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Three test statistics for single edge exclusion from the saturated model are considered: 

the likelihood ratio test, the Wald test and the efficient score test. Non-signed and signed 

square-root versions are used. Their distributions are investigated, in particular under the 

alternative hypothesis that the saturated model holds. The delta-method is used to derive 

approximating asymptotic normal distributions. A non-central chi-square approximation is 

also proposed. 

The power of the three test statistics for single edge exclusion is studied in detail, both 

for graphical Gaussian models with p variables and for graphical log-linear models with 

two and three binary variables. Theoretical asymptotic power functions are derived for the 

non-signed and the signed square-root versions of each test statistic. The normal and the 

non-central chi-square approximations, previously derived, are used. The quality of the 

approximations is assessed by simulation. 

The single-factor model and the latent class model (with all variables binary) are 

parameterised, within the framework of graphical models, as a graphical Gaussian model 

and as a graphical log-linear model, respectively. The implications of such parameterisations 

are discussed, in particular concerning the parameter space and its admissible regions. 

It is proved that marginalising over the latent variable, both in a single-factor graphical 

Gaussian model and in a single-factor graphical log-linear model, induces no conditional 

independencies between manifest variables and, therefore, an independence graph that 

is complete. Consequently, starting with the saturated model and performing backwards 

elimination model selection is suggested as the most appropriate way for the data analyst to 

detect the presence of a latent variable. However, since model selection is subject to type II 

error, it is recommended that the power of the test statistics for single edge exclusion from 

the saturated model is taken into account. 

A parallel is made between results obtained for graphical Gaussian models and for graph-

ical log-linear models and some guidelines/recommendations are given to the data analyst. 
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Chapte r 1 

In t roduct ion 

Graphical modelling is a form of multivariate analysis that uses mathematical graphs 

to represent models. It has emerged as a statistical technique explicitly based on the 

concept of conditional independence: the emphasis is on the assessment of the relation-

ships that might exist between pairs of variables, conditioning on (controlhng for) the 

remaining variables under analysis. Graphs are used to display the (conditional) inde-

pendence structure of the variables. Each variable is represented by a vertex (node), 

associations between variables being represented by edges: either lines or directed 

arrows. The interpretation of the association structure among the variables can be 

directly read Arom the graph, using the Markov properties. In brief: two vertices are 

connected if there is a direct association between them; two vertices are not connected if 

the corresponding variables are conditionally independent, given (the) other variables. 

Thus, interpretation and model Gtting are based purely on conditional independence 

relationships. 

The conditional independence between two variables, given all the other variables 

in the model, can be tested using test statistics for single edge exclusion. Rejecting the 

null hypothesis of conditional independence between variables Xi and Xj (given the 

remaining variables) corresponds to having edge present in the (conditional indepen-

dence) graph. The usual Grst step in fitting graphical models consists in considering 

the saturated model and calculating the test statistics for single edge exclusion, in 

order to test for the exclusion of each of the edges present in the graph. 

Different test statistics for single edge exclusion have been used in the past. This 

thesis considers three: ratio test, the WoM test ozzd t/ie e^czeMt scoTie 



It is known that under the null hypothesis of conditional independence 

between and , given the remaining variables, subject to certain regularity condi-

tions. these test statistics are asymptotically chi-square distributed (see, for example, 

Whittaker, 1990, page 187). The hrst two aims of this thesis are to study the distribu-

tion of these three test statistics under the alternative hypothesis that the saturated 

model holds and, consequently, to derive asymptotic power functions for these test 

statistics. 

The variables in the graphical model can be either (observed) variables 

or (unobserved) variables. A third aim of the thesis is to investigate the pa-

rameterisation of graphical models with a single latent variable, both in the case all 

variables are assumed multivariate normal distributed and in the case all variables are 

binary, the manifest variables cross-classi^ng a contingency table. The former case 

has a parallel to factor analysis models with a single-factor, and the latter has a parallel 

to latent class analysis models. 

This introductory chapter has four main sections. Section 1.1 provides a historical 

background of graphical models and graphical modelling, since their roots in areas such 

as statistical physics (where graphs were used to represent relationships) and in path 

analysis, up to recent developments, with diEerent areas of application. Section 1.2 

brieHy summarises the use of latent variables in factor analysis models and in latent 

class analysis models. Because the focus of this research is on graphical models, a wider 

coverage is given to the literature on this framework, whereas references to the use of 

latent variables are restricted to what was considered essential for the understanding 

of this thesis. Section 1.3 reflects the motivation for the work undertaken and now 

summarised in this thesis: it lists citations from the literature that explicitly mention 

the 'need' to include latent variables within the framework defined by graphical models. 

Finally, Section 1.4 gives an overview of the structure of the thesis. 

1.1 Historical Background of Graphical Models 

1.1.1 T h e roots : graphs and p a t h analysis 

The roots for graphical models can be found in the beginning of the 20th century, in 

different scientific areas such as physics and genetics. In 1902 Gibbs, a physician, used 



an grap/i to represent the relationships and interactions in a large system 

of particles (possibly the atoms of a gas or a solid), as explained by Lauritzen (1996). 

Gibbs was interested in the interaction of groups of particles and he used undirected 

graphs to identify sites of particles that interact with one another. 

In genetics, graphical models go back to Wright (1934) (and previous papers in 1921 

and 1923), who introduced - which represents one of the early attempts to 

meet the need for methods to analyse structures. The idea is that heritable properties 

of natural species can be studied using a graph with directed relations, with arrows 

moving from parent to child. The vertices of the graph represent continuous random 

variables and edges represent correlations and causations. The 1934 paper classi6ed the 

m o Path 

analysis became very popular and started being used in several areas such as economics 

and other social sciences - see, for example, Wold (1954), Blalock (1971) and Duncan 

(1975). 

1.1.2 Condi t ional independence: an impor tan t tool for mod-

elling da t a 

During the 60s and 70s, there was an increased recognition of mdepeMcfence 

as an important tool for modelling multivariate data. Dawid (1979) gave a general dis-

cussion of conditional independence in statistical theory, and introduced the notation, 

now widely used. 

Dawid claimed that "nzt/zer onot/zer tooZ t/ze 

mcfepeMdence o^grs o mew /or (Ae eipregazon o/ 

concepts and a framework for their studyThe framework is illustrated by an examina-

tion of the role of conditional independence in several diverse areas of statistics. Dawid 

wanted to show that independence and particularly conditional independence are fun-

damental concepts in the theory of statistical inference. Many important concepts of 

statistics (sufRciency, ancillarity, etc.) can be regarded as expressions of conditional 

independence and many results and theorems conceming these concepts are just ap-

plications of some simple general properties of conditional independence. According to 

Dawid, by taking conditional independence as basic, and expressing other properties 



in terms of it, an unification of many areas of statistics (which appeared unrelated) is 

achieved. For proofs see Dawid's 1980 paper, the purpose of which was to construct 

a rigorous general theory of conditional independence. Yet, in the discussion of the 

1979 paper, some authors were skeptical that the notion of conditional independence 

could be regarded as such a fundamental tool, that it could contribute to statistical 

inference. 

1.1.3 Developments in contingency tables analysis 

One of the reasons for the increased recognition of conditional independence were 

the advances in the held of analysis of multivariate categorical data cross-classified in 

(oAZea, commonly designated as Indeed, the standard 

statistical practice of analysing categorical data altered radically during the 70s and 

the development of log-linear models made it possible to formulate complex models for 

the dependencies between the variables cross-classihed in a contingency table. 

Starting points in the new approach of analysis of contingency tables include work 

by Birch, Bishop, Goodman and Haberman. A brief summary of their main con-

tributions follows. In an attempt to define log-hnear models for contingency tables. 

Birch (1963) defined interactions in three-way and many-way contingency tables as 

certain linear combinations of the logarithms of the expected frequencies. He then dis-

cussed maximum-hkelihood estimation for many-way tables and gave solutions for the 

three-way contingency tables case. Birch (1964) derived a criterion for testing the null 

hypothesis of conditional independence of two dichotomous random variables. In Birch 

(1965), the detection of partial association was generalised and three different criteria 

for testing the null hypothesis of conditional independence of two random variables 

were presented. These criteria include situations when both variables are qualitative, 

both variables are quantitative and one variable is qualitative and the other quantita-

tive. Bishop (1969) discussed three methods for fitting log-linear models to multivariate 

contingency-table data with one dichotomous variable: logit analysis, the split-table 

method and the full contingency-table method. The last one can be regarded as a 

generahsed approach: basically, it is the same method as described by Birch (1963), 

with the advantage that an iterative fitting algorithm may be used. 

Goodman (1969) presented a method of partitioning a statistic (the statistic 
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based upon the likehhood-ratio criterion for testing the null hypothesis that the three 

variables, cross-classifying the three-way table, are mutually independent), for the f x 

J X A" contingency table, into additive components. These can be used to test: i) the 

null hypothesis of zero three factor interaction, ii) the null hypothesis that the partial 

association between two of the variables in the table is zero, iii) some null hypotheses 

concerning the two-way marginal distributions. Goodman's test statistic will have the 

appropriate asymptotic distribution when a sample of n observations (n —> oo) is 

drawn from the population f x J x jC table. Goodman (1970) discussed, for the m-way 

contingency table, both the direct estimation of the multiplicative interactions among 

the m variables and the indirect testing of hypotheses pertaining to these interactions. 

He considered hierarchical hypothesis, including those that can be expressed in terms of 

concepts such as independence and equiprobability and conditional properties (such as 

conditional independence). Methods of partitioning those hypotheses were introduced, 

providing insight into the relationships between tests applied to the m-way table and 

tests applied to marginal tables formed from it. Goodman (1971) can be viewed as an 

addendum to the two papers mentioned above, on the analysis of marginal tables and 

on the partitioning of the chi-square. 

Haberman (1974) provided a general, uniGed treatment of log-hnear models for 

frequency data by means of a coordinate free method of linear algebra and differential 

calculus. This method of definition permited the development of a general theory. 

Previous studies had, indeed, a much more limited scope: each new type of model that 

had been proposed required a new examination of the properties of the maximum-

likelihood estimates and a new computational procedure to find them. Statisticians 

had to devise new proofs of the uniqueness and existence of their estimates, and had to 

show that their algorithms converged. The general log-linear model has the advantage 

of eliminating these problems for a large class of models for frequency data. 

The authors mentioned above can be considered the base for a much wider scope of 

recent literature and advances in this statistical area of log-linear modelling. Accord-

ing to Wermuth and Lauritzen (1983) the most appealing features of a hierarchical 

log-linear model are that: i) it has a set of minimal sufficient statistics, which is a 

set of proper marginal contingency tables, and ii) that each of the jointly sufficient 

tables matches exactly the corresponding table derived from the maximum likelihood 



estimate of the joint table. Variable sets corresponding to tables listed in the set of 

minimal su&cient statistics are the important ones in each given model, because their 

observed marginal tables contain the relevant information for the joint distribution of 

all variables. 

1,1.4 Covariance selection models and zero par t ia l associa-

t ions 

Dempster (1972) pioneered the development of graphical models theory for continuous 

variables, assuming normality. The covariance fitting technique presented involves the 

exponential family of normal distributions with unknown covariance structure. He 

called those models mocZek. Instead of modelling the variance 

matrix, the structure of the inverse variance matrix is modelled. Dempster showed 

that the covariance structure of a multivariate normal population can be simphSed 

by setting to zero elements of the inverse variance matrix (or elements of the inverse 

correlation matrix). 

Wermuth (1976a) made use of analogies between log-linear models, which exhibit 

conditional independence, and the covariance selection models of Dempster and in-

troduced models for contingency tables which are analogous to covariance selection 

models. She concentrated on a class of patterns of association between variables char-

acterised by zero poTtrnZ ossocmttOTi, that is, pairs of variables that are conditionally 

independent, given the other variables. Wermuth discussed different possible patterns 

of association for the variables, characterised by different zero partial associations, and 

presented rules for the interpretation of such patterns and for computing test statistics. 

She stated that testing whether an element of the inverse variance matrix is zero is a 

test for zero partial association, that is, for conditional independence. 

Wermuth (19766) proposed a non-iterative model search technique to End simple 

patterns of association for several variables. The analysis was restricted to multiplica-

mocfeZs, therefore all patterns under consideration were interpretable in terms of 

zero partial association of variable pairs. In the case of a multinomial distribution, 

multiphcative models are a subclass of log-linear models (Birch, 1963), and in the case 

of a multivariate normal distribution they are a subclass of covariance selection models 

(Dempster, 1972). A model is defined as multiplicative if the joint distribution of sev-



eral variables can be factored into the marginal distributions of subgroups of variables 

(and vice versa). Wermuth showed how multiplicative models, both for contingency 

tables and as a subclass of covariance selection models, may be used, in a similar man-

ner, to study simple patterns of association. However, neither Dempster nor Wermuth 

mention the idea of using a graph to summarise the results of an analysis. 

1.1.5 T h e beginning of modern development of graphical 

models 

The hrst key paper for the modern development of graphical models is the paper by 

Darroch, Lauritzen and Speed (1980), in which a way of constructing a graph that 

has a well defined probabilistic interpretation was proposed. That graph was called 

the (or independence graph, for short). The authors 

used the close connection between the theory of Markov fields and that of log-hnear 

interaction models for contingency tables to define a new class of models for such 

tables: mcxiek - a subclass of the so-called AzerarcAzcoZ motfeZg that can be 

represented by a simple, undirected graph on as many vertices as the dimension of 

the corresponding table. All these models can be given an interpretation in terms 

of conditional independence and the interpretation can be read directly off the graph 

in the form of a Markov property. The class of graphical models contains that of 

decomposable models and the authors gave a simple criterion for decomposability of a 

given graphical model: first check whether the model is graphical and then, if it is, 

check whether the graph is decomposable, that is, whether there are no cyclic subgraphs 

of length greater than three. 

Lauritzen and Wermuth (1989) is the second key paper for the modern development 

of graphical models, together with Wermuth and Lauritzen (1990). Early work in the 

field involved just one type of variable (discrete or continuous) at a time. The 1989 

paper introduced modek (based on Conditional-Gaussian 

(CG) distributions, allowing to simultaneously consider quantitative and qualitative 

variables), and cAam Graphical chain representations were suggested 

to display complex association structures among variables (qualitative or quantitative). 

The word 'association' was used broadly, to include both symmetric associations for 

variables treated on an equal footing (undirected edges) and directed relations con-
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cerned with the dependence of a response on explanatory variables (directed edges). 

Symmetric associations occur not only when there are no response variables at all, 

but also when some variables are joint responses or joint influences, or when they are 

joint intermediate variables (responses to one set of variables and influences to another 

set). The cAom consists of a block of variables separated, for example, by time. 

The chain structure is supplied from subject-matter knowledge about responses and 

potential influences. Several examples were given in the 1990 paper. The Srst version 

of Lauritzen and Wermuth (1989) was a Research Report published in 1984 (University 

of Aalborg). In the meantime, Wermuth (1985) illustrated, by using several examples, 

how conditional independencies are reflected in data of CG distributions and showed 

representations of graphical chain models. 

Since the paper of Darroch, Lauritzen and Speed (1980), there has been an increas-

ing interest in graphical models, both by data analysts and by statisticians. Some 

examples of remarkable developments observed in this area are now given. Edwards 

and Kreiner (1983) considered strategies for model selection. The advised strategy-

was, at least at preliminary stages, to restrict model search to models which can be 

understood purely in terms of conditional independence relationships, i.e., to graphical 

models. The authors suggested that a natural Hrst step of a graphical model selection 

procedure is to start with the saturated model and then test each edge (exclusion) for 

signiAcance. 

The possibihty of reinterpreting models represented by undirected fuU-line graphs 

as dependence models in fully directed graphs was obtained by Wermuth (1980) for 

Gaussian systems, by Wermuth and Lauritzen (1983) for contingency tables and by 

Frydenberg (1990) for conditional Gaussian systems. Wermuth (1980) showed the 

equivalence of covariance selection models to systems of linear recursive equations with 

independent errors. Wermuth and Lauritzen (1983) introduced recursive models and 

directed graphs for contingency tables. The aim was to specify decomposable models 

as the intersecting class of hierarchical log-linear models with recursive models. Fry-

denberg and Lauritzen (1989) focused on the decomposition of the likelihood in mixed 

graphical association (interaction) models and Frydenberg (1990) dealt with collapsi-

bility in such models. 

In recent years new types of graphs have been proposed in the literature, and new 



areas of application have been found. Since these do not directly relate to the work 

underlying this thesis, only a brief reference is made to them. Gmp/ig (wo 

0/ 66(̂ 6 and coifonoMce were introduced by Cox and Wermuth (1993) (see also 

Wermuth and Cox, 1992). The two types of edges (full or dashed) indicate different 

types of conditional analysis. A covariance matrix with some zero o&diagonal entries 

can be represented by an undirected graph with the corresponding edges missing: a 

covariance graph. Koster (1996) introduced reczprocaZ which are a generali-

sation of chain graphs, allowing for double-headed arrows to be present, representing 

feedback loops (to establish a relation with nonrecursive equation systems). Didelez 

(1999) defined ZocoZ based on the concept of /oco/ 

Such a graph represents the dynamic dependence structure of several continuous time 

processes which, jointly, form a so-called composable Markov process. 

For a review of the application of directed acyclic graphs to probabilistic expert sys-

tems, see SpiegeUialter, Dawid, Lauritzen and CoweU (1993). The idea of handling the 

uncertainty in expert systems in a coherent probabilistic manner, using directed acyclic 

graphs to represent causal networks, had been introduced by Lauritzen and Spiegelhal-

ter (1988). More recently (1999), a book on f mbobz/wtic and Eipert 

(by Cowell, Dawid, Lauritzen and Spiegelhalter) was published, and Lauritzen (2001) 

reviewed a number of modern applications of graphical models from different areas 

such as decision support systems, telecommunications and machine learning. 

Software currently available for fitting graphical models includes DIGRAM, by 

Svend Kreiner for the analysis of contingency tables, GraphFitI ( 'Graphical models 

'Fit'ting Tnteractions), by Angelika Bauth, for model selection, particularly in graph-

ical chain models and MIM ('M'ixed Tnteraction 'M'odelling ), developed by David 

Edwards, who claims MIM to be 'currently the world's leading software for graphi-

caJ (http://www.hypergraph.dk/). MIM is a commercial software and the 

latest version (version 3.1) supports undirected, directed and chain graphs, for contin-

uous, discrete and mixed models. MIM was the software used in this research project. 

Throughout the thesis several references are made to MIM notation and results. 

Finally, it must be noted that there has been much development in graphical models 

in recent years, both in the statistical and the artificial intelligence literature. Most of 

it is beyond the scope of this thesis and, therefore, is not reported here. 
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1.2 Latent Variables in Factor Analysis and in La-

tent Class Analysis 

The concept of used in this thesis refers to an unobservable variable that 

cannot be measured directly, but only by means of indicators - the ronabZea. 

Latent variable models are statistical models specifying the joint distribution of a set of 

random variables, some of which are unobservable (latent), and provide an important 

tool for the analysis of multivariate data. The classical basic idea is that the manifest 

variables (indicators) are conditionally independent given the latent variable. In other 

words, the latent variable totally accounts for the observed relationships among the 

manifest variables (assumption of local independence). Several reasons why latent 

variables should be introduced in a model can be invoked. One possible reason, common 

to many techniques of multivariate analysis, is to Tiedtfce This is the 

idea behind aMoZg/gw. The purpose is to convey the information contained in the 

interrelationships of many variables, with a good approximation, in a much smaller 

set of variables, i.e., to reduce the dimensionality of the data, preserving as much as 

possible of the initial structure. Another possible reason for using latent variables is 

related to the fact that in many fields to which statistical methods are applied, social 

sciences for example, central entities are handled as if they were measurable quantities, 

but no measurement instruments exist for them (motivation, satisfaction, quality of 

life, general intelligence, . . . ) . fbcforg, latent or hidden variables represent, therefore, 

something underlying what is observed. 

As far as level of measurement is concerned, variables can be classified as 

and categorical. Metrical variables have realised values in the set of real numbers, and 

may be discrete or continuous. Categorical variables assign individuals to one of a set of 

categories, which may be ordered or unordered. Such classification applies to manifest 

as well as to latent variables. When all variables (manifest and latent) are metrical, 

factor analysis methods can be used. When all variables are categorical, latent class 

should be used. 

A brief historical background of these latent variables methods foUows. Francis Gal-

ton (1822-1911) can be considered the direct forerunner of factor analysis and Charles 

Spearman (1863-1945) the father. After coming up with the concepts of con-eWzo/% 
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and in the late eighties Galton wrote two articles containing what could 

be regarded as the embryo of formal factor analysis. Spearman (1904), a psychologist 

who acquired statistical skills, performed several investigations that included mental 

variables, and considered these mental variables as being indicators of the same phe-

nomenon. This lead him to invent factor analysis, and to introduce a modeZ' 

/or Yet, neither did he speak of a model, nor was the model-

concept estabhshed in statistics at that time. The 'tetrad diEerence theorem' is also 

due to Spearman. 

Louis Leon Thurstone (1887-1955) performed extensive factor analyses, formally 

what one today could call /octor An important mark in the theo-

retical development of the factor analysis model was the 1956 paper by Anderson and 

Rubin, considered by the authors aa 'an o/ (Ae 

A major contribution for the recent development of fac-

tor analysis has been the work by Karl Joreskog (1935 - ). His major contributions 

include the introduction of (also known as egtta-

(zon and the development of LISREL ('LPnear 'S'tructural 'REL'ations), a 

software package widely used for fitting such models. 

At an early stage, it became clear that factor analysis models were inappropriate to 

deal with non-quantitative data, and the growth of social research had greatly increased 

the amount of such data. Louis Guttman (1916-1987), a psychometrician, emphasised 

the need to apply new mathematical methods to qualitative data. The foundation 

was launched for the development of latent class models. Latent class analysis was 

mainly developed within the social and political sciences. The latent class model was 

introduced by Lazarsfeld and Henry (1968) as a way of formulating latent attitudinal 

variables from dichotomous survey items. The methodology was formalised and ex-

tended to nominal variables by Goodman (1974), who also developed the maximum 

hkelihood algorithm that serves as the basis of several current latent class software 

programmes. The increasing popularity of latent class models was also due to the im-

portant work of Haberman (1979), who represented such models as log-linear models. 

Variants have been proposed for ordinal variables (see, for example, Heinen, 1996) 

and for combinations of variables of different scale types (Moustaki, 1996). Important 

recent developments include also the work by Vermunt and Magidson, which has lead 

to the recent development of the i/Otent software. 
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1.3 Latent Variables in the Graphical Models Lit-

erature 

This section includes references from the literature that point out the use and need of 

including latent variables in the framework defined by graphical models. Such refer-

ences are presented in chronological order. 

In the discussion of Dawid (1979), a key paper for the understanding of conditional 

independence in statistical theory. Professor Novick referred to latent trait theory, 

latent variables and conditional independence. He argued that Dawid's paper did not 

contain any reference to Psychometrika, or to psychometric literature in general, in 

which the concept of conditional independence is used extensively. Novick claimed 

psychometric latent trait theory is about the attainment of conditional independence 

through the construction of latent variables. 

When reviewing structural analysis of multivariate data, Kiiveri and Speed (1982), 

mentioned factor analysis and latent class analysis as techniques in which considerable 

research had been done in recent years. The aim of their paper was to review that re-

search, expressing it in what the authors considered a (o gome ez(eM^ no%;eZ 

wo?/': in terms of (probabilistic) independence. They showed that many conGrmatory 

factor analysis models can be expressed in terms of independence. Several examples 

were given, the third one being related to the single-factor model and to the latent 

class model. Their approach was to view the observed data as incomplete and work 

in the A-amework laid down in Dempster, Laird and Rubin (1977) for the analysis of 

incomplete data from exponential families (the EM algorithm). 

Hodapp and Wermuth (1983) described decomposable models and claimed such 

models are well-suited to study multivariate relationships and to obtain a unified 

overview of complex variable relationships. They contrasted the graphical models 

framework with what they considered 'probably the best known models of dependen-

cies': linear structural equation models. The authors argued that if the latter are 

restricted to having only observed variables, linear structural equations are obtained, 

of which decomposable models are a sub-class. However, if latent variables are intro-

duced, that is, for LISREL models in general, no sufhcient conditions and no necessary 

and sufficient conditions are known for parameter identification, which the authors 

regarded as a serious problem. A clear argument was made for the conditional inde-
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pendence framework. Graphs for decomposable models were presented and examples 

from psychology were given, but no latent variables were used. 

Lauritzen (1989) is a key paper surveying the mathematical and statistical theory of 

mixed graphical (association) models. In the discussion of the paper Joreskog compared 

the LISREL methodology with mixed graphical models, claiming LISREL is primarily 

designed for models with latent variables, and Lauritzen was not dealing with such type 

of variables. In his reply to the discussion, Lauritzen pointed out that '(Ae grapAzcoZ 

modeZg de5cn6g(f m paper ore m (Aezr oTicf/or ̂ rom 

and said that, although pro6Zem ^ o o/ (reo^mg (Ae 

pro6Zemg / om sî re (Aof wz/Z 6e (reaped m (Ae neor /^^z/re'. 

Wermuth and Lauritzen (1990) also referred to the use of latent variables in the 

framework defined by graphical models. The authors mentioned that graphical chain 

models can be viewed as extending path analysis in diEerent directions, one of them 

being the possibility that some of the variables may be latent (meaning that informa-

tion on them has to be obtained indirectly, with the help of other directly observable 

variables). Section 6 of their paper stated that the factor analysis model and the latent 

class model can be considered special cases of graphical models. In the discussion of 

the paper Kiiveri argued that estimation procedures for graphical chain models with 

latent variables needed to be developed, the difKcult problems of identifiabihty that 

will arise having to be taken into account. The authors replied saying that 'though 

propAzcoZ cAom modek permit (Ae o/ Zafenf (Ae (Aeon/ 

/or szfcA mocZek is undet;e/ope<f. M̂ e a^ree fAo( fA^ e%(e7%5%on w eggeM ẑoZ /or 

app/%caf20725 m (Ae goczo/ sczeMceg, (Ao( (Ae EM o/^on^Am ma;/ 6e o/ AeZp, we oko 

6e/%et;e tAot a new opproocA to aoZmn^ (Ae problem o/ oi/eTporometengotion zs needed. 

which occurs for models with latent variables, but not for other conditional Gaussian 

cAmn modeZg'. 

In the discussion section of Wermuth and Cox (1992), when referring to open prob-

lems for future research, the authors said 'the role of latent variables needs more study. 

6o(A m conmec(%oM it/ẑ A eyrorg m yneoattremenf ond 2/;%(A (Ae mcofporo^iom o/ Azdden 

%;ono6(e5'. Wermuth (1993) is a paper with several examples on graphical chain repre-

sentations, without latent variables. Nevertheless, Wermuth agreed that '(Ae 

(Aeory /or modek w(A Zo(en( t;ar%a6Zeg wAzcA w needed m oppZicotzoTis ^ no( 

2/e< weH dei;eZoped', which she considered 'one o/fAe mom disod^^onto^es' of graphical 
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chain models (when compared to hnear structural equation models). 

Whittaker (1993) contrasted the relationship between the diagrams used in latent 

variable modelling and the conditional independence graphs of graphical modelhng and 

stated that gzoct between t/ie m(fepeMc(e?ice (Ae 

/atent %;ono6Ze cfmprom )^gmres gome An example was given, with two 

observed explanatory variables and two latent dependent variables (one measured by 

two indicators and the other measured by a single indicator). The associated chain 

independence graph has three blocks corresponding to the explanatory variables, the 

latent variables and the observed response variables (the three indicators). However, 

there is no reference in the paper either to identiAcation or to estimation of such a 

model. In Whittaker's words, 'zt com 6e aeem tAot t/ze Zotent ?;ono5Ze A&s a 

reTT/ mtzmote reZotzoMg/zzp (Ae as50cm(e<j (f%recW mcfepen^fence 

wztA (Ae corô ZaTT/ (Aof Zatemt fonabZe mocZeZZm̂  ^ jztat a /brm 0/ mo(fe//mg 

tAat mcozporofes Zofenf fanabZes'. Yet, Whittaker does not seem very supportive of the 

use of latent variables when he says w not pogs%6Ze to moA;e (fzTiect meoaunsments on 

tAe %;ono6/e5 o/ mteTiest, latent !;ono6/e moffeZZm^ ^ tAe onZ^ 7T%x)2frge. .ffowez/er. tAe)ie 

^ 0 pnce to po2/ (otent !;ar%o6Ze dmgroms o/ie no /on^er neceggonZy i;er^o6/e 

o^azn^t doto; oncf tAe %n(fepen<ience gtrtfct^re 0/ tAe /otent fonabZe mocZeZ w 0 pTiocfuct 

0/ oggt̂ mpt̂ on rat/ier tAon 0/ empzncoZ obseTTotzon'. 

In brief: these references have one point in common - further work is required 

within the graphical models Aramework in order to incorporate latent variables, so 

widely used in many areas of application, particularly in the social sciences. This thesis 

aims to contribute to such work by investigating the parameterisation of the single-

factor model as a graphical Gaussian model and the parameterisation of the latent 

class model as a graphical log-linear model. Special attention is also devoted to the 

parameter spaces and their admissible regions. Some advice is given to the data analyst, 

regarding strategies to be used when trying to detect the presence of a latent variable, 

based on the conditional independence structure of the manifest variables (indicators). 

Indeed, starting with the saturated model of the manifest variables and testing for 

all possible single edge exclusions seems an obvious way to detect the presence of a 

single latent variable, both in a graphical Gaussian and in a graphical log-linear model. 

However, the test statistics for single edge exclusion are subject to type II errors. This 
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suggested investigating the distribution of the test statistics for single edge exclusion, 

in particular under the alternative hypothesis that the saturated model holds, in order 

that theoretical asymptotic power functions could be derived. 

The trail of thought underlying the research project that gave rise to the current 

thesis has just been presented. The next section gives an overview of the thesis, de-

scribing the main structure of each chapter. 

1.4 Overview of the thesis 

Besides this introductory chapter, the thesis has five chapters: Chapter 2 is mainly 

a review chapter, Chapters 3 to 5 present the contributions made by the current 

research project and Chapter 6 summarises the concluding remarks. A more detailed 

description of the contents of each chapter follows. 

Chapter 2 clarifies concepts and definitions and reviews the theory underlying 

graphical models, required for the work undertaken and for the understanding of the 

thesis. Although its contents are taken 6rom existing literature, it was necessary to 

summarise them using an unifying notation. Particular attention is devoted to the 

representation of graphical models by means of graphs, and to the Markov properties 

that allow conditional independence statements to be read from the graph. Graphical 

models based on the multivariate normal distribution (graphical Gaussian models) 

and graphical models for categorical variables cross-classlGed in a contingency table 

(graphical log-linear models) are explained separately. A reference is made to model 

selection, with an emphasis on backwards elimination. The chapter concludes by 

presenting the three test statistics for single edge exclusion from the saturated model 

that are used throughout the thesis; the likelihood ratio, the Wald and the efficient 

score test statistics. 

Chapter 3 proposes normal approximations to the distributions of the three test 

statistics for single edge exclusion, under the alternative hypothesis that the saturated 

model holds. The delta-method is used to derive asymptotic normal approximations. 

Non-signed and signed square-root versions of the three test statistics are considered. 
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Results are given for the general p variables case for graphical Gaussian models, 

and for the two and the three binary variables cases for graphical log-linear models. 

Alternatively, in the two variables case, a non-central chi-square approximation 

is proposed to the distribution of the likelihood ratio test, under the alternative 

hypothesis of non-independence. The quality of the two approximations is assessed 

by simulation and some guidelines are given regarding the comparative performance 

of each of the two approximations. 

Chapter 4 derives asymptotic normal approximations to the power of selecting 

the saturated model, using the non-signed and the signed square-root versions of 

the three tests for single edge exclusion, both in graphical Gaussian models (with p 

variables) and in graphical log-linear models (with two or three binary variables). In 

the two variables case, a non-central chi-square approximation to the power of the 

LRT for selecting the saturated model is also investigated. A simulation study is 

conducted to assess the quality of the proposed approximating power functions, for 

various values of the sample size and for different values of the measure of association 

between variables: partial correlation coefficients, in graphical Gaussian models, and 

odds ratio and marginal probabilities, in graphical log-linear models. 

Chapter 5 parameterises the single-factor model as a graphical Gaussian model 

and the latent class model (all variables binary) as a graphical log-linear model and 

suggests using conditional independence graphs to represent such models. Parameter 

spaces are investigated. The conditional independence structure between manifest 

variables, arising from marginalising over the latent variable, either in the single-factor 

graphical Gaussian model or in the latent class graphical log-linear model, is studied 

in detail. Recommendations are given to the data analyst, regarding strategies for 

detecting models compatible with a single-factor graphical Gaussian model and with 

a latent class graphical log-linear model, taking into account power results. 

Chapter 6 summarises the main conclusions of the thesis, points out its main con-

tributions and suggests areas of further research. 
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Chapte r 2 

Graphical Gaussian and Graphical 

Log-linear Models 

Whittaker (1990) defined a. grapMco/ model as 'o of _/unc-

fioTts (Aot mcoTpoTia^es o apec^c p/ m 

07% mdepem(feMce ^rapA' and r̂opA%caZ modeHmp as '(Ae s(a(w<%coZ o/ 

graphical models to data'. Hence, graphical modelling is another statistical technique 

in the framework of parametric statistical modelling. 

The present chapter reviews some of the theory behind graphical models and graph-

ical modelling considered essential for the understanding of the work undertaken in this 

thesis. All its contents are well established in the literature. However, it was neces-

sary to summarise the extensive existing literature, being consistent in the notation 

used. The key concepts of independence and conditional independence are presented 

(Section 2.1), as well as the main notions and definitions of graph theory (Section 2.2) 

required for the understanding of the thesis. Section 2.3 explains the use of graphs to 

represent graphical models and Section 2.4 presents the Markov properties which al-

low conditional independence statements to be read from graphs. Sections 2.5 and 2.6 

deal with two different families of graphical models, namely graphical Gaussian mod-

els (when all variables are multivariate normal distributed) and graphical log-linear 

models (when all variables are categorical, from a cross-classified multinomial distri-

bution). Section 2.8 is devoted to the process of model selection. Section 2.9 presents 

the test statistics for single edge exclusion from the saturated model that are used in 

this thesis, both in the graphical Gaussian and in the graphical log-hnear frameworks: 
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the likelihood ratio, the Wald and the e&cient score test statistics. 

2.1 Independence and Conditional Independence: 

Key Concepts 

This section defines independence and conditional independence, first of events and 

then of random variables and vectors. Important lemmas are presented (for further 

details see, for example, Whittaker, 1990, Chapter 2). Independence and conditional 

independence are then defined in terms of (partial) correlation coefHcients for nor-

mal distributed variables (Section 2.1.1), and in terms of (conditional) odds ratios 

and dependence ratios for binary variables cross-classified in contingency tables (Sec-

tion 2.1.2). 

Two events .4 and B are defined as if and only if their joint probabil-

ity factorises into the product of the marginal probabilities, that is, if P{A 0 3) = 

f ( . 4 ) f ( B ) . This independence is denoted by following Dawid (1979) no-

tation. The conditional probability of A given B, only defined when P(B) > 0, 

is given by f(v4|B) = Three events 4̂, B and C are deSned as 

independent if and only if each of the three pairs of events are independent and 

P{A n B n C) — P{A) P{B) P{C). Indeed, the fact that the three pairs are marginally 

independent is not enough to guarantee mutual independence. However, mutual inde-

pendence implies pairwise independence for the three pairs of events. The events A 

and B are given the event C, assuming that F(C) > 0, if 

and only if f (A n B|C) = P(A|C) f (B|C). This conditional independence is denoted 

by ADLBJC. It is a symmetric relationship in the sense that AALB\C implies BA.A\C. 

These concepts can be directly extended to random variables and vectors. Let X 

and Y be random vectors. The joint probability density function of {X, Y) is denoted 

by yxy(z, i / ) , the marginal density of X by /^ (r ) and the conditional density of X 

given y = 7/ by /x|y(3;|2/)- and Y are denoted by %_liy, if and 

only if their joint probability density function factorises into the product of the two 

marginal densities, that is, if /xy(z,?/) = /x(a;)/y(^), for all values of a; and ?/. The 

independence relationship is symmetric in X and Y, that is, if JCJiLF, then y j l X . 

Equivalent formulations of the property X J i y are: 
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* yx|y(3:|2/) = for all z (which means the conditional and the marginal 

density functions are identical); 

* more generally, yx|y(2;|7/) = for all 3;; 

* yxy(3:, 2/) = for all a; and ?/. This cn^enoM states that 

the random vectors % and Y are independent if and only if such functions ^ and 

/z exist, without necessarily being the marginal densities. 

The kmma states that joint independence implies marginal independence, 

that is if (%, y, Z) is a partitioned random vector, then A'_U_(y, Z) implies X J i y and 

A'JIZ, but the converse is not necessarily true. In other words, it is not true that if % 

is marginally independent of y and of Z, then % is jointly independent of y and Z. 

% and y are given Z. denoted by X J i y i Z , if and only 

if /y|z(z/k), for all values of z and ^ and for all z for which 

/ z (z ) > 0. Two equivalent formulations of this deSnition are the following: 

* /A:|yz(a;|2/,'Z) = yx|z(z|z); 

* z) = (which is a way of writing the conditional inde-

pendence statement in terms of marginal densities). 

The cn^enoM for conditional independence states that % and y are 

conditionally independent given Z if and only if there exist functions g and h such 

that, for all z and y and for all z for which /z('Z) > 0, 

%_LLy |Z = ^(a;, z) /z(?/, z). 

The /emmo says that if (%, y, Zi,Z2) is a partitioned random vector, then 

y_ll(Zi,Z2)|Ar implies y_ l lZ i |X . If / is positive, the mcfependence Zemmo states 

that 

y_u_(Zi,Z2)|% [y_i iZi | (x ,Z2) and y i i Z 2 | ( % , Z i ) ] . 

Alternatively, the following equivalence can also be proved: 

y i L ( Z i , Z 2 ) | X [yiLZ2|(%,Zi) and y_LZi |X] . 

There is a symmetry property in conditional independence, in the sense that if v^JiyjZ, 

then Y1lX\Z. Additional implications of the pairs of properties i) X1LY\Z and 

X J l Z j y or ii) A'_LLy|Z and A' lLy are given in Dawid (1980). 
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2.1.1 Independence and condit ional independence for normal 

d is t r ibuted variables 

If %2) hELS a bivariate normal distribution, then and %2 sre independent if and 

only if the pi2 = is zero (cn and <722 are, respectively, the 

variance of and of X2 Emd dig is the covariance between and Xg)- If (-^1,-^2, ̂ 3) 

has a trivariate normal distribution and %% and %2 are conditionally independent given 

%3, then the off-diagonal element W12 in the inverse variance matrix fZ is equal to zero. 

Also, the partial correlation coe&cient 0123 given by , jg equal to zero. 

Therefore, the pairwise marginal correlations satisfy pi2 — Pis P23 = 0. When there are 

four random variables the partial correlation coefficient between and X2 given X3 

and can be obtained as 

/)12.34 
P12.3 — P14.3 P24.3 

\ / ( l — P14.3) (1 - P24.3) 

The partial correlation coefficients are minus the off-diagonal elements of the scaled 

(to have a unit diagonal) inverse variance matrix, that is, Pij.reat = " Whit-

taker (1990, page 143) proves). Additional information on graphical models for vari-

ables with a normal distribution is given in Section 2.5. 

2.1.2 Independence and condit ional independence for b inary 

variables 

Suppose and %2 are two binary variables. In the 2 x 2 contingency table the cell 

probabilities, 7r(%), and the cell counts, 7i(z), are 

0 1 

0 7r(0,0) 7r(0,1) 7ri(0) 

1 7r(l,0) 7r(l,l) 7ri(l) 

7r2(0) 7r2(l) 1 

%2 

0 1 

0 7%(0,0) n(0,1) ni(0) 

1 m(l,0) n ( l , l ) mi(l) 

712(0) 112(1) 

Note that 7r(0,0) = 7ri2(0,0): the subscript is omitted, for simplicity of notation, 

whenever it is clear that it refers to all variables in the model. It is required throughout 

this thesis that probabilities in each cell are strictly positive: no structurally empty 

cells are allowed. 
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The (also known as cross-product ratio) is a commonly used measure of 

association in a contingency table. Let 

4 0 , 0 ) 4 1 , 1 ) 
7r(0, l)7r(l,0) 

denote the odds ratio in a 2 x 2 contingency table. It can assume any positive value, 

and equals one when the variables and Xg &rG independent. For standard sampling 

schemes, the sample odds ratio, ^12, is the m.l.e. estimator of the true odds ratio ^12 

(see Agresti, 1996, page 24), where 

. ^ n(0 ,0)n( l , 1) ^ ^(0,0)^(1,1) 

Ti(0, l ) n ( l , 0 ) Tr(0,1)^(1,0) 

The log transform of the sample odds ratio '̂ 12 h&s a sajnphng distribution close to 

normality: the asymptotic approximating normal distribution has mean log ^12- As ng 

increases, the asymptotic mean square error for yHg ^log'^i2 — log ^12^ is given by 

+ W:i) + + 4 6 ) ' estimated by 

Thus (see Sen and Singer, 1993, page 263), 

^ + + + — « ( o . D-

Another possible parameterisation, proposed by Ekholm, Smith and McDonald 

(1995), is based on the dependence ratio. If Xi and are binary variables and in 

both cases the 'success' is the category 1, the dependence ratio between Xi and X2, 

denoted as ri2, is given by 

_ f [%i = success and X2 = success] _ = 1 and X2 = 1] 7r(l, 1) 

f = success] ^[^2 = success] f [^1 = 1] = 1] 7ri(l) 7r2(l) 

If Xi and X2 are independent, T12 = 1. The dependence ratio is asymmetric, i.e., it 

is not invariant to the coding of the variables. For convenience of notation, in the 

remainder of the thesis the dependence ratio for {Xi,X2) will be denoted as 712(1,1). 

Here the 1 indicates the 'success' category. Consequently, 7-12(0,0) will denote the 

dependence ratio for (1 — %i, 1 — ^^2), ri2(l, 0) the dependence ratio for (%i, 1 — ^̂ 2) 

and Ti2(0,1) the dependence ratio for (1 — Xi, X2)-

If %i, ^2 aJid A's are three binary variables, cross-classified in a 2 x 2 x 2 contingency 

table, there are eight cell probabihties, denoted as 7r(2,_;, A;), where z , A ; E {0,1) . Note 
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that, as in the two variables case, 7r(0,0,0) = 7ri23(0,0,0), the subscript being omitted 

for simplicity of notation. 

A possible display of the contingency table follows 

X3 = 0 

^2 

;^3 = i 

0 1 0 1 

0 4 0 , 0 , 0 ) 4 0 , 1 , 0 ) 7ri3(0,0) 0 
Y" 

4 0 , 0 , 1 ) 4 0 , 1 , 1 ) 7ri3(0,1) 

1 X I , 0 , 0 ) 4 1 , 1 , 0 ) :ri3(l,0) 1 7:(1,0,1) 7:(L1,1) 7:13(1,1) 

7 :23(0 ,0) 7 :23(1 ,0) 7:3(0) 7:23(0,1) %(!,!) 7:3(1) 

The marginal probabihties are obtained as 

TTiO) = = ^ 7r(z). 
r: 

In the three binary variables case and coMditioTiaf odck ratios can be 

deEned. The marginal odds ratio between and vYj (with z and j from 1 to 3 and 

z ^ j ) , is obtained by summing the cell probabilities over both categories of the 

remaining variable. For example, the marginal odds ratio between Xi and X3 equals 

7:13(0,0) 7713(1,1) 

7ri3(0,1)7713(1,0)' 

The conditional odds ratios between Xi and X j are defined for the two categories of 

(A; = 0 and /c = 1), i.e., 

7r(0,0, k) 7r(l, 1, /c) 

7r(0, l,A;)7r(l,0, A;) 

If XiALXj I Xk both conditional odds ratios ipij, k are equal to one. 

There is a direct relationship between log-^'^ and the A term(s) in the classical 

log-linear model related to the interaction between Xi and Xj. Assuming corner point 

constraints are used, in the 2 x 2 case, 

log ^12 = A12. 

Therefore, if J^i and %2 are independent, both A12 and log 1̂ 12 are zero. In the 2 x 2 x 2 

case, 

log('^u. t=o) = and log(^ij. t=i) = Aij + Aij*. 
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and are conditionally independent, given if and only if the two-way interaction 

term involving and (A^) as well as the three-way interaction term are zero, 

i.e., 

-X î-LL ĵ I ^ . t=:o) ~ . fc=l) ~ \ j — -̂ ijk — 0. 

Additionally, log(^it.;=o) = log(^it.j=i) = 

Using the dependence ratio parameterisation, with 1 as the 'success' category, 

Ti23(l, 1,1) denotes the dependence ratio for (%i,X2,A'3), and is given by 

^ n 1 n = 
' ' 7ri(l)7r2(l)7r3(l)' 

Analogously, Ti23(0,0,1) denotes the dependence ratio for (1 — Xi, 1 — %2, Emd is 

given by 

r , , ( 0 . 0 , l ) = 
7ri(0)7r2(0)7r3(l)' 

More details on graphical models for binary variables are given in Section 2.6. 

2.2 Some Notes on Graph Theory 

As previously stated, the key tool in graphical modelling is the of the model. 

All books on graphical models have a revision of graph theory. The current section 

summarises some of those revisions, by presenting the main concepts and objects of 

graph theory that are required for the understanding of the thesis. For further details 

see Whittaker (1990, Section 3.1) Cox and Wermuth (1996, Section 2.2) and Edwards 

(2000, Sections 1.2 and 7.1). 

A ^ = (V, 6"), is a mathematical object consisting of a finite set V of t;er(%ces 

and a Enite set ^ of (or arcs) between these vertices. Vertices correspond to 

the variables in the model. Each pair of variables can have no or one edge between 

them, which can be undirected or directed. There is a directed edge or arrow between 

vertices Vi and Vj in V if the set £ contains the ordered pair {vi,vj), vertex Vi being a 

parent of vertex Vj and vertex Vj being a child of vertex Uj, but not the ordered pair 

(%;j,fi). There is an edpe or Zzme between these vertices if contains both 

pairs ( f i , f j ) and (f^, i;,). The graph is if all edges are undirected and is 

direcW if it only contains directed edges. 

Two vertices 6 V are written as i/i if there is an undirected 

edge between them. Vertices and are also adjacent if there is an arrow (directed 
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edge) connecting them. Any subset ZY C "y induces a of This is the graph 

^ = (&/, .F) whose edge set F consists of those edges in 6" where both endpoints are 

in ZY. The subgraph ^ can be obtained by deleting all the vertices not in ZY from the 

graph on "P, together with all edges that do not join two elements of ZY. A graph or 

subgraph is complete if all vertices are joined with either directed or undirected edges. 

A of a graph ^ = (V, 6!) is a subset of vertices which induce a complete sub-

graph, but for which the addition of a further vertex from V makes the induced sub-

graph incomplete; in other words, a clique is maximally complete. A is a sequence 

of vertices t;2, - - -, such that is adjacent to fi+i, for each z = 1 . . . . , (A; — 1). 

If there is an arrow &om t;, to (for each z = — 1), then there is a dzrecfecZ 

pat/i from to The path is a c?/cZe if the end points are the same, that is 

In directed graphs the directed path is called a (fzrecW CT/c/e. The cycle is c/iorcffegs 

if no other than successive pairs of vertices in the cycle are adjacent. Two vertices, 

and are coMnec(e(f if there is a path from to and a path &om to ajid a 

graph is connected if all pairs of vertices are connected. 

A graph is triangulated if it has no chordless cycles of length greater than or equal 

to four. If A, B, C are three disjoint subsets of V, then C separates A from 5 in ^ if 

every path from any vertex in A to any in B contains at least one vertex from C. 

Let U C. V denote a subset of vertices of the graph. The neighbours of U are all 

those vertices in V \ZY that are adjacent to a vertex in U. The set of parents of U is 

pa(ZY), the set of all those vertices in V \ ZY that have a child in U. The boundary of 

hi is bd(ZY), the union of the neighbours and the parents of U. In an undirected graph 

the boundary and the set of neighbours are the same. 

2.3 The Use of Graphs to Represent Graphical 

Models 

This section deals with using different types of graphs to represent graphical models, 

in particular (with undirected edges), ac!/c/%c 

pmp/w (with directed edges) and (with directed and undirected edges). 
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2.3.1 T h e condit ional independence graph 

Let % be a vector of random variables, of dimension p. The corresponding set of vertices 

is given by V = {1,2, An undirected graph is the mdepemdemce 

for % if there is no edge between and when and are conditionally 

independent given the remaining p — 2 variables ('the rest'), that is. 

The resulting graph depicts the pattern of associations between the variables in since 

it is constructed from selected independencies between pairs of variables, conditioned 

on all the remaining variables in %. 

The diagram of a graph is a picture in which vertices are drawn as dots (represent-

ing discrete variables) or circles (continuous variables) and edges are drawn as lines 

(undirected edges). Figure 2.1 gives an example of a conditional independence graph 

with five continuous variables. 

Figure 2.1: An example of a conditional independence graph. 

Using the definition of a conditional independence graph, the graph in Figure 2.1 can 

be interpreted as follows 

l i l_3 | {2 ,4 ,5} ; 11L4|{2,3,5}; 1_U_5|{2,3,4}; 2J15 |{1 ,3 ,4} . 

For example, 1 is not adjacent to 3, 4 or 5. The graph is triangulated, but that 

would not be the case if edge (3, 4) was not present. The triangulated property of a 

graph is closely related to the existence of closed-form maximum likelihood estimates. 

The cliques in the graph are given by {1,2}, {2 ,3 ,4} and {3,4,5} . {1,2} induces a 

complete subgraph, and {2 ,3 ,4 ,5} induces an incomplete subgraph (since edge (2,5) 

is not present). 

The grapA ^ of a graph ^ has the same vertex set V, the edge 
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set being formed by those edges not present in 6!. For example, Figure 2.2 shows an 

independence graph and its complementary graph. 

1 2 1 2 

Figure 2.2: An example of an independence graph and corresponding complementary graph. 

2.3.2 T h e directed acyclic independence g raph - DAG 

Directed independence graphs allow for the representation of the lack of symmetry 

in the roles played by the variables, due to sequence in time, to a natural ordering 

of the variables or to some other notion of causality. Edges are, therefore, directed 

(represented by single-headed arrows), but directed cycles (for example Figure 2.3) are 

not allowed (that is why they are named directed acychc graphs) because there is no 

suitable joint probability distribution to model such a situation (see Whittaker, 1990, 

page 72). 

Figure 2.3: An example of a non-allowed directed graph with a directed cycle. 

Specifying a complete ordering of the vertices in the graph guarantees no directed 

cycles. This order has to be assumed a priori, by presupposition of the data analyst, 

and means that any edge in the graph can only have one possible direction. As a 

consequence of the ordering, each variable (vertex) has a past, a present and a future. 

