrix of £ and Oy is the p x p diagonal variance matrix of
0. In the classical factor analysis model the matrix ©y is diagonal, i.e., all associations
among the manifest variables are explained by the unobserved factors, whereas in the
confirmatory factor analysis framework residual terms are allowed to be correlated. If
® is the identity matrix the m factors are orthogonal and the solution will be unique

up to rotation, i.e., up to post-multiplication by an orthogonal matrix.

One of the crucial issues associated with factor models is that of identification.
An unknown parameter is identified if it can be written as a function of one or more
elements of the variance matrix Xy x (leading to a unique solution). A model is iden-
tified if all parameters to be estimated from the data are identified. Restrictions have,
therefore, to be imposed on the model defined by Equations 5.1 and 5.2 to ensure that

the model is identified, i.e., that the elements of ©; and of A can be uniquely (up to
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rotation) expressed as a function of the elements in Xxx. A usual first step to avoid a
basic problem of identification is to fix the scale of the latent variables, i.e., to set the
variances of the latent variables to one. Anderson and Rubin (1956, Section 5) dealt
with the problem of identification and gave a necessary and sufficient condition for the
identification of a single-factor model in Theorem 5.5: at least three factor loadings
have to be non-zero. However, no necessary and sufficient condition exists to ensure the
identification of models with two or more latent variables, when specific sets of factor
loadings are set to zero and others have to be estimated from the data (confirmatory
factor analysis framework). Some rules have been proposed in the literature to try to
assess the identification of a confirmatory factor analysis model - for a summary see,
for example, Bollen (1989, pages 238-251). Since only single-factor models are consid-
ered in this thesis, no problems of identification exist provided there are three or more

manifest variables in each model and the latent variable is scaled to have unit variance.

The single-factor model

A particular case of the model defined by Equation 5.1 is the classical single-factor
model, with p manifest variables and one factor (latent variable) £. In this case, Equa-

tions 5.1 and 5.2 simplify to

X=X+ (5.3)
Yxx = )\)\T + Bs. (54)

The latent variable £ has been scaled to have unit variance and A is a p x 1 vector
of factor loadings. Each A; represents the magnitude of the expected change in the
manifest variable X; for a unit change in the latent variable £. As mentioned earlier,
the model is identified provided p, the number of manifest variables, is at least three.
The aim is to express A and the elements of the diagonal matrix ©; in terms of the
observable Y x x, as a solution to 5.4. In order to guarantee the existence of a solution
that is real (non-complex) and yields non-negative variances, £xx has to meet some
requirements.

Anderson and Rubin (1956, Theorem 4.2) stated that ‘a necessary and sufficient

condition that Xxx be a variance matriz of a factor analysis model with one factor is
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that p(p — 1)/2 — p independent tetrad conditions are satisfied and

OkiOij
0< =2 <oy
Ukj

for one pair (j # k) for each i.’

There are p(p+1)/2 distinct elements in the observable ¥ x x and p elements in the
diagonal of ©; and p elements in the vector A (forming a total of 2p unknown param-
eters). Therefore, the system has p(p + 1)/2 equations and 2p unknown parameters.
Let C =plp+1)/2—-2p = ... = p(p—1)/2 — p denote the number of equations
minus the number of unknowns to be determined. If C' > 0, ¥ xx must satisfy some
C = p(p—1)/2—p conditions for a solution to exist. The p(p—1)/2—p tetrad conditions
are given by

Y12013 _ 012014 _ 01201p 013014 _ 01301 _ O1(p—-1)01p

023 024 O2p O34 O3p O(p-1)p

In the case p = 3, p(p — 1)/2 — p = 0 and so the solution to the system of six
equations (with six unknowns) is possible and determined, without any additional
constraints having to be satisfied. If p = 4 the system has ten equations and eight

unknowns, p(p—1)/2 —p = 2 and two tetrad conditions have to be satisfied. They are

given by
012013 _ 012014 013014 _ _
= = & 012013024034 = 012014093034 = 013014093024 <
023 O24 034

013024 = 014023 012034 — 014023 = 0
Pt
012034 = 014023 013024 — 014023 = 0

Similar reasoning can be followed for p > 5.

Anderson and Rubin (1956, Theorem 4.1) gave a necessary and sufficient condi-
tion for ¥ xx to be a variance matrix of a single-factor model, i.e., ‘there has to exist
a diagonal matriz O (with non-negative elements) such that Exx — ©F is positive
semidefinite of rank one.’ In order to prove Anderson and Rubin’s Theorem 4.2, based
on Theorem 4.1, it is required to prove that ¥xx — O being positive semidefinite of
rank one is equivalent to satisfying p(p — 1)/2 — p independent tetrad conditions and
having 0 < 5%’:71 < 0y, for one pair (7 # k) for each i. One has to be able to subtract
non-negative elements from the diagonal of £ xx to get a positive semidefinite matrix

of rank one.
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It is known that ¥y x — ©s is of rank one if and only if ©s can be chosen so that

all second-order minors of Lxx — ©s are zero. Consequently:

e if Xxx — Oj is of rank one, then all its second-order minors are zero. A second-
order minor which does not include a diagonal element, known as a tetrad, is of

the form

Ohi Ohj . R
= OpiOk; — OOk (R, 1.k, j different).

Oki Okj
Setting all to zero implies that op;0k; — 0p;0% = 0, for all possible combinations

of different A, ¢, j, k. A second-order minor, which includes one diagonal element,

is given by

O3 — 95..

iz

O'y .
Y= (03 — 0s,,)0k; — 0450k (i, k, 7 different).

Oy Tk
Setting this expression to zero implies that 85, has to be chosen as §s, = o, —
g’j;’f-i The conditions that the solution be consistent (i.e., independent of the pair

J
J, k) are known as the tetrad conditions.

In brief: all second-order minors being zero imply that the tetrad conditions are

satisfied.

e If all second-order minors of ¥ xx — ©s are zero, then the matrix Xxx — ©O; is
of rank one. If the tetrad conditions are satisfied, all second-order minors of

Yxx — ©y are zero, and consequently this matrix is of rank one.

For the matrix ¥xx — ©; to be positive semidefinite its diagonal elements have to

. . . OL:054
be non-negative, i.e., g;; — 05, > 0. Since 65, has to equal ¢;; — igk-j-l

UkiUij) >0 Oki0ij >0
Okj ~ Okj

0y — 05, > 0 0y — (04 —

For the matrix ©s to be positive semidefinite, all the diagonal elements have to be

non-negative, and so
O’k .0’. .
b5, = 0= 0y > —2.
Okj
As a result,

Oki0ij
0< =2 <oy
Ukj

Hence, Anderson and Rubin’s Theorem 4.2 has just been proven.
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5.1.2 The parameter space for a single-factor model with

three or four manifest variables

In this section the parameter space for the single-factor model, with three or four

manifest variables, is investigated. Permissible regions for the correlation coefficients

are derived.

The single-factor model with three manifest variables

In the three manifest variables case Equation 5.4 can be written as

011 012 013 A + 65, A1y A1z
ZXX = )\/\T + @5 =4 T92 U923 = /\522 + 0522 /\QAB
033 )\% -+ 9533

Solving for A and ©j; is equivalent to solving a system with six equations, and 6 unknown

parameters A, Ao, As, 85,1, 0s,,, 0555, (indeed the model is identified and saturated) as
follows

2 . . 2 _ . 2 — .
/\1 + 9511 = 011; )\2 + 9522 = 022, )\3 + 0533 = 033;

AA2 = 012; A1A3 = 013; A2A3 = 03
Solving these equations with respect to the unknown parameters it is possible to obtain

2 _ 012013. 2 _ 012023. 2 _ 013023,
AL = 023 * A3 = o013 /\3_ o1z

23 9622=---:0'22"‘“u0 o2 ; 0533:---:(733"—]‘3—2” Z

_ N2
O, =011 — Ay =ou o23 o13 ? 012

Notice that because s, has to be non-negative, 2% < o and because )7 is non-
7
negative, ‘—%Eﬁ > 0. Indeed, this is precisely the condition required by Anderson
7
and Rubin (1956, Theorem 4.2) previously shown. Because there are three manifest

variables p(p — 1)/2 — p = 0, and no tetrad conditions need to be satisfied.
When, instead of the variance matrix, the population correlation matrix, denoted

by P with elements p;;, is used, the corresponding results hold:

° py = A} and A} = %f),f&;

® 9(51-2- — 1___A12:1_ pijpik;

Pik

05, >0= )7 <1and 2% <1
7

155



o N2> 0= BBk >,
7

Consequently 0 < —’%ﬁﬁ < 1, which is the condition imposed by Anderson and Rubin
in Theorem 4.2, expressed in terms of correlations. However, for this expression to
hold for all manifest variables, all three p have to be different from zero, so that the
three A are finite. Therefore, the product of the three correlation coefficients has to
be positive and the correlation matrix P is taken as positive definite. This is what
Dijkstra (1992) stated as Proposition 1. Since one of the aims of this thesis is to
relate graphical Gaussian models to factor models, and GG models literature assumes
positive definite matrices, it was decided to consider only positive definite (and not

positive semidefinite) variance and correlation matrices.

In conclusion, for a 3 x 3 positive definite correlation matrix to be suitable for a

single-factor analysis model it is required that

0<p_12£1‘3§1; Q<p_12£2_3§1; 0<£1_3f.).?§§1'

P23 P13 P12

Figure 5.1 represents the allowable values of the three correlations. The ellipse
represents the positive definiteness constraint defined by Equation 4.4. An arbitrary
value of 0.5 was chosen for one of the correlation coefficients, whereas the other two
vary between —1 and 1, within the region of positive definiteness. The fact that the
product of the three correlation coefficients has to be positive restricts the allowable

values to quadrants one and three. Finally, the three conditions &g% < 1 determine
7

the allowable shaded area.

The single-factor model with four manifest variables

In the four manifest variables case Equation 5.4 can be written as a system
of ten equations, with ten known parameters and eight unknown parameters

(A1, A2, Az, Ady 05,15 05z 0555 054, ). That is, Sxx = AT + ©; is equivalent to
A2+ 05, = 0115 A5+ 05y = 0205 N+ 06y = 0335 A] + 05, = Oua;
AA2 = 0195 AtA3 = 013; A1Ag = 0145 AoA3 = 0935 Ay = 04 AsAg = 034
Solving these ten equations with respect to, for example, A;, it is possible to obtain

012014 013014
and \? = and \? = :
023 024 034

012013

A=
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Figure 5.1: Possible values of three correlation coefficients to define a positive definite matrix

suitable for a single-factor analysis model

In order to have consistent solutions for the parameter A; (and similar reasoning can
be used for all the other parameters) some equality constraints have to be imposed,

namely that
012013 012014 013014

023 024 O34

These simplify to
012034 — 014023 = 0; 013024 — 014023 = 0, (5-5)

which are exactly the p(p — 1)/2 — p = 2 tetrad conditions that have to be satisfied.

For a more detailed example see Harman (1967, page 73).

It was shown that in the p = 4 variables case the two tetrad conditions imply
gi; = MiA; (or pij = A if correlations are used instead). Moreover, having o;; = A,
(¢ # j) implies the tetrad conditions are satisfied, as mentioned by Cox and Wermuth

(1996, page 192), since then
012034 — 014093 = 0 < /\1/\2/\3/\4 - /\1/\4/\2/\3 =0 and

013024 — 014023 = 0 & A1 A3hAg — A AgdoA3 = 0.

In brief, for a 4 x 4 positive definite correlation matrix to be suitable for a single-

factor analysis model it is required that:

e p;; = A (7 and 7 distinct, from 1 to 4), so that p;fjf);’“ = ’\’:\\j:\\k’\’“ = A2

e 0 < ﬁ’g—%—"— < 1 (for all possible combinations of distinct 7, j and &, from 1 to 4).
7
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These results will be extended in Section 5.2.1, once the single-factor model is

parameterised in terms of partial correlation coefficients.

5.1.3 Some notes on the estimation of the factor model

Maximum likelihood is the method commonly used for estimating the factor anal-
ysis model.  The log-likelihood for a sample of size n equals —% log(2m) —
2 [log [Sxx| + tr(SZx%)] . Within the context of confirmatory factor analysis, instead
of maximising the logarithm of the likelihood function it is convenient to minimise the
fitting function (denoted as Fj1), also known as discrepancy function, (see Joreskog

(1967, page 457) for further details), defined as
F =log |Zxx| + tr(ST¥y) — log|S| — p, (5.6)

where S is the unbiased sample variance matrix (with divisor n—1). The EM algorithm
is often the iterative technique used for the optimisation.

The first goodness-of-fit measure widely used was the probability associated with
the chi-square likelihood ratio test, which is given by n — 1 times the minimum value
of the fitting function Fj;; obtained for the specified model. Under the assumption
of multivariate normal X, (n — 1) Fys is asymptotically chi-square distributed. If the
model is correct, and the sample size is sufficiently large, the x? measure is the likelihood
ratio test for testing the model against the alternative that X x x is unconstrained. The
associated degrees of freedom (df) for x? are given by df = {ip(p+ 1)} — ¢, where ¢
is the number of independent parameters to be estimated (equal to 2p in the classical
single-factor model). The probability level for the resulting chi-square value is the
probability of obtaining a larger chi-square, given that the model is correct. Hence,
small chi-square values, with corresponding large probability levels, indicate good fit.
This measure has been criticised in the literature, partially because it is sensitive to
the sample size, and several other measures of goodness-of-fit have been suggested; see,
for example, Anderson and Gerbing (1984) and Bollen (1989, Chapter 7).

In the three manifest variables case df = 0 and the solution is unique. In the
presence of four or more manifest variables an iterative procedure is required, either
to maximise the log-likelihood function or to minimise the discrepancy function. Some

problems can, therefore, occur, namely non-convergence and tmproper solutions.
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Solutions are considered non-convergent when a certain estimation algorithm,
within a previously set number of iterations, is unable to satisfy a prescribed con-
vergence criteria. Solutions are improper when the estimates have values that are
impossible (or implausible) in the population (Bollen, 1987): for example one or more
of the unique variances (elements of the diagonal matrix Os) are negative or correlations
are greater than one.

Several studies have been carried out to understand the circumstances under which
these problems occur, including van Driel (1978), Anderson and Gerbing (1984),
Boomsma (1985) and Boomsma and Hoogland (2001). Key reasons for non-convergence
and improper solutions are population parameters near the boundaries of proper solu-
tions (small values of the error variances Oj;;, or correlations close to one in the popu-
lation), misspecification of the model, the existence of outliers and influential observa-
tions (Bollen, 1987), inconsistent variates and sampling fluctuations. Non-convergence
tends to decrease with larger factor loadings, more indicators per factor and larger

samples. For further details see Bartholomew and Knott (1999).

5.2 The Single-Factor Graphical Gaussian Model

Section 5.1 reviewed the classical parameterisation of the single-factor model. In the
current section the single-factor model is parameterised as a GG model, and the rela-
tionship between the two parameterisations is studied in detail. Indeed, parameterising
the single-factor model as a GG model allows a normal distributed latent variable to
be included in the framework of graphical Gaussian models.

