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METHODS 
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Neural network imputation and regression imputation are compared theoretically 
and numerically. In the theoretical comparison, we introduce the concept of 
predictive bias (pbias), which is used to measure the difference between the 
estimator based on full observations and the estimator based on imputed values. 
Let J be a continuous response variable, and x be the covariate of y, 6 be the 
parameter of interest. The estimator of 9 based on the full observations is denoted 
6 . The estimator based on the observed and the imputed values is denoted Oj. 
Here the imputation is single imputation. The imputed data set has the same size 
of the full data set. Then pbias is defined as E{0, -0). Due to mathematical 
difficulty, in the theoretical study we only consider the imputation based on the 
RBF neural network. We show that the performance of an imputation method 
depends on how the corresponding model fits the underlying model of y. We also 
show that the RBF model can be equivalent to a regression model in terms of pbias 
if the RBF model is properly defined and the underlying model is a linear 
regression model. 

A variant of nearest neighbour imputation (NNI) based on weighted distance is 
also proposed. This method can represent a wide range of NNIs such as Euclidean 
based NNI and Mahalanobis based NNI. The asymptotic form of this method and 
the circumstance where it outperforms other imputation methods are investigated. 

In the simulation study, we create several situations to compare neural network 
imputation with regression imputation and other imputation methods such as tree 
based imputation and NNI. The results show when a competing imputation 
method outperforms others. 

In the numerical study, we use a subset of 1991 household census data to compare 
the performance of neural network imputation with the performances of logistic 
regression imputation, nearest neighbour imputation weighted distance-based 
nearest neighbour imputation and classification tree imputation. We show that the 
imputation based on MLP neural network outperforms others for some variables 
such as "Number of Room" variable. The weighted distance-based NNI also 
performs better than the Euclidean-based NNI. 
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1 Imputation and Item Nonresponse 

1.1 Missing Values and Non-response 

The last decades have witnessed the increasing use of surveys and censuses in government 

and business decisions. The incompleteness of data has become a big concern (Dillman, 

Eltinge, Groves, Little, Mason, Lesser and Traugott, Smith, 2002). One main source of 

incompleteness is non-response, which is the failure to obtain complete measurements on 

the all members of the sample (or population in the case of a census). It is normally 

divided into unit non-response - the failure of a selected sample member to respond - and 

item non-response - failure to obtain some of the desired items of information for 

individual sample members. 

Unit non-response occurs mainly because some individuals are unable to be contacted or 

refuse to participate in an interview. In the case of administrative data whole units may be 

missing for a variety of reasons. Lessler and Kalsbeek (1992) summarised the various 

factors that could lead to unit nonresponse and item nonresponse, such as incorrect contact 

information in the sampling frame and the timing of attempts. Unit non-response is 

sometimes ignored in analyses, thereby assuming implicitly that results are not biased by 

differences between the responding and non-responding people, a generally unwarranted 

assumption. Otherwise it is usually dealt with by weighting to known characteristics. 

Item non-response occurs when interviewers fail to ask the question, respondents are 

unable or unwilling to answer the question, or interviewers fail to record the answer. The 

incidence of item nonresponse may relate to the sensitivity of questions asked. For 

example, respondents often decline to answer questions about income and savings. The 

improper wording of questions may also be a source of item nonresponse such as long 

questions, which may confuse respondents. The length of the questionnaire may also 

cause item nonresponse. Long questionnaires may make some respondents feel tired or 

bored, and refuse to answer the rest of the questions. Item nonresponse may also relate to 

the method of data collection. Mail surveys and telephone interviews are likely to produce 



more item nonresponses than in person interviews (Groves and Kahn, 1979). The 

personality of the interviewer may also affect item nonresponse. An interviewer who can 

make respondents feel comfortable and relaxed may get more answers from respondents 

(Rogers, 1976). Administrative data may suffer from item non-response because the 

information was not collected or was not recorded. A further source of missing data is the 

consequences of edit check failures. For example, some items may be found unusable 

because they are contradicting to other items that are unlikely to be errors. Outliers might 

also be treated as item nonresponse and replaced by more acceptable values. Item non-

response leads to missing values in the data set. Although the missing value problem can 

be dealt with by post-data-collection treatments such as imputation, it is equally important 

to put emphasis on the effort of reducing the chance of generating missing values in the 

data collection and processing process. For example if adequate training is given to all 

interviewers involved in a survey, it could reduce the amount of missing values caused by 

the misconduct of interviewers. In the special case of small sample size survey, if the 

quality of data is very crucial, it might be necessary to validate all data using a different 

team of interviewers. For most surveys, it is impossible to check all data collected, 

especially in the census situation. If sensitive questions are inevitable, the randomised 

response technique can be used to deal with it (Warner, 1965). For some interview 

surveys, female interviewers are preferred, because they are more likely accepted by 

respondent (Lessler and Kalsbeek, 1992). 

Item nonresponse is very common in census data, because the size of census puts 

restrictions on every aspect of data collection. It is impossible to ensure all interviewers 

are well trained. Meanwhile, the data processing work is also sophisticated, it is another 

source of generating missing values. For example, some of the questions are open-ended, 

which result in manual coding and data entry. It inevitably generates errors and missing 

values. Table 1.1 lists the pattern of the missing values of four variables (BLDTYPE, 

ROOMS, CARS, HHPERCNT) from a subset of 1991 household census data for Great 

Britain, made available by the Office for National Statistics (ONS). One can find overall 

nearly 18% (17.67%) of cases are partly or complete missing in the four variables. The 

variable ROOMS is missing for 12.92% of the total cases. Another interesting 

phenomenon is that the majority of missing cases in BLDTYPE are also missing in 

ROOMS, which may have special reasons. If the data are divided into subsets of small 

areas, the missing value problem may lead to severe difficulties in estimating totals in 



some areas. This problem may be addressed by imputing for missing values before 

estimation starts. 

Table 1.1 Pattern of Missing Values in BLDTYPE, ROOMS, CARS and HHPERCNT 

BLDTYPE ROOMS CARS HHPERCNT Percentage Frequency 

82.33% 282780 

X OjT% 1611 

X 5.35% 18364 

X 4.00% 13732 

X X 4 J 7 % 16396 

X X 0.02% 74 

X X 0.25% 867 

X X 0.26% 893 

X X X 0.28% 968 

X X X 1.94% 6673 

X X X X 0.33% 1119 

5.87% 12.92% 7.08% 2 ^ a % 

20168 44387 24326 8685 100.00% 343477 

Note: The above results are based on a subset of 1991 household census data created by ONS. 

"X" indicates missing. The first row contains no "X" which indicates all complete cases in the four 

variables. "BLDTYPE" indicates "Building type". "ROOMS" indicates "Number of rooms". "CARS" 

indicates "number of cars". "HHPERCNT" indicates "Number of persons in the house". The column under 

"Percentage" gives the percentage of each missing pattern, while the column under "Frequency" gives the 

frequency of occurrence of each pattern. The percentages at the line above the bottom line are the 

percentages of missing cases for individual variables. The bottom line gives the total number of missing 

values for each variable. 

A common method of dealing with missing values is to neglect them and to base estimates 

on complete cases. As aforementioned this is based on the assumption that the complete 

cases form a representative sample. The validity of this assumption is never guaranteed. 

Possible biases exist because the respondents are often systematically different from the 

non-respondents; of particular concern, these biases are difficult to eliminate since the 

precise reasons for non-response are usually not known (Rubin, 1987). Moreover 

excluding missing values will result in less efficient estimates because of the reduced size 

of the data base. 



Methods of dealing with item non-response and missing values have a long history. Back 

in 1937, Bartlett (1937) reported the missing value problem in analysing agriculture data. 

In his study Bartlett showed how to obtain appropriate analyses of variance in experiments 

in which a missing value occurs in the dependent or independent variate (or in both). 

Hansen and Hurwitz (1946) addressed the non-response problem in a mail survey which 

was popular at that time (Clausen, Ford, 1947, Scott, 1961). For cost concerns, Hansen 

and Hurwitz (1946) suggested a call-back strategy by which only a fraction of non-

respondents are re-interviewed to achieve an unbiased sample design. Clausen and Ford 

(1947) argue how to maximise response and correct bias incurred from incomplete returns. 

At this stage much of the interest of research was in how to prevent non-response, 

although dealing with missing values was also addressed by several authors (Lury, 1946; 

Anderson, 1946). Gradually more and more people paid attention to analysis in the 

presence of missing values, especially those who analysed experiment data. Research in 

this area has been extensive, such as the analysis of contingency table with missing 

frequencies (Watson, 1956), the analysis of variance with incomplete data (Wilkinson, 

1958), the treatment of missing values in discriminant analysis (Chan and Dunn, 1972), 

handling missing data in regression analysis (Haitovsky, 1968. Little, 1992. Reilly and 

Pepe, 1995. Skinner, and Coker, 1996) and Bayesian analysis of nonresponse (Kaufman 

and King, 1973). The great contribution came from Rubin's paper titled Inference and 

Missing Data (Rubin, 1976), in which the missing mechanism was considered, and 

likelihood-based inference explored. Since then missing data analysis based on likelihood 

is widely used by practitioners and academic researchers. The EM method is also brought 

in to deal with missing values based on the likelihood function (David and Skene, 1979). 

A good reference on likelihood based inference is Little and Rubin's book on statistical 

analysis with missing data (Little and Rubin, 1986). 

An alternative approach to dealing with missing values is imputation. This involves 

'filling in' the missing value by an imputed value, determined in some way. Early 

adoption of imputation can date back to 1950s. For example, Jaszi (1951) discussed the 

use of imputation for variables such as wages and salaries in calculating national 

consumption. Phillips (1956) used imputation to deal with the missing values in the 

component variables of wholesale price indices. Phillips (1956) argued that the 

consultation with related sources is crucial to obtaining sensible imputation. Clifton and 

Wharton (1960) used imputation for family labour in calculating the contribution of labour 



in their study on undeveloped data from an undeveloped area. The merit of imputation 

was recognised by more and more authors (Rockwell, 1975), (Fellegi and Holt, 1976), 

(Little, 1982). The major reason why imputation was used was to achieve completeness of 

data. Users of the data could make use of standard complete data methods. Imputation 

was also used in conjunction with data editing (Freund and Hartley, 1967), where imputed 

values were used to replace errors identified in editing process. Early imputation 

approaches failed to reflect the uncertainty regarding the missing values. Rubin (1987) 

proposed the multiple imputation method to handle the uncertainty in imputation. 

Analysis method based on multiple data sets generated by the multiple imputation was 

also discussed by Rubin. Other approaches to handle the uncertainty due to imputation 

were proposed by authors like Rao and Shao (1992), Chen and Shao (2001). They 

explored the properties of variance of the nearest neighbour imputation methods (hot deck 

imputation) using Jackknife approach. 

In general, imputation is based on two ideas. One is that a case with a missing value may 

be very close, in terms of covariates, to a neighbouring case with an observed value. This 

neighbour may be used as a "donor" to impute the missing value using the donor's 

observed value. Nearest neighbour imputation is an example of this idea. The other idea 

is that the variable with missing values may have a functional relationship with observed 

covariates, which can be used to predict the missing values. Regression imputation is one 

of the several widely used methods based on this idea. Details of imputation methods will 

be discussed in section 1.4. 



1.2 Notation and Basic Models 

It is not an easy task to make the notation both consistent with conventions and 

distinguishable among different situations. On one hand we need to distinguish scalars 

vectors and matrix, on the other hand conventional notation in statistics is not always 

consistent with that from the neural network literature. If some unusual symbols are 

encountered, they are the result of the balance made between the two restrictions. 

Through out this thesis we use the following notation and symbols: 

• We use italic lowercase letters for scalar variables. The values of a scalar variable are 

denoted by the variable and its subscripts. For example y i s a scalar variable, and is 

the value of_y. 

• Vectors and vector variables are denoted by boldface lowercase letters. The values of 

a vector variable are denoted by the variable letter and its subscripts. For example, y is 

a vector variable, and y,- is the zth value of y. 

• The covariate variable is denoted by x. Without clarification it is assumed to be a 

vector. The zth value of this covariate vector is x,. 

• Capital letters are used to denote matrices with two exceptions. The first exception is 

N, which denotes the size of the finite population. The other exception is Ri ,which 

indicates the response status of i'' observation. Meanwhile the italic capital R indicates 

the vector composed by Ri, namely, R={Ri,...,Rn), where n is the number of 

observations. 

• The primary model considered is the scalar superpopulation model for the random 

variable y. The multivariate case is taken as supplementary. The n realisations of the 

model are assumed independent, and identically distributed (iid.). The census situation 

is taken as a special case of the primary model with n=N. The parameters of interest 

are the mean and variance. We use jj. to denote the mean of_y, r to denote the variance 

of y. For multivariate variable y we use |j, to denote the mean, E to denote the variance 

matrix. If covariates are considered, // and ji are assumed to be the functions of the 

covariates x, and denoted by //(x) and p,(x) respectively. 

• We assume the first m observations are observed with Ri=...=R„,=l, and denoted by 

^bs=(yi,- - ym). The observations fi-om to are assumed missing, j); indicates 

the imputation for the i'^ value of j , where i=m+l,...,n. The usual estimator of //based 



on the sample if fully observed is denoted by ju = n . The estimator of fj. based 

on m observed values and n-m imputed values is denoted by p-i =n . 
j=l i=}n+\ 

Similarly the estimators of T based on n observed values of y and the combination of 

the observed and the imputed values are denoted by x = -/ i)^ and 
/=1 

respectively, where 6)r and for 
<•=1 

i=m+\,...,n. 



1.3 Missing Mechanism 

When missing values are encountered in data analysis, some of them may be determined 

by the values of other variables, which are the covariates. For example, if the age of 

respondent is under twelve, the number of children must be zero. In many cases there is 

no deterministic relation between them. Some assumptions about the characteristics of 

missingness have to be made, either simple and intuitive ones or formal ones like 

parametric models. Practitioners may prefer ones with simple intuition, such as the 

assumptions underlying a donor imputation method, because usually they are easy to 

understand and consistent with common sense. For donor imputation the underlying 

assumption is that the missing values are close to the observed ones that have close values 

of covariates. For formal approaches, one can use stochastic models to describe missing 

mechanism. Both situations are considered in this thesis. We refer the donor like methods 

as non-parametric approaches, and the regression like methods and distribution based 

methods as parametric approaches. For convenience, we make the following notation for 

further discussion. 

Let yi denote the value of variable y for unit i, and suppose that for a sample of size n, 

,..., are observed and are missing. Then ^^Tobs, where yobs=(yi,.. -, 

}'m), yn). Let be the value o f c o v a r i a t e for the z* unit, covariate matrix 

X-{ Xij)i=j n:j=i,....q is assumed to be complete, where q is the number of covariates. Let Ri 

indicate the presence ofy, (Lessler and Kalsbeek, 1992). 

Tl, y, 
. (13 1) 

10, jX; /MZ^smg 

Without loss of generality we assume R\=..=Rm=\, and R\+m=...=Rn =0. From the 

deterministic point of view, P{Ri=\) is either 1 or 0, in the sense that all units sampled are 

completely determined to respond or not respond under any circumstances. In this 

extreme situation, any attempts to improve response rate are destined to fail. A more 

practical assumption is that the willingness of answering questions from a respondent may 

change depending on the situation of interview. Therefore Ri can be taken as a random 



variable. When the stochastic model of Ri is considered, the first assumption to be made is 

missing mechanism. That is the foundation of setting the relationship between the 

observed and the non-observed. Missing mechanisms fall in two broad categories, 

missing at random mechanism (MAR) and missing not at random (MNAR) mechanism. 

Basically MAR mechanism means the missing mechanism doesn't depend on the value of 

the variable of interest, y, itself It may depend on its covariates x. In a special case when 

the missing mechanism doesn't depend on y and x, it is called missing completely at 

random (MCAR). Otherwise the missing mechanism is termed as MNAR. We start with 

MCAR in the next section. 

1.3.1 Missing Completely at Random (MCAR) 

If the probability of response (Rf) doesn't depend on y, and its covariate namely 

F(R. I = F(R. 1^), the observed cases consist of a random sub-sample of the 

sampled cases. Here ^ is unknown parameter. In this case the missing mechanism is 

termed as missing completely at random (MCAR). For convenience, let R=(Ri,...,Rn). 

The property of MCAR can be described as 

f ( ; / , | a , . = o,%*„;r,f) 

= ?(;,,. I 

=jDf}: I j?; ==1,};*,,;^,;^). (1.3.2) 

Therefore the imputation for missing values can be based on the model with parameters 

estimated using the complete cases. In this special case the unbiased estimators of model 

parameters may still be unbiased, but the variances are likely to be increased. That is the 

loss resulted from missing values. 

1.3.2 Missing at Random (MAR) 

The mechanism is MAR if the probability that an observation is missing doesn't depend 

on 7niis but on 7obs and/or its covariates. This mechanism can be described by 



P{R I Y,X,^) = P{R I . The name 'MAR' doesn't mean that the missing values 

are a random sample of all data values. For example, the missing values may be generated 

according to the values of a covariate. If the missing values do constitute a random 

sample then the mechanism is missing completely at random (MCAR). MCAR is a 

special case of MAR. Suppose x is the covariate ofy, and is completely observed. Then, 

MAR allows the probability that a datum is missing to depend on the datum itself, but only 

indirectly through quantities that are observed. 

1.4 Imputation Methods 

Imputation is a technique used to address the problem of item nonresponse by replacing 

the missing values by proxy values. The aims of imputation include: 

• Reduce non-response bias. Imputation attempts to reduce bias based on 

assumptions, which specify the missing mechanisms and the relationships between 

the response and non-response. 

• Minor missingness of individual variables can cause heavy aggregate missing 

problem. When analysis involves multiple variables, the aggregate missingness in 

these variables may leads to unstable result. In the extreme situation the number of 

parameters of interest may exceed the number of the number of cases available for 

analysis. By filling the holes, imputation makes multivariate analysis stable and 

even possible in some situations. 

• Provide suitable data sources for third parties to use. 

There are a large number of methods of imputation available which are appropriate in 

different circumstances. In general, imputation is carried out by assigning a value to a 

missing item based on some similarity measurement in terms of covariates. One 

dimension to classify imputation methods is based on whether they depend on some model 

assumptions. If the imputation method is based on a specific model, it is parametric 

method. Otherwise if the imputation method is not based on a specific model or 

distribution, it is non-parametric. It is not an easy task to clearly draw a line between the 

two, since some models may contain the characteristics of both, and sometimes termed 

10 



semi-parametric method. For simplicity we classify imputation methods by whether they 

are based on a parametric model. There are pros and cons about parametric imputation 

and non-parametric imputation. Either one could outperform the other in some 

circumstances. But in general, parametric methods are less time-consuming in terms of 

computing effort. Compared to parametric models, non-parametric methods normally are 

computer intensive, either in searching for candidate donors like in donor imputation or 

for the training model such as in neural network imputations, although some non-

parametric methods can be optimised by using better algorithms. The limitation of 

parametric imputations is in the validity of the models employed. 

Another way to classify imputation methods is between single and multiple imputation 

methods. Single imputation involves assigning a single value to each of the missing 

values under one or more assumptions. The completed data set is the original one with 

holes filled. Unlike single imputation, multiple imputation imputes each of the missing 

values by two or more values to reflect the uncertainty about the missing values (Rubin, 

1987). Multiple imputation produces more than one dataset. The data analysis should 

combine the results from each component data set. All methods are based on some 

assumptions about the missing mechanism. Without the assumptions, the validity of an 

imputation cannot be justified. Multiple imputation has the potential of enabling certain 

kinds of statistical inference, but it increases the complexity of analysis. Therefore single 

imputation probably remains the most widely used approach. 

Some of the widely used single imputation methods are; 

a) Deductive methods 

b) Imputing mean (continuous) or mode (categorical) 

c) Random draw from marginal distribution 

d) Sequential hot-deck method 

e) Hierarchical hot-deck methods 

f) Predictive linear regression imputation 

g) Nearest neighbour imputation (NNI) 

Before making a comparison, a brief description of these methods is given below. 

11 



a) Deductive Methods 

Missing values are deduced with near certainty from combinations of non-missing items 

from the same case. The deductions used will depend on the pool of knowledge of the 

data set. Only a deterministic missing mechanism is needed. The imputation is based on 

the deterministic relation of the variable containing missing values and one of the 

complete variables. For example, if the age of a respondent is under seventeen, the value 

of the variable "current driving licence" must be "NO". 

b) Imputing Mean or Mode 

For a continuous variable with a missing value, either the overall mean or class mean 

calculated from respondent data is chosen for imputation (Lessler and Kalsbeek, 1992, p. 

220). Here the class is normally defined by the categorical covariate of the continuous 

variable. The class could be an individual category, or the combination of several 

categories depending on some practical concerns. Simply put, the original data set is 

divided into small sub groups called classes defined by covariates. For a categorical 

variable a missing value can be replaced by the mode. The simplicity of mean imputation 

makes it widely used by practitioners. It may be changed when the more sophisticated 

imputation approaches are implemented in popular statistical software. 

c) Random Draw from Marginal Distribution 

With this method, a missing value is imputed by a random draw from the respondent 

values or its marginal distribution. The former is actually a donor imputation (Lessler and 

Kalsbeek, 1992, p.213). Donor imputation in general is a method of selecting a case (a 

donor) randomly or by the distances between the covariates of the missing value and the 

covariates of members within the class. The cases containing missing values are also 

allocated to the classes they belong to. The donor imputation is then carried out by 

randomly selecting values from the respondent values with in the class or by finding the 

case within the class that is least distant in terms of some distance measurement. 

12 



d) Sequential Hot-deck Method 

This method initially classifies nonrespondents into several groups, called classes, based 

on the combination of covariates (David, Little, Samuhel, Triest, 1986). Prior to 

processing, an imputation value is assigned to each class, possibly at random, or from a 

file relating to a previous survey period or a different area. Each case is processed 

sequentially. If the case has a missing item, it is replaced by the imputation value from the 

relevant class. If the item is not missing, it replaces the stored imputation value for its 

class, and can be used for imputation of subsequent missing items. Cases are often held in 

geographical order, and, as the donor is selected from the most recently processed valid 

value, this introduces implicit geographical effects as an additional matching variable. 

This imputation assumes the homogeneity of the data used as donor and the data to be 

imputed. 

e) Hierarchical Hot-deck Methods 

Similar to sequential hot deck method, the data file is sorted into a much larger number of 

imputation classes in a hierarchical structure (Lessler and Kalsbeek, 1992, page 213). It is 

possible to include more auxiliary variables and to have a greater number of imputation 

classes, if no suitable donor is found at the finest level of the classification, classes are 

collapsed into broader groups until a donor is found. A pattern of 'hard' and 'soft' class 

boundaries can be programmed into hierarchical structure, e.g. to ensure that an item is 

always imputed from a donor of the same group, even though the area of residence classes 

may be collapsed. The method is based on the assumption that the missing mechanism in 

each sub-class is completely at random. Therefore the imputation is just a random 

selection of the available values. 

f) Predictive Linear Regression Imputation 

This method is to impute the missing value by a prediction from the linear model built on 

the respondent data. The variable with missing values is regarded as the dependent 

13 



variable; and the covariates are the independent variables. Here MAR is also implicitly 

assumed, otherwise the prediction may leads to biased estimates. 

One of the predictive linear regression imputation methods is to impute the missing values 

by their predictive means (regression means) (Lessler and Kalsbeek, 1992, page 220). 

Assume the model is 

where S[ ~ N{Q, <3^). The imputation of}-, (i=m+l,...,n) is 

j); = X./g , + (1 4.1) 

where P is the estimator of /? based on the respondent data. This method has a tendency 

to deflate the variance of y. To preserve the variance, a correction term, which is the 

estimator of the residual term s., is added to the regression mean. This is termed random 

regression imputation. 

y^=x.p + £.,i=m+\,...,n. (1.4.2) 

where s, is the estimator of the residual of yt. The residual term can be obtained from a 

random draw from the residuals of complete cases or the distribution of the residual term. 

The former is more realistic, because it is a direct result from the complete cases rather 

than derived from the estimated distribution of the residual. 

g) Nearest Neighbour Imputation (NNI) 

Instead of imputing missing values based on an assumed explicit relationship between y 

and its covariates, nearest neighbour imputation (NNI) imputes the missing value by the 

corresponding value of its nearest responding neighbour, where the closeness is measured 
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by a distance function of covariates (Lessler and Kalsbeek, 1992, p. 218). This method 

also assumes all covariates are fully observed. 

The performance of NNI is determined by the definition of distance. The measurement of 

distance between two units (or observations) depends on the nature of the variables taken 

into account. We start with one covariate x. Let z, and Xj be the values of % for two units i 

and j. The distance between the two units is denoted d{x.,x.). For scalar continuous x, 

one natural option is Euclidean distance, which is a special case of Minkowski distance. 

d{x^,xj) = jx,- -Xy| , r>0, i=l...n,j=l...n. (1.4.3) 

The case r=l is called the L\ distance and is more robust to outliers than the Euclidean L2 

distance with r=2. For nominal variable, the following distance is suggested. 

= (1.4.4) 

fl ,x. = X . 

where , =<̂  . For an ordinal variable taking integer values the absolute 

value of the difference could be adopted. 

af(j^,;cy) ==|ĵ  --;cy|, (1.4..fi) 

An extension of NNI is developed in chapter 3 based on the idea of assigning a weight to 

the component of the distance for each covariate, under the consideration that covariates 

may give different contributions to the overall distance. 

1.5 General Parametric Approach to Imputation 

As explained in section 1.4, single imputation methods can be put into two categories, 

parametric and non-parametric. The donor-based imputation methods such as hot-deck 

imputation and nearest neighbour imputation are non-parametric. The model-based 
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imputation methods such as linear regression imputation and random regression 

imputation are parametric. Here we concentrate on parametric imputation methods, while 

in chapter 3 we give an extension to the distance based imputation method. Some 

assumptions have to be made. The first and probably the most important assumption is 

missing at random (MAR). We denote the probability distribution ofy, given x, and Rj by 

P(yi\Xi,R.,6), where 6 is the parameter specifying the distribution. With MAR 

assumption, P{y^ | x^i?. = 0,6') has the following property 

= I X , = ! , # ) 

I (1 .5 .1) 

The model P{yi |x . ,^. = 0,6") can be used for imputation f o r i = m + l , . . . , n , where 6 is 

estimated using Piy^ | x .̂,i?,. = 1,6), .,m. In other words the estimate of 6 based on 

the observed data can be used as the basis for imputation. Assuming {y.,Xj,R.), 

are independently identically distributed (iid), the likelihood of the observed data can be 

then denoted as 

L(Y,„\X.0) = YlP(y,\x„e). 
/ = ! 

For continuous variable y, the imputation based on this assumption follows this procedure: 

® Estimate model parameter 0. From the frequentist perspective, model parameter 0 is 

estimated by MLE 9 . From Bayesian perspective, the posterior of 6 given a prior is 

obtained, and 9 might be the mode of this posterior distribution. 

» Based on the conclusion of (1.5.1), the imputation is obtained from the distribution 

specified by § , namely P{y^ | x.,R. =0,0). 

The performance of an imputation method in the parametric category relies on the validity 

of model assumptions. Normally the best performance can only be achieved when the 
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assumption is justified. Therefore it is necessary to test the validity of model assumptions 

before applying it to a data set. 

1.5,1 Linear Regression 

Let's revisit the random regression imputation method in previous section. Under MAR 

assumption 0 = are obtained from the likehhood function based on 

,... The imputations of , - - - are 

yi=x.p + £f,i=m+l ...n, (1.5.2) 

where g. may be defined in different ways. One can obtain s without estimating cr^. 

One way is randomly drawing a sample from the residuals of the complete cases. The 

other way is to choose the donor that has the nearest predictive value x,.^ (Lessler and 

Kalsbeek, 1992, p. 221). 

1.5.2 Logistic Regression Imputation 

If yi is a categorical variable with probability function P(y,|Xi, 6), the estimator of 0 may be 

obtained by MLE from observed data as 6 . The imputation is produced from the 

estimated distribution P ( y ^ \ x . ,9 ) . One possible approach is to choose the 

category with highest probability 

j); = argmaxP(y. = k\x.,6) , i=m+l ...n. (1.5.3) 
k 

An other possible method is randomly drawing a value from the distribution. In a special 

case there is no covariate associated with y, the imputation could just be a random draw 

from P(Q I Yobs), where and 0j=P(y=j). When _y has covariate x, a logistic 

model or multinomial model can be employed to model the probability of membership in 
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terms of x. Here the assumption is that the relationship between the logit of the 

probability and variate x is linear. 

In the special case when is a binary variable, logistic regression can be used to model the 

dependence of on x. The relationship between}) and x is as follows 

logzY(;z:,.J = log(y^" ) = (1.5.4) 

where nn =P(y,=l|x,) (Agresti, 1990). The estimate of tv^i is given by 

(1.5.5) 

l + exp(x.p) 

Under the MAR assumption p, which is obtained based on the observed data, can be used 

to construct the posterior probability function of missing values. The imputation is then 

carried on based on the posterior distribution either by a random draw or the category with 

the highest probability. 

1,5.3 Multinomial Logit Regression 

When y has three or more levels, a multinomial logit model can be used to form 

imputations. The strategy is same as that in (1.5.3) with the probability of membership 

assumed to be the exponential of a linear function of covariate x. Suppose there are p+l 

categories, and t h e l e v e l is selected as base level, the logit regression equation can be 

expressed as 

log( , z=1,...A:=l,.. . ,p+1, (1.5.6) 

where % =P(y,=A:|x,). It follows that 
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log(-^) = x,.(A - A ) , (1.5.7) 
n,. 

With the constraint Z%=1, the estimator of 7t\y is given by 

^ i=l ...n, k=l ...p. (1.5.8) 

l + ^exp(x,.^^.) 
y=i 

K , . , ' — r - ' — r ' (15 9) 
l + ^exp(x,^^.) 

i=i 

where j3j is a MLE. 

As in logistic regression, AjS J = \,p are used to predict the posterior probability of each 

missing value. The imputation could be either the category with highest probability or a 

random draw from the distribution. 

For an ordinal variable _y with a unit increment between two adjacent categories, the design 

matrix may be adjusted. Suppose the ordinal categories follow this pattern, 1<2<.. .<p+\. 

The model may be adjusted by taking in to account of the order (Agresti, 1990). For 

example it might assumed that 

log( ) = {p + l-k)x^/3,^, k=l..p. (1.5.10) 

1.6 Imputing Categorical Data by Classification Methods 

When the variable containing missing values is nominal, the imputation problem can be 

regarded as a classification problem. Instead of filling the holes, one can treat imputation 

19 



as finding the class that the unit belongs to. There are many classification methods that 

can be borrowed for imputation purpose including the latest ones such as ARCING 

method (Mojirsheibani, 1999) and partitioning method (Breiman, 1998). The partitioning 

method is based on mapping idea, which regards classification as a mapping from the 

covariate space to class space. The individual classification method is just a way of 

partitioning the covariate space in to areas of corresponding classes. We shall describe 

discriminant classification methods, tree-based classification method and partition based 

method respectively. 

1.6.1 Discriminant Classification 

Linear Discriminant Analysis 

Suppose the continuous covariates x=(xi...x^) are completely observed, and have a 

multivariate normal distribution N(|iy,2) for y^j, the class, where \ij is the mean of x in 

class, and is the variance of x. Here it is assumed that Eqxq the variance of x given 

y=i is the same for all classes (levels) of >>. Suppose the prior of y equals to level is 7^-. 

Then the posterior probability that equals t o l e v e l is 

/"(y = yIX.g)cc ' ^ e x p ( - ^ ( x - | i . ) £ ' ' (1.6.1) 
V ( 2 ^ 2 ' 

where 0=(ni,...,^p,I). Maximising Pr(y=/jx) is equivalent to minimising -21ogPr(/|x). 

Here some notations are dropped for simplicity. -21og Pr(/'|x) is given by 

-2logPr(y IX,.) = (x,. - ( x , . - - 2 l o g + log((2;r)^ |Z|) 

= -2x, .Z-'n/ -21og;r^. +x,.Z-'x/ +log((2;r)^|z|). (1.6.2) 

If we drop the last two terms in above equation that can be treated as constants and minus 

the equation, the linear discriminant analysis equation is obtained 
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LDA•{x•) = 2x^Z ^ yL ̂  + llogn,. (1.6.3) 

The estimates of pi and E are given by group means and overall sample variance. The 

imputation for a unit with covariate x,- is the category with highest LDA score (Ripley, 

1996). 

Quadratic Discriminant Analysis (QDA) 

If there is clear evidence that the variances vary among groups, the variance o f c l a s s Z,-

needs to be specified separately (Ripley, 1996). This leads to quadratic discriminant 

analysis (QDA) equation 

= 2x,Z r ' n / +21og;ry. (1.6.4) 

In this case the variance of each group need to be estimated separately. The choice of 

LDA and QDA could be made according to the homogeneity of group variances. If there 

is strong evidence of heterogeneity, the QDA should be used; otherwise LDA may be 

good enough. 

1.6.2 Classification and Regression Tree Imputation 

When the normality assumption in discriminant classification doesn't hold, one can 

consider the non-parametric techniques, such as classification and regression tree (CART). 

Originally tree model doesn't need parametric assumptions, although more and more 

parametric CART models are developed (Peng, 1996). 

A classification tree divides the whole data into two subgroups (binary splitting) by 

making the subgroups more homogenous with respect to target categorical variable. More 

precisely, a tree partitions the space of the observations into more pure leaves by binary 

splitting with regard to some impurity measures such as Gini index and entropy (Ripley, 

1996). The original data (top node) is called root, the splitting continues until some 
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impurity requirement is satisfied, where impurity measures the heterogeneity of a 

subgroup. 