Let V{j) = {1, 2 , . . . ,7} denote the past and present of variable Xj. X is a vector 

of random variables, of dimension p, and V = {1,2, . . . , p } . The symbol ^ denotes 

the complete ordering. The dzTiecW 0 / % is the directed graph 

= (V, 6""̂ ), where the edge (z, j) , with z -< j , is Mof in the edge set 6̂ ^ if and only 

if jlLz I V(j) \ {z, j } . In other words, the directed edge (z, j ) is missing in the graph 
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if ^ and %% are conditionally independent given the past (the prior variables). One 

should note that, whereas in undirected independence graphs the conditioning was on 

the rest, in directed acyclic graphs the conditioning set is restricted to the past. 

Consider the directed acychc graph = (V, The associated undirected graph 

is defined as = (V, f"). has the same vertex set as each directed edge in 

being replaced by an undirected edge to obtain 6"". A directed graph is said to 

satisfy the WermiitA if no subgraph has the t/mmanied porents configuration 

presented in Figure 2.4. 

Figure 2.4; The forbidden configuration defined by Wermuth condition. 

The definition of 'moral graph' is required for establishing the Markov properties 

of directed acyclic graphs (de6ned in Section 2.4.2), and follows. The moraZ pnip/i 

associated with the directed graph = (V, 6̂ )̂ is the undirected graph = (V, 6!^) 

on the same vertex set V, and with an edge set £'^ obtained by including all edges in 

8'^ together will all edges required to eliminate forbidden Wermuth configurations from 

(that is, 'marrying parents'). Figure 2.5 shows an example of a directed acyclic 

graph, and associated moral graph, obtained replacing directed edges by undirected 

edges and 'marrying' vertices 2 and 3, since they are parents of vertex 4, by creating 

an undirected association between them. 

Figure 2.5: An example of a DAG and the associated moral graph. 
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2.3.3 T h e chain independence g raph 

Chain independence graphs have a mixture of directed and undirected edges, and 

conditional independence graphs and DAGs can be viewed as special cases of chain 

graphs, when just one type of edge (undirected or directed, respectively) is present. 

Instead of the concept of complete ordering imposed in DAGs, the concept of ph,r-

tial ordering, denoted by the symbol is used. Let us suppose the vertex set V is 

partitioned into subsets, called which are completely ordered, forming a chain. 

The induced partial order, on the vertices of V, is that: 

# 2 J, whenever z E 6r and j E 63, with r < s, i.e., two elements from different 

blocks are joined by a directed edge; 

* 2 d J whenever 6 6̂ , i.e., two elements from the same block are joined by an 

undirected edge. 

The parents of vertex z (when z is in block 6r) are drawn &om the past, that is from 

blocks 61 U 62 U . . . U 6r-i, and are joined to z by single-headed arrows pointing to i 

The direction of the arrows connecting vertices in different blocks is determined by the 

ordering of the blocks. This block formulation excludes not only graphs with directed 

cycles (as was the case with DAGs), but also graphs with cycles containing at least 

one directed edge. 

The definition of chain independence graph follows. Let V{j) = 61 U 62 U . . . U br{j) 

denote the set of all past and present variables with respect to X j (where br{j) is the 

index of the block containing ^j ) . X is a vector of random variables, of dimension 

p, and V = {1,2, . . . , p } . The symbol - denotes the partial ordering. The c/iam 

grap/i o / % is the graph = (V, 6"-), where the edge (z, j) , with z X j , 

is no( in the edge set 6!- if and only if jJ lz | V(j ) \{z , j } . If this condition fails and z X 

then the edge between z and j , present in the graph, is directed and only (z, j ) € 6^-. 

Otherwise, the edge between i and j, present in the graph, is undirected, and both 

{i.j) G £- and {j,i) G S-. Lauritzen and Wermuth (1989) also called these block 

recursive graphs. The convention adopted to ensure an unambiguous interpretation of 

each pairwise relation, is that the conditioning variables of each pair are the remaining 

As in the case of DAGs, the moral graph plays a crucial role for establishing the 

Markov properties of chain graphs (defined in Section 2.4.3). The moral graph is also 
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obtained by replacing directed edges by undirected edges and by 'marrying' parents. 

However, the set of possible parents has to be enlarged, so that it also includes all 

parents of a connected subset of 'children'. Figure 2.6 gives an example of a chain 

graph and the associated moral graph. 

bl b2 b3 b4 

1 
O— 

K 
0 T K > - K > - ^ 0 

O - O 

0 9 

bl b2 b3 

1 

b4 

N 

6 
O 

7 
• o 

0 9 

6 

Figure 2.6: An example of a chain independence graph and the associated moral graph. 

Some comments on Figure 2.6. There are four blocks: = {1,2}, 62 = {3,4}, 

63 = {5,6} and 64 = {7,8,9} . The moral graph on the right joins the parents: vertices 

3 and 4 are connected because they are parents of vertex 5, vertices 5 and 6 are 

connected because they are parents of a connected subset of 'children' (vertices 7, 8 

and 9). 

Chain graphs provide the conditional independence framework for discussing multi-

variate regression and simultaneous equation models. Other types of graph have been 

suggested in the literature, including; 

® local independence graphs, which apply the ideas of graphical models to mul-

tivariate stochastic processes (representing continuous time systems). The key 

concept is local independence: a component of the process is independent of 

the past of another component, given its own past and possibly the past of the 

remaining components. Didelez (1999) studied the Markov properties of local 

independence graphs, and her PhD thesis (Didelez, 2000) is on graphical models 

for event history data based on local independence; 

* coi;ona7%ce prop/w, introduced by Cox and Wermuth (1993), have edges drawn as 

(i&s/ied /meg, displaying the marginal independence structure of a set of variables. 

The associated models are dual to graphical Gaussian models, in the sense that 

they constrain a set of elements of the variance matrix to be zero (whereas GG 

models constrain elements of the inverse variance matrix to be zero): 
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# rectprocaZ grap/is generalise chain graphs by allowing double-headed arrows rep-

resenting feedback loops, such as those arising in nonrecursive equation systems. 

Koster (1996) introduced reciprocal graphs, derived pairwise, local and global 

Markov properties for such class of graphs, and clarified when it is legitimate to 

interpret LISREL path diagrams as conditional independence graphs. 

These other types of graphs will not be used in this thesis. 

2.4 Markov Properties 

Markov properties are important because they allow one to relate a random vector % 

to a graph ^ = (V, 6!), and to interpret the latter. These properties have been pre-

sented in the literature in different ways. The decision was made to follow Whittaker's 

definition and not Lauritzen's, the definition of the latter having been considered very 

mathematical. 

2,4.1 Markov proper t ies for undi rec ted graphs 

A vector X is, with respect to a graph ^ = ("y, 6!), 

• pairwise Markov, if an edge missing in the graph corresponds to a conditional 

independence statement, i.e., (2,j) ^ 

* kcdZ if any variable is independent of all the remaining variables condi-

tional only on its boundary, i.e., for all X, € V, | bd(%); 

# Mar&ot;: if any two subsets of variables and separated by a third 

subset X c is independent conditionally only on the variables in X c (with Xa , 

X g and X c disjoint subsets of V). In other words, X c separates Xyi from Xg 

=> I Xc-

The global Markov property implies the local Markov property, which in turn implies 

the pairwise Markov property. 

The (/leorem states that, under the condition that the density function 

is positive, if X g and X c are vectors containing disjoint subsets of variables from 

%, and if in the conditional independence graph of X each vertex in A is separated 

30 



from each vertex in 5 by the subset C, then | Therefore, the separation 

theorem asserts that the pairwise property (recall that the definition of conditional 

independence graph (Section 2.3.1) was given based on the pairwise Markov property) 

implies the global Markov property (v̂ Tŷ lLXg | As a result, the three properties 

are equivalent if the density is positive (which is the case with the multivariate normal 

distribution). 

One consequence of the separation theorem is that some of the variables in the 

conditioning set may become reditTidoni A conditional independence between a pair of 

variables is if it is not possible to apply the separation theorem to eliminate any 

variable from the conditioning set. Going back to the example presented in Figure 2.1 

it is possible to conclude that: 

# using the pairwise Markov property, there are four conditional independence 

statements, which are equivalent to those associated with the definition of con-

ditional independence graph; as written in Section 2.3.1, 

1113 I {2,4,5}; 1JLL4|{2,3,5}; 1_IL5|{2,3,4}; 2115 | {1,3,4}; 

# using the local Markov property, since there are live vertices, there are 6ve con-

ditional independence statements, namely 

l_ l l {3 ,4 ,5} |2; 2_115|{1,3,4}; 3_U_1|{2,4,5}; 4_L1|{2,3,5}; 511(1,2} | {3,4}; 

# using the global Markov property, and the separation theorem, the conditional 

independence statements can be summarised as 

1113|{2,4}; 1_U_4|{2,3}; l i l 5 | { 2 , 3 , 4 } ; 2115|{3 ,4} . 

Comparing these conditional independence statements with those given by the 

pairwise Markov properties it is possible to conclude that, for example, is 

redundant in the first two conditioning sets and variable Xx is redundant in the 

last set. There are nine minimal independence statements, namely 

1.113 I 2; 1113 14; 1114 | 2; 11141 3: 1115 12; 1115 | 3; 1115 14; 2115 13; 2115 14. 

2.4.2 Markov proper t ies for directed graphs 

When variables are naturally ordered (according to time or to some causal relationship) 

and directed independence graphs are used, the conditioning set has to be hmited to 
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the 'past' and the Markov properties have to be redefined. The concept of moral graph 

(introduced in Section 2.3.2) is crucial for this redefinition. 

A corollary of a Markov theorem for directed independence graphs states that w/zem 

(/le MarArot; ^roper(%es 0/ (Ae are eâ aĉ /?/ (0 (Aose 

o/(Ae momZ pmpA (Whittaker, 1990, Corollary 3.5.3). 

Let us consider the example of the single-factor model with three manifest variables. 

The classical formulation of this model is given in Section 5.1.1, whereas Section 5.2.1 

presents the single-factor model in the framework of graphical models. The single-factor 

model imphes that, given the latent variable (denoted by L), the manifest variables 

(denoted by 1, 2 and 3) are conditionally independent. A possible representation of 

such a model is given in Figure 2.7 a), by using a directed acychc graph, with directed 

edges from the latent variable to each of the manifest variables, the former being the 

parent of the latter. The moral graph associated with this DAG is shown in Figure 2.7 

b). 

b) 

K> 2 O 2 

Figure 2.7; A DAG representing a classical single-factor model (in panel a)) and the corre-

sponding moral graph (in panel b)). 

Applying the corollary presented above to the directed graph in Figure 2.7 a) it is 

possible to conclude that, based on the Markov properties of the moral graph in Fig-

ure 2.7 b), the manifest variables are conditionally independent, given the latent vari-

able. Consequently, the conditional independence statements, read from the Markov 

properties, of either an undirected or a directed representation of a classical single-

factor model are exactly the same. For this reason, for simplicity and to use the 

notation MIM uses, undirected graphs are used in this thesis to represent single-factor 

models. 
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2.4.3 Markov proper t ies for chain independence graphs 

When variables can be partitioned into disjoint sets (blocks) which are completely 

ordered, forming a chain, the conditioning set for each pairwise independent statement 

is given by all the variables in the 'past' blocks and all the remaining variables in the 

'present' block. 

A Markov theorem for chained block independence graphs states that (Ae 

pogsesagg (Ae prope/izes 0/ moraZ grapA, 

(Whittaker, 1990, Theorem 3.6.1). 

Let us now consider the example of a single-factor model with correlated residuals 

between two manifest variables. Although these models are not included in this thesis, 

they are very common in the LISREL literature. Basically, they generalise the single-

factor model by relaxing the axiom of local independence, i.e., the latent variable 

does not account for aU the associations between the manifest variables. Recent work 

has been undertaken by Stanghellini (1997) and Vicard (2000), regarding the issue of 

identification of a single-factor model with correlated residuals, using graphical rules. 

In the graphical models framework a single-factor model with correlated residuals can 

be represented in two ways; 

a) as a chain independence graph with two blocks: block one includes the latent 

variable, block two the manifest variables. Within block two, manifest variables 

with correlated residuals will have an undirected edge connecting them, whereas 

directed arrows will connect the latent variable to the manifest variables, the 

arrows pointing to the latter; 

b) as an undirected graph, with undirected edges connecting the latent variable 

with each of the manifest variables, and undirected edges connecting manifest 

variables which have correlated residual terms. 

An example of a model with four manifest variables, the residual terms of 3 and 4 

being correlated, follows. Figure 2.8 shows the two possible representations of this 

single-factor model with correlated residuals. 

The Markov properties for chain graphs guarantee that the conditional indepen-

dence statements that can be read from the two types of graph are the same. The 

moral graph associated with the chain graph of the single-factor model with correlated 
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4 b) 

Figure 2.8: A chain graph representing a single-factor model with correlated residuals (in 

panel a)) and the corresponding moral graph (in panel b)). 

residuals (Figure 2.8 a)) is, indeed, the conditional independence graph of that factor 

model (Figure 2.8 b)). 

2.5 Some Notes on Graphical Gaussian Models 

Graphical models based on the multivariate normal distribution are called graphical 

Go'uasmTi modek (called GG models in this thesis) or, for historical reasons, cownonce 

selection models. The assumption is that the continuous random variables follow a joint 

multivariate normal distribution. Recall that the multivariate normal distribution is 

closed under marginalisation and conditioning, that is, the marginal and the conditional 

distributions of a multivariate normal are also multivariate normal. Indeed, suppose 

is a partitioned vector with a normal distribution, with parameters mean 

vector (//A,//a) and variance matrix 

E = 
ZgB 

Then the marginal distribution of is normal with mean and variance and 

the conditional distribution of Xa given Xb = Zg is also normal with mean 

A^/l. B — f^A + '^ab^bb^^B I^B) 

and with variance 

2/lA . B — Eyiyi — Z/iB^BB^B/l' 
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A zero element in the inverse variance matrix say = 0, determines a 

conditional independence statement between the two variables % and j , given all the re-

maining variables, implying = 0 and, therefore, the absence of the edge between 

% and j in the independence graph. Hence, a GG model is a family of normal distribu-

tions for X satisfying the pairwise conditional independence restrictions underlying the 

independence graph. Such constraints are equivalent to specifying zeros in the inverse 

variance parameters that correspond to edges absent in the independence graph. 

A maximum likelihood procedure is then apphed in order to fit the specified model. 

Suppose % = (A"!,..., is a p dimensional random variable, with multivariate nor-

mal distribution, with mean // and variajice matrix 2 . The density of %, parameterised 

using n = can be written as 

= (27r)p/2 (z - //) j . 

Therefore, the log density equals 

V 1 1 
log/x(z;/ / ,r2) = -- log(27r) + - l o g | r ] | 

The log-likelihood function for the mean /i and the inverse variance Q, of the multi-

variate normal distribution based on a random sample of size n is given by 

O; %) = —^ log(27r) 4- ^ logj^lj — ^ ^ — //) 

_ log(27r) + ^ log|r2| — ^ tr(fiV^) — ^ (x — Q (x — //), 

where V is the sample variance matrix with divisor n. The sampling distribution of 

V is Wishart. It can be proved that when E is unconstrained the unique maximum 

likehhood estimators of the mean and of the variance Z, from a sample of independent 

normal observations, are the sample mean f and the sample variance y . Consequently, 

fi is given by x and the unconstrained m.l.e. of il, is given by V~^. For a GG model 

with graph (V,8), the maximum likelihood estimators of the parameters are given by 

the following equations 

1̂1 = % 2 = l , . . . , p 

z f J and E f 

Wij = 0 % 7̂  J and (z, j ) 0 6'. 

In brief; the estimated and the sample variances and covariances are identical for the 

subsets of the variables corresponding to the cliques in the graph, and the estimated 
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inverse variances corresponding to absent edges are set to zero. An iterative algo-

rithm for computing maximum likelihood estimates for graphical Gaussian models was 

described by Speed and Kiiveri (1986). 

A generalised log-likelihood ratio test statistic, the deviance, can be used to test 

the goodness of fit of a model and to compare di&rent nested GG models. The 

(femoMce of a model M is twice the diSFerence between the unconstrained maximum of 

the log likehhood (saturated model) and the maximum taken over Af (the model imder 

consideration). Because /I = f , the last term in the expression of the log-likelihood 

function vanishes, i.e. (f — (f — /t) = 0. Therefore, 

dev(M) = 2 j (max Z saturated) - (max 

= 2 { ( ^ l o g | y - : | _ S t r ( y - : y ) ) - ( ^ s i o g | n | _ 2 t r ( r 2 y ) ) } 

= (nlog |y"^|—np) —(nlog|Q|—n,p) 

= M l o g U 

= —7%log |FQ| . 

Under the null hypothesis that model M holds, the deviance has an asymptotic chi-

square distribution, with degrees of freedom equal to the number of parameters set to 

zero (i.e., the number of edges missing in the independence graph). Two nested models, 

Ml C M2, can be compared by the deviance diSerence (d) between them, which is then 

a generalised log-likelihood ratio and has an asymptotic chi-square distribution under 

the null hypothesis that Mi holds. It can be calculated a.s d = n log , where Ei 

and Eg are the m.l.e. of Z under M^ and Mg, respectively. Alternatively, it can be 

calculated as d = —Mlog ^{0^^ , where and ^2 &re the m.l.e. of under Mi and 

M2, respectively. The degrees of freedom equal the difference in free parameters (edges) 

between M2 and Mi. The deviance difference associated with removing edge zj from 

the full (saturated) model can be simpliSed to —nlog(l — (see Whittaker, 1990, 

page 189). Also, the deviance of a model entirely specified by Xb-ILXq \ X a (where 

and are individual variables, or distinct groups of variables, forming a 

partition of X ) is given by - n log (̂ ^^ Whittaker, 1990, page 

179). denotes the sample variance matrix, with divisor n, of the variables in 

and VAuB, /lua denotes the sample variance matrix of the variables in the partitions Xyi 

and 
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More details on test statistics for single edge exclusion, in GG models, are given in 

Section 2.9: model selection strategies are dealt with in Section 2.8. 

2.6 Some Notes on Graphical Log-linear Models 

The aim of this section is to brieSy explain how to fit graphical models to multi-way 

contingency tables based on sampling from the cross-classified multinomial distribution. 

As will become clear, graphical log-hnear models are a subclass of the hierarchical log-

linear models, specihed by parameterising the density in terms of the coefficients of 

its log-linear expansion. First, the notation to be used is established, and the cross-

classified multinomial distribution is defined. The concepts of hierarchical log-linear 

model and graphical log-linear model are presented. Finally, formulae are given for 

obtaining the log-likelihood function and the deviance of a model. 

Using projechon let us consider a p dimensional contingency 

table, cross-classi^ing the p dimensional random vector Xy = = (%i, A'g, - -, 

with V = { 1 , 2 , . . . , p}. Let denote the observed value taken by variable which has 

categories. Let a; = (ari, Z2, . . . , denote a particular cell in the table, nv(zv) = 

denote the observed cell counts and 7ry(a;y) = 7r(a;) denote the probabihties in each 

cell of the table. Consider the partitioned observation X = (Xa.Xb), with B = V\ A. 

The values of Xa, denoted by Xa, are cells in a marginal table, with marginal cell 

counts and marginal probabihties given by azg). 

The definition of a cross-classified multinomial distribution follows. The p dimen-

sional random vector has a if and 

only its density function / y is given by = Try (a;), assuming that 7ry(%) > 0 for all 

% and that = 1. Note that cell probabihties have to be strictly positive to en-

sure the existence of the log-hnear expansions and of the conditional density functions. 

The family of cross-classiAed multinomial distributions is closed under marginahsation 

and conditioning. As already mentioned, the marginal distribution of denoted 

by is obtained by summing over the values of Consequently is also 

positive for all (since 7ri;(z) is) and sums to one (since 7ry(z) does). In conclusion, 

//i(z,t) is also multinomial of size one. The conditional density function of given 
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= 3;A, denoted by is given by k : all 3;g. Since the ra-

tio is positive and adds to one for each fbced value of Z/i. the conditional 

distribution /g|A(2;g|a;yi) is multinomial of size one. 

/M(fepeMde7%ce can be defined as follows: consider the partitioned multinomial ran-

dom vector % = with B = V \ A. and Xg are independent if and only 

if the joint probability factorises as = 7r,ii(3:,i)7rg(];g). Similarly, consider the 

partitioned random vector X = Xg, with V = {v4 U B U C}. and 

are given if and only if jxc(iA,zc) 

The aim now is to write down the density function as a log-linear expansion. The 

Zo -̂̂ meor azpaTigmm o/(Ae can 

be obtained as 

l o g / v W = ^Ayi(zy i ) , 

where the summation is over all possible subsets of V, including the empty set 0. Each 

Ayi is a function of and, for reasons of identifiability, corner point constraints are 

used, setting to zero the A associated with the first category of each variable xa (the 

reference category). 

Conditional independence can easily be defined in terms of the A. Indeed, if 

is a partitioned multinomial random vector, then | if and 

only if ail A with one or more coordinate in B and one or more coordinate in C are zero. 

Hence, the definition of graphicai log-hnear model can be established. Following Whit-

taicer (1990, page 207), given an independence graph ^ = (V, 6"), the cross-classiAed 

multinomial distribution for the random vector .Y is a mo(feZ /or 

X if the distribution of X is arbitrary, apart from the constraints that, for all pairs of 

coordinates not in the edge set of the graph, the A containing the selected coordinates 

are zero. In other words, the density of a multinomial graphical model is given by 

log/y(2;) = subject to the constraints that A,t = 0 if (z,j) C A and 

(^,j) 0 The parameters of the graphicai model are the remaining A that are not 

set to zero. Since in the thesis corner point constraints are used and all variables are 

binary (0,1), Ayi(z) = 0 when a: ̂  ( 1 , 1 , . . . 1). Therefore, and for notational simplicity, 

A ^ ( l , ! , . . . ! ) = A,i. 



These concepts are now illustrated by an example. Consider X = (%i, . . . ,%5)^ 

a vector of Gve binary variables, and the log-linear expansion of the corresponding 

multinomial graphical model for % given by 

log/12345 = ^0 -t- Ai - r A2 -t- A3 A4 Ag 4- A12 -|- A23 -l- A24 + A34 -t- A35 A45 4- A234 -l- A345. 

The graphical representation of the model is given in Figure 2.9. Since A13 = 0 (and, 

consequently, all higher order interactions involving coordinates 1 and 3 are zero) ver-

tices 1 and 3 are not connected in the graph, corresponding to the conditional inde-

pendence between 1 and 3, given the remaining variables. Since A23, A24 and A34 are 

not constrained to be zero, the three-way interaction A234 is also not constrained to be 

zero. Note that A235 was set to zero since A25 is zero. Therefore, there is no edge in 

the graph connecting vertices 2 and 5 (2 and 5 are conditionally independent, given 

the rest). 

Figure 2.9: The graph of a multinomial graphical model. 

Hierarchical log-linear models are a larger class of models. Indeed, a log-linear 

model is if whenever a particular A is constrained to be zero, all higher 

order A terms are also set to zero. This means that all models that are graphical 

are hierarchical, but not all hierarchical log-linear models are graphical. Consider, for 

example the following two log-linear expansions: 

i) log /123 = Ag -|- Ai -t- A2 + A3 -t- Ai2 + Ai3 + A23; 

ii) log /123 = Ag -t- Ai -|- A2 + Ag 4- A12 + Ai3 4- A23 4- A123. 

Log-linear model i) (model 12, 13, 23) is hierarchical but it is not graphical, because 

the constraint A123 = 0 does not correspond to a pairwise conditional independence, 

whereas model ii) (model 123) is hierarchical and graphical. One should note that, in 

both cases (model i) and model ii)), the independence graph has the representation of 
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Figure 2.10. Therefore, an independence graph does not correspond to a unique log-

hnear model; many different log-linear models may have the same independence graph, 

as long as they contain the same two factor interactions. However, every independence 

graph corresponds to a unique graphical log-hnear model, which can be read from the 

graph by identi^ng the generating class as the set of all cliques in the graph. The 

graph in Figure 2.10 has the clique {1,2,3}, therefore it corresponds to the graphical 

log-linear model 123 (in MIM notation). 

2 

Figure 2.10: The graphical log-linear model 123. 

In brief: a hierarchical log-linear model is if and only if its maximal A terms 

(also known as correspond to chques in the independence graph. 

The based on a random sample of ng multinomial random 

observations, can be written as a function of the A as 

A XA 

The deviance of a model M can be obtained as 

dev{M) = 2 ^ n(x) log = 2 Y ] n{x} log 

where ^ is the m.l.e. of 7r. Under the nuU hypothesis that model M holds, the de-

viance has an asymptotic chi-squared distribution, with degrees of freedom given by 

the number of parameters set to zero. Two nested models. Mi C M2, can be compared 

using the deviance difference, which is a generalised log-likelihood ratio statistic and 

has an asymptotic chi-square distribution under the null hypothesis that Mi holds. 

The deviance difference equals 2 Y^^n(z)log , where ^i(z) and ^2(3:) are the 

m.l.e. of 7r(a;) under and M2, respectively. The deviance difference associated with 

removing edge zj kom the saturated model is given by (see Whittaker, 1990, page 224) 

= 2 ^ nv(zv)log \ 
a l l iens \ ^ v v ( z v \ w ) Mvy(a:v\{j})y 
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Under the null hypothesis that | the deviance diEerence has an eisynip-

totic chi-square distribution with degrees of freedom given by 

4/ = — 1) — 1). 

More details on test statistics for single edge exclusion, in GLL models, are given in 

Section 2.9 and Section 2.8 deals with models selection strategies. 

2.7 The Inverse of the Information Matrix 

2.7.1 T h e inverse of t he informat ion ma t r ix in G G models 

Smith (1990, page 21) showed that, for GG models, the inverse information matrix (or 

asymptotic variance matrix of the m.l.e. of w) can be written as 

n CQv{uJij ̂  ^ir^js ^is^jrj (2.1) 

where w is the unconstrained m.l.e. of cu. Similar result was obtained by Cox and 

Wermuth (1990), by arguing that if Y (of dimension p) is multivariate normal dis-

tributed with mean // and variance matrix Z (with elements <7) then, asymptotically, 

the m.l.e. of the a are normal distributed with mean a and variance ^Iss(E), i.e., 

-\/7i(^ — (7) 7V(0, Iss(Z)), where Iss(Z), the Isserlis matrix of Z (Isserlis, 1918) is 

the symmetric matrix with elements ncov(aij, ars) — cfir<yjs + cTigajr- Consequently, 

it can be shown that the asymptotic variance matrix of the m.l.e. of the w can be 

obtained as ^ Iss(r2), where Q = and ^ ^ ( ^ — ^) ^(0 , Iss(f3)). 

Roverato and Whittaker (1998) described some properties of Iss(Z) and derived 

the zero structure of its inverse. A novel edge set notation was used, allowing for the 

symmetry between E and Iss(E) to be highlighted. From Equation 20 of Roverato and 

Whittaker (1998) the asymptotic variance of the m.l.e. of the canonical parameters 

of the saturated GG model becomes equal to ^Iss(Z"^), which is exactly the result 

previously derived, in alternative ways, by Smith (1990) and Cox and Wermuth (1990). 

Let A' denote the inverse information matrix based on a single observation and, 

therefore, taking values that do not depend on the sample size n. In the two variables 

case, and using Equation 2.1, 
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W12 ^11^22 + ^12 2WiiWi2 2u;22^12 

A!" = n var ^11 — 2wnwi2 2^22 (2.2) 

^22 2LL;22Lk'l2 2^22 9/ /^22 

Similar reasoning can be used when three or more variables are present. For example, 

in the three variables case. 

^ = n var 

^12 

^13 

W23 

^11 

W22 

^33 

W11W22 + ^11^23 + ^13^12 ^12^23 + W13W22 2wiiwi2 2wi2W22 2wi3W23 

^11^23 + W13W12 ^11^33 + <̂ '13 ^12^33 + ^13^23 2wiiwi3 2wi2W23 2W13W33 

W12W23 + a;i3W22 1̂2̂ :̂ 33 + (̂ 13̂ 23 ^22^33 + W23 2W13W12 2^22^23 2W23W33 

2wiiwi2 2wiiwi3 2wi3Wi2 2^11 2ŵ 2 2^13 

2wi2W22 2wi2W23 2W22W23 2w 2̂ 2^22 2w& 

2W13W23 2W13W33 2W23W33 2^13 2w^ 2^33 

2.7.2 T h e inverse of t h e informat ion mat r ix in GLL models 

Smith (1990, page 73) showed that the inverse information matrix for a sample 

of size 720 (or asymptotic variance matrix of the m.l.e. of A) can be written as 

ly* diag(7r(T))'^ (M^*)̂ , where IV* is obtained from IV by ehminating the first 

row. If p is the number of binary variables cross-classifying the contingency table, 

= IVi (g) IVg (&i . . . (S) Wp is the Kronecker product of p matrices of the form 

1 0 

-1 1 

Keeping the notation used in Section 2.7.1, the inverse information matrix based on a 

single observation, jiT, is given by 

AT = diag(7r(z))-^ 
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In the two binary variables case, 

1 0 

-1 1 

1 0 0 0 
- 1 

1 0 1 0 0 
. Hence, W* = 

1 0 
= . Hence, W* = - 1 

1 1 - 1 0 1 0 
1 

1 - 1 - 1 1 

1 

0 

-1 

0 0 

1 0 

- 1 1 

Consequently, 

K = nth var 

Ai2 

1 + 7T(0,0) ^(1,0) 

%(0,0) 

1 1 _ 1 
,(0,0) + ,(1,0) 

r(0,0) 

0 

0 

0 

0 0 

r(l,0) 0 

0 7r(0,1) 

0 0 

,(0,0) 
1 I _ 1 _ 

,(0,0) 

,(0,0) ,(0,1)) ,(0,0) ,(0,1) ,(1,0) ,(1,1) -

,(0,1) 
1 

0 

0 

0 

7r(l,l) 

r(0,0) 

1 ^ 
,(0,0) ^ ,(1,0) y 

1 _ L 1 

+ 

7r(0 , l ) 

1 

(2.4) 

Analogously, in the three binary variables case, 

w 
1 0 1 0 1 0 

-1 1 ~i 1 -1 1 

and 

- 1 1 0 0 0 0 0 0 

- 1 0 1 0 0 0 0 0 

1 - 1 - 1 1 0 0 0 0 

- 1 0 0 0 1 0 0 0 

1 - 1 0 0 - 1 1 0 0 

1 0 - 1 0 - 1 0 1 0 

- 1 1 1 - 1 1 - 1 - 1 1 
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Therefore, 

: ag var 

Az 
1̂2 

As 
Ai3 
A 23 

AI23 

7r(0,0, 0) 

0 

0 

0 

0 

0 

0 

0 

0 0 

7r(l,0,0) 0 
0 7r(0, 1,0) 

0 0 0 0 0 

0 0 0 0 0 

0 0 0 0 0 

,r(l,l,0) 0 0 0 0 
0 ^ ( 0 , 0 , 1 ) 0 0 0 

0 0 T(I,0,1) 0 0 
0 0 0 ^ ( 0 , 1 , 1 ) 0 

0 0 0 0 

(2.5) 

After the calculations jiT, a symmetric 7 x 7 matrix, is obtained, with the following 

diagonal elements (corresponding to the variances of the A, respectively A ,̂ A2, A12, A 3 , 

Ai3, A23 and A123): 

1 - + - : (̂0,0,0) ^ : 
1 

%(0,0,0) 3(0,1,0) J ' 

- ^ [ 3 , 3 ] — + T ( l i o , 0 ) + 7 r ( l J , 0 ) ) ; A r [ 4 , 4 ] — ^ ^ ( O A O ) + ; r ( o ! o , l ) ) ' 

^[5,5] 1 ^ 
f ( 0 , 0 , 0 ) ^ %(1,0,0) ^ i r ( 0 , 0 , l ) ^ ; r ( l , 0 , l ) J ' 

1 + 1-

Ar[6,6] 1 ?(0,0,0) ^ %(0,1,0) ^ ?(0,0,1) ^ %(0,1,1) / : 1 + : 

7] ( , - ( 0 , 0 , 0 ) 7r(0, l ,0) T (1 ,0 ,0 ) T (1 ,1 ,0 ) ' T (0 ,0 ,1 ) r ( 0 , l , l ) + , r ( l , 0 , l ) T ( I , 1 , 1 ) ) ' 

The off-diagonal elements are the covariances between the A, as foUows: 

A'[2,1] = 1] = -Ar[6,1] = Ar[4,2] = -A:[5,2] = -A:[4,3] = ; 

•^[3,1] = i^[5,1] = -K[7,1] = -K[h, 3] = - (̂ (0̂ 0,0) + 7r(iA0)) ' 

jr[3,2] = ;r[6,2] = - jr[7,2] = -Ar[6,3] = -

1 1 
\,;r(0,b,0) ' ;r(0,l,0) ' ?r(l,0,0) ' ^(1,1,0)^' 

Ar[5,4] = A'[6,4] = -^^[7,4] = —A'lG, 5] = - + ;r(o^,i)) = 
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( ? ( 0 , 0 , 0 ) " ( 1 , 0 , 0 ) T ( 0 , 0 , 1 ) + ; r ( l , 0 , l ) ) ' 

6] = - ^^(000) + (̂ô i_o) + 7r(o!o,l) + ^(o!l,l)) -

2.8 Some Notes on Model Selection 

Several methods can be used to perform model selection both in GG and in GLL 

models. For a review on the topic see, for example. Cox and Wermuth (1996, Chapter 

8) and Edwards (2000, Chapter 6). 

Taking into account the of all possible models, strategies to select a graphical 

model may include incremental or global search procedures, based on significance tests, 

or procedures that optimise an information criteria. The information criteria to be 

minimised can be the Akaike's Information criteria (^7C) or the Bayesian Information 

criteria (BfC) , given by 

A / C = - 2 log l - 2 / and = - 2 logZL - \ / ^ , 

where L is the maximised likelihood under the model, n is the number of observations 

and y is the number of hree parameters in the model. Global search procedures aim to 

detect minimally adequate models. A model is adequate if its deviance is sufficiently 

small. From all the adequate models, the one with the fewest parameters should be 

considered. A model is minimally adequate if there is no other model nested in it 

that is also adequate. Edwards and Havanek (1985, 1987) considered models that are 

minimally adequate and proposed a fast procedure for model selection based on the 

o/ coAeremce. This principle, due to Gabriel (1969), states that, for any two 

nested models, Mo C Mi, if Mi is rejected, then Mo must also be rejected. Conversely, 

if Mo is accepted, then Mi must also be accepted. Models are selected or rejected on 

the basis of the overall goodness of fit, and not on the basis of deviance differences. 

Incremental search procedures include backwards elimination, forward selection and 

stepwise procedures that alternate between a backwards step and a forward step. Back-

wards ehmination starts with the saturated model and tests for ah pairwise conditional 

independence statements using test statistics for single edge exclusion (the deviance 

is the most commonly used statistic). The least significant edge is removed and the 
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procedure continues until ail edges are considered signiAcant given the specified sig-

nificance level. When performing model selection using backwards elimination, the 

principle of coherence just means that if the removal of an edge is rejected at one step, 

then the edge is not subsequently eligible for removal. Forward selection starts with 

the independence model and includes in the model edges that significantly improve the 

fit. 

Stepwise model selection can also be performed taking into account only (fecom-

At any step, the edges whose exclusion (backwards procedure) or 

inclusion (forward procedure) would result in a non-decomposable model are consid-

ered non-eligible for removal (inclusion). The classical definition of a decomposable 

model is given by Haberman (1974): a model is decomposable if either (i) it is com-

plete or (ii) it is reducible to two decomposable components. This recursive definition 

proves equivalent to stating that a model is decomposable if and only if it has com-

plete irreducible components. For Whittaker (1990, page 381) a random vector X is 

recft/czMe, i.e., there exists a decomposition of if and only if there exists a partition 

of X into (X,t, Xg, Xc) such that X g l L X c I (and neither B nor C are empty) and 

the subgraph on is complete. If such a decomposition exists, the of X 

are = (%yi, %g) and A'/ic = (%A, ^c)- If such a decomposition does not exist 

the vector X is irreducible. Decomposable random vectors have independence graphs 

consisting entirely of complete subgraphs. Hence, the maximal irreducible compo-

nents of a decomposable model are the cliques of the graph. Decomposable models 

are every density function in the model fully factorises into the prod-

uct of marginal density functions. Besides, decomposable models have triangulated 

independence graphs, i.e., graphs with chordless cycles with no more than three ver-

tices (which gives the possibility of an immediate visual check on the decomposabihty 

of a given graphical model) and closed-form maximum likelihood estimates. In brief: 

decomposable models are graphical models with triangulated graphs. 

The purpose of the current section is not to describe in detail all possible methods 

that can be used to perform model selection but to justify backwards elimination as 

the obvious method to use, particularly when trying to detect the presence of a latent 

variable. 

It is current practice in graphical modelhng to start with the saturated model and 
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test for all possible single edge exclusions. Indeed Whittaker (1990, page 252) stated 

that 'AocAzworck /rom mcLnmaZ mocfeZ d*rec% 

cond̂ tzoMoZ mdepeM<jeMc%es\ since the graphical model is a model for the joint dis-

tribution of the set of variables under study, simplified by conditional independence 

constraints. According to Edwards (2000) the usual argument for backwards elimina-

tion (versus forward selection) is that backwards methods start with a complex model 

(likely to be consistent with the data) and forward methods start with a very simple 

model (unlikely to be consistent with the data). 

Calculating all possible edge exclusion tests (from the saturated model) and com-

paring the obtained test statistics with a chi-square distribution is a procedure asymp-

totically correct, requiring large samples. According to Porteous (1985) it may be quite 

poor for small sample sizes. In this case, if available, exact tests should be used, as 

suggested by Davison, Smith and Whittaker (1991). 

In this thesis only backwards elimination is considered. The test statistics for single 

edge exclusion used are presented in detail in the next section. 

2.9 Test Statistics for Single Edge Exclusion in GG 

and in GLL Models 

Smith (1990) studied in detail edge exclusion tests, for conditional independence, in 

GG and in GLL models. The Wald and the efficient score tests for single edge exclusion 

where constructed and compared to the traditionally used likehhood ratio test statistic. 

Particular attention was devoted to the adequacy of the chi-square approximation to the 

distribution of each of this three test statistics, under the null hypothesis of conditional 

independence. This thesis builds upon Smith's (1990) work: the three test statistics 

for single edge exclusion are considered, the focus being on deriving an approximating 

distribution, under the alternative hypothesis that the saturated model holds (which 

is done in Chapter 3). Section 2.9.1 reviews the rationale for the derivation of the 

three tests. Section 2.9.2 provides an overview of these test statistics in the GG models 

framework, whereas Section 2.9.3 presents the three test statistics for GLL models. 

47 



2,9.1 T h e likelihood rat io, t h e Wald and the score tests 

The hkehhood ratio test is very often used in statistics, particularly when the null 

hypothesis is composite, i.e., when the parameter space constrained under the null 

hypothesis is more than a single point. Two other tests, also used for composite 

hypothesis are the Wald test and the Lagrange multiplier test, also known as the 

efficient score test. Buse (1982) gave a discussion of the geometry of the three tests 

and demonstrated that if the log-likehhood function is quadratic (which happens for 

normally distributed data) the three test statistics have chi-square distributions, for 

all sample sizes, under the null hypothesis. If the log-likelihood departures from the 

quadratic shape, the distributions of the three test statistics are asymptotically chi-

square. 

Suppose is the vector of unknown parameters, where ^ is the vector of 

the r parameters of interest and is the vector of nuisance parameters. Consider the 

null hypothesis jfo : ^ ^ unspecified and the alternative hypothesis 77̂ ^ : ^ ^ 

^0, ^ unspecified. The likelihood ratio test compares twice the difference between the 

maximum of the log-likehhood under and ffo to the critical value of a chi-square 

distribution on r degrees of freedom, i.e., 

Z(^) — Z(^) — 2 /(< )̂ — Z(̂ o, V') 

where (p denotes the unrestricted m.l.e of (p and ^ denotes the m.l.e. of ip restricted 

by ffo. Indeed, by applying a Taylor series expansion to LR about the parameter point 

(^0,^), Cox and Hinkley (1974, page 323) showed that the limiting distribution of the 

likelihood ratio is chi-squared, with degrees of freedom equal to the dimension of 6, the 

distribution being central under (similar proof was given by Sen and Singer, 1993, 

pages 114-115). It was also shown that the Taylor series expansion of LR leads to two 

asymptotically equivalent test statistics: W, the Wald test statistic and S, the score 

test statistic. The Wald test statistic is given by 

W = n g _ A 
T 

ko 
- 1 

g - A 

where kee is the variance matrix of the limiting normal distribution of 9, i.e, the 

submatrix of the inverse information matrix K corresponding to evaluated at the 

m.l.e. Note that the asymptotic variance of equals ^ A". 
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The efRcient score test statistic is given by 

where is the inverse information matrix evaluated using ^ (the restricted, under 

^0, m.l.e. of and is the gcore (Cox and Hinkley, 1974, page 107) 

and equals the derivative of the log-likehhood function with respect to the elements of 

here constrained under ffg. Recall that, in regular problems, the e&cient score [/(^) has 

expectation zero and veiriance given by the Fisher information matrix. Also, in regular 

problems, there is a close connection between the maximum likehhood estimate and 

the eSicient score [/(^), since the m.l.e. of satisEes (7(^) = 0 (Cox and Hinkley, 

1974, page 280). 

Because of the asymptotic equivalence of LR, W and S, and since LR is approxi-

mately central chi-square distributed under ^o, W and S also have approximate central 

chi-square distributions under the null, with degrees of freedom equal to the dimen-

sion of When the parameter of interest ^ is a scalar, the signed square-root of the 

likelihood ratio is given by 

= sign(g - %) y i R . 

l^jisign jg asymptotically distributed according to a standard normal distribution (see 

for example Severini, 2000, pages 117 and 121). Similar reasoning applies to the Wald 

and the score tests. 

Z/OcaZ can also be considered. Suppose the case of a simple null hy-

pothesis .ffo : ^ % and alternatives that are local, i.e., sequences such that 

converges to ô(<=̂  = 0̂ + ^ ) ' Cox and Hinkley (1974, pages 317-318) showed 

that if \/n{6n — 6q) converges to 6, then the likelihood ratio is approximately chi-

squared, with degrees of freedom equal to the dimension of 6 and non-centrality pa-

rameter if = S'̂  [^eoOoY^ & This result extends to the case of composite null hypothesis 

^0 : ^ = ^0, ̂  unspeciAed. For local alternatives = ô + the non-centrahty param-

eter is y = where is the partition of the information matrix 

corresponding to the restriction in Jifo- The number of degrees of freedom equals the 

dimension of 9. The same result applies to the Wald and score tests. For a detailed 

proof see also Severini (2000, pages 117-119). 
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2,9.2 Likelihood rat io, Wald and score test statist ics for single 

edge exclusion in G G models 

The hkelihood ratio test statistic for single edge zj exclusion from the saturated GG 

model (see Whittaker, 1990, page 189) denoted in this thesis as 7̂ ^ is given by 3]^ = 

—n log ( l—res t ) , where /Oij.rest equals the sample partial correlation coe&cient between 

and Xj given the remaining variables in the model. From Smith (1990. Sections 3.2.3 

and 3.2.4), the Wald and the score test statistics for the exclusion of edge zj from the 

saturated model, here denoted as and 7̂ '?, are given by 

7 ^ = ''T'P̂ .resf 

Smith and Whittaker (1998, Appendix D) suggested signed square-root versions 

of these three test statistics can be obtained by multiplying the sign of Pij.reg* by the 

square-root value of the test statistic. Table 2.1 summarises the formulae for the non-

signed and for the signed square-root versions of the three test statistics, for single 

edge exclusion from the saturated model, that are used in this thesis: the likelihood 

ratio, the Wald and the score test statistics. They are presented both as a function of 

the sample partial correlation coefficients and of the elements of the inverse variance 

matrix. 

Under the null hypothesis of conditional independence between and (i.e, 

Pij.rest = 0) the non-signed versions of the three test statistics are chi-square distributed 

on one degree of freedom (see Smith, 1990) and the signed square-root versions of the 

three test statistics are normal distributed (Smith and Whittaker, 1998). 
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non-signed version 

likelihood ratio 

test 

T.4 = 

= - y ^ l o g ( l -

-nlog( l -

Wald test w 

score test 

n-

n 

3 _ 

^zj.rest 

signed square-root version 

rpsignl 

—Mlog(l j f L 

gigTl(pij.res()y-)llog(l - p? 

rj^signw 

1+A ij.reat 

n = 

n-

ij.rest 

^11^3 J \ j j LZ_ 

Pij.rest. / 

YigigmS _ 

1/5^ 

Pij.restv'^ 

n 

Table 2.1; Test statistics for single edge ij exclusion from the saturated GG model. 

2.9.3 Likelihood rat io , Wald and score test statist ics for single 

edge exclusion in GLL models 

This section presents the three test statistics for single edge exclusion, within the GLL 

models framework, in a general way. In Section 3.4 they are specified for the two and 

for the three binary variables cases. The reason for doing so follows. In the case of 

a GG model, each test statistic for single edge exclusion, Arom the saturated model, 

depends on one parameter, the partial correlation coefficient between two variables 

given all the remaining variables, irrespective of the total number of variables in the 

model. However, in a GLL model, the test statistics for single edge exclusion, from the 

saturated model, are a function of diEerent parameters (representing aU higher order 

interaction terms), the number of parameters depending on the number of variables 

being considered. Hence, generalisations for the p variables case are very easy in GG 
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models, but can be very complicated in GLL models. 

Smith (1990, Section 5.3) constructed the likelihood ratio, the Wald and the efBcient 

score tests for the general null hypothesis that fTg : = 0, and the alternative 

hypothesis that is unconstrained (where is a vector, of dimension r, containing 

the A parameters of interest). Under the null hypothesis that A,t = 0 aU three test 

statistics are chi-square distributed on r degrees of freedom (the number of A terms set 

to zero). Smith (1990, Section 5.5) presented the three test statistics for independence 

in a 2 X 2 contingency table, as a function of the observed cell counts. Here cell 

probabilities are used instead. The hkelihood ratio test statistic for jEfg (independence), 

denoted in this thesis as jCjRT', equals 

LRT = 2 n© ^ 2 lor ° ' TTij;: 

where %(z) are the unconstrained m.l.e. of the cell probabilities 7r(z) and ^(2;). are the 

m.l.e. of 7r(3;) constrained under jifo. 

The Wald test statistic for Hq equals 

= 710 (Ayi) 

where is the m.l.e. of the asymptotic variance matrix of A,t based on a single 

observation. In the two variables case, when r = 1, the Wald test statistic simpliAes to 

710 Â 2 

;^[3,3] 

where A12 = logi/'i2 and K[3,3] = var(Ai2) = (recall the 

inverse information matrix is given by Equation 2.4). 

The score test statistic equals 

Score = 710 {I'A K I'A, 

where I'a is the derivative of the log-likelihood function (of the log-linear model), with 

respect to Aŷ , constrained under ^0, evaluated at the m.l.e.. In the two variables case, 

when r = 1, the score test statistic simplifies to 

5'corei2 = 7i0 ^[3,3], 

where Ẑ i2 = 7r(l, 1) - 7ri(l) ^2(1) and ^[3,3] = ^ 4- ^ ^ 
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In conclusion: GG and GLL models have been presented. Considering 

the saturated model and calculating all possible single edge exclusion tests is claimed 

to be the usual procedure for starting model selection, particularly if the data analyst 

is interested in detecting the presence of a latent variable. The formulae for the three 

test statistics for single edge exclusion used in this dissertation have been summarised. 

In Chapter 3 the distributions of these test statistics are investigated, in particular 

under the alternative hypothesis that the saturated model holds. 
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Chapte r 3 

Dis t r ibut ions of t he Test Statist ics 

for Single Edge Exclusion 

The three test statistics for single edge exclusion used in this thesis (likelihood ratio, 

Wald and score test statistics) are summarised in Section 2.9. Under the null hypothesis 

that xi is conditionally independent from x j given the remaining variables in the 

model, i.e., the edge between and Xj is absent from the independence graph of the 

variables, the three test statistics for single edge exclusion are asymptotic chi-square 

distributed. The number of degrees of freedom is given by the number of parameters 

in the model set to zero. In a graphical Gaussian model there is just one parameter 

associated with each edge exclusion; ujij = 0 <=> pij.rest = 0. In a graphical log-linear 

model, for each edge exclusion from the saturated model, the number of A terms set to 

zero depends on the number of variables in the model; when all variables are binary, 

if p = 2 there is just one two-way interaction term to be set to zero (Aig), whereas if 

p = 3 two A terms must be set to zero - the two-way and the three-way interaction 

terms A^ and Ay .̂ Thus, in GLL models the complexity increases considerably with 

the number of variables, which does not happen in GG models. 

The aim of this chapter is to study the distributions of the three test statistics for 

single edge exclusion under the alternative hypothesis that the saturated model holds. 

Indeed, an approximation to the distributions of the test statistics for single edge 

exclusion, under the alternative hypothesis, is required for obtaining the asymptotic 

power functions derived in Chapter 4. Of particular use are the vectors of the means 

and the matrices of the variances and covariances of the test statistics in the asymptotic 
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normal distributions. 

The current chapter has two main parts: the first part deals with deriving approx-

imations to the distributions of the test statistics for single edge exclusion, from the 

saturated model, in the framework of GG models, whereas the second part is developed 

within the framework of GLL models. 

The is used (Section 3.1.1) to obtain asymptotic normal approxima-

tions to the distributions of the test statistics: in the GG models framework results 

are derived for the general case of p variables, and presented as function of w, the ele-

ments of the inverse variance matrix (Section 3.1.2), and as function of p, the elements 

of the scaled inverse variance matrix (Sections 3.1.3 and 3.1.4). Approximations to 

the distributions of the signed square-root versions of the test statistics are derived in 

Section 3.1.5. In the GLL models framework the two and the three variables cases are 

considered (Sections 3.4.1 to 3.4.3). Although the methodology used can be apphed to 

contingency tables with higher dimensions, the number of parameters involved makes 

the calculations very messy, making it almost impossible to derive general 'simplified' 

formulae. Results are obtained for the non-signed (Sections 3.5.1 and 3.5.2) and for 

the signed square-root versions (Section 3.5.3) of the test statistics. 

In the two variables case, the possibility of using a non-central chi-square approxi-

mation to the distributions of the test statistics is also analysed: in Section 3.2 for GG 

models and in Section 3.6 for GLL models. Both main parts of the chapter end with 

some guidelines as to when each of the approximating distributions performs better: 

simulation results are used to assess the quality of the proposed approximations, as the 

sample size varies (Sections 3.3 and 3.7). 