In the classical single-factor model X = A&+ ¢ the manifest variables are condition-
ally independent given the latent variable £ (normally distributed with zero mean and
unit variance). This conditional model can be interpreted in the regression framework,
considering the manifest variables the response and the latent variable the explanatory

variable. Comnsequently, given £, X is normal distributed with mean A{ and variance

matrix ©;. In fact,
pxe = pix + Zxe(See) (€ —pe) = px +AME—pg) =0+ AE-0) =X (5.7)

and L xx ¢ = var(0) = O;. The vector of the p regression coefficients, A, can be obtained
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as

A =Zx¢(Bee) ™! = Txe (5.8)

and the diagonal matrix ©; as
@5 = Z_x_x,g = diag{ZXX — ZxéEgélng} = diag{ZXX - EX§Z§X}. (59)

For simplicity of notation in the remainder of this chapter the latent variable will be

denoted by L and the vector of manifest variables by M.

5.2.1 Parameterising the single-factor GG model using partial

correlations

This section gives a detailed explanation on how to parameterise a single-factor model
as a GG model, i.e., using partial correlations. The conditional independence sfructure
between manifest variables arising from a single-factor GG model (by marginalising over
the latent variable L) is investigated. The admissible region for the partial correlation
coefficients between manifest variables, compatible with a single-factor model, is then
derived.

In this thesis the single-factor GG model is represented by an independence graph,
as justified in Section 2.4.2. Figure 5.2 displays the independence graph associated
with a single-factor model with three manifest random variables (1, 2 and 3) and one

latent variable (L), all assumed normal distributed.

T1L.23 |T9L.13 FaL 12

°r

Figure 5.2: The independence graph of a single-factor model: the manifest variables 1, 2 and
3 are conditionally independent given L. T, res: represents the partial correlation between

manifest variable ¢ and latent variable L, given the remaining manifest variables.

The joint distribution of the manifest and latent variables is multivariate normal

with positive definite variance matrix denoted by X, with inverse denoted by 2. In the
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case of three manifest variables and a single latent variable,

W11 0 0 WiL
0 woo 0 War,

0 0 w33 | W3r

| Wi1L W2 WwW3L |WLL |
where the diagonal elements are positive and w;, # 0,71 € M = {1,2,3}. When
{1 is scaled to have unit values on the main diagonal, which is denoted by sc(Q),
the matrix T is obtained. Whittaker (1990, page 144) showed that the off-diagonal
elements of the scaled inverse variance matrix are the negative partial correlations
of the corresponding elements, given the rest. Therefore, 71 ;k, the negative of the

non-zero off-diagonal element, represents the partial correlation between the manifest

variable 7 and the latent variable L, given the remaining two manifest variables, and is

obtained as —7;; ix = —=2k—. Consequently.
J VWiWLL ’

1 0 0 —T1L,.23
0 1 0 ~T2L.13 I Typ
T - SC(Q) s =
0 0 1 ~T3L.12 Tpar 1
| —TiL.23 —T2L.13 —T3L.12 I

Let TM denote the scaled inverse variance matrix of the manifest variables and U,
with elements v;;, denote the inverse of 7. Indeed U is a ‘modified’ X in the sense that
there exists a symmetric square matrix G such that GUGT = . The matrix U can be
partitioned as

11 2 Vi3 | iL
vig v vez | var || Uunm Ums

Vi3 Va3 V33 | V3L Um  vip

vip VoL V3L | VLL |

The aim now is to investigate the conditional independence structure between the
three manifest variables arising from marginalising the joint distribution of all variables
over the latent variable. It is proved that marginalising over the latent variable L in
Figure 5.2 yields the saturated model for the three manifest variables, and therefore
induces an independence graph that is complete. This is equivalent to stating that
1112|L, 11.3|L and 21L3|L implies no zero entries in 7™, the scaled inverse variance

matrix of the manifest variables.
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A proof follows, in four steps. First 7', the scaled inverse variance matrix of all the
variances is inverted and U, a ‘modified’ variance matrix of all the variables is obtained.
Then, by marginalising over the latent variable L, the matrix Uysas, a ‘modified’ vari-
ance matrix of the manifest variables, is obtained. Inverting and scaling this matrix
induces T, the scaled inverse variance matrix of the manifest variables. Recall that
the off-diagonal elements of this matrix are the negatives of the partial correlations

between manifest variables, and all these are shown to be different from zero. Let
-1
I Tyr (I = TapTom) ™! —(I = TarTon) ' Tasr

U=T7"1= =
T 1 =TI = ToagrTope)™t (U= T I M)t

(5.10)
Because the multivariate normal distribution is closed under marginalisation, the
marginal distribution of the manifest variables is multivariate normal, with ‘modi-
fied” variance matrix given by Unrpyr = (I — TaspTra) ™t Inverting this matrix gives

Uning™t =T — Tar T which, once scaled, induces

1 _ T1L.237T20.13 T1L.23T3L.12

\ﬁ_leLQB\/l_T‘ZZL‘lB \/1‘712L.23\/1“T§L.12
T™ — — T10.23720.13 1 — 7201373112
\/1“712L.23 \/1”7221,413 \/1‘7221,.13 \/1“7"321,.12

T1L.2373L .12 T2L.137T3L.12 1

B \/1“712L.23\/1“732L.12 \/E_T22L413 \/1‘732L.12

Because 7z ji # 0, ————ttTikit £ (). Consequently 7™ has no zero elements;
\/1_77:L.jlc \/l_TjL.ik

there are no zero entries in the scaled inverse variance matrix of the manifest variables.
For T™ to be positive definite the variances 1 — 77 ,; have to be positive, which implies
0 < 744 < 1. Note that whereas in the classical factor model the factor loadings
AZ € [0, 1] (since positive semidefinite matrices are allowed), in the current thesis it is
suggested 73 . € (0,1) (since only positive definite matrices are considered).

The off-diagonal elements of the scaled inverse variance matrix of the manifest

variables are the negatives of the partial correlation coefficients between the manifest

variables. Therefore,

piik = Ti;-jkaL~i’“ —  with distinct §,,k € M. (5.11)
\/1 — TiLjk \/1 ~ TiL.ik

When solving the system of three equations defined by Equation 5.11 with respect
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to the three 7,z ;. the following expression is obtained

1

TiL.jk = 1'+‘ Piki "
Pij.kPik.j

(5.12)

Since 0 < 77 ;, < 1, then —£&i_ >
. Pij.kPik.j
Hence, the following result concerning the conditional independence structure be-
tween three manifest variables compatible with a single-factor GG model is proposed:
three manifest variables can define a single-factor model if and only if their scaled in-

verse variance matrix is positive definite and the product of the three partial correlation

coefficients is positive.

The implications of this result in terms of admissible regions for the three partial
correlation coefficients between manifest variables, compatible with a single-factor GG
model, are now derived. Figure 5.3 shows a graphical display of the allowable région for
the three partial correlation coefficients. The ellipse represents the positive definiteness
constraint on 7™ defined by Equation 4.5. Additionally, there is now the constraint
of a positive product of the three partial correlation coefficients. In practice, p;3. and
p231 vary between —1 and 1 (excluding zero values), whereas pj23 was given positive

arbitrary values of 0.1, 0.5, 0.7 and 0.9, respectively in panels a), b), ¢) and d).

Figure 5.3: The admissible region for the three partial correlation coefficients compatible
with a single-factor GG model: pj32 on the horizontal axis, pes; on the vertical axis and

p12.3 taking positive arbitrary values of: a) 0.1, b) 0.5, ¢) 0.7, d) 0.9.
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When there are more than three manifest variables in the model, additional con-
straints have to be imposed in order to have consistent solutions (as in Section 5.1.1).
In the four manifest variables case, the system of equations defined by Equation 5.11
will have four 7 and six p. For the solutions for each parameter to be consistent, the
constraint that pis34034.12 = P13.24024.13 = P14.23023.14 1S required. Therefore, an equiv-
alent version of the two tetrad conditions presented in Equation 5.5 can be expressed

in terms of partial correlations as

P12.34P34.12 — P14.23P23.14 = 07 P13.24024.13 — P1a.23p23.14 = 0. (5.13)

Setting piirest €qual to TilorestTyL rest a generalisation of Equation 5.11) guar-
o 10.7 q \/1_ 2 1_’__2 o q o
iL.rest 'jL.rest
antees the two conditions defined by Equation 5.13 are satisfied, since then

P12.34034.12 — P14.23P23.14 = 0 &

T1L.234T2L.134 T3L.124T4L.123 T1L.234T4L.123 T2L.134T3L.124 ~ -0

_ L2 2 _ -2 .2 _ 2 2 _ .2 -2
\,/1 T1L.234\/1 T2L.134 \/1 T31,.124\/1 Tir.123 \/1 TlL.234\/1 T4r.123 \/1 T2L.134\/1 T3L.124

Similar reasoning can be followed for the second tetrad condition. One should note
that, when there are four or more manifest variables, the proof previously presented still
holds, in the sense that marginalising over the latent variable induces a scaled inverse
variance matrix of the manifest variables with no zero elements. However, because of
the restrictions imposed by the tetrad conditions, although the model for the manifest

variables has a complete independence graph, it is not necessarily the saturated model.

Hence, the following result is proposed: for a 4 x 4 positive definite scaled inverse

variance matrix to be suitable for a single-factor GG model it is required that:

— TiL.restTjL.rest 1 —
® Pijrest = T V7 , so that 14_dkrest T
iL.rest jL.rest Pij.restPik.rest

(TjL.restTkLArest)/(\/1"7_;‘21‘47‘5“ \/I”T}gL_rest)

('riL‘restTjL.restTiLArestTkL.rest)/(\/1 "’TizL,rest \/l_TfL_rest \/I_Tz?L.rest \/1 _TI?L.rest)

1+

2 .
iL.rest>

® Fﬁﬁﬁ——t > 0 (for all possible combinations of distinct 4, j and k, from 1 to 4).
ij.restPik.res

These conditions imply certain patterns of signs for the p, which are analysed in detail

in Section 5.2.3.
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5.2.2 The relationship between the classical and the proposed

parameterisation of the single-factor model

The purpose of this section is to establish a relationship between the classical parame-
terisation of the single-factor model reviewed in Section 5.1.1 and the parameterisation
of the single-factor GG model proposed in Section 5.2.1.

By Equation 5.8, A = £,;7. Equation 5.10 shows a ‘modified’ X,;; (denoted by
Uprr) can be obtained as — (I — T Trar) ™ Tasr- Therefore, a possible non-standardised

solution for the vector of factor loadings can be obtained as
A=~ —TnToar) Tasr- (5.14)

This equation gives non-standardised A; as function of the p different 7. In the three

manifest variables case this can be written as

TiL.jk ’
M= (5.15)
iL.jk jL.ik kL.3j

More generally, in the p variables case

)\i — T‘LL 'rest (516)

q—-l qL rest

The proof follows. From Equation 5.14, A = —(I —Tas.Trar)”  Tas - Mardia, Kent and
Bibby (1979, Property A.2.4f, page 459) stated that, if all necessary inverses exist,

(A+BCD)'=A1-A7'B(C'+ DA™'B)'DA™!

where A(pxp), Bpxn)y Ciaxn) and Dpxpy. Considering Apxyy = I, Bpxy) = —Tyr,
Cux1y = I and Dgxp) = Ty, then

(I — TMLTLM)_l = ]! =+ leTML{l — TLMI‘ITML}*lTLM[_I
=TI+ Tarr{l = TorTosr} " Tom-

Since Ty Tasr is a scalar and {1 — T Tarr} ™t 1—21,——1——27—
g=1 ‘gL.rest
A = — [TML + {1 — TLMTML}_lTMLTLMTML]

Yo=1Ta
_ res
!:TML + I- ZZ"I L;L r:st T }

TiL.rest
——-—-—r—-T = { } .
1 Zp ML= 1_22):1 TqL.rest

g=1 qL rest

165



Because the denominator is always positive, ; has the same sign as the corresponding

TiL.rest-

The ‘classical standardised solution’ for J; is obtained by dividing the factor loading
by the standard deviations of the corresponding manifest variable and of the latent

variable. The standardised solution is, therefore, given by

Moo 2 (5.17)
‘ v Vii VLL. -
More generally,
A% = {diag {Upp}} V% A v]}/? (5.18)

which is equivalent to scaling U and taking the corresponding partition scUpsr. By

Equation 5.9, ©5 = diag{Exx — ExeXex}. Since A = Zpp, it is possible to obtain
05 = diag{Zaar — AT} (5.19)
The corresponding classical standardised solution is given by
¢ = diag{I — X**(3*)T}, (5.20)
which is equivalent to scaling U and calculating ©3¢ = diag{I — (scUnsz)(scUr)T}.

All the derived relationships between the classical parameterisation of the single-
factor model and the parameterisation of the single-factor GG model hold theoretically,

for the general p manifest variables case once the tetrad conditions are fulfilled.

5.2.3 Patterns of signs for the p compatible with a single-
factor GG model

In Section 5.2.1 the admissible regions for the partial correlation coefficients between
manifest variables arising from a single-factor GG model were investigated. The results
derived then suggest that only certain patterns of signs for the p are compatible with
a single-factor GG model. In brief: for all possible combinations of distinct 4, 7 and k,
% > 0 (and the tetrad conditions have to be satisfied).

The aim of the current section is to derive a general rule for defining the patterns

of signs of the partial correlations between manifest variables that are compatible with

a single-factor GG model. As a matter of fact, the specification (construction) of a
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single-factor model based on substantive knowledge has to take into account models
that are compatible with the inverse variance structure of the manifest variables in
the population. In other words, when the researcher specifies the manifest variables
she or he wants to incorporate in the model, believing they have a certain structure of
partial correlations in the population, certain patterns for the factor loadings (partial
correlations between the manifest variables and the latent variable) can be expected.
Also, the researcher has to be aware that there are patterns of signs in the inverse

variance matrix that are not compatible with a model arising from a single-factor

model.

From the generalisation of Equations 5.11 and 5.12, it is possible to conclude that

the same value of p;;,es: can be associated with different combinations of signs for

. T T .
TiLrest @A T rest- Indeed, since pyjrest = ’2““‘ JL”j; , the sign of p;; res: €quals
1_-’l—';’L‘av-est\/:{—"jll.rest

the product of the signs of 7iz rest @and 751 rest-

In the three manifest variables case, there are 23 = 8 different combinations of signs
for the three 7, as shown in Table 5.1. The first three columns of the table include
the eight different combinations of signs for the 7 (the partial correlation coefficients
between each of the manifest variables and the latent variable). The last three columns
show the corresponding signs for the p (the partial correlation coefficients between the
three manifest variables). Recall that the sign of p;;x equals the product of the signs

of 7;1 ;k and T, 4 (from Equation 5.11).