The performance of a tree model relies on how the data is partitioned. The most 

commonly used impurity measures are the Gini index 

i ( p ) = Y . P i P l = l - ' Z p ] (1.6.5) 
' 1" 

and entropy 

(1.6.6) 
j 

where pj is the percentage of j'th category. The two measures share many common 

properties that make it safe to use either of them. The Gini index is also equivalent to the 

association measures for categorical variables given by Nelsen (1998). This property 

implies that choosing the highly associated variable as partitioning variable is consistent 

with an impurity measure. Breiman (1998) preferred the Gini index. On the other hand, 

others (Zhu, 1999) Hke entropy. 

Practical implementation inevitably involves approximations, because the number of 

possible ways of partitioning is huge. The search for the optimal tree cannot be completed 

in a standard computer. That gives the slight discrepancies among different software 

implementations such as CART SAS tree, SPLUS tree and SPSS tree (Wilson, 1998). 

Caution is needed when one chooses the software programmes. 

When the optimal tree is built, classification may be implemented by locating an 

individual case in one of the terminal nodes (the nodes that have no child node), and 

assigning the class with highest percentage in the terminal node to this case. For the 

purpose of imputation, a tree model links a data point with missing item which is the target 

variable (or dependent variable) to one terminal node by matching the covariates 

(independent variables). The category with biggest posterior probability in the matched 

node is given to the missing item. The philosophy is same as that of donor imputation and 

22 



nearest neighbour imputation. A tree model gives a different way to find the closest 

neighbour of missing items based on covariates. 

1.6.3 ARCING Method 

Breiman (1998) proposes a method that is adaptive re-sampling and combining 

classification method (ARCING). The motivation is to reduce the uncertainty in 

classification, since the classes in each terminal node have a distribution which can not be 

reflected in single classification. Unlike multiple imputation, where multiple values are 

kept in several data sets, ARCING method repeatedly classifies a case in to a sequence of 

classes by re-sampling approach. The final class is the mode of this class sequence. 

Suppose we have I imputations from I distinct methods. Let denote the imputation. 

Voting method takes the mode of the I imputations as the final imputation. Namely the 

value with highest occurrence rate is chosen as imputation. 

=:!,/), (1.6.7) 

where mod is the function that returns the mode of the argument. The original data set is 

first divided into training data and test data in the process of data preparation. The 

ARCING procedure is as follows. 

• Bootstrap the training data 

® Train the CART or neural networks using the bootstrapped data. 

• Adjust the re-sampling weight, give more weight to cases with higher rate of 

misclassification. 

® Combine the multiple classification of test data and choose the mode as imputation 

• Repeat the above process until the expected accuracy is achieved. 

Breiman showed that the misclassification rate keeps decreasing even when the model is 

over-fitted. He gives a Bias-Variance explanation and showed that ARCING can reduce 

the variance, therefore overcomes the instability of one-shot training. 
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1.6.4 Combining Classification Methods 

Mojirsheibani (1999) proposed a partitioning based classification procedure. Suppose we 

have M classification methods (classifiers) Cm,i(x),...,Cm,M(x). Each one is a map x 

—»{1_ .p+1}. The new classifier imputesyhy k given xifkhas the following property: 

i:yj=k 

i-.yj=l,l*k 

The motivation behind this formula is that if the individual classifiers Ci.. .Cm are all non-

random, then it simply finds the best match of ( Cm,i(x),...,Cm,M(x)) in the iid discretized 

"data". 

{( Cmj(X/),.. .,Cm,M(x,)), JXi}, for 2=1,.. .,/M. 

The combined classifier Ym can be rewritten as 

"I'm (x),..., W ) - (%,) - (%)} x . 

(1.6.9) 

If ties happen, the smallest category is selected for simplicity. 

1.7 Imputation for Multivariate Missing Data Patterns 

In section 1.5.1 we introduced linear regression imputation, where the dependent variable 

y is scalar and has a covariate x. Here the covariate x is assumed to have equal role as y. 
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Both y and x are taken as a component of a multidimensional variable y. The missingness 

is assumed to happen in more than one components of y. The multivariate missingness in 

matrix format data is very common in survey and census situations. Let a sample of n 

units be drawn from the superpopulation y~N(\x,S), whose density function is given by 

/ ( y ) - ( 2 ; r ) ^ Z exp(-^(y-H) '2 : - ' (y-M)) . (1.7.1) 

For convenience, we assume y is a 3x1 vector with elements yî  y2 and ys, where yj is 

observed for all cases. 

Z= 

/^2 

o-i2 o-n 

0-21 o-A 

0-32 (̂ 33 

(1.7.2) 

(1.7.3) 

Let 6)123 be the subsample of cases with all three variables available, (S>i2 be the subsample 

of cases with y] y j available, y^ missing, A)]] be the subsample of cases with yî  y^ 

available, y2 missing, and coi be the subsample of cases with only yi available. The four 

subsets have mj, m2, ms, m4 cases respectively ( =n). 

1.7.1 Parameter Estimation 

The unknown parameter is denoted 0=(p,,E). The estimation of 6 is based on the 

likelihood function. Under the MAR assumption, using the factorisation corresponding to 

each parameter. The likelihood can be written as the product of marginal and the 

conditional probability (Little and Rubin, 1987). 
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mi mi+m2 nii+mj+m^ n 
I ^) = n I f l /(jXh, )̂ 2; I H /(jXh, ̂ 3, I R I ^) 

i=\ i=m\+\ i=mi+m2+\ /=OTj+m2+W3+l 

(1.7.4) 

If we arrange 6 in matrix 9 = 
- 1 

jui Z 
, and apply the sweeping operator (SWP) to the 

first column of 0 , the parameters of the regression models of y2 on and yj on yi are 

obtained as follows. 

SWP[1] 
- 1 

^ E 

-1 //j 2̂0.1 P: 

^20.1 Pl\.\ ^ 

PzOA 3̂1.1 

30.1 

21.1 

2 

22.1 

2 

32.1 

P: 
(J 

3 1 J 

2 

32.1 

'33.1 

(1.7.5) 

The resulting parameters /?2o.i Pii.i and 0-22.1 ^re the intercept slope and residual variance 

of the regression of y2 on yi respectively. Similarly /%o.i y%i,i and 033 , are the 

corresponding parameters of regression ys on y,. The maximum hkelihood estimator 

(MLE) of d can be obtained by reverse sweeping (RSW) the matrix of the estimators of 

parameters of conditional models (Rubin, 1987, p. 119), 

- 1 A =RSW[1] 

1 

A i Ai. i Ai . i M\ 

Ao.l A 1.1 (̂ 22.1 
.2 

•̂ 32.1 

Ao.l A 1.1 (̂ 32.1 

(1.7.6) 

where RSW is the reverse sweep operator. The coefficient estimators are obtained based 

on the following properties of multinormal distribution. 
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1 = Ao., + A l l)'!, varCy^ !)/,) = o-'z.i, (17 7) 

^()^31 :xi) = Ao., + Ai.i;"!, Wjxa !;/,) = o-^i, (1.7.8) 

cov(;/2,)'3l}'i) = (^ ir (17.9) 

These above results pave the way of using plug-in estimators to reduce the variances of the 

estimators of population parameters. 

1.7.2 Imputation 

Regression Imputation 

For an individual case with y2j missing y3j available or vice versa, the imputation can be 

the estimated conditional mean of the missing variable given the observed variables or the 

conditional mean plus a residual term (random regression imputation). Let's consider 

mean imputation first. It can be described as follows. 

= Ao.l3 + Alls}"]; +^3.13)^3;,7^(^13 (1.7.10) 

^3; - Ao.l2 + (1.7.11) 

where Ao.]3,Ai.13,A3.i3,Ao.]2,Ai.12,^2.12, can be obtained by sweeping matrix 

(1.7.6) by column index [1,3] and [1,2] respectively. 

For the sample with both y2 and ya missing, we can impute one variable with the 

conditional mean given yi, then impute the other one with the mean conditioning on both 

yi and the imputed variable. For convenience. Let's start with3^2, 

ĵ 2y - Ao.l + (1.7.12) 

^3; =Ao.]2+Al.l2}'ly+A2.]2j^2y'7^(')l2 (1.7.13) 
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As aforementioned, the coefficients are obtained by sweeping matrix (1.7.6) at [1] and 

[1,2] respectively. 

Random Regression Imputation 

The random regression imputation is simply the regression imputation plus a residual 

term, which can be generated from the estimated conditional variance or a random draw 

from the residuals of the complete cases. 

For single variable missingness the imputation is 

= Ao.l3 + + As-n}"]; +^22.13)y^(')l3 (1.7.14) 

= Ao.l2 + + A2.12)̂ 2y +^33.12,7^^)12 (1.7.15) 

where e22.13'̂ ^0,(T22.13), 3̂3.I2'̂ Â (0,(T33 ]2). 

For the individual sample with both >>2 and yj missing, the imputation can be 

ĵ 2y = Ao.l + Al . iy i ; +^22.],./Gmi (1.7.16) 

ĵ 3y = Ao.12 +Al.12)^1; +^2.12)^2; +^33.12,7^0)1 (1.7.17) 

where e22.i-7V(0, (̂ 22.1), 633.12-^0, (̂ 33.12)-

1.8 Multiple Imputation 

In the previous section, various methods of single imputation were reviewed. This section 

will address multiple imputation. Multiple imputation is the imputation approach that 

replaces each missing value with two or more imputed values representing a distribution 

of the possibilities; this approach was originally proposed by Rubin (1977, 1978). 
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As we already learnt in the previous sections, the single imputation method is focused on 

how to produce a representative single value to replace the missing value in terms of 

preserving marginal distribution and true values as well. Once the missing values are 

filled by imputations, it looks like a complete data set. Therefore standard complete-data 

methods of analysis can be used with extra effort. This could be the biggest advantage 

that attracts many practitioners to stick to it. For example in the census situation, single 

imputation provides a simple complete data. Third party users will take it as true complete 

data. The disadvantage of single imputation is that it is unable to reflect the uncertainty 

arisen from sample variability and the cause of nonresponse. 

Since multiple imputation is constructed with the aim of reflecting the uncertainties 

associated with sampling and nonresponse, the advantages are obvious. It is equally 

important to address the disadvantages arising from the complexity of multiple imputation 

in terms of analysing and combining multiple data sets. If the contribution is minor, the 

complexity will become an apparent disadvantage. 

The foundation of multiple imputation is Bayesian theory (Rubin, 1987). Suppose the 

quantity of interest is the population mean )li. Assume )j, is a ^-dimensional row vector. 

With complete data, inferences for p, would be based on the statement 

//([), Z) (1.8.1) 

where ^ is the estimator of p, E is the estimated variance of pi - fi. Under a specified 

Bayesian model, / sets of repeated imputations have been drawn and used to construct I 

complete data sets, where p*, ,•••, A-/ and Z*/ are the values of statistics, ^and E for 

each of these data sets. 

The population estimates need to combine the I repeated complete data estimates under 

one model for nonresponse. Let 
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(1&2) 
f = l 

be the average of the / complete-data estimates, and 

2:, ==]>]][.,// (1.8.3) 

be the average of the I complete-data variances, and 

s , = Z ( A v - l > , ) ' ( ( • . , - l i , ) / ( ' - ! ) (1.8.4) 
f = I 

be the variance between (among) the 1 complete-data estimates. The quantity 

2; = li; 4 (14-/-')^?; (1.8.5) 

is the estimated variance of ^ using the multiple imputation method. 

1.9 Aim of Thesis and Overview of the Chapters 

The aim of this thesis is to investigate the possibility of using neural networks and related 

methods for imputation. Basically, we compare neural network imputation with other 

imputation methods such as regression imputation, and explore the advantages and 

disadvantages of neural network imputation. The comparison is based on how an 

imputation method can preserve the properties of population or original data such as mean, 

variance and marginal distribution. Meanwhile the practical concerns such as computing 

time are also considered. Based on the results of the comparison, a new imputation 

method, the weighted distance-based nearest neighbour imputation method (WD), is 

proposed. Later on the performances of the new method and other imputation methods are 

tested in the simulation study and numerical study. 
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The current chapter (Chapter 1) has reviewed the non-response problem in surveys and 

censuses as well as the main imputation methods. The topic of data analysis with 

incomplete data has not been covered, since the main objective of this thesis has been to 

consider the use of imputation in the estimation of descriptive population parameters such 

as mean (or total) and variance. Multiple imputation has also been mentioned in this 

review. This chapter provides a foundation for the comparison in the later chapters. 

Chapter 2 is a review of neural networks from a statistical point of view. Only the radial 

basis function neural networks (RBF) and the multilayer perceptron neural networks 

(MLP) are considered. Other neural networks like Kohonen (1982) unsupervised model 

can also be used to find donors in nearest neighbour imputations. But it is not the 

objective of this study. Therefore it is excluded. The review starts with an introduction to 

the MLP and RBF and how they can be used for imputation. Thereafter the criteria of 

neural network training are discussed. Then the Wald criterion is provided with the 

motivation of preserving the marginal distribution. The relationship between MLP and the 

polynomial regression is also explored. The aim is to aid understanding of the structure of 

MLP. In the end, the relationship between RBF and non-parametric regression is 

reviewed. 

In Chapter 3, a new imputation method is proposed, the weighted distance nearest 

neighbour imputation method (WD). This chapter describes the motivation and the 

formulation of this method as well as some asymptotic results. Comparisons with the 

Euclidean distance based nearest neighbour imputation method and predictive mean match 

imputation based on a linear regression model are also provided. Finally, situations where 

WD can outperform other methods are considered. 

Chapter 4 discusses the theoretical properties of imputation methods. For continuous 

variables, the focus is on how an imputation method can preserve the population mean and 

variance. The main results are based on the asymptotic properties of linear regression 

imputation and RBF imputation. Several special cases are discussed to aid understanding 

of the theoretical results. Imputation for multiple variables is also discussed under the 

assumption of a multinormal distribution. This chapter also reviews evaluation criteria for 

the imputation of categorical variables. 
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Chapter 5 provides simulation studies based on real data and simulated data. The 

simulations are designed to assess the properties of the different imputation methods 

empirically and to test the theoretical results in Chapter 3 and Chapter 4. 

Chapter 6 summarises the conclusions and provides some ideas for future research. 
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2 Introduction to Neural Networks 

The first neural network was invented by McCullock and Pitts (1943) who used a simple 

calculus method to describe nervous activity. Since then it has evolved rapidly into a 

major area of several fields such as computer science and cognitive research. But it was in 

the last two decades that neural networks has become a practical tool for practitioners in 

many field, thanks to the revolution of the computing industry. In general, neural 

networks fall into two broad categories; supervised and unsupervised. Unsupervised 

neural networks can be used to find patterns in data without a target variable, or are to be 

used to confirm that the original classes are suitable (Ripley, 1997). Unsupervised neural 

networks such as Kohonen self-organising map (Kohonen, 1995) can also be used to 

defined classes, which then can be used to locate donors in donor-based imputations. On 

the contrary, supervised neural networks such as multi-layer perceptron (MLP) and radial 

basis function (RBF) (Bishop, 1996) have a target variable, which is always referred as the 

output variable, and several input variables, which are the counterparts of independent 

variables in regression. Supervised neural networks can be used to predict the individual 

values of the target variable with known input variables when the dependent variable is 

continuous, or be used to predict the probability of falling into one of the possible 

categories (Cheng, Titterington, 1994). Thus supervised neural networks can be viewed as 

a form of nonparametric regression. Some neural networks can be regarded as semi-

parametric models since they contain parametric features or are based upon some model 

specifications. For imputation purpose, we focus on supervised neural networks. 

Supervised neural networks can either predict the missing values directly when the 

variable containing the missing values is continuous, or predict the posterior probability of 

a category when the variable containing missing values is categorical. 

For further discussion we denote {X, Y) as the data matrix of n observations, where 

X=(xi,...,x„)^ is a nxq design matrix, and Y={y\,...,ynY is the vector of « observations of 

the response variable. 

and 
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6% --TVyGi (2.0.1) 

where / is the mean function of yi given x,, and is the variance of residual term. For 

convenience we denote/(Z)=(/(xi),.. In practice the form o f / i s unknown. MLP 

and RBF are two alternative approximations to more common choices such as linear 

model. 

The process of estimating the parameters of a given neural networks is termed neural 

network training. One common training strategy is using the cross-validation method, by 

which the original data set is divided into two subsets. One data set (bigger one) is used 

for estimating the parameters, normally neural network weights (2.0.1) and is termed 

training data. The other one (smaller one) is used to adjust the estimates, and is termed 

test data. The optimal value of an estimator is the one that minimises the mean square 

error of the test data. 

Details of the two supervised neural networks: Radial Basis function (RBF) and Multi-

layer perceptron (MLP) are discussed in the next two sections. 

2.1 Radial Basis Function Neural Network (RBF) 

The RBF neural network approximates the expectation function / given in (2.0.1) by a 

weighted sum of the transformed observations of X, where the transformation is a mapping 

by kernel-like basis functions from the original data % to the pre-determined data points in 

the space spanned by X. For convenience we term radial basis function neural network 

RBF. The data points are normally termed data centres. They could be a sample of the 

original observations or the multivariate quantiles of X. The mapping is depicted in the 

following picture. 
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Figure 2.1 RBF neural network projects the original data points to the hidden layer by the basis function 

^x ) . The prediction is based on the weighted sum of the hidden nodes. 

RBF approximates/(x) by: 

M 

/ ( x , fF) = Wo + ^ (||x - ||), 
7=1 

(2.1.1) 

where ^ is a basis function, which is similar to a kernel function in non-parametric 

regression (Hardle,1989), M i s the number of basis functions, \ij is the yth centre, wj is the 

weight o f b a s i s function, W={wo,..., wmY• The commonly used basis function is the 

Gaussian function 

/2A), (2.1.2) 

where A is a parameter that controls the smoothness of the function. This is similar to the 

bandwidth in kernel smoothing. 

The value p,j cab be pre-determined. Some RBFs treat |ij as part of the training parameter. 

This will slow down the training process. The smoothness parameter X can be determined 

in the training process by cross-validation method. Once the two parameters of the basis 

function are determined, the RBF network can be regarded as linear regression: 
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(2.1.3) 

where 0(xi)=( 1,^(x,)...(|)M(Xi))^. Once a RBF is built, the diagnostic methods of linear 

regression can be used to assess model. For example, if we denote 0=(O(xi),...,0(x„))^, 

the hat matrix H becomes 

W . 

Where the hat matrix is a non-negative idempotent matrix in linear regression model, 

which is composed of the covariate X {X(X^X)''X^). The vector of the predicted values of 

y is therefore as follows 

(2.1.4) 

and 

T/ar(y,)== A,.cr2 (2.1.5) 

The deviance residuals are 

A = • (2-1-e) 
f j ^ l - h-i 

which provide evidence of goodness of fit. If the residual plot displays some patterns, re-

defining centres is required. A practical way to define data centres is to use classification 

methods such as classification and regression tree models. Zhu, Yao and Liu (1999) give 

an application of this approach. 

2.2 RBF Networks and Non-parametric Regression 

Nonparametric regression is a technique of estimating the regression curve by a weighted 

average of response values in a neighbourhood defined by the covariate of the response 

variable (Hardle, 1989). The weights are defined by a density-like function of the 
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covariate. The weight function is normally termed kernel function. The neighbourhood of 

the covariate is defined by bandwidth, the radius of neighbourhood. Once the kernel 

function is chosen, the weight value can be adjusted by using different bandwidth to 

achieve goodness of fit. Unlike nonparametric regression, RBF method projects the 

original values of covariates to data centres, then averages the transformed values to 

produce predictions. The transformation function in RBF model is also a density-like 

function. The weights in RBF model are estimated by linear regression model, hi some 

sense RBF neural network can be regarded as a mixture of kernel method and dictionary 

method. The critical step in building RBF model is to define the centres. Overall both 

methods form prediction by weighted average of response values. There is a possibility to 

construct a RBF model to be equivalent to a nonpar ametric regression. Kay and 

Titterington (1999) gave an extensive comparison of RBF with statistical methods. One of 

their results is the equivalence of RBF and non-parametric regression. For convenience 

we assume the covariate is a scalar variable and denote x. For a given covariate value, the 

RBF approximates the expected response value by 

^ X-JU 
J -

./=i 

0(x)(0(y^)^0(vr) ) - '0(Z)^y, (2.2.1) 

where 0(x)^=(l, ^(———) ... ^ ( - — ^ ^ ) ). 

Similarly, a non-parametric regression approach represents the mean of y by 

= (2.2.2) 
y=i 

where K(x-) is the kernel function corresponding toyth observation (Hardle, 1989). 

If we let jUi=Xi, and define the kernel function in non-parametric regression as 
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(2.2.3) 

the RBF model can be expressed in the non-parametric regression form. 

M 
(2.2.4) 

We need to demonstrate that K*{Xj) is a kernel function for nonparametric regression. 

Since (%) is a density function (see 2.12), and the second term in the right side of 

(2.2.3) [ ( 0 ( y ^ ) ^ 0 ( % ) ) " ' 0 ( % ) ^ i s a constant given X, thereforei^*(Xy) can be taken as 

a kernel function, which leads to the equivalence of the two methods. 

2.3 Multi-layer Perceptron Neural Network (MLP) 

Similar to projection pursuit regression, MLP projects the independent variables to hidden 

nodes by a non-linear function, normally a logistic sigmoid function. The predicted value 

of a continuous dependent variable is the weighted sum of the transformed values of the 

nodes in the last hidden layer. For a categorical dependent variable, the predicted 

membership probability is the transformed value of the weighted sum by the sigmoid 

function. The MLP neural networks can be depicted in the following figure. 

Inputfvariables) 

i 
Xo (O. 

CD-

% 

hidden 
nodes 

output 

q O . 
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Figure 2.2 MLP neural networks project the independent variables to the hidden layer by the logistic 

sigmoid function gi(x). The prediction is based on the weighted sum of the hidden nodes. 

The more nodes it has the more complex the MLP model is. The widely used non-linear 

function is the logistic sigmoid function 

(2.3.1) 
1 + e 

Another widely used transformation function is tank, which has advantages in some 

circumstances. 

tanh(x) = — . (2.3.2) 

The MLP with one hidden layer has the following explicit expression 

M q 

(2.3.3) 

where is the sigmoid logistic function, g2 is a linear or identity function, x=(xi,.. .,x^) is 

the design variable whose values are organised in , wjf is the weight of to node, 

is the weight o f n o d e to the final output. If we assume that Y~N{f{X, W), o%) as in 

the previous section, the model can be described as: 

y = /(y^,fr) + g . (2.3.4) 

whcxQJ{X,W)={f{x\,W),..J{\n,W)y. The MLE (maximum likelihood estimator) of Wis 

just the LSE (least square estimator) JV obtained by solving the following equation 
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Neural networks such as MLP use the back-propagation method to iteratively estimate W, 

because the exphcit solution of (2.3.5) is normally too complex to be obtained. As we see, 

MLP is just a non-linear regression with complex expression. For the multinomial model, 

a softmax transformation is used at final layers to predict class probability ni={n:n ...mp), 

where Tiy is the probability of yt taking value j. 

** = ' (2.3.6) 

The log-value of probability ratio can be obtained as 

(2.3.7) 

Both RBF and MLP are very flexible. They can be configured to be any continuous 

functions by computer intensive training. On the other hand, the flexibility usually causes 

time-consuming training process. Fortunately computer power is growing rapidly; this 

will not be a severe inconvenience. In light of this statement, investigating neural 

networks has long-term benefits. 

RBF has its origins in techniques for performing exact interpolation of a set of data points 

in a multi-dimensional space. A set of basis functions (Powell, 1987) is used to project 

original data to basis function space. The weighted basis function is then taken as the 

estimate of response values. Unlike RBF, a MLP approximates the complexity by setting 

more hidden nodes. The more nodes it has the more flexible it is. 

2.4 Criteria of Training Neural Networks 

Historically, neural networks were developed by computer scientists. Their statistical 

properties have only been investigated more recently. Fortunately, more and more 

statisticians are paying attention to these methods, such as Ripley (1997) and Titterington 
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(1994) who have already given great contributions in this field. Meanwhile, computer 

scientists also give their views in statistical way (Bishop, 1995). 

When the structure of a neural network, namely the number of layers and the number of 

nodes in each layer, is determined, the perfomiance will depend on the estimator of the 

weight W. Sum-square-error (SSE) is widely employed. A more generalised error criteria, 

Minkowski error (|8|^, R>0), is also suggested in some circumstances. The rest of this 

section is dedicated to reviewing the error functions from the statistical perspective. 

Sum-of-Squares Error (SSE) 

As in section 1.3, Fobs is the observed data matrix. We assume variable y is a vector, 

which can be the vector notation of a categorical variable. The corresponding 

expectations of Yobs are Then the sum-squares- error is 

l=\ 

W can be estimated by minimising E^se-

If we assume yi.. .y^ are independent, and follow the normal distribution, //(f(xi, W), 2)... 

A (̂f(x„,, W), 2) respectively. For simplicity we start with Ij=G^Ip+i. The general case will 

be discussed later on. Then j/,,.. .ym,p+\ are independently distributed with the distributions 

N(f{x] 1, W), a^)... N{f[xm_p+], W), a^) respectively. The log-likelihood function is 

(2.4,2) 

Then the maximum likelihood estimator of is 
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1 

'^'= E Z t e . ( 2 . 4 3 ) 
7M(;) + 1) ;=i 

Plugging (2.4.3) into (2.4.2), we obtain 

foc-^log<T. (2.4.4) 

Therefore maximising L is equivalent to minimising cj^. The OLS rule is obtained. 

Maximum Likelihood Criterion 

In this section we deduce the training criterion from the likelihood function under the 

normality assumption given above but with general variance Z. The log-likelihood for W 

and 2" is 

Z(;F,Z-') = coM;y + y l n Z - ' | - ^ ^ ^ ^ \ (2.4.5) 

where cons is a constant, 11 is matrix determinant, Z is a mx(p+l) matrix, 

Z == Tf,, f(;r, MT) = (J/* - , Rf)) . (2.4.6) 
k=\,p+\ 

The last term of the log-likelihood can be written as t r i ^ Z Z ' ) by matrix manipulation 

rule. The maximum likelihood estimate (MLE) of is composed of element wise 

estimation. Using the result (Bard, 1974) 

a inz - ' , , 
(2.4.7) 

Allows us to write 

42 



(2 4.8) 
60^ 2 ' ^ 2' 

Setting the derivatives to zero provides the conditional estimates 

i:(PF) = : ^ . (2.4.9) 
m 

Substituting this estimate into log-likelihood function gives the following conditional 

likelihood function 

= (2.4.10) 

The MLE of Wis obtained by minimising the determinant of Z^Z with respect to JV. If the 

off-diagonal elements are ignored, the determinant is the product of diagonal elements. 

| z ^ z | » n [ z ^ z ) , , , (2.4.11) 

where 

Z ' 4 j = 2 t e , ( 2 A 1 2 ) 
f= l 

Notice the Wk's are distinct; the solution of setting derivatives of equation (2.4.11) to zeros 

equals that of £sse- This provides the evidence of equivalence to OLS. 

Entropy Error - Log-Likelihood Ratio Criterion 

In the previous section, the response variable y is assumed to follow a multivariate normal 

distribution. For categorical response, an alternative error function is the entropy error 
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(Bishop, 1996). If we denote %=f(}',t=l|xi), the likelihood of the observed data Yobs can 

be written as 

m _p + l 

i=\ k=\ 

where 6 = { t t - ^ . The log-likelihood is the log-value of the above expression 

/M +̂1 
= Z S , (2.4.13) 

i=\ k=l 

The neural networks method estimates the conditional probability with 

the help of the softmax function (2.3.6) in the last layer. The log-hkehhood based on the 

estimators tt,. = (;r.,,...,i-,.^^i) from neural networks is 

m p+l 

S • (24.14) 
1=1 i=l 

Then the log-likelihood ratio is obtained as 

m P+1 ^ 

I = Z Z % . ( 2 . 4 . 1 5 ) 
;=1 k=\ ^ik 

If we use the approximation 7Vik=P(yik^l\Xx)^ ytk, and let I n — equal zero if y this zero, 
yik 

then the log-likelihood ratio approximately becomes 

m ^ " 

< ( ; ; . , | X , 9 ) - « F „ „ | A - , e ) = 2 Z . ( 2 . 4 . 1 6 ) 

The validity of the above approximation may be justified by assuming that yik=l or yik=0 

is fully determined by Xj, for example y and x have a deterministic relationship. If we let 
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the neural networks maximising the log likelihood ratio, we obtain the entropy error 

AmCtioil Eentropy 

m ^ 
^entropy ^ik 

i=\ k=\ y ik 

(=1 k=\ ^ik 

As the training iterations increase, nn̂  become more and more close to ytk, because of the 

effect of minimising -Eentropy in the process of neural network training. Notice 

for =1. If we assume the training converges to an optimal point although it diverges 

with improper initial weights. Then I — — — I < 1 holds eventually. Substitute this 

term with first three terms of its Taylor expansion 

yik yik 

yik 

1 + -- + (.y,* - )3 .... (2.4.113) 
yik yik yik 

The entropy error becomes 

/=i k=i yik yik 

2 

- ] [ ] [ (}%* -- —* *--- ) 
(=1 k=\ yik 

/M Cy,* --)?,*) 2 

-][ .y# - ][ 2] 
i = \ k = \ i=\ k = \ yik 

m p+1 
c o M j f ] > ] Cy,* (̂ 2/4.ISO 

f= l t = l 

45 



The last equation is based on the fact that or 0, where const is the constant term. If 0 

is taken, we let — — — = 0, which originates from the fact that In equals zero 
yui yik 

(when yik=0). This gives the evidence of the equivalence between entropy error and sum-

square-error. 

2.5 Neural Networks Imputation for Missing Values in a Single Variable 

We start with the missing values in a single variable. The assumption is that all covariates 

are completely observed. The application of neural networks for imputation is similar to 

the use of regression model for continuous data or logistic regression for categorical data 

(see section 1.4). The application of neural networks model for imputation is emerging 

gradually. The earliest application may be the work in the US Census Bureau (Creezy, 

Masand, Smith and Waltz, 1992). Neural networks have also been employed to edit 

statistical records (Nordbotten, 1995). One recent application of MLP neural network is 

carried out by Nordbotten (1996) to deal with the small area problem. The data he studied 

is the combination of the register data obtained from administrative registers and a survey 

data compiled by mail fi"om a sample of the registered population. The derived data set 

contains blanks in the survey variables due to exclusion in the survey. This leads to 

inadequate cases for estimating the totals of some small areas based on the survey data. 

Nordbotten used a MLP model to impute the values in the survey variables for non-

sampled cases. The estimators of totals for small areas can be re-constructed using the 

survey data and the imputed data. The MLP model in his study has one hidden layer 

without feedback connections among its units. The optimal number of hidden nodes is 

determined by experimenting five options at 10,15,25,40 and 60. The number 

corresponding the best imputation result is taken as optimal value, hi this case it is 25. 

Nordbotten also experimented a single imputation model to impute all survey variables 

using the registered variables. He pointed that such a large neural network model in terms 

of the number of weights needs more training cycles than the models for individual 

variables. 
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Under the MAR assumption, the model estimated from the observed data can be used to 

impute the missing cases. The rationale of neural networks imputation also relies on this 

assumption. 

With continuous y, the imputation can be the conditional mean predicted by neural 

networks. 

, (2.5.1) 

is the estimator of Why minimising the sum-of-squares error, which is equivalent 

to maximum likelihood estimate under the normal distribution assumption. Alternatively 

the imputation can be the conditional mean plus a residual term to preserve the variance 

j); = / ( % ; , + (2.5.2) 

where 

- # ( 0 , ( 7 ' ) . (2.5.3) 

If instead y is a categorical variable with p+1 categories, let the last be a reference 

category. If y denotes the observation of y, then yi is a p+1 vector w i thy / r l indicating 

observation falls into category k and otherwise. For convenience we denote 

and 7t;=(;r(,,...,;zr(p+,)^,; = In this notation, Yobs 

becomes a multi-response matrix with mx(p+\) dimensions. Neural networks implicitly 

assume y, follows a multivariate normal distribution N{f{xi,W), a^Ip+i) (Bishop, 1995). 

Then the expectation ofy* missing observation is 
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= ^ (y , t , ;F) j=7M+i,.. .,M, 

, # ( } ; , J ) 

=/(%,,#(] : , , ) ) , (2.5.4) 

where 

The softmax transformation in the final layer makes the summation of the elements of 

/(x^., JF(7„jJ) equal one. Like in the logistic regression situation, the imputation is the 

category with the largest expectation that is actually the posterior probability or a random 

draw from the estimated distribution. One thing needs to be mentioned here, for ordinal 

variable y, the adjustment in logistic model (Agresti, 1990) for dealing with the order of 

categories is not necessary with the neural networks model. Because the adjustment can 

be achieved by changing the weights, which is actually done in training process. 

Therefore neural networks models have a unifying form for nominal and ordinal variables. 

2.6 Neural Networks Imputation for Multivariate Missing Data 

When the missing values occur in multiple variables, a simultaneous approach is 

suggested using regression model under the normality assumption (see section 1.5). We 

are interested in how the neural networks model can deal with multivariate missing values 

simultaneously. Let us use the neural networks model to approximate the conditional 

means. We assume the conditional means are the neural networks functions of given 

conditions. 