3.1 Normal Approximations to the Distributions of 

the Test Statistics in GG Models 

The test statistics for the exclusion of edge ij from the saturated model, and corre-

sponding signed square-root versions, in the GG models framework, are summarised 

in Section 2.9.2, Table 2.1. The aim now is to obtain approximations to the distribu-

tions of these test statistics, under the alternative hypothesis that the saturated model 

holds. In Section 2.7.1, following Smith (1990, page 21) the asymptotic variance matrix 
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of the m.l.e. of cj was presented. Because the test statistics are functions of the w, the 

can be apphed to Smith's result, in order to derive asymptotic normal 

approximations to the distributions of the test statistics. A brief explanation of the 

method is given in Section 3.1.1. For further details see, for example, Bishop, Fienberg 

and Holland (1975, page 493) and Sen and Singer (1993, pages 131-137). 

3.1.1 Using t h e de l ta -method to obta in asymptot ic normal 

approximat ions 

Let a random column vector, be the m.l.e of ^ based on n observations. It is a well 

known result that, under certain regularity conditions, ^ has an asymptotic normal 

distribution with mean ^ and variance given by the inverse of the information matrix 

(see Cox and Hinkley, 1974, page 294). In other words, 

where K = is the inverse information matrix based on a single observation. One 

should note that var(^) = ^K. If f{9) is differentiable at 6, then, using the delta-

method, the approximating distribution to f{9) is the normal distribution, with mean 

/(^) and variance matrix given by (0^)^var(^) (0^), i.e.. 

y(^) - /(^) W I 0, 
ae \de 

In the case under study, let V~^ denote the unconstrained m.l.e. of Q, i.e. the 

sample inverse variance matrix with divisor n, a symmetric matrix with elements de-

noted by LUij. The vector of the distinct elements of v"'^ is denoted by vec(y"^). It 

includes first the off-diagonal elements Uij and finally the diagonal elements ua . For 

example, for the three variables case, ^ = vec(y"^) = (w ĝ (̂ 23 ^11 (̂ 22 (Ẑ gs)̂  and 

g = vec(r2) = (wi2 Wis ^23 wii W22 ^33)^. The function / depends on the test statis-

tic being used. Suppose the test statistic is the likelihood ratio test: y(j(^) = 

Consequently, ^^(g) = - l o g ( l - - ! ^ ) , since = -?2log(l - z ; :^) . Provided all 
'ij\ j ov wiicjjj '' u cjiiqjjj 

T 

elements of the ^ vector are different from zero, is differentiable at ^ . Then, 

^ (vec(y ^)) - y (vec(n))] —^ N 

i.e. / (vec(y"^)) is asymptotically normal distributed. 
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Section 3.1.2 shows how this formula is apphed, both in the case of two and in the 

case of four variables. In the remainder of the chapter var(7^') and cov(T\", 2^") denote, 

respectively, the variance and the covariance of the test statistics in the asymptotic dis-

tribution, where, for convenience of notation, 7^' = and 

3.1.2 Asympto t i c d is t r ibut ion of t he LRT as a funct ion of uj 

In this section formulae for the variance and covariemce of the likehhood ratio test 

statistic (for single edge exclusion, from the saturated model) in the asymptotic distri-

bution are derived. First, the two variables case is presented in detail; next, the four 

variables case is considered. Results are then generalised to the situation of p variables. 

The two variables case 

Let us consider the two variables case and derive the mean and the variance 

var(l^) of the test statistic 7^ , in the asymptotic distribution. 

Using the delta-method, and considering ^ = vec(y"^) = (uvig (̂ 22)̂ , ^ = 

vec(n) = (cjiz wn (^22) ,̂ = - l o g ( l 
wiia;22' 

= - l o g ( l 
W11W22'' 

the 

mean of in the asymptotic distribution is given by 

= -Mlog(l -

The variance in the asymptotic distribution equals 

var(%^) = n A" A, 

w 12 
W11W22 

where 

A 

% / a w i 2 

— 

%/^W22 

•2u 12 

W11W22— 
~'^\2 

Wll(wilW22— 

"22('V11CV22-Uf̂  . 

and K is a 3 X 3 matrix, given by Equation 2.2. Substituting in the above equation 

^11^22 

gives the simplified result 

var(Tj^) 

which can be written as a function of the (partial) correlation coefBcient as var(7^) = 

4npf2- The n in the numerator implies that, as the sample size increases, the variance 

of the test statistic increases. One should note that the Ti also appears in the expected 

value of the test statistic. 
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Analogous reasoning can be followed for the three and four variables cases. Calcu-

lations were done separately for each of this cases. However, only the results for four 

variables are presented since the three variables case (as well as the two variables case) 

is a particular case of the four variables situation. 

The four variables case 

There are now six 7̂ ^ (with z < firom 1 to 4) test statistics, for single edge exclusion 

hrom the saturated model, to be considered. 

The vector of means of the six test statistics is given by 

-nlog(l 

-nlog(l 

-Mlog(l 

1̂2 ) 
W11W22 / 

1̂3 \ 
(̂ 11̂ 33 / 

1̂4 ) 
WI1W44 

:t;22W33 ' 
. , 2 

—nlog(l 
W33W44 

) 

The variance matrix equals n, A' A. The 10 x 10 matrix A!" = nvar[vec(V'"^)] is 

calculated, as in the two variables case, using Equation 2.1. The 10x6 matrix A has the 

derivatives of the six /''^(^) (/j^, in columns) with respect to the 

ten distinct w (wi2, ^13, W14, CU23, ^24, '-'̂ 34, ^11, ^22, ^33, ^44, hi rows). For example, 

column three equals (0 0 0 0 0 0 0 Performing 

the substitutions induces a 6 x 6 variance matrix with the variances of the test statistics, 

in the asymptotic distribution, on the main diagonal, the off-diagonal elements being 

the covariances between the test statistics, in the asymptotic distribution, (T^j, 7^), 

with 2 < _; and A; < Z, as follows 

where 

cov(rĵ , 
GOV 
GOV I 
cov(Tî , 

var(Tĵ ) 
cov(%, var(%) 
cov(Tî , cov(rî , 
cov(Tĵ , cov(rî , cov(r ,̂ T^) 

cov(rĵ , cov(r ,̂ 

var(7]^) = 
uj11u22 

var(r]^) 

^22^33 

4)^13 
W11W33 

^22^44 

var(71i^) 

var(7]̂ ) 
cov(r ,̂ 

4n&;2̂  

VZLT' 

, var(2^) = 

^11^44 

^33^44 
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and, for example, 

. COv(r]̂ , [4W3,W22W33W12W13W23 -

4W22W33W22W13W23 — 2W22W22W33W22̂ 13 — 4W22W22Wi2W2gW23 + 2 W22W22W23W22 + 

2wiiW33W 2̂W23 +2wnW22W22^i3]; 

. COv(r^, = W::W ,̂W (̂W:1W22-.̂ ,XW22W4,-W Ĵ [4^11^32^44^12(̂ 14^24 -

4 a,'22̂ '44̂ 'i2̂ 14(̂ '24 — 2 WiiCt/'22'-i-''44'̂ 'J'2̂ '24 — 4 ̂ 11̂ 22̂ 12̂ 14̂ 1/2̂  + 2 + 

2(^22^12^14^& + 2W22W44W 2̂̂ &]; 

. COv(r^, T^) = [4W11W|3W22W13W12W23 -

4W^W22W22W12W23 — 4W11W23W13W12W23 — 2wiiW^U22W^ga/23 + 2 WiiW33W2gW23 + 

2W33W22Ŵ 3Ŵ 3 + 2W 3̂W 3̂W 2̂(̂ ]̂; 

. COv(r]̂ , 7^) = [4W11W22W33W44W12W13W24Ŵ  + 

4wiiw22(̂ 33(̂ 44^12(̂ 14^23^34 " 4W22W33W44W22W13W14W34 — 4wiiW33W44W22W23W24W34 

4 WiiW22W44L;i2Wi3W23CĴ  — 4 WiiW22W33Wi2Wi4W24W^ + 2 WiiCJ33W22(̂ 24̂ & + 

2W11W44W 2̂̂ (̂̂ 34 + 2w22W33Wi2(*;i4W^ + 2w22W44Wi2W ĝW ]̂; 

. COv(T]̂ , 71^) = [4wiia,33W22W44CJl3Wl2W34a;24 + 

4 W11W33W22W44W13W14W23W24 — 4 W33W22W44W2gWi2Wi4W24 — 4 WiiW22W44W22U23W34LJ24 • 

4 a;iiW33W44Wi3Wi2W23a;24 ~ 4 WiiW33W22(t;i3Wi4W34W24 + 2 u;n'i'22(̂ 'i3'̂ 34'̂ 24 + 

2 WiiW44CÛ gW23W2̂  + 2 ^33^22^13^14(̂ 24 2 W33W44Ŵ gŴ 2(̂ 2̂4]' 

In brief: a general term for the mean of the test statistic 2̂ ^ (z < j ) in the asymptotic 

distribution can be written as 

^^[7:4] = _ ^ l o g ( l _ - ^ ) , (3.1) 
^ii^jj 

a general term for the variance of 7^^ in the asymptotic distribution can be written as 

var(7;^) = ^ (3.2) 

and a general term for the covariance of the test statistics 1^, (% < J, A; < /), in the 

asymptotic distribution, can be written as 
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cov{i;i = 

[4 LJiiiJjjUJf̂ fQUJiiOJijLU'if̂ UJjliiJf̂ l ~f~ 4 UJiiUJjjUJf̂ î tOiiUJijiJiiCOĵ iĴ i 

_2 

(3.3) 

For simplicity of notation, in the remainder of this chapter this Equation 3.3 is also 

going to be written as 

cov{t^j, t^i) = - j-— Qj-

Equation 3.3 holds for the cases of z, j, A;, / Arom 1 to 4, (both neighbour and non-

neighbour vertices), but also, as the next section will prove, for any case and any 

number of variables (z < j" and A; < /, from 1 to p). In practice, the mathematical 

package MAPLE was used to perform the calculations for the Eve variables case, and 

results show Equation 3.3 holds. Neighbour vertices are a particular case of the general 

formula, that is, situations when i = k, or i = 1, or j = k, or j = 1. For example, 

supposing i = k. In order to obtain cov(T]^, T^), it is only required to start with 

Equation 3.3, replace i by 1, j by 2, fc by 1 and I by 3, and simplify the results. 

The p variables case 

The proof that Equation 3.3 is a general formula that holds for any number of vari-

ables and both for neighbour and non-neighbour vertices follows. Expressing the delta 

method in coordinate form gives, in general, 

COv(T|;̂ , T^) = Z!p,g,r,s 

(3.4) 

— lZp,,,r,g (̂ prWgs -t- WpgWgr) j , 

where is the inverse of the information matrix based on a single observation. 

The proof that starting with this general formula and performing all the calculations 

^ ~— 10CT ( 1 induces Equation 3.3 follows. Recall that = —log(l — ^ and that z < j and 
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A; < Z. The derivative of with respect to a generic element Wp, takes the form 

_ -1 

VVlLiXi. 1. L/O L LLy CL W/pg 

(w.,wZ') ) 

(3.5) 

- 1 

^ + 4 ' p 4 ; 9 2 ( 5 i p 6 j g W i i W j j W i j 

Analogously, 

" (wkkwii)(w2tw»-wjg;) + (3-6) 

Substituting Equations 3.5 and 3.6 in Equation 3.4 gives 

COv(7:j, Tĵ ) — I ] p , g , ' r , s { 

^ {uiii'^jj-W?.) WkkW| ; (wkkW; | -W^; ) 

^ ^p,g,r,s "" WiiWjjWjj] 

X \5kj-5f;gUĴ fUJii + SlrSls UJf.̂ UJf;f; 2j6f;'r-Sig UJf̂ f̂ UJilLUi-ij X Kpqj-ĝ  

^ ^p,q,r,s { • • • } ' 

where, for the result to hold, in the last expression the summation between curly 

brackets has to equal the expression previously denoted by C%,. The proof continues. 

Using Equation 2.1, 

Y^p,q,r,s { • • • } ~ X^p,g,r,s { ^ip^iq^kr^ks^ij^jj^kl'^ll [^pr'^QS + ^ps'^qr] 

-\-6ip6ig6lj-6lgu>^ju!jjloj^^u)j^l^ [u^pr^qs 4" ^ps^'qr] 

^^ip^iq^kr^ls^ij^jj^kk^ll^kl [^pr^qs 4" ^ps'^qr] 

~^sjp^jq^kr^ks^ij^ii^kl^^l {^pr^qs 4" ij^'ps^qr] 

'^^jp^jq^lr^ls^ij^ii^kl^kk [^pr^qs ^ps^qr] 

'^^jp^jq^kr^ls^ij^ii^kk'-^u^kl \^pt^qs "f~ ^ps^qr\ 

^^ip^jq^kr^ks^ii^jj^ij^kl^ll {^pr^qs 4" ^'ps^qr\ 

— 25ip5jq5lrslgujiiujjjioijljj^^lijj^j^ \ujpyu)qg + Ct^pgWgr] 

~^4isipsjqskrsls^ii^jj^ij^kk^ll^kl [^pr^qs ~l" ^ps^qr] } 

~ {^ik^ik 4" ^ik^ik] 4" '^ij'^jj^kl^kk [^il^il 4" 

^^fj '̂jj '̂kk l̂l̂ kl l^ik^il 4~ îl̂ îk] 4~ UĴ jUJuio'̂ ûiii ̂ uijk̂ jJjk 4~ '̂ jk''̂ jk\ 

-\-ujfj(jjiiu/'^lujkk ['^jl^jl 4- ujjiidji] 1u>^ju)nu)kk'^ll^kl \^jk'^jl 4" ''^jl^jk\ 

'2'ljJiiiOjjUlijLJj.ĵ Ulii ÛJ{kl̂ jk 4~ l-'̂ ik̂ jk] "^ îî 'jĵ iĵ kl̂ kk [^il^jl 4" LVuLOjĵ  

+4wiiwjjwijwttw;;wt( 4- Wi/Wjt] 
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~i~'^^ii^ kk^ij^'ki^'jl '^'^ii'-'^kk'^u'^'ij^ki^jk'^jl 

4Wii L/J j CU/ / Wij W; ̂  ^ 4WiiWjjŴ /|;Wî Wĵ gWi;Wj( 

-\-au/iiujjjuji^]^ujilioijlo}^luj'll^ujji + aujiilvjjuj}^^ujiiujijuj}^iujiiljji^. 

which equals the expression (%, in Equation 3.3, hence the proof is complete. 

In conclusion: Equation 3.4 presents a general formula for the covariance of the 

test statistics 7]^ (% < j, A; < Z) in the asymptotic distribution, when the likelihood 

ratio test statistic for single edge exclusion, from the saturated model, is used. 

3.1.3 Asympto t i c d is t r ibut ion of t he LRT as a funct ion of p 

In Section 3.1.2 a normal approximation to the distribution of the hkehhood ratio test 

statistic is derived, with the means, variances and covariances given as a function of w, 

the elements of the inverse variance matrix, by Equations 3.1, 3.2 and 3.3. The purpose 

of this section is to express those means, variances and covariances as a function of p, 

the partial correlation coe@cients. 

The mean of the test statistic in the asymptotic distribution, is given by Equa-

tion 3.1 as = —nlog(l — Because Pij.rest = , this mean can be 

written as a function of the partial correlation coefficient, as 

/ l£[ i ;5] = - n l o g ( l - 4 , „ , ) . (3.7) 

Analogously, the variance in the asymptotic distribution can be written as a function 

of the partial correlation coeSicient as 

var(7;^) = (3.8) 

A general formula for the covariances of the test statistics 7]^ in the asymptotic 

distribution is given by Equation 3.3. An easy way to obtain this formula as a function 

of the partial correlation coefficients is, for example, to set lou = cojj = Ukk = uju = I 

and all six elements of the type Wp, equal to —Ppg.res<- One should note that there are 

different combinations of values of the w that will lead to the same set of values of p, 

and one of them was chosen. Alternatively, it can easily be proved that, starting with 

Equation 3.3 and replacing all elements of the type by Pp .̂rest gives Equation 3.9, 
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which is a general formula for the covariances of the test statistics, in the eisymptotic 

distribution, written as a function of the partial correlation coefRcients: 

[4 Pij.restPik.restPjl.restPkl.rest 4" 4 Pij.restPil.restPjk.restPkl.rest 

(3.9) 
Pij j-ggtPik.restPil.restPkl.rest + 4 P{j j.ggfPjk.restPjl.restPkl.rest 

")"4 Pij.restPik.restPjk.restPkl.rest 4 Pij.restPil.restPjl.restPkl.rest 

Pij.restPjl.restPkl.rest ^ Pij.restPjk.restPkl.rest 

Pij.restPil.restPkl.rest Pij.restPkl.restPik.restl' 

For simplicity of notation, in the remainder of this chapter this Equation 3.9 is also 

going to be written as 

cov(7;5, r ^ ) = 

The proof that Equation 3.3 implies Equation 3.9 follows. Equation 3.3 can be written 

as 

c o v ( i ; i t,\) 
UIILOJJOJKK^LL ( 1 - ( 1 -

.2 C., — 

a 

n Wife ^ i^kl I ^ " i j 4 k ^kl 

~ ^'fj ~ \ \/^kk^u \/'^kk^ll 
( W.J I 

^ Wit ^kl ^ Wkl 
^ii^jj -yWiiWH yWkkWi; UJiiUJjj ^UJjjUJkk y/uJki^ 

^ Wi? ^jk '^ki ^ ^i.i ^ ^kl 
^ulii'^kk -yWjjWkk i^kk'^ll \/WHWi7 iokk^ll 

I 2 =̂ 6 I 2 wg, I 2 w?. wg, I ^ W?. wg; 1 
UJjjUJii Ukk'^U W.iWjj WjjWkt UliiUljj UJiiljJll LJkki^ll '~Oii'^kk '•^kk^ll' 

Finally, replacing all elements by ppq.rest gives Equation 3.9. Using this general 

formula, the calculation of the covariance of the test statistics for non-neighbour vertices 

(i.e., 2, j . A; and Z all different) is straightforward: it just requires replacing z, j , A; and / 

by the number of the vertices one is interested in. The situation of neighbour vertices is 

similar. However, after the substitution is performed, values of Pii.rest, Pjj.reat, Ptt rest or 
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Pzz.resf ajre obtained, which must be set to —1. Indeed, the p can be thought of as minus 

the elements of the scaled inverse variance matrix. Therefore, the off-diagonal elements 

correspond to the partial correlations, whereas the diagonal elements correspond to —1. 

Some examples of the Anal versions of the formulae follow: 

. cov (r , i = 

f i _ „2 u 1 _ „ 2 \ [ 4 P l 2 . r e s t P l 3 . r e s t P 2 4 . r e s t P 3 4 . r e s d 4 " 4 P i 2 . r e s t P l 4 . r e s t P 2 3 . r e s t P 3 4 . r e s t 

v-^ l-'l2.restl\'- ^34.rest/ 
4 P l 2 . r e s t P l 3 . r e s 4 P l 4 . r e s t P 3 4 . r e s t "I" 4 P i 2 . r e s t P 2 3 . r e s t P 2 4 . r e s t P 3 4 . r e s t "I" 

4 P i 2 . r e s t P i 3 . r e s t P 2 3 . r e s t P 3 4 . r e s t 4 P i 2 . r e s t P i 4 . r e s t P 2 4 . r e s t P 3 4 . r e s t 2 P12.restP24.restP34.rest 

^ P i 2 . r e s t P 2 3 . r e s t P 3 4 . r e s t ^ P i 2 . r e s t P i 4 . r e s f P 3 4 . r e s t ^ P i 2 . r e s t P 3 4 . r e s t P i 3 . r e s t ] ' 

* COv(T^, [-4pi2.restPl3.rea(P23.rest " 2pi2.restPL.rest + 

4 Pl2.res(Pl3.res(P23.rest + 4 Pl2.regtPL.restP23.rest + 2 Pl2.restPL.rest + ^ pL.restPl3.rest + 

2 P i 2 . r e s t P i 3 . r e s t P 2 3 . r e s t ] ' 

* COv(T!ĵ , rwtXi-fMrwt) ["^Pl2.resfP24.restPl4.resf " + 

4 P 1 2 . r e s t P 2 4 . r e s t P 1 4 . r e s t 4 P 1 2 . r e s t P 2 4 . r e s f P 1 4 . r e s t ~l~ 2 P12.restP24.rest 2 P12.restP24.rest 

2 P 1 2 . r e s f P 2 4 . r e s f P 1 4 . r e s f ] ' 

* COv(rj^, 2^) = [-4pi3.resfP23.resfPl2.rest " 2pL.restPL.rest + 

4pL.resfP23.restPl2.rest + 4pi3.restPL.restPl2.rest + 2pL.restP^.rest + 2pi3restPL.rest + 

2 P 1 3 . r e s t P 2 3 . r e s f P 1 2 . r e s f ] " 

3.1.4 Asympto t i c dis t r ibut ions of t he Wald and of the score 

tes t s tat ist ics 

Using the delta-method, and following the reasoning of Section 3.1.2, this section pro-

poses normal approximations to the distributions of the Wald test statistic and of the 

score test statistic for single edge exclusion from the saturated model. Formulae for 

the means, variances and covariances, in the asymptotic distributions, are given as a 

function of the elements of the inverse variance matrix and as a function of the partial 

correlation coefficients. The section ends with a table summarising the formulae for the 

variances and covariances, in the asymptotic distribution, of the three test statistics 

for single edge exclusion from the saturated model used in this thesis. 
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Let var(2]^), cov(7^^. denote the variances and the covariances of the Wald 

test statistic in the asymptotic distribution, and var(]]j) and cov(CQ ,̂ denote the 

variances and covariances of the score test statistic, for single edge exclusion from the 

saturated model, in the asymptotic distribution. and denote the 

means, in the asymptotic distribution, respectively of the Wald and of the score test 

statistics. 

These means can be written as a function of the partial correlation coe@cient, as 

, (3.10) 
Pij.rest 

in the case of the Wald test statistic, and aa 

AEIT^] = (3.11) 

in the case of the score test statistic. The relationship between the variance (and the 

covariance) of the test statistics using the hkelihood ratio test and the Wald test can 

easily be justified. In fact, a second use of the delta method would require to be 

written as a function of and, therefore, the new A matrix would also include j j i - , 

which is equivalent to As a result, 

v a r p - f ) = var(r^) 

var(%) 
(1—!:A_)2 

U' 
(1+z 

and cov(T,7, t f f ) = ccv(t^, T^) 

(1— fll-) 
cov(7;^, ^ 

nrwrCT^ T^\ Pij.rest)^^ pjl.rest^ 

Analogously, for the score test 
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var(7;^) 

= var(2;j) (1 -

- var(7;4) (1 _ 

and cov(r,5. r g ) = c o ^ m , Tt,) 

= co.{Tt,, n , ) (1 - S ; : ) { 1 -

= COv(2^ ,̂ (1 — P0\rest)(l Pw.resJ" 

Alternatively, general formulae for the covariance of the test statistics, in the.asymp-

totic distribution, can be obtained from Equation 3.4, replacing by (in the case 

of the Waid test statistic) or by (in the case of the score test statistic). Consequently, 

cov(7;^, 2 ^ ) = g ^ , ^ (WprWg, + Wp,w^) j , (3.12) 

and 

COv(7;̂ , 7^) = Ep,,,r,5 + Wp,W )̂ j . (3.13) 

Table 3.1 summarises the derived formulae for the variances and covariances of the 

three test statistics, for single edge exclusion from the saturated GG model, in the 

asymptotic distribution. 
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likelihood 

ratio test 

Wald test 

variance 

var(7;^) = 

ij.rest 

var(2:^) 

covariance 

cov(7;^, 

n Q 

Co 

cov(T,y, T^) 

score test var(7;^) 

= 4T2J!^ri — 
CUMWjj W t i W j j / 

= - P&resJ 

n Q 

cov(7;|, 

a 

M Co 

Table 3.1; Variances and covariances of the three test statistics (for single edge exclusion, 

from the saturated GG model) in the asymptotic distribution. 

3.1.5 Asympto t i c d is t r ibut ions of t h e signed square-root ver-

sions of t h e tes t s tat ist ics 

The signed square-root versions of the test statistics are presented in Section 2.9.2, 

Table 2.1. The aim now is to obtain asymptotic normal approximations to the dis-

tributions of the signed square-root versions of the test statistics, once more using 

the delta-method. A summary table with the derived formulae for the variajices and 

covariances, in the asymptotic distribution, is presented at the end of the section. 

The means can be written as a function of the partial correlation coefficient, as 

rest J1 (3.14) 

in the case of the LRT statistic, as 

n 

^ Pij.rest 

(3.15) 
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in the case of the Wald test statistic, and eis 

(3.16) 

in the case of the score test statistic. 

The signed square-root versions can be written as a function of the corresponding 

non-signed ones, and so the delta-method can be applied to obtain the variance matrix 

of the signed versions, based on the variance matrix of the corresponding non-signed 

versions. The new A matrix has the derivative of the signed square-root version with 

respect to the non-signed version. For example, when the hkelihood ratio test is used. 

2 j - l 0 g ( l - ^ ) 

sifftt'ipij.rest) ^ 
2^/- log(l-f? ^, ,J 

Hence, since the variance of the signed square-root version of the 

hkelihood ratio test statistic, in the asymptotic distribution, can be written as 

var(7;^'^^) = x 
2 J - l o g ( l - ^ ) 

X X var(7;^) 

y 

= var(7;^) X 
«" los i ' -= -2 -

a ; 
- 1 

and the covariance can be written as 
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co^iTf-.Tir'-) =cow{Tt,,Tt) X ^ y 
/w -Z... I ^ 

4?% . W i - a ^ W - l o g 1 - : :^^ 

r-r^tr^TL TL\ ^ sign{pij.rest) sign{pkl,rest) 
- COV îj-, ^ . / 1 47Z y -

Similar reasoning can be followed for the signed square-root versions of the Wald 

and of the score test statistics. Table 3.2 summarises the proposed formulae for the 

variances and covariances of the signed square-root versions of the test statistics, for 

single edge exclusion from the saturated model, in the asymptotic distribution, for the 

likelihood ratio, the Wald and the score test statistics. 

It is worth noting tha t both the variances and the covariances of the signed square-

root versions of the test statistics do not depend on the sample size n. Additionally, 

the variances simpli^ to 

2̂ 

and 

Pij.rest 

' log(l -

for the signed square-root likelihood ratio and Wiald test statistics. A very 'neat' 

expression is obtained for the variance of the signed square-root score test: 

var(7;f »^) = (1 -
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variance covariance 

likelihood 

ratio test var(2;̂ ) X 

r(7;̂ ) X 

4nlog^l-
cov(7; ,̂ 7]̂ ) X 

6%PTI( :UdL 

4" , / - log ( l - j f ; - ) ^ _ l o g ( l _ ^ 

cov(7;4,T^) X sign{pi,_R„.,T) signjpki.RCAT) 
4n y - log(l-f,;.,_.,) y -

Wald test 

var(7;^) X 
4n ^ 

i/l4- ^ \/l+ ~k( 
4n V̂kk"W 

=< s e nmrlt^^ T̂W"! y \^^'^pij.re.itv^ + pkt.TE.AT 

score test var(7;f " )̂ = 

X ^ 
4n —ff-

cov(2;^^^, 

cov(7;|,r^) X 
4n y w ^ j w j j 

var m i ) x cov(7;^,T^) X AcZV 4T%Pij.reatPkf.rc3t 

Table 3.2: Variances and covariances of the signed square-root versions of the test statistics 

(for single edge exclusion, from the saturated GG model) in the asymptotic distribution. 

3.2 Non-central Approximation to the Distribu-

tion of the LRT in a GG Model with Two Vari-

ables 

The delta-method was used in Section 3.1 to derive normal approximations to the 

distributions of the test statistics, since each test statistic is a 'well behaved' function 

of the w, the unconstrained m.l.e. of the elements of the inverse variance matrix, 

differentiable provided all u are different from zero. Because each statistic tests the 

null hypothesis that = 0(<^ = 0), the normal approximations should be poor at 

very small distances from the null. 
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However, power at /oco/ has been studied in the hterature. In Sec-

tion 2.9.1, when reviewing the rationale for the derivation of the likelihood ratio, Wald 

and score tests, it was mentioned that the three test statistics are chi-square distributed 

under the null hypothesis, and non-central chi-square distributed for local alternatives 

of the type = ^0+;^ (with nuisance parameters unspecified), i.e., when 

converges to References to the topic of local alternatives include Cox and Hinkley 

(1974, page 324), Sen and Singer (1993, page 238), Ferguson (1996, pages 148-149) 

and Severini (2000, pages 117-119). 

In Chapter 4 of this thesis power is calculated using the non central chi-square 

approximation. The aim of the current section is to derive the non central chi-square 

approximation to the distribution of the LRT statistic for single edge exclusion from a 

saturated GG model with two variables, at a local alternative. Section 3.3 compares the 

quality of the non central chi-square approximation to that of the normal approximation 

previously derived, in particular as the sample size varies. 

Denoting the true value of the parameter by 6'„ and the parameter point under Hq 

closest to by ^0, the (/le nif/Z can be deSned as Jg = -\/E(^n — %)- In 

the simplest case of just one restriction under Hq, the noncentrality parameter can 

be obtained as 

where [-^0060]"^ is the partition of the information matrix associated with the restriction 

in HQ. This result is going to be used to obtain an asymptotic non-central chi-square 

approximation to the distribution of the non-signed version of the LRT for single edge 

exclusion from a saturated GG model with two variables, at an alternative close to the 

null. As mentioned in Section 2.7.1, the corresponding inverse information matrix is 

given by ke^eo = ^11^22 + which can be expressed as a function of pi2 as 1 4- pfg-

Consequently, = 1/(1 -hp^g). 

It is, therefore, proposed that the distribution of the LRT for single edge exclusion 

from a saturated GG model with two variables, at a local alternative, is approximated 

by a non-central chi-square distribution, with noncentrality parameter given by 

1 ^ 
y? = ( p i 2 - 0)] X 

1 + P12. 
X (piz - 0)] — ^^2 . 

^ + P12 

In the next section the quahty of such an approximation is assessed, as n and pig vary. 
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3.3 Assessing the Quality of the Approximations, 

in GG Models 

In Section 3.1 asymptotic normal approximations to the distributions of the test statis-

tics for single edge exclusion from the saturated GG model were derived, and in Sec-

tion 3.2 a non central chi-square approximation was proposed. The purpose of the 

current section is to analyse the quality of the two approximations, for various values 

of n, by using a simulation study. The two variables case is considered and the LRT 

statistic is used. 

Recall that, under the alternative hypothesis that the saturated model holds, is 

asymptotically normal distributed, with mean = —?%log(l —/)i2) variance 

var(T^) = At pi2 = 0 the asymptotic distribution of is degenerate, with 

mean zero and variance zero. Hence, the normal approximation holds for n at infinity, 

but it is poor for M Anite. Indeed, for pig = 0 and n finite, a chi-square distribution on 

one degree of freedom is a better approximation. 

The results of the simulation study are now presented. First, it is shown how the 

mean and the variance of 7 ^ vary as a function of both the correlation coefficient pi2 

and the sample size n. Then, the empirical distribution of the LRT statistic is plotted. 

Histograms are produced for different values of pu , and three different sample sizes 

are used. The curve of the theoretical normal approximation derived in Section 3.1.3 

overlaps each histogram, so that the quality of the approximation can be assessed. 

Simulated results for the mean, variance and covariance of the test statistic(s) were ob-

tained as follows. Different values were assigned to the (partial) correlation coefficient, 

and samples of different sizes were generated for a normal distribution. Likehhood ra-

tio test statistics (for single edge exclusion, from the saturated model) were calculated 

and stored at each step. After 1 000 repetitions, the mean and the variance values of 

the test statistics, were calculated. 

Figure 3.1 displays simulation results. The mean values of the test statistic 

are displayed in plots a), whereas plots b) represent the variances. The correlation 

coefficient varies between —0.9 and 0.9, on the horizontal axis. Plots 1) are based on 

a sample size of 50 and in plots 2), 3) and 4) n equals 200, 500 and 1000, respectively. 

In each plot there are two lines: the blue line corresponds to the values obtained using 

the derived theoretical formulae, and the red fine corresponds to the simulated values. 
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Figure 3.1: Mean (plots a) and variance (plots b) values of the hkelihood ratio test statistic 

TI2, in the asymptotic normal distribution, as a function of pi2- Values were calculated using 

proposed formulae (blue lines) and by simulation (red lines), for different sample sizes: 1) 

n = 50, 2) n = 200, 3) n = 500, 4) n = 1 000. 

The fact that the two lines almost overlap shows the agreement between simulated 

results and formulae derived in Section 3.1. From these plots it is clear that both the 

mean and the variance of in the asymptotic distribution, increase as the sample 

size increases and as the absolute value of the correlation coefficient increases. Both 

are symmetric about zero correlation. 

Figure 3.2 shows the histograms of the empirical distribution of the likelihood ratio 

test statistic T]^. Results are given for three different sample sizes: n — 50 (plots in 

blue), n = 200 (plots in red) and n = 1 000 (plots in green). For each sample size there 

are ten different histograms, corresponding to the values of pi2 ranging from 0 to 0.9 

(with an interval of 0.1). Recall that, for pi2 = 0, the asymptotic distribution of the test 

statistic for single edge exclusion is chi-squared on one degree of freedom (the green line 

overlapping the corresponding histograms represents the density of a x j distribution). 

For pi2 7̂  0, the asymptotic distribution of tends to the normal distribution as n 
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tends to infinity (the black line overlapping most histograms represents the density of 

a normal distribution with mean —nlog(l — pfg) variance The histograms 

show that , as expected, the distribution looks chi-squared on one degree of freedom for 

Pi2 = 0 (particularly noteworthy for large sample sizes). For pu ^ 0, the distribution 

of Ti2 tends to the normal distribution, faster for larger sample sizes: for n = 1000 the 

histograms start showing a normal shape at pi2 = 0.2, whereas for n = 50 this happens 

at 0.6. 

L L L 

L lilL 'I A . 

L I 

I A w I-JHL l-jnk. I .J ik, 

Figure 3.2; Histograms of the empirical distribution of the Hkelihood ratio test statistic 

for different sample sizes: n = 50 (plots in blue), n — 200 (plots in red) and n = 1000 (plots 

in green). Normal density overlapping. For each sample size pi2 ranges from 0 to 0.9 (with 

an interval of 0.1) 

In brief: the normal approximation to the distribution of the LRT statistic for single 

edge exclusion from the saturated GG model with two variables is a good approximation 

if n is large and pi2 is not close to zero. The approximation is poor for small sample 

sizes and values of the correlation coefficient close to zero. 

In Section 3.2 a non central chi-square approximation to the distribution of the 
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LRT statistic for single edge exclusion from the saturated GG model was proposed. 

The aim now is to assess the quality of such an approximation and contrast the normal 

approximation with the non central chi-square approximation. For that, p-p plots were 

produced, comparing the observed cumulative probabilities (obtained in the simulation 

study) with those cumulative probabilities that would be expected if the simulated val-

ues of the LRT statistic were asymptotically normal or non-central distributed. The 

red line represents an exact agreement between observed and expected, the blue curve 

represents the asymptotic normal approximation (with mean —nlog(l — and vari-

ance 4MP12) the green curve represents the non central chi-square approximation 

(with noncentrahty parameter ). 

a) 

b) 

Figure 3.3; P-P plots of the distribution of the likelihood ratio test statistic for different 

sample sizes: n = 50 (plots a)), n = 200 (plots b)) and n = 1000 (plots c)). For each sample 

size P12 ranges from 0 to 0.9 (with an interval of 0.1) 

Figure 3.3 shows some of the p-p plots that were obtained. Some conclusions can 

be drawn: 

• the normal approximation works well for large values of n (1 000), even for small 

correlations (above 0.2). As stated before, for n small the normal approximation 
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is poor. The approximations seems to hold for pig > 0-3 when M = 200, whereas 

with ri = 50 it just holds for pig > 0.5; 

# the non-central chi-square approximation performs better for small values of pi2, 

in particular if the sample size is not large. The approximation does not hold for 

correlations distant from zero, becoming even worse as n increases. 

These two conclusions relate to the issue of the distance from the null - recall that the 

use of the non-central chi-square approximation is suggested cZoae (o 

This distance being measured by (̂  = — 0) means that, as n increases, 

the approximation performs better when pi2 becomes closer to zero. 

In brief: in the two variables case the normal approximation is a better approxi-

mation if the sample size is large and the correlation coefBcient is not close to zero. 

The non central chi-square approximation performs better than the normal at small 

distance from the null, i.e., if n = 1 000 and pi2 < 0.1, n = 200 and pi2 < 0.2 or n = 50 

and pi2 < 0.3. 

The first three sections of the current chapter concerned GG models. In the re-

mainder of the chapter GLL models are considered. 

3.4 Test Statistics for Single Edge Exclusion in 

GLL Models: Two and Three Variables Cases 

This second part of Chapter 3 is devoted to the study of the distributions of the test 

statistics for single edge exclusion, from the saturated model, in graphical log-linear 

models. Attention is restricted to the two and the three variables cases, due to the 

fact that the number of parameters to be considered increases substantially as the 

number of variables increases. So does the complexity of the notation to be used. 

This did not happen in GG models, where results could easily be generalised to the 

p variables case. The structure of this second part of the chapter is the following: 

first, the likelihood ratio test statistic is expressed in cell probabihties, using a log-

linear formulation (Section 3.4.1), and so are the Wald and the score test statistics 

(Section 3.4.2) and corresponding signed square-root versions (Section 3.4.3). Then, 

asymptotic normal approximations to the distributions of the test statistics are derived: 
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for the LRT statistic in Section 3.5.1, for the Wald and the score test statistics in 

Section 3.5.2, and for the corresponding signed sqnare-root versions in Section 3.5.3. 

Section 3.6 proposes a non central chi-sqnare approximation to the distribution of the 

LRT statistic, for single edge exclusion from the saturated GLL model and Section 3.7 

assesses the quality of the two derived approximations. 

3.4.1 LRT statistic for single edge exclusion from the satu-

rated GLL model 

The two variables case 

Suppose and Xg are two binary variables. Using a log-linear expansion, the satu-

rated model can be written as logyi2 = Ag -t- -t- A2 4- A12. 

The m.l.e. of the cell probabilities under the saturated model, ^(z), and under the 

constrained model of independence, ^(z), are 

^(0,0) = exp{A0} 7r(0,0) = ^i(O) X ^2(0) 

^(0,1) = exp{A0 -1- A2} 7r(0,1) = TTl (0) X 71-2(1) 

^(1,0) = exp{A0 4- Ai} fr(l,0) = Tl(l) X ^2(0) 

^(1,1) = exp{A0 -1- -|- A2 -1- A12} ^(1,1) = '^l(l) X ?2(1) 

^i(O) = exp{A0} X (1 -1- exp{A2}) ^i(O) = (0) 

^l(l) = exp{A0 -t- Ai} X (14- exp{A2 4- A12}) #1(1) = '^l(l) 

^2(0) = exp{A0} X (1 4-exp{Ai}) ^2(0) = ^2(0) 

^2(1) = exp{A0 4- A2} X (1 4- exp{Ai 4- A12}) ^2(1) = :̂ 2(1) 

Note that under independence the marginal probabilities do not change and the cell 

probabihties are the product of the corresponding marginal probabilities. From Sec-

tion 2.9.3, the likelihood ratio test statistic for single edge exclusion from the saturated 

model, lrt12, equals 

= 2^0 E z log ( § # ) = 2^0 Ezi,z2e{o,i} ^12(^:1,3:2) log 

2^0 ^(0,0) log + ^(0' 1) log ( 

+^(1,0) log j + ^(1,1) log j 

(3.17) 
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It is suggested that the hkehhood ratio test statistic is expressed as a function of the 

m.l.e. of the A terms in the log-hnear expansion of /12, aa 

=2)10 |^-exp{A0}log ^exp{A0} x (1 4-exp{Ai}) x (1 +exp{A2})^ 

-exp{A0 + Ag} log ^exp{A0} x (1 + exp{A2}) x (1 + exp{Ai + A12}) 

-exp{A0 + Ai} log ^exp{A0} x (1 + exp{Ai)) x (1 + exp{A2 + A12}) 

+exp{A0 + Ai + A2 + A12} (log(exp{Ai2}) 

—log(exp{A0} X (1 + exp{A2 + A12}) x (1 + exp{Ai + A12}) 

Since the sum of the four cell probabihties equals one, Ag is a function of Ai, A2 and 

A12, i.e., A0 = —log(l + exp{Ai} + exp{A2} + exp{Ai + A2 + Ai?})-

The likelihood ratio test statistic for single edge exclusion from the saturated model 

can also be written as a function of the dependence ratios, as 

= 2710 [fi2(0,0) ̂ i(O) 7r2(0) log (fi2(0,0)) + ^12(0,1) ^i(O) ^2(1) log (fi2(0,1)) 

+ f l 2 ( l , 0 ) ^2(0) log ( f i 2 ( l , 0 ) ) + f i2(l , 1 ) ^l( l) ^2(1) log ( f i 2 ( l , 1 ) ) ] 

The three variables case 

Suppose %2 and %3 are three binary variables, cross-classified in a 2 x 2 x 2 

contingency table. Using a log-hnear expansion, the saturated model can be written 

as log/123 = A0 + Ai 4- A2 + A3 + A12 + Ai3 + A23 4- A123. Since there are three variables, 

there are three possible conditional independencies to test for, namely that: 

* Xi_U_X2|-^3 ^0 : '̂ 12 = A123 = 0; : A12, A123 unconstrained; 

* A'i_llX3|A'2 ^0 : = ^̂ 123 = 0; : A13, A123 unconstrained; 

* ^0 : A23 = A123 = 0; : A23, A123 unconstrained. 

Consequently, there are three different likelihood ratio test statistics for single edge 

exclusion from the saturated model, denoted as Z,.RT'i2, Z'727\3 and Z,E723- In the 
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three variables case, a general expression for the likelihood ratio test statistic for the 

exclusion of edge zj from the saturated model is given by 

Hence, the values of the three test statistics can be obtained as 

lrt„=2„. log . ( ^ s ) 

LRTu = 2n, [,r{0.0,0) log + ^(0,1,0) log (; jr(0,l,0)fr3(0) 
13(0,0)^23(1,0) 

+ * ( ! . 0.0) '°g ^ (1.1.») i°g ( a m S m 

+^(0,0,1) log ) + ^(0.1,1)log 

+ - ( 1 . 0 . 1 ) i°g ( S e i S i i ) + * ( 1 . W ) log ( S S S 6 j 

L R n , = 2n , [ f (0.0.0) log ( * % % % ) + f (0,1.0) log 

+*(1 ,0 ,0) log ( 5 ^ 5 1 5 ^ ) + #(1,1,0) log 

0.1) k g ( a » ) ) + - (0 .1 .1 ) ( , % % % 

+'(1.0.1) i°8 +-(1.1.1) log ( S t S S B T 

LRT,, = 2 n, [ f (0 .0 ,0) log ( . % % , % , ) + «(0,1,0) log 

+ - ( 1 . 0 . 0 ) kg ( a s s s i ) + ' ( M . 0) log ( a ^ 

+ - ( 0 . 0 . 1 ) log + *(0.1.1) log 

+ m . o . i ) log ( # a ) + % 1.1) log ( S 6 E S 1 ) 

Note that, for example, 7r23i(0,1,1) = 7ri23(l, 0,1) and 7r3i(0,1) = 7:13(1,0). In each 

of these three formulae the m.l.e. of the cell probabilities under the saturated model, 

^(z), are 

79 



#(0,0,0) =exp{A0} 

7r(0,0,1) = exp{A0 + A3} 

#(0,1,0) — exp{A0 + A2} 

7r(0,1,1) = e x p { A 0 + A 2 + A 3 + A 2 3 } 

#(1,0,0) =exp{A0 + Ai} 

7r(l, 0,1) = exp{A0 + Aj + A3 + A13} 

#(1,1,0) = exp{A0 + Ai + A2 + A12} 

7 r ( l , 1 , 1 ) = e x p { A 0 + A i + A2 + A3 + A12 + A13 + A 23 + A 1 2 3 } 

*i(0) = expfAg} X + exp{A2} + exp{A3} + exp{A2 + A3 + A23}) 
7 r i ( l ) = exp{A0 + A i } X ^ 1 + exp{A2 + A12} + exp{A3 + A13} + exp{A2 + A3 + A12 + A13 + A23 + ^123}^ 

2̂(0) = expfAg} X 1̂ + exp{Ai} + exp{A3} + exp{Ai + As + Aia}̂  
712(1) = exp{A0 + A2} X + e x p { A i + A12} + exp{A3 + A23} + e x p { A i + A3 + A12 + A13 + A23 + Ai23} j 

^ 3 ( 0 ) = e x p { A 0 } x ^1 + e x p { A i } + e x p { A 2 } + e x p { A i + A2 + A i 2 } ) 

^ 3 ( 1 ) = exp{A0 + As} X + e x p { A i + A13} + exp{A2 + A23} + e x p { A i + A2 + A12 + A13 + A23 + ^123}^ 

^ 1 2 ( 0 , 0 ) = e x p { A 0 } X ( 1 + e x p { A 3 } ) 

^12(0,1) = exp{A0 + Ag} X (1 + exp{A3 + A23}) 

^12(1,0) = exp{A0 + Ai} X (1 + exp{A3 + A13}) 

7 r i 2 ( l , 1 ) = e x p { A 0 + A j + A2 + A 1 2 } x ( 1 + e x p { A 3 + A13 + A23 + A 1 2 3 } ) 

#13(0,0) = exp{A0} X (1 + exp{A2}) 

^13(0,1) = exp{A0 + A3} X (1 + exp{A2 + A23}) 

^13(1,0) =exp{A0+Ai}x(l+exp{A2 4-Ai2}) 

# 1 3 ( 1 , 1 ) = e x p { A 0 + A i + A3 + A 1 3 } X ( 1 + e x p { A 2 + Ax2 + A23 + A 1 2 3 } ) 

#23(0,0) =exp{A0}x(l+exp{Ai}) 

^23(0,1) = exp{A0 + A3} x (1 + exp{Ai + A13}) 

# 2 3 ( 1 , 0 ) = exp{A0 + A2} X ( 1 + exp{Ai + A12}) 

# 2 3 ( 1 , 1 ) = e x p { A 0 + A2 + A3 + A 2 3 } X ( 1 + e x p { A i + A12 + A13 + A 1 2 3 } ) 

Since the sum of the eight cell probabilities equals one, Ag is a function of the 

remaining A (Ai.Az, A3,Ai2,Ai3,A23 and A123), i-e., 

Ag = -log f 1 + exp{Ai} + exp{A2} + exp{A3} + exp{Ai + A2 + A12} + exp{Ai + A3 + A13} 

+exp{A2 + A3 + A23} + exp{Ai + A2 + A3 + A12 + A13 + A23 + A123} ) • 

The likelihood ratio test statistic for single edge exclusion from the saturated model 

can also be written as a function of the dependence ratios, aa 
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(3.19) 

3.4.2 Wald and score test statistics for single edge exclusion 

from the saturated GLL model 

A general expression for the Wald and the score test statistics for single edge exclusion, 

in GLL models, is given in Section 2.9.3, following Smith (1990, Section 5.5). Recall 

that, under the null hypothesis of conditional independence, the test statistics are 

distributed, the number of degrees of freedom being given by the number of parameters 

set to zero. The two test statistics are now written as a function of the cell probabilities, 

for the two and the three binary variables cases. 

The Wald test statistic 

In the two variables case, the Wald test statistic for single edge exclusion from the 

saturated model is 

waldi2 = 
"a [log ̂ 12]̂  

#(d,6] + * (0 ,1 ) ^ #(1,0) ^ j r ( l , l ) 
• + 

1 

*(0,0) *(0,1) *(1,0) + 
(3.20) 

The null hypothesis is that variables 1 and 2 are independent, i.e., '̂ 12 = 1 <=> log^12 = 

0 Ai2 = 0 and the alternative hypothesis is that A12 is unconstrained. An extension 

to the three variables case is now proposed. There are three possible Wald test statistics 

for single edge exclusion from the saturated model, denoted as IV0W12, and 

M âZd23. The Wald test statistic for the exclusion of edge 12 from the saturated model, 

with null hypothesis that both A12 and A123 are zero (and alternative that both are 

unconstrained), equals 

waldi2 = M0 

- T 
A 1 2 

-̂ 123 

^[7,3] 
-1 

A12 

^[7,7] A123 

where ^[3,3] + + jr(iAO) + 7r(ilo)' - - .^[3,3] and .^[7,7] 7r(0,0,0) ' %(0,1,0) 

J^[3,3] + (]:Gcall the inverse information matrix is 

given by Equation 2.5). 
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Substituting in the above equation gives 

1̂2 j ( Ai2 + Ai23 
waldi2 — tt^qj i —i i— i i H 

L . _ + ^ ^ ^ + 1 + 1 + _ 1 
jr(0,0,0) ' 7r(0,l,0) ' ^(1,0,0) ' ^(1,1,0) ^(0,0,1) ' %(0,1,1) ' ' ir(l,l,l) 

This simphSed formula for the Wald test statistic for testing the conditional in-

dependence between variables 1 and 2 given variable 3 has two terms. Each term 

corresponds to a category of the binary variable 3, the variable being conditioned on. 

The numerators are the square of the conditional log odds ratio between variables 1 

and 2 for each level of variable 3. The denominators are asymptotic variances (of the 

m.l.e. of the A) for each category of variable 3. 

More generally, it is suggested that the Wald test statistic for the exclusion of edge 

zj from the saturated GLL model (with three binary variables) is given by 

WoZdij = 710 ( = ^ [log(̂ ,;.k=i)]̂  _ 
2̂ Xi, 6 {0,1} xj e {0,1} (xi,xj ,xi^ = : 

i^xi, xj €{0,1} ir^jf.(xi,xj,xf.=0) i-^x^, xj e {0,1} 

(3.21) 

The score test statistic 

From Section 2.9.3, in the two variables case, the score test statistic for single edge 

exclusion from the saturated model is 

5'corei2 = ^0 (̂ '12)̂  -^[3,3], 

where Z'12 = 7r(l,l)-'^i(l)7r2(l) and ^^[3,3] = + + + Constrained 

under the null hypothesis of independence between variables 1 and 2, the last term can 

be further simplified as 

-^[3)3] •ifi(O) 7r2(0) 5ri(0) 7r2{l) ?i(l) *2(0) ^l(l) *2(1) 

7i(l) 2̂(1) + ̂ i(l) 2̂(0) + 7ri(0) -̂ 2(1) + *l(0) ̂ 2(0) 
iri(0)7ri(l)jr2(0)jr2(l) *i(0)7ri(l)jr2(0)7r2(l)-

Therefore. 

(3-22) 
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One should note that 

^(1,1) - 7ri(l) ^2(1) = 7r(l, 1) - [7r(l, 1) + ^(1,0)] [^(0,1) + ^(1,1)] 

= . . . = 7r(l, 1) [1 - ^(0,1) - 7r(l, 1) - 7r(l, 0)] - 7r(l, 0) 7r(0,1) 

= 7r(0,0) %(1,1) - 7r(0,1) T(l, 0). 

Consequently, the score test statistic can also be written as 

^corei2 = "0 (̂1,0)]̂  
l̂(O) Tl(l) T2(0) #2(1) 

which is Pearson's chi-square statistic for independence, usually written in cell counts 

(see Agresti, 1996, page 52), here expressed in ceU probabilities. 