Ti1L.23 | T2L.13 | T3L.12 || P12.3 | P13.2 | P23.1
+ + + + + +
+ + - + - -
+ - + - + -
- + + - - +
- - - + + +
- — + + - -
_ + - - + _
+ - - - - +

Table 5.1: Different combinations for the signs of the 7 and of the p in the three manifest

variables case.
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Various conclusions can be drawn from Table 5.1:

e cither all three p are positive, or one is positive and two are negative: it is not
possible to have a model with three manifest variables arising from a single factor

model in which just one or all three p are negative;

e when p;;« is positive and the other two p are negative, two different combinations
of positive and negative values of 7 can occur: either 7z res: and 7,7 res: are
positive and Txr res: IS negative or 7Tir rest aNd Tjr.res: are negative and Tir rest 1S
positive;

e if 7,1 rest I8 Negative and the other two 7 are positive (or the opposite), then all
p in column (row) 7 of the scaled inverse variance matrix will be negative, and
all remaining p will be positive. This condition defines an allowable pattern for
the p compatible with a single-factor model. Table 5.2 helps visualising it. The
table should be interpreted as follows. The first column displays the vector of the
signs of the 7, whereas the second column shows the signs of the corresponding
p. Then if, for example, 77 23 is negative and the other two 7 are positive, all p
in column one and all p in row one will be negative, and the remaining p will be

positive.

signs T = signs p=
signTir .23 signpiz.3  signpis.2
signTzr .13 signpi2.3 signp23.1
signT3L.12 signpiz,2  signpzs.a
T { L ( R
+ or - _ +
L + wl L - - L - + P
] [-] T
- or + - -
L+ L~ ] Lt =
[ + ] [ - ] [ + - ]
+ or - + —
L - 4 L + - - - - B

Table 5.2: The allowable pattern of two negatives and one positive p in the three manifest

variables case.
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In the four manifest variables case, there are 2* = 16 different combinations of signs

for the four 7. The major conclusions are:

e for four manifest variables to arise from a single-factor model either all six partial
correlations are positive or, if some are negative, the number of negative p can
be three or four, and certain patterns have to be met. It is not possible that only
one, only two, five or six of the p are negative;

e the six p will be positive, if either the four 7 are all positive or all negative;

e if there are two positive and two negative 7, there will be 2 positive and 4 negative

p;

e solutions with three positive and three negative p correspond to models with
either one positive and three negative 7 or models with one negative and three
positive T;

e if 71 rest 1S negative and the remaining three 7 are positive (or the opposite), then
all p in column (row) 7 of the scaled inverse variance matrix will be negative, and
all remaining p will be positive, as happened in the three variable case (recall the
results in Table 5.2);

o if 71 rest and Tjrrest are negative and the remaining two 7 are positive (or the
opposite), then all p in column (row) 7 except those in column (row) j (and all
those in column (row) j except those in column (row) ¢) will be negative, and

the remaining two p will be positive. Table 5.3 illustrates this result.

When five manifest variables are present there are 2° = 32 different combinations
of signs for the five 7. Similarly to the four variable case, different patterns of signs for

the p are allowed. In short:

e if 7,1 res IS Negative and the remaining four 7 are positive (or the opposite), then

all p in column (row) 7 of the scaled inverse variance matrix will be negative, and

all remaining p will be positive;

o if Tip rest and TjL rest are negative and the remaining three 7 are positive (or the
opposite), then all p in column (row) i except those in column (row) j (and all

those in column (row) j except those in column (row) ¢) will be negative, and

the remaining p will be positive.
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signs T = signs p =
[ signri 2s 1 signp12.34  signpiz.2a  signpig.2s
signpi2.34 signp2z .14 signpzq.13

] signTar. 134
signT3r 124 | signp13.24  signp2s.14 signpaa.12

SignT4L.123J signp14.23  signp24.13  signpss.2

[ =] [+ [ + - -]

+ + - -

+ o+
!
'
I

or

B I B S
t

4
|

or

+
l

|

i

Table 5.3: The allowable pattern of two positive and four negative p in the four manifest

variables case.

The rules presented above for the three, four and five manifest variables cases define
the theoretical patterns of signs of the partial correlation coefficients between manifest
variables that are compatible with a single-factor model. All these rules can be further
simplified, as follows. Let signsT be a p X 1 column vector with the signs of the
partial correlation coefficients between each of the p manifest variables X and the
latent variable L. Let signsp be a p X p symmetric matrix with the signs of the partial
correlation coefficients between the p manifest variables as off-diagonal elements. The

elements in the main diagonal are not of interest.

The following general rule is proposed: the off-diagonal elements of signs p represent
a pattern of signs for the p that is compatible with a single-factor GG model, with

patterns of signs for the 7 given by signs T, if and only if

(signsT) (signs )T = (signsp)

(for the off-diagonal elements). This rule refers to population parameters and assumes

the tetrad conditions are satisfied.
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5.3 Detecting a Model Consistent with a Single-
Factor GG Model

The goodness-of-fit likelihood ratio test presented in Section 5.1.3 is often used to test
the null hypothesis that m factors (latent variables) are sufficient to describe the data,
against the alternative hypothesis that ¥ xx is unconstrained. In practice, this allows
the data analyst to decide how many factors to fit to the data, if any. The usual strategy
is to start with m equal to zero or one and perform a sequence of hypotheses tests,
by increasing the number of factors by one, until the fit of the model is judged to be
adequate. For further details see Mardia, Kent and Bibby (1979, page 268). However,
as mentioned in Section 5.1.3, the procedure has been criticised in the literature: the
fit always improves when m increases, making it unclear where to stop; because of the
sequential character of the tests it is argued the p-value of a test should be regarded as a
measure of the adequacy of the model; and although corrections have been suggésted to
improve the chi-square approximation of the test, it remains sensitive to the sample size
(see also Bartholomew and Knott, 1999, Section 3.8). A different approach is suggested
in this thesis, in order to detect a model consistent with a single-factor model, taking
into account the power of the model selection procedure.

The focus of Section 5.2 is on the parameterisation of the single-factor GG model
using partial correlations. Admissible regions for the p were investigated. In particular,
patterns of signs of the population partial correlation coefficients were studied in order
to help specify a single-factor GG model based on subject-matter knowledge. Addi-
tionally, in Section 5.2.1 it was shown that marginalising over the latent variable in the
single-factor model induces no conditional independencies between manifest variables
and, therefore, an independence graph that is complete.

All this suggests that when trying to detect (identify) a model consistent with a
single-factor model, i.e., to detect the presence of a normally distributed latent variable,
the data analyst should be looking at a GG model for the manifest variables with
a complete independence graph. In fact, in Section 2.8 backwards elimination was
recommended as the model selection procedure when trying to detect the presence
of a latent variable in the context of GG models. Because the main interest is to
identify strong associations between the manifest variables, the saturated model is

first considered and afterwards a sequence of single edge exclusion tests is performed
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(simultaneous multiple edge exclusion testing is not considered in this thesis). In
practice, when performing model selection, type II errors (i.e. false acceptances of
the null hypothesis) can occur and, therefore, the observed association structure will
often not correspond to the true (saturated) model. Recall that, for each edge exclusion
test, the null hypothesis is that the partial correlation is zero, the alternative hypothesis
being that it is different from zero. Consequently, one or more edges will be missing
in the selected independence graph for the manifest variables. Therefore, if the null
hypothesis just presented is not rejected, the single-factor model does not hold, unless
a type II error was made. In the case of three manifest variables there are three
possible tests for single edge exclusion from the saturated model and, consequently,
three possibilities of making a type II error. Hence, the power of the test statistics
for single edge exclusion has to be taken into account when trying to select a model
consistent with a single-factor GG model. Section 5.3.1 addresses this issue.

Also, it may happen that the sample available does not have the pattern of partial
correlation coefficients signs the population has. That being the case, the general
rule proposed in Section 5.2.3, to obtain patterns of signs for the p compatible with
a single-factor GG model, may no longer apply, particularly when there are more
than three manifest variables. The aim of Section 5.3.2 is, therefore, to suggest some

recommendations to the data analyst when trying to identify a model consistent with

a single-factor model.

5.3.1 The power of selecting a model consistent with a single-

factor GG model

The power of selecting the saturated model when using the LRT statistic, in the three
manifest variables case, was studied in detail in Section 4.1.4, using simulation. An
asymptotic normal approximation to the power functions was derived in Section 4.1.5
and it was then explained how to obtain asymptotic power functions for the Wald and
the score test statistics. Section 4.1.6 considered generalising such approximations to
the situation of four, or more, manifest variables. The only constraint imposed then is
that the scaled inverse variance matrix has to be positive definite.

Once a model arising from a single-factor GG model is considered, the additional

constraint that, for all possible combinations of distinct ¢, j and k, —24&rest . > () has

? Pijrest Pik.rest
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to be imposed (as shown in Sections 5.2.1 and 5.2.3). In practical terms, in the three
manifest variables case, this additional constraint means that the product of the three
partial correlation coefficients has to be positive, i.e., either all three p are positive, or

one is positive and the other two are negative.

Theoretical power values can be obtained using the asymptotic normal approxima-
tion derived in Section 4.1.5, namely Equation 4.6 for the three variables case. The
three partial correlation coefficients are allowed to vary within the region of positive

definiteness defined by Equation 4.5, with the additional constraint that their product

has to be positive.

Simulated power values calculated in Section 4.1.4 and displayed in Figure 4.6 still
hold for the power of selecting a model arising from a single-factor GG model, provided
p12.3, on the horizontal axis, just takes positive values. The main conclusion derived
then still holds for the power of selecting a model compatible with a single-factor
GG model with three manifest variables: power increases as the partial correlation
coefficients increase. For n = 200, the probability of selecting the saturated model,
using the LRT statistic, has a maximum value of ~ 0.3 when one of the p;;; >~ 0.1,
even if the other two partial correlations are large. This probability goes up to >~ 0.8,

or almost 1, when the minimum p;;x =~ 0.2 or 0.3, respectively.

The one-sided signed square-root version of the likelihood ratio test statistic can
be used, assuming one is only interested in the positive values of the three partial
correlation coefficients (believing that the three factor loadings of the underlying factor
model have the same sign). Although, for simplicity, empirical power plots are not
presented, their pattern is very similar to that obtained using a non-signed version
of the likelihood ratio test statistic. Power has a maximum value of 0.4 when one
of the p is small, even if the other two are large, which is higher than the 0.3 value
obtained when a non-signed version of the test statistic was used. Globally power values
are higher when the one-sided signed square-root version of the test statistic is used,
by comparison with either the non-signed version or the two-sided signed square-root

version, because one-sided tests tend to be more powerful than two-sided tests.

Additional simulations were carried out to investigate the effect of changing the

sample size, in the three variables case. The LRT statistic was used. Asin Section 4.1.4,
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power was calculated as
L 2 L 2 L 2
PlTy > X7: 005 and Th3 > x5, 995 and To3 > X7, g.05 | pi23, P32, pasal

When p95 takes positive values, power curves are exactly the same whether pi32 and
pos3.1 are both positive or both negative. One thousand repetitions and four different
sample sizes were considered. Figure 5.4 summarises the main results. Plots in panel
a) correspond to n = 50, in panel b) to n = 100, in panel ¢) to n = 500 and in panel
d) to n = 1000. In all panels p1s3 is represented on the horizontal axis. The nine

different lines in each plot correspond to the values of psz1 between 0.1 and 0.9. pi3.

has a value of 0.1 in plots 1), of 0.2 in plots 2) and of 0.3 in plots 3).
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Figure 5.4: Power functions for the saturated model arising from a single-factor model with
three manifest variables, using different sample sizes: a) n = 50, b) n = 100, ¢) n = 500, d)

n = 1000. p12.3 on the horizontal axis. pos1 from 0.1 to 0.9 in each plot. py32 from 0.1 to

0.3 in plots 1), 2) and 3).
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By comparison with the results for the case n = 200, previously considered, it is
possible to conclude that, as n increases, power tends to rapidly increase, and conse-
quently the non-monotonicity tends to disappear (see panels c¢) and d)). Note that
when one of the partial correlation coefficients is around 0.1 (even if the other two are
large) a maximum power value of 0.3 can be reached with a sample size of 200, whereas
for n = 500 or n = 1000 power values of 0.6 and 0.9, respectively, can be obtained.
As n decreases, see panels a) and b), the non-monotonicity effect becomes more ev-
ident than that in Figure 4.6, even for larger partial correlation coefficients. Power

values tend to become very low, especially for small values of the partial correlation

coefficients.

In Section 5.2.2 some formulae were derived relating the classical and the proposed
parameterisations of the single-factor model. In the three manifest variables case, when
df = 0 and no tetrad conditions have to be satisfied, the values of 7;1 s, the partial
correlations between each of the manifest variables and the latent variable, can be
directly obtained from the observed partial correlation coefficients between manifest
variables using Equation 5.12. The classical factor loadings A; can then be obtained
from the 7;7 res: using Equation 5.15. Using this mapping between possible values for
the three partial correlation coefficients and corresponding expected factor loadings, it
is possible to understand the association between the magnitude of the A and the level
of power (the probability of selecting the saturated model for the manifest variables)
as a function of the sample size. Indeed, the awareness existing in the factor analysis
literature as to what constitutes a large value of A was considered important here.

Table 5.4 displays several possible combinations of values for the three partial cor-
relation coefficients, the corresponding standardised factor loadings and power values
for different sample sizes. The first three columns have the values for the p (small,
intermediate and large values were used, although values very close to the boundary
of positive definiteness were not considered to avoid improper solutions). The fourth,
fifth and six column have the corresponding values of the A\ (the standardised factor
loadings that would be obtained if the single-factor model was fitted). The last five

columns display the values of power for the five different sample sizes that were used

in the simulations.
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P32 | P23.1 | P12.3 A1 A2 Az n=50{n=100 | n=200 | n=500 | n = 1000

0.1 0.1 0.1 1033|033 )0.33 | 0.001 0.000 0.012 0.192 0.697
0.1 0.1 0.7 | 0.85{0.85 | 0.28 yj 0.015 0.002 0.017 0.282 0.729
0.1 0.2 0.5 |1 0.66 | 0.81 | 0.36 || 0.012 0.040 0.189 0.615 0.883
0.1 0.3 0.8 | 0.90 | 097 | 0.66 || 0.014 0.076 0.290 0.613 0.886
0.1 0.4 0.6 || 0.75 | 0.94 | 0.62 || 0.055 0.155 0.327 0.617 0.898
0.1 0.6 0.6 | 0.85|0.98 | 0.85 | 0.100 0.188 0.312 0.596 0.893

0.2 0.2 0.2 } 0.50 | 0.50 | 0.50 {| 0.005 0.085 0.499 0.986 1
0.2 0.3 0.4 ] 0.65|0.75 | 0.56 || 0.066 0.415 0.816 0.995 1
0.2 0.4 0.5 || 0.74 | 0.87 { 0.68 || 0.166 0.505 0.832 0.999 1
0.2 0.5 0.6 | 0.87 | 0.95 0.83 || 0.285 0.531 0.822 0.994 1
0.3 0.3 0.3 | 0.65 ] 0.65 | 0.65 || 0.089 0.597 0.977 1 1
0.3 0.4 0.5 || 0.82 | 0.87 | 0.77 || 0.417 0.857 0.993 1 1
0.3 0.5 0.5 J 0.86 | 0.92 | 0.86 || 0.522 0.881 0.992 1 1
0.4 04 0.4 | 082108210821 0.549 0.965 1 1 1
0.4 0.5 0.5 4093095093 | 0.776 0.985 1 1 1

Table 5.4: Power values as a function of the p, the A and the sample size.