-E:();2l.yi) = /''();i,1^2.1), ( z&i ) 

I " i , ) , (2.6.2) 

'6:()/2 = (2.6.3) 

^(^'S l)/|,)^2) = /^()'|,)'2,T^3.I2), (2.6.4) 
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where f denotes the neural networks function, and there is no missing values in yi. The 

imputation can be carried out accordingly. 

fz I = /"(fi 'Ttz,) , (2.6.5) 

I>"1 , (2.6.6) 

1̂ 2.13), (2.6.7) 

j^31)'i,.y2 =/^(:xi,.y2,1^3.12). (2.6.8) 

The neural networks models in (2.6.5) and (2.6.6) can be used to impute missing values in 

y2 and ys when y2 and are simultaneously missing. The imputation given in (2.6.7) is 

used to deal with the situation that missing values are only present in y2. Similarly 

imputation in (2.6.8) is for the situation of missing values in y^ while yi and 72 are all 

observed. The random imputation of neural networks can be implemented by adding a 

residual term to the conditional mean. 

.y21 J + (2.6.9) 

|j^ ==jf"(}'ni4'3 ,) + e,, (2.6.1()) 

ĵ 2 =/^()'l,.y3,T^2.13) + g2, (2.6.11) 

^̂ 3 =/ ' '() ' l ,A,^3.12) + ^3, (2.6.12) 

62 and ej are random draws from the derived distribution. For example, they can be the 

draws from #(0, (jf ) and N(0, cxf ). 

As shown in the above results, without auxiliary variables, it is not an easy task to specify 

a neural networks model that can impute the missing values in multiple variables 

simultaneously. Several independent neural networks corresponding different variables 

have to be build to impute the missing values respectively. 
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2.7 Wald Error Neural Networks 

Suppose yi follows a normal distribution N(f(xi,l^,2), then the Wald statistic for testing 

the goodness of fit can be obtained as (Wald, 1948, Lindsey, 1996): 

Z (2.7.1) 
i i 

where 

1 m 
z (y, -f(:%:,)fD)(y, - - (2.7.2) 

m (=1 

Here yi is the vector notation of the zth observation of a categorical variable. The chi-

square distribution in (2.7.1) is obtained asymptotically based on log-likelihood of y{S. 

This result is valid if the normal distribution approximation is justified. The expression in 

(2.7.1) can be used to evaluate the consistency of the marginal distributions of the true 

values and the imputed values. If we train the neural network by minimising the Wald 

statistics, the Wald Statistic Criterion is obtained. Namely the weights of neural networks 

can be estimated by minimising 

( y , ( y , - f K . f K ) ) " , (2.7.3) 
( = 1 ( = 1 

For convenience, we denote the Wald statistics in matrix format. 
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Let G = 

yml ^ '" ym,p + ] ~ f p + \^^m'>^^ 
mx(/?+l) 

(Yi - f ( ; ^ „ f F ) ) ' ' " y / ' f ( ^ , , f F ) " ' 

(Ym - f ( J ^ ^ , f F ) ) \ Ym 

y / ' f ( Z „ f F ) ^ ' 

Denote Gj = , and G; = 

y,n 

, then G—G1-G2 

Then, 

o c f G ( G ^ G r ^ G ^ l . (2.7.4) 

According to Newton-Raphson algorithm, the parameter W can be estimated by the 

following iterative equation. 

(2.7.5) 

where H ^{W^) is the Hessian matrix (second order derivative matrix) of £'w, J(JV') is 

the first order derivative vector. Using matrix derivative rales, the first and second 

derivatives can be obtained as follows. 

6G(G^G)- 'G^ _ 6 G ^ ^ r G ) - , G r ^ G ^ ( G " G ) - ' G " 

(G^G)- ' G^ + G + G(G' 'G)- ' 
dW;,- dw,j 

. _(ĜG)-' (^G + Ĝ  ̂ )(G-G)-> 

(2.7.6) 

(2.7.7) 

Plugging (2.7.7) into (2.7.6), we obtain. 
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w OC 2l'^G(G^G)-^ (I - G(G^G)-' G^)l, 
^ . v 

(2.7.8) 

w 

-2G(G' G) 

o c 2 r (G(G'G) r _ , _ i 6 % ^ 6G 
+ ^::^(G' G) 

aG" 

&v„ 

r ^ , _ , aG' aG' ^G' ^ 
&VL 

G(G' G) 
aM/;,' 

-2G(G'G)- G(G' G)-
0M/, kl 

(I-G(G^G)-'G^)1, (2.7.9) 

where 

gG 6G2 
^ „ ' 

a^Gz 

Ik 

The main task is to calculate the derivatives of f(X, W) with respect to W. The RBF and 

MLP neural networks are considered. The transformation function (or activation function) 

in the terminal layer is a softmax function (see 2.3.6). Suppose there are Mcentres in RBF 

model and M hidden nodes in MLP model respectively. 

RBF 

/],;2 

, i=l...m, A:,/2=1...;?+1, l\=l...M. (2.7.10) 

^,:V2^/3,,4 
= ) & ( % , ) 

=^4 

?-fik fulfil A ),k ^ 12,12 9^ ^4 , ̂  

i=\...m, yc,/2=l. . . />+!, /i = l . . . M . (2.7.11) 
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MLP 

,i=l...m, k,l2^\...p+l, li = l...M. (2.7.12) 

y & ( l - A X l - 2 A ) , ^ ^ ^ 2 =^4 

- A A 4 ( 1 - 2 A ) , ^ = A , ^ 2 ^^4 
~ fikfui^~'^fik)^^ —K » 

- A Az 0 - ), A: ;6 

'^fikfillfilA)^^ ^ 4 ) ̂ 2 ^ ^4'^ ^ 4̂ 

i=\...m, k,l2=\...p+l, li = l...M. (2.7.13) 

d f , p+l 

^ (x„w)(i-g<:>(x„ir))/,« - g ), 
'^/],/2 /=] 

i=l...m. /c=l...p+l, /, = l...g+l, l2=\...M. (2.7.14) 
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(1 - gn ) A [0 - (1 - )(wgi - ^ W/}2.4 ))(T ,̂ 
y=i 

/?+! / ;+] 

V=l 
p+\ p+\ 

A [ ( ^ 5 - Z ^&v\4 )(^}% - Z ^%y.4 ) -

(2) 
/2,t 

p+1 p+\ 

Z < / i « j - Z <!tf.,nA*h 
7=1 ,/>•=! 

(2.7.15) 

/% ,f2 3̂ '̂4 

f+1 
^ , « & ' " ( i - & ' " ) A [ i - A + ( i - 2 / » ) « i - z <; /»•)] .*='2>' , = ' . 

j=i 

^.,sS'g!l'fJi-2fM','.-Z <!,f,)li"'i2.',"'. 
i=i 

p+\ 

-^.ng}"f.J„2[l + gn«!i+<n - 2 Z = ='4 

/?+! 

A A z M I i +T^%/2 - 2 ^ ^M,v\4),^ = 4,A ^^4 
7=1 

(2.7.16) 

As shown in the above formulas, the Wald error function is more sophisticated than sum-

square-eiTor and entropy error. It may indicate that more computing power is need to 

obtain W. 

2.8 Linear Approximation to Neural Network Imputation 

One of the disadvantages of neural networks imputation is time-consuming training 

process. To deal with this problem, a linear approximation is developed. The EM 

algorithm can be used to estimate weights (Schafer, 1997). 

Here only the simplest case p=\ is listed. The multivariate expansion has the similar 

expression. 

The following series are used in the expansion: 
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l - x 
1 + x + x + x H—, |x|<l. (2.8.1) 

]_ 

l - JC % ^3 
, (2.8.2) 

exp(x)=l+x^ 1 1 , xeR. (2.8.3) 
2! 3! 

Then the logistic sigmoid function defined in (2.3.1) may be expanded as follows 

g i W = :, 
l + exp(-%) 

j 1 - exp(-%) + exp(-2%) , ;c> 0 

[exp(x) - exp(2x) + exp(3%) , x < 0 

= <2q + fljX + ^2"^^ "I ? (2.8.4) 

where ao,ai,..., eR, a,, — ^ > 0 . Plugging (2.8.4) into (2.3.3), the MLP function 

/(%., W) can be written as, 

= bfj+ b^x. + b^xf H— , (2.8.5) 

where bn-^0. For convenience in the above expression the covariate x is assumed to be 

scalar. If we neglect the infinitesimal terms, it turns out to be a polynomial expression. 

We can increase the order of polynomial equation to get the closest model to MLP in 

terms of likelihood ratio. Since the MLP expression in (2.8.5) is linear in coefficients, the 
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training process will be simplified by using the linear regression routine. The potential 

difficulty in this approach is to decide where to cut the expansion series. If two few terms 

are used, the approximation may be too distant from the original MLP function. On the 

other hand, too many terms may lead to near saturated model when the training data is 

small. The decision is really a trade-off between precision and the computing efficiency. 

For the multivariate x, MLP can be expressed as: 

= 60 + " . (2.8.6) 
7=1 V , t = l 

One of the disadvantages of neural networks is the black-box feature of model expression. 

It makes the explanation of model properties difficult. For example, in linear models, the 

main effects and interactions can be explained by the corresponding coefficients. 

Unfortunately in neural networks there are no parameters directly relating to main effects 

and interactions. One way to extract the main effects and interactions from trained neural 

networks is to feed the neural network with corresponding 0-1 input. For example, if the 

• t h • J , ^ ^ 1 . r , 1 ' / A 1 ' j - T , 4-'U ' t h j covariate variable is concerned, the vector for the covariates is (0...1...0) with the j 

element equals 1. 

We denote it by aj. 

element equals 1. The network output reflects the main effect of covariate variable. 

j" 

ccy = y(o - - - 1 ••• 1 ' " 0) — y ( 0 " -1 • •-G) ~ f{0-• • i •••o),z,y=i, 
j^th jth ^th jth 

The systematic part of the MLP model is a continuous smooth function which has any 

order derivatives. To investigate the variance of MLP prediction, the first order 

approximation is developed. 

ppoji-ngr (2.8.7) 

where is the estimator of W from neural network training, Vnxq is the first order 

derivative o f f ( X , W), q is the number of weights. 
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p. = (2.8.8) 

M p 

(l + GxpC-w^ a + exp(-^w(!)x^.))' 
j=\ i=:l i=\ 

(i4-exp(-w(:) " 
y=i 

Then 

ff^)=rTP"^6: (2.8.9) 

TheLSE of fFis 

f;r = (;/?lFr)--lfr?\2:, (2.8.1()) 

\vliere Z== ff^). 

Then the EM-hke method (Schafer, 1997) can be used to estimate W. 

Step 1: Generate initial estimates of W, 

Step 2; Impute missing values in 7 by f(X, W)^(X, W")+VW, 

Step 3: Estimate Why W = (V^V)^^F^Z, 

Step 4: Go to step 2 and repeat until converge. 
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The above procedure is an exact EM method if the normality assumption about Y is true. 

Otherwise JV in step 3 may not be the estimator based on the likelihood of Y. The EM 

method may complicate the benefit of the linear approximation given in (2.8.9), since it 

may be as enduring as neural networks. After all it provides an alternative to neural 

networks method. It is possible that the convergence of EM method based on the linear 

approximation is faster than that of neural networks in some circumstances. 
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3 Nearest Neighbour Imputation with Weighted Distance 

We discussed nearest neighbour imputation in section 1.4. The performance of this kind 

of imputation relies on the distance measurement. In this chapter we introduce an 

alternative distance measurement, weighted distance, to deal with data sets with more than 

one covariate variable in a record. When there are multiple covariate variables, the 

individual covariate may have unequal contribution in defining the overall distance 

between two observations. Therefore assigning a weight to each covariate may provide a 

way of improving distance measurement. Standard nearest neighbour imputation either 

assumes that the covariates are equally important in calculating distance, or defines a 

distance measure in an arbitrary non-data-dependent way. 

3.1 Multiple Variables and Weighted Distance 

Suppose the matrix X containing the n records of q covariates. Let x, and Xj be the vector 

of values of record and record. The distance between these two records is defined as 

dij 

^ij ~ ~ ^ ~ (3.1.1) 

where D(x,.,xy)^ = {d^{x-^,xj^),...,d^{xi^,xj^y}. The vector PF is the weight vector that 

remains to be determined. ) is the distance metric for covariate and is 

assumed given. Usually the weight Wkk=l,...,q are assumed to be given. In our approach 

we consider choosing the Wk to improve prediction. The distances between all possible 

pairs of records in each variable are put into the following matrix D{X), 
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D m 

'^1 '^m-1,1 ) " ' ) m{m-l) 

( 3 . 1 . 2 ) 

Similarly, a distance matrix ofy is considered as. 

D ( y ) : 

4)^2,)"]) 

xl 

( 3 . 1 . 3 ) 

where d(yi,yj) is a given measure of the distance between y, and yj. We consider the 

following model to determine W. 

D(y) := / (D(^) ,PF) + g, ( 3 . 1 . 4 ) 

where f is a residual term. In the special case off{D{X),W)=D{X)W, the OLS estimator of 

W c&n be obtained as follows 

^ = (D(^)^D(Z)) - 'D(y^)^D(y) . ( 3 . 1 . 5 ) 

If relationship between D{X) and W is not linear, more flexible models such as neural 

networks may give better estimate of W. 

To help understand Win (3.1.5), we consider its form under some simplifying 

assumptions. Here we consider the special case of multivariate normal distribution, and 

seek the asymptotic value of W. Specifically we assume that x and y are realisations of a 

joint normal distribution N(|J,,E). For simplicity we let g=2. Then, we write 

(x^)-N(p,Z), ( 3 . 1 . 6 ) 
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-"3 

X 

y 
( 3 . 1 . 7 ) 

(̂ 12 <̂ 13 

<̂ 12 "̂ 2 <̂ 23 

<Tj3 0*23 0"3 

<̂ 1<̂ 2A2 

<^l'̂ 2Pl2 ^1^3A3 

"̂ 2 

^1*^3 A 3 <^2^3/̂ 23 

var(%,) = crj^, var(:(2) = crL var()/) = cr^, 

_ covC^^Zz) __ covt%t,}0 _ i:oT/(%2,;/) 
P\1 " / , , , ^ ' Pl3 ^ I . , . ^ ' P23 <Jvar(xJvar(%J ' T/T/ar(%,)Tfar(y)' <Jvar(%JvarCx) 

( 3 . 1 . 8 ) 

( 3 . 1 . 9 ) 

(3 .1 .1 ( ) ) 

To obtain an expression for W we need the detailed versions of {D{X) D{X)) and 

D ( ^ ) ^ D ( y ) . For simplicity, we choose (5̂ (y:,){/)=(yr){/)̂  and cft(%it̂ t)=(%zt-;î t) .̂ 

D(Z)^ D(%) = 

m ;-l T 
Z Z ( x „ - % / l ) ' ( % , 2 - * v 2 y 
/=2y=i 

m i-\ ^ m i-\ , 
Z Z (%„ - )" (%,2 - ;:y2 ) Z Z (x,2 - ) 

i=2;=l ^ /=2y=l 

m i-l , 
Z Z ( % n - ^ v i ) 

!=2y=l 

( 3 . 1 . 1 1 ) 

(D(XfD(X))-' = [ ! ' £ ' (x„ - ) 2 'i (^a Z (Xn "Xj,)"(x„ - X j ^ f f Y 
/=2v=l ;=2;=I :=2y=l 

F z ( x , . 2 - % , 2 ) ' 
i=2y=i 

m 1-1 9 g 
' Z Z (AT;, — Zy, ) (%;2 ^ ^^2 ) 
,=2y=i 

-rZ (%n-^Vl ) ' (^ ,2-;^;2) ' 
;=2;=1 

m i~\ . 
Z Z (;r,, -%yi)4 

,=2/=l 

(3.1.1:2) 

D(y^)^D(y) 

m 1-1 1 1 
Z Z ( % „ - % , , ) \ y , - y ; ) 2 
,=2;=1 
ITl i 1 g 
ZZ(%,.2-%,2) (y, - f v ) 

,=2y=l 

(3.1.1:;) 

With the normality assumption, the following asymptotic results are obtained. 
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2 
m{m -- 1 ) 

2 

7M(/M - - 1 ) 

2 

m{m - - 1 ) 

2 

m{m - 1) 

2 

m{m - 1 ) ' 

2 

4 

mz-I 
Z Z (:%:;2 ^yz) 4 /M—>00 ->3(7 2 ) 

m z—1 
I Z 

4 m->t» ^ T 4 
>3(73 , 

m i-\ 
Z Z (X„ - ) ' (%,2 - ) ' ) 0-i"cr̂  + 2cr,:'2, 

m i-\ 
Z Z (%;] -: ' : /i) ()̂ i 

2 m->co ^ _2 _2 »cri (7^ +2crn, 

m i~\ 

m{m-\) i=2j=\ 
Z Z (;C,2 -Xy2) ' (A ^ > 0*2 <̂ 3 + 2(723 • 

(S.l.l'l) 

(3.1.15) 

(3.1.16) 

(3.1.17) 

(3.1. IE!) 

(3.1. IS)) 

The last three formulas are obtained using the theorem of the variable decomposition of 

multinormal distribution, by which x, and Xg are independent 

(Anderson,1984). Plugging (3.1.14) to (3.1.19) in (3.1.11) and (3.1.13), the following 

asymptotic values are obtained. 

3(7^ 

CTj (72 + 2O"j2 

orfcr^ +2(7^ 

0-j^(7^+2(7^ 

3 (7? 

'1^2 

(72 (7̂  + 2(723 

(3.1.20) 

(3.1.21) 

Plugging (3.1.20) and (3.1.21) into (3.1.5), the asymptotic value of W is obtained. 

^ (1 + 3/?j^ - /)23 - - 2/)^p23) 
(7, 

4 - 2pj^ - 2p^ 

(1 + 3/)23 - - Piz - 2p^ / )^ ) 
(7, 

4 - 2/7^ - 2/?^ 

(3.1.22) 
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Imagine the situation that principle component analysis is employed initially to produce 

new variables xi and The resulting variables are mutually independent. Assuming 

such an approach is used, we set Px2^^- The above result can then be further simplified 

as 

W. ( 3 . 1 . 2 3 ) 

The new distance based on the weight given above takes the variances of the component 

variables in to account. It eliminates the effect of scale, and gives more weight to the one 

with higher correlation with the dependent variable. 

This approach can be extended to more sophisticated models if the linear assumption is 

not sufficient. For example a neural network model can be used instead. Then, the aim to 

is to fit the following model 

D(y) = / (D( j r ) , fF ) + e . (3.1.2:4) 

/{D{X), W) could be approximated by either RBF or MLP. The potential difficulty is 

that this will train a big neural network, and the searching time could be much longer than 

conventional Euclidean distances. The practical way needs to be developed. One of the 

possible solutions is the iterative algorithm, by which the weight from the linear regression 

model is used as the initial values, and is iteratively adjusted by cross validation. The 

distribution of D{Y) is described in next section. 
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3.2 A Comparison of Weighted Distance Nearest Neighbour 

Imputation and Other Distance-based Imputations 

In this section we compare the nearest neighbour imputation based on the weighted 

distance with other distance based imputations such as the conventional nearest neighbour 

imputation with Euclidean distance, the nearest neighbour imputation based on 

Mahalanobis distance, and predictive mean match imputation. The main difference lies in 

how they measure the distance between two data points. This comparison is based on the 

normality assumption given in previous section. 

3.2.1 Nearest Neighbour Imputation with Euclidean Distance 

The Euclidean distance of the unit and unit can be written as 

+(^,2 - If we set the weighted distance becomes the standard 

Euclidean distance. Therefore Euclidean distance is a special case of the weighted 

distance we proposed. In practice the raw data is standardised before it is used for 

imputation. In this situation the Euclidean distance between the unit a n d u n i t can be 

denoted as 

(3.2.1) 
C7, <T 2 

It is the summation of the squared differences between the standardised values of the 

auxiliary variables of the two units. No reliance on the variable to be imputed is involved, 

but it is widely used and in many situations it is good enough. If we set W={--^ the 

weighted distance becomes the Euclidean distance given in (3.2.1). Therefore it is also a 

special case of weighted distance. 
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3 . 2 . 2 Mahalanobis Distance 

The Euclidean distance can be extended to the Mahalanobis Distance, which is defined as 

(x,. ( 3 . 2 . 2 ) 

where , M=cov( x,. , x̂ . )= 

inverse of V, the following result is obtained. 

/ 2 
<̂ 12 

<̂ 2 y 

Plugging in the 

( X ; - X ) ^ F - ' ( x , . - x .) 

-2o-,2(x,i -XyiXXyz -;C^2) + 0-l'(^,2 - ^ y 2 y ) 

(1 - P i 2 ) - ' - 2 P n ( ^ , 1 - ) ( - » , 2 -%;2) + 
CT, (T-j 

cc( 
(% 

- 2/), 2 )(-̂ ;2 " ^;2 ) + 
(%,2 ^,2) 

- ) • ( 3 . 2 . 3 ) 

The constant (1-/?^)-^ has no effect in searching for the nearest neighbour. Similar to 

Euclidean distance, the Mahalanobis distance does not depend on the variable to be 

imputed, but it takes the correlation between the two component variables in to account. If 

the imputation is carried after data preparation by principal component analysis, the Jcn Xi2 

Xji Xj2 are the transformed variables, and are independent (yOi2=0). The Mahalanobis 

distance is then equivalent to the Euclidean distance. Therefore in practice the 

performance of an imputation method can be affected by the way the raw data is pre-

processed. 

3 .2 .3 Predictive Mean Matching 

There is a similar approach to nearest neighbour imputation based on regression, which 

selects the imputation by nearest predictive mean (Little, 1987). If we take it as another 

version of distance, it becomes a variation of nearest neighbour imputation. Following the 
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previous notation the distance between the unit a n d u n i t based on the predictive mean 

can be denoted as 

[(%,] +(;c,2 - -^y2)A]^ 

= (XJ1—Xyj) ~ ^ ~ ^ j l ) ^ ~ ^ j l ) Pi ^ (3 .2 .4) 

where /3\ and Pi are the regression coefficients o f o n and %2. Under the normality 

assumption, they are the function of the population parameters. 

A ' = 4 ( A , - A : (3.2.5) 

CT, 1 - /7,2 

.2 _2 /i _ _ \2 ^2 _ CT] /^23(1 A2A3) ' Q 2 6") 

The constant term /% is omitted, because it is cancelled by the subtraction in the distance 

equation. This distance involves both the variance and the correlation of the covariates 

and the variable to be imputed. If p]2=0, the distance becomes, 

2 2 ^ 2 

(A;,! -% +(:^:2 Y/^23 + 2 -'^;l)(^/2 -:(:;2)-
O"! 0-2 m GTz 

(3.2.7) 

When it is employed to search the nearest neighbour, it is equivalent to 

( x , , - x , , ) " (%,2-^y2)' ^2 , . ^ (^,2-;^v2) 
2 Pl3 + 2 P23 + ^Pl3P23 • • (3.2.0) 

CTi 0-2 O"! 0-2 

The predictive mean matching is a modified Mahalanobis distance that gives more weight 

to the one that is more correlated to the variable to be imputed. 
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3.2.4 Weighted Distance 

Nearest neighbour imputation with weighted distance imputes the missing value by the 

corresponding value of its nearest neighbour in terms of weighted distance. In the case of 

q=2, the distance between the unit a n d u n i t is as follows, 

(^,1 +(^,2 (3 2.9) 

When the above expression is used for imputation, it is equivalent to 

c(x., +c{x^2 -Xj^Yw^ , where c is a non-zero constant, since c only changes the 

scale of distance, it has no influence on the relative distance between two units. For 

simplicity we multiply it by four (c=4), it then becomes. 

2 

2 

(%y2 ^ ( l + 3/)23 "^12 . (3.2.10) 
^2 

If Xii Xi2 Jji Xj2 are the transformed variables by principal component analysis, they are 

independent, therefore pi2=0. The above distance then becomes, 

2 ^2 

-"Y (1 + - /?23 + (:̂ ;2 " ^;2 ^ + 3/)23 " Pu ) 
0"i (72 

2 2 2 2 

= (% + Y+ +(:^:2 + 
0*1 O" 2 CT| CT 2 

O-l 0-2 

(^zl ^yi) (̂ 12 ^^2) 2 (^'2 ^^2) 2 

(3.2.11) 
(T, cr. 
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In some circumstances the third term could be small enough to neglect, for example if 

xj2=a+pxji+si , 8i ~N(0,a ) and a =o(ai ). This expression turns out to be a combination 

of the Euclidean distance and the predictive mean matching. For example, when the 

correlation between the covariate and the dependent variable is small it is more like an 

Euclidean distance, otherwise it is more like a predictive mean matching. 

From the perspective of predictive mean square error (PMSE), the objective of the 

selection of a donor value yj for the missing value yi is to minimise the PMSE. Suppose 

the normality assumption holds. The PMSE ofj^j as an imputed value forj^j is then 

^(yj ~yi)^ - E[{xj - x^)/3 + Sj -Sjf 

= l(Xj-Xi)fif+2cT^ 

Pi Pi + "•'•11 )(-̂ y2 ~ ^12) • (3.2.12) 

The weighted distance imputation misses out the cross product term, therefore generally it 

can not outperform the predictive mean matching imputation under these assumptions, 

although they are approximately equivalent if the cross product term is small. 

We now consider an alternative set of assumptions where the weighted distance method 

may be optimal. We assume that yi and yj are not independent and do not depend on the 

covariate x, in which their correlation is a function of the weighted distance. We describe 

this situation as follows. We assume 

B(y^-) = ju (does not depend on Xj), 

, X; ) , (3.2.13) 

var()/;) = = T - « , 

where /7(x.,x ) is a continuous monotone function of Xj and xj. For example. 
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jXy) — Aj (Xj-J Xyj) + (%,2 ' ( 3 .2 .14 ) 

or, 

Xx/,Xy) = (^exp(-{A,(%,] +4(;c,.2 (3.2.15) 

where Ai, A,] and (j) are some constants. Under these assumptions, the PMSE becomes, 

= v a r ( ) + var(yy) - 2 cov(_yy, _yy ) 

= 2cr^-2cr^/)(_y;,;/y), (3.2.16) 

Therefore minimising (3.2.16) is equivalent to maximising the correlation function which 

is also equivalent to minimising the weighted distance. 

In spatial data analysis, such as ore reserve assessment study, one of the main interests is 

to estimate the covariogram, the covariance of two spatial points, which is a function of 

the distance between the two points. This gives the validity of the weighted distance in 

practical applications. Matem (1960) derives several valid covariance models in 

where R'' is the real space with q dimensions. Here we assume q=2. One of them can be 

used to construct the valid weighted distance. 

GOV()/y, ) = cr^ exp(-a^ ||x; - Xy ||^) 

-o-^exp(-a^{(x,.i -%yi)^ +(%;2 

For more details see Yaglom (1957). The linear combination of any valid covariogram is 

also a valid covariogram; the product of any valid covarigram is also a valid covariogram 

(Cressie, 1993, p85). Suppose we have two valid type I covariance function as follows. 

cov^'()/,. ,:)/;) = exp(-aj^ )^), 

(;/,., exp(-a2 (;c,2 - )^ ) , ^ ^ 2 . 
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Then the product of these two is also a valid covariogram. 

The exponential covariance function of type (3.2.15) is obtained. With this covariance 

structure, minimising the mean square error object is equivalent to minimising the 

weighted distance. 

Although the weighted distance based nearest neighbour imputation neglects the cross 

product term in the PMSE, it still has some improvement compared with the Euclidean 

distance and Mahalanobis distance imputation. One can add the cross product term to the 

weighted distance to form a modified version of weighted distance imputation. The main 

advantage of the weighted distance is the ability of dealing with different types of 

variables and embedding different type of distance accordingly. Especially the more 

robust distances like absolute value distance can be employed to improve the performance 

in the situations where outliers exist. 

3.3 The Distributions of Distances 

This section explores the distribution of the distance between ys, with the aim of 

considering suitable models relating this distance to D(x) and hence to estimating W. 

Nominal 

Suppose a nominal variable y, has the following distribution 

7ri=Pv(y=i),i=l,...,p+l. (3.3.1) 

Let the distribution function for y be binary with d(yi,yj)=0 if yi=yj and 1 if yt^f^yj. Then the 

distribution of (i for a pair of randomly chosen j is 
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( 3 . 3 . 2 ) 
i*j 

2 ] ; ^ ; % ; == 1]%:? - ( 3 . 3 . 3 ) 

The logistic model or a neural network could be used to predict this distance. 

Ordinal;/ 

If y is an ordinal variable taking values then the distance function may be 

defined as diyi,yj)=\ yryjl- D{y) is still a ordinal variable, but likely has more distance 

levels. Suppose the distribution ofy is 

; z i = P r ( y = a ; ) , z = l , . . . , / ) + ! . ( 3 . 3 . 4 ) 

Then the distribution of diy) for randomly chosen and jvy is 

p + 1 — /c 
P r ( ( f ( y ) = A : ) = 2 ( 3 . 3 . 5 ) 

i=\ 

The Multinomial logit model or neural network model can be used to describe the 

relationship between this distance measure and D(x). 

Continuous y 

For continuous y, the simplest case, normal distribution case, is considered. Suppose 

j;~N(|i(x),o-^), and Euclidean distance is used. Denote the distance between yi and yj by 

(/(y/,){,) as before. 

( 3 . 3 . 6 ) 

Notice yi-yj ~N()_i(xj)- fj,(xj),2a^), then the distribution of d(yi,yj) is 
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]3r(d(yfj/J<:a)=:]Pr(b4-}3 

)-/'(-'[ y )))̂  y )))̂  

' j : i ° e <ly + - ^ \ f ^ e < f y . (3 .3 .7 ) 
Icj^n °° 2(tV^ 

The density function is 

{-4a -{/u{xi)-/^{xj)))^ {sfa -{n{xi)-/i{xj)))^ 

y ^ W = - - ^ e 4cy2 + - ^ e 4 . ^ . ( 3 . 3 . 8 ) 
4c7 V m 4cr V m 

It is not a member of the exponential family. p,(x) can either be approximated by a linear 

function or by non-linear functions like neural networks. The likelihood estimate of JVcan 

only be obtained numerically. When the computing burden is concerned, we would rather 

model y with respect to x directly. Another way is to check the distribution of D(y) non-

parametrically, and model Z)(y) with respect to D(x) instead. 
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4 Properties of Imputation Methods 

4.1 Introduction 

In previous chapters we have discussed various non-parametric imputation methods, such 

as distance based nearest neighbour imputation (donor imputation) and neural networks 

imputation, and parametric imputation methods such as linear regression based 

imputation. A natural question is to ask how these methods perform. There is no easy 

answer. It depends on various conditions including the mechanism of missingness and the 

characteristics of the population from which the data are generated. More importantly, it 

depends on criteria for what is a good imputation method. Taking a continuous variable as 

an example, one can judge the performance of an imputation method by evaluating how it 

preserves the properties of the population such as mean and variance in terms of the 

expectation and variance of estimators of these parameters under imputation. On the other 

hand, one can consider estimators of quantiles. 

If the missing mechanism depends on the variable which contains missing values, or if the 

observed data and the missing data are from two different populations, the evaluation will 

be complicated. For example, in the annual consumer survey of China, income is more 

likely to be missing for low income owners. In this situation if a good imputation is 

defined as one that leads to accurate estimates of population parameters based on the 

complete cases, many imputation methods will perform poorly and will fail to find the 

genuinely good imputations that give much lower average of income than the observed 

average. In this chapter we assume the missing mechanism is missing at random (MAR) 

defined in Chapter I, where the missingness doesn't depend on the variable with missing 

values, but may depend on observed covariates. That makes the evaluation of imputation 

methods sensible, because the covariates may provide a reliable basis for imputation. 

The main results in this chapter are about the bias and variance of estimators containing 

imputed values. Our attention is focused on continuous variables and superpopulation 

parameters. Finite population parameters are also discussed. In section 4.8, we give some 

initial results on imputation for categorical variable. But these results are descriptive. 
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Further work is needed to reveal the difference between methods such as RBF imputation 

and logistic imputation. 

Let consider a continuous variable y. Assume ju is the mean of y, x is the variance of y in 

either a superpopulation or finite population. yi...yn are a realisation of y, where n is the 

size of sample. For convenience, we assume yi...yn are independent and identically 

distributed {i.i.d.) 

0* 1 1) 

var(y)=T, ( 4 . 1 . 2 ) 

( 4 . 1 . 3 ) 

The evaluation will be based on how an imputation can preserve /j. and r in terms of the 

biases and variances of its estimators. A good imputation is expected to preserve the 

population mean as well as not to inflate variance much. We first introduce the estimators 

of population mean and variance with full sample. The comparison is based on the 

properties of estimators with missing values (assumed missing) substituted by imputed 

values. Let's consider two scenarios, superpopulation and finite population respectively. 

4.2 Estimators with Full Observations 

Superpopulation 

As described in section 4.1, suppose we have a realisation Y={yi...yn)^ fi"om a 

supeipopulation model, where yi...yn are independent realisations of a random variable y 

with mean // and variance r, where n is the number of observations. Here r is scalar. The 

reason of using t instead of is that later on is used to denote the variance of 

regression residual. The parameter /u can be estimated by 

= (4.2.1) 
f=I 
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where 1,̂  = • Under the assumptions given in (4.1.3), the above estimator is 

unbiased with variance z/n. The variance of can be estimated by 

( 4 . 2 . 2 ) 
f=] 

where In is the nxn identity matrix. The estimator x is asymptotically unbiased (Larson, 

1982). 

For imputation purposes we usually make use of a covariate x to construct imputation 

methods. We assume there are q covariates. All values of covariates are assumed 

observed, and these values are written as 

X. 