An extension to the three binary variables case is now derived. The score test 

statistic for the exclusion of edge 12 from the saturated model, with nuU hypothesis 

that both A12 and A123 are zero (and alternative hypothesis that both are unconstrained) 

equals 

Scorei2 = Tig 

- T 
I'l2 

i'l23 

^-[3,3] ^[7,3] 

^[7,3] ^[7,7] 

vl2 

^ 123 

where 

^[3,3] 1 - + 1 + 1 + 
f(0,0,0) ' ir(0,l,0) ' ir(l,0,0) ' 

3̂(0) I 3̂(0) 
ĵ i3(0,0)jr23(0,0) ^ 7ri3(0,0)jr23(l,0) 

f̂ 3(0)P 

+ % + *3(0) 
i!-i3(l,0)7r23(0,0) ^ *i3(l,0)jr23(l,0) 

iri3(0,0) jri3(l,0) 7r23(0,0) #23(1,0) 

# , 3 ] = - K [ 3 , 3 ] 

^[7,7] =K[3 ,3 ] + 3̂(1) + %- 3̂(1) 3̂(1) + *3(1) 
#13(0,1) *23(0,1) ^ #13(0,1) #23(1,1) ^ #13(1,1) #23(0,1) ^ #13(1,1) #23(1,1) 

fĵ 3(0)l̂  L [*3(l)l̂  + 
#13 (0 ,0) #13 (1 ,0 ) #23 (0 ,0) # 2 3 ( 1 , 0 ) ^ #13 (0 ,1) #13 (1 ,1) #23 (0 ,1) #23 (1 ,1) 

and 

= "^12(1,1) #13 (1 ,0 ) #23 (1 ,0) I #13 (1 ,1) #23 (1 ,1) 

#3 ( 0 ) #3 ( 1 ) 

#13 (1 ,1 ) #23 (1 ,1) Z'l23 — ^(1, 1, 1) , 

once evaluated at the m.l.e. Performing the substitutions and simplifying the results 
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ffî (l,l,0)^3(0)-*I3a,0)*23(l,0)1^*3(0) , fir(l,l,l)i!-3m-:̂ l3(l,l)ĵ 23(l,1)1^*3(1)1 
L *l3(0,0)jri3(l,0) 71-23(0,0) 7r23(l,0) """ jri3(0,l)7ri3(l,l)ir23(0,l)Tr23(l,l) J ' 

The proposed formula for the score test statistic, for testing the null hypothesis of 

conditional independence between variables 1 and 2 given variable 3, has also two 

terms, corresponding to the two categories of the variable being conditioned on. The 

denominators are the product of all marginal probabihties for each category of variable 

3. 

More generally, it is suggested that the score test statistic for the exclusion of edge 

zj from the saturated GLL model (with three binary variables) is given by 

C _ ^ f [ĵ ,;k(l,l,0) ek(0)-jr̂ k(l,0) *;*(!,0)1'' *&(0) [ej .̂t(l,l,l) *;k(l,l)l' *k(l) ] 
COre,j— ni.,î .e{0,l}*ik(li,Zt=0)jr;*(Z;,Z&=0) nij,% .̂e(0,l}̂ <*:(li,lk=l) *;&(!;,I&=l) J 

(3.23) 

3.4.3 Signed square-root versions of the tests statistics for sin-

gle edge exclusion in GLL models 

Only the two variables case is considered when studying the signed square-root versions 

of the test statistics in GLL models, since in the presence of three (or more) variables 

the test statistic for single edge exclusion from the saturated model depends on two 

(or more) parameters. Therefore, it becomes unclear for which parameter to consider 

the sign. One-sided tests should be used when the analyst is interested in testing for 

a positive association between the two variables, which corresponds to an odds ratio 

greater than one (and a log odds ratio greater than zero). 

In GG models the parameter of interest is the partial correlation coefficient and its 

sign is considered. In GLL models the logarithm of the odds ratio tpi2 is the parameter 

of interest. A positive association corresponds to ^12 > 1 <=> log ^12 > 0. The sign of 

the test statistic is negative if ^12 < 1 log'^12 < 0. 

It is proposed that the signed square-root version of the LRT statistic for single 

edge exclusion from the saturated model, denoted as is obtained as 

= 5Z^M[log^i2] ^2n0Ezi,z2e{o,i} ^12(^1,^2) log (3 24) 



Similarly, the signed square-root version of the Wald test statistic for single edge ex-

clusion from the saturated model, denoted as is given by 

= l o g ^ i 2 , / _ i _ , (3.25) 

and the signed square-root version of the score test statistic equals 

1) " ^1(1)^2(1)] / ^ ( o ) jri(i?L(o)#2(i) -

As in the Gaussian case, under the null hypothesis of independence the signed square-

root versions of the three test statistics are normally distributed. 

3.5 Normal Approximations to the Distributions of 

the Test Statistics in GLL Models with Two 

and Three Variables 

The aim of this section is to derive asymptotic normal approximations to the distri-

butions of the test statistics for single edge exclusion from the saturated model (LRT, 

Wald and score test statistics) in graphical log-linear models with two and three bi-

nary variables, under the alternative hypothesis that the saturated model holds. The 

delta-method is used. 

3.5.1 Using the LRT statistic 

A reasoning similar to that followed in Section 3.1.1 is now going to be used to obtain 

the asymptotic distribution of the LRT statistic for single edge exclusion from the 

saturated model, under the alternative hypothesis that the saturated GLL model holds, 

using the delta-method. 

The vector of parameters of interest is now 9 = vec{X), and its m.l.e., based on Mg 

observations is 0 = vec(X). Recall that, since 9 is the m.l.e. of 9, it has an asymptotic 

normal distribution with mean 9 and variance given by the inverse of the information 

matrix. If A' is the inverse information matrix based on a single observation (as defined 

in Section 2.7.2), var(^) = ^ A!". Using the delta-method, if /(^) is differentiable at 
"0 

T 
In- , f / r? r I w I \ 

0, \ ag y I <9̂  y 
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In this chapter 

f: 

(^) = ^ Z,ETL. For example, in the two variables case, 

= 2 y 
/ V 

7ri2(Zi,T2)log 
7ri2(a;i,Z2) 

7ri(zi)7r2(3;2) 
zi,Z2E{0,l} 

since f,.R7i2 is given by Equation 3.17. 

The function is diEerentiable at ^ provided all cell probabilities and all A are 

different from zero. In the remainder of the chapter var(Z,727^) and cov(i^7?7^ , Z,.RTL) 

denote, respectively, the variance and the covariance of the test statistics in the 

asymptotic distribution where, for notational convenience, ^md 

In the two variables case, ^ = ?;ec(A) = [Â  Ag Ai2]^ and ^ = %;ec(A) = [Ai A2 Ai2]^. 

Therefore, applying the delta-method, the expected value of the LRT statistic, in the 

asymptotic distribution, equals 

AE[Lm-,,\ = 2 nt E . . ,ae ) . . i } log ( . % % & , ) , (3.27) 

and the variance in the asymptotic distribution is obtained as 

ybi{LRTi2) = n0 K A, 

where jK" is given by Equation 2.4 and A is the vector of the derivatives of 

with respect to Ai, A2 and A12. In order to obtain such derivatives it is necessary to 

calculate the derivatives of each of the four cell probabilities, as well as of each of the 

four logarithmic terms, with respect to the three A. Note that, Ag is also a function of 

Ai, A2 and A12. All these derivatives can be expressed in cell probabilities, as shown in 

appendix Tables A.l and A.2. When all the derivatives of with respect to the A 

are written as a function of the cell probabihties, the vector A is of the following form 

A = 

a/A^/aAi2 

-7ri(l) AE[Lmj> + 2 [,(1,0) log ( ; J ^ ) + ' (1 .1 ) log 

-7̂ 2(1) AE{LRn^] + 2 [x(0,1) log + '(1,1) log 

ae\lilti2] + 2 k l , 1) log 

77(1,1) 

"0 
(3.28) 



Multiplying A' A and simpli:^ing the resulting expression by writing it as a 

function of cell probabilities, vr, gives the following result 

1) 
(0)7r2(l) 

(1 ,1) 

2(1) 

v a r ( l ^ i 2 ) = 4 710 [7r(0, 0) log^ + ^(0,1) 

+7r(l, 0) log^ (;rji%(0)) + ^(1' 

= 4/^0 7ri2(zi, Z2) log' 

(3.29) 

In the three variables case, ^ = 7;ec(A) = [Ai A2 A12 A3 A13 A23 A123] and ^ = 

t;ec(A) = [Ai A2 A12 A3 A13 A23 Ai23] .̂ Applying the delta-method, the expected values 

for each of the three LRT statistics for single edge exclusion from the saturated model, 

in the asymptotic distribution, are given by 

AE[LRTij] = 2nt V ] Tijk{Xi,Xj,Xt) log / \ 

The variance matrix of the three likelihood ratio test statistics, for single edge exclusion 

from the saturated GLL model, is a 3 x 3 symmetric matrix and equals n© K A, 

where is given by Equation 2.5, and A is a 7 x 3 matrix, having in each column the 

derivatives of f l j ^ with respect to the seven A. The derivatives of A©, as well as those 

of each of the eight cell probabilities, and those of the logarithmic terms of each of the 

with respect to the vector of seven A, once expressed in cell probabihties, are 

presented in appendix Tables A.3, A.4 and A.5. So are the various elements of the 

matrix A, written as a function of the cell probabilities (Tables A.6 and A.7). 

In conclusion: it is proposed that the variance (in the asymptotic distribution) of 

the LRT statistic for the exclusion of edge ij (with i and j distinct, from 1 to 3) from 

the saturated GLL model is expressed in cell probabilities, as 

variLRTy) = 4 n , 'iMXi, Xj, % ) log ' 

(3.31) 
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Analogously, the covariance (in the asymptotic distribution) between the LRT statistic 

for the exclusion of edge zj and the LRT statistic for the exclusion of edge zA; (with 

z, J and /c distinct, from 1 to 3) 6rom the saturated GLL model is expressed in cell 

probabihties, eis 

cov(^;i%nj, 1 , % ; 

Xk) TVj{Xj) 

"0 
(3.32) 

A small simulation study was performed, validating the formulae presented for the 

variance structure (in the asymptotic distribution) of the three test statistics for single 

edge exclusion from the saturated model. One thousand contingency tables with a 

certain cell probability structure were generated. Two different sample sizes, were 

used: 1000 and 10000. For each of the tables, the values of the three likelihood ratio 

test statistics for single edge exclusion from the saturated model were calculated and 

stored. Then, for each sample size, the variance matrices of the one thousand values 

of the three test statistics were obtained. 

The vector of cell probabilities used, in standard cell order, is 

7r(z) = [0.05 0.05 0.1 0.1 0.2 0.1 0.15 0.25]^. 

The theoretical values obtained using the six formulae proposed above can be compared 

to the simulated values: 

theoretical 
values 

simulated 
values 

theoretical 
values 

simulated 
values 

n0 = 1000 n0 = 1000 n0 = 10 000 n0 = 10000 

V&T{LRTI2) 98.400 102.792 984.004 991.077 

var(Z/.RTi3) 69.317 74.935 693.170 682.474 

var(Z,E%) 227.909 224.088 2 279.089 2308.754 

cov(Z,A7i2, 68.042 70.386 680.421 677.314 

cov(Z,;gTi2,1%) 68.263 71.101 682.630 692.646 

C0V(I ,^13,^^23) 66.516 69.199 665.164 651.256 



Additionally, for both sample sizes, ten batches of 1000 repetitions each were per-

formed, and for each of them the variances and covariances of the three test statistics 

were calculated and stored. Finally, 95 and 99% confidence intervals for the mean 

variances and mean covariances were obtained, as follows: 

CI for 95% 99% 95% 99% 

720 = 1 000 ng = 1000 n0 = 10 000 ng = 10000 

var {LRT12) (99.79; 108.40) (97.91; 110,28) (946.03; 1019.89) (929.91; 1036.01) 

var {LRT13) (72.03; 78.0) (70.73; 79.31) (675.36; 716.28) (666.43; 725.21) 

var (LRT23) (224.53; 246.25) (219.79; 250.99) (2 242.27; 2 334.95) (2 222.03; 2 355.19) 

cov {LRT12, LRT13) (68.52; 74.17) (67.29; 75.40) (653.98; 703.54) (643.16; 714.36) 

cov {LRT12, LRT23) (65.73; 73.30) (64.08; 74.96) (624.48; 723.71) (602.81; 745.37) 

cov(Z,.Rri3, Z/BTza) (65.27; 73.22) (63.53; 74.95) (629.44; 698.59) (614.35; 713.69) 

The proposed theoretical values lie inside the boundaries of the confidence intervals, 

not only at a 99% confidence level, but also at 95%, when the sample size is big 

720 = 10 000. For a sample size of 1 000 theoretical values are inside the limits of the 

confidence intervals at a 99% confidence level, but some values are outside when a 95% 

confidence level is considered. These results confirm that the proposed formulae for 

the variances and the covariances of the likelihood ratio test statistics, for single edge 

exclusion from the saturated model, hold asymptotically. 

In conclusion: the LRT statistic for single edge exclusion from a saturated GLL 

model with two or three binary variables, under the alternative hypothesis that the 

saturated model holds, has an asymptotic normal distribution with means given by 

Equations 3.27 and 3.30, and variances and covariances given by Equations 3.29, 3.31 

and 3.32. 

3.5.2 Using the Wald and the score test statistics 

In the case the Wald test statistic is used, with two variables, 

Jl2 
•7r(0,0) 7 r ( l , l ) ^ 

O k 7r(0,l) 7r( l ,0) , 

7r(0.0) ^ ,(0,1) ^ ,(1,0) ' ,(1,1) 

— ^12 / [exp{—Ag} (1 + exp{—A2} + exp{—Ai} + exp{—Ai — A2 — A12})]. 

Applying the delta-method, the expected value of the Wald test statistic, in the asymp-

totic distribution, equals 

"0 
-aelw (ildi2] (3.33) 

,(0,0) ^ ,(0,1) T(1,0) :r(l,l) 



and the variance in the asymptotic distribution is obtained as 

var(WoWi2) = ^0 AT A, 

where A!" is given by Equation 2.4 and A is the vector of the derivatives of with 

respect to Ai, A2 and A12, expressed in cell probabihties as follows 

A 

-7ri(l) + 

1 
x(l,0) ̂  7 r ( l , l ) 

1 1 + 1 + 1 

,(0,0) ' ,(0,1) + ,(1,0) + ,(1,1) 

1 + I 

,(0,1) + ,(1,1) 
+ 1 + 1 + 1 

7r(0,0) ' 7 r (0 , l ) ^ T ( l . O ) ^ 7 r ( l . l ) 

-7 r ( l , 1) 4 r %(!,!) 

T(0,0) ̂  ^ ^ ,(1,1) 
+ zloRV'iz 

7r(0,0) ^ 5 r (0 , l ) ^ ^ ( 1 , 0 ) ^ , ( 1 , 1 ) 

(3.34) 

It is suggested that, in the two variables case, the variance of the Wald test statistic, 

in the asymptotic distribution, simplifies to 

var(waldi2) = aae\waldi2] 1 + 

+ i-^{ae[waldu] 

l o g ^ 1 2 ( , r ( 0 , l ) ) 2 (7r ( l , 0 ) )2 ( T ( l , l ) ) 2 

( " ( 0 , 0 ) + 7 r (0 , l ) + 7 r ( l ,0 ) + , ( 1 , 1 ) ) 

1 , 1 1 1 I 1 
(7r (0 ,0) )a ( 7 r ( 0 , l ) ) a ( 7 r ( l , 0 ) ) ^ ( , ( 1 , 1 ) ) ^ 

(,(0,0) + ,(0,1) + ,(1,0) + ,(1,1)) 

(3.35) 

In the three variables case, when applying the delta-method, the expected values, 

in the asymptotic distribution, for each of the three Wald test statistics for single edge 

exclusion from the saturated model are given by 

AE\Waldij] = 77,0 
log(^U.A:=o) 

E, 
+ 

lo§(^u.t=i) 

XI,XJ&{0,L} TRIJKIXI,XJ,XI,=0) E 
= fl ij 

(3.36) 

The variance matrix, in the asymptotic distribution of the three Wald test statistics for 

single edge exclusion from the saturated model, is a 3 x 3 symmetric matrix and equals 

710 A^ A!" A, where A' is given by Equation 2.5, and A is a 7 x 3 matrix, having in 
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each column the derivatives of with respect to the seven A. Each of the elements 

of the matrix A can be written as a function of the cell probabilities, as presented in 

appendix Tables A.8 to A. 10. 

It was not possible to obtain a nice simplified formula for the variances and covari-

ances of the three Wald test statistics. For further calculations the several pages long 

formulae produced by MAPLE were used. 

In the case of the score test statistic, with two variables, 

f Score _ _ [•»(!,l)-7r;(l) 
"/iZ ;ri(0);ri(l) 772(0) ;r2(l) [l-7ri(l)]7ri(l)[l-7r2(l)]T2(l)' 

Expressing directly as a function of the three A and differentiating it with respect 

to Ai, Ag and A12 was not easy because of the complicated expressions that were ob-

tained. The decision was made to obtain such derivatives indirectly, by differentiating 

respect to the 7r and then the vr with respect to the A, i.e., 

^A ^A 

where % and A are 3 x 1 vectors with 7ri(l),7r2(l),7r(l,l) and Ai,A2,Ai2, respectively. 

For example, 

_ ^ i ( i ) a7r2(i) a7r(i,i) 

^Ai ^Ai ^7ri(l) ^ ^Ai ^7r2(l) ^ 6A1 <97r(l,l)' 

Analogously for the derivatives with respect to Ag and A12. After some calculations 

these derivatives can be expressed in ceU probabilities, as follows 

fScore 1—27ri (1) 
j: 

-2{7r(l,l)-7ri(l) 7:2(1)} 
8%i(l) 7ri(l) [l-%l(l)] [1-T2(1)] 

- 2 { 7 r ( l , l ) - 7 r i ( l ) 772(1)} 
a%2(i) _[l-7ri(l)] 772(1) [1-772(1)] 

n )ri2-7ri(l),r2(l) 
a%(i,i) " T:(l) [l-;ri(l)]7r2(l) [1-

12 7ri(l) [l-jri{l)j 

'Score 1 —27r2(l) 
12 ;r2(l) [1-̂ 2(1)] 
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Consequently, 

A 

"0 

j _ 

n@ 

AE\Score,,] [l ^ 2=^(1) ^ 

AE[Score,,] [l - 2,^(1) -

10 
y l E [ 5 ' c o r e i 2 ] 7 r ( l , 1) 

4 _ 1 1 I 2 { l - 7 r i ( l ) - 7 r 2 ( l ) - 7 r ( l , l ) + 2 7 r i ( l ) ^ 2 ( 1 ) } 

T i ( l ) 7 r 2 ( l ) % ( l , l ) - 7 r i ( l ) 7 r 2 ( l ) 

(3.37) 

Applying the delta-method, the expected value of the score test statistic, in the asymp-

totic distribution, simpUfies to 

AE[Scoren] 

and the variance, in the asymptotic distribution, is obtained as 

(3.38) 

vav{Scorei2) = K A, 

where jPT is given by E^quation 2.4 and A is given by E^quation 3.37. Calculations 

where made by hand and using MAPLE. However, it was not possible to obtain a nice 

simplified formula for the variance of the score test statistic (as had been in the case of 

the LRT and the Wald test statistics). For that reason a final expression for the variance 

is not presented here. Additionally, the decision was made not to consider the three 

variables case, due to the complexity already existent in the two variables case. Hence, 

the specific calculations for obtaining the variance of the score test statistic, in the 

three variables case, were not performed. Yet, the expected values, in the asymptotic 

distribution, for each of the three score test statistics for single edge exclusion from the 

saturated model are given by 

[Score. uJ 

M0 
7r fc (0 ) -7 r jA , ( l , 0 ) n ^ ( 0 ) ^ % * ( ! ) 

(3.39) 
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3.5.3 Using signed square-root versions of the test statistics, 

in the two variables case 

The aim of this section is to derive the asymptotic distributions of the signed square-

root versions of the test statistics for single edge exclusion hrom the saturated GLL 

model, in the two variables case, under the alternative hypothesis of non-independence. 

The delta-method is used, as in previous sections. 

In the case of the signed square-root version of the LRT statistic, 

= g2pM[l0g^l2] 
' . S , , ( a f e S i ) ' 

In the case of the Wald test statistic, 

+ „ / n T\ + ZTTTTT + 7r(0,0) ; r ( 0 , l ) %(1 ,0 ) 7 r ( l , l ) 

and in the case of the score test statistic 

= M l , i ) _ ^,(1)^,(1)] ' 1 
7ri(0)7ri(l)7r2(0)7r2(l)' 

Using the delta-method, and under the alternative hypothesis that the saturated model 

holds, the signed square-root versions of the three test statistics for single edge exclu-

sion, in GLL models, are asymptotically normal distributed: 

5 ' c o r e ^ TV (AE'[5core^], %;or(Scorei^)) 

where 

As in Section 3.1.5, the variance of the signed square-root versions of the test statistics 

can be obtained by applying the delta-method a second time, the new A matrix having 

the derivative of the signed square-root version of the test statistic being considered 

with respect to the non signed one. For example, in the case of the LRT, 

~8fW^ " M F " ^vn[iogM 
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Hence, 

var iLRTtr) = var(LKr,,) (3 40) 

where uor(^.RT^2) is given by Ek^nation 3.29 and is given by Equation 3.27. 

Analogously, 

. a . ( W a M r ) = var iWald, , ) (3.41) 

where %;ar(WoZdi2) is given by Equation 3.35 and /lE[WoZdi2] is given by Equation 3.33 

and 

variScoreT) = var{Score,,) (3.42) 

where yl^[5'corei2] is given by Equation 3.38. 

In brief: asymptotic normal approximations have been derived to the distributions 

of the non-signed and the signed square-root versions of the three test statistics for 

single edge exclusion from the saturated GLL model. The possibility of an alternative 

approximation is studied in the next section. 

3.6 Non-central Approximation to the Distribu-

tion of the LRT in a GLL Model with Two Vari-

ables 

Similarly to what was undertaken in Section 3.2, the current section proposes a non-

central chi-square approximation to the distribution of the likelihood ratio test statistic 

for single edge exclusion from the saturated GLL model with two binary variables, at 

a local alternative. Section 3.7 compares the quality of the non-central chi-square 

approximation to that of the normal approximation derived in Section 3.5.1. 

A brief explanation on how to obtain the non-centrality parameter ip follows. The 

null hypothesis is that A12 = 0 <1̂  ^12 = 1 4* log ^12 = 0. Consequently, the distance 

from the null is measured as 6 = y/n^ (log ^12 — 0). The non-centrality parameter equals 

where K[3,3] is the element of the inverse information matrix associated with the 

restriction in jifo, i.e., associated with A12. From Section 2.7.2, 3] = 
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1 + zryfrr- Therefore, r(l,0) ' 

v4E[logi/;i2] 
1 + _ 1 _ + _ J _ + 1 

' .rrfn 1\ f m-M m ^ vl,SE(log^i2) 
(3.43) 

;r(0,0) (̂0,1) T(1,0) ;r(l,l) 

Note that y) can also be obtained as the square of the ratio of the mean of the log 

transform of the sample odds ratio, in the asymptotic distribution, over its asymp-

totic standard error. Also note that the non-centrality parameter equals the mean of 

the Wald test statistic in the asymptotic normal distribution, i.e., y; = AE'[PFoZ(fi2]. 

Although the three variables case is not considered, it is possible to conclude that 

the non-centrahty parameter of a non-central chi-square approximation to the LRT 

statistic, under the alternative hypothesis that edge zj is present in the model, equals 

given by Equation 3.36. 

3.7 Quality of the Two Approximations, in GLL 

Models 

In the two binary variables case, under the null hypothesis of independence = 0 <=> 

ibi2 = 1), the asymptotic distribution of the likelihood ratio test statistic for single edge 

exclusion from the saturated GLL model is Xi- Under the alternative hypothesis that 

the saturated model holds, (using the delta-method) the asymptotic distribution of the 

likelihood ratio test tends to the normal distribution, as derived in Section 3.5.1, as n% 

tends to inGnity. At A12 = 0 (or ^12 = 1) the asymptotic distribution is degenerate, 

with mean zero and variance zero. The normal approximation holds for zig at infinity, 

but it is poor for nQ finite. 

As in Section 3.3 (for GG models), a simulation study was used to assess the 

quality of the two proposed approximations (normal and non-central chi-square) to 

the distribution of the LRT statistic for single edge exclusion from the saturated GLL 

model with two binary variables, for various values of ng. First, a brief explanation 

on how the simulation study was conducted is given. Then, the histograms of the 

empirical distribution of the LRT statistic are plotted, with a normal curve overlapping, 

corresponding to the proposed theoretical normal approximation. Two different sample 

sizes and several combinations of odds ratios and marginal probabihties are used. The 

quality of the normal approximation is assessed. Finally, p-p plots are produced, 
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allowing the comparison between the quality of the normal and of the non-central 

chi-square approximations. Some guidelines are given as to when each of the two 

approximations performs better. 

The parameters for the simulation study were chosen as follows. In a 2 x 2 con-

tingency table there are four cell probabilities that add up to one, therefore three un-

knowns. Alternatively, one can consider two fixed marginal probability values, say 7ri(0) 

and 7r2(0), and a given odds ratio value ("̂ 12) and obtain the corresponding cell probabil-

ities. Indeed, for a given combination of 7ri(0), 7:2(0) and '̂ 12 the four cell probabihties 

can be written as: 7r(0, l) = 7ri(0) —7r(0,0); 7r(l,0) = 7:2(0) —7r(0,0); 7r(l,l) = 

1 — 7ri(0) — 7:2(0) -t- 7 r ( 0 , 0 ) . If ^12 = 1, then 7 : ( 0 , 0 ) = T T i ( 0 ) 7 : 2 ( 0 ) . If ^12 f 1, since 

7:(0, 0)7:(1,1) 7:(0,0) (1 - 7ri(0) - 7:2(0) -|- 7:(0, 0)) 
v;i2 

7:(0,1)7:(1,0) ( 7 : 1 ( 0 ) - 7 : ( 0 , 0 ) ) ( 7 : 2 ( 0 ) - 7 : ( 0 , 0 ) ) 

m 7ri(0) +:r2(0) 1 -/[(I - '(̂ 12) (Tri(O) + 7:2(0)) - 1]̂  + 4 (1 - ^12) [̂ "12 7:1(0)7:2(0)] 
• (̂0,0) 5 2 ( l - f c ) + W ^ ) : • 

The decision was made to fix the values of 7:1(0), 7:3(0) and ^12. 

Because of the way the two marginal probabilities were chosen, there are several 

types of symmetries that can be taken into account when using ;ri(0), 7:2(0) and ^12 to 

calculate either the likelihood ratio test statistic (from Equation 3.17) or the probability 

of selecting the saturated model (Section 4.2.1). In brief: 

® symmetry due to the swapping of 7:^(0) and 7 : 2 ( 0 ) : for a given ^12, the value of 

f/BT\2 is the same for 7:1 (0) = z; 7:2(0) = 2/ and for 7:1(0) = 7:2(0) = z; 

# symmetry related to complementary marginal probability values: for a given 

^12, the value of Z,72Ti2 is the same for 7:1(0) = a;; 7:2(0) = 2/ and for 7:1 (0) = 

1 - %/; 7:2(0) = 1 -

# symmetry when one of the marginal probabilities equals 0.5: for a given ^12, the 

value of LRT12 is the same for 7:1(0) = 0.5; 7:2(0) = y and 7:1(0) = 0.5; 7:2(0) = 

1 — y; or for 7:1(0) = x] 7:2(0) = 0.5 and 7:1(0) = 1 — z; 7:2(0) = 0.5. 

Besides, there is a 'reciprocal (inverse)' symmetry due to the value of the odds ratio. 

Indeed, the value of LRT12 is the same for ^12 = z, 7:1 (0) = x, 7:2(0) = y and for 

'̂ 12 = 1/z, 7:1(0) = 1 - a;, 7:2(0) = ?/. 

Due to these symmetries, only some combinations of marginal probabilities and 

odds ratio are considered. -012 takes values from 1 to 4, 7:1(0) from 0.1 to 0.9 and 

7:2(0) from 0.1 to 0.2. Figure 3.4 shows histograms of the empirical distribution of the 

96 



likelihood ratio test statistic, for the chosen combinations of marginal cell probabilities 

and odds ratio values. The sample size equals 1000 observations. Each of the eight 

rows corresponds to a different combination of cell marginal probabihties 7ri(0) and 

7r2(0): from top to bottom of the plot, 0.1 and 0.1; 0.3 and 0.1; 0.5 and 0.1; 0.7 and 

0.1; 0.9 and 0.1; 0.3 and 0.2; 0.5 and 0.2; and 0.7 and 0.2. Two different colours are used 

to highhght a change in marginal probabilities. Each of the six colunms corresponds 

to a different odds ratio value: from left to right, ^12 = 1,1-5,2,2.5,3 and 4. In each 

histogram the horizontal axis corresponds to the range of values obtained for for 

the combination of ceU probabihties used. In each plot there is a blue curve overlapping: 

it represents the density of a normal distribution with mean and variance given by 

Equations 3.27 and 3.29. The aim is to detect how close the simulated values are to 

the theoretical normal approximation proposed. The green line in the first column 

plots represents the density of a chi-square distribution on one degree of freedom. The 

histograms show that, as expected, the distribution of Z,.RTi2 looks chi-squared on one 

degree of freedom for '(/;i2 = 1. For '̂ 12 7̂  1 the distribution of Z,JZTi2 tends to the 

normal as the odds ratio increases, faster for less unbalanced combinations of marginal 

probabihties (as happens for 7ri(0) = 0.3 or 0.5 and 7r2(0) = 0.2). Indeed, for less 

unbalanced combinations of marginal probabilities, normality seems to be achieved for 

an odds ratio value around 2. An odds ratio of at least 2.5 seems to be required for 

more unbalanced combinations of 7ri(0) and 7r2(0). 

It is worth taking into account the minimum expected counts in each cell, for the 

different combinations of marginal probabilities and odds ratio values, with a sample 

size of 1 000. A minimum expected cell count of 10 is obtained with an odds ratio of 

1 and 7ri(0) = 712(0) = 0.1. When 7r2(0) = 0.1 and 7ri(0) = 0.9 a minimum expected 

cell count of 7.1 is obtained with 1̂ 12 = 1.5, whereas values of ^12 of 3 and 4 lead 

to minimum expected cell counts of 3.8 and 2.9, respectively. For this reason odds 

ratio values greater than 4 were not considered in the simulation study. For more 

balanced combinations of marginal probabilities, for example 0.3 and 0.2, or 0.5 and 

0.2, the minimum expected cell counts equal 60 (for '̂ 12 = 1) zmd 48.86 (for -̂ 12 = 4), 

respectively. In brief: the most unbalanced combinations of marginal probabihties 

are the ones that should be looked at more carefully when drawing conclusions, since 

they are more likely to correspond to situations of very small expected cell &equencies. 

Expected cell counts associated with the different combinations of 7ri(0), 7r2(0) and ^12 
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Figure 3.4; Histograms of the empirical distribution of LRT12, for = 1000 for different 

combinations of cell marginal probabilities (in rows: values for 7ri(0) on the left, values for 

772(0) on the right of the plot) and odds ratios (in columns: values for ^12 on top). 

used in the current section (for uq = 1 000) are given in appendix Table B.l. 

Figure 3.5 highlights the better performance of the normal approximation for large 

values of the sample size: n0 = 10 000. The same combinations of marginal probabihties 

were chosen. To facilitate the interpretation of the plots only values of the odds ratio 

from 1 to 2.5 are displayed, the reason being normality is now achieved for smaller values 

of the odds ratio, even for more unbalanced combinations of marginal probabilities. 

This confirms the normal approximation holds asymptotically. 

In brief: the normal approximation to the distribution of the LRT statistic for single 

edge exclusion from the saturated model is a good approximation for tzq large, an odds 

ratio not close to one and balanced combinations of marginal probabilities. One should 

note that in a GG model n = I 000 can be considered a large sample size. However, 

that is not the case in a GLL model: for a 2 x 2 contingency table riij, = 10 000 can be 

considered a large sample size. 
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Figure 3.5: Histograms of the empirical distribution of LRT12, for Mg = 10000 for different 

combinations of cell marginal probabilities (in rows: values for %% (0) on the left, values for 

7r2(0) on the right of the plot) and odds ratios (in columns: values for •0i2 on top). 

The quality of the non-central chi-square approximation proposed in Section 3.6 is 

now asessed, and contrasted to that of the normal approximation, by using p-p plots. 

Figure 3.6 shows p-p plots of the distribution of the likelihood ratio test statistic, ob-

tained for the combinations of marginal probabilities 7ri(0), 712(0) and odds ratio ^12 

used in Figure 3.4. The sample size is n0 = 1000. As in Section 3.3 (for GG models), 

the red line represents an exact agreement between observed and expected cumulative 

probabilities, the blue curve represents the asymptotic normal approximation (with 

mean and variance given by Equations 3.27 and 3.29) and the green curve the non cen-

tral chi-square approximation (with non-centrality parameter given by Equation 3.43). 

From Figure 3.6, with a sample size of 1 000, it is possible to conclude that, as ex-

pected, for an odds ratio of one the chi-square distribution is a good approximation 

(the non-centrality parameter, is zero, so the non central chi-square becomes a central 

chi-square on one degree of freedom). For values of the odds ratio close to one (1.5, 
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and even 2) the non central chi-square is a better approximation than the normal. For 

higher values of the odds ratio (namely 3 or 4) the non central chi-square becomes a 

poor approximation, except in the cases of balanced tables (7ri(0) = 0.3; 7r2(0) = 0.1 

and 7ri(0) = 0.3; 712(0) = 0.2). 

psi = 1 

0-1':^ 

psi = 1.5 psi = 2 psi = 2.5 psi = 3 psi = 4 

0.3: 

0.5: 

0.7: 

0.9; 0.1 

0.3 • 

0.5: 

0.7; 

Figure 3.6; P-P plots of the distribution of LRT12, for different combinations of cell marginal 

probabilities (in rows: values for 7ri(0) on the left, values for 7r2(0) on the right of the plot) 

and odds ratios (in columns: values for V'12 on top), ng = 1000 

At this point it was necessary to clarify the concept of balance in a 2 x 2 contingency 

table. Since no measure of balance was found in the hterature, the Balance Index (BI) 

is proposed. In the 2 x 2 case. 

BI = 
1 1 1 + + 

7r(0,0) 7r(0,1) 7r(l,0) 7 r ( l , l ) ' 

The balance index has the following two desirable properties: 

i) it relates to information, i.e., it comes from the information matrix and equals 

the asymptotic variance of A12 (from Section 2.7.2); 
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ii) it has a minimum value of 16 when all four cell probabilities are equal. Big BI 

values can be reached if one of the cell probabilities is very small, by comparison 

with the others. Higher values of BI are, therefore, associated with contingency 

tables with small minimum (expected) cell counts. Since all cell probabilities are 

assumed positive, BI always has finite values. 

Table 3.3 shows the values of the balance index for the different combinations of odds 

ratios and marginal probabihties used in Figures 3.4 and 3.6. For ^12 = 3 or 4, 

the smallest values of are obtained for 7ri(0) = 0.3, 7r2(0) = 0.1 and 7ri(0) = 

0.3, 7r2(0) = 0.2, the combinations of marginal probabilities for which the non-central 

chi-square approximation performs best. 

7ri(0) / 7r2(0) i;̂ i2 = 1 ^12 = 1.5 ^12 — 2 ^12 = 2.5 '̂ 12 — 3 '̂ 12 = 4 

0.1 / 0.1 123.5 97.3 84.5 76.9 72.1 66.4 

0.3 / 0.1 52.9 47.8 45.9 45.5 45.7 47.1 

0.5 / 0.1 44.4 45.8 48.5 51.7 55.2 62.6 

0.7 / 0.1 52.9 61.9 71.4 81.1 90.9 110.7 

0.9 / 0.1 123.5 163.1 202.9 242.9 282.8 362.7 

0.3 / 0.2 29.8 27.6 26.8 26.6 26.7 27.2 

0.5 / 0.2 25 25.4 26.6 27.9 29.3 32.2 

0.7 / 0.2 29.7 33.5 37.5 41.6 45.7 54.1 

Table 3.3: Balance index values for different combinations of marginal probabilities and odds 

ratios 

The proposed measure of balance needs to be further investigated, so that the rela-

tionship between the value of the balance index, the value of the odds ratio and the 

quality of the derived approximations to the distribution of the LRT statistic can be 

better understood. 

The quality of the two approximations (normal and non-central chi-square) for a 

sample size of 10 000 can be assessed by inspecting Figure 3.7. For ^12 ^ 1, the blue line 

and the red hne almost overlap, conGrming the conclusions drawn from the histograms 

in Figure 3.5: for ng = 10 000 the normal approximation is a good approximation, even 

for small values of the odds ratio and for less balanced combinations of marginal cell 
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probabilities. This confirms the normal approximation holds asymptotically. However, 

the situation is quite different in the case of the non-central chi-square approximation. 

The green and the red lines almost overlap for values of ^12 up to 1.5, particularly 

for more balanced combinations of 7ri(0) and 7r2(0). Yet, as the distance from the 

null increases (i.e., as -^/n log(V'i2) increases) the non-central chi-square approximation 

becomes very poor, except in the cases of balanced tables (7ri(0) = 0.3; 7r2(0) = 0.1 and 

7ri(0) = 0.3;7r2(0) = 0.2, as before). This is shown by the green line, in the p-p plots 

corresponding to -012 equal to 3 or 4. 

psi = 1 

0.1 

psi = 1.5 psi = 2 psi = 2.5 psi =3 psi =4 

0.3: 

0 4 L = 

0.7: 

0.9: 

0.3 

0.7: 

Figure 3.7: P-P plots of the distribution of LRT12, for different combinations of cell marginal 

probabilities (in rows; values for 7ri(0) on the left, values for 7r2(0) on the right of the plot) 

and odds ratios (in columns: values for ipi2 on top), ng, = 10000 

Although plots are not presented, a smaller sample size of ng, = 500 was also 

investigated. As expected, the normal approximation performs much worse than in 

the case n© = 1 000. The approximation only seems acceptable for values of ^12 of 3 or 

4 and balanced tables. The non-central chi-square is a better approximation for small 

values of 1̂ 12. 
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I n c o n c l u s i o n s two different approximations to the distributions of the non-

signed and signed square-root versions of the hkelihood ratio test statistic for single edge 

exclusion, under the alternative hypothesis that the saturated model holds, have been 

derived, both in GG and in GLL models. The non-central chi-square approximation 

can be used in the two variables case and is a good approximation when the distance 

from the nuU is small (as M increases, either pi2 or log';/'i2 have to be close to zero). For 

small sample sizes, it performs better than the normal approximation, the distance from 

the null being small. The normal approximation holds asymptotically, i.e., performs 

better for large sample sizes. 

In the framework of GG models M = 1000 can already be considered a large sample 

size and the normal approximation is a good one, even for small values of the (partial) 

correlation coefRcient. In GLL models, 1000 observations is not a large sample size 

and the asymptotic normal approximation has some limitations, particularly for small 

values of the odds ratio and less balanced combinations of marginal probabilities. In 

the 2 x 2 case, 10 000 observations can already be considered a large sample size and the 

normal approximation seems a good approximation to the distribution of the likelihood 

ratio test statistic for single edge exclusion under the alternative hypothesis that the 

saturated model holds. 

Asymptotic normal approximations to the distributions of the Wald and of the 

score test statistics for single edge exclusion from the saturated model have also been 

derived. In GG models the conclusions apply to the general p variables case, whereas 

results for GLL models are restricted to the two and the three binary variables cases. 

Conclusions are very similar to those associated with the LRT statistic. 

In Chapter 4 all these theoretical approximations are used to derive the power of 

selecting the saturated model for the three test statistics for single edge exclusion. 
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Chapte r 4 

The Power of t he Test Statist ics for 

Single Edge Exclusion 

In Chapter 3 theoretical approximations have been derived to the distributions of 

the test statistics for single edge exclusion, under the alternative hypothesis that the 

saturated model holds. The aim of the current chapter is to investigate the power of 

the three test statistics for single edge exclusion (likelihood ratio, Wald and score), 

both in GG and in GLL models. Non-signed and signed square-root versions of the 

test statistics are considered. 

The power of an hypothesis test is the probability of rejecting the null hypothesis 

when it is false (the alternative hypothesis being true) and equals one minus the type II 

error. The deEnition of power o/ o used in this thesis follows 

Smith (1992): the power of the model selection procedure refers to the probability of 

selecting the true model given the specified true model parameters. The traditional 

definition of power is associated with a single hypothesis test with a single null hy-

pothesis. However, a model selection procedure involves a sequence of tests with a 

sequence of null hypotheses. The fact that more than one hypothesis is tested at a 

time may raise an argument for not calling the probability of selecting the true model 

potuer. Yet, because it has the essence of power, in the sense that it is the probability 

of accepting the 'right hypotheses', the decision was made to keep the term power. 

Simulation studies are conducted to estimate the power of selecting the saturated 

model when using the test statistics for single edge exclusion. Theoretical power func-

tions are also derived, and the quality of the approximations is assessed. Throughout 
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the chapter each individual hypothes i s test is carried out considering a size (type I 

error) of 5%. This does not mean, however, that each model select ion procedure has 

an overall size of 5% because of mult iple test ing. 

A more detai led description of the structure of the current chapter is now given. 

T h e chapter has two main parts: the first part (Section 4.1) a ims at s tudying the 

power of the test s tat is t ics for single edge exclusion in GG models; the second part 

(Section 4.2) is concerned wi th such a s t u d y in GLL models . 

T h e power of select ing the saturated G G model wi th two variables, us ing the like-

l ihood ratio test stat ist ic , is s tudied in Sect ion 4.1.1. Asympto t i c normal and non-

central chi-square approximat ions are derived. T h e quality of the two approximations 

is assessed by simulation, particularly as the sample size varies. Sect ion 4.1.Z derives 

asymptot ic normal approximat ions t o the power of the Wald and of the score test 

stat ist ics for single edge exclusion from a saturated G G model wi th two variables. Sec-

t ion 4.1 .3 invest igates t h e posit ive def initeness constraint on the 3 x 3 scaled inverse 

variance matrix . In Sect ion 4 .1 .4 the power of se lect ing the saturated GG model with 

three variables, using t h e L R T stat ist ic , is e s t imated by simulation. T h e corresponding 

theoretical normal approximat ion is derived in Sect ion 4.1.5. Sect ion 4 .1 .6 shows how 

the proposed theoretical approximat ions to the power of the test stat ist ics for single 

edge exclusion, in G G models , can be generalised to t h e p variables case. 

The power of select ing the saturated GLL model , wi th two binary variables, using 

the l ikelihood ratio test statist ic , is invest igated in Sect ion 4.2.1. A s y m p t o t i c normal 

and non-central chi-square approximat ions are derived. T h e quality of the two ap-

proximations is assessed by simulation, as the sample size varies. A s y m p t o t i c normal 

approximat ions to t h e power of the W a l d and of t h e score test s tat i s t ics ( in the two 

binary variables case) are derived in Sect ion 4.2.2. T h e power of the signed square-root 

versions of t h e three test s tat is t ics is s tudied in Sect ion 4.2.3. Finally, Sect ion 4.2.4 

a ims to generahse previous results, regarding the power of the test s tat is t ics for single 

edge exclusion from the saturated GLL model , to the three binary variables case. 
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4.1 Power of Single Edge Exclusion in GG Models 

In this first p a f t of the chapter GG models are considered and the power of single edge 

exclusion tes t s is analysed. 

4.1.1 Power of t he LRT stat is t ic in t he two variables case: 

normal versus non-centra l approximat ions 

The power for the LRT of excluding edge 12 from the saturated GG model with two 

variables, also called the power of selecting the saturated GG model wi th two variables, 

is first estimated by simulation. Theoretical power functions are then derived and 

compared to the simulation results. 

S i m u l a t e d p o w e r f u n c t i o n s 

The power of a backwards elimination model selection procedure for selecting the true 

(saturated) model is now investigated by a simulation study. In GG modelling, the 

association between manifest variables is measured by the (partial) correlation coefE-

cients. Power is calculated for different values of the correlation coefficient (41 different 

values of pig ranging from —1 to 1, w i th an interval of 0.05, are used). In other words, 

the probability of selecting the saturated model given each of the specified 'true' values 

for the correlation coefficient, is estimated. To study how power varies as a function 

of sample size n, simulations are repeated for n — 50,100, 200 ,500,1000. All the sim-

ulation results presented were obtained using the l ikehhood ratio test for single edge 

exclusion. Simulations were also carried out using the Wald test statist ic and the score 

test statistic and equivalent results were obtained - for that reason the corresponding 

plots are omitted. 

A more detailed explanation of the simulation procedure is now given. For each 

sample size n and for each chosen combination of values of the (partial) correlation co-

efficient (s) in the population, 1 000 samples were generated from a normal distribution 

with that pre-defined covariance structure. For each sample, the test statistic for single 

edge exclusion from the saturated model was calculated and stored. The probability 

of selecting the saturated model was then est imated, as the number of times, out of 

1000, that the saturated model was chosen, that is f Q gg], for each edge 
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Figure 4.1 summarises the results of the simulations for the two variables case, 

obtained after 1 000 iterations. It is worth noting that: 

• the power function is symmetric about zero correlation; 

• the power increases as |pi2| increases; 

• the power also increases as the sample size increases. 

n m 50 
n = TOO 
n = 200 
n - S O O 
n = 1000 

Correlation 

Figure 4.1: Power functions for the saturated GG model - two variables, five different sample 

sizes. 

T h e o r e t i c a l p o w e r f u n c t i o n s u s i n g t h e L R T s t a t i s t i c 

Recall that testing that edge 12 is not present in the model is testing the null hypoth-

esis, HQ, that pi2 = 0. Under HQ, the test statistic is chi-square distributed, on one 

degree of freedom. The probability of selecting a model with edge 12 present (corre-

sponding to rejecting Hq) is calculated as P[Ti2 > X^i; 0.95 I P12], for different values of 

Theoretical power functions are derived both for the non-signed and for the signed 

square-root versions of the LRT statistic. The case of the non-signed version of the LRT 

is now considered. As derived in Section 3.1.3, under the alternative hypothesis that the 

saturated model holds (i.e., pu ^ 0), the likelihood ratio test statistic for single edge 

exclusion, is asymptotically normal distributed, with mean = —nlog(l — pjg) 

and variance var(Ti^) = 4n/>f2- Therefore, an asymptotic normal approximation to 

the power for the LRT of excluding edge 12 from the saturated GG model with two 
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variables can be obta ined as 

3 .8414 + n l o g ( l — 
f > 3 .8414 I P12] A f 

where z /i/ (0, 1 ) . 

z > 2\/9i|pi2| 
(4.1) 

Alternatively, a non-central approximat ion can be used. In Sect ion 3.2 it was 

proposed that the distr ibution of the l ikel ihood rat io test stat ist ic for single edge exclu-

sion from t h e saturated model can be approximated by a non-central distribution, 

wi th non-central i ty parameter y; = hypothes is that pi2 = 0 is rejected 

if 0,95 I piz]- Hence, the theoretical power functions can be obta ined by cal-

culat ing one minus the cumulat ive probabil i ty for a non-central chi-square distr ibution 

wi th one degree of freedom, for a quanti le value of 3 .8414 (when pig varies between -1 

and 1). 

Figure 4.2 compares the s imulated power values (in red, corresponding to the five 

different l ines in Figure 4.1) wi th the theoret ical values calculated using the asymp-

totic normal approximat ion (in blue) and the non-central chi-square approximat ion (in 

green), for the non-s igned version of the l ikel ihood ratio test stat ist ic for single edge 

exclusion from the saturated model . T h e five different plots correspond to the five 

sample sizes used: 50, 100, 200, 500 and 1 0 0 0 observations. T h e horizontal dot ted 

lines correspond to power values of 0 and 0.05. 

Figure 4 .2 highlights a difference in shape between the red and the blue curves, 

particularly for small values of pi2, indicat ing t h e theoretical normal approximat ion 

performs poorly. N o t e tha t if pig = 0, = 0 and t;or(Ti^) = 0. T h e z value 

is infinity. Us ing a (partial) correlation value close to zero induces a very small value 

for the variance of and, consequently, z becomes very big and the corresponding 

theoretical probabil i ty (blue curve) is zero. For large sample sizes {n = 1 000) the 

asymptot i c normal approximat ion performs well for values of pi2 not close to zero. 

For sample sizes of, at least , 200 observations, the green and the red lines overlap. 

This indicates power calculat ions for the non-s igned version of the L R T stat is t ic for 

single edge exclusion from the saturated m o d e l can be accurately approximated by a 

non-central chi-square distribution. 
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Figure 4.2: Simulated (in red) and theoretical power curves using the likelihood ratio test 

statistic for single edge exclusion, Tj ,̂ with an asymptotic normal approximation (in blue) 

and a non-central chi-square approximation (in green), for five different sample sizes: a) 

n = 50, b) n = 100, c) n = 200, d) n = 500, and e) n = 1000. 

The case of the theoretical power calculations when using the signed square-root 

version of the LRT is now considered. Recall that, from Section 2.9.2, 

1̂2̂ ^ = g^FM(pi2)y-nlog(l -

and that, from Section 3.1.5, in the asymptotic normal distribution, 

- 1 

4Mlog(l-p̂ 2) WI-P12) 

and 

= 52pM(pi2)\/-»l0g(l - Pig)-

If P12 = 0, 7^2^^ is asymptotically normal distributed, with mean zero and vari-

ance one. Indeed, if pi2 = 0, then sign{pi2)\/—nlog{l — pfg) = 0 and, apply-

ing Hopital's rule, ^ tends to one as pi2 tends to zero. If pi2 ^ 0, the 
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signed square-root version of the l ikehhood rat io test stat ist ic for single edge ex-

clusion, from the saturated model , is a symptot i ca l ly normal distributed wi th m e a n 

- P12) and variance var(21^^"^) = 

In the case of a two-sided hypothes i s test , the nuU hypothes is tha t pig is zero is 

rejected if the absolute value of the s igned version of the LRT stat is t ic is greater t h a n 

1.96, for the dig^erent values of pi2- T h a t is, asymptot ical ly , the power for the two-sided 

signed square-root L R T of excluding edge 12 from the saturated G G mode l with two 

variables can be obta ined as 

> 1.96 I P12] = f 
^ ^ - 1 . 9 6 - 5 i g n ( p i 2 ) \ / - n l o g ( l - p ^ 

lm2l/V-log(i-̂  
(4.2) 

P 
^ 1 . 9 6 - s i 3 n ( p i 2 ) V - n l o g ( l - p f ^ ) 

|m2|/\/-l0g(l-f2j 

where z ^ (0, 1 ) . 