From Table 5.4 (and from plots in Figure 5.4) it is possible to conclude that, for a
given combination of p and, consequently, of A, power values are highly determined
by the sample size. In other words, the probability of selecting the saturated model,
arising from a single-factor model, varies according to the degree of association between
manifest variables (the values of the p), but conclusions can be quite misleading if the
sample size is small. For example, let us consider a combination of partial correlation
coefficients of 0.3, 0.4, 0.5. The corresponding standardised factor loadings equal 0.82,
0.87, 0.77 (which, in the literature of factor analysis models, are considered large values
of standardised factor loadings). If the sample size is small, say 50 observations, the
power of selecting the saturated model for the manifest variables is only around 0.42,
whereas it goes up to around 0.86 with a sample size of 100 and almost reaches 1 with
a sample size of 200. The data analyst must, therefore, be very careful when dealing
with small sample sizes. Indeed, LISREL literature on the robustness of the software
recommends a minimum sample size of 100 or even 200, depending on the number of

variables and parameters to be estimated.
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5.3.2 Some recommendations to the data analyst

When trying to select a model consistent with a single-factor GG model the data an-
alyst has to take into account the power of the test statistic for edge exclusion. As
justified in Section 5.3.1, although the magnitude of the partial correlation coefficients
is important, the question of the sample size is crucial and small samples can be quite
misleading. Power values can, consequently, be low and the data analyst must be
prepared to fit the single-factor GG model, even if there is one or more conditional
independencies between the manifest variables. Furthermore, although only the three
manifest variables case was considered in detail in Section 5.3.1, these conclusions
should also apply when four or more manifest variables are present. Indeed, in Sec-
tion 4.1.6, when power functions were compared for the three, the four and the five
variables cases, considering all partial correlation coefficients equal, the conclusion was
drawn that, for a given value of p and for a given sample size, the larger the number
of variables, the lower power values are. In other words, the more manifest variables
there are in the model, the more likely it is that the data analyst has to consider

independence graphs with more edges missing, when trying to fit a single-factor GG

model.

Another important aspect to be taken into account is that, due to sampling fluc-
tuations, the pattern of signs of the sample partial correlation coefficients may differ
from the pattern of signs of the p in the population from which the sample was drawn.
One should note that, once it is believed a single-factor GG model holds, it is assumed
that the manifest variables are drawn from the ‘true’ single-factor model and, there-
fore, a certain pattern of signs is expected for the sample partial correlation coefficients
between manifest variables. The question of the patterns of signs for the p compatible
with a single-factor GG model was investigated in Section 5.2.3, and a general rule was
proposed for detecting compatible patterns, once the tetrad conditions are satisfied.
In the three manifest variables case, df = 0, there is a unique solution for the single-
factor model (up to rotation), no iteration is required and no tetrad conditions have
to be satisfied. Consequently, trying to fit a single-factor model to a sample with an

incompatible pattern of signs will lead to either a non-convergent or to an improper

solution.

When the number of manifest variables is greater than three, the number of un-
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knowns (7 and elements in ©s) in the single-factor GG model (as presented in Sec-
tion 5.2.1) is smaller than the number of known partial correlation coefficients between
the manifest variables. And although the tetrad conditions are satisfied in the popula-
tion, i.e., for the scaled inverse variance matrix of the manifest variables of the ‘true’
single-factor GG model, there is no guarantee that they will be fulfilled in the sample.
Let us suppose an example of a 4 x 4 sample scaled inverse variance matrix, with a
pattern of signs for the p that, according to the rules presented in Section 5.2.3, is not
compatible with a single-factor model. The data analyst may decide not to fit such a
model. Nevertheless, it may happen that, if the sample scaled inverse variance matrix
is not close to satisfying the tetrad conditions, once the analyst tries to fit a single-
factor model, she or he actually manages to obtain sensible estimates. This is due to
the fact that current software for estimating factor models, aiming at either maximise
the log likelihood function or minimise the discrepancy function, do not incorporate
any additional constraint, rather than the fact that the sample variance matrix has
to be positive definite. If the sample is not close to satisfying the tetrad conditions,
it can happen that the software manages ‘a way out’ and is able to fit a single-factor
model using a sample that has a ‘non-allowable’ structure, i.e., patterns of signs of the
partial correlation coefficients that, in principle, are not compatible with a single-factor
model. The data analyst may consequently be ‘surprised’ by the fact that convergence
was achieved or that parameter estimates have a structure of signs different from the

one that was expected. It is, therefore, important for the analyst to be aware of what

is happening.

The question of incompatible sign patterns of sample covariances of manifest vari-
ables (not inverse variance matrices, as studied above) was mentioned by Boomsma
(1985) and by Boomsma and Hoogland (2001) in their study on the robustness of
maximum likelihood estimation with LISREL, trying to account for non-convergence
and improper solutions. A simulation study was used to predict non-convergence in
situations where the sign pattern of the sample covariances between manifest vari-
ables is incompatible with the signs of products of possible factor loadings in the
population model. The following results were obtained: ‘in the case of three manifest
variables, for a sample size of 25 (with 400 repetitions) the correct-prediction rate of

(non)convergence was 98%, whereas for a sample size of 50 it was 99%. However, us-
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ing stmilar prediction criteria for a model with 4 manifest variables was unsuccessful’.
Boomsma and Hoogland (2001) stated that ‘for some models, inadmissible sign pat-
terns of the observed sample covariances linked to the same factor have good predicted
value for non-convergence.’

Yet, besides not mentioning why in the four manifest variables case the prediction
criteria was unsuccessful, in his study Boomsma does not seem to take into account
the constraint imposed by the tetrad conditions. In this thesis it it proposed that
compatible sign patterns of the population partial correlation coefficients should be
used to construct (specify) the theoretical single-factor model. Next, the pattern of
signs of the sample partial correlations should be considered. In the three variables
case, this pattern is a good criteria as to whether it is possible to fit a single-factor
model (particularly if the sample size is not very small). When four or more manifest
variables are present, the analyst should be aware that having an incompatible pattern
of signs for the sample partial correlation coefficients may lead to fitting a singie—factor
model which does not have the expected combination of signs for the factor loadings
or partial correlations between manifest variables and the latent variable, if the sample

being analysed is not close to fulfilling the tetrad conditions.

Some brief recommendations to the data analyst, when trying to detect the presence

of a latent variable are:

e first, sample partial correlation coefficients should be calculated. If an incompat-
ible pattern of signs is found, there is strong evidence that a single-factor model
cannot be fitted with such a sample. If the data analyst believes that in the
factor model all factor loadings should be positive, and finds evidence of that
from the sample (by obtaining three positive p) then, in a second step, a signed
square-root version of a test statistic should be used to perform one-sided tests
for single-edge exclusion from the saturated model. If the analyst thinks some of
the factor loadings could be negative, and finds evidence for that from the sam-
ple (an allowed pattern of signs for the p is obtained), then a signed square-root
version of a test statistic for single-edge exclusion should be used, in a second

step, to perform a two-sided hypothesis test;

e in a second step the most appropriate test statistic for single edge exclusion from
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the saturated model should be used. If the independence graph of the manifest
variables is complete, the variables under analysis can be considered indicators of
a single-factor GG model. If the model with a complete independence graph does
not hold, and particularly in the cases of small values of one or more p and small
sample sizes, associated with small power of selecting the saturated model, the
analyst should consider obtaining a larger sample size. That not being possible,
she or he should still try to fit a single-factor model, and be cautious when

interpreting the results.

In summary, Section 5.3 has provided some evidence that when performing model
selection to detect a single-factor GG model, under certain patterns of the observed
partial correlation coefficients, the data analyst must still consider an observed associ-
ation structure that is not necessarily the one induced by the saturated model of the

manifest variables, i.e. the true model, particularly if the sample size is small.

5.4 The Classical Parameterisations of the Latent

Class Model

The aim of latent class analysis is to define a latent variable as a set of classes within
which the manifest categorical variables are locally independent. There are two central
assumptions in latent class models. One is that the population consists of a set of
mutually exclusive and exhaustive homogeneous subpopulations, which make up a
latent classification that is discrete by definition. The other is local independence,
i.e., within a given latent subpopulation, all manifest indicators will be statistically
independent. In other words, manifest variables are conditionally independent given
the categories of the latent variable. The latent class analysis can be either exploratory
or confirmatory. In the former case there are no a priort restrictions on the parameters

of the model, whereas in the latter case restrictions can be imposed.

There are two main classical parameterisations of the latent class model: one is
based on conditional probabilities (Goodman, 1974) and the other uses a log-linear
model formulation (Haberman, 1979). The notation adopted in the thesis is used to

present the latent class model under both parameterisations, for the general case of four
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manifest variables and one latent variable, all with two or more categories (classes). Let
X1, X9, X3 and X, be four manifest variables, with A, B, C and D classes, respectively,
and L be a latent variable with 7" classes. The observed information about X;, X5, X3
and X, can be summarised in a A x B x C x D contingency table. Let m1234(a, b, ¢, d)
denote the probability that an individual will be at level (a, b, ¢, d) with respect to the
joint variable (X7, X5, X3, X). All 7 are assumed positive.

Using Goodman’s conditional probabilities parameterisation, the observed variables

X1, X5, X3 and X, are conditionally independent given the level [ of the latent variable

Lif
T34z (a, b, ¢, d, 1) = wp (1) myyr(a, 1) wor (b, 1) may2(c, 1) mayr(d, 1) (5.21)
and T
T23a(a, b, c,d) = ZW1234L(G7 b,c,d,l). ‘ (5.22)
=1
Also,

T A B C D
Som) =Y mppla )= murb )= mle) =Y myu(dl) =1
l=1 a=1 b==1 c=1 d==1

The latent class probabilities, nr(l), and the conditional probabilities, my(a,l),
moL(b, 1), maL(c, 1), mar(d, 1), are the two fundamental quantities of latent class anal-
ysis under Goodman’s parameterisation. In other words, Equation 5.21 states that
the probability that a randomly selected case will be located in cell (a, b, ¢, d, ) equals
the product of the probability of a randomly selected case being at level [ of the la-
tent variable L times the conditional probabilities that a case in class [ of the latent
variable will be located at a certain category of each of the manifest variables. The
conditional probabilities represent a measure of the degree of association between each
of the manifest variables and each of the latent classes and can be compared to the
factor loadings in factor analysis.

Haberman (1979) presented the unrestricted latent class model as a log-linear model

log m1234L(a, b, c, d, l) = )\0 + Al (CL) + /\Q(b) -+ /\3(6) -+ A4(d) -+ AL(Z)
+)\1L(CL, l) + /\QL(b, l) + /\3L(C, l) + /\4L(d, Z).

(5.23)

where miazar(a,b,¢,d, 1) are the expected counts of mya34r(a,b,¢,d, 1), not known be-
cause L is unobserved. The Ay term is a normalising constant, to ensure that the sum

of the expected counts over all possible combinations of cells equals the sample size ng.
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As far as the process of identification of a latent class model is concerned, the first
step consists of checking for a non-negative number of degrees of freedom. Indeed, a
necessary condition for identifiability is that the number of df is non-negative. The

total number of degrees of freedom is given by
df=(AxBxCxD-1)-[(T-1)+TA-1)+T(B-1)+T(C-1)+T(D-1)],

where A X B x C' x D — 1 is the available number of degrees of freedom in the cross-
tabulation of the manifest variables and (T'—1)+T(A-1)+T(B-1)+T(C-1)+T(D-1)
is the total number of parameters to be estimated in the unrestricted model, defined
either by Equation 5.21 or by Equation 5.23.

Yet, Goodman (1974) showed that, even when df is positive, the model may not be
identified. Unidentifiable models can be made identifiable by imposing restrictions on
one or more of the parameters of the model. Goodman (1974) provided a necessary and
sufficient condition for determining the local identifiability of a latent class model: ‘the
matriz of partial derivatives of the nonredundant observed probabilities with respect to
the nonredundant model parameters must be of full column rank (in the four manifest
variables case equal to [(T - 1)+ T(A-1)+ T (B-1)+ T (C-1) + T (D -1)]),
1.e., there must be no linearly dependent columns’. This condition has to be satisfied
for the specific set of data being analysed: there is no a priori way of guaranteeing
the identification of a model. In practice, existing software for estimating latent class
models, such as IEM and Latent GOLD, have a built in check for identification (based
on the information matrix), giving a warning message to the data analyst whenever

the specified model is not identified.

The two classical parameterisations can be easily related. The marginal cell prob-

abilities mi934(a, b, ¢, d) can be derived from Equation 5.23 as
1
19234 (a, b, c, d) = ;LE Z m1234L(a, b, c, d, l) (524)
1

Hence, the parameters of Equation 5.21 can be derived from Equations 5.23 and 5.24

as
TFL(l) = ;35 m1234L(l)

L - _m bl
mic(e D) = S m(b, 1) = T
m(c 1) = % maz(d, 1) = m;;s;i%z)
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If both the manifest and the latent variable are binary, the odds ratio between the

manifest variable X,; and the latent variable L can be defined as
TM!L(O, O) 7TM]L(1; 1) N 7TM|L(O, 0) (1 —_ '/TMIL(Oy 1))

Upr = :
M TanL(0, 1) mann(1,0)  wpr2(0,1) (1 — mag(0,0))

Consequently, log¥nr = Apr.

The probability that an individual belonging to latent class [ of L will respond to

item Xy in category m equals

. (m l) _ ’/TML(T)’L,Z) _ exp{)\M(m)+/\ML(m,Z)}
MIL ’ ﬂ'L(Z) Zm exp{)\M(m) +/\ML(TTI,, l)}

Therefore, if both X ;s and L are binary, the logits of category 1 of X, versus category

0 of Xy (i-e., the tendency to answer item M in category 1 rather than in category 0)
can be expressed as

1,0 1,1
100——————7TM}L( >=)\M and log——————————WMlL( )

o = Ay + Mare.
77.(0,0) Tarr(0, 1 M AME

As far as confirmatory latent class analysis is concerned, there are mainly two types

of constraints that can be imposed on the parameters of the model, namely:

e conditional probabilities constraints, that can either be equality constraints or
specific value restrictions. Setting masz(m, 1) = z is restricting the value of the
conditional probability. For example, setting maz2(0,0) = maz.(1,0) means that
respondents in category 0 of L are equally likely to answer in categories 0 or 1
of Xjs. If the latent class has three or more categories it is possible to constrain
two of them to have the same probability of response in one of the categories
of a manifest variable, i.e., 7y (m, 1) = mpgr(m,2). One should note, however,
that it does not make sense to impose such a restriction if the latent variable is
binary, since it would imply independence between the manifest variable and the

latent, and in latent class analysis manifest variables are assumed to depend on

the latent variable;

e latent class probabilities constraints, that can either be testing whether the prob-
ability equals a specified value, or whether T" — 1 of the T classes of the latent
variable are equiprobable or have some relationship between them. One should
note that, when the latent variable is binary, it is not sensible to test either if
7 ({) = 0 or if 7w (I) = 1, since it implies all the population is in one class and

the latent variable does not make sense.
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This thesis considers unconstrained latent class models.

As far as procedures for estimating the parameters are concerned, Haberman (1979)
suggested the use of iterative proportional fitting, but similar results can be obtained
using the £M algorithm. Indeed, existing software for fitting latent class models such

as IEM and Latent GOLD use the EM algorithm to fit latent class models.

5.5 The Latent Class Graphical Log-Linear Model

Section 5.4 reviewed the two classical parameterisations of the latent class model.
In this section the latent class model is parameterised as a GLL model, allowing a
categorical latent variable to be included in the graphical log-linear model framework.
All variables, both manifest (M) and latent (L), are assumed binary, categories being
coded as 0 and 1. Corner point constraints are used in the log-linear formulation, i.e.,
AL(0) = 0, Ay (0) = 0, Apr(0,1) = 0 and Apr(1,0) = 0, where M stands for any
manifest variable in the model. For simplicity of notation A\(1) = Az, Ay (1) = Ay
and Apr(1,1) = App-

Throughout the section the notion of sensible model is used several times. It is
assumed that, for the latent class model to hold, it has to be sensible. A latent class

GLL model is defined as sensible if:

- none of the two categories of the latent variable is empty, i.e., both 7(0) and
7(1) are different from zero and, consequently, from one. This implies that in

the log-linear formulation Ay # 0;

- there are no structural zeros, either in the cross-tabulation of the manifest vari-
ables or in the cross-tabulation between the latent variable and each of the man-
ifest variables. All cell probabilities are assumed positive. In the log-linear ex-

pansion, all this implies that, for all manifest variables M, Ay 5% 0 and Az # 0;

- there is an association between the latent variable and each of the manifest vari-
ables, i.e., the odds ratio between each manifest variable and the latent variable
has to be different from one, implying all log¥sr # 0 and all App 5% 0. Other-
wise it would make no sense to have that manifest variable in the model - recall

that in the latent class model the manifest variable is assumed to depend on the
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unobserved latent variable.