V̂ nl "9/ 

We further assume the conditional expectation of y given these covariates may be 

expressed as //(x), and we may write 

y- — //(Xj) + £-,i — 1 ...n, (4.2.3) 

where x,=(x;7... x,-̂ )̂ , £'(s,)=0, var(s,)=a^, s; .. .8„ are independent. For simplicity we treat 

X as fixed. The function ,w(x,) becomes Xij0 in regression model (section 1.3) or 0(xi)Win 

RBF model (section 2.1). It depends on model assumptions. For superpopulation, the 

definition of // may be extended in this case to 

1 " 
ju = lim—V//(x,.) = lim^(j7) 

M kffi 1/* " M 

(4.2.4) 
/=i 

Similarly the definition of rmay be extended as 
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TT 
f = l 

= lim ^ ()/, - //(x,) + //(X;) - j7)") 
n^co TT f=I 

= -//(%,))' +(//(%,)-j7)') 
f= l 

= (?: + crz, (4.2.5) 

1 
where a l = hm—V(//(x, .)- / /)^. The expectation of the mean estimator in (4.2.1) is as 

„̂ C0 f l ^ 

follows 

1 fl >00 
== // . (4.2.6) 

n i=i 

(4.2.6) indicates fi in (4.2.1) is an asymptotically unbiased estimator of //. 

The expectation of the estimator of r in (4.2.2) is as follows 

= + 2M"' ̂ ^ ( y , - /Y(Xi))(^(X;) - ;U) + 
f=l /=1 

X E ( f M - M ) ' 
i=\ 

o-'+M-'^(//(x,)- / ,)% (4.2.7) 

n 
f=i 

f=i 

and T is also asymptotically unbiased for T. 
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Finite Population 

In the census scenario, suppose we have a finite population of size n, the same as the 

sample size. The population mean and variance can thus be written as follows. 

/ = ! 

( 4 . 2 . 8 ) 

( 4 . 2 . 9 ) 
/ = ! 

and jLi = ju, x = x. So there is no estimation error if there are no missing values. 

4.3 Estimators in the Presence of Imputation 

In section 4.2, we gave the estimators based on fully observed Y. In this section we 

consider the corresponding estimators when some of the observations in Y are missing and 

replaced by imputed values. Suppose the first m units are observed, and the remaining n-

m units are missing. For convenience, we denote the data matrix X and Y as 

X : 

X 

m + I , I 

7 : 

V 

y,n 

% Uj 

X mq 

X m+\,q 

X 
nq J 

The estimator of jj. (4.2.1) can be expressed as the sum of two parts as follows 
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1 M 1 1 'X 

^ i=\ ^ /=] ^ j=m+\ 

n n 
(4.3.1) 

where Ŷ  and Ŷ  are the means of Y] and Yj respectively, w={n-m)/n. 

If 72 is missing, it can be imputed and plugged into (4.3.1). We denote the imputed value 

of Y2 by Y2 , where 

Y 

J 

Then 

1 
I f , . (4.3.2) 

and 

//y = (1 - W)]̂  + 
2 ) 

(4.3.3) 

The estimator of r in (4.2.2) can be expressed as follows 

* = - 1 (y,-yy 
n /=i 

= - Z ( ; / , - / ) ' + - Z (jKy-y)' 

.4 + ̂ , 

M y=m + l 
(4.3.4) 

where A and B can be written as follows 

78 



n i=i 

1 
• — E (jV,- - (1 - - wY )̂ 
n (=1 

- l ( y , - r , + w ( r , - ¥ , ) ) ' 
n i=\ 

2 

1 "1 — T 2w m _ _ . 

M 1=1 n i=\ n 1=1 

—(l-w) Tj + (1 — w)(}^ — 5 

where x , is the estimator of r based on Y\. Similarly, 

B = ~ i (y,-Y)' 
fl j=m+\ 

= - E 

M y=m+l 

M y=m+l 
= - t ( y , - % y + 2 — t (y^-%)(Y,~Y,) + w(i-wy(f,-Y,)' 

M y=m+] M y=m+l 
=w X 2 + w(l — 

where x ^ is the estimator of r based on Y2. Plugging A and B into (4.3.4), x can be 

written as 

t =(l-vy)t; H-wt; (4.3.5) 

If Y2 is missing and replaced by Ŷ  , the estimator of r based on Yi and 7̂  becomes 

t ; =(l-w/) t , +M;t 2 +Ml-w)(]^ - (4.3.6) 
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With the decomposition given above, the comparison can be concentrated on the term 

containing the imputed values. A simple way to consider the effect of imputation is to 

compare the differences between the estimators based on true values and those containing 

imputations. In the case of a census and the finite population parameters, this difference is 

simply the estimation error. Here we assume the true values are known. The difference 

between ju and juj is 

' - l I - m A - y ; ) ' (43.7) 
n — m 

In the census situation, //=//, therefore (4.3.7) is the error introduced by imputation. 

Since r is a scalar, the ratio of estimators of z can be used to compare the effect of 

imputation, 

j j L -1+ ^ ( ^ 2 - f z ) + - y 2 ) ( y 2 + ^2 - 2 y \ ) (4 3 8) 
T T 

In (4.3.8), from the imputation point view, the first term is constant; the third term is likely 

to be a small quantity under MCAR assumption. The key effect of imputation is 

determined by the second term, which is the estimator of population variance based on . 

To compare the estimators based on full sample (in the sense of both Y\ and Y2 are 

available) and the estimators under imputation (72 is missing and replaced by Fj ), we 

need a criterion to measure the differences between them. Here we define the 

unbiasedness of the estimators in the presence of imputation with respect to the estimator 

of full sample as follows 

jr(7} - ?")==(), (4.3.9) 
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where 7 is the estimator of the parameter of interest based on Yi and Y2. Tj is the estimator 

based on 7i and . In census situation T becomes a quantities of finite population, such 

as population total or mean, which is actually the parameter of the finite population. 

Therefore this definition becomes the conventional unbiasedness definition. For example 

if the parameter of interest is ju, ju is the estimator of full sample, and fij is the estimator 

containing imputed values, the unbiasedness of fi, with respect to fi can be expressed as 

% - / / ) = 0 . ( 4 . 3 . 1 0 ) 

In census situation, (4.3.10) becomes E{fi, - / / ) = 0. Similarly the unbiasedness of % j 

can be defined as 

a ( t i - t ) = 0 . (43^1) 

If E{Tj - f ) / 0, we call Tj is a biased estimator of T. We call E{TrT) predictive bias, and 

denote it by pbias, 

jr(7} - ] " ) . (4.3.1:2) 

Potentially there are many ways to obtain Ŷ  (see section 1.4). Since our main objective 

is to compare regression-based imputations (1.4.1, 1.4.2) and neural networks based 

imputations (2.5.1, 2.5.2), we shall focus our discussion on these two kinds of imputations. 

Also for mathematical simplicity, we choose RBF neural networks imputations instead of 

MLP imputations. 

4.4 Bias Properties of Estimators of fj, 

In this section we shall be investigating the biases of estimators of /j. when imputed values 

are used. The imputations we consider are regression-based imputation and neural 

network based imputation such as linear regression imputation and random regression 

imputation and the counterparts of neural network based imputations. The neural network 
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model we chose is RBF neural network. We discuss the two kinds imputations 

respectively. 

Regression Based Imputation 

Two imputation methods based on linear regression are considered, regression imputation 

and random regression imputation. The regression imputation replaces missing values by 

the conditional mean given by regression model (see 1.4.1). Suppose Y2 is missing, the 

regression imputation is 

= j r , / ) , (4.4.1) 

where = 

Random regression imputation is regression imputation with an additional residual term, 

which can be obtained by a random draw from the residuals of complete cases (see 1.4.2). 

The random regression imputation can be written as 

^2/^ + 02, (4.4.2) 

where ê  =(£,„+] " '^nV is the estimated residual vector of length n-m (see 1.4.2). £• can 

be obtained from the residuals of observed cases. The simplest way is a random draw 

from the available residuals = where S j = y j - X j P , j = l...m. Other 

methods include predictive mean matching and a random draw from the distribution of 

residual term estimated from observed residuals. For predictive mean matching method, 

I, can be written as s, = • 

The assumptions about variable y are E(y)= //(x) and var(y)= r (see 4.2.3), where x is the 

covariate of y. The regression imputation is a linear combination of Yi and can be written 

as 
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01.4.3) 

where 

(44.4) 

If we plug the imputation in (4.4.3) into (4.3.3), the estimator /}, under regression 

imputation is obtained. 

n 

= (4.4.5) 

Plugging (4.4.2) into (4.3.3), the estimator of jj, based on random regression imputation is 

obtained. We denote it by . It can be written as 

n n 

= A +—lI-mGz- (4.4.6) 
n 

We discuss the regression imputation in (4.4.1) first. If the linear assumption is true, 

which leads to //(x)=xy0, the expectation of becomes 

n 

^ 'AT v- n , -tT V i vT -w- \rT = - (11 (J^/ )-' 
n 

' - i l x p . (4.4.7) 
n 
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Comparing (4.4.7) with (4.2.4), we find fi, is an asymptotically unbiased estimator of //. 

Furthermore, under the definition of (4.3.11) is also unbiased with respect to ju . 

The unbiasedness of is a direct result of linear assumption. What if the assumption is 

invalid? We would like to know the robustness of fi, under misspecification. 

Specifically, what is the bias if the true model is RBF (see 2.1.4)? One reason we consider 

RBF instead of other models is that RBF can be adjusted to be any linear and non-linear 

functions at least in theory. Therefore it has the potential to represent a wide range of 

models. The other reason is that the main objective of this chapter is to compare 

regression imputations and RBF imputations. We would like to know what would happen 

if one model is true and the other one is used. 

Under RBF model, the expectation of y is £'(y)=/i(x)=0(x)JF (see 2.1.4). According to 

(4.2.4), ^becomes 

// = l im-Y0(x , . )PF. (4.4.8) 

The expectation of ju, becomes 

m . ) = - ( I f . + • (4.4.9) 
n 

From (4.4.9) and (4.4.8) we obtain the following expression for the bias of p., under RBF 

model assumption. 

6 z ^ ( A ) « - (4.4.10) 
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Suppose the term inside the limit sign is a good approximation of bias(/u, ), and if the 

underlying C5(X) is far from linear, the bias is likely large. In the ideal situation where 

<D(Xj)fF « Xj/? and then <I>(X2)W « , the bias will be very small. 

Based on the unbiasedness definition in (4.3.11), the predictive bias of with respect to 

p. is exactly the term inside the limit sign in (4.4.10). 

pbias{fli)^hl„H,_,<S>(X,)W-hl„ 'S>{X,)W. (4.4.11) 
n n 

Again the predictive bias depends on the difference between and 0(Z). If it 

is small, otherwise it might be large. Therefore the performance of regression imputation 

depends on the validity of model assumption. If the underlying model is a linear 

regression model, the regression imputation gives unbiased mean estimator with respect to 

the estimator based on true values. Otherwise if the underlying model is RBF, regression 

imputation may give biased estimator. Because RBF model is very flexible, it can be 

tuned to be any non-linear function. Therefore the assumption of RBF model can cover a 

wide range of models. This eases the damage of model misspecification. 

From now on we shall focus on predictive bias other than the ordinary bias, which is 

difference between the expectation of estimator and the parameter of interest. The 

expansion of (4.4.11) is discussed for several special cases in section 4.7. 

The above results of /}; are also applicable to random regression imputation . Since 

the residual term is assumed to be independent to 7i and has expectation of zero (see 

1.3.2). Therefore we have£"(/},) = E(jU^i). 

RBF Based Imputation 

If Y2 is missing, it can be imputed by RBF imputations. Similar to regression-based 

imputation, the two methods based on the RBF model are RBF imputation, which imputes 
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missing values by RBF prediction (2.5.1) and random RBF imputation which adds a 

residual term to RBF imputation (see 2.5.2). The RBF imputation can be denoted as 

follows 

==(i)(;r2)f;f, 04.4.12:) 

where 

fF = (4.4.13) 

The random RBF imputation is 7 / with additional residual term randomly drawn from 

the residuals of the complete cases. We denote it by , 

Jp;* +e*, (4.4.14) 

where is the residual vector drawn fi-om the residuals of the complete cases and 

assumed to be independent to Yi and centred at zero. If we plug (4.4.12) and (4.4.14) into 

(4.3.3), the estimators of mean based on RBF imputation and random RBF imputation are 

obtained. We denote them by and respectively. 

+ 1 L <!>(•?, (4.4.15) 
n 

A-fl = • (4.4.16) 
n 

Compare the RBF estimator in (4.4.15) to the estimator in (4.3.1), the predictive bias of 

is obtained, 
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pbias(fi,) = E(hl,mx,)w - r,)) 
n 

= KX^)) (4.4.17) 
n 

where //(Xi)=(//(xi)... //(xm))^, X^)=(Xxm+i). • • If the underlying model is RBF, 

//(Xi)=0(Xi),//(X2)=0(X2), pbias{jd^) = 0, then fig^ is unbiased with respect to /}. As 

aforementioned, RBF model can represent a wide range of models, although it may not be 

easy to obtain, in the sense of finding an exact representation of the underlying model in 

practice. If the underlying model is a linear regression model, iu{Xi)= X\^, 

then pbias(jUi^) ̂ 0 , therefore the mean estimator based on regression imputation is 

biased. In the special case when ^{X^)W ^ , regression imputation may also give 

promising results. This may explain in some situations when computing time is a big 

concern regression imputation can be a good replacement to RBF. 

The random RBF estimator shares the properties of discussed above, since the 

residual terms are assumed to have zero expectations. 

4.5 Bias Properties of Estimators of t 

In this section we discuss the properties of estimators of the variance t in the presence of 

imputation. Specifically, we investigate the predictive unbiasedness of the estimators of t 

based on regression imputation and RBF imputation. The imputation methods considered 

are regression imputation (4.4.1), random regression imputation (4.4.2), RBF imputation 

(4.4.12) and random RBF imputation (4.4.14). They will be discussed in turn. 

Regression Based Imputation 

The variance estimator based on regression imputation can be obtained by plugging (4.4.1) 

into (4.3.7) and is denoted by x , , 
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t , =(l-w) t ; +W t 2 + W(1 - ^ 

n n 

_l_ ^2\ îi-m _ "̂ 21 ̂ «-m y 
' 7M M — TM /M M — 7M ' 

= (4.5.1) 

where CH is the matrix containing constants and hat matrices, 

Q — 1 22^21 _|_ H ) ( ^ ' " — ^4 5 2) 

Hu = I , . - ~ i X , 
m 

ff =T 1 1 22 n-m w-m M-m" » -7M 

Under the assumptions given in (4.1.1)-(4.1.3), the expectation of x , becomes, 

+ (4.5.3) 

where - (//(x,), - , ) ) - The term ^ G / ) can be written as 

ni — 1 1 ^ s _] 
+ - f r ( ^ , ( ; r / ; ^ , ) - ' % ^ ) + 

n n 

(4.5.4) 
n n n 

CH is a function of the matrix X\, the matrix X2, the size of the observed sample m and the 

sample size n. It is useful to investigate the asymptotic behaviour of CH in order to 

understand the influence of the different model assumptions. To achieve that we need 

more assumptions about the relationship between X\ and X2 as well as between m and n. 

One of the assumptions is that the proportion of missing cases tends to a constant as n 
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increases. The other one is that X2 falls in to the linear space spanned by Xi. Let us write 

down the two conditions 

)ro, (4.5.5) 
n 

JT] (4.5.6) 

where t / is a (n-m)xm matrix. The validity of (4.5.6) is based on the fact of m»q. 

Therefore it is likely that there exist q rows in Xi, which form a R'' space. For simplicity 

we assume the first q rows X i , . . . , X g span the R'' space. Then theyth row in X2 can be 

represented by 

: f l , X j , H H G g X ; ^ + 0 - X ] ^ ^ , + - - - + 0 - X , „ , , 7 - 1 , . . , ( 3 ^ e i ? , 

where is the7th row ofX2, Mi is the rth row of Z î, z=l,.. .,m. The above expression can 

be denoted in the form of (4.5.6). If the number of observed cases {m) is much larger than 

the number of unobserved cases {n-m), for each row vector in X2, it is highly possible to 

find a same row inXi. The assumption can be described by the following expression, 

^2; -,/»}. (4.5.7) 

That means all the elements of U are just 0 or 1. 

The term tr{CH) may be expressed as 

n n 

--^tr{P,U'l,_X-.U). (4.5.8) 

n n n 
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where 'Xf is the hat matrix based onXi. Pi has the following properties. 

(1) Idempotent 

(2) Symmetric 

(3) Non negative. 

Therefore there exists a matrix V such that 

, 04.5.9) 

where V^V = is a diagonal matrix with only 0 or 1 on the diagonal (Liitkepohl, 

1996). Based on (4.5.9), we can obtain the following result. 

^(7^) = rr(PGd^F'') - = ^(/(^) - ra»^(yr,) < g , (4.5.10) 

where q is the number of covariates. 

It will be helpful if the asymptotic value or limit of triCu) is obtained. We employ the 

properties of a symmetric non negative matrix to determine the limit of rr(Qf). 

For symmetric non-negative matrixes A and B (Ltitkepohl, 1996), 

/r(,4) = >() , (4.5.11) 
i=\ 

rr(y4B) = rr(^v4)<f7-(y4) + rr(a), (4.5.12) 

where 'k\ is the z'th eigenvalue of A, (4.5.12) assumes A B are exchangeable. Hence 

90 



= r r ( A ^ r [ / ^ [ ; F ) 

= ^(A^([ /F/[ /P") (4.5.13) 

0 < ^(ILC/T^l J = ^ ( ; ^ 1 ^ 1 L [ / ) < 9 + ^ ( l ^ l L C / ) , (4.5.14) 

0 < ^ 9 + . (4.5.15) 

All the elements of U are assumed to be 0 or 1 as explained in (4.5.7). In the situation of 

m»n-m, [/ is a sparse matrix. In another situation when each row of X2 can be found in 

Xi, we have l f U = K ^ , where is a diagonal matrix with elements 0 or 1 on the 

diagonal. In both situations, the trace of matrices involving U can be further expressed as 

fr(Am([/F)"[/r) 

< fr(/Lm)rrir) = fr(Am) = fr(;)) (4.5.1,5) 

^ ( l j L [ / ) < r r ( l j I ) - / » , (4.5.17) 

^ (4.5.18) 

If we plug (4.5.16) into (4.5.13), (4.5.17) into (4.5.14), and (4.5.18) into (4.5.15), then 

plug (4.5.13) to (4.5.16) to (4.5.8), the asymptotic value of triCn) is obtained as follows 

^(C//) = + o ( - ) 
n n n 

= ^ ^ + 0 ( ^ ) + o ( - ) 
n n n 

/M - 1 ^ . 1 \ n-w 
+ 0 ( - ) >1-^;,. (4.5.19) 

n n 

For general U, the similar result to (4.5.9) is expected. Due to mathematical complexity, 

the result for general Uis not included here. But one can imagine the general [ / is a linear 

combination of a series of orthogonal matrix U. For orthogonal [/, we have 

tr(PJJ^U) = tr(P^). Therefore the result of (4.5.16) can be extended to the general U. 
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The second term in £( x, ) (see 4.5.3) is . This is the variance component 

generated by the regression mean (see 4.2.7). If the linear model is true, it becomes 

. It can be written as 

= - M - ' l f . (4.5.20) 

Plugging (4.5.19) and (4.5.20) into (4.5.3), ^ ( t , ) is approximately equal to 

^ ( t , ) y ^ . (4.5.21) 
n 

Comparing (4.5.21) to (4.2.9), the predictive bias of x , with respect to x is as follows 

pbias{ i / )» ^ cr^. (4.5.22) 

From (4.5.22), we find x , underestimates variance by nearly (y^{n-m+l)/n. In the special 

case when the covariate x is constant c (x=c), then^=(c. . .c) and J^(I" -n^l\^)X= 

c^l^(r -/2'^ll^)l=c^(l^-«"'l^ll^)l=0. The above term becomes zero. £"( x , ) is just the 

first term in (4.5.3). 

E ( t J = o - ' r r ( Q ) « — ( 4 . 5 . 2 3 ) 

Random Regression Imputation 
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To preserve r, one can use random regression imputation instead of regression imputation. 

The estimator of rbased on random imputation is obtained by replacing in (4.3.7) with 

(4.4.2). We denote it by x . 

1 r. TH /V A, . ^ 1 T T ^ 1 -t HI 
-T:, +-62-5^2262+^1 

n n {n-m) 

+ (4.5.24) 
n n m n — m 

where the expression for t , is given in (4.5.1). Plugging (4.5.21) into (4.5.24), the 

expectation of x can be written as 

)=J&( t , ) + " ^ ^ 
n n 

ir //-, \\ T/-, n — tn — 1 2 ^ 2 
= (J {tr{Cf^)) + Cfjfj.^ + (7 + — CJ 

n n 
2 , -1 nT T r̂/T „-l-| -iT (4.5.25) 

Comparing (4.5.25) to (4.2.9), we find x is unbiased with respect to x . This result 

suggests random regression should be used instead of regression imputation if the 

underlying model is regression model. 

If the true model is RBF with £'(y)=//(x)=0(x)ff, the simplified expression of 

seems very difficult to obtain. When //(x) is far from xy0, is likely to have larger 

value, which leads to bigger £"( x , ) and E{ x ). 

From above results, one can find the expectation of variance estimator is quite complex, 

because it contains both the variance term and mean term. The variance term is a product 

of c/ and the trace of C//. The mean term is determined by the form of mean function. 

For regression model we have, is(y)=/^(x)=xy0, //f = (x,/), . It can be simplified. 

For RBF neural networks model, £'(y)=//(x)=cD(x)PF, ju^ =(0(x,)fF,---,0(x„,)PF). It is 
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not an easy task to obtain the simple expression in general situation. But we can 

investigate the result in some special cases. This will be detailed in the next section. 

RBF Based Imputation 

As in section 4.4, the two imputation methods based on RBF model are RBF imputation 

described in (4.4.12) and random RBF imputation described in (4.4.14). If we plug 

(4.4.12) and (4.4.14) into (4.3.5), the estimators of rbased on RBF imputation and random 

RBF imputation are obtained. We denote them by x ^ and x respectively. 

t a (4.5.2(5) 

tr,; + - % 2 e 2 + 2 / " 
n n (n-m) 

'^VTTT(R)TTT " 2m(n m) 
+ (4.5.27) 

n n m n-m 

where 

=1111+ \"21 / "22-21 + 

m n — m m n — m 

- 0 ( % j ( 0 ( x , ) ' ^ 0 ( ; r , ) ) - ' 0 ( z , ) ' ^ . (4.5.29) 

H22 and Hu are defined in (4.5.2). Since the form of RBF mean function is linear in W, if 

we give the same assumptions for Xi and X2 to 0(Zi) and 0 ( ^ ) , and assume the 

underlying model is RBF with ii(y)=//(x)=0(x) PF, j5(t ^ ) and £'(t,.^ ) have similar 

expressions of (4.5.21) and (4.5.25) respectively, 
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- M - ' l f ) 0 ( ^ ) f F , (4.5.30) 
n 

.2 , . -Ui r r^ /v \Tt r - I n 7 ) = o - ' + M - W ' 0 ( ^ y ( I « - » 11 ) 0 ( ^ ) f F . (4.5.31) 

Comparing (4.5.30) and (4.5.31) with (4.2.11), the predictive biases of t ^ and t are 

obtained as, 

pbias(T ji )=--—<7^, (4.5.32) 
n 

pbias{x )=0. (4.5.33) 

If the unbiased estimator of T is used in (4.5.32),/?6za5( T ̂  ) becomes cr ^ . We 

n 

can conclude from (4.5.32) and (4.5.33) that RBF imputation deflates variance by a^(«-

m+\)ln. Random RBF imputation gives unbiased estimator of r under the assumption of 

RBF being the underlying model. 

If the underlying model is a linear regression model, both RBF imputation and random 

RBF imputation are likely biased. The predictive biases can be written as. 

phias{% )=--—+cr^rr(C^) + 
n 

- M - ' l f ) ^ yg, (4.5.34) 

- M - ' l f )vir /g . (4.5.35) 

It is difficult to simplify (4.5.34) and (4.5.35) in the general situation. That makes it hard 

to judge the magnitude of the predictive biases given by RBF imputations when the 

underlying model is actually a linear regression model. However we can investigate the 

scale in some special cases that may help us to understand the advantages and 

disadvantages of RBF imputation over regression imputations. This is detailed in section 

4.7. In theory RBF model has the potential to be a linear regression model, it may suggest 

RBF imputations are robust to misspecifications of model assumptions, although 
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specifying RBF to be the underlying model might be an easy task in practice. In the ideal 

situation when the underlying model is a linear regression model, and RBF model is 

specified to be equivalent to the underlying model described by £'(y)=//(x)=x/?=0(x)JF, 

the random RBF imputation still gives relatively unbiased estimator of E. Furthermore, if 

the underlying model is a non-linear model, the advantage of RBF imputations is evident 

by the possibility of being trained to represent the non-linear model. 

One disadvantage with RBF model is the difficulty of finding the right specification for 

the underlying model, linear or non-linear. It is not guaranteed to obtain the right 

specification in terms of number of nodes and definition of centres. An efficient training 

algorithm is needed to get a reasonable specification. 

4.6 Variance Properties of Estimators of fx 

In this section we discuss the variance of estimators of fj.. Under the assumptions 

described in (4.1.1) and (4.1.3), the variance of jUj in the form of HyY\ can be expressed 

as 

var(/}J = var(%)#, 

, (4.6.1) 

where is a vector containing covariate x, Y\ is defined in the beginning of section 4.3, r 

is the variance defined in (4.1.2). (4.6.1) tells that the variance of is determined by the 

scale of . For convenience, we call it variance coefficient of imputation (VCI). 

(4.6.2) 

Although VCI contains the covariate x, it is independent of the assumption about the form 

of the mean function //(x). Meanwhile, different imputations may give different VCIs. 

We expect VCI to be close to 1/n which is the FC/based on the true values of Y. One can 

judge the performance of an imputation by its VCI along with its predictive bias property 
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defined in (4.3.13). If VCI is bigger than Mn, the imputation gives less reliable estimator 

of //. We discuss (4.6.1) and FC/with the regression imputations in (4.4.5) (4.4.6) and the 

RBF imputations in (4.4.15) (4.4.16) respectively. 

Regression Imputation 

For ju, based on regression imputation, can be written as 

(4.6.3) 
n 

where is defined in (4.4.4). According to (4.6.1) the variance of /i/ can be written as 

var(//;)=rFCT/, (4.6.4) 

where VCIi is the variance coefficient of regression imputation, 

FC/, = 

= \{m + + I L 1,_J 
n 

= A (»•+ iL . x , ( x ^ x y {2x1 )) 
n 

4 ( ' k + 2 1 L « „ 1 , . (4.6.5) 
n 

(4.6.6) 

The magnitude of VCh is determined by the matrix //21 and Hm- It is difficuh to simplify 

(4.6.5). However the expression of VCIi can be used as the basis of comparison in some 

special scenarios. For example if x=l, , i/212 therefore VCIi 
m m 
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=\lm. In this case, //, has bigger variance than the estimator of // based on true values 

(4.2.1). 

The variance of (see 4.4.6) is the sum of var(//,) and " ^ r, since we assume is 

n 

independent of Y\ (see 4.4.2). The resulting variance coefficient of random regression 

imputation (VCIri) is obtained as follows 

= (4.6/7) 
n 

(4.6.7) reveals that the estimator of p. based on random regression imputation has bigger 

variance than that based on regression imputation by a term of ^ r, but the gain is the 
n 

unbiasedness for variance estimation described in (4.5.25). 

RBF Imputation 

For RBF imputation, the variance of (4.4.15) can also be put in to the form of (4.6.1) 

with given below 

(4.6.8) 
n 

HR is obtained by applying (4.6.1) to (4.4.15), where is defined in (4.5.29). Plugging 

(4.6.8) into (4.6.2), the resulting VCIR is obtained as 
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n 

= ^ ("I + 211,, 1., + I L Wjn' l . - . ) . (4.G.9) 
n 

where 

= 0 ( y r j ( 0 ( Z , (4.6.10) 

Again, the magnitude of VCIR is not obvious, which makes the comparison of VCIR and 

veil more difficult. However we can look at some special situations to find out whether 

RBF based imputation can give some improvement over regression based imputation. 

Similar to var(/i^,), under the independence assumption about and Y\, var(/)^^) can be 

written as the sum of var( ) and ^ T. 
n 

var(//,;;) = var(//^) + ^^-^T. (4.6.11) 
n 

From (4.6.11), the variance coefficient of random RBF imputation (VCIrR) can be obtained 

as 

MCT;* ==)/Cf, + . (4.6. i:z) 
n 
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Comparing VCIrR in (4.6.12) to VCIR in (4.6.9), the estimator of JJ. based on random RBF 

imputation has bigger variance than that of RBF imputation. But the comparison of VCIrR 

to veil and VCIri remains difficult, and will be discussed in some special situations in 

section 4.7. For example if x=l, there exists O(-) such that 0(x)=l. Then 

H'i' rci, = rch 'Vm, vein = VCh 
m m 

=\lm+{n-m)ln^. Therefore, in this special case, regression imputation is equivalent to the 

counterparts of RBF imputation in terms of the variance of estimators of //. 

4.7 Comparison of Linear Regression Imputation and RBF Imputation 

in two Special Situations 

In the last three sections we obtained some general expressions for the expectation and the 

variance of the mean estimator and the expectation of the estimator of population variance 

based on linear regression imputation and RBF neural network imputation. These general 

results did not enable the performance of the two methods to be compared very easily. In 

this section we compare them in two special scenarios, where the difference is easier to 

understand. 

Before we compare the difference between the two models, we should mention the fact 

that the RBF model can be trained (or adjusted) to be either linear or non-linear functions 

(Bishop, 1996). Here we give a special RBF model that is equivalent to linear regression 

model in terms of model prediction. 

Suppose the centres (or nodes) of the RBF model are defined as the original data points 

We also assumexi,...,x„ are scalar and distinct. The basis function is ^c{x)=exp{-

{x-cflX), where c is the node or centre. For an arbitrary small number a, there exists a 

value A, with X<md/a, where md=min{\x\-xjf,i^j, such that (|)c(xi)«l, c=x\,...,xn, 

i=\...n. For simphcity we use a similar basis function that can be approximated by the 

above basis function. 

100 



0 otherwise 

With this basis function, the 0(A^=( „ becomes an elementary matrix I„. If the 
j=\,...,n 

weight vector W is set to be Xp, 0(^0 W becomes Xf5, which is the mean function of 

regression model. In practice the above basis function can be obtained approximately in 

RBF training process if the proper initial value of 1 is provided. 

The following comparison is based on assumptions given in (4.1.1) to (4.1.3). One 

additional assumption is about the mean of y given x. In regression model we assume 

E(y|x)=x/7, in RBF model we assume E{y\x)= 0(x)W, which is where the difference comes 

from. 

4.7.1 Scenario I: x=l 

In this special case we can write E(ylx)=/j. The variance of mean estimator and the 

expectation of the estimator of population variance do not depend on the mean function 

assumption. 

Regression Based Imputation 

When X equals one, the matrix H21 in (4.4.4) becomes 

ff2,=-K-X- (4.72) 
m 

If we plug (4.7.2) into (4.4.5), becomes, 

(4.7.3) 
n m 
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which is the mean of the observed yt values so that regression imputation reduces to mean 

imputation. Under assumptions (4.1.1) to (4.1.3), E{ju,) and var(/},) are obtained as, 

jEXvU,) = (4.7.4) '•I 

var(/},) = — . (4.7.5) 
m 

From (4.7.4) and (4,7.5), we find is an unbiased estimator, but the variance of is 

increased by imputation compared to the estimator based on true values. In this special 

case T=a .̂ 

If we plug (4.7.2) into (4.5.2), the resulting CH is obtained as follows, 

(4.7.6) 
n 

Applying (4.7.6) to (4.5.3), £"( x , ) can be written as 

(4.7.7) 

The above result (4.7.7) shows that the mean imputation deflates. The drawback of mean 

imputation can be overcome by using random regression imputation. If we plug (4.7.7) 

into (4.5.25), we find x is an unbiased estimator of r. Meanwhile the variance of mean 

estimator increases further by — — r (see 4.6.7). 
n 

In this special case, the term containing the conditional mean given x is equal to zero, 

therefore the result doesn't depend on the mean expression assumption, it only depends on 

the assumptions given in (4.1.1) to (4.1.3). 
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RBF Imputation 

In this special case, the RBF model becomes a linear regression model, if we express the 

model using the following notation. 

m - , ' , (4.7.8) 
1+ (%-!) 

where is a radial basis function defined at c=l. Since x,=l, i=l...m then (j)(xi)=\, 

The RBF becomes a linear regression model. Since 

l^{\)=E{y\x)^(j){x)w=w=id. (4.7.9) 

It follows that = C ^ . Even if the centre is not at x=l, a minor modification in basis 

function gives the same result. The other thing is the scale of the basis function (like the 

kernel function in non-parametric regression, Hardle, 1989). It does not change the 

prediction given x. When the basis function is multiplied by a factor k, W is multiplied by 

1/k. Later on we will change the scale when we need simple expressions. 

Now let the centre be c^\ and let # d = . This leads to the same conclusion of 

(4.7.9). By now we assume only one node (or centre) is defined. What will happen if two 

or more centres are used in this particular situation? Let us consider the situation with two 

centres defined. Whatever centres are defined, the new covariates transformed by the 

basis functions are collinear. A perturbation is needed to tackle the singularity problem 

when estimating W. The side effect of perturbation is that it may distort the true result. 

Suppose two centres ci C2 are defined. A perturbation is applied to 0 ( ^ . The 

perturbation is generated from the standard normal distribution A~A (̂0,1), then the 

perturbed data of the transformed X is: 
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O(v^) + A 

1 + /L 

1 + A m\ 

l + ( l - c , ) ' 

i + ( i - c , y 

4- An 

+ A„ 

(4.7.10) 

The asymptotic estimator of WA is 

+ 
0 

2 Ay, + cov(y, A) + A cov(y, A) 

cov(y,A) 
(4.7.11) 

Where y, is the sample mean of y based on the observed data, A is the sample mean of A, 

cov(y, A) is the sample covariance of y and A. Apparently the perturbation could distort 

the estimation by the second term in the above expression. This result reveals when the 

data centres result in collinearity, the estimation could be distorted. Therefore the 

selection of the centres should be carefully carried out. 