P12 varies between -1 and 1. Figure 4.3 compares the simulated power values (in 

red) w i t h t h e theoret ical values of t h e normal approximat ion (in blue) obta ined for the 

two-sided signed square-root version of the likelihood ratio test statistic for single edge 

exclusion from the saturated model. As previously, the five plots correspond to the five 

different sample sizes used. T h e horizontal d o t t e d line corresponds to a power value of 

0.05. 

In all five plots the blue and the red lines overlap, validating the theoretical normal 

approximation of the power functions presented above, even for small values of the 

sample size, and small (partial) correlation coefficients. 

In t h e case of a one-s ided hypothes i s test , t h e null hypothes is tha t is zero is 

rejected if the value of the signed version of the LRT statistic is greater than 1.645, 

for the different values of pu- That is, asymptotically, the power for the one-sided 

signed square-root LRT for excluding edge 12 from the saturated GG model with two 

variables can be obtained as 

f > 1.645 I P12] = f 

where z TV (0, 1 ) . 

1.645 - g z ^ n ( p i 2 ) \ / - M l o g ( l - P ^ ) 

|pi2|/\/-log(l-p^2) 
(4.3) 

P12 varies between zero and one. Figure 4 .4 compares the s imulated power values 

(in red) w i t h the theoret ical values of t h e normal approximation (in blue) obtained for 
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Figure 4.3: Simulated (in red) and theoretical asymptotic normal (in blue) power curves 

using the two-sided signed square-root version of the likelihood ratio test statistic for single 

edge exclusion, for five different sample sizes; a) n = 50, h) n — 100, c) n = 200, d) 

n = 500, and e) n = 1 000. 

the one-sided signed square-root version of the likelihood ratio test statistic for single 

edge exclusion from the saturated model. 

Results of the theoretical derivations of the power functions presented are validated by 

the overlapping of the blue and the red lines in all five plots. One should note, that for 

negative values of pi2, power either equals zero or, for small sample sizes, a value very 

close to zero. For example, for n = 50 power equals 0.0091 for pi2 = —0.1 and equals 

0.00005 for pi2 = —0.3. 

In brief: the normal approximation to the power for the signed square-root LRT of 

excluding edge 12 from the saturated GG model with two variables is a good approx-

imation, both when one-sided and two-sided hypothesis tests are used, even for small 

values of n and (partial) correlation coefficients close to zero. 

I l l 



/ 
oa oa Oj 06 08 10 

: / 
s 

r 

! / 
i/. 

c) ° 

t 
d) 

Figure 4.4: Simulated (in red) and theoretical asymptotic normal (in blue) power curves 

using the one-sided signed square-root version of the likelihood ratio test statistic for single 

edge exclusion, for five different sample sizes: a) n = 50, b) n = 100, c) n = 200, d) 

n = 500, and e) n — 1 000. 

In conclusion, the power of selecting the saturated GG model with two variables, 

using the likehhood ratio test statistic for single edge exclusion: 

• increases as \pi2\ increases. The value of —nlog(l — pfg) is always non-negative. 

For a given sample size, if pi2 increases in absolute value, the numerator of Equa-

tion 4.1 becomes more negative and the corresponding z values become more neg-

ative. Consequently, power increases. Similar reasoning applies to Equations 4.2 

and 4.3; 

• increases as n increases, n appears in the numerator of Equation 4.1 and ^/n in 

its denominator. Therefore, for a given pi2, as n increases the numerator becomes 

more negative, faster than the denominator becomes more positive. Hence, the 

z values become more negative and power increases. In the signed square-root 

versions n only appears in the numerator of Equations 4.2 and 4.3, and a similar 
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reasoning applies: 

# for two-sided hypothes i s t e s t s power is symmetr ic about zero correlation: b o t h 

in Equat ions 4.1 and 4 .2 either the abso lute value of pi2 or its square-root value 

are considered, leading t o the same z values for posi t ive and negat ive /)i2, and 

the standardised normal distribution is symmetr ic about zero. 

4.1.2 Power of t he Wald and score test stat ist ics in t h e two 

variables case: normal approximat ions 

From Sect ion 3.1.4 recall that , if pi2 7̂  0 (i.e., t h e saturated model , w i t h two variables, 

holds) the Wald and the score test stat ist ics for single edge exclusion in G G models 

are asymptot ica l ly normal distributed, w i th m e a n M 

and variance v a r ( 7 ^ ) = ; v a r ( 7 ^ ) = 4 M p i 2 ( l ^ Therefore, as in 

Sect ion 4.1.1, theoretical power funct ions for t h e non-signed versions of the Wald and 

the score test stat ist ics can be obtained, using a normal approximation, as 

3 .8414 — 
f > 3 .8414 I Pis] ^ P 

and 

z > 

P 

2 IP12I (1 - pL) (1 + 

3.8414 — MP12 
z > 

2\/^|A2|(l -P12). 
f > 3 .8414 I P12] 

where z ^ jV (0, 1 ) . 

Signed square-root versions of the Wald and of the score test s tat is t ics can also be 

considered. From Sect ion 3.1 .5 recall that , if pi2 7̂  0, the s igned square-root versions 

of the Wald and of the score test s tat is t ics for single edge exclusion from the saturated 

model are asymptot ica l ly normal distributed, w i th m e a n 

= pi2-yM and variance v a r ( T ^ ^ ^ ) = 0 ^ ^ ; var(71^^^) = (1 -

Asymptot ica l ly , the power for the two-sided signed square-root Wald test of ex-

cluding edge 12 from the saturated GG mode l wi th two variables can be obtained 

as 

f > 1.96 I P12] = P z < 
- 1 . 9 6 - P 1 2 ^ J n ( l + p f ^ ) - ! 

P z > 
1.96-P12 (l+pfa)-' 

and for the two-sided s igned square-root score tes t stat ist ic as 

f > 1.96 I piz] = f -y ^ - 1 . 9 6 - P 1 2 ^ / n + P •y \ 1 . 9 6 - P 1 2 V r i 

^ (1-pL) 
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where z A'' (0, 1 ) . 

In the case of a one-s ided hypothes i s test , t h e power of selecting the saturated G G 

model w i t h two variables, using the s igned square-root versions of the Wald and the 

score test s tat is t ics for single edge exclusion is given by 

> 1.645 I P12] = f 

and 

> 1.645 I P12] A P 

where z # (0, 1 ) . 

1.645 - P12 - / ^ ( l + / ) i2 )"^ 

(l-pL)(l + p!2M' 

1.645 — P12 \ / ^ 
z > 

(1 - PD 

P l o t s referring t o this sect ion are not presented for t h e s imple reason that t h e power 

funct ions of the Wald and of the score test s tat is t ics are very similar t o those of the 

LRT statist ic: diEerences can hardly be de tec ted w h e n observing the corresponding 

plots. T h e conclusions drawn in Sect ion 4.1.1, for the L R T statistic, also apply for 

the Wald and the score test statist ics . In short: in the two variables case power 

increases as n increases, as |/)i2| increases and is symmetr ic about zero correlation for 

two-sided hypothes i s tests . Addit ional ly , the a symptot i c normal approximat ion is a 

g o o d approximat ion t o t h e power of the s igned square-root versions of the Wald and 

of the score test s tat is t ics (even if a is not large), whereas for the non-s igned versions 

the approximat ion is only acceptable for large samples and values of the (partial) 

correlation coefficient not close t o zero. 

4.1.3 T h e shape of t h e scaled inverse variance ma t r ix 

T h e s tudy of the power funct ions in t h e three (or more) variables case requires some 

thought w h e n speci fy ing the domain, since t h e scaled inverse variance matr ix is con-

strained to be pos i t ive definite. T h e aim of this sect ion is to express t h e posi t ive 

definiteness constraint in terms of partial correlations and to emphasise some proper-

ties of the set of all possible combinat ions of the three partial correlation coefficients. 

Rousseeuw and Molenberghs (1994) studied the shape of correlation matrices. T h e y 

s tated tha t the correlation matr ix of three variables is pos i t ive definite if its determinant 

is strict ly posit ive, i.e., if 

1 4- 2 P12 Pi3 P23 — P12 — p L " / 'L > 0. (4.4) 
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T h e y constructed a three-dimensional graph of the boundary set of all the combina-

t ions of the three correlation coefficients that sat i s fy this condit ion as an equal i ty and 

showed that the d i & r e n t combinat ions of the three form a convex set ( the interior 

of the boundary set) which is symmetr ic w i th respect t o rotations corresponding t o 

permutat ions of the c o m p o n e n t s of (piz, P13, Pzs)- Additionally, they showed that any 

horizontal cross sect ion of th i s surface is an elhpse. 

T h e s e results are now ex tended to partial correlation coefficients. Recal l tha t the 

scaled inverse variance matr ix has ones on the main diagonal, the off-diagonal e lements 

being the negat ive of the partial correlation coe&cients . In the three variables case 

gcaZed (0) 
1 —P12.3 —/)13.2 

- P l 2 . 3 1 — P 2 Z . l 

-Pl3 .2 —P23.1 1 

For the determinant of this matr ix to be strict ly posit ive, it is required that 

1 — 2 P12.3 P13.2 P23.1 — pL.3 " P13.2 ^ P23.1 > 0. (4.5) 

A s happened wi th correlation coefficients, the different combinations of the three 

pij,k form a convex set which is symmetr ic wi th respect to rotat ions corresponding 

to permutat ions of the c o m p o n e n t s of (P12.3, /)i3.2, ^23.1)- Figure 4.5 supports the 

s ta tement tha t any horizontal cross sect ion of th i s surface is an ellipse. In all panels 

/Ci3.2 is on the horizontal axis, P23.1 is on t h e vertical axis and /)i2.3 takes arbitrary 

posit ive values of 0.1 in a) , 0 .5 in b), 0.7 in c), 0 .9 in d) and negative values of - 0.1 in 

e), -0 .5 in f ) , -0 .7 in g) and - 0 .9 in h). 

Because of t h e exist ing symmetries , only certain combinat ions of values of t h e three 

partial correlations need t o be considered in the next section, when s tudying the power 

of the L R T stat is t ic for single edge exclusion from a saturated GG model w i th three 

variables. 
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c): d): 

I 

e) f) 

Figure 4.5: The positive definiteness constraint for partial correlation coefficients: piz.2 on 

the horizontal axis, P23.1 on the vertical axis and pig.s taking values of: a) 0.1, b) 0.5, c) 0.7, 

d) 0.9, e) - 0 . 1 , f) - 0 . 5 , g) - 0 . 7 , h) - 0 . 9 . 

4.1.4 Simulated power of t he LRT stat is t ic in t he three vari-

ables case 

The aim of this section is to study the power of the test statistics for single edge 

exclusion Arom the saturated G G model w i t h three variables. A s imulation s tudy is 

used. Theoretical normal approximations to the power functions are derived in Section 

4.1.5. The quality of the approximations is then assessed. The LRT statistic is used. 

T h e power for the three tes t s of excluding edge edge zA; and edge jA;, here cal led 

power of selecting the saturated model, is estimated as the probability that each of 

the three test statistics for single edge exclusion is greater than a critical value from 

a chi-square distribution on one degree of freedom, given certain values for the three 

partial correlation coefficients, i.e., 

0.95 ^ 0.95 ^ 0.95 I Pl2.3 , Pl3 .2 , P23.l]-

This corresponds to the three null hypotheses that each of the partial correlation co-

efficients is zero, and to the three alternative hypotheses that each of them is different 

from zero (saturated model). Power is, therefore, the overall probability of rejecting 

the three null hypotheses that the partial correlation coefficients are zero, when these 

hypotheses are false and the saturated mode l holds. For each of the three tes ts a size 

of 5% is considered. W h e n t h e true model is t h e independence model , the overall prob-

ability of accept ing the sa turated model equals 0.05^. Consequently, the overall size of 

the select ion procedure can range between 0.05^ and 0.05. 
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In this simulation study the three partial correlation coefficients vary between -1 and 

1, subject to the positive definiteness constraint defined by Equation 4.5. In practice 

Pi3,2 and p2z.i vary from 0.1 to 0.9 (with an interval of 0.1) and P12.3 varies between 

-0.9 and 0.9, within the region of positive definiteness. Figure 4.6 shows the power 

functions for a sample size of 200, using the likelihood ratio test for edge exclusion. 

Plot a) was obtained after 20 000 repetitions (in order to reduce Monte Carlo error) 

and the remaining three plots after 1 000 repetitions. 
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Figure 4.6: Power functions for the GG saturated model, with 3 variables, using the LRT 

statistic, for a sample size of 200. P12.3 on horizontal axis. In each plot P23.1 from 0.1 to 0.9. 

P13.2 equals 0.1 in a), 0.2 in b), 0.3 in c) and 0.4 in d). 

Some conclusions can be drawn from Figure 4.6: 

• generally, power increases as partial correlations increase. However, the black 

and blue hnes (corresponding to values of 0.1 and 0.2 of P23.1), in panel b), 

and especially in panel a), show some non-monotonicity with increasing positive 

partial correlations; 

• for n = 200, the probability of selecting the saturated model has a maximum value 
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of 0.3 w h e n one of the pij.t 0.1, even if the other two partial correlations 

are large. T h i s probabihty goes up t o 0.8, or almost 1, w h e n the m i n i m u m 

t — 0.2 or 0.3, respectively; 

# there is a lack of s y m m e t r y in the power funct ion about zero partial correlation, 

particularly noteworthy for small values (note the black and blue lines corre-

sponding to 0.1 and 0 .2 in panels a) and b)) . 

S imulat ions were also carried out using the Wald test stat ist ic and the score test statis-

t ic and very similar results were obtained. For tha t reason the corresponding p lots are 

omit ted . 

In order t o try t o understand and explain the non-monotonic i ty and non- symmetry 

of the power funct ions two different types of analys is were carried out. First , simu-

lat ions were done t o e s t imate b o t h the power for the test of excluding edge zj and 

the power for the two te s t s of excluding edge and edge zA. T h e results of the simu-

lat ion follow. Secondly, a theoretical a symptot i c normal approximation t o the power 

functions, in t h e presence of three variables, was derived. Results are given in Sect ion 

4.1.5. 

Powder for the test of excluding edge ij 

T h e power for the test of excluding edge i j is e s t imated as the probability that the test 

s tat is t ic Tlj is greater t h a n a critical value from a chi-square distribution on one degree 

of freedom, given certain values for the partial correlation coefficients, i.e., 

0.95 I P l2 .3 , Pl3 .2 , P23 . l]-

T h e null hypothes i s is that = 0, and the alternative is that it is not zero (assuming 

the other two edges are present, since edge exclusion is from the saturated model ) . T h e 

two variables case is an example of the power for the test of excluding edge i j (and 

Figure 4.1 shows a symmetr ic power funct ion) . 

Resul t s of the s imulat ion s tudy are presented in Figure 4.7, and it is poss ible to 

conclude that power funct ions are symmetric , as expected . One thousand repet i t ions 

were m a d e a n d M = 200. In all plots the horizontal axis corresponds t o P12.3, and the 

different hhes in each plot correspond t o values of pzs.i- P l o t s in panel a) are associated 

wi th tes t ing for t h e exclus ion of edge 12, p lots in panel b) wi th the exclusion of edge 13 
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and plots in panel c) with the exclusion of edge 23. Plots 1) correspond to a value of 0.1 

of P13.2, whereas plots 2) and 3) correspond to values of 0.2 and 0.3, respectively. Plots 

for higher values of this partial correlation coefficient are not presented for simplicity, 

since they have a similar pattern. 

0.5 

Figure 4.7: Power functions for the test of excluding edge ij, LRT statistic, n=200. Plots 

a) edge 12, plots b) edge 13, plots c) edge 23. In all plots P12.3 on the horizontal axis, the 

different lines corresponding to values of p22,.i- Plots 1) /313.2 = 0.1, plots 2) P13.2 = 0.2, plots 

3) P13.2 = 0.3. 

In brief: 

• plots in panel a) correspond to power calculations for the test of excluding edge 

12. The pattern is the same in all three plots, clearly determined by the values 

of P12.3 and neither depending on P13.2 (plots are alike when this coefficient takes 

values 0.1, 0.2 or 0.3) nor on P23.1 (lines almost coincident, in each plot); 

• plots in panel b) show the power for the test of excluding edge 13. The pattern 

is always the same, neither depending on P12.3 (the lines are horizontal), nor on 

119 



P23.1 (lines a lmost coincident , in each plot) . W h e n pig g increases power increases, 

and therefore hnes move horizontally; 

# in panel c) plots, power for the test of excluding edge 23, power funct ions vary 

because P23.1 varies. Indeed t h e y do not depend either on pig.s (ail the hnes are 

horizontal) or on piz.2 ( the three plots are very similar); 

* it seems possible t o conclude that the power for the test of excluding edge zj 

(given the remaining edges are present) just depends on power increases as 

increases, and is symmetr ic , about zero, in 

A theoretical exp lanat ion for the behaviour of the power for the test of excluding 

edge zj is given in Sect ion 4.1.5, where it is shown that , asymptotical ly , b o t h the m e a n 

and t h e variance of the tes t s tat is t ic for single edge exclusion only depend on the 

partial correlation coefRcient of interest: Pij.rest-

Power for the tests of excluding edge ij and edge ik 

T h e power / o r (wo fests 0 / zj OMd ecfpe zA; is e s t imated as the proba-

bihty that each of the two tes t s tat is t ics for single edge exclusion and is greater 

thaji a critical value from a chi-squared distribution on one degree of freedom, given 

certain values for the three partial correlation coefficients, i.e., 

0.95 a n d 7 ; ^ > 0 95 | ^ 2 . 3 , ^ 3 . 2 , P23.l] . 

T h e two null hypotheses are tha t and p i t j zero, and the two alternative 

hypotheses are tha t t h e y are different from zero. In b o t h cases it is assumed the 

remaining two edges are present, since edge exclusion is from the saturated model . 

Power denotes the overall probabil i ty of rejecting the two null hypotheses that pij,k 

and pik.j are zero when these are false and the saturated model holds. T h e overall size 

of the selection procedure is expec ted to range be tween 0.05^ and 0.05, since for each 

of the two tes t s a size of 5% is considered. 

Resul t s are presented in Figure 4.8. One thousand repeti t ions were made and 

M = 200. In all p lots the horizontal axis corresponds t o P12.3, and the different hnes in 

each plot correspond to values of P23.i- It is possible t o conclude that there exists some 

non-symmetry and some non-monoton ic i ty in the power functions. In brief: 
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a.1) 

b.2) 

-0.5 0 . 0 

b.3) 

Figure 4.8: Power functions for the tests of excluding edge ij and edge ik, LRT statistic, 

n=200. Plots a) edges 12,13, plots b) edges 12, 23, plots c) edges 13, 23. In all plots pi2,z on 

the horizontal axis, the different lines corresponding to values of p2z.i- Plots 1) P13.2 = 0.1, 

plots 2) /913.2 = 0.2, plots 3) PIZ.2 = 0.3. 

• plots in panel a) - power for the tests of excluding edge 12 and edge 13 - power 

does not seem to vary with pgs.i (lines almost coincident, in the three plots). 

Power increases as |pi2.3| and or |pi3,2| increase; does not exceed 0.3 if one of 

the p is around 0.1 (even if the other is large). Power almost reaches one if 

IP12.3I > 0.3 and or |pi3,2| > 0.3. Some non-symmetry is present for small values 

of P12.3 and or P13.2, but the power function becomes symmetric about zero when 

P13.2 increases (compare plots a. l) , a.2) and a.3)), even if P12.3 is small; 

• plots in panel b) - power for the tests of excluding edge 12 and edge 23 - power 

does not seem to vary with P13.2 (the three plots are similar). Power increases as 

IP12.3I and or Ip23.1l increase. Although globally the three plots look symmetric, 

there seems to be some non-symmetry, and also some non-monotonicity, in the 

black line (P23.1 = 0.1), which become more evident as pi3,2 increases (compare 
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plo t s b . l ) , b .2) a n d b .3 ) ) ; 

# p lo t s in pane l c) - p o w e r for t h e t e s t s of exc lud ing edge 13 a n d edge 2 3 - power 

f u n c t i o n s c learly n o n - s y m m e t r i c and n o n - m o n o t o n i c for smal l va lues of P23.1, par-

t icular ly n o t e w o r t h y w h e n pi3_2 is a l so smal l (black and b lue l ines in p lo t s c . l ) 

and C.2)); 

* t h e power for t h e t w o t e s t s of exc lud ing e d g e zj and edge zA; varies ma in ly as a 

f u n c t i o n of Pij.t a n d P i t j : it increases as or increase. A combi-

n a t i o n w i t h certa in va lues of pjt.i s e e m s to l ead t o s o m e n o n - s y m m e t r y a n d s o m e 

n o n - m o n o t o n i c i t y . 

Hence , it is poss ib le t o conc lude t h a t t h e p r o b l e m s of n o n - s y m m e t r y and non-

m o n o t o n i c i t y of t h e power f u n c t i o n s are a l ready present in t h e case of two t e s t s for 

s ingle e d g e exc lus ion . In t h e nex t s ec t ion power func t ions are s tud ied theoret ica l ly 

a n d a n a s y m p t o t i c n o r m a l a p p r o x i m a t i o n is der ived. It wil l t h e n b e c o m e clear t h a t 

t h e m e a n a n d corre lat ion s t ruc tures of t h e t e s t s ta t i s t i c s j u s t i f y t h e n o n - s y m m e t r y and 

n o n - m o n o t o n i c i t y of t h e p o w e r func t ions for cer ta in c o m b i n a t i o n s of partial correlat ion 

coeff ic ients a n d s a m p l e sizes. 

4.1.5 Normal approximat ion t o t h e power of t h e test statist ics 

for single edge exclusion in t h e th ree variables case 

In Sec t ion 3 .1 .3 an a s y m p t o t i c normal a p p r o x i m a t i o n t o the d i s tr ibut ion of t h e L R T 

s ta t i s t i c for s ingle e d g e e x c l u s i o n f rom t h e s a t u r a t e d G G m o d e l w a s derived. In 

the three variables case, u n d e r t h e a l ternat ive h y p o t h e s i s that t h e sa turated mode l 

ho lds (i.e, t h e three part ia l correlat ion coef f ic ients are different f rom zero) the vec-

tor of t e s t s ta t i s t i c s 7^^ is a s y m p t o t i c a l l y n o r m a l d is tr ibuted , w i t h m e a n s g iven by 

= —?%log(l — variances g iven b y var(7^j) = and covariances 

g iven by E q u a t i o n 3.9, w h e n t h e non-s igned vers ion of t h e L R T s ta t i s t i c is used. In the 

case the s igned square-root vers ion of the L R T s ta t i s t i c is used, formulae for t h e m e a n s 

var iances var(7^^^^) and covar iances c o v ( 7 ^ ^ ^ ^ , T \ ^ ^ ^ ) are summar i sed 

in Table 3.2. Hence , as in t h e two variables case , t h e a s y m p t o t i c power for t h e L R T 

of se lec t ing t h e s a t u r a t e d G G m o d e l w i t h three variables c a n b e obta ined , us ing a 

tr ivariate n o r m a l a p p r o x i m a t i o n , as 
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•^[^12 ^ 3 . 8 4 1 4 a n d Tj^ > 3 . 8 4 1 4 and > 3 .8414 | P12.3, Pis.2, P23.1] — 

/ » + o o f + o o r + 0 0 

/ / / E ) ciTii dTt , d T i , (4 .6) 
V3.8414 V3.8414 V3.8414 

where $ (//, Z ) is t h e jo int cumula t ive d i s tr ibut ion of t h e jo int tr ivar iate normal dens i ty 

of t h e three L R T s ta t i s t i c s w i t h vector of m e a n s // a n d var iance m a t r i x S g iven b y 

var(7^j) and cov(!Z]j,2^^). A s m e n t i o n e d in Sec t ion 4 .1 .4 , t h e variance m a t r i x 

of t h e tes t s ta t i s t i c s h a s t o b e pos i t ive def inite . 

T h e va lues of t h e integral of t h e jo int cumula t ive d i s t r ibut ion f u n c t i o n can no t be 

ob ta ined d irec t ly w i t h S - P l u s , s ince i ts f u n c t i o n o n l y works if t h e variance 

m a t r i x is t h e ident i ty matr ix , which is no t t h e case. T h e f u n c t i o n of t h e 

n o r m package of t h e p r o g r a m m e R w a s used to c o m p u t e t h e d i s t r ibut ion func t ion of 

t h e mul t ivar ia te n o r m a l d i s tr ibut ion for t h e required l imits , m e a n vec tors and variance 

matrices . T h e f u n c t i o n is based o n a lgor i thms b y G e n z a n d Bretz , which incorpo-

rate a sequence of t r a n s f o r m a t i o n s of t h e original integral be fore a p p l y i n g numerical 

integrat ion. 

Figure 4 .9 c o m p a r e s s i m u l a t e d power va lues (in red) w i t h theoret ica l power values 

obta ined w i t h t h e normal a p p r o x i m a t i o n jus t derived. Three different s a m p l e sizes are 

used: n = 2 0 0 (p lots in pane l a) ) , n = 500 (plots in panel b ) ) a n d n = 1 000 (p lots in 

pane l c ) ) . In each p lo t P12.3, o n t h e hor izonta l axis , varies b e t w e e n —0.9 a n d 0.9, w i t h i n 

t h e region of pos i t ive def in i teness . Four different c o m b i n a t i o n s of va lues for pig 2 and 

P23.1 were chosen: 0 .1 a n d 0 .1 (p lots 1)) , 0 .1 and 0 .2 (p lots 2 ) ) , 0 .2 a n d 0 .2 (p lo t s 3 ) ) 

and 0 .2 a n d 0 .3 (p lo t s 4 ) ) . For o ther c o m b i n a t i o n s of part ia l correlat ion coeSic ients , 

ob ta ined power p a t t e r n s are similar t o those presented here. S o m e conc lus ions can 

be drawn f r o m F igure 4.9: a s expec ted , power increases as t h e s a m p l e size increases, 

and as the a b s o l u t e va lues of the part ia l correlat ion coef f ic ients increase. Theoret ica l 

values conf irm s imula t ion resul ts from Sec t ion 4 .1 .4 t h a t there is s o m e n o n - s y m m e t r y 

a n d s o m e n o n - m o n o t o n i c i t y in t h e power funct ions , part icular ly for smal l s a m p l e s izes 

a n d values of o n e of t h e part ia l corre lat ion coeff ic ients c lose t o zero (p lots a . l ) t o a .3) 

and b . l ) ) . 

T h e n o n - s y m m e t r y a n d n o n - m o n o t o n i c i t y of t h e power f u n c t i o n s is accounted for 

b y the s tructure of t h e m e a n s and of t h e correlat ions, in t h e a s y m p t o t i c d is tr ibut ion, of 
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Figure 4.9: Simulated (in red) and theoretical normal (in blue) and truncated normal (in 

black) power curves, for saturated model, using the LRT statistic. In all plots P12.3 on the 

horizontal axis. Plots a) n = 200, plots b) n = 500, plots c) n = 1000. Different combinations 

of values for /913.2 and P23.i'- plots 1) 0.1 and 0.1, plots 2) 0.1 and 0.2, plots 3) 0.2 and 0.2, 

plots 4) 0.2 and 0.3. 

the three test statistics. Consider the case of plot b. l ) in Figure 4.9. The sample size 

equals 500, P13.2 = P23.1 = 0.1 and pi2.^ ranges from -0.9 to 0.9. The expected values of 

the three likelihood ratio test statistics 3]^, in the asymptotic distribution, for certain 

combinations of partial correlation values are; 

P12.3; P13.2; P23.1 -0.6; 0.1; 0.1 -0.1; 0.1; 0.1 0.2; 0.1; 0.1 0.9; 0.1; 0.1 

2 2 3 T 4 0 &025 20.410 830.400 

5 .025 5.025 5 .025 5.025 

5 .025 5.025 5.025 5.025 

The corresponding correlation structure for the three test statistics, in the asymptotic 

distribution, follows: 
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P12.3; P13.2; P23.1 -0.6; 0.1; 0.1 -0.1; 0.1; 0.1 0.2; 0.1: 0.1 0.9; 0.1; 0.1 

0 .070 0.095 - 0.111 - 0.136 

0 .070 0.095 - 0 . 1 1 1 - 0.136 

0 .597 0.095 - 0 .205 -0 .900 

T h e correlat ions between the three test s tat is t ics are always posit ive if pis.s is 

negat ive and b o t h /)i3_2 and P23.1 are posit ive. T h e correlations are always negative if 

the three partial correlation coefBcients are positive. However, the expected values are 

always posi t ive . A correlation coefficient of -0.9, associated w i t h expected values of 

0.5, makes it more hkely for the values of and 71^ t o be below the critical value 

of 3 .8414 t h a n does a correlation coefficient of 0 .597 associated wi th the same expected 

values. All th i s accounts for the non- symmetry and non-monotonic i ty of the power 

funct ions in plot b . l ) . W h e n the value of one of the partial correlation coefficients 

increases, say pzs.i = 0.2, as in plot b .2) , the expected value of 7 ^ , in the a symptot i c 

distribution, increases t o 20.41. A l t h o u g h the correlation structure changes shghtly, 

it becomes less hkely for t h e values of 31^ to be below the critical value of 3 .8414 

for different combinat ions of P12.3- For tha t reason there is no non-symmetry and no 

non-monoton ic i ty in plot b.2) Figure 4.9. 

W h e n assess ing the quality of the normal approximation to the power of selecting 

the saturated model , us ing t h e L R T stat ist ic , it is possible t o conclude the approxima-

t ion holds asymptot ical ly , i.e., it performs better for larger sample sizes (see plots in 

panel c), assoc ia ted with n = 1 000) and for values of the partial correlation coefficients 

not close t o zero (plots c .3) and c .4)) . Recall tha t a similar conclusion was drawn in 

the two variables case, Sect ion 4.1.1. 

T h e reason why, in Figure 4.9, p lots 1 (corresponding t o values of /9i3.2 pzs.i 

close to zero), the normal approximat ion seems t o perform better for small rather 

than for large sample sizes (plots a . l ) versus c . l ) ) is not yet clear. It is also not clear 

why, for n = 200 (plots in panel a) the curves of the s imulated and theoretical values 

seem t o get further apart, indicat ing a poorer approximation, as pis g increases (plots 

a.2) and a .3 ) ) . In order t o try t o account for this non-justif ied pat tern of the power 

functions, a significance level of 10% was also considered and corresponding simulated 

and theoret ical power values were obtained. T h e obtained plots are not presented 

because t h e y are very similar to those in Figure 4.9, where a size of 5% is considered. 
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Therefore, varying the size level was not conclusive. A larger sample size was also 

used, n = 2 000 and in th is case the s imulated and the theoretical power curves are 

very close, even for P13.2 and pgs.i equal t o 0.1 ( the case of plots 1). This confirms the 

proposed normal approximat ion holds asymptotical ly . 

Addit ional ly, the was quantified. Indeed, a trivariate 

normal approximat ion has been proposed t o the power of se lect ing the saturated model , 

wi th three variables, us ing the LRT. However, the values of the test stat ist ic are always 

non-negat ive . Thus, the to ta l non-admiss ible region (denoted as N A R ) corresponds t o 

all s i tuat ions when at least one test s tat is t ic is negat ive and is obtained as one minus 

the probabi l i ty that all three test s tat is t ics are greater, or equal, t o zero. Values of this 

tota l N A R were calculated for the diEerent sample sizes and the different combinat ions 

of partial correlation c o e S c i e n t s used in Figure 4.9. Resul ts indicate that , as expected, 

N A R values are higher for smaller sample sizes, particularly for smaller partial correla-

t ion coefRcients. A p p e n d i x Table C . l l ists the N A R values. Such values were used t o 

obta in a ' truncated' normal approximat ion t o t h e power funct ions . Indeed, since the 

total admissible region should be one, and is not , theoretical power values given by the 

normal approximat ion (represented by t h e blue curves in Figure 4.9) where divided by 

the actual admissible region (equal t o one minus N A R ) . T h e corrected power values 

are represented by the black curves in Figure 4.9. This correction has lead theoretical 

power values to increase, improving the quality of the a symptot i c normal approxima-

t ion in the case the sample size is large, even for small values of the partial correlation 

coefficients - note the overlapping of the red and of the black curves in panels c . l ) and 

c.2). T h e proposed truncated normal approximat ion is of no use for small sample sizes 

and small partial correlation coefficients - plots 1) and 2) in panels a) and b). 

T h e a sympto t i c power for t h e signed square-root L R T of se lect ing the saturated GG 

model w i th three variables can be obtained, using a trivariate normal approximation, 

as follows: 

* in t h e case of a one-s ided hypothes i s test 

^ ^ ^ ^ ^ ^ j . 

hoo /•+00 f+oc 

$ E"^^) (4.7) 
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# in the case of a two-s ided hypothes i s test 

> 1 . 9 6 a n d > 1 . 9 6 a n d > 1 . 9 6 | P13.2, P23.1] -

y y y $ (4.8) 

where $ 2 ^ ^ ) is the joint cumulat ive distribution of the joint trivariate nor-

mal dens i ty of the s igned square-root versions of t h e three L R T stat ist ics w i th vec-

tor of m e a n s and variance matr ix 2^'^" given by var(7^^'^^) and 

c o v ( T \ ^ ^ ^ , T | ^ ^ ^ ) . T h e variance matr ix is constrained t o be posit ive definite. D , 

the domain of integration in t h e case of a two-sided hypothes i s test, is the region 

where each of the three test s tat is t ics is in —oo t o —1.96 or 1.96 to -t-oo, i.e., 

D = {(—oo, —1.96) U (1.96, 

Figure 4 .10 compares s imulated power values (in red) w i th theoretical power values 

(in blue), using a one-s ided hypothes i s test wi th the s igned square-root L R T statistic. 

Three different sample sizes are used: M = 200 (plots in panel a)) , M = 500 (plots 

in panel b)) and n = 1 0 0 0 (plots in panel c)) . In each plot P12.3 , on the horizontal 

axis, varies between 0 a n d 0.9, wi th in the region of pos i t ive deAniteness. A s before, 

four different combinat ions of values for piz.2 and P23.1 were chosen; 0.1 and 0.1 (plots 

1)), 0 .1 and 0.2 (plots 2)) , 0 .2 and 0 .2 (plots 3)) and 0 .2 and 0 .3 (plots 4 ) ) . Some 

c o m m e n t s on Figure 4.10: the normal approximation is a g o o d approximat ion to the 

power of t h e one-sided s igned square-root L R T statist ic for selecting the saturated 

model , even for a sample size of 200 (plots in panel a) and partial correlation values 

close to zero (plots 1 and 2). Power increases as the sample size increases and as 

the partial correlation coeff icients increases. However, some non-monotonic i ty seems 

t o exist for small sample sizes (n = 200) and small values of p (see p lots a . l ) and 

a .2)) . T h e reason is t h e following: the correlations between the three test statistics, 

in the a sympto t i c distribution, are always negat ive and, for a sample size of 200, the 

e x p e c t e d values of the tes t stat ist ics , in the asymptot i c distribution, equal 1.42 and 

2.86, respect ively for partial correlations coefficients of 0.1 and 0.2. It is, therefore, 

very likely tha t values of t h e test s tat is t ics are below the critical value of 1.96, and 

even decrease as P12.3 increases (because of the negat ive correlations). Hence power 

decreases, as in plot a . l ) . 
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Figure 4.10: Simulated (in red) and tlieoretical normal (in blue) power curves, for saturated 

model, using the signed square-root LRT statistic, one-sided hypothesis test. In all plots 

P12.3 on the horizontal axis. Plots a) n = 200, plots b) n = 500, plots c) n = 1000. Different 

combinations of values for pix2 and P23.1' plots 1) 0.1 and 0.1, plots 2) 0.1 and 0.2, plots 3) 

0.2 and 0.2, plots 4) 0.2 and 0.3. 

Analogously, Figure 4.11 compares simulated power values (in red) with theoretical 

power values (in blue), using a two-sided hypothesis test with the signed square-root 

LRT statistic. In all plots P12 .3 , on horizontal axis, varies between -0.9 and 0.9, within 

the region of positive definiteness. The normal approximation is a good approximation 

to the power of selecting the saturated model using the two-sided signed square-root 

LRT, even for small sample sizes and small partial correlation coefficients. Note similar 

conclusions were drawn in the two variables case (Section 4.1.1). 
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Figure 4.11: Simulated (in red) and theoretical normal (in blue) power curves, for saturated 

model, using the signed square-root LRT statistic, two-sided hypothesis test. In all plots 

P12.3 on the horizontal axis. Plots a) n = 200, plots b) n = 500, plots c) n = 1000. Different 

combinations of values for P13.2 and p2̂ .i'- plots 1) 0.1 and 0.1, plots 2) 0.1 and 0.2, plots 3) 

0.2 and 0.2, plots 4) 0.2 and 0.3. 

Until now the current section has dealt with deriving power functions for selecting 

the saturated model, using the LRT statistic. In Section 4.1.4 a simulation study was 

used to estimate the power for the test of excluding edge i j and the power for the 

two tests of excluding edge ij and edge ik, using the non signed version of the LRT 

statistic. The results of the simulation, for a sample size of 200, are summarised in 

Figures 4.7 and 4.8. A theoretical asymptotic normal approximation to the power for 

the test(s) of excluding edge i j (and edge ik) is now derived. 

Even if there are three variables in the model, the power for the test of excluding 

edge ij is obtained, as in the two variables case (with the correlation coefficient pi2 
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being replaced by the partial correlat ion coefBcient as 

3 .8414 + Mlog( l 
f [7:^ > 3 . 8 4 1 4 I ^ 2 . 3 , P13.2, P23.1] = f z > ' /ru , , 

where z (0, 1) and is not dependent on the values of any of the remaining partial 

correlation coefBcients. Such behaviour was pointed out when comment ing on simu-

lated values presented in Figure 4.7. In brief: the power for t h e test of excluding edge 

increases as n increases, as increases, and is symmetric , about zero, in 

A n a s y m p t o t i c bivariate normal approximat ion t o the power for the tes t s of exclud-

ing edge and edge z/c , when the L R T statist ic is used, is now proposed as 

f > 3 .8414 and 7;^ > 3 .8414 | P12.3, ^3.2, m3.i] = 

f'-l-oo /"H-oo 
a r „ yA 

/3.8414 V3.8414 

where $ S ) is the joint cumulat ive distribution of the joint bivariate normal densi ty 

of the two t e s t stat ist ics wi th vector of means // and variance matr ix Z given by 

var(7^j) and cov(2^j ,T^) . T h e variance matrix has t o be posi t ive de6nite . Note that 

the m e a n a n d the variance of are a funct ion of M and of whereas the covariance 

between 7^^ and 7^^ depends not on ly on and P;*.; but also on For that reason 

some n o n - s y m m e t r y and non-monoton ic i ty of the power funct ions can be observed for 

certain combinat ions of values of the three partial correlation coefficients, as detected 

in Figure 4.9. 

Figure 4 .12 compares s imulated power values (in red) w i t h theoretical values (in 

blue) obta ined wi th the normal approximat ion just derived, for the tes ts of excluding 

edge 13 and edge 23, using t h e L R T statist ic . A s before, three different sample sizes 

are used; n = 200 (plots in panel a)) , n = 500 (plots in panel b)) and n = 1 000 (plots 

in panel c) ) . In each plot P12.3, on the horizontal axis, varies between —0.9 and 0.9, 

within t h e region of posi t ive def initeness . The four different combinat ions of values 

for /)i3.2 &nd P23.1 are: 0 .1 and 0 .1 (p lots 1)), 0 .1 ajid 0.2 (plots 2)) , 0.2 and 0.2 (plots 

3)) and 0 .2 and 0 .3 (plots 4)) . S o m e c o m m e n t s on Figure 4.12: the power for the two 

tes ts of exc luding edge 13 and edge 23 depends not only on pi3,2 and P23.1 (it clearly 

increases as these increase) but it a lso depends on Pi2.3- Indeed, not all the hnes are 

horizontal, even for large sample sizes: see for example the case of g = 0.1 and 

P23.1 = 0.1, w h e n 7i = 1 0 0 0 (plot c . l ) ) and also the case of pis g = 0.1 and pzs i = 0.2, 
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Figure 4.12: Simulated (in red) and theoretical normal (in blue) power curves, for the tests 

of excluding edge 13 and edge 23, using the LRT statistic. In all plots p\2.i on the horizontal 

axis. Plots a) n = 200, plots b) n = 500, plots c) n = 1000. Different combinations of values 

for pi3,2 and P23.1' plots 1) 0.1 and 0.1, plots 2) 0.1 and 0.2, plots 3) 0.2 and 0.2, plots 4) 0.2 

and 0.3. 

when n = 500 (plot b.2)). The normal approximation performs better asymptotically, 

i.e., for large sample sizes, particularly for partial correlation coefficients not close to 

zero (plots c.3) and c.4)). 

The justification for the non-symmetry and non-monotonicity of the power functions 

in Figure 4.12, plots a. l ) , a.2) a.3) and b. l ) , is basically the same as the one given when 

commenting on Figure 4.9. Since only two test statistics are now used a graphical 

display is also presented. Consider the case of plot b. l) in Figure 4.12. The sample 

size equals 500 and pis,2 = P23.1 = 0.1. Consider three possible values for P12.3 : -

0.6, 0.2 and 0.9. The expected values of the two test statistics and 2^ , in the 

asymptotic distribution, equal 5.025, not depending on the value of pu.s- However, 
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the correlation coeGicient between and 2 ^ is a funct ion of pi2,3 and equals 0.597, 

-0 .205 and -0.9, respect ively for pig.s equal to -0.6, 0.2 and 0.9. W h e n pgs.i = 0-2, 

plot b.2) in Figure 4 .12 (where the n o n - s y m m e t r y and non-monotonic i ty are no longer 

present), the expec ted value of in the a symptot i c distribution, equals 20.41 a n d 

the correlation coefBcients between 7 ^ and 7 ^ change to 0.594, -0 .21 and -0.9. Recall 

that the red hnes in p lo t s b . l ) and b.2) correspond to s imulated power values, i.e., 

t o the overall probabihty that b o t h and 71^ are greater than the critical value 

of 3 .8414, for the different combinat ions of the three partial correlation coefBcients. 

Consequently, p lot ted values are the number of t imes, out of 1 0 0 0 (repetit ions) , that 

b o t h test stat ist ics are greater t h a n 3.8414, for the 1 0 0 0 samples generated &om a 

bivariate normal dis tr ibut ion w i t h t h e specif ied correlation structure. 

Figure 4 .13 shows the 1 0 0 0 pairs of s imulated values of 7 ^ and 7 ^ , for the s ix 

combinat ions of/)i2.3;Pi3.2;P23.i chosen above: plot a) -0.6; 0.1; 0.1, plot b) .0.2; 0.1; 

0.1, plot c) 0.9; 0.1; 0.1, plot d) -0.6; 0.1; 0.2, plot e) 0.2; 0.1; 0.2 and plot f ) 0.9; 0.1; 0.2. 

T h e values of 7 ^ are displayed o n t h e horizontal axis, the vertical axis corresponding 

t o values of 7 ^ . T h e red lines represent the critical value of a chi-square distribution 

on one d f , for a 5% size: 3.8414. In each plot the number of dots in the region where 

b o t h test stat ist ics are greater then 3.8414, out of 1 000, gives the overall power for 

the two tes ts of exc luding edges 13 and 23. P l o t s a), b) and c) correspond to three 

power values in the red line of plot b . l ) , Figure 4.12: respectively 0.466, 0 .362 and 

0.229. Power in plot c), where c o r ( 7 ^ , 7 ^ ) = —0.9, is much lower t h a n in plot a) , 

where cor(7j^, 71^) = 0.597. T h e sign of the correlation coefficient be tween the two test 

statist ics, together w i t h small (:^ 5) expec ted values for the test statist ics , accounts 

for the non-symmetry and non-monotonic i ty of the power funct ion. P l o t s d) , e) and f ) 

correspond t o power values of 0.62, 0 .62 and 0.61. A l t h o u g h c o r ( 7 ^ , 7 ^ ) is the same 

in plots c) and f ) , t h e fact tha t in plot f ) P23.1 = 0.2 has lead t o an increase in the 

expec ted value of 7 ^ (in the a symptot i c distribution) , making it less likely that values 

of T2S are under 3.8414. A s a result, power values do not decrease in plot f ) as they do 

in plot c). 

In brief: the m e a n and correlation structures of the test s tat is t ics accounts for 

the non- symmetry and non-monoton ic i ty of t h e power functions, noteworthy for small 

values of the partial correlat ion coefRcients. 
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Figure 4.13; and simulated values, for six combinations of pi2.3;pi3.2;/%3.i : a) -0.6; 

0.1; 0.1, b) 0.2; 0.1; 0.1, c) 0.9; 0.1; 0.1, d) -0.6; 0.1; 0.2, e) 0.2; 0.1; 0.2, f ) 0.9; 0.1; 0.2. 

Until now normal approximations to the power of the likelihood ratio test statistic 

have been derived, both concerning selecting the saturated model (with three variables) 

and test(s) of exluding edge ij (and edge ik). Non-signed and signed square-root 

versions of the LRT have been considered. Similar reasoning can be applied to derive 

asymptotic power functions for the Wald and the score test statistics. Consequently, 

asymptotic power functions (saturated model) for the Wald or the score test statistics 

can be obtained by replacing in Equation 4.6, respectively 

. Tk by TV or 

. AEiT!^] by AE[T«'] or AElTf^]; 

• by var(T>'') or var(T;|); 

. cov(T,'j,Ti;) by c o v ( T » ' , T , ; ' ) or cov(r|.7;f). 

Analogously, signed square-root versions of the Wald and score test statistics can be 

considered, once the appropriate replacements are made in Equation 4.7 for one-sided 
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hypothes i s tes ts and in Equat ion 4.8 for two-sided hypothes is tests. T h e conclusions 

are e x p e c t e d to be similar to those drawn so far, using the LRT, as happened in the 

two variables case. 

4.1.6 Power of single edge exclusion tests , in G G models: t h e 

p variables case 

T h e normal approximation to the power of the test s tat is t ics for single edge exclusion 

from the saturated GG model, with three variables, derived in Section 4.1.5, can be 

generalised t o t h e p variables case, us ing a multivariate normal approximation, by gen-

eralising Equat ions 4.6, 4.7 and 4.8. One should note, however, that a mode l w i th four 

variables implies s ix partial correlation coefRcients (and six test s tat is t ics for single 

edge exclusion from the saturated model) and a model with five variables implies ten 

(i.e., p ( p — l ) / 2 ) test stat ist ics for single edge exclusion. Therefore, calculat ing the 

power of the test statistics for single edge exclusion in a model with p = 5 variables re-

quires using a multivariate normal distribution of dimension ten, i.e., a ten dimensional 

integral. 

When p is large and numerical integration becomes impractical it is always possible 

to perform Monte Carlo integration. This would first require generating a large number 

of observations (say, one million) from a p ( p — l ) / 2 - dimensional multivariate normal 

distribution with vector of means AE[r'^] (the expected values of the test statistics, in 

the asymptotic distribution) and variance matrix given by cov(T)" , T'l) (the variances 

and covariances of the test statistics, in the asymptotic distribution). Generating a 

mult ivariate normal distribution of d imens ion p(p— l ) / 2 is straightforward: it requires 

generating p{p — l ) / 2 univariate standard normals, combining them in a vector, pre-

multiplying that vector by the positive square-root of the variance matrix cov(2^", T^i) 

and adding the result to the vector of means AE\T'^] (see Mardia, Kent and Bibby, 

1979, Section 2.5.1). The power of the model selection procedure, i.e., the Monte Carlo 

probability of selecting the saturated model is obtained as the number of values, out 

of a million, in the region between zero and the density of the multivariate normal 

distribution, from the upper hmi t s of integration t o infinity. 

The complexity of the problem increases considerably with the number of variables 

in the model. Because of this complexity, the decision was made not to investigate 
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the quality of the normal approximation when four or more variables are present. 

Furthermore, performing simulations becomes much more complex when the number 

of variables increases (in the sense that there are many possible combinations of values 

of the p, with the additional constraint of a positive deSnite scaled inverse variance 

matrix). Also, while it is possible to visualise the associations between three variables in 

a three dimensional space, this becomes no longer possible when six or ten associations 

are present. However, it was decided to consider the four and the five variables cases, 

restricting the attention to models with equal partial correlation coefRcients between 

all variables, and to obtain power fimctions by simulation. 

First, it is required to express the region of positive definiteness as a function of 

the partial correlation coefBcients. An (see Mardia, Kent and 

Bibby, 1979, page 461) is a x p matrix of the type 

P = ( l - p ) 7 + /)J, (4.9) 

that is, a matrix with ones on the main diagonal, all off-diagonal elements being equal to 

the correlation coefRcient p. J denotes a p x p matrix of ones. The determinant of f is 

given by the product of its eigenvalues, where Ai = l+{p—l)p and A2 = • . . = Ap = I—p. 

P is positive definite when all eigenvalues are positive, that is, when 1 — p > 0 and 

1 + (p — l)p > 0. Consequently, P is positive deSnite when p E , 1 ^ 

Because the focus is on partial correlation coefficients, existing results for an equicor-

relation matrix had to be adapted. Indeed, the scaled inverse variance matrix, with 

ones on the main diagonal and off-diagonal elements being minus the partial correlation 

coefficients, can be written as 

T = SC{P )̂ = (1 + Pij.rest)! — Pij.restJ (4.10) 

The determinant of T is given by the product of its eigenvalues, where Ai = 1 — (p — 

l)Pi;.reat a^d Ag = . . . = Ap = 1 + Pij.resf- is positive definite when 1 + > 0 

and 1 — Pz;.regt(p — 1) > 0. Because Pij.reat E (—1, 1), 1 + Pij.resf is always positive and 

[1 — Pij.rest(p — 1)] is strictly positive if Pij.reat < In other words, it is suggested 

that the positive deAniteness constraint in the scaled inverse variance matrix with p 

variables, when all partial correlation coefficients pij.rest are equal, is that Pij.rest G 

-1. f t ) -
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Figure 4.14: Power of selecting the saturated GG model (with three, four or five variables) 

when all partial correlation coefficients are equal. Four different sample sizes: a) n = 50, b) 

n = 100, c) n = 200, d) n = 500. 

Simulations were performed for the cases of three, four and five manifest variables, 

in order to estimate the power for selecting the saturated model, i.e., the probability of 

selecting the saturated model given the specified values for Pij.rest- All partial correlation 

coefficients are assumed equal, and varying from -0.95 to with an interval of 0.05. 

In each case 1 000 repetitions were done. Four different sample sizes are considered: 

50, 100, 200 and 500. The likelihood ratio test for single edge exclusion is used. The 

results obtained are presented in Figure 4.14. 

Some conclusions can be drawn: 

• for a certain value of the partial correlation coefficient, the smaller the number 

of variables, the larger power is. This effect is particular noteworthy for small 

absolute values of the partial correlation, whereas for large absolute values the 

differences vanish; 

• with large sample sizes, power tends to increase faster as the absolute value of 

the partial correlation coefficient increases, and, therefore, differences in power 
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between models with three, four and Ave variables can only be detected for small 

absolute values of Pij.rest: l^ss than |0.2| with a sample size of 500 (see panel d)). 

The LRT statistic was used. Similar results should be obtained using either the Wald 

or the score test statistics. 