The section starts with the proposed parameterisation of the latent class GLL
model. The conditional independence structure between the manifest variables arising

from a latent class GLL model, by marginalising over the latent variable L, is then

investigated.

5.5.1 Parameterising the latent class GLL model

A natural way of including a categorical (binary) latent variable in a graphical model,
the remaining manifest variables also being categorical (binary), is to parameterise the
latent class model as a graphical log-linear model, using a log-linear expansion. It is
proposed that the latent class GLL model is represented by a conditional independence
graph, as justified in Section 2.4.2. Figure 5.5 displays the independence graphs asso-
ciated with two latent class models, one with two manifest random variables, 1 and 2
(in panel a) and the other with three manifest random variables, 1, 2 and 3 (in panel

b), each of them with a single latent variable (L). All variables are binary.

log ¥3L

Figure 5.5: Examples of latent class models: a) the binary manifest variables 1 and 2 are
conditionally independent, given the binary latent variable L; b) 1, 2 and 3 are conditionally
independent given L. The edges are associated with the conditional log odds ratio between

the latent and each of the manifest variables, given the remaining variables are at level 1.

The independence graph in panel a) corresponds to the following latent class model
logmuL(a, b, l) = /\@‘f‘/\l +>\2+/\L+/\1L+A2L7 (525)

where log ¥ = A and log1sr = Aor. The independent graph in panel b) corresponds

to the model
log m123L(a, b, c, l) = )\@ -+ )\1 + Ao + /\3 -+ )‘L + /\1L + AQL -+ /\3L> (526)
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where log¥ir = A1, log s = Ao and log¥s; = A3z. Thus, generalising the log-linear

expansion to four or more manifest variables is straightforward.

Regarding the identification of these models, it was stated earlier that, although
there exists no a priori condition to guarantee models are identified, a first requirement
is a non-negative number of degrees of freedom. In the two binary manifest variables
case, with a single binary latent variable, the latent class GLL model is not identified.
In fact, there are three knowns (the four cell probabilities that add up to one) and five
parameters to be estimated: Ay, A2, AL, A;z and Aop (Ag is a normalising constant).
Consequently, the number of degrees of freedom is not non-negative, and the model
is not identified unless two additional constraints are imposed on the parameters. In
the three binary manifest variables case, with a binary latent variable, the necessary
condition for identifiability is satisfied: df = 0 (and so is non-negative). There are now
seven knowns (the eight cell probabilities that add up to one) and seven parameters
to be estimated: A1, As, Az, Az, Az, Aop and Asp. The number of degrees of freedom
is zero; there is a one to one correspondence between the cell probabilities and the
seven A terms: each of them can be uniquely obtained from the observed values. In
the case of a latent class model with four or more binary manifest variables and a
single binary latent variable the number of degrees of freedom is always positive, the

necessary condition for identifiability being satisfied.

5.5.2 The conditional independence structure of the manifest

variables arising from a latent class GLL model

The aim of this section is to investigate the conditional independence structure between
the binary manifest variables arising from marginalising the latent class GLL model
over the latent variable. It is proved that marginalising over the latent variable L, either
in panel a) or in panel b) of Figure 5.5, yields an independence structure between
the manifest variables with no conditional independencies and complete conditional
independence graphs. Besides the two and the three binary manifest variables cases,
the four variables case is also considered and it is shown how results apply to higher

dimensional contingency tables.
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The two manifest variables latent class model

As mentioned before, it is assumed that the sensible latent class GLL model holds,
which implies that all cell probabilities are assumed positive, the two manifest variables
depend on the latent variable, and so all five lambda parameters have to be different
from zero, i.e., Ay # 0, Aa # 0, Ay # 0, A;p # 0 and Ay # 0. Also, for identifiability
reasons, the values of two of these parameters have to be constrained.

The aim now is to prove that, if the two binary manifest variables latent class GLL
model] holds and is sensible, marginalising over the latent variable L implies that the
manifest variables, 1 and 2, are not independent: the odds ratio ¥, is different from
one and the independence graph of the two manifest variables is complete. The proof
requires expressing the odds ratio between 1 and 2 as a function of the A terms of
the log-linear expansion of the latent class model and showing that, if the latent class
model is sensible and holds, such odds ratio is different from one. The proof follows.
The expected cell counts in each of the four cells of the 2 x 2 contingency table of the

two manifest variables can be obtained, using Equation 5.25, as

m12(0,0) = mi22(0,0,0) + m12.(0,0,1) = exp{Ag} (1 +exp{Ar})

mi2(0,1) = mi21(0,1,0) + mi21(0,1,1) = exp{Ag + Ao} (1 +exp{Ar + Aar})

mi2(1,0) = mi2r(1,0,0) + miar(1,0,1) = exp{Ag + A1} (1 +exp{Ar + Mir})

ma2(1,1) = myar(1,1,0) + miorn(1,1,1) = exp{Ag + A1 + Xo} (I +exp{Az + AL + Aar}) .

Consequently, the odds ratio ;2 can be expressed as

m12(0,0) my2(1,1) (1 +exp{Ar}) (1 +exp{Ar+ AL + Aar})

mlg(O, 1) mlg(l, O) S (1 =+ exp{)\L + AIL}) (1 -+ exp{)\L -+ /\QL}).

¢12 =

Since all cell probabilities are assumed positive, the model is sensible and A; # O,
Ao £ 0, Ap # 0, A # 0 and Ao # 0, the value of the odds ratio, 12, has to be
different from one. Recall that logtis = A1 If 900 # 1, then logs # 0 and Ay #0
and so 1 and 2 are not independent. One should note that ;5 can still tend to one, in
the limit, if Ay is very large in absolute value by comparison with A;; and A;z. That
being the case, the values in the reference category of the latent variable will tend to
zero, corresponding to empty cells and to a non sensible latent class model.

In conclusion: if a two binary manifest variables latent class model is sensible and
holds, marginalising over the latent variable implies a complete independence graph

for the manifest variables, which are not independent.
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The three manifest variables latent class model

If a sensible latent class GLL model, with three binary manifest variables holds, because
all cell probabilities are assumed positive and the three manifest variables depend on
the latent variable, all seven lambda parameters are different from zero, i.e., A\; # 0,
Ao # 0, A3 # 0, A\p, # 0, Az # 0, Aop # 0 and A3p # 0. There are zero degrees of
freedom; it is a saturated model.

It is proposed that, if the three manifest variables latent class model is sensible
and holds, marginalising over the latent variable L induces the saturated model for the
three manifest variables, implying no conditional independencies between 1, 2 and 3. In
other words, all six conditional odds ratios between the three binary manifest variables
have to be different from one. The proof requires expressing the six conditional odds
ratios as a function of the A terms of the log-linear expansion of the latent class model
and showing that all six conditional odds ratio are different from one.

The expected cell counts in each of the eight cells of the 2 x 2 x 2 contingency table

of the three manifest variables can be obtained, using Equation 5.26, as

mi23(0,0,0) = m1231(0,0,0,0) + m123.(0,0,0,1) = exp{Ag} (1 +exp{Ar})
m123(0,0,1) = ... = exp{Ag + A3} (1 + exp{AL + Asr})

m1as(0,1,0) = ... = exp{Ag + Ao} (1 +exp{Az + Aaz})

m123(0,1,1) = ... = exp{Ag + A2 + A3} (1 + exp{Ar + Aor + A3z })
my23(1,0,0) = ... = exp{Ag + A1} (1 + exp{Ar + AiL})

mi23(1,0,1) = ... = exp{Ag + A1 + A3} (1 + exp{Ar + Aip + A3z })
mi23(1,1,0) = ... = exp{Ap + M\ + A2} (1 + exp{Ar + Az + dor})
mizz(1,1,1) = ... = exp{Ag + A1 + A2 + Az} (L +exp{Ap + Aip + Aar + A3 }) -

Consequently, the conditional odds ratios ¥123-0 and ;23-1 can be expressed as

Y1n5mn = mi123(0,0,0) mig3(1,1,0) _  _ (1+ exp{Az}) (1 +exp{Ar + A1z + Aoz })
90T migs(0,1,0) mags(1,0,0) T (T+exp{Ar + Me}) (1+exp{h + dor})

and

m123(0, 0, l) m123(1, 1, 1) _ (1 -+ exp{AL -+ /\SL}) (1 -+ exp{)\L + AL+ Aop + /\3L})

W -1 = _ ... =
123=1 T 1250, 1, 1) maas(1, 0, 1) (1 +expirz + Az + Asz}) (I +exp{AL + dar + Aar)})-

Recall that log(v123-0) = A12 and log(¥12.3-1) = A12 + Ai23. Similar reasoning can be
followed to obtain the four remaining conditional odds ratios. More generally, if 4, j

and k are three binary manifest variables, and corner point constraints are used,

o (1+exp{Ar}) (1 +exp{Ar + Air + AjL}) (5.27)
TR0 fexp{AL + Ain}) (T+exp{hr + Ar}) '
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Yiipey = (1 +exp{Ar + Akr}) (1 +exp{Ar + dir + Az + Mer}) (5.28)
Tk (1+exp{Ar+ A + Mer}) (L+exp{Ar + A+ Aer})- -

Also,
log(Vijk=0) = Aij and log(¥ijr=1) = Aij + Aiji- (5.29)
Consequently, A;jx =

(1+exp{Ar +Ar}) (1+exp{dr +xz}) (1 +exp{Ar + Axr}) (T +exp{ds + X + A5 + Mgz} (5.30)
(1 +exp{Ar}) (T+exp{Az +Xir +A}) (U+exp{As +Xr +2r}) (L+exp{dr + XL+ er}) |

Since all cell probabilities are positive, only sensible latent class models are con-
sidered and A; # 0, Ao #£ 0, A3 #£ 0, A, # 0, Aiz # 0, Aor # 0 and A3; # 0, all six
conditional odds ratios defined by Equations 5.27 and 5.28 have to be different from
one. From Equation 5.29, the three conditional odds ratios defined by Equation 5.27
equal the three two-way interaction terms A;;. These three conditional odds ratios be-
ing different from one imply all A;; # 0, i.e., A;2 # 0, A;3 # 0 and Mgz # 0. Since the
three conditional odds ratios defined by Equation 5.28 are also different from one, and
all A\j; # 0, Aiji, given by Equation 5.30, is also different from zero and uniquely deter-
mined. Therefore, there are no conditional independencies between the three manifest
variables and the saturated model is obtained.

Note that, since both the latent class model and the marginal model of the manifest
variables have zero degrees of freedom, parameters are uniquely determined. Indeed,
Equations 5.27 and 5.30 establish the relationship between the parameters of the latent
class model and the parameters of the saturated model of the manifest variables.

In conclusion: if the three binary manifest variables latent class model is sensible
and holds, marginalising over the latent variable induces the saturated model for the

manifest variables and a complete conditional independence graph.

The four manifest variables latent class model

In a latent class GLL model with four binary manifest variables there are fifteen knowns
(= 2% — 1) and nine parameters to be estimated: A1, A2, Az, Ag, Az, Air, Aar, A3r and
A4r- The number of degrees of freedom is positive and there is no guarantee that
each of the A can be uniquely determined as a function of the observed values (cell
probabilities or conditional odds ratios between manifest variables). If the sensible
latent class GLL model holds, all nine A parameters have to be different from zero.

It is proposed that, if the four manifest variables latent class model is sensible and

holds, marginalising over the latent variable L induces a complete independence graph
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for the four manifest variables (with six edges: 12, 13, 14, 23, 24 and 34), implying no
conditional independencies between them. There are now 24 conditional odds ratios
between the four manifest variables, which can be expressed as a function of the A
terms of the log-linear expansion of the latent class model. As before, it is proved that
all these conditional odds ratios are different from one, guaranteeing no conditional
independencies between manifest variables.

Generally, if 7, 7, k and ¢ are four binary manifest variables, and corner point

constraints are used, the 24 conditional odds ratios can be obtained using the following

four equations

by _ (A +exp{Ar}) (1 +exp{Ar +Air + A }) (5.31)
Pigk=0,1=0 = 1} exp{Ar + Air}) (1 +exp{Ar +Ajz}), .

b (+emDut ) (4 exp{hn e+ i + dad) (5:32)
Vig.k=0, t=1 (1+6Xp{)\L+)\iL+/\fL}) (1+6Xp{/\L+/\jL+/\tL})7 . .

(1 -+ exp{/\L -+ /\kL}> (1 “+ exp{/\L -+ )\iL -+ )\jL -+ )\kL})
Vijk=1,t=0 = (5.33)
(1 -+ exp{/\L -+ '/\iL -+ )‘kL}) (1 “+ GXp{/\L -+ /\jL -+ /\kL}) ,

b _ (1+eXp{/\L+/\kL+/\tL}) (1+exp{/\L+)\2-L+)\jL+/\kL+)\tL}) (5.34)
PORELIEL T exp{AL + Mip + Mz + Az }) L+ exp{AL + AL+ Akp + ML)

Also,

log(¥sj.k=0, t=0) = Aij log(¥sj.k=0,t=1) = Aij + Aize (5.35)
10g(¢ij.k=1,t=o) = Aij + Aijk log(ijk=1,¢=1) = Aij + Aijre + Aijt + Aijke-

Consequently, A is still given by Equation 5.30, A equals

) [(1 -+ exp{AL + AzL}) (1 -+ exp{/\L + /\jL}) (1 -+ eXp{/\L + /\tL}> (1 -+ exp{/\L + N+ /\jL -+ /\tL})} .

(T +expiiz)) (1+exp{rr + Mz + Az }) (L +expidz + hip + Mr}) (1+ exp{rz + AL +(/\tL}))
5.36

and

Aijre = log (%’ﬂk:o, t=0 ¢ij|k=1,t=1> . (5.37)

° Yijik=0, t=1 Vijlk=1, =0

Since all cells are structurally non-empty, only sensible models are considered and
all nine A parameters are different from zero, all 24 conditional odds ratios defined
by Equations 5.31 to 5.34 have to be different from one. From Equation 5.35, the
six conditional odds ratios defined by Equation 5.31 equal );;. These conditional odds

ratios being different from one imply all six two-way interactions between the manifest
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variables are different from zero, i.e., Ajg % 0, A3 # 0, Mg # 0, Aoz # 0, Aoy # O
and Az # 0. Consequently, there are no conditional independencies between the four
manifest variables, and a complete independence graph is obtained. Furthermore, the
fact that the twelve conditional odds ratios defined by Equations 5.32 and 5.33 are
different from one, and all A terms are non-zero, guarantees that the four three-way
interactions terms are different from zero, i.e., A\jag3 # 0, Ajos # 0, A\i34 # 0 and
A23q # 0. Finally, the four-way interaction term, given by Equation 5.37, is also non
Zero: Aqjos3q # 0.