4.7.2 Scenario II: x has two different values (a, b) 

Suppose X is still a scalar covariate taking two possible values a and b For 

convenience we give the following notation. 

}, z=m+7,M}, %i=6, 

i=m+I,n }, nax]=*{i, zG Saxi }, nbxi=*{i, Sbxi }, Saxi }, Sbxi }• 

Regression Based Imputation 

The unbiasedness property of estimators of JD and T under the linear regression model has 

been shown in (4.4.6) and (4.5.22). Here we focus on the property of predictive bias when 

the underlying model is a RBF model (see 4.4.11 and 4.5.3). 
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The regression imputation of Y2 is given by (4.4.1). In this special case it becomes 

= (4.7.12) 

where 

= ( « % , + ^ 6 1 ^ ; : , (4.7.13) 

^2 =^la:i2 +^l6;c2' 

~ + ^l^xi ' 

^fla'2 ~ a2,i^(n-m)y.\ •> 

'^bx2 ~ (^^,/)(«-m)x] ' 

'^ax\ " (^fli,/)oixl ' 

,! )»ixl 5 

j l , %,.= a,z = 7M+ !,...,» 

I0, o^Aeni/we 

11,%,. =6,Z = /M + 1,...,» 

^'' I0, o^Aenvz.9e 

^ j 1, — Cl̂ i — I5...,TH 

""' jo, o^Agm/we 

[l,;t,. =6,;=1,...,/M 

10, ô Aenvẑ ye 

This notation can be easily extended to the multiple value case of x. Therefore the 

conclusion about unbiasedness of estimators in the presence of imputation obtained from 

the two-value case is applicable to more general situations. 

For convenience, we assume the underlying model is 
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.E'(y|x)=^x)w, (4.7.14) 

where w is assumed to be 1 for mathematical simplicity, there are two nodes at a and b 

respectively and (jix) is as follows 

m = , (4.7,15) 
( 6 - a ) [l + (%-a) ] ( 6 - a ) [O ^ ;c = 6 

The basis function (p{x) will be re-used in the following paragraph. This will make the 

comparison easier. If we plug (4.7.13) to (4.7.15) into (4.4.11), the predictive bias of 

is obtained, 

pbiasiA, L i>{X,)W 
n n 

n n 

= —1^ H 1 - — 1^ 1 
n-m 21 m n-m n-m 

n n 

(4.X16) 
n n 

(4.7.16) shows the predictive bias of fi, may not be neglectable if the underlying model is 

a RBF model. 

To understand the magnitude of the predictive bias of the estimator of t based on 

regression imputation, we need a simple expression of CH defined in (4.5.2). We start 

i "1 rr 7̂  
with 77^^22^21 (— —)(— —)^. To simplify the notation, we give a 

m n—m m n—m 

further assumption that is likely to hold in reality, —^ ^ = r . In this case 
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4-OA:, ox, ( - ^ - ^ x ^ — = ; i 3 L j L 
m n-m m n—m 

where 

/I2 

_6^(<a-6)^(M-/M) 

_ a ^ r ^ (<3-6)^ ( » - / » ) 

Then (4.5.2) becomes 

, r (4.7.17) 
n n n n n 

If we plug (4.7.17) into (4.5.3), the expectation of the estimator of r under regression 

imputation becomes 

n n m{a r + b )(1 + r) 

(» - /M)(a - 6)^ /-̂  (ĝ A-M + 6̂ ?M) (4 7 18) 

M (̂<3 r̂ + 6^)^(l + r)^ 

The expectation of the estimator of r based on true values is obtained by applying (4.2.11) 

to this special situation, 
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t ) « (I, - 1 1 ^ ) 0 ( Z ) f F 

= o -2+»- ' f ( I , - % - ' l f ) l 

= (%'. (4/A19) 

The predictive bias of t , can be obtained by (4.7.18)-(4.7.19) 

-SSSB" 
(4.7.20) 

{n - m){a -b) r {a rn + b m) 

M^(a^r + 6^)^(l + r)^ 

Based on (4.5.25), the predictive bias of x can be obtained from (4.7.20) as 

(» - ;M)(a - 6)^ (a^rn + 6^w;) ^ ^ 

M^(a^r + 6^)^(l + f)^ 

To simplify the above results, we use the assumption given by (4.5.5). The asymptotic 

value of pbiasd,) is ' ' ' ^ I 

general, if the proportion of missing values (ro) is small, the predictive bias of regression 

imputation could be negligible. Meanwhile if r = ^ r holds, pbias{ x , ) turns to be 
a + \a-b\ 

0, therefore regression imputation is unbiased. In this special case, regression imputation 

does better than random regression imputation. When r < ^ , random 
o- + V 2 | a - 6 | 

regression imputation produces less predictive bias than regression imputation. Otherwise 

regression imputation does better than random regression imputation. 
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RBF Imputation 

For RBF neural networks there are several ways to specify it, mainly the ways to 

determine the centres. We classify it into three possible situations: 

(1) Only one centre is selected, 

(2) Two centres, 

(3) Three or more centres. 

As before, our interest is the relative basis of estimators based on RBF imputation when 

the underlying model is a regression model. We denote the underlying model as 

Eiy\x)=xp. Let us explore each of the three specifications. 

RBF with one centre 

If the centre is coincidentally defined to be c = , let the radial basis function be 

i + ( — ) ' 

(l)(x) = —r—. (4.7.22) 

2 

Again the term in the numerator of (4.7.22) is just for simplicity. Then the transformed 

data becomes 0(A)=1. If we plug (4.7.22) into (4.4.17), the predictive bias of is 

obtained as 

pbias(i, 
n 

n 

=0. 

Therefore RBF imputation gives unbiased mean estimator. The variance of the mean 

2 

estimator is increased to — . (see 4.7.5, 4.2.1). The expectation of the variance estimator 
m 
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(fyi — 1)(T̂  
based on this RBF imputation is . It underestimates the variance by an amount 

n 

ifi — fyi 1)(T^ 
of i— . The predictive bias can be obtained by subtracting (4.2.9) from (4.7.7) 

n 

after plugging (4.7.13) into (4.2.9). 

pbias{x ) = - - — — ^ ( X y -x)^ . (4.7.23) 
M % Ml 

When a and b are far apart, this one node RBF imputation gives very biased variance 

estimation. hi other words the estimator of variance based on RBF imputation 

underestimates variance; in the meantime it likely inflates the variance of the mean 

estimator compared to that based on true values. The likeliness depends on the magnitude 

of the ratio r. If r shrinks to zero or grows to infinity the covariate data becomes the 

constant x=a(or b), the difference will be very small. The advantage of the regression 

imputation is most significant when r equals l(r=l). 

If the centre is defined not equal to c = , the RBF model is equivalent to the 

underlying linear regression model. The estimator of W is different from p just in scale. 

Therefore regression imputation is equivalent to RBF imputation, which results random 

regression equivalent to random RBF imputation. This is reflected in the following basis 

function. 

1 

\ + {a- 4 ' 
1 

l + ( 6 - c) ' 

jr = (Z 
(4J.24) 

X = b 

RBF with two centres 

For convenience we define the two centres as c\=a, C2=b. The different definition of c\ 

and C2 and the scale of the kernel function will not change the RBF imputation. It will 
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change the scale of W only. We slightly modify the previous basis function to make the 

mathematical expressions simpler. The new basis functions are as follows, 

l + (6-a)̂  1 -|i JC — CI 

{b- -a)̂ [l + (%-Ci)̂ ] (6-a)̂  [0 if x = b' 

l + (6-a)̂  1 Jo if X = a 
{b- -a)̂ [l + (x-C2)̂ ] (6-a)̂  ll if x = b 

( 4 . 7 . 2 5 ) 

( 4 . 7 . 2 6 ) 

Under this specification the RBF neural networks transforms the original covariate data 

into the following data matrix, 

where 

If we plug (4.7.27) into (4.4.17), the predictive bias of ju^ is obtained as 

( 4 . 7 . 2 7 ) 

pUasi i , ) " $ ( j r , ) ) - ' Z , - X , ) / 3 

n 

n 

"ml 0 

. 0 

0 

0 n bn 6x1. 

( 4 . 7 . 2 8 ) 

Hence RBF imputation gives an unbiased mean estimator when the centres are properly 

defined. 
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Under the two centre RBF model, the estimator of JFbecomes 

W ( 4 . 7 . 2 9 ) 

where 

- 1 y% ="6 % 

The estimators and the imputations are actually the local averages of jx at x=a and x=b. 

Following the previous notation, the CH becomes 

CM — + Iftxi ' ^ 5 0%) 6 bxi bxi 

where 

( 4 . 7 . 3 0 ) 

^^^ax2^bx2 '^^^ax]^bx2 ^axj^bxi^ 

M̂ /M(M -7M)M^ 

^6 = 
^ax2^bx\) 

M̂ /M(M -/M)M6 

Plugging (4.7.30) into (4.5.34), the predictive bias o f f * is obtained. 

pbias{ T ^ )= -

r(M - ;» ) 

n(l + rY 
' ( - 2 a 6 / r ) . ( 4 . 7 . 3 1 ) 
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From (4.7.31), we can conclude that when n-m is much smaller than n, RBF imputation 

gives a variance estimator with small bias. However the promising performance of RBF 

imputation depends on how it is specified in terms of the way the centres are defined. The 

results in this section provide evidence that the RBF model can be trained to give 

promising imputation even when the underlying model is not RBF. 

RBF with three or more centres 

If three or more different centres are defined, the transformed data matrix is collinear. 

Although the perturbation can be used to obtain estimation practically, as explained in the 

beginning of this section, the parameter estimation is likely to be distorted. Therefore we 

should avoid setting too many centres since this may result in bad conditions in the 

transformed data. The difficulty is we never know where the limit is in practice. That is 

one of the disadvantages of RBF neural networks imputation. 

Based on above result, there is no easy answer for the properties of the regression 

imputation and the RBF imputation. Basically under the linear assumption, if there are too 

many nodes (or data centres) in RBF models, collinearity could occur, which leads to 

distorted results. On the other hand, if too few nodes are selected, the variation in 

covariates will not be fully represented, which also gives bad result. When the nodes are 

properly defined to represent the functional relationship between y and its covariates, the 

RBF neural networks imputation is likely to outperform linear regression imputation. 

4.8 Multinomial Logit Imputation 

The last seven sections are concerned with imputation for continuous variables. In this 

section we outline some considerations for categorical data imputation. This is more like a 

rough idea than precise results. Further work needs to be done to make the idea more 

precise. 

Suppose y is a multinomial variable with expectation //(x). 
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n(x) = 7r(x): ( 4 . 8 . 1 ) 

For convenience we denote E(Y\) as 

f ( y , ) = 

ar iCii)- ' - # « + i ( x , ) 

and 

var(y | x) = 

;T, (x)(l - yzT] (x)).. vTi (x);r^+, (x) 

+: (3^)0 - +, (x)) 

( 4 . 8 . 2 ) 

( 4 . 8 . 3 ) 

A linear logit model can be used to predict class membership 7i(x). The imputation can be 

made based on the predicted distribution n{x.). 

&(x,.) 

:f](x,) 

frp+iCx,) 

( 4 . 8 . 4 ) 

One way of imputation is to choose the category with highest probability. This 

mechanism can be described as 

P r ( = 11 ; r ( X ; ) ) = 1 ^ z = m + l . . .n , A = 1 . . .p+1. ( 4 . 8 . 5 ) 
10 otherwise 

The other way of imputation is a random draw from the predicted distribution, which is 

carried out by calculating the cumulative distribution based on the predicted distribution, 

generating a random number in (0, 1) and finding the corresponding category based on the 
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location of the random number in the cumulative distribution. If this method is used, the 

following result can be obtained 

% I ];) = ( 4 . 8 . 6 ) 

var(y,. 

(X; )(1 - ( % , ( % , (%,) 

+1 (3̂ 1 (3 ,̂) " (x, )(1 - (x,)) 

i=m+\...n. 

( 4 . 8 . 7 ) 

Based on (4.3.3) and (4.8.2), we can get the following results 

1 m 7! 
E(M'-CL E{yM,)* Z E(yj\xj)) 

^ /=i y=m+i 

var(/}y) = — (%] var(y,. | x,) + %] var(y .̂ | x^.)). 
^ (=1 j=m+\ 

( 4 . 8 . 8 ) 

( 4 . 8 . 9 ) 

Consider the census situation as a special case, and suppose that for large N the parameter 

of interest is 

// = i l X X ) = i (If. n(X,) +1 n(X,)) ( 4 . 8 . 1 0 ) 

The bias of ju, can be written as follows 

I y,) = - ^ (^(^ I y;) - (Z J ) , 

N-m 

N 

N 

( ; r ( J ^ J - ; r ( ; ^ J ) . ( 4 . 8 . 1 1 ) 
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If the imputation is to choose the category with highest probability, then 

1 ?-,) ==:f2, (4.8.1:2) 

var(yJ;r(Xi)) = 0. (4.8.13) 

Therefore 

1 m 71 

^ /'=! y=m+l 

= h i l E ( Y , ) + l l_„EY,) , (48.14) 
n 

1 
Tfar(/(/)= viirCy, | %,). (4.8.1fi) 

i=i 

Again, in census situation, the bias of jlj becomes 

= - ; r ( % J ) . (4.8.16) 

As mentioned in the beginning of this section, the results in (4.8.10) and (4.8.16) have not 

provided much help to distinguish different imputation methods, especially between RBF 

imputation and logistic regression imputation. However we can use the above results in 

simulation and numerical studies to compare different imputations. 

Neural Network Imputation for Categorical Data 

Neural network imputation for a categorical missing value involves selecting a category 

based on the predicted membership probability. The strategy is the same as in the 

multinomial logit model. The difference is that a neural network model is used instead of 

a linear logit model for the probability. Therefore the expectation, bias and variance 

formulas in previous section are still valid. In this section the attention is focused on the 

performances of the two approaches. Let's consider the log-value of the probability ratio 
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of an imputed value j), (z=m+l.. .n) as a distance measurement. Suppose in both 

multinomial logit and neural networks models, the category is imputed with 

probabilities (multinomial logit) and (neural networks) respectively. 

Then 

M (X;) - In (x,) 

_ ^ exp(0(x,)M^) _ ^ exp(x,^;^) 
f+i f 
E exp(0(X;)fF/) 1+ E exp(x;yg ) 

y=i 7=1 

p+\ p 
- (k i Z exp(0(x,)l^) + lii(l+ Z exp(xy;gy))) 

i = l 7 = 1 

0(xJfFjt - x,y0^ + coMjT. (4.8.17) 

In the above formula, the last term consists of two probability normalisation terms, which 

can be treated as a constant. The performances of the two models depend on whether they 

can approximate the data generating mechanism. If the underlying mechanism is closer to 

linear, the neural networks model could overfit data, and affect the prediction efficiency. 

Otherwise if the mechanism is more non-linear, the linear model will not be sufficient. 

4.9 Variance Estimation of Estimators 

In section 4.6, we discussed the variance properties of estimators of the population mean 

under the model assumptions given in (4.1.1) to (4.1.3) in the presence of imputation and 

saw that the variance coefficient of imputation (VCI) could lead to different variances than 

with no imputation. Due to mathematical difficulty, the variances of t , , x , t ^ and 

r have not been discussed. One approach to estimating this variance is multiple 

imputation proposed by Rubin (1978). The complexity of analysis resulted from multiple 

imputation put an obstacle to wide adoption. Therefore single imputation is still widely 

used. For this reason, various approaches have been proposed to address the 

underestimation of variance problem of single imputation. Ford (1983) suggested 

reimputation for the replication variance estimators under hot-deck imputation. Samdal 
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(1992) investigated the precision of the generalised regression estimator (GREG) under 

imputation. Fay (1991) suggested a probability description for the sampling and response 

process, which provided the foundation for variance estimation. Rao and Sitter (1995) 

provided a two-phase approach for the Horvitz-Thompson estimator under SRS and the 

response mechanism given by Fay. A literature review on this area was given by Lee, 

Rancourt and Samdal (2002). The basic idea is to decompose the total variance of an 

estimator under single imputation into two components, the sampling variance and the 

variance due to imputation under the unbiasedness assumption of the estimator. Then 

approaches such as adjustment and reimputation can be used to improve variance 

estimation. 

The Jackknife estimators can be used to estimate the variance of estimators based on 

nonparametric imputations such as neural network imputation and weighted distance 

nearest neighbour imputation in our case. Chen and Shao (2001) suggested using the 

Jackknife estimators to estimate the variance of population mean estimator based on 

nearest neighbour imputation. Chen and Shao (2000) showed that in the design-based 

context the variance of population mean estimator based on nearest neighbour imputation 

can be expressed as a function of E(y|x) and var(y|x). Since nearest neighbour imputation 

is nonparametric, which results in that the analytical expressions of E(y|x) and var(y|x) are 

not available, therefore the Jackknife variance estimator is suggested. Each time when the 

Jackknife pseudoreplicate is generated, the sampling weight is adjusted according to the 

size of imputation class (poststratum size). The Jackknife estimator that treats the imputed 

value as true value is likely to underestimate the variance of the estimator of interest (Rao 

and Shao, 1992). Rao and Shao (1992) proposed a method of adjusting the imputed values 

in calculating each Jackknife pseudoreplicate. Since adjusting the imputed values leads to 

overestimation of the variance of population mean estimator, Chen and Shao (2001) 

proposed a modified adjustment method, which performs partial reimputation that 

produces the right amount of variation among the Jackknife pseudoreplicates. Chen and 

Shao (2001) showed the partial reimputation method gives better result than the previous 

adjustment methods. 

4.10 Conclusion 

118 



We have showed the bias and variance of the estimators of population mean under 

regression and RBF imputation. We also gave two special cases to simplify the theoretical 

results. These results indicate that there is no simple answer about which method is better 

than the other. The performance of individual imputation method depends on the validity 

of the assumptions about the underlying model. For regression imputation, the 

performance depends on whether the linear assumption is valid. Under the linear 

assumption we showed regression imputation produces unbiased mean estimation but 

underestimates population variance. In this situation random regression imputation gives 

better results in terms of preserving population variance. Meanwhile in this situation the 

estimators of population mean and variance based on RBF imputation are biased. We also 

showed that if the underlying model can be expressed by a RBF model, RBF imputation 

will give the unbiased estimators of population mean and variance. In this later situation 

the estimators based on regression imputation are biased. The bias is measured in terms 

the difference between the estimator based on the true data and that based on the imputed 

data. We term it predictive bias (pbias). Since RBF model can be specified to be a given 

non-linear model as well as linear model, it is more sensible to ask how it can be specified 

to be the unknown underlying model rather than whether it can outperform regression 

model. For example, how the centres are defined is crucial to the performance of RBF 

imputation. Since RBF imputation can outperform regression imputation in some 

circumstances, it therefore deserves further study. 
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5 Simulat ion Study 

In Chapter 4, the properties of linear regression imputation and RBF neural networks 

imputation were discussed. The asymptotic results showed that the performance of 

different imputation methods depends on the underlying model of the data. Simply put, if 

the true model is linear the random linear imputation method gives better imputations than 

that of RBF imputation, in terms of preserving the variance of population. Otherwise if 

the underlying model can be well approximated by a RBF model, the random linear 

imputation can't compete with RBF. In this chapter we test these conclusions with the 

simulated data and a real data set, derived from the 1991 household census. 

5.1 Simulation Study Based on Predetermined Models 

5.1.1 Design of Simulation Study 

The design of the simulation is based on the intuitive idea that each imputation method is 

assessed both for data generated from its own model and for data from the underlying 

models of the competing methods. An additional data set generated from an independent 

model, which is none of the true models of all candidate methods, is also tested. This is to 

test the performance when the real model does not happen to be any of them. 

Eight models are considered for the variable y containing missing values. This variable is 

called the response variable. Four of the models are for continuous variables; the 

remaining four models are for categorical response variables. For simplicity we denote 

the eight models as "Simulation I"... "Simulation VIII". All models depend on the same 

covariate variables xi and X2, generated from normal distributions, xi~N(10,2^), 

X 2 ~ N ( 5 , 1 . 5 ^ ) , X] and X2 are independent. The residual term when needed is also assumed 

to follow a normal distribution, s~N(0,3^). The models are summarised in Table 5.1.1. 
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Table 5.1.1 Simulation Design 

No. Name Model expression Type 

of response y 

I Linear regression Ĵ =.5XI+X2+E continuous 

II Correlated 

response 

F~N(10xl[oo,Siooxioo) 

( / i J1 ) ( J 2 / 2 } 
cov( = 9exp( -{5 ^2 + ^0 / }) 

continuous 

III RBF JX=0(x,, X2,n)fy4-G continuous 

IV Non-linear j'=.5xi+x2+5sin(xi)+5sin(x2)+ 1.1 +1.2^^ +s continuous 

v Logistic 

regression 

Logit(Pr(y=0))=-10+.5xi+X2 y=o,i 

VI Associated 

response 

_ r 1 ,2 , > ^ ( z ) ^ 

^ ' [ 0 , ofAerf 

where Zj the value ofj^j from simulation II 

y=o,i 

VII Binary RBF Logit(Pr(y=O))=0(x,, X2,n) )M),1 

VIII Logistic 

non-linear 

regression 

Logit(pr(y=0))=-12+.5xi+x2+5sin(xi) 

+5sin(x2) +1.1 +1.2 

Note: (D(Xi, X2,n)=( (|)(Xi,X2,/fi)... (|)(X,,X2,/̂ )... (|)( X],X2,/t)), (K X], x2,/̂ )=exp(-((x,-/{iif+(x2-/̂ 2) k is 

the number of nodes, X is the shape parameter, //=(//]... are the centres, W=( wi... 

In each simulation, three hundred independent samples are generated. In each sample, one 

hundred vectors of values of xi, X2, s and are generated independently from the given 

model. The resulting 100x1 vector of values of is denoted by Y. The first thirty cases of 

the response variable are assumed missing, the remaining seventy are assumed observed. 

The covariate values of all cases are assumed observed. 

Imputation is implemented by twelve methods (see Table 5.1.2). Six of them are nearest 

neighbour methods based on different distance definitions (see 3.1.1). The first distance is 

the square value Euclidean distance (NNIEU). The second is Mahalanobis distance 

(NNIMH). The third to the sixth are as follows: weighted distance without cross term 

where the distance is the square value of the difference between two points (WD21), 

weighted distance with cross term where the distance is the square value of the difference 
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between two points (WD22), weighted distance without cross term where the distance is 

the absolute value of the difference between two points (WD 11), and weighted distance 

with cross term where the distance is the absolute value of the difference between two 

points (WD 12). The distance based nearest neighbour imputation methods have the same 

imputation strategy for both the continuous response and the categorical response variable, 

which is to impute the missing value with the corresponding value of the observed case 

that has the smallest distance between its covariates. The other six imputation methods are 

based on the linear model and the RBF model (see section 2.1). The imputation 

approaches for continuous response are different to these for categorical response. In both 

linear regression model and RBF model three imputation methods are employed, the 

prediction based imputation (Im, RBF), the random imputation (the predicted value plus 

an error term: Rim, RRBF) and the predictive mean match imputation (PMMlm, 

PMMRBF) which imputes a missing value by the observed value of response that has the 

nearest predicted value. For categorical response, the imputations are the category with 

the highest probability and a random draw from the predicted distribution. Therefore ten 

imputation methods are included for categorical responses (six nearest neighbour 

imputations, two logistic regression imputations and two RBF imputations). 

The MLP neural network imputation and the tree model imputation are not included in the 

simulations, but are included in the real data study in the next section. Two concerns 

motivated this decision. One is that there are no theoretical results about these two 

imputation methods in the previous chapters. The aim of the simulation is to test the 

theories developed in previous chapters. The other concern is computing time. The MLP 

imputation is very time consuming. Running a single MLP model could take several days. 

Some numerical results of these two methods are provided in the next section. 

Among the imputation methods considered in this simulation, regression based 

imputations and the distance-based imputations are uniquely defined. A unique set of 

results can be reproduced given the same data set. Unlike these methods, the RBF based 

imputations are dependent upon their specification, and the results may be sensitive to this 

specification. With different initial values of weights, centres and shape parameters, the 

imputations are likely to be different. Only in the ideal situation the global minimum of 

the error function can be achieved with any initial tuning specification. Therefore the 

strategy of setting up RBF model needs consideration. In fact it is the main area where 
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computer scientists put their efkrts. They have been developing algorithms to find the 

best solutions efficiently. These algorithms are also called machine-learning algorithms. 

Table 5.1.2 Imputation methods 

Method Abbreviation Type of response the method 

can be applied for 

Regression Im Continuous 

Predictive mean match by regression PMMlm Continuous 

Random regression Rim Continuous 

RBF RBF Continuous 

Predictive mean match by RBF PMMRBF Continuous 

Random RBF RRBF Continuous 

Nearest neighbour imputation with Euclidean 

distance 

NNIEU Continuous and categorical 

Nearest neighbour imputation with Mahalanobis 

distance 

NNIMH Continuous and categorical 

Nearest neighbour imputation based on the 

weighted distance of absolute value differences 

without cross term 

WDll Continuous and categorical 

Nearest neighbour imputation based on the 

weighted distance of absolute value differences 

with cross term 

WD12 Continuous and categorical 

Nearest neighbour imputation based on the 

weighted distance of square value differences 

without cross term 

WD21 Continuous and categorical 

Nearest neighbour imputation based on the 

weighted distance of square value differences 

with cross term 

WD22 Continuous and categorical 

Logistic imputation based on the highest 

probability 

LogisticHP categorical 

Logistic imputation based on random draw LogisticRD categorical 

RBF imputation based on the highest probability RBFHP categorical 

RBF imputation based on random draw RBFRD categorical 

These provide an elegant theory for approximating non-linear functions. But in reality, 

they may not be achievable. 
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The base software used for the RBF simulation and the numerical study with MLP in the 

next setion is the neural computing tool box obtained from the website of the NEURAL 

RESEAfKZH (jROtT of /u&on 

nittp://www.ncrg.aston.ac.uk/netlab/index.html). The source code in MATLIB (Pratap, 

2001) format is also available from this website. The reason of using this tool box is that 

the algorithms of RBF neural network and MLP neural work in this package are the same 

algorithms described in Bishop's (1996) book. The simulation code used in this section 

and the code for WALD error neural networks are both built upon this tool box. 

The two factors that affect the performance of RBF model are the centres and the shape 

(smooth) parameter A,, hi this simulation, the centres are defined by the following method. 

Suppose the number of centres {k) is known, and the number of the centres in each 

individual covariate is %Jk , where q is the number of covariates. The centres for the zth 

covariate {i=\...q) are then defined as the quantiles of the covariate distribution for 

1 
probabilities equal to p=— . The final centres are the full combination of the 

V l + r V^ + 1 

individual centres. For example, if (6,12)^ are centres of xi, (4,6)^ are centres of X2, the 

final centres of the RBF model are obtained as follows. 

Xi 

6 4 

6 6 

12 4 

12 6 

The number of centres k can be optimised by a cross-validation method. The cross-

validation procedure is carried out by splitting the original data in to 10 approximately 

equal subsets. Then each time pick one as the test data, and the remaining 9 subsets as 

training data. The optimal parameter is the one that gives best prediction to the test data. 

Due to computing hardware limitation, k is fixed to be 9. For q=l, the number of centres 

of individual covariate becomes = 3. With large k, RBF model can be trained to be a 

better local regression model. On the other hand, if k is too large, such as k>n (the number 

of observations), RBF becomes saturated which leads to inefficient prediction. One can 
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see the performance of the RBF imputation could be improved if k is included in the 

optimisation process. The shape parameter X is given an initial value A,o€©=[-20, -

19...20], then the optimal value is determined by the cross-validation method. The two 

cross-validation processes are independently implemented because of algorithm 

constraints. Also the initial value involves subjective judgement. The true value may not 

lie in this interval. This may limit the capability of RBF model. As we will see in the 

following simulations, when the true values of the RBF parameters are known, not only 

the training process is quick, the imputation result is also very promising. The difficulty is 

if a wide 0 such as ©=[-100, -19... 100] is used, the training time could be increased 

exponentially. 

5.1.2 Criteria Used to Evaluate Properties of Imputation Methods 

For both the continuous response and the categorical response, the evaluation is based on 

the thirty imputed values. The measures used to evaluate the consistency of imputations 

for continuous variables are the predictive mean square error (PMSE), the mean, the 

variance and quantiles at .25, .50, .75. Suppose yy is the true value of y for they'th unit in 

the z'th repetition, and is the imputed value of y for the y'th unit in the z'th repetition, 

i=\.. .300,7=1.. .30. Then the measures can be denoted as 

1 3% 1 M 

1 300 1 30 
, (5.1.2) 

300 1=1 30 7=1 

I 30p 1_ aO . 2̂ 

300 ,=i 30 jw 
\rarZafZCg300 = Z] ) , (5.1.3) 

1 3M 
(?(;,:=:.:25) = ---- jciiiflf. js;.(;):>.2:5), (5.1.4) 

300 i=\ 

1 300 
G(P = .50) = ^ z inf{r: f].(r) > .50), (5.1.5) 

1 300 
= 75) = 7^), (5.1 .(5) 

300 1=1 
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- 1 30 . 1 M 
where j). = — Z yg , z-1 •. .300, Fi(t) = — Z /(j^y < t), /(•) is an indicator function. 

The PMSE is used to measure the average prediction error due to imputation. Smaller 

PMSEs may be expected to lead to smaller estimation errors. Measures (5.1.2) to (5.1.6) 

are designed to assess how the distribution is preserved. Since mean and variance 

determine the properties of normal distribution, they are used to measure the distribution 

of imputed values. Considering the fact that the actual distribution of 100 realisations may 

not duplicate the distribution of the underlying model due to sampling error, quantiles are 

used to evaluate how imputation can preserve the actual distribution. For simplicity, when 

y follows a normal distribution, it is considered to evaluate the quantiles at only three 

points, 25%, 50% and 75%. 

The measures for categorical data imputation consist of the expected marginal distribution 

and the proportion of correct imputations (the percentage of the imputed values equal to 

the true values: pc). 

1 1 
Pioo - ^ Pi 'Pi =0) , (5.1.7) 

j U U i=\ j U j^x 

1 300 1 30 

( 5 . 1 . 8 ) 

The measure corresponds to the measure PMSE for the continuous case, since both 

assess how well the imputed values y^ predict the true values yij. For computing 

consideration the categorical responses are taken to be binary. Therefore the marginal 

distribution is just the mean of the imputed values if the probability of the response equal 

to one is the interest, or l-mean ( ) if the opposite is the parameter of interest. 

Since the three hundred repetitions are independent, a t-test can be used to test the 

significance of the differences between the measures based on the imputed values and the 

measurements based on the true values. Take mean^oo as an example, the t statistic is 
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-);,y))/300 

where 

2 300 I 30 

I (5-I-I0) 
3001 ; 30^ , 

If an imputation well preserves the mean, the t value will be small, and the p-value should 

be fairly large. For simplicity only the ̂ -values are presented in following simulations. 

As defined in (5.1.1) to (5.1.8), the overall measures for both continuous and categorical 

variables are the averages of the measures over the three hundred repetitions. In each 

simulation, two tables are provided; the first one is the values of the overall measures. 

The second table is the p-values of the t-test based on the individual values of the three 

hundred repetitions and the measures based on the true values. 

5,1.3 Results of Simulations for Continuous Variables 

Simulation I: Linear Regression Model 

Model: 

y=.5 Xi+ X2+8. 
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In the first simulation, the simplest situation is considered. The response variable is a 

linear combination of its covariates and a residual. The results are given in Table 5.1.3 

with the first line containing the results when the imputed values y ĵ are given by the true 

values yij. The mean and variance of these true values correspond closely to the values of 

Eiy)=lQ and var(y)=12.25 under this model. 

In this simulation we would expect the methods Rim and PMMlm to perform well, since 

the data is generated from a linear regression model. The Im imputation is also expected 

to preserve the population mean very well, but to deflate the variance. 

The simulation shows that the random regression imputation gives the best imputation in 

terms of preserving the population mean, variance and quantiles (see Table 5.1.3, Table 

5.1.4). The predictive mean match imputation of linear regression also gives good 

imputation with variance deflated a little bit. In the meantime, the random RBF 

imputation also performs remarkably well in preserving the population mean and variance. 

Table 5.1.3 The predictive mean square errors, means, variances and quartiles of imputed values (based on 

300 repetitions of the linear model) 

I m p u t a t i o n 

M e t h o d 

PMSE Meanjoo v a r i a n c e s o o Q r p = . 2 5 ) Q ( p = . 5 0 ) Q(p=.lS) 

T r u e 0 9 . 9 9 6 5 12.23 7.65 9.9821 12.32 

Im 9.2361 10.0072 3.3532 GL8169 10.0291 11.1796 

PMMlm 18.0841 10.0085 11.9917 7.8719 10.0151 12.2085 

R i m 17.9566 10,0042 12.2377 7.7977 10.0007 12U3155 

RBF 10.2184 10.0115 3.6158 8.7816 10.0362 11.2626 

PMMRBF 18.7063 9.9960 11.9242 7.7708 10.0793 12.2336 

RRBF 18.6299 10.0087 12.1945 7.7707 10.0486 12.2329 

NNIEU 18.0809 9.9942 11.4284 7.8366 10.0438 12.1955 

NMIMH 18.2231 10.0098 11.4356 7.8702 10.0680 12;.2126 

W D l l 18.0758 10.0193 11.4679 7.8314 10.0702 12.1513 

WD21 1&0316 9.9982 11.4533 7.8579 10.0699 12.1454 

WD12 1&1626 10.0013 11.4690 7.8586 10.0555 12.0431 

WD22 18.1522 9.9782 11.4929 7.8613 10.0572 12.0342 

Note: True—the original values that are assumed missing. 
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For both linear regression imputation and RBF imputation the variance is severely 

deflated. It is strong evidence to avoid mean imputations. It is consistent with the theories 

in Chapter 4, which show that both random imputations based on linear regression model 

and RBF model are much better than the corresponding mean imputation methods in 

preserving the population variance and the distribution (quantiles). Random imputation 

here is implemented by adding a term drawn from the residuals of the complete cases to 

the mean given by the regression or RBF prediction. 