4.2 Power of Single Edge Exclusion in GLL Models 

The power of the test statistics for single edge exclusion hrom the saturated GLL 

model is investigated. Non-signed and signed square-root versions of the test statistics 

are considered. The two binary variables case is analysed and some insight is given 

regarding three binary variables. As in the continuous case, the power of a backwards 

elimination model selection procedure for selecting the saturated GLL model is defined 

as the probability of selecting the true (saturated) GLL model given the specihed true 

model parameters. In the continuous case the association between variables is measured 

by a single parameter, the (partial) correlation coefEcient, whereas in the case of two 

or more binary variables cross-classified in a contingency table, more parameters are 

required, the total number of parameters depending on the number of binary variables 

in the GLL model. 

4.2.1 Power of t h e L R T in a GLL mode l w i t h two b i n a r y vari-

ables 

The odds ratio, -012, is a commonly used measure of association between two binary 

variables, but additional information is required. As in Section 3.7, besides ^12, 7ri(0) 

and ^[2(0) are considered fixed. The LRT statistic is used. Simulated power values are 

presented. The theoretical power of the LRT statistic is then derived, using asymptotic 

normal and non-central chi-square approximations. The quality of the two approxima-

tions is assessed. 

Simulated power values 

For the two binary variables case, power is calculated for different combinations of the 

three chosen parameters ^12, 7ri(0) and 7r2(0). Because of the symmetries explained in 

Section 3.7, 7ri(0), taJtes values between 0.1 and 0.9 (an interval of 0.1 is used), 7:2(0) 
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takes values between 0.1 and 0.5 and the odds ratio ipi2 takes values greater or equal to 

one (1, 1.25, 1.5, 1.75, 2, 2.25, 2.5, 3 and 4). A total sample size of 1000 observations 

is considered. The likelihood ratio test statistic for single edge exclusion from the 

saturated model, given by Equation 3.17, is used. Recall that the null hypothesis is 

that the independence model holds, the alternative being that the saturated model 

holds. Power is estimated as the number of times, out of 1 000, that the saturated 

model is chosen, that is, that P [LRT12 > %^. 0.95 | 7ri(0), 7r2(0), ^12] • 

Figure 4.15 shows simulated power values, for n© = 1 000, obtained for the different 

combinations of odds ratio (on the horizontal axis of each plot) and marginal proba-

bihties. In each plot each of the nine lines corresponds to a value of 7ri(0) (from 0.1 to 

0.9). 7r2(0) has a value of 0.1 in panel a), 0.2 in b), 0.3 in c), 0.4 in d) and 0.5 in e). 

M 
f 

M 
— 0.3 

' — ' 0.9 . 

M 
— 0.3 

' — ' 0.9 . 

b ) n ! < ; 

1^ 1̂  2% 

IM 1^ 2.M LM 2̂ 1 

Figure 4.15; Simulated power of the saturated model, with two binary variables, for a sample 

size n0 = 1000 and different combinations of -̂ 12 (from 1 to 4, on the x axis), 7ri(0) (from 

0.1 to 0.9 in each plot) and 7r2(0) (from 0.1 to 0.5 in panels a) to e), respectively). 

Some conclusions can be drawn from Figure 4.15: 

• for a given combination of marginal probabilities, power increases as the odds 
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ratio deviates from one; 

• power increases faster when one of the marginal probabilities is around 0.4 or 

0.5, particularly if the other marginal probability also takes that value; 

• if 712(0) = 0.1 (plot in panel a) a power value of ~ 0.8 is achieved with ipi2 = 2.25, 

for values of 7ri(0) of 0.8, whereas if 7r2(0) = 0.3 (plot in panel c) similar values 

of power are achieved for ^12 = 1.5. Indeed, more balanced combinations of 

marginal probabilities 7ri(0), ^2(0) lead to higher power values, even for smaller 

odds ratios ipi2-

a) 

1M 1M 2W 2M 

rw 1%) ^ 3W 1M 1^ 2W 2% 

Figure 4.16: Simulated power of the saturated model for different sample sizes: a) mg = 1000, 

b) n0 = 500, c) n0 = 200, d) zig = 100. In all plots 7:2(0) = 0.1, 7ri(0) from 0.1 to 0.9 and ^12 

from 1 to 4. 

The effect of reducing the total sample size on the probability of selecting the 

saturated model seems more drastic than in the continuous case. Figure 4.16 shows 

the simulated power of the saturated model for different sample sizes: 1 000, 500, 200 

and 100, for an unbalanced combination of marginal probabilities: 7ri(0) from 0.1 to 

0.9 in each plot and 712(0) = 0.1 in all four plots. It is possible to conclude that 

power decreases with decreasing sample size. With n0 = 1 000 (plot in panel a) and 
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7r2(0) = 0.1 a power of 0.8 can be obtained with — 2.25 for all 7ri(0) between 0.1 

and 0.8, whereas with n® = 500 (plot in panel b) that power value is only achieved if 

7ri(0) ~ 0.4. If n0 = 200 (plot in panel c) an odds ratio of 4 is required, and if n© = 100 

(plot in panel d), even with ipu = 4, the maximum value for power is ~ 0.5. 

1^ 3#i 1^ 

1M 1^ ^ 3M 1.00 1.50 2.00 2a) 3 00 

Figure 4.17; Simulated power of the saturated model for different sample sizes: a) ng = 1000, 

b) 710 = 500, c) n0 = 200, d) = 100. In all plots 7r2(0) = 0.4, 7ri(0) from 0.1 to 0.9 and ipi2 

from 1 to 4. 

Figure 4.17 shows the effect of reducing the sample size if 712(0) = 0.4. By compar-

ison with Figure 4.16 it is possible to conclude that, when the sample size decreases, 

the effect on the power of selecting the saturated model is not so severe if marginal 

probabilities are more balanced. Thus, when varying the sample size, power is influ-

enced not only by the value of the odds ratio, but also by how balanced the marginal 

probabilities are. 

In brief: in the two binary variables case, power increases as the sample size in-

creases and as the value of the odds ratio gets further from one, faster for more balanced 

marginal probabilities combinations. 
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Theoret ical power values 

Theoretical asymptotic power functions are now derived. As mentioned in Section 3.5.1, 

if ^̂ 12 7̂  1, i-e., if the saturated model with two binary variables holds, the distribution 

of the likehhood ratio test statistic for single edge exclusion from the saturated model 

can be asymptotically approximated by a normal distribution, with mean 

(Equation 3.27) and variance vaT(Z,7?T|L2) (Equation 3.29). Therefore, asymptotically, 

the power of selecting the saturated GLL model with two binary variables, using the 

LRT, can be calculated using a normal approximation as 

f > 3.8414 I 7ri(0), 7r2(0), & P 

where z ^ W (0, 1). 

3.8414 -

\ / v a r ( Z ^ 2 i ^ 
(4.11) 

A non-central chi-square approximation to the power of the LRT statistic can also 

be used, with non-centrality parameter ip given by Equation 3.43. The null hypoth-

esis of independence is rejected if P [LRT12 > x \ 0.95 I ^ 2 ( 0 ) , ^12] • Hence, the 

theoretical power functions can be obtained by calculating one minus the cumulative 

probability for a non-central chi-square distribution with one degree of freedom, and 

non-centrality parameter for a quantile value of 3.8414 (and given values of 7ri(0), 

7r2(0) and '(612)-

The quality of the two approximations to the power of the LRT statistic can now 

be assessed. Figure 4.18 compares the simulated power values (in red) with the the-

oretical values calculated using the asymptotic normal and the non-central chi-square 

approximations presented above, for different combinations of marginal probabilities 

and odds ratio values. The asymptotic normal approximation corresponds to the blue 

curve and the non-central chi-square approximation to the green curve. A sample size 

of 1000 is used. In each plot the odds ratio is represented on the horizontal axis and 

varies from 1 to 4. The marginal probability vri (0) takes the values 0.1, 0.3, 0.5, 0.7 

and 0.9, respectively in plots 1 to 5. The marginal probability 7r2(0) takes the values 

0.1, 0.2 and 0.3, respectively in plots in panels a), b) and c). 

Some comments on Figure 4.18. Even for a sample size of 1000, the normal ap-

proximation seems a poor approximation for values of the odds ratio close to one. In 

such cases, at an alternative close to the null, i.e., '̂ 12 close to one, the non-central 
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Figure 4.18; Simulated (in red) and theoretical power values using an asymptotic normal 

(in blue) and a non-central chi-square (in green) approximation. n0 = 1000. ^12 from 1 to 

4 in each plot. 7ri(0) equals; 1) 0.1, 2) 0.3, 3) 0.5, 4) 0.7 and 5) 0.9. 7r2 (0) equals; a) 0.1, b) 

0.2 and c) 0.3. 

chi-square approximation performs much better. Note that if il)i2 = 1, AE[LRTi2\ = 0 

and \ax{LRTi2) = 0. The z value is infinity. Using an odds ratio value close to one 

('012 = 1-0001) induces a very small value for the variance of LRT and, therefore, z 

becomes very big, the corresponding theoretical probability is zero and the normal 

approximation is poor (a value of 0.05 was expected). However, when the odds ratio 

value is far from one and the contingency table is unbalanced, i.e., the values of the 

balance index are high (Table 3.3), the normal approximation seems to perform bet-

ter. That is the case of plots b.5) and especially a.5). Note that, in these cases, the 

minimum expected cell counts (appendix Table B.l) can be very small; in plot a.5) 

values of 3.8 and 2.9 are reached, respectively for ^12 equal to 3 and 4. The chi-square 

approximation is very poor then. 

For a sample size of 10 000 (considered a large sample size for a GLL model with 

two binary variables) the normal approximation is still a poor approximation to the 
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power of the LRT statistic for odds ratio values close to one. Indeed, for a large 

sample size, the non-central chi-square approximation to the power of the non-signed 

version of the LRT statistic (saturated GLL model) performs better than the normal 

approximation. These conclusions were drawn from Figure 4.19. Note these conclusions 

are in agreement with those drawn in Section 4.1.1, for GG models with two variables. 

/ .. 
• 

/ b.1) r 
A .. / j 
A ... • / / <='3) 

/ / b.4) / C'4) 

a.5) b.5) • f C.5) 

Figure 4.19: Simulated (in red) and theoretical power values using an asymptotic normal 

(in blue) and a non-central chi-square (in green) approximation, n® — 10000. •0i2 from 1 to 

4 in each plot. 7ri(0) equals: 1) 0.1, 2) 0.3, 3) 0.5, 4) 0.7 and 5) 0.9. 7r2(0) equals: a) 0.1, b) 

0.2 and c) 0.3. 

4.2.2 N o r m a l a p p r o x i m a t i o n s t o t h e power of t h e Wald a n d 

t h e score t es t s ta t i s t ics in t h e two b ina ry variables case 

The power of selecting the saturated GLL model with two binary variables, using the 

Wald and the score test statistics was estimated by simulation, as in Section 4.2.1 when 

the LRT statistic was used. Very similar results were obtained and for that reason the 
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corresponding plots are omitted. 

As for the LRT, theoretical power values can be obtained using a normal approx-

imation. The power of selecting the saturated GLL model with two binary variables, 

using the Wald test is given by 

3.8414 — 
f > 3.8414 I 7ri(0), 7r2(0), -̂ 12] = ^ z > , (4.12) 

\/var(PKaWi2) 

where z A^(0, 1), and A^7[WaZc(i2] amd vaT(iyaWi2) are given by Equations 3.33 

and 3.35, respectively. 

The power of selecting the saturated GLL model using the score test, is given by 

3.8414-AE[^corei2] 
P[5'corei2 > 3.8414 | 7ri(0), 7r2(0), ^12] = f z > , (4.13) 

-\/var(Scorei2) 

where z A/" (0, 1), v4.E'[5'corei2] is given by Equation 3.38 and the methodology to 

obtain var(5'corei2) is explained in Section 3.5.2. 

The conclusions derived in Section 4.2.1, regarding the normal approximation to 

the power of the LRT statistic, also apply to the power of the Wald and score test 

statistics. In brief; the asymptotic normal approximation to the power of the test 

statistics, in GLL models with two binary variables, is a good approximation for large 

sample sizes and odds ratio values not close to one. 

4.2.3 Power of t h e s igned squa re - roo t versions of t h e tes t 

s ta t i s t ics , in GLL mode l s w i t h two b ina ry var iables 

The signed square-root versions of the three test statistics for single edge exclusion 

from a saturated GLL model, with two binary variables, are presented in Section 3.4.3. 

In Section 3.5.3 normal approximations to the distributions of the signed square-root 

versions of the three test statistics are derived, under the alternative hypothesis that 

the saturated GLL model holds. The formulae for the means and variances of 

Waldf2^ and Score^^'^, in the asymptotic distribution, are also given in Section 3.5.3. 

All these can be used to derive theoretical power functions. 

In the case of a two-sided hypothesis test, the null hypothesis that log ^12 = 0 

is rejected if the absolute value of the signed square-root version of the test statistic 

being used is greater than 1.96, for the diEerent values of log 1̂ 12, 'n'i(O) and 7r2(0). In 
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other words, asymptotically, the power of selecting the saturated GLL model with two 

binary variables, using the two-sided signed square-root version of each of the three 

test statistics for single edge exclusion, can be obtained as 

> 1.96 I 7ri(0), logViz] = P 

P 

\/var(T'eat̂ '̂ ") 
+ 

where z JV(0, 1) and can equal or S c o r e ^ , with cor-

responding formulae for means and variances, in the asymptotic distribution, given in 

Section 3.5.3. 

In the case of a one-sided hypothesis test, the nuh hypothesis that log'^12 = 0 is 

rejected if the value of the signed square-root version of the test statistic being used 

is greater than 1.645, for the different values of log';/'i2, 7ri(0) and ^2(0). Consequently, 

the power of selecting the saturated GLL model with two binary variables, using the 

one-sided signed square-root version of each of the three test statistics for single edge 

exclusion, can be obtained as 

> 1.645 I 7ri(0), 7r2(0), log ̂ 12] = f z < 
-\/var(res(^^^) 

The quality of the asymptotic normal approximation is now assessed. Since only 

odds ratio values greater or equal to one have been used so far, only one-sided hypoth-

esis tests are considered. The three test statistics for single edge exclusion were used. 

Because the pattern of their power functions is very similar only the results associated 

with the power of the one-sided signed square-root hkehhood ratio test statistic are 

presented. Figure 4.20 compares simulated power values with theoretical power values 

obtained with the proposed approximation, for a sample size of 1000. Four different 

unbalanced combinations of marginal probabilities were chosen: 7r2(0) = 0.1 in all plots 

and 7ri(0) equals 0.1 in panel a), 0.2 in b), 0.8 in c) and 0.9 in d). The choice is based 

on the fact that previous results (Section 4.2.1) indicate approximations tend to per-

form worse for unbalanced combinations of marginal probabilities rather than for more 

balanced combinations. 

In conclusion: the asymptotic normal approximation is a good approximation to the 

power of the one-sided signed square-root version of the test statistics for single edge 
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1.0001 1.5000 2.0000 2.5000 4.0000 1.0001 1.5000 2.0000 2.5000 

Figure 4.20; Simulated (in red) and theoretical asymptotic normal (in blue) power curves 

using the one-sided signed square-root likelihood ratio test statistic, ng = 1 000. ipi2 from 1 

to 4 in each plot. 7r2(0) equals 0.1. 7ri(0) equals; a) 0.1, b) 0.2, c) 0.8, and d) 0.9. 

exclusion, from a saturated GLL model with two binary variables, even for moderate 

sample sizes (ng = 1 000), less balanced combinations of marginal probabilities and 

odds ratio values close to one. These results are in agreement with those obtained in 

Section 4.1.1, for GO models with two variables. 

4.2.4 Power of t h e t e s t s ta t i s t ics for single edge exclusion in 

GLL mode l s w i t h t h r e e b i n a r y variables 

In a 2 X 2 X 2 contingency table there are eight cell probabilities that add up to one. 

Consequently, the parameter space is seven dimensional. For this reason a compre-

hensive investigation of the power functions for the different combinations of values of 

the seven parameters is not possible. The aim of the current section is, therefore, to 

provide some insight on how to obtain approximating theoretical power values for a 

specific contingency table. 

Let 6 be the 7 x 1 vector of the chosen parameters, either seven cell probabilities or 
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combinations of conditional odds ratios and marginal probabilities that uniquely define 

the contingency table under analysis, depending on the information available to the 

data analyst. Following a reasoning similar to that of Section 4.1.5, asymptotic normal 

approximations to the power of selecting the saturated GLL model with three binary 

variables, using the test statistics (LRT, Wald or score) for single edge exclusion from 

the saturated model, are now derived. 

From Section 3.5.1, in the three binary variables case, under the alternative hypoth-

esis that the saturated model holds, the vector of the three likehhood ratio test statistics 

LRTij is asymptotically normal distributed, with means given by Equation 3.30, vari-

ances given by E^quation 3.31 and covariances given by Equation 3.32. If the Wald 

or the score test statistics are used instead, the vectors of test statistics and 

ScoTGij are asymptotically normal distributed, with means given by Equations 3.36 and 

3.39, respectively. Procedures for obtaining the variances and covariances are given in 

Section 3.5.2. Hence, the asymptotic power for the LRT of selecting the saturated 

GLL model with three binary variables can be obtained, using a trivariate normal 

approximation, as 

f > 3.8414 and > 3.8414 and > 3.8414 | A 
y+oo y+oo r+co 
/ / / $ (At, E) dZ/THls (4.14) 

^3 .8414 ^3 .8414 ^3 .8414 

where $ (//, E) is the joint cumulative distribution of the joint trivariate normal density 

of the three LRT statistics with vector of means ji and positive definite variance matrix 

E, given by Equations 3.30, 3.31 and 3.32. Similar reasoning applies to the Wald and 

to the score test statistics. 

In practical terms, in order to obtain the asymptotic normal approximation to 

the power functions, the data analyst has to choose the test statistic for single edge 

exclusion to be used. Then, for the set of cell probabilities of interest, the means, 

variances and covariances of the test statistics have to be calculated (using formulae 

from Section 3.5.2). Finally, the pmimorm function of R can be used to compute the 

corresponding triple integral defined by Equation 4.14. From the results obtained in 

the two variables case, it is expected that the normal approximation performs well 
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for large sample sizes, more balanced contingency tables with no small values for the 

minimum expected cell counts and conditional odds ratios not close to one. 

I n c o n c l u s i o n r it is proposed that the theoretical power of selecting the 

saturated GG or GLL model, using the test statistics for single edge exclusion from 

the saturated model, is obtained with asymptotic normal and non-central chi-square 

approximations to the distributions of the test statistics. The non-central chi-square 

approximation can be used in the two variables case and is a good approximation, both 

in GG and in GLL models, particularly at an alternative close to the null (pi2 close to 

zero or ^12 close to one). In the single edge case, if the signed square-root versions of 

the test statistics are used, the normal approximation is a good approximation to the 

power of the test statistics, even if the sample size is not very large and the correlation 

coeSRcient or the log odds ratio, are close to zero. However, if the non-signed version 

of the test statistics is used, the asymptotic normal approximation requires larger 

sample sizes, and remains a poor approximation for correlation coefficients close to zero 

(in GG models) and odds ratio values close to one (in GLL models with two binary 

variables). As highlighted in the conclusion of Chapter 3, one thousand observations 

can be considered a large sample size in a GG model, whereas in a GLL model, for a 

sample to be considered large, many more observations are required. 
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Chapte r 5 

Single-Factor G G Model and 

Latent Class GLL Model 

As mentioned in Chapter 1, several references have been made in the literature to the 

use and importance of incorporating latent variables in the grap/izcaZ modeZs framework. 

Recent contributions in this area include StangheUini (1997), Vicard (2000) and Giudici 

and StangheUini (2001), all being related to the identification of factor analysis models 

with correlated residuals. StangheUini (1997) presented the independence graph of the 

residuals and derived a suSicient condition for global identification of such a model. 

Vicard (2000) used the complementary graph of the independence graph of the residuals 

to derive a necessary and sufficient condition for identification. The single-factor model 

with correlated residuals is represented by a chain graph, following Cox and Wermuth 

(1996, Section 8.3). Giudici and Stanghellini (2001) defined a prap/iicof/actor onaZt/gig 

mode/ as a factor model with correlated residuals and gave a suJSicient condition for 

the identification of a factor model with an arbitrary number of factors, somehow 

generalising StangheUini (1997). A Bayesian approach was adopted to tackle the issue 

of model comparison. The graphical factor analysis model is represented as a chain 

graph, but dashed arrows are used between boxes, thus representing the marginal 

associations between pairs of variables. 

Edwards (1995, Section 7.1.2 and 2000, Section 4.6.2) used conditional indepen-

dence graphs to represented both a single-factor analysis model and a latent class 

model and claimed both models can be fitted using MIM. Yet, it is recommended in 

this thesis that the data analyst is very cautious when using the software since not only 
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does MIM have no built in check for identification, but it also manages to give param-

eter estimates for models with 'negative degrees of freedom'. Besides, the relationship 

between the estimates produced by MIM and those produced by other packages that 

ht classical single-factor models, such as SPSS or LISREL, is often not clear. A deeper 

understanding of these models is, therefore, required. 

The focus of the current chapter is neither on identification nor on estimation. 

Apparently taking a step back, the emphasis is on both of 

the single-factor model as a graphical Gaussian model and of the latent class model 

as a graphical log-linear model. Models are represented by conditional independence 

graphs, with associations between each of the manifest variables and the latent variable 

measured either by partial correlation coe&cients or by conditional log odds ratios. 

Although traditionally factor analysis models and latent class models have been 

developed and treated quite separately, even as far as users and software packages for 

model fitting are concerned, some recent efforts have been made to create a theoretical 

unified framework and to work within it. These include Bartholomew and Knott (1999), 

Bartholomew, Steele, Moustaki and Galbraith (2002) and work by Vermunt leading to 

Latent GOLD software. The fact that, in this thesis, both models are treated in 

the same chapter corresponds to the belief that graphical models provide a unified 

framework for including both Gaussian and categorical latent variables. Furthermore, 

although mixed models are out of the scope of this thesis, once conditional-Gaussian 

distributions are considered, models parallel to latent trait and latent profile analysis 

can also be included in the unified framework. It is certainly a topic for further research. 

The structure of this chapter is as follows. The classical factor analysis model and 

the classical latent class model are reviewed in Sections 5.1 and 5.4. Section 5.2 pa-

rameterises the single-factor GG model using partial correlations, relates the classical 

to the proposed parameterisation and investigates the admissible regions of the param-

eter space. Section 5.3 focus on detecting a model consistent with a single-factor GG 

model and gives some recommendations to the data analyst. Finally, Section 5.5 pa-

rameterises the latent class GLL model and investigates the conditional independence 

structure of the manifest variables arising from a latent class GLL model. 
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5.1 The Classical Factor Analysis Model 

This section reviews the classical parameterisation of the factor analysis model, par-

ticular attention being devoted to the single-factor model. The question of model 

identification is addressed and a brief reference is made to model estimation. 

5.1.1 T h e classical p a r a m e t e r i s a t i o n of t h e s ingle-factor m o d e l 

The factor analysis model can be written as 

% = 4- (5.1) 

where % is a vector of p manifest variables, ^ is a vector of m underlying factors (latent 

variables) such that A i s a p x m matrix of factor loadings relating the manifest 

variables to the underlying factors, and 6 is a vector of p variables representing random 

measurement error and indicator specificity. Variables are considered to be measured 

as deviations from their means, that is E[X] = £'[^] = 0. The model assumes that 

= 0, E[S\ = 0, var [5] = 6^ (diagonal) and that X, ^ and 5 are multivariate 

normal distributed. 

The variance matrix for X, with elements denoted by is 

^ x x = A0A^ + 05, (5.2) 

where $ is the m x m variance matrix of ^ and is the p xp diagonal variance matrix of 

5. In the classical factor analysis model the matrix ©<5 is diagonal, i.e., all associations 

among the manifest variables aze explained by the unobserved factors, whereas in the 

conErmatory factor analysis framework residual terms are allowed to be correlated. If 

$ is the identity matrix the m factors are orthogonal and the solution will be unique 

up to rotation, i.e., up to post-multiplication by an orthogonal matrix. 

One of the crucial issues associated with factor models is that of identification. 

An unknown parameter is identified if it can be written as a function of one or more 

elements of the variance matrix Exx (leading to a unique solution). A model is iden-

tified if all parameters to be estimated from the data are identified. Restrictions have, 

therefore, to be imposed on the model defined by Equations 5.1 and 5.2 to ensure that 

the model is identified, i.e., that the elements of 0^ and of A can be uniquely (up to 
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rotation) expressed as a function of the elements in Zxx- A usual Erst step to avoid a 

basic problem of identi6cation is to fix the scale of the latent variables, i.e., to set the 

variances of the latent variables to one. Anderson and Rubin (1956, Section 5) dealt 

with the problem of identification and gave a necessary and sufBcient condition for the 

identification of a single-factor model in Theorem 5.5: at least three factor loadings 

have to be non-zero. However, no necessary and suGicient condition exists to ensure the 

identification of models with two or more latent variables, when specific sets of factor 

loadings are set to zero and others have to be estimated from the data (confirmatory 

factor analysis framework). Some rules have been proposed in the hterature to try to 

aasess the identification of a confirmatory factor analysis model - for a summary see, 

for example, BoUen (1989, pages 238-251). Since only single-factor models are consid-

ered in this thesis, no problems of identification exist provided there are three or more 

manifest variables in each model and the latent variable is scaled to have unit variance. 

The single-factor model 

A particular case of the model defined by Equation 5.1 is the classical single-factor 

modeZ, with p manifest variables and one factor (latent variable) In this case, Equa-

tions 5.1 and 5.2 simplify to 

X = -h (5 (5.3) 

(5.4) 

The latent variable ^ has been scaled to have unit variance and A is a p x 1 vector 

of factor loadings. Each A, represents the magnitude of the expected change in the 

manifest variable Xi for a unit change in the latent variable As mentioned earlier, 

the model is identified provided p, the number of manifest variables, is at least three. 

The aim is to express A and the elements of the diagonal matrix Os in terms of the 

observable T,xx, as a solution to 5.4. In order to guarantee the existence of a solution 

that is real (non-complex) and yields non-negative variances, Exx has to meet some 

requirements. 

Anderson and Rubin (1956, Theorem 4.2) stated that 'a Meceggon/ ancf 
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— l ) / 2 — p con<i%(zom3 o r e g o ^ ^ _ ^ e ( f om(f 

0 < 
O'kj 

/or OMg pozr (j ^ A;) /or eocA z.' 

There are p(p + 1 ) / 2 distinct elements in the observable p elements in the 

diagonal of 8^ and p elements in the vector A (forming a total of 2p unknown param-

eters). Therefore, the system has p(p + l ) / 2 equations and 2p unknown parameters. 

Let C = p(p + l ) / 2 — 2p = . . . = p(p — l ) / 2 — p denote the number of equations 

minus the number of unknowns to be determined. If C > 0, T^xx must satisfy some 

C = p(p—1)/2—p conditions for a solution to exist. Thep(p—1)/2—p 

are given by 

'7I2<713 _ 0"12'714 _ __ O'uClp _ g"l30"l4 _ _ O'lgO'lp _ _ ''"l(p-l)C'"lp 
0̂ 23 C24 CTgp (7̂ 34 Cgp 

In the case p = 3, p{p — l)/2 — p = 0 and so the solution to the system of six 

equations (with six unknowns) is possible and determined, without any additional 

constraints having to be satisGed. If p = 4 the system has ten equations and eight 

unknowns, p(p— l)/2—p = 2 and two tetrad conditions have to be satisfied. They are 

given by 

C120'13 0'i2O'l4 Cl3(7'l4 

(7'23 (7̂ 24 0̂ 34 
^ Cri2<7l3̂ 24C34 — 0̂ 120'l40'23<̂ 34 — 0̂ 130̂ 140̂ 23<̂ 24 

C13C24 — <714(723 I I (712(734 — (J14C23 — 0 

r ̂  1 
<712(734 — (7I4<723 J ^ (7i3(724 — C14(723 — 0 

Similar reasoning can be followed for p > 5. 

Anderson and Rubin (1956, Theorem 4.1) gave a necessary and sufficient condi-

tion for Tixx to be a variance matrix of a single-factor model, i.e., ''there has to exist 

o eZemeMtSy) gttcA 2%% — 0^ 

semidefinite of rank one.' In order to prove Anderson and Rubin's Theorem 4.2, based 

on Theorem 4.1, it is required to prove that 2%% — being positive semidefinite of 

rank one is equivalent to satisfying p(p — l ) / 2 — p independent tetrad conditions and 

having 0 < < (7̂ , for one pair (j ^ A;) for each i One has to be able to subtract 

non-negative elements from the diagonal of to get a positive semidefinite matrix 

of rank one. 
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It is known that is of rank one if and only if 0^ can be chosen so that 

all aecoMd-order mmorg of Exx — are zero. Consequently: 

* if Z x x — is of rank one, then all its second-order minors are zero. A second-

order minor which does not include a diagonal element, known as a te^rocf. is of 

the form 

A;,jdifferent). 
(^ki ^kj 

Setting all to zero implies that CAtCrtj — = 0, for all possible combinations 

of diEerent /i, z, j , A;. A second-order minor, which includes one diagonal element, 

is given by 

(%, A;,; different). 
^ki ^kj 

Setting this expression to zero implies that has to be chosen as — Cji — 

The conditions that the solution be consistent (i.e., independent of the pair 

j, A;) are known as the 

In brief: all second-order minors being zero imply that the tetrad conditions are 

satisfied. 

• If all second-order minors of T,xx — Qs are zero, then the matrix ~ is 

of rank one. If the tetrad conditions are satisfied, all second-order minors of 

E x x — 05 are zero, and consequently this matrix is of rank one. 

For the matrix E x x — 0g to be positive semidefinite its diagonal elements have to 

be non-negative, i.e., dii — ^ 0. Since has to equal (T.i — 

% - %„ > 0 « T.. - (% - > 0 « > 0. 

(^kj (^kj 

For the matrix 0^ to be positive semidefinite, all the diagonal elements have to be 

non-negative, and so 

> 0 => a . i > 

As a result, 

0 < ^ < a„. 
O'kj 

Hence, Anderson and Rubin's Theorem 4.2 has just been proven. 
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5.1.2 T h e p a r a m e t e r space for a s ingle-factor m o d e l w i th 

t h r e e or four man i fe s t var iables 

In this section the parameter space for the single-factor model, with three or four 

manifest variables, is investigated. Permissible regions for the correlation coefficients 

are derived. 

The single-factor model wi th three manifest variables 

In the three manifest variables case Equation 5.4 can be written as 

Sxjy = AA^ -t- <=> 

C " l l <712 CTlS 

0'22 CTga 

(7̂ 33 

-|- A1A2 A1A3 

A2 + %22 ^̂ 2̂ 3 

-̂3 + ̂(33 

Solving for A and is equivalent to solving a system with six equations, and 6 unknown 

parameters Ai,A2,A3,%i],^^22,^{aa, (indeed the model is identiGed and saturated) as 

follows 

<̂ 11! A2 + ĝ22 =(722; A3-t-^,;3a=Cr33; 

A 1 A 2 = = ( 7 I 2 ; A 1 A 3 = ( 7 1 3 ; A 2 A 3 = ( 7 2 3 

Solving these equations with respect to the unknown parameters it is possible to obtain 

\ 2 _ £ 1 2 0 1 2 ^ . \ 2 _ g l 2 g 2 3 . \ 2 _ £12£23.. 
- (723 ' "^2 " (Zia ' - (^2 ' 

^6ii=<7ii-A^ = a n - ^ ^ ^ ; 6̂22 = --- 0-22 - ^̂ 33 cr33 O'l.sg'23 
<712 

Notice that because 9 .̂. has to be non-negative, < era and because Af is non-

negative, > 0. Indeed, this is precisely the condition required by Anderson 

and Rubin (1956, Theorem 4.2) previously shown. Because there are three manifest 

variables p(p — l)/2 — p = 0, and no tetrad conditions need to be satisfied. 

When, instead of the variance matrix, the population correlation matrix, denoted 

by P with elements pij, is used, the corresponding results hold: 

AjAj and Af = 

. 6̂,, > 0 => A? < 1 and ^ < 1; 
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. A? > 0 => > 0. 

Consequently 0 < < 1, which is the condition imposed by Anderson and Rubin 

in Theorem 4.2, expressed in terms of correlations. However, for this expression to 

hold for all manifest variables, all three p have to be different from zero, so that the 

three A are finite. Therefore, the product of the three correlation coefBcients has to 

be positive and the correlation matrix P is taken as positive definite. This is what 

Dijkstra (1992) stated as Proposition 1. Since one of the aims of this thesis is to 

relate graphical Gaussian models to factor models, and GG models literature assumes 

moMces, it was decided to consider only positive deGnite (and not 

positive semidefinite) variance and correlation matrices. 

In conclusion, for a 3 x 3 positive definite correlation matrix to be suitable for a 

single-factor analysis model it is required that 

0 < « ? ^ < l ; 
P23 P l 3 P l 2 

Figure 5.1 represents the allowable values of the three correlations. The ellipse 

represents the positive definiteness constraint defined by Equation 4.4. An arbitrary 

value of 0.5 was chosen for one of the correlation coefficients, whereas the other two 

vary between —1 and 1, within the region of positive definiteness. The fact that the 

product of the three correlation coefficients has to be positive restricts the allowable 

values to quadrants one and three. Finally, the three conditions < 1 determine 

the allowable shaded area. 

The single-factor model with four manifest variables 

In the four manifest variables case Equation 5.4 can be written as a system 

of ten equations, with ten known parameters and eight unknown parameters 

(Ai,^2, As, A4,^622,^633,6*^44)- That is, 2%% = + 6^ is equivalent to 

= (7ii; A2 + 6̂22 = cTgg; Ag + = <733; Â  + 

A1A2 = (712! A1A3 = (Tis; A1A4 = (714; A2A3 = (723; A2A4 = (724; A3A4 = (734 

Solving these ten equations with respect to, for example, Ai, it is possible to obtain 

a; = and XI = and Aj = 
(7'23 (̂ 24 0̂ 34 
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p.d. constraint 
rho_12 rho_13 / rho_23 = 1 
rho_12 rho_23 / rho_13 = 1 
rho 13rho 23/ rho 12 = 1 

-1.0 -0.5 0.0 0.5 1.0 

range of values for rho_13 (for an arbitrary value of 0.5 for rho_12) 

Figure 5.1: Possible values of three correlation coefficients to define a positive definite matrix 

suitable for a single-factor analysis model 

In order to have consistent solutions for the parameter (and similar reasoning can 

be used for all the other parameters) some equality constraints have to be imposed, 

namely that 

(7l2(7i3 (7'l2Cl4 

0'23 (724 

0"l30"l4 

(7'34 

These simplify to 

C12C34 — <7i4C23 — 0; cri30"24 — (714(723 — 0, (5.5) 

which are exactly the p{p — l ) / 2 — p = 2 tetrad conditions that have to be satisfied. 

For a more detailed example see Harman (1967, page 73). 

It was shown that in the p = 4 variables case the two tetrad conditions imply 

(or Pij = AiAj if correlations are used instead). Moreover, having <7̂^ = 

(i ^ j) implies the tetrad conditions are satisfied, as mentioned by Cox and Wermuth 

(1996, page 192), since then 

(712(734 — (714(723 = 0 A1A2A3A4 — A1A4A2A3 = 0 and 

(713(724 — (714(723 = 0 A1A3A2A4 — A1A4A2A3 = 0. 

In brief, for a 4 x 4 positive definite correlation matrix to be suitable for a single-

factor analysis model it is required that: 

# = AiAj (z and distinct, from 1 to 4), so that = Â ; 

0 < < 1 (for all possible combinations of distinct z, j and A;, from 1 to 4). 
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These results will be extended in Section 5.2.1, once the single-factor model is 

parameterised in terms of partial correlation coefBcients. 

5.1.3 Some notes on t h e e s t ima t ion of t h e fac tor mode l 

Maximum likelihood is the method commonly used for estimating the factor anal-

ysis model. The log-likelihood for a sample of size n equals — ̂  log(27r) — 

^ [log . Within the context of conhrmatory factor analysis, instead 

of maximising the logarithm of the likehhood function it is convenient to minimise the 

fitting function (denoted aa jpMZ/), also known as discrepancy function, (see Jdreskog 

(1967, page 457) for further details), defined as 

F = log | 2 x x | + ^r(;92]^^) - log |^| - :p, (5.6) 

where S is the unbiased sample variance matrix (with divisor n —1). The EM algorithm 

is often the iterative technique used for the optimisation. 

The first goodness-of-fit measure widely used was the probability associated with 

the chi-square likelihood ratio test, which is given by n — 1 times the minimum value 

of the fitting function FML obtained for the specified model. Under the assumption 

of multivariate normal X, (n — 1) FML is asymptotically chi-square distributed. If the 

model is correct, and the sample size is sufficiently large, the measure is the likelihood 

ratio test for testing the model against the alternative that T,xx is unconstrained. The 

associated degrees of freedom {df) for are given by df — {^pip + 1)} — t, where t 

is the number of independent parameters to be estimated (equal to 2p in the classical 

single-factor model). The probability level for the resulting chi-square value is the 

probability of obtaining a larger chi-square, given that the model is correct. Hence, 

small chi-square values, with corresponding large probability levels, indicate good fit. 

This measure has been criticised in the literature, partially because it is sensitive to 

the sample size, and several other measures of goodness-of-fit have been suggested; see, 

for example, Anderson and Gerbing (1984) and Bollen (1989, Chapter 7). 

In the three manifest variables case df = 0 and the solution is unique. In the 

presence of four or more manifest variables an iterative procedure is required, either 

to maximise the log-likelihood function or to minimise the discrepancy function. Some 

problems can, therefore, occur, namely and improper 

158 



Solutions are considered TioM-connerpent when a certain estimation algorithm, 

within a previously set number of iterations, is unable to satisfy a prescribed con-

vergence criteria. Solutions are improper when the estimates have values that are 

impossible (or implausible) in the population (Bollen, 1987): for example one or more 

of the unique variances (elements of the diagonal matrix are negative or correlations 

are greater than one. 

Several studies have been carried out to understand the circumstances under which 

these problems occur, including van Driel (1978), Anderson and Gerbing (1984), 

Boomsma (1985) and Boomsma and Hoogland (2001). Key reasons for non-convergence 

and improper solutions are population parameters near the boundaries of proper solu-

tions (small values of the error variances 6^^, or correlations close to one in the popu-

lation), misspeciGcation of the model, the existence of outliers and influential observa-

tions (Bollen, 1987), inconsistent variates and samphng Suctuations. Non-convergence 

tends to decrease with larger factor loadings, more indicators per factor and larger 

samples. For further details see Bartholomew and Knott (1999). 

5.2 The Single-Factor Graphical Gaussian Model 

Section 5.1 reviewed the classical parameterisation of the single-factor model. In the 

current section the single-factor model is parameterised as a GG model, and the rela-

tionship between the two parameterisations is studied in detail. Indeed, parameterising 

the single-factor model as a GG model allows a normal distributed latent variable to 

be included in the framework of graphical Gaussian models. 

In the classical single-factor model % = -t- 6 the manifest variables are condition-

ally independent given the latent variable ^ (normally distributed with zero mean and 

unit variance). This conditional model can be interpreted in the regression framework, 

considering the manifest variables the response and the latent variable the explanatory 

variable. Consequently, given X is normal distributed with mean and variance 

matrix In fact, 

+ Zx^(Z(() — /^() = 0 + '̂ (̂  — 0) = (5.7) 

and Zxx.f = for(<5) = 0^. The vector of the p regression coefficients, A, can be obtained 
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as 

== (5J3) 

and the diagonal matrix 0^ as 

©<5 = ^xx4 ~ diag{T,xx ~ = diag{'Exx — (5.9) 

For simplicity of notation in the remainder of this chapter the latent variable will be 

denoted by Z, and the vector of manifest variables by M. 

5.2.1 P a r a m e t e r i s i n g t h e s ingle-factor G G mode l us ing pa r t i a l 

cor re la t ions 

This section gives a detailed explanation on how to parameterise a single-factor model 

as a GG model, i.e., using partial correlations. The conditional independence structure 

between manifest variables arising from a single-factor GG model (by marginalising over 

the latent variable L) is investigated. The admissible region for the partial correlation 

coefficients between manifest variables, compatible with a single-factor model, is then 

derived. 

In this thesis the single-factor GG model is represented by an independence graph, 

as justified in Section 2.4.2. Figure 5.2 displays the independence graph associated 

with a single-factor model with three manifest random variables (1 ,2 and 3) and one 

latent variable (L), all assumed normal distributed. 

2I,.13 ^ y 

Figure 5.2: The independence graph of a single-factor model: the manifest variables 1, 2 and 

3 are conditionally independent given L. TiL.rest represents the partial correlation between 

manifest variable i and latent variable L, given the remaining manifest variables. 

The joint distribution of the manifest and latent variables is multivariate normal 

with positive definite variance matrix denoted by E, with inverse denoted by Q. In the 
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case of three manifest variables and a single latent variable, 

UJll 0 0 

f] = 
0 W22 0 

0 0 ^33 

_ W3I, 

where the diagonal elements are positive and ^ 0, z G M = {1,2,3}. When 

n is scaled to have unit values on the main diagonal, which is denoted by 5c(r2), 

the matrix T is obtained. Whittaker (1990, page 144) showed that the off-diagonal 

elements of the scaled inverse variance matrix are the negative partial correlations 

of the corresponding elements, given the rest. Therefore, the negative of the 

non-zero off-diagonal element, represents the partial correlation between the manifest 

variable z and the latent variable Z,, given the remaining two manifest variables, and is 

obtained as — C o n s e q u e n t l y , 

I Tml 

TLM 1 

1 0 0 -TLL.23 

sc(fi) = 
0 1 0 — T2L.13 sc(fi) = — T2L.13 

0 0 1 —T3I,.12 

—NL.23 -T"2I..13 —T3L.12 1 

Let denote the scaled inverse variance matrix of the manifest variables and U, 

with elements Vij, denote the inverse of T. Indeed t / is a 'modified' E in the sense that 

there exists a symmetric square matrix G such that GUG^ = E. The matrix U can be 

partitioned as 

U -

1̂1 1/12 Ẑ13 

^12 '̂22 !̂ 23 2̂2, 

^IZ Z/23 Z/33 

^IL ^2L Z/3Z, 1̂,1, _ 

The aim now is to investigate the conditional independence structure between the 

three manifest variables arising from marginalising the joint distribution of all variables 

over the latent variable. It is proved that marginalising over the latent variable L in 

Figure 5.2 yields the saturated model for the three manifest variables, and therefore 

induces an independence graph that is complete. This is equivalent to stating that 

11L2|Z/, 1ALZ\L and 2_LL3|Z, implies no zero entries in , the scaled inverse variance 

matrix of the manifest variables. 
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A proof follows, in four steps. First T, the scaled inverse variance matrix of all the 

variances is inverted eind (7, a 'modihed' variance matrix of all the variables is obtained. 

Then, by marginalising over the latent variable L. the matrix C/MM, a 'modified' vari-

ance matrix of the manifest variables, is obtained. Inverting and scaling this matrix 

induces the scaled inverse variance matrix of the manifest variables. Recall that 

the oE-diagonal elements of this matrix are the negatives of the partial correlations 

between manifest variables, and all these are shown to be different from zero. Let 

U' = r 
1 

- 1 

(1 -

(5.10) 

Because the multivariate normal distribution is closed under marginalisation, the 

marginal distribution of the manifest variables is multivariate normal, with 'modi-

fied' variance matrix given by [/MM = (-̂  — -1 

t/, MM 7 — TMZ,?2M which, once scaled, induces 

Inverting this matrix gives 

T M TlL.23^21,.13 

'''1L.2Z ^21,.13 

•7'1L.23T3L.12 
xA-^iZM\A-

•'"IZ..23'^21..13 

r2 
Ẑ,.13 

T2f..l3r3f..l2 
r2 
3̂1,. 12 

' ' ' I L .23 •'31..12 

1̂I,.23 •'"II.12 
7'2f,.13T3f..12 

Because f 0, ^ 0. Consequently has no zero elements; 

there are no zero entries in the scaled inverse variance matrix of the manifest variables. 

For to be positive definite the variances 1 — have to be positive, which implies 

0 < 1- ^ote that whereas in the classical factor model the factor loadings 

Af e [0,1] (since positive semidefinite matrices are allowed), in the current thesis it is 

suggested ^est ^ (0,1) (since only positive definite matrices are considered). 

The off-diagonal elements of the scaled inverse variance matrix of the manifest 

variables are the negatives of the partial correlation coefficients between the manifest 

variables. Therefore, 

Pij.k 

1 - iL.jk 

with distinct z, A; € M . (5.11) 
T: 

jL.ik 

When solving the system of three equations defined by Equation 5.11 with respect 
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to the three the following expression is obtained 

1 
T , iL.jk 

Since 0 < 7^ < 1, then ' > 0. 

1 + P]k.- (5.12) 

Hence, the following result concerning the conditional independence structure be-

tween three manifest variables compatible with a single-factor GG model is proposed: 

three manifest variables can deSne a single-factor model if and only if their scaled in-

verse variance matrix is positive deHnite and the product of the three partial correlation 

coefBcients is positive. 

The implications of this result in terms of admissible regions for the three partial 

correlation coefficients between manifest variables, compatible with a single-factor GG 

model, are now derived. Figure 5.3 shows a graphical display of the allowable region for 

the three partial correlation coefficients. The ellipse represents the positive definiteness 

constraint on defined by Equation 4.5. Additionally, there is now the constraint 

of a positive product of the three partial correlation coefficients. In practice, piz.2 and 

P23.1 vary between —1 and 1 (excluding zero values), whereas /)i2.3 was given positive 

arbitrary values of 0.1, 0.5, 0.7 and 0.9, respectively in panels a), b), c) and d). 

1.0 (U) (LS 10 '1.0 Qj) 0.5 

c) d) 

K 
: \ 0 

V \ : N 5 

0.0 oj ij) 

Figure 5.3; The admissible region for the three partial correlation coefficients compatible 

with a single-factor GG model: P13.2 on the horizontal axis, pas.i on the vertical axis and 

P12.3 taking positive arbitrary values of: a) 0.1, b) 0.5, c) 0.7, d) 0.9. 
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When there are more than three manifest variables in the model, additional con-

straints have to be imposed in order to have consistent solutions (aa in Section 5.1.1). 

In the four manifest variables case, the system of equations defined by Equation 5.11 

will have four r and six p. For the solutions for each parameter to be consistent, the 

constraint that P12.34P34.12 = /)i3.24P24.i3 = P14.23P23.14 is required. Therefore, an equiv-

alent version of the two tetrad conditions presented in Equation 5.5 can be expressed 

in terms of partial correlations as 

P i 2 . 3 4 P 3 4 . i 2 — P l 4 . 2 3 P 2 3 . 1 4 = 0; P i 3 . 2 4 P 2 4 . i 3 — P l 4 . 2 3 P 2 3 . 1 4 = 0 . (5.13) 

Setting Pij.regf equal to generalisation of Equation 5.11) guar-

antees the two conditions defined by Equation 5.13 are satisfied, since then 

Pl2.34P34.12 — Pl4 .23P23.14 = 0 <=> 

TlZ.,234^21,.134 ' '3i . l24T"4Z-.123 Tli.234^42.123 ''"21,.134^31,.124 ' „ 

'"li.234V ^ 134 V ^ '^Ii.l24\/^ 123 V ^ '^1L.234\/^ '^4L.123 '̂ 21,. 134 124 

Similar reasoning can be followed for the second tetrad condition. One should note 

that, when there are four or more manifest variables, the proof previously presented still 

holds, in the sense that marginalising over the latent variable induces a scaled inverse 

variance matrix of the manifest variables with no zero elements. However, because of 

the restrictions imposed by the tetrad conditions, although the model for the manifest 

variables has a complete independence graph, it is not necessarily the saturated model. 

Hence, the following result is proposed: for a 4 x 4 positive definite scaled inverse 

variance matrix to be suitable for a single-factor GG model it is required that: 

Pij.rest = —^ SO that 

2 _| {'^oL.restTkL.rest)/{y/'^ '''jL.resty/^ 
{'^iL.rest'^jL.Test'riL.rest'''kL.Test) / 

_ _ 2 
iL.resf> 

# — Q (for all possible combinations of distinct z. ? and A;, from 1 to 4). 

These conditions imply certain patterns of signs for the p, which are analysed in detail 

in Section 5.2.3. 
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5.2.2 T h e re la t ionsh ip be tween t h e classical a n d t h e p roposed 

p a r a m e t e r i s a t i o n of t h e s ingle-factor mode l 

The purpose of this section is to establish a relationship between the classical parame-

terisation of the single-factor model reviewed in Section 5.1.1 and the parameterisation 

of the single-factor GG model proposed in Section 5.2.1. 

By Equation 5.8, A = 2^2/- Equation 5.10 shows a 'modified' (denoted by 

[/MI,) can be obtained as — ( / — T h e r e f o r e , a possible non-standardised 

solution for the vector of factor loadings can be obtained as 

A = - ( / - (5.14) 

This equation gives non-standardised as function of the ^ different T. In the three 

manifest variables case this can be written as 

TiL.jk 
2 
IL.jk 

More generally, in the p variables case 

(s-is) 
1 

yL.ik 

Ai = _ . (5.16) 
2^q=l qL.rest 

The proof follows. From Equation 5.14, A = —{i — tmltlm)~^tml- Mardia, Kent and 

Bibby (1979, Property A.2.4f, page 459) stated that, if all necessary inverses exist, 

(A + BCD)-^ = -k 

where v4^xp); -^(pxn)! ^(nxn) and D(̂ nxp)- Considering ^(pxp) •^(pxi) 

C'(ixi) — I and D{\xp) ~ then 

= i + tml{^ — tlmtml}~^tlm-

Since T^mTml is a scalar and {1 - TlmTml}'^ = P Z2 , ?=1 glf.rest 

A = — [Tml + {1 — TLMTML} T̂MLTLMTML] 

Ml + 2̂ -fMZ, 

9=1 gZ,.re6t 
7 ^ 1 = 1 

L Z.fg=l gl,.re3t J 
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Because the denominator is always positive, has the same sign as the corresponding 

'^iL.rest-

The 'classical standardised solution' for is obtained by dividing the factor loading 

by the standard deviations of the corresponding manifest variable and of the latent 

variable. The standardised solution is, therefore, given by 

Af = - F = . (5.17) 

More generally, 

A" = {[/MM}}-'/' A (5.18) 

which is equivalent to scaling [/ and taking the corresponding partition gcC/MZ,- By 

Equation 5.9, — ZxgE^x}. Since A = ^M^, it is possible to obtain 

= d2a^{ZMM — AA^}. (5.19) 

The corresponding classical standardised solution is given by 

e r = - A''=(A"'=)̂ }, (5.20) 

which is equivalent to scaling C/ and calculating — (5c[/MZ,)(5c[/LM)^}. 

All the derived relationships between the classical parameterisation of the single-

factor model and the parameterisation of the single-factor GG model hold theoretically, 

for the general p manifest variables case once the tetrad conditions are fulfilled. 