Nevertheless, these eleven interaction terms in the log-linear expansion of the model
of the manifest variables are expressed as a function of just five A terms in the log-linear
expansion of the latent class model: Az, A\iz, Aor, Azp and Aszp. Indeed, Equations 5.31
to 5.37 establish the relationship between the parameters of the latent class model
and the parameters of the model with no conditional independencies between the four
manifest variables. It is not possible to obtain these five A terms as a unique function
of the interactions between the manifest variables (recall the latent class GLL model
with four binary manifest variables has six degrees of freedom). Therefore, in this case
marginalising over the latent variable implies no conditional independencies between

manifest variables, but not necessarily the saturated model.

In conclusion: if the four binary manifest variables latent class model is sensible
and holds, marginalising over the latent variable induces an independence graph for
the manifest variables that is complete, with no conditional independencies between

manifest variables.

One should note that in the latent class GLL model (with all variables binary)
it is not possible to determine the conditions and combinations of parameters that
lead to a unique solution for the model. Recall that, in the single-factor GG model,
the fulfillment of the tetrad conditions by the scaled inverse variance matrix of the
manifest variables guaranteed a unique solution (up to rotation). Due to the fact that,
besides two-way interaction terms, higher order terms exist in the log-linear expansion
of the latent class GLL model, the conditional log-odds ratios do not satisfy a tetrad
structure. As mentioned by Cox and Wermuth (2002, page 464), ‘The tetrad condition
15 a consequence of the linear structure underlying the Gaussian distribution ... and so

it will not apply to binary variables’.
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Although the five and more manifest variables cases are not studied, it is possible
to generalise the results of the current section in the following proposition: if the p
binary manifest variables latent class model is sensible and holds, marginalising over
the binary latent variable induces the complete independence graph for the manifest
variables, with no conditional independencies between them. If p = 3 the induced

model is the saturated model.

The results proposed so far require the sensible latent class GLL model to hold.
In practice, even if there are no structurally empty cells, some of the observed cell
probabilities may be very small and, consequently, one or more conditional odds ratios
may be very close to one. That being the case, starting with a model with a com-
plete independence graph between the manifest variables and performing backwards
elimination, in order to detect the presence of a binary latent variable, may lead to
excluding one or more edges. As in the Gaussian case, this suggests investigating the
power of selecting a model consistent with a latent class GLL model. This was done
in Section 4.2 of the thesis, where a theoretical normal approximation was proposed,
as well as a non-central chi-square approximation for the two binary manifest variables
case. The main conclusions drawn then, regarding the case of two binary manifest
variables, are that power increases as the sample size increases and as the odds ratio
deviates from one, faster for more balanced combinations of marginal probabilities. In
the presence of three binary manifest variables it is recommended that the data analyst
calculates the power of selecting the saturated model for the 2 X 2 x 2 contingency table

under analysis, as proposed in Section 4.2.4.

In conclusion: this chapter proposes parameterising the single-factor
model as a graphical Gaussian model and the latent class model as a graphical log-
linear model. Conditional independence graphs are used to represent both models,
with associations between each of the manifest variables and the latent variable mea-
sured either by partial correlation coefficients (in the single-factor GG model) or by
conditional log odds ratios (in the latent class GLL model). Detailed formulae are
given to relate the proposed parameterisation to the classical parameterisation.

The main contributions of the chapter, regarding the single-factor GG model are
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now summarised. The tetrad conditions are expressed in terms of the partial corre-
lations and a new insight is given regarding admissible regions and compatible sign
patterns for the partial correlation coeflicients arising from a single-factor GG model.
Some recommendations are given to the data analyst concerning detecting the pres-
ence of a Gaussian latent variable by inspecting the scaled inverse variance matrix of
the manifest variables (rather then the variance or correlation matrix) and taking into
account the power of selecting a model consistent with a single-factor model.

As far as the latent class GLL model is concerned, (conditional) odds ratios be-
tween manifest variables and, therefore, the independence structure of the latter, are
related to the conditional log odds ratios between each of the manifest variables and
the latent variable (given the remaining manifest variables are at level 1). After defin-
ing the concept of sensible latent class model, it is shown that if such a model holds,
marginalising over the binary latent variable induces no conditional independencies
between the binary manifest variables. In the case of four (or more) manifest variables

the obtained model is not necessarily the saturated model.
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Chapter 6

Conclusions

The aim of this last chapter is to summarise the main conclusions of the work un-
dertaken in the research project and to highlight the main contributions of this the-
sis. Suggestions are given, regarding possible areas of further research. The work is
developed within the framework defined by graphical models, in particular graphical
Gaussian (GG) and graphical log-linear (GLL) models are considered. A review of the
main concepts and definitions required for the understanding of the subsequent work is
presented. Although such material was taken from existing literature, for consistency,

it was required to establish an unifying notation.
The core of the research consists in investigating three main topics:

i) the distributions of the tests statistics for single edge exclusion from the saturated

model, in particular under the alternative hypothesis that the saturated model

holds;

ii) the power of the tests statistics for single edge exclusion from the saturated model;

iii) the parameterisation of the single-factor model as a graphical Gaussian model

and of the latent class model as a graphical log-linear model (with all variables

binary).

The main conclusions and contributions associated with each of this three topics are

now presented in detail.
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Distributions of the test statistics for single edge exclusion from the satu-

rated model

Three test statistics for single edge exclusion from the saturated model are considered:
the likelihood ratio, the Wald and the score test statistics. These test statistics, in
particular their distributions under the null hypothesis of (conditional) independence,
were investigated by Smith (1990). Extending Smith’s work, this thesis investigates
the distributions of the three test statistics under the alternative hypothesis that the
saturated model holds. Non-signed and signed square-root (one-sided and two-sided)

versions of the test statistics are considered.

Using the delta method, approximating normal distributions are derived. Smith
(1990, pages 21 and 73) presented the asymptotic variance matrices of the m.l.e. of
the w (the elements of the inverse variance matrix, in GG models) and of the A (the
terms of the log-linear expansion of the cross-classified multinomial distribution density
function, in GLL models). Because the test statistics for single edge exclusion from
the saturated model can be written as functions of the &, in GG models, and of the A,
in GLL models, the delta method is used to derive approximating normal distributions
to the three test statistics. As an intermediate step, it was required to express the
test statistics for single edge exclusion from saturated GLL models as a function of
the cell probabilities and of the m.l.e. of the A terms in the log-linear expansion of fis
and of fio3 (the density functions of cross-classified multinomial distributions of size
one, respectively with two and three binary variables). Although Smith (1990) gave
formulae for the LRT, the Wald and the score test statistics for a 2 x 2 contingency
table, it was necessary to extend results to the 2 x 2 X 2 case and to derive simplified
formulae for the Wald and the score test statistics, both in terms of cell probabilities
and ) terms. Formulae for the means, variances and covariances of the LRT, Wald
and score test statistics, in the asymptotic distribution, are derived as a function of
the partial correlation coefficients (for GG models, with p variables) and of the cell
probabilities (for GLL models with two and three binary variables). All these formulae

are of particular use when calculating power functions, as explained later.

In the two variables case, a non-central chi-square approximation to the distribution
of the LRT statistic for single edge exclusion is also proposed, at a local alternative.

In both GG and GLL models the non-centrality parameter is shown to be equal to
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the expected value of the Wald test statistic in the corresponding asymptotic normal
distribution, previously derived.

The quality of the proposed normal and non-central chi-square approximations
to the distribution of the LRT statistic for single edge exclusion from a saturated
model with two variables is assessed by simulation. Results show that the normal
approximation holds asymptotically, i.e., for large sample sizes, and for values of the
measure of association between the two variables, the (partial) correlation coefficient
p12 in GG models and the log odds ratio logy, in GLL models, not close to zero.
The normal approximation is poor for small sample sizes and values of the measure of
association close to independence. The non-central chi-square approximation performs
better for values of p;y or logns close to zero, in particular if the sample size is not
large. It becomes worse as the distance from the null increases. Since the distance from
the null is measured as y/n (8 — 0), where 6 is the measure of association of interest
(either pi2 or log ), as n increases the non-central chi-square approximation p‘erforms
better for values of 8 closer to zero. In GG models, 1 000 observations can be considered
a large sample size, whereas in GLL models with two binary variables, a sample size
of around 10000 observations seems to be required for the normal approximation to
hold.

Additionally, it is suggested that in GLL models the balance of the contingency
table probabilities has also to be taken into account. The asymptotic normal and the
non-central chi-square approximations to the distribution of the LRT statistic for single
edge exclusion perform better for balanced combinations of marginal probabilities 7; (0)
and 72(0). A measure of balance in a 2 x 2 contingency table is proposed, relating to the
information matrix. Some of its properties are analysed. The derived approximations
to the distribution of the LRT statistic perform better for smaller values of the balance
index. Yet, this measure is not fully developed; further research may include a better
understanding of the relationship between the value of the balance index, the value
of the odds ratio and the quality of the approximation and extending the measure to
higher dimensional contingency tables.

Possible extensions of the work undertaken regarding the distributions of the test
statistics for single edge exclusion from the saturated model include considering cate-
gorical variables with more than two categories, generalising the non-central chi-square

approximation to the three variables case (possibly by using a non-central Wishart
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distribution) and considering GLL models with more than three variables. This last

task is a complex one because the notation becomes very messy, due to the number of

parameters involved.

Power of the test statistics for single edge exclusion from the saturated

model

The power of a backwards elimination model selection procedure for selecting the true
(saturated) model is defined as the probability of selecting the true (saturated) model
given the specified true model parameters. For a given size level (5%), the power of
selecting the saturated model when using the likelihood ratio, the Wald and the score
test statistics for single edge exclusion is investigated. Theoretical asymptotic power
functions are derived, based on the asymptotic distributions of the test statistics for
single edge exclusion previously obtained. Non-signed and signed square-root (one-
sided and two-sided) versions of the test statistics are used.

Graphical Gaussian models are first considered. Starting with the simplest case
of two variables, the power of selecting the saturated model using the LRT statistic
is estimated by simulation and calculated using both the asymptotic normal and the
non-central chi-square approximations to the distribution of the LRT statistic, already
derived. The conclusions are that power increases as the absolute value of the correla-
tion coefficient increases and as the sample size increases, being symmetric about zero
correlation for two-sided hypothesis tests. For large sample sizes and values of p;5 not
close to zero, the asymptotic normal approximation to the power of the non-signed
version of the LRT statistic performs well. The non-central chi-square approximation
should be preferred for small sample sizes and correlation coefficients close to zero,
i.e., small distances from the null. Asymptotic normal approximations to the power
of selecting the saturated GG model with two variables, using the signed square-root
versions of the three test statistics for single edge exclusion, are also derived. The
quality of such approximations is good, even for small sample sizes and small corre-
lation coefficients. Results confirm one-sided hypothesis tests are more powerful than
corresponding two-sided tests.

The three Gaussian variables case is then analysed. The study of the power func-

tions in the presence of three, or more, variables cases requires taking into account the
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constraint that the scaled inverse variance matrix is positive definite. The shape of
correlation matrices had been studied by Rousseeuw and Molenberghs (1994), who es-
tablished a condition for positive definiteness in terms of correlation coefficients. Since
the focus now is on partial correlations, such result is extended and a condition for
positive definiteness is proposed, in terms of partial correlation coefficients.

A trivariate normal approximation to the power of the three hypothesis tests of
excluding edge 5, edge ik and edge jk, for simplicity called the power of selecting
the saturated model (in the three variables case) is derived. The approximation holds
asymptotically, 1000 observations being a large sample size. Yet, it is shown that a
truncated normal approximation performs better for large sample sizes and values of
the partial correlation coefficients close to zero. Power increases as partial correlations
increase, although some non-symmetry and some non-monotonicity exist for small par-
tial correlation values. In the case of the test of excluding edge i7 from the saturated
model, power just depends on the partial correlation coefficient of interest,‘ Pijrests
whereas in the case of the two tests of excluding edge i7 from the saturated model
and excluding edge ik from the saturated model, as well as in the case of selecting the
saturated model, power depends on the three partial correlation coefficients. Hence, it
is possible to conclude that the correlation structure of the test statistics justifies some
non-symmetry and non-monotonicity of the power functions. Asymptotic power func-
tions for the signed square-root (one-sided and two-sided) versions of the test statistics
are also derived using trivariate normal approximations. These hold even for sample
sizes of 200 observations and partial correlation coefficients close to zero.

Results can be generalised to the cases of four or more variables, by using the
multivariate normal distribution. However, the complexity of the problem increases
considerably with the number of variables in the model: obtaining the power of selecting
the saturated model in the five variables case requires calculating a ten dimensional
integral, since there are ten test statistics for single edge exclusion. For this reason, in
the four and the five variables cases, attention is restricted to models with equal partial
correlations between all variables. Results for an equicorrelation matrix, existing in
the literature, were adapted to establish the positive definiteness of a scaled inverse
variance matrix with all off-diagonal elements (the negatives of the partial correlation
coeficients) equal. Simulation results show that, for a certain value of p;j,est, the

smaller the number of variables, the larger power is. Also, for large sample sizes,
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differences in power values between models with three, four or five variables can only
be detected for small |p;; rest|-

For graphical log-linear models, the power of the test statistics for single edge
exclusion from the saturated model is analysed in detail for the two binary variables
case and some insight is obtained regarding three binary variables. Although one
parameter (p;;.rest) s enough to measure the association between two normal variables,
in the case of two or three binary variables, cross-classified in a contingency table,
respectively three and seven parameters are required. The number of parameters to
be considered increases substantially as the number of variables increases, and so does
the complexity of the notation. For this reason only GLL models with two and three
binary variables are used in this thesis.

An asymptotic normal and a non-central chi-square approximation are proposed to
calculate the power of the LRT statistic for single edge exclusion from a saturated GLL
model with two binary variables. Power increases as the sample size increases and as
the value of the odds ratio deviates from one, faster for more balanced combinations of
marginal probabilities. The non-central chi-square approximation performs better at a
small distance from the null. For large sample sizes (ng = 10000) and odds ratio values
not close to one the normal approximation performs better, particularly for unbalanced
contingency tables. When signed square-root versions of the test statistics are used,
the proposed asymptotic normal approximation performs well, even for more moderate
sample sizes (ng = 1000), less balanced combinations of marginal probabilities and
odds ratios close to one.

As far as the three binary variables case is concerned, it is suggested that, for a
specific contingency table, asymptotic power functions can be obtained using a trivari-
ate normal approximation. Since the parameter space is now seven dimensional, a
comprehensive investigation of the power functions, for the different combinations of
values of the seven parameters, is not possible.

When comparing the normal and the log-linear binary cases it is worth taking
into account that, in both cases, power varies as a function of the sample size and of
the degree of association between variables. However, in GLL models the balance of
the contingency table has also to be considered, which suggests further investigating
the proposed measure of balance, aiming at better quantifying its contribution to the

variation in power. Extending results for the case of categorical variables with three
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or more levels is also a possible area of further research.

The parameterisation of the single-factor model as a GG model and of the

latent class model as a GLL model

The classical parameterisations of the single-factor model and of the latent class model
are reviewed. The allowable region of the parameter space of the classical single-factor
model is studied in detail for the three and four manifest variables cases and, since
GG models require partial correlations, the tetrad conditions are expressed in terms of
partial correlation coefficients.

The single-factor model is parameterised as a GG model, allowing GG models to
incorporate a normal distributed latent variable. The classical and the proposed param-
eterisations are related. It is suggested that the single-factor GG model is represented
by a conditional independence graph, each edge representing the partial correlation
between one manifest variable and the latent variable, given the remaining manifest
variables.