The weighted distance based nearest neighbour imputations (WDll, WD 12, WD21, 

WD22) can also preserve the mean very well but slightly deflate the variance. Another 

interesting phenomenon in this simulation is that the nearest neighbour imputations with 

Euclidean distance and Mahalanobis distance are almost as good as the weighted distance 

imputations, while all of them deflate the population variance. It may be a good idea to 

use simple methods if the data is following a simple model such as a linear model. It also 

reveals that Euclidean distance is as good as Mahalanobis distance. They are almost 

identical in terms of imputation performance. 

A measure of overall performance is the percentage of p-values above .05. Only the 

regression mean imputation and the RBF mean imputation display significant lack of fit. 

All other imputation methods display not significant evidence of lack of fit. This is 

consistent with our expectation. Meanwhile high ^-values may also indicate large 

variances of the estimator used in the t-test. If this is true, the imputation method that 

produces high ^-value imputes the missing values with much variant values, which may 

give unstable imputation in single imputation. It will be helpful to include the variances in 

the future simulation to clarify the exact reason of high ̂ -values. 
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Table 5.1.4 P values of t-test: the means, variances and quantiles of imputed values vs. 

the true values or the expected value 

I m p u t a t i o n 

m e t h o d 

M e a n j o o v a r i a n c e s o o Q ( p = . 2 5 ) Q ( p = . 5 0 ) Q ( p = . 7 5 ) O v e r a l l 

I m 0.9005 0.0000 0,0029 0.7906 0.0033 2/5 

PMMlra 0.8947 0.4647 0.3297 0.8479 0.5726 5/5 

Rim 0.9141 0.9283 0.4778 0.9112 0.9778 5/5 

RBF 0.8813 0,0000 0,0035 0.7630 0.0051 2/5 

PMMRBF 0.9476 0.3796 0,5466 0.6151 0.6492 5/5 

RRBF 0.8938 0.8541 0,5469 0.7171 0,6469 5/5 

NNIEU 0.9392 0.0858 0.3934 0.7345 0.5366 5/5 

NNIMH 0.8889 0.0877 0,3325 0.6508 0.5845 5/5 

WDll 0.8477 0.0965 0,4037 0.6437 0.4302 5/5 

WD21 0.9419 0.0924 0.3536 0,6447 0.4177 5/5 

WD12 0.9275 0.0969 0.3524 0.6928 0.2504 5/5 

WD22 0.8670 0.1041 0.3477 0.6869 0.2395 5/5 

Note: The notation is in Table 5.1.1. 

Simulation 11: Correlated Normal Distribution Model 

Model: 

7~N(10xlioo,2iooxioo), 

where 

'100x100 M ) , , , , cov(y,, y,.) = 9 exp(-{ x 5 + X 20}). 

This simulation describes a situation where the response variable y doesn't depend on its 

covariates directly but only through the covariance between different units of);. The more 

distant the covariate values of Xi and X2, the less correlated are the response yj and _yj. 

Figure 5.1 is a coarse grid graph based on one simulation. The grid is defined by xi and X] 

with equal intervals in each axis. The y value at each joint of the grid is the average of the 

y values in the neighbouring squares. The shape could be different when different data 

generated from the same correlated model is used. Also the correlation nature is not 

clearly displayed. It should be a flat surface, because less distant covariate values imply 

less distant response values. 

130 



Figure 5.1 The smoothed response surface for the correlated model. 

In theory the nearest neighbour imputation based on weighted distance should perform 

very good and it does. The average performances of the twelve imputations based on 300 

repetitions are given in Table 5.1.5. 

All of the six distance-based imputations give better results than other imputations in 

terms of preserving the distribution and true values (see table 5.1.6). The imputations with 

absolute value distance are even better than that of square value distance in this 

simulation. This could indicate robust feature of absolute value distance. The cross term 

in the weighted distance doesn't give significant contribution to the performance. This 

may be because there is no cross term in the model. It is hard to judge whether it should 

be included in real situation. There seems no loss in including it. 
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Table 5.1.5 The predictive mean square errors, means, variances and quartiles of imputed values (based on 

300 repetitions) of the correlated response model 

I m p u t a t i o n 

M e t h o d 

PMSE Meansoo v a r i a n c e 3 o o Q ( p = . 2 5 ) Q ( p = . 5 0 ) Q ( p = . 7 5 ) 

T r u e 0 10 9.01 7,7 10 11 j 

Im 14.8654 9.9802 2.8593 8.5708 9.8376 10,7146 

PMMlm 20.1434 10.1335 9.4090 7.9906 10.1931 11.9163 

Rim 26.6562 10.0803 9.4874 7.4422 10,1329 12.3282 

RBF 12.5534 9.9921 1.2409 9.4175 10.1334 10.4688 

PMMRBF 20.1218 10.0685 9.2921 7.8827 10.1491 11.9138 

RRBF 20.9850 10.0858 9.2370 7.9134 10.1086 11.8571 

NNIEU 15,0530 10.0209 9.3467 7.8031 10.0615 11,4738 

NNIMH 15.0765 10.0159 9,3349 7.8112 10.0628 11.4671 

W D l l 14.4736 10.0189 9.1465 7.7249 10.0417 11.4215 

WD21 14.6711 10.0214 9.1457 7.7329 10.0505 11.4345 

WD12 15.0531 10.0449 9.2088 7.8366 10.1200 11.3682 

WD22 15.0210 10.0760 9.2076 7.8253 10.0722 11,4013 

Note: The notation is in Table 5.1.1. 

The nearest neighbour imputations based on Euclidean distance (NNIEU) and 

Mahalanobis distance (NNIMH) as well as the random imputation based on RBF model 

(RRBF) are also good methods in this simulation. For NNIEU and NNIMH, their good 

performance can be explained by the similar distance measure based on the covariates. 

These two imputations are almost identical. This phenomena happened in simulation I, 

therefore it is probably safe to say NNIEU is a good replacement of NNIMH. The good 

performance of random RBF imputation can be explained by the local regression nature of 

RBF, which means the RBF model can be trained to be a combination of local regressions 

in the neighbours of its centres. If the centres are properly defined, the combination will 

be a good representation of the underlying model. 

The imputations based on the linear regression model seem unable to deal with the 

covariance structure of the response, and gives poor imputations. Meanwhile Rim and 

PMMlm give acceptable imputation in terms of preservation of the variance. The 

quantiles are not preserved by all three regression based imputation, which may indicate 

the inadequacy of the regression model. 
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From the p-values in Table 5.1.6, the overall performances of the twelve imputation 

methods are summarised by the percentage of p-values above .05. In the overall 

evaluation, the weighted distance based nearest neighbour imputation methods outperform 

the other methods since they display no significant lack of fit. Again the conclusion based 

on p-values should is not fully convincing without providing the variances. This statement 

applies to the remaining simulations for the continuous variable. 

In summary, when the covariance of response is a function of the distance of its 

covariates, the weighted distance imputations are the right choice. If the actual data set is 

very large, such that the distance matrix can not be manipulated, RBF and NNIEU are 

good replacements. 

Table 5.1.6 P values oft-test: the means, variances and quantiles of imputed values vs. 

the true values or the expected values of the correlated response model 

I m p u t a t i o n 

M e t h o d 

Meansoo v a r i a n c e j o o Q ( p = . 2 5 ) Q ( p = . 5 0 ) Q ( p = . 7 5 ) O v e r a l l 

I m 0.7794 0.0000 0.0009 (X1971 0.0325 2/5 

PMMlm 0.2500 0.1292 0.0978 0.1450 0.0457 4/5 

Rim 0.4256 0.0873 (X1271 0.2647 0.0096 3/5 

RBF 0.8778 0.0000 0.0000 0.2634 0.0095 2/5 

PMMRBF 0.4789 CL2318 0.2319 0.2251 0.0466 4/5 

RRBF 0.4028 0.3053 cri814 0.3376 0.0487 4/5 

NNIEU 0.7708 0.1764 0.4383 0.5406 0.6914 5/5 

NNIMH 0.8104 0.1872 0/4108 0.5335 0.7150 5/5 

WDll 0.7864 0.4801 0.8194 0.6590 0.8981 5/5 

WD21 0.7669 0.4820 0.7686 0.6035 0.8416 5/5 

WD12 0.7014 0.3516 0.4353 0.3012 0.8530 5/5 

M D 2 2 0.7293 0.3537 0.4670 0.4858 0.9935 5/5 

Note: The notation is same as that of simulation I. 

Simulation III: RBF Model 

Model: 

) ; = ( D ( x i , X2 ,n )+G=i :Wj( | ) ( X i , X 2 , / ^ ) + E , 
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where (|)( x,, X2,/^)=exp(-((xi-/^i)^+(x2-/^2)^)/^), ^^^5,2.5,5), n={(8,4),(12,6)}, 1=1. 

The systematic part of the RBF model given above has two peaks (centres in RBF model). 

One is at (xi,x2)=(8,4), the other one is at (xi,x2)=(12,6) (see Figure 5.2). The following 

picture describes the RBF model without noise. The vertical axis is the value of the RBF 

function with out the residual, which is the expected value of response y. Axis xi and axis 

X2 are the two covariates. The response surface has the shape of the density function of a 

mixture of two normal distributions. 

E(y|xiA) 
\ . 

Figure 5.2 The RBF model without noise. 

The results of the simulation are given in Table 5.1.7 and Table 5.1.8. Under the RBF 

model, the imputations from both the predictive mean match and the random imputation 

based on the RBF mean are better than other methods in preserving the variance and the 

distribution. The population mean is well preserved by all imputation methods. It is not a 

dimension which discriminates them. The random RBF and the predictive mean match 

imputation based on RBF are nearly equally good. But the random RBF is easier to 

implement in terms of the complexity of the computing procedure. 
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T a b l e 5 .1 .7 T h e p r e d i c t i v e m e a n s q u a r e e r ro rs , m e a n s , v a r i a n c e s a n d qua r t i l e s b a s e d o n the i m p u t e d 

v a l u e s ( b a s e d o n 3 0 0 r e p e t i t i o n s ) o f t he R B F m o d e l 

I m p u t a t i o n 

M e t h o d 

PMSE M e a n j o o v a r i a n c c j o o Q ( p = . 2 5 ) Q ( p = . 5 0 ) Q ( p = . 7 5 ) 

T r u e 0 &8911 103757 4.7433 6.8864 90%W 

I m 11.0641 6.7839 1.4927 6.0087 (x7712 7,5605 

PMMlm 19.4238 6.9137 9.8027 4.9092 6.8529 8,9355 

R i m 20.8859 6.8670 11.7873 4,6472 6.9264 9.0763 

R B F 10.5250 6.8876 1.6284 6.0220 6,7565 7.5495 

PMMRBF 18.3239 6.8669 10.4503 4,7734 6.8517 8,9579 

R R B F 17.5411 6.8689 10.1602 4.7968 6.8494 8,9614 

N N I E U 18.0352 6.9765 1CX1070 4.9255 6.9637 9,0235 

NNIMH 17.9833 6.9935 10.0909 4,9477 6.9897 9,0312 

W D l l 17.4217 6.3684 9.7153 4.7358 6,3454 8.4272 

WD21 17.8465 6.4681 9 ^ M 8 4,7344 6.4976 8.6213 

WD12 16.8401 6.2237 9.4793 4.7599 6.2586 8,1282 

WD22 17,1440 6.1998 9.8875 4.6788 6.1997 8.4590 

N o t e : T h e n o t a t i o n is s a m e as tha t o f s i m u l a t i o n I. 

The imputations based on Rim and PMMlm are also acceptable. To understand this 

phenomenon, let's examine the variance of y. The overall variance based on the three 

hundred repetitions is 10.3757. The contribution of the residual is 9, nearly 87%. 

Therefore the contribution from the RBF mean function is small (only 1.3757), which 

makes the residual term dominant. This might be the cause of the promising performance 

of imputations from the linear regression model. 

In the meantime, the nearest neighbour imputations based on the Euclidean and 

Mahalanobis distances are also surprisingly good. This can be explained by the similar 

strategy used by these two methods. The RBF model is a weighted average over all the 

data points that gives more weight to the less distant ones, while the nearest neighbour 

imputation simply picks the nearest one as donor. The other fact is the promising 

performance of imputations based RBF model is not guaranteed if the initial locations of 

centres are not correctly given. This happened when we ignored the true centres and let 

135 



RBF choose it randomly. This is the very nature of complexity in RBF. In the real 

situation the true centres are rarely known. It doesn't mean the true centres can not be 

derived. Actually much of the time in training RBF is spent on finding the true (or nearly 

true) centres. That could be a difficult task for practitioners who do not posses the 

knowledge of neural networks and programming skills. Fortunately this restriction could 

be removed when the future computing power is big enough, so that the whole process can 

be automated. 

Table 5.1.8 P values of t-test: the means, variances and quantiles of imputed values vs. 

the true values or the expected values of the RBF model 

I m p u t a t i o n 

M e t h o d 

M e a n j o o v a r i a n c e j o o Q ( p = . 2 5 ) Q ( p = . 5 0 ) Q ( P = . 7 5 ) O v e r a l l 

I m 0.5557 0.0000 0.0018 0.5622 0 .0007 2/5 

PMMlm 0.8487 0.0753 0.4364 0 .8460 0 .6423 5/5 

Rim 0.8419 0.0564 CL6183 0.8187 0.7699 5/5 

RBF 0.9333 0.0000 0.0017 0.5225 0.0006 2/5 

PMMRBF 0.8414 0 .6542 0.8601 0 .8408 0 .7184 5/5 

RRBF 0.8500 0.3234 0 .7653 0.8315 0 .7313 5/5 

NNIEU 0.6199 0.2479 0 4021 0.6794 0 .9974 5/5 

NNIMH 0.5693 0.2288 0.3600 0.5965 0 ^ M 6 5/5 

WDll 0.1980 0 .0350 0.9633 0.0669 0 .0506 4/5 

WD21 0.2670 0 .0604 0 .9564 0.1431 0.1335 5/5 

WD12 0.1283 0 .0107 0 .9206 0.0433 0 .0113 2/5 

WD22 0.1194 0.0827 0.7243 0.0323 0.0593 4/5 

In Table 5.1.8, although seven out of the twelve imputations have the best overall 

performance, the imputations based on RBF model, namely PMMRBF and RRBF, have 

much higher p-values than the other five methods, especially in the variance measure. 

NNIEU and NNIMH also give high p-values. Simply put, when the underlying model is 

RBF, PMMRBF and RRBF are the best choice. 

Simulation IV: Non-linear Model 

Model; 

y= . 5*Xi+X2+5*sin (x^) +5*sin (X2) + 1. 1^' +1.2 +G 
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E(y|xiP(2) 

Figure 5.3 The response surface of the non-linear data generating mechanism without noise. 

This model is created to test the performances of the twelve imputation methods when the 

underlying model is not any of them. To understand the data generating mechanism, 

Figure 5.3 plots the regression function of given xi and xi with the noise term not 

included. It has two linear components, two periodical function components and two 

exponential function components corresponding to the two covariates. Overall it looks 

like a multi-peak function. We can see in the above picture, there are four peak points and 

two or three bottom points. One can imagine if these points are defined to be the centres 

of the RBF model, the random RBF imputation should perform well. 
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Table 5.1.9 The predictive mean square errors (or mean distance), means, variances and quartiles based on 

the imputed values (based on 300 repetitions) of a non-linear model 

I m p u t a t i o n 

M e t h o d 

PMSE Meansoo v a r i a n c e j o o Q ( p = . 2 5 ) Q ( p = . 5 0 ) Q ( p = . 7 5 ) 

T r u e 0 13.3032 38.9381 8.8596 12.7623 17.2173 

Im 39.6228 13.3302 10.1457 11.1462 13.1929 15.2648 

PMMlm 43.7937 13.3310 40.3691 9.0755 12.9489 17.1543 

R i m 60.4180 13.2483 40.4634 8.9788 13.1144 17.3221 

RBF 38.9827 13.2673 19.6400 9.9400 12.9340 16.3285 

PMMRBF 42.5489 13.2840 38.4357 8.9071 12.7698 17.2734 

RRBF 43.3386 13.2785 39.5749 8.9081 12.7919 17,2700 

NNIEU 22.6986 13.0899 37.0403 8.8814 12.5841 16.8099 

NNIMH 22.6588 13.0988 36.8990 8.8838 12.5973 16.8129 

W D l l 22.3540 13.3379 37.4542 8.9007 12.7764 16.8167 

WD21 22.5193 13.3353 37,3552 8 # K 0 12.7742 17.0407 

WD12 28.8887 13.3630 37.6112 9.0902 12.6340 16.9987 

WD22 29.6415 13.3540 37.2200 9.1019 13.6709 17.6000 

Note: The notation is same as that of simulation I. 

The other feature one might have found is that the surface is not jumping up and down 

dramatically especially when the noise term is added. It is quite like a linear surface. This 

data-generating model might be close to many real situations where the underlying model 

is not far from a linear model, although they are not exactly linear. Therefore you can 

expect the imputations based on the linear regression model might also be acceptable. 

This is exactly what happens in Table 5.1.9. Interestingly the weighted distance based 

nearest neighbour imputations are also promising. All of the three types of imputations 

are equally good in terms of preserving the distributions (see Table 5.1.10). But when we 

look at PMSE the distance-based imputations are much smaller than the other imputations, 

especially WD 11 and WD21. That might explain why the distance-based imputations 

such as the widely used donor imputation work well in real situations. Meanwhile we 

expect the weighted distance is a way to improve the performance of the methods in this 

category. 
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Table 5.1.10 P values of t-test: the means, variances and quantiles of imputed values vs. the true values or 

the expected values of the non-linear model 

I m p u t a t i o n 

M e t h o d 

M e a n j o o v a r i a n c e j o o Q ( p = . 2 5 ) Q ( p = . 5 0 ) Q ( P = . 7 5 ) O v e r a l l 

I m 0.7254 0.0000 0 .0000 0,0057 0.0000 2/5 

PMMlm 0.7194 0.4646 0 .0750 0 .1066 0.4694 5/5 

Rim 0,5484 0.4431 0.2392 0.0146 0.2843 4/5 

RBF 0.6632 0.0001 0 .0000 0,1274 0 .0000 3/5 

PMMRBF 0.7838 0 .7390 0.5657 0.9143 0 .5103 5/5 

HREF 0.7421 0.6909 0 .5589 0.7010 0 .5315 5/5 

NNIEU 0 .1126 0 .3678 0.7694 CL1178 0,0075 4/5 

NNIMH 0.1230 0.3428 0 .7476 0,1380 0.0078 4/5 

WDll 0.6714 0.4524 0.6110 &&M8 0.0082 4/5 

WD21 0 .6892 0.4305 0 .6777 0.8666 0 .1202 5/5 

WD12 0.5224 0.4893 0 .0629 0 .2144 0.0726 5/5 

WD22 0.5717 0 .4024 0 .0546 0,0000 0.0101 3/5 

From the four simulations, we obtain the findings that are consistent with the theories in 

Chapter 4. 

• The performance of the imputation methods depends on the validity of the 

assumptions of these methods. 

• The mean imputation methods deflate the population variance, and distort the 

distribution. 

• Under the true model, random imputation can preserve the mean, variance and 

distribution, including random imputation based on the linear regression model and 

RBF model. 

• With proper set up, the RBF model can be very close to the underlying model 

therefore possesses the possibility of being a regression model. Meanwhile finding 

the right RBF is also difficult. 

® In many situations, imputations based on linear regression are acceptable. It can be 

regarded as the first order approximation in terms of covariates. 
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5 .1 .4 R e s u l t s f o r C a t e g o r i c a l V a r i a b l e s 

S i m u l a t i o n V : L o g i s t i c R e g r e s s i o n M o d e l 

M o d e l : P r ( y = 0 ) = e x p ( - 1 0 + . 5 x i + X 2 ) / ( l + e x p ( - 1 0 + . 5 x i + X 2 ) ) = p . 

T h i s s i m u l a t i o n r e p e a t e d l y ( 3 0 0 r e p e t i t i o n s ) g e n e r a t e s 1 0 0 r e c o r d s f r o m t h e l i n e a r l o g i s t i c 

m o d e l . T h e f i r s t 3 0 c a s e s o f y a r e a s s u m e d m i s s i n g . T e n i m p u t a t i o n m e t h o d s , l o g i s t i c 

r e g r e s s i o n i m p u t a t i o n b a s e d o n t h e h i g h e s t c a t e g o r y p r o b a b i l i t y a n d r a n d o m d r a w , R B F 

i m p u t a t i o n b a s e d o n t h e h i g h e s t p r o b a b i l i t y a n d r a n d o m d r a w , n e a r e s t n e i g h b o u r 

i m p u t a t i o n b a s e d o n E u c l i d e a n d i s t a n c e , M a h a l a n o b i s d i s t a n c e a n d f o u r w e i g h t e d d i s t a n c e , 

a r e a p p l i e d t o i m p u t e t h e m i s s i n g v a l u e s . T h e e v a l u a t i o n i s b a s e d o n t h e m a r g i n a l 

d i s t r i b u t i o n a n d t h e r a t i o o f t r u e v a l u e s . I n t h e b i n a r y c a s e t h e m a r g i n a l d i s t r i b u t i o n c a n b e 

r e p r e s e n t e d b y t h e p e r c e n t a g e i n o n e c a t e g o r y . H e r e w e u s e t h e p e r c e n t a g e o f t h e 

r e s p o n s e s e q u a l t o z e r o . T h e s i m u l a t i o n r e s u l t s a r e g i v e n i n T a b l e 5 . 1 . 1 1 a n d T a b l e 5 . 1 . 1 2 . 

Table 5.1.11 The marginal distribution (probability of y=0) and the proportion of correct imputations 

(based on 300 repetitions) for the logistic linear model with marginal distribution at .5. 

I m p u t a t i o n Method P r o p o r t i o n o f C o r r e c t 

I m p u t a t i o n 

T r u e 0.4987 1.0000 

L o g i s t i c H P 0.4966 0.9864 

L o g i s t i c R D 0.4983 0.9860 

RBFHP 0.4897 0.9050 

RBFRD 0.4856 0.8959 

NNIEU 0.4942 0.9399 

NNIMH 0.4936 0.9394 

WDll 0.4970 0.9411 

WD21 0.4940 0.9490 

WD12 0.4938 0.9481 

WD2 2 0.4940 0.9501 

Note: The notation is the same as that of simulation I. 

U n d e r t h i s m o d e l , t h e l i n e a r l o g i s t i c i m p u t a t i o n s a r e t h e b e s t o n e s i n t e r m s o f t h e t w o 

e v a l u a t i o n c r i t e r i a . In f a c t a l l o f t h e i m p u t a t i o n a p p r o a c h e s perform w e l l . T h e w e i g h t e d 
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d i s t a n c e b a s e d m e t h o d s a r e t h e s e c o n d b e s t m e t h o d s . T h e d i s t a n c e e m b e d d e d i n t h e 

w e i g h t e d d i s t a n c e m e t h o d s i s t h e r e g r e s s i o n d i s t a n c e . I f m o r e f l e x i b l e d i s t a n c e s u c h a s 

n e u r a l n e t w o r k s d i s t a n c e s i s u s e d , t h e p e r f o r m a n c e c o u l d b e e v e n b e t t e r . B u t t h e 

d i s a d v a n t a g e i s t h e c o m p u t i n g e f f o r t n e e d e d t o o b t a i n t h e w e i g h t s c o u l d b e h u g e . 

O n e m a y e x p e c t s t r i k i n g d i f f e r e n c e b e t w e e n t h e r a n d o m i m p u t a t i o n a n d t h e m o d e 

i m p u t a t i o n . T h i s d o e s n o t h a p p e n i n t h i s s t u d y . H e r e t h e r a n d o m i m p u t a t i o n i s 

i m p l e m e n t e d b y g e n e r a t i n g n-m r a n d o m v a l u e s f r o m (7(0,1), t h e u n i f o r m d i s t r i b u t i o n 

b e t w e e n 0 a n d 1 , a n d find t h e c o r r e s p o n d i n g c a t e g o r y o f t h e i n t e r v a l i n t h e c u m u l a t i v e 

d i s t r i b u t i o n . S i n c e t h e n-m m i s s i n g v a l u e s a r e i m p u t e d s i m u l t a n e o u s l y , t h i s m a y r e d u c e 

t h e d i f f e r e n c e b e t w e e n t h e t w o i m p u t a t i o n m e t h o d s . 

A c c o r d i n g t o t h e r e p r e s e n t a t i o n t h e o r y o f R B F ( B i s h o p , 1 9 9 6 ) , t h e R B F m o d e l c a n b e 

a d j u s t e d t o b e a n y f u n c t i o n i n c l u d i n g t h e l i n e a r l o g i s t i c f u n c t i o n . W h y d o e s i t n o t h a p p e n 

i n t h i s s i m u l a t i o n ? T h e a n s w e r i s i n t h e i m p l e m e n t a t i o n . I n p r a c t i c e , i t i s v e r y d i f f i c u l t t o 

o b t a i n t h e t r u e m o d e l , o n l y a n a p p r o x i m a t i o n c a n b e o b t a i n e d b e c a u s e o f t h e i n c a p a b i l i t y 

o f t h e a l g o r i t h m o r t h e t i m e n e e d e d t o r e a c h t h e t r u e r e p r e s e n t a t i o n i s o f f t h e a c c e p t a b l e 

l i m i t . T h e r e f o r e t h e l i n e a r l o g i s t i c i m p u t a t i o n m a y b e a r e l i a b l e a n d p r a c t i c a l a p p r o a c h . 

S i m i l a r s i t u a t i o n h a p p e n s t o t h e w e i g h t e d d i s t a n c e b a s e d n e a r e s t n e i g h b o u r i m p u t a t i o n s , i f 

t h e l i n e a r r e g r e s s i o n w e i g h t i s u s e d , t h e i m p l e m e n t a t i o n i s s t a b l e a n d q u i c k , b u t t h e 

p e r f o r m a n c e i s n o t a l w a y s g o o d b e c a u s e o f t h e i n f l e x i b i l i t y . T h e n e u r a l n e t w o r k s w e i g h t 

c a n b e u s e d t o i n c r e a s e t h e flexibility b u t t h e d r a w b a c k i s t h a t t h e c o m p u t i n g e f f o r t 

i n c r e a s e s d r a m a t i c a l l y . 
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Table 5.1.12 P values of t-test: The marginal distribution (probability of y=0) and the proportion of 

correct imputation (based on 300 repetitions) of the linear logistic model with marginal distribution at .5 

I m p u t a t i o n Method 
JP3OO 

P r o p o r t i o n o f C o r r e c t 

I m p u t a t i o n 

L o g i s t i c H P 0.9386 0.8732 

L o g i s t i c R D 0.9900 0.8694 

RBFHP 0.7634 0.3867 

RBFRD 0.6748 0.3531 

NMIEU 0.8752 0.5482 

NNIMH 0.8578 0.5458 

WDll 0.9512 0.5549 

WD21 0.8694 0.6005 

WD12 0.8636 0.5952 

WD2 2 0.8694 0.6072 

Note: The notation is same as that of simulation I. The above t-test is based on statistic defined in (5.1.9), 

since the response is binary taking values 0 and 1. 

T h e v a l u e o f P r ( y = 0 ) f o r t h e s i m u l a t i o n r e s p o n d a b o v e 0 . 5 . T o v a r y t h i s a s s u m p t i o n , t h e 

s i t u a t i o n w h e n t h e m a r g i n a l d i s t r i b u t i o n i s f a r f r o m t h e m i d d l e i s a l s o c o n s i d e r e d . T h e 

f o l l o w i n g s i m u l a t i o n r e p l a c e t h e i n t e r c e p t o f - 1 0 b y - 8 , 

Pr(y:=0)=exp(-8+.5 xi4- X2)/(l+ exp(-8+.5 Xi+ X2))^, 

W h i c h l e a d s t o a b o u t 1 3 . 5 % o f v a l u e s b e i n g 1 . F r o m T a b l e 5 . 1 . 1 3 a n d T a b l e 5 . 1 . 1 4 t h e 

p a t t e r n o f t h e r e s u l t s i s s i m i l a r t o t h e p r e v i o u s s i m u l a t i o n w h e r e t h e i m p u t a t i o n s b a s e d o n 

l o g i s t i c r e g r e s s i o n a r e b e t t e r t h a n o t h e r m e t h o d s . O v e r a l l a l l t e n m e t h o d s g i v e p r o m i s i n g 

r e s u l t s . 
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Table 5.1.13 The marginal distribution (probability of j^=0) and the proportion of correct 

imputation (based on 300 repetitions) of the linear logistic model with marginal distribution at .865 

I m p u t a t i o n Method 
.P3OO 

P r o p o r t i o n o f C o r r e c t 

I m p u t a t i o n 

T r u e 0.8653 1.0000 

L o g i s t i c H P 0.8682 0.9822 

L o g i s t i c R D 0.8671 0.9809 

RBFHP 0.8652 0.9167 

RBFRD 0.8738 0.8917 

NNIEU 0.8763 0.9583 

NNIMH 0.8756 0.9584 

WDll 0.8767 0.9662 

WD21 0.8764 0^K3 

WD12 0.8739 0.9643 

WD22 0.8732 0^M9 

Table 5.1.14 P values of t-test: The marginal distribution (probability of>'=0) and the 

correct imputation (based on 300 repetitions) of the linear logistic model with marginal distiibul 

I m p u t a t i o n Method 
.P3OO 

P r o p o r t i o n o f C o r r e c t 

I m p u t a t i o n 

L o g i s t i c H P 0.9855 0.9149 

L o g i s t i c R D 0.9910 0.9089 

RBFHP 0.9996 0.6592 

RBFRD 0.9585 0.5818 

NNIEU 0.9463 0.8119 

NNIMH 0.9500 0.8124 

WDll 0.9448 0.8446 

WD21 0.9458 0.8409 

WD12 0.9580 0.8365 

WD22 0.9612 0.8389 

Note: The notation is same as that of simulation I. 
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Simulation VI: Associated Response Model 

M o d e l : 

[ l , z,. > ^ ( z ) 

w h e r e z i s t h e v a r i a b l e d e s c r i b e d i n s i m u l a t i o n 11. T h i s i s t h e c o u n t e r p a r t o f s i m u l a t i o n I I 

f o r t h e c a t e g o r i c a l d a t a . U n d e r t h i s m o d e l t h e t r u e m a r g i n a l d i s t r i b u t i o n p=E{y-l)=.5. 

T h e m a r g i n a l d i s t r i b u t i o n a n d t h e p e r c e n t a g e o f t h e t r u e v a l u e s i m p u t e d b y t h e t e n 

m e t h o d s a r e a s f o l l o w s ( s e e T a b l e 5 . 1 . 1 5 , T a b l e 5 . 1 . 1 6 ) . 

Table 5.1.15 The marginal distribution (probability of y=l) and the proportion of correct 

imputation (based on 300 repetitions) of the correlated response model 

I m p u t a t i o n Method 
JP3OO 

P r o p o r t i o n o f C o r r e c t 

I m p u t a t i o n 

T r u e 0.4931 1.0000 

L o g i s t i c H P 0 4995 0.6760 

L o g i s t i c R D 0.4925 0.5948 

RBFHP 0,5046 0.6823 

RBFRD 0.4940 0,6125 

NNIEU 0.4928 0.7846 

MMIMH 0.4923 0.7855 

WDll 0.4989 0.8899 

WD21 0,4998 0.8676 

WD12 0.5011 0.8035 

WD22 0.4983 0.8657 

Note: The notation is same as that of simulation I. 

T h e w e i g h t e d d i s t a n c e b a s e d n e a r e s t n e i g h b o u r i m p u t a t i o n s o u t p e r f o r m l o g i s t i c r e g r e s s i o n 

b a s e d i m p u t a t i o n s i n t e r m s o f p r e s e r v a t i o n o f t h e t r u e v a l u e s . O v e r a l l t h e w e i g h t e d 

d i s t a n c e b a s e d i m p u t a t i o n w i t h t h e a b s o l u t e v a l u e d i s t a n c e a n d c r o s s t e r m g i v e s m o r e 

c o n s i s t e n t i m p u t a t i o n i n t e r m s o f t h e m a r g i n a l a n d t h e t r u e v a l u e s . T h e R B F i m p u t a t i o n s 

a l s o s h o w i t f l e x i b i l i t y o f b e i n g a l o c a l r e g r e s s i o n . T h e y a l s o o u t p e r f o r m t h e l i n e a r l o g i s t i c 

b a s e d i m p u t a t i o n s . B u t d u e t o t h e c o m p u t i n g l i m i t a t i o n , t h e R B F m o d e l h a s n o t b e e n 
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t r a i n e d t o b e t h e u n d e r l y i n g m o d e l , t h e r e f o r e i t c a n n o t o u t p e r f o r m t h e w e i g h t e d d i s t a n c e 

b a s e d n e a r e s t n e i g h b o u r i m p u t a t i o n s . 