5.2.3 P a t t e r n s of signs for t h e p c o m p a t i b l e w i t h a single-

f ac to r G G m o d e l 

In Section 5.2.1 the admissible regions for the partial correlation coefficients between 

manifest variables arising from a single-factor GG model were investigated. The results 

derived then suggest that only certain patterns of signs for the p are compatible with 

a single-factor GG model. In brief; for all possible combinations of distinct i, j and k, 

— — > 0 (and the tetrad conditions have to be satisfied). 

The aim of the current section is to derive a general rule for defining the patterns 

of signs of the partial correlations between manifest variables that are compatible with 

a single-factor GG model. As a matter of fact, the specification (construction) of a 
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single-factor model based on substantive knowledge has to take into account models 

that are compatible with the inverse variance structure of the manifest variables in 

the population. In other words, when the researcher specifies the manifest variables 

she or he wants to incorporate in the model, beheving they have a certain structure of 

partial correlations in the population, certain patterns for the factor loadings (partial 

correlations between the manifest variables and the latent variable) can be expected. 

Also, the researcher has to be aware that there are patterns of signs in the inverse 

variance matrix that are not compatible with a model arising &om a single-factor 

model. 

From the generalisation of Equations 5.11 and 5.12, it is possible to conclude that 

the same value of Pij.rest can be associated with di&rent combinations of signs for 

'^iL.rest and Tji.rest- Indeed, since Plj.rest 

the product of the signs of Tji,.res(. 

'^iL.rest'^j L.rest 
^ '^iL.rest's/^ ' jL.rest 

, the sign of Pij.rest equals 

In the three manifest variables case, there are 2^ = 8 different combinations of signs 

for the three T, as shown in Table 5.1. The first three columns of the table include 

the eight different combinations of signs for the r (the partial correlation coefficients 

between each of the manifest variables and the latent variable). The last three columns 

show the corresponding signs for the p (the partial correlation coefficients between the 

three manifest variables). Recall that the sign of pij.k equals the product of the signs 

oi TiL.jk and Tjisk (from Equation 5.11). 

T l i . 2 3 T2Z,.13 T3Z,.12 P12.3 P13.2 P23.1 

+ + + + + + 

+ + — + — — 

+ + — + — 

— + — — + 

— — - + + + 

— — + + - — 

- + — - + — 

+ - - - - + 

Table 5.1; Different combinations for the signs of the r and of the p in the three manifest 

variables case. 
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Various conclusions can be drawn from Table 5.1: 

# either all three p are positive, or one is positive and two are negative: it is not 

possible to have a model with three manifest variables arising &om a single factor 

model in which just one or aU three p are negative; 

® when pij,k is positive and the other two p are negative, two different combinations 

of positive and negative values of r can occur: either and are 

positive and is negative or ajid are negative emd rti.reat is 

positive; 

* if TiZy.rest is negative and the other two T are positive (or the opposite), then all 

p in column (row) z of the scaled inverse variance matrix will be negative, and 

all remaining p will be positive. This condition deHnes an allowable pattern for 

the p compatible with a single-factor model. Table 5.2 helps visualising it. The 

table should be interpreted as follows. The first column displays the vector of the 

signs of the r , whereas the second column shows the signs of the corresponding 

p. Then if, for example, til.2Z is negative and the other two r are positive, all p 

in column one and all p in row one will be negative, and the remaining p will be 

positive. 

signs T = 

signrii,.23 

signr2L.i3 
signrsLiz 

signs p = 

s i g n p i 2 . 3 s i g n p i 3 , 2 

s i g n p i 2 . 3 s i g n p 2 3 . i 

s i g n p i 3 , 2 s i g n p 2 3 , i 

+ or 

+ 

+ 

+ - - + 

+ - - + 

- or + — — 

+ — 4- — 

+ - + -

+ or 

+ 

+ 

Table 5.2: The allowable pattern of two negatives and one positive p in the three manifest 

variables case. 
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In the four manifest variables case, there are 2̂^ = 16 different combinations of signs 

for the four T. The major conclusions are: 

* for four manifest variables to arise from a single-factor model either all six partial 

correlations are positive or, if some are negative, the number of negative p can 

be three or four, and certain patterns have to be met. It is not possible that only 

one, only two, five or six of the p are negative; 

* the six p wiU be positive, if either the four r are all positive or all negative; 

* if there are two positive and two negative T, there will be 2 positive and 4 negative 

p; 

* solutions with three positive and three negative p correspond to models with 

either one positive and three negative r or models with one negative and three 

positive T; 

* if 7jz,.rest is negative and the remaining three T are positive (or the opposite), then 

all p in column (row) i of the scaled inverse variance matrix will be negative, and 

all remaining p will be positive, as happened in the three variable case (recall the 

results in Table 5.2); 

* if sjid are negative and the remaining two T are positive (or the 

opposite), then all p in column (row) i except those in column (row) j (and all 

those in column (row) j except those in column (row) i) will be negative, and 

the remaining two p will be positive. Table 5.3 illustrates this result. 

When five manifest variables are present there are 2̂  = 32 different combinations 

of signs for the five r. Similarly to the four variable case, diSerent patterns of signs for 

the p are allowed. In short: 

* if TiL.rest IS negative and the remaining four r are positive (or the opposite), then 

all p in column (row) i of the scaled inverse variance matrix will be negative, and 

all remaining p will be positive; 

* if Emd are negative and the remaining three T are positive (or the 

opposite), then aH p in column (row) i except those in column (row) j (and all 

those in column (row) j except those in column (row) i) will be negative, and 

the remaining p wiU be positive. 
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Sign Ti 2, 234 
s:gnf2Z..134 
sign 7-32,.124 

signr42,.i23 

p = 
s i g n a l s . 3 4 s i g n p i 3 . 2 4 s i g n P l 4 . 2 3 

signpi2.34 signp23.14 signp24.i3 
signpi3.24 s%gnp23.14 signP34.l2 
signpi4.23 signp24 13 signP34.12 

- + 
— + 

+ -

+ 

- 4-

— + 

+ _ 

+ ~ 

. - , 4-

- + 

+ 

+ 

+ -

+ 

+ 

+ 

+ 

Table 5.3: The allowable pattern of two positive and four negative p in the four manifest 

variables case. 

The rules presented above for the three, four and five manifest variables cases define 

the theoretical patterns of signs of the partial correlation coefRcients between manifest 

variables that are compatible with a single-factor model. All these rules can be further 

simpliGed, as follows. Let r be a p x 1 column vector with the signs of the 

partial correlation coefficients between each of the p manifest variables X and the 

latent variable L. Let signs pheB.pxp symmetric matrix with the signs of the partial 

correlation coefficients between the p manifest variables as off-diagonal elements. The 

elements in the main diagonal are not of interest. 

The following general rule is proposed: the off-diagonal elements of signs p represent 

a pattern of signs for the p that is compatible with a single-factor GG model, with 

patterns of signs for the r given by signs r, if and only if 

(for the oS^diagonal elements). This rule refers to population parameters and assumes 

the tetrad conditions are satisfied. 
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5.3 Detect ing a Model Consistent with a Single-

Factor GG Model 

The goodness-of-Ht likelihood ratio test presented in Section 5.1.3 is often used to test 

the null hypothesis that m factors (latent variables) are sufficient to describe the data, 

against the alternative hypothesis that Exx is unconstrained. In practice, this allows 

the data analyst to decide how many factors to fit to the data, if any. The usual strategy 

is to start with m equal to zero or one and perform a sequence of hypotheses tests, 

by increasing the number of factors by one, until the fit of the model is judged to be 

adequate. For further details see Mardia, Kent and Bibby (1979, page 268). However, 

as mentioned in Section 5.1.3, the procedure has been criticised in the hterature: the 

ht always improves when m increases, making it unclear where to stop; because of the 

sequential character of the tests it is argued the p-value of a test should be regarded as a 

measure of the adequacy of the model; and although corrections have been suggested to 

improve the chi-square approximation of the test, it remains sensitive to the sample size 

(see also Bartholomew and Knott, 1999, Section 3.8). A diSerent approach is suggested 

in this thesis, in order to detect a model consistent with a single-factor model, taking 

into account the power of the model selection procedure. 

The focus of Section 5.2 is on the parameterisation of the single-factor GG model 

using partial correlations. Admissible regions for the p were investigated. In particular, 

patterns of signs of the population partial correlation coefficients were studied in order 

to help specify a single-factor GG model based on subject-matter knowledge. Addi-

tionally, in Section 5.2.1 it was shown that marginalising over the latent variable in the 

single-factor model induces no conditional independencies between manifest variables 

and, therefore, an independence graph that is complete. 

All this suggests that when trying to detect (identify) a model consistent with a 

single-factor model, i.e., to detect the presence of a normally distributed latent variable, 

the data analyst should be looking at a GG model for the manifest variables with 

a complete independence graph. In fact, in Section 2.8 backwards elimination was 

recommended as the model selection procedure when trying to detect the presence 

of a latent variable in the context of GG models. Because the main interest is to 

identify strong associations between the manifest variables, the saturated model is 

first considered and afterwards a sequence of single edge exclusion tests is performed 
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(simultaneous multiple edge exclusion testing is not considered in this thesis). In 

practice, when performing model selection, type II errors (i.e. false acceptances of 

the nuU hypothesis) can occur and, therefore, the observed association structure will 

often not correspond to the true (saturated) model. Recall that, for each edge exclusion 

test, the null hypothesis is that the partial correlation is zero, the alternative hypothesis 

being that it is diEerent from zero. Consequently, one or more edges will be missing 

in the selected independence graph for the manifest variables. Therefore, if the null 

hypothesis just presented is not rejected, the single-factor model does not hold, unless 

a type II error was maxle. In the case of three manifest variables there are three 

possible tests for single edge exclusion from the saturated model and, consequently, 

three possibihties of making a type II error. Hence, the power of the test statistics 

for single edge exclusion has to be taicen into account when trying to select a model 

consistent with a single-factor GG model. Section 5.3.1 addresses this issue. 

Also, it may happen that the sample available does not have the pattern of partial 

correlation coefficients signs the population has. That being the case, the general 

rule proposed in Section 5.2.3, to obtain patterns of signs for the p compatible with 

a single-factor GG model, may no longer apply, particularly when there are more 

than three manifest variables. The aim of Section 5.3.2 is, therefore, to suggest some 

recommendations to the data analyst when trying to identify a model consistent with 

a single-factor model. 

5.3.1 T h e power of select ing a mode l consis tent w i t h a single-

fac to r G G m o d e l 

The power of selecting the saturated model when using the LRT statistic, in the three 

manifest variables case, was studied in detail in Section 4.1.4, using simulation. An 

asymptotic normal approximation to the power functions was derived in Section 4.1.5 

and it was then explained how to obtain asymptotic power functions for the Wald and 

the score test statistics. Section 4.1.6 considered generalising such approximations to 

the situation of four, or more, manifest variables. The only constraint imposed then is 

that the scaled inverse variance matrix has to be positive definite. 

Once a model arising from a single-factor GG model is considered, the additional 

constraint that, for all possible combinations of distinct z, ?' and A;, — ^ Q 
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to be imposed (as shown in Sections 5.2.1 and 5.2.3). In practical terms, in the three 

manifest variables case, this additional constraint means that the product of the three 

partial correlation coefficients has to be positive, i.e., either all three p are positive, or 

one is positive and the other two are negative. 

Theoretical power values can be obtained using the asymptotic normal approxima-

tion derived in Section 4.1.5, namely Equation 4.6 for the three variables case. The 

three partial correlation coefBcients are allowed to vary within the region of positive 

definiteness defined by Equation 4.5, with the additional constraint that their product 

has to be positive. 

Simulated power values calculated in Section 4.1.4 and displayed in Figure 4.6 still 

hold for the power of selecting a model arising from a single-factor GG model, provided 

P12.3, on the horizontal axis, just takes positive values. The main conclusion derived 

then still holds for the power of selecting a model compatible with a single-factor 

GG model with three manifest variables: power increases as the partial correlation 

coefficients increase. For n = 200, the probability of selecting the saturated model, 

using the LRT statistic, has a maximum value of ~ 0.3 when one of the ~ 0.1, 

even if the other two partial correlations are large. This probability goes up to 0.8, 

or almost 1, when the minimum ~ 0.2 or 0.3, respectively. 

The one-sided signed square-root version of the likelihood ratio test statistic can 

be used, assuming one is only interested in the positive values of the three partial 

correlation coeSicients (believing that the three factor loadings of the underlying factor 

model have the same sign). Although, for simplicity, empirical power plots are not 

presented, their pattern is very similar to that obtained using a non-signed version 

of the likelihood ratio test statistic. Power has a maximum value of 0.4 when one 

of the p is small, even if the other two are large, which is higher than the 0.3 value 

obtained when a non-signed version of the test statistic was used. Globally power values 

are higher when the one-sided signed square-root version of the test statistic is used, 

by comparison with either the non-signed version or the two-sided signed square-root 

version, because one-sided tests tend to be more powerful than two-sided tests. 

Additional simulations were carried out to investigate the effect of changing the 

sample size, in the three variables case. The LRT statistic was used. As in Section 4.1.4, 
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power was calculated as 

^ %1; 0.95 ^ %1: 0.95 ^ 3 ^ %1; 0.95 I Pl2 .3 , Pl3.2, /)23.l]' 

When /9i2.3 takes positive values, power curves are exactly the same whether P13.2 and 

P23.1 are both positive or both negative. One thousand repetitions and four different 

sample sizes were considered. Figure 5.4 summarises the main results. Plots in panel 

a) correspond to n = 50, in panel b) to n = 100, in panel c) to M = 500 and in panel 

d) to M = 1000. In all panels is represented on the horizontal axis. The nine 

different hues in each plot correspond to the values of P23.1 between 0.1 and 0.9. pig g 

has a value of 0.1 in plots 1), of 0.2 in plots 2) and of 0.3 in plots 3). 

a.3) 

0.0 0.2 0 .4 0.6 0.8 0.0 0.2 0.4 0.6 0.8 

b.2) 

0.0 0.2 0 .4 0.6 0. 0.0 0.2 0 .4 0.6 0.8 0.0 0.2 0.4 0.6 0.8 

0.0 0.2 0.4 0.6 0.8 

0.0 0.2 0.4 0.8 0. 0.0 0.2 0.4 0.6 0 0.0 0.2 0.4 0.6 OJ 

Figure 5.4: Power functions for the saturated model arising from a single-factor model with 

three manifest variables, using different sample sizes: a) M = 50, b) m = 100, c) n = 500, d) 

71 = 1000. P12.3 oil the horizontal axis. /)23.i from 0.1 to 0.9 in each plot. /)i3.2 from 0.1 to 

0.3 in plots 1), 2) and 3). 
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By comparison with the results for the case n — 200, previously considered, it is 

possible to conclude that, as M increases, power tends to rapidly increase, and conse-

quently the non-monotonicity tends to disappear (see panels c) and d)). Note that 

when one of the partial correlation coefRcients is around 0.1 (even if the other two are 

large) a maximum power value of 0.3 can be reached with a sample size of 200, whereas 

for 97 = 500 or n = 1000 power values of 0.6 and 0.9, respectively, can be obtained. 

As n decreases, see panels a) and b), the non-monotonicity eEect becomes more ev-

ident than that in Figure 4.6, even for larger partial correlation coefficients. Power 

values tend to become very low, especially for small values of the partial correlation 

coeGcients. 

In Section 5.2.2 some formulae were derived relating the classical and the proposed 

parameterisations of the single-factor model. In the three manifest variables case, when 

(ff = 0 and no tetrad conditions have to be satisfied, the values of the partial 

correlations between each of the manifest variables and the latent variable, can be 

directly obtained from the observed partial correlation coefficients between manifest 

variables using Equation 5.12. The classical factor loadings A, can then be obtained 

from the '7if,.re5( using Equation 5.15. Using this mapping between possible values for 

the three partial correlation coefBcients and corresponding expected factor loadings, it 

is possible to understand the association between the magnitude of the A and the level 

of power (the probability of selecting the saturated model for the manifest variables) 

as a function of the sample size. Indeed, the awareness existing in the factor analysis 

hterature as to what constitutes a large value of A was considered important here. 

Table 5.4 displays several possible combinations of values for the three partial cor-

relation coefficients, the corresponding standardised factor loadings and power values 

for different sample sizes. The first three columns have the values for the p (small, 

intermediate and large values were used, although values very close to the boundary 

of positive definiteness were not considered to avoid improper solutions). The fourth, 

fifth and six column have the corresponding values of the A (the standardised factor 

loadings that would be obtained if the single-factor model was fitted). The last five 

columns display the values of power for the five different sample sizes that were used 

in the simulations. 
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P13.2 P23.1 f l 2 . 3 Ai Ag As n = 50 n = 100 n = 200 1 n = 500 n = 1000 

0.1 0.1 0.1 0.33 0.33 0.33 0.001 0.000 0.012 0.192 0.697 

0.1 0.1 0.7 0.85 0.85 0.28 0.015 0.002 0.017 0.282 0.729 

0.1 0.2 0.5 0.66 0.81 0.36 0.012 0.040 0.189 0.615 0.883 

0.1 0.3 0.8 0.90 0.97 0.66 0.014 0.076 0.290 0.613 0.886 

0.1 0.4 0.6 0.75 0.94 0.62 0.055 0.155 0.327 0.617 0.898 

0.1 0.6 0.6 0.85 0.98 0.85 0.100 0.188 0.312 0.596 0.893 

0.2 0.2 0.2 0.50 0.50 0.50 0.005 0.085 0.499 0.986 1 

0.2 0.3 0.4 0.65 0.75 0.56 0.066 0.415 0.816 0.995 1 

0.2 0.4 0.5 0.74 0.87 0.68 0.166 0.505 0.832 0.999 1 

0.2 0.5 0.6 0.87 0.95 0.83 0.285 0.531 0.822 0.994 1 

0.3 0.3 0.3 0.65 0.65 0.65 0.089 0.597 0.977 1 1 

0.3 0.4 0.5 0.82 0.87 0.77 0.417 0.857 0.993 1 1 

0.3 0.5 0.5 0.86 0.92 0.86 0.522 0.881 0.992 1 1 

0.4 0.4 0.4 0.82 0.82 0.82 0.549 0.965 1 1 1 

0.4 0.5 0.5 0.93 1 0.95 0.93 0.776 0.985 1 1 r 

Table 5.4: Power values as a function of the p, the A and the sample size. 

From Table 5.4 (and from plots in Figure 5.4) it is possible to conclude that, for a 

given combination of p and, consequently, of A, power values are highly determined 

by the sample size. In other words, the probability of selecting the saturated model, 

arising from a single-factor model, varies according to the degree of association between 

manifest variables (the values of the p), but conclusions can be quite misleading if the 

sample size is small. For example, let us consider a combination of partial correlation 

coefficients of 0.3, 0.4, 0.5. The corresponding standardised factor loadings equal 0.82, 

0.87, 0.77 (which, in the literature of factor analysis models, are considered large values 

of standardised factor loadings). If the sample size is small, say 50 observations, the 

power of selecting the saturated model for the manifest variables is only around 0.42, 

whereas it goes up to around 0.86 with a sample size of 100 and almost reaches 1 with 

a sample size of 200. The data analyst must, therefore, be very careful when dealing 

with small sample sizes. Indeed, LISREL literature on the robustness of the software 

recommends a minimum sample size of 100 or even 200, depending on the number of 

variables and parameters to be estimated. 
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5.3.2 Some r e c o m m e n d a t i o n s to t h e d a t a analys t 

When trying to select a model consistent with a single-factor GG model the data an-

alyst has to take into account the power of the test statistic for edge exclusion. As 

justified in Section 5.3.1, although the magnitude of the partial correlation coefficients 

is important, the question of the sample size is crucial and small samples can be quite 

misleading. Power values can, consequently, be low and the data analyst must be 

prepared to fit the single-factor GG model, even if there is one or more conditional 

independencies between the manifest variables. Furthermore, although only the three 

manifest variables case was considered in detail in Section 5.3.1, these conclusions 

should also apply when four or more manifest variables are present. Indeed, in Sec-

tion 4.1.6, when power functions were compared for the three, the four and the five 

variables cases, considering aU partial correlation coefficients equal, the conclusion was 

drawn that, for a given value of p and for a given sample size, the larger the .number 

of variables, the lower power values are. In other words, the more manifest variables 

there are in the model, the more likely it is that the data analyst has to consider 

independence graphs with more edges missing, when trying to fit a single-factor GG 

model. 

Another important aspect to be taken into account is that, due to sampling fluc-

tuations, the pattern of signs of the sample partial correlation coefficients may differ 

from the pattern of signs of the p in the population from which the sample was drawn. 

One should note that, once it is believed a single-factor GG model holds, it is assumed 

that the manifest variables are drawn from the 'true' single-factor model and, there-

fore, a certain pattern of signs is expected for the sample partial correlation coefficients 

between manifest variables. The question of the patterns of signs for the p compatible 

with a single-factor GG model was investigated in Section 5.2.3, and a general rule was 

proposed for detecting compatible patterns, once the tetrad conditions are satisfied. 

In the three manifest variables case, df = 0, there is a unique solution for the single-

factor model (up to rotation), no iteration is required and no tetrad conditions have 

to be satisfied. Consequently, trying to fit a single-factor model to a sample with an 

incompatible pattern of signs will lead to either a non-convergent or to an improper 

solution. 

When the number of manifest variables is greater than three, the number of un-
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knowns (r and elements in @a) the single-factor GG model (as presented in Sec-

tion 5.2.1) is smaller than the number of known partial correlation coefBcients between 

the manifest variables. And although the tetrad conditions are satisfied in the popula-

tion, i.e., for the scaled inverse variance matrix of the manifest variables of the 'true' 

single-factor GG model, there is no guarantee that they will be fulfilled in the sample. 

Let us suppose an example of a 4 x 4 sample scaled inverse variance matrix, with a 

pattern of signs for the p that, according to the rules presented in Section 5.2.3, is not 

compatible with a single-factor model. The data analyst may decide not to fit such a 

model. Nevertheless, it may happen that, if the sample scaled inverse variance matrix 

is not close to satisfying the tetrad conditions, once the analyst tries to fit a single-

factor model, she or he actually manages to obtain sensible estimates. This is due to 

the fact that current software for estimating factor models, aiming at either maximise 

the log hkelihood function or minimise the discrepancy function, do not incorporate 

any additional constraint, rather than the fact that the sample variance matrix has 

to be positive dehnite. If the sample is not close to satisfying the tetrad conditions, 

it can happen that the software manages 'a way out' and is able to 6t a single-factor 

model using a sample that has a 'non-allowable' structure, i.e., patterns of signs of the 

partial correlation coefficients that, in principle, are not compatible with a single-factor 

model. The data analyst may consequently be 'surprised' by the fact that convergence 

was achieved or that parameter estimates have a structure of signs different from the 

one that was expected. It is, therefore, important for the analyst to be aware of what 

is happening. 

The question of incompatible sign patterns of sample covariances of manifest vari-

ables (not inverse variance matrices, as studied above) was mentioned by Boomsma 

(1985) and by Boomsma and Hoogland (2001) in their study on the robustness of 

maximum likelihood estimation with LISREL, trying to account for non-convergence 

and improper solutions. A simulation study was used to predict non-convergence in 

situations where the sign pattern of the sample covariances between manifest vari-

ables is incompatible with the signs of products of possible factor loadings in the 

population model. The following results were obtained: (Ae coae o/ 

/or o aampZe aize (WfA ^00 (Ae ro(e o/ 

wog wAereas/or o somp/e o/JO w&s tts-
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c7i(er%o /or o modeZ monz/isgf i;ono6/eg woa wmgucceasyif/'. 

Boomsma and Hoogland (2001) stated that /or some modek, 52̂ n po -̂

(er/w 0/ (Ae o65en;e(i sompZe coron'oMces Zm/ced (0 (/le some yhc^or Aat;e poocf predzcW 

?;oZi/e /or moM-coMi/eTiyeTice.' 

Yet, besides not mentioning why in the four manifest variables case the prediction 

criteria was unsuccessful, in his study Boomsma does not seem to take into account 

the constraint imposed by the tetrad conditions. In this thesis it it proposed that 

compatible sign patterns of the population partial correlation coefRcients should be 

used to construct (specif) the theoretical single-factor model. Next, the pattern of 

signs of the sample partial correlations should be considered. In the three variables 

case, this pattern is a good criteria as to whether it is possible to At a single-factor 

model (particularly if the sample size is not very small). When four or more manifest 

variables are present, the analyst should be aware that having an incompatible pattern 

of signs for the sample partial correlation coefficients may lead to fitting a single-factor 

model which does not have the expected combination of signs for the factor loadings 

or partial correlations between manifest variables and the latent variable, if the sample 

being analysed is not close to fulElling the tetrad conditions. 

Some brief recommendations to the data analyst, when trying to detect the presence 

of a latent variable are: 

e first, sample partial correlation coefficients should be calculated. If an incompat-

ible pattern of signs is found, there is strong evidence that a single-factor model 

cannot be fitted with such a sample. If the data analyst believes that in the 

factor model all factor loadings should be positive, and finds evidence of that 

from the sample (by obtaining three positive p) then, in a second step, a signed 

square-root version of a test statistic should be used to perform one-sided tests 

for single-edge exclusion from the saturated model. If the analyst thinks some of 

the factor loadings could be negative, and finds evidence for that from the sam-

ple (an allowed pattern of signs for the p is obtained), then a signed square-root 

version of a test statistic for single-edge exclusion should be used, in a second 

step, to perform a two-sided hypothesis test; 

* in a second step the most appropriate test statistic for single edge exclusion hrom 
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the saturated model should be used. If the independence graph of the manifest 

variables is complete, the variables under analysis can be considered indicators of 

a single-factor GG model. If the model with a complete independence graph does 

not hold, and particularly in the cases of small values of one or more p and small 

sample sizes, associated with small power of selecting the saturated model, the 

analyst should consider obtaining a larger sample size. That not being possible, 

she or he should still try to fit a single-factor model, and be cautious when 

interpreting the results. 

In summary. Section 5.3 has provided some evidence that when performing model 

selection to detect a single-factor GG model, under certain patterns of the observed 

partial correlation coe&cients, the data analyst must still consider an observed associ-

ation structure that is not necessarily the one induced by the saturated model of the 

manifest variables, i.e. the true model, particularly if the sample size is small. 

5.4 The Classical Parameterisations of the Latent 

Class Model 

The aim of latent class analysis is to define a latent variable as a set of classes within 

which the manifest categorical variables are locally independent. There are two central 

assumptions in latent class models. One is that the population consists of a set of 

mutually exclusive and exhaustive homogeneous subpopulations, which make up a 

latent classiScation that is discrete by definition. The other is local independence, 

i.e., within a given latent subpopulation, all manifest indicators will be statistically 

independent. In other words, manifest variables are conditionally independent given 

the categories of the latent variable. The latent class analysis can be either exploratory 

or confirmatory. In the former case there are no a priori restrictions on the parameters 

of the model, whereas in the latter case restrictions can be imposed. 

There are two main c/oaszcoZ of the latent class model: one is 

based on conditional probabilities (Goodman, 1974) and the other uses a log-linear 

model formulation (Haberman, 1979). The notation adopted in the thesis is used to 

present the latent class model under both parameterisations, for the general case of four 
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manifest variables and one latent variable, all with two or more categories (classes). Let 

%2, -^3 &nd be four manifest variables, with v4, B, C and D classes, respectively, 

and be a latent variable with T classes. The observed information about %2, ^3 

and X4 can be summarised i n a A x B x C x D contingency table. Let 7ri234(o, 6, c, (f) 

denote the probability that an individual will be at level (a, b, c, d) with respect to the 

joint variable (A'i,%2,^3,^4)- All vr are assumed positive. 

Using Goodman's the observed variables 

%i, v^2, ^3 %4 are conditionally independent given the level / of the latent variable 

i^if 

7ri234j:(o, 6, c, d, Z) = 7rz,(Z) 7ri|^(o, Z) 7r2|z,(6, Z) 7r3|z,(c, Z) 7r4|jr (o(, Z) (5.21) 

and 
T 

7ri234(a, C, (Z) = ^ 7ri234 (̂a, 6, c, (Z, Z). (5.22) 
1=1 

Also, 

r v4 g c D 
^7ry:(Z) = ^7ri|j:(a,Z) = ^7r2|^(6,Z) = ^7r3|;;(c,Z) = ^7r4|z,((Z,Z) = 1 
l~l a = l 6 = 1 c—1 d—1 

The latent class probabilities, ttl{1), and the conditional probabilities, ni^i(a,l), 

7r2|z,(6, Z), 7r3]2,(c, Z), 7r4|z,((Z, Z), are the two fundamental quantities of latent class anal-

ysis under Goodman's parameterisation. In other words, Equation 5.21 states that 

the probability that a randomly selected case will be located in cell (a, b, c, d, Z) equals 

the product of the probability of a randomly selected case being at level I of the la-

tent variable L times the conditional probabilities that a case in class I of the latent 

variable will be located at a certain category of each of the manifest variables. The 

conditional probabilities represent a measure of the degree of association between each 

of the manifest variables and each of the latent classes and can be compared to the 

factor loadings in factor analysis. 

Haberman (1979) presented the unrestricted latent class model as a log-linear model 

log mi234i,(a, 6, c, cZ, Z) = Ag + Ai(o) + ^2(6) + ^3(0) + A4((Z) + A%,(Z) 

+Aix,(a, Z) + A2I,(6, I) + A3i(c, Z) + Z), 

where 77ii234Z,(<i, 6,c,cZ,Z) are the expected counts of 7ii234Z,(a, 6, c,(Z,Z), not known be-

cause 1/ is unobserved. The Ao term is a normalising constant, to ensure that the sum 

of the expected counts over all possible combinations of cells equals the sample size Mg. 
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As far as the process of of a latent class model is concerned, the first 

step consists of checking for a non-negative number of degrees of freedom. Indeed, a 

necessary condition for identiSabihty is that the number of df is non-negative. The 

total number of degrees of freedom is given by 

df = (A X B X c X D - 1 ) - [(r - 1 ) + - 1 ) + T(B - 1 ) + r ( c - 1 ) -k - 1 ) ] , 

where v 4 . x B x C x D — l i s the available number of degrees of freedom in the cross-

tabulation of the manifest variables and (T—l)-t-T'(v4—l)-t-T'(B—1)-|-T'(C—l)+r(D—1) 

is the total number of parameters to be estimated in the unrestricted model, defined 

either by Equation 5.21 or by Equation 5.23. 

Yet, Goodman (1974) showed that, even when df is positive, the model may not be 

identihed. UnidentiHable models can be made identihable by imposing restrictions on 

one or more of the parameters of the model. Goodman (1974) provided a necessary and 

sufBcient condition for determining the Zoca/ of a latent class model: 'fAe 

(Ae muaf &€ o/ co/ttrnM mmA; (in the four manifest 

variables case equal to [(T - 1) -I- T (A - 1) 4- T (B - 1) 4- T (C -1) -I- T (D -1)]), 

ie . , fAere This condition has to be satisfied 

for the specific set of data being analysed: there is no a priori way of guaranteeing 

the identification of a model. In practice, existing software for estimating latent class 

models, such as lEM and Latent GOLD, have a built in check for identification (based 

on the information matrix), giving a warning message to the data analyst whenever 

the specified model is not identified. 

The two classical parameterisations can be easily related. The marginal cell prob-

abilities 7ri234(a, b, c, d) can be derived from Equation 5.23 as 

:ri234(a,6,c,(f) = Y l 77112342(0,6, c, d, Z). (5.24) 

Hence, the parameters of Equation 5.21 can be derived from Equations 5.23 and 5.24 

as 

7r2(0 = ^ ^1234^(0 
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If both the manifest and the latent variable are binary, the odds ratio between the 

manifest variable ^md the latent variable Z, can be defined as 

— -̂'̂ 1-̂ (0' 0) 1) _ 7rM|z,(0, 0) (l — 7rM|L(0,1)) 

1) (l —7rM|Z,(0, 0)) 

Consequently, log^Mz; = AMz,-

The probability that an individual belonging to latent class Z of will respond to 

item A'M in category m equals 

/ ^ 7rMz,(m,Z) ^ exp{AM(?7z) + /)} 
TTMII 771, e x p { A M w + Z)}' 

Therefore, if both and Z, are binary, the logits of category 1 of versus category 

0 of (i-G., the tendency to answer item M in category 1 rather than in category 0) 

can be expressed as 

As far as cZogs is concerned, there are mainly two types 

of constraints that can be imposed on the parameters of the model, namely: 

* conditional probabilities constraints, that can either be equality constraints or 

specific value restrictions. Setting 7rM|z,(^, 0 = 2; is restricting the value of the 

conditional probability. For example, setting 7rM|z,(0,0) = 7rM|i,(l,0) means that 

respondents in category 0 of L are equally likely to answer in categories 0 or 1 

of Xm- If the latent class has three or more categories it is possible to constrain 

two of them to have the same probability of response in one of the categories 

of a manifest variable, i.e., TTMizW, 1) = 2). One should note, however, 

that it does not make sense to impose such a restriction if the latent variable is 

binary, since it would imply independence between the manifest variable and the 

latent, and in latent class analysis manifest variables are assumed to depend on 

the latent variable; 

* latent class probabilities constraints, that can either be testing whether the prob-

ability equals a specified value, or whether T — 1 of the T classes of the latent 

variable are equiprobable or have some relationship between them. One should 

note that, when the latent variable is binary, it is not sensible to test either if 

= 0 or if 7ri(/) = 1, since it implies all the population is in one class and 

the latent variable does not make sense. 
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This thesis considers unconstrained latent class models. 

As far as procedures for estimating the parameters are concerned, Haberman (1979) 

suggested the use of iterative proportional fitting, but similar results can be obtained 

using the E'M algorithm. Indeed, existing software for Gtting latent class models such 

as lEM and Latent GOLD use the EM algorithm to 6t latent class models. 

5.5 The Latent Class Graphical Log-Linear Model 

Section 5.4 reviewed the two classical parameterisations of the latent class model. 

In this section the latent class model is parameterised as a GLL model, allowing a 

categorical latent variable to be included in the graphical log-linear model framework. 

All variables, both manifest (M) and latent (ZL), are assumed binary, categories being 

coded as 0 and 1. Corner point constraints are used in the log-linear formulation, i.e., 

^z,(0) = 0, AM(0) = 0, 1) = 0 and AMZ,(1,0) = 0, where M stands for any 

manifest variable in the model. For simplicity of notation A^(l) = A/,, Am(1) = Am 

and Ami,(1) 1) = ^ml-

Throughout the section the notion of sensible model is used several times. It is 

assumed that, for the latent class model to hold, it has to be sensible. A latent class 

GLL model is defined as sensible if; 

- none of the two categories of the latent variable is empty, i.e., both 7r£,(0) and 

7rf,(l) are different from zero and, consequently, from one. This implies that in 

the log-linear formulation Af, ^ 0; 

- there are no structural zeros, either in the cross-tabulation of the manifest vari-

ables or in the cross-tabulation between the latent variable and each of the man-

ifest variables. All cell probabilities are assumed positive. In the log-linear ex-

pansion, all this implies that, for all manifest variables m, xm ^ 0 and xml ^ 0; 

- there is an association between the latent variable and each of the manifest vari-

ables, i.e., the odds ratio between each manifest variable and the latent variable 

has to be di^erent from one, implying all log'̂ MZ 7̂  0 and all AMz, 9̂  0. Other-

wise it would make no sense to have that manifest variable in the model - recall 

that in the latent class model the manifest variable is assumed to depend on the 
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unobserved latent variable. 

The section starts with the proposed parameterisation of the latent class GLL 

model. The conditional independence structure between the manifest variables arising 

from a latent class GLL model, by marginalising over the latent variable .L, is then 

investigated. 

5.5.1 P a r a m e t e r i s i n g t h e la ten t class GLL m o d e l 

A natural way of including a categorical (binary) latent variable in a graphical model, 

the remaining manifest variables also being categorical (binary), is to parameterise the 

latent class model as a graphical log-linear model, using a log-linear expansion. It is 

proposed that the latent class GLL model is represented by a conditional independence 

graph, as justiSed in Section 2.4.2. Figure 5.5 displays the independence graphs asso-

ciated with two latent class models, one with two manifest random variables, 1 and 2 

(in panel a) and the other with three manifest random variables, 1, 2 and 3 (in panel 

b), each of them with a single latent variable (Z/). All variables are binary. 

a) 

1 

log W3L log 

L 

Figure 5.5; Examples of latent class models: a) the binary manifest variables 1 and 2 are 

conditionally independent, given the binary latent variable L; b) 1, 2 and 3 are conditionally 

independent given l. The edges are associated with the conditional log odds ratio between 

the latent and each of the manifest variables, given the remaining variables are at level 1. 

The independence graph in panel a) corresponds to the following latent class model 

logmi2Z,(o, b, /) = A0 + Ai -f A2 + Ai 4- Xil + A2X,, (5.25) 

where log-^iz, = Ai_L and log^gz, = A2Z,. The independent graph in panel b) corresponds 

to the model 

logmi23L(Q; b, c, /) = A0 -h Ai + A2 + A3 -1- Ax, -|- xn + Aĝ  -I- x31, (5.26) 

185 



where log^n, = Aiz,, log^2^ = A22 and log ̂ 32 = A32. Thus, generalising the log-linear 

expansion to four or more manifest variables is straightforward. 

Regarding the identification of these models, it was stated earlier that, although 

there exists no a priori condition to guarantee models are identified, a first requirement 

is a non-negative number of degrees of freedom. In the two binary manifest variables 

case, with a single binary latent variable, the latent class GLL model is not identiGed. 

In fact, there are three knowns (the four cell probabihties that add up to one) and five 

parameters to be estimated: Ai, A2, A/., and A2Z, (A0 is a normalising constant). 

Consequently, the number of degrees of freedom is not non-negative, and the model 

is not identified unless two additional constraints are imposed on the parameters. In 

the three binary manifest variables case, with a binary latent variable, the necessary 

condition for identifiability is satisfied: df = 0 (and so is non-negative). There are now 

seven knowns (the eight cell probabihties that add up to one) and seven parameters 

to be estimated: Ai, A2, Ag, Â r,, Aî ,, A2Z, and A32,. The number of degrees of freedom 

is zero; there is a one to one correspondence between the cell probabilities and the 

seven A terms: each of them can be uniquely obtained from the observed values. In 

the case of a latent class model with four or more binary manifest variables and a 

single binary latent variable the number of degrees of freedom is always positive, the 

necessary condition for identifiability being satisfied. 

5.5.2 T h e condi t iona l i n d e p e n d e n c e s t r u c t u r e of t h e mani fes t 

var iables ar i s ing f r o m a l a t en t class GLL mode l 

The aim of this section is to investigate the conditional independence structure between 

the binary manifest variables arising from marginalising the latent class GLL model 

over the latent variable. It is proved that marginalising over the latent variable L, either 

in panel a) or in panel b) of Figure 5.5, yields an independence structure between 

the manifest variables with no conditional independencies and complete conditional 

independence graphs. Besides the two and the three binary manifest variables cases, 

the four variables case is also considered and it is shown how results apply to higher 

dimensional contingency tables. 
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The two manifest variables latent class model 

As mentioned before, it is assumed that the sensible latent class GLL model holds, 

which imphes that all cell probabilities are assumed positive, the two manifest variables 

depend on the latent variable, and so all Ave lambda parameters have to be different 

from zero, i.e., Ai ^ 0, Ag ^ 0, Af, ^ 0, Aif, ^ 0 and Agi, ^ 0. Also, for identiAability 

reasons, the values of two of these parameters have to be constrained. 

The aim now is to prove that, if the two binary manifest variables latent class GLL 

model holds and is sensible, marginalising over the latent variable Z, imphes that the 

manifest variables, 1 and 2, are not independent: the odds ratio ^12 is diGFerent from 

one and the independence graph of the two manifest variables is complete. The proof 

requires expressing the odds ratio between 1 and 2 as a function of the A terms of 

the log-hnear expansion of the latent class model and showing that, if the latent class 

model is sensible and holds, such odds ratio is different from one. The proof follows. 

The expected cell counts in each of the four cells of the 2 x 2 contingency table of the 

two manifest variables can be obtained, using Equation 5.25, as 

mi2(0,0) = mi2f,(0,0,0) + mi22(0,0,1) = exp{A0} (1 + exp{Az,}) 

^12(0,1) = mi2z,(0,1,0) + mi2z,(0,1,1) = exp{A0 + A2} (1 + exp{Az, + A2Z,}) 

"112(1,0) = mi22(l,0,0) + mi22(l, 0,1) = exp{A0 + Ai} (1 + exp{Az, + Aiz,}) 

1) = mi2z,(l, 1,0) + mi2i,(l, 1,1) = exp{A0 + Ai + A2} (1 + exp{Az, + An, + A2Z,}) -

Consequently, the odds ratio -012 can be expressed as 

mi2(0,0) mi2(l, 1) (1 + exp{Az,}) (1 + exp{Ai, + A^, + A2Z,}) 
^12 mi2(0,1) mi2(l, 0) " ' (1 + exp{Az, + Ai^}) (1 + exp{Az, + A2i:}) 

Since all cell probabilities are assumed positive, the model is sensible and Ai ^ 0, 

A2 7̂  0, Az, ^ 0, A12, ^ 0 and A2Z, 9̂  0, the value of the odds ratio, -(̂ 12, has to be 

different from one. Recall that log'^12 = A12. If ipi2 ^ 1, then log^12 ¥" 0 and A12 ^ 0 

and so 1 and 2 are not independent. One should note that ibu can still tend to one, in 

the limit, if \l is very large in absolute value by comparison with Aix and Ag .̂ That 

being the case, the values in the reference category of the latent variable will tend to 

zero, corresponding to empty cells and to a non sensible latent class model. 

In conclusion; if a two binary manifest variables latent class model is sensible and 

holds, marginalising over the latent variable imphes a complete independence graph 

for the manifest variables, which are not independent. 
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The three manifest variables latent class model 

If a sensible latent class GLL model, with three binary manifest variables holds, because 

all cell probabilities are assumed positive and the three manifest variables depend on 

the latent variable, all seven lambda parameters are diSerent from zero, i.e., Ai 0, 

7̂  0, As ^ 0, ^ 0, All, f 0, A2Z, f 0 and Agf, ^ 0. There are zero degrees of 

freedom; it is a saturated model. 

It is proposed that, if the three manifest variables latent class model is sensible 

and holds, marginalising over the latent variable L induces the saturated model for the 

three manifest variables, implying no conditional independencies between 1, 2 and 3. In 

other words, all six conditional odds ratios between the three binary manifest variables 

have to be different from one. The proof requires expressing the six conditional odds 

ratios as a function of the A terms of the log-linear expansion of the latent class model 

and showing that all six conditional odds ratio are diSerent 6:0m one. 

The expected cell counts in each of the eight cells of the 2 x 2 x 2 contingency table 

of the three manifest variables can be obtained, using Equation 5.26, as 

mi23(0,0,0) = mi23Z,(0,0,0,0) + mi23z,(0,0,0,1) = exp{A0} (1 + exp{Af,}) 

mi23(0,0,1) = . . . = exp{A0 + As} (1 + exp{Az, + As^}) 

mi23 (0,1,0) = 

mi23(0,1,1) = 

mi23(l,0,0) = 

mi23(l,0,1) = 

mi23(l, 1,0) = 

mi23(l,l , l) = 

= exp{A0 + A2} (1 + exp{Af, + A2Z,}) 

= exp{A0 + A2 + A3} (1 + exp{Xi + A21, + A32,}) 

.. = exp{A0 + Ai} (1 + exp{Af, + Aif,}) 

= exp{A0 + Ai + A3} (1 + exp{Ai + Xn + Agf,}) 

.. = exp{A0 + Ai + Ag} (1 + exp{Az, + Xil + A22}) 

• • = exp{A0 + Ai + A2 + A3} (1 + exp{Ax, + Xn + X2L + Agj,}). 

Consequently, the conditional odds ratios ^12.3=0 and ^12.3=1 can be expressed as 

_ "^123(0,0,0) "1123(1,1,0) _ _ (1 + exp{Az,}) (1 + exp{Af, + Xn + Agf,}) 
° mi23(0,1,0) mi23(1,0,0) (1 + exp{Ai + Aix,}) (1 + exp{Ai + A2L}) 

and 

mi23(0,0,1) mi23(l, 1,1) (1 + exp{A2 + Agz,}) (1 + exp{Az, + An, + A21, + Agj}) 
^12.3=1 = 

"^123(0,1,1) mi23(l,0,1) (1 + exp{Az, + Xn + A31,}) (1 + exp{Af, + Xol + Asi,}). 

Recall that log(^i2.3=o) = '̂ 1̂2 and log(^i2.3=i) = A12 + A123. Similar reasoning can be 

followed to obtain the four remaining conditional odds ratios. More generally, if i, ^ 

and A; are three binary manifest variables, and corner point constraints are used, 

_ (1 + exp{Af,}) (1 + exp{A_L + Â i, + Aj2,}) /c 
' ° (1 + exp{Ai + Aji}) (1 + exp{Ai + Aj^}) 
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, _ (1 + exp{A^ + Akz,}) (1 + exp{A^ + Aiz, + fsoRl 
^ (1 + exp{A^ + Aif, + Ati,}) (1 + exp{A2, + Aj\L 4- Atz,}). 

Also, 

log(V'u.k=o) - Aij and log(^jj.t=i) = A,; + Aî t- (5.29) 

Consequently, Â ĵ  

log 
(1 + e x p f A j , + A;2,}) (1 + exp{Ai, + Ajj^}) (1 + expfAj;, + Atz.}) (1 + e>:p{A^ + Xji, + Xjj^ + A^^}) 

(1 + e x p { A i } ) ( l + e x p { A i -r Aj^, + A j x } ) (1 + exp{A%, + X n + X ^ l } ) (1 + e x p f A ^ + XjL + A^i,}) 

Since all cell probabilities are positive, only sensible latent class models are con-

sidered and Ai ^ 0, Ag f 0, A3 ^ 0, Af, ^ 0, An, ^ 0, A22 f 0 and Asf, ^ 0, all six 

conditional odds ratios deSned by Equations 5.27 and 5.28 have to be different &om 

one. From Equation 5.29, the three conditional odds ratios deSned by Equation 5.27 

equal the three two-way interaction terms Xij. These three conditional odds ratios be-

ing diEerent from one imply all Â ^ ̂  0, i.e., A12 7̂  0, A13 ^ 0 and Agg ^ 0. Since the 

three conditional odds ratios deSned by Equation 5.28 are also different from one, and 

all Aij ^ 0, Aijt, given by Equation 5.30, is also different from zero and uniquely deter-

mined. Therefore, there are no conditional independencies between the three manifest 

variables and the saturated model is obtained. 

Note that, since both the latent class model and the marginal model of the manifest 

variables have zero degrees of freedom, parameters are uniquely determined. Indeed, 

Equations 5.27 and 5.30 estabhsh the relationship between the parameters of the latent 

class model and the parameters of the saturated model of the manifest variables. 

In conclusion: if the three binary manifest variables latent class model is sensible 

and holds, marginalising over the latent variable induces the saturated model for the 

manifest variables and a complete conditional independence graph. 

The four manifest variables latent class model 

In a latent class GLL model with four binary manifest variables there are fifteen knowns 

(= 2̂ * — 1) and nine parameters to be estimated: Ai, Ag, A 3 , A 4 , Â ,, Aif,, A22, Agf, and 

A41,. The number of degrees of freedom is positive and there is no guarantee that 

each of the A can be uniquely determined as a function of the observed values (cell 

probabilities or conditional odds ratios between manifest variables). If the sensible 

latent class GLL model holds, all nine A parameters have to be different from zero. 

It is proposed that, if the four manifest variables latent class model is sensible and 

holds, marginalising over the latent variable Z/ induces a complete independence graph 
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for the four manifest variables (with six edges: 12, 13, 14, 23, 24 and 34), implying no 

conditional independencies between them. There are now 24 conditional odds ratios 

between the four manifest variables, which can be expressed as a function of the A 

terms of the log-hnear expansion of the latent class model. As before, it is proved that 

all these conditional odds ratios are different from one, guaranteeing no conditional 

independencies between manifest variables. 

Generally, if z, A; and < are four binary manifest variables, and comer point 

constraints are used, the 24 conditional odds ratios can be obtained using the following 

four equations 

, _ (1 + exp{A^}) (1 + exp{A^ + \ l + Aj^}) / c o n 
^ ^ ^ ^ ^ (5.31) 

, _ (1 + exp{A_L + Afx}) (1 + expfAj, + XjL + \jL + ^ti}) ,r ô x 
=̂1 - ^ ^ 

, _ (1 + exp{A^ + At^}) (1 + exp{Af, + Â z, + Ajf, + A^^}) , , 

, _ (1+ exp{Af, + Akz, + Atf,}) (1 + exp{Az, + Aiz, + A_,% + Atf, + Afz,}) 
^ ' (1 + exp{Ai, + XiL + Afci + Aji}) (1 + exp{Ai + Ajx + A*̂  + Ajx,}) • 

Also, 

log('0ij./c=O, £=o) — Ajj l0o(^ij.A:=0, (=1) — Ajj + Ajjj 

l o g ( ' ^ i j _ t = i , ( = o ) = l o g ( ' ^ i j . t = l , ( = l ) = A i j + A i j t + A i j t + A i j t f -

(5.35) 

Consequently, A^t is still given by Equation 5.30, Xijt equals 

log 
(1 + exp{Aj:, + y^ih]) (1 + exp{Ai, + Ajx}) (1 + exp{A£, + ^th}) (1 + exp{Ax + \ l + ^jL + ^tL}) 

(1 + exp{Ai}) (1 + exp{Ai + Aj^ + Ajx,}) (1 + exp{Ai + Xn, + Aji}) (1 + exp{Ai + XjL + A*^}) 
(5.36) 

and 

Â jw = log 
\ % ; | t = 0 , t = l % ; | t = l , f = 0 / 

Since all cells are structurally non-empty, only sensible models are considered and 

all nine A parameters are di%rent &om zero, all 24 conditional odds ratios deGned 

by Equations 5.31 to 5.34 have to be different from one. From Equation 5.35, the 

six conditional odds ratios defined by Equation 5.31 equal Ajj. These conditional odds 

ratios being different from one imply all six two-way interactions between the manifest 
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variables are different from zero, i.e., A12 ^ 0, A13 ^ 0, A14 ^ 0, A23 f 0, A24 ^ 0 

a^d A34 ^ 0. Consequently, there are no conditional independencies between the four 

manifest variables, and a complete independence graph is obtained. Furthermore, the 

fact that the twelve conditional odds ratios defined by Equations 5.32 and 5.33 are 

diSerent &om one, and all A terms are non-zero, guarantees that the four three-way 

interactions terms are different from zero, i.e., A123 7̂  0, A124 ^ 0, A134 ^ 0 and 

-̂ 234 7̂  0. Finally, the four-way interaction term, given by Equation 5.37, is also non 

zero: A1234 f 0. 