The conditional independence structure between manifest variables, arising from
marginalising the single-factor GG model over the latent variable, is investigated. It is
proved that marginalising over the latent variable in a single-factor GG model induces
no conditional independencies between manifest variables and, consequently, an inde-
pendence graph that is complete. In the three manifest variables case, the saturated
model is obtained, whereas when four or more manifest variables are present a complete
independence graph does not necessarily correspond to the saturated model. Indeed,
there are constraints on the partial correlation coefficients between manifest variables
compatible with a single-factor model. In the three variables case, the scaled inverse
variance matrix is constrained to be positive definite. It is proved, however, that when
there are four or more manifest variables, in order to have a model consistent with a
single-factor model, the four or more partial correlation coefficients also have to satisfy
the tetrad conditions. Hence, the conditions that guarantee that a scaled inverse vari-
ance matrix is compatible with a model arising from a single-factor model are derived.
These conditions imply certain patterns of signs for the partial correlation coefficients.
A rule is proposed for defining the patterns of signs for the partial correlations between

manifest variables that are compatible with a single-factor GG model.
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The power of selecting a model consistent with a single-factor GG model is de-
rived, based on the asymptotic normal approximation previously proposed, with the
additional constraint that the conditions that guarantee the scaled inverse variance
matrix of the manifest variables is compatible with a single-factor GG model are sat-
isfied. Some recommendations are then given to the data analyst, regarding detecting
the presence of a Gaussian latent variable, i.e., identifying a model consistent with a
single-factor GG model. In brief, consider partial correlation coefficients and the com-
patibility of their sign patterns, choose the test statistic for single edge exclusion to be
used and calculate the power of selecting the saturated model. This can be done prior
to collecting data, based on values the data analyst considers plausible for the partial
correlation coefficients, or after data collection, treating sample partial correlations as
if they were the ‘true’ population values. Test for each edge exclusion between manifest
variables. When power values are not high, the data analyst must be prepared to fit a
single-factor GG model even if there are conditional independencies between manifest

variables and the conditional independence graph is not complete.

The latent class model is parameterised as a GLL model, allowing GLL models
to include a binary latent variable. The single-factor GLL model is represented by a
conditional independence graph, each edge representing the conditional log odds ratio
between each of the manifest variables and the latent variable, given that the remaining
manifest variables are at level 1. The concept of sensible model is defined, ensuring

all cell probabilities, in all possible cross-tabulations between manifest variables and

latent variable, are positive.

The conditional independence structure between manifest variables arising from
a latent class GLL model is investigated and it is shown that, if the sensible latent
class model holds, marginalising over the latent variable implies all conditional odds
ratios between manifest variables different from one and, consequently, no conditional
independencies and a complete independence graph between manifest variables. When
four, or more, binary manifest variables are present, the fact that all interaction terms
(two-way and higher order) in the log-linear expansion of the manifest variables are
different from zero does not guarantee the obtained model is the saturated model. The
justification being that it is not possible to obtain a one to one relationship between the

A terms of the log-linear expansion of the latent class GLL model and the interaction
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terms between manifest variables. Recall that, in the Gaussian case, it is possible to
establish a one to one relationship between the parameters of the single-factor GG
model and the partial correlations between manifest variables, provided the tetrad
conditions are fulfilled. As in the Gaussian case, it is recommended that the data
analyst takes into account the power of selecting the saturated model when trying to

detect the presence of a binary latent variable.

Possible areas of further research include investigating the parameterisation of mod-
els that relax the assumption of local independence, i.e., models in which the latent
variable does not account for all associations among manifest variables, as well as the

parameterisation of models with more than one latent variable.

A more challenging area of further research is to consider mized models and
conditional-Gaussian distributions and try to extend the main results of the thesis
to this type of models. As far as latent variable models are concerned, this would allow

models parallel to latent trait and latent profile analysis to be included in the unified

framework of graphical models.
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Appendix A

Partial Derivatives Used for
Calculating the Variance of the
Likelihood Ratio Test Statistic

2 =-m() Bo = _m(1) 2o = —x(1,1)

T = —m(0,0)m(1) R = -7(0,0)m (1) Ty =-m(0,0)m(1,1)
Ol = —7(0,1)mi (1) 2200 = —7(0,1)(ma(1) = 1) | ZEH = —7(0,1)m(1,1)
L0 = —r(1,0)(m (1) - 1) | Y = —7(1,0)m2(1) 220 = —r(1,0)7(1,1)
el = (1L, 1)(m(1) -1) | Bt = —r(1,1)(m(1) - 1) | BRY = —x(1,1)(r(1,1) - 1)

Table A.1: Partial derivatives of the cell probabilities and of Ay with respect to the three A.
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Table A.2: Partial derivatives of the logarithmic terms with respect to the three A.
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~7(1,0,1)(%1(1) — 1)

87(0,1,0)

RSN

8w (0,0,1)

[ZEY

8m(1,1,1)

2V

= —m(0,1,0)m1 (1)
= —7(0,0,1)m1(1)

—7(1,1, D)(r1(1) = 1)

H7(1,0,0)

2N

8n(0,1,1)

[R¥Y

It

—m(1,0,0)(71(1) = 1)

—7(0,1,1)m1 (1)

87(0,0,0)

2SS

o7(1,1,0)

X

87(1,0,1)

EEYY

~7(0, 0, 0)m2(1)
—m(1,1,0)(m2(1) — 1)

—m(1,0,1)m2(1)

87(0,1,0)

3PS

87(0,0,1)

2V

dr(1,1,1)

JAs

= —7(0,1,0)(m2(1) — 1)

I

—7(0,0, 1)m2(1)

I

—7(1,1,1)(m2(1) — 1)

87(1,0,0)

RS

8%(0,1,1)

2V

Il

—7(1,0,0)m2(1)

—7(0,1,1)(m2(1) — 1)

87(0,0,0)

EEY

Am(1,1,0)

A3

87(1,0,1)

GRS

—7(0,0,0)w3(1)

= —7(1,1,0)ws (1)

—m(1,0,1)(ns(1) — 1)

&7(0,1,0)

Az

dm(0,0,1)

2N

om(1,1,1)

RN

If

—7(0,1,0)73(1)

—m(0,0,1)(ws(1) — 1)

~7(1,1,1)(m3(1) — 1)

i

67 (1,0,0)

8A3

&57(0,1,1)

A3

1

—7(1,0,0)73(1)

—7(0,1,1)(m3(1) — 1)

87(0,0,0)

OX12

87 (1,1,0)

2287

o7(1,0,1)

8r12

—7(0,0,0)m12(1,1)
—7(1,1,0)(m12(1,1) — 1)

—7(1,0,1)m12(1,1)

8=(0,1,0)

OA12

67(0,0,1)

812

o7(1,1,1)

GA12

—(0,1,0)m12(1, 1)

—7(0,0, 1)m12(1,1)

I

I

—7(1,1,1)(m2(2,1) = 1)

07 (1,0,0)

9X12

a7(0,1,1)

A1

i

-—77(1, 0, 0)7‘-12(1: 1)

-w(0,1,1)m12(1,1)

87(0,0,0)

EESH

o7(1,1,0)

X113

87(1,0,1)
dr13

—n(0,0,0)m13(1,1)
—7(1,1,0)m3(1,1)

—-7m(1,0,1)(m13(1,1) — 1)

om(0,1,0)

SX13

97(0,0,1)

9A13

om(1,1,1)

813

—7(0,1,0)m13(1, 1)

I

—~7(0,0, 1)m13(1,1)

I

—m(1,1, 1}(ms(1,1) = 1)

Om(1,0,0)

dA13

8w (0,1,1)

OXr13

—-n(1,0,0)m13(1,1)

—7(0,1,1)m13(1,1)

87(0,0,0)

OA23

47(1,1,0)

BA23

87(1,0,1)

dA23

—m(0,0,0)m23(1, 1)
~u(1,1,0)m23(1,1)

—m(1,0,1)m23(1,1)

87(0,1,0)

823

8=(0,0,1)

OAz3

aw(1,1,1)

a3

—(0,1,0)m23(1,1)

~7(0,0, 1)m23(1, 1)

—7(1,1,1)(r23(1,1) — 1)

o7 (1,0,0)

AAga

8 (0,1,1}

EET

]

—x(1,0,0)m23(1,1)

-0, 1, 1)(m23(1,1) — 1)

9m(0,0,0)

9X123

87(1,1,0)

9A123

87(1,0,1)

0A123

—7(0,0,0)7(1,1,1)

-n(1,1,0)w(1,1,1)

= —m(1,0,1)7(1,1,1)

87(0,1,0)

9X123

87(0,0,1)

OA123

Onr(1,1,1)

OX123

—n(0,1,0)7(1,1,1)
= —m(0,0,1)m(1,1,1)

= —7(1,1,1)(x(1,1,1) = 1)

am(1,0,0)

9123

a7(0,1,1)

OX123

-7(1,0,0)m(1,1,1)

= -7(0,1,1)7(1,1,1)

Table A.4: Partial derivatives of the cell probabilities with respect to the seven A.
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7(0.0.0)73 (0) (1,0.0)73(0)
810g(#13(0,05ﬂ23(0,05) - 610g< w;;(l.())wgg((),())) __ m3(1.0) _ 7{1,0,0)

BXx1 - 28] m3(0) 723(0,0)
7 (0.1.0)73(0) =(1,1,0)73(0)
alog(ﬁ13(0.0)723(1,0)) _ aIOg( 113(1.0)123(1.05) . 713(1,0)  =(1,1,0)
2N - 2N T wa(0) w23(1,0}
7(0,0,1)73 (1) 7(1,0.1)mwg (1) 7(0,0.1)m3 (1) 7 (1.0 D)wz(1)
alOg(-nl;;(O.l)vrg (oA1>) _ alog( BT e ((),1)) _ alOg(ng(o,l)wg <0,1>> _ alog(n (1.1)m q<o,1)) _ m3(31)  =(1,0,1)
E2 = Xy - 513 = BA13 - ws(l) 723(0,1)
7(0,1,1)7r3 (1) w(1,2.1)ma (1) _®(0.1, 1)ma(3) (1,1, )7s(1)
610g(71 (0,1)123(1~1)> — 310g<"13(1-1)7~>3(1,1)) _ 610g( "13(01)7'23(1,1)) _ alOg(ﬂ (1,1)"23@1)) .. mg3(11)  =(1,1,1)
30 = E2W = 8X13 - Or13 YY) m23(1,1)
7(0,0,0)7wa (0) 7{0,1,0)7 (0)
3105(“‘—)—37‘”13(0,0 725000 ) _ alOg(Tlg(‘o‘,omeng,OS) __ m23(1,0) _ 7(0,1,0)
2% - 82 - w3(0) m13(0,0)
7(1.0,0)73 (0) 7(1,1,0)m3 (0)
alOg( 7?13(1,0)1723(().0)) _ 610g( 1r13(1\0)7r23(1,05> __ m23(1,0) _ m(1,1,0)
ERY - E2Y) - w3(0) 713(1,0)
=(0.0,1)wg (1) 7(0.1,1)w3(1) 7(0,0.1)ma (1) w(0,1,1)7a (1)
6103( 7 (0,1)#23(0,1)) _ 8log( 7r13(0‘1)7r23(1‘1)) _ 8Iog( ﬂlq(().l)'rrz:;(().l)) _ 6log( 1r13(0,1)7r23<1~1>) _ m2a(l,1).  m(0,1,1)
g = E2Y - BXaa = 23 —  wa(l) m13(0,1)
7(1.0,1)73 (1) m(1.1.1)mg(1) 7(1,0.1)m3 (1) 7(1,1.1)ymg(1)
610g(ﬂ]3(1.])123(0,1)) _ Blog( 71a(l.1)7g (1.1)) _ 610g( iz (1 ) 3(0,1)) _ alOg(na(l.l)wzg(l,l)) _ ma(1,1) _ m~(1,1,1)
[Z22Y - 22} - dX23 - 2207 - w3(1) 7w13(1,1)

alog( 7(0,0,0)mz(0) )

713(0,0)723(0.0) /) _ 7(1,1,0)
9A12 73(0)
m(0,1,0)73 (0)
alOg( ,1320,0),23{1,05) _ =(1,1,0)  =(1,1,1)
Ox12 O] m23(1,0)
7(1,0,0)m3 (0}
olog( —Ergyariony) _ =(1,1,0) _ m(1,1,1)
OA12 O 713(1,0)

w(1,1,0)73{0)
olog( TRty ) 14 mLLO) | m(LLD) (LY

X2 m3(0) 713(1,0)  723(1,0)
7(0,0,1)73 (1) 7(0,0,1)75 (1)
olog( - aain ) - olog( T E G ek ) _ m1LLY
312 OX123 73(1)
#(0,1,1)m3 (1) 7(0,1,1) 73 (1)
alOg(nmEo,ﬂth,ﬂ) _ 610g(7.’13(0,157r23(1,1;) _ w(2,1,1) _ m1,1,1)
912 - dXy23 T owa(l) m23(1,1)
7(1,0,1)ma(1) 7(1,0,1)75 (1)
alog(———(-——-’r?_ww T 1) m55001 ) _ 510g(—'7“‘1r—$ﬂ13<1.1 EETIC ) _ w151 w(1,1,1)
912 - 9X123 T wa(D) m33(1,1)

7(1,1,1)m3(1) 7(1,1,1)r3(1)
6log( 113(1,1)-«23(1,1)) — 310g( 7r13(1,1)7.—23(1,1))

Gx12 9A123

(1,1,1) _ (1,11 _ m(1,1,1)

=1+ m3(1) m13(1,1)  w23(1,1)

Table A.5: Partial derivatives of f&F*7 with respect to the seven A.