Table 5.1.16 P values of t-test: The marginal distribution (probability of 3̂ = 1) and the proportion of 

correct imputation (based on 300 repetitions) of the correlated response model 

I m p u t a t i o n Method P r o p o r t i o n o f C o r r e c t 

I m p u t a t i o n 

L o g i s t i c H P 0.9688 0.0541 

L o g i s t i c R D 0.9971 0.0261 

RBFHP 0.9443 0.0573 

RBFRD 0.9954 0.0306 

NNIEU 0.9985 (11439 

NNIMH 0.9956 0.1451 

WDll 0.9715 0.3713 

WD21 0.9674 0.3037 

WD12 0.9608 0.1707 

WD2 2 0.9745 0.2986 

Note: The notation is same as that of simulation I. 

T h i s s i m u l a t i o n g i v e s t h e e v i d e n c e t h a t t h e w e i g h t e d d i s t a n c e b a s e d n e a r e s t n e i g h b o u r 

i m p u t a t i o n c a n b e t h e b e s t c h o i c e i n s i t u a t i o n s t h a t t h e c o r r e l a t i o n b e t w e e n t h e r e s p o n s e 

r e l a t e s t o t h e d i s t a n c e o f i t s c o v a r i a t e s . 

S i m u l a t i o n V I I : B i n a r y R B F M o d e l 

M o d e l : 

P r ( M ) ) = e ; g ) ( 0 ( x ] , x 2 , n ) ) / ( l + & g 9 ( 0 ( x ] , X 2 , ^ i ) ) ) = Zog%Y(Zwj( | ) ( X i , x z , / ^ ) ) , 

where (|)( Xi, X2,/^)=exp(-((xi-/^i)^+(x2-/^2)^)/^), p ,={(8 ,4) , (12,6)} , 1 - 2 . 

T h e e x p r e s s i o n i n s i d e t h e logit f u n c t i o n i s t h e s a m e a s t h e s y s t e m a t i c p a r t o f t h e 

c o n t i n u o u s R B F m o d e l i n s i m u l a t i o n I I I . W i t h t h e t r u e v a l u e s o f t h e R B F m o d e l k n o w n , 

t h e R B F i m p u t a t i o n s d e m o n s t r a t e r e m a r k a b l e p e r f o r m a n c e i n t e r m s o f p r e d i c t i n g t h e t r u e 

v a l u e s ( s e e T a b l e 5 . 1 . 1 7 T a b l e 5 . 1 . 1 8 ) . T h e m a r g i n a l d i s t r i b u t i o n i s w e l l p r e s e r v e d b y a l l 

i m p u t a t i o n s . M e a n w h i l e t h e d i s t a n c e - b a s e d i m p u t a t i o n s a l s o s h o w i t s s t r e n g t h . I n t h e 

m e a n t i m e , i f t h e t r u e v a l u e s o f m o d e l p a r a m e t e r s a r e n o t s e t a s t h e i n i t i a l v a l u e s i n t h e 
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t r a i n i n g p r o c e s s o f t h e R B F m o d e l , t h e p r o m i s i n g r e s u l t s m a y h a v e n o t b e e n o b t a i n e d 

e s p e c i a l l y w h e n t h e t r u e d a t a c e n t r e s a r e n o t a c h i e v e d i n t h e t r a i n i n g p r o c e s s . A f t e r a l l i n 

t h e i d e a l s i t u a t i o n w h e n t h e t r u e m o d e l i s r e p r e s e n t e d b y a R B F m o d e l a n d t h e t r u e v a l u e s 

o f i t s p a r a m e t e r s a r e a c h i e v e d i n t h e t r a i n i n g p r o c e s s , R B F i m p u t a t i o n s c o u l d b e t h e b e s t 

a p p r o a c h . 

Table 5.1.17 The marginal distribution (probability of y=0) and the proportion of correct 

imputation (based on 300 repetitions) of the RBF model. 

I m p u t a t i o n Method P r o p o r t i o n o f C o r r e c t 

I m p u t a t i o n 

T r u e 0.4932 1.0000 

L o g i s t i c H P 0.4750 0.5997 

L o g i s t i c R D 0.4807 0.5242 

RBFHP 0.4892 0.9877 

RBFRD 0.4897 0.9846 

NNIEU 0.4660 0.8924 

NNIMH 0.4667 0.8927 

WDll 0.5159 (X9017 

WD21 0.5110 0.9102 

WD12 0.5192 0.8962 

WD22 (15132 0.9006 

Note: The notation is same as that of simulation I. 

Table 5.1.18 P values of t-test: The marginal distribution (probability of >^=0) and the proportion of 

correct imputation (based on 300 repetitions) of the RBF model 

I m p u t a t i o n Method P r o p o r t i o n o f C o r r e c t 

I m p u t a t i o n 

L o g i s t i c H P (19132 (X1351 

L o g i s t i c R D 0.9394 0.0927 

RBFHP 0.9805 0.9402 

RBFRD 0.9827 0.9257 

NNIEU 0.8730 0.5840 

NNIMH 0.8759 &aW7 

WDll 0.8926 0 6116 

WD21 0.9148 0.6383 

WD12 0.8779 0.5952 

WD22 0.9046 0.6083 

Note: The notation is same as that of simulation I. 
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S i m u l a t i o n V I I I : Log i s t i c N o n - l i n e a r R e g r e s s i o n M o d e l 

M o d e l ; 

P r ( y = 0 ) = / o g z Y ( - 1 2 + . 5 * X i + X 2 + 5 * s m ( x i ) + 5 * s m ( x 2 ) + 1 .1 + 1 . 2 ^ " ) 

T h i s m o d e l i s t h e c a t e g o r i c a l c o u n t e r p a r t o f m o d e l I V . T h e e x p r e s s i o n i n s i d e t h e logit 

f u n c t i o n i s a n o n - l i n e a r f u n c t i o n . I t i s c r e a t e d t o c o m p a r e t h e p e r f o r m a n c e s o f t h e t e n 

i m p u t a t i o n m e t h o d s w h e n t h e true m o d e l d o e s n o t f i t i n t o a n y o f t h e m . 

Table 5.1.19 The marginal distribution (probability of j^=0) and the proportion of conect 

imputation (based on 300 repetitions) of the non-linear model 

I m p u t a t i o n Method P r o p o r t i o n o f C o r r e c t 

I m p u t a t i o n 

T r u e 0.5007 1.0000 

L o g i s t i c H P 0.4933 0.6610 

L o g i s t i c R D 0.5060 0.5686 

RBFHP 0.5059 0.7033 

RBFRD 0.5038 0.7450 

MNIEU 0.5127 0.8870 

NNIMH 0.5130 0.8873 

WDll 0.5000 0.9028 

WD21 0.5057 0.9067 

WD12 0.5028 0.8893 

WD22 0.5053 0.8897 

Note: The notation is same as that of simulation I. 

T h e r e s u l t s i n T a b l e 5 . 1 . 1 9 a n d T a b l e 5 . 1 . 2 0 s h o w t h a t t h e i m p u t a t i o n s o f t h e d i s t a n c e -

b a s e d n e a r e s t n e i g h b o u r m e t h o d s a r e m u c h b e t t e r t h a n t h a t o f t h e l i n e a r l o g i s t i c 

i m p u t a t i o n s a n d t h e R B F i m p u t a t i o n s . I t i s e a s y t o u n d e r s t a n d t h a t t h e l i n e a r l o g i s t i c 

i m p u t a t i o n s d o n o t w o r k w e l l u n d e r t h i s m o d e l a s s u m p t i o n , a s t h e true m o d e l i s n o t l i n e a r . 

T h e i n f e r i o r p e r f o r m a n c e o f t h e R B F i m p u t a t i o n s i n p r e s e r v i n g t h e t r u e v a l u e s c a n b e 

e x p l a i n e d a s t h a t t h e t r u e v a l u e s o f t h e p a r a m e t e r s o f t h e e q u i v a l e n t R B F m o d e l t o t h e 

n o n - l i n e a r m o d e l a r e n o t r e a c h e d i n t h e t r a i n i n g p r o c e s s . A l t h o u g h t h e t h e o r y s h o w s t h a t 

t h e R B F m o d e l h a s t h e p o t e n t i a l , i n p r a c t i c e i t c o u l d b e a n u n a c h i e v a b l e t a s k . I t i s t h i s 
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r e a s o n t h a t t h e s c i e n t i s t s i n t h e n e u r a l n e t w o r k s a r e a p a y m u c h a t t e n t i o n t o t h e a l g o r i t h m s 

w h i c h a r e frequently r e f e r r e d a s m a c h i n e l e a r n i n g m e t h o d s . 

Table 5.1.20 P values oft-test: The marginal distribution (probability of _y=0) and the proportion of 

correct imputation (based on 300 repetitions) of the non-linear model 

I m p u t a t i o n Method P r o p o r t i o n o f C o r r e c t 

I m p u t a t i o n 

L o g i s t i c H P 0.9425 0.0337 

L o g i s t i c R D 0.9587 0.0134 

RBFHP 0.9596 0.0515 

RBFRD 0.9759 0.0781 

NNIEU 0.9089 0.3230 

NNIMH 0.9065 0.3241 

WDll 0^M2 0.3782 

WD21 0.9613 0.3932 

WD12 0.9838 0.3304 

WD22 a a B 9 CL3318 

Note: The notation is same as that of simulation I. 

A m o n g t h e s i x n e a r e s t n e i g h b o u r i m p u t a t i o n m e t h o d s b a s e d o n f o u r d i f f e r e n t d i s t a n c e 

m e a s u r e s , i t s e e m s d i f f i c u l t t o i m p r o v e u p o n t h e E u c l i d e a n d i s t a n c e m e a s u r e . T h e 

i m p u t a t i o n b a s e d o n t h e M a h a l a n o b i s d i s t a n c e i s a l m o s t i d e n t i c a l t o t h a t b a s e d o n t h e 

E u c l i d e a n d i s t a n c e , a n d t h e i m p r o v e m e n t s from t h e w e i g h t e d d i s t a n c e m e t h o d s a r e m i n o r . 

O n e c a n i m p r o v e t h e p e r f o r m a n c e o f w e i g h t e d d i s t a n c e i m p u t a t i o n b y e m b e d d i n g n e u r a l 

n e t w o r k s i n i t , b u t t h e c o m p u t i n g t a s k w i l l b e i n c r e a s e d e x p o n e n t i a l l y , a n d b e c o m e s a b i g 

d i f f i c u l t y i n i m p l e m e n t a t i o n . 

F r o m t h e s i m u l a t i o n s f o r t h e c a t e g o r i c a l r e s p o n s e d a t a , t h e f o l l o w i n g f i n d i n g s c a n b e 

s u m m a r i s e d . 

• T h e p e r f o r m a n c e o f a n i m p u t a t i o n m e t h o d d e p e n d s o n t h e v a l i d i t y o f t h e m o d e l 

a s s u m p t i o n s . 

• R B F i m p u t a t i o n s a r e v e r y f l e x i b l e , a n d c o u l d a p p r o x i m a t e m a n y u n d e r l y i n g 

m o d e l s i n p r a c t i c e . 
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« T h e i m p u t a t i o n s t r a t e g y o f t a k i n g t h e v a l u e w i t h t h e h i g h e s t p r o b a b i l i t y g i v e s 

s i m i l a r r e s u l t s t o t h e r a n d o m d r a w s t r a t e g y , a l t h o u g h t h e l a t t e r m e t h o d t e n d s t o 

p r e s e r v e t h e d i s t r i b u t i o n s o m e w h a t b e t t e r . 

• T h e n e a r e s t n e i g h b o u r i m p u t a t i o n s b a s e d o n t h e E u c l i d e a n d i s t a n c e a n d t h e 

M a h a l a n o b i s d i s t a n c e a l w a y s g i v e s i m i l a r r e s u l t s . 

® T h e i m p r o v e m e n t o f t h e w e i g h t e d d i s t a n c e b a s e d o n r e g r e s s i o n o v e r t h e E u c l i d e a n 

d i s t a n c e m a y n o t b e i m p o r t a n t i f t h e t r u e m o d e l i s n o t t h e c o r r e l a t e d r e s p o n s e 

m o d e l . 

I n p r a c t i c e i f t h e n e a r e s t n e i g h b o u r i m p u t a t i o n i s a c c e p t a b l e , i t m i g h t n o t b e n e c e s s a r y t o 

u s e t h e w e i g h t e d d i s t a n c e . O t h e r w i s e i f t h e E u c l i d e a n i s n o t g o o d e n o u g h , o n e c o u l d 

c h o o s e t h e w e i g h t e d d i s t a n c e a n d u s e n e u r a l n e t w o r k s d i s t a n c e t o i m p r o v e t h e 

p e r f o r m a n c e o f t h e n e a r e s t n e i g h b o u r i m p u t a t i o n . 
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5.2 Numerical Study Based on 1991 Household Census Data 

5.2.1 Data Source 

D a t a f r o m t h e 1 9 9 1 p o p u l a t i o n c e n s u s o f G r e a t B r i t a i n a r e u s e d . T h e o r i g i n a l c e n s u s d a t a 

c o n t a i n s b o t h p e r s o n a l a n d h o u s e h o l d v a r i a b l e s ( D a l e , 1 9 9 3 ) . T h e d a t a s e t w e u s e h e r e i s a 

d e r i v e d o n e t h a t o n l y c o n t a i n s v a r i a b l e s a t t h e h o u s e h o l d l e v e l . F o r c o m p u t i n g c o n c e r n , 

w e o n l y u s e t h e d a t a f r o m o n e a r e a w h i c h h a s 9 9 8 0 r e c o r d s . 7 5 9 8 o f t h e m a r e c o m p l e t e 

r e c o r d s . 

T h e r e a r e t w e n t y - f o u r v a r i a b l e s i n t h e d e r i v e d d a t a . T e n o f t h e m a r e i n d i c a t o r s from t h e 

d a t a c h e c k i n g a n d e d i t i n g p r o c e s s c a r r i e d o u t b y t h e O f f i c e f o r N a t i o n a l S t a t i s t i c s ( O N S ) . 

O f t h e r e m a i n i n g f o u r t e e n v a r i a b l e s , f i v e v a r i a b l e s a r e n e a r l y c o n s t a n t ( m o r e t h a n 9 9 % ) . 

T h e r e f o r e t h e y a r e e x c l u d e d i n t h i s s t u d y . A l s o a v a r i a b l e i n d i c a t i n g g e o g r a p h y i s n o t 

i n c l u d e d . I n t h e e n d , t h e r e a r e e i g h t v a r i a b l e s l e f t , a s l i s t e d i n T a b l e 5 . 2 . 1 . T h e t w o 

v a r i a b l e s w i t h m o s t m i s s i n g n e s s a r e " n u m b e r o f r o o m s " ( 1 1 . 6 8 % ) a n d " c a r s a n d v a n s " 

( 7 . 5 2 % ) . T h e v a r i a b l e " n u m b e r o f r o o m s " h a s f o u r t e e n d i f f e r e n t v a l u e s ( f r o m 1 t o 1 4 ) , 

a n d t h e v a r i a b l e o f " c a r s a n d v a n s " h a s f o u r d i f f e r e n t v a l u e s ( f r o m 1 t o 4 ) . T o s p e e d u p 

t h e c o m p u t i n g , t h e c a t e g o r i e s o f t h e s e v a r i a b l e s a r e c o l l a p s e d i n t h e f o l l o w i n g w a y . 

N u m b e r o f r o o m s : 1—>2, 8-14—>7, N u m b e r o f c a r s ; 2 + - > 2 . T h e c o l l a p s i n g o f c a t e g o r i e s o f 

" n u m b e r o f r o o m s " a n d " c a r s a n d v a n s " i s s h o w n i n T a b l e 5 . 2 . 2 a n d T a b l e 5 . 2 . 3 . 
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T a b l e 5 . 2 . 1 C e n s u s V a r i a b l e s U s e d 

Variables Values Pet. of missmg(%) 

N u m b e r o f R o o m s 1 - 1 4 11.68 

C a r s a n d v a n s 0-4 

T y p e o f b u i l d i n g 2-8 5.81 

T y p e o f t e n u r e 1 - 8 1.90 

T y p e o f h e a t i n g 1 - 3 2.52 

N u m b e r o f h o u s e h o l d 01,02,11,12 4.55 

T y p e o f b a t h s h o w e r 1 - 3 2 J 3 

N u m b e r o f p e r s o n i n t h e 

h o u s e 

01-09 2.52 

Note: The percentages are based on the 9980 cases in one area. 

T h e n e w d i s t r i b u t i o n i s a s f o l l o w s . 

T a b l e 5 . 2 . 2 D i s t r i b u t i o n o f N u m b e r o f R o o m s 

N u m b e r o f R o o m s O r i g i n a l c l a s s i f i c a t i o n 

( % ) 

C o l l a p s e d c a t e g o r i e s 

( % ) 

1 2.00 8.92 

2 6.92 

8.92 

3 21.88 2L88 

4 2&36 2&36 

5 2 2 3 7 2 2 3 7 

6 9 J 1 9J^ 

7 3.64 9 J 6 

8 2.61 

9 J 6 

9 1 . 3 7 

9 J 6 

10+ L74 

9 J 6 

A l l lO&OO 100.00 

Note: The percentages are based on the 9980 cases in one area. 
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T a b l e 5 . 2 . 3 D i s t r i b u t i o n o f N u m b e r o f C a r s 

N u m b e r o f C a r s O r i g i n a l c l a s s i f i c a t i o n 

( % ) 

C o l l a p s e d c a t e g o r i e s 

( % ) 

0 54 54.23 

1 3 4 ^ 4 3 4 ^ 4 

2 11.13 

3 L55 

11.13 

A l l 100.00 lO&OO 

Note: The percentages are based on the 9980 cases in one area. 

5.2,2 Criteria Used to Evaluate Properties of Imputation Methods in This 

Numerical Study 

I n t h i s n u m e r i c a l s t u d y , t h e r e s p o n s e v a r i a b l e s a r e c a t e g o r i c a l v a r i a b l e w i t h m o r e t h a n t w o 

c a t e g o r i e s . W e u s e W a l d s t a t i s t i c t o e v a l u a t e t h e c o n s i s t e n c y o f m a r g i n a l d i s t r i b u t i o n s 

( S t u a r t 1 9 5 5 , C h a m b e r s 1 9 9 6 ) . I f w e d e n o t e t h e m a r g i n a l c o u n t s o f t h e c o n t i n g e n c y t a b l e 

o f t h e i m p u t e d v a l u e s a n d t h e t r u e v a l u e s o f Ymis b y R a n d S, t h e u p p e r - l e f t m a t r i x ( t h e 

c o n t i n g e n c y t a b l e w i t h o u t t h e l a s t c o l u m n a n d t h e l a s t r o w ) b y T, t h e W a l d s t a t i s t i c c a n b e 

w r i t t e n a s 

(5.2.1) 

U n d e r s o m e r e g u l a r c o n d i t i o n s X w follows a d i s t r i b u t i o n . F r o m ( 5 . 2 . 1 ) , w e c a n 

c o n c l u d e w h e n t h e m a r g i n a l d i s t r i b u t i o n i s w e l l p r e s e r v e d , R a n d S a r e l i k e l y t o b e c l o s e 

w h i c h l e a d s t o s m a l l X w • 

T h e s t a t i s t i c u s e d f o r t e s t i n g t h e c o n s i s t e n c y o f t r u e v a l u e s i s t h e p r o p o r t i o n o f o f f -

d i a g o n a l v a l u e s . 

D = i - » - ' ; g / ( j ) , = y , . ) . 

i=i 

(5.2.2) 
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A s m a l l D i n d i c a t e s a g o o d i m p u t a t i o n i n t e r m s o f p r e d i c t i n g t r u e v a l u e s . T h e r e l a t i o n s h i p 

b e t w e e n / ' c s o o i n ( 5 . 1 . 8 ) a n d D c a n b e d e s c r i b e d b y t h e f o l l o w i n g e x p r e s s i o n . 

1 300 

w h e r e 

30 

i = I 

T h e r e f o r e t h e s e t w o m e a s u r e s a r e c o n s i s t e n t i n n a t u r e . 

5.2,3 Numerical Study 

A s m e n t i o n e d i n s e c t i o n 5 . 1 , n e u r a l n e t w o r k m e t h o d s a r e v e r y t i m e - c o n s u m i n g t o t r a i n . 

W e c a n n o t a f f o r d t o b u i l d a n e u r a l n e t w o r k s m o d e l u s i n g a l l t h e a v a i l a b l e c a s e s . I n s t e a d , 

t w o s i m p l e r a n d o m s a m p l e s a r e d r a w n f r o m t h e 7 5 9 8 c o m p l e t e c a s e s a s t h e t r a i n i n g d a t a 

a n d t e s t d a t a r e s p e c t i v e l y . T h e t r a i n i n g d a t a a r e u s e d t o e s t i m a t e t h e p a r a m e t e r s o f 

p a r a m e t r i c m o d e l s a n d b u i l d n o n p a r a m e t r i c m o d e l s s u c h a s t r e e m o d e l a n d n e u r a l n e t w o r k 

m o d e l s . T h e t e s t d a t a , w h o s e r e s p o n s e s a r e a s s u m e d m i s s i n g , a r e u s e d t o c o m p a r e t h e 

p e r f o r m a n c e o f c o m p e t i n g i m p u t a t i o n m e t h o d s . T h e s a m p l e f o r t r a i n i n g d a t a h a s 6 0 0 

c a s e s , a n d t h e s a m p l e f o r t e s t d a t a h a s 2 0 0 c a s e s . T h e r e i s n o o v e r l a p b e t w e e n t h e t w o 

d a t a s e t s . 

W e c h o o s e t h e t w o v a r i a b l e s w i t h m o s t m i s s i n g v a l u e s , " n u m b e r o f r o o m s " a n d " c a r s a n d 

v a n s " , a s r e s p o n s e v a r i a b l e s i n t h i s s t u d y . T h e f i r s t s i t u a t i o n a s s u m e s o n l y t h e v a r i a b l e 

" n u m b e r o f r o o m s " i s m i s s i n g i n t h e t e s t d a t a , a n d a l l o t h e r s e v e n v a r i a b l e s a r e p r e s e n t . 

T h e s e c o n d s i t u a t i o n a s s u m e s t h e v a r i a b l e " c a r s a n d v a n s " i n t h e t e s t d a t a i s m i s s i n g , a l l 

o t h e r v a r i a b l e s a r e c o m p l e t e . T h e t h i r d s i t u a t i o n d e a l s w i t h s i m u l t a n e o u s m i s s i n g n e s s o f 

" n u m b e r o f r o o m s " a n d " c a r s a n d v a n s " , w h e r e b o t h r e s p o n s e v a r i a b l e s i n t h e t e s t d a t a a r e 

a s s u m e d m i s s i n g . 

153 



F o r c o m p u t i n g h a r d w a r e r e s t r i c t i o n , t h i s n u m e r i c a l s t u d y i s j u s t a o n e - t i m e s a m p l e w i t h n o 

r e p e t i t i o n . O n c e t h e t r a i n i n g d a t a a n d t e s t d a t a a r e c r e a t e d , t h e y w i l l k e e p u n c h a n g e d . T h e 

m i s s i n g v a l u e s a r e c r e a t e d from t h e t e s t d a t a b y a s s u m i n g o n e o r t w o v a r i a b l e s m i s s i n g i n 

c o r r e s p o n d i n g s i t u a t i o n s . T h a t g i v e s a n o t h e r d i m e n s i o n o f v a r i a t i o n i n t h e r e s u l t s . I n t h a t 

s o m e o f t h e p r o m i s i n g i m p u t a t i o n s c o u l d b e r e s u l t e d f r o m t h e s a m p l e s e l e c t i o n i n s t e a d o f 

g o o d p e r f o r m a n c e o f t h e i m p u t a t i o n m e t h o d . 

5.2,4 Imputation Methods 

T h e i m p u t a t i o n m e t h o d s i n c l u d e d i n t h i s n u m e r i c a l s t u d y a r e m u l t i n o m i a l r e g r e s s i o n 

i m p u t a t i o n b a s e d o n t h e h i g h e s t p r o b a b i l i t y ( M u l t i n o m i a l ) , n e a r e s t n e i g h b o u r i m p u t a t i o n 

( N N I ) , t r e e m o d e l i m p u t a t i o n ( T r e e ) ( s e e s e c t i o n 1 . 6 . 2 ) , R B F n e u r a l n e t w o r k s i m p u t a t i o n s 

( w i t h s u m - s q u a r e - e r r o r , R B F : S S E , a n d W a l d e r r o r , R B F : W A L D , r e s p e c t i v e l y ) , M L P 

n e u r a l n e t w o r k s ( w i t h s u m - s q u a r e - e r r o r , M L P : S S E , a n d W a l d e r r o r , M L P : W A L D , 

r e s p e c t i v e l y ) a n d w e i g h t e d d i s t a n c e i m p u t a t i o n b a s e d o n n e a r e s t n e i g h b o u r m e t h o d 

( W D 1 2 ) . T h e w e i g h t e d d i s t a n c e i s t h e s q u a r e v a l u e d i s t a n c e w i t h o u t c r o s s t e r m . I t i s b u i l t 

o n r e g r e s s i o n m o d e l . 

A s a f o r e m e n t i o n e d , t h e c o m p a r i s o n o f d i f f e r e n t i m p u t a t i o n m e t h o d s i s m a i n l y b a s e d o n 

Wald s t a t i s t i c ( s e e 5 . 2 . 1 ) , b e c a u s e t h e s e v a r i a b l e s a r e c a t e g o r i c a l . T h e v a l u e s o f t h e 

s t a t i s t i c D f o r e v a l u a t i n g c o r r e c t i m p u t a t i o n a r e a l s o p r o v i d e d . T h e i m p u t a t i o n s a r e c a r r i e d 

o u t i n t h e t h r e e c i r c u m s t a n c e s d e s c r i b e d i n p r e v i o u s s e c t i o n . 
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5 . 2 . 5 R e s u l t s w h e n t h e V a l u e s o f " n u m b e r o f r o o m s " a r e M i s s i n g 

T a b l e 5 . 2 .4 . W a l d S t a t i s t i c s a n d D : " N u m b e r o f R o o m s ' 

Imputation 

Method 

Wald Statistic 

(df=5) 

P Value of Wald D Time Model 

specification 

Multinomial 6 86 .2316 031 10 mins 

NNT 9JW .0998 OJ? 3 mins 

Tree model 4.01 .5479 &28 2 mins Node:54,le-3 

RBF: SSE 3.41 .6373 0U7 2 days Node:25,le-4 

RBF: Wald 145 .6303 &29 7 days Node:25,le-4 

MLP: SSE 1.26 .9388 CU5 3 days Node:30,le-4 

MLP: Wald 2^0 .8487 &25 4 days Node:30,le-4 

WD12 4.21 .5186 0^8 3 mins 

Note: The above results are based on the imputed values of the test data which has 200 cases. 

T h e v a l u e s o f t h e W a l d S t a t i s t i c i n T a b l e 5 . 2 . 4 r e v e a l t h a t t h e M L P i m p u t a t i o n w i t h s u m -

s q u a r e - e i T o r g i v e s t h e l o w e s t v a l u e , a n d t h u s p r e s e r v e s t h e d i s t r i b u t i o n o f t h i s v a r i a b l e 

b e s t . I n T a b l e 5 . 2 . 5 , t h e d i s t r i b u t i o n s b a s e d o n t h e i m p u t e d v a l u e s a n d t h e t r u e v a l u e s a r e 

d i s p l a y e d a l o n g w i t h t h e m e a n s a n d v a r i a n c e s . I t a l s o s h o w s t h a t t h e M L P i m p u t a t i o n 

b a s e d o n S S E e r r o r f u n c t i o n p r e s e r v e s t h e m e a n a n d v a r i a n c e v e r y w e l l . M e a n w h i l e t h e 

M L P w i t h W a l d e r r o r f u n c t i o n b e s t p r e s e r v e s t h e v a r i a n c e . C o n s i d e r i n g t h e p - v a l u e s , t h e 

r e s u l t s d o n o t s h o w s i g n i f i c a n t d i f f e r e n c e s e x c e p t f o r n e a r e s t n e i g h b o u r i m p u t a t i o n ( N N I ) . 

I n T a b l e 5 . 2 . 5 , N N I d o e s p r e s e r v e s t h e m e a n v e r y w e l l b u t g i v e s v e r y b i a s e d v a r i a n c e 

e s t i m a t i o n . T h e p o o r p e r f o r m a n c e o f N N I m i g h t b e c a u s e d b y t h e s m a l l s a m p l e s i z e o f 

t r a i n i n g d a t a , i n t h e s e n s e t h e b e s t d o n o r i s n o t i n c l u d e d i n t h e t r a i n i n g d a t a . A l s o , i n t h e 

p r e v i o u s s i m u l a t i o n s , t h e n e a r e s t n e i g h b o u r i m p u t a t i o n g i v e s p r o m i s i n g r e s u l t s . 

T h e s t a t i s t i c D i s u s e d t o a s s e s s h o w w e l l t h e t r u e v a l u e s a r e p r e d i c t e d . S m a l l e r D 

i n d i c a t e s b e t t e r p r e d i c t i o n f o r t r u e v a l u e s , h i T a b l e 5 . 2 . 5 , R B F i m p u t a t i o n a n d M L P 

i m p u t a t i o n w i t h s u m - s q u a r e - e r r o r p r e d i c t t h e t r u e v a l u e b e t t e r t h a n t h e o t h e r i m p u t a t i o n 

m e t h o d s . 

T h e R B F i m p u t a t i o n s s e e m n o t t o o u t p e r f o r m M L P i m p u t a t i o n s . I t c o u l d b e t h e r e s u l t o f 

i m p r o p e r s p e c i f i c a t i o n f o r t h e c e n t r e s . I n t h e o r y b o t h o f t h e m c a n b e c o n f i g u r e d t o b e a n y 

f u n c t i o n s , w h i l e t h e d i s a d v a n t a g e o f b o t h n e u r a l n e t w o r k s m o d e l s i s t h e t i m e n e e d e d t o 
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a p p r o x i m a t e t h e u n d e r l y i n g m o d e l . T h i s i s c a u s e d b y t h e c o m p l e x i t y o f t h e n e u r a l 

n e t w o r k s m o d e l . G e n e r a l l y s p e a k i n g , t h e b e s t m o d e l i s r a r e l y k n o w n b e f o r e o n e b e g i n s t o 

b u i l d i t . O n e o f t h e p r a c t i c a l a p p r o a c h e s i s t o u s e c r o s s v a l i d a t i o n m e t h o d t o t r y m a n y 

m o d e l s a n d find t h e b e s t o n e . I t i s t h e c r o s s v a l i d a t i o n p r o c e s s t h a t t a k e s s u b s t a n t i a l t i m e . 

T h e o t h e r p r o b l e m i s t h e m u l t i p e a k p h e n o m e n o n . B e c a u s e t h e o p t i m i s a t i o n t a r g e t ( e r r o r 

f u n c t i o n ) i s a c o m p l e x n o n - l i n e a r f u n c t i o n o f t h e n e u r a l n e t w o r k s w e i g h t s , t h e r e f o r e t h e r e 

i s n o g u a r a n t e e t h e g l o b a l m i n i m u m c a n b e o b t a i n e d n u m e r i c a l l y . F o r R B F m o d e l t h e 

p e a k p o i n t s a r e a c t u a l l y t h e l o c a t i o n s o f R B F c e n t r e s . T h e c o m p u t i n g t i m e i s a l s o a f f e c t e d 

b y t h e i n i t i a l i s a t i o n o f t h e w e i g h t s a n d c e n t r e s , w h i c h i s t i m e - c o n s u m i n g . 

I f t h e t r a i n i n g t i m e i s a b i g c o n c e r n , t h e m u l t i n o m i a l l o g i s t i c i m p u t a t i o n a n d t r e e m o d e l 

i m p u t a t i o n m a y b e a g o o d c h o i c e . 

T a b l e 5 . 2 . 5 . M a r g i n a l d i s t r i b u t i o n o f i m p u t a t i o n : " N u m b e r o f R o o m s " 

Imputation 

Method 

1-2 3 4 5 6 7+ mean Vari-

ance 

Departure 

from the 

true mean 

Departure 

from the true 

variance 

Original 1 2 j 190 25 0 220 120 9.5 4 j y 35J7 OIW 0 00 

Multinomial 7.5 2L5 2&0 26 5 8.0 8.5 432 20.53 0.03 -15.24 

NNI l a o 2L0 2 3 j 2&0 4.5 120 434 16.20 ao5 -19.57 

Tree model 9.5 2&5 240 2L0 11.0 8.0 4.2] 31.88 -0.08 ^L89 

RBF: SSE l&O 2^5 275 23 j 7.5 11.0 432 25.05 0.03 -10.72 

RBF: Wald 11.5 205 320 1 8 j 8.5 9.0 418 29 29 -0.11 

MLP: SSE 11.0 17.5 2&5 2 3 j 11.5 8.0 430 28.77 aoo -7.00 

MLP: Wald 10 0 220 24^ 20 5 11.0 12j 439 35.69 QUO -0.08 

WD12 9.0 215 270 23 j 8.5 8.5 4.24 24.87 -0.05 -10.90 

Note: The above results are based on the imputed values of the test data which has 200 cases. The numbers 

under the room numbers are percentages. 

5 . 2 . 6 R e s u l t s w h e n t h e V a l u e s o f " c a r s a n d v a n s " a r e M i s s i n g 

D i f f e r e n t i m p u t a t i o n m e t h o d s m a y p e r f o r m w e l l w i t h s o m e v a r i a b l e s b u t n o t f o r o t h e r 

v a r i a b l e s . T o i n v e s t i g a t e t h i s i s s u e w e c o n s i d e r t h e s i t u a t i o n o f a n o t h e r v a r i a b l e t h a t h a s a 

h i g h p e r c e n t a g e o f m i s s i n g v a l u e s , t h e " c a r s a n d v a n s " . T h e s a m e s t u d y a s i n t h e p r e v i o u s 
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s e c t i o n i s c a r r i e d o u t , n o w w i t h t h i s v a r i a b l e m i s s i n g . T h e r e s u l t s a r e p r e s e n t e d i n T a b l e 

5 . 2 . 6 a n d T a b l e 5 . 2 . 7 . 