Nevertheless, these eleven interaction terms in the log-linear expansion of the model 

of the manifest variables are expressed as a function of just five A terms in the log-linear 

expansion of the latent class model: A ,̂, Aif,, A2Z,, A32, and A3 .̂ Indeed, Equations 5.31 

to 5.37 estabhsh the relationship between the parameters of the latent class model 

and the parameters of the model with no conditional independencies between the four 

manifest variables. It is not possible to obtain these five A terms as a unique function 

of the interactions between the manifest variables (recall the latent class GLL model 

with four binary manifest variables has six degrees of freedom). Therefore, in this case 

marginalising over the latent variable implies no conditional independencies between 

manifest variables, but not necessarily the saturated model. 

In conclusion: if the four binary manifest variables latent class model is sensible 

and holds, marginalising over the latent variable induces an independence graph for 

the manifest variables that is complete, with no conditional independencies between 

manifest variables. 

One should note that in the latent class GLL model (with all variables binary) 

it is not possible to determine the conditions and combinations of parameters that 

lead to a unique solution for the model. Recall that, in the single-factor GG model, 

the fulfillment of the tetrad conditions by the scaled inverse variance matrix of the 

manifest variables guaranteed a unique solution (up to rotation). Due to the fact that, 

besides two-way interaction terms, higher order terms exist in the log-hnear expansion 

of the latent class GLL model, the conditional log-odds ratios do not satis^ a tetrad 

structure. As mentioned by Cox and Wermuth (2002, page 464), 'T/ie 

w 0 coTwegzfeMce 0/ (Ae Zmear . . . ozid so 
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Although the Eve and more manifest variables cases are not studied, it is possible 

to generahse the results of the current section in the following proposition: if the p 

binary manifest variables latent class model is sensible and holds, marginalising over 

the binary latent variable induces the complete independence graph for the manifest 

variables, with no conditional independencies between them. If p = 3 the induced 

model is the saturated model. 

The results proposed so far require the sensible latent class GLL model to hold. 

In practice, even if there are no structurally empty cells, some of the observed cell 

probabihties may be very small and, consequently, one or more conditional odds ratios 

may be very close to one. That being the case, starting with a model with a com-

plete independence graph between the manifest variables and performing backwards 

elimination, in order to detect the presence of a binary latent variable, may lead to 

excluding one or more edges. As in the Gaussian case, this suggests investigating the 

poiuer of selecting a model consistent with a latent class GLL model. This was done 

in Section 4.2 of the thesis, where a theoretical normal approximation was proposed, 

as well as a non-central chi-square approximation for the two binary manifest variables 

case. The main conclusions drawn then, regarding the case of two binary manifest 

variables, are that power increases as the sample size increases and as the odds ratio 

deviates from one, faster for more balanced combinations of marginal probabilities. In 

the presence of three binary manifest variables it is recommended that the data analyst 

calculates the power of selecting the saturated model for the 2 x 2 x 2 contingency table 

under analysis, as proposed in Section 4.2.4. 

In conclusion i this chapter proposes parameterising the single-factor 

model as a graphical Gaussian model and the latent class model as a graphical log-

linear model. Conditional independence graphs are used to represent both models, 

with associations between each of the manifest variables and the latent variable mea-

sured either by partial correlation coefficients (in the single-factor GG model) or by 

conditional log odds ratios (in the latent class GLL model). Detailed formulae are 

given to relate the proposed parameterisation to the classical parameterisation. 

The main contributions of the chapter, regarding the single-factor GG model are 
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now summarised. The tetrad conditions are expressed in terms of the partial corre-

lations and a new insight is given regarding admissible regions and compatible sign 

patterns for the partial correlation coefficients arising from a single-factor GG model. 

Some recommendations are given to the data analyst concerning detecting the pres-

ence of a Gaussian latent variable by inspecting the scaled inverse variance matrix of 

the manifest variables (rather then the variance or correlation matrix) and taking into 

account the power of selecting a model consistent with a single-factor model. 

As far as the latent class GLL model is concerned, (conditional) odds ratios be-

tween manifest variables and, therefore, the independence structure of the latter, are 

related to the conditional log odds ratios between each of the manifest variables and 

the latent variable (given the remaining manifest variables are at level 1). After defin-

ing the concept of sensible latent class model, it is shown that if such a model holds, 

marginalising over the binary latent variable induces no conditional independencies 

between the binary manifest variables. In the case of four (or more) manifest variables 

the obtained model is not necessarily the saturated model. 
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C h a p t e r 6 

Conclusions 

The aim of this last chapter is to summarise the main conclusions of the work un-

dertaken in the research project and to highlight the main contributions of this the-

sis. Suggestions are given, regarding possible areas of further research. The work is 

developed within the framework defined by modek, in particular graphical 

Gaussian (GG) and graphical log-linear (GLL) models are considered. A review of the 

main concepts and definitions required for the understanding of the subsequent work is 

presented. Although such material was taken from existing hterature, for consistency, 

it was required to establish an unifying notation. 

The core of the research consists in investigating three main topics: 

i) the distributions of the tests statistics for single edge exclusion from the saturated 

model, in particular under the alternative hypothesis that the saturated model 

holds: 

ii) the power of the tests statistics for single edge exclusion from the saturated model; 

iii) the parameterisation of the single-factor model as a graphical Gaussian model 

and of the latent class model as a graphical log-linear model (with all variables 

binary). 

The main conclusions and contributions associated with each of this three topics are 

now presented in detail. 
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Dis t r ibut ions of t h e tes t s tat i s t ics for s ingle edge exclus ion from t h e satu-

rated m o d e l 

Three test statistics for single edge exclusion from the saturated model are considered: 

the likelihood ratio, the Wald and the score test statistics. These test statistics, in 

particular their distributions under the null hypothesis of (conditional) independence, 

were investigated by Smith (1990). Extending Smith's work, this thesis investigates 

the distributions of the three test statistics under the alternative hypothesis that the 

saturated model holds. Non-signed and signed square-root (one-sided and two-sided) 

versions of the test statistics are considered. 

Using the delta method, approximating normal distributions are derived. Smith 

(1990, pages 21 and 73) presented the asymptotic variance matrices of the m.l.e. of 

the w (the elements of the inverse variance matrix, in GG models) and of the A (the 

terms of the log-hnear expansion of the cross-classified multinomial distribution density 

function, in GLL models). Because the test statistics for single edge exclusion from 

the saturated model can be written as functions of the w, in GG models, and of the A, 

in GLL models, the delta method is used to derive approximating normal distributions 

to the three test statistics. As an intermediate step, it was required to express the 

test statistics for single edge exclusion from saturated GLL models as a function of 

the cell probabilities and of the m.l.e. of the A terms in the log-linear expansion of /12 

and of /i23 (the density functions of cross-classified multinomial distributions of size 

one, respectively with two and three binary variables). Although Smith (1990) gave 

formulae for the LRT, the Wiald and the score test statistics for a 2 x 2 contingency 

table, it was necessary to extend results to the 2 x 2 x 2 case and to derive simplified 

formulae for the Wald and the score test statistics, both in terms of cell probabilities 

and A terms. Formulae for the means, variances and covariances of the LRT, Wald 

and score test statistics, in the asymptotic distribution, are derived as a function of 

the partial correlation coefficients (for GG models, with p variables) and of the cell 

probabilities (for GLL models with two and three binary variables). All these formulae 

are of particular use when calculating power functions, as explained later. 

In the two variables case, a non-central chi-square approximation to the distribution 

of the LRT statistic for single edge exclusion is also proposed, at a local alternative. 

In both GG and GLL models the non-centrality parameter is shown to be equal to 
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the expected value of the Waid test statistic in the corresponding asymptotic normal 

distribution, previously derived. 

The quality of the proposed normal and non-central chi-square approximations 

to the distribution of the LRT statistic for single edge exclusion from a saturated 

model with two variables is assessed by simulation. Results show that the normal 

approximation holds asymptotically, i.e., for large sample sizes, and for values of the 

measure of association between the two variables, the (partial) correlation coeGicient 

/)i2 in GG models and the log odds ratio log ^12 in GLL models, not close to zero. 

The normal approximation is poor for small sample sizes and values of the measure of 

association close to independence. The non-central chi-square approximation performs 

better for values of pig or log ^12 close to zero, in particular if the sample size is not 

large. It becomes worse as the distance from the null increases. Since the distance from 

the null is measured as (^ — 0), where ^ is the measure of association of interest 

(either /)i2 or log ^12), as M increases the non-central chi-square approximation performs 

better for values of 6 closer to zero. In GG models, 1000 observations can be considered 

a large sample size, whereas in GLL models with two binary variables, a sample size 

of around 10000 observations seems to be required for the normal approximation to 

hold. 

Additionally, it is suggested that in GLL models the balance of the contingency 

table probabilities has also to be taken into account. The asymptotic normal and the 

non-central chi-square approximations to the distribution of the LRT statistic for single 

edge exclusion perform better for balanced combinations of marginal probabilities tti (0) 

and 7r2(0). A measure of balance in a 2 x 2 contingency table is proposed, relating to the 

information matrix. Some of its properties are analysed. The derived approximations 

to the distribution of the LRT statistic perform better for smaller values of the balance 

index. Yet, this measure is not fully developed; further research may include a better 

understanding of the relationship between the value of the balance index, the value 

of the odds ratio and the quality of the approximation and extending the measure to 

higher dimensional contingency tables. 

Possible extensions of the work undertaken regarding the distributions of the test 

statistics for single edge exclusion from the saturated model include considering cate-

gorical variables with more than two categories, generalising the non-centrai chi-square 

approximation to the three variables case (possibly by using a non-central Wishart 
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distribution) and considering GLL models with more than three variables. This last 

task is a complex one because the notation becomes very messy, due to the number of 

parameters involved. 

P o w e r of t h e tes t s tat i s t ics for s ingle e d g e exc lus ion from t h e sa turated 

m o d e l 

The power of a backwards elimination model selection procedure for selecting the true 

(saturated) model is deRned as the probability of selecting the true (saturated) model 

given the specified true model parameters. For a given size level (5%), the power of 

selecting the saturated model when using the likelihood ratio, the Wald and the score 

test statistics for single edge exclusion is investigated. Theoretical asymptotic power 

functions are derived, based on the asymptotic distributions of the test statistics for 

single edge exclusion previously obtained. Non-signed and signed square-root (one-

sided and two-sided) versions of the test statistics are used. 

Graphical Gaussian models are first considered. Starting with the simplest case 

of two variables, the power of selecting the saturated model using the LRT statistic 

is estimated by simulation and calculated using both the asymptotic normal and the 

non-central chi-square approximations to the distribution of the LRT statistic, already 

derived. The conclusions are that power increases as the absolute value of the correla-

tion coefficient increases and as the sample size increases, being symmetric about zero 

correlation for two-sided hypothesis tests. For large sample sizes and values of pi2 not 

close to zero, the asymptotic normal approximation to the power of the non-signed 

version of the LRT statistic performs well. The non-central chi-square approximation 

should be preferred for small sample sizes and correlation coefficients close to zero, 

i.e., small distances from the null. Asymptotic normal approximations to the power 

of selecting the saturated GG model with two variables, using the signed square-root 

versions of the three test statistics for single edge exclusion, are also derived. The 

quality of such approximations is good, even for small sample sizes and small corre-

lation coefficients. Results conSrm one-sided hypothesis tests are more powerful than 

corresponding two-sided tests. 

The three Gaussian variables case is then analysed. The study of the power func-

tions in the presence of three, or more, variables cases requires taking into account the 
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constraint that the scaled inverse variance matrix is positive definite. The shape of 

correlation matrices had been studied by Rousseeuw and Molenberghs (1994), who es-

tablished a condition for positive definiteness in terms of correlation coefficients. Since 

the focus now is on partial correlations, such result is extended and a condition for 

positive definiteness is proposed, in terms of partial correlation coefficients. 

A trivariate normal approximation to the power of the three hypothesis tests of 

excluding edge zj, edge zA; and edge for simplicity called the power of selecting 

the saturated model (in the three variables case) is derived. The approximation holds 

asymptotically, 1000 observations being a large sample size. Yet, it is shown that a 

truncated normal approximation performs better for large sample sizes and values of 

the partial correlation coefficients close to zero. Power increases as partial correlations 

increase, although some non-symmetry and some non-monotonicity exist for small par-

tial correlation values. In the caae of the test of excluding edge zj from the saturated 

model, power just depends on the partial correlation coefiScient of interest, Pij.rest, 

whereas in the case of the two tests of excluding edge ij from the saturated model 

and excluding edge ik from the saturated model, as well as in the case of selecting the 

saturated model, power depends on the three partial correlation coefficients. Hence, it 

is possible to conclude that the correlation structure of the test statistics justifies some 

non-symmetry and non-monotonicity of the power functions. Asymptotic power func-

tions for the signed square-root (one-sided and two-sided) versions of the test statistics 

are also derived using trivariate normal approximations. These hold even for sample 

sizes of 200 observations and partial correlation coefficients close to zero. 

Results can be generalised to the cases of four or more variables, by using the 

multivariate normal distribution. However, the complexity of the problem increases 

considerably with the number of variables in the model: obtaining the power of selecting 

the saturated model in the five variables case requires calculating a ten dimensional 

integral, since there are ten test statistics for single edge exclusion. For this reason, in 

the four and the five variables cases, attention is restricted to models with equal partial 

correlations between all variables. Results for an equicorrelation matrix, existing in 

the literature, were adapted to establish the positive definiteness of a scaled inverse 

variance matrix with all ofiF-diagonal elements (the negatives of the partial correlation 

coefficients) equal. Simulation results show that, for a certain value of Pij.reat, the 

smaller the number of variables, the larger power is. Also, for large sample sizes, 
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differences in power values between models with three, four or five variables can only 

be detected for small jpij.regtl-

For graphical log-linear models, the power of the test statistics for single edge 

exclusion &om the saturated model is analysed in detail for the two binary variables 

case and some insight is obtained regarding three binary variables. Although one 

parameter (pij.regj is enough to measure the association between two normal variables, 

in the case of two or three binary variables, cross-classified in a contingency table, 

respectively three and seven parameters are required. The number of parameters to 

be considered increases substantially as the number of variables increases, and so does 

the complexity of the notation. For this reason only GLL models with two and three 

binary variables are used in this thesis. 

An asymptotic normal and a non-central chi-square approximation are proposed to 

calculate the power of the LRT statistic for single edge exclusion from a saturated GLL 

model with two binary variables. Power increases as the sample size increases and as 

the value of the odds ratio deviates from one, faster for more balanced combinations of 

marginal probabilities. The non-central chi-square approximation performs better at a 

small distance from the null. For large sample sizes (n© = 10 000) and odds ratio values 

not close to one the normal approximation performs better, particularly for unbalanced 

contingency tables. When signed square-root versions of the test statistics are used, 

the proposed asymptotic normal approximation performs well, even for more moderate 

sample sizes (n0 = 1000), less balanced combinations of marginal probabilities and 

odds ratios close to one. 

As far as the three binary variables case is concerned, it is suggested that, for a 

speciGc contingency table, asymptotic power functions can be obtained using a trivari-

ate normal approximation. Since the parameter space is now seven dimensional, a 

comprehensive investigation of the power functions, for the different combinations of 

values of the seven parameters, is not possible. 

When comparing the normal and the log-linear binary cases it is worth taking 

into account that, in both cases, power varies as a function of the sample size and of 

the degree of association between variables. However, in GLL models the balance of 

the contingency table has also to be considered, which suggests further investigating 

the proposed measure of balance, aiming at better quantifying its contribution to the 

variation in power. Extending results for the case of categorical variables with three 
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or more levels is also a possible area of further research. 

T h e parameter i sa t ion of t h e s ingle- factor m o d e l as a G G model and of t h e 

latent class m o d e l as a GLL m o d e l 

The classical parameterisations of the single-factor model and of the latent claas model 

are reviewed. The allowable region of the parameter space of the classical single-factor 

model is studied in detail for the three and four manifest variables cases and, since 

GG models require partial correlations, the tetrad conditions are expressed in terms of 

partial correlation coefRcients. 

The single-factor model is parameterised as a GG model, allowing GG models to 

incorporate a normal distributed latent variable. The classical and the proposed param-

eterisations are related. It is suggested that the single-factor GG model is represented 

by a conditional independence graph, each edge representing the partial correlation 

between one manifest variable and the latent variable, given the remaining manifest 

variables. 

The conditional independence structure between manifest variables, arising from 

marginalising the single-factor GG model over the latent variable, is investigated. It is 

proved that marginalising over the latent variable in a single-factor GG model induces 

no conditional independencies between manifest variables and, consequently, an inde-

pendence graph that is complete. In the three manifest variables case, the saturated 

model is obtained, whereas when four or more manifest variables are present a complete 

independence graph does not necessarily correspond to the saturated model. Indeed, 

there are constraints on the partial correlation coefBcients between manifest variables 

compatible with a single-factor model. In the three variables case, the scaled inverse 

variance matrix is constrained to be positive definite. It is proved, however, that when 

there are four or more manifest variables, in order to have a model consistent with a 

single-factor model, the four or more partial correlation coefficients also have to satisfy 

the tetrad conditions. Hence, the conditions that guarantee that a scaled inverse vari-

aiice matrix is compatible with a model arising from a single-factor model are derived. 

These conditions imply certain patterns of signs for the partial correlation coefficients. 

A rule is proposed for defining the patterns of signs for the partial correlations between 

manifest variables that are compatible with a single-factor GG model. 
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The power of selecting a model consistent with a single-factor GG model is de-

rived, based on the asymptotic normal approximation previously proposed, with the 

additional constraint that the conditions that guarantee the scaled inverse variance 

matrix of the manifest variables is compatible with a single-factor GG model are sat-

isfied. Some recommendations are then given to the data analyst, regarding detecting 

the presence of a Gaussian latent variable, i.e., identifying a model consistent with a 

single-factor GG model. In brief, consider partial correlation coefficients and the com-

patibility of their sign patterns, choose the test statistic for single edge exclusion to be 

used and calculate the power of selecting the saturated model. This can be done prior 

to collecting data, baaed on values the data analyst considers plausible for the partial 

correlation coefRcients, or after data collection, treating sample partial correlations as 

if they were the 'true' population values. Test for each edge exclusion between manifest 

variables. When power values are not high, the data analyst must be prepared to fit a 

single-factor GG model even if there are conditional independencies between manifest 

variables and the conditional independence graph is not complete. 

The latent class model is parameterised as a GLL model, allowing GLL models 

to include a binary latent variable. The single-factor GLL model is represented by a 

conditional independence graph, each edge representing the conditional log odds ratio 

between each of the manifest variables and the latent variable, given that the remaining 

manifest variables are at level 1. The concept of sensible model is defined, ensuring 

all cell probabilities, in all possible cross-tabulations between manifest variables and 

latent variable, are positive. 

The conditional independence structure between manifest variables arising from 

a latent class GLL model is investigated and it is shown that, if the sensible latent 

class model holds, marginalising over the latent variable implies all conditional odds 

ratios between manifest variables different from one and, consequently, no conditional 

independencies and a complete independence graph between manifest variables. When 

four, or more, binary manifest variables are present, the fact that all interaction terms 

(two-way and higher order) in the log-linear expansion of the manifest variables are 

different hrom zero does not guarantee the obtained model is the saturated model. The 

justification being that it is not possible to obtain a one to one relationship between the 

A terms of the log-linear expansion of the latent class GLL model and the interaction 
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terms between manifest variables. Recall that, in the Gaussian case, it is possible to 

estabhsh a one to one relationship between the parameters of the single-factor GG 

model and the partial correlations between manifest variables, provided the tetrad 

conditions are fulElled. As in the Gaussian case, it is recommended that the data 

analyst takes into account the power of selecting the saturated model when trying to 

detect the presence of a binary latent variable. 

Possible areas of further research include investigating the parameterisation of mod-

els that relax the assumption of local independence, i.e., models in which the latent 

variable does not account for all associations among manifest variables, as well as the 

parameterisation of models with more than one latent variable. 

A more challenging area of further research is to consider mocfek and 

and try to extend the main results of the thesis 

to this type of models. As far as latent variable models are concerned, this would allow 

models parallel to latent trait and latent profile analysis to be included in the unified 

framework of graphical models. 
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Appendix A 

Par t i a l Derivatives Used for 
Calculat ing the Variance of t he 
Likelihood Rat io Test Statist ic 
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Table A.l; Partial derivatives of the cell probabilities and of AQ with respect to the three A. 
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Table A.2: Partial derivatives of the logarithmic terms with respect to the three A. 
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Table A.3: Partial derivatives of Ag with respect to the seven A. 
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: - 7 r ( l , l , l ) ( , r 2 ( l ) - l ) 

8,(1,0,0) 

877(0,1,1) 
9̂ 2 - 7 r ( 0 , l , l ) ( 7 r 2 ( l ) - 1) 

8,(0,0.0) 
8A3 

8,(1.1,0) 
8A3 

0 7 7 ( 1 , 0 , 1 ) 

9̂ 3 

-%-(o,o,oM(i) 

- 7 r ( l , l , 0 ) T 3 ( l ) 

- ) r ( l , 0 , l ) ( ; r 3 ( l ) - 1) 

8,(0,1,0) 
8A3 

8,(0,0,1) 
8A3 

8:r(l,l,l) 

- 7 r ( 0 , l , 0 ) 7 r 3 ( l ) 

- 7 r ( 0 , 0 , l ) ( 7 r 3 ( l ) - l ) 

-%(1,1, l)(7r3(l) - 1) 

8,(1,0,0) 
8 A 3 

8,(0,1.1) 
8 A 3 

- 3 r ( l , 0 , 0 ) ^ 3 ( 1 ) 

- T ( 0 , l , l ) ( , r 3 ( l ) - 1 ) 

8,(0.0,0) 
dXi2 

9 7 7 ( 1 , 1 , 0 ) 

dXi2 
977(1,0,1) 

-̂ (0,0,0)̂ 12(1,1) 

- % ( ! , ! , 0 ) ( : r i 2 ( l , l ) - l ) 

: - ; r ( 0 , l , 0 ) ; r i 2 ( l , l ) 

: - ; r ( 0 , 0 , l ) , r i 2 ( l , l ) 

8,(1,0,0) 
SA12 

8,(0.1.1) 
dXi2 

- ; r ( l , 0 , 0 ) ^ 1 2 ( 1 , 1 ) 

- 7 r ( 0 , 1 , 1 ) ^ 1 2 ( 1 , 1 ) 

8,(0,0,0) 
9AI3 

9̂ (1,1,0) 
9AI3 

9 7 7 ( 1 , 0 , 1 ) 

a?(o,i,o) 
8Ai3 

- % ( 0 , 0 , 0 ) 7 7 1 3 ( 1 , 1 ) 

- , r ( l , l , 0 ) , r i 3 ( l , l ) 

- X l , 0 , l ) ( , r i 3 ( l , l ) - 1 ) 

a,(o,o,i) 
9Ai3 

- 7 r ( 0 , l , 0 ) 7 r i 3 ( l . l ) 

- , r ( 0 , 0 , l ) T i 3 ( l , l ) 

- , r ( l , l , l ) ( : r i 3 ( l , l ) - l ) 

8,(1,0,0) 
9AI3 

9 7 7 ( 0 , 1 , 1 ) 

9 A ^ 

- T ( l , 0 , 0 ) ^ 1 3 ( 1 , 1 ) 

- 7 r ( 0 , 1 , l ) 7 r i 3 ( l , 1 ) 

8,(0,0,0) 
9A23 

977(1,1,0) 
9A23 

9 7 7 ( 1 , 0 , 1 ) 

8A23 

-,r(0,0,0)^^23(1,1) 

-%(1,1,0)7:23(1,1) 

- 7 r ( l , 0 , 1 ) 7 : 2 3 ( 1 , 1 ) 

8,(0,1,0) 
6X23 

8,(0.0.1) 
SA23 

57r( 1,1,1) 
8A23 

- 7 7 ( 0 , 1 , 0 ) 7 7 2 3 ( 1 , 1 ) 

-77(0, 0 , 1)7723(1, 1) 

-77(1, 1 , 1 ) ( 7 7 2 3 ( 1 , 1 ) - 1) 

8,(1,0,0) 
9A23 

9 7 7 ( 0 , 1 , 1 ) 

6A23 

-77(1,0,0)7723(1,1) 

-77(0,1,1)(7723(1,1) - 1) 

8,(0,0,0) 
9AI23 

977(1,1,0) 
9AI23 

977(1,0,1) 
8Ai23 

-a-fOiO.OjTTfl,!,!) 

-%-(!, 1,0)̂ (1,1,1) 

- 7 r ( l , 0 , l ) 7 r ( l , l , l ) 

a:r(0,l,0) 
9AI23 

977(0,0,1) 
9AI23 

977(1,1,1) 
Âi23 

- 7 7 ( 0 , 1 , 0 ) 7 7 ( 1 , 1 , 1 ) 

- 7 7 ( 0 , 0 , 1 ) 7 7 ( 1 , 1 , 1 ) 

-77(1, 1, 1)(77(1, 1, 1 ) - 1) 

8,(1,0.0) 
9AI23 

9 7 7 ( 0 , 1 , 1 ) 

9Ai23 

- 7 7 ( 1 , 0 , 0 ) 7 7 ( 1 , 1 , 1 ) 

- 7 7 ( 0 , 1 , 1 ) 7 7 ( 1 , 1 , 1 ) 

Table A.4: Partial derivatives of the cell probabilities with respect to the seven A. 
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w(0.0 0)irr,(0) ^ 
1̂3(0.0)̂ 23 (0,̂ / 

9Ai 
7r(l,0,0)7r3 (0) > 
1̂3(10)̂ 23(00); 
aAi 

7 r i 3 ( l , 0 ) 

:r3(0) ir(l,0,0) 
: r 2 3 ( 0 , 0 ) 

7r(0.1.0)7r3(0) \ 

Tl3(0 0)ir23 (1,0) J ,(l.l,0),a(0) \ 
Ti3(l,U)7r23(1.0) / 

axi 

:ri3(l,0) 
i r 3 ( 0 ) 

ir(l,l,0) 
2 3 ( 1 , 0 ) 

*f0.0,l)*9(l) \ TTr,(0.1)*23(0.1) / 13(l . l ) irg^ (0,1) / 

aAi 
,(0.0.1)irr,(l) \ 

r]^(0,l)?r23(0.1) ; 
7r(l .0, 1 >773 (1) ' 

ri3(l.1)̂ 33(0,1) . _ T r i 3 ( l , l ) 

%3(1) 
%(1,0,1) 
7r23(0,l) 

,rf0.1.1),3(l) \ 
w i ^ ( 0 . 1 ) ^ 2 3 ( 1 . 1 ) ; 

gAi 
*(l.l.l)ir3(l) \ 
1̂3(11)̂ 23(11)i 

i r ( 0 . 1 . 1 ) * 3 ( l ) \ 
7^3(0.1)3^23(1,1) y 

, ( 1 . 1 . 1 ) , 3 ( 1 ) ^ :ri3(l,1)̂ 23(1.1) J ?ri3(l,l) 
7 r 3 ( l ) 

?r(l,l,l) 
:r 2 3 ( 1 , 1 ) 

?r(0,0.0)%3 (0) 
'r i3(0,0)*23 (O.dy 

aA2 
w(0,l,0)?r3 (0) 

:i3(0.0)̂ 23(1,0) ; 
9̂ 2 

1 ^ 2 3 ( 1 , 0 ) 

:r3(0) :r(0,l,0) 
: r i 3 ( 0 , 0 ) 

^(1.0.0):rr,(0) ^ 
1̂3(1,0)̂ 23(0,0)y 

9̂ 2 
ir(l, 1.0)ir3 (0) ^ 

Tl3(l,())7r23(1.0) ; 
9̂ 2 

? r 2 3 ( l , 0 ) 

:r3(0) :r(l,l,0) 
T r i 3 ( l , 0 ) 

, ( 0 . 0 , 1 ) , 3 ( 1 ) ^ 
1,3(0,1)323(0,1) y 

^̂ 2 
7r(0.1.1)7r3 ( I ) > 

T|3(0.1 )7r23 (1.1) y 

9̂ 2 
x(0.0.1)773 (1) > 

f 13(0.l):r23(0,1) j 
GAM 

aIog(- T(0,l,l),3(l) \ 
13(0,1),23(1.1)V 

9̂ 23 
? r 2 3 ( l , l ) . 

:r3(l) 
?(0,1,1) 
:ri3(0,l) 

9k)g(: 7r(l ,0.1)773 (1) > 
13(1,1)323(0,1) y 

aAg 
, ( l . l . l ) i r ! ( ( l ) ^ 

T13(1,1)̂ 23(1.1) y 
8A2 

,(1,0.1)33(1) ^ 
T13(1.1)«̂ 23(0,1) V 

9 ^ 2 3 

3(1.1.1)33(1) \ 313(1.1)323(1.1) 7 _ 
8 A 2 3 

: r 2 3 ( l , l ) ? ( 1 , 1 , 1 ) 

? r i 3 ( l , l ) 

77(0,0.0)773 (0) \ 
TT3(0.0)*M(0,0)̂  7r(l,l,0) 

8A12 *3(0) 
3(0,1.0),r3(0) \ 

;ri3(0,0)323(17?/ _ %(1,1,0) ? r ( l , l , l ) 

^ 2 3 ( 1 , 0 ) 

3 ( 1 , 0 , 0 ) 3 3 ( 0 ) \ 

TI3(1,0)7723(0.0) J : r ( l , l , 0 ) 

?3 (0) 
% ( 1 , 1 , 1 ) 

?ri3(l,0) 
3 ( 1 . 1 , 0 ) 3 3 ( 0 ) \ 

1̂3(1'0)*23(1,0)} 
dXl2 = 1 + XI,1,0) 

7 r 3 ( 0 ) " 1 3 ( 1 . 0 ) " 2 3 ( 1 . 0 ) 

o l o g ( 
3 ( 0 , 0 . 1 ) 3 3 ( 1 ) ^ 

«̂ 13(0,1)323(0,1) y 
^ ^ 1 2 

3 ( 0 , 0 , 1 ) 3 3 ( 1 ) \ 
1-^3(0,1)7723 (0.1) ; ?(1,1,1) 

« ^ 3 ( 1 ) 

3(0.11)ir:,(l) 
713(0,1)7723 (1 

W _ 

3(1.0.1),3(1) \ 
T]3(l.l)*23(0,l) / _ 

77(0 ,1 ,1 )773 ( 1 ) \ 

3 1 3 ( 0 , 1 ) 3 2 3 ( 1 , 1 ) J 7 r ( l , l , l ) 
a A i 2 3 

dXi23 
" ( 1 . 1 . 1 ) 

" 3 ( 1 ) 

" ( 1 , 1 . 1 ) 
" 2 3 ( 1 . 1 ) 

" ( 1 , 1 , 1 ) 
" 1 3 ( 1 . 1 ) 

1̂3(l.l)"23(l.l)y 
9AI2 

r r ( l , l , l ) , r . , ( l ) \ 

•̂ 13(1.1)̂ 23(1,1) / 
S A 2 2 3 

1 + 
" 3 ( 1 ) 

" ( 1 , 1 , 1 ) 
" 1 3 ( 1 . 1 ) 

" ( 1 . 1 . 1 ) 
" 2 3 ( 1 . 1 ) 

Table A.5: Partial derivatives of /12 with respect to the seven A. 

The remaining partial derivatives not presented here equal zero. 
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+ 2 1 (̂1,0,0) log ( ) + "(1' (% 

+ + 41,1,1) log(,:?:%(%))]: 

A|2,l] ==^A^;|^Ari2] + 2 [.(0,1, 0) log ( , ) + ̂ (1,1,0) log ( (°0)) 

+ + 4: . 1.:) ( . :%,%%))] : 

A|3,l] ===^Ag[I,;!Ti2] + 2 [.(1,1,0) l o g ( , 4 ( \ ' % % ) + 4 l , l , l ) ] o g ( , 4 % ( % ^ i 

1] = ^ AB[z,^:2] + 2 [ . ( 0 , 0 , 1 ) l o g + ; r ( o , 1,1)log 

A[5,l] + 2 [^l, 0,1) log 1' 1) '°e (,:%:!%(%))] : 

A[6,1] = +2 [.(0,1,1) log ; 

A[7,1] = ^ 4 ^ A [̂̂ 7rri2] + 2 [.(1,1,1) l og ( , ;%%%)) ] : 

A[l,2| =z^A^[V;7ZTi3] + 2 [xi,0,0)log(,^;(%^;%))+^(l,1.0)log(^4^^^^^^^^^ 

+ "C. 0.1) '°s + "C. 1':) ( , : % % % ) ) ) ; 

A[2,2| =^/ l f ; [^7Zri3] + 2 [40,1.0)log(,^;%%(%J+41,l,0)log(,4^^^^^^^^ 

+40,1,1) log :) = 

A[3,2] =^3]^;l^[2j!r ,3] + 2 [w(l,l,0)loe(,;;%_%%))+^(l^ 

A[4,2] =%^/if;[^;;Ti3]+2 [ . ( o , o , i ) l o g ( ) + ^ ( o , i , i ) l o g ( ) 

+41,0,1) log + " ( 1 . : ) ( , : ' ( ! % ( % ) ) ] ; 

A[5,2] = ^ 2 ^ /l^[^;zri3] + 2 [.(1,0,1) log + :r(l, 1,1) log = 

A[6,2] = = 3 ^ /iE[̂ 7zri3] + 2 [.(0,1,1) log + ''(I' 1':) ( , ; ;%%%))] : 

A[7,2] = /LB[̂ Ari3] + 2 [.(1,1,1) log (,;;%'.%%))] -

Table A.6; Derivatives of f i ^ and with respect to the seven A expressed in cell 
probabilities. 
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+ 2 0, 0) log ) + :r(l, 1,0) log ) 

+ 0 . : ) ( . :%'!:(%))]; 

A[2,31 = ^ A ;̂[̂ Ar23| + 2 [.(0,1, 0) log ( ) + ;r(l, 1,0) log ( ) 

+ 1.1) ' ° B ( a i a n ) + "(1.:) (,:'(!%(%))]: 

A(3,3] = % : : ] ^ A B | i R r 2 3 l + 2 },r(l, 1,0) log 1' D ' 

A[4,3] = ^ / l^[2Ar23] + 2 [ . (0 ,0 ,1 ) log + ^(0,1,1) log 

+ -C. 0.1) :) ^ ; 

A[5,3| = = 2 : ^ A B [ ^ A r 2 3 | + 2 [TTd.o, 1) log + ^(1,1, D '°S ; 

A|6.3| = c Z ^ A E [ L R r 2 3 | + 2 [ . ( O , l , l ) l o g ( , ^ ; % : ) ^ ; ; ' ( % ) ) + . a 

A[7,3] = = = ^ y l f ; [ i A r 2 3 | + 2 [ x i , l . l ) l o g ( ^ ; ; % % ^ ^ ) , ) ) ] . 

Table A.7: Derivatives of with respect to the seven A expressed in cell probabilities. 
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A[ l ,^ = 
,r(b,0,0) ,(0,1,0) + ,(1.0,0) ,(1,1,0) 

_J_ -7ri(l) + 7r ( l , 0 ,0 )^7r ( I , l , 0 ) 

,(0,0,0) ^ ,(0,1,0) ^ ,(1,0,0) ^ ,(1,1,0) 

(AI2+AI23)̂  
, ( 0 , 0 , 1 ) ^ , ( 0 , 1 , 1 ) ^ , ( 1 , 0 , 1 ) ^ , ( 1 , 1 , 1 ) 

1 

-/II (1) 
1 

,(1,0,1) ' ,(1,1,1) 

,(0,0,1) ^ , (0 ,1 ,1 ) ^ , (1 ,0 ,1) ^ , (1 ,1 ,1) 

A[2,1] 
,(0,0,0) ^ , (0 ,1 ,0 ) ^ , (1 ,0 ,0 ) ^ , (1 ,1 .0 ) 

-7r2(l) + i , , 1 
,(0,0,0) "I" ,(0,1,0) """,(1,0,0) """ ,(1,1,0) 

+ -
(AI2+AI23)̂  

T(0,0,1) ' , (0 ,1 ,1 )^ , (1 ,0 ,1 ) ' ,(1,1,1) 
-7r2(l) ,(0,1,1) ' ,(1,1,1) 

T(0,0,1)^,(0,1,1) ^ , (1 ,0 ,1) ^ , (1 ,1 ,1) 

A[3,1] (Ai2)̂  
,(0,0,0) ^ ,(0,1,0) ^ ,(1,0,0) ^ ,(1,1,0) 

-7ri2(l,l) + 
I 

,(1,1,0) 

,(0,0,0) ^ ,(0,1,0) ^ ,(1,0,0) ^ ,(1.1,0) 

( A 1 2 + A 1 2 3 ) 
1 , 1 , 1 , 1 

,(0,0,1) ,(0,1,1) ,(1,0,1) "^,(1.1,1) 

1 

-7ri2(l, 1) + 1 , T ,(1,1,1) 

,(0,0,1) ' , ( 0 ,1 ,1 )^ , (1 .0 .1 )^ , (1 ,1 ,1 ) 

+2 

A[4, 1] = 

A[5, 1] = 

'̂ 12 
1 _ L . _ j _ _ 4 . _ 1 _ _ 4 " 1 , 1 , 1 

-rr<i n " rrfi 1 n\ \ , ,r(0,0,0)̂ ,r(0,l,0)̂ f(l,0,0)̂ %(l,l,0) :r(0,0,l) ,̂r(0,l,l)^:r(l,0,l) ' 7r(l,l,l) 

(AI2+AI23)̂  
,(0,0,1) ^ , (0 ,1 ,1 )^ , (1 ,0 ,1 ) ' ,(1,1,1) 

( A 1 2 + A 1 2 3 ) 

,(0,0,1) ,(0,1.1) ,(1.0,1) ,(1,1,1) 

[1 - 7r3(l)]; 

-:ri3(l, 1) + 1 41,0.1, 4^.1) ^ 
,(0.0,1) ^ , (0 ,1 ,1 ) "^,(1,0,1) "^,(1,1,1) 

A[6,l] = 1 , , 1 
, ( 0 , 0 , 1 ) ^ , ( 0 , 1 . 1 ) ^ , ( 1 . 0 . 1 ) ^ , ( 1 , 1 , 1 ) 

T23(l, 1) + 
,(0,0,1) "*',(o,'i;i)"̂ ,(1,0,1) "̂ ,(1,1,1) 

,(0J,1)^,(1,1,1) 

A[7,1] (A12+A123) 
, ( 0 , 0 , 1 ) ^ , ( 0 , 1 , 1 ) ^ , ( 1 . 0 . 1 ) ^ , ( 1 . 1 . 1 ) 

,(1.1.1) 

,(0,0.1) ^ , (0 ,1 ,1 ) ^ , (1 ,0 ,1 ) ^ , (1 ,1 .1 ) 

4-2 A 1 2 + A 1 2 3 

, ( 0 , 0 , 1 ) ^ , ( 0 , 1 . 1 ) ^ , ( 1 . 0 . 1 ) ' ,(1.1.1) 

Table A.8: Derivatives of with respect to the seven A expressed in cell probabilities. 
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A[l, 
+ ,n n n\ +; ,(0,0,0) ^ T(0,0,1) ^ ;r(l,0,0) ^ *(1,0,1) 

-TTifl) 4- 1 , 
,(0,0,0) ,(0,0,1) ,(1,0,0) "I" ,(1,0,1) 

+ -
(AI3+AI23)̂  

Zi[3,Sl] 

/\[4,2] 

1 , 1 , 1 , 1 
"(0,1,0) ,r(0,l,l) ,r(l,l,0) :r(l,l,l) 

(AI3 + AI23)̂  
Vm+; 

- n ( l ) + ^ z % = c S = ^ 
, ( 0 , 1 ,0 )^ , (0 ,1 ,1 )^ , (1 ,1 .0 ) ' ,(1,1,1) 

, ( 0 , 1 ,0 )^ , (0 ,1 ,1 )^ , (1 ,1 ,0 ) ^ , (1 ,1 ,1 ) 

( A 1 3 + A 1 2 3 ) 

[1 - 7^2(1)]; 

,(0,1,0) ^ , (0 ,1 ,1 ) ^ , (1 ,1 ,0 ) ^ , (1 ,1 ,1 ) 
-7ri2(l, 1) + 1 , 1 

(0,1,0)^,(0,1,1) ' , (1 ,1 ,0)^, (1 ,1 ,1) 

"T" 
(A13): 

1 I 

=nTTr+ 
T 

,(0,0,0) ' ,(0,0,1) ' , (1 ,0 ,0 )^ , (1 ,0 ,1 ) 

(Al3+Al23)̂  

-7r3(l) + , (0 ,0 ,1 )^ , (1 ,0 ,1 ) 
1 I 1 I 1 I 1 

, ( 0 , 0 , 0 ) ^ , ( 0 , 0 , 1 ) ^ , ( 1 , 0 , 0 ) ^ , ( 1 , 0 , 1 ) 

,(0,1,0) ^ , (0 ,1 ,1 ) ^ , (1 ,1 ,0 ) ^ , (1 ,1 ,1 ) 
-;r3(i) + 

1 1 

%(0,1,1) ,(1,1,1) 
1 

,(0,1,0)^,(0,l,l)^,r(l,l,0)^,(1,1,1) 

A[5,2] (Aisf 
,(0,0,0) ' , ( 0 , 0 , 1 ) ^ , ( 1 , 0 , 0 ) ^ , ( 1 , 0 , 1 ) 

-;ri3(l, 1) + ,(1,0,1) 

(AI3+AI23)̂  

T(0 
1 I 1 I 1 I 1 

,1,0) "̂ ,(0,1,1) %(1,1,0) %(1,1,1) 
-:ri3(l, 1) + 

,(0,0,0) ,(0,0,1) ^ , (1 ,0 ,0)^ , (1 .0 ,1) 

,(1,1,1) 

+2 .Am. 

,(0,1,0) ^ , ( 0 ,1 ,1 )^ , (1 ,1 ,0 )^ , (1 ,1 ,1 ) 

A 1 3 + A 1 2 3 

,(0,0,0) ' ,(0,0,1) ^ , (1 ,0 ,0 ) ^ ,(1,0,1) , ( 0 , 1 , 0 ) ^ , ( 0 , 1 , 1 ) ^ , ( 1 , 1 , 0 ) ^ , ( 1 , 1 , 1 ) 

( A 1 3 + A 1 2 3 ) A[6,2] — 1 , 
,(0,1,0) ^ , (0 ,1 ,1 ) "^,(1,1,0) "^,(1,1,1) 

A[7,2] ( A I 3 + A I 2 3 ) ^ 

, ( 0 , 1 , 0 ) ^ , ( 0 , 1 , 1 ) ^ , ( 1 , 1 , 0 ) ^ , ( 1 . 1 , 1 ) 

-7r23(l, 1) + , . 

—7r(l, 1,1) + 

,^(6,1,0) + ,(0,1,1) + ,(1,1,0) + ,(1,1,1) 

1 
,(1.1,1) 

, ( 0 . 1 , 0 ) ^ , ( 0 , 1 . 1 ) ^ , ( 1 , 1 , 0 ) ^ , ( 1 , 1 , 1 ) 

+2 A I 3 + A I 2 3 

_ ,(0,1,0) ^ ,(0,1.1) ^ , (1 .1 ,0 ) ^ ,(1.1.1) 

Table A.9: Derivatives of with respect to the seven A expressed in cell probabilities. 
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A[l,3] (A23+AI23)̂  
,r(l,0,0) ^ ,(1,0,1) 1,0) ^ :r(l,l,l) 

1— [1 - ^i(i)]; 

A[2,3] (̂ 2̂3) 
"T" ?(0,0,0) ^ ̂ (0,0,1) ^ :r(0,l,0) ̂  ?r(0,l,l) 

-712(1) + T 
7r(04,0} 7r(0 , l . l ) 

+ - (A23+AI23)̂  
,(l,0,0)^;r(l,0,1)^ 7̂ (1,1,0)̂ (̂1,1,1) 

-;r2(i) + 7r(l,l,0) ^7r(l,l,l) 

7r(1.0,0) ^ 7 r ( l , 0 , l ) ^ 7r(l,1.0) ^ 7 r ( l , l , l ) 

A[3,3] (A23+AI23)̂  
7r(l,0,0) ' 7 r ( l ,0 , l ) ' 77(1,1,0) ^ 7 r ( l , 1 . 1 ) 

-'"12(1; 1) + 7r(l,l ,0)^7r(l,l.l) 

1 I 1 i 1 , 1 
7r(l,0,0) ^ 7r(l,0.1) ^ 7r( l , l ,0) 7 r ( l . l , l ) 

A[4,3] (A23) 

,(0,0,0) ,̂r(0,0,l)̂ ,r(0,l,0) ' ,(0,1,1) 
-7r3(l) + 

1 
, (0 ,0 ,1 )^ , (0 ,1 ,1 ) 

,(0,0,0) ^ , ( 0 ,0 ,1 )^ , (0 ,1 ,0 )^ , (0 ,1 .1 ) 

(A23+AI23)̂  
,(1,0,0) ^ ,(1,0,1) ^ ,(1,1,0) ,(1,1,1) 

-7^3(1) + , 
,(1,0,0) "^,(1,0,1) + ,(1,1,0) "^,(1,1,1) 

A[5,3] = (A23+A123) 
' (1 .0 ,0) , ( 1 , 0 , 1 ) """,(1,1,0) """,(1,1,1) 

-7ri3(l, 1) + 1 
,(1,0,0) ^ , (1 ,0 ,1 ) ^ , (1 ,1 ,0 ) ^ , (1 ,1 ,1 ) 

A [6,3] = (A23)̂  
,(0,0,0) ^ ,(0,0,1) ^ ,(0,1,0) ^ ,(0,1,1) 

-^23(1,1) + : = r 
1 ,(0,1,1) 

, ( 0 , 0 , 0 ) ^ , ( 0 , 0 , 1 ) ^ , ( 0 , 1 , 0 ) ^ , ( 0 . 1 , 1 ) 

(A23+AI23)̂  
,(1,0,0) ^ , (1 ,0 .1) ^ , (1 ,1 ,0) ^ ,(1,1,1) 

—7^23(1,1) + — r 
1 

,(1,1,1) 

,(1.0,0) ^ ,(1,0.1) ^,(1,1,0) ^ ,(1,1,1) 

+2 T" 
2̂3 A 2 3 + A 1 2 3 "T , 1 , 1 ' "I" 1 , 1 I 1 , r 

. ,(0.0.0) ^ ,(0.0.1) ^ ,(0.1,0) ^ ,(0,1,1) , ( 1 , 0 , 0 ) ^ , ( 1 , 0 . 1 ) ^ , ( 1 , 1 . 0 ) ^ , ( 1 . 1 . 1 ) 

A[7,3] (A23 4-̂ 123) 
,(1,0,0) 0,1) ̂  0) ̂ :r(l,1,1) 

-7r(l , l , l) + ^ 
1 ,(1,1.1) 

, ( 1 . 0 . 0 ) ^ , ( 1 . 0 . 1 ) ^ , ( 1 . 1 . 0 ) ^ ,(1,1.1) 

+2 A 2 3 + A 1 2 3 

,(1.0.0) ^ ,(1.0.1) ^ ,(1.1.0) ^ ,(1.1.1) 

Table A. 10: Derivatives of with respect to the seven A expressed in cell probabilities. 
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Appendix B 

Expected cell counts 

ni(0) ns(0) ¥"12 = 1 •ipl2 = 1 . 5 1̂2 = 2 1̂2 = 2.5 

&1 0^ 
10 90 
90 810 

13.7 86.3 
86.3 813.7 

16.9 83.1 
83.1 916.9 

19.7 80.3 
8&3 81&7 

22.1 77.9 
77.9 822.1 

2&3 
73.7 826.3 

&3 OA 
30 
70 630 

38J 26L9 
61^ 63&1 

44.3 255.7 
55.7 644.3 

49J 25&9 
50.9 649.1 

53A 24&9 
46^ 65&1 

59.3 240.7 
40J 65&3 

&5 OJ 
50 450 
50 

59 Ml 
41 

65A 4&L9 
34.9 465.1 

69.6 4%14 
30.4 46&6 

73 427 
27 473 

77^ 42&1 
22A 4rA9 

OJ CU 
70 630 
30 2?^ 

77J 62&9 
22^ 277J 

81^ 61&5 
18^ 28L5 

84.4 615.6 
15^ 2&L4 

86^ 61&5 
13L5 28&5 

89^ 61&6 
10 6 28&4 

0.9 0.1 
90 810 
10 90 

92^ 807J 
7U 9&9 

94^ 80&5 
5^ 9^5 

95^ 8&L5 
4 ^ 9&5 

96.2 80&8 
3L8 9&2 

97.1 802.9 
2̂ 9 9^1 

&3 0^ 
60 240 

140 560 
74^ 22&8 

12&8 574^ 
84.8 215.2 

11&2 5&L8 
93A 20&9 

106^ 59&1 
im SWO 
100 (MO 

11&7 18&3 
89^ 61&7 

&5 0^ 
100 400 
100 400 

l l&l 3&19 
83^ 41&1 

127^ 3728 
72^ 42A2 

13&4 3&L6 
64.6 435.4 

141.7 358.3 
58.3 441.7 

151.1 ckk&9 
48L9 45L1 

&7 0^ 
140 560 
60 240 

152.9 547.1 
47A 25&9 

161 
39 261 

16&7 53&3 
33^ 26&7 

17&9 52&1 
29^ 27&9 

176.7 523.3 
23j 27&7 

Table B.l: Expected cell counts for different combinations of marginal probabilities (vri(0) 
and 7r2(0)) and odds ratio values {tpi2), when ng = 1000. 
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Appendix C 

Total Non-Admissible Region 

n = 200 

P13.2; P23.1 - 0 ^ - & 5 - 0 ^ 
P12.3 

0 0.1 0.5 0.9 

0.1; 0.1 0.294 0.365 &538 0.691 0.582 cwa2 0.478 
0.1; 0.2 0.241 0.269 0L439 OjGl 0.488 0.311 0.313 
0.2; 0.2 0.099 0J.28 0^31 0^151 Oj;65 0J49 0J49 
0.2; 0.3 0.075 0I#2 0.288 0.524 0.318 0.088 0.088 

n = 500 

—0.9 - & 5 --0.1 
P12.3 

0 0.1 0.5 0.9 

0.1; 0.1 0J69 &214 OjGl 0.607 0Ua5 (1259 OjGl 

0.1; 0.2 0J.31 OJjS &242 (1552 &262 0J42 (1142 

0.2; 0.2 0.016 0.021 0J47 &506 0A52 0.022 0.022 
0.2; 0.3 0.011 0.011 0J j8 0.502 0J42 (1012 (1012 

n = 1000 

P13.2; /)23.1 - & 9 -0 .5 -0 .1 
Pi 2.3 

0 0.1 0.5 0.9 

0.1; 0.1 0.076 0.098 &155 O^da 0.162 0.112 0.112 

0.1; 0.2 0.056 0X#6 0.106 0.519 0.111 0.056 0II56 
0.2; 0.2 OLCmi OXWl 0.057 0.499 0.057 O^Wl OXWl 
0.2; 0.3 0.001 aool 0.056 &499 0.056 &001 OIWl 

Table C.l: Values of the total non-admissible region (NAR), using non-signed LRT statistic 
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