The remaining partial derivatives not presented here equal zero.
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_ —m1(1) L 7(1,0,0)73(0) (1,1,0)7w3(0)
ALY = =W ABLRT)+2 [“(1,0,0) 1og(———-—-——7r13(1,0>7233(0y0))) +7(1,1,0) 1og(_———-"13(1y0),r233<1’0)>

7(1,0,1)m3 (1) _ x(1,1,1)7a(1) ]
+7(1,0,1) log { TRty ) + (1,1, 1) log (SR )|+

_ =wa(1) f 7(0,1,0)73(0) {1,1,0)7a (0)
Al2,1] =722 ABLRTi2]+2 |7(0,1,0) log (Mmm,mmu,o») +7(1,1,0) log (““——m"3<1,o>m§<1,o>)

7(0,1,1)m3 (1) _ 7(1,1,1)7m3(1) .
+ m(0,1,1) log (—————————m?s(o’l)’rz;(l’l))) +7(1,1,1) log (7{13(1,1)?22(1’1))} ;

—_ 1,1 1,1,0 0 1,1,1
A3l = W;sé 1) AE[LRTy2) + 2 [’/T(l, 1,0) log ( W.;"'_s ((1,0__);’2";((1’)0)> +7{1,1,1) log (_Wg((l,l)vzzséifl))] ;

_ —mra(l) 7(0,0,1)73(1) 7(0,1,1)ra(1)
Al41] = =2 AB[LRT;) +2 [7.'(0,0, 1) log (——M——-m(o)l)mﬂ(oyl)) +7(0,1,1) log (——_‘“m(o,1>n233(1,1))

7(1,0,1) 73 (1) _ (1,1, D)3 (1) )
+7(1,0,1) log (w13(1,1>vr233(0,1>>> +7(1,3,1) log (w;(l,lmiu,l))} ;

A = IS0 ABILAT] +2 501,01 Tog (SZASEIGL) 4 v(1,1,1) g (2530 )]
0 13(1,1)m23(0,1)) 13{1.1)m23(1,1)

__ =723(1,1) 7(0,1,1)wa (1) \ 7(1,1,1)wa (1) .

A1) = =220 AB(LRT,) + 2 [w(o,1,1)10g (—_W13(0,1>_7r233(1,1))> +(1,1,1) 1og(———-—ﬂ13(1,1>ﬂ§§(1’1))],

Alr,1] = =TLD AB[LRT,] +2 [n(1,1,1) log (7EGHEM ) |

— —m(l) 7(1,0,0)7m2(0) 7(1,1,0)70 (1)
AlL2 = =TW AE(LRTy)+2 [71'(1,0,0) 10g(____”12(110)7(2_32(0’0))) +7(1,1,0) 1og(-—~—————,r1”2(1,1>”232(1)0))

7{1,0,1)7r2(0) 7(1,1,1)ma (1) )
+7(1,0,1) log (vr12<1,0>7r232<0,1>>) +7(1,1,1) log (nz(l,nx::(l,l))] ;
. —m2(1) (0,1,0)72(1) 7(1,1,0)75 (1)
Al2,2) = =20 AE[LRTy] +2 [w(o, 1,0) log (“‘_“—“‘”11Z<0,1>«232(1,0>)) +7(1,1,0) log (———-—————ﬂ;(lymg(l,o))

7{0,1,1)mro (1) 7{1,1,1)m2(1) .
+ (0,1, 1) log ezl ) + w(1,1,1) log (3200 ) |5

_ —mia(L1) (1.1,0)72(1) (1L,LDm) \].
A2 = =m20d) ApLan;) +o [W(I,I,O) log(————————wg(l,l)xg(lyo))+7r(1,1,1) 1og(";(1’1)ﬂ;;(1‘1))],

_ =m3(l) 7(0,0,1)72(0) 7(0,1,1)mo (1)
Al4,2) = =20 AE[LRTis) +2 [71'(0, 0,1) log (”“‘“—“—m(o,omg(o,l))) +7(0,1,1) log (————m(oyl)m“’l))

7(1,0,1)72(0) 7(1,1,1)ma (1) .
+7(1,0,1) log (71'12(1»0)7?232(&1))) +m(1,1,1) log (wu(l,l)n;(l,n” ;

— 1,1 x(1,0,1 0 1,1,1 1

Alsg = =m2l) ) AE[LRTi3) + 2 [w(1,o, 1) log (—"———““m;&,o)a:g?((o,i») +(1,1,1) log (———————ﬂ;((l’l);’z';(‘lfl)ﬂ .
- ,1 0,1, 1 A 1,1,1

0 = =R asiunri 2 o0 s () <00 s (B
— ,1,1 1,1, 1

N _"%1__) AE[LRTy3] + 2 [71'(1, 1,1) log (;%%)] ,

Table A.6: Derivatives of f57 and f4T with respect to the seven ) expressed in cell

probabilities.
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A3 = =2 AB[LRTy]+2 [7(1,0,0) log { ~Z&:00m U)LY 4 7(1 1,0) log ( LZLLOmL
® 12(1,0)713(1,0)) 12(1,1)713(1,0)
7(1,0,1)m1 (1) , (1,1,1)m1 (1) .
+7m(1,0,1) log <7r12(1,0)7r131(1,1))) +7(1,1,1) log ( 71'12(1,1)“1::(171))] ’
— 1 0,1,0 8] w(1,1,
al2,3 = —-——';30( ) AE[LRTss] + 2 {w(o, 1,0) log (_.-____m;goy;),gg(g,gm) +7(1,1,0) log (“’“—"——W;((ll,ll?l’f;ff,)o>)

7(0,1,1)7; (0) 7(1,1,1) 71 (1) N
+ 7(0,1,1) log (ml_))) +7(1,1,1) log (—_———Wu(l,l)ﬁ;(l»l))] ;

— 1,1 1,1,0 1 ,1,1

AB3 = =m20D AR[LRTy] +2 [w(l, 1,0) log (~————~7;<(1’1);’1‘31((1}0)) +(1,1,1) log (——————,,1"2‘(11}1),),’1’;{11?1,)] ;
- 1 0,0,1 0 1, [¢]

Al4,3] = _.__’;3; ) AE[LRTss] + 2 {w(o,o, 1) log ( ____m;go,o)g;ﬂ(g,g))) +7(0,1,1) log (*———wﬁ(&fﬁi’fﬁo,’n)

, 7{1,0,1)m1 (1) 7{1,1,1)m1 (1) .
+7(1,0,1) log (m(‘l,ownsl(l,n)) +m(1,1,1) log <w12(1,1)w71r§<1,1) H ;

Al5,3) = T2 AR[LRTy) + 2 [w(l,o, 1) log (__-__-__-mgg;g»);)g(g{;») +7(1,1,1) log (——-—————,r;‘(ll'fl‘)l,)r’;;(‘jfl,)} ;
- 1,1 0,1,1 0 ,1,1 1
Al6,3 = ____’fzgé ) AE[LRTzs) + 2 [w(o, 1,1) log (—__ﬂ;go,l);;;(gwg))) +7(1,1,1) log (—————*,rf;&fnlf;((l,)l)ﬂ :

Aln3) = =T ABLRT] +2 [7(1,1,1) log (7252 ES)]-

Table A.7: Derivatives of f&77 with respect to the seven A expressed in cell probabilities.
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Al1,1]

A2,1]

A[3,1]

Al4,1]

Al5,1]

Al 1]

A[7,1]

Table A.8:

(a2)?

1 1 1 L
76,600 T 70000 T 711607 T A T.LO)

(A2+A123)2
1 + 1 + 1 + 1
«{0,0,1) ' =(0,1,1) ' #{1,0,1) ' w(1,1,1)

+

(A12)®

1 1 1
7(0,0,0) + 7(0,1,0) + 7(1,0,0) + 7{1,1,0)

(M12+A123)°
D WY S
F0.0,0 TRO.LD TR0 TR, LD

(A12)?

1 1 1
#0.6,0) T (0. 5,0y T 7(5,0,0) T =(L,L,0)

. (A12+A123)2
i T
oo tre T trmen TREID

A12

1 1
7r(1,0,0)+7r(1¢1,0)
1 + il + 1 + 1
7(0,0,0) " 7(0,1,0) " #(1,0,0) T #(1,1,0)

1 1
W(0,1,0)+W(1,1,0) }

1 1 1 1
7(0,0,0) + 7(0,1,0) + (1,0,0) + 7(1,1,0)
]:——W12(17 1) + 1

7(1,1,0)
1 1 1
710.00) T 50,50 T 100 T w10

it +

1 4.1
7(1,0,1) ' #w(1,1,1)

I T T3
00D TR LD TR TR LD

[-—m(l) +

[——7@(1) +

1 1
AOID T ELLn

[—7@(1) +

1 1 1 1
woon TR Trmon TR

(1,1,1)
Ii_'/'rm(l’ 1) + T 1 - IS SR }
700,6,1) T 70, 1,1) T w(L,0,1) T w(LLT)

g

(A12+M123)2

1 1 1 1
700,00 T 700,50 T7T.0.00 T 7L,L0)

1 1 1 1
7(0,0,1) +7r(0,1,1) + 7(1,0,1) +1r(1,1,1)

(A12+A123)2

i 1 1 1
w(0,0,1) + (0,1,1) +7r(1,0,1) + w(1,1,1)

(Arz+A123)°

1 1 T 1
=(0,0,1) +7r(0,1,1) +7r(1,0,1) +7r(1,1,1)

(Mi2+Aiz)?

T T T T
000 T e TALLD

. 1/\12—%-)\1231 . .
oo troIin t=moy TRa Ly |

[1—73(1)];

1 1
_.._.__._+_—.—.
7(1,0,1) (1,1,1) .
—7(13“-7 1) + T 1 +7r I 1 3
00D TROLD T w5 T (LI

'—7‘—23(171) + T

T 1 1
7(0,0,1) +7r(0,1,1) +7r(1,0,1) +7r(1,1,1)

1 1
[ =0,L0 PRI LD } }

r 1
~r(1,1,1) + o : J

1>\12+/\123

"}'2 T T T
7(0,0,1) +ﬂ'(0,1,1) +7r(1,0,1) + m(1,1,1)

Derivatives of fJ§ 4

1 1 1
7G.6,) TRO,LD T RL6D T FIID
J:

with respect to the seven A\ expressed in cell probabilities.
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A[2,2]

A[3,2]

Af4,2]

Al5,2]

Al6, 2]

A[7,2]

Table A.O:

(A13)?

T T T T
#06,0,0) T =650 Tw.o0y T 7(1,0,1)

(M13+A123)°
1 1 1 1
oo Trern trmoe T e

+

(Ma+Ai123)?

T T T T
FEIo T oD T trEID

(M13+A123)?

1 1 1 1
oo oI tamLe tra D

(A13)?

1 1 1 1
7(0,0,0) +7r(0,0,1) +7r(1,0,0) + 7«(1,0,1)

(A13+A123)2
T T T I
0,50 TRe LD TR Lo TRELD

(M13)®

1 1 1 1
=(0,0,0) + 7{0,0,1) + 7(1,0,0) + 7(1,0,1)

(A13+A123)2
T T T T
oL eI TR TR LD

+

A3

RO ENNY

1,0,0 T.6.1

”71(1)+ T +7 T +ﬂ T - T
7(0,0,0) #{0,0,1) W(I,0,0)ﬂ—'ﬁ(l,o,l)

1 1
ALL0) TR

. 1 1 ' 1
P W R T Wy U= S W) AT S B

ort =

[1—ma(1)];

1 T 1
1,1,0) ° 21,
{—7?12(1, 1) + —/——4p0 Ly J ;

1 1 1
76,50 TROLD THRLLY T AaD

1 + 1
(0,0,1) (1,0,1)
"7(3(1>+ T _,_w T — =y I
7(0,0,0) © #(0,0,1) " #(1,0,0) © =(1,0,1)

CRBYREIEN

0,1,1 w(1,1,1) .

"7T3(1)+ T +7r I T 1
7(0,1,0) 7 %(0,1,1) T #(1,1,0) ' =(1,1,1)

1
7(1,0,1)
1 1 1 1
«(0,0,0) + 7(0,0,1) + 7(1,0,0) + 7(1,0,1)

[—7?13(1, 1)+

1
~(1,1,1)
1 1 1 T
70,500 T 70,50 T RTLL0) T AL

{—mu, 1) +

A3+ .
+ 137123 }7

g

(M3+A123)?
T

1 1 1 1
0,00 T 700D T 7500 T 7LoD

T . T T
7(0,1,0) T 7(0,1,1) +7r(1,1,0) + w(1,1,1)
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Derivatives of flvg ald with respect to the seven A expressed in cell probabilities.
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AL, 3]

A2, 3]

?

A[3,3]

Al4,3]

Al5,3]

A[6,3]

A[7,3]

Table A.10: Derivatives of f3% ®¢ with respect to the seven A expressed in cell probabilities.
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Appendix B

Expected cell counts

m1(0) m2(0) || ¥r2=1 P12 = 1.5 P2 =2 Wi = 2.5 10 =3 P12 =4
01 01 10 90 | 13.7 86.3 16.9 83.1 19.7 80.3| 22.1 77.9 26.3 73.7
’ ) 90 810 86.3 813.7 83.1 916.9| &0.3 819.7| 77.9 822.1| 73.7 826.3
0.3 0.1 30 270 | 381 261.9| 44.3 255.7| 49.1 250.9] 53.1 246.9] 59.3 240.7
’ ) 70 6301 61.9 638.1| 55.7 644.3 1 50.9 649.1| 46.9 653.1| 40.7 659.3
0.5 01 50 450 59 441 65.1 4349 69.6 4304 73 4271 77.9 422.1
) ) 50 450 41 459 | 34.9 465.1 1 30.4 469.6 27 473 | 22.1 477.9
0.7 01 70 6301 77.1 6229 815 6185 84.4 6156 86.5 613.5 894 6106
) ) 30 270 22.9 277.1 18.5 281.5 15.6 2844 13.5 286.5| 10.6 289.4
0.9 0.1 90 810 ] 92.9 R807.1 94.5 805.5] 95.5 804.5| 96.2 803.8| 97.1 802.9
) ) 10 90 7.1 92.9 5.5 94.5 4.5 95.5 3.8 96.2 2.9 97.1
0.3 0.2 60 240 | 74.2 225.8| 84.8 215.2 ) 93.1 206.9 100 200 | 110.7 189.3
) ’ 140 560 | 125.8 574.2 | 115.2 584.8 | 106.9 593.1 100 600 | 89.3 610.7
0.5 0.2 100 400 116.1 383.9 | 127.2 372.8 1354 364.6 | 141.7 3583 ] 151.1 348.9
) ) 100 400 | 83.9 416.1 72.8 4272 64.6 4354 58.3 441.7| 489 451.1
07 0.2 140 560 ] 152.9 547.1 161 5391 166.7 533.31170.9 529.1|176.7 523.3
) ’ 60 240 47.1 252.9 39 261 33.3 266.7| 29.2 270.9| 23.3 276.7

Table B.1: Expected cell counts for different combinations of marginal probabilities (m1(0)
and m2(0)) and odds ratio values (¢12), when ng = 1000.
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Appendix C

Total Non-Admissible Region

n = 200
p12.3

p132; p2s1 || =09 ] 05| -01] 0 | 01 | 05 | 09
0.1; 0.1 ]/ 0.294 [ 0.365 | 0.538 | 0.691 | 0.582 | 0.462 | 0.478
0.1; 0.2 ][ 0.241]0.269 | 0.439 | 0.621 | 0.488 | 0.311 | 0.313
0.2; 0.2 ][ 0.099 | 0.128 | 0.331 | 0.551 | 0.365 | 0.149 | 0.149
0.2; 0.3 ]/ 0.075 ] 0.082 | 0.288 | 0.524 | 0.318 | 0.088 | 0.088

n = 500

p12.3

praz; p2sa | =09 ] -05]-01] 0 | 01 | 05 | 09
0.1; 0.1 ][ 0.169]0.214 [ 0.331 [ 0.607 | 0.355 | 0.259 | 0.261
0.1; 0.2 [ 0.131]0.135]0.242 | 0.552 | 0.262 | 0.142 | 0.142
0.2; 0.2 |/ 0.016 | 0.021 | 0.147 | 0.506 | 0.152 | 0.022 | 0.022
0.2; 0.3 [ 0.011]0.011]0.138 | 0.502 | 0.142 | 0.012 | 0.012

n = 1000

p12.3
p13.2; p2sa || =09 —05|-01] 0 | 01 | 05 | 09
0.1; 0.1 [0.076 [ 0.098 | 0.155 | 0.545 | 0.162 | 0.112 [ 0.112
0.1; 0.2 [ 0.056 | 0.056 | 0.106 | 0.519 | 0.111 | 0.056 | 0.056
0.2; 0.2 []0.001 | 0.001 | 0.057 [ 0.499 | 0.057 | 0.001 | 0.001
0.2; 0.3 || 0.001 | 0.001 | 0.056 | 0.499 | 0.056 | 0.001 | 0.001

Table C.1: Values of the total non-admissible region (NAR), using non-signed LRT statistic
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