T a b l e 5 . 2 . 6 . W a l d S t a t i s t i c s a n d Z ) ; " C a r s a n d V a n s " 

Imputation Method Wald Statistic 

Df=2 

P Value of Wald D Time 

Multinomial 2^2 .2703 Ojl 8 mins 

NNI 8.98 .0112 056 3 mins 

Tree model 4 ) 3 .1266 0.45 2 mins 

RBF: SSE 2.40 .3013 0.57 36 hours 

RBF: Wald 3T1 .2114 OJW 5 days 

MLP: SSE .70 .7063 0.61 2 days 

MLP:Wa]d 1.68 .4311 0.46 3 days 

WD12 .15 .9258 0^2 2 mins 

Note: The above results are based on the imputed values of the test data which has 200 cases. 

T h e r e s u l t s i n T a b l e 5 . 2 . 6 s h o w t h a t t h e w e i g h t e d d i s t a n c e b a s e d n e a r e s t n e i g h b o u r 

i m p u t a t i o n ( W D 1 2 ) p r o v i d e s a v e r y g o o d d i s t r i b u t i o n a l f i t i n t e r m s o f W a l d s t a t i s t i c . 

A g a i n t h e p - v a l u e s s u g g e s t a l l m e t h o d s p e r f o r m w e l l e x c e p t N N I . F r o m t h e e v a l u a t i o n s i n 

T a b l e 5 . 2 . 7 , t h e e i g h t i m p u t a t i o n m e t h o d s g i v e q u i t e s i m i l a r r e s u l t s i n t e r m s o f t h e b i a s e s 

o f t h e m e a n e s t i m a t o r s a n d t h e v a r i a n c e e s t i m a t o r s b a s e d o n t h e i m p u t e d v a l u e s . A s 

i n d i c a t e d b y t h e p - v a l u e t h e i m p u t e d v a l u e s f o r N N I a p p e a r t o l e a d t o s y s t e m a t i c u n d e r -

p r e d i c t i o n . A l s o t h e r e i s p o s s i b i l i t y o f W D 1 2 o u t p e r f o r m i n g o t h e r s i n t h i s s t u d y . 

F r o m t h e D v a l u e s , o n e c a n find t h a t a l l i m p u t a t i o n s d o n o t p r e s e r v e t h e t r u e v a l u e s v e r y 

w e l l w i t h t h e b e s t r e s u l t g i v e n b y M L P . 

h i t e r m s o f t h e t i m e n e e d e d f o r c o m p u t i n g , t h e W a l d e r r o r b a s e d n e u r a l n e t w o r k s t a k e 

m u c h l o n g e r t i m e t h a n o t h e r m e t h o d s i n c l u d i n g t h e S S E b a s e d n e u r a l n e t w o r k s . T h i s m a y 

s u g g e s t n o t u s e W a l d e r r o r . B e c a u s e i t m a k e s t r a i n i n g m o r e d i f f i c u l t . I f b o t h e f f i c i e n c y 

a n d a c c u r a c y a r e c o n c e r n e d , w e m a y p r e f e r t o t h e w e i g h t e d d i s t a n c e i m p u t a t i o n a n d 

m u l t i n o m i a l i m p u t a t i o n b a s e d o n t h e r e s u l t s t h i s s t u d y . 
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T a b l e 5 . 2 . 7 . M a r g i n a l d i s t r i b u t i o n o f I m p u t a t i o n : " C a r s a n d V a n s " 

Imputation 

Method 

0 1 2+ Mean Variance Departure from 

the true mean 

Departure from 

the true variance 

Original 55 j 35^ 9.5 0.59 2JK 0.00 0.00 

Multinomial 520 4L5 6.5 0.58 1.95 -0.01 -0.31 

NNI 6%0 2&0 5.0 &41 229 -0.19 OIG 

Tree model 5L0 315 1 5 j 0J2 l j 3 0J3 -0.73 

RBF: SSE 55^ 31.5 13.5 o^a 1.99 0.06 -0.27 

RBF: Wald 5 9 j 3 5 j 5.0 &48 2J0 -0.11 -0.16 

MLP: SSE 53^ 3&5 8.5 0.60 2.11 0.01 -0.15 

MLP:Wa]d 545 3&0 6.5 0.55 2.09 -0.04 -0.17 

WD12 5&0 35.5 8.5 0^7 229 -0.02 0.03 

Note: The above results are based on the imputed values of the test data which has 200 cases. The numbers 

under the car numbers are percentages. 

5.2.7 Results when Both Values of "number of rooms" and "cars and vans" are 

Missing 

T a b l e 5 . 2 . 8 . W a l d S t a t i s t i c s a n d D : b o t h a r e m i s s i n g 

Imputation Method RCX]MS(df=5) CARS(dM) Time 

Wald 

Statistic 

P Value 

of Wald 

D Wald Statistic P Value D 

Multinomial 5.94 .3119 OJ^ 1.86 .3940 0.57 30 mins 

NNI 7.86 .1641 0J# .49 .7837 &49 5 mins 

Tree model(57,le-3) 4^6 .4870 034 .32 .8539 0.53 4 mins 

RBF: SSE(25,le-4) 6.54 .2572 0J2 3J^ 2089 0.53 3 days 

RBF: Wald(25,]e-4) &07 .1522 0 19 4^6 .0834 0.54 10 days 

MLP: SSE(30,]e-4) 5J3 .3879 a29 1.80 .4075 0^0 5 days 

MLP:Wald(16,le-4) 1(L02 J55 0U9 5.90 .03 0^5 6 days 

WD12 3.21 .6225 0^4 .29 .8668 0.53 10 mins 

Note: The above results are based on the imputed values of the test data which has 200 cases. 

I n p r e v i o u s s e c t i o n s w e i n v e s t i g a t e d t h e s i t u a t i o n o f o n e v a r i a b l e c o n t a i n i n g m i s s i n g 

v a l u e s . I n t h e c e n s u s d a t a , t h e s i m u l t a n e o u s m i s s i n g n e s s o f m u l t i p l e v a r i a b l e s i s a l s o v e r y 

c o m m o n . H e r e w e d e a l w i t h t h e s i t u a t i o n w i t h t w o v a r i a b l e s m i s s i n g . I n i m p u t i n g t h e 

m u l t i v a r i a b l e m i s s i n g v a l u e s , n o t o n l y t h e m a r g i n a l d i s t r i b u t i o n s o f s i n g l e v a r i a b l e s s h o u l d 

b e p r e s e r v e d , t h e j o i n t d i s t r i b u t i o n s h o u l d b e p r e s e r v e d a s w e l l . F o r t h e c a t e g o r i c a l 
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v a r i a b l e s , t h e j o i n t d i s t r i b u t i o n i s s i m p l y t h e d i s t r i b u t i o n o f t h e c o m b i n e d c a t e g o r i e s . 

T h e r e f o r e i t c a n b e t r e a t e d a s a n e w s i n g l e c a t e g o r i c a l v a r i a b l e . W e i m p u t e t h e v a l u e s f o r 

t h e d e r i v e d v a r i a b l e . T h e i m p u t e d c a t e g o r y f o r i n d i v i d u a l r e s p o n s e v a r i a b l e c a n b e 

o b t a i n e d a c c o r d i n g l y . T h e r e i s o n e p r a c t i c a l p r o b l e m t h a t m a k e s t h e i m p u t a t i o n m o r e 

u n r e l i a b l e . I t i s t h e n u m b e r o f c o m p l e t e c a s e s . W h e n t w o s i n g l e v a r i a b l e s a r e j o i n e d 

t o g e t h e r t h e c o m p l e t e c a s e s a r e m u c h l e s s t h a n a n y o f t h e s i n g l e v a r i a b l e . S o m e 

i m p u t a t i o n m e t h o d s t h a t p e r f o r m v e r y w e l l w i t h l a r g e d a t a s e t s m a y n o t g i v e g o o d r e s u l t t o 

t h e j o i n e d v a r i a b l e . F o r t u n a t e l y , t h i s d o e s n o t h a p p e n i n t h e s e d a t a . 

T a b l e 5 . 2 . 9 . M a r g i n a l d i s t r i b u t i o n o f R o o m s b a s e d o n I m p u t a t i o n s 

Imputation 

Method 

ROOMS 

1-2 3 4 5 6 7+ mean variance Departure 

from the 

true mean 

Departure 

from the true 

variance 

Original 125 I&O 2&0 220 120 9.5 35.77 000 0.00 

Multinomial 8.0 I g j 325 215 9.5 8.0 432 2279 0 03 -12.98 

NNI 9.5 215 210 25^ 6.0 13.0 435 22.31 0.06 -13.46 

Tree model 11,5 2&0 3&5 220 8.5 7.5 4,17 25.12 -0.13 -10.65 

RBF: SSE 125 2L0 29 5 225 5.5 9.0 4T3 21.05 -0.16 -14.72 

RBF: Wald 1 2 j 2&5 17.0 l&O 15.0 l&O 4.53 47.24 0.24 11,47 

MLP: SSE 11.5 215 2&5 l&O 7.0 12.5 4^5 29.91 -0.04 -5.86 

MLP:Wa]d 14.5 ]4^ 2&0 15^ ]%5 ] 8 j 4^5 5CL03 036 14L26 

WD12 9.0 2^0 2^0 24.5 9.5 9.0 4^9 27.23 0^0 -8.54 

Note: The above results are based on the imputed values of the test data which has 200 cases. The numbers 

under the room numbers are percentages. 

T a b l e 5 . 2 . 8 c o n t a i n s t h e e v a l u a t i o n s t a t i s t i c s b a s e d o n i m p u t a t i o n s w h e n b o t h t h e " n u m b e r 

o f r o o m s " a n d t h e " c a r s a n d v a n s " a r e a s s u m e d m i s s i n g . T h e w e i g h t e d d i s t a n c e 

i m p u t a t i o n g i v e s t h e m o s t c o n s i s t e n t i m p u t a t i o n i n t e r m s o f W a l d s t a t i s t i c . M L P w i t h 

s u m - s q u a r e - e r r o r a n d t r e e i m p u t a t i o n a r e also p r o m i s i n g . T h e M L P i m p u t a t i o n w i t h W a l d 

e r r o r g i v e s t h e h i g h e s t W a l d v a l u e f o r b o t h v a r i a b l e s a n d d i s p l a y s s i g n i f i c a n t lack o f fit 

(p<0.05) i n t h e c a s e o f b o t h v a r i a b l e s m i s s i n g . I t m a y t e l l t h a t t h e W a l d error i s n o t a 

s u i t a b l e e r r o r f u n c t i o n . A g a i n t h e B v a l u e s i n d i c a t e a l l i m p u t a t i o n m e t h o d s d o n o t p r e d i c t 

t h e t r u e v a l u e s v e r y w e l l . 
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I n T a b l e 5 . 2 . 9 a n d T a b l e 5 . 2 . 1 0 , a l l i m p u t a t i o n s p r e s e r v e t h e m e a n v e r y w e l l e x c e p t M L P 

w i t h W a l d e r r o r f o r t h e v a r i a b l e o f N u m b e r o f R o o m s . T h e p e r f o r m a n c e s i n p r e s e r v i n g 

t h e v a r i a n c e a r e m u c h m o r e v a r i a b l e w i t h t h e s m a l l e s t d e v i a t i o n g i v e n b y W D 1 2 . 

T a b l e 5 . 2 . 1 0 . M a r g i n a l d i s t r i b u t i o n o f " C a r s a n d v a n s " b a s e d o n I m p u t a t i o n s 

Imputation 

Method 

CARS 

0 1 2+ mean variance Departure from 

the true mean 

Departure from 

the true variance 

Original 5 5 j 35^ 9.5 0.59 2 26 0.00 OIW 

Multinomial 6L0 2 9 j 9.5 0^3 2.54 -0.06 &28 

NNI 525 3%0 lOj o^a 2.04 0.04 -0.22 

Tree model 540 35^ 11.0 OjG 2T1 0.04 -0.15 

RBF: SSE 520 33^ 15^ (X71 165 0 12 -0.61 

RBF: Wald 5L0 3 2 j 16 5 &74 1.43 CU5 -0.83 

MLP: SSE 5&5 3 0 j 13^ 0.63 2T2 0.04 -0.14 

MLP:Wa]d 3&0 4&0 220 0.95 0.40 036 -1.86 

WD12 515 3%5 9.0 0^0 2T4 0.01 -0.12 

Note: The above results are based on the imputed values of the test data which has 200 cases. The numbers 

under the car numbers are percentages. 

I f t h e c o m p u t i n g t i m e i s c o n s i d e r e d , t h e r i g h t c h o i c e s m i g h t b e t h e t r e e i m p u t a t i o n a n d 

w e i g h t e d d i s t a n c e i m p u t a t i o n , e s p e c i a l l y t r e e i m p u t a t i o n . 

5 . 2 . 8 C o n c l u s i o n s f r o m t h e S t u d y w i t h C e n s u s D a t a 

T h i s n u m e r i c a l s t u d y b a s e d o n c e n s u s d a t a s h o w s t h a t t h e n e u r a l n e t w o r k s i m p u t a t i o n 

m e t h o d s s u c h a s R B F i m p u t a t i o n a n d M L P i m p u t a t i o n a r e c a p a b l e o f d e a l i n g w i t h t h e 

u n k n o w n m o d e l . T h e t r e e i m p u t a t i o n m e t h o d i s a l s o a t t r a c t i v e e s p e c i a l l y w h e n t h e 

c o m p u t i n g t i m e i s c o n c e r n e d , h i t h e f i r s t s i t u a t i o n , t h e l i n e a r l o g i s t i c i m p u t a t i o n s e e m s 

n o t v e r y s u c c e s s f u l c o m p a r e d t o o t h e r i m p u t a t i o n s e x c e p t N N I i n t e r m s o f t h e v a l u e s o f 

W a l d s t a t i s t i c . I t m a y i m p l y t h a t t h e l i n e a r a s s u m p t i o n d o e s n ' t h o l d i n t h i s d a t a . T h i s i s 

t h e s i t u a t i o n w h e r e n e u r a l n e t w o r k s a n d t r e e m o d e l c a n o u t p e r f o r m o t h e r m e t h o d s b y t h e i r 

f l e x i b i l i t y , i n w h i c h t h e y a r e v e r y f l e x i b l e t o b e a d j u s t e d ( t r a i n e d ) t o b e t h e u n d e r l y i n g 

m o d e l . T h e l a t t e r m e t h o d c a n b e d i f f i c u l t a n d t i m e - c o n s u m i n g , w h i c h c a n b e s e e n f r o m 

t h e t i m e l i s t e d i n t h e l a s t c o l u m n s i n a b o v e t a b l e s . B a s e d o n t h e p e r f o r m a n c e o f N N I i n 
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p r e v i o u s s i m u l a t i o n s , t h e p o o r p e r f o r m a n c e o f N N I m a y r e s u l t f r o m t h e d i s t a n c e m e a s u r e , 

E u c l i d e a n d i s t a n c e , s i n c e t h e w e i g h t e d d i s t a n c e b a s e d n e a r e s t n e i g h b o u r i m p u t a t i o n d o e s 

p e r f o r m b e t t e r i n t h i s s i t u a t i o n . 

O v e r a l l , t h e r e s u l t s o f W a l d e v a l u a t i o n s h o w t h a t a l l i m p u t a t i o n s c a n a d e q u a t e l y p r e s e r v e 

t h e m a r g i n a l d i s t r i b u t i o n s v e r y w e l l i n s o m e c i r c u m s t a n c e s , h i t h e m e a n t i m e , t h e D v a l u e s 

d o n ' t v a r y d r a m a t i c a l l y a m o n g t h e s e i m p u t a t i o n s . T h e s h a r p c o n t r a s t i s i n c o m p u t i n g 

t i m e , w h e r e n e u r a l n e t w o r k s t a k e m u c h m o r e t i m e t h a n t h e o t h e r i m p u t a t i o n s . 

B o t h t h e s i m u l a t i o n s t u d y i n t h e p r e v i o u s s e c t i o n a n d t h i s n u m e r i c a l s t u d y u s i n g c e n s u s 

d a t a s h o w t h a t n e u r a l n e t w o r k i m p u t a t i o n c a n o u t p e r f o r m r e g r e s s i o n - b a s e d i m p u t a t i o n i n 

s o m e c i r c u m s t a n c e s . T h e r e s u l t s o f t h e s i m u l a t i o n s t u d y g i v e m o r e d i m e n s i o n s t o 

c o m p a r e t h e c o m p e t i n g i m p u t a t i o n m e t h o d s . M e a n w h i l e i n t h e s i m u l a t i o n s t u d y t h e t r u e 

m o d e l s a r e p r e d e t e r m i n e d , i t i s p o s s i b l e t o s e e h o w a n i m p u t a t i o n m e t h o d p r e s e r v e s t h e 

p o p u l a t i o n m e a n a n d v a r i a n c e , a l t h o u g h t h e l a c k o f v a r i a n c e i n t h e T - t e s t m a k e s t h e 

c o n c l u s i o n l e s s c o n v i n c i n g . T h e n u m e r i c a l s t u d y s h o w s h o w n e u r a l w o r k i m p u t a t i o n 

m e t h o d a n d o t h e r i m p u t a t i o n m e t h o d s p e r f o r m i n t h e r e a l s i t u a t i o n . T h e p r a c t i c a l c o n c e r n 

a b o u t e x c e s s i v e c o m p u t i n g t i m e n e e d e d t o t r a i n n e u r a l n e t w o r k s i s r e v e a l e d b y t h e 

n u m e r i c a l s t u d y . Among t h e c o m p e t i n g i m p u t a t i o n m e t h o d s , N N I d e m o n s t r a t e s q u i t e 

d i f f e r e n t p e r f o r m a n c e s i n t h e t w o s t u d i e s . I n t h e s i m u l a t i o n s t u d y , N N I p e r f o r m s v e r y 

w e l l . O n t h e o t h e r h a n d , i n t h e n u m e r i c a l s t u d y , N N I g i v e s t h e h i g h e s t W a l d v a l u e , w h i c h 

i n d i c a t e s p o o r p e r f o r m a n c e . T h e p o o r p e r f o r m a n c e o f N N I i n t h e n u m e r i c a l s t u d y m a y b e 

r e s u l t e d from t h e t y p e o f c o v a r i a t e s . I n t h e s i m u l a t i o n s t u d y , t h e t w o c o v a r i a t e s a r e 

c o n t i n u o u s . I n t h e n u m e r i c a l s t u d y t h e m a j o r i t y c o v a r i a t e s a r e c a t e g o r i c a l w h i c h m a y l e a d 

t o t h e p o o r p e r f o r m a n c e o f E u c l i d e a n - b a s e d N N I . M e a n w h i l e t h e w e i g h t e d d i s t a n c e - b a s e d 

N N I g i v e s b e t t e r i m p u t a t i o n r e s u l t . T h i s m a y s u g g e s t t h e w e i g h t e d d i s t a n c e - b a s e d 

i m p u t a t i o n m e t h o d i s c a p a b l e o f c o p i n g w i t h d i f f e r e n t t y p e s o f c o v a r i a t e s . M e a n w h i l e t h e 

performance o f a n i m p u t a t i o n m e t h o d n o t o n l y d e p e n d s o n w h i c h m o d e l i s c h o s e n b u t a l s o 

d e p e n d s o n h o w i t i s i m p l e m e n t e d . 
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Conclusions and Future Research 

6.1 Conclusions 

T h e t h e o r e t i c a l r e s u l t s i n c h a p t e r 4 a n d t h e s i m u l a t i o n r e s u l t s i n c h a p t e r 5 s h o w h o w t h e 

p e r f o r m a n c e o f a n i m p u t a t i o n m e t h o d d e p e n d s o n t h e v a l i d i t y o f t h e m o d e l a s s u m p t i o n s . 

I f t h e u n d e r l y i n g m o d e l w h i c h g e n e r a t e s t h e d a t a c o i n c i d e s w i t h t h e m o d e l t h a t t h e 

i m p u t a t i o n m e t h o d i s b a s e d o n , t h e p e r f o r m a n c e i s g o o d i n t e r m s o f p r e s e r v i n g p o p u l a t i o n 

p r o p e r t i e s l i k e t h e m e a n v a r i a n c e a n d d i s t r i b u t i o n . I f t h e t w o m o d e l s d o n o t c o i n c i d e , t h e 

p e r f o r m a n c e i s n o t m u c h d i f f e r e n t t o o t h e r i m p u t a t i o n s . H o w e v e r , t h e n e u r a l n e t w o r k 

m o d e l h a s t h e f l e x i b i l i t y t o a p p r o x i m a t e m a n y u n k n o w n d a t a - g e n e r a t i n g m o d e l s , w h i c h 

m a y g i v e t h e a d v a n t a g e o f R B F i m p u t a t i o n . 

A m o n g t h e m o d e l - b a s e d i m p u t a t i o n m e t h o d s , s u c h a s i m p u t a t i o n b a s e d o n a l i n e a r 

r e g r e s s i o n m o d e l o r t h e R B F m o d e l , r a n d o m i m p u t a t i o n m e t h o d s , s u c h a s r a n d o m 

r e g r e s s i o n i m p u t a t i o n a n d r a n d o m R B F i m p u t a t i o n , o u t p e r f o r m o t h e r v a r i a t i o n s b a s e d o n 

t h e s a m e m o d e l ( s u c h a s m e a n i m p u t a t i o n ) i n t e r m s o f p r e s e r v i n g t h e v a r i a n c e a n d 

d i s t r i b u t i o n ( s p e c i f i c a l l y t h e q u a n t i l e s i n t h e s i m u l a t i o n s ) . M e a n i m p u t a t i o n d e f l a t e s t h e 

v a r i a n c e a n d d i s t o r t t h e d i s t r i b u t i o n i n b o t h s i m u l a t i o n s . 

T h e n e u r a l n e t w o r k i m p u t a t i o n m e t h o d s s u c h a s R B F a n d M L P a r e v e r y f l e x i b l e , a n d c a n 

b e t r a i n e d t o t h e u n d e r l y i n g m o d e l o f t h e g i v e n d a t a . H o w e v e r , t h e f l e x i b i l i t y l e a v e s m a n y 

f a c t o r s t o b e o p t i m i s e d i n t h e t r a i n i n g p r o c e s s , w h i c h m a k e s t h e i m p l e m e n t a t i o n v e r y 

d i f f i c u l t a n d r e a c h i n g t h e t r u e m o d e l n o t g u a r a n t e e d . W i t h t h e r a p i d g r o w i n g o f 

c o m p u t i n g p o w e r , t h e d i f f i c u l t y c o u l d b e e a s e d i n t h e f u t u r e . T h e s i m u l a t i o n r e s u l t s a r e 

f a v o u r a b l e t o t h e R B F i m p u t a t i o n . T h a t m a y e n c o u r a g e u s t o f i n d t h e w a y t o s p e c i f y t h e 

R B F m o d e l p r o p e r l y . O n e o f t h e s t r a t e g i e s i s t o l i n k t h e p a r a m e t e r s i n R B F t o t h e 

p r o p e r t i e s o f t h e u n d e r l y i n g m o d e l t h a t g e n e r a t e s t h e d a t a . T h i s w i l l b e d i s c u s s e d i n t h e 

n e x t s e c t i o n . 

T h e w e i g h t e d d i s t a n c e b a s e d n e a r e s t n e i g h b o u r i m p u t a t i o n m e t h o d o u t p e r f o r m s t h e 

E u c l i d e a n d i s t a n c e b a s e d i m p u t a t i o n . I n o n e e x t r e m e c a s e , o n e c a n s e t a l l w e i g h t s t o b e 
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o n e , t h e n t h e w e i g h t e d d i s t a n c e b e c o m e s E u c h d e a n d i s t a n c e . T h e r e s e e m s t o b e n o l o s s i n 

u s i n g t h e w e i g h t e d d i s t a n c e . T h e s t r i k i n g d i s a d v a n t a g e i s t h e c o m p u t a t i o n t a s k n e e d e d i n 

o b t a i n i n g t h e w e i g h t s , e s p e c i a l l y w h e n n e u r a l n e t w o r k d i s t a n c e i s u s e d . W i t h n r e c o r d s i n 

t h e o r i g i n a l d a t a s e t , t h e r e s u l t i n g d i s t a n c e m a t r i x h a s n(n-l)/2 u n i t s . I t m a k e s t h e 

c o m p u t i n g v e r y h u n g r y o f c o m p u t e r m e m o r y . O n t h e o t h e r h a n d , o n e c a n i m p r o v e t h e 

p e r f o r m a n c e o f t h e w e i g h t e d d i s t a n c e i m p u t a t i o n m e t h o d b y s o m e i t e r a t i v e a l g o r i t h m s . 

O n e w a y t o i m p r o v e t h e p e r f o r m a n c e o f t h e w e i g h t e d d i s t a n c e i m p u t a t i o n m e t h o d i s t o 

a d d a c r o s s t e r m , a l t h o u g h t h e g a i n i s n o t a l w a y s s i g n i f i c a n t , e s p e c i a l l y w h e n t h e 

u n d e r l y i n g m o d e l d o e s n o t c o n t a i n a c r o s s t e r m . 

I n t h e s i t u a t i o n w h e r e t h e u n d e r l y i n g m o d e l i s n o t f a r f r o m t h e l i n e a r r e g r e s s i o n m o d e l , t h e 

r a n d o m r e g r e s s i o n i m p u t a t i o n i s a g o o d c h o i c e i n t e r m o f p e r f o r m a n c e a n d c o m p u t i n g 

t i m e r e q u i r e d . I n t h i s s i t u a t i o n , t h e d i f f e r e n c e b e t w e e n t h e p e r f o r m a n c e s o f t h e r a n d o m 

l i n e a r r e g r e s s i o n a n d t h e r a n d o m R B F i m p u t a t i o n i s m i n o r . M e a n w h i l e t h e d i s t a n c e - b a s e d 

n e a r e s t n e i g h b o u r i m p u t a t i o n s a r e a l s o p r o m i s i n g . T h i s p h e n o m e n o n m a k e s t h e d e c i s i o n 

i n r e a l s i t u a t i o n m o r e d i f f i c u l t , b e c a u s e i t s e e m s t h e r e i s n o o b v i o u s winner. I t m i g h t b e 

n e c e s s a r y t o t e s t t h e v a l i d i t y o f m o d e l a s s u m p t i o n s b e f o r e y o u a d o p t i t . 

T h e s i m u l a t i o n s f o r c a t e g o r i c a l v a r i a b l e l e a d t o s i m i l a r c o n c l u s i o n s t h a t t h e p e r f o r m a n c e 

o f a n i m p u t a t i o n m e t h o d d e p e n d s o n t h e v a l i d i t y o f m o d e l a s s u m p t i o n s . T h e R B F m o d e l 

d e m o n s t r a t e s t h e f l e x i b i l i t y o f p o t e n t i a l l y b e i n g t h e t r u e m o d e l , l i n e a r a n d n o n - l i n e a r . 

M e a n w h i l e t h e d i s t a n c e b a s e d n o n - p a r a m e t r i c i m p u t a t i o n s a r e a l s o p r o m i s i n g i n p r e d i c t i n g 

t h e c a t e g o r i c a l m i s s i n g v a l u e s i n t e r m s o f p r e s e r v i n g t h e t r u e v a l u e a n d m a r g i n a l 

d i s t r i b u t i o n . 

6.2 Ideas for Future Research 

G i v e n t h e d i f f i c u l t i e s e x p e r i e n c e d i n t h e s i m u l a t i o n s t u d i e s o f c h a p t e r 5 i n u s i n g t h e R B F 

m e t h o d , w e f o u n d i t w o u l d b e a g r e a t h e l p i f s o m e g u i d e l i n e s a b o u t h o w t o s p e c i f y t h e 

i n i t i a l v a l u e s o f c e n t r e s c o u l d b e g i v e n . S o m e p r a c t i t i o n e r s r e g a r d n e u r a l n e t w o r k s a s 

b l a c k b o x f o r i t s i n d e f i n i t e s t r u c t u r e a n d v a r i o u s t r a i n i n g a l g o r i t h m s . T h i s r a i s e s a c o n c e r n 

a b o u t t h e a p p l i c a t i o n o f n e u r a l n e t w o r k s . O n e w a y t o d e a l w i t h t h i s p r o b l e m i s t o l i n k t h e 
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p a r a m e t e r s i n n e u r a l n e t w o r k s t o t h e p r o p e r t i e s o f t h e u n d e r l y i n g m o d e l . I n t h e s i m u l a t i o n 

s t u d i e s , w e d i s c o v e r e d t h a t t h e p e a k s o f t h e R B F m o d e l a r e l o c a t e d a t t h e R B F c e n t r e s i n 

t h e c o v a r i a t e s . I f t h e w e i g h t i s n e g a t i v e , t h e p e a k s w i l l b e c o m e t h e b o t t o m p o i n t s . 

S u p p o s e w e u s e R B F m o d e l t o a p p r o x i m a t e a n u n k n o w n m o d e l . T h e b e s t c e n t r e s o f R B F 

s h o u l d b e t h e p o i n t s i n t h e c o v a r i a t e s c o r r e s p o n d i n g t o t h e p e a k s a n d l o w e s t v a l u e s o f t h e 

u n k n o w n m o d e l . T h e q u e s t i o n i s h o w t o find t h e m . T h e s e p o i n t s c o u l d b e t h e l o c a l 

m a x i m u m / m i n i m u m o r g l o b a l m a x i m u m / m i n i m u m . T h e r e f o r e t h e q u e s t i o n b e c o m e s h o w 

t o find t h e l o c a l m i n i m u m a n d m a x i m u m . I f t h e l o c a l m a x i m u m a n d m i n i m u m c a n b e 

o b t a i n e d e f f i c i e n t l y , t h e p e r f o r m a n c e o f t h e R B F i m p u t a t i o n c o u l d b e i m p r o v e d , a n d t h e 

t r a i n i n g p r o c e s s s p e d u p . T h a t w o u l d m a k e t h e R B F m o d e l m o r e a t t r a c t i v e . A l t h o u g h t h i s 

d o e s n o t a p p e a r t o b e a n e a s y t a s k , i t s e e m s w o r t h e x p l o r i n g . 

I n t h e c e n s u s s i t u a t i o n , t h e d a t a c o n t a i n m i l l i o n s o f r e c o r d s . I t i s u m ' e a l i s t i c t o m o d e l t h e 

w h o l e d a t a b y o n e b i g n e u r a l n e t w o r k s m o d e l . O n e p r a c t i c a l a p p r o a c h i s t o s p l i t t h e 

o r i g i n a l d a t a i n t o s m a l l e r s u b s e t s a n d t h e n a p p l y t h e n e u r a l n e t w o r k s t o t h e s u b s e t s . T h e r e 

a r e s e v e r a l c o n c e r n s a b o u t t h i s s t r a t e g y . O n e q u e s t i o n i s w h e t h e r i t i s a g o o d a p p r o a c h . 

H o w d o e s i t p e r f o r m c o m p a r e d w i t h t h e h o t - d e c k i m p u t a t i o n , w h i c h i s w i d e l y u s e d i n 

c e n s u s o r g a n i s a t i o n s ? T h e r e c o u l d b e n o y e s - n o a n s w e r . T h e p e r f o r m a n c e q u i t e l i k e l y 

d e p e n d s o n h o w y o u b u i l d t h e c o m b i n a t i o n o f s p l i t t i n g a n d m o d e l i n g . T h e r e c o m e s t h e 

s e c o n d q u e s t i o n h o w t o o p t i m i s e t h e c o m b i n a t i o n o f s p l i t t i n g a n d m o d e l i n g . 

I m p u t a t i o n i s a b o u t filling t h e h o l e s i n a d a t a s e t . O u t l i e r i d e n t i f i c a t i o n i s a b o u t finding 

p o i n t s t h a t d i s t o r t d a t a a n a l y s i s a n d p r o v i d i n g t h e b a s i s o f r o b u s t e s t i m a t i o n t e c h n i q u e s . 

E d i t i n g i s a b o u t m o d i f y i n g p o t e n t i a l l y w r o n g v a l u e s o r o u t l i e r s i n t h e d a t a s e t . I f w e p u t 

t h e t h r e e m e t h o d s t o g e t h e r w e m a y a d d r e s s a g e n e r a l s i t u a t i o n w h e r e t h e d a t a s e t c a n b e 

r e g a r d e d a s a c o m b i n a t i o n o f u s a b l e u n i t s a n d u n u s a b l e u n i t s w h i c h c o u l d b e m i s s i n g 

v a l u e s , o u t l i e r s o r w r o n g v a l u e s . T h a t m a y s u g g e s t t h e m e t h o d s i n e a c h a r e a m a y b e 

c o m b i n e d o r u s e d a s a l t e r n a t i v e m e t h o d s . S p e c i f i c a l l y w e p r o b a b l y c a n u s e i m p u t a t i o n 

a p p r o a c h e s t o s o l v e t h e p r o b l e m s o f i n o u t l i e r i d e n t i f i c a t i o n a n d e d i t i n g . F o r e x a m p l e , i n 

t h e o u t l i e r i d e n t i f i c a t i o n p r o b l e m , a n i n i t i a l i d e a i s a s s u m i n g t h e o u t l i e r s a r e m i s s i n g , t h e n 

i m p u t e t h e m . T h a t m a y l e a d t o a s e n s i b l e r e s u l t . T h i s c o u l d b e a n i n t e r e s t i n g a r e a t o w o r k 

o n i n fiiture r e s e a r c h . 